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ABSTRACT

An automatic dysphonia recognition system is designed that exploits amplitude modulations
(AM) in voice using biologically-inspired models. This system recognizes general dysphonia and
four subclasses: hyperfunction, A-P squeezing, paralysis, and vocal fold lesions. The models
developed represent processing in the auditory system at the level of the cochlea, auditory nerve,
and inferior colliculus. Recognition experiments using dysphonic sentence data obtained from the
Kay Elemetrics Disordered Voice Database suggest that our system provides complementary
information to state-of-the-art mel-cepstral features.

A model for analyzing AM in dysphonic speech is also developed from a traditional
communications engineering perspective. Through a case study of seven disordered voices, we
show that different AM patterns occur in different frequency bands. This perspective challenges
current dysphonia analysis methods that analyze AM in the time-domain signal.

Thesis Supervisor: Thomas F. Quatieri
Title: Senior Member of Technical Staff; MIT Lincoln Laboratory
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Chapter 1

Introduction

The ability to recognize characteristic voice qualities is an intriguing human trait. With this
ability, we can obtain information such as a speaker's identity, state of health, and degree of
fatigue by listening to only several seconds of speech. The acoustic properties that convey these
often subtle elements are only starting to be understood. This project is motivated by the desire to
develop features which capture these rich voice qualities.

In comparison to the many voice factors that human listeners exploit, the elements used by
automatic recognition systems in speech technology are surprisingly limited. It is the hypothesis
of this thesis that current automatic recognition systems-in speech, speaker, and language
recognition for example-are not designed to take advantage of the rich properties of the human
voice. One area of automatic recognition that has only recently begun to emerge is automatic
speech disorder, or dysphonia, recognition. A dysphonia is a disorder of the speech production
mechanisms in the larynx with perceptual, acoustic, and physical correlates. Examples of these
disorders include excessive tension of the laryngeal muscles and the presence of abnormal masses
of tissue on the vocal folds.

For the investigation of voice quality features, using dysphonic voices evaluated in an automatic
voice disorder recognition system is a natural choice. These voices, which are often distinctly
rough, hoarse, or breathy, provide acoustic evidence that a person is not well. The problem of
dysphonia recognition is particularly interesting because, unlike the speaker recognition problem,
it is largely dependent on speaker differences in the glottal source, rather than differences in the
vocal tract resonances. Dysphonic speech also may represent the extremes of acoustic phenomena
occurring in normal voices such as the irregular nature of glottalization [38]. At least on a first
pass, the baseline for our experiments, mel-cepstral features, are usually not thought to well
represent source characteristics [34]. Therefore, the disordered voice recognition task is a
challenge to the ability of our models to represent characteristics of the glottal source.

We hypothesize that dysphonic voices will provide examples of acoustic phenomena more subtly
present in normal voices. By improving features to represent these nuances, especially periodic
fluctuations in the amplitude envelope, or amplitude modulations, we hope to improve the overall
representation of both normal and pathological voices in automatic recognition systems. Teager
and Titze highlight the importance of understanding the speech signal as a glottal source carrier
modulated by physiological inputs such as muscle movements, vortices of air, and the motion of
laryngeal tissues. Titze, for example, states that at present "we don't know how to measure or
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classify the multiplicity of perturbations and modulations that are observed simultaneously." [46,
47] This thesis explores models that accurately capture a subset of such modulation phenomena.

1.1 Thesis Outline

1.1.1 Chapter 2

This work begins by rigorously defining the term dysphonia-its perceptual and acoustic nature
and also its origins in the larynx. We address two main topics (1) the aural perception of a voice
disorder and (2) changes in the larynx that create voice disorders. The question of acoustics and
perceptual cues are discussed in terms of a review of the literature, building a preliminary
taxonomy of voice qualities that are analyzed acoustically for amplitude modulations in chapter 3.
Likewise, we organize the physical properties of voice disorders into a hierarchy that describes
how the physiology of these patients differs from normal subjects and from one another.

Also in this chapter, voice quality and the physiology of dysphonia are connected. We discuss
evidence that certain combinations of acoustic properties correlate with certain physical voice
disorders. A review of ideas and methods in clinical practice and engineering design from the
literature provides strong motivation for automatic dysphonia recognition. The chapter ends with
a discussion of one commercially available dataset, the Kay database [1], for studying dysphonia.
We describe how this speech corpus is organized along with several problems that are inherent to
its structure.

1.1.2 Chapter 3

As the second chapter defines dysphonia, chapter 3 defines amplitude modulation. The
organization is a progression from traditional models of AM synthesis and analysis in
communications engineering, to a theoretical relation of these concepts with speech signals, and
finally to an analysis of AM in speech. Throughout this chapter, we derive and reinforce the
concepts that (1) a bandpass analysis of speech signals is equivalent to demodulation, (2) a band-
dependent analysis of speech can yield different patterns of fluctuations at different frequencies,
(3) analysis filter bandwidth is critical to the analysis process, and (4) amplitude modulation in
speech depends on both frequency and amplitude relationships of spectral components. These
points are highlighted by presenting the most extreme cases from an acoustic survey of over 350
dysphonic voices.

1.1.3 Chapter 4

With the concepts of dysphonia and amplitude modulation defined, chapter 4 introduces three
biologically-inspired models for the extraction of AM patterns. This chapter addresses the
motivation, design, and implementation of each of these approaches, showing that the different
models have complementary properties. We compare and contrast the responses of the models
using a combination of synthetic signals and real speech.

12



1.1.4 Chapter 5

Chapter 5 discusses the motivation, design, implementation, and testing of a
Gaussian-mixture-model-based dysphonia recognition system. A system capable of recognizing
five voice problems-general dysphonia, hyperfunction, anterior-posterior squeezing, and several
types of vocal folds lesions-is introduced. Extending the work of chapter 4, we show the process
by which features are extracted from the auditory models, how classification is performed with a
Gaussian mixture model, and how recognition results are fused. The final portion of the chapter
shows the results of recognition experiments with the disordered speech database presented in
chapter 2.

1.1.5 Chapter 6

This chapter draws conclusions about AM in speech and our dysphonia recognition system based
on these principles. In particular, we discuss key findings of the research with a particular focus
to how they may be improved in the future.

1.1.6 Appendix A

The appendix describes a dysphonic speech-synthesis experiment with the Klatt formant
synthesizer [23] motivated by a study in the literature [2]. Sustained vowels for three of the
patients analyzed in this thesis, DAS10, KAH02, and JAB10 are synthesized and the resulting
signals are compared to the original utterances. We discuss differences observed between normal
and dysphonic voices that make synthesis challenging.

1.2 Thesis Contributions

There are a number of areas in which this work is different from previous approaches. First, an
explicit amplitude modulation detection technique is applied to automatic dysphonia recognition.
This research also refines some of the biologically-inspired methods on which it is based [7, 36],
aiming to create improved features for AM extraction. While implied by previous research [14,
46, 47], this thesis introduces the first specific use of frequency-band-dependent AM in
dysphonic speech. We do not focus on modulations visible in the time-waveform; rather, through
bandpass analysis, we view modulations in each frequency band separately.

The dysphonia recognition experiments of this thesis are also different in that we present results
for a large range of voice disorders: normal/pathological cases, paralysis, hyperfunction, A-P
squeezing, and several types of growths on the vocal folds. The notable exception is work
performed on paralysis by [10]. In our work we also present, and attempt to work around, several
limitations of the Kay database that we have not found previously discussed in the literature.
Since we also rigorously define how our experiments are constructed, a possible spin-off of this
work may be a more standard approach selecting data is when testing dysphonia recognition.

Finally, with regard to recognition, our results suggest that our biologically-inspired features
provide speech characteristics complementary to standard mel-cepstrum. A comparative analysis
is presented of the relative performance of the features derived from variations of the auditory
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models and also illustrates advantages gained by optimally fusing recognition results from
different extracted features.
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Chapter 2

Dysphonia

A major part of this work addresses the automatic detection of voice disorders, or dysphonia in
speech. A dysphonia is a disorder of the mechanisms of phonation in the larynx caused by
elements of diseased tissue, misuse and/or abuse of the speech production mechanisms, and
psychological and/or stress factors [30]. Most patients have not only one, but a combination of
problems making up to a dysphonia, some of which involve a "vicious cycle" [49] of further
complications in the larynx. Voice disorders manifest as a combination of acoustical voice
qualities in tandem with physical changes in the larynx.

In this chapter, we first introduce motivation for general acoustic and perceptual voice categories
derived from the literature. Then we define different physical voice disorders that affect the
larynx including aspects of how they arise, the effect they have on speech production, and how
they relate to one another. We provide evidence for a correlated relationship between these two
aspects of dysphonia. We also provide background information on the design and contents of the
database used in dysphonia recognition experiments.

2.1 Acoustic and Perceptual Characteristics of Voice Quality

A preliminary taxonomy for voice quality derived from the literature is described below with
reference to Figure 2-1. Each section describes a particular term, its synonyms, where it has been
studied, and what it means in terms of acoustic and perceptual characteristics. It is important to
realize that this taxonomy is only a basic effort to bring together many different terms and fit
them together; a well agreed upon taxonomy for the speech community is still very much the
subject of ongoing research [14]. There are surely further distinctions beyond the branches of the
tree explored (for example encompassing breathy phonation). Also the taxonomy categories
should not be taken as too rigorous; many combinations of the categories, for example a mix of
modal and breathy speech or the coexistence of breathy and glottalized voice qualities, are
possible.

15



Harsh

Irregular Superperiodic I

Amplitude Period
Modulated Doubled

Rough Modal

Glottalized

rregular Creaky Superperiodic(Vocal Fry)

Multiple Periodic Period
Pulsed Envelope Doubled

Figure 2-1. A preliminary taxonomy for voice quality. Note that, although this tree is derived
from reports in the literature, a well agreed upon categorization system is still an open problem in
the field.

2.1.1 Modal Voice

Modal speech is loosely defined as the "usual or baseline kind of phonation" [14]. It is speech at a
normal fundamental frequency for the sex of the speaker, regular in both amplitude and pitch
period, and without the nonmodal characteristics defined in the rest of the taxonomy [24]. Normal
voices can be described as a mix of varying degrees of modal and nonmodal qualities [27].
Acoustically, "the volume-velocity waveform or area function produced by a modal model is zero
during the closed phase, and its first derivative has a discontinuity at the moment that closure
occurs"[16]. Also, in the ideal model, "the spectrum falls off at 6 dB/octave" [16].

2.1.2 Rough Voice

Roughness is the percept, or mental state generated by a physical observation, thought to be
associated with an "uneven, bumpy quality" [47]. As depicted in Figure 2-1, roughness may be
broken down into two perceptual subcategories, harsh and glottalized voice, primarily dependent
on the fundamental frequency [27]. As will be shown, acoustically roughness can have many
component aspects. Rough speech may contain aspects of all its subcategories, thus making some
utterances difficult to describe. It is important to realize that some aspects of roughness may seem
"irregular," but we will show that many such signals do, in fact, have a periodic variation.

2.1.3 Breathy Voice

The percept of breathiness has to do with the "sound of breathing (expiration in particular) during
phonation" [47]. Acoustically, breathiness manifests as a decreased harmonic energy-to-noise
ratio and an increase in the energy of the first harmonic [24] and usually contains a significant
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voiced component. The physiology behind such acoustics are relatively well-studied and have to

do with the tension of the glottis as well as the area which remains open during the glottal cycle.

2.1.4 Voice with Tremor, Flutter, and Spasms

Acoustically, tremor, flutter, and spasms are low frequency variations in the amplitude of speech

on the order of 4-13 Hz [30]. As will be seen in the next section, these sounds are highly linked to

several neurological speech disorders that cause periodic and aperiodic variations in the

amplitude of the speech waveform. This category is different from the amplitude modulation

subcategory of glottalization and harsh voice in that it occurs at much lower frequencies. As we

will see in Chapter 3, it is not uncommon to have variation in the fundamental frequency

accompany this activity.

2.1.5 Glottalized Voice

Perceptually, glottalized or laryngealized voice includes "salient auditory impressions of glottal

gesture, roughness, or creakiness" [38]. Acoustically, its main distinction is that it has a

dramatically lower frequency (averaging about 50 Hz) than both modal voicing and harsh voice

[5]. Glottalized speech can be broken down into three (primarily acoustic) components-period-

to-period irregularity, creak, and superperiodic phonation. Glottalized voices have been shown to

consist of varying combinations of these three elements [14, 38].

4b)

Figure 2-2. Examples of the aperiodic category of glottalization from Redi and Shattuck-

Hufnagel [38]. Activity is indicated by the region within the angle bracket; the bar indicates

10 Ms.

In the literature, for example, Redi and Shattuck-Hufnagel divide glottalization into four

categories: (1) aperiodicity or "irregularity in duration of glottal pulses from period to period,"

(2) creak or "prolonged low fundamental frequency accompanied by almost total damping", (3)

diplophonia or "regular alteration in shape, duration, or amplitude of glottal periods", and (4)

glottal squeak or "a sudden shift to relatively high sustained ]O, which [is] usually very low

amplitude" [38]. Figures 2-2, 2-4, and 2-6 show characteristic examples of the first three types;

each exhibits distinct amplitude fluctuations with time. Note from the taxonomy figure that we

include similar subdivisions, using slightly modified names which are defined shortly. For a
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complete review of glottalization and different perceptual, acoustical, and physiological correlates

as well as other possible categorization schemes, see [15].

2.1.6 Harsh Voice

Harshness is defined by Laver as an unpleasant, rasping quality of speech [27]. Acoustically

speaking, it is loosely characterized as having glottal pulses which decay much more quickly than

those for modal voices [24]. Harshness is primarily different that glottalization in that it has a

significantly higher (close to modal) fundamental frequency [27]. Although subcategories of

harshness have not been specifically studied, the taxonomy of rough voice quality with near

modal fundamental frequency has been described as including both irregular and superperiodic

components [14]. We have thus chosen this term to refer to any roughness at or above the

fundamental frequency, but there is no solid motivation for doing so.

2.1.7 Irregular Voice

Acoustically, signals that are irregular vary in amplitude and/or period from one pitch period to

the next [38]. This term differs from "superperiodic" in that there is no time pattern to the varying

components. Terms for "irregular" in the literature include "aperiodic" [38], "rough" [11], and

"creaky" [38], the last two terms having additional meanings in our taxonomy. For harsh voice,

irregularity has been shown by [14] as indicated in Figure 2-3.

100

80

60

40

20

0
0 20 40 60 80 100

Time (mg)
0 500 1000

Frequency (Hz)
1500 2000

Figure 2-3. Figure from [14] showing an example of aperiodic behavior in a

Observe that there does not exist a clear fundamental and there seems to

"interharmonic noise" [14] in the spectrum.

normal voice.
be significant

2.1.8 Vocal Fry or Creak

Vocal fry is the element of sharp, short glottal pulses in voicing that creates the perception of low

frequency individual pulses in speech [27], [5]. Some authors refer to the entire category of

glottalization as vocal fry, but it has been deemed more descriptive to include separate aperiodic

and superperiodic components . Creak may also be combined with superperiodicity to create a

18
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multiple pulse behavior whereby there are several pulses in quick succession followed by
extended inactivity [14].

>

Figure 2-4. Examples of the creak category of glottalization from Redi and Shattuck-Hufnagel

[38]. Activity is indicated by the region within the angle bracket; the bar indicates 10 ins.

2.1.9 Superperiodic Voice

Superperiodic speech is defined as having a "repeating pattern that extends over more than one

apparent glottal cycle" [14]. This category is analogous to the diplophonic component of

glottalization described in [38] and shown in Figure 2-5. [14] shows an example of further

decomposition of superperiodic speech into periodic envelope and period doubling types.

Perceptually, these qualities are "described as 'rough' or 'bitonal"'. Other subcategories of

superperiodicity include period tripling and quadrupling as well as the multiple pulsing often

found in vocal fry [14]. As this category corresponds to clear amplitude variation with time, we

will investigate it further in the chapter 3.
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Figure 2-5. Example from
in a normal voice.
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Time (ms)
[14] showing an example of superperiodic period-doubling behavior

Figure 2-6. Examples of the diplophonia category of glottalization from Redi and Shattuck-
Hufnagel [38]. Activity is indicated by the region within the angle bracket; the bar indicates
10 Ms.
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Figure 2-7. Figure from [14] showing an example of superperiodic "periodic envelope" behavior

in a normal voice. The right panel shows harmonics of the fundamental frequency along with

subharmonics spaced by 44 Hz defining the frequency of the envelope.

Garratt and Kreiman mention that physical evidence exists for a periodic envelope category

through the action when "the two vocal folds vibrate at different (but close) frequencies" [14]

shown in Figure 2-7. There have also been attempts to model this from a multiple vibrational

mode point of view due to nonlinearities in the glottal source mechanism. In a similar fashion,

Berry [3] proposes such a model of vocal fold vibration, multiple modes, supported by actual

glottal vibration experiments depicted in Figure 2-8. His work supports there being several

characteristic frequencies of the vocal folds, which in a normal voice, quickly move towards to

one frequency, the fundamental. In nonmodal phonation, however, including superperiodic

vibration, he is able to show that the so-called eigenmodes of vibration converge to different

frequencies. In period doubling and glottalization, these stable states are multiples of a common

frequency, whereas for irregular vibration, the modes are not harmonically related [3]. In other

words, Berry is suggesting that the notion of a single fundamental frequency, belonging to a

single source is a fallacy and that one can explain more complicated voice types using interacting

vibrations.

21
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(a) (b) (c)

(2)

(3)

(4)

(6)

(8)

Figure 2-8. Progression of three simultaneous modes (a), (b), and (c) of vocal fold vibration
observed in a human larynx removed from a body of work by Berry [3]. Each cross-section is
taken in the coronal plane of the layryx with the dots separated by approximately 1 mm. Berry
hypothesizes that eigenmodes as in this example combine to produce both modal and nonmodal
voice properties.

2.2 Physiological Manifestation of Voice Disorders

Having introduced how voice qualities, many of which are present with dysphonia, sound and
how they are characterized acoustically, this section presents physical aspects of dysphonia. The
following describe several major classes of voice disorders, their putative causes, and
interrelationships. Our discussion will follow a the schematic of interrelationships between
clinical terms shown in Figure 2-9. As with the previous section, this picture is not meant to be
rigorous, but it allows visualization of some of the complex interrelationships we will address.
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Ventricular A-P Fu# Paralysis aresis
Compression Squeezing peradduti

Vocal Bowingd
Treffr Dyhba Bw

Vocal Polyps Vocal Nodules

Papilloma

Scarring

Polypoid CystPotPs-
Corditis Biopsy Laryngectomy

Granuloma Pplo

Figure 2-9. Organizational chart to guide discussion of the physical aspects of dysphonia. The

arrow indicates that the node is well-described as a subclass of its parent.

