
Fine-Grained Fault-Tolerance :

Reliability as a Fungible Resource

by

Frangois Impens

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2004

o Massachusetts Institute of Technology 2004. All rights reserved.

Author
Department of

Electrical Engineering and Computer Science
January 15, 2004

C ertified by
Isaac L. Chuang

Associate Professor of Media Arts and Sciences
and Department of Physics

Thesis Supervisor

Accepted by........
Arthur C. Smith

Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSfTUTE
OF TECHN0LOGY

BARKER
APR 15 2004

LiBRARIES I

Fine-Grained Fault-Tolerance :

Reliability as a Fungible Resource

by

Frangois Impens

Submitted to the Department of

Electrical Engineering and Computer Science

on January 15, 2004, in partial fulfillment of the

requirements for the degree of

Master of Science

Abstract

The traditional design of logic circuits, based on reliable components, is incompatible

with the next generation of devices relying on fewer resources and subject to high

rates of soft errors. These allow a trade-off between failure probability and their

space and power consumption. Using this, we show that reliability can be a fungible

resource, interconvertible with other physical resources in multiple, unusual ways,

via fault-tolerant architectures. This thesis investigates the potentialities offered by

a fault-tolerant design in devices whose reliability is limited by shrinking resources.

Surprisingly, we find that an appropriate use of structured redundancy could lead

to more efficient components. The performance of a fine-grained multiplexed design

can indeed be systematically evaluated in terms of resource savings and reliability

improvement. This analysis is applied to characterize technologies at the nano scale,

such as molecular electronics, which may benefit enormously by fault-tolerant designs.

Thesis Supervisor: Isaac L. Chuang

Title: Associate Professor of Media Arts and Sciences

and Department of Physics

iii

iv

Acknowledgments

I thank my supervisor Prof. Isaac Chuang for his guidance and support. While

Prof. Chuang always showed a great interest in the progress of my research, he was

also patient enough to let me explore other fields providing a useful perspective on

the subject.

Thanks to Pr. Sharpeskhar for useful discussions on the noise model in CMOS

transistors.

I would also like to thank my fellow labmates for their support and their help. Ken

was always available to discuss research problems, to read a version of my thesis or

to give technical advices, giving away generously a considerable amount of his time.

Andrew, Setso, Aram, Rob and Zilong read different drafts of this work, providing

me with a valuable feedback. Special thanks to Andrew and Setso for enjoyable

companionship in long nights of labor, and for enduring in silence my musical tastes.

Thanks to my friends Shelly, Olivier, and to my parents for being very supportive.

Thanks to the groups Buena Vista Social Club and Madredeus whose great music

filled this room with an inspiring atmosphere as I was writing.

v

vi

Contents

1 Introduction

1.1 Motivation. .

1.2 Contributions .

1.3 Outline. .

2 Fault-Tolerance

in Combinational Systems

2.1 Introduction to Fault-Tolerant Computing

2.1.1 Summary of previous work

2.1.2 Purpose of fault-tolerance

2.1.3 Error correction techniques

2.2 Fault-Tolerant Design Guidelines

2.2.1 Computation on encoded codewords

2.2.2 Containment of error propagation . .

2.3 Mathematical Framework

2.3.1 Random combinational circuits . . .

2.3.2 Fault-Tolerance

2.4 Algorithmic-based fault-tolerance: example

of the encoded polynomial multiplication . .

2.5 Conclusion

3 Modular Redundancy-Based

Fault-Tolerant Architectures

vii

1

1

2

3

5

5

. 6

. 7

. 9

.11

.11

. 13

. 17

. 17

. 22

. 25

. 30

31

3.1 Introduction .

3.2 Triple Modular Redundancy

with Perfect Majority Voting .

3.2.1 Failure probability of a triplicated system

3.2.2 Cascaded Triple Modular Redundancy

3.2.3 Threshold Theorem .

3.3 Modular Redundancy with imperfect majority voting

3.3.1 Reliability improvement through imperfect majority voting . .

3.3.2 Distributed Majority Voting

3.3.3 Recursive multiplexing .

3.3.4 Reliability and resource consumption in recursively multiplexed

circu its .

3.4 Conclusion: Threshold Theorem

with imperfect majority voting .

4 Fined Grained Fault-Tolerance:

Qualitative Approach

4.1 Resource-dependent reliability:

Example of the CMOS transistor

4.1.1 Notion of noise

4.1.2 Resulting error probability

4.2 Problem Statement

4.2.1 Fundamental question and hypothesis . .

4.2.2 Two first examples

4.2.3 Framework

4.2.4 Two different points of view

4.3 Initial Solutions

4.3.1 Efficiency of a fault-tolerant design for

residual error

67

. 68

. 68

. 72

. 74

. 74

. 76

. 78

. 81

. 83

reliability laws with

83

viii

32

34

35

37

40

46

47

51

56

61

64

4.3.2 Efficiency condition of a multiplexed

triple modular redundant design 85

4.3.3 Equivalence of the optimization with limited resource availabil-

ity and with reliability requirement 86

4.4 Reliability is a fungible resource . 88

4.5 C onclusion . 90

5 Fine-grained Fault-Tolerance:

Quantitative Analysis 93

5.1 Systematic approach of fault-tolerant

optim ization . 94

5.1.1 Identification of the optimal areas 94

5.1.2 Simplification of the Triple Modular Redundancy

Efficiency Condition . 97

5.1.3 Quantitative measures of efficiency:

Definition and evaluation . 98

5.2 Comparison of reliability-resource laws 99

5.2.1 Invariance of the efficiency towards dilatation

of the reliability-resource law 100

5.2.2 Comparison of single parameter

reliability-resource laws . 101

5.2.3 Comparison of reliability laws with different resources 105

5.3 Treatment of specific reliability-resource laws 106

5.3.1 Representation of the efficiency

of a Multiplexed Triple Modular Redundant design 107

5.3.2 Power laws: p(A) = 1/Au . 108

5.3.3 Exponential laws: p(A) = exp(-A)111

5.4 CM OS Transistor . 114

5.4.1 Reliability laws p(A) = j erfc(A-) 114

ix

5.4.2 Relation to the fault-tolerant implementability of a CMOS tran-

sistor . 118

5.5 Conclusion . 120

6 Conclusion 121

6.1 Summary and contributions . 121

6.2 Open Problems . 122

6.3 Relation to emerging technologies . 123

x

List of Figures

2-1 Executive organ of a NAND gate encoded in the triple repetition code. 12

2-2 Action of an encoded gate on a set of words. 15

3-1 Simple majority voting system. 35

3-2 Double majority voting system. 38

3-3 External and internal modular design. 45

3-4 Recursive majority voting. 47

3-5 Distributed majority voting. 52

3-6 Sequence of two encoded NAND gates. 54

3-7 Distributed majority voting system taking imperfect inputs. 54

3-8 Multiplexed NAND of recursion level 2. 58

3-9 Recursive multiplexing of a NAND gate. 60

3-10 Structure of the code : ternary tree of depth k 60

4-1 Two alternative resource allocations for a NAND gate of layout area AT. 75

4-2 Fault-tolerant design in steep and flat reliability laws. 77

4-3 General reliability-resource law. 79

4-4 Reliability-resource law with residual error. 84

4-5 Possible trajectories of the phase point. 89

4-6 Accessible phase space for a single resource reliability law. 90

4-7 Accessible phase space for a reliability law with several resources. . . 91

5-1 Comparison of two reliability-resource laws for a single reliability re-

quirem ent E. 101

xi

5-2 Critical exponent for the family of power laws p(A) = A-- as a function

of the reliability . 108

5-3 Maximum exponents compatible with a certain resource gain for the

fam ily of power laws. 109

5-4 Reliability obtained through optimized and direct allocation for the

power law p(A) = 1/A 2 110

5-5 Critical exponent for the family of exponential laws p(A) = 1 exp(-A)

as a function of the reliability requirement. 111

5-6 Maximum exponents compatible with a certain resource gain for the

family of exponential laws. 112

5-7 Reliability obtained through optimized and direct allocation for the

exponential law p(A) = 1 exp(-A 1 / 4). 113

5-8 Critical exponent for the family of laws p(A) = lerfc(AY) 115

5-9 Maximum exponents compatible with a certain resource gain for the

family of laws p(A) = 'erfc(AY). 116

5-10 Reliability obtained through optimized and direct allocation for the

law p(A) = 1erfc(A0 .15) . 117

5-11 Range of efficiency for multiplexed triple modular redundancy 120

xii

Chapter 1

Introduction

1.1 Motivation

If we are to face the coming challenges of information technology we need, today

more than ever, new resource-efficient design methodologies.

Reliability and resource consumption are intimately connected in any real com-

puting system. So far the strategy of manufacturers has been to allocate enough

resources to each component until its failure probability becomes negligible for all

practical purposes. Reliability comes at a certain price, and for each device there

is a trade-off between deficiency and resource consumption. The current industrial

choice, which is to saturate this relation for any part of the system, is likely based on

the belief that the disorder arising from the elementary components at the small scale

level would be amplified at the high scale level and lead to unreliable computations.

Unfortunately this policy is not compatible anymore with the coming technologies,

which require that components rely always on fewer resources. As far as near-term

technologies are concerned, the consumption of space and power is becoming a major

issue. The electronics industry, in its struggle to keep up with the Moore's law pre-

dictions, is now engaged in a chip miniaturization process which will prove extremely

challenging as the dimensions of the devices get close to those of molecules. As for

power consumption, we live in a very energy-conscious era, and the increasing demand

on electronic appliances with high autonomy strongly calls for low-power schemes. In

1

a longer term perspective, the continuous shrinking of chip layouts will make them

extremely sensitive to external perturbations such as cosmic rays and highly subject

to operational errors. Innovative designs capable of dealing with high rates of soft

errors at a cost of a minimum overhead will then be extremely useful.

Furthermore, two elements strongly suggest that the policy of building systems ex-

clusively out of reliable components is not optimal. The first point would be that nat-

ural computational systems work differently. The human brain, for instance, makes

use of a great number of neurons whose answer is of statistical nature. The second

argument is mathematical. By imposing a high reliability at any scale, although only

the high scale matters, we do not take advantage of statistical properties predicted

by the law of large numbers. From an information-theoretic point of view, we gain

a great amount of unnecessary information. Indeed, if a device is perfectly reliable,

then its behavior is predictable. In a circuit built out exclusively of ideally reliable

components, the state of any device can be determined at any time on the basis of

the system inputs. Such a knowledge is not useful, since the only relevant piece of

information is the global answer to the computation.

1.2 Contributions

We investigate in this thesis an alternative design method, based on the

introduction of a fault-tolerant structure at the fine-grain level in electronic circuits.

In such a system, each elementary component exhibits a certain level of deficiency,

and consumes in return less resources than if it were perfectly reliable. Our treatment

differs from the previous work done on fault-tolerance, primarily concerned with

the embedding of fixed faulty devices into reliable networks. It differs in nature,

because the deficiency of the components is here conditioned by the mobilization of

resources. The fault-tolerant architecture is internalized within the component itself

and provides it with a structure optimizing its use of resources. It also differs in

purpose, since the techniques we expose allow devices to rely on fewer resources, and

may be relevant even in technologies with low failures rates.

2

The main contribution of this thesis is to systematically evaluate the efficiency

of a modular redundant design operated at the fine-grain level in electronic com-

ponents. The potentialities offered by fault-tolerance in terms of resource-efficient

design could be largely underestimated. By showing that those constructions can

potentially lead to better trades-off between area, power consumption and reliability

than those currently used, we hope to help fill in this hole.

1.3 Outline

Chapter 2 and Chapter 3 review general material on fault-tolerance and modular

redundancy. Chapter 4 and Chapter 5 present the original work accomplished in this

thesis. The outline is the following:

Chapter 2 covers the general concepts and tools of fault-tolerance necessary

to understand the strategy of the constructions presented afterwards. It also

defines a mathematical framework for the encoded computation with faulty devices,

appropriate to set the argumentation to come on a firm basis.

Chapter 3 exposes in detail a specific class of fault-tolerant architectures, based

on modular redundancy. Their performance and cost for scalable circuits of encoded

logic are evaluated.

Chapter 4 introduces the notion that reliability is a fungible resource and

applies the fault-tolerant constructions of Chapter 3 in this new context. Initial

results are derived, including a mathematical condition stating, for a given technol-

ogy, whether modular redundancy can be efficiently introduced at the fine-grain level.

Chapter 5 defines a systematic procedure allowing one to evaluate the efficiency

of a fine-grained modular redundant design. This method is applied to estimate the

3

gain brought by fault-tolerant schemes in specific instances including the case of a

CMOS transistor.

An appendix gathers the definitions and acronyms used in this thesis.

4

Chapter 2

Fault-Tolerance

in Combinational Systems

In this chapter we review the concepts of fault-tolerant computation and propose

a mathematical framework for the treatment of probabilistic combinational circuits.

Although we will focus in this thesis on the implementation of elementary logic com-

ponents, which we can take as NAND gates without loss of generality, the techniques

of fault-tolerance require the introduction of more general noisy circuits.

Section 2.1 is an introduction to the area of fault-tolerant computing. Section 2.2

exposes the strategy underlying the design of reliable combinational systems consti-

tuted of faulty elements. Section 2.3 introduces the formalism relative to noisy and

encoded computations. Section 2.4 illustrates the concepts of this chapter through

the example of fault-tolerant polynomial multiplication. Section 2.5 concludes by

highlighting the important points developed in this chapter.

2.1 Introduction to Fault-Tolerant Computing

This section reviews the basic concepts involved in fault-tolerance as well as the

design guidelines of efficient fault-tolerant combinational circuits. The ideas exposed

here will guide us through the later development of this thesis. The interested reader

might refer to the references of the next paragraph for a deeper insight in the field.

5

2.1.1 Summary of previous work

The work of Von Neumann [Neu56] initiated to a large extent the search for a the-

ory of computation through unreliable elements. Later on, Elias [Eli58], Winograd

and Cowan [WC63], and Taylor [Tay90] tried to apply the techniques of informa-

tion theory [Sha48a, Sha48b] to protect computing systems from hardware faults.

An important concern was the efficiency of the existing fault-tolerant architectures:

Winograd and Cowan underlined in [WC63] that arbitrarily high levels of reliability

in noisy circuits could so far only be achieved at the cost of an arbitrary high num-

ber of components, whereas in information theory a constant overhead could yield

ideally reliable communication through noisy channels [Sha48a, Sha48b]. Later on,

Pippenger [Pip85, Pip89] addressed this point by exhibiting certain boolean functions

for which only a constant multiplicative overhead is necessary. A more general result

on the efficiency of multiplexing was also proven: Dobrushin and Ortuyov [DO77b]

and Pippenger [Pip85] improved theoretically the result of Von Neumann by showing

that the computation of any boolean function through a noisy circuit can be done

with an overhead factor which is logarithmic in the failure probability. Therefore

the multiplexing techniques of Von Neumann [Neu56] may work effectively with a

practically acceptable overhead.

Lower bounds on the required amount of redundancy have also been established.

Dobrushin and Ortuyov [DO77a], Pippenger, Stamoulis and Tsitsiklis [PST91], and

Gil [G85] proved that a multiplication of the number of components by a logarith-

mic factor is necessary for the computation of certain boolean functions with noisy

gates. Hajek and Weller [HW91], Evans and Pippenger [EP98] determined the maxi-

mum amount of noise within logic gates compatible with the performance of reliable

computations.

Worth mentioning also is the work of Gics [G86], who investigated the different

problem of the network dimensionality. He showed that arbitrarily large computa-

tions were possible with one-dimensional cellular automatons.

6

2.1.2 Purpose of fault-tolerance

Notion of Fault-Tolerant System

Many applications require the performance of computations with an arbitrarily

low risk of failure. Unfortunately, the method which consists in ensuring the reliable

behavior of all the components turns out to be inefficient when the system is com-

plex or when the failures are caused by uncontrollable environmental factors. Fault-

tolerance is an alternative strategy which, in lieu of trying to prevent the occurrence

of failures, aims at designing systems robust to a certain error rate. In the language

of computer science, we may say that the circuit is able to catch a certain number of

exceptions. In the most general sense, when evoking the notion of fault-tolerance we

mean the following property:

Definition 2.1.1 : We shall say that a system is fault-tolerant when it preserves a

desirable behavior under the occurrence of a certain rate of internal faults.

The ability to preserve a reliable behavior in spite of a partial corruption of the

assigned process is sometimes referred to as graceful degradation. Fault-tolerant

techniques are in fact not limited to the field of reliable computing. Manufactur-

ing processes, for instance, may involve automatons whose erroneous behavior could

physically endanger the whole production chain and thus need to be protected by

self-checking procedures.

Desirable behavior

By desirable behavior, for an automata, we mean that the system should stay

within a restricted set of states labelled as "acceptable." For a combinational circuit,

this term signifies that it should deliver a correct output with high probability. A

correct output is a word whose decoding leads to the result of a fault-free computation,

the decoding being a many-one transformation fixed before the computation and

independent from the input sequence. We will have the opportunity to go back to

this assertion and specify it in the next paragraphs.

7

Internal Faults

By internal faults we mean that one of the components, within the system, has

not performed the task it was assigned to. In general, two kind of failures may occur

in a circuit:

e Permanent or hard failures, affecting a processor for an unlimited amount of

time. The defect in the processor remains during future operations.

* Soft or transient errors, denoting a temporary malfunction of the processor.

These errors last for a finite amount of time, and typically affect only one

isolated computation.

The error model we adopt in this thesis is, however, more restrictive: we consider

only the occurrence of soft errors and neglect the possibility of hard failures in the

circuits.

Hard failures typically originate from manufacturing defects and can be

limited pending sufficient technical improvements. Recent engineering work

shows that these errors may also be managed through reconfiguration tech-

niques [CAC+96], [HKSW98], [MSSTOO].

Soft errors are a greater concern for emerging technologies. Inherent to the device

operation or to environmental influences, these random faults happen on a much

faster time-scale than hard errors and cannot be fought by the same techniques.

Thanks to the very high level of reliability met by current electronic devices (failure

probability on the order of 10-16), soft errors have not been a major issue so far,

except for the operation in exceptional environmental conditions encountered in space

engineering. The situation will be different with the next generation of components,

whose dimensions will be on the nano-scale. The failure probability of those devices

is more likely to be on the order of 10-. Indeed, the unreliability of single electron

devices [Lik99] is already considered as a serious threat for their integration into large-

scale circuits. In the area of quantum computing, decoherence intrinsically limits the

reliability of elementary quantum gates: they have not been performed so far with a

failure probability lower than 10 5 . In molecular electronics, cosmic rays might also

8

be an important source of operational errors. Unlike hard failures, because they are

attached to physical limitations, transient errors will not be circumventable. In these

near or long-term technologies, computing devices will thus enter a regime in which

soft errors prevail. Their management will be essential for the integration of those

devices into high-scale systems. This is why we deliberately focus in this thesis on

the design of resource-efficient architectures robust to soft errors only, without taking

hard failures into consideration.

We should also point out three other important assumptions relative to our error

model:

" No component in the computational system is assumed to be perfectly reliable.

" Errors occurring within different processors are independent events.

* Processors fail independently from their inputs.

2.1.3 Error correction techniques

Necessity of Redundancy

The concept of fault-tolerance relies on the ability to recover the data corrupted

through a computation, or to distinguish between valid and invalid states of an au-

tomata. This implies the existence of error correction techniques capable of restoring

integrally a signal partially corrupted. Any of those requires the introduction of a

certain amount of redundancy within the system. This principle seems at first in

contradiction with the achievement of resource-efficient computing. In fact it is not

because, as we shall see, reliability itself comes at a certain price. Nonetheless, in

order to minimize the incurring overhead, the added redundancy should exhibit an

appropriate structure and be added in places where errors are either likely to arise or

critical. To implement this strategy, we may give to the redundancy the form of an

encoding, and choose the code according to the nature of the task performed and the

features of potential errors.

9

The work exposed in this thesis is relative to the efficient fault-tolerant implemen-

tation of elementary logic gates suitable for any general boolean computation. We

must therefore adopt an encoding compatible with generality requirement. Previous

work has been done concerning the protection through encoding of very specific com-

putational tasks [Bec92], [Had02], branch of fault-tolerance referred to as algorithmic-

based. We will examine later an example of reliability improvement through such a

an error correcting code.

The encoding of logical bits into codewords is the standard technique to protect

against their alteration in a noisy environment. The simplest code, the triple repe-

tition, maps 0 to 000 and 1 to 111. The most natural decoding associates to words

of three bits containing at least two 0 and two 1 respectively the single bit 0 and the

single bit 1. This type of decoding is called majority voting.

Certain class of codes group several logical bits (words) at a time within a single

codeword. A very commonly used family of codes having this property is the class of

linear codes [McE76]. Their main advantage is that codewords can be generated and

checked easily through a simple matrix multiplication. Linear codes indeed work along

the following principle: they map contiguous words of logical bits into a bigger space,

in which each codeword is isolated from the others. The distance d between those

determines the maximum number of errors, compatible with a correct decoding, that

may simultaneously affect a codeword. More precisely, in a code of minimum distance

d, each codeword is surrounded by a ball of radius Ld/2] which does not intersect

with the balls corresponding to other codewords. Words corrupted with less than

[d/2] errors can thus be recovered without any ambiguity through a decoding scheme

projecting each ball onto its associated codeword. Linear codes are classified by the

length of the encoded word, by the number of logical bits encoded in a codeword,

and by the distance between them, information which is usually summed up into

the triplet of integers (n, k, d). These classical linear codes have been integrated in

the definition of powerful quantum error correction codes [Ste96] which were used to

prove the existence of fault-tolerant computing architectures [Sho96].

10

Separate and Systematic Codes

The degree of separation between the informative content of the codewords and

the redundancy added for fault detection and correction is an important indicator

of the easiness with which the encoding or decoding operations can be performed.

In certain codes, the distinction between the informative and redundant part of the

codewords is such that this separation appears in the encoding of the logic operands.

These considerations motivate their classification along the following criterions:

Definition 2.1.2 : A systematic error correcting code is a code whose codewords are

composed of two distinct parts: the original word, and parity check symbols derived

from it. A systematic error correcting code is separate if the encoded operations are

performed separately on the original data and on the parity check symbols.

The decoding is trivial in systematic codes, since it is possible to read directly the

data in the first components of the codeword. In separate codes, the computation

does not mix the added redundancy with the original data. The dynamic of the latter

stays unchanged in the encoded computation and is readable on the first components

of the encoded codewords. This is an important property.

