
Parallel Implementations of Dynamic Traffic

Assignment Models and Algorithms for Dynamic

Shortest Path Problems E

by [FEB 192004
Hai Jiang

-LIBRARIES _
B.S., Civil Engineering, Tsinghua University (2001)

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Transportation

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2004

@2004 Massachusetts Institute of Technology. All rights reserved.

Author
Department of Civil hzd Environmental Engineering

Septermber 10, 2003

f
Certified by..........

Associate PIofessor of

t
Ismail Chabini

Civil and Environmental Engineering
Thesis Supervisor

Accepted by........
V

I Heidi M. Nepf
Chairperson, Department Committee on Graduate Studies

II

41OV4

I

2

Parallel Implementations of Dynamic Traffic Assignment

Models and Algorithms for Dynamic Shortest Path Problems

by

Hai Jiang

Submitted to the Department of Civil and Environmental Engineering
on Septermber 10, 2003, in partial fulfillment of the

requirements for the degree of
Master of Science in Transportation

Abstract

This thesis aims at the development of faster Dynamic Traffic Assignment (DTA)
models to meet the computational efficiency required by real world applications. A
DTA model can be decomposed into several sub-models, of which the most time
consuming ones are the dynamic network loading model and the user's route choice
model.

We apply parallel computing technology to the dynamic network loading model
to achieve faster implementations. To the best of our knowledge, this concerns the
first parallel implementations of macroscopic DTA models. Two loading algorithms
are studied: the iterative loading algorithm and the chronological loading algorithm.
For the iterative loading algorithm, two parallelization strategies are implemented:
decomposition by network topology and by time. For the chronological loading algo-
rithm, the network topology decomposition strategy is implemented. Computational
tests are carried out in a distributed-memory environment. Satisfactory speedups are
achieved.

We design efficient shortest path algorithms to speedup the user's route choice
model. We first present a framework for static shortest path algorithms, which pri-
oritize nodes with optimal distance labels in the scan eligible list. Then we apply the
framework in dynamic FIFO, strict FIFO, and static networks. Computational tests
show significant speedups.

We proceed to present two other shortest path algorithms: Algorithm Delta and
Algorithm Hierarchy. We also provide the evaluations of the algorithms.

Thesis Supervisor: Ismail Chabini
Title: Associate Professor of Civil and Environmental Engineering

3

4

Acknowledgments

I would like to thank Professor Chabini for his guidance, insights and encouragement

throughout all stages of the research. I would like to thank his patience in explaining

to me many concepts and ideas. He is not only a respectful advisor, but also a great

friend of mine. In addition, I enjoy many of the discussions we had in the past two

years about life.

I would like to thank my collegues in the ACTS group for their friendship and

assistance.

Thanks to Ford Motor Company and the National Science Foundation (CAREER

Award Grant CMS-9733948 and ETI Award Grant CMS-0085830) for supporting this

research.

Thanks to my family for their love and confidence in my ability to succeed.

5

6

Contents

1 Introduction 19

1.1 Background . 19

1.2 Research Problems and Solution Approaches 22

1.3 Thesis Contributions . 25

1.4 Thesis Organization . 25

2 Parallel Implementations of DTA Models 27

2.1 A Macroscopic Dynamic Traffic Assignment Model 28

2.1.1 N otation . 29

2.1.2 The DTA Solution Algorithm 30

2.1.3 The Iterative Dynamic Network Loading Algorithm 31

2.1.4 The Chronological Dynamic Network Loading Algorithm . . . 33

2.2 Parallel Computing Systems . 34

2.3 Parallel Programming Paradigms . 37

2.4 Related W ork . 38

2.4.1 Parallel Implementation of TRANSIMS 38

2.4.2 Parallel Implementation of Transportation Related Algorithms 40

2.5 Parallel Implementations of the I-Load Algorithm: Network Topology

D ecom position . 40

2.5.1 Load Partition Algorithm . 41

2.5.2 Shared-memory Implementation 44

2.5.3 Distributed-memory Implementation 46

7

2.6 Parallel Implementations of the I-Load Algorithm: Time-Based De-

. 4 8

2.6.1 Load Partition Algorithm

2.6.2 Distributed-memory Implementation . . .

2.6.3 Shared-memory Implementation

2.7 Parallel Implementations of the C-Load Algorithm:

Decomposition

2.7.1 Load Partition Algorithm

2.7.2 Distributed-memory Implementation . . .

2.7.3 Shared-memory Implementation

2.8 Experimental Setup and Numerical Results

2.8.1 Test Network

2.8.2 Test Platform

. . . . 48

. . . . 50

r.)

Network Topology

. 52

. 53

. 57

. 62

. 63

. 64

. 64

2.8.3 Numerical Results for the I-Load Based Parallel DTA Model

2.8.4 Numerical Results for the C-Load Based Parallel DTA Model

2.8.5 Limitations in the Experimental Tests

2.9 Conclusions and Future Work .

65

72

75

76

3 A Framework for Static Shortest Path Algorithms with Applications 79

3.1 Introduction .

3.2 The New Framework

3.3 Application in Dynamic Strict FIFO Networks . . .

3.4 Application in Dynamic FIFO Networks

3.5 Application in Static Shortest Path Problems . . .

3.5.1 1-to-all Shortest Path Problems

3.5.2 An Example

3.5.3 Many-to-all Shortest Path Problems

3.6 Computer Implementations and Numerical Results

3.6.1 Dynamic FIFO/strict FIFO Networks

3.6.2 Many-to-all Static Shortest Path Problems .

8

79

. 82

. 85

. 85

. 90

. 90

. 93

... 94

. 95

. 96

. 99

composition

3.7 Conclusions and Future Work . 100

4 Additional Ideas on Shortest Path A

and Algorithm Hierarchy

4.1 Algorithm Delta

4.1.1 Problem Definition

4.1.2 The Algorithm

4.1.3 Experiment Evaluation

4.2 Algorithm Hierarchy

4.2.1 The Algorithm

4.2.2 Runtime Complexity Analysis

lgorithms - Algorithm Delta

115

. 1 16

. 1 16

. 1 17

. 1 18

. 128

. 128

. 129

4.2.3 Experimental Evaluation .

4.2.4 Application in One-to-all Dynamic Shortest Path Problems .

5 Conclusions and Future Research Directions

5.1 Contributions and Major Results .

5.2 Future Research Directions .

A More on Parallel Implementations

A.1 Distributed-memory Implementations

A.2 Shared-memory Implementations .

9

130

132

133

133

135

137

137

138

II

I

10

List of Figures

1-1 DTA framework 20

2-1 Statement of the DTA algorithm . 31

2-2 Statement of the I-Load algorithm . 32

2-3 Statement of the C-Load algorithm 33

2-4 Parallel computing systems: shared-memory 35

2-5 Parallel computing systems: distributed-memory 36

2-6 Parallel computing systems: hybrid 36

2-7 Example for MoveFlowO . 42

2-8 Load partition algorithm for I-Load algorithm for network decomposi-

tion strategy . 43

2-9 Master thread algorithm for I-Load algorithm for network decomposi-

tion strategy . 44

2-10 Slave thread algorithm for I-Load algorithm for network decomposition

strategy . 45

2-11 An example network with two OD pairs 46

2-12 How METIS (left) and the Network Partition Algorithm (right) parti-

tion the network . 46

2-13 Process algorithm for I-Load algorithm for network decomposition strat-

egy . 47

2-14 Load partition algorithm for I-Load algorithm for time-based decom-

position strategy . 49

11

2-15 Process algorithm for I-Load algorithm for time-based decomposition

strategy .

2-16 Master thread algorithm for I-Load algorithm for time decomposition

strategy .

2-17 Slave thread algorithm for I-Load algorithm for time decomposition

strategy .

2-18 Example: network decomposition

2-19 Network partition showing at LPV level

2-20 The original network .

2-21 Partition method 1 .

2-22 Partition method 2 .

2-23 The modified breadth-first search algorithm

2-24 The modified breadth-first search algorithm

2-25 Communication in the distributed-memory implementation

algorithm by network decomposition

2-26 Process algorithm for C-Load algorithm for network dec

strategy

of C-Load

)mposition

2-27 Master thread algorithm for C-Load algorithm for network decompo-

sition strategy .

2-28 Slave thread algorithm for I-Load algorithm for time decomposition

strategy .

2-29 Amsterdam A10 Beltway .

2-30 Speed-up curves and burden curves of the network decomposition MPI

implementation for I-Load as a function of the number of processors.

The 4 curves correspond to 4 maximum demand periods: T=300 sec-

onds, T=1000 seconds, T=2000 seconds and T=3000 seconds.....

12

50

51

51

52

53

54

54

55

56

57

60

61

62

63

65

70

2-31 Speed-up curves and burden curves of the time decomposition MPI im-

plementation for I-Load as a function of the number of processors. The

4 curves correspond to 4 maximum demand periods: T=300 seconds,

T=1000 seconds, T=2000 seconds and T=3000 seconds. The burden

curve for T=3000 is not shown because it is greater than 1 71

2-32 Speed-up curves and burden curves of the network decomposition MPI

implementation for C-Load as a function of the number of processors.

The 4 curves correspond to 4 maximum demand periods: T=300 sec-

onds, T=1000 seconds, T=2000 seconds and T=3000 seconds. 74

3-1 A framework for static shortest path algorithms with priority enabled 83

3-2 Label-correcting with priority enabled in strict FIFO networks 86

3-3 Label-correcting with priority enabled in FIFO networks 88

3-4 How the fiindmin operation is carried out in 1-to-all SSP problems. . 92

3-5 A static shortest path algorithm with findmin operation 92

3-6 A sample network used to demonstrate the fundamentals of the algo-

rithm . 93

3-7 Two possible profiles for link travel times in FIFO networks 102

4-1 Statement of Algorithm Delta . 117

4-2 A as a function of the size of the network. a = 0.05, 3 = 0.005, m = 3n 119

4-3 A as a function of the size of the network. a = 0.05, / = 0.01, m = 3n 120

4-4 A as a function of the size of the network. a = 0.05, 3 = 0.05, m = 3n 121

4-5 A as a function of the size of the network. a = 0.1, 3 = 0.005, m = 3n 122

4-6 A as a function of the size of the network. a = 0.1, / = 0.01, m = 3n 123

4-7 A as a function of the size of the network. a = 0.1, / = 0.05, m = 3n 124

4-8 A as a function of the size of the network. a = 0.2, 3 = 0.005, m = 3n 125

4-9 A as a function of the size of the network. a = 0.2, # = 0.01, m = 3n 126

4-10 A as a function of the size of the network. a = 0.2, / = 0.05, m = 3n 127

4-11 Statement of Algorithm Hierarchy . 129

13

4-12 The histograms of the link travel times of the links in the shortest path

tree in fully dense networks, that is, m = n(n - 1). The link travel

times vary between 1 and 100 . 131

4-13 Algorithm hierarchy applied in 1-to-all dynamic shortest path problems

for all departure times . 132

14

List of Tables

2.1 The running times of the serial algorithm for the I-Load based DTA

model as a function of the duration of the maximum demand period.

Running times reported are in seconds 66

2.2 The running times of the parallel algorithm for the I-Load based DTA

model as a function of both the duration of the maximum demand

period and the number of processors. The decomposition strategy

applied is network-based. Running times reported are in seconds . . . 67

2.3 The running times of the parallel algorithm for the I-Load based DTA

model as a function of both the duration of the maximum demand

period and the number of processors. The decomposition strategy

applied is time-based. Running times reported are in seconds 68

2.4 The running times of the serial algorithm for the C-Load based DTA

model as a function of the duration of the maximum demand period.

Running times reported are in seconds 72

2.5 The running times of the parallel algorithm for the I-Load based DTA

model as a function of both the duration of the maximum demand

period and the number of processors. The decomposition strategy

applied is network-based. Running times reported are in seconds . . . 72

3.1 Steps to solve the shortest path problem for the network in Figure 3-6

with source node 0. 94

15

3.2 Total running times (in sec) and total numbers of iterations required

by LCP and BF to solve the one-to-all shortest path problems for

departure times 1, 2, - - - , 100 in FIFO random networks (Type I) as

a function of network size. The numbers in parentheses are the total

number of iterations . 103

3.3 Total running times (in sec) and total numbers of iterations required

by LCP and BF to solve the one-to-all shortest path problems for

departure times 1, 2, - - - , 100 in FIFO random networks (Type I) as a

function of number of nodes. The numbers in parentheses are the total

number of iterations . 104

3.4 Total running times (in sec) and total numbers of iterations required

by LCP and BF to solve the one-to-all shortest path problems for

departure times 1, 2, - - - , 100 in FIFO random networks (Type I) as a

function of number of arcs. The numbers in parentheses are the total

number of iterations . 105

3.5 Total running times (in sec) and total numbers of iterations required

by LCP and BF to solve the one-to-all shortest path problems for

departure times 1, 2, - - , 100 in FIFO grid networks as a function of

network size. The numbers in parentheses are the total number of

iterations . 106

3.6 Total running times (in sec) and total numbers of iterations required

by LCP and BF to solve the one-to-all shortest path problems for

departure times 1, 2, - - - , 100 in strict FIFO networks (Type I) as a

function of network size. The numbers in parentheses are the total

number of iterations . 107

3.7 Total running times (in sec) and total numbers of iterations required

by LCP and BF to solve the one-to-all shortest path problems for

departure times 1, 2, - - - ,100 in strict FIFO networks (Type I) as a

function of number of nodes. The numbers in parentheses are the total

number of iterations . 108

16

3.8 Total running times (in sec) and total numbers of iterations required

by LCP and BF to solve the one-to-all shortest path problems for

departure times 1, 2, -.. , 100 in strict FIFO networks (Type I) as a

function of number of arcs. The numbers in parentheses are the total

number of iterations . 109

3.9 Total running times (in sec) and total numbers of iterations required

by LCP and BF to solve the one-to-all shortest path problems for

departure times 1, 2, - , 100 in strict FIFO grid networks as a function

of network size. The numbers in parentheses are the total number of

iterations . 110

3.10 Running times (in sec) and number of iterations of Algorithm BF and

LCP for 1-to-all static shortest path problems in random networks

(Type I) as a function of network size (m=3n). The numbers in paren-

theses are the number of iterations 111

3.11 Running times (in sec) and number of iterations of Algorithm BF and

LCP for 1-to-all static shortest path problems in random networks

(Type I) as a function of number of nodes (m=10,000). The numbers

in parentheses are the number of iterations 112

3.12 Running times (in 10- sec) and number of iterations of Algorithm BF

and LCP for 1-to-all static shortest path problems in random networks

(Type I) as a function of number of arcs (n=100). The numbers in

parentheses are the number of iterations 113

3.13 Running times (in 10-3 sec) and number of iterations of Algorithm

BF and LCP for 1-to-all static shortest path problems in random grid

networks as a function of network size. The numbers in parentheses

are the number of iterations . 114

17

18

Chapter 1

Introduction

1.1 Background

Congestion in road transportation systems has reached unprecedented level, and costs

tens of billions of dollars each year in productivity and extra fuel consumption in the

U.S. alone. A recent study by Scharank and Lomax [1] investigated 68 urban areas in

the U.S. and reported that the average annual delay per person has climbed from 11

hours in 1982 to 36 hours in 1999. The cost of these delays in these areas is estimated

to be $78 billion per year, including $4.5 billion hours of delay and 6.8 billion gallons

of fuel. This does not include other negative consequences of congestion such as

accidents, air pollution, and higher operating cost for commercial vehicles. On the

other hand, travel demand is expected to increase dramatically in the future. The

vehicle miles travelled (VMT) are estimated to increase by 50% to reach about 4

trillion by 2020 [2]. Congestion has become an increasingly urgent issue that needs

immediate response from the society.

Intelligent Transportation Systems (ITS) are being developed to alleviate con-

gestion, increase the efficiency, and improve the safety of existing transportation

facilities. It combines advanced technology in sensing, communication, information,

and advanced mathematical methods with the conventional world of surface trans-

portation infrastructure. Examples of ITS technologies include coordinated traffic

management, electronic toll collection, and route guidance.

19

The success of ITS deployment depends on the availability of advanced Traf-

fic Estimation and Prediction Systems (TrEPS) to predict network conditions and

analyze network performance. Many ITS sub-systems, especially Advanced Traffic

Management Systems (ATMS) and Advanced Traveller Information Systems (ATIS),

are heavily dependent on the availability of timely and accurate wide-area estimates

of future traffic conditions.

Dynamic Traffic Assignment (DTA) is a critical component of TrEPS. Its main

function is to predict time-dependent link flows and link travel times for a given

network and a given time-dependent origin-destination demand matrix. The origin-

destination demand matrix is usually estimated by combining historical data and real

time data gathered by network sensors. The details in OD matrix estimation beyond

the scope of this thesis and can be found in [3]. The DTA problem is often solved

using an iterative approach of "routing" - "network loading" - "feedback of travel

times" to obtain a new route assignment [4, 5, 6, 7]. Figure 1-1 shows a framework

for the DTA problem and depicts the iterative approach. The four boxes on the

corners represent the four categories of variables. The arrows that connect the boxes

represent the sub-problems contained in the DTA problem. Before we explain how

this iterative approach works, we explain two sub-problems we focus on in this thesis.