2.2.1 Hyperfunction

This class of disorder is caused when excessive tension is present in the muscles of speech

production, causing primarily the vocal folds to be too forcefully adducted [30]. Clinicians can

observe certain specifics about hyperfunction during their stroboscopic investigation: "muscle

tension dysphonia can be suspected when excessive glottic and supraglottic contraction can be

identified during phonation by video laryngoscopy" [49]. Clinicians may note the general

location of the tension-in A-P squeezing, for example, the tension is in a front-back direction,

whereas for ventricular compression, the false vocal folds are squeezed together during

phonation.

Hyperfunction is not usually considered to be the result of a conscious effort on the part of the

speaker. That is, muscle-tension dysphonia is considered a psychogenic voice disorder; it comes

about as the result of disordered emotions such as stress [30]. As stated by Wilson et al.: "when

long-standing and severe, muscle tension dysphonia can lead to vocal cord structural lesions

including vocal cord polyploid change (Reinke's edema), vocal cord polyps, vocal cord

('singer's') nodules, arytenoid ulcers and granuloma." [49]. Even before the development of such

lesions, this class of disorders may negatively impact a patient by causing irritation of the larynx,

which tends to promote even more tension to produce a normal voice.

One might also link abuse and misuse of the voice such as strained vocal style and screaming into

this category. Such voice states differ, though, in that they are under the conscious control of the

speaker. It is likely, however, that after the damage caused by initial laryngeal trauma, a subject
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will begin to exhibit some hyperfunction in order to compensate for the slight difficulty with
phonation. For example, after cheering loudly at a football game, a fan may have slight laryngeal
trauma. Instead of resting his voice, he continues to speak and must strain his voice in order to be
heard. Such strain, in turn, yields even more trauma. It should be noted that patients with
hyperfunction tend to respond well to voice therapy.

Other forms of muscle squeezing problems can be found with the neurological disorders
discussed shortly. But the causes and manifestation of these disorders are different. They do not
tend to respond in the same way to voice therapy as do stress and misuse caused by
hyperfunction. They also tend to be more prone to cause spasms, whereas these hyperfunction
disorders seem to cause mostly static tension in the larynx.

2.2.2 Paralysis

Paralysis and its relative, partial paralysis or paresis , causes a loss of positional control of one or
both vocal folds [49]. Paralysis is actually best described as a subclass of hypoadduction, the
abnormal lack of tension in the structures of the larynx. By definition, paralysis is a neurological
disorder since it affects the nervous system, but it is so prevalent that we consider it separately.
Minifie notes that "laryngeal nerve paralysis is one of the most common neurological voice
disorders" [30].

2.2.3 Glottal Tissue Pathology

These problems manifest as masses, irritation, and/or swelling in the region on and surrounding
the vocal folds. Masses, such as nodules, polyps, cysts, granulomas, or tumors, are thought to
cause difficulties with phonation by interfering with the proper motion of the vocal cords, often
preventing complete closure and also causing irregular vibration. Irritation and swelling, such as
that caused by stomach acid reflux disorders, alcohol use, or smoking may also interfere with the
proper operation of the vocal fold tissues and may even lead to the creation of more advanced
lesions [16, 30, 49]. Misuse/abuse habits such as screaming, cheering, talking loudly, coughing,
using a pressed voice are also a problem: "vocal nodules, vocal polyps, and contact ulcers are
examples of voice disorders associated with vocal misuse/abuse and vocal hyperfunction" [30].

There exist far too many types of tissue pathology to offer a complete list. However, some of the
most prevalent are:

(1) Vocal nodules. Nodules are like calluses on the vocal folds, often occurring bilaterally.
They are due to trauma due to straining and misusing the voice. It is not unusual for
nodules to be found in the same patient as hyperfunction, as one tends to lead to the other
[49].

(2) Vocal fold polyps. Polyps are the "focal structural manifestation of chronic vocal cord
irritation" [49]. As fluid filled lesions, they appear like blisters on the cords and impede
the proper vibration of the vocal folds. A polyp may fill with blood and become
hemorrhagic.

(3) Polyploid coditis (Reinke's edema). This disorder leads to severe hoarseness with the
vocal folds developing swelling and redness; the cords look "floppy and bag-like" [49].

(4) Cyst. A cyst appears as a round mass on the vocal fold and arises from "an obstructed
mucous gland or as a result of a congenital lesion" [49].
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(5) Varix. A varix is an enlarged vein on the vocal fold which can impede proper vibration of
the folds.

(6) Papilloma. This disease is viral in origin, forming "a benign, tumor-like condition that
may recur throughout childhood" [30].

(7) Granuloma. Granulomas "represent an exuberant focal granular response to laryngeal
truama, such as intubation trauma or chronic microtrauma during phonation in patients
with certain vocal styles" [49]. A granular response is defined as one resulting in the
build-up of tissue.

2.2.4 Neurological Disorders

These problems are caused by disease at different levels of the nervous system. As a general class
of disease, neurological disorders often affect many systems in the body but can specifically
"affect the larynx and respiratory system and be reflected in a disordered voice." [30]
Neurological disorders can occur at many levels of the speech chain-motor neuron, muscle, and
in the brainstem and brain. The causes of the problems can include brain trauma, stroke, or a wide
variety of chronic illnesses. As it has a tendency to affect normal movement of the articulators, a
neurological disorder is also often an "entire motor speech disorder" [30], or dysarthria. In
general, the effects of neurological disorders can be subdivided into abnormal excessive activity,
or hyperadduction, and abnormal lack of activity, or hypofunction.

Paralysis is probably the most common type of hypofunction, although others, such as lack of
tone causing bowing of the vocal fold, are also prevalent. Disorders that cause hypofunction often
yield a breathier voice quality as attaining full closure of the glottis is difficult. "Hyperadduction
occurs in many neurological disorders of phonation" [30]; chorea, tics, and dystonia are common
examples of the manifestation of hyperadduction. These disorders are involuntary. Spasmodic
dysphonia is a characteristic example of a dystonia causing hyperadduction and appears as a
"choked, strain-strangled phonation and, in some cases, vocal tremor" [30]. Another affliction,
Parkinson's disease-causes tremor, or low frequency amplitude variations in the voice, as a
symptom. "Imprecise articulation and disordered rate are observed in patients with Parkinson's
disease" [30]. Tremor is in range of 4-8 Hz. Higher rates (10-13 Hz) exist for some other
neurological disorders and are called flutter. [30]

2.2.6 Consequences of Surgery

Surgery involving the mechanisms of voice production may also change a patient's voice
dramatically. With cancer, for example, whole sections of the larynx must be biopsied or
removed entirely. This can understandably affect voice quality positively or negatively. One
complication of surgery for our purposes is that it can repair voice quality while a condition
remains. A good example of this is with paralysis on one side, which can be aided by moving the
paralyzed vocal fold inward surgically. Thus the patient continues to be diagnosed with paralysis,
but with a much improved voice quality [49].

2.3 The Connection between Dysphonia and Voice Quality

Having presented basic overviews of what the rich qualities of speech sound like as well as the
types of physical changes that make up voice disorders, the question arises of how to connect the
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two areas. A major portion of this thesis centers around the assumption that the two are
correlated.

2.3.1 Clinical Usage

Our first indication that speech perception-and consequently acoustics-is useful for predicting
dysphonia is that clinicians commonly use the sound of a voice to determine the pathology. In a
clinical environment, patient examinations encompass many different aspects including a medical
history, video stroboscopic investigation, subjective evaluation of voice quality, and objective
acoustic measurements [49]. Often, a change in voice quality is the first indication of a problem,
bringing a patient to the clinic for the first time. Perceptual evaluation is so commonly used that
most hospitals use forms including scales to describe a patient's voice. For example, the popular
GRBAS voice rating scale allows a clinician to listen to a voice and rate it using five perceptual
rating scales-general evaluation, roughness, breathiness, asthenicity, and strain [9]. Although
there is some debate as to the actual efficacy of scales like this, the fact remains that listening to
voice is a large part of the clinical process.

2.3.2 Existence of Objective Tools Mapping Acoustics to Dysphonia

In addition to the link between perceived voice quality and voice disorders, there is a movement
to integrate objective acoustic measures into clinical practice. These methods analyze speech
automatically and provide the clinician with a numerical value related to the severity of the voice.
Although there are many variations available in the literature, a large number of clinically used
objective acoustic measurements for dysphonic voices fall loosely into one of two different
categories-perturbation measures and glottal noise measures. Perturbation measures such as
shimmer and jitter measure the irregularity of the speech signal from one pitch period to the next,
usually in the time domain. In contrast, glottal noise measures, such as harmonic-to-noise ratio
(HNR), attempt to separate out the speech signal into two components, a harmonic component
and a noise component. These latter class of techniques has been attempted in both the spectral
and time domains [19, 29]. Three common measures are further described below:

(1) Jitter. Jitter is defined as a "short term (cycle-to-cycle) perturbation in the fundamental
frequency of the voice" [47]. Several automatic and hand-assisted techniques exist to
measure jitter in sustained phonation [20, 29]. These methods are currently used in both
clinical and speech research settings and are of comparable reliability to perceptual
methods for normal speakers but less so for pathological speakers [4, 37]. Jitter is usually
thought to correspond well with the percept of roughness, but has also been linked with
breathy and hoarse phonation types [11].

(2) Shimmer. Shimmer is cycle-to-cycle change in the amplitude of successive voice periods
[47]. As with jitter, both automatic and hand-assisted techniques have been created to
measure shimmer in sustained phonation [21, 29].

(3) Harmonic-to-Noise Ratio. This measure represents the amount of energy coming from
periodic parts of the speech signal compared with the energy of aperiodicity, as coming
from aspiration for example. Several specific algorithms exist but all are based on this
idea [19, 29]. Although harmonic-to-noise ratio is reviewed more in terms of its
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importance for the percept of breathiness [18, 24], it may also be related to roughness

[11].

It is also unclear exactly how useful existing automatic techniques are for classifying specific
types of dysphonia. Work has been done to produce techniques including the hoarseness diagram
described in [12] and the Dysphonia Severity Index [50] which are capable of better combining
the three automatic methods described above. These approaches seem to yield numbers that can
differentiate physical larynx properties, but the work to date is limited to only certain voice
problems such as paralysis and post-surgical recovery. Another limitation as discussed in [32] is
that most of the previous work with these objective perturbation features has been done with
sustained vowels rather than continuous running speech. Although voiced portions of speech can
be extracted prior to processing [12], most perturbation measures are still relatively sensitive,
relying on accurate estimates of the fundamental frequency. Thus, there are issues with measuring
modulation patterns for even moderately irregular signals, such as those seen with many
dysphonic cases.

Overall, it appears probable that there is a connection between the acoustics of the human voice
and the condition of the larynx. In later chapters we will work to build features that focus on time
variation of amplitude and attempt to use them to predict physical diagnoses.

2.4 The Kay Disordered Voice Database

The clinical voice database being studied in this thesis, called the Kay Disordered Voice Database
[1] includes a wide variety of clinical diagnoses and physician comments to accompany each of
the speech samples. This database was generated from recordings taken during clinical visits by
on the order of 600 patients to the Massachusetts Eye and Ear Infirmary. Both continuously
sustained 1 second vowel utterances of /a/ as well as continuous speech in the form of 12-second
recordings of the rainbow passage are included. The rainbow passage is a diagnostic sentence
which begins "When the sunlight strikes raindrops in the air, they act like a prism and form a
rainbow. The rainbow is a division of white light into many beautiful colors. These take the shape
of a long round arch...."

The Kay database includes a set of data including patient age, sex, smoking habits, visit date, as
well as a group of diagnoses and notes taken by a clinician reviewing the case. Because of the
way in which they were created-through physician review of files-the notations range from
extremely general to very specific. It is often the case that one note will be a synonym of the
others. For example, hyperfunction, the abnormal overuse of the speech production muscles
might be noted for the same patient as A-P squeezing, which is a specific type of hyperfunction
involving compression in the forward-backward direction.
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Figure 2-11. Diagram of showing the typical organization of diagnoses found in the Kay

database. Each file can have multiple diagnoses, even to the extent that having one diagnosis

implies another one.

Figures 2-10 and 2-11 detail the organization of the database and show the nature of patients and

diagnoses within this structure. First, a single patient can have multiple files and each may or may

not contain utterances from the rainbow passage and the vowel /a/. The two main pathological

and normal directories do not have overlapping patients. As can be seen, diagnoses can overlap

extensively, even entirely. Some patients do not have a diagnosis or accompanying information at

all and are shown in Figure 2-11 as "Diagnosis Not Available."

For this thesis, we cannot change the methodology used to record the clinical diagnoses and the

descriptions in the database. We can, however, take into account the generality and meaning of

different disorders when choosing classes for automatic recognition. First, we can keep in mind

those general categories used to define voice disorders-hyperfunction, paralysis, tissue

pathology, neurological disorders and, surgical results. We can also look to previous recognition

research in order to determine what sets of data are most appropriate to study. On the whole, there

are a number of characteristics of the Kay database that could affect our study:

(1) Different recording site for normals. Normals are recorded at least partly at different sites

than the pathological voices. This introduces the possibility of slight differences in the

recording environment and microphones used. Unfortunately, we do not implement a

direct control for this possibility, however channel normalization techniques are used.

(2) Not enough cases. Another consideration with the database that there are not enough of

them-between 700 and 800 total-recorded to make strong statistical conclusions in

dysphonia recognition. The problem is worse for certain voice classes; there are only 53

normal speakers, for example.
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(3) Reliability of physician diagnosis. It is not known how reliable physician diagnoses and
comments are for each specific diagnosis category. As discussed above, certain diagnoses
also have an inherent gradient which the database indicates poorly, leading to speculation
that accurately noting them is difficult. Other diagnoses, such as paralysis, seem easier to
diagnose in a formal way.

(4) Large overlap of dysphonia classes. This characteristic is part of the nature of dysphonia
and makes performing experiments difficult. For example, assume that one dysphonia
affects 90 percent of the database. Then assume that another dysphonia also affects 90
percent of the data, including the residual of the first data set. In this example, there is no
set of test data that lies outside of both groups. Compare with the speaker recognition
problem where each utterance belongs to only one speaker [39].

2.5 Conclusion

In this chapter we introduced the nature of dysphonia on the perceptual, acoustic, and physical
levels. We also presented one database that contains a significant number of test cases and
reviewed its organization and characteristics. In future chapters, we refer extensively to the
aspects of dysphonia presented here and attempt to connect them to other ideas. Chapter 3
analyzes several dysphonic voices from the Kay disordered voice database using amplitude
modulation theory. We continue this analysis with biologically-motivated designs in chapter 4
and, finally, in chapter 5, we experiment with automatic machine recognition of dysphonia.
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Chapter 3

Amplitude Modulation

This chapter serves to define the term amplitude modulation, or AM, as it relates to dysphonia.
First we motivate a definition for amplitude modulation in speech from classical sinusoidal AM
definitions presented in communications engineering. Specifically, we describe signal synthesis
in AM communications systems as well as the corresponding demodulation process. We then
present a model for how speech differs from ideal sinusoidal AM and how this complicates the
demodulation problem.

In this chapter, we also analyze amplitude modulations in dysphonic speech, showing evidence
for their existence and basic nature. First, our study shows that both the frequency spacing and
relative amplitudes of sinusoidal spectral components influence amplitude modulations. We find
that the frequency of envelope variation often varies with the region of the spectrum being
analyzed. We additionally present evidence for two other phenomena-amplitude modulated
noise sources and the transduction of frequency modulation to amplitude modulation. This
exploration indicates that dysphonic signals often contain a wealth of amplitude modulations. In
later chapters, we develop models that better characterize the frequency-band-dependent envelope
variations in dysphonia.

3.1 Amplitude Modulation of Sinusoids

Amplitude modulations have been studied from a communications viewpoint as a means to
efficiently send signals from one location to another through transmission lines and radio waves.
As depicted in 3-1, these systems allow multiple bandlimited signals to be displaced in frequency
so that they can share the same transmission channel. This is a form of frequency division
multiplexing, the simultaneous transmission of multiple signals by assigning each a frequency
band. The limited commodity in a communications system is often the total bandwidth, the full
spectrum allocated to a specific application. When using frequency-division multiplexing, an AM
system allows multiple sources-radio stations for instance-to be broadcast from a source to a
receiver at the same time
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Figure 3-1. Schematic drawing of an AM transmission/receiver system. The idea behind such a
system is to allow multiple transmissions to share the same transmission medium, for example
radio waves or a wire.

3.1.1 Synthesis Model for AM Sinusoids

In general, the idea behind synthesizing amplitude modulations in a communications system is to
take a series of bandlimited signals and transpose their spectra to higher frequencies. This
process amounts to modulating the amplitude envelope of a sinusoidal carrier by the source signal
[6].

In mathematical form, amplitude modulation of a single bandlimited signal is then defined as [6]:

g(t)= 4 [l+m(t)]

s(t)= A,[l + m(t)] cos(wat)

where g(t) is the envelope multiplied by the cosine carrier with radian frequency w, to create the
modulated signal s(t). The bandlimited source signal, m(t), is used to create the envelope by
adding it to 1 and scaling the sum by a constant A,. Here m(t) is defined to be between -I and 1
such that g(t) always remains positive. Also, co, is assumed to be no less than twice the highest
frequency component of the original signal. The process of synthesizing AM is depicted in
Figure 3-2, where a 30 Hz signal is used to modulate a 500 Hz carrier. The envelope of the output
fluctuates, or beats, with time at 30 Hz.
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Figure 3-2. 500 Hz sinusoidal carrier modulated by a 30 Hz waveform g(t). The resulting time
waveform s(t) beats at 30 Hz, the frequency imposed by the envelope. In the frequency domain,
the original spectrum is simply shifted by the carrier frequency.

As can be seen in the figure, this interpretation of amplitude modulation is as a multiplicative
envelope on a sinusoidal carrier. Another interpretation of the same waveform is as three line
components in the frequency domain-one due to the carrier and the others due to the sidebands.
This results from the equivalency of AM to convolution in the frequency domain. In a typical AM
system, many modulated signals are summed together to allow them to transmit them on the same
channel without frequency overlapping. Figure 3-3 shows both the previous 500-Hz carrier
modulated by 30 Hz summed with a 700-Hz carrier modulated by a 50-Hz modulator.
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Figure 3-3. 30 Hz-modulated 500-Hz sinusoidal carrier summed with a 50-Hz-modulated 700-Hz
sinusoidal carrier. Although the time envelopes are obfuscated in the time domain, the original
spectra remain separated in the frequency domain.