2.2 Fault-Tolerant Design Guidelines

In order for the protection to be effective, the circuit must meet two essential

requirements. First, the data must stay encoded at all times through the compu-

tational process. Second, the propagation of errors during the computation must

be contained, so that the level of signal alteration remains sufficiently low for the

correction techniques to be applicable.

2.2.1 Computation on encoded codewords

It is necessary, in order to protect the data against dynamic alteration at every

stage of the computation, that the logic gates of a fault-tolerant circuit perform the

11

computation directly on encoded bits. In the case of the triple repetition code, it is

sufficient to operate the original gate separately three times on similar sets of inputs

to execute the computation while preserving the code structure(see figure 2-1 for the

computation of a NAND gate). Taking the terms of Von Neumann [Neu56], we may

call this ensemble of gates the executive organ associated with the encoding of the

gate through the triple repetition code. It will reveal useful to couple this organ to

an other system, taking advantage of the distance between the codewords to perform

some error correction. But the latter should not operate any decoding, which would

make the data vulnerable. It should simply take the word delivered by the executive

organ and match it, with high probability of success, with the codeword encoding the

expected result of the original computation. In the denomination of Von Neumann,

this part of the circuit would be the restoring organ. From now on, we will call

the assembly of these two components - the executive and the restoring organ - the

encoded gate.

NAND

NAND

1NAND

Figure 2-1: Executive organ of a NAND gate encoded in the triple repetition code.
The data flows from the left to the right, each NAND gate takes two inputs and
delivers one output. The six inputs correspond to two logical bits which have been
previously encoded in the triple repetition code.

It is now time to attract the attention of the reader on an important assumption

which will be made in the rest of this thesis. Since the operation of the boolean

processor maps inputs encoded in a certain code to outputs similarly encoded, the

encoding and decoding operations are only performed at the beginning and at the

end of a chain of computations. In most applications, the depth of current logic

circuits is such that the number of operations involved in this chain is several orders

of magnitude greater than that required by a single encoding or decoding of the data.

12

Consequently, we assume that the cost associated with those operations is negligible.

Since we focus on the resource-efficiency aspect of fault-tolerant computation, we will

not detail the circuits performing the encoding and decoding. The encoding needs to

be a fixed one to one transformation, mapping words of length k to words of length n.

Otherwise, if it were to depend on the sequence of previous inputs, the encoder would

have the ability to perform some computation. Since the encoder is a reliable device,

this assumption would contradict our approach in which all components are subject to

soft errors. The decoding is also fixed, but it is a many to one transformation. There

are several possible decoding procedures associated with a single code. The choice

of an appropriate decoding has an important impact on the reliability of the gate.

When errors among bits are identically distributed, an optimal choice is to project

words of length n onto the closest codeword - or one of the closest codewords if there

are several - in the sense of the Hamming distance. We should mention, however,

that this scheme is not necessarily the best if the occurrence of errors is more likely

in certain parts of the codeword than in others. In this situation, a decoding taking

into account the expected error locations may be more efficient.

2.2.2 Containment of error propagation

An important design requirement

A careful design of a fault-tolerant circuit should ensure that errors arising in

some bits of the data through component failures do not propagate significantly to

many other bits of the data stream. In order to maintain the noise level within the

circuit under control, we require that it satisfy the property:

No single component failure, whether it happens in a wire or in a gate,

should corrupt several bits within the same codeword at a time

This restriction will shape the form of the logic gate encoding. Indeed a random

encoding of logic gates is likely to transfer an error occurring in a bit of a codeword

to other bits of the same word.

13

Transversality

A very favorable situation in the respect of error propagation is obtained when

the executive organ merely consists in a transversal replication of the original gate

applied separately on the different bits of a codeword. Codes for which a universal

set of operations is encodable in a bitwise manner have therefore a great advantage:

not only do they minimize the overhead in complexity due to the encoding of logic

operations (their executive organ, a transverse implementation of the original gate,

is very simple), but they also provide a frame in which error propagation is naturally

contained. The repetition codes fall into this category and thus deserve a particular

attention.

Scaling of the output failure probability

While a simple logic gate may be described through an assignment of failures

probabilities to each possible set of inputs, the behavior of an encoded gate is more

complex. As an example, let us consider a code C mapping each bit to a word of

length 1 distant of d = 2t + 1 from other words. According to our former analysis,

C can therefore correct up to t errors. The output of an encoded gate simulating a

boolean computation can be considered as correct as long as, when decoded, it yields

the correct result of the non-encoded boolean computation. But the probability that

the output falls in or out of the Hamming ball of radius t centered on the fault-free

result is not sufficient to predict the effective reliability of such a gate embedded into

real circuits. Let us see why.

During the performance of a long chain of boolean operations, the outputs of each

encoded gate are sent into the next one. Each encoded gate contains an executive

organ followed by a restoring organ. While a certain amount of error correction

is performed within each encoded gate through the restoring organ, however, no

error correction is performed in between two encoded gates. Therefore, in order to

be consistent, we must accept that inputs have a certain probability to be distant

14

from perfectly encoded codewords in the ordinary operation of the encoded gate (see

figure 2-2).

Furthermore, the probability that an encoded gate fails in the sense that "the

decoding of the output does not lead to the result" is higher if its inputs are already

corrupted. This fact implies that, in order to describe an encoded gate, one should

know:

" The probability that the gate leads to a wrong result under imperfectly encoded

inputs.

" The probability that the gate delivers a partially corrupted output, in the sense

of correct but not within the codewords.

Hamming s heres of radius t

"Correct" output
Perfectly Perfectly encoded output
encoded Noisy input
input

Figure 2-2: Action of an encoded gate on a set of words. A full description of an
encoded gate must include its action on the set of words within a Hamming ball
of radius t = [centered on the perfectly encoded inputs. This set corresponds to
partially corrupted inputs, which are also possible correct outputs of previous encoded
gates.

We can now appreciate the benefits of the design requirement introduced in this

section. Let us imagine a computation in which two inputs, each representing an

encoded logical bit with at most a corrupted bits, are sent into an encoded NAND

gate which delivers in output a possibly corrupted codeword. The encoded gate is

15

indeed composed of elementary gates taking single bits, and failing with a probability

bounded by p. A decisive point is now: how many of these simple logical devices have

to fail altogether in the computation in order to generate more than v errors in the

output? Because of the condition on error propagation, each corrupted bit can be

traced back to a unique component failure, and this quantity is therefore v - u. We

obtain then the essential property:

The probability that v bits are corrupted within the output, knowing that

u bits or less are corrupted in each input, is on the order of pv-u.

In particular, the failure probability of the computation as a whole is on the order:

Pf ail < Cp = Q(pt) (2.1)

where c is the number of possible locations where t failures may appear within the

circuit. If the components are fairly reliable, so that p < 1, the gain in reliability

through the encoding is great. Furthermore, in order to compute the effective

reliability of the gate in a network of similar gates, it is sufficient to treat each of its

inputs as components failing with a probability p.

Block Computation

In certain codes, such as linear codes, several logical bits are encoded within the

same codeword. The operation of logic gates on such codewords is referred to as

block computation [Eli58]. Let us consider such a computation involving only two

inputs-one output boolean functions. We may then distinguish between two kind of

operations:

" Operations on two logical bits encoded within the same codeword.

* Operations on two logical bits situated in different codewords.

A failure in the logic operation of the first kind, which interacts two bits of the

same codeword, may endanger several bits within this single codeword. Besides, a

16

fixed encoding should allow one to perform both type of operations, which seems

challenging. Indeed the encoding of logic gates performing block computation is not

trivial at all. We will use in this thesis the simpler approach in which each codeword

represents a single logical bit.

2.3 Mathematical Framework

We define in this section the essential terms necessary for the rigorous treatment

of fault-tolerant systems. The language introduced here will be useful in the later

developments of this thesis.

Our first task will be to define the logic gates or processors present in the circuit

as mathematical objects. We then introduce the notion of combinational circuits.

Finally we specify the notions of encoded computation and fault-tolerance in those

circuits. Although we will try, whenever possible, to insist on the concrete implications

of those definitions, some abstraction is necessary to perform a rigorous approach of

the reliability within probabilistic boolean circuits.

2.3.1 Random combinational circuits

Notion of Processor

A natural framework for the treatment of faulty boolean circuits seems to be the

theory of automatons. The building blocks of such circuits, the processors, need to be

to some extent unpredictable. A faulty processor could then be an automata whose

output is a set of random variables correlated to an other set of random variables

called input. This was the approach followed by Von Neumann [Neu56]. But the

use of automatons for the description of combinational circuits has the disadvantage

of introducing the additional problem of synchronization, irrelevant here because the

output may be entirely determined by the input of the circuit.

Von Neumann showed [Neu56] that the issue of synchronization maybe circum-

vented by using logic gates automatons as delays in the circuit, leading to an overhead

17

in its complexity. In fact, the great majority of the architectures investigated in this

thesis will be naturally synchronized: the path of each particular input to an outputs

of the circuit will be of equal length in terms of number of operations. Nonetheless, for

sake of simplicity, we will assume that any gate automatically waits for all the input

signals to arrive before performing the logic operation. This suggests the following

definition for a processor:

Definition 2.3.1 : A processor P taking m inputs and delivering n outputs is an

automata whose inputs and outputs are given respectively by the set of random vectors

X = (X1 , ... , Xm) and Y = (Y, .., Y,) following the properties:

* These random vectors are functions of time may be sampled only at t = 0, 1, 2,

9 If t is the first instant in which all inputs have been sampled, the output vector

is sampled at the time t + 1

* The distribution of Y at t+ 1 is conditioned to that of X at t and is independent

of t.

In other words, processors are unit-delay deficient automatons, memorizing the

inputs arriving at different times, and whose behavior is stationary during the

computation. But we will consider only combinational circuits and focus merely on

the result of the computation, without interest for the transient state of the different

processors involved. From this perspective the use of automatons for their description

seems superfluous and we may define processors directly in the frame of instan-

taneous random variables. Furthermore, we can specialize to single-output processors.

We shall note Q the universe of events (with a measure p called probability) and

R({0, 1}) the space of random vectors of {0, 1}m. We remind that random vectors

X of this space are functions mapping Q to {0, 1} m such that:

Vx E {0, 1}m X = x is an event i.e. X-1(x) is a measurable set of Q (2.2)

18

In the error model defined in section 2.1.2, errors occur independently in different

processors and independently from their inputs. With these assumptions in hand, we

can model the action of a noisy processor by the following relation between its inputs

and its output:

Definition 2.3.2 : A processor P computing F : {0, 1} m -- {0, 1} and delivering a

single output is a map:

G : R({0, 1}) -+ R({0, 1}) (2.3)

(X1, ... , Xm)) Y = F (X1, ..., Xm) + 6 (2.4)

where 6 is a random variable reflecting the errors occurring in the processor. 6 is

independent from the inputs (X 1 , ..., Xm), and two variables 6 associated with distinct

processors are independent.

As we shall see in Chapter 4, the distribution of 6 depends on the amount of

resources allocated to the processor. We will also suppose that the error probability

p(6 5 0) can be made arbitrarily small pending sufficient resource availability.

Definition 2.3.3 : Two processors implement the same gate if they compute the

same function F up to a composition with a permutation of their inputs. Two pro-

cessors implementing the same gate are identical if the distribution of their respective

random variables 6 are equal.

We now define the notion of deficient computation. Indeed we will distinguish

between three regimes:

Definition 2.3.4 : Let e E]0, 1/2[and P be a processor computing a function F

{0, 1}" - {0, 1} in the sense of definition (2.3.2) .

* We shall say that a processor P weakly E-computes F if and only if:

Vx E {0, 1}m p(6 = 1X = x) < e (2.5)

19

" We shall say that a processor P strictly c-computes F if and only if:

V EG{O, 1} m p(6 = 1Q X=) = e (2.6)

" A processor P is said to reliably compute F if it 0-computes f.

The "weak" computation represents a more general deficiency model than the "strict"

computation: a processor P which strictly E-computes a boolean function is reliably

unreliable because its failure probability is known and constant in time, while the

failure probability of a processor P which weakly c-computes a function F might have

a reliability varying over time. Besides, the exact reliability of a device can often not

be determined but simply bounded. That is why the model of weak computation

is more realistic. But it has the disadvantage of leading to looser bounds on the

reliability of noisy circuits. For this reason we will use both approaches.

Combinational circuits

When combining different processors into a circuit, we have to impose certain

restrictions in order to avoid inconsistencies with the definitions we adopted.

Two processors are connected when theirs sets of inputs and output share common

random variables. Two different processors P and P2 may not have a common output,

but P and P2 may have common inputs. Besides the output of P may be a coordinate

in the input vector of P2.

Depending on the assumptions concerning the communications within the circuit,

certain kind of processors may or may not be connected. If we assume that the

circuit has reliable wires, the signal is identical at both ends of the line and a single

random variable is needed to represent the excitation level of the wire. In this case,

all kind of processors may be connected along the guidelines mentioned. This is

the model of circuit we adopt from now on, and the corresponding mathematical

definition is:

20

Definition 2.3.5 :

A combinational C circuit made out of processors from S is a map from R({O, 1}")

to R({0, 1}N) obtained by composition of processors from S.

Circuits are most adequately represented in terms of graphs, representation

which has the advantage of suggesting their physical layout. A very important

restriction on the schemes we consider is that none of their processors should have

any feedback. This is the specific feature of the class of combinational circuits,

which includes only loop-free automatons arrangements. Should this condition not

be enforced, the output of the circuit may not be stationary any longer. This would

lead to a breakdown of the "instantaneous time" approach and inconsistencies in

the probability distributions associated with each processor. To treat such circuits,

one would need to reformulate the processors in terms of automatons and handle

correctly the issue of synchronization. This is a much more complicated problem

which is not relevant to this thesis addressing the resource-efficient implementation

of boolean functions.

A combinational circuit with reliable wires may be represented through an oriented

graph with the following properties:

" Each node of the graph represents a processor. Its sets of inputs and its output

are given respectively by the lines terminating and originating from the node.

" Each line (called wire) is associated with a unique random variable. All the

lines are oriented and connected to at least one node. A line connecting the

output of the processor k with the processor I wears a number corresponding

to the input label in the processor I. A wire which does not originate from any

node carries an input of the circuit, and a wire which does not terminate in any

node carries an output of the circuit.

" There is no sequence of processors P, .., Pi, and wires Lj,.., Lj, such that:

VU E [1, k] Lj1 originates from Pi, and terminates in Pi(u)dk (2.7)

21

In any of the coming figures representing combinational circuits, the wires are

oriented from the left to the right.

2.3.2 Fault-Tolerance

Faults and Deviations

It is crucial, in order to state whether the global computation of the circuit is

successful or not, to know which processors have failed during the computational

process. To this purpose, we introduce the notion of fault-path:

Definition (Fault Path) 2.3.6 : Let C be a combinational circuit consisting in the

processors P1 , .. , PN. We shall call fault-path the random vector E = (E1 , .., E,) where

the coordinates Ej are binary random variables such that:

E =1 Pi fails

From this definition we can define the perfect computation in a circuit:

Definition 2.3.7 :

Let C be a combinational circuit consisting in the processors P1,.., PN, of inputs

X X1, .., Xm and outputs Y = Y, .. ,Y.

* A perfect(or fault-free) computation of x 1 ,..,xm is a computation yielding

X = (x1, .. , x,) and E = (E1,,.., En) = 0

* The perfect result r(xi, .. , Xm) the value taken by the vector Y = (y1,.., y,) in

a perfect computation. The function r(xl,.., x,) is the function represented by

the circuit.

While the notion of failure is valid for a processor, it is unappropriate for wires.

Nonetheless, we will need in our analysis to identify when the inputs feeding a pro-

cessor differ from what would be expected in a perfect computation. With this goal

in mind we introduce the notion of deviation:

22

Definition 2.3.8 : Let C be a boolean circuit and W be the random variable as-

sociated with a wire of the circuit. We shall say that the wire W deviates during a

computation when it takes a different value from that yielded by a perfect computation

in C.

Encoded Computation

We may now translate the ideas of the previous section regarding the encoding

of logic gates, focusing directly on the case of interest where each codeword contains

one and only one logical bit. From now on, if T is a code of length 1, we denote T(u)

the boolean vector corresponding to the bitwise encoding of u:

T(ui,.., un) = (T(u) 1 , T(u1) 2 , .. , T(ui)j, T(u 2)1 , .. , T(um)i) (2.8)

Definition 2.3.9 : Let T : {0, 1} -> {0, 1}' be a function. Let F {0, 1}m _

{0, 1} be a boolean function, and C be a combinational circuit with the inputs X =

X1,.., X..i and outputs Y = Y1 ,.., Ynxi, built out of the processors P1 ,.., PN- We

shall say that C represents the T-encoded implementation of F if and only if:

V(xi, .., xr) C {0, 1} m r(T(x)) = T[F(x)] (2.9)

Definition 2.3.10 : Let T : {O, 1} -+ {O, 1}' and D : {0, 1}' -> {O, 1} be two func-

tions such that DoT = Id on {0, 1}. Let C be a combinational circuit implementing a

T - encoded computation ofF: {O, 1}f -> {O, 1}f , taking the inputs X = X1, .. , X.i

and delivering the outputs Y =Y,.., Yu.

We shall say that a computation yielding X = (X1,..,Xmxi) and Y = (y 1,.., ynxi) is a

correct (TD)-computation of F if and only if:

(D [(yi, ..., yl)], ..., D [(y(n-1)1+1, --.,nl)]) = F[D(xi, ..., Ix), ..., D(x(m-1)+,- (., 0)]

(2.10)

23

Our definitions consistently ensure that a perfect computation is correct. Con-

versely, it is sufficient to know the result of a correct computation in a processor

representing a (T, D)-encoded computation of F with a set of inputs xi, .. , xm in

order to retrieve the result of the perfect computation on the same inputs.

Encoding and Fault-Tolerance

By relaxing the requirement that a computation be perfect and considering cor-

rect computations as satisfactory results, we have a considerably enlarged set of ac-

ceptable outputs (since the function D is many-one) and thus a significantly higher

success probability for the T-encoded gate than if we were to consider only perfect

computations as satisfactory. It does not mean, however, that a gate representing a

T-encoded implementation of F is more reliable than a processor simply represent-

ing F: the multiplication of the acceptable outputs is counterbalanced by the higher

complexity of the T-encoded gates. As we shall see in Chapter 4, the cost of this

increased complexity is a reduced amount of resources for each component as well as

a bigger number of possible error locations. We now understand precisely the notion

of fault-tolerance: the failures tolerated by the system are exactly the fault-paths

which do not affect the decoding of the output.

In a circuit of encoded logic gates such that no decoding-encoding is performed in

between the encoded gates, consistency requires to treat the inputs and the outputs on

the same footing. Indeed this assumption is vital not only because the cost associated

with such operations after each logic operation would be prohibitive, but also because

the data going through the computational process must stay encoded at all time in

order to be protected. Therefore, we must tolerate a certain amount of noise in the

inputs as a normal regime of the gate operation. The fault-tolerant architecture that

we develop for NAND gates should attenuate this input noise and deliver a more

stable output.

Let us consider an encoded NAND gate inserted in a large chip built out exclusively

of this component. In order to determine the effective reliability of this gate for the

performance of computations within the chip, we proceed as follows:

24

" We compute the separate failure probability pi of each bit in the output of the

encoded gate and take their maximum value pm.

" We place in each input of the encoded NAND gate a random channel flipping

the bit with a probability bounded by pm, leading to input deviations.

" We compute with these noisy inputs the probability e that the decoding of

the output of the circuit yield a wrong result when the inputs are correct: we

allow the inputs to deviate but they must be associated with previous correct

computations.

If T and D represent respectively the encoding and the decoding, and if e is

computed according to the procedure above, we will say that the encoded processor

performs an c-reliable (T,D)-computation of a NAND gate.

2.4 Algorithmic-based fault-tolerance: example

of the encoded polynomial multiplication

As an illustration of the ideas on fault-tolerant computation exposed above, we

now turn to the description of a code leading to a non-trivial encoding of the com-

putational tasks. This example is taken from prior work of Beckmann [Bec92], who

applied in the context of fault-tolerance an algorithm of polynomial multiplication

invented by Winograd [Win8O]. The code considered here is arithmetic, and the fail-

ure protection it provides is suitable only for a specific type of computation, which is

the multiplication of polynomials.

Convolution of two sequences : algebraic framework

Definition 2.4.1 : The convolution of two sequences a[n] and b[n], which are non-

zero for 0 < n < P - 1, is defined as the sequence c[n] = a[n] * b[n], non zero for

25

0 rn K Q= 2P - 1 and such that:

n

c[n] = a[i]b[n - i] f or n = 0,..., Q - 1 (2.11)
i=O

The convolution is nothing else than the usual formal polynomial multiplication.

We note F[x] the set of polynomials with coefficients in a field F. If M[x] is an

element of F[f], we denote F[x]/M[x] the set of polynomials modulo M[x]. This set

is a ring with the usual multiplication and addition modulo a polynomial. If M(x)

has a sufficiently high degree (deg M(x) > deg a(x) + deg c(x)), then the computation

within F[x]/M[x] and within F[x] yields identical results. Let us assume that M(x)

is factorized in relatively prime, irreducible polynomials:

M(x) = m1(X)m 2 (x)...mN(X) (2.12)

It is a well known result of general algebra that the ring F[x]/M[x] is isomorphic to

the direct sum of the smaller rings F[x]/mi[x] x F[x]/m 2[X x ... x F[x]/mN[X]. The

mapping consists simply in computing the corresponding residues:

a(x) ~ (a(x), a2 (X), ... , aN(x)) with ai(x) = (a(x))mi(x) (2.13)

where we noted (P(x))m(x) = P(x) mod m(x).

The inverse of this mapping is given by the Chinese Remainder Theorem:

N M(X)
a(x) = EK ak(x)Dk(x))mk(x)Mk(X) with Mk(x) = mk(X) (2.14)

k=1

where Dk(x) is one of the Bezout coefficients between Mk(x) and mk(X) (the primality

condition in the decomposition of M(x) ensures the existence of such polynomials):

(Mk(x)Dk (X))mk(x) = 1 (2.15)

26

The operations of addition and multiplication can then be done within the smaller

rings:

a(x) x b(x) ~ (al(x)bi(x),a 2 (x)b2(x), ..., aN(x)bN(X))

a(x) + b(x) ~ (a,1(x) + bi (x), a2(X) + b2(X), ..., aN(X) + bN (X)) (2.16)

This fact enlightens an alternative way to compute the convolution than that given

by the definition (2.4.1): we may compute each of the products in the smaller ring

and put everything together thanks to the Chinese Remainder Theorem.