Dyn mi shorte.t
Patih Problem

Path Path
FRows Times

Dynamic Network
Lmlding Probhlm

Link Link
I,_~qW Link ModelsTieFlows * Tms

Figure 1-1: DTA framework

The subproblem that computes link flows from a set of route choices (path flow) is

called the Dynamic Network Loading Problem (DNLP). It is at the heart of the DTA

problem. Depending on how the flow is represented and how the flow propagates in the

20

network, there are two basic traffic flow models: microscopic models and macroscopic

models. In microscopic models, each vehicle is considered as an object. The vehicles

move along links by using driving logics that mimic real world driving. Examples

of these logics are car-following models and lane-changing models. There are quite a

few microscopic DTA models developed in the literature including INTRAS/FRESIM

[8, 9, 10], NETSIM, and THOREAU. In macroscopic models, vehicles are aggregated

into clusters 1. Flows propagate along links using various macroscopic traffic flow

logics, for example, the volume-delay function [5], the cell transmission model [11],

and the hydro-dynamic theory [12]. FREFLO [13] and CONTRAM [14, 15] are

examples of macroscopic DTA models. Between the two extreme models, there is a

third hybrid model called mesoscopic DTA model. In this model, traffic is represented

at the vehicle level, but the speed is obtained from macroscopic traffic flow logics.

Examples of mesoscopic DTA models are: DynaMIT [6] and DynaSMART [7].

These models are applied depending on the scope of investigation and different

levels of detail that are necessary in the modelling. For the simulation of large road

networks, the family of macroscopic flow models is the common choice. Microscopic

models are more often used for studying the traffic flow in smaller areas, but then in

greater detail. Mesoscopic models is somewhere in between.

The second sub-problem is the Dynamic Shortest Path Problem (DSPP). It con-

cerns the determination of the shortest paths (or fastest paths) between the origins

and destinations in the network. In user optimal traffic assignment, the information

about shortest paths is important to model user route choice behavior and provide

route guidance. There are many variants of the shortest path problem. Depending

on the number of origins and destinations, shortest path problems are categorized

into one-to-all, all-to-one, one-to-one and many-to-all problems etc. Depending on

whether the network satisfies the First-In-First-Out property, there are FIFO and

non-FIFO problems. The solution of the one-to-all shortest path problem for all de-

parture times via an iterative Dijkstra's algorithm is a celebrated result [16, 11, 17].

The iterative approach starts by assuming a set of initial path flows. The path

11n each cluster there can be 2.5 vehicles and 0.3 vehicles as well.

21

flows are then loaded through dynamic network loading in the network and link flows

are obtained. Link travel times can then be computed using the link model, and lead

to a set of path travel times. The OD demands are then assigned to paths according

to the new path times. This is called one DTA iteration. If the set of new path flows

is equal to the initially assumed one, we claim that consistency is reached and stop.

Otherwise, we adapt the path flow and take it as the initial path flow for the next

iteration. The process is repeated until the path flows reach consistency.

1.2 Research Problems and Solution Approaches

There is currently heightened interest in DTA, particularly in the development of

approaches that can be deployed for large-scale real-time applications. He [5] devel-

oped a DTA software system, which has an underlying flow based macroscopic DTA

model. On a workstation with one Pentium Xeon 2.0 GHz processor and 1 GB RAM,

the model based on the iterative network loading procedure requires 22 minutes to

predict traffic conditions for a 66-minute analysis period in the Amsterdam beltway

network model, which contains 196 nodes, 310 arcs, 1000 O-D pairs. For a network

model of Boston, which typically contains 7,000 nodes, 25,000 arcs, 1,000 origins and

1,000 destinations, it is then not able to be used for real time prediction.

In real world DTA applications, the size of the network is growing larger and the

time window allowed is getting smaller. There is a significant desire to develop faster

DTA models. A faster DTA model enables us to:

* manage traffic over a large network to achieve a global optimal state rather

than a suboptimal one. For example, optimization within downtown Boston

can improve the network performance in downtown; however, the optimization

strategy applied in downtown may worsen the network performance in adjacent

areas. The penalty we pay in the adjacent areas may exceed the benefit we gain

in the downtown area. If we optimize in the greater Boston area instead of the

downtown area, we can achieve a global optimum;

22

" evaluate multiple traffic management strategies in a time much quicker than

real time. DTA can play a role as a simulation laboratory to evaluate traffic

management strategies. The faster the DTA model, the more strategies can be

evaluated in a given time window. Therefore, the actual applied strategy can

be selected from a broader candidate set and we can achieve better network

performance;

" predict traffic conditions faster so as to be more responsive to network changes.

In real-time traffic management, DTA models are applied in a rolling horizon.

An example is given in [18], which we briefly describe here. Suppose now it is

8:00am. A TrEPS system starts an execution cycle. It performs a network state

estimation using data collected during the last 5 minutes. When the state of

the network at 8:00 is available, the system starts predicting for a given horizon,

say one hour, and computes a management strategy which is consistent with

the prediction. At 8:07, the system finishes the computation, and is ready to

implement the management strategy on the real network. This strategy will

be in effect until a new strategy is generated. Immediately following that, the

system starts a new execution cycle. Now, the state estimation is performed for

the last 7 minutes. While the system was busy computing and implementing the

new management strategy, the surveillance system continued to collect real-time

information, and update the TrEPS system's knowledge of the current network

conditions. The new network estimate is used as a basis for a new prediction

and management strategy. The process continues rolling in a similar fashion

during the whole day. A faster DTA model can shorten the computation time

of execution cycles therefore improve the responsiveness of the TrEPS system.

Additionally, in transportation planning, DTA models are applied in a large ge-

ographical area and in conjunction with other models, for example, population gen-

eration model and activities generation model, where model dependency exists. A

usual way to obtain consistent prediction is through systematic relaxation. An initial

plan is generated and acts as input to these models. The models then predict the

23

future scenario, which includes population distribution, activities performed by the

population, and so on. Under this future scenario, a corresponding new plan can be

generated. If the new plan is the same as the initial plan, we say that consistency

is reached among these models. Otherwise, some mechanism is applied to combine

the new plan and the initial one. The combined plan then acts as the initial plan for

the next run. This process continues until consistency is achieved. In such a context,

multiple instances of the DTA problem needs to be solved to reach consistency. Con-

sequently, a computing time that is acceptable for a single run may not be acceptable

any more.

Within DTA models, the most time consuming steps are the network loading

procedure and the user route choice procedure. The network loading procedure is

carried out by the dynamic network loading algorithm. The modelling of the user

choice behavior requires the computation of dynamic shortest paths. Thus in order

to develop faster DTA models, one needs to decrease the run time of:

* the dynamic network loading algorithm;

" the dynamic shortest path algorithm; and

" the DTA algorithm.

In general there are two ways to improve the efficiency of algorithms: 1) design

more efficient serial algorithms; 2) exploit parallel computing platforms by developing

parallel solution algorithms.

For the dynamic shortest path problem, we design more efficient algorithms for a

class of shortest path problems, which consists of finding shortest paths from one node

to all other nodes for multiple departure times. The algorithm exploits results corre-

sponding to previous departure times, instead of solving the problems independently

for each departure time.

For the dynamic network loading problem, we design parallel loading algorithms

to improve its efficiency. Parallelization is exploited along two dimensions: time and

network topology. Each decomposition is implemented under two parallel systems:

shared-memory system and distributed-memory system.

24

1.3 Thesis Contributions

This thesis presents various advancements beyond previous research. Specifically,

* we presented the first parallelization of macroscopic DTA models in the liter-

ature. Two loading algorithms are investigated on both shared-memory and

distributed-memory parallel computing platforms;

* we presented a new framework for static shortest path algorithms which prior-

itize nodes with optimal distance labels. This framework is applied in dynamic

FIFO and strict FIFO networks in the one-to-all shortest path problem for all

departure times to develop efficient algorithms. It is also applied in static net-

works in one-to-all, one-to-one, many-to-all shortest path problems to develop

efficient algorithms.

* we also presented two other interesting shortest path algorithms: Algorithm

Delta and Algorithm Hierarchy. Through experimental evaluation, we found

that the smaller the number of nodes in the network the more effective Algo-

rithm Delta is. We gave the runtime complexity of Algorithm Hierarchy. Using

a small example in dense networks, we illustrate the effectiveness of Algorithm

Hierarchy.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents the parallel imple-

mentations of DTA models. It first introduces a macroscopic DTA model with two

loading algorithms, followed by parallel computing concepts required to develop the

parallel implementations. Then the parallel implementations of the iterative loading

algorithm and the chronological loading algorithm are presented. Finally, numerical

tests in the distributed-memory platform are studied.

Chapter 3 presents a framework for static shortest path algorithms which label-sets

and prioritizes the nodes with optimal distance labels. It first proposes the frame-

work and explains the relationship between the framework and existing algorithms.

25

Then the framework is applied to dynamic and static shortest path problems to de-

velop more efficient algorithms. Computer implementations and numerical results are

presented.

Chapter 4 presents two ideas in the area of shortest path problem. Algorithm

Delta is introduced first, followed by its experimental evaluation. We then introduce

the idea of Algorithm Hierarchy in the context of dense networks. After providing

the algorithmic statement of Algorithm Hierarchy for static networks, we develop a

new algorithm for one-to-all shortest path problems in dynamic FIFO networks for

all departure times.

Chapter 5 summarizes the main conclusions of this thesis and suggests future

research directions.

26

Chapter 2

Parallel Implementations of DTA

Models

In the past fifteen years, demand for supercomputing resources have risen sharply.

There is a need for tremendous computational capabilities in many areas including

large-scale network analysis, weather prediction, human genome analysis, and aircraft

design. These applications are characterized by a huge amount of computation (lots

of equations and variables), large data sets, and fine granularity. Parallel machines

are designed to meet the computation demand from these applications. Parallel com-

puters have evolved from experimental contraptions in laboratories to the everyday

tools of computational scientists who need the ultimate computing power in order to

solve their problems.

In this chapter we apply parallel computing technology to macroscopic DTA mod-

elling to develop faster implementations of these models. The models studied in

this chapter are based on the sequential model described in [5]. To the best of our

knowledge, the derivations in this chapter concern the first macroscopic DTA model

parallelized in the literature.

A parallel machine is a computer that has multiple processors. It can be a single

machine with multiple processors or a cluster of computers that can be used to ac-

complish operations in parallel, which is referred to as parallel processing. To have a

parallel machine work, we need:

27

" a load partition algorithm to decompose the original problem into sub-problems.

Note that we can also view a partition algorithm as one that decomposes the

algorithm for the original problem into sub-algorithms;

" algorithms and associated data structures to solve the sub-problems; and

" a communication mechanism between the processors.

This chapter focuses on the above items and is organized as follows. In Section 2.1

we give a brief description on the serial DTA model studied in this chapter. In Section

2.2 we introduce two basic parallel computational models. Section 2.3 presents three

common parallel computing paradigms. Section 2.4 surveys related work in parallel

computing in the field of transportation. In Section 2.5 through 2.7, we present the

parallel implementations of the DTA algorithms. Numerical results are presented in

Section 2.8.

2.1 A Macroscopic Dynamic Traffic Assignment

Model

Dynamic Traffic Assignment (DTA), although still in a state of flux, has evolved

substantially since the seminal work of Merchant and Nemhauser [19, 20]. The task

of a DTA model is: given a network and an original-destination demand matrix, find

a set of reasonable link flows and link travel times. The word "reasonable" can take

several meanings, but the most widely used ones are: user optimal (UO) and system

optimal (SO). In UO DTA each traveller is assumed to arrive at his destination

as early as possible; while in SO DTA the total travel time of all travellers are is

minimized.

Recall the taxonomy of DTA models in Section 1.1. There are three types of

DTA models: microscopic, mesoscopic and microscopic. In this thesis, we focus on

macroscopic models, which are introduced in the following text.

In He [5] a modelling framework for the DTA problem is proposed. It contains

four components: a user's behavior module, a link performance module, a network

28

loading module, and a path generation module. Based on this framework, a DTA

model was formulated. Various solution algorithms are developed, including two

dynamic network loading algorithms (the iterative network loading algorithm and

the chronological network loading algorithm) and one DTA algorithm. This section

summarizes the algorithms used in this thesis.

2.1.1 Notation

The physical traffic network is represented as a directed network G = (N, A), where

N is the set of nodes and A is the set of arcs. The index m denotes the type of

users, the index r denotes an origin node, the index s denotes a destination node and

the index p denotes a path between O-D pair (r, s). In the implementation, three

types of users are modelled: type 1 users always follow the fixed routes; type 2 users

follow routes with minimum perceived travel time; and type 3 users follow routes with

minimum actual travel time.

Path variables:

fg,(t) : departure flow rates from origin r to destination s on path p at time t

for type m user.

grS (t) : new departure flow rates from origin r to destination s on path p at

time t for type m user.

Link-Path variables:

u" (t) : entrance flow rate at time t for link a on path p from origin r to desti-

nation s.

v;,(t) : exit flow rate at time t for link a on path p from origin r to destination

S.

Up (t) : cumulative entrance flow at time t for link a on path p from origin r to

destination s.

Vjr(t) : cumulative exit flow at time t for link a on path p from origin r to

destination s.

Xap(t) : link flow at time t for link a on path p from origin r to destination s.

29

Link variables:

Ta(t) travel time over link a for flows entering link a at time t.

T (t) travel time over link a for flows entering link a at time t in iteration n

in the iterative network loading algorithm.

Xa(t) link flow at time t for link a.

Time variables:

A :minimum free flow link travel time over all links.

6 = - where M is a positive integer.

Other variables:

N1 : the number of loops in the DTA algorithm.

N 2 : the number of loops in the iterative network loading algorithm.

T the number of demand intervals. Time is discretized into intervals of length

6. Let Tdmd denote the duration of the demand period, then T = Tdmd/ 6 .

2.1.2 The DTA Solution Algorithm

An iterative process is used to solve the DTA Model. The process consists of assuming

an initial network condition (time-dependent link travel times). The travel demands

are then assigned to the network according to UO condition, which leads to an initial

values of path flows f,7,. The network loading module then loads the path flows to

the network. This leads to a set of new time-dependent link travel times, and thus

a set of new path flows g",. This process is called a DTA iteration. The set of new

path flows gr, are not necessarily equal to the set of path flows used in the previous

network loading procedure. There are various ways to generate another set of path

flows as the input for the next DTA iteration. One approach is to use the Method of

Successive Average (MSA) [21] to combine the results from the current DTA iteration

with the previous one. The DTA algorithm is outlined in Figure 2-1.

30

DTA algorithm

Step 0: (Initialization)

N, <- maximum number of iterations;

Compute initial path flows ff 0 (k) from free-flow path travel times;

n <- 0.

Step 1: (Main loop)

1.1: Perform dynamic network loading procedure;

1.2: Compute g" (k) by Route Choice Algorithm;

1.3: Update path flows:

,' (k) <- frsf) (k) + a4()[gg,(k) - f[* p (k)],a") - ' m = 2, 3.

Step 2: (Stopping criterion)

If n = N 1 , then stop;

Otherwise, n +- n + 1 and go to Step 1.

Figure 2-1: Statement of the DTA algorithm

2.1.3 The Iterative Dynamic Network Loading Algorithm

The network loading model takes the path flows as input and uses the link perfor-

mance model to generate the resulting link-based network conditions such as time-

dependent link volumes and link travel times.

If link travel times r(k) are known and do not change with network conditions,

a solution to the discrete model can be found by propagating flows along the paths

from origins to destinations. However, if ra(k) is a function of network conditions,

this method may not be valid. The reason is that, using a set of fixed link travel

time r(k) to propagate path flows will result in a new network condition, and hence

a set of new link travel times Tr"*(k). The method is invalid if T,(k) is not equal to

n"ew (k).

However, an iterative heuristic method can be used to update ra(k) in each iter-

ation. If after a certain number of iterations, the set of new link travel times -rf"(k)

31

I-Load algorithm

Step 0: (Initialization)
N 2 <- maximum number of iterations;

T, (k) +- free flow travel time;

n <- 0.
Step 1: (Main loop)

1.1: Move departure flows according to {ra">(k)};
1.2: Compute the resulting total link volumes {Xa(t)};
1.3: Compute the new link travel times {rI"ew (k)};

1.4: Update link travel times:

Ta+1(k) <- Tra"(k) + a"nf(rane-w(k) -r"n(k));

n1'
Step 2: (Stopping criterion)

If n = N 2 , then stop;

Otherwise, n <- n + 1 and go to Step 1.

Figure 2-2: Statement of the I-Load algorithm

converge to a set of link travel times -r*(k), a solution is found. MSA is adopted in

the averaging.

The iterative loading algorithm (I-Load) is based on the idea and is outlined in

Figure 2-2. The I-Load algorithm is a heuristic. Computational examples in [5] show

that I-Load algorithm generates similar path travel time pattern to C-Load algorithm

which is introduced in the following section. However the path travel time from the

I-Load algorithm is lower than that from the C-Load algorithm.

To analyze complexity of I-Load algorithm, we introduce some additional nota-

tions:

P : the set of all paths between all OD pairs.;

Pi :the ith path in P;

PA : the set of arcs path P passes through.

The runtime complexity of I-Load algorithm is:

1PI
O(N2T PA|I

i=1

32

There are two possible parallelization strategies for the I-Load algorithm. One

is to decompose the demand period T into several sub-periods. This corresponds to

a time-based decomposition strategy. The other is to decompose >Z |PI^I. This

corresponds to a network topology based decomposition strategy. The two strategies

are presented in detail in Section 2.5.

2.1.4 The Chronological Dynamic Network Loading Algo-

rithm

Instead of solving the network loading problem iteratively, one can find a network

loading solution in chronological order, that is, finding a solution within each time

interval (iJ, (i+ 1)6] in increasing order of time index i until there is no demand to load

and the network is empty. This algorithm is the chronological loading algorithm (C-

Load). Let Tn denote the minimum number of A intervals required for the network

to become and remain empty. The algorithm is outlined in Figure 2-3.

C-Load algorithm

Step 0: (Initialization)
Determine A by A <- min[ra(0)]

M: the number of 6 intervals within a A interval;

i <- 0.
Step 1: (Solve the equations within ith A interval)

1.1: for (a E A and p passing through a) do
for k = iM to (i+ 1)M - 1 do

Compute V8(k);
Compute Vr(k);

1.2: for (a E A and p passing through a) do
for k = iM to (i + 1)M - 1 do

Compute ur,(k);

Compute Ur(k);
Compute Xr(k);
Compute ra(k).