3.1.2 Analysis Model for AM Sinusoids

A signal can be amplitude modulated then by multiplying it by a sinusoid at a carrier frequency.
In order to reconstruct the original carrier signal, one needs to bring the center of the signal
spectrum back to zero frequency, also known as demodulating to baseband. In communications
systems containing many signals broadcast simultaneously, each modulating a different carrier,
the strategy is to (1) isolate all frequencies affected by a certain carrier using one or more
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bandpass and lowpass filters and (2) remove the effect of the carrier using one of several methods
of detection [6]. This general approach, depicted in Figures 3-4 and 3-5, assumes that there is no

overlap between the spectra of neighboring channels before demodulation.

Sum of Bandpass Low-pass Baseband
Modulated Filter Filter signal

Signals

cos(wet)

Product Detector

Hilbert-,+ -+- Magnitude -
Transform

Hilbert Envelope Detector

onlinearity- Low-pass
Filter

Envelope Detector

Figure 3-4. Diagram of demodulation of a sum of modulated sinusoids into a baseband signal
using a combination of bandpass filter and one of several detector types.
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Figure 3-5. Schematic drawing showing the demodulation of two modulated sinusoidal carriers.

As shown in Figure 3-4, there are many types of detection including the product detector, the
Hilbert envelope, and even simple rectification and low-pass filtering. The goal of an ideal
detector is to perfectly recover g(t) from the bandpass signal s(t) [6]. Certain detectors require
finding the correct carrier frequency or knowing it a priori-this is called coherent detection.
With the use of a product detector in an AM radio, for example, part of this process of tuning

often relies on a human to choose the proper carrier frequency using a frequency dial. Envelope
detectors, on the other hand, employ noncoherent detection, whereby the carrier frequency does

not need to be known in order to recover the original signal.

Thus, the process of demodulation in general is one of (1) separating by bandpass filtering an
interesting portion of the signal and (2) bringing the signal to baseband using a detection scheme.
This series of steps should be familiar from many well-studied speech analysis methods,
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including the spectrogram. A perspective of the short-time Fourier transform as a series of
demodulators is shown in Figure 3-6. This representation is governed by[3 1]:

X[n,2)= E x[n+m]um]e-"'
m=-oo

where 0 5 X < 2n denotes the analysis frequency in radians per second and w[m] is the windowing
function.
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Wndow Magnitude

Sum of
Analysis -lilt, A2)

Sum f WidowMagnitude
Sum of f jAII

Modulated - ----------- --- Magnitude

Sinusoids Envelopes

Analysis 1M g A M
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Figure 3-6. View of the short-time Fourier transform as a series of demodulators. Adapted
from [31].

A problem with using such general spectral analysis techniques for the purpose of demodulation
is that there is no guarantee that the filters will pass all the sidebands of a particular station. Thus
we run into a well-known fundamental tradeoff-long analysis windows improve capturing the
sidebands of a signal while short windows allow interference from the sidebands of neighboring
channels. Figure 3-7 compares the spectrograms using three different window sizes to
demodulate two amplitude-modulated sinusoids. With the longest envelope, the signal is not
demodulated as the sidebands are each interpreted as carriers. With the middle envelope, we get
demodulation at 30 Hz and 50 Hz as desired. The envelope of the outputs using the shortest
window case contains amplitude variations that beat at both the modulation frequencies as well as
at the difference frequency between sideband and carrier components of two different stations.
This observation is connected to the well known rule-of-thumb that there is beating in the
envelope of a signal at differencefrequencies. That is, with overlapping modulation channels, two
different types of interactions can produce magnitude variations on the output of an analysis
channel. One interaction is due to amplitude modulation of a single sinusoidal carrier as expected
from the theory. The other type is due to components of two different stations beating together in
a phenomenon we will call artifact AM. From a synthesis point of view, artifact AM is defined as
AM not resulting from the application of envelope g(t) to a sinusoidal carrier; instead it results
from summing two amplitude-modulated carriers. From an analysis point of view, the difference
between these two cases is often difficult or impossible to determine-both will be denoted as
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"AM" in the analysis performed in this thesis, regardless of their origin. It is important to realize
that time variation of the resulting envelope occurs for both cases.
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Figure 3-7. Illustration of the effect of changing the size of the Fourier analysis window on
demodulation performance. Notice that time-variation in the output envelopes can occur at
frequencies other than the two modulation frequencies. From top to bottom, the Hamming
window lengths are (a) 5 ms, (b) 16.6 ms, and (c) 200 ms, respectively.

3.2 Amplitude Modulations in Voice

Throughout the discussion of voice thus far, we have been hesitant to use the term amplitude
modulation to describe the time-variation observed in real speech signals. The purpose of this
section and the next is to connect the theory of sinusoidal AM presented above to the properties
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of real voice. In the previous chapter, we described a significant body of work on voice quality,
often showing evidence of time-varying amplitude patterns. Further, we have shown evidence
from the literature that these acoustic properties influence what a human perceives-that is, that
time variations of amplitude are important to whether we perceive a particular speaker as, for
example, breathy, rough, or hoarse. Examples were presented that indicate that observed
properties are in fact connected to actual physical changes of the larynx accompanying voice
disorders.

Based on the synthesis techniques described in the first section, one could hypothesize a model of
the human voice as created by a series of summed amplitude-modulated sinusoidal sources with
non-overlapping bandwidths. At a basic level, such a model must be able to generate speech, as
we know from the mathematics of Fourier synthesis that any real signal can be created as the sum
of an infinite number of constant sinusoidal components. There is also an attraction to a model
that views sources and their amplitude modulations as separate actions, much in the way a source
and a filter are viewed as separate blocks in traditional speech modeling [22].

The human voice, however, is almost surely not well modeled in this way. First, the physical
sources of sound produced by the glottis and by turbulent airflow in the vocal tract are for the
most part not well described as single sinusoids. For example, it is typical to represent the glottal
excitation as a harmonic sequence of sinusoids, and aspiration and frication sources as wideband
noise sources. Also the carrier sources may be varied with respect to frequency as well as time.
Although we did not present the theory, such a frequency modulated, or FM, signal is not beyond
the capabilities of many communications systems, but adds complications that are beyond the
scope of this thesis. Suffice to say that the Hilbert envelope detector in previously described
models allows AM and FM to be separately demodulated [34, 35].

37



IINO I III

~

- s(t)
- - g(t) recovered using Hilbert

envelope detector

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.
t

2-

0

-1

-- s(t)
- - g(t) recovered using Hilbert

envelope detector

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 3-8. Irregular fluctuations in the magnitude of the Hilbert envelope of uniformly
distributed white noise modulated at 30 Hz (a) compared with the envelope for a 30-Hz
modulated sinusoid (b). Notice that a noise carrier has a noisy envelope due to beating between
its own components.

In addition to the problem of complex carrier spectra, there is also almost surely an overlap
between the carriers and sidebands of physiologically plausible speech sources. For instance, in
the production of a voiced fricative like /v/, both the noise source and the voicing source have
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spectral components across a large range of frequencies and overlap significantly. As shown in
the AM theory discussion, such phenomena create envelopes that vary at the difference
frequencies of the interacting components. When sources are non-sinusoidal, there may also be
modulation between components within the carrier [7]. As depicted in Figure 3-8 for a 30-Hz
modulated uniformly-distributed white noise source, these interactions appear as corruption of the
envelope.

A final difference between our ideal AM sine-wave model and real speech is that most speech
models represent the vocal tract as an additional filterbank. The poles of this set of filters, known
as the formant frequencies, determine the overall shape of the spectrum created by sounds
produced at the glottis. Additionally, sources arising at other points in the vocal tract undergo
other filtering determined by their location in the vocal tract [43]. The time-varying nature of this
filterbank combined with the movement of the carrier frequencies, allow for the possibility of
amplitude modulations generated by changes in the relation of spectral components with the
filters. As we will see in the next section, acoustics consistent with this phenomena exist in
dysphonia.

Many factors, then, including the unknown number and spectra of the original sources,
interactions between the carriers and sidebands belonging to each channel, and interactions with
the vocal tract filters make the general demodulation problem for speech a difficult and currently
unsolved problem. Thus, the work presented later in section 3.3 does not seek to present the
demodulation of speech into amplitude-modulated physiologically-plausible sources. Rather, it
proposes to connect the acoustics of voice quality presented in the previous chapter with AM
patterns seen using bandpass analysis. This investigation differs from previous work in the
literature in that it acknowledges that diferent amplitude modulation behavior can occur in
diferent regions of the spectrum. That is, we argue that spectrally separate modulation patterns
may tend to become hidden when viewing a complete time-domain waveform. Figure 3-9 shows
an example of this phenomenon using a sum of five AM sinusoids-patterns which are obscured
in the time domain appear in different frequency bands in the spectral domain. By performing a
demodulation step-the short-time Fourier transform-first, we are able to analyze AM behavior
on a band-by-band basis.
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Figure 3-9. Sum of five amplitude-modulated sinusoids showing aperiodic variations in the time-
domain (a) but strong periodic patterns in the spectral domain envelopes (b) using a 14.3-ms
Hamming window.

3.3 Case Study of AM in Dysphonia

In developing an AM interpretation of the human voice, it is important to study the acoustic
signatures of several dysphonias and, through spectral analysis, tie them into AM theory. In the
following chapters, the goal will be to develop models that better extract the frequencies of voice
AM and apply them to automatic recognition systems. As mentioned, the task of connecting the
physical operation of the larynx to acoustic characteristics is largely an unsolved problem. Thus,
we only speculate about the physical sources causing the AM we observe, but when possible, we
will highlight hypotheses that exist in the speech community to explain a phenomenon.

In this section, seven different examples of the sustained vowel /a/ are investigated. This
particular set of voices is the result of a survey by the author of over 350 sustained vowel
utterances from the previously discussed Kay Disordered Voice Database [1]. The examples are
selected primarily (1) because the patterns of amplitude fluctuation are extreme compared to
other dysphonic utterances both acoustically and using spectrographic analysis and (2) because
they demonstrate distinct types of time-varying phenomena as discussed in the previous chapter.
Since there are many types of dysphonia, the chosen examples are meant to be used as acoustic
evidence, not as a general survey of all possible dysphonia.
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All spectrograms and spectra for this portion of the study were created using the WaveSurfer
software package. Except where mentioned, only the first 5 kHz of the frequencies are shown in
the each graph and a standard high-pass, pre-emphasis, filter is used. Many variations of analysis
window length are investigated in order to best find evidence of amplitude modulations in the
speech. Thus, some spectrograms have high time resolution and others high frequency resolution,
depending on what is needed to highlight the features being discussed. The same variation is true
for the grey-scale map chosen-some figures saturate to show only the varying amplitude regions
and others show more clearly the entire spectrum. As discussed in the theory section, selection of
bandwidth is a critical step in the demodulation process, with different patterns apparent when
using different filters. In the next chapter, we introduce a biologically-inspired choice of analysis
filter bandwidths and spacing that mimic aspects of the human auditory process.

3.3.1 AM Interpretation of Superperiodic Structure

As described in chapter 2, many forms of dysphonic voice qualities exhibit time-varying patterns
in their envelopes, forming the superperiodic category. Recall that superperiodic speech can
involve categories such as diplophonia, with a repeating pattern of glottal pulse height every two
cycles, and periodic envelope, where a single underlying sinusoid appears to have an amplitude
envelope applied to it.

Figure 3-10 gives an example from speaker JMJO4 showing several different patterns of
superperiodic behavior. In the left box, there is evidence for a strong pulse every two cycles,
yielding a repeating pattern of about 100 Hz. As shown in Figure 3-11, this pattern agrees with
interaction between sub-harmonic components which are multiples of about 105 Hz. Here, the
fundamental which can be seen strongly in the spectrum is at around 215 Hz. This observation is
consistent with a view of the modal glottal source-a series of harmonically-related harmonic
components-each modulated by an envelope with frequency 105 Hz. The 215-Hz harmonic
sequence can be considered the carrier, with the amplitude envelope defined by the 105-Hz
modulator.

The right box of the spectrogram indicates a change in behavior about halfway through the signal,
with a strong pulse occurring every three glottal cycles. This behavior corresponds to a repeating
pattern at about 70 Hz as is evident in the spectrum of Figure 3-12. It is interesting to note that the
modal fundamental frequency component, here 215 Hz, remains strong, while the subharmonics
are relatively weaker. As the subharmonics grow stronger, so does the difference between the
magnitude of the largest and smallest glottal peaks in the time domain.
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Figure 3-11. Spectrum of /a/ at 300 ms produced by patient JMJ04. An 82-ms Hamming window
was used in generating this figure. The box on the left highlights three components of alternating
height, measured at about 215, 314, and 418 Hz respectively. Observe that these are all multiples
of the subharmonic at 105 Hz.

0 5
Frequency (kHz)

Figure 3-12. Spectrum of /a/at 600 ms produced by patient JMJO4. An 82-ms Hamming window
was used in generating this figure. The box on the left highlights four components-one large,
two small, and one large-measured at about 211, 278, 356, and 418 Hz respectively. Observe
that these are all multiples of the subharmonic at 70 Hz.
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Figure 3-13. Spectrogram of /a/ produced by patient DAS 10. A 14.2-ms Hamming window was
used in generating this figure. The period of the variation in the left box is every three glottal
pulses-on the order of 50 Hz- and that in the right box is every two glottal pulses-about
77 Hz. In the center of the utterance there is an irregular pattern of superperiodic behavior.

These observations for patient JMJO4 agree with those for patient DAS 10 in Figure 3-13. Several
differences, including a lower fundamental of about 150 Hz, a region of irregularly spaced pitch
periods in the middle, and more quickly damped pulses are apparent. The far right pitch-doubled
area, in fact, is almost completely transformed into a waveform of half the fundamental
frequency. Overall, the waveform in this region is close to the description of creak, with highly
damped pulses at half the fundamental, shown in Figure 3-14. Thus, DASlO's vowel production
is a good example of a combination of at least two subcategories of glottalization-creakiness
and superperiodicity.

' .JI I ' 1 . A. . A. A. t .-A -A ' .' .A .. Al '- ' ' I . 'A& . 1 .'A

800 Time (ms) 1000

Figure 3-14. Waveform of /a/ produced by patient DAS10 between 800 and 1000 ms. Note the
similarity of this region to creak.

Some voices, such as for patient JXS0l, tend to be glottalized throughout their voicing.
According to the database, this 70-year-old male smoker suffers mainly from unilateral left
paralysis as well as various forms of hyperfunction-the latter presumably to compensate for the
inability to use one of the cords. An example of creak from this utterance, highlighted in the right
box of Figure 3-16 and the waveform in Figure 3-15, shows strong, quickly decaying pulses. It is
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interesting to note that the same time-varying pattern is seen up to about 4 kHz, due to the high-

bandwidth impulsive nature of the glottal pulses in creak.
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Figure 3-15. Spectrogram of /a/ produced by patient JXS01. A 10-ms Hamming window was

used in generating this figure. The box on the right indicates a region of creak, with a relatively

low 91-Hz pitch, while the left box shows irregular glottalization.
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Figure 3-16. Waveform of /a/ produced by patient JXSO1
regularly spaced low-frequency pattern of highly damped
some irregularity here in the height of the pulses.

between 400 and 600 ms. Observe the
glottal pulses at about 90 Hz. There is

Another category of superperiodic behavior is that which appears to be a single fundamental

modulated by a lower frequency envelope. Gerratt and Kreiman discuss this type of signal in their

taxonomy of acoustical voice properties as "a relatively high-frequency wave... modulated by a

much lower frequency envelope." [14] Figure 3-17 is repeated from chapter 2 to show what is

mean by this description. In the right panel, we see a spectrum with many harmonically related

subharmonics which interact as reflected in the time-variations at the period of the envelope. In

this example, the apparent fundamental frequency of the waveform underneath the envelope

envelope, is reflected in the spectral domain as a prominent line component.
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Figure 3-17. Figure from [14] showing an example of superperiodic "periodic envelope"
behavior. The right panel shows harmonics of the fundamental frequency along with
subharmonics spaced by 44 Hz defining the frequency of the envelope.

Patient HXL28 provides another example of this "periodic envelope" type of periodicity as
demonstrated in the waveform of Figure 3-19. Notice the slowly-varying envelope modulating a
waveform with a fundamental frequency of 328 Hz. This fundamental, when combined with the
envelope, results in a harsh complex voice quality descriptively described as a "chainsaw voice"
after the sound of a power saw as it cuts through a tree. In the spectrogram of this voice shown in
Figure 3-18, we see two distinct frequencies at which the envelope varies with time-one around
30 Hz, and the other around 60 Hz. These observations match the spectrum analysis shown in
Figure 3-20, where there are difference frequencies agreeing with both these values. One suitable
cause of the 328 Hz pitch, a low frequency pole amplifying the 328 Hz component, is also
highlighted in the spectrum. Low-frequency poles are used in dysphonic speech synthesis
approach by [2] discussed in appendix A. Note that this spectral peak is sharper than F1, which is
in the neighborhood of 1000 Hz and isolates the 328 Hz component and its two sidebands.

One question that becomes apparent is how the periodic envelope voice type is fundamentally
different than the period doubled or tripled examples previously given. Both cases have envelopes
governed by the difference frequencies of the subharmonics, with the fundamental frequency
governed by a large spectral component. One hypothesis is that the difference lies in the pole
around 300 Hz, with the amplitude modulation being inherent to the glottal source when period
doubling and tripling are exhibited and a property the vocal tract filter when the periodic
envelope voice type occurs .
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Figure 3-18. Spectrogram of /a/ produced by patient HXL28. A 10-ms Hamming window was

used in generating this figure. The top left boxes indicate modulations around both 30 Hz and

60 Hz, while the bottom left box indicates variation at about 64 Hz. The boxes on the right

indicate similar frequency-dependent activity. Also note the strong activity around 300 Hz

indicating a pole in the speech spectrum.
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Figure 3-19. Waveform of /a/ produced by patient HXL28 between

exhibits a 328-Hz fundamental modulated by a 64-Hz envelope.
0 and 240 ms. The signal
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Figure 3-20. Spectrum of /a/ at 0 ms produced by patient HXL28. An 82-ms Hamming window
was used in generating this figure. The box on the left highlights a region suggesting a low-
frequency pole in the spectrum which amplifies the 328-Hz fundamental, indicated with the
arrow. The box on the right indicates a region with three beating components, one pair separated
by 64 Hz, the other by about 32 Hz.