Encoding of the Computation

This preliminary algebraic framework set, it is now possible to explain how struc-

tured redundancy may be added. We start with a Q-point linear convolution using

N moduli m1 (X), .. , mN (X) which satisfy the primality condition. Q is chosen large

enough so that the computation of the convolution is identical in the rings F[x] and

F[x]/M[x].

We add to this set C extra moduli mN+1(X)...mN+c(x) coprime to each other and

to the other N extra moduli. The computation will thus be made in the larger ring

F[x]/M+[x] where M+[x] = Ji+C mk(x). It is possible, in principle, to compute

convolution of length up to Q+ zN+c degmk(X). But, in order to keep a room

for redundancy, we will require that the convolutions be of length smaller than Q

k= deg mk(x). The quantity Q+ - Q represents the extra dimensions playing a role

analogous to the parity check symbols for linear codes.

The computation will be distributed among different processors in such a way that

each processor failure causes a residue and only one to be incorrect. We assume that

we have at our disposal N + C processors, each of those taking as inputs a(x) and

b(x), and computing :

ak(X) =(a(x))m(x), bk (X) = (b(x))mk(x), ck(x) = (xa()b(x))mk(x) (2.17)

27

The result might be decoded after the computation, using precomputed Bezout poly-

nomials and the Chinese Remainder Theorem:

N

z(x) EK Zk(x)Dj(x))m((x)Mj(X)
k=1

with M'(x) = M(X)
mk (x)

(2.18)

where the Dk(x) have been computed once for all prior to the computation:

(M)D(x) D) (x) = 1 (2.19)

We use the following additive error model:

Zk (X) = ck(x) + P k(x) (2.20)

where (Dk(X) is non zero for at most A different values of k. Then, recombining the

result yields the following error syndrome:

N

(2.21)z(x) = c(x) + EK <k(x)D+(x))m,(x)Mk (x)

kT=1

The subset of valid results is identified as:

Hv(x) = { I deg c(x) < Q } (2.22)

Error Correction

A way to proceed is to introduce in the polynomial ring the concepts that led to

successful error correction for linear codes. With this goal in mind we define, as an

analog of the Hamming distance, the quantity D:

D largest integer s.t.

for every set of D unique moduli {m 1i (x), ... , mID (x)} (2.23)

28

c(x) E F[x]/M+[x)

deg ;+x) > Q
(mjl(x) ... m1o(x)

To change a valid set of residues into an other valid set, at least D+1 residues must be

modified. In that respect, D is really a relevant measure of the amount of redundancy,

and the natural translation in the polynomial ring of the Hamming distance. Note

that if the redundant moduli mN+1 (X)...mN+C(x) are chosen to have a degree equal or

greater than those of the moduli m1(x)...mC(x), then D = C. We can now mention

two claims which are essential in the interpretation of the error syndrome:

Claim 2.4.1 :

Let D be the polynomial distance of the code verifying the last property. Then:

e If no failure occur, then deg z(x) < Q and the correct convolution is c(x) = z(x)

e If between 1 and D failures occur then deg z(x) > Q

Claim 2.4.2 :

Let D be the polynomial distance of the code and two integers a and 13 such that

D =a +0. We assume that no more than a processors can fail at a time. Then:

* We can reliably distinguish between the following two cases: 0 or fewer errors

occur, between 0 and a + 1 errors occur.

* If f or fewer errors occur, we can correct them using the erroneous result z(x)

Performance of the code

We have thus seen a non-trivial example of a non-systematic code for which the

basic operations, the addition and the multiplication, have been changed a lot in the

encoding process: we have replaced a computation in a big ring by a sequence of

smaller computation performed in rings of smaller dimensions. The encoding and the

decoding of the data, which consist respectively in the computation of residues and

application of the Chinese Remainder Theorem, are also non-trivial. Our description

indeed encompasses not only a single code but a large family of codes, because for

each choice of the additional set of moduli, one obtains a different code.

Considering a choice of the extra moduli enabling single error correction, it is

of interest to estimate the overhead implied by the encoding and relate it to that

29

resulting from a mere triplication of the computation. Indeed, if the latter turned out

to be smaller, it would not be worth using the moduli-based encoded computation.

To this purpose, Beckmann [Bec92] compares the unprotected computation of an NR-

point convolution with the equivalent computation embedded in a ring of dimension

N +2. For some values of N (N= 14), the overhead due to the embedding in a bigger

polynomial ring is as low as 65%, while 90% of the computational process is protected.

This is a significant advantage over the triple modular redundancy scheme, for which

the overhead is 200%.

2.5 Conclusion

In this chapter, we have exposed the problematic of fault-tolerance as well as the

cornerstone of a fault-tolerant design: the encoding of the data and of the operational

gates in such a way that error do not propagate significantly. Repetition codes appear

as natural candidates because they lead to transversal implementation of gates in

which this error propagation is naturally contained. Nonetheless, we have seen on

an example that other forms of encoding may be considered (section 2.4), especially

for the protection of failures in specialized computations. We have also developed a

rigorous approach of the encoded computation within noisy circuits which sets the

future developments of this thesis on firm foundations.

30

Chapter 3

Modular Redundancy-Based

Fault-Tolerant Architectures

We reviewed in Chapter 2 the general techniques enabling to provide combi-

national circuits with a robustness to soft errors. We now specialize to the specific

class of fault-tolerant architectures on which we will base, in Chapter 4 and in

Chapter 5, an alternative design of a logic gate. Introduced by Von Neumann

in 1956 [Neu56], these architectures are referred to as being modular redundant.

This chapter describes their theory and their performance for circuits of encoded logic.

The outline is the following. Section 3.1 gives a brief introduction to the work of

Von Neumann and positions our approach relative to his own. Section 3.2 covers the

modular redundant design with perfect majority voting and presents in this simplified

framework the threshold theorem. In section 3.3 the assumption that majority gates

be perfect is released, and the technique of multiplexing is introduced. The relation

between resource consumption and reliability is carefully investigated. Section 3.4

concludes this chapter by reconsidering the threshold theorem in the more general

context of imperfect majority voting.

31

3.1 Introduction

Perspective on Von Neumann's work

Expanding on lectures given by R.S. Pierce in the early 1950's, Von Neumann

exposed the modular redundant design in a celebrated paper [Neu56l, at a time where

the absence of reliable electronic devices strongly motivated the development of new

highly fault-tolerant architectures. While Shannon had already laid out a theory

of reliable data transmission through noisy channels [Sha48a, Sha48b], a systematic

treatment of fault-tolerant computing was still to be constructed. The paper of Von

Neumann [Neu56] was an important step in this direction, showing in particular that

arbitrarily high levels of reliability may be achieved in a computing system made of

components failing with a probability below a certain threshold. Von Neumann also

gave an heuristic argument allowing to upper-bound the number of faulty components

needed for the achievement of an c-reliable computation (definition (2.3.4)): any

circuit made of N gates may be simulated with a high probability of success with an

equivalent circuit consisting of 0 (N log (N)) gates whose unreliability is below the

threshold. Dobrushin and Ortuyov [DO77b, DO77a] later turned his argument into a

rigorous proof. Winograd and Cowan [WC63] improved his schemes by distributing

single bits on different units of the network.

The bound suggested by Von Neumann shows that a general computation may be

simulated on a noisy circuit with a high probability of success not only in principle,

but also efficiently. This precision is of the uppermost importance: the control of the

additional complexity overhead incurring through a fault-tolerant design is a sine-qua-

none condition for the its introduction in the manufacturing of real circuits. In fact

this overhead, which implied the multiplication of the number of wires by a factor of

several thousands, was still beyond the reach of component technologies at that time.

That is why the techniques exposed by Von Neumann were not immediately involved

in chip design. With the fast progresses in the manufacturing of reliable logic gates,

engineers were able to produce devices so reliable that it was no longer obviously

useful to embed them in a fault-tolerant network, even for the realization of fairly

32

long computations. For this reason, the techniques of modular redundancy have not

been put to use so far in the industrial production of computers. Nonetheless, they

have been successfully implemented in several architectures exploring the boundaries

of defect-tolerance such as Teramac [CAC+96]. We should also mention that fault-

tolerance shed an interesting light on neuronal sciences: in his original paper [Neu56],

Von Neumann used the theory of multiplexing to estimate the amount of parallelism

in the computations performed in the brain.

Model of the computational system

Inspired by the model of neural networks developed by McCulloch and

Pitts [MP43], Von Neumann set his work in the frame of cellular automatons. Build-

ing blocks of his constructions, these automatons are entirely defined by an array of

probabilities giving the output distribution for each possible set of inputs and a pro-

cessing time. Von Neumann showed that the set of automatons generating universal

computation may be reduced to a single organ performing triple majority voting or

a NAND. He considered afterwards fault-tolerant circuits implying exclusively one of

these two gates and a "black-box" interconnecting bundles of wires at random, organ

for which he did not provide an explicit construction. Our approach will differ from

his own on two points:

* We address only the issue of implementing combinational circuits and not gen-

eral arrangements of cellular automatons. As mentioned at the beginning of

Chapter 2, we specialize to the fault-tolerant implementation of a universal

gate such as the NAND. This does not reduce the scope of our discussion, since

arrangements of encoded NAND can simulate any general computation. Indeed,

in section 2.3.2 we carefully defined the reliability of an encoded NAND in order

to account for its embedding in noisy circuits of similar gates. Our treatment

then encompasses indirectly any general combinational circuits. Nonetheless,

the approach of Von Neumann did not exclude arrangements of cellular automa-

tons with loops, restriction which we impose here.

33

* We will not assume the existence of an organ performing randomized intercon-

nections. While this assumption of is suitable for neural networks, which was

the ground on which Von Neumann set his analysis, it is not well adapted to the

design of electronic circuits with a fixed layout. We will avoid the use of such a

mixing device by introducing some diversity in the components used within our

circuits: instead of working with a strictly minimal set of components as Von

Neumann did, we shall use simultaneously NAND and 3-majority gates. This

diversity could come at the price of having to take into account several differ-

ent technologies for each class of components while optimizing the reliability of

the circuit as a whole. But since the 3-majority and the NAND gates are of

similar complexity, we will assume that these components are ruled by identical

technological constraints. We will specify the full meaning of this assumption

in Chapter 4.

3.2 Triple Modular Redundancy

with Perfect Majority Voting

In this section we present the simplest possible process improving the reliability

of a noisy boolean computation: its triplication followed by a majority voting, which

will be taken - in this section only - as perfect. This assumption stands apparently

in contradiction with the objective set in Chapter 2 to design fault-tolerant systems

without any ideally reliable component. This assumption of perfect 3-majority gates

is, however, a suitable frame for an introduction to the main concepts of recursive

modular design. In section 3.3, we will combine the schemes presented here with an

additional technique addressing the issue of imperfect majority voting. As we shall

see, the performances of those circuits will be essentially preserved in the framework

of imperfect majority voting.

34

3.2.1 Failure probability of a triplicated system

Description of the system

Let P be a processor p-computing (see definition (2.3.4)) the boolean function:

F : { 1} -{, 1}

(X1, ..-, Xr) F(xi, ... , xrm)

Instead of using this single processor, we consider the circuit exposed on figure 3-1,

composed of three identical processors P1, P2 , P3 and a majority voting gate. In lieu

of the m original inputs, we now have m bundles of three wires, each of which feeding

a processor P whose output is directed toward a majority-voting gate. It is straight-

forward to see that, during error-free operation, this circuit is simply equivalent to

the original processor P.

P,

P2 M

2

Figure 3-1: Simple majority voting system. The signal is processing from left to right:
the circuit is taking m = 2 bundles of 3 wires in input and delivering a single bundle
in output. The inputs correspond to m = 2 logical bits which have been previously
encoded in the triple repetition code. The processors Pi might fail, but the majority
gate is assumed to be perfectly reliable.

As mentioned in introduction, we assume that the 3-majority gate is perfect.

This assumption may be justified if the computation occurring within the processors

Pi is several orders of magnitude more complex than a 3-majority voting, leading

to a failure probability for each processor P significantly higher than that of a 3-

majority gate. The majority voting plays a role analogous to amplifiers in electrical

circuits, since it suppresses the noise and amplifies the signal part of the bitstream

in the bundle of 3 wires with high probability. Taking again the denominations of

35

section 2.1.3, the three replicas of P and the 3-majority gate are respectively the

executive and the restoring organ.

Estimation of the failure probability

We now want to estimate the failure probability of the triplicated circuit. In order

to do this, we must use an important assumption regarding the error model, already

mentioned in section 2.1.2: we suppose that the events "the processor Pi delivers a

wrong result" are independent. This is not necessarily the case and it depends indeed

on the mechanism producing the errors. If the errors were caused by radiation of

particles, for instance, the same flux may contaminate several neighboring processors

at a time, generating burst of processor failures instead of isolated errors [RCM+97].

Nonetheless, in many situations it is sensible to assume that the processes responsible

for the emergence of soft errors are micro or mesoscopic and thus have a smaller ex-

tension than the dimensions of a processor. Consequently, the failure of a component

does not allow one to infer anything about the behavior of its neighbors. In the case

of cosmic rays, this assumption is legitimate if the flux of particles has a cross section

much smaller than the typical size of a processor. Furthermore, in the present circuit,

we assume that the inputs of the processors do not deviate. Our argument could still

be valid in the case of faulty inputs, provided that the errors within each bundle of

3 wires are independent of each other. Under these conditions, the probability of a

wrong 3-majority gate output is:

pjail = f(p) = 3p 2 (1- p) + p 3 = 3p 2 - 2p 3 (31)

Furthermore, even if the processors P1 ,P2 ,P3 have different failures probabilities, it is

still possible to bound the failure probability of the system:

Vi Pi < P - Pfail < f(p) (3.2)

36

Necessity of independent processor failures

Had we not assumed the independence of the errors happening in each processor

output, we would have simply been able to say:

Pfail < 3 p (3.3)

This bound does not guarantee any improvement through majority voting, and we

cannot get a tighter bound without any knowledge of the correlation of errors in the

inputs. That is why it is important to preserve the "failure independence" of the

inputs before each majority voting. This may be achieved through a device doing

interconnections of wires at random between the executive stage and the restoring

stage [Neu56]. This can also be done by using majority voting gates taking as many

inputs as wires in the bundle. Only the latter option is suitable for the application

of modular redundancy in the layout of electronic components.

3.2.2 Cascaded Triple Modular Redundancy

Motivation and Definition

We would now like to see how far one can go in the reliability amplification under

iteration the majority voting process. For instance, one could start with m bundles

of 9 wires feeding 9 processors Pi computing F, followed by two stages of majority

voting as on figure 3-2. We shall call this circuit a triple modular implementation

of F of recursion level 2. Under the same error model as in the last paragraph, the

failure probability would then be: p = f(2) (p). Of course this process may be

iterated further:

Definition 3.2.1 (Recursive Triple Modular Implementation):

Let P be a deficient processor computing a boolean function F with a single output. A

triple modular redundant (TMR) implementation of the processor P of level k (noted

p(k)) is:

. for k = 0 the processor P.

37

* for k > 1 the scheme obtained by embedding the outputs of three TMR imple-

mentation of P of level k - 1 into a 3-majority gate.

be~~~~ pe f cty r li b e

P2 I M---

P4

P5 M M -

P6

P7

P8 M --

P9

Figure 3-2: Double majority voting system. Two logical bits are sent in input which
have been doubly encoded into the triple repetition code: each logical bit is present
in the inputs through 9 copies. The gate outputs one single bit after two stages of
majority voting. The processors Pi might fail, but the majority gates are assumed to
be perfectly reliable.

Remark 1: The latter definition may be extended to the computation of boolean

functions F with n outputs by embedding each of the n triplets of outputs delivered

by the TMR implementation of level k - 1 in separate 3-majority gates.

Remark 2: It is possible to similarly define the d-modular redundant

implementation of level k of a processor P (d being an odd integer) by using

majority gates taking d inputs instead of 3.

38

Asymptotic reliability of recursive TMR implementation with perfect ma-

jority voting

It is of interest to study what levels of reliability may be achieved when TMR

implementing a deficient processor P at a high recursion level. The reliability asymp-

totically obtained is reflected in the behavior of the recursive sequence p(k) - f(k) (p),

giving the failure probability associated with the TMR implementation of level k.

This leads us to the following claim:

Claim 3.2.1 : Let P be a processor strictly c-computing (with e < 1/2) a single-

output boolean function F in the sense of the definition (2.3.4). By TMR implement-

ing P at a sufficiently high level, we obtain a scheme computing F with an arbitrarily

high reliability.

Proof: In other words we want to show:

Ve > 0 3ko s.t. Vk > ko p(k) e - computes F (3.4)

We need to study the recursive sequence p(k) - f(k)(p). By direct inspection, we

see that the function f has only three fixed points: x = 0, x = 1/2, x = 1. Also f is an

increasing function on the interval [0, 1], therefore the sequence p(k) is monotonous:

if f(p) < p it is strictly decreasing, while if f(p) > p it is strictly increasing. The

function g(x) = f(x) - x satisfies g(x) < 0 for x < and g(x) > 0 for x >. Hence,

if the failure probability of the processor P is such that 0 < p < 1, the sequence p(k)

satisfies:

Vk > 1 0 < p(k+) < p(k) < (3.5)
2

and it converges then towards 0, because there is no other fixed point between 0 and

1. Asymptotically, and assuming we have at our disposal perfect 3-majority gates,

it is possible to reach obtain any level of reliability by iterating the process of triple

modular implementation a sufficient number of times.

The case p = I might be discarded because the output of the processor P is

then totally irrelevant. The possibility p > 1 may be also eliminated by definition of

39

the computation of a boolean function with a noisy processor (2.3.4). We have now

proven the desired result.

This claim is significant: it shows that the amplification by recursive majority

voting allows one to use any processor P computing F for the reliable implementation

of this function, whatever the level of deficiency of the processor. But we should

emphasize that this result is only valid when a very restrictive error model applies

to the processors P: not only did we assume that each of them failed independently,

but we also took these processors as "reliably unreliable" with identical probability

of failure p. Without this assumption, the failure probability of the recursive circuit

is not as easy to derive.

3.2.3 Threshold Theorem

So far we have proven that the cascaded modular redundant design is a technique

which allows one, in a rather specific framework - existence of perfect 3-majority gate

and errors among processors independent and identically distributed -, to achieve

arbitrarily high levels of reliability in the computation of boolean functions with

arbitrarily highly deficient processors. But we have no clue yet on the efficiency of

this process, information which is naturally crucial for real design problems. It is

indeed entirely reflected in the convergence speed of the sequence p

We now fill in this hole and bound the minimum number of majority votes nec-

essary to attain a certain reliability. But this comes at the cost of an additional

assumption: we also require that each processor must have a probability of failure

bounded above by a certain threshold which we will evaluate later on:

1
Vi P fails with probability pi satisfying p < p < Pth < (3.6)

2

We thus no longer consider arbitrarily deficient processors. As a compensation, the

error model is more general than before: we have released the assumption that they

40

be identically distributed. In the sense of definition (2.3.4), the different processors

Pi now weakly p-compute their assigned boolean functions.

This restriction to processors more reliable than the threshold guarantees the

efficiency of the majority voting process. The key point is that the failure probability

of the system changes from O(p) to O(p 2) through the triplication followed by perfect

majority voting. If the elementary processors are not strongly deficient, that is if

p < 1/2, then the gain in reliability is great.

Relation between the number of gates and reliability

The number of gates involved scales exponentially with the recursion level k of

the TMR implementation. Indeed, noting N1 (k) and N2(k) the number of processors

P and 3-majority gates M:

k-1 3 k __I
N1 (k) = 3 and N2(k) = 3= 2 (3.7)

1=0

The total number of gates is therefore:

N(k) = 3k +3 k -1 3 (3.8)
2 2

In fact, this exponential scaling of the resources does not compromise the efficiency

of the reliability amplification: under a threshold condition on the processor reliabil-

ity, it is compensated by a much faster decrease of the failure probability with the

recursion level k. Precisely, assuming that three processors satisfy the condition (3.6),

the failure probability of the corresponding simple majority system of figure 3-1 is

upper-bounded by f(p) (equation (3.2)). This function can be in turn bounded above

by a monomial:

f(p) < 3p 2 (3.9)

Let us now consider a TMR implementation of level k whose processors Pi a fail

with probability pi < p. An immediate recursion shows that the failure probability

41

pfail of this system satisfies:

_~ ~ f k P P2k
Pf ail f(k)(p) < (cp) with c = 3 (3.10)

If p is such that p < then the failure probability Pfail decreases doubly expo-

nentially with k. For circuits with perfect majority voting, the threshold probability

of condition (3.6) is thus:

Pth 1 1(311)
c 3

Efficiency of the cascaded TMR design

From the relations (3.8) and (3.10), we can estimate the overhead incurring in the

computation of a boolean function through a noisy circuit with components satisfying

the threshold condition (3.6). Let F(xi, X2 , ..., xm) be a boolean function computable

with a combinational circuit C of N reliable gates g1 ,...,gN. We have at our disposal

the devices G1 , ... , GN weakly pG-computing (in the sense of the definition (2.3.4))

the gates gi, ... , YN, and failing independently from each other. We wish to C-compute

F with those components. Using the principles exposed so far, we may think of two

different strategies to implement this circuit.

External modular design

We may refer to this scheme as an "external triple modular redundant imple-

mentation." It consists in the following. We replace each of the gates gi involved in

the original circuit by the component G, yielding a noisy circuit C. This circuit may

be considered as a processor P with an associated failure probability bounded above

by pc. Following the definition (3.2.1), we duplicate P in 3 k independent circuits on

which we perform different stages of majority voting. This scheme is presented on

figure 3-3 for k=1. Assuming that pc < 1, we use the failure probability bound (3.10)

to obtain a recursion level ko, sufficient for the c-computation of F:

ko= [log 2 (log(3) (3.12)
log(3pc)

42

Of course, any TMR implementation of level k > ko will also E-compute F. Anyway,

it is sufficient to use N 1 (ko) replicas of the original circuit and N 2 (ko) majority gates to

build the desired fault-tolerant implementation. The total number of gates required

is then upper-bounded by:

Next < N3ko + 3 < N+ exp log(3) 1+log2 log(3p) + ko,PC - 2 2 (ikog(3pc)))

1 log(3g))
< 3 N + 1 o(E (3.13)

-- 2 log(3pc)

Unfortunately, in order to use this design method, we need to have a noisy circuit

C such that Pc < 1. This is a much more stringent restriction than p < - for the3.3

individual components, especially if the reliable circuit computing F has a fair level

of complexity.