Step 2: (Stopping criterion)
If the network is empty and there is no demand to load, then stop;

Otherwise, i - i + 1, Ten +- iA and go to Step 1.

Figure 2-3: Statement of the C-Load algorithm

33

Let aPATH denote the set of paths that pass through arc i. Whenever Step 1 is

executed, calculations are performed over O(EZAl ja fATH 1) variables. Therefore the

runtime complexity is:

JAI

O(TemM S a PATHi)
i=1

A consolidation method was used to reduce the number of link-path flow variables.

All link-path flow variables belonging to a link need to be processed at each 6 interval.

Since the number of link-path flow variables of a link equals the number of paths that

pass through that link, it may be very large if many paths share this link. The idea

of consolidation comes from the observation that it is not necessary to distinguish the

path flows which have the same destination, follow the same subpath from a link to

that destination and correspond to the same time at the current link. The LPV data

structure is introduced to carry out the consolidation procedure. Interested readers

can refer to [5] for the consolidation algorithm. Let afPv denote the set of LPV

objects in link i. We have lafPvl K; JafATHI. The complexity of this consolidated

C-Load algorithm is:

|Al

O(TemM |afpv1)
i=1

One possible parallel strategy is to decompose EAl lafrvl. This corresponds to

the network topology decomposition strategy. The parallel algorithms and implemen-

tations are in Section 2.7.

2.2 Parallel Computing Systems

The exact definition of a parallel machine is still open for debate: for any definition

there will always be examples that are inappropriately included in the definition,

34

or excluded from it. We define a parallel machine as a computer that has multiple

processors or a cluster of computers being used to accomplish operations in parallel.

There are many ways to categorize parallel computing systems. In existing parallel

models, processors communicate in essentially two different ways: (1) through the

reading from and writing to a shared global memory, or (2) by passing messages

through links connecting processors that do not have a common memory. This leads

to two different computing systems: shared-memory system and distributed-memory

system.

Shared-memory System In this system, each processor has access to a single,

shared-memory. Processors communicate by reading from and writing to the same

physical location in the shared memory. A difficult aspect in programming on such

systems is the so-called non-determinism: the result of a computation may differ

depending on how fast each of the processes manages to write to the memory. Usually

such non-determinism is undesired, because the result may differ from one run to the

other. Hence the processes must coordinate memory access in some way. A schematic

diagram of this model is shown in Figure 2-4. The development of code under the

shared-memory model is usually done using multi-threaded techniques. The shared-

memory implementations in this thesis were developed using POSIX threads [22, 23],

which is based on the POSIX Standard [24].

Global Memory

System Bus

Figure 2-4: Parallel computing systems: shared-memory

Distributed-memory System For technical reasons, the number of processors in

a shared memory system cannot grow without bounds. It is so difficult to go beyond

16 processors in a shared-memory system and a different approach must be sought if

one is interested in computers with a larger number of processors. The solution is to

35

use a distributed memory system. In such a system, each processor has its own mem-

ory space. The processors exchange information by sending messages to each other

(Figure 2-5) . Data transfer from the local memory of one process to the local memory

of another process requires operations performed by both processes. In this kind of

model, processors typically communicate through a communication software library.

The Message Passing Interface (MPI) [25, 26] is an emerging standard specification

for message-passing libraries. The distributed-memory implementation of this thesis

is developed using MPICH (1.2.4) [27], which is a portable implementation of the full

MPI specification for a wide variety of parallel computing environments. Note that

MPICH can also run on shared-memory systems.

Network

P1 P2 P3 P4

Memory Memory Memory Memory

Figure 2-5: Parallel computing systems: distributed-memory

Besides the two extreme systems, hybrid systems also exist as well. In this case

shared-memory systems are interconnected through networks. The cluster of proces-

sors that share memory can communicate with each other using the share-memory

model; however, they need to pass messages to communicate with processors in other

clusters (Figure 2-6).

Global Memory Global Memory
S stem Bus System Bus

Network

Global Memory Global Memory
System Bus S ste Bus

Figure 2-6: Parallel computing systems: hybrid

36

2.3 Parallel Programming Paradigms

In the beginning of this chapter, we note that in order to accomplish parallel pro-

cessing, we need to decompose the original problem into several subproblems. Each

process or thread works on one subproblem and contributes to the final result. There

are many ways regarding how processes or threads work with each other, but there

are three primary paradigms: pipeline, work crew, and master/slave.

These paradigms are valid for both shared-memory and distributed-memory mod-

els. For the ease of explanation, we assume a distributed-memory model. A shared-

memory counterpart explanation can be obtained by substituting the term "thread"

for "process" in the following text.

Pipeline In this paradigm, each process repeatedly performs the same operation

on a sequence of data sets, passing the results to the next processor for the next

step. This is also known as an "assembly line". Different processes often carry out

different operations. For example, suppose there are a set of images to be examined

for certain patterns. Process 1 scans one image; Process 2 searches the scanned image

for the pattern; and Process 3 collects the search results from Process 2 into a report.

Process 1 keeps scanning; Process 2 keeps searching; and Process 3 keeps collecting

until the whole set of images are processed.

Work Crew In this paradigm, each process work on its own data. They may or

may not all execute the same operation. A parallel decomposition of a loop usually

falls into this model. For instance in matrix processing, a set of processes can be

created to work on the columns of a large matrix. The matrix is divided into several

column blocks and each is assigned to a process. The processes in the work crew

carry out the same operation on their assigned columns. This is always called Single

Instruction Multiple Data (SIMD) parallel processing, because all processes perform

the same operation on different data.

The work crew model is not limited to SIMD parallelism. The processes may per-

form completely different operations on different data. This is often named Multiple

37

Instruction Multiple Data (MIMD) parallel processing.

The work crew model is used in the development of parallel algorithms in this

thesis.

Master/Slave In the master/slave paradigm, there is one master process and many

slave processes. The master process takes care of I/O, decomposes the problem into

subproblems and assign them to the slave processes. The slave processes work in

parallel and return their partial results to the master. The master/slave paradigm is

used in the development of parallel algorithms in this thesis as well.

2.4 Related Work

Early use of parallel computing technology in the area of transportation includes the

parallelization of fluid-dynamical models for traffic [28], parallel implementation of

assignment models [29] and shortest path algorithms [30, 31, 32].

The parallel implementation of DTA models is a relatively new area in the field of

transportation. Parallel DTA models can be found in [33, 34]. A recent development

is the parallel implementation of TRANSIMS [4]. All these are either microscopic or

mesoscopic DTA models. We briefly review the parallel implementation of TRAN-

SIMS in Section 2.4.1 and the parallel implementation of Algorithm DOT in Section

2.4.2.

2.4.1 Parallel Implementation of TRANSIMS

The TRansportation ANalysis and SIMulation System, or TRANSIMS, is an inte-

grated system of travel forecasting models developed in Los Alamos National Labo-

ratory. It is a microscopic traffic simulator and uses the cellular automata (CA) for

the representation of driving dynamics. The roads are divided into cells whose length

is about 7.5 meters (the length a typical car occupies during traffic jam). At any

moment each cell can be occupied by at most one vehicle. The movement of vehicles

is represented by hopping from one cell to another. Different hopping distance during

38

one time step is designed for different vehicle speed, which is determined from driving

behavior emulation.

The most significant advantage of CA is the facilitation of a parallelization based

on network topology decomposition, because the state at time step t depends only on

information from time step t - 1, and only from neighboring cells. The information

exchange along boundaries is carried out at the end of time step t - 1. Each processor

updates the vehicle position in its subnetwork for time step t, and the exchange along

boundaries is carried out again.

The network is partitioned at the middle of links rather than nodes to reduce the

complexity introduced by intersections. Each link is represented in both processors,

but each processor is responsible for only one half of the link. In order to generate

consistent driving behavior on boundary links, each processor sends the first five cells'

information on its side to the processor on the other side. The length of five cells

is defined as the interactive distance in the CA. By doing so, the other process has

enough information on what is happening in the other half of the link to compute

consistent driving behavior.

In the implementation described in [4], the master/slave paradigm is used. The

master process decomposes the workload, spawns the slave processes, and controls the

general scheduling of all slave processes. The network is partitioned using METIS [35].

During the course of computation, adaptive load balancing is applied from iteration

to iteration. During run time the execution time of the simulation is collected and

fed back to the partitioning algorithm in the next run.

The results show that with a common technology - 100 Mbit/sec switched Ethernet

- one can run the 20 000-link EMME/2-network for Portland (Oregon) more than 40

times faster than real time on 16 dual 500 MHz Pentium computers.

39

2.4.2 Parallel Implementation of Transportation Related Al-

gorithms

Chabini and Ganugapati [32] explored various ways to parallelize the computation of

dynamic shortest paths. Algorithm DOT [36] solves the all-to-one dynamic fastest

paths problem for all departure times with optimal worst case complexity. One way

to speed up the computation of algorithm DOT is through parallel computing.

In [32] two parallelization strategies are developed: decomposition by destination

and decomposition by network topology. The destination decomposition strategy de-

composes the all-to-many dynamic shortest paths problem into several smaller all-to-

many problems by dividing the set of destinations into subsets. The network topology

decomposition strategy splits the network into subnetworks and assign subnetworks

to processors. This strategy is at the algorithm level and involves the re-writing of

the algorithm.

Two parallel libraries are used for each parallel strategy: Parallel Virtual Machine

(PVM) and Solaris Multithreading. Numerical results are obtained using large-size

dynamic networks and two parallel computing systems: a distributed network of Unix

workstations and a SUN shared-memory machine containing eight processors. The

results show that a speedup of about 6 is achieved in shared memory systems using

6 processors. The shared-memory system appears to be the most appropriate type

of parallel computing systems for the computation of dynamic shortest paths for

real-time ITS applications.

2.5 Parallel Implementations of the I-Load Algo-

rithm: Network Topology Decomposition

In this section we present the details of the network topology decomposition strategy

for the iterative loading algorithm. Network topology decomposition is usually done at

the link level, which means a link is the basic element in the partitioning. However, the

MoveFlow() procedure in the I-Load algorithm is essentially path based, therefore a

40

compromised network topology decomposition is adopted, where we split the OD pairs

into subsets and assign them to different processors. This decomposition strategy is

implemented in both the shared-memory and the distributed-memory environments.

2.5.1 Load Partition Algorithm

In addition to the notation introduced in Section 2.1.1, we introduce the following

notation for the parallel implementations:

NP : the total number of processes;

Gi :the set of OD pairs assigned to process or thread i;

Gp :the set of paths in Gj;

G4 : the set of links covered by ODj E Gi. If OD' and OD4 (i f j) share

a common link, that link should be counted twice;

OD : the set of all OD pairs;

ODi: OD pair i; and

OW :the set of links covered by all the paths between ODj. If two paths

share a common link, that link should be counted twice.

Network-topology based decomposition means that the geographical region is de-

composed into several sub-networks of similar size, and each processor of the parallel

computer carries out the network loading procedure for one of these sub-networks.

The term "similar size" means that the computational effort of each sub-network is

similar.

For microscopic DTA models, the computational effort required for each vehicle

is the same. If we assume a uniform spacial distribution of vehicles in the network,

a realistic measurement for size is the total length of all streets associated with the

sub-network [4].

For the I-Load network loading procedure, flows are represented as fractions and

sent along paths by the MoveFlow() procedure. The procedure is briefly illustrated

in Figure 2-7. Node r is the origin node, and node s is the destination node. The

amount of departure flow is f,7(t)6. For each departure time to, we calculate the

41

travel time t(r,)(to) along link (r, 1). We add fprs(t)6 to Xrl) ,(t') for t' such that

to < t' < to + t(r')(to). We take to + t(rl)(to) as the entering time for link (1, 2),

calculate the travel time t(12) along link (1,2). We add f7,(t)6 to X 2)r(t') for t'

such that to + t(',l)(to) < t' < to + t(r')(to) + t(1 ,2)(to + t(r1)(to)). The previous step is

repeated until we reach the last link (n, s).

f (t)8 t,2to+ttt))

Figure 2-7: Example for MoveFlow()

It is seen that the computational effort for each link along a path is the same.

Therefore a measure of size for the macroscopic DTA model based on the I-Load

algorithm is the total number of links in different origin-destination paths. Note that

if path 1 and path 2 share a common link, we need to count that link twice.

METIS [35] is a software package available in the public domain to partition

graphs. The algorithm in METIS is based on multilevel graph partition. The graph

is first coarsened and partitioned. Then it is uncoarsened and at every uncoarsening

step an exchange algorithm is used. The coarsening can be done via random matching.

The first set of links in the network are selected, such that no two links are incident

to each other. Then the end nodes of these selected links collapse into one. It is easier

to find an optimal partitioning when the number of nodes is sufficiently small. In the

process of uncoarsening, METIS systematically tries whether exchanges of nodes at

the boundaries lead to better solutions.

Our approach to network decomposition is through origin-destination decomposi-

tion. The reason is that the MoveFlow() algorithm is path based. While the paths

between OD pairs in the network are very likely to share links, the subnetwork gener-

ated by METIS will probably cut through the middle of a path. This is incompatible

with the MoveFlowO algorithm. We first count the number of links in the paths

between each OD pair (If a link is shared by two paths, it should be counted twice.).

Then we try to group the OD pairs into several OD pair groups, such that each group

contains almost the same number of links.

42

We first sort all OD pairs {0D} by the number of arcs covered by the paths

between OD pair ODj in increasing order as OD', OD, , OD'Qo (IOD'I A

1OD'/Al < < - OD'fI). Then we compute the average number of arcs denoted

as avg for each group. The load partition starts by first assigning OD pair ODJODI

to group 1, that is, G 1 <- G1 U {O~fODI-}. If IGfI avg we stop the assignment for

group 1; otherwise, we add OD pair OD' to group 1, that is, G1 +- G1 U {OD'1}.

If JG A I avg, we stop the assignment for group 1; otherwise, we continue to add

OD pairs OD', OD ,..., to group 1 until IGAI > avg. Suppose that the last OD

pair added to group 1 is OD'. Then the load partition algorithm assigns OD pair

ODOD to group 2, that is G2 <- G2 U {ODIOD-}. If IGAI avg, we stop the

assignment for group 2; otherwise, we continue to add OD pairs OD'+,, OD'

until IGAl > avg. Then the load partition algorithm assigns OD pairs to group 3, 4,

*--, NP. The partitioning algorithm is shown in Figure 2-8.

LOAD PARTITION ALGORITHM ()
1 sort all OD pairs by IODAl in increasing order: OD', OD ... , OD' ;

2 Gk- 0 (k = 1, 2, ,NP);
E' IODA|3 avg k- NP

4 i - JODI, j - 0, np -1;
5 while i > j do
6 Gnp <- GnU f {OD'}
7 i <- i -1 ;
8 while j < i AND IG AI < avg do
9 j-j+ 1;
10 Gnp <- Gnp U {ODj}

11 endwhile
12 np<-np+1;
13 endwhile

Figure 2-8: Load partition algorithm for I-Load algorithm for network
decomposition strategy

We compute the average number of arcs for each group in Line 3 in Figure 2-8 and

use the average throughout the whole algorithm. A potential problem of this is that

IGAl might be substantially less than the average when k is large. An improvement

can be made to address this problem as follows. Instead of using the average computed

in Line 3 throughout the algorithm, we update the average whenever we finish the

43

assignment of a group, that is, add the statement

+=1' AOf
avg E-kZj± ODI

NP - np

between Line 11 and 12.

The origin-destination decomposition has no impact on the distributed-memory

implementation; however it may affect the shared-memory implementation. Because

if the two paths that pass through a link are assigned to two threads in the shared-

memory implementation, there is a chance that there would be memory write conflicts.

In the distributed-memory implementation, this is not an issue.

2.5.2 Shared-memory Implementation

In the shared-memory implementation, the network and the link-path variables are

stored in the global memory, where each thread can have access. The master/slave

paradigm is used in the shared-memory implementation. The master thread (main)

reads the input file and prepares for the parallelism. The master thread algorithm is

in Figure 2-9.

MASTER THREAD ALGORITHM 0
1 read the network G(N, A) and time-dependent OD demands;
2 group OD's into subsets Gi using LOAD PARTITION ALGORITHM;

3 for i <- I to NP do
4 create slave thread i;
5 endfor
6 wait for all slave threads to join;
7 output and stop.

Figure 2-9: Master thread algorithm for I-Load algorithm for network decomposition
strategy

The load partition algorithm stated in Figure 2-8 provides a load partition with

the aim to balance the workload caused by the MoveFlow() procedure. However,

it may not provide a good load partition for workload induced by other procedures,

for example, the procedure to compute link total volumes and travel times. In a

shared-memory implementation, we can adapt different load partition alternatives

44

for different procedures. Moreover, if the load partition algorithm is well designed, it

improves the efficiency of the corresponding parallelized procedure without paying any

penalty. In view of this, we used a better load partition for the computation of total

link volumes, new link travel times, and the update of link travel times. We assume

that A, which is the set of arcs in G, has been partitioned into NP mutually exclusive

and collectively exhaustive sets: A 1, A2 , - , ANP, such that [-] jAjj [A1.

The slave thread algorithm is shown in Figure 2-10. The DTA algorithm and

the I-Load algorithm are integrated in the thread algorithm. The function Barrier

blocks the caller until all threads have called it; the call returns at any thread only

after all threads have entered the call.