3.3.2 AM Interpretation of Aperiodic Signals

As previously defined, aperiodic or irregular signals, involve glottal pulses with little or no
apparent pattern in the length of the periods between them or in their heights. In this section, we
investigate three kinds of aperiodic signals-irregular glottalization, aperiodic interactions of
harmonics, and amplitude modulated noise. Note that the last category is not explicitly described
in the voice quality literature. It probably best fits hoarseness, which has been defined as the
combination of breathiness and roughness [11].

50 T TT400 Time (ms)

Figure 3-21. Waveform of /a/ produced by patient JXSO1 between 50 and 400 Ms. The pitch
periods are distinct as in creak but irregularly spaced and with varying amplitudes. Arrows
indicate several such pitch periods.

Figure 3-21 shows a waveform from the previously-introduced patient JXSO1 showing irregular
glottalization. Note that variations in both the height and spacing of the pulses does not indicate a
periodic signal. Another form of aperiodic phonation is shown in Figure 3-22, a waveform
produced by patient KAH02, a 73-year-old nonsmoker. The perceptual nature of this utterance is
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described as a "chainsaw voice" in the same way as HXL28. Notice, however, that the time

waveform does not contain a similar periodically-modulated high-frequency sinusoid, although

there is indication of periodic patterns of high energy. When the spectrogram in Figure 3-23 is

taken, a more complicated pattern emerges. Around the first formant, we see repeating pulses

between about 50 and 60 Hz. Then, at the third formant, another pattern emerges, consisting of

periodicity in the envelope at half that frequency. Finally, we see a third distinct pattern of

approximately 100-Hz amplitude variation centered at about 200 Hz.

200
Time (ms)

Figure
creaky
5-to-10

3-22. Waveform of /a/ produced by patient KAHO2 between 100 and 200 ms. Unlike in

voice, it is difficult to pick out individual glottal pulses here. Large pulses every

ms suggest a complex underlying pattern; several of these are indicated with arrows.
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Figure 3-23. Spectrogram of /a/ produced by patient KAHO2. A 10-ms Hamming window was

used in generating this figure. The top left box and accompanying arrows indicate regular patterns

of variation which are different from the activity at the first formant frequency in the bottom left

box. In contrast to the 30-to-40-Hz pattern around F3, there is a 50-to-60-Hz pattern at Fl. The

right box highlights amplitude modulations at about 100 Hz occurring near 200 Hz. Different

bands show different modulations.

The spectrum taken around 100 ms, shown if Figure 3-24, can be used to explain much of the

amplitude modulation behavior seen in the spectrogram. First, there is a difference frequency

between harmonics of about 29 Hz yielding a 30-Hz difference frequency in the region of F3 and

a 60-Hz difference around Fl. The spectrum also includes a set of prominent line components at

179, 290, and 460 Hz. The three components are not multiples of one another, but rather are all

multiples of about 29 Hz. Other components at 29-Hz multiples have less magnitude than at these

three frequencies.
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As is demonstrated in Appendix A through a dysphonic speech synthesis experiment, one
hypothesis is that the amplified components at 179, 290, and 460 Hz are not harmonics, but
instead the fundamental frequencies of individual modes of glottal fold vibration as modeled by
Berry [3]. Regardless of the origin of the phenomenon, it is hidden in the time waveform and
requires further analysis.

0

-10

-60

0 5
Frequency (kHz)

Figure 3-24. Spectrum of /a/ at 100 ms produced by patient KAHO2. A 164-ms Hamming
window was used in generating this figure. The arrows on the far left highlight the prominent
sinusoids at 179, 290, and 460 Hz discussed in the text. The two boxes on the right indicate the
harmonic spacings related at 60 Hz and 30 Hz as seen in the spectrogram.

The last form of aperiodicity investigated is that of amplitude modulated noise. Unlike the
previous two categories, this group falls best under the breathy header in our preliminary
taxonomy. However, it should be noted that breathiness does not require amplitude modulation;
elements of it have been successfully synthesized without it [24].
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Figure 3-25. Waveform of /a/ produced by patient DXC22 between 0 and 150 ms. Notice that

there is no obvious pitch period here, and the waveform appears as random fluctuations. There

are four areas of activity indicated by arrows that constitute evidence for AM noise as discussed

in the text.

DXC22 is a 48-year-old male post-biopsy and irradiation case with swelling of the vocal folds

and hyperfunction. Perceptually, the voice is similar to white noise with a subtle roughness. As

can be seen in Figure 3-25 the time waveform contain periodic bursts of energy but has no
obvious pitch period. As indicated by the arrows, there are four regions of increased energy,

which we will call amplitude-modulated noise. This view is furthered by the spectrogram in

Figure 3-26, which contains several regions of time-varying patterns. Overall, more research is

required in this area, but the results thus far support the use of improved models to extract

frequency-dependent patterns "hidden" in the time waveforms.
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Figure 3-26. Spectrogram of /a/ produced by patient DXC22. A 5-ms Hamming window was

used in generating this figure. The two boxes and accompanying arrows indicate regions with

repeating patterns. At signal onset, the repetition at Fl is about 40 Hz whereas, in the middle of

the utterance, the variation at F2 is between about 50 and 60 Hz.
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3.3.3 Transduction of FM to AM

The last group of amplitude modulations studied involve tremor and flutter, both variations in the
amplitude envelope of a signal below 15 Hz. As discussed in chapter 2, these problems are most
often related to neurological speech disorders, where nervous control of the articulators is
compromised.

The generation of AM from FM is mentioned in section 3.2 as a possible consequence of a'
system with time-varying source frequency and/or a time-varying formants. Figure 3-27, recorded
by patient JAB08, a 69-year-old post-biopsy case with scarring and a vocal tremor illustrates this
phenomenon. As indicated in the spectrogram, the amplitude envelope of this patient increases
whenever there is a dip in the fundamental. Figure 3-28 compares the spectrum at 313 and 424 ms
in the utterance. When the 5"* harmonic is closer to the first formant, the amplitude is increased;
likewise, it decreases when it is further away. We propose this case as an example of the
transduction of FM to AM similar to that discussed in [35].
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Figure 3-27. Spectrogram of /a/ produced by patient JAB08. A 66.6-ms Hamming window was
used in generating this figure. The box highlights a portion the time-varying envelope of the
waveform that changes with variations of the fundamental frequency.
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635 Hz

Figure 3-28. Spectra of /a/ at 313 and 424 ms generated by patient JAB08. An 82-ms Hamming
window was used in generating these figures. The box highlights the region of spectral
components that change as the pitch frequency varies. Note that the 5*h harmonic is larger in the
first panel and becomes smaller in the second as it increases about 35 Hz in frequency.

3.4 Conclusions

In this chapter, we defined amplitude modulations both in a communications engineering sense
and with relation to real speech. We propose that AM in real speech is different from the
traditional definitions in that it has (1) non-sinusoidal sources as carriers, (2) overlapping
sidebands each of unknown bandwidth, and (3) post-filtering of the summed AM sources by the
vocal tract. These issues combine to make demodulation of the speech sources a difficult and
currently unsolved problem.

With the AM theory developed, we analyzed the speech of several different dysphonic speakers
in order to observe how interactions of components in the frequency domain can produce a wide
range of voice qualities. Four broad and overlapping classes that we observed were (1) interacting
harmonic components, (2) irregular pitch pulses, (3) amplitude-modulated broadband noise, and
(4) the transduction of FM to AM.

The first class was characterized by line components in the frequency domain. AM theory
dictates that modulations occur at difference frequencies between individual frequencies; this was
shown in our real speech examples. An additional observation is that the relative magnitudes of
different harmonic components are important to the patterns seen in the spectrogram and in the
time domain. JMJO4, HXL28, and KAHO2, for example, all had regions exhibiting subharmonics
which were multiples of about 30 Hz but with very different relative component strengths. In
JMJO4, in the time region characterized by period-tripling, the spectral line components alternate
in a pattern of two small 60-Hz components followed by one large component. In HXL28, we see
evidence of 30-and 60-Hz subharmonics but with the multiples of 60 Hz around 300 Hz
amplified. Finally, in KAH02, we see prominent low-frequency spectral line components mainly
at 179, 290, and 460 Hz, all approximately multiples of about 29 Hz. The physiological causes of
such phenomena are unknown.

This chapter also presented examples of irregular glottalization, amplitude-modulated noise, and
FM-to-AM transduction. Spectral correlates for the last class were found but the acoustic theory
to explain these types of modulations needs to be developed. We do not yet have an AM model
that explains the time-fluctuations in demodulated broadband noise or frequency-modulated
sources.
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In this chapter, we demonstrated a connection between the bandpass filters used for demodulation
and the resulting time-varying patterns in the envelope. Specifically, we showed that there is a
tradeoff between narrow and wide filters. Narrow filters restrict the overlap of two stations but
can filter out sidebands while wide filters restrict the loss of sideband components but can pass
overlapping stations. In this chapter we used the short-time Fourier transform, a constant-
bandwidth analysis method, for demodulation. In chapter 4, we present three models with
biologically-motivated analysis-filter bandwidths. We then show evidence that each of these
models present complementary information about AM.
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Chapter 4

Biologically-Inspired Models to Represent
Amplitude Modulations

As discussed in the previous chapters, we propose that amplitude modulations are an important
property to extract from speech for dysphonia recognition, as well as other applications such as
speaker recognition. The purpose of this chapter is to describe the three classes of human auditory
system models-mel-filtering, adaptive nonlinearity, and modulation filtering-used in this
thesis and how amplitude modulations are represented by each of them. In chapter 3, analysis
filter bandwidth was found to be important in extracting amplitude modulation patterns from
synthetic waveforms and speech. There are many possible analysis filter configurations, but we
propose that a human-inspired filterbank is a natural choice. Humans seem to be adept at
determining voice characteristics such as those that identify a certain speaker [41] or indicate
perceptual voice quality such as roughness [25], suggesting that mimicking the human analysis
filtering process is a logical approach.

Model Feature
Outputs Vectors

Speech Front-End Feature Pattern Likelihood
Signal Model Extraction Classification Score

Figure 4-1. Overview of a dysphonia recognition system. A speech signal enters and is processed
by an auditory front-end model to produce a set of output signals. From these outputs, features are
extracted and sent to an automatic classifier which determines how likely it is that an utterance
indicates a certain voice disorder.

Each auditory model in this chapter acts asfront-end model, the first of three stages that make up
our dysphonia recognition systems, as depicted in Figure 4-1. The goal of the front-end model is
to convert an acoustic waveform into a new representation better suited to capture application-
dependent properties. In speaker recognition applications, for example, this stage is used to obtain
features that best characterize a certain talker's voice. In dysphonia recognition, features should
capture acoustic properties that make a certain voice disorder stand out from other voice disorders
as well as from normal speech.

The first model studied, mel-filtering, is a component of a technique called the mel-cepstrum used
to build the baseline system in speaker recognition [34] which has also performed effectively in
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dysphonia recognition tasks [10]. Two previously existing biologically-inspired designs [36] are
also introduced in this chapter along with new improvements to allow them to better capture
amplitude modulations. The intent of these models is to represent the response of the auditory
system to amplitude modulations on two different levels: (1) the cochlea and auditory nerve and
(2) the inferior colliculus or ICC. We will study how modulations are represented by the various
techniques for both synthetic stimuli and real voices and argue that the two levels provide
somewhat complementary information about AM.

4.1 Mel-Filtering

For a number of applications, including speaker recognition [34, 40] and dysphonia recognition
[10], mel-filtering models have performed very competitively in comparison to other methods. In
this sense, they are referred to in this thesis as state-of-the-art. There do not yet exist features
which consistently outperform mel-filtering models in these two tasks. Many elements of this
feature set come from the work of Davis and Mermelstein, who applied the model to the problem
of automatic speech recognition [8]. Some elements used in this technique, including the
logarithmically increasing spacing and bandwidths of the analysis filters with frequency are
biologically inspired.

Generally, the effect of mel-filtering can be thought of as a smoothing over a high-resolution
DFT. Equivalently, this can be pictured as the obscuring of pitch and other source characteristics.
Quatieri [34] notes that the outputs of mel-filtering "are likely to contain some source
information, e.g., the spectral tilt of the STFT magnitude influenced by the glottal flow
derivative" but that their primary content is information "from the vocal tract system function."
The class of speech characteristics, including amplitude modulations, however, is not known
rigorously in the representation by mel-filtering.

4.1.1 Model

As shown in Figure 4-2, the action of the front-end mel-filtering model is to take the magnitude
spectrum of the DFT, multiply it in the frequency domain using triangular weighting functions,
and compute the filter output energy [34]. The weighting function applied to the analysis filters
can have several different variations. Davis and Mermelstein [8] use a method with triangles
spaced from 100 Hz up to 1000 Hz and then logarithmically spaced with a ratio of 1.1487
between filters with center frequencies between 1000 Hz and 4000 Hz as shown in Figure 4-3.
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Figure 4-2. Schematic view of the mel-filtering model. The DFT weighting function has spacing
and bandwidths based on the mel-scale as described in the text and accompanying figures.

Quatieri [34] uses a similar method where the center frequencies of the triangles have a modified
mel-scaling which yields linear filter spacing up to 1000 Hz and logarithmic spacing above
1000 kHz. Although Quatieri's formulation is quite general, the shape of the bands is suggested
to be triangular with widths equivalent to human-derived critical bands (as in Figure 4-3) after the
work by Davis and Mermelstein described above [8]. Quatieri's description is different than these
authors in that (1) the triangular filters are normalized for equal energy, or summed squared
magnitude, (2) the weighting functions are triangular in the spectral magnitude domain, not in the
spectral energy domain, and (3) the spacing and bandwidths of the triangular functions above
1000 Hz are slightly different, with a ratio of 1.1 between neighboring center frequencies, as
shown in Figure 4-4.

0o oo o o 300 4000 4600
FREQJENCY (Nil

WIFCC FLTERS

Figure 4-3. A plot of the mel-frequency filters from [8].
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Figure 4-4. Triangular weighting functions used to weight the DFT magnitude spectrum. This
particular set of functions is for the standard 256-point DFT implementation of the technique as
implemented in this thesis.

In this thesis, we use Quatieri's formulation as a baseline except that the triangular weighting
functions are normalized to equal summed magnitude, not equal summed energy. Preliminary
speaker recognition experiments have shown comparable results using all three of these filter
variations. We also include a pre-emphasis filter stage with impulse response and frequency
response shown in Figure 4-5. The entire procedure is outlined below:

(1) The input waveform is windowed using 20-ms triangular functions, each overlapping the
previous one by 10 ins.

(2) The DFT (implemented as an FFT) is taken to transform the windowed signal into the
spectral domain.

(3) The pre-emphasis filtering function is applied to the DFT, acting to highpass-filter the
signal.

(4) The DFT magnitude bins are weighted according to the 20 triangular weighting functions
and the weighted sums are calculated.

(5) Each of the outputs is squared and the logarithm is taken.

(a)
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Figure 4-5. Impulse response (a) and frequency response (b) of the pre-emphasis filter used in the
mel-filtering computation.

4.1.3 Representations of Amplitude Modulations

As discussed in previous chapters, amplitude modulation occurs in both normal and dysphonic
speech and is hypothesized to be important to the voice qualities that one perceives. For this
reason, it is useful to analyze both real and synthetic signals using each of our feature extraction
methods. In this chapter, we revisit several of the speech examples seen in previous chapters
using the new approaches. We also show the response of the models to amplitude modulated
tones and noise.

The output of the mel-filtering model for two different synthetic amplitude modulated signals are
shown in Figures 4-6 and 4-7. In order to eliminate the transient response to the stimulus onset,
only the middle I second of a 3 second presentation of the signals are displayed. In addition, the
outputs of the model are sampled every 5 ins. Figure 4-6 shows the response to a single 1000-Hz
sinusoid modulated by a 30-Hz sinusoid as described by:

y[n] = cos(2fflOO0n /f )(1 +0.5 cos(2x3On /fs)

Figure 4-7 shows the response to a white noise source modulated by a 27-Hz sinusoid as
described by:

yIn] = q[n](l+O.5cos(2ff27n /f,)

where q[n] is a uniformly distributed white noise sequence.
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Figure 4-6. Response of the mel-filters to a 1000-Hz sinusoidal carrier amplitude modulated by a
30-Hz sinusoid. The perspective in the top panel is skewed such that the peak is actually directly
above the 1000-Hz line. The arrows in the top panel indicate 10 cycles of the time-varying
amplitude envelope.
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Figure 4-7. Response of the mel-filters to a white-noise carrier amplitude-modulated by a 27-Hz

sinusoid. Arrows indicate peaks of the modulation envelope-the envelope is blurred at low mel-

frequencies.

In Figure 4-6, the sinusoid causes the peak response to occur at 1000 Hz. The envelope of this

signal can be seen to fluctuate according to the 30 Hz modulating waveform, as would be

expected. However, amount of modulation is not explicitly captured by the mel-filtering model.

That is, the fact that 30-Hz modulation is used must be inferred from the time variation on one of

the channels. In Figure 4-7, the spectrum has more noise due to the broadband source, but we can

still observe a weak periodic variation due to the 27-Hz modulator. Here we also can observe the

effect of the pre-emphasis filter, which boosts the high frequencies.

Figure 4-8 shows the response of the DPK model to the middle 800 ms of the sustained vowel

utterance from DAS 10, introduced fully in chapter 3. We can see some dynamic activity, but the

details are blurred. In particular, we know from previous analysis that we expect a series of strong

glottal pulses in the representation. Although there is some pulse-like activity near 100 ms, the

activity is less clear than in the original DFT analysis.
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Figure 4-8. Response of the mel-filters to the voice signal DAS10. The formant frequencies are
apparent in this representation as indicated by the arrows. An example of modulation can be seen
left of the arrows in a region corresponding to period-tripling.

4.2 DPK Nonlinear Adaptation Model

As part of this thesis, a published model of the auditory periphery [7, 45]-referred to as the DPK
model after the authors Dau, Puschel, and Kohlrausch-is used to represent the response of the
human auditory system at the level of the cochlea and auditory nerve. In addition to a mel-scaled
auditory filterbank, a nonlinear adaptation stage, enhancing the response to transient acoustic
activity, is introduced. This model has been successfully used in previous research to improve
both automatic speech recognition [44, 45] and speaker recognition [36] systems, adding a
performance gain over mel-filtering models.