Internal modular design

We now turn to an other implementation which, by inserting a fault-tolerant

design directly at the component level, circumvents the latter problem. This second

scheme may be called an "internal modular redundant implementation." We choose

here to replace each gate gi by the component Giki), triple modular implementation

of G, of level ki. We will introduce in the next chapter the hypothesis that reliability

varies continuously with area. The internal fault-tolerant design will then appear as

a partition of a continuous pool of resources.

To achieve the reliability requirement E for the encoded computation of the func-

tion F, it is sufficient to ensure that the failure probability of each TMR implemented

component G ki) is bounded by:

6'i (3.14)

With a more careful investigation on the noiseless circuit computing F, we may

impose a less stringent reliability requirement for each component G. But this simple

condition, guaranteeing the reliability of the encoded circuit, is sufficient for the

present discussion. Besides, a variation in P'a would in fact only lead to a very

43

small change in the overhead for the fault-tolerant circuit. A simple substitution in

equation (3.12) gives a recursion level ko sufficient to implement any component Gi

and satisfy the condition (3.14):

log(3)
k log 2 ((3.15)

(log (3p)

The corresponding modular implementation requires the number of components:

9 log(3 c log()

N(ko) N1 (ko) + N2 (ko) < 3 3k0 = 9 log (3) o (316)
2 2 log(3p))

We can then upper-bound the total number of devices necessary to C-compute F:

9 log (3 log()

N""n < - N N(3.17)
- 2 (log(3p)

The overhead factor is slightly higher for the internal fault-tolerant design: it

is not strictly linear anymore in the number of components, there is now a term

in N log(N)), reflecting the dependence of the reliability requirement (3.14) on the

total number of components. Nonetheless, this additional logarithm is indeed a finite

quantity for all practical circuits and the equation (3.17) still shows that reliable

computation can be achieved in efficiently with components satisfying the threshold

condition (3.6). This very important result is known as the threshold theorem:

Theorem 3.2.1 (Threshold): Let SG = {gi, ... ,gr} be a set of logic gates gen-

erating universal computation and Sp = {G 1 ,...,GR} be a set of processors weakly

p-computing these gates with p, < . Given a boolean function F implemented by a

circuit of N logic gates of SG, there exists an arrangement of 0 (N log (N)) units

made of processors of Sp and perfect 3-majority gates which c-computes F.

Stated differently, the overhead imposed by the deficiency, below threshold, of the

components G1 , .., G, is only polylogarithmic in:

* The number of gates involved in the original circuit of reliable components.

44

e The reliability requirement set for the computation.

At the scale of any practical problem, logarithms are bounded by constants. The

threshold theorem is thus equivalent to saying that any boolean function may be

computed with arbitrary reliability at the cost of a constant overhead factor. This is

remarkable.

Original Circuit

External Modular Design Internal Modular Design

Figure 3-3: External and internal modular design. In the external modular design, a
majority voting is taken on the output of three replications of the original circuit. In

the internal modular design, each gate of the circuit is replaced by the corresponding
simple majority voting scheme. Redundancy is present at the elementary level in the
internal modular design.

45

3.3 Modular Redundancy with imperfect majority

voting

As advertised earlier, we now release the assumption that 3-majority gates be

perfect, which is indeed not legitimate for several reasons.

In Chapter 2, we set ourselves the goal to design fault-tolerant circuits in which no

component is assumed to be ideally reliable. Even if we do not take this approach, the

design of boolean schemes in which a subclass of logic operations is reliable could be

of interest: for technological reasons some operations may be more reliably performed

than others. In the framework of quantum computing, single qubit gates are much

easier to implement than quantum gates involving several qubits at a time. For

instance, it would make sense to assume that the NOT gate never fails. But the

choice of the 3-majority as reliable operation trivializes our problem since this gate

generates universal computation! This point seems to spoil the threshold theorem

previously stated, since any boolean function can indeed be reliably implemented

with perfect 3-majority voting systems and with maybe less resources than predicted

by this theorem.

Our main argument was the following: in the case of complex and thus likely

to fail processors P, embedded in an external fault-tolerant design (figure 3-3), it is

possible to neglect the deficiency of 3-majority gates. This argument is also flawed.

What we implicitly assumed in our discussion was that any of the 3-majority gates

in the recursive construction was much more reliable than its inputs. While this

assumption might be justified in the first stages of majority voting, it inevitably

breaks down after a certain number of majority votes. Precisely, if we take for the

3-majority a failure probability c << p, after ko (equation (3.15)) stages of majority

voting, the inputs become more reliable than the coming 3-majority gates (figure 3-4).

The failure probability of the majority gates is then ultimately the limiting factor in

the reliability amplification.

46

M

M

EE-.

-
-OO M

INPUTS MORE
RELIABLE THAN
THE MAJORITY GATE

ko stages of
majority voting

------------- - M

Figure 3-4: Recursive majority voting. If the majority gates have a non zero failure

probability, after a sufficient number of stages of majority voting, the assumption

that majority gates be less likely to fail than its inputs to deviate becomes invalid.

3.3.1 Reliability improvement through imperfect majority

voting

We would now like to study quantitatively the degradation occurring in the pre-

vious schemes when 3-majority gates become imperfect. We will do so by answering

the following questions:

1. What is the deficiency threshold of the 3-majority gates, that is the maximum

failure probability of these components compatible with reliability improvement

through majority voting ?

2. What is the reliability asymptotically obtained when TMR implementing a

noisy processor with imperfect 3-majority gates at arbitrarily high recursion

levels ?

We follow the same line of thought as in the proof of the claim (3.2.1). The con-

clusions are summed up in the following result, established by Von Neumann [Neu56]:

47

Claim 3.3.1 (Asymptotic reliability with faulty majority voting):

Let P and M be two processors respectively strictly p-computing a boolean function

F : i0,}1 - {0, 1} and strictly c-computing a 3-majority gate in the sense of

definition (2.3.4).

* If e > 1 the majority voting with M cannot bring any reliability improvement,

and recursive TMR implementations of P lead asymptotically to irrelevant re-

sults.

If e < 1 majority voting with M is useful only if p > px, asymptotic failure

probability of recursive TMR implementations of P:

1 1 - GE
POO 2 1 - 2c 3-8

Proof: Following the definition (2.3.4), we assume that p < -. The failure probability

of the TMR-implementation of level k is then p(k) - f(k) (p), where:

f (p) = e (1 - f (p)) + (1 - e)f (p) where f(p) = 3p 2 - 2p 3

f,(p) = c + (I - 2c)(3p 2 - 2p3) (3.19)

As in the proof of the claim (3.2.1), we need to study the behavior of the recursive

sequence p(k). f, is again increasing, so the sequence p(k) is monotonous. The sign of

the polynomial of degree 3 g, (p) = f (p) - p determines whether the sequence p(k) is

increasing or decreasing. Its possible limits are given by the roots of this polynomial.

is a physically obvious fixed point of the function fe, and indeed one easily verifies

that p - 1 is a divider of g,(p). After factorizing this polynomial, we are left over2

with a polynomial of degree 2 whose roots can be analytically expressed. All the fixed

points of f, are then identified. Precisely:

1
g9 (p) = e + (- 2c)(3p2 -2p 3)-p = 2 (--p) [(1 - 2)p 2 - (1- 2c)p + e]

2
(3.20)

48

The discriminant corresponding to the second factor is:

A = (1 - 2c)2 - 46(l - 26) = (1 - 2c)(1 - 6c) (3.21)

We may then distinguish between three regimes.

* 1 <c : In this range, A > 0 so the second factor in g, has two real roots:2

1 1=-6 -
qi26cT (3.22)

These roots are symmetric with respect to 1, which is consistent since a proces-

sor taking (XI, ..., xm) as inputs and whose output is F(xi, ..., xm) with prob-

ability p > 1 also computes F(x1, ... , Xm) with failure probability 1 - p.

inspection if the roots:

By

qi < 0 < 1 < q2 on [0, 1] (3.23)

Therefore the sign of g,(p) = f,(p) - p is that of (j - p) on this interval.

Consequently:

1

2 ->' fe(p) > p -=> Vk > 0 p(k+1) > p(k) (3.24)

The sequence p(k) the converges towards the fixed point 1: limk--+, p(k) = 1
2 2

The outputs become less and less reliable after each majority voting and even-

tually irrelevant.

< < In this range, A < 0 so the polynomial g,(p) has only one real

root: p = -. Also:

Vp E [0, 1] (1 - 2c)p2 - (1 - 2E)p + c > 0 (3.25)

Thus the sign of g, is that of 2 - p. The conclusion of the previous case still

applies: the majority voting does not bring any reliability improvement. Since

49

-> (1 -2 2)p2 - (I - 2c)p + c > 0

the sequence p(k) is bounded, it converges towards p = 1: the outputs are

eventually irrelevant.

0 < E < 1 In this range A > 0, so the polynomial g,(p) has again three

real roots, which satisfy: 0 < q1 < 1 < q2 < 1. Consequently:

(1 - 26)p2 - (1 - 2c)p + E] > 0 on [0, qi]

1
< 0 on [qi, 1] (3.26)

2

Since p < , Yc(p) and this polynomial are of the same sign.

The sequence p(k) is thus:

- increasing for 0 < p < q1

- decreasing for qi < p < 1

Hence the recursive majority voting improves the reliability of the processor

P iff qi < p < 1, and recursive circuits fail asymptotically with probability q1 .2'

This ends up the proof of the claim.

Remark 1: The asymptotic failure probability depends exclusively on the

reliability of the majority voting system and not of the level of deficiency of the

processor P. In the case of fairly reliable 3-majority gates, for 6 < , the reliability

obtained asymptotically is indeed very close to that of the 3-majority gate itself:

POO = E + 3E2 + O(63) (3.27)

We have thus shown that the recursive triple modular redundant implementation

of P as defined in (3.2.1) leads to schemes whose reliability is ultimately limited by

that of the 3-majority gates. From this point of view, the external modular design

is more advisable than the internal one. In the external design, this limitation

intervenes only at the final stage of the computation, yielding a circuit whose

50

deficiency is close to that of a 3-majority gate. In the internal design, this limitation

is present at the level of any gate gi of the original combinational circuit, resulting in

a greater failure probability of the internal modular circuit. Independently from this

consideration, none of these schemes enables arbitrarily reliable computation with

imperfect 3-majority gates.

Remark 2: This result allows us to upper-bound the threshold Pth (condition (3.6))

compatible with the obtention of reliable circuits through circuits involving

3-majority components: we have proven that the use of 3-majority gates worsens

the reliability of a computation if their failure probability is above E =. But this

value is specific to these devices: Evans and Pippenger [EP98] showed that it is

indeed possible use arbitrarily deficient d-majority gates to perform reliable

computations, provided that d is large enough.

3.3.2 Distributed Majority Voting

Motivation

Before moving onto the description of this design technique, let us investigate to

what extent the constructions exposed so far respected the guidelines of fault-tolerant

design exposed in section 2.2. From now on, the boolean function F computed will

simply be a NAND gate, consistently with the goal set in Chapter 2.

All the circuits presented so far in this chapter were taking inputs recursively

encoded in the triple repetition code and delivering a single bit output, thus decoding

enroute the data. This consideration shows that we have omitted in those schemes a

cornerstone of the fault-tolerant design, which is the computation on encoded data:

the decoding operated by the 3-majority gates made the data highly sensitive to

failures of those components. We should transform the "restoring organ" in such a

way that this decoding does not take place.

Diverse encodings may be considered for the inputs. Let us focus on the simplest

class of codes consisting in the d-repetition of a logical bit. We also require that d be

51

an odd integer. The purpose of this restriction is to avoid an asymmetric decoding

scheme, in which an erroneous word containing an even number of 1 and 0 would

be projected onto a codeword constituted only of 1 or 0. We could also consider

a decoding declaring a failure (error detection) in the latter case, but we choose to

simply avoid this complication by imposing that d be odd and using d-majority voting

gates.

We then realize a construction using d identical NAND and d-majority gates as

presented on figure 3-5 for d = 3. As advertised, this scheme no longer performs any

decoding on the computed data. Taking the convention of the chapter 2, we shall say

that this circuit (T, D)-computes a NAND gate where T is a d-replication encoding

and D the decoding procedure "majority voting."

NAND M --

NAND M--- ----- -

NAND M - -

Figure 3-5: Distributed majority voting. The restoration of the codeword is now
performed by three 3-majority gates instead of one.

Encoded Reliability of an encoded NAND gate taking perfect inputs

We assume here that the system on figure 3-5 receives perfectly encoded inputs.

The computation within this circuit is now immune to [4] component failures. More

precisely, a fault-path causing a failure of the encoded computation must include:

" Either [4] NAND gate failures. There are (d) possible choices.

* Or [j] 3-majority gate failures. Again, there are (d) possible choices for the

location of these errors.

52

The probability that the encoded NAND fails is then bounded by:

Pfail ; (+ (d 2 with t d (3.28)

where pi and P2 are the failure probabilities associated respectively with a NAND

and with a d-majority gate. When d is high, the probability P2 might be considerably

higher than pi for similar resource allocation to both components. In the coming

chapters we will assume that the reliability of all components depends equally on

the resources, and that those resources are equally divided among the devices. We

will take therefore pi = P2 = p, considering consistently systems involving exclusively

3-majority and NAND gates. Under this assumption, the failure probability of an

encoded NAND is upper-bounded by:

Pf ail < 6 p2 (3.29)

Therefore the threshold probability of an encoded NAND (through the triple repeti-

tion code) taking perfect inputs is: Pth = j - 17%

Reliability of an encoded NAND gate in a noisy circuit

In Chapter 2 we were concerned about the fact that, even if the output of an

encoded gate is correct in the sense of decodable (definition (2.3.10)), it might be

corrupted and lead to computations erroneous with high probability in the next en-

coded gates. This motivates the study of an encoded gate taking inputs which might

deviate (definition (2.3.8)), but which are still correct. On figure 3-6, the inputs of

the second encoded NAND gate might be altered if the first one does not deliver a

perfectly encoded output.

The structure of the encoding makes this partial corruption of the output quite

simple to model. An inspection of the encoded NAND on the figure 3-5 reveals that:

* Either [d] = 2 or more wires feeding the d-majority gates deviate. Then the

output is wrong (in the sense of definition (2.3.10)) with high probability.

53

Might corrupt the inputs

NANDl NAND

0M NANDM

Figure 3-6: Sequence of two encoded NAND gates. A failure in a 3 majority gate of
the first encoded NAND may corrupt an input of the second one.

* Or [fl 1 or less wires feeding the d-majority gates deviate. In this case the

corruption of each bit in the output is caused by an error in a d-majority gate.

In other words:

When the computation is correct, the corruption of each output bit of an

encoded NAND is equivalent to the failure of a d-majority gate.

In order to consider the behavior of a NAND in a circuit of encoded logic, we need

to account for the previous majority gates as possible source of errors in the inputs,

as on figure 3-7.

--- ~ P2
NAND M - i

, NAND M - -

~P2

Figure 3-7: Distributed majority voting system taking imperfect inputs. The boxes
before the NAND gates correspond to the sources of errors in the inputs introduced
by previous encoded gates.

We consider now an encoded NAND taking two inputs issued by previous similar

gates. We assume that these inputs are correct: their decoding through majority

54

voting leads to the right logical bit. Again, the encoded computation is immune to

l or less processors failures or input deviations. Let us count the possible events

with t = [d] failures or input deviations and leading to a wrong output:

* t failures in the d-majority gates. There are (d) such possible events.

" k failures in the NAND gates and t - k deviations in the inputs for

k =1, ... , []. In order for the output to be wrong, each deviating input must

be attached to a different NAND, chosen among the d - k NAND which have

not failed. There are () 2 t-k (-k) such possible events.

" t deviations in the inputs. In order for the output to be wrong, each deviating

input must again feed a different NAND. Furthermore, since the inputs were

assumed to be correct in the first place, these t deviations cannot affect simul-

taneously only one of the two input codewords. There are 2t (d) - 2 (d) such

possible events.

Any event spoiling the encoded computation must have a subset of t processors and

inputs which fail or deviate according to one of the enumerated cases. An input devi-

ation is equivalent to a previous d-majority gate failure. Since the error probabilities

in the NAND and d-majority gates are respectively bounded by pi and P2, the failure

probability of the encoded NAND is at most:

Pfail < 2+)2 (2) + (2t - 2) (2 with t =

(3.30)

Let us concentrate on the special case d = 3 and t = 2, assuming that Pi = P2 = P.

The previous formula becomes:

Pf ail < (3P2 +2 () (P2 (3 2 + (4-2) (3P2

< c3 P2 with c3 = 24 (3.31)

55

This result shows that a NAND gate encoded through the triple repetition code and

embedded into a noisy circuit of similar gates still fails with a probability 0(p2).

Nonetheless, because of the fluctuations in the inputs, the bound (3.31) we obtained

is higher than the bound (3.29) with perfect inputs. This new bound corresponds to

a threshold:
1 _ 1

Pth - - - 2 ~ 4% (3.32)
C3 24

Since we aim at designing gates integrated into large circuits of encoded logic, we

adopt from now on this value for the threshold.

3.3.3 Recursive multiplexing

Seeking the best architecture for the embedding of faulty components into reliable

circuits, we are faced with an apparent dilemma:

" On the one hand, we would like to preserve the principle of successive hierarchi-

cal voting which leads to a double exponential decrease in the failure probability

of the global circuit.

" On the other hand, the construction of arbitrarily reliable systems with com-

ponents of fixed deficiency require that none of them should be so crucial as to

compromise the computation by its failure. In the simple triple modular redun-

dant design, this condition was obviously not fulfilled, since a single error in the

last majority voting would generate a wrong result with high probability. This

remark has led us to equalize the impact of each voting device in the circuit

and adopt the multiplexing as a design principle.

There is actually no incompatibility between those design guidelines: we may build

circuits computing on a code with a recursive structure provided by the concatenation,

but in which the computation is distributed over many devices of similar importance.

We now combine recursive majority voting and multiplexing to get the best of both

worlds.

56

Let us start by considering a multiplexed circuit of recursion level 2. From this

example, we will generalize to constructions of higher recursion levels. This scheme,

presented on figure 3-8, is obtained from the multiplexed circuit on figure 3-5 by the

following procedure:

* Replace each NAND gate in the circuit of figure 3-5 by its multiplexed version.

The former NAND are now encoded gates taking two bundles in input and

delivering one bundle in output.

" Operate majority voting on the three output bundles in the following way. Let

us note bi,1 , bi,2 , b1 ,3 the outputs of the upper multiplexed NAND, b2 ,1 , b2 ,2 , b2 ,3

the outputs of the second multiplexed NAND, and b3 ,1, b3,2 , b3,3 that of the

bottom multiplexed NAND. Perform then three 3-majority voting in parallel

on the wires b1,1 , b2,1 , b3 ,1 , on the wires b1,2 , b2 ,2 , b3,2 and on b1 ,3 , b2 ,3 , b3 ,3 . In

order for each majority voting to be fault-tolerant, we do it three times in

parallel, triplicating each output wire of the multiplexed NAND gates. The

output bundle is the reunion of all 3-majority gates outputs.

We call N(k) and M(k) respectively a multiplexed NAND and a distributed ma-

jority voting system of level k. The procedure of recursive multiplexing may appear

slightly complicated because the multiplexed processor N(k) involves both N(k- 1) and

M(k), the latter being defined through a distinct recursion. As in the simple recursive

triple modular redundant design, each increment of the recursion level creates a new

stage of majority voting. The multiplexing at an arbitrary recursion level is described

through the definitions (3.3.1), (3.3.2) and (3.3.3) which are gathered on a single page

for convenience. These definitions are also illustrated on figure 3-9.

57

b3,2

N M 63,3

bl,
b2,

b3,

-m

I-rn-

P..m....-

I

Figure 3-8: Multiplexed NAND of recursion level 2.

58

---- mOwWI

bl,

N MN

N1111, M

N M 2,1

N M 62

Nm M2,3

.4

=7M]

Definition 3.3.1 : We call b(k)-bundle a bundle of 3k wires. A b(k)-bundle contains

three b(k-1)-bundles which we note b k-1), bk-1),..., b (k-.
1 2 3 k-1

Definition 3.3.2 (Recursive Distributed 3-Majority Voting):

A recursive distributed 3-majority voting system of level k, noted M(k), is a gate

taking in input the data carried by a b(k)-bundle of wires and whose output is defined

recursively as being:

" for k=1 the majority vote of the three single wires b(O) b(0) b(0 .

" for k > 2 it is obtained by the following procedure.

The input b(k) consists in 3 bundles b(k 1) b - 1) b0- 1)1 2 '3

or in 9 bundles bk-) b k2)I b(k 2)..., b(k 2)1, ,2 1,3 3,3

We reorganize the bundles b(k-,b b into a bundle (k-

We send each of the ckl-) into a majority voting M(k 1).

The reunion of their outputs noted dk 2)forms a bundle d which defines

the output of M(k).

Definition 3.3.3 (Recursive Multiplexed Triple Modular Implementation):

A multiplexed triple modular redundant (MTMR) implementation of level k of a

NAND gate, noted N(k), is a gate which takes in input two bundles a(k),b(k) (each

corresponding to the encoding of a logical bit) and whose output is recursively defined

as being:

" for k = 0 the output of a NAND

" for k > 1 the scheme obtained by the following procedure.

The two input bundles a(k), b(k) may be decomposed into three pairs of bundles

a 1) b (k- 1) which are sent into an encoded NAND N(k-1) for each j G {1, 2, 3}.

The outputs of the three NAND N(k-1) form a bundle c(k), which is sent into

three identical distributed 3-majority voting systems M(k). The reunion of their

outputs d (k- 1) forms a bundle d(k) defining the output of N(k).a

59

bi I'l(k-2)

b(k) b 2" d(k-1)
b k-) 3,

b 2(-
k-

2 M (k-1) d (k-2)

b(k
2
)

(ik

bM(k-I) M k-> d (k-2)
b -2

a(k)
b(k) d(k) d(k)

3 (k1) b (k-1 (k- 1) d (-1

b (kI

k1 d1 (k) d1k

a (k-1) a (k-1) C(k-1 (k-1)
b 2 (-1 k 1) a 2k (k21 C 2 - k MI d (-- -

3b 3(k-1T1N(k I M(k) -

3d3 M (k-
b 3 (k1 -

Figure 3-9: Recursive multiplexing of a NAND gate.