SLAVE THREAD ALGORITHM 0
1 i <- GETTHREADID;
2 compute initial path flows f V(r, s) C Gi
3 for ni +- 0 to N 1 do
4 compute initial link free flow travel times Ta(k), Va c A ;
5 for n 2 +- 0 to N 2 do
6 move departure flows f *), V(r, s) C Gi according to Tr2(k);

7 BARRIER;

8 for a E Ai do
9 compute the total link volumes XS;
10 compute the new link travel times re"(k);
11 update link travel times to rTa2+1(k);
12 endfor
13 endfor
14 BARRIER;

15 compute g9" (k), V(r, s) E Gi by ROUTE CHOICE ALGORITHM;

16 update path flows to ff " ,V(r,s) E Gi
17 endfor

Figure 2-10: Slave thread algorithm for I-Load algorithm for network decomposition
strategy

Now we analyze the advantages and disadvantages of the load partition algorithm

shown in Figure 2-8 to METIS for the shared-memory implementation. The example

network is shown in Figure 2-11. There are 2 OD pairs 1-6 (path 1-3-4-5-6) and 2-7

(path 2-3-4-6-7). Because METIS is not able to recognize the paths in the network,

it partitions the network as shown in Figure 2-12. Thread 1 and Thread 2 work on

different sets of links, therefore there will be no memory access conflict. However,

45

Thread 2 will idle until Thread 1 has moved flow across the boundary. The two

threads are not synchronized.

The Load Partition Algorithm shown in Figure 2-8 will partition the network as

shown in Figure 2-12. We duplicate Node 3, 4, and 5 to show that both threads will

work on link (3,4) and (4,5). Memory write conflicts may arise in this case; however,

both threads are able to start working at the beginning independently of each other.

The problem of synchronization is solved.

One can see that each approach has its advantages and disadvantages. Which

approach has a better performance remains to be investigated. Since Network Par-

tition Algorithm shown in Figure 2-8 involves less restructuring of the original code,

we adopt it in our development of the parallel code.

1 6

3 5

27

Figure 2-11: An example network with two OD pairs

Thread 1
Thread I Thread 2 6

1 6

3 4 5
3 4 5 --- ..--.-. -.-------------

3 11 4, 5

2 7

Thread 2

Figure 2-12: How METIS (left) and the Network Partition Algorithm (right) partition
the network

2.5.3 Distributed-memory Implementation

In the distributed-memory implementation, each process has its own copy of the net-

work. We use the work crew paradigm rather than the usual master/slave paradigm

46

for the following reason. In the distributed-memory implementation, we need to ex-

plicitly pass messages between processes to update their copies of the network. If we

have a master process which handles the I/O, decomposes the original problem, as-

sembles the partial network information and distribute to the slave processes, we have

to note that it actually stays idling when the slave processes are working. Another

fact is that the larger the number of processes, the larger the communication time

because more slave processes need to be updated. If we need NP processes in the

master/slave paradigm (1 master process and NP - 1 slave processes), we only need

NP - 1 processes in the work crew paradigm, which reduces the communication bur-

den because less computation nodes are involved in collective communications, say,

broadcast. The algorithm is shown in Figure 2-13. Note that we do not explicitly im-

plement a barrier to keep the processes synchronized, because the MPLAllreduce()

function will implicitly have all processes wait until all processes obtain the collective

message. MPIAllreduce() performs a global reduce operation (such as sum, max,

logical AND, etc.) across all the processes. Details on MPI-Allreduce() can be

found in [26].

PROCEsS ALGORITHM ()
1 i +- GETPROCESsID;

2 read the network G(N, A) and time-dependent OD demands;
3 run NETWORK PARTITION ALGORITHM. Gi is the subset of ODs for process i;
4 compute initial path flow fmO) (t), V(r, s) E Gi, Vm,Vp E Kr,;

5 for ni <- I to Ni do
6 for n2 +- 1 to N 2 do
7 MOVEFLOW for V(r, s) c Gi
8 use MPL.ALLREDUCE() to receive Xar"(t),V(r, s) E G, Vp E Krs,Va E pa
9 obtain link flow totals Xa(t),Va E G
10 compute the new link travel times -rleW"(k), Va E G ;

11 update link travel times T, (k), Va c G;
12 endfor
13 compute gMP(k),V(r, s) E Gi,Vm,Vp E Krs by ROUTE CHOICE ALGORITHM;

14 compute the new path flow fmr'9 (k), V(r, s) C Gi, Vm, Vp C Krs

15 endfor

Figure 2-13: Process algorithm for I-Load algorithm for network decomposition strat-
egy

To reduce the communication time, we applied two techniques. The communica-

47

tion time Tcomm required by sending a message of the size S can be expressed as:

S
Tcomm = Tatency + b

where Tatency is the time needed to initiate the communication. Usually it is inde-

pendent of the size of the message. bnetwork is the bandwidth between the sender and

the receiver. bnetwork is determined by the minimum of the bandwidth of the network

and the bandwidth of the network interface card (NIC) of the computation nodes.

We take two measures to decrease Tcomm: 1) increase bnetwork. We used Myrinet

instead of the common 10OMbit/sec ethernet to construct the communication net-

work. Myrinet offers full duplex 2 gigabit/second connection between computation

nodes; 2) pack small messages into a single message, therefore reduce the number of

messages we need to initiate.

These two measures are adopted in all the distributed implementations throughout

this thesis.

2.6 Parallel Implementations of the I-Load Algo-

rithm: Time-Based Decomposition

From the statement of I-Load algorithm, one can see that prior to each loading

iteration, the time-dependent link travel times are known. Therefore within each

iteration, instead of loading path flows from interval 1 to interval T sequentially,

we could load path flows in interval [1, -1), path flows in interval [, $!), I- ,

and path flows in interval [(NP-1)T, T] in parallel. The time-based decomposition

implementation is based on this idea.

2.6.1 Load Partition Algorithm

Before we describe the load partition algorithm, we introduce some notation:

48

Ts tart the start time interval of the demand period assigned to process i;

T', d the end time interval of the demand period assigned to process i; and

T' : the demand interval [Ttart, Teind}.

The advantage of time-based decomposition is the ease of load balancing. We

just need to decompose the demand period T into equal periods. The load partition

algorithm is shown in Figure 2-14. The algorithm needs to be run locally on each

processor and it will compute the demand period assigned to that processor.

LOAD PARTITION ALGORITHM 0
1 i <- GETPROCESsID;

2 avg <- +1;
3 Ttart <-- i x avg;
4 Ti <- (i + 1) x avg -;
5 if > T then
6 Tein +-T ;

7 endif

Figure 2-14: Load partition algorithm for I-Load algorithm for time-based decompo-
sition strategy

49

2.6.2 Distributed-memory Implementation

Again the work crew paradigm is used in this model. The process algorithm is shown

in Figure 2-15.

PROCESs ALGORITHM ()

1 i <- GETPROCEsSID;

2 read the network G(N, A) and time-dependent OD demands;

3 LOAD PARTITION ALGORITHM;

4 compute initial path flow f[rs) (t) ,V E T';

5 for ni +- 1 to N1 do

6 for n2 +- 1 to N 2 do

7 MOVEFLOW for Vt E Ti;

8 use MPI-ALLREDUCE() to receive the link flows Xr,(t), Vt, Vrs, Va, Vp;

9 compute link flow totals Xa(t), Vt, Va E G ;

10 compute the new link travel times r"ew(k), Vt, Va E G;

11 update link travel times 762 (t), Vt, Va G;

12 endfor

13 compute gpj(t),Vt E T',Vrs,Vm,Vp by ROUTE CHOICE ALGORITHM;

14 compute the new path flow fmrs+ (t), Vt c T, Vrs, Vm, Vp;

15 endfor

Figure 2-15: Process algorithm for I-Load algorithm for time-based decomposition

strategy

2.6.3 Shared-memory Implementation

Although we did not implement the shared-memory implementation, we provide the

algorithms in this section. The shared-memory implementation is quite similar to the

distributed-memory implementation. The master/slave paradigm is used, where the

master thread (main) takes care of I/O and starts the slave threads. Slave threads

move flow for their own demand period and joins the master thread.

The difference between the distributed-memory and the shared-memory imple-

mentations is that in the distributed-memory implementation, we need to use MPI-Allreduce

50

to explicitly form a full picture of the network for each process; however, in the shared-

memory implementation, the global memory stores the network and can let all threads

to have access to. The extra cost we pay is the possible memory write conflict.

The master thread algorithm is shown in Figure 2-16. The slave thread algorithm

is shown in Figure 2-17.

MASTER THREAD ALGORITHM 0
1 read the network G(N, A) and the time-dependent OD demands;
2 for i +- 1 to NP do
3 create slave thread i;
4 endfor

5 wait for all slave threads to join;
6 stop and output the result.

Figure 2-16: Master thread algorithm for I-Load algorithm for time decomposition

strategy

SLAVE THREAD ALGORITHM ()
1 i +- GETTHREADID;

2 LOAD PARTITION ALGORITHM;

3 compute initial path flow fmO) (t), Vt c T;
4 for ni +- I to N1 do
5 for n 2 +- 1 to N 2 do
6 MOVEFLOW for Vt E Ti;
7 compute link flow totals Xa(t), Vt, Va c G;
8 compute the new link travel times -rae" (k),Vt, Va E G

9 update link travel times T6+ (t), Vt, Va E G;
10 endfor
11 compute gin(t),Vt c Ti,Vrs,Vm,Vp by ROUTE CHOICE ALGORITHM;

12 compute the new path flow fmfr l (t), Vt E T, Vrs, Vm, Vp;

13 endfor
14 join the master thread.

Figure 2-17: Slave thread algorithm for I-Load algorithm for time decomposition

strategy

51

2.7 Parallel Implementations of the C-Load Algo-

rithm: Network Topology Decomposition

The C-Load algorithm is a link based algorithm: each link has its own set of variables,

which makes it naturally a good example for network topology decomposition. We

divide the network into subnetworks by cutting at the nodes of the arcs as shown in

Figure 2-18. Figure 2-19 presents the partition at a more detailed level, where we can

see how the linkages between LPV objects are cut.

CPU I

CPU 3

CPU 2

Figure 2-18: Example: network decomposition

In distributed memory implementation, each process only has a subset of the

network. The links on the boundaries are stored on the processors on both sides of

the boundary. After each A interval, we need to synchronize the variables for the

boundary links (This statement is not precise. We use it here just to illustrate the

idea. In Section 2.7.2 we detail how the communication need is identified and carried

out.).

In shared memory implementation, the network is stored in the global memory,

where each thread have access. The flow propagates along a path by the manipulation

on the History lists along the path. History List is a circular queue, which stores the

historic values of entrance flow rates. Each element of the list stores one past value

u' (j), and contains a pointer to the next element in the list. Two pointers tail and

head point to the tail and the head of the circular queue list, respectively. Special

52

LPV &IPVb

LPVV b2

LPV a3LPV b2

CPU1 CPU2

Figure 2-19: Network partition showing at LPV level

measure is needed to protect the History list to avoid any reading and writing conflicts.

2.7.1 Load Partition Algorithm

We define the diameter of a network as the maximum of the shortest path distances

between any two nodes when assuming all link lengths are 1. In a distributed envi-

ronment, due to the slow processor to processor communication speed, it is usually

desirable to partition the network into subnetworks such that: 1) the diameter of

each subnetwork is small; 2) the total length of the boundaries of the subnetworks is

small; and 3) the workload (in other word, weight) in each subnetwork is similar.

We explain the above considerations as follows. Define link density as the number

of links in a network divided by the area of the network. We assume that the link

density conforms to a spatial uniform distribution. As we have said earlier, in the

chronological loading algorithm the workload associated with a network is propor-

tional to the number of links in the network. Therefore 1) and 3) indicate that the

subnetworks are similar in shape.

Since the total amount of communication is proportional to the number of links

across the boundaries, 2) is designed to reduce the amount of communication. Among

53

j

all planar shapes with the same area the circle has the shortest perimeter [37]. There-

fore 2) indicates that in the best case, the subnetworks should be in a circular shape,

or look like a regular polygon.

Take the network in Figure 2-20 as an example. The side of the square is 1. We

want to decompose the network into 4 subnetworks. Note that for simplicity we do

not show the links in the network; however, we know that the link density is uniform.

In Figure 2-21 we partition the network into 4 squares of equal size. In Figure 2-22 we

partition the network into 4 stripes of equal size. It is observed that the total length

of the boundaries between subnetworks for Figure 2-22 is 3; while that for Figure 2-21

is 2. This is because the diameter of the subnetworks in Figure 2-21 is smaller than

that in Figure 2-22.

Figure 2-20: The original network

1 2

3 4

Figure 2-21: Partition method 1

54

1 2 3 4

Figure 2-22: Partition method 2

Existing popular partition software such as METIS is applicable only in undirected

graphs, that is, graphs in which for each link (u, v) there is also an link (v, u)) [38].

Apparently this is not the case in transportation networks. As a heuristic, we propose

a link-based breadth-first search algorithm to partition directed weighted graphs.

The advantage of the ordinary breadth-first search algorithm introduced in [39] is

that it makes sure that the diameter of the graph as small as possible starting from

the source node. The algorithm searches all the nodes in a network that are reachable

from the source. All nodes have two states: marked (reachable from the source) or

unmarked (not yet determined). An arc is called an admissible arc if its tail node

is marked and its head node is unmarked. Initially only the source node is marked.

The algorithm fans out the admissible arcs of the source node and mark the head

nodes of the admissible arcs. It then subsequently select a marked node and fans

out its admissible arcs until no marked nodes have admissible arcs. In breadth-first

search the marked nodes are stored in a queue and nodes are always selected from

the front and added to the rear. What is obtained from the ordinary breadth-first

search algorithm is a tree covering all nodes (We assume that the graph is strongly

connected, that is, it contains at least one directed path from every node to every

other node.).

In order to cover all the links in the network, we modify the ordinary breadth-first

search algorithm as follows:

55

MODIFIED BREADTH-FIRST SEARCH ((u, v), W, Asub)
1 mark link (u,v);
2 Asb '- 0 ;
3 LIST +- {(u, v)};
4 while LIST / 0 and WAsub < w do
5 if LIST 4 0 then
6 select a link (i,j) from the front of LIST
7 else
8 select an unmarked link (i,j) in A;
9 endif
10 Asub +- Asub U {(i, j)}
11 if (i, j) is adjacent to an unmarked link (i', j') then
12 mark link (i',j');
13 add link (ij') to the rear of LIST;
14 else
15 delete link (i,j) from LIST;
16 endif
17 endwhile

Figure 2-23: The modified breadth-first search algorithm

" initially, a designated link is marked;

" mark those unmarked links that are adjacent to the source link;

" a marked link is selected and mark those unmarked links adjacent to this link.

Another consideration in load partition is load balancing. Let W(ij) denote the

workload associated with link (i, j), that is, the number of LPV objects in link

(i, j). Let WAsUb denote the workload associated with subnetwork A,,o, then we

have WA.b = E(i,)EAub W(ij). The modified breadth-first search algorithm returns

once the weight of the marked subnetwork exceeds a designated value, denoted as w.

The link-based breadth-first search algorithm is shown in Figure 2-23. In line 11

of the algorithm, when we say link (i', j') is adjacent to link (i, j), we mean that these

two arcs share at least one node. Since this is a directed graph, (i', j') can be an arc

connecting node i and j but in the opposite direction of link (i, j), in which case link

(i', j') and (i, j) share two nodes. Readers can skip statements between line 5 to 9 at

this time and they are explained later in this section.

The modified breadth-first search algorithm is called in the network partition

algorithm shown in Figure 2-24. First the average workload in is calculated. Then

56

we perform np - 1 modified breadth-first searches to get the subgraphs. A[c] denote

the set of links in subnetwork c assigned to processor c.

LOAD PARTITION (G(N, A), np, A[O,... , np - 1])
1 avg +- WA;

np
2 c +- 0;
3 unmark all links in A;
4 forc+-0,- , np-ldo
5 select an unmarked link (u,v);
6 MODIFIED BREADTH-FIRST SEARCH((U, v), avg, A[c]);

7 endfor
8 select an unmarked link (u,v);
9 MODIFIED BREADTH-FIRST SEARCH((u, v), WA - EOZcc<,-2 WA[c], A[np - 1]);

Figure 2-24: The modified breadth-first search algorithm

Line 5 to 9 in algorithm Modified Breadth-First Search is important. Although

the original network is assumed to have strong connectivity, the unmarked links may

not be strongly connected once the set of links for the first subgraph is determined

by the load partition algorithm. In order to visit all the arcs in the network, at Step

8 when LIST is empty and there are unmarked arcs, we select an unmarked arc.

2.7.2 Distributed-memory Implementation

The distributed-memory implementation of the C-Load algorithm involves modifica-

tions in data structures to support the implementation of the loading algorithm.

Modifications in Data Structures

The sequential program is written in C++, which is an object-oriented programming

language. There are several major classes: Class Link, Class LPV, and Class OD

pair. For the parallel implementation, some of these classes need more attributes and

more methods.

Links are represented in Class Link with the following attributes: link identifi-

cation number, link type, tail node and head node, and pointers to Link-Path flow

Variables (LPV) etc.

57

We supplement Class Link with the following attributes and methods to facilitate

the load partition process:

" groupID: the subnetwork identification number;

" FindUpstreamGroupID(: find the subnetwork identification numbers of the

upstream links;

" GetTotalHistorySize(: find the size of the History lists of all the LPV objects in

the link. This is used to prepare the upstream to downstream communication;

and

" GetNumLPV(: find the number of LPV objects in the link.

Class LPV is used to represent link-path flow variables. Each link can have more

than one LPV objects. Given the network loading procedure is performed at the level

of LPV objects, we supplement the following attributes to Class LPV:

" linkID: the link that the LPV object belongs to; and

" HistorySize: the size of the History list.

Communication

Once the network is partitioned, each processor only has full knowledge about the

subnetwork stored in its own memory. However, the links on the borders need infor-

mation from their upstream links when computing the values of variables: Ua, V ,

Ur , o in the network loading procedure.