4.2.1 Model

The cochlea, which is the organ in humans responsible for the transduction sound waves into
neural impulses, can be roughly described as a group of overlapping bandpass filters. In contrast
to the linear filtering performed for the mel-filters, it is known that the response properties of the
outputs of the cochlea are nonlinear. An interesting question, then, is whether the inclusion of
such nonlinear elements in the feature extraction stage of an automatic recognition system can
improve the recognition accuracy. It is known that the acoustic components of speech contain
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distinctive dynamics-rapid bursts of energy for stop consonants, for example, as well as abrupt
changes in energy at the beginning and ends of words. In chapters 2 and 3, we saw that disphonic
voices can also have rapid transients. Creak and irregular glottalization are two forms of
dysphonic speech exhibiting sharp glottal pulses.

Adaptation is defined as the changing response over time to an input stimulus. In a typical model
of adaptation in the auditory system such as [28], the response to a transient signal is initially
large, eventually decaying to a lower, nearly constant, response. The DPK adaptive model studied
in this thesis has two major properties: (1) a near-linear response to very quickly varying parts of
signals and (2) a compressive transformation of slowly-changing components. As will be
discussed, these characteristics are accomplished using five stages of serially arranged feedback
loops, each with a different time constant depicted in Figure 4-11. Time constants are derived in
the original paper [45] using a curve fit: "by combining several linear [on a dB scale] decays with
different slopes, we get a piecewise approximation to the well known forward-masking curve." In
this way, the model is phenomenological, fitting data to human perceptual studies rather than
modeling actual neural responses as is done in [28, 42].

A primary biological motivation for the compressed response to static stimuli is the nonlinear
nature of the cochlea. Three prominent factors are (1) the nonlinear amplification of acoustic
stimuli by the cochlea, (2) the nonlinear opening of transduction channels in the stereocilia, and
(3) the saturating response of the transduction to neural spike rate function for a single auditory
nerve fiber. Details of these systems are well-studied, but are not modeled explicitly in the DPK
model. Rather the authors of the DPK model state that "the output of five consecutive adaptation 4
loops is then [the 32 "d root of the input], which approximates the logarithm of the input signal."
[45]. Logarithmic compression is commonly used to model the static nonlinearity in basic models
of the auditory periphery; it is also present to some extent in the mel-filtering model.

In the human, the adaptive portion of the nonlinearity is thought to occur at the synapse of the
inner hair cell with the auditory nerve, primarily through complicated dynamics of the depletion
of available neurotransmitter [28]. Adaptation is not yet completely understood, but most of the
literature seems to point to only two time constants on a short (less than 1 second) time scale.
These are typically referred to as the "rapid" and "short-term" adaptation effects, with the first
having a time constant around 1-10 ms and the second on the order of 60 ms [48]. The DPK
model's use of five time constants reflects the decision to have a stationary signal be transformed
logarithmically.

Auditory Adaptive
Filterbank Nonlinearity

SFilter1 --- ANL1
Pre-emphasis

Filter DPK Output

Speech r Filter2  0 ANL 2  Vector

Input Pre-emp

20

Filter20  0 ANL 20

Figure 4-9. Schematic view of the DPK model. The pre-emphasis filter is the same as described
for mel-filtering. The auditory filterbank has spacing and bandwidths based on the mel-scale as
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described in the text and accompanying figures. The nature of the adaptive nonlinearity is to
enhance transient activity and suppress the response to static portions of the stimulus.

The organization of the DPK model, as depicted schematically in Figure 4-9, is in part similar to
that of the mel-filtering model. As in mel-filtering, the first portion of this system consists of pre-
emphasis followed by an auditory-like filterbank. In this case, however, the filterbank is
implemented through convolution instead of weighting of the magnitude spectrum. The filter
responses are calculated using an overlap-add paradigm as described in [31]. The incoming signal
is first split into frames using 20-ms triangular windows, each overlapping the previous by 50
percent and then the 512-point DFT is taken. Pre-emphasis, as shown in Figure 4-5 is applied to
the signal in the frequency domain. Then the DFT is multiplied by the 512-point DFT of each
filter, and the IDFT is taken of the result to yield a 512-point time-domain sequence. These time-
domain blocks are summed together at each sample to reconstruct the filtered signal.

Twenty symmetric Gaussian filters make up the analysis filterbank shown in Figure 4-10. Each of
these filters has an impulse response of 32.5 ms. Between 300 Hz and 1000 Hz, the filter center
frequencies are linearly spaced, whereas they are logarithmically-spaced above this point. This
mel-spacing scheme is equivalent to that used for the triangular weighting functions implemented
in the mel-filtering model. Each of the filters is normalized to equal energy.

The nonlinear adaptation portion of the design consists of five loops in series as shown in Figure
4-11. For quickly-varying stimuli, the response to a change in the output is linear; for more
slowly varying input, the output approaches the 3 2 nd root. Thus, a nonlinear compression is
introduced for the static regions of the input signal. In the diagram, the response of each of the
five loops can be seen to be controlled by a free parameter, P, which determines the time constant
of the response decay. In the thesis, Pi - P5 are equal to 0.90, 0.99, 0.997, 0.9985, and 0.9991
respectively.

0
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Figure 4-10. Frequency response of the
response in the DPK model.

Gaussian filters used to mimic the human cochlear
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Figure 4-11. Architenture of the five-stage adaptive nonlinearity used in the DPK model. Each p
denotes a constant which controls the response characteristic of a given stage. Each loop is a first-
order recursive low-pass filter. A larger P tends to yield a slower adaptation. The steady-state
response of each stage is the square root of the input, whereas the change in the response to a
quickly-changing component is the current input divided by the square root of the previous input.

4.2.2 Representations of Amplitude Modulations

Figures 4-12 and 4-13 depict the output of the DPK model to the same two amplitude-modulated
stimuli discussed for the mel-filtering examples. Despite the similarities between the mel-filtering
and DPK models, the responses look remarkably different. The first observation in Figure 4-12 is
that the high-frequency output channels have a distinct response, even though the stimulus energy
does not reach that far in frequency. The response energy at,,all frequencies is much larger relative
to that at the stimulus frequency than for the mel-filtering model. One might describe the
response as noisy, with small changes in signal resulting in large transient spikes. An attempt is
not made to explain how this behavior arises, but it is likely linked to sensitivity of the
nonlinearities when the amount of incoming signal is very low. The modulated noise in Figure
4-13 is an example of how it is difficult to discern the envelope imposed on the noise carrier from
the model outputs. Modulations are observed at the 27-Hz rate, but also many sharp and
seemingly irregular spikes are seen. These observations suggest that the DPK method may
produce arrant spikes in response to a low-amplitude and/or noise-source inputs.

Another observation is that the shape of the response to the 30-Hz modulator app5ears sharper and
more defined than for mel-filtering in Figure 4-12. Variation at this rate is visible near 1000 Hz,
especially in the two-dimensional rendering. The peaks and troughs of the modulating waveform
are easy to see, whereas they appear more subtle in the mel-filtering plot. The generation of
spikes at center frequencies away from the carrier is probably an artifact of the system and was
not observed with natural stimuli. Near the 4000 Hz center frequency, for example, we see spikes
occurring at a rate of about 10 Hz.
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Figure 4-12. Response of the DPK model to a 1000-Hz sinusoidal carrier amplitude-modulated
by a 30-Hz sinusoid. The arrows highlight the high-frequency pulses of unknown cause noted in
the text. Fluctuations near the 1000-Hz carrier are enhanced compared with the outputs of mel-
filtering.
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Figure 4-13. Response of the DPK model to a white-noise carrier amplitude-modulated by a
27-Hz sinusoid. There is a lack of a clear periodically-fluctuating envelope due to the sensitivity
of the DPK model to the noise carrier signal.

Figure 4-14 shows the response of the DPK model to the middle 800 ms of the utterance by
patient DAS 10, described in chapter 3. Recall that this particular voice has a creaky quality, with

large pulses occurring at various intervals. In the figure, we see that these pulses, especially at
350 ms for example, yield appropriately sharp responses in the DPK model output.
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Figure 4-14. Response of the DPK features to the sustained vowel in file DAS 10. Large pulses in

the stimulus-plotted in earlier analyses-give sharp responses in the output. The arrows
highlight several points where the DPK model accentuates large transients.

4.3 ICC Modulation Filterbank Model

The biological motivation for human sensitivity to the amplitude modulation of auditory stimuli
comes from work with a structure in the auditory midbrain called the inferior colliculus, or ICC.

This structure is thought to contain regions that are sensitive to amplitude modulations from about

10-to-1000-Hz as detailed by [26]. This work was exploited in the literature by the same authors
of the DPK model to arrive at a model containing modulation-sensitive channels [7].

The purpose of the biologically-motivated ICC technique is to explicitly represent the amplitude
modulation content of a signal by having modulations appear as excitation in a specific output

band. This process adds a second analysis stage to the general demodulation process discussed in

chapter 3. Using the same bandpass analysis filter structure as the DPK model, the model extracts

a series of time-varying envelopes which are then frequency analyzed by a bank of modulation

filters.
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4.3.1 Model

The ICC model represents modulations at different points across the frequency spectrum. As
depicted in Figure 4-15, the first stage of the system uses the DPK model described in section 4.2,
including pre-emphasis, the same group of twenty overlapping bandpass filters, and identical
compressive nonlinearity stages. Each of the twenty DPK model outputs is then processed
through yet another filterbank, referred to as the modulation filterbank. This set of thirteen
biologically-motivated modulation filters, detailed in Figures 4-16, 4-17, and 4-18, extracts
modulations within the range specified by the passband. This method separates out each carrier
signal using the auditory filterbank and then determines the amplitude modulations applied to this
carrier by using the modulation filterbank [36].

Modulation
Filterbank

DPK --- ICC1, --Processing

DPK1 -- -

--+CC1--+

Speech
Input

-- ICC2 --

DPK2 -- -ICC Output

ICC2, 13 Matrix

20
-- CC20. --

DPK20

S ICC20. ~--

Figure 4-15. Schematic drawing of the baseline ICC model. The DPK block indicates a
one-input, twenty-output system equivalent to that described in section 2.2, containing pre-
emphasis filtering, auditory filtering, and adaptive nonlinearity blocks. The modulation filter
subscripts indicate the DPK output number followed by the modulation channel number.
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Figure 4-16. Frequency response of the fast modulation filterbank used to process each of the

outputs of the auditory front-end. Only the three lowest frequency filters have real impulse

responses, while the others are imaginary and have a one-sided frequency response. The figure

shows that the improved speed of this method discussed in the text is traded off with distorted

low-frequency filters.

Three different versions of the modulation filters are used in the experiments in this thesis. They

are denoted the fast, accurate, and narrow-spacing versions. As with the DPK implementation,

all convolutions are performed using a block convolution overlap-add method with 512-point and

2048-point DFTs as appropriate. For the fast filters, designed after previous work [36], thirteen

modulation filters are used, having center frequencies of 0, 5, 10, 16, 25.6, 40.96, 65.536, 104.85,

167.8, 268.4, 429.5, 687.1, and 1099.5 Hz. Each of these filters has an impulse response that is
cut off at 32.5 ms for efficiency. As detailed in the top panel of Figure 4-16, the response of the

first three filters are symmetric, whereas the remaining filters are complex and thus yield the

analytic signal. The speed increase from using shorter impulse responses comes at a price-the

low frequency modulation filters are blurred, yielding a low resolution.

The second version of the modulation filters, the accurate version uses 225 ms of each filter

impulse-response instead of 32.5 ins. This change requires a longer FFT to be used and makes the

implementation slower by about a factor of four. As depicted in Figure 4-17, this understandably

causes the filters to be narrower in the frequency domain and to exhibit less side-band activity.

The third, narrow-spacing filters shown in Figure 4-18, are similar to the accurate filters, but are

active across a much smaller frequency range and have correspondingly narrower bandwidths. In

order to prevent a strong response at DC and at frequencies out of the range of many noted

dysphonia amplitude modulations, the thirteen center frequencies are placed at frequencies 12,

14.4, 17.28, 20.7, 24.9, 29.9, 35.8, 43, 51.6, 61.9, 74.3, 89.2, and 107 Hz. The highest modulation
channel is at nearly one-tenth of the highest frequency in the fast and accurate filters. Neither the

accurate or narrow-spacing filters use the nonlinear stage of the DPK model. The auditory filter

outputs are used directly in order to preserve the spectral characteristics of each band for the
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modulation filterbank analysis; the choice is a tradeoff between reduction of spectral spread and

enhancement of transient activity.
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Figure 4-17. Frequency response of the accurate modulation filter-bank used to process each of

the outputs of the auditory front-end. This version uses 225-ms impulse response length as

compared to the 32.5 ms used for the fast ICC model. As shown, only the lowest frequency filter

has a real impulse response; the others are imaginary and have only a one-sided frequency

response. This figure shows that the reduced speed of this method is traded off with more

accurate low-frequency filters.
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Figure 4-18. Frequency response of the narrow-spacing modulation filter-bank used to process
each of the outputs of the auditory front-end. This version uses 225-ms impulse response length
as well as significantly narrower spacing when compared to the fast ICC. All filters have
imaginary impulse responses and are thus one-sided in the frequency domain. Compared with the
accurate filters, the center frequencies as well as the bandwidths are reduced and the filters are
more-closely spaced.

4.3.2 Representations of Amplitude Modulations

Figures 4-19 and 4-20 depict the response of the narrow-bandwidth ICC system to the same
modulated sinusoidal and noise carriers used for the mel-filtering and DPK studies. Again, only
the middle one second of the three second stimuli is shown in order to focus the discussion on the
response to amplitude modulations and not onsets and offsets of the signals. The responses to
both of the above synthetic stimuli show peaks around the 6h modulation filter bin having a
center frequency at 29.9 Hz. This corresponds to the modulation frequencies in the stimuli. From
the 2D plots, especially for the noise carrier, one can also observe time variations in the trajectory
at the modulation frequency which is somewhat unexpected. We speculate that this phenomenon
is due to the interference of the additive DC term with the modulating sinusoid during the
analysis stage-artifact AM as discussed in the chapter 3.
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Figure 4-19. Response of the narrow-spacing ICC model to a 1000-Hz sinusoidal carrier

amplitude modulated by a 30-Hz sinusoid. The modulation-filter center frequencies are at 12,
14.4, 17.28, 20.7, 24.9, 29.9, 35.8, 43, 51.6, 61.9, 74.3, 89.2, and 107 Hz. The peak in the filter

energy occurs near 30 Hz.
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Figure 4-20. Response of the narrow-spacing ICC model to a white noise carrier amplitude
modulated by a 27-Hz sinusoid. The modulation-filter center frequencies are at 12, 14.4, 17.28,
20.7, 24.9, 29.9, 35.8, 43, 51.6, 61.9, 74.3, 89.2, and 107 Hz. The peak in the filter energy occurs
near 30 Hz.

Figures 4-21, 4-22, and 4-23 compare narrow-spacing ICC model representations of the middle
800 ms of three dysphonic voices. These three voices-JAB08, DAS 10, and KAH02-were
analyzed in chapter 3 and are synthesized in appendix A. The prior analysis revealed amplitude
modulations on different scales for each utterance. With JAB08, there was strong AM below 10
Hz as well as some period-doubling at the end of the utterance. Figure 4-21 shows time-varying
activity, with strong modulation near 12 Hz throughout the utterance. There is also evidence of
30-Hz modulation at 300 ms in the figure and energy near 60 Hz at both 0 and 500 ms.

Recall that DAS 10 contains glottalization-like responses of several varieties, changing throughout
the stimulus. In Figure 4-22, the modulation activity moves from 70 Hz at the signal onset to a

strong region near 50 Hz, then to a region of complicated AM over many frequencies, and finally
returns to a steady modulation around 70 Hz. Activity at the lower frequencies is complicated,
with the trend being a general decrease with time. It is also interesting to note that the large
irregular glottalization pulses in the middle of the stimulus seem to cause correspondingly large
response pulses throughout most of the modulation frequencies-see the response at 270 ms and

370 ins.

Figure 4-23 shows the response to KAHO2, that was an example of a dysphonic voice with
complex interacting harmonics. The ICC response shows modulations near 50 Hz and 30 Hz that
agree with the difference frequencies between line components as seen in the previous analysis.
Overall, the ICC model reveals details about how the signal changes with time and that are not
apparent in the mel-filter representation or the DPK model outputs.
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Figure 4-21. Response of the narrow-spacing ICC model to a sustained vowel produced by
patient JAB08. The modulation-filter center frequencies are at 12, 14.4, 17.28, 20.7, 24.9, 29.9,
35.8, 43, 51.6, 61.9, 74.3, 89.2, and 107 Hz. The dashed boxes highlight regions of high
modulation activity in the image.
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Figure 4-22. Response of the narrow-spacing ICC model to a sustained vowel produced by
patient DAS10. The modulation-filter center frequencies are at 12, 14.4, 17.28, 20.7, 24.9, 29.9,
35.8, 43, 51.6, 61.9, 74.3, 89.2, and 107 Hz. The dashed boxes highlight several regions of high
modulation. The modulation begins near 75 Hz, becomes lower and then increases again near the

signal end.
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Figure 4-23. Response of the narrow-spacing ICC model to a sustained vowel produced by

patient KAHO2. The modulation-filter center frequencies are at 12, 14.4, 17.28, 20.7, 24.9, 29.9,

35.8, 43, 51.6, 61.9, 74.3, 89.2, and 107 Hz. The dashed boxes highlight active regions near the
50-Hz and 30-Hz modulation frequencies.

4.4 Conclusions

This chapter has addressed three different classes of biological-inspired front-end models for the

analysis of amplitude modulations in speech. The first, mel-filtering, is used with the standard

mel-cepstral feature extraction technique. The second, the DPK nonlinearity model, captures

quickly-changing envelopes while suppressing those that remain static. Finally, the ICC

modulation-filtering model is designed to capture time variations of envelopes extracted using an

auditory-motivated analysis filterbank.

Each model has specific traits that make it unique and useful. The mel-filtering model, which is

based on short-time Fourier transform analysis has the advantage of speed and represents spectral

components such as formant frequencies. Its downside is that it is based on uniform bandwidth

filters and blurs time information at high frequencies compared to models based on variable

bandwidth filters [34]. In contrast, the DPK model uses a logarithmic bandwidth filterbank in

combination with an adaptive nonlinearity stage to enhance fast AM in a signal. Compared with

mel-filtering, the DPK approach does not blur quickly varying signals but is sensitive in

frequency regions of low energy and/or noise. The DPK representation gives transient activity,

for example with creak, but blurs out spectral formants. The ICC model adds an additional
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analysis step to the DPK method's logarithmic filterbank, allowing individual modulation
components to be separated, automating what was observed in the spectrograms of chapter 3. The
ICC representation has the advantage of characterizing amplitude modulation information but, at
the same time, removes an explicit representation of formants and other spectral characteristics.