Recursively multiplexed circuits of level k perform indeed an encoded computa-

tion on the triple repetition code concatenated k times with itself. The hierarchical

structure of recursive concatenation gives to the code the shape of a balanced tree

(figure 3-10). Because we are using a single code, the triple repetition, each node has

exactly three branches. Elementary 3-majority gates operate on the leaves, while the

subsystems N()...N(k- 1) contained in N(k) act on subtrees.

k

3-

Leaves correspond to physical bits

Figure 3-10: Structure of the code : ternary tree of depth k.

60

3.3.4 Reliability and resource consumption in recursively

multiplexed circuits

We now express the reliability and resource consumption of multiplexed circuits

as a function of their recursion level. Fortunately, those circuits turn out to be almost

as efficient as the schemes of section 3.2 with perfect majority voting. In other words,

the additional cost implied by the faults in the 3-majority gates does not prevent the

obtention of reliable circuits with an acceptable resource overhead.

Resource Scaling

An immediate recursion shows that a 3-majority distributed voting system of

level k involves 3 k majority gates. We note N1 (k) and N 2 (k) the respective numbers

of NAND and 3-majority gates in an encoded NAND of level k. The definition of

recursive multiplexing then implies the relations:

N1 (k) = 3N(k - 1) and N2(k) = 3N 2(k - 1) + 3k (333)

Using the fact that N1 (0) = 1, N 2 (0) = 0 this recursion is easily solved in:

N1 (k) = 3k and N2(k) = 3kk (3.34)

Thanks to our assumption that 3-majority and NAND gates have the same technology,

we may simply consider that the circuit involves: N(k) = 3k(k + 1) devices. If we

suppose that all the devices are granted the same layout area AO and the same power

PO, neglecting also the additional space occupied by the wiring, we obtain the area

and power consumption associated with a MTMR scheme of level k:

A(k) = 3k(k + 1) Ao and P(k) = 3k(k + 1) Po (3.35)

It is also of interest to estimate the scaling of the duration of the encoded compu-

tation with the recursion level. This time is proportional to the depth of the circuit,

61

that is the maximum number of components separating an input from the output.

Each increment of the recursion level adds a stage of majority voting. Noting To

the computing time associated with an elementary NAND or with a 3-majority gate

(both times are taken as identical), we obtain a processing time for the gate N(k):

T(k) = (k + 1) To (3.36)

The resource "time" scales thus linearly with the recursion level k.

Reliability of an encoded NAND taking perfectly encoded inputs

We can attempt to compute the exact failure probability of a multiplexed system

with reliably unreliable components, that is devices strictly pi-computing NAND

gates and strictly p 2-computing 3-majority gates. We note p(k) and (ik) the respective

failure probabilities of the systems N(k) and M(k). The distributed voting system M(k)

fails only if at least two of the subsystems M(k- 1) fail. The multiplexed system N(k)

fails if at least two of the processors N(k-1) fail while the distributed voting systems

M(k) succeeds or if at least two of the N(k- 1) succeed while M(k) fails. These events

are disjoint so their probabilities add. Taking again the function f associated with a

perfect majority voting:

f (x) = 3X 2 (1 - x) + X3 (3.37)

we obtain the following recursive relations for pk) and p2 .

p(k) f (k-1)) (+ f (I - pik1)) and pk) - f k-1) (3.38)

These equations maybe rewritten in a more symmetric way:

(k) f 3 (k) (k-1)) - f (k-1)) f (I P~k-1)) + f (I P(k-1)) f (Pk-1))

and p2 (k) - f(k)(P2) (3.39)

62

p1 is expressed through the function ft,,(p), deviation probability of the output of a

3-majority gate failing with probability e and whose inputs deviate with probability

p. The expression of p(k) at an arbitrary recursion level k is a complicated function

of Pi, P2. It will reveal useful, in the next chapters, to have an expression for the

reliability of an encoded NAND through a simpler invertible bound. Besides, the

latter computation assumed "reliably unreliable" components, requirement which is

too stringent in many design situations.

In order to get a more general and useful result, we now suppose that the com-

ponents weakly p-compute the NAND and the 3-majority gates, and we seek a sim-

ple bound for the failure probability of the encoded NAND N(k). By noticing that

f(p) < 3p2 < 1, provided that p < 1, we obtain that pi) < 6 p . The number

6 corresponds indeed to the possible error locations with perfect inputs. As in the

bound (3.10), p(k) decreases doubly exponentially with the recursion level k:

p(k) < cp2 with c = 6 (3.40)
Pi C

Reliability of an encoded NAND taking corrupted inputs

As we did for simple distributed schemes in section 3.3.2, we want to take into

account the input noise of an encoded NAND inserted in a circuit of similar gates.

We can indeed directly transpose the argumentation and counting developed in

section 3.3.2, replacing the term "wire" by "bundle": in an encoded NAND N(k),

either two or more bundles c (-1) feeding its 3-majority voting systems M(k) deviate

and the result of the encoded NAND N(k) is wrong with high probability, or the

corruption in the output wires originates from the systems M(k). Therefore the results

obtained for the distributed majority voting system taking imperfect inputs apply.

The failure probability of N(k) decreases thus doubly exponentially with the recursion

level k, but we must take the new threshold value c3 = 24 valid for noisy inputs:

P(k) (c3 p)2 with C3 = 24 (3.41)
C3

63

3.4 Conclusion: Threshold Theorem

with imperfect majority voting

This chapter exposed how the duplication of a computation, combined with an

appropriate recursive structure, could provide an efficient protection against device

failures. The discussion began with the assumption that reliable majority gates

were available. In this frame a recursive construction was derived, which enabled

the reliable computation of formula through networks of faulty components at the

cost of a logarithmic overhead, provided that their reliability was above a threshold.

The concept of distributed majority voting was then introduced, circumventing the

requirement of perfect majority voting, and enabling the construction of satisfactory

restoring organs out of unreliable 3-majority components. This gain in generality

came at the following price:

" The requirement on the maximum deficiency is more stringent with imperfect

majority voting: the threshold probability is ; instead of ! with reliable
24 3

3-majority gates.

" The number of gates with imperfect majority voting involved is N(k) = (k+1)3k

instead of N(k) = 3 k with reliable 3-majority gates.

Asymptotically the latter change is minor since the number of gates still scales

exponentially. Therefore the threshold theorem (3.2.1) prevails even with imperfect

majority voting, which is an important result. The effect of imperfect majority

voting is mostly to decrease the threshold, that is the maximum failure probability

of the components compatible with a reliability improvement through a redundant

design.

64

So far this theorem has been applied with the purpose of proving the existence of

efficient constructions simulating reliable circuits with faulty components. In those

constructions,the failure probability of the elementary components is fixed and does

not increase with the recursion level. This is not the case in real design situations,

where a certain amount of resources is shared among the different constituents of

the circuit. In the following chapters, we analyze the possibilities offered by the

threshold theorem, taking this time into account the drop in resource availability for

each device.

65

66

Chapter 4

Fined Grained Fault-Tolerance:

Qualitative Approach

We now introduce a new idea, which will underlie all the further developments

in this thesis: the failure probability of a logic component is a continuous function

of different technological resources, typically its layout area, power consumption and

time processing. This concept is indeed extremely general and relevant for any real

computing system. In this line of thought, reliability becomes itself a fully fungible

asset in the following sense: for any device consuming a certain amount of technolog-

ical resources and with a finite failure probability, there exists an other component

consuming less and whose reliability is arbitrarily close. In other words, any arbi-

trarily small amount of reliability may be given up to save some area, power or time.

There is thus no fundamental reason to distinguish between the former and the latter

while optimizing the performance of a circuit. We investigate the application of the

fault-tolerant constructions reviewed in Chapter 3 into this new context, procedure

which is original to our knowledge.

This chapter analyzes qualitatively the potentialities offered by this design method

along the following outline. Section 4.1 describes the noise model in CMOS transis-

tors proposed and tested by Sarpeshkar, Delbruck and Mead [RDM93], which shows

explicitly how physical resources condition the failure probability of this component.

This example will serve in Chapter 5 as a case study of our design methods. Sec-

67

tion 4.2 formulates the problem of optimization through a fine-grained fault-tolerant

design. Section 4.3 brings preliminary answers to this question. In particular, this sec-

tion gives a general mathematical condition on the dependence of reliability towards

the resources, which states whether a fault-tolerant design is efficient. Section 4.4 ex-

plores the full conversion possibilities of the fungible resource "reliability". Section 4.5

concludes on the results exposed in this chapter.

4.1 Resource-dependent reliability:

Example of the CMOS transistor

4.1.1 Notion of noise

Because of their crucial role in the electronics industry, the behavior of CMOS

transistors has been carefully studied by the electrical engineering community. Accu-

rate noise models for this component have been established and verified experimen-

tally [RDM93] which we describe here, following closely the approach of [Sar98].

The notion of noise is concomitant to that of randomness and irrelevancy. A

source of noise is a random variable whose result has been declared irrelevant. In

the case of additive noise, this random variable is added to an other one considered

as relevant, which is the source of information. The behavior of an electronic device

is described through the voltages between different points of the component. Any

voltage v is the sum of two terms:

" vs, random voltage called signal, which is a function of random variables at-

tached to a source of information.

" VN, random voltage called noise, whose origin is the multitude of uncontrolled

physical processes happening at the microscopic scale.

In digital circuits, the voltage v = VS + VN is later converted into a boolean through

a map B : R -+ {0, 1}. The signal voltage, attached to a discrete and finite set of

boolean variables, should take discrete values.

68

Let us focus on the voltage difference v between the output and the source of a

CMOS transistor. The "source of information" is here the single bit carried by the

output. The signal voltage should take one of the two possible values: vs C {Vo, V1 }.

A typical choice for B is:

0 for v < vOV1
B (v) =2 (4.1

1 for v > __
41

If we define Vth by:
V1 -- V0

Vth 2 (4.2)
2

we obtain the probability that the output be wrongly interpreted for each value of

the signal:

+O0
p(B(v) $ B(vs)|vs = vo) = dv pv(vN V)

f-Vth

and p(B(v) : B(vs)Ivs = v1) =] dv pv(vN V) (4.3)

It is reasonable to assume that the distribution of VN is symmetric around the origin,

since physical processes contributing to the noise voltage are generally invariant under

parity. Consequently:

p (B(v) # B(vs) vs = vo) = p(B(v) # B(vs) vs = v1) (4.4)

and thus the choice (4.1) for B leads to a symmetric error profile.

While microscopic physical events within the CMOS cannot be addressed indi-

vidually, their statistical behavior and their impact on the noise voltage may be

controlled: the distribution of VN is a well-defined function of the resource alloca-

tion. Usually such functions may be simply bounded, but here it can be determined

precisely: this is a typical case in which the processors can be taken as "reliably

unreliable," essentially because the different noise sources have been identified and

measured. In less favorable situations such as radiative failures, where the noise is

69

inherent to environmental factors and may vary on time, this property is not valid

anymore.

The noise voltage may be characterized by its power spectrum. We note v the

voltage difference between gate oxide and the source of the transistor and A, I, P

respectively the total area of the transistor, the DC current and the power going

through this device. Power and current are related to each other by:

P = vO I (4.5)

where vo is a fixed power voltage supply imposed by the technology of the CMOS

transistor. Furthermore, we note fh and fi respectively the highest and lowest fre-

quencies of operation. We will rather think in terms of output current than in terms

of voltage between the gate oxide and the source, but both descriptions are equiva-

lent thanks to Ohm's law. In a CMOS transistor, the noise receives two important

contributions.

Shot Noise

The shot noise comes from the wave-particle duality of the electrons involved in

the electric current. Because of their incoherent relative motions, their arrival times

on any cross section of the wire are Poisson-distributed. The Fourier transform of

the autocorrelation function associated with a poissonian process (which is the power

spectrum by Wiener-Khintchine's theorem) is the sum of a Dirac distribution and

a constant term. The latter corresponds to the "white" part of the noise process.

According to the law of large numbers, relative fluctuations of the current should

decrease significantly with the number of particles going through a cross section of the

wire per time unit. This prediction is verified to the extent that voltage fluctuations

are decreasing functions of the current, but two regimes need to be distinguished,

70

depending on whether the transistor is functioning below or above threshold:

AVN2-(fh-fl) 1.0 for P < Pth (subthreshold regime)
It 0.5 for P > Pth (above threshold regime)

(4.6)

Kw(-y) and the threshold power Pt are fixed parameters inherent to the CMOS tech-

nology [Sar98]. Since VSN is the sum of a great number of independent voltage

fluctuations associated with each single charge, the central limit theorem shows that

the corresponding voltage distribution is a Gaussian of standard deviation AVSN.

1/f Noise

This noise has a different physical origin. Because of the impurities in the gate

oxide of the transistor, there is a leakage of the charges present on this surface,

leading to fluctuations of the number of charges situated on the oxide. The current

delivered by the transistor output is a function of the difference between the gate

oxide voltage and the threshold (the common voltage reference being the source of

the transistor). Therefore everything happens as if the threshold of the transistor

was jittering, following the gate oxide voltage fluctuations. Let us see how these

fluctuations scale with the resources. The conversion of charge variations into voltage

variations depends on the capacitance C of the transistor, proportional to its area A:

dV 1 1 (4.7)

dQ C A

Thus the voltage power spectrum (given by J(f)f 12 where i(f) is the Fourier trans-

form of the voltage evaluated at the frequency f) associated to the fluctuations of a

single charge scales as A 2 . But the number of fluctuating charges is proportional to

the number of "in and out" states for the charges (consequence of Fermi golden rule

in quantum mechanics), which is in turn proportional to number of defects. Since the

density of impurities is approximately constant, the number of fluctuating charges

scales like the area A. Because the fluctuations associated with each impurity are

independent, their contribution to the power spectrum add. Taking both effects into

71

account - the simultaneous increase of the capacitance and of the number of fluctuat-

ing charges -, we obtain a scaling of the voltage fluctuations as A- 2 x A = A-. This

is reflected in the relation:

2 Kf ff df Kf f B
vi/] - log with K = (4.8)

A fi f A Cox

In this formula Cox is the capacitance of the transistor per unit area, while B stands

for the density of impurities in the oxide, constants typical of the material used in

the transistor. The great number of tiny fluctuations associated with the 1/f noise

results again in a gaussian voltage distribution of standard deviation AV,/&.

4.1.2 Resulting error probability

The output noise voltage vn = VSN + V1/f is the sum of two independent gaus-

sian noise processes. Consequently, the corresponding distribution is a Gaussian of

standard deviation:

Av2 = AVN / 2 K.Q) (fh - fi) ± log ((4.9)

The bandwidth Af and the time processing T of the device are related by the relation:

Af = fh - fl = 2TF (4.10)
T

The power consumption P is proportional to the intensity I of the current going

through the transistor (equation (4.5)). Combining the equation (4.5) with (4.9) and

(4.10), the standard deviation of the noise voltage distribution maybe rewritten:

V2 K + K' with 1.0 for P < Pth (4.11)n P A T 0.5 for P > Pth

72

where K' (-) and K' are fixed parameters derived from the expressions of K", Kf,

and from the relations (4.5), (4.10). We note pv the noise voltage distribution:

pv(v) = exp (2 (4.12)

Inserting this distribution in equation (4.3) leads us to the failure probability of a

CMOS transistor:

+p 1 K 7 '
p(A, P, T >) = dpv(v) =- erfc 1 / +

with =l1.0 for P < Pth

and y=0.5 for P > Pth (4.13)

This relation captures the trade-off between the reliability of this device and the

allowance of a certain amount of physical resources such as area, power and time.

From now on, we call such relations reliability-resource laws (or sometimes simply

reliability laws).

Although we have expanded it in a specific technological context, the idea that the

reliability of a computational system is conditioned by the consumption of physical

resources is extremely general. Indeed, the behavior of natural computers is essentially

statistical and related to energy exchange or entropy creation. The operating mode

of neurons is perhaps the most relevant illustration of this concept. Neurons receive

through their synapses messengers of a chemical nature, whose interpretation requires

in turn the performance of chemical reactions. The efficiency of their information

processing relies simultaneously on sufficient energy supply (the reactions needed

are sometimes endothermic or require some energy for their rate to be acceptable)

and on the availability of messengers in sufficient quantity around the synapses. In

those natural computing systems, there seems to be also a deep connection between

reliability, processing time and power.

73

4.2 Problem Statement

In this section, we lay out the problem associated with the fault-tolerant design of

resource-efficient circuits. We begin by raising the essential question and hypothesis

which we will guide us in the subsequent developments of this thesis. We then treat

two simple examples enlightening the problematic of fine-grained fault-tolerance. Af-

terwards, we define a framework by introducing assumptions and hypothesis regarding

the error model, the reliability-resource law of the device and the circuit partition-

ing. We then present two optimization problems corresponding to different design

situations, in which either the resource availability, or a requirement in the device

reliability is fixed. Both problems will provide us with a different perspective from

which to appreciate the benefits of a fine-grained fault-tolerant design.

4.2.1 Fundamental question and hypothesis

Redundancy and efficiency are usually considered to be at odds. In the common

language, redundancy is synonymous for waste. At best, in the context of fault-

tolerant computing, modular redundancy appeared as the simplest and least efficient

way to achieve some reliability improvement. Let us adopt the opposite attitude and

ask what could seem an absurd question:

Question: Can redundancy help save resources ?

This point deserves indeed to be seriously addressed. If reliability is fungible, it

comes only at a certain price in terms of resource consumption. And this price

becomes more and more significant as one moves towards high levels of reliability.

This consideration enlightens a new role for redundancy: instead of struggling to

reach a very low failure probability with a single component, it might be more efficient

to duplicate the computation into several components and adopt a more permissive

attitude towards the behavior of each element.

This alternative between multiple faulty identical processors and a single perfectly

reliable one is similar to the choice between analog and digital computation. In an

74

analog computation, a continuous signal is carried by a single wire and a very low

noise level is required to preserve the information encrypted in the signal. In a

digital computation, the information is distributed over many wires, each of those

carrying a signal taking its values in a small set (containing typically 10 elements

if the computation is decimal) instead of in a quasi-continuum. Because of this

discretization, the signal within each wire becomes robust to a significantly higher

level of noise. In a context where noise can only be limited through the mobilization

of resources, Sarpeshkar showed that digital computation could be more efficient than

analog in many instances [Sar98]. This fact is also confirmed by the actual prominence

of digital systems. Advocating for redundant systems based on the distribution of

computational task between several elements is thus no more nonsensical than opting

for the digital over the analog!

Let us investigate how the use of modular redundancy could lead to resource-

efficient design. The last section showed how the physical reality of a device could

connect its reliability to energy, space and time consumption. Nonetheless, this con-

nection is manyfold in the following sense: granted a certain amount of resources,

one can either allocate it at once to a single component, or organize a multiplexed

circuit in which the resources would be divided among several components. The rela-

tion between resource consumption and reliability is different in this latter gate. For

sake of concreteness, we consider the case of a device whose reliability depends in a

continuous manner of its layout area only. Assuming that we have at our disposal

a certain area AT, we can choose to either allocate it at once to the component, or

to organize a multiplexed circuit of the same size. These two design alternatives are

depicted on figure 4-1.

Figure 4-1: Two alternative resource allocations for a NAND gate of layout area AT.

75

We could also imagine to use multiplexed constructions of higher recursion lev-

els on the same layout. For each level, assuming the same area is granted to each

component, we obtain a different trade-off between the total area consumed and the

reliability of the circuit. We can now formulate the main hypothesis that will drive

the analysis in the remainder of this thesis:

Hypothesis: There exists a fine-grained multiplexed triple modular re-

dundant design leading to a better trade-off than that associated with the

direct allocation of resources.

Given a reliability-resource law, it is not a priori obvious to see whether this hypoth-

esis is valid or not. Indeed, when dividing the layout of a chip in order to organize a

multiplexed circuit, two opposite effects compete:

e Each component is less reliable because the same pool of resources is divided

by a greater number of devices.

e The distributed majority voting tempers the gravity of each failure occurring

within the circuit.

The structure of the reliability-resource law determines whichever of these effects is

dominant. Our main task will be to find out the laws and reliability range for which

the hypothesis is verified.

4.2.2 Two first examples

We now explore on two examples how the relation between reliability and

resources determines the efficiency of a fault-tolerant design. We aim at optimizing

the reliability of a circuit whose layout is spread on a total area AT. If we choose to

divide it into a multiplexed circuit, each of the component will be granted the area

AT. Let us investigate two opposite situations, in which the reliability-resource law

is either very flat, or very steep. The corresponding curves are presented in figure 4-2.

76

p(A) Flat Law

A L

Pot-

:A
AT AT
6

p(A) Steep Law

Pof

SA
AT AT
6

Figure 4-2: Fault-tolerant design in steep and flat reliability laws.

Flat Reliability-Resource law: In this case, the drop in resource allocation

affecting the components of a multiplexed circuit does not change significantly their

reliability. If the failure probability of a device of layout area AT is below the threshold

of equation (3.32), then:

P (AT)=Po P Pth6

This is the situation presented on figure 4-2.

the multiplexed component:

P A 2

C3 6

1
- with c3 = 24
c3

Noting Pfail the failure probability of

which shows that multiplexing improves the reliability of this device. A fault-tolerant

design is advantageous for this reliability-resource law, so the hypothesis would be

valid in this case.

Steep Reliability-Resource law: On the contrary, if the reliability-resource

law is steep, the division of the total resource AT among each component of the

multiplexed circuit seriously deteriorates their reliability. On figure 4-2, we see that

the failure probability of each component in the multiplexed circuit is such that:

Ar 1
P = Po > Pth with c3 = 24

6 C3
(4.16)

77

(4.14)

- (c3 p(AT))2 < p(AT)
C3

(4.15)

Therefore we obtain the bound:

(C 3 P (AIT)) 2 p(IT >p(AT) (4.17)

which does not guarantee that a multiplexed design brings any improvement in the

component reliability.

4.2.3 Framework

Error model

We mention here again the important assumptions, already evoked in Chapter 2,

concerning the error model in noisy circuits:

" Any device in the circuit is subject to errors.

" The devices in the circuit are subject to soft errors only.

" Errors happen independently in the different components.

* Processors fail independently from their inputs.

Reliability-Resource law

The reliability of the device is described by an equation such as:

p = fy, (R A, ..., R') (4.18)

where R1 are the resources used by the gate and -1..>, parameters depending

on the technology employed. The figure 4-3 shows a typical reliability-resource law.