In microscopic simulation, the vehicles are transferred from upstream links to

downstream links along the boundary; while in macroscopic simulation, it is the

value of the flow variables that is transferred. We illustrate this idea in Figure 2-25,

which corresponds to the partition shown in Figure 2-19. Link a and link b belong to

CPU 1. Link c and link d belong to CPU 2. The LPV objects in link x are numbered

as LPV x1 , x 2 , - - , Xn. CPU 1 has a copy of link c and link d. CPU 2 has a copy of

link b. At the beginning of each A interval, the upstream processor CPU 1 sends the

58

History lists in link b to the downstream processor CPU 2. Then CPU 1 and CPU

2 perform network loading for this interval concurrently. At the end of the interval,

the downstream processor CPU 2 sends the number of items to be deleted from the

History lists of LPV b, and LPV b2 to the upstream processor CPU 1. CPU 1 then

deletes the corresponding items in LPV b, and LPV b2. By now, the work for this A

interval is finished and both processors are ready for the next A interval.

The method Link::FindUpstreamGroupID() returns the subnetwork identification

numbers of the upstream links. Function UpstreamToDownstreamO and Down-

streamToUpstream() implement the communication.

After each network loading procedure, a new set of path flows is to be computed

on all processes. Therefore Function SyncLinkTravelTimes() is called prior to such

calculations to ensure each process has the latest link travel times.

59

*, I
* I Link c

LPVcl

Link b LPV c2

LPV bI

Link d
LPV b2

LPV di

downstr

Link a

LPV a3

CPU 1

upstream to downstream
communication at the
beginning of each interval

a copy of Link b in the
memory accessible by CPU 2

a copy of Link c and d in the
memory accessible by CPU 1

eam to upstream
communication at the end
of each interval

Link c

LP-- 1------

link d

LPV di ----

CPU 2

Figure 2-25: Communication in the distributed-memory implementation of C-Load

algorithm by network decomposition

60

------- m

-~~-1

------ I

.I

Process Algorithm

The work crew model is used in the distributed implementation of the chronological

loading algorithm. The statements of process algorithm is in Figure 2-26

PROCESS ALGORITHM ()
1 rank <- GETPROCESSID;
2 read G(NA) and time-dependent OD demands;

3 A <- mina[ra(0)] ;
4 M <- number of 6 intervals within a A interval;

5 LOAD PARTITION(G(N, A), np, A[0, . , np - 1]);
6 Compute initial path flows;

7 for j <- 1 to Ni do

8 i <- 0;
9 while (the network is not empty) AND (i < Tdmd) do
10 UPSTREAMTODOWNSTREAM();

11 for a E A[rank] do

12 for k <-iMto (i+1)M-1 do
13 Compute Vag (k);
14 Compute v,"(k);
15 endfor
16 endfor

17 DOWNSTREAMTOUPSTREAM();

18 for a c A[rank] do

19 for k<-iMto (i+1)M-1 do
20 Compute u' (k)

21 Compute U (k);
22 Compute X (k);
23 Compute ra(k);
24 endfor

25 endfor

26 i<i+1;
27 endwhile

28 SYNCLINKTRAVELTIMES

29 endfor

Figure
egy

2-26: Process algorithm for C-Load algorithm for network decomposition strat-

61

2.7.3 Shared-memory Implementation

In the shared-memory implementation, we need to take measures to avoid access

conflict. In Figure 2-19 LPV b, is upstream of LPV c2. If CPU 1 processes LPV

b1 when CPU 2 is processing LPV c2 , there may be access conflict in the History

list of LPV bi: LPV b, calls AddToHeadO method to add items to the head of its

History list; while LPV c2 calls Getu() method to read the History list of LPV b1 and

DeleteFromList(method to remove items from the tail of the History list of LPV b1 .

In the implementation, we associate a mutex with each LPV object. For the three

methods in Class LPV: AddToHead(, GetuO, and DeleteFromListO before accessing

the History list of an LPV object, the mutex is locked; after accessing the History

list, the mutex is then unlocked. By such means, the access conflict is resolved.

The master/slave paradigm is used in the shared memory implementation. The

main thread (main) reads the network file and OD demands file. Then it starts NP

slave threads. The slave threads work on the network loading problem and join the

master thread. Finally, the master thread writes the output. The master thread

algorithm is in Figure 2-27 and the slave thread algorithm is in Figure 2-28. The

notation introduced in the previous section is observed.

MASTER THREAD ALGORITHM ()
1 read the network G(N, A) and time-dependent OD demands;
2 CONSOLIDATE;

3 LOAD PARTITION ALGORITHM;
4 for n <- I to N 1 do
5 start NP slave threads;
6 wait for all slave threads to join;
7 compute g";P(k)Vrs, Vm, Vp,Vk E T by ROUTE CHOICE ALGORITHM;

8 compute new path flows fgrs' (k), Vm, Vp, Vk c T;
9 endfor

Figure 2-27: Master thread algorithm for C-Load algorithm for network decomposi-
tion strategy

62

SLAVE THREAD ALGORITHM ()
1 rank *- GETTHREADIDO;

2 i<-0;

3 while network is not empty do

4 for a G A[rank] do

5 for k <- iM to (i +1)M - 1 do

6 Compute Var,(k);
Vrs

7 Compute Vp(k);

8 endfor

9 endfor

10 DOWNSTREAMTOUPSTREAM();

11 for a E A[rank] do
12 for k +- iM to (i+1)M - I do

13 Compute ug(k);
14 Compute Ua (k);
15 Compute Xa(k);

16 Compute -ra(k);
17 endfor

18 endfor

19 i-i+1;
20 endwhile

Figure 2-28: Slave thread algorithm for I-Load algorithm for time decomposition

strategy

2.8 Experimental Setup and Numerical Results

In this section we report on the experimental setup and numerical results of the

parallel algorithms developed in this chapter. Recall that our goal in this chapter is

to develop faster DTA models. Hence, the first objective in this section is to compare

the running times of the parallel algorithms to the corresponding serial algorithms.

Besides that, we are also interested in how the running times of the parallel algorithms

vary as a function of the number of processors and the effect of different analysis period

on the running times of the parallel algorithms.

Besides the running times of the parallel algorithm, we also report the curves of

speedup and of relative burden, as a function of the number of processors. Let T(P)

denote the running time obtained by using p processors. The speedup is defined as

S(p) = T(1)/T(p). The speedup measure does not generally allow for asymptotic

performance predictions based on a small number of processors. The relative burden

is described in Chabini and Gendron [40] to measure the deviation from the ideal

63

improvement in time from the execution of the algorithm on one processor normalized

by the running time on one processor to its execution on p processors. The expression

of relative burden is B(p) = --)-- We have S(p) = and when pT(1) p S(p) p 'I"-~"--- an he

is large S(p) ~~ * In the following discussion relative burden is referred as burden.

2.8.1 Test Network

The testing network is the Amsterdam A10 beltway, which is shown in Figure 2-29. It

consists of two 32-km freeway loops which intersect with five major freeways and have

20 interchanges of various sizes (75 ramp intersections). The network serves local and

regional traffic and acts as a hub for traffic entering and exiting north Netherland.

There are 196 nodes and 310 links in the network. The number of OD pairs is about

1000. The time-dependent OD trips were originally estimated by Ashok [41] between

20 centroids based on speeds and counts measured at 65 sensor stations. Most OD

pairs in the A10 beltway have two routes; therefore the total number of paths is about

1,500.

2.8.2 Test Platform

Due to the unavailability of shared-memory machines, computational tests are car-

ried out for distributed-memory machines only. Each computational node has a

dual-Intel Xeon 2.4 gigahertz-processor with 1-gigabyte memory. The computation

nodes are connected through Myrinet [42]. Myrinet is a high-performance packet-

communication and switching technology that is widely used to interconnect clusters

of workstations, PCs, servers, or single-board computers. Characteristics that distin-

guish Myrinet from other networks include:

" Full-duplex 2 Gigabit/second data rate links, switch ports, and interface ports.

" Flow control, error control, and "heartbeat" continuity monitoring on every

link.

64

Figure 2-29: Amsterdam A10 Beltway

" Low-latency, cut-through switches, with monitoring for high-availability appli-

cations.

" Switch networks that can scale to tens of thousands of hosts, and that can also

provide alternative communication paths between hosts.

Myrinet is an American National Standard - ANSI/VITA 26-1998. The link and

routing specifications can be found in [43].

2.8.3 Numerical Results for the I-Load Based Parallel DTA

Model

We first provides in Table 2.1 the running times of the serial algorithm for the I-Load

based DTA model as a function of the duration of the maximum demand period

(or analysis period) T. For a given network and a given origin-destination demand

65

matrix, the duration of the maximum demand period acts as a measure of the problem

size, because the numbers of variables is a linear function of T.

T 300 1000 2000 3000
Run Time 235.1 774.5 1479.9 2247.8

Table 2.1: The running times of the serial algorithm for the I-Load based DTA model
as a function of the duration of the maximum demand period. Running times reported
are in seconds

The inputs to the parallel DTA algorithm based on I-Load are: the number of

DTA loops N 1, the number of I-Load loops N2 , the number of 6 intervals within

each A interval M, and the maximum demand period T. In the testing we have

N = 10, N2 = 5, M = 5. T varies from 300 seconds to 3000 seconds. Note that NP,

the number of processors to run on, is supplied to MPI.

Network Topology Decomposition

Following are statistics of results obtained from the load partition algorithm shown

in Figure 2-8. The Amsterdam network contains 1,134 OD pairs and

1134

Z OD AI = 27,300.
k=1

When we decompose the OD pairs into 2 groups, the average number of links per

group is 13,650. The partition result shows that the first group has 13,683 links,the

second group has 13,617 links. When we decompose the OD pairs into 4 groups, the

average number of links per group is 6,825. The partition result shows the numbers

of links each group has are 6,833, 6,860, 6,840, and 6,767, respectively. When we

decompose the OD pairs into 10 groups, the average number of links per group is

2,730. The partition result shows the numbers of links each group has are 2,735,

2,738, 2,730, 2,739, 2,768, 2,734, 2,765, 2,758, 2,771, and 2,562, respectively. One can

note that the load partition algorithm did balance the load well. We also observe that

when NP = 10, the last group contains 2,562 links, which deviates from the average

quite a bit. This can be improved using the improvement we stated in Section 2.5.1.

66

Table 2.2 summarizes the running times of the parallel algorithm as a function

of both the maximum demand period and the number of processors. We also report

the runtime of the parallel algorithm for NP = 1. The running time of the parallel

algorithm when NP = 1 reflects the extra computation effort associated with the

parallel implementation.

NP T=300 T=1000 T=2000 T=3000
1 235.5 779.7 1482.8 2240.3
2 139.0 423.4 805.7 1228.8
4 93.9 266.4 504.9 760.9
6 74.7 199.1 382.5 570.1
8 63.0 156.3 291.3 464.5

10 61.6 149.5 287.1 426.0

Table 2.2: The running times of the parallel algorithm for the I-Load based DTA
model as a function of both the duration of the maximum demand period and the
number of processors. The decomposition strategy applied is network-based. Running
times reported are in seconds

When NP = 1 the parallel algorithm has similar running time to the serial code.

However, the running times of the parallel algorithm is less than those of the serial

code when NP > 2. We plot the speedup curves and burden curves in Figure 2-

30. When T = 300, the speedup is not quite significant as for a small problem size.

This is a common phenomenon for parallel algorithms. For curves corresponding to

T = 1000, 2000 and 3000, one can note significant speedups. It indicates that the

optimal analysis period (The optimal analysis period is the one that can lead to a

maximum asymptotic speedup.) may fall into the range 1000 to 3000 seconds. Most

real time DTA models work in a rolling horizon [6], this suggests that the optimal

prediction period would be 1000 to 3000 seconds. For T = 1000, 2000 and 3000, B(p)

is around 0.1, therefore the asymptotic speedup is approximately 10 for those values

of T.

Time-Based Decomposition

The load partition algorithm shown in Figure 2-14 partitions the demand period into

well balanced sub-periods. We show the decomposition results obtained for T = 1000

67

seconds. When NP = 2, the two sub-periods are of length 500 seconds each. When

NP = 4, the four sub-periods are of length 250 seconds each. When NP = 6, the

first five sub-periods of six sub-periods are of length 167 seconds each; and the sixth

sub-period are of length 165 seconds. When NP = 10, the 10 sub-periods are of

length 100 seconds. The partition algorithm based on time decomposition provides

a more balanced load compared to that based on network decomposition. Hence we

expect to have a better performance in the time-based decomposition strategy.

Table 2.3 shows the running times of the parallel algorithm as a function of both

the maximum demand period and the number of processors. When comparing to the

results in Table 2.3, one can note that the running times for the time-based parallel

algorithm are less than those for the network-based parallel algorithm for T < 2000

seconds. However, when T = 3000 seconds, the running times for the time-based

parallel algorithm are more than those for the network-based parallel algorithm. This

is caused by the larger communication need in the time-based parallel algorithm. In

the network-based parallel algorithm, each process is responsible for a subset of OD

pairs. It only sends the data related to those subset of OD pairs for all network

intervals to other processes. However, in the time-based parallel algorithm, each

process is responsible for all OD pairs. It sends the data related to all OD pairs

for all network intervals to other processes. An improvement can be made to the

time-based algorithm by only sending the data related to all OD pairs for a subset of

network intervals to other processes.

NP T=300 T=1000 T=2000 T=3000
1 237.0 775.0 1480.3 2235.8
2 134.5 415.2 815.7 1180.6
4 81.9 227.7 440.6 7865.9
6 66.1 165.9 319.0 5823.0
8 56.4 134.1 255.3 4396.0

10 52.9 117.5 220.4 3190.9

Table 2.3: The running times of the parallel algorithm for the I-Load based DTA
model as a function of both the duration of the maximum demand period and the
number of processors. The decomposition strategy applied is time-based. Running
times reported are in seconds

68

Figure 2-31 shows the speedup curves and burden curves of the time-based de-

composition strategy. The duration of analysis period varies from 300 seconds to

3000 seconds. In the burden curves plot, we did not include the case when T = 3000

because its burden is always greater than 1 and even reached 6 when p = 2. Figure

2-31 and Figure 2-30 exhibit similar trends. The best performance is reached when T

is 2000 seconds. We can also observe that the time decomposition has a better perfor-

mance than the network decomposition when T = 2000. The asymptotic speedup is

1/0.04=25. However, the time-based decomposition suffers when T is large (T = 3000

sec) due to a larger communication effort.

69

6
- A T=300

- T=1000
5 - .- T=2000

- T=3000

4

3-

2-

Number of processors

0.2 -
A T=300
- T=1 000
. T=2000
9 T=3000

0.15 -

0.1

0.05 -

2 4 6 8 10
Number of processors

Figure 2-30: Speed-up curves and burden curves of the network decomposition MPI

implementation for I-Load as a function of the number of processors. The 4 curves cor-

respond to 4 maximum demand periods: T=300 seconds, T=1000 seconds, T=2000

seconds and T=3000 seconds.

70

7
A T=300

ST=1 000
6 - T=2000

E3 T=3000

5

?' 47-

CL -

0
2 4 6 8 10

Number of processors

0.14 -
- A T=300

0.12 - T=2000

0.1-

C.0.08

W0.06 -

0.04 -

0.02 -

2 4 6 8 10
Number of processors

Figure 2-31: Speed-up curves and burden curves of the time decomposition MPI im-

plementation for I-Load as a function of the number of processors. The 4 curves cor-

respond to 4 maximum demand periods: T=300 seconds, T=1000 seconds, T=2000

seconds and T=3000 seconds. The burden curve for T=3000 is not shown because it

is greater than 1

71

2.8.4 Numerical Results for the C-Load Based Parallel DTA

Model

We first provides in Table 2.4 the running times of the serial algorithm for the C-

Load based DTA model as a function of the duration of the maximum demand period

(or analysis period) T. For a given network and a given origin-destination demand

matrix, the duration of the maximum demand period acts as a measure of the problem

size, because the numbers of variables is a linear function of T.

T 300 1000 2000 3000
Run Time 56.5 126.9 224.1 322.5

Table 2.4: The running times of the serial algorithm for the C-Load based DTA
model as a function of the duration of the maximum demand period. Running times
reported are in seconds

The inputs to the parallel DTA algorithm based on C-Load are: the number of

DTA loops N1, the number of 6 intervals within each A interval M, the maximum

demand period T, and the number of processors to run on p. In the testing, we fix

N1 = 10 and M = 5.

Table 2.5 summarizes the running times of the parallel algorithm as a function of

both the maximum demand period and the number of processors.

NP T =300 T =1000 T =2000 T =3000
1 62.8 133.9 238.7 341.6
2 50.6 111.0 197.8 285.6
4 45.7 101.2 182.3 265.3
6 45.7 100.1 179.2 257.5
8 49.4 108.5 198.1 293.1

10 110.8 244.5 489.3 804.1

Table 2.5: The running times of the parallel algorithm for the I-Load based DTA
model as a function of both the duration of the maximum demand period and the
number of processors. The decomposition strategy applied is network-based. Running
times reported are in seconds

Figure 2-32 shows the speedup curves and burden curves of the network topology

decomposition strategy. We note that the curves for different T have very similar

72

trend. The speedup increases slowly and reaches the peak when NP = 6. The max-

imum speedup obtained for the Amsterdam A10 beltway is below 1.3. The speedup

decreases sharply when np goes beyond 6.