In the next chapter, we incorporate our three models into an automatic dysphonia recognition
system. The system is designed to use the AM extraction methods presented in this chapter to
capture the acoustic fluctuations in disordered speech. In order to exploit the complementary
advantages of each technique, we also introduce a technique with which to optimally combine the
results obtained with the different models.
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Chapter 5

Automatic Dysphonia Recognition

A dysphonia recognition system consists of front-end modeling, feature extraction, and pattern
classification stages as depicted in Figure 5-1. This architecture is also common to other
recognition systems such as speech, speaker, and language recognition systems [39]. In our work,
the front-end is one of the auditory models discussed in previous chapters. The purpose of this
stage is to transform a speech signal into a lower-dimensional representation that provides speech
attributes such as formant structure and amplitude modulations. From this front-end, the model
outputs are sent to a feature extraction stage which samples the signals and performs post-
processing tasks such as channel normalization. Pattern classification is the final stage, where a
stream of feature vectors is analyzed in order to compute the likelihood that the original speech is
from a patient with a certain voice disorder.

Model Feature
Outputs Vectors

Speech Front-End Feature Pattern Likelihood
Signal Model Extraction Classification Score

Figure 5-1. Overview of a dysphonia recognition system. A speech signal enters and is processed
by an auditory model to produce a series of output signals. From these outputs, features are
extracted and sent to an automatic classifier which estimates how likely it is that an utterance
indicates a certain voice disorder.

The purpose of this chapter is to discuss the application of the auditory models described in
chapter 4 to the task of automatic dysphonia recognition. Specifics on the setup of each
experiment are given as well as a full description of the techniques to combine results obtained
using different features extraction methods. A comparative analysis is presented of the relative
performance of the features derived from variations of the auditory models and also illustrates
advantages gained by optimally fusing recognition results from different extracted features.
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5.1 Feature Extraction

Feature extraction is the process of sampling the outputs of a front-end model such as mel-
filtering, nonlinear adaptation (DPK), or inferior colliculus modulation filtering (ICC) and using
various post-processing schemes to enrich the data. This section describes the feature extraction
stages for each of the three main models of this thesis. Details of feature extraction are varied
within experiments and may differ slightly from the descriptions given below. The intent is to
provide the most commonly used feature extraction methodology for each model.

5.1.1 Mel-Cepstral Feature Extraction

In chapter 4, we described the front-end filtering model used in the mel-cepstrum as a series of
triangular filters. In addition to this stage, the standard mel-cepstrum involves computing a
quantity called the inverse discrete cosine transform (IDCT) of the log energies of the model
outputs [34].

In Davis and Mermelstein's [8] description, mel-frequency cepstral coefficients are calculated as:

20

MFCC, = Z log{Emel(i,k)}cos i k - i=1, 2, -, M
k=A 2 20

where i is the index of the coefficient, M denotes the number of coefficients being taken-Davis
and Mermelstein use both 6 and 10-and Emei(i,k) is the energy of the k mel-filter output. In
order to calculate the output energy of a given auditory filter, k, the squared discrete Fourier
transform (DFT) magnitude of the input is weighted using one of the 20 triangular functions
shown in chapter 4 and the sum is taken across the DFT bins.

Quatieri [34] has a similar formulation to that used in this chapter's experiments given as:

1 R-1 2gk
Cie[n,m]=- Z log{Ee1 l (n,k)}cos( ki)

R k=O R

As above, Eme(n,k) denotes the magnitude squared of the kth output of the mel-filter bank at
sample n; m indicates the cepstral coefficient number and R equals the total number of
coefficients. Quatieri's description of feature extraction is different from Davis and
Mermelstein's in that the number of filters and cepstral coefficients are equal.

Feature extraction for the mel-cepstral features is performed by first uniformly sampling the mel-
cepstral output every 10 ms, equivalent to every 80 samples at a sampling rate of 8000 Hz. The
zeroth bin of each mel-cepstral feature vector, corresponding to a multiplicative scale factor of
the speech signal, is then removed. For the dysphonia recognition experiments described in
following chapters, this output is then processed using silence removal, channel normalization,
and feature differencing stages. The first step selects which output frames contain speech and
which contain silence so that the final feature sets reflect only speech regions.

Two different types of channel normalization were performed. The first type, cepstral mean
subtraction, or CMS, calculates and subtracts the mean value of each feature across all the voiced
frames [34]. In the cepstral domain, such a subtraction corresponds to removing any constant
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filtering of the signal, which is presumed to arise from recording-dependent properties of the
signal path. For example, such processing is intended to remove the relative filtering effects of
different telephone microphones and transmission lines. RASTA, the second type of channel
normalization, filters the trajectory of each feature with time, emphasizing those fluctuations at
rates between about 0.26 Hz and 12.8 Hz [17]. Such modulations are important to the linguistic
information contained in the signal while other fluctuations are viewed as noise. For the mel-
cepstrum, such processing has been shown to improve speech recognition in the presence of a
convolutional channel.

The last stage of the feature extraction system, referred to as the delta-feature calculation, finds
the difference between the values of neighboring frames. The goal is to capture signal changes
with time. In the implementation used in this thesis, frames 20 ms forward and 20 ms backward
are taken into account when calculating these delta features through a form of interpolation. The
result of these three processing stages are 19 mel-cepstral features and 19 delta-cepstral features
for a total of 38 features per output vector.

5.1.2 Dau, Pfischel, and Kohlrausch (DPK) Feature Extraction

In the DPK feature extraction method, features are uniformly extracted from the output of the
DPK model every 5 ms, corresponding to every 40 points at a sampling rate of 8000 Hz. As
described for the mel-cepstra, the IDCT is calculated so as to mimic the latter stages of mel-
cepstral processing. At this point, the zeroth bin of each vector is discarded and speech detection,
channel normalization-including RASTA and CMS-and delta-features are used. The resulting
19 DPK and 19 delta features yield a total of 38 features as output by the feature extraction stage.

5.1.3 Inferior Colliculus (ICC) Feature Extraction

Extracting a relatively short vector from the ICC model is not simple. In particular, as shown in
Figure X, the technique yields a very large (20 by 13 = 260 element) matrix for each frame. Such
an output is inefficient and in order to interact best with automatic systems, must be minimized.
For this thesis, two different techniques are used to reduce the model output, based on methods
introduced in [36]. The first approach is to sum across all of the auditory channels yielding 13
outputs, one for each modulation channel. One interpretation of such a value is as a "common
modulation" rate across auditory channels. This technique is designated ICC summation and is
described by the following formula where Y,[m,n] is the sum for the mh modulation filter channel
and the nh sample and Xi[m,n] is the magnitude of the signal at this point:

R

Y[m,n] = ZXi[m,n]
l=1

The second approach is to calculate the centroid of the energy across modulation channels,
yielding one output for each of the twenth auditory filter bands. This output can be interpreted as
an indicator of the "information rate" in the signal at a given time, with more active modulation
bands contributing more to the centroid value. This technique is designated ICC centroid and is
described by the following formula where Y[m,n] is the centroid for the mh auditory filter
channel and the n' sample, W, is a weight proportional to the center frequency of the l'
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modulation filter, and XI[m,n] is the magnitude of the output of the l modulation channel of the
mth auditory filter:

R

Y [m, n] = 1=1,

Z X 1
2 [m,n]

1=1

As with the DPK extraction technique, a feature vector is obtained from all versions of the ICC
model output every 5 ins. The outputs of the different ICC summation and ICC centroid models,
however, are often extracted differently. For the ICC summation models, the cepstrum is taken
and the first bin of the feature vector discarded to take advantage of some of the presumed
benefits of the cepstrum observed for mel-cepstral and DPK features. Speech detection, both
forms of channel normalization, and delta features are used for these features as well. In contrast,
because the output of the ICC centroid model is not directly the output of a filtering process, the
cepstrum is not taken and RASTA is not implemented. CMS is applied, however, under the
hypothesis that unchanging elements of the signal do not contain useful information about the
speech signal. In total, then, the ICC summation method yields 12 modulation features and 12
delta features for a total of 24 outputs and the ICC centroid method yields 20 features plus 20
delta features for a total of 40 features per frame.

5.2 Pattern Recognition

The purpose of the classification stage in a recognition system is to label an utterance as coming
from one or more of several groups. Figure 5-2 shows an overview of this process for dysphonia
recognition, with a single utterance being assigned a percentage chance of containing each of
several different voice disorders. As discussed in chapter 2, an example voice is classified as
being part of each category. This is different from other recognition tasks where possible classes
for an utterance are mutually exclusive.
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Model Feature
Outputs Vectors

Speech Front-End Feature Pattern Likelihood
Signal Model Extraction Classification Score

65% Chance

Feature 20% hma -
Vectors 20% . ..............

95% Chance

Voice Disorder Categories

Figure 5-2. Overview of recognition system for dysphonia. The feature vectors from an utterance
are obtained and the chance that they contain each of a set of three voice disorders is calculated.
As discussed in chapter 2, voice disorder types are not mutually exclusive and a patient may
suffer from them all.

5.2.1 Gaussian Mixture Model (GMM) Classifier

In this thesis, we use a pattern recognition scheme based on a Gaussian mixture model or GMM,
of the probability density function (pdf) of feature vectors. The recognition system is a modified
version of the existing Lincoln Laboratory GMM-based speaker recognition system [40] which is
widely used for speaker and language recognition tasks. In order to describe the basic theory of a
GMM-based recognizer, let us devise a mock recognition experiment depicted in Figure 5-3.
Here, we show a hypothetical machine that measures the weight of a person and attempts to
determine whether or not the object on the machine is an adult human, 18-years-old or above,
using this information. In this example, our feature set will simply be one weight measurement.
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4 V

7 Training Cases Test Case

Adult Human /\

Not Adult Human

Histogram of Weight Statistical Model (GMM)

Figure 5-3. Hypothetical example demonstrating the action of a GMM-based pattern recognition
system. The machine in the figure uses a single measurement of the weight of each subject and
determines whether it is an adult human.

On the top left, we see the histogram of the measured weights of a large set of adults with
Gaussian distributions fit to this data. This model is called the target model. In the bottom left,
there is the histogram and GMM of measured weights from a large set of non-adult humans
including children, animals, and other background cases. Using these models of targets and
background cases, the goal is to correctly classify a test case, shown with relation to the models.
In order to obtain a value related to the likelihood that the test case is a human adult, we first
calculate a quantity called the log-likelihood-ratio value, computed as [34]. From the ratio of
probabilities

P(weight from adult human) _ P( X) _ p(X |c)P(Qc)/P(X)

P(weight not from adult human) P(A2 | X) p(X IA2P(Af)/P(X)

we form the log-likelihood ratio

A(X) =log[ p(X | Ac) )- log[ p(X I A )]

where Ac denotes the PDF of weights for adult humans and X is the weight of the test case. In
order to make a decision as to whether a weight indicates an adult human or not, we must set a
value, c, called the criteria or threshold, which the log-likelihood-ratio is compared against using
the following rule:

A(X) > c, accept as adult human

A(X)<c, reject
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If a large number of test cases are used, we can obtain a miss probability-when an adult human
is mistakenly classified as the other group-and a false alarm probability-when a non-adult-
human subject is mistakenly classified as adult human. In order to characterize such an
experiment, we use a plot called a detection error tradeoff or DET curve. This plot, which graphs
miss probability versus false alarm probability for each possible value of c, allows us to
characterize how well the system is able to recognize the adult human class. We can also use a
value called the equal error rate, or EER, to represent the system-this is defined as the total
percent correct at the value of c when miss and false alarm probabilities are closest together. We
will use all three of these tools extensively in this thesis.

5.2.2 Extension of the GMM to Dysphonia Recognition

The above example illustrates in part our approach to dysphonia recognition. First, for each voice
disorder, the voice database is split into two groups-those files from patients with a certain
disorder and those files not from patients with the disorder. Detecting a voice differs from the
adult human detector example, however, in that we are concerned with detecting a wide range of
voice disorders. In this way, we design a system as a series of binary decision units as shown in
Figure 5-4. The relations used for the classifier units are similar to above [34]:

P(weight from adult human) _P(k X) _ p(X IiC)P(?.)/P(X)

P(weight not from adult human) P(A2 I X) p(X 1A)P(A)/P(X)

with the log-likelihood ratio calculated as

A( X) = log[ p(X |I /)] - log[ p(X I AC )]

and the detection decision made as

A(X) > c, accept as voice disorder n

A(X)<c, reject

The large vector X = {x0 , x 1,..., xM 1} is the stream of multidimensional features generated by the

test utterance. It is important to realize that there are several other approaches to constructing a
recognition system than the one presented such as those in [40]. Our choice of binary decisions is
due to factors discussed in chapter 2 including the small number of available utterances in the
Kay database and the overlapping nature of dysphonia classes for one file.
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Feature
Vectors

Normal/ Pathological
Pathological Likelihood

Detector Score

Paralysis Paralysis

Detector +Likelihood
Score

A-P Squeezing A-P Squeezing

Detector - Likelihood
Score

Hyperfunction Hyperfunction

Detector +Likelihood
Score

Nodule, Polyp, Nodule, Polyp,
And Cyst and Cyst
Detector Likelihood

Score

Figure 5-4. System of binary voice disorder detection units used to produce the likelihood of a
certain diagnosis. Details on the selection of each data set are provided in section 5.2.3.

5.2.3 Training and Testing Procedure

In order to build target and background models for the Kay database [1], list files grouping the
speakers into categories for training and testing were generated using a custom Matlab program.
The program first builds a system of records from the spreadsheet diagnosis file provided with the
dysphonic speech files. This database includes a separate record containing all files for a specific
patient number. In many cases, no patient number is provided for a file, and so these files were
each put into their own record. Each file includes the patient sex, age, visit date, clinician
diagnoses, smoking history, native language, and origin. For some files, little or none of this
information is provided. Also noted is whether the utterance contained in the file is of normal or
pathological speech, and whether it is a sustained vowel or rainbow passage utterance. Recall the
more complete description of the database given in chapter 2.

The software developed creates collections of files based on search criteria, and these collections
could be combined using AND, OR, XOR, and NOT set operators in order to arrive at collections
of files with very particular properties. The ability to split a collection of files into a user-
specified number of groups was also included.

Five categories of dysphonia were chosen for recognition experiments. The first two,
normal/pathological and anterior-posterior squeezing had been tested previously in the literature
with a GMM system [10] and were used as baseline experiments. The other three categories,
hyperfunction, paralysis, and nodules, polyps, and cysts were chosen as representative of major
categories revealed within the voice disorder discussion of chapter 2. All audio was digitally
converted from a proprietary PCM format to 8 kHz PCM way files. For the experiments
described below, the "rainbow passage" sentence files are used, each less than 12 seconds in
length. The process used to build each of the training and test sets was:
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(1) Only the Rainbow passage sentences are used in our experiments, but the database was
still restricted in this step to those files having both rainbow passage and sustained vowel
recordings. The purpose of this step was to allow the possibility of future comparisons
between recognition performance of sustained vowels and continuous speech.

(2) All the files containing the desired set of diagnoses, listed in Table 5.1, were extracted as
the target files. Any pathological files also containing the note "normal" were discarded.

(3) All files in the database without a patient number and diagnosis information were
removed. About a third of the database fit this category.

(4) The background set consisted of any files not found in step 2 or eliminated in step 3. This
group included the 53 utterances recorded from normal patients.

(5) 80% of each of the target and background sets were used for training, 20% were used for
testing. There was no overlap between patients or files in the training and testing sets or
between the target and background classes.

Table 5.1. The disordered voice database used contains many diagnoses. The phrases in this table
are synonyms for the categories used in our dysphonia recognition system. In order to build lists
of files for each of the five classes listed on the left, we searched the database for the terms listed
on the right. For example, in order to build the paralysis dataset, we used files given the clinical
diagnoses "paralysis" or "paresis."

Class Diagnoses Corresponding to this Class
Pathological Pathological
A-P Squeezing "A-P compression" "AP compression" "A-P squeezing"
Hyperfunction "hyperfunction
Paralysis "paralysis" "paresis"
Nodules, Polyp "vocal nodules" "vocal fold polyp" "cyst"

5.2 Fusion Techniques

A combination of Perl and Matlab tools were built to accomplish an optimum linear fusion of
scores resulting from different auditory models. As depicted in Figure 5-5, such a technique
amounts to arriving at the flat surface (for example, a line or a plane) in the N-dimensional space
of scores which best discriminates scores based on a lowest EER criteria.
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Figure 5-5. Schematic depicting the task of finding optimal score weights as the problem of
finding the angle of the line which best discriminates two classes of data. We considered the best
surface to be the one yielding the lowest EER.

An exhaustive search in a multi-dimensional plane is used to arrive at the lowest possible EER
defined for this section as the average of percent miss and percent false alarm when the percent
miss and percent false alarm are closest. It is realized that there are possibly existing linear
regression techniques to make this process more efficient, but these were not used in this thesis.
The algorithm involves calculating the linear combination of the score on each dimension of the
line (more generally, a multi-dimensional plane) for which the lowest average EER is obtained.
This set of weights is incremented by steps of constant degrees (in polar coordinates) and the
minimum value of the resulting average EER versus degrees function is found. To compute the
best EER at each angle, the threshold of the linear sum is calculated using a function-minimizing
technique built into the Matlab software. As we are looking for an optimal combination of
weights, there are no separate training and testing phases to this process. This optimal
combination shows the limit at which such a system can perform.

The steps of this procedure for the two-class problem are as follows:

(1) Iterate slope of discriminant line using 4000 uniform steps in angle between 0 and 2R. The
angle was chosen to search the space of weights in a way that best characterized the rotation of
the decision surface.

(2) Calculate EER by sweeping the threshold. The threshold value for which the % error for the
two classes was closest was found. The percent-error rates for each of the classes at this point
were then averaged to yield a value, denoted as the average EER.