We make the following assumptions regarding the dependence of the reliability of

the components in the circuit towards their resource allocation:

9 Reliability is a fungible resource. In other words, the function . giving the

failure probability is continuous with respect to each of its resource variables.

78

e All components in the circuit are ruled by the same reliability law.

The latter assumption would be illegitimate if we were to apply it to d-majority

gates taking a big number of inputs, because the complexity of these gates is greater

than that of a NAND. That is why we focus our analysis on the possibilities offered

by recursive multiplexed triple modular redundant schemes, which involve exclusively

3-majority and NAND gates.

p(A)

10-4

10-15

... 5- AREA A
MOLECULAR, A PRESENT
QUANTUM DEVICES 8 TECHNOLOGY

Figure 4-3: General reliability-resource law.

Furthermore we will make two hypothesis regarding the reliability-resource law:

* The component can be made arbitrarily reliable pending sufficient resource

availability:

lim f-..- (R1, ., R,) = 0
R1-+oo,R 2-*++0,..,Rn-+oc

* Allocating more resources always lowers the failure probability of the device,

in other words fyl.., is a strictly decreasing function in each of the variables

Rm .. , we R

From now on, we denote p(R1, ... , Rn) the reliability-resource laws.

79

Circuit Partitioning

Regarding the partitioning of a layout into recursively multiplexed circuit, we

suppose that:

" The partitioning is done at no cost. In particular, we neglect the cost of wires

and communication between subcomponents.

" Each component is granted the same amount of resources. This assumption

merely reflects our policy of resource allocation. Nonetheless, if some compo-

nents were granted much more area than others, pitch-matching problems could

arise in the layout, leading to a breakdown of the first assumption.

Let us translate these assumptions in terms of failure probabilities. We have seen

in the equations (3.35) and (3.36) the scalability of the resources area, power and

time for multiplexed schemes. Assuming that we allocate the resources Ro,.., RO to

each basic unit and denoting Rk,.., Rk the consumption associated with a MTMR

implementation of level k (definition (3.3.3)), we may define the scaling factors:

Rk
r. = (4.19)

-RO

We will often specialize to the simpler problem of single parameter reliability-resource

laws. They will be denoted p(A), where A is an extensive resource which we take

as the layout area, but which may represent the power as well. Assuming a global

allocation R 1 , ..., Rs, the failure probability of a multiplexed scheme of level k is

bounded by:

R1R 1 R R n 2k
Pfail Pft k, ... =-) - C3 P (, with c3 = 24 (4.20)

ri r(n C3 r1 Irn

Again we have taken the value c3 = 24 for the threshold to account for the embedding

of the encoded gate into a noisy circuit of similar components.

80

4.2.4 Two different points of view

We define here two different optimization problems allowing one to state whether

the trade-off associated with a fault-tolerant design can be more advantageous.

Optimization With Limited Resource Availability

Given a fixed pool of resources R1 , ..., Ra, we now aim at determining the optimal

recursion level k0pt(R 1 , ... , R.), minimizing the failure probability pft(k, R 1, ... , Rn) of

a MTMR construction consuming the whole pool of resources. We will say that

we have found a successful fault-tolerant design with the resources R1, ..., Rn when

kpt (RI, ... , Rn) is non-zero.

It is easy to see that, for each set of resources R 1, ..., Rn, the optimal level of

redundancy is to be taken within a finite set. Indeed, the only possible valid values

for k are upper-bounded km, lowest integer such that:

1
Pft(kmR 1, ... , Rn) < - (4.21)

C3

This optimization problem is thus always solvable by inspection of a finite set of val-

ues. Its interest may appear as limited, since the objective of chip designers would

rather be to achieve a certain reliability with the least possible amount of resources.

But this point of view clearly shows how a fault-tolerant design can boost the reli-

ability of a chip. We shall adopt the acronym OWLRA as short-hand notation for

optimization with limited resource availability.

Optimization With Reliability Requirement

This is now the reliability of the encoded gate which is fixed. In this optimization

problem, we look for the resource allocation to the elementary components and for the

recursion level of the multiplexed construction minimizing the resource consumption

of the global circuit and compatible with the reliability requirement.

In mathematical terms, we wish to find a set of parameters k, R', ..., Ro minimizing

81

a weight function w (R rk, ... , R kri) under the constraint:

pft (k, Ro, ... , R) <C (4.22)

where the function pft is defined in the equation (4.20). The weight function reflects

the cost attributed to each resource and may be fixed by the designer, but we will

naturally assume that:

Vi E {l, ...,n}0 w(Ri, ..., R,) > 0 (4.23)
O Ri

This problem is indeed much harder to solve in the case of reliability laws depend-

ing on several different resources. Its solution is not expected to be a unique set of

parameters, but rather a collection of continuous surfaces of !R (of dimension n - 2)

corresponding to resource parameters satisfying the constraint pft(k, R1 , ..., Rn) = e

and minimizing w(R1, ..., R). The ensemble of possible values should be chosen

within a reciprocal image of pft defined by the relations:

1
- < p t (0, R , ..., R) < e (4.24)
C3

We simply state here that resources allocated to each unit should be chosen such

that its failure probability is below the threshold - otherwise a modular redundant

encoding worsens the reliability - and above the reliability requirement - otherwise

resources are wasted -.

Definition 4.2.1 : We shall say that there is a successful fault-tolerant design in the

optimization with reliability requirement when there are two sets of parameters:

* A set of "fault-tolerant" parameters k, Ro,..., R

such that k > 0 and Pft (k, RI,..., R) < e.

" A set of direct parameters R', R' such that pft (0,R', ..., R) e

satisfying:
R0 rk

max Z < 1 (4.25)
i=1...n R'

82

From now on we adopt the acronym OWRR as short-hand notation for optimization

with reliability requirement.

4.3 Initial Solutions

We derive here some initial answers to the problem laid out in the previous

section. We begin by showing a simple yet essential result: for reliability-resource laws

with a residual error probability, a fault-tolerant design is always advisable for high

reliability requirements. Afterwards, we derive a mathematical condition enabling to

state the existence of an efficient fault-tolerant design for a reliability-resource law

and a certain reliability requirement. Finally, we show that the two optimization

problems formulated in section 4.2 lead to equivalent answers in terms of confirming

or invalidating the hypothesis defined in the same section.

4.3.1 Efficiency of a fault-tolerant design for reliability laws

with residual error

We release here one of the hypothesis of section 4.2.3 regarding the reliability-

resource laws: we consider a device ruled by a law for which there is a residual

error probability Er independent of the resource allocation. This law is represented in

figure 4-4. We also assume that the residual error is below threshold (E, < g), which

is largely satisfied by actual components. The following claim shows the advantage

of a fault-tolerant design.

Claim 4.3.1 : For laws with a residual error E, below threshold, a multiplexed design

is always advisable for reliability requirements E < Er.

Proof: This reliability cannot be reached by direct allocation. However, if we consider

a building block (elementary device) of area AO such that:

1
Er < po = p(Ao) < Pth = 1 (4.26)

C3

83

p(A)

Pth

Po .r.....

r o A

IPI AREA A

Figure 4-4: Reliability-resource law with residual error.

then a multiplexed construction of level k with those elementary components has a

failure probability bounded by:

(4.27)Pfail < (c 3 po))2k
C3

When k becomes large, thanks to (4.26) the failure probability pfail tends toward

0. Therefore there is a fault-tolerant construction of finite area which allows one to

achieve the reliability requirement E.

The latter claim legitimates the hypothesis of section 4.2.3 that a device be per-

fectly reliable pending sufficient resource allocation: if this is not the case, one can

obtain through appropriate fault-tolerant constructions a new reliability law in which

the residual error disappears (provided that the residual failure probability is below

threshold).

84

4.3.2 Efficiency condition of a multiplexed

triple modular redundant design

The purpose of this paragraph is to derive a mathematical condition addressing

the efficiency of a MTMR design of a NAND gate (definition (3.3.3)).

We focus in the first place on a reliability law which involves only a single re-

source identified as area. We consider the problem of optimization with a reliability

requirement Pfail < c. The direct design requires a layout area of A, = p(-1)(c). We

wish to achieve the same level of reliability with elementary components of smaller

size AO and of failure probability p(Ao), embedded in a multiplexed voting system.

From the previous section, we know that AO is constrained to be in the interval

e]p- 1(1/c 3),p-1 (E)[=]A 1 1 3 , AE[. For any recursion level k such that:

1 2k

(c 3 p(Ao))2 < 6 (4.28)
C3

the corresponding multiplexed circuit reaches the reliability objective. We shall note

k(E, Ao) the smallest of these integers. It is given by the formula:

k (E, AO) =10o2 109g(C3C) (4.29)

Under the assumption of perfect partitioning, the scaling of multiplexed constructions

established in (3.35) gives the layout area required for a scheme of level k:

A(k) = Ao (k + 1) 3k (4.30)

The trade-off associated with the recursive construction is efficient if:

Aft = A(ko) < Ac (4.31)

Because the failure probability is a strictly decreasing function of the area, we can

reformulate this condition as follows:

85

Claim 4.3.2 (Condition of fault-tolerant efficiency):

There exists an efficient fault-tolerant construction if:

IAO c]p 1)(c),p (e)[s.t. p[Ao (k(e, Ao) + 1) 3k(,Ao)] > e

where k(e, AO) 0log 2 (i i c$) (4.32)
(log(C'P(Ao))

If this condition is verified, then the hypothesis of section 4.2 is valid.

We can without major difficulty generalize this approach to reliability laws in-

volving several resources by using a weight function w. Keeping the notation of the

previous section, the condition (4.32) becomes:

p(R, .. R) eand
I (R O , ... R ") 3 (R 1, ... R ') s.t. p R ..R , n

n ~W(RO r3'k, ...,7 RO r3,k) < w(R1, ... , Rn

where k = log 2 log(cc) (4.33)
log (cop (Rol, ... ,7 RO))

These equations reflect the fine balance between the overhead incurring through the

triplication and the improvement brought by distributed majority voting. Contrary

to what intuition suggests, these relations show that introducing redundancy in the

design of a processor can sometimes enable to save resources. The success of a fault-

tolerant design depends both on the structure of the reliability-resource law p(A) and

on the reliability requirement E.

4.3.3 Equivalence of the optimization with limited resource

availability and with reliability requirement

In the rest of this thesis, we will devote a greater attention to the problem of op-

timization with reliability requirement. Nonetheless, when comparing the suitability

for a fault-tolerant implementation in two different technologies, it will be useful to

switch from an optimization problem to the other.

Indeed both point of views are closely related, and both optimizations may be

86

equivalently used to state the existence of an efficient fault-tolerant design. We verify

this quickly in the following claim:

Claim 4.3.3 : In terms of stating the successfulness of the recursive fault-tolerant

design over the classical design, the problems of optimization with limited resource

availability (OWLRA) and the optimization with reliability requirement (OWRR) are

equivalent.

Proof : Let us assume that there is a successful fault-tolerant set of parameters in

the OWLRA problem. That is to say:

3k E N s.t. pft k, , ., < pj (O, R 1 ,..., Rn) (4.34)

We set e = pft(O, R 1 , ... , R,). Because the function pft is a continuous function of the

resources, there exists p < 1 such that:

R1 Rn

Then we have found by definition a successful fault-tolerant design in the OWRR

problem.

Conversely, let us assume that we have a successful fault-tolerant design in the

OWRR problem, that is two sets of parameters k, R ,..., RO and R',..., R' verifying

the properties of definition (4.2.1). We then have:

ViE { .. n} R '
Vi E f _n -_ > R (4.36)

which ensures that:

pft k, -j, ... -- < pft (k, Ro , ... R) <; e=pft (0, R'1 , R'I (4.37)

This proves that the optimal recursion level k0 pt(R', ..., R') associated with the

OWLRA optimization is not zero, and that we have a successful fault-tolerant design

for this problem also.

87

4.4 Reliability is a fungible resource

As we saw on a real technological example, the reliability of a physical comput-

ing device may be exchanged in a continuous fashion for other physical resources,

attribute which we summed up under the term of fungibility. In order to take a step

further in the analysis of this property, it is revealing to think of a phase space in

which each device would be mapped to a point (R 1 ,..., Rn, e) of jn+1 describing the

resources mobilized and its reliability, and to investigate what points of the phase

space are accessible.

We consider a family of processors corresponding to devices with the same technol-

ogy, parameterized by a resource vector of Rn, two components with distinct resource

allocation being different processors. After some investigation on their mechanism,

we may establish a reliability-resource law for these devices. When (R 1 , ... , Rn) de-

scribes Rn, the phase point describes a manifold of 1 n+1 characterized by the function

Xn+1 = p(X1 .. , Xn), which we shall call "physical" manifold. We may also define a

minimal surface by picking up, for each resource allocation (R 1 , ... , Rn), the reliability

associated with the optimal recursion level. We already referred to this problem as

optimization with limited resource availability. This surface is continuous, but it is

generally not be a manifold because a curve traced on this surface might encounter

singularities associated with changes of the optimal recursion level k. The discussion

of the previous section sheds an interesting light on the accessible phase trajectories,

but it also raises an apparent contradiction:

How can several reliability-resource laws be appropriate to describe a fam-

ily of systems sharing the same technology, when such laws are established

on the physical origin of the noise ?

Indeed, the microscopic physical processes involved in a processor and its recursively

multiplexed implementation are the same. But the paradox disappears if one remarks

that these different reliability laws are associated with devices managing differently

the same amount of physical disorder. In other words, wile the physical behavior is

dictated by the amount of resources available, its interpretation is manifold. Two

88

processors with different multiplexing levels acquire the information through a differ-

ent sampling realized on a similar set of physical events. In this line of thought, there

is no special reason to distinguish the "physical" reliability-resource law from other

laws derived by multiplexing.

Because of the many possible trades-off, from each point of the accessible phase

space, one might move on a countable class of manifolds associated with multiplexed

implementations of different recursion levels k (see figure 4-5).

The Phase point Q can move on different manifolds

Pfail

M2

R2

Q M

Figure 4-5: Possible trajectories of the phase point.

Let us investigate for a moment what happens with a single parameter reliability

law. The failure probability of the device is again a function of its layout area.

If we assume that the wires are reliable, it is possible to build devices of similar

reliability with increased resource allocation: one just need to increase the empty

space between the components of the layout. On the graph presented on figure 4-6,

the phase point can move horizontally towards component of similar reliability but of

increased resource consumption. The figure also shows the accessible phase space.

Our ability to leave some resources unused legitimates the hypothesis that the

failure probability of a component be a decreasing function of the resources: if the

failure probability of a component were not a decreasing function of the area, for a

total layout of size A it would still be possible to grant the area A' < A to the device,

89

All points above the optimized curve are accessible

Pfail(A)
Enlarge empty space between components

Tight Layout Large Layout

f A): Optimized Allocation
P AREA A

Figure 4-6: Accessible phase space for a single resource reliability law.

optimizing its reliability by leaving some empty space on the layout.

A reliability law with several resources exhibits the same property: from each

point of the minimal surface, it is possible to increase resource allocation and move

towards less efficient devices. Let us invoke again the generic example of a CMOS

transistor whose failure probability is conditioned by area, power and time. We

wish to move along the vector (AjA, A2P, A3T, A4) with ViA2 > 0. We may increase

the resources consumption along this vector by putting empty space on the layout,

additional resistors in the wires or waiting after the computation is performed. We

may also decrease the reliability of the transistor by decreasing the resource allocated

to the component, while increasing the general resource consumption. The set of

accessible points is {(R+)nx]0, 1 [} minus the volume S enclosed below the minimal

surface. The accessible space is represented on the figure 4-7. For sake of clarity, we

have not plotted the resource R 3 which would require a figure in four dimensions.

4.5 Conclusion

We have introduced in this chapter the essential notion that reliability is a fungi-

ble resource, and illustrated this concept on an the CMOS transistor. Starting from

90

POSSIBLE MOVEMENTS OF THE PHASE POINT
FROM THE MINIMAL SURFACE:

4X 15 -(5,X3) S't. V'Ri >

/2

SR1
ANY POINT BETWEEN:

THE MINIMAL SURFACE S AND THE PLAN pfi= 1 / 2
IS ACCESSIBLE

Figure 4-7: Accessible phase space for a reliability law with several resources.

the hypothesis that fault-tolerant schemes may outperform the traditional design

in terms of resource allocation, we have introduced two different points of view from

which to perform the analysis: the optimization with limited resource availability and

the optimization with reliability requirement. We have shown that a fault-tolerant

design is advantageous for reliability-resource laws with a residual error probability.

Furthermore, we have translated the efficiency of a multiplexed design into a math-

ematical condition. We have also proven that both optimization problems lead to

equivalent answers. Last, by introducing the notion of phase space, we have given a

more comprehensive view on the fungibility of reliability as a resource.

So far we have approached qualitatively the possibilities offered by recursive

multiplexing at the fine-grain level. It is now time to take a step further in the

analysis and bring quantitative evaluations of the gain in resources and reliability

provided by this design method. This is the purpose of the next chapter.

91

I

92

Chapter 5

Fine-grained Fault-Tolerance:

Quantitative Analysis

In this chapter we treat quantitatively the optimization through fine-grained

fault tolerance by introducing new measures of efficiency for this design method and

by evaluating them on specific instances.

Section 5.1 describes a systematic procedure allowing one to estimate, through

the reliability-resource law, the efficiency of a multiplexed triple modular redundant

design. Section 5.2 establishes criterions of comparison enabling to infer, from a com-

parison of their reliability-resource laws, the relative performance of a fault-tolerant

design in different devices. In section 5.3 these techniques are applied to identify,

within the family of power and exponential functions, a class of laws and reliability

requirements for which such a design is efficient. Section 5.4 brings an answer to the

relevance of a multiplexed design in a CMOS transistor. Section 5.5 concludes by

mapping the classes of reliability laws which satisfy the hypothesis of section 4.2.

93

5.1 Systematic approach of fault-tolerant

optimization

This section covers more specifically the optimization of multiplexed construc-

tions in devices ruled by a single parameter reliability-resource law p(A), and verifying

the assumptions laid out in section 4.2.3.

5.1.1 Identification of the optimal areas

Let us begin by recalling some important results of Chapter 4. k(c, AO) denotes

the smallest integer k such that:

1 2k
- (c 3 p(Ao))2 < E (5.1)
C3

According to the bound (3.41) for the failure probability of recursively multiplexed

circuits, in order to achieve a reliability pfail < c in a circuit whose elementary devices

have a layout area AO, it is sufficient to adopt a recursion level k(E, AO). Inverting the

equation (5.1), we obtained the expression:

k(E, Ao) [log 2 1i9C3) (5.2)
(10 C3P (AO))

Although the reliability E could be in principle achieved with a lower recursion

level, k(E, Ao) is the optimum choice that can be obtained from the bound (5.1).

Nonetheless, this bound has two advantages: it exhibits clearly the double exponen-

tial decrease of the failure probability with the recursion level, and it is also a simple

monomial of the elementary gate failure probability p(Ao). This scaling of the fail-

ure probability with the recursion level captures the efficiency of the fault-tolerant

constructions. Besides, it will reveal useful to have an invertible expression relating

the reliability of the elementary processors to that of the encoded circuit. That is

why we choose to base on the bound (5.1) our evaluation of the failure probability in

multiplexed circuits.

94

Consistently, given an elementary gate area A 0 and a reliability requirement c, we

shall always adopt the recursion level k(e, Ao) in a recursive MTMR scheme. The

couple of reals (c, AO) then fully determines the MTMR construction, and we call it a

building set. As mentioned earlier, we consider for the multiplexed construction only

values of A 0 such that:

A0 E h =] (p(- 1)(c) [= I AI/C 3 , Ac [(5.3)

On the one hand, if A 0 falls below this range, the elementary gates have a failure prob-

ability over threshold and majority voting might actually deteriorate the reliability

of the circuit. On the other hand, if A0 is situated above this interval no recursion

is obviously needed to obtain a failure probability Pfait < 6 and some resources are

indeed wasted. We denote SA the reunion of those "acceptable" building sets:

SA = {(, Ao) E (R+*)2 I A0 E IE =]AI/c 3 , Ac[} (5.4)

Given an acceptable building set (6, AO) the MTMR design is efficient if:

p (A0 (k(c, Ao) + 1) 3k(,AO)) > E (5.5)

The acceptable building sets (6, AO) satisfying the condition (5.5) will be qualified of

MTMR efficient. Whether there exists such building sets or not depends in general

on the structure of the reliability-resource law. It is natural to introduce the following

partial order on the set SA:

A2El < E2 and
A1 (k(c, A1) + 1) 3k(qA 1) < A2 (k(c, A2) + 1) 3k(E,A 2)

(5.6)

We also adopt the convention that (Ei, A 1) -< (62, A 2) when one of the two inequalities

in (5.6) is strict. As we shall see, for each c < I there exists a corresponding minimal
C3

element (6, Amin(6)) E SA- Our task reduces to finding those elements. It is indeed

95

possible to focus our search for Amin(E) on a finite set of values:

Claim 5.1.1 (Optimal Areas):

An acceptable building set (e, AO) E SA may be a minimal element of SA only if:

Ao E SE {A(k,e) k E N s.t. (k +3k> A1/C3 }

/ (k +/1k31

where A(k, e) = p(-l) 3 1+1 /2k) - [c 3 p(A(k, E))]2k e (5.7)
C3

Proof: By mean of contradiction, we assume that (e, AO) E SA is minimal and such

that Ao Se:

either Vk E N A0 # A(k, e),

or]ko s.t. A0 = A(ko, c) and A, < A1 /1 3 ((ko + 1) 3 ko).

To obtain a contradiction, we only need to exhibit in each case an element

(W, A') E SA such that (e', A') -< (e, Ao).

Let us assume that we are in the first case: Vk E N A0 # A(k, e). Then,

the choice e' = e and A' = A (k(e, Ao), e) works. Indeed, by definition of k(e, AO)

and A(k, e):

I [C3 p(Ao)]2k(,Ao)

03

- [C3 p (A')]2k(,A 0)

C3

K e

- C

(5.8)

(5.9)

The comparison between the equations (5.8) and (5.9) tells us that p(Ao) < p(A').

Since p is a decreasing function, this implies A' < A0. Because of the hypothesis,

A'= A (k(e, Ao), e) = Ao is excluded. Consequently A' < Ao.