The test result does not show good performances of the distributed-memory im-

plementation. We believe this is due to two reasons. The first one is the already

very efficient implementation in the sequential program. Various measures at the

algorithm and data structure level were taken to achieve computational efficiency,

which are described in [5]. Due to the ring topology of the beltway, the consol-

idation procedure substantially reduces the number of LPV objects, therefore re-

duces the number of variables. The exit flows are also calculated using V (k) =

Vj5(k - 1) + Eje{j:(k-1)6<j3+-ra(j) kS}, together with the circular queue data structure,

the calculation of the exit flows are fast. The second reason is that the Amsterdam

A10 beltway is a relatively small network, which only contains 196 nodes and 310

links. The efficient implementation and the small network make the computation

time of the sequential code fast. Let T(1) denote the computation time of the se-

quential code. The computation time of the parallel code using p processors can

be written as T(p) = T() + T', where T' represents the communication time etc.
p

associated with parallel processing. The speedup can then be expresses as:

T(1) T(1)
T(p) - T(1) + T'P

The efficient sequential algorithm and the small test network makes T(1) < T'

or makes the two comparable, therefore the speedup is not sensitive to p. However,

when the number of processors exceeds a certain threshold, in this case 8, T' increases

due to the larger number of processors involved in the communication, so we observe

a decrease in the speedup curve.

The burden curve shows that for the Amsterdam A10 beltway, the asymptotic

speedup is 0. This is understandable following the above analysis. We would expect

better performance in a much larger network.

73

1.6 A T=300
- T=1000

1.4 T=2000
- T=3000

1.2-

0.
CL

0.6

0.4

0.2

I I I I I

2 4 6 8 10
Number of processors

2.5 -

A T=300
- O T=1 000
- --- T=2000

2 - T=3000

1.5 -
C

0.5 -

2 4 6 8 10
Number of processors

Figure 2-32: Speed-up curves and burden curves of the network decomposition

MPI implementation for C-Load as a function of the number of processors. The 4

curves correspond to 4 maximum demand periods: T=300 seconds, T=1000 seconds,

T=2000 seconds and T=3000 seconds.

74

_dMINMEPOMM - in - -- - - - - I - - -w -

2.8.5 Limitations in the Experimental Tests

The experimental tests is conducted on the Amsterdam A10 Beltway in the distributed-

memory environment. We studied the running times of the parallel algorithms as a

function of the number of processors and the duration of the analysis period. There

are several limitations associated with these tests and shall be addressed in future

research:

1. The Amsterdam network contains 196 nodes and 310 links, which is rather small

in terms of the number of nodes and the number of arcs when compared to a

network model of the great Boston area, which typically contains 7000 nodes

and 25,000 links. The serial codes developed in [5] are already quite fast in

such a network. Take the C-Load algorithm based DTA model, results in Table

2.4 shows the real-time run-time ratio is about 10, which is quite satisfactory.

Given such a context, where the size of the problem is small and the efficiency

of the serial code is satisfactory, it is desirable to perform numerical tests on a

larger network to study the running times of the parallel algorithms.

2. As is shown in Figure 2-29, the Amsterdam network is a beltway, which has a

ring topology. However, typical transportation networks have a grid topology.

It means that the numerical results may not provide enough information to

evaluate the performance of the algorithms for general transportation networks.

Let n denote the number of nodes in the network and m denote the number

of arcs in the network. Typical transportation networks has m/n ~ 4, because

for each node there are four outgoing links and four incoming links. While for

the Amsterdam network, m/n = 1.58, which means that on average there are

altogether 3 links (including both outgoing links and incoming links) incident

to each node. This limits the number of possible paths between any origin-

destination pair. Therefore it would be of help to test the algorithms in a grid

network.

3. In the numerical tests, we analyzed the running times as a function of the

duration of the maximum demand period and the number of processors. It is

75

desirable to do some sensitivity analysis of the algorithms with respect to the

number of OD pairs and the average number of enumerated paths between OD

pairs.

2.9 Conclusions and Future Work

In this chapter, we did the first parallelization for macroscopic DTA models in the

literature. Two loading algorithms are studied: the iterative loading algorithm and

the chronological loading algorithm. Two parallelization strategies are explored where

applicable: network topology based and time-based.

Tests under the distributed-memory environment are carried out. In the paral-

lelization based on the iterative loading algorithm, it shows that both the network

topology decomposition strategy and the time decomposition strategy has an optimal

maximum demand period T = 2000.

In the parallelization based on the chronological loading algorithm, the speedup is

not significant due to the efficiency sequential algorithm and the size of the network.

It would be high desirable to apply the program in a larger network.

Future research in this chapter shall be directed at studying the following issues:

1. An immediate future research work is to test the parallel implementations in a

shared-memory environment. By doing that we shall know the performances of the

shared-memory implementations. In shared-memory machines, the communication

between processors is faster and thus may lead to better performances. However,

shared-memory machines are usually costly and the number of processors in one

machine is limited due to technology limitations.

2. The serial DTA models used in this thesis have several limitations. First, in-

cidents are not considered in the dynamic network loading model. Incidents are not

unusual in traffic networks and can have a significant impact on traffic conditions.

A proper incident model should be added to the dynamic network loading model.

Second, in the DTA models used in this thesis, a volume delay function link model

is used, which is a fairly simple model. It does not take into consideration the distri-

76

bution of traffic along links and this poses a potential threat to the accuracy of the

loading results. A more realistic link performance model shall be used in future.

3. Load partition is a crucial step in parallel computing. The original problem is

decomposed into sub-problems by the load partition algorithm. The more uniform

the sub-problems are, the better the parallel implementation will be. Although the

partition algorithms we developed shows good performance, there may exist other

partition algorithms that lead to better performance.

4. In this thesis, we looked at distributed-memory implementations and shared-

memory implementations. One can also consider a hybrid implementation combining

the two. For example, if we have 4 SMP machines with 2 processors each. We could

decompose the network into 4 subnetworks and assign each subnetwork to one SMP

machine. Each of these subnetworks can then be implemented using a multi-threaded

implementation within the assigned SMP machine.

77

78

Chapter 3

A Framework for Static Shortest

Path Algorithms with Applications

3.1 Introduction

The computation of shortest paths is an important task in transportation applications.

For instance the shortest path problem lies at the heart of the route guidance in

Intelligent Transportation Systems, especially in Dynamic Traffic Assignment (DTA)

problems. In such applications, there is usually a need to solve a large number of

shortest path problems in dynamic networks. To meet the real-time operational

requirement of ITS applications, efficient solution algorithms are desired.

Consider a network model of the Greater Boston area, which typically contains

7,000 nodes, 25,000 arcs, 1,000 origin nodes and 1,000 destination nodes. Suppose

that one wants to provide route guidance to drivers in the 2-hour morning peak

period. If we discretize time at a 15-second interval, we have 480 departure times.

One current serial computer with a 2 GHz processor solves a single one-to-all shortest

path problem in such a network in the order of 10-' seconds. The time to compute

shortest paths in one DTA iteration, which amounts to calculating 1,000 trees for 480

possible departure time intervals, then requires 10-1 x 1000 x 480 = 480 seconds. In

order to obtain a satisfactory approximation of DTA solution, it typically requires at

least 10 DTA iterations. Therefore the total time that would be needed to compute

79

shortest paths would be 480 x 10 = 4800 seconds = 1.3 hours. This is a close figure

to the length of the analysis period, which prevents using this model in real-time

applications.

There are several variants of the shortest path problems that arise in common

transportation applications. First, depending on the number of origins and destina-

tions, there are 1-to-1, 1-to-all, all-to-1, and many-to-all etc. shortest path problems.

Second, depending on whether link travel times are static or time-dependent, there are

static shortest path problems and dynamic shortest path problems. Third, depend-

ing on whether the First-In-First-Out (FIFO) property is satisfied, there are FIFO

shortest path problems and non-FIFO shortest path problems. Fourth, depending on

whether link travel times are stochastic or not, there are deterministic shortest path

problems and stochastic shortest path problems.

In this chapter we first focus on the problem of computing 1-to-all shortest paths in

dynamic FIFO networks for all departure times 1, 2,.- - , To. Transportation networks

usually satisfy the First-In-First-Out property. Consider dynamic networks, which are

defined as networks in which link travel times are time-dependent, the FIFO property

for an arc holds if and only if an individual leaving the source node cannot arrive at the

end node earlier by departing later. If all arcs satisfy FIFO property for all departure

times, the network is a FIFO network. Furthermore if an individual leaving the source

node later can only arrive at the end node later, we say the strict FIFO property for

that arc holds. If all arcs satisfy strict FIFO property for all departure times, the

network is a strict FIFO network.

The 1-to-all shortest path problem in dynamic FIFO and strict FIFO networks

can be decomposed into a series of static shortest path problems [36]. When typical

classical static shortest path algorithms are applied to solve dynamic shortest path

problems, they solves the To 1-to-all shortest path problems independently of each

other. It is then interesting to develop static shortest path algorithms that can benefit

from results from other departure times

We present a new framework which exploits information from the results of previ-

ous 1-to-all problems to solve the current 1-to-all problem. The idea of the framework

80

is to prioritize (label set) nodes with optimal distance labels (earliest arrival times)

in the scan eligible list of label-correcting algorithms. To achieve this, a key question

to answer is how to determine the optimality of node labels. In dynamic strict FIFO

networks, we exploit the fact that ai(t - 1), the minimum arrival time for departure

time t - 1 at the origin, is a lower bound on ei(t), the possible arrival time for de-

parture time t at the origin. If ei(t) = ai(t - 1) + 1, we label node i as optimal and

prioritize it. This idea extends to FIFO networks as well, that is, node i is optimal if

ei(t) = ai(t - 1).

This framework is also applicable to static shortest path problems. In the 1-

to-all static shortest path problem, through introducing the findmin operation, we

construct an optimality condition to determine whether a node is optimal. Such

technique also makes label-correcting algorithms more efficient to solve 1-to-1 and

1-to-many shortest path problems. In the many-to-all shortest path problem, clas-

sical shortest path algorithms simply solve a series of independent 1-to-all shortest

path problems for all origins. The potential to enhance the computation time for

this problem has been observed in [44], where an efficient method is proposed for

recalculating the shortest path tree when the origin node is changed. If one replaces

the arc costs with their reduced costs and applies the algorithm we proposed to solve

for origin s, and then for s2 , it automatically explores the shortest path tree it has

already computed for sl. When it label-sets a node, it consecutively label-sets all the

nodes in the subtree rooted at that node in the shortest path tree found for si. If

S2 = s1 , it will compute the shortest path tree starting at s2 in linear time, while for

classical shortest path algorithms, the computation effort for 82 will be the same as

that for si.

The rest of this chapter is organized as follows. In Section 3.2 we present a new

framework for static shortest path algorithms. We then provide applications of this

framework in Section 3.3 through 3.5. Finally, in Section 3.6, we provide computer

implementations and numerical results for the application of the algorithm in dynamic

networks.

81

3.2 The New Framework

Let G = (N, A) be a graph, where N is the set of nodes and A is the set of arcs.

Let the number of nodes in G be n = INI, and the number of arcs be m = JAl. We

associate with each arc (i, j) a non-negative travel time dij. The minimum travel time

from the origin node s to a node i is denoted by di (di is also referred as distance label

of node i in the following text). For a given node i, let A(i) = {j : (i, j) E A} and

B(i) = {j : (j, i) E A}. We also refer to A(i) as the forward star of node i and B(i) as

the backward star of node i. s is the origin node. The length of a path (i1 , i2, - , k)

is the sum of the length of its arcs. A shortest path between node i1 and ik is one

that has the minimum length among all paths linking il and ik.

A generic static shortest path algorithm maintains a scan eligible list SE and does

the following:

algorithm: generic Static Shortest Path (SSP)
1 d, - 0; dj +- oo for each j c N \{s};
2 SE +- {s}; ;
3 while SE # 0 do
4 remove a node i from SE;
5 for allj G A(i) do
6 if dj > di + dij then
7 dj +- di + dij ;
8 SE*-SEU{j};
9 endif
10 endfor
11 endwhile

Different algorithms are distinguished by the method of selecting the node to exit the

scan eligible list SE at each iteration. In one major class, the label-setting algorithms

(for example: Dijkstra's algorithm [45, 46]), the node exiting SE is a node whose

label is the minimum among all the nodes in SE. Algorithms that do not follow

this node selection criterion are called label-correcting algorithms. In label-correcting

algorithms, the selection of the node to be removed from SE is faster than that in

label-setting methods, at the expense of potential multiple entrances of nodes in SE.

An example of label-correcting algorithm is the Bellman-Ford algorithm [47, 48] that

uses a queue to maintain the scan eligible list SE. For the ease of discussion, in the

82

following text, we refer to the Bellman-Ford algorithm with a queue implementation

of the scan eligible list as the Bellman-Ford algorithm.

In Dijkstra's algorithm, each node selected from SE is optimal because we assume

dij is non-negative; while in label-correcting algorithms, this is usually not true. We

are interested in finding ways to determine nodes that have optimal distance labels

at each iteration. In addition to the scan eligible list SE, we create a Priority Scan

Eligible list PSE. Nodes in SE that have optimal distance labels are moved into

PSE. PSE enjoys preemptive priority queue over SE, which means SE is not

processed until PSE is empty and the processing of SE is interrupted in the event

that the PSE becomes non-empty.

The framework with priority enabled for static shortest path algorithms is de-

scribed in Figure 3-1.

algorithm: SSP algorithm with priority enabled
1 d, <- 0; dj +- oo for each j C N \ {s};
2 SE +- {s}; PSE <- 0;
3 while SE U PSE # 0 do
4 if PSE $ 0 then
5 remove a node i from PSE;
6 else
7 remove a node i from SE;
8 endif
9 for j E A(i) do
10 if dj > di + dij then
11 dj +- di + dij ;
12 SE <- SEu {j};
13 for all k E SE do
14 if k is determined to be optimal then
15 PSE +- PSE u{k};
16 SE +- SE \ {k};
17 endif
18 endfor
19 endif
20 endfor
21 endwhile

Figure 3-1: A framework for static shortest path algorithms with priority enabled

The differences between this new framework and that of a generic shortest path

83

algorithm lie in two aspects. First, in the beginning of the main loop, appropriate

modifications are made to implement the preemptive priority queue PSE. Second,

in the end of the main loop, some mechanisms should be applied to replenish the

priority scan eligible list PSE.

Algorithms developed under this framework should be distinguished from the

threshold algorithm [49]. Both algorithms maintain two scan eligible list; however,

there is one fundamental difference: in threshold algorithm, nodes are replenished

to the two lists by the threshold value and the optimality of their distance labels is

unknown. In the framework above, all nodes replenished to PSE are guaranteed to

have optimal distance labels.

The label-setting algorithm and label-correcting algorithms can be well interpreted

under this general framework. When a node is selected from SE and its forward star

is explored, we term it as one iteration in the algorithms. If exactly one node that

has the minimum distance label in SE is added to PSE at each iteration, then we

obtain Dijkstra's algorithm. If SE is implemented as a binary heap, the effort to

replenish PSE is O(log(n)) in each iteration. Each node is visited exactly once and

the algorithm stops after n iterations. If no nodes are ever added to PSE, we obtain

label-correcting algorithms. In this case, the effort to replenish PSE is zero with a

potential drawback that a node may be visited more than once [50].

We observe that there is a trade-off to be done between the effort to replenish

PSE and the number of iterations for the algorithm to stop. We pose the question

of whether there are any better ways to replenish PSE so as to balance the effort

to replenish PSE and the number of iterations the algorithm requires to stop? We

associate a threshold value pj for node j such that when dj ; [U, we can claim that

dj is optimal. Note that both p 3 and dj may change during the iterations, with dj

non-increasing and pj non-decreasing. In the following discussion we refer to this

condition as the optimality condition.

The key question then is how to calculate py. We propose different efficient ways

to determine p in different networks.

84

3.3 Application in Dynamic Strict FIFO Networks

Let dij(t) denote the travel time along arc (i, j) when we enter are (i, j) at time t.

The minimum travel time from the source node s to a node i departing the source at

time t is denoted by di(t), and the minimum arrival time at node i when departing

the source at time t by ai(t). Let ei(t) be a feasible arrival time to node i, which

means ei(t) is an upper bound on the minimum arrival time to node i when departing

the origin node at time t. Note that ai(t) = t + di(t).

In discrete time networks the strict FIFO property of an arc (i, j) holds true if

and only if the inequality dij (t + 1) dij (t) holds true for all values of t. If all arcs

satisfy the strict FIFO property for all departure times, the network is a strict FIFO

network. In discrete time strict FIFO networks, a (t) is an increasing function of t

for each i, that is, ai(ti) < ai(t 2), if t1 < t 2 .

Proposition 1 In dynamic strict FIFO networks, if ei(t+1) = ai(t)+1, then ei(t+1)

is optimal, that is, a (t + 1) = e (t + 1).

The results of Proposition 1 follows directly from the definition of strict FIFO

networks. A usefulness of this result is that we can define the threshold for node j
for departure time t as pj(t) = aj(t - 1) + 1. To make the expression ai(t - 1) valid

for t = 1 we assume that a%(0) is 0 for all i. The pseudocode of the adaption of

the framework described in the previous section to determine shortest path tree for

departure time t assuming that an optimal solution for departure time t - 1 is known

is given in Figure 3-2.

3.4 Application in Dynamic FIFO Networks

In discrete time networks the FIFO property of an arc (i, j) holds true if and only

if the inequality dij(t + 1) dij(t) - 1 holds true for all values of t. If all arcs

satisfy the FIFO property for all departure times, the network is a FIFO network. In

discrete time FIFO networks, a (t) is a non-decreasing function of t for each i, that

is, a (ti) < ai(t 2), if ti < t 2 .