The relation of the two weights to the iterated angle, 0, is illustrated in Figure 5-6 with
W1 = cos(O) and w 2 = sin(O). This diagram also shows the method to construct the descriminant
line wjx + w2y = c, where c is the value of the decision criteria, x is the value of the first score and
y is the value of the second. In our dysphonia recognition problem, if wix + w2y > c, we classify
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the test point as the target, and if wix + w 2y < c, we classify the test point as a background case. In
other words, an (x, y) score point is classified as a target only if it is in the region

W2  W2

This principle can be generalized to higher dimensions. For example, three scores can be
optimally combined by finding the decision surface wIx + w 2y + w3y = c.

(a) "(b) 2 "
( (Discriminant Line

- Cw2 sin(6) r

w1 = cos(e) Score 1 x = Score 1

Figure 5-6. Geometry used to determine the best discriminant line for the two-class recognition
problem. (a) Diagram of how wl and w2, the linear weights for score 1 and score 2 respectively,
were obtained as 0 was swept through 4000 increments from 0 to 2R. (b) Every possible
discriminant line can be parameterized by the angle 0 and c, the tangential distance from the
origin. The equal error rate for each 0 tested was calculated by finding the c value at which the
difference was smallest between the percent of Class A labeled as Class B and the percent of
Class B labeled as Class A.

As an example, Figure 5-7 shows a polar plot of average EER versus angle for a fusion
experiment involving mel-cepstrum and fast ICC centroid features (given later in Figure 5-). The
slope of the discriminant surface, denoted by the dotted line, is actually perpendicular to the
angle (of the linear regression) plotted. As can be seen in the figure, a slightly lower EER results
for a linear regression between the extremes of only mel-cepstral (0 degrees in the figure) and
only fast ICC centroid (90 degrees). The angle of the regression line for the best average EER is
close to 48 degrees, corresponding to weights of 0.4685 and 0.5315.
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Figure 5-7. Effects of varying feature weight on average EER for a simple linear fusion.
Quadrant I of a polar plot is shown. Each point on the plot can be described using (r, 0), where r
is the EER at the point and 0 is the angle perpendicular to the discriminant line producing that
EER. Combinations of weights resulting in points closer to the origin of the plot are said to give
higher performance. The approximate angle of the optimum decision surface is shown with the
dotted line.

5.4 Dysphonia Recognition Experiment Results

We performed recognition experiments using a 64-mixture GMM' system for each of five
dysphonia categories: nomal/pathological, A-P squeezing, hyperfunction, paralysis, and vocal-
fold lesions. With the testing and training sets described in section 5.3, we ran five different tests,
each using a different set of files for training and testing. This technique, called a jackknife [32],
allows us to use every voice as both a test and training case.

The results of the dysphonia recognition experiments are plotted in the set of DET curves on the
following six pages. The top panel on each pages shows performance without score fusion and
the bottom panel shows results using score fusion with the mel-cepstrum. Four feature sets-mel-
cepstrum, DPK nonlinearity, fast ICC centroid, and fast ICC summation-are tested for each of
the five systems. Additionally, accurate and narrow-spacing ICC summation features are

C2

presented for the normal-pathological case2.

Figures 5-8 through 5-11 present results for the normal/pathological test. Without fusion, the
features do not appear to have a performance advantage over the mel-cepstrum. The fast ICC
centroid, accurate ICC summation, and narrow-spacing ICC summation approach do, however,
improve performance when fused with mel-cepstrum. This is evidence that the fast ICC centroid,

1A preliminary experiment (not shown) was run to choose the best-performing number of mixtures.
2 Due to time restrictions, these features have not been run on the other dysphonias.
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the accurate ICC summation, and the narrow-spacing ICC summation provide complementary
information to the mel-cepstrum alone.

Figures 5-12 and 5-13 show the A-P squeezing test. We see much reduced performance for all
four features. In Figure 5-13, the mel-cepstrum fused with the fast ICC centroid model seems to
add complementary information. The EER of this fusion is 38.72 percent compared with 42.68
percent for mel-cepstrum. Hyperfunction recognition results are shown in Figures 5-14 and 5-15.
The systems perform on the order of mel-cepstrum: the best EER for this recognition is 38.40
percent.

Figures 5-14 and 5-15 show the paralysis recognition experiments. Near the EER, the fast ICC
centroid shows increased performance relative to mel-cepstrum before fusion. With fusion, the
curves suggest that the fast ICC centroid and summation features add complementary informaion
to mel-ceptrum. The fast ICC centroid curve is consistently to the left of the mel-cepstral curve.
Vocal fold lesion detection shown in Figures 5-16 and 5-17 is another case where the fast ICC
summation curve is to the left of the mel-cepstral curve. In this case, however, the fast ICC
summation curve is also the furthest to the right in the individual experiments. The EER score for
the fast ICC is 36.86 percent compared with 41.86 percent for the mel-cepstrum alone.

The evidence presented needs to be verified on a larger data set as the 95-percent-confidence
error bars for the above measurements are large: between about 6 and 12 percentage points wide
for the normal/pathological case. This issue arises because the number of target and background
cases is limited. The normal/pathological class has 397 target and 53 nontarget files, A-P
squeezing has 164 target and 266 nontarget files, hyperfunction has 263 target and 161 nontarget
files, paralysis has 81 target and 365 nontarget files, and vocal fold lesions has 43 target and 407
nontarget files.

91



----

-.

........... ~ ~ ~ ~ I L .. . . . .-.. . . . .

3 5 10
False Alarm probability (in %)

-- Mel-Cepstrum
-- - DPK
... .......Fast ICC Centroid
- - -Fast ICC Summation

Figure 5-8. DET curves using mel-cepstrum, DPK, and fast ICC features. The mel-cepstral
features perform with an EER of 3.77% while DPK, fast ICC centroid, and fast ICC summation
yield EERs of 9.43%, 8.06%, and 9.82% respectively. The task is normal/pathological
classification.

Mel-Cepstrum
- - DPK + Mel-Cepstrum

---.. Fast ICC Centroid + Mel-Cepstrum
- Fast ICC Summation + Mel-Cepstrum

3 5 10
False Alarm probability (in %)

Figure 5-9. DET curves using DPK, fast ICC centroid, and fast ICC summation features fused
with mel-cepstrum. The mel-cepstral model has a 3.77% EER. The fusions between mel-
cepstrum and DPK, fast ICC centroid, and fast ICC summation have EERs of 3.77%, 3.77%, and
3.77% respectively. The task is normal/pathological classification.
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Figure 5-10. DET curves using the fast, accurate, and narrow-spacing models of the ICC. The
mel-cepstral model has a 3.77% EER and the narrow-spacing ICC, fast ICC, and accurate ICC
summations result in EERs of 5.66%, 8.06%, and 7.55% respectively. The task is
normal/pathological classification.

~-Mel-Cepstrum + Mel-Cepstrum
--- Narrow-Spacing ICC Summation + Mel-Cepstrum

-.--.----- Fast ICC Summation + Mel-Cepstrum
- - -- Accurate ICC Summation + Mel-Cepstrum

............... - - -
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Figure 5-11. DET curves using narrow-spacing ICC, fast ICC, and accurate ICC summation
features fused with mel-cepstrum. The mel-cepstral model has a 3.77% EER. The fusions
between mel-cepstrum and narrow-spacing ICC, fast ICC, and accurate ICC summation have
EERs of 2.02%, 3.77%, and 3.27% respectively. The task is normal/pathological classification.
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Figure 5-12. DET curves comparing DPK, and fast ICC features. The mel-cepstral features
perform with an EER of 42.68% while DPK, fast ICC centroid, and fast ICC summation yield
EERs of 45.73%, 43.61%, and 44.51% respectively. The task is A-P squeezing classification.

Mel-Cepstrum
- - - DPK + Mel-Cepstrurm
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Figure 5-13. DET curves using DPK, fast ICC centroid, and fast ICC summation features fused
with mel-cepstrum. The mel-cepstral model has a 42.68% EER. The fusions between mel-
cepstrum and DPK, fast ICC centroid, and fast ICC summation have EERs of 41.46%, 38.72%,
and 39.63% respectively. The task is A-P squeezing classification.
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Figure 5-14. Comparison of mel-cepstrum, DPK, and fast ICC features. The mel-cepstral features
perform with an EER of 39.16% while DPK, fast ICC centroid, and fast ICC summation yield
EERs of 40.99%, 42.86%, and 43.35% respectively. The task is hyperfunction classification.
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Figure 5-15. DET curves using DPK, fast ICC centroid, and fast ICC summation features fused
with mel-cepstrum. The mel-cepstral model has a 39.16% EER. The fusions between mel-
cepstrum and DPK, fast ICC centroid, and fast ICC summation have EERs of 39.54%, 38.40%,
and 39.75% respectively. The task is hyperfunction classification.
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Figure 5-16. Comparison of mel-cepstrum, DPK, and fast ICC features. The mel-cepstral features
perform with an EER of 33.33% while DPK, fast ICC centroid, and fast ICC summation yield
EERs of 34.57%, 42.86%, and 43.35% respectively. The task is paralysis classification.
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Figure 5-17. DET curves using DPK, fast ICC centroid, and fast ICC summation features fused
with mel-cepstrum. The mel-cepstral model has a 33.33% EER. The fusions between mel-
cepstrum and DPK, fast ICC centroid, and fast ICC summation have EERs of 30.86%, 29.63%,
and 30.81% respectively. The task is paralysis classification.
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Figure 5-18. Comparison of mel-cepstrum, DPK, and fast ICC features. The mel-cepstral features
perform with an EER of 41.86% while DPK, fast ICC centroid, and fast ICC summation yield
EERs of 48.84%, 41.52%, and 52.83% respectively. The task is polyp, nodule, and cyst
classification.
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Figure 5-19. DET curves using DPK, fast ICC centroid, and fast ICC summation features fused
with mel-cepstrum. The mel-cepstral model has a 41.86% EER. The fusions between mel-
cepstrum and DPK, fast ICC centroid, and fast ICC summation have EERs of 39.56%, 39.53%,
and 36.86% respectively. The task is polyp, nodule, and cyst classification.
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5.5 Conclusions

In this chapter, we integrated the biologically-inspired features of chapter 4 into an automatic
dysphonia recognition system. Our system recognizes five disorders-general pathology.
hyperfunction, A-P squeezing, paralysis, and vocal fold lesions. The experimental results suggest
that biologically-inspired methods provide complementary information to one another as
proposed in chapter 4.

Dysphonia recognition using the Kay database is reported in the literature by several groups.
Dibazar and Narayanan [10] describe a normal/pathological classification system consisting of a
GMM classifier and using mel-cepstral features on both the rainbow passage and sustained
vowels. They report a 2.54 percent EER for this experiment, which is close to our best fused
score of 2.02 percent with the narrow-spacing ICC summation features. With sustained vowels,
Dibazar and Narayanan's best EER is 1.70 percent. These authors also perform A-P squeezing
recognition on 163 A-P squeezing subjects, dividing this group into four different severity
levels-52 minor, 57 mild, 39 moderate, and 19 severe. In this experiment, they test sustained
vowel utterances only, achieving 73 percent classification [10].

Objective clinical speech methods, such as shimmer and jitter discussed in chapter 2, can be used
as a model for feature extraction. Godino-Llorente et al. use the Kay Multi-Dimensional Voice
Program to extract perturbation features including jitter, shimmer, and harmonic-to-noise ratio.
Using these features in a sustained-vowel dysphonia normal/pathological recognition experiment,
they obtain 5.13 percent EER in their highest-performing system. Parsa and Jamieson devise
feature extraction methods capable of extracting jitter, shimmer, and harmonic-to-noise ratio in
both sustained vowels and the rainbow passage. Their highest-performing features, based on the
harmonic-to-noise ratio, yield classification rates of 96.5 percent for sustained vowels and 95.6
percent for the Rainbow passage [32]. Our results suggest improved performance with relation to
these studies. Our best fused EER for the normal-pathological case was 2.02 percent using the
narrow-spacing ICC summation model.
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Chapter 6

Conclusions and Future Work

6.1 Summary

This thesis has motivated and demonstrated the use of biologically-inspired models to capture
amplitude modulations in dysphonic speech. In chapter 2, we began by discussing dysphonia, first
presenting a taxonomy for voice quality derived from the literature in terms of acoustic and
perceptual traits and later providing a connection between these characteristics and physiological
disorders. From this work, we found reports in the literature of time-varying acoustic amplitude
patterns in voice. We also highlighted complications of the Kay Disordered Voice Database [1]
used in this thesis as the dysphonia recognition corpus.

In chapter 3, we derived an interpretation of time-varying acoustic patterns in voice using AM
theory from communications engineering. The model we developed views bandpass analysis,
such as used by the short-time Fourier transform, as a form of signal demodulation. Through a
case study of seven utterances taken from the Kay database, we found that the interaction of
spectral components can create different patterns in different frequency bands. We also observed
cases where both the spacing between components and their relative frequencies influence
fluctuations seen in the time domain.

Chapter 4 described the motivation, design, and implementation of biologically-inspired models
for the demodulation and enhancement of AM in speech. We presented three models-
mel-filtering, Dau, Puschel, and Kohlrausch (DPK) nonlinear adaptation, and inferior
colliculus (ICC) modulation filtering-previously used in the fields of speech, language, and
speaker recognition. We supported the assertion that these models extract complementary voice
properties by studying their responses to synthesized AM sinusoids and noise as well to
dysphonic speech. The mel-filtering model was shown to represent spectral formant information
but blurred transient activity. In contrast, the DPK model traded formant information for the
property of enhancing quickly-varying components of the voice. The ICC model explicitly
represented amplitude modulations in the signals through a second bandpass analysis stage.

Chapter 5 linked the auditory models in chapter 4 with feature extraction and pattern
classification systems to build an automatic dysphonia recognition system. Using the dysphonia
database discussed introduced in chapter 2, we created a system to recognize five different speech
diagnoses-general pathology, hyperfunction, anterior-posterior (A-P) squeezing, paralysis, and a
class of vocal fold lesions. Through the results of our experiments, we saw evidence for improved

99

__ _ _=d"



performance over mel-cepstra alone when fusing systems based upon the three biologically-
inspired models. The results support our hypothesis that the auditory-system models extract
complementary acoustic information about voice quality.

6.2 Contributions of this Thesis

This thesis advances the connection of amplitude-modulation theory to the analysis of voice
quality. Specifically, we describe bandpass analysis systems from the perspective of amplitude
demodulation and relate this to speech. Speech has differences from AM signals in traditional
communications engineering including (1) potentially overlapping source bandwidths, (2) non-
sinusoidal carrier sources and (3) an unknown numbers or source bandwidths. In our work we
find that different AM patterns occur in different frequency bands. This perspective challenges
current dysphonia analysis methods that analyze AM in the time-domain signal. A frequency-
dependent analysis differs, for example, from the recent classification schemes based on
fluctuations in time waveforms as performed by Titze [47] and by Garratt and Krieman [14].
Although previous authors have addressed the existence of amplitude modulation patterns in
speech and mentioned spectral correlates, there has been found no previous attempt to classify
speech based on different time-varying envelopes in different frequency bands.

This thesis has contributed to methods used for automatic dysphonia recognition by providing
new AM-sensitive features. It also discusses the methods used to perform recognition
experiments on multiple dysphonia types, and implements the automatic recognition of five
different classes of dysphonia. This has not been reported previously in the speech literature.
Additionally, we show that features created using biologically-inspired AM-sensitive models may
provide complementary information to state-of-the-art mel-cepstral features. This strengthens the
case for their use, initially presented for speaker recognition in [36].

6.3 Future Work

Chapter 2 presented an analysis model for AM in speech, but a corresponding AM synthesis
model for speech has yet to be developed. In future research, we plan to extend current models of
the dysphonic voice [3, 16] to understand the modulations they produce. By developing the
capabilities to analyze and synthesize speech concurrently, we propose to iteratively improve our
methods. That is, both the analysis and synthesis models will begin with simple cases; as
synthesis abilities improve, we propose to develop more complicated analysis methods to
understand them. Appendix A contains a first step toward this goal, adapting the well-understood
Klatt synthesizer model to three case-studies of dysphonic voice.

The recognition experiments in chapter 5 remain inconclusive until we can obtain a database with
a larger number of speakers. The Kay database has a superset called VoiceBase that contains near
10,000 patients that we are attempting to obtain and use. Additionally, a study of dysphonia
recognition performance by clinicians would be useful to better understand limits of machine
performance. A similar study, performed for speaker recognition could guide this research[41].
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Appendix A

Synthesis of Dysphonic Voices Using the
Klatt Synthesizer

A.1 Introduction

In the clinical evaluation of the voice, the condition of the larynx is commonly studied using
visual examination with optical tools [49], perceptual rating scales [9], and objective acoustic
measures [29, 33, 50]. Partially due to the invasiveness of the first and problems with the
reliability and utility of the last two of these methods [37], there continues to be a search for new
techniques by which to determine the state of the voice production mechanisms. Recent efforts
have pointed to analysis-by-synthesis of dysphonia, the acoustical manifestation of an underlying
voice disorder, as being a possible improvement upon previous acoustical evaluation
mechanisms. In this scenario, a clinician attempts to match the quality of a synthesized utterance
to a patient's voice using a limited set of parameters [2, 13]. The hope is that the values of these
parameters will provide a more robust representation of the underlying quality of the voice than
existing objective and subjective measures.

Aside from the applications in the clinical domain, a better understanding of how to synthesize
voice disorders effectively may contribute to knowledge about how current speech synthesis
models might be made more realistic. It becomes apparent from the literature that the line
between normal and abnormal voices is not a strong one [25]. It can be hypothesized that the
characteristic roughness or breathiness affecting a normal speaker's voice is really very similar,
perhaps even in its mechanism of production, to that of a dysphonia. Thus, one of the goals of a
better understanding of the synthesis of dysphonic voices is to motivate new tools for the analysis
of both normal and pathological voices.

The following questions are addressed by the current study:

(1) Can the procedure reported in [2] to synthesize dysphonic tokens of the vowel /a/ be
replicated and applied to the new data effectively?

(2) Can analysis of the signal through synthesis help indicate what makes the voices sound
abnormal?
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A.2 General Methodology

In the present study, three different voices denoted JAB08, KAHO2, and DAS10 were
investigated. The tokens were all of the sustained vowel /a/ and were extracted from the KAY
Disordered Voice Database recorded in a clinical environment at the Massachusetts Eye and Ear
Infirmary [1]. The set of voices used were chosen after surveying more than 300 voice samples in
the database. JAB08 was selected as a strong example of tremor, a muscle control disorder;
KAHO2 was picked as a distinctly hoarse voice with many aperiodic components; DAS10 was
chosen because it sounded extremely creaky and demonstrated repeating patterns of both large
and small glottal pulse. This small sample of the data was not intended to capture the full range of
possible dysphonic characteristics, but was hoped to provide some insight into the challenges of
synthesizing disordered speech.