Furthermore, the equation (5.9) tells us that k(e, AO) is a sufficient recursion level

for a multiplexed scheme of building set (e, A'). Therefore k(e, A') < k(e, A 0).

Combining A' < A0 and k(e, A') < k(e, Ao) yields (c', A') -< (e, Ao). Contradiction.

If we are in the second case A0 = A(ko, e) for A. < A,/C3 (ko + 1) 3ko.

A0 = A(ko, e) implies that k(e, AO) = ko. Taking this time (e', A') = (e, AE), for which

96

k(c, A') = 0, we obtain:

A' (k(c, A') + 1) 3k(E'A') = Ac < Al/C3 (ko + 1) 3ko < Ao (ko + 1)3ko (5.10)

Again (E', A') - (E, Ao).Contradiction.

The advertised existence of a minimal element (E, Amin(6)) for each 6 < 1/c 3 comes

as a corollary of this claim: the optimal choice for the building set falls within a finite

set of optimal areas SE. In order to have simple notations, we keep the convention

that A, = A(0, c) = p-)(E). We shall say that the reliability-resource law p(A) can

be efficiently fault-tolerantly implemented (or MTMR implemented) on the range of

reliability 6 for which Amin(6) < 6. This is equivalent to saying that the hypothesis of

section 4.2 is valid. Also, with a slight language abuse, we will sometimes speak of the

gain provided by a fault-tolerant design in a reliability law, even if strictly speaking

this design applies to a device.

5.1.2 Simplification of the Triple Modular Redundancy

Efficiency Condition

The former discussion simplifies the efficiency condition (4.32). When Ao is an

optimal area, the integer parts in the expression of k(c, AO) are in fact no longer

necessary. Since one can without loss of generality restrict the choice of building sets

to these areas, the efficiency condition becomes:

3AO E]p 1)(c),p(~1)(c)[s.t. p[AO (k(E, Ao) + 1) 3 k(cAO)] > 6

where k(E, Ao)= log 2 log(c8 E) (5.11)
(log(cap(Ao)))

This condition is now analytical, which is an advantage for further mathematical

treatments.

97

5.1.3 Quantitative measures of efficiency:

Definition and evaluation

The identification of a discrete set of optimal areas for the building blocks of the

circuit allows one to obtain easily quantitative measures of efficiency of the multi-

plexed triple modular redundant design:

Definition 5.1.1 : We shall call resource gain:

r(e) =
Ac

max
k=...+±oA(k, E) (k + 1)3 k

Definition 5.1.2 :

Definition 5.1.3 :

We shall call reliability gain:

s(A)= max CPA

k=O...+oo A 2k

(C 3p (k+1)3k

We denote PMTMR(A) the function giving the failure probability

of the optimal MTMR circuit with a total resource allocation A.

For single parameter reliability-resource laws, when this notation is not ambiguous,

we shall also refer to PMTMR(c) as the failure probability of the optimal MTMR

circuit whose resource allocation would lead to e with a direct design.

In fact, for each reliability requirement e, both maximums are taken on finite sets.

For the reliability gain r(A), the relevant recursion levels are bounded by kmax(A),

smallest integer such that:

(k + 1) 3' > A (5.12)

As for the resource gain s(e), it is sufficient to investigate the recursion levels up to

the smallest integer kmax (AE) such that:

(k + 1) 3 > Ac (5.13)

98

Since components of failure probability pfli < 10-16 can be considered as perfectly

reliable for all practical applications, even for slowly decreasing reliability laws such

as the family of power laws, only a "reasonable" number of recursion levels needs

to be explored. As an example, for the power-like decreasing laws p(A) = ,the

maximum relevant recursion level is:

log(Ae) l og(c)| log(10) 1 _32
kmax(E) , kmax(A) ~ < 16 ~ - (5.14)

log(3)> log(3)-y - log(3) -y -y

In fact, in order for kmax to become macroscopic, the component should be ruled

by a reliability law or by a power-like decreasing with a very small exponent. This

will not be the case for the devices we investigate in the present thesis, and it will

be largely sufficient in practice to explore the first 100 recursion levels. Although

the evaluation of the resource gain is slightly more complicated, since it requires the

inversion of a reliability-resource law, the estimation of both measures of efficiency

remains essentially a straightforward numerical task.

5.2 Comparison of reliability-resource laws

In this section, we construct a toolbox allowing one to compare the relative ef-

ficiency of a fine-grained multiplexed design in distinct reliability-resource laws. We

begin by proving that two reliability laws related to each other by a dilatation of

their resource variables yield similar gains with a multiplexed design. This remark

will help us establish classes of reliability laws equivalent from the point of view of

fault-tolerance. We then derive two criterions of comparison applicable in different

contexts. The first property is relative to different single parameter reliability laws

whose resource scale similarly. An important corollary is the notion of critical expo-

nent, which will be very useful in the mapping of the efficiently fault-tolerant imple-

mentable reliability laws. The second property involves two reliability laws without

any necessary similarity of their resources: both laws can actually involve a different

number of resources, or resources which scale differently.

99

5.2.1 Invariance of the efficiency towards dilatation

of the reliability-resource law

In physical terms, we state here that the resource gain provided by a multiplexed

construction does not depend on the system of unit chosen for the parameter entering

the reliability-resource law.

Claim 5.2.1 : Let p and pA = p(AA) be two reliability-resource laws for A > 0.

The resource gains associated with p and PA are identical.

Proof: Let 0 < e < 1/c 3 be a reliability requirement (below threshold), A(k, e)

and AA(k, E) the optimal areas of level k E N associated with the respective laws p

and PA. By definition of these two areas:

p(A(k, c)) = c3l+/2k612k and pA(AA(k, E)) = p(AAA(k, c)) = c3 1+1/2k E1/2k

(5.15)

Since p is an injection as a strictly decreasing function of the resources, the previous

equation implies:

AA(k, 6) = ' (5.16)
A

All the optimal areas are thus equally contracted. In particular, the resource gains

are equal:
AA(k,e) A(k,e) (5.17)
AA(0,e)- A(0,)

As an important corollary, we obtain that the reliability range on which p and

PA can be efficiently fault-tolerantly implemented is the same. This statement will

help us identify the relevant parameters in the classification of the resource laws with

respect to their fault-tolerant implementability. This result is not only valid for single

parameter resource laws, but can be extended immediately to reliability laws with

several resources: again the optimal allocations for the fault-tolerant and for the

direct implementation are dilated by the same factor.

100

5.2.2 Comparison of single parameter

reliability-resource laws

We know from the previous chapter that incrementing the recursion level, in

a multiplexed construction with fixed resources, simultaneously lowers the resource

availability for each component and increases the number of fault-path tolerated by

the circuit. The gain provided by multiplexing results from a balance between those

two effects. Whichever is dominant depends on the structure of the reliability law, as

we saw on the two examples of section 4.2.2: if the failure probability decreases in a

very steep way with the resources then the reliability deterioration of the elementary

gates is prominent, while if it decreases only slowly the gain obtained by majority

voting prevails. This suggests a comparison of the performance of a fault-tolerant

design in distinct reliability laws by inspection of their slopes. In particular, we

may extend the eligibility of a law to a fault-tolerant design to a class of other laws

decreasing more slowly with the resource allocation. We now transform these heuristic

considerations into rigorous properties.

Pfail(A)

P2
Pi

AREA A
Ac

Figure 5-1: Comparison of two reliability-resource laws for a single reliability require-
ment E.

Let us start with a very specific situation in which a direct inspection of the

101

reliability laws allows one to compare their fault-tolerant implementability. In the

context presented on the figure 5-1, for the specific reliability requirement e, the law

P2 is obviously more suitable than pi for a fault-tolerant design of the component.

We verify this fact quickly in the following lemma:

Lemma 5.2.1 : Let P1, P2 be two single parameter reliability-resource laws such that:

pi (A,) = P2 (A,) = e and VA < A, pi(A) < p2 (A) (5.18)

If the law P2 admits an efficient fault-tolerant implementation for the reliability

requirement E, then the law pi also admits such an implementation. Besides, pi

yields a greater resource gain than P2 for this reliability requirement.

Proof: Considering a potential building block A0 , we compare the fault-tolerant

areas Aft and Aft required for both devices. These areas are given by the equation:

Af = Ao rki(E,Ao) where ki(e, Ao) = log 2 log(C3 E)) (5.19)
i 11092 (10g(C3 pi(Ao))

Since for any possible value AO, we have pi(Ao) < P2(Ao) obviously

ki(e, Ao) < k2 (e, Ao) and hence Aft < Aft, which yields the desired result.

Naturally this lemma allows us also to prove negative results on the efficiency of

a MTMR design: if we know that it is inefficient for the law pi and for the reliability

requirement e, it will be a fortiori inefficient for the law P2 at the same reliability

requirement.

We may underline that the precedent lemma applies to a restrictive context in

which a common resource allocation gives the same reliability with both laws p1 and

P2. Strictly speaking, their comparison through the lemma (5.2.1) is thus restrained

to the reliability requirement e. Fortunately this drawback can be circumvented by

renormalizing one of the reliability laws. This technique enables a comparison of their

fault-tolerant implementability on a finite range of reliability:

102

Claim 5.2.2 :

Let pi and P2 be two single-parameter reliability-resource laws such that:

VE E [ki, 62] VA E]A/c 3, A'[pi(A) < P2(A A)

A 2

where A = pi(Al) = p 2 (A2) = e (5.20)

Then the law pi yields better resource gains than P2 on the range of reliability [E1, 62].

Proof: The lemma (5.2.1) proves that, for each E E [61, 62], better resource gains

can be obtained with the law pi than with the law p 2oA. through a fault-tolerant

design. The invariance of the resource gain in a dilatation of the resource variables

of a reliability law tells us that the gains of p2oA, and P2 are equal:

rP2O0\ (E) = r'2 () (5.21)

This completes the proof.

Notion of critical exponent

This notion comes as a corollary of the previous result, and it will play an impor-

tant role in the discussion of the fault-tolerant implementability on specific instances.

Without loss of generality, because of the invariance through dilatation of the resource

variables, we consider laws such that A,/,, > 1. The purpose of this requirement is

to ensure that, for the reliability range of interest, the higher the exponent 7, the

steeper the decrease of the failure probability as a function of the resource alloca-

tion. For reliability laws with high exponents -y, the division of the resources through

multiplexing worsens significantly the reliability of elementary components. It seems

then natural that the resource gain at a certain reliability 6 should be a decreasing

function of the exponents -y. Let us use the claim (5.2.2) to establish this fact.

Claim 5.2.3 :

Let p(A) be a single parameter reliability law such that A1/C3 > 1, and 0 < -Y1 < -Y2 be

two exponents. The law p(A11) yields greater resource gains than the law p(A 2).

103

Proof: Let us consider a reliability requirement e. In order to use the property

(5.2.2), we need to compare the laws p(A-1) and p(A72 AY2). Denoting A, A', A' the

areas such that:

p(AE) = p(Al) = p(A 2) E (5.22)

one obtains:
A2

A -A - A'/y2-l/y1 < 1 (5.23)

Our goal is to show:

VA E]AI/ 3 , A'[pi(A) < p2(Ac A) < A' > A'Y2//1AY2 (5.24)

The latter inequality is true if A, > 1, which is a consequence of the hypothesis that

A1/c 3 > 1. Thus the claim is proven.

In particular the latter result implies that for any reliability resource law p(A)

such that A1/1 3 > 1, and for any reliability requirement e, the set of exponents -Y:

S {,,,, = {- E R+*Ip(Al) MTMR implementable with resource gain r at reliability e}

is an interval]0, (r, e)]. The maximum is included in the interval because the func-

tion: 7 - r(A,)(c) (resource gain associated with the law p(AY) at e) is a maximum

of a finite number of continuous functions of 7 and is consequently also a continuous

function of -y. From now on, we note -y(r, e) the maximum exponent -y such that the

law p(AY) is MTMR implementable with resource gain r at the reliability e. The

claim (5.2.3) tells us that 7(r, e) is a decreasing function of the resource gain r.

Definition 5.2.1 : We call critical exponent of a law p at the reliability e the maxi-

mum exponent -yc(E) such that p(A7) is efficiently MTMR implementable at the reli-

ability requirement e.

For each reliability requirement e, the critical exponent 7c(e) partitions the family of

laws in two groups:

104

" The laws with exponent -y < -yc(e) for which the hypothesis is valid.

" The laws with exponent y > 7c(E) for which the hypothesis of section 4.2 may

not be verified, on the basis of the failure probability evaluation through the

bound (5.1).

5.2.3 Comparison of reliability laws with different resources

We proved in Chapter 4 that, in terms of stating the efficiency of a fault-tolerant

design, the problems of optimization with reliability requirement and with limited

resource availability are equivalent. The latter offers, however, a better insight into

the relative fault-tolerant implementability of two reliability-resource laws involving

distinct resources. Indeed, in the OWLRA approach, the relative performance of a

multiplexed design in two laws appears directly in the evolution of the elementary

gate failure probability with the recursion level:

Claim 5.2.4 Let p(R1, ... , Rn),p2 (SI, ... , Sn2) be two reliability laws such that:

pi(R ..., Rni) = P2 (Si,..., Sn 2)

and Vk > 1 p(2, ... , P2 S, ... , (5.25)

where randsZ are the scaling factors (defined in section 4.2) associated with a MTMR

design of level k. The reliability gain achievable through a multiplexed design in the

device of law p1 with a circuit of total resources R 1 , ... , Rn, is better than that obtained

in the device of law P2 with a circuit of resources S 1, ... , Sn2.

Proof: Under the condition (5.25), a MTMR scheme of level k yields a circuit more

reliable for the law pi than for the law P2 with the considered resources allocations:

(c3Pi(i ... ,R i)) 2k < c3 P2 S, ... 2 2k

-> Pit(k, R1, ... ,1 Rni) < p2ft(k, S1, ... , Sn 2) (5.26)

105

Since the direct construction gives to both devices the same reliability, the previous

equation directly reflects the reliability gains:

= ~ p1(R1, ... , Ra1) p2 (S1,---, Sn2) (57rPi(R, ... , Rma) > r 2 =max (5.27)
k=0.+Oo p~ft 1, ''', Ani) k=..+oo p2 ft(, 1, -, Sn2)

This result turns out to be very useful in the extension of properties established for

single-parameter reliability laws to more complex and realistic laws involving several

resources. We will apply it in section 5.4.

5.3 Treatment of specific reliability-resource laws

We solve here the problem laid out in section 4.2 for two classes of reliability laws

associated with a power and an exponential decrease of the failure probability with

the amount of resources allocated to the component. One might want to consider the

following families of functions:

1 1
p(A) = and p(A) - exp(-AAT) where A, y> 0 (5.28)

AA-Y 2

The power law may only describe a certain range of resource allocation, because

the failure probability should not diverge when few resources are granted to the device.

We shall assume that it describes the component on a range including the interval

of failures probabilities]0, - [, which is the range of interest for our constructions. In

the interval of resource allocation [0, Ai/c3 [the device is ruled by an other law such

that limA , 0 p(A)

The exponential law is taken as valid for any resource allocation, the factor 2

in the expression ensuring that the corresponding device becomes totally unreliable

when no resource is granted to it.

The property (5.2.1) tells us that the parameter A is irrelevant for the evaluation

of the fault-tolerant implementability of reliability-resource laws. That is why we

106

concentrate our attention on the influence of the exponent -y.

This section begins by introducing a possible representation of the efficiency of a

fault-tolerant design in a family of laws. Afterwards the results associated with power

and exponential laws are presented and commented. We will see that a fault-tolerant

design can lead to significant reliability improvements when the exponent 7 is below

the critical value (definition (5.2.1)).

5.3.1 Representation of the efficiency

of a Multiplexed Triple Modular Redundant design

In order to represent the efficiency of a MTMR design for a family of reliability

laws indexed by their exponent, we plot the following quantities:

" The critical exponent yc(c) as a function of E.

" The exponent -(r, c), maximum exponent for which the resource gain r can be

achieved through a MTMR design at the reliability e, as a function of r for

different reliability requirements E.

" The reliability gain through the function pMTMR(E), optimized failure probabil-

ity, as a function of the reliability E obtained by a direct design. The exponent

y is fixed in this graph.

A mere inspection of the first graph reveals directly the reliability laws with each

family leading to a successful MTMR design at a certain reliability requirement E. The

second graph allows to determine, for any resource gain objective r, what exponents

-y are acceptable. The last plot shows the jump in reliability offered by a MTMR

design over the direct design for a fixed value of the exponent 'y.

107

5.3.2 Power laws: p(A) = 1/AY

I I I I I

6

5

4

3

2

1

0
1 2 3 4 5 6

log E

Figure 5-2: Critical exponent for the
of the reliability.

7 8 9 10 11

family of power laws p(A) = A-- as a function

For reliability-resource laws decreasing as a power of the area, figure 5-2 shows

that the critical exponent depends strongly on the reliability requirement. For power

laws, at high reliability requirements, the fault-tolerant design can be efficient with

fairly high exponents: as an example, for the reliability requirement E = 10-9, the

hypothesis of section 4.2 is still valid with exponents up to y = 5.5.

108

8

7

6

C 5
0
Q_x
(D

E

3

2

1

0 1 2 3 4 5 6
logl 0 r

7

Figure 5-3: Maximum exponent y(r, 6) for the family of power laws p(A) = A-7
as a function of the resource gain r for different reliability requirements
C = 10- 3, 10-6, ,10-9 10-12 10-15. Upper curves correspond to higher reliability re-
quirements.

Figure 5-3 shows that significant resource gain can be achieved for reliability laws

with fairly high exponents. For instance, a law decreasing as the area p(A) = 1/A

yields a resource gain of r = 100 for the reliability requirement E = 10-6.

109

- - -I-

- - - - -.

- - - -.

- -.

- - - - - - - - -. .

- - - -.

8 9

22 -

20 --

18

7 16 - -. -.- .-

2 1 2 -.-..-.. . .

8 - - -.. -.

2 3 4 5 6 7 8
10lo E

Figure 5-4: Reliability obtained through optimized allocation for the power law

p (A) = I /A 2 as a function of the reliability resulting from the direct allocation of
the same amount of resources. The latter reliability is also plotted on the bottom
curve in order to highlight the gain provided by the optimization.

In the case of the power law p(A) = 1 /A 2, figure 5-4 reveals that, without changing

the global resource allocation, a multiplexed design can bring devices whose reliability

is several orders of magnitude higher. As an example, the figure 5-4 shows that, with

resources leading to a failure probability of E = 10'7 through a traditional design,

one obtains a failure probability close to p = 10-14 for the appropriate recursively

multiplexed circuit. Angular points correspond to changes in the optimum recursion

level. The reliability range for which the curves associated with PMTRg(E) and c

~1 2

differentiate is the range of fault-tolerant implement ability of the law p(A) = 1/A2

110

5.3.3 Exponential laws: p(A) = exp(-A)

0.3

0.25k

0.2

0. 15F

2 3 4 5 6 7
log10 F

8 9 10 11 12

Figure 5-5: Critical
as a function of the

exponent for the family of exponential

reliability requirement.

laws p(A) = exp(-AT)

For exponential laws, figure 5-5 reveals that the exponents compatible with a fault-

tolerant design are much smaller. This fact is not surprising because the exponents

y have a different role in an exponential and in a power-like decreasing function. At

the same reliability requirement c = 10 9 , the critical exponent is now 7c 0.33.

111

0.1

0.05

0

- -..

............... -............ -.... -.........

-.....

-.

0.35

0.3

0.25-

0.15--

0 .1 -. . -.

0.05

0 1 2 3 4 5 6 7 8 9
log10

Figure 5-6: Maximum exponent -y(r, c) for the family of exponential laws

p(A) = 1 exp(-A-) as a function of the resource gain r for different reliability require-

2

ments E = 10- , 10-6,7 10-17i, 10-15. Upper curves correspond to higher reliability
requirements.

Consistently with the last graph, we see on figure 5-6 that significant gains are

not compatible with high exponents. As an example, in order to achieve a resource

gain of r = 100 at the reliability requirement E = 10-6, it is necessary to have an

exponent below -y(100, 10-6) ~ 0.13.

112

20-

1 5 - - -.. . - - -...

2 3 4 5 6 7 8 9 10 11 12
log o(E)

Figure 5-7: Reliability obtained through optimized allocation for the exponential
law p(A) = 1 exp(-A'/) as a function of the reliability resulting from the direct

w2

allocation of the same amount of resources. The latter reliability is also plotted on
the bottom curve in order to highlight the gain provided by the optimization.

The plot on figure 5-7, associated with the law p(A') = 1 exp(-AO.25), shows that

02

significant reliability gains may be achieved with laws whose exponent is below and

close to the critical value. Indeed, for a resource allocation leading normally to a

failure probability of E = 10-', the optimized multiplexed scheme yields a failure

probability Of PMTRu(10-9) = 10-15, which corresponds to six orders of magnitude

of reliability improvement. The fact that the critical exponent at this reliability re-

quirement E = 10-9 be -c(10-') = 0.33, which is only slightly above the exponent

considered here (-y = 0.25), does not prevent from the obtention of important re-

liability gains. Angular points still correspond to changes in the optimal recursion

level.

113

5.4 CMOS Transistor

The treatment of the power and exponential reliability laws was interesting from

a theoretic point of view. However, to our knowledge, no physical computational

system exhibits this dependence of reliability towards the resources. In order to apply

the previous results on a device whose reliability law has been effectively measured,

we turn back to the example of the CMOS transistor laid out in Chapter 4.

5.4.1 Reliability laws p(A) = 1 erfc(A7)

To state the relevance of a fault-tolerant design for the CMOS transistor, we

start again from its reliability-resource law:

I K' (+ K' I
p(A, P,T) = erfc 1 / (A)

with =l1.0 for P < Pt and =. 5 for P > Pth

(5.29)

This law involves a new family of functions derived from the complementary error

function through a variation of the exponent. This function results from the inte-

gration of a gaussian distribution above a definite threshold. In the great majority

of physical systems, the noise is essentially the sum of a big number of small con-

tributions associated to independents microscopic events. The law of large numbers

implies that this sum is a random variable with a gaussian distribution. The study

of reliability laws associated with the function erfc is thus not only appropriate for

the CMOS, but also potentially for any other device.

The corresponding family of laws is very closely related to that of exponential

laws:
1 erfc(x) exp(X 2) when x -+ +oc (5.30)
2 2 ,x

Since the scaling is essentially dictated by the exponential, we can expect a high degree

of similarity between the plots for both families of laws. Nonetheless it is necessary to

114

address specifically the fault-tolerant implementability of this new family of functions,

in order to treat rigorously the case of the CMOS transistor and to study other devices

with gaussian noise. We now follow step by step the systematic procedure exposed

in section 5.1.3 and plot the graphs defined in section 5.1.3.