85

algorithm: label-correcting with priority enabled in
strict FIFO networks
1 a(0) -0,Vi C N;
2 for t - to To do
3 a,(t) -t;
4 ai(t)- oo,Vi E IV\{s};
5 SE <- {s} ; PSE <- 0 ;
6 while SE U PSE 5 0 do
7 if PSE # 0 then
8 remove a node i from PSE;
9 else
10 remove a node i from SE;
11 endif
12 for j E A(i) do
13 if aj (t) > ai (t) + dij (ai (t)) then
14 aj (t) <- a (t) + dij (ai (t)) ;
15 if aj(t) = aj(t -1)+1 then
16 PSE <- PSE U {j};
17 if j E SE then
18 SE - SE \ {j};
19 endif
20 else
21 if j V SE then
22 SE <- SE U{j};
23 endif
24 endif
25 endif
26 endfor
27 endwhile
28 endfor

Figure 3-2: Label-correcting with priority enabled in strict FIFO networks

Proposition 2 In dynamic FIFO networks, if ei(t + 1) = ai(t), then ei(t + 1) is

optimal, that is, ai(t + 1) = ei(t + 1).

This comes directly from the definition of FIFO networks. Based on Proposition

2, we can define the threshold for node j for departure time t as pu(t) = aj(t - 1).

In FIFO networks we could change the condition "if aj(t) = aj(t - 1) + 1" to "if

aj(t) = aj(t - 1)" in Line 15 in Figure 3-2 to make it suitable for FIFO networks.

While this will lead to more efficient algorithms compared to a repetitive application

of a static shortest path algorithm, a more efficient adaptation can be developed.

86

Denote the shortest path tree computed for time t as Tt.

Proposition 3 Suppose that we compute T 1 , T 2 , --- , TT0 in increasing order of the

departure times. For i c N, if ei(t + 1) = ai(t), there exists a shortest path tree T+1

such that the subtree rooted at node i in Tt+1 is the same as that in T.

To prove this is equivalent to prove that for any node j in the subtree rooted at

node i in T, a3(t + 1) = a,(t). Given that ei(t + 1) = ai(t), if we follow the path from

i to j in T, we have e(t+1) = a(t). Thus a(t+1) ; ej (t+1) = a3 (t). On the other

hand, from the FIFO property we have aj(t + 1) ;> aj (t). Therefore a3 (t + 1) = a,(t).

Proposition 3 implies that if ei(t+ 1) = a (t), we need not explore the forward star

of node i. This is quite powerful in reducing the number of arcs scanned and we could

design more efficient algorithms for FIFO networks than for strict FIFO networks.

There are various ways to implement the idea of not exploring the forward star

of node i. One way is to compute shortest path trees in decreasing order of time.

We initialize ai(t - 1) to the value of ai(t) when computing the 1-to-all shortest path

problem for departure time t - 1. The advantages of working in decreasing order of

time and initializing ai(t- 1) to a (t) are twofold: 1) ai(t) does provide an upper bound

on ai(t - 1), which is required by the algorithm. The algorithm improves the upper

bounds until the upper bounds equal the optimal values; 2) after the initialization of

ai(t - 1) to a (t), if ai(t - 1) never decreases in computing T_ 1 , it will never be added

to SE and its forward star will never be explored. The non-exploration of its forward

star does not jeopardize the optimality of the minimum arrival times for nodes in the

subtree routed at i in T_ 1 , because the minimum arrival times of those nodes for

departure time t - 1 are the same as the minimum arrival times of those nodes for

departure time t, which are the initial values of the minimum arrival times of those

nodes for departure time t - 1.

The overall algorithm starts by computing a shortest path tree for t = To using

any shortest path algorithms and obtain ai(To),Vi E N. The pseudocode of this

algorithm is in Figure 3-3.

87

algorithm: label-correcting with priority enabled in
FIFO networks
1 compute ai(To), for Vi E N;
2 for t <-To - I to 1 do
3 a. (t) +- t; ai (t) <-- a (t + 1), Vi c N\{s};
4 SE <- {s} ;
5 while SE = 0 do
6 remove a node i from SE;
7 for j E A(i) do
8 if a,(t) > a (t) + dij (a (t)) then
9 a,(t) <- ai(t) + dij (ai (t))
10 SE - SE U {j};
11 endif
12 endfor
13 endwhile
14 endfor

Figure 3-3: Label-correcting with priority enabled in FIFO networks

We did not use PSE explicitly in the above algorithm as we need not explore

the forward star of those nodes. One should also note that the arrival times of those

nodes are no longer guaranteed to be optimal.

The reason why we need to work in decreasing order of time is that it is impossible

to avoid exploring the forward star of node i if ai(t + 1) = ai(t) and if we work in

increasing order of time. We cannot initialize ai(t + 1) to a (t) when computing T+,

because the initial value of ai(t + 1) should always be an upper bound on the optimal

value of ai(t + 1). Suppose that we initialize ai(t + 1) to fi(t + 1), where fi(t + 1)

is an upper bound on the optimal value of ai(t + 1) and fi(t + 1) > ai(t). In such

a context, if we detect that at some time ai(t + 1) = ai(t) for some node i, we still

need to explore the forward star of node i; otherwise, the optimality of aj(t), for all

j c A(i), are not guaranteed.

Proposition 4 The algorithm in Figure 3-3 solves the one-to-all shortest path prob-

lems for all departure times in O(mTo).

Proof: It is shown in [51] that a dynamic network can be viewed as a static network

by using the time-expanded network representation. We provide a brief description as

88

follows. The static network is formed by expanding the original dynamic network in

the time dimension, and making a separate copy of all nodes for every integer value of

time t E {1, 2, - - - , To}. Every node in the time-expanded network represents a time-

node pair consisting of a time t E {1, 2, - -- , To} and a node i E N, where the nodes at

the highest level of time are taken to represent not only time interval To, but all times

greater than or equal to To. Every link in a time-expanded network is a directed link

from a node-time pair (i, t) to another node-time pair (j, min{To, t + dij(t)}).

Time-expanded networks have the following properties, which are identified in

[51].

1. Along the time dimension, they are acyclic if arc travel times are positive.

2. Every path on the original dynamic network corresponds to a path on the time-

expanded network with the same travel time. Visiting a node i in the original

dynamic network at time t corresponds to visiting node-time pair (i, t) in the

corresponding time-expanded network.

3. A shortest path problem in a dynamic network can be solved by applying a

static shortest path algorithm to its equivalent representation as time-expanded

network.

A consequence of properties 2 and 3 above is that dynamic shortest path prob-

lems can be solved by applying static shortest path algorithms to the time-expanded

representation of a dynamic network. In the time-expanded network, there are nT0

nodes and mTo links, a direct repetitive application of label-correcting algorithm with

a queue implementation of the scan eligible list leads to a total runtime complexity

of O(To x mTo x nTo) = O(mnTo).

However, for the algorithm shown in Figure 3-3, the forward star of each node-time

pair in the time-expanded network is visited at most once, that is, the links in the

time-expanded network are visited at most once. Therefore the runtime complexity

of the algorithm is O(mTo). U

Curious readers may ask why this idea of not exploring the forward star of node i

if a,(t + 1) = a3(t) + 1 is not applicable in strict FIFO networks. This is because for a

89

node i E N, even if ai(t+ 1) = a (t)+ 1, this would not provide any information about

T±i. We only explored the subtree rooted at node i for departure time ai(t); and we

have not yet explored the subtree routed at node i for departure time ai(t) + 1.

3.5 Application in Static Shortest Path Problems

As is stated before, the many-to-all shortest path problem can be decomposed into

1-to-all shortest path problems. Our goal is to find the linkage between these 1-

to-all shortest path problems, therefore it is instructive to first focus on how this

framework will fit in the 1-to-all problem. The application in many-to-all is presented

subsequently.

3.5.1 1-to-all Shortest Path Problems

We define the caliber of node i is defined as C(i) = minjB(i)dij. We also introduce

a findmin operation over SE. Denote the set of nodes in the scan eligible list at

iteration k as SEk, then the findmin operation returns the minimum distance label

SEki, of the nodes in SEk.

Proposition 5 SEmin is a non-decreasing function of k, that is, SEmn : SEi , if

k < l.

Because the arc travel times are non-negative, the distance label of any node j
added to SE after iteration k must satisfy the inequality dj > SE in. Therefore the

minimum in SE will never decrease.

Proposition 6 dj is optimal is optimal if d< SE'i,+C(j), j SE.

We only need to prove that once node j satisfies the above condition, it will

never be added to SE, which means that its distance label dj will remain unchanged

afterwards. Assume at iteration m(m > 1) node j is added to SE, which means

3k E N such that dk + dj < di. Then we have di > dk + dkj > SEm" n + C(j) >

SEmin + C(j). This contradicts the assumption that dj 3 SE in + C(j).

90

Proposition 7 dj is optimal if d < SE + C(j), j E SE', k < 1.

From Proposition 5, we can derive that d , SEn + C(j) < SE, + C(j). From

Proposition 6, we know node j is optimal.

Given Proposition 7, we need not find the minimum distance label at each itera-

tion. Because the fiindmin operation is expensive, the minimum distance label found

in previous iterations can be used as a lower bound to the current minimum distance

label in the scan eligible list.

Define p4 as the threshold for node j at iteration k: p4- SEC + C(j), 1 is the

latest iteration in which a findmin operation was carried out. At iteration k any

node j in SE that satisfies dj < is optimal. The PSE list is replenished by the

following mechanism: 1) if node j is already in SE, remove it from SE and add it to

PSE; 2) if that node is not in SE, add it to PSE directly.

We note that if the findmin operation is carried out at each iteration, we are

doing something similar to Dijkstra's algorithm, particularly Dial's implementation

of Dijkstra's algorithm. We may pay too much to accomplish the findmin operation

in reducing the number of iterations needed by the algorithm. Instead, we adopt the

following strategy which is shown in Figure 3-4. SE and PSE are implemented as a

queue. Suppose at iteration k, we did a findmin operation, which means we scan SE

and find the minimum distance label. We use two pointers P1 (black) and P 2(gray) to

indicate the front and the end of SE. Then we scan SE for a second time, remove

those nodes that satisfy the optimality condition (dj pk) in SE and add them

to PSE. If the node to be removed is the front of SE, we update P1 such that it

will not point to removed nodes in SE. After that we process nodes in PSE and

SE according to the rule we presented in the general framework. When processing a

node, say i, we look at its forward star. If its child j is to be updated, which means

di + C(j) dj, we add node j to PSE or SE depending on whether it satisfies

the optimality condition. This process continues and at a certain iteration, we will

encounter the situation when PSE = 0 and P passes P2. Now, we will perform a

second findmin operation and make P2 point to the end of SE(P2 <- rear[SE]).

The pseudocode for the algorithm is shown in Figure 3-5.

91

SE PSE

I NM I.

iteration k: dofmdnin

replenish PSE from SE

process node in PSE

the black pointer passes the red
dofindmin now

Figure 3-4: How the findmin operation is carried out in 1-to-all SSP problems.

algorithm SSP with findmin operation
1 d, <- 0; dj <- o for each j E N \ {s}

2 SE +- {s}; PSE <- 0;
3 CurMin +- 0;
4 while SE U PSEy4 0 do
5 if PSE#0 then
6 remove the front node i of PSE;
7 else
8 remove the front node i of SE and update P,;
9 endif
10 for j c A(i) do
11 if dj > di + di then
12 dj <- di + dij ;
13 if dj 5 CurMin + C(j) then
14 PSE <- PSE U{j};
15 if j E SE then
16 SE +- SE \ j}
17 endif
18 else
19 if j SE then
20 SE<-SEU{j};
21 endif
22 endif
23 endif
24 endfor
25 if (P passes P2) AND (PSE = 0) then
26 P 2 <- rear[SE] ;
27 CurMin <- FINDMIN(SE);

28 for all j C SE do
29 if dj CurMin + C(j) then
30 SE <- SE \ {j} ;
31 PSE <- PSE U {j};
32 endif
33 endfor
34 endif
35 endwhile

92
Figure 3-5: A static shortest path algorithm with findmin operation

The above algorithm also makes label-correcting algorithms more efficient in solv-

ing 1-to-1 and 1-to-many shortest path problems. Label-correcting algorithms solve

a 1-to-all problem in order to solve a 1-to-1/1-to-many problem. By introducing the

f irndmin operation and using the property of caliber, we construct an optimality

condition dcj <p. Label-correcting algorithms with the findmin operation can stop

once the destination node(s) verify(ies) this optimality condition.

This algorithm should be distinguished from the threshold algorithm [52]. They

share the attribute that they both maintain two lists for the candidate nodes. How-

ever, there is a fundamental difference. In the algorithm we present nodes in PSE

have optimal distance labels; while in threshold algorithm, neither list contains ex-

clusively nodes with optimal distance labels.

3.5.2 An Example

To assist the reader in better understanding the algorithm presented in this chapter,

we provide a small example. The example network is shown in Figure 3-6 accompanied

by Table 3.1 which summarizes the solution steps. In the following paragraph we will

walk through the steps the algorithm would take in solving the shortest paths from

source node 0.

5 3

s 2 6

2 35
2

3 3 5

Figure 3-6: A sample network used to demonstrate the fundamentals of the algorithm.

The first column shows the iteration number. The second column shows the

current SEmin. The third and fourth column show the content of SE and PSE

respectively. The last 6 columns show the changes to the distance labels of the 6

nodes in the network. The number in parenthesis is the caliber of each node. For

93

iteration SJF SE PSE 1(2) 2(1) 3(2) 4(3) 5(3) 6(3)

1 0 1 -4 - -

2 0 1 2) 5 4 2 - - -

0 A 2 5 D 4 3 2 - 10

3 3 I +5 1,)2 4 3 2 7 10 -

4 3 * * 5 4 2) 4 3 2 7 10 -

5 3 1, 54 5) 4 3 2 7 6 -

3 2* 5* 4 6 D 4 3 2 7 6 11

3 2 4 6 (D 4 3 2 7 6 11
6 7 1* 2- 5 4 6 4) 4 3 2 7 6 11

74 3 2 7 6 11

Table 3.1: Steps to solve the shortest path problem for the network in Figure 3-6
with source node 0.

SE, two pointers P1 and P2 are maintained as described in the previous paragraphs.

The black arrow indicates the location of P and the gray arrow indicates that of

P 2. The circles and ellipses show the operation carried out at each iteration. The

algorithm visits the nodes in the sequence: s, 3, 1, 2, 5, 4, 6. However, if we apply

Bellman-Ford algorithm to this example, we will visit the nodes as following: s, 1, 2,

3, 4, 5, 1, 2, 6, 4, 5, 6.

The findmin operation is also applicable to FIFO networks. Let SEk(t) denote

the set of nodes in the scan eligible list at iteration k when computing Tt, then

the findmin operation returns the minimum value in SEk (t), which is denoted as

min(t). We can define a static caliber of node i as C(i) = minjCB(i),1<t;TOdj(

We can say that aj (t) is optimal if aj(t) < SE . (t) +C(j). Alternatively, we can also

define a dynamic caliber of node i as C(i, t) = minjEB(i)dji(t), then aj(t) is optimal

if aj M -< SEmkin(t) +C07, SEmin(t)).

3.5.3 Many-to-all Shortest Path Problems

In a static network G1 , the many-to-all shortest path problem is defined as finding

the shortest paths from origin nodes si, s 2 , - - - , sp to all other nodes in the network.

Suppose we have computed the shortest path tree T,1 for origin s1 .Define the

reduced cost of arc (i, i) with respect to origin s as djs =dij - (dj - d). We replace

dij with its reduced cost dij' in the network and obtain G2. A shortest path solution

in G1 is a shortest path solution in G2 and vice versa [53].

94

Now we want to compute a shortest path tree T,2 , which originates from S2. The

running times of certain classical shortest path algorithms are invariant to the change

of cost, that is, if we apply classical shortest path algorithms, the run time would be

in the same order of that for s, no matter we use G, or G 2 . However, if we prioritize

nodes with optimal distance labels in G 2 , we could substantially outperform classical

algorithms.

Proposition 8 If node i E PSE is processed, the nodes in the subtree routed at i in

T,, will be consecutively label-set and added to PSE.

Proof: if (i, j) E T,,, dj51 = 0. Therefore C(i) = 0 for all i E G2 \ {1s}. Suppose

i is j's predecessor in T,1 , d 2 = d 2 < CurMin + 0. Node j satisfies the condition

to enter PSE. Therefore node j, the descendent of i in T,,, will be added to PSE.

This process is applicable for all nodes in the subtree rooted at i. U

This algorithm is more efficient in solving many-to-all shortest path problems than

a repetitive application of a shortest path algorithm. As a special case, if si = s2, the

algorithm solves the shortest path tree rooted at S2 in linear time, which is O(n + m).

While for certain classical shortest paths algorithms, the computation effort to solve

the shortest path tree rooted at s2 is in the same order as that to solve the shortest

path tree rooted at s1 . For example, for a binary-heap implementation of Dijkstra's

algorithm, it is O((m + n)log(n)). For a queue-implementation of label-correcting

algorithm, it is O(mn).

3.6 Computer Implementations and Numerical Re-

sults

The algorithms for dynamic shortest path algorithms presented in this chapter have

been implemented and tested. The computer implementation were written in C/C++

[54, 55]. The tests were performed on a Pentium III 733 megahertz computer with

320 megabytes of RAM. In this section, we describe the objective of the tests, the

test networks used, and the computational results obtained.

95

3.6.1 Dynamic FIFO/strict FIFO Networks

The objective of the experimental study is to analyze the running times of Algorithm

LCP for dynamic shortest path problems in FIFO/strict FIFO networks, as a function

of the size of the network, the number of nodes, the number of arcs, and the percentage

of dynamic arcs.