Synthesis was performed using the KLSyn formant synthesizer [23] with the KLGlott88 voicing
source [22]. All voice samples were lowpass filtered and downsampled to a 10 kHz sampling rate
using the software program Wavesurfer and were brought into SpeechStation 2 for analysis. All
spectral measurements were performed using the SpeechStation spectrum tool, with a 51.2 ms
Hamming window. In order to aid in the measurement of pitch and formant frequencies,
SpeechStation's formant and pitch trackers were occasionally activated. Formants were measured
by cursor directly off of the spectra, using a 14t order LPC envelope as an aid.

The procedure used as a first pass to synthesize the voices created and analyzed in this study was
modeled after [2], in which a series of 24 dysphonic utterances were synthesized and compared
against the originals in a perceptual study. In this paper, seven steps were outlined for the
synthesis of a disordered voice. Below are these steps, slightly modified:

(1) Match FO, formant frequencies and bandwidths, and spectral tilt. The goal of this step
was to match the gross spectral characteristics of a speech utterance at a single point in
the vowel, neglecting details of the individual amplitudes of the harmonics. Additionally,
the spectral tilt, TL, of the utterance was modified here in order to match the overall slope
of the spectrum, with larger TL values leading to less high frequency energy.

(2) Adjust source amplitudes A V, AH, and AF. The amplitudes of each of the source
mechanisms were adjusted to constant values in this step. AV, AH, and AF control the
amplitude of voicing, aspiration, and frication sources, respectively.

(3) Adjust open quotient to match H] amplitude. The amplitude of the first harmonic, which
tends to reflect the breathiness of a speech signal [24], was adjusted using the parameter
OQ. OQ defines the open-quotient of the glottal pulse. This step was a first pass by which
to mimic the intensity of HI in the spectrum of the speech signal and often did not make
H1 large enough.

(4) Adjust harmonics below F1 using nasal and tracheal poles and zeros. As will be shown,
many disphonic utterances exhibit complicated structure in the harmonics below Fl,
which can be important to how they are perceived. One method by which we achieved
this was to insert additional poles and zeros into the system to boost or reduce the
intensities of specific components. The basic procedure was to place a pole and zero at
the same frequency, making the bandwidth of the pole smaller than that of the pole if a
spectral prominence was desired or making the bandwidth of the zero smaller if a spectral
trough was sought.
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(5) Mimic FO time variation using FO, FL, and DI. Time variations of frequency parameters

across the utterance were handled in this step to mimic characteristics such as deviations

of FO from the nominal value and period-doubling. FO is the pitch of the synthesized

voicing source, FL or flutter imposes periodic fluctuation of FO, and DI is diplophonia

which causes every other pitch period to be larger.

(6) Mimic A V time variation. Some utterances included variations in the amplitude of the

voicing source over time. Depending on the utterance, this step was often performed in

conjunction with step 5 to yield acceptable amplitude and frequency characteristics.

(7) Add additional pole-zero pairs if required. If pole-zero pairs were still available after step

4, they could be used to mimic higher frequency resonances and zeros, such as those

created by subglottal coupling and nasality.

In practice, the above steps tended to be performed as an iterative process, with the first pass

being followed by a more detailed adjustment of each of the parameters. The first pass, for

example, did not consider the variation of formant frequencies and bandwidths across an

utterance with time. In later iterations, however, the utterance was often divided into distinct

sections and the details of each division were individually modified in the synthesizer.

A.3 Synthesis of Tremor

The patient JAB08, discussed in this section, is a 69 year old male being examined post-biopsy,

with scarring on the vocal folds. The records also indicate that the patient presented with a vocal

tremor. Tremor is characterized as a 4-to-8 Hz variation in the amplitude envelope of a speech

waveform [30]. As can be seen in the spectrogram and waveform of Figure 1, the utterance

demonstrated some variation in amplitude at this frequency as well as some evidence of

diplophonia, especially around 150 ms and 700 ms. Overall, the voice is perceptually somewhat

breathy, but as can be seen in Figure 1 and Figure 3, there is little noise to be modeled with an

aperiodic source.

4 kHz

100 200 300 400 500 600 700 800 9ooms

Fure -1 i SpectrgAm I I wavefor 1f1the I voIce with tremOr.

Figure A-i. Spectrogram and waveform of the original voice with tremor.
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Figure A-2. Spectrogram and waveform of the synthesized voice with tremor. The resulting
waveform shows modulation in the amplitude envelope even though the synthesis uses a constant
AV value.

A.3.1 Spectral Characteristics

Overall, two issues led to a rather complicated synthesis of the spectrum. First, as can be seen in
the left panel of Figure 3, the first harmonic of the speaker had an intensity which was too high to
synthesize using only the OQ parameter. If OQ was made too large, it tended to make the upper
frequencies of the spectrum unnaturally low. In order to fix this issue, a narrow-bandwidth pole-
zero pair was placed at 150 Hz in order to boost the spectrum in the neighborhood of the first
harmonic. As can be seen in the right panel of Figure 3, using such a narrow pole, we were able
to match the amplitude of the first harmonic quite closely, without distorting the rest of the
spectrum. A well-known physiological correlate to a resonance at this frequency is not known,
and the difference more likely results from the behavior of the disordered glottis that is not well-
modeled by'the KLGlott88 source.

The second problem occurred when attempting to synthesize the trough present in the waveform
around 800 Hz. Normally, one expects to see tracheal resonances at 550 Hz, 1300 Hz, and/or at
2100 Hz, with the zero slightly above or below these frequencies [22]. In the current example, a
corresponding pole to the 800-Hz zero is not apparent, and we synthesized it as a broad pole at
900 Hz due to the hump observed near F2 around this frequency. In retrospect, however, it is
more likely that the pole should have been positioned close to 550 Hz. Figure 3 shows a side-by-
side comparison of the original spectrum with the final synthesized version.

A.3.2 Time-Varying Characteristics

In order to characterize the time-varying features of the vowel, we first split the utterance into
four regions. Diplophonia, controlled by. the parameter DI, was then applied to the entire second
area, 130 to 205 ins, and as a time-varying contour over the fourth, from 570 to 1000 ms. The
resulting effect can be observed in Figure 2, whereby the output in these regions exhibits the
characteristic large pulse, small pulse, large pulse pattern of diplophonia

All sections of the utterance exhibited some fluctuations in the fundamental frequency. The
amount of flutter, parameter FL, was chosen to capture the, variation between 123 and 133 Hz
over the entire utterance. Centered around the pitch of 128 Hz, this yielded a flutter value of 65
using the equation
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derived from the flutter equation given by [22]. Surprisingly, this frequency variation seemed to
eliminate the need for a separate time-varying manipulation of AV. This example thus appears to
be an interesting case of frequency modulation of a harmonic across a formant peak leading to
amplitude modulation in the resulting waveform. Although it should be noted that Figure 2
contains the added effects of formant frequency modulation, discussed below, a version of the
spectrogram with only flutter managed to cause the same behavior.

The final time-varying change that was made was to F1, which was observed in the original
spectrogram to vary periodically between about 530 and 620 Hz. In order to synthesize this
property, F1 was set to a value of 546 Hz at the measured F1 minima and 610 Hz at the maxima.
As can be observed in Figure 2, the resulting F1 track has 5 minima including both endpoints; one
clear example is at 480 ms. It is suspected that the condition of vocal tremor may cause slight
opening and closing of the mouth resulting in some low-high variation, which would be expected
to result in the observed Fl movement.

Figure A-3. Spectrum
signals.

and waveform for original (left) and synthesized (right) tremor speech

A.4 Synthesis of a Creaky Voice

The second voice that was synthesized, DAS10, is produced by a 40 year-old male patient
reported to have granulation tissue as well as to exhibit abnormal amounts of tension in the
muscles of the larynx. Perceptually the voice was very "creaky," defined as exhibiting an element
of sharp, short glottal pulses in the voicing, creating the perception of low-frequency individual
pulses [27], [5]. This percept agrees well with acoustic evidence found in the spectrogram shown
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in Figure 4, which indicates clearly defined glottal pulses. In addition, the utterance contained
sections of diplophonic pulses as well as more complicated repeating patterns of activity. In the
literature such behavior is called "superperiodic" voicing [14]. Such a voice has obvious
similarities to diplophonic glottalization, which exhibits a pattern of one large pulse followed by
one small one, seen in sections of normal speech [15, 38].

100 200 300 400 000 000 700 800 900ms

k z

Figure A-4. Original creaky voice spectrogram and waveform.

100 200 300 400 500 600 700 800 900ms

[I I I III I I I I I --- T

Figure A-5. Spectrogram and waveform of final synthesized creaky voice.

A.4.1 Spectral Characteristics

Achieving spectral characteristics for this utterance was relatively straight-forward. Two
additional poles-zero pairs, one operating to increase the response at 450 Hz and the other acting
to decrease the response at 2000 Hz were created in order to match the original spectrum. These
frequencies are not far from 550 Hz and 2100 Hz, common locations of subglottal resonances
[22]. Figure 6 shows the spectra taken early in the utterance, when the zero at 2000 Hz does not
appear as active. In contrast, in Figure 7, the zero is seen in both the original and synthesized
waveforms. Note that F3 bandwidth was also changed between these two locations.

One issue remains unresolved is making the glottal-source derivative waveform more "peaky" in
the time domain. That is, if one compares the waveforms in the two panels of Figure 7, for
example, the one on the left has sharper pulses that appear to be of larger amplitude relative to the
decaying response. The perceptual influence of this feature is difficult to gauge, but such highly
damped responses have been reported in the literature [15]. The exact nature of this damping
phenomenon does not seem to be directly related to the steady-state formant bandwidths as none
of them seem to be particularly wide.
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A.4.2 Time-Varying Characteristics

As can be observed in Figure 4, the original waveform consisted of several distinct sections of
time-varying amplitude modulations. Specifically, they were as follows:

(1) 1 to 200 ms. Moderate diplophonia.

(2) 200 to 310 ms. This section exhibited a superperiodic pattern of one large glottal pulse
followed by three smaller ones each of slightly increased amplitude.

(3) 310 to 840 ms. A complicated superperiodic amplitude pattern was observed here,
consisting of both large and small pulses. One might call the amplitude behavior here
irregularity, although the periods seemed to occur at regular intervals without much
variation.

(4) 840 to 1000 ms. Period-doubling, an extreme version of diplophonia was seen in this
region, characterized by sharp pulses followed by a much smaller pulse one period later.

Figure A-6. Comparison of spectra taken around 150 ms for the original (left) and synthesized
(right) voices.
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Figure A-7. Comparison of spectra taken around 900 ms for the original (left) and synthesized

(right) voices.

Of these regions, the two exhibiting diplophonia were synthesized using the parameter DI as well
as slight variations of the other spectral parameters, some of which are described in the spectral
characteristics section above. The first step in synthesizing the more complicated regions was to
note the times of each pulse in the synthesized waveform. Using the sequence of large and small
pulses derived from the original waveform, a detailed path was then created for AV. The peak
amplitude was set immediately before each large pulse and set lower immediately after. AV in
between each of the large pulses was ramped upward in order to mimic a slight increasing trend
in the small pulses between large pulses in the original waveform. As can be observed by
comparing Figs. 4 and 5, we were able to mimic some of the characteristics of the original pulse
pattern with synthesis.

Perceptually, the rate and spacing of the pulses sounded about correct. Unfortunately, the
synthesized waveform which resulted from this procedure yields a very mechanical sounding
result and might be described as "less rich" or "less sharp" than the original. A frication noise
source was added in the region of F4, which helped to add naturalness to the utterance, but did
not improve it greatly. One problem may be that the pulses are too regular in amplitude, whereas
the original waveform has random period-to-period amplitude variation, known as shimmer.
Another option is to try adding flutter, but in test experiments, this also did not seem to correct
the problem.

A.5 Synthesis of a Hoarse Voice

The last voice, KAH02, was recorded from a 73 year-old female but the record does not contain
an indication of the diagnosis. Perceptually, the distinguishing characteristic of this voice is its
extreme noisiness including several obvious, but difficult to describe, tonal components. During
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the listening survey of the database, the author noticed that several voices have this same

"chainsaw voice" characteristic.

As can be observed in Figure 8, the original signal does not exhibit extensive changes over time.

Therefore, we focused on attempting to replicate the complicated spectral characteristics as seen

in the average spectrum of Figure 10. In particular (1) the nature of the noise source and (2) the

complicated harmonic structure were troubling.

100 200 300 400 500 600 700 800 900ms

Figure A-8. Spectrogram and waveform of the original hoarse voice.

100 200 300 400 500 600 700 800 90 mS

Figure A-9. Spectrogram and waveform of the synthesized hoarse voice.

The first of these issues was a problem mainly because the addition of an aspiration source did

not seem to create a realistic match to the original spectrum. After some trial and error, we chose

to use the synthesizer's frication noise source processed using the observed formant resonances

and bandwidths. The major complication with doing this was that the frication source was only

able to be processed by formants above Fl. In order to be able to synthesize frication noise

through Fl, we added a 6t formant and moved the frequencies and bandwidths of each existing

formant to the next one up. In this way, F2 became the former F1, F3 became the former F2, and

so on. F1 was left as a dummy formant and received no frication source. Once the formant

structure was in place, we were able to synthesize the spectrum of the frication by

109



I ' I I I I I T -7 I I3 5 1 1.5 2 2.5 3 3.5 4 4.5 kHz

C 48 U 49 0. U51 1152, 149 0.19 05 051 n52s

Figure A-10. Average spectrum of the original hoarse voice across the entire file (left) compared
with the average spectrum of the synthesized voice (right).
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Figure A-11. Average spectrum and example waveforms for the frication/aspiration noise (left)
and 280 Hz FO components of the total waveform (right).
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individually manipulating the amplitudes of each formant peak using the frication amplitude
parameters. As shown in Figure 11, this technique produced a very realistic match, both visually
and acoustically, to the noise portion of the original waveform.

The second problem that was addressed is mimicking the three harmonics present at 168, 280,
and 448 Hz, all of which were multiples of 56 Hz. Most of the low-frequency energy is at these
frequencies with very little activity in between. The first attempt to model this behavior used a
single voicing source along with a series of pole-zero pairs to eliminate harmonics of 56 Hz other
than those which were desired. Unfortunately this solution proved too difficult with the tools at
hand, and the approach was redesigned. A more successful technique is to separately synthesize
each of the voicing components as a separate waveform and then to form a weighted sum of the
result with the frication waveform. The spectrum of the 280-Hz component is depicted in Figure
11 and the sum of all components is compared with the original in Figure 10. The weighting
added 100% of the frication sound to 20% of the 280-Hz signal, 15% of the 448 Hz signal, and
10% of the 168 Hz signal. This combination was derived through trial and error and resulted in a
synthesized voice that was quite realistic.

The question arises as to whether the proposed synthesis method is physiologically plausible. If
the underlying fundamental frequency really is around 56 Hz, how does one explain the
suppression of most of its harmonics? For example, the amplitudes of components at 112 Hz, 224
Hz, and many other harmonics are extremely difficult to see if it is possible at all. Another
hypothesis is that, as synthesized, the glottis of speaker KAH02 has several stable "modes" at
which it operates. Each of these modes would act as a somewhat independent glottal source, as is
discussed by [3]. In that paper, two modes are used as a possible explanation for diplophonia as
synthesized earlier in this paper. Perhaps, with the current speakers, there are somehow three
stable harmonically-related modes acting as individual sources. Further investigation of this idea
is beyond the scope of the current effort.

A.6 Discussion and Conclusions

As shown in this paper, the dysphonic voices studied have introduced many interesting
characteristics. Some of these are summarized below.

(1) Large first harmonic

(2) Complicated harmonic structure

(3) Noise during voicing that cannot be synthesized as aspiration

(4) Superperiodic behavior including diplophonia and other regular patterns of glottal pulses

(5) Time variation of the fundamental frequency

(6) Time variation of formant frequencies

(7) Amplitude modulation created using modulation of the fundamental frequency

Table A. 1 summarizes synthesizer parameters used in voice synthesis
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As noted in [2], the Klatt synthesizer seemed to fail at modeling "unsteady" voices and some
details of the spectra. DAS10, the creaky voice, was the most difficult utterance for us to
synthesize realistically. Additionally, we observed the same failure of OQ to properly account for
the low frequency characteristics of dysphonic utterances as [2] did. In addition to all of the
suggestions for improvements to the synthesis tools that [2] provide, we would add the ability to
explicitly specify the repeating pattern of large/small pulses created by the diplophonia
parameter.

The time required to create each of the above utterances using existing tools is surprising. A
rough estimate is 10-15 hours per vowel, which is in accord with the synthesis in the literature on
which we based our work. Therefore, we conclude that, presently, synthesis by clinicians with a
high level of detail is probably out of reach. Clinically useful synthesis seem to currently focus on
the harmonic-to-noise ratio of the speech signal as demonstrated in [13], arguably a much simpler
synthesis task. Therefore, one reason to research improving synthesis of dysphonic voices is to
increase the ease with which a practitioner can use the tools. The synthesized utterances resulting
from this project, especially JAB08 and KAHO2, seem perceptually accurate, and the ability to
obtain similar results quickly could prove very useful.

112



Table A.1. Relevant synthesis parameters used for creating each of the three voices. Note that, as
discussed in the text, the hoarse voice shows two different parameter sets-one for the noise
component and the other for each of the voiced components.

Tremor Hoarse Creaky
AF AV

F 128 0 see text 150
AV 60 0 60 see text
OQ 70 50 80 90
TL 22 20 40 5
FL 65 0 0 0
DI 0-10 0 0 0-21
AH 36 30 0 40
AF 0 65 0 55
F1 546-610 280 887 759-782
B1 70 40 140 180
F2 1190 887 1523 1297-130
B2 200 140 160 130
F3 2783 1523 2479 2375-239
B3 150 160 200 140-250
F4 3500 2479 3744 3304-3366
B4 500-600 200 350 250
F5 4400 3744 4400 4204-4207
B5 450 350 600 1000
F6 4990 4400 5000 4990
B6 1000 600 600 0

FNP 150 2000
BNP 25 200
FNZ 150 2000
BNZ 100 100
FTP 900 450
BTP 400 100
FTZ 800 450
BTZ 80 200
A2F 55
A3F 55
A4F 45 48
A5F 35
A6F 30
B2F 140
B3F 160
B4F 200 250
B5F 350
B6F 600
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