0.18

0.16

0.14

0.12

0.08

0.06

0.04

0.02

Figure 5-8: Critical exponent
the reliability requirement.

8 9 10 11 12

for the family laws p(A) =erfc(A") as a function of

According to figure 5-8, a fault-tolerant implementation is only likely to bring

some improvements with complementary erfc laws only if y < 0.19, within the range

of reliability requirements up to c = 10-12. In the example of a reliability requirement

S= 10-, the law can only bring an improvement if 'yc < 0.185. While this plot is

very similar to that obtained with an exponential law on figure 5-5, the approximation

erfc(.) ~ 1 exp(-. 2) would yield a slightly lower value 1 "ap) , (~ 0.165. It is

worth mentioning also that the critical exponent is almost constant on a wide range

of reliability requirements: for E = 10-6... 1012, y, = 0.161...0.183

115

2 3 4 5 6 7
log,(E

0.1

0 .18 -.-.-.- -

0 .16 - - - -.-.-.

0 .1 4 -. . -. -.. . . . -.. . -.. . . -..-. . -. . -

0.12 -
0

E 0.1 - -
E

0.08--

0.06- - -

0.04-

0 .0 2 - - --.-.-.-.-.-.-
0 1 2 3 4 5 6 7 8 9

log r

Figure 5-9: Maximum exponent 7(r, E) for the family of laws p(A) = erfc(AT)
as a function of the resource gain r for different reliability requirements
E = 10- 3, 10-6, 10- 9, 10,12 10-15. Upper curves correspond to higher reliability re-
quirements.

Again, figure 5-9 is very similar to the plot obtained for exponential laws on

figure 5-6. It also reveals that a fault-tolerant design may only be efficient in laws with

low exponents. In order to get a resource gain of r = 100 for the reliability requirement

E = 10-9, it is this time necessary to have an exponent -y below -y(100, 10-6) = 0.08.

This value is more optimistic than that yielded by the approximation j erfc(x) ~

1 exp(-x 2), which is 7jPP) (100, 10-6) = 0.065.

116

22-

20-

18 - - - - - - - -

16-- --

~14-

~12

02

8

2 3 4 5 6 7 8 9 10 11 12
1og 10(E)

Figure 5-10: Reliability obtained through optimized allocation for the law p(A)
Ierfc(A" 15) as a function of the reliability resulting from the direct allocation of the
same amount of resource. The latter reliability is also plotted on the bottom curve
in order to highlight the gain provided by the optimization.

For exponents lower and close to the critical value, figure 5-10 shows that signif-

icant reliability gain can still be expected. With 'y = 0.15, it is still possible to gain

several order of magnitude in reliability: with an amount of resources which would

lead to a failure probability of c = 10-- with a direct allocation, one obtains a failure

probability of pMTMR(10-9) ; 10-13 with the optimized multiplexed design.

117

5.4.2 Relation to the fault-tolerant implementability of a

CMOS transistor

We still assume that, for the reliability regime below threshold, the area A and

power P obtained by direct allocation are such that A, P > 1. Taking into account the

square root present in the reliability law, its lowest exponent 'y = 0.25 is associated

with the power in the above threshold regime, while the exponent associated with the

area is always - = 0.5. The graph on figure 5-8 reveals that, unfortunately, none of

those exponents are compatible with an efficient fault-tolerant implementation in the

case of a single-parameter erfc reliability laws. We can extend this result to the multi-

parameter law associated with a CMOS transistor and show that the fault-tolerant

design is not suitable for this component:

Claim 5.4.1 :

The CMOS transistor governed by the reliability-resource law (4.13) cannot be

efficiently fault-tolerantly implemented.

Proof:

Let (A, P, T) be the total area, power and processing time allocated to the design of

a CMOS transistor. Let us define the parameter single resource law:

P2 (A) = erfc (A A' /) (5.31)

where A > 0 is chosen such that P2 (A) = p(A, P, T). In order to apply the claim

(5.2.4) we need to show:

Vk> 1 p(A k P k T > P2 (± k (5.32)
- (k + 1)3 k ' (k + 1)3k' (k + 1) (k + 1)3

118

Indeed:

(A P
p

(k±+1)3k' (k +1)3k' (k + 1)j

1
> -erfc
-- 2

((k + 1)3k)

KI,(f) + K 3(k+1)
P- + A[(k+1)3k]3/4 T

> erfc ((k + 1)3k)

-- 2

> P2Q-- P ((k + 1)3k (5.33)

Consequently, the claim (5.2.4) tells us that the multi-parameter law p(A, P, T)

yields a lower resource gain than the law P2 (A). Because of the invariance of resource

gain towards dilatation of reliability law (claim (5.2.1)), P2 yields the same gains

as the law p(A) = 1 erfc(A1/ 4). But the figure 5-8 shows that this law cannot be

efficiently fault-tolerantly implemented at any reliability requirement. This is true a

fortiori for the law p(A, P, T).

119

ii

5.5 Conclusion

In this chapter we were able to classify a range of reliability-resource laws ac-

cording to their faculty to be efficiently fault-tolerantly implemented or not. Some

results are summed up in a chart on figure 5-11.

RELIABILITY
LAW

RANGE OF TMR
EFFICIENCY FOR f=10

p(A) = 1 < .

p(A) = -exp(-A Y)
2 y<03

1
p(A) = -erfc(AY)

2

Figure 5-11: Range of efficiency for multiplexed triple modular redundancy

Within each family, the laws whose exponents are below these critical values verify

the hypothesis of section 4.2 for the reliability requirement 6 = 10 9 . Furthermore,

we have seen that in this case the reliability gain achievable through a fault-tolerant

design can be of several orders of magnitude. Using the criterions of comparison of

section 5.2, we have shown that the recursive multiplexing is not suitable for CMOS

transistors. Nonetheless, it could still be a powerful design technique for computing

systems exhibiting a gaussian noise with low exponents.

120

y 0.185

Chapter 6

Conclusion

This thesis dealt with an original procedure of resource optimization in comput-

ing systems through the use of fault-tolerant techniques. Inspired by the evolution

of near-term technologies toward components subject to high rates of soft errors, we

introduced an original point of view on reliability: reliability as a resource of the com-

putational system, both physical and fungible. This new perspective allowed us to

apply usual fault-tolerant schemes to a new task: the design of more efficient devices.

6.1 Summary and contributions

After introducing the concepts of fault-tolerance, we defined a framework suitable

for probabilistic encoded logic. Afterwards, we reviewed the modular-redundancy

based architectures and we evaluated their performance. We then introduced the

main assumption of this thesis: the failure probability of a computing system de-

pends continuously on the presence of resources. Reliability is an asset which can

be converted for other physical resources. This conversion is manyfold and can be

realized along a countable class of trades-off obtained thanks to fault-tolerant con-

structions. In this context, we formulated the problem of optimization through a

fine-grained fault-tolerant design. We determined whenever such a design is appro-

priate, and we evaluated the associated gains in resources and reliability. We applied

this analysis to the CMOS transistor, but our treatment encompassed more generally

121

the family of devices subject to a gaussian noise. Surprisingly, an adapted use of

redundancy may allow these components to rely on fewer resources. This is a new

and important concept.

6.2 Open Problems

It could be fruitful to look for other fault-tolerant schemes than recursively mul-

tiplexed triple modular redundant circuits. Indeed, it is in principle possible to define

logic gates encoded in a different code than the recursive concatenation of the triple

repetition code. For instance, one could imagine schemes based on d-modular mul-

tiplexing in which the degree of modularity would vary with recursion level. Such

schemes would still be recursively defined but not self similar anymore. Nonethe-

less, in order for the analysis to be valid, one should assume that the NAND and

the d-majority gates are ruled by different reliability laws, which would complicate

significantly the optimization problem.

Furthermore, a non-recursive logic gate encoding can also be investigated. We

have seen in section 2.4 the successful protection of a specific computation through

a non-recursive family of codes, example due to Beckmann [Bec92]. There might

exist such a class of codes applicable to general boolean computation and compatible

with a gate encoding in which error propagation is contained, along the guidelines of

section 2.2. It would be interesting to derive the corresponding fault-tolerant circuits

and explore the associated trades-off, which might outperform those obtained with

the concatenation of repetition codes.

An other important improvement would be to account for the cost of the increased

wiring imposed by multiplexing. One could estimate the resources devoted to wires,

or investigate the trades-off in presence unreliable communications. This model of

circuit would have an interesting counterpart in quantum computing systems: the

movement of quantum bits in those architectures is indeed not reliable [COI+04].

122

6.3 Relation to emerging technologies

If fault-tolerant architectures can be profitable to current computing systems,

they will be without any doubt the cornerstone of emerging technologies such as

quantum computing or molecular electronics in which dynamic errors overwhelm

static ones. Indeed, scalable fault-tolerant quantum computing architectures are cur-

rently investigated [COI+04]. There is also a growing interest in the introduction of

multiplexed modular redundancy in nano-devices [HJ02I, [NSF02]. In both quantum

computing and molecular electronics, new trades-off between reliability and resources

will have to be considered. We hope that the procedure of optimization through

fault-tolerant design derived in this thesis will help engineers and physicists face the

technological challenges in those fields.

123

124

Appendix:

Definitions and Acronyms

Acceptable building set:

Element of the set SA = {(c, Ao) E (R+*)2 I Ao E -[=]A,/C3 , A4 }-

b(k)-bundle:

Definition 3.3.1 : We call b(k)-bundle a bundle of 3 ' wires. A b(k)-bundle contains

three b(kl-)-bundles which we note bk-1) Ib(k-), ... , bk-1.

Combinational Circuit:

Definition 2.3.5 : A combinational C circuit made out of processors from S is a map

from R({O, 1}m) to R({O, I}N) obtained by composition of processors from S.

Computation:

Definition 2.3.4 : Let 6 E]O, 1/2[and P be a processor computing a function

F : {0, 1} m -+ {0, 1} in the sense of definition (2.3.2) .

* We shall say that a processor P weakly E-computes F if and only if:

Vx E {O, 1} M P(6= i|X = x) < (1)

e We shall say that a processor P strictly E-computes F if and only if :

Vx E {0, 1} M P(6 = i|X = x) = 6

125

(2)

e A processor P is said to reliably compute F if it 0-computes f.

Correct computation:

Definition 2.3.10 : Let T : {0, 1} -> {0, 1}' and D : {0, 1}' -- > {0, 1} be two functions

such that D o T Id on {0, 1}. Let C be a combinational circuit implementing a T-

encoded computation of F : {0, 1} m -- > {0, 1}, taking the inputs X = X1, .. , Xmx

and delivering the outputs Y = Y,.., Yx 1 .

We shall say that a computation yielding X = (x 1 , .., xmxi) and Y = (yi, .. , yx,) is a

correct (T,D)-computation of F if and only if:

(D[(yi, ..., y)], .., D[(y(n-1)1+1, ..., yin)]) = F[D(x1, ... , xl),..., D(X.m-1)i+1, -, §mi)1

(3)

Critical exponent:

Definition 5.2.1 : We call critical exponent of a law p at the reliability 6 the maximum

exponent -yc() such that p(A^Y) is efficiently MTMR implementable at the reliability

requirement e.

Distributed 3-Majority Voting of level k:

Definition 3.3.2 : A distributed 3-majority voting system of level k, noted M(k), is a

gate taking in input the data carried by a b(k)-bundle of wires and whose output is

defined recursively as being:

* for k=1 the majority vote of the three single wires b(, b(, b(.

* for k > 2 it is obtained by the following procedure.

The input b(k) consists in 3 bundles bk), b (k- 1) b- 1)
1 2 '3

or in 9 bundles b(k-2) b(k 2) bI (k. 2) b(k-2)

We reorganize the bundles b- 2 b (- , b (k 2) into a bundle c(k-.

We send each of the c - into a majority voting M(k-).

The reunion of their outputs noted d k-2) forms a bundle d(k-1) which defines

the output of M(k).

126

Deviation:

Definition 2.3.8 : Let C be a boolean circuit and W be the random variable associated

with a wire of the circuit. We shall say that the wire W deviates during a compu-

tation when it takes a different value from that yielded by a perfect computation in C.

Encoded computation:

Definition 2.3.9 : Let T : {0, 1} - {, 1}' be a function. Let F : {, }m - {, 1} be a

boolean function, and C be a combinational circuit with the inputs X = X 1 , .., Xmxi

and outputs Y =Y 1 , .. , Y,>x,, built out of the processors P1 , .., PN. We shall say that

C represents the T-encoded implementation of F if and only if:

V(x1, .., xm) E- {0, 1} r(T(x)) = T[F(x)] (4)

Fault-Path:

Definition 2.3.2 : Let C be a combinational circuit consisting in the processors

P1 ,.., PN. We shall call fault-path the random vector E = (E1 ,.., E") where the

coordinates E are binary random variables such that:

Ej = 1 Pi fails

Fault-Tolerance:

Definition 2.1.1 : We shall say that a system is fault-tolerant when it preserves a

desirable behavior under the occurrence of a certain rate of internal faults.

Fault-Tolerant Implementability:

A reliability-resource law is efficiently fault-tolerantly implementable on the reliabil-

ity range on which MTMR constructions yield resource gains greater than one.

127

MTMR implementation of level k: Multiplexed triple modular implementa-

tion of level k.

Multiplexed Triple Modular Implementation of level k:

Definition 3.3.3 : A multiplexed triple modular redundant (MTMR) implementation

of level k of a NAND gate, noted N(k), is a gate which takes in input two bundles

a(k),b(k) (each corresponding to the encoding of a logical bit) and whose output is

recursively defined as being:

" for k = 0 the output of a NAND

" for k > 1 the scheme obtained by the following procedure.

The two input bundles a(k), b(k) may be decomposed into three pairs of bundles

ak1) , b(k-1) which are sent into an encoded NAND N(k- 1) for each E {1, 2, 3}.

The outputs of the three NAND N(k- 1) form a bundle c(k), which is sent into

three identical distributed 3-majority voting systems M(k). The reunion of

their outputs d (k-1) forms a bundle d(k) defining the output of N(k).
a

Optimal Area: Element A(k, c) of the set S, defined in claim (5.1.1).

OWLRA: Optimization With Limited Resource Availability, problem is de-

fined in section 4.2.3.

OWRR: Optimization With Reliability Requirement, problem is defined in

section 4.2.3.

Perfect Computation:

Definition 2.3.7 : Let C be a combinational circuit consisting in the processors

F1 , .., PN, of inputs X =A 1, .., Xm and outputs Y = Y, .. , Y.

128

" A perfect(or fault-free) computation of xi,..,xm is a computation yielding

X = (x, .. , x,) and E = (E, .., E,) = 0

" The perfect result r(x1, .., x,) the value taken by the vector Y = (y1, .. , yn) in

a perfect computation. The function r(Xi, .. , XM) is the function represented by

the circuit.

PMTMR(A): Function giving the failure probability of the optimal MTMR circuit

with a total resource allocation A.

Processor:

Definition 2.3.2 : A processor P computing F : {0, 1} m -+ {0, 1} and delivering a

single output is a map:

G : R({O, 1}m) R({0, 1}) (5)

(X,..., Xm) Y = F(X,..., Xm) + 3 (6)

where 3 is a random variable reflecting the errors occurring in the processor. 6

is independent from the inputs (X 1, ..., Xm), and two variables 6 associated with

distinct processors are independent.

Definition 2.3.3 : Two processors implement the same gate if they compute the same

function F up to a composition with a permutation of their inputs. Two processors

implementing the same gate are identical if the distribution of their respective

random variables 3 are equal.

Reliability-resource law or Reliability law:

Relation between the failure probability of a component and its consumption of

resources satisfying the assumptions of section 4.2.3.

129

Resource gain:

Definition 5.1.1 : We shall call resource gain:

r(e) = max
k=O...+oo A(k, E) (k + 1)3k

Reliability gain:

Definition 5.1.2: We shall call reliability gain:

s(A) max C3 P(A)
k=O...+O(A 2k

(C3P (k+1)3k

Separate, Systematic Codes:

Definition 2.1.2 : A systematic error correcting code is a code whose codewords are

composed of two distinct parts: the original word, and parity check symbols derived

from it. A systematic error correcting code is separate if the encoded operations are

performed separately on the original data and on the parity check symbols.

TMR implementation of level k: Triple Modular Implementation of level k

Triple Modular Implementation of level k:

Definition 3.2.1:

Let P be a deficient processor computing a boolean function F with a single output.

A triple modular redundant (TMR) implementation of the processor P of level k

(noted p(k)) is:

" for k = 0 the processor P.

" for k > 1 the scheme obtained by embedding the outputs of three TMR

implementation of P of level k - 1 into a 3-majority gate.

130

Bibliography

[Bec92] P.E. Beckmann. Fault-tolerant computation using algebraic homomor-

phisms. PhD Thesis, Massachusetts Institute of Technology, 1992.

[CAC+96] B. Culbertson, R. Amerson, R. Carter, P. Kuekes, and G. Snider. Tera-

mac custom computer: Extending the limits with defect tolerance. IEEE

International Symposium on Defect and Fault Tolerance in VLSI Systems,

pp. 2 10, November 1996.

[COI+04] D. Copsey, M. Oskin, F. Impens, T. Metodiev, A.W. Cross, F.T. Chong,

I.L. Chuang, and J. Kubiatowicz. Toward a scalable, silicon-based quan-

tum computing architecture. Journal of Selected Topics in Quantum Elec-

tronics, to appear in 2004.

[DO77a] R.L. Dobrushin and S.I. Ortyukov. Lower bound for the redundancy of self

correcting arrangements of unreliable functional elements. Prob. Inform.

Trans., 13, 59 65, 1977.

[DO77b] R.L. Dobrushin and S.I. Ortyukov. Upper bound on the redundancy of self

correcting arrangements of unreliable functional elements. Prob. Inform.

Trans., 13, 203-218, 1977.

[Eli58] P. Elias. Computation in the presence of noise. IBM Journal of Research

and Development, 2(10), 1958.

131

[EP98] W. Evans and N. Pippenger. On the maximum tolerable noise for reliable

computation by formulas. IEEE Trans. Inf. Theory, 44(3), 1299 1305,

May 1998.

[G85] A. Gail. Lower bounds for the complexity of reliable boolean circuits with

noisy gates. Proceedings of the 32nd Annual Symposium on Foundations

of Computer Science, pp. 594-601, 1985.

[G86] P. Gics. Reliable computation with cellular automata. Journal of Com-

puter and System Sciences, 32(1), 15 78, 1986.

[Had02] C.N. Hadjicostis. Coding approaches to fault tolerance in combinational

and dynamic systems. Boston : Kluwer Academic Publishers, 2002.

[HJ02] J. Han and P. Jonker. A system architecture solution for unreliable nano-

electronic devices. IEEE Trans. on Nanotechnology, 1(4), 201 208, 2002.

[HKSW98] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams. A defect- tol-

erant computer architecture: Opportunities for nanotechnology. Science,

280, 1716-1721, 1998.

[HW91] B. Hajek and T. Weller. On the maximum tolerable noise for reliable

computation by formulas. IEEE Trans. Inf. Theory, 37, 388, 1991.

[Lik99] K. K. Likharev. Single-electron devices and their applications. Proc.

IEEE, 87, 606-632, 1999.

[McE76] R.J. McEliece. Theory of Information and Coding. Cambridge University

Press, 1976.

[MP43] W. S. McCulloch and W. Pitts. A loical calculus of the ideas immanent

in nervous activity. Bull. Math. Biophys., 5, 115 133, 1943.

[MSST00] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. Toward robust in-

tegrated circuits: The embryonics approach. Proc. IEEE, 88, 516 541,

2000.

132

[Neu56] J. Von Neumann. Probabilistic logic and the synthesis of reliable or-

ganisms from unreliable components. Automata Studies, Ann. of Math.

Studies, 34, 43- 98, 1956.

[NSF02] K. Nikolic, A. Sadek, and M. Forshaw. Fault-tolerant techniques for

nanocomputers. Nanotechnology, 13(3), 357, June 2002.

[Pip85] N. Pippenger. On networks of noisy gates. Proceedings of the 26th Annual

Symposium on Foundations of Computer Science, pp. 30-36, 1985.

[Pip89] N. Pippenger. Invariance of complexity measures for networks of unreli-

able gates. J. A CM, 36, 531-9, 1989.

[PST91] N. Pippenger, G.D. Stamoulis, and J.N. Tsitsiklis. On a lower bound for

the redundancy of reliable networks with noisy gates. IEEE Trans. Inf.

Theory, 37(3), 639--643, 1991.

[RCM+97] R.A. Reed, M.A. Carts, P.W. Marshall, C.J. Marshall, 0. Musseau, P.J.

McNulty, D.R. Roth, S. Buchner, J. Melinger, and T. Corbiere. Heavy

ion and proton-induced single event multiple upset. IEEE Trans. Nuclear

Science, 44(6), 2224-2229, July 1997.

[RDM93] R.Sarpeshkar, T. Delbriick, and C.A. Mead. White noise in mos tran-

sistors and resistors. IEEE Circuits and Devices Magazine, 9(6), 23 29,

November 1993.

[Sar98] R. Sarpeshkar. Analog versus digital: Extrapolating from electronics to

neurobiology. Neural Computation, 10(7), 1601-1638, October 1998.

[Sha48a] C.E Shannon. A mathematical theory of communications (part i). Bell

System Techincal Journal, 27(7), 379-423, 1948.

[Sha48b] C.E Shannon. A mathematical theory of communications (part ii). Bell

System Techincal Journal, 27(10), 623-656, 1948.

133

[Sho96] P.W. Shor. Fault-tolerant quantum computation. 37'th Symposium on

Foundations of Computer Science, pp. 56 65, 1996.

[Ste96] A.M. Steane. Multiple particle interference and quantum error correction.

Proc. R.Soc. London A, 452, 2551-2576, 1996.

[Tay90] M. G. Taylor. Reliable information storage in memories designed from un-

reliable components. The Bell System Journal, 47(10), 2299 2337, 1990.

[WC63] S. Winograd and J.D. Cowan. Reliable Computation in the Presence of

Noise. MIT Press, Cambridge, Massachusetts, 1963.

[Win] S. Winograd. On multiplication of polynomials modulo a polynomial.

SIAM Journal of Computing, 9(2), 225-229, 1980.

134

C