Two types of random networks are used in the tests: networks with a random

topology (Type I) and grid networks (Type II). Type I random networks are generated

using a pseudo random network generator. The input to the network generator are:

the number of nodes n , the number of arcs m, the number of time intervals T,

the range of link travel times 1,-- , C, the percentage of dynamic arcs a, and a

parameter estimating the level of link dynamics 3. The topology of the network is

generated in two stages. First a cycle containing all nodes is generated to ensure

strong connectivity. Then the remaining links are added randomly. Type II random

networks are generated using a grid network generator. The input to the generator

are: the number of columns and the number of rows instead of the number of nodes

and arcs. Each node will have a directed link to its adjacent nodes. We set T

sufficiently large, such that all arcs are dynamic for departure time 1, 2, - - - , 100.

a indicates the percentage of arcs that are dynamic in the network. # describes

the probability that a particular dynamic arc changes its travel time in the next

time interval. We assume that / is the same for all links. In order to avoid the

situation that link travel times go to either a very large integer or zero, we assume

that the probability that travel time increases and decreases is the same. Therefore

0 < / < 0.5. dij(t) is generated as follows:

di (t)+1 w.p. /,

dij (t + 1) = d (t) w.p. 1 - 20, (3.1)

maxfdi (t) - 1,0} w.p. /.

We also assume that the changes of the travel time of a link is either +1 or -1 in

96

FIFO networks. In discrete time dynamic FIFO networks, the the travel time of a

link can decrease at most 1 from one interval to the other; however, it can increase

more than +1. The assumption is used to make sure that the travel times of arcs will

not increase to infinity (or a very large integer). The dij(t)'s generated satisfy the

FIFO property because for each link (i, j), we have dij(t) dij(t) - 1 for all t.

In strict FIFO networks (0 < < 1) dij(t)'s are generated as follows:

dij(t + 1)= di(t) + 1 w.p. 3, (3.2)
dij (M) w.p. 1 - 3.

The dj3 (t)'s generated satisfy the strict FIFO property because for each link (i, j),

we have dij (t) dij (t) for all t.

In the experiment tests, we fix / = 0.1. All running times are reported in seconds

and are averaged over 5 trials of each algorithm.

The running time reported are the total running time for solving the one-to-all

dynamic shortest path problem for departure time 0 through 100. For ease of discus-

sion, we shall refer to the class of algorithms developed in this chapter as Algorithm

LCP (Label-Correcting with Priority). The running time of LCP is compared to the

successive application of a queue implementation of Bellman-Ford algorithm, which

is the same as using a queue to implement the scan eligible list in a label-correcting

algorithm (we refer this algorithm to Algorithm BF). We also report the total number

of iterations for both algorithms in the parentheses.

Tables 3.2 - 3.4 show the running times of LCP and BF in FIFO random networks

(Type I), as a function of the size of the network, the number of nodes, the number

of arcs, and the percentage of dynamic arcs. Algorithm LCP runs about 2 to 4 times

faster than Algorithm BF, and the ratio of the running time of Algorithm BF to

that of Algorithm LCP (this is also referred to as speedup in later discussion) is an

increasing function of a. This is because the larger a is, the more links are dynamic,

which means their travel time can decrease. This leads to the result that more nodes

97

satisfy the optimality condition.

Table 3.5 shows the running times of LCP and BF in FIFO grid networks, as a

function of the size of the network and the percentage of dynamic arcs. Algorithm

LCP runs more than 7 times faster than Algorithm BF when a = 100% in 60 x 60 grid

networks. This can be attributed to two sources: 1) Algorithm BF performs worse in

grid networks than in random networks (Type I); 2) Algorithm LCP is insensitive to

the network topology.

Tables 3.6 - 3.8 show the running times of LCP and BF in strict FIFO random

networks (Type I), as a function of the size of the network, the number of nodes, the

number of arcs, and the percentage of dynamic arcs. Table 3.6 shows the effect of a on

the run time of LCP and BF. It is observed that Algorithm LCP runs approximately

2 times faster than Algorithm BF when a < 50%, and the speedup is a decreasing

function of a. The best case of Algorithm LCP is when a = 0%. In such a situation,

all nodes satisfy the optimality condition. Table 3.7 and Table 3.8 shows the effect

of network density and of a on the run time of LCP and BF. One can note that the

denser the network, the better the speedup. This is because in dense networks, there

are more paths from the origin to the destinations. Therefore there is a larger change

for the destinations to verify the optimality condition.

Table 3.9 shows the running times of LCP and BF in strict FIFO grid networks,

as a function of the size of the network and the percentage of dynamic arcs. The

maximum speed up is achieved when a = 0%. The speedup is a decreasing function

of a and the speedup is not significant. This can be explained as follows. In grid

networks, each node has at most four arcs connected to the four adjacent nodes

(the nodes on its top, bottom, left and right). A direct consequence is that in grid

networks, the shortest paths contain more links than in Type I random networks.

The more links on the shortest path, the higher the probability that the travel time

along the path will increase in the next interval. Therefore the probability that the

destination node satisfies the optimality condition decreases.

98

3.6.2 Many-to-all Static Shortest Path Problems

The objective of the experiment study is to analyze the performance of Algorithm

LCP for static shortest path problems in random networks (Type I) and grid networks,

as a function of the size of the network, the number of nodes, and the number of arcs.

Two types of random networks are tested and the network topology is generated

in the same way as stated in the previous section. The link costs are integers between

1 and 100.

First Algorithm BF is applied to the network G1 to solve a 1-to-all static shortest

path from node 0. Then the link reduced costs network G2 is calculated respect to

node 0, that is, d = di + d9 - d. Algorithm LCP is applied to solve the 1-to-all

static shortest path problem from node 0 in G 2 . Clearly, each node will be visited

exactly once in this scenario, and this is the best case of Algorithm LCP. In the tests,

a source node is randomly picked to serve as the origin node in a new instance of a

one-to-all shortest path problem. Algorithm BF and Algorithm LCP are applied to

solve this problem in G1 and G2 respectively. The running time may depend on the

origin. We then select five source nodes randomly and report the average running

time and average number of iterations for both algorithms.

Table 3.10 shows the results when we vary the size of the network (Type I random

network). One can observe that the performance of Algorithm LCP highly depends

on the number of children in the subtree routed at the source new node in To. If the

number of descendants of the new source in To is large, the savings obtained from

Algorithm LCP will be greater. When node 0 is again selected as the source node,

we observe that in the best case, a speedup of 1.2 is achieved. One should note that

for Type 1 random network, each node is visited about 1.5 to 2 times on average;

therefore a speedup of 1.2 is satisfactory. While there exist cases in which Algorithm

LCP runs slower than Algorithm BF; however, on average, Algorithm LCP requires

less iterations and less time.

Table 3.11 and Table 3.12 investigates the sensitivity of the two algorithms regard-

ing to network density in Type 1 random network. In Table 3.11 we fix m = 10, 000

99

and vary n. In Table 3.12 we fix n = 100 and vary m. The ratio of the average num-

ber of iterations of Algorithm BF to Algorithm LCP remains almost unchanged and

fluctuates between 1 and 1.3. Therefore Algorithm LCP is not sensitive to network

density.

Table 3.13 summaries the results in random grid networks. Similar trends are

observed as compared to random networks. The average performance of Algorithm

LCP is better than Algorithm BF.

3.7 Conclusions and Future Work

In this chapter we proposed a new framework for static shortest path algorithms. This

framework prioritizes nodes with optimal distance labels. Existing algorithms are well

interpreted under this framework. The algorithms developed under this framework

are hybrid ones between label-setting algorithms and label-correcting algorithms. We

applied this framework in three situations arose in dynamic strict FIFO networks,

dynamic FIFO networks, and static networks. Different mechanisms to replenish

the priority scan eligible list PSE are studied, which resulted into new and efficient

specialized algorithms for various instances of the shortest path problem.

Interesting future research questions in this area include:

1. Throughout the implementations of the algorithms in this chapter, the scan

eligible list (SE) and the priority scan eligible list (PSE) are implemented as a

queue. However, SE and PSE can be implemented using other data structures,

for example, a dequeue.

2. In Section 3.5 we designed a method to determine the frequency of the findmin

operation. However, numerical tests did not show significant savings achieved

using LCP. We found that PSE is empty most of the time between two

consecutive findmin operations, which means that it is hard to replenish PSE

between two consecutive findmin operations. The reason is explained in the

following text.

100

Suppose at iteration k we performed a fiindmin operation. We re-scan SEk

to move those nodes that satisfy the condition dj SEksi ±0(j) from SEk

to PSE. For the remaining nodes in SEk, we have dj > SE..in + C(j). If

j is added to PSE in later iterations, it means that there must exist a node

i C B(j) that decreases dj to dj, that is,

d' = di +d-- < SE k+C(j) (3.3)

However, on the other hand, we have di ! SE k i and di> : C(j), therefore

d" + dij ! SE-nm +C(j) (3.4)

From Inequality 3.3 and 3.4, we know that if node j is replenished to PSE

between two consecutive fiindmin operations, we require that d(i) = SE k and

dij = C(j). This condition is not easy to satisfy, therefore we seldom observe

nodes being replenished to PSE between two consecutive fiindmin operations.

We may increase the frequency of the findmin operation to increase the num-

ber of nodes being added to PSE; however, we also have to pay the penalty

associated with more frequent findmin operations.

Another way to increase the number of nodes being added to PSE between to

consecutive findmin operations is to increase the value of the right hand side

of Inequality 3.3. We can re-define C(i) = minjEB(i),d(j) is not optimaidij. Then

the value of C(i) is a non-decreasing function of the iteration counter k.

3. We proposed a way to generate the time-dependent link travel times in FIFO

and strict FIFO networks. However, there can be other ways to generate the

time-dependent link travel times. We shall focus on the generation of discrete

time dynamic FIFO networks in our discussion.

The solid line in Figure 3-7 illustrates the profile of the generated link travel

times for link (i, j) following Equation 3.1. The values of dij(t) oscillate around

the initial value of dij (t), which is dij (0) = do.

101

df(t)

d2-

do -

0t

Figure 3-7: Two possible profiles for link travel times in FIFO networks

We could have generated the link travel times that look like the dashed line in

Figure 3-7. The dotted curve mimic a peak in the travel times, which is similar

to that in traffic networks in midday. In the morning, the traffic is light and the

travel times are small, then the travel times start to increase to d2 in midday,

finally the travel times decrease to dj. There can be more than one peaks to

model the morning peaks and afternoon peaks.

4. We also want to point out that for the nodes in the priority scan eligible list, we

can apply parallel computing technology to scan their forward stars in parallel.

102

FIFO dynamic networks (Type I) with m=9n
a n= 500 1000 2000 3000 4000

0.0475 0.1053 0.2370 0.3586 0.5587
LCP (49789) (99752) (202001) (287613) (386237)

5% BF 0.1087 0.2076 0.5375 0.7462 1.2634
(115613) (201614) (495223) (634839) (952129)

LCP 0.0472 0.0980 0.2135 0.3562 0.5273
LCP (44155) (90868) (178797) (273238) (368823)

25% 0.1063 0.2093 0.4520 0.8157 1.5507
BF (109288) (208229) (411841) (690247) (961197)

LCP 0.0441 0.0817 0.1896 0.3017 0.4290
LCP (41984) (79584) (152093) (239633) (326746)

50% BF 0.0836 0.1845 0.4999 0.7961 1.4499
(92317) (185740) (454324) (679292) (920280)

LCP 0.0352 0.0788 0.1594 0.2807 0.3387
LCP (37439) (77446) (134751) (225583) (263472)

75% BF 0.0962 0.2106 0.5511 0.7513 1.6596
(108855) (209538) (511783) (640718) (1058385)

LCP 0.0326 0.0702 0.1599 0.2469 0.3850
LCP% (34136) (67921) (127525) (195453) (268427)

100% BF 0.1021 0.2123 0.4615 0.7808 1.4388
(110121) (213736) (421321) (669080) (903882)

Table 3.2: Total running times (in sec) and total numbers of iterations required
by LCP and BF to solve the one-to-all shortest path problems for departure times
1, 2, ... , 100 in FIFO random networks (Type I) as a function of network size. The
numbers in parentheses are the total number of iterations

103

FIFO dynamic networks (Type I) with m=10000
n= 1000 2000 3000 4000

LCP 0.1531 0.1771 0.2138 0.2411
(100227) (199793) (297536) (392942)

5% BF 0.2698 0.3197 0.4193 0.4140
(220422) (358398) (533926) (674387)

LCP 0.1186 0.1650 0.2134 0.2046
LCP (90761) (173736) (263203) (314540)

25% BF 0.3394 0.3310 0.3960 0.4037
(254252) (351318) (519597) (688542)

LCP 0.1253 0.1381 0.1604 0.1663
LCP (82692) (149400) (221347) (259910)

50%BF 0.3221 0.3237 0.3627 0.4299
(247662) (393559) (553715) (708865)

LCP 0.1018 0.1310 0.1178 0.1502
LCP (75527) (143020) (175840) (224038)

50%BF 0.2579 0.3057 0.3822 0.4059
(218597) (353768) (597485) (692671)

LCP 0.0935 0.1310 0.1233 0.1471
LCP (70761) (123981) (170128) (211778)

50%BF 0.3068 0.3362 0.3239 0.3942
(237788) (377146) (510355) (664127)

Table 3.3: Total running times (in sec) and total numbers of iterations required
by LCP and BF to solve the one-to-all shortest path problems for departure times
1, 2, ... , 100 in FIFO random networks (Type I) as a function of number of nodes.
The numbers in parentheses are the total number of iterations

104

FIFO dynamic networks (Type I) with n=100
M= 500 1000 2000 3000 4000

LCP 0.0062 0.0092 0.0159 0.0242 0.0301
(10114) (9883) (10065) (10099) (10152)

5% BF 0.0106 0.0172 0.0324 0.0475 0.0573
(17170) (18837) (21009) (17017) (18024)

LCP 0.0062 0.0129 0.0158 0.0230 0.0307
(9789) (9054) (9765) (9768) (9782)

25% BF 0.0087 0.0165 0.0298 0.0443 0.0589
(14908) (17514) (18652) (19715) (20282)

LCP 0.0052 0.0084 0.0140 0.0206 0.0291
(8233) (8936) (8769) (9031) (9530)

50% BF 0.0087 0.0147 0.0265 0.0352 0.0707
(15685) (16285) (16878) (15459) (22988)

LCP 0.0095 0.0075 0.0137 0.0194 0.0264
(8516) (8017) (8373) (8253) (8630)

75% BF 0.0076 0.0127 0.0268 0.0361 0.0471
(13919) (14609) (17578) (16281) (16701)

LCP 0.0043 0.0075 0.0135 0.0194 0.0249
(6956) (7719) (7957) (8192) (8144)

100% BF 0.0091 0.0139 0.0303 0.0384 0.0697
(17414) (16264) (16892) (17760) (22572)

Table 3.4: Total running times (in see) and total numbers of iterations required
by LCP and BF to solve the one-to-all shortest path problems for departure times
1, 2, , 100 in FIFO random networks (Type I) as a function of number of arcs. The
numbers in parentheses are the total number of iterations

105

FIFO grid networks
n x n 40x40 50x50 60x60

LCP 0.0685 0.1437 0.2146
LCP (139257) (212233) (338247)

5% BF 0.1402 0.2561 0.5100
(373962) (559007) (1152387)

LCP 0.0480 0.1318 0.1571
LCP (88697) (180839) (239548)

25% BF 0.1504 0.3100 0.4003
(416899) (722010) (1038187)

LCP 0.0375 0.0693 0.1029
LCP (73799) (112259) (162266)

50% BF 0.1601 0.3947 0.4903
(443951) (944321) (1095775)

LCP 0.0273 0.0594 0.0922
LCP (54077) (105416) (134885)

75% BF 0.1675 0.3955 0.5301
(480410) (931281) (1152428)

LCP 0.0337 0.0396 0.0773
LCP (56298) (71736) (120189)

75% BF 0.1767 0.3303 0.5460
(370084) (743653) (1221745)

Table 3.5: Total running times (in sec) and total numbers of iterations required
by LCP and BF to solve the one-to-all shortest path problems for departure times
1, 2, ... , 100 in FIFO grid networks as a function of network size. The numbers in
parentheses are the total number of iterations

106

strict FIFO dynamic networks (Type I) with m=9n
n= 500 1000 2000 3000 4000

LCP 0.0537 0.1131 0.2424 0.4004 0.5698

LCP (50811) (102180) (204156) (306480) (408264)

0% BF 0.0789 0.2215 0.4458 0.7721 1.0219
(81911) (220180) (419756) (697910) (834664)

LCP 0.0540 0.1159 0.2442 0.4036 0.5842
LCP (50902) (106136) (204625) (309884) (417456)

5% BF 0.0887 0.1973 0.4489 0.7834 0.9805
(93348) (198297) (419084) (695080) (803669)

LCP 0.0544 0.1164 0.2505 0.4395 0.6640
LCP (51531) (108458) (207548) (331908) (474193)

25% BF 0.0776 0.1995 0.4488 0.7731 1.1409
(79735) (198214) (416897) (689550) (869485)

LCP 0.0556 0.1197 0.2596 0.4519 0.6366
LCP (54204) (110987) (220389) (356447) (462320)

50% BF 0.0817 0.1958 0.4494 0.6476 1.0833
(84867) (193706) (397749) (567242) (863905)

LCP 0.0584 0.1232 0.2823 0.4796 0.6856
LCP (56599) (115432) (243662) (383614) (490462)

50% B 0.0634 0.1384 0.3066 0.5327 0.7497
(64589) (134507) (284519) (460774) (584976)

Table 3.6: Total running times (in sec) and total numbers of iterations required
by LCP and BF to solve the one-to-all shortest path problems for departure times
1, 2, - ,100 in strict FIFO networks (Type I) as a function of network size. The
numbers in parentheses are the total number of iterations

107

strict FIFO dynamic networks (Type I) with m=10000
n= 1000 2000 3000 4000

LCP 0.1210 0.1693 0.2245 0.2980
(102017) (203745) (304992) (405978)

0% BF 0.2203 0.2779 0.3156 0.3507
(203717) (378245) (504192) (603778)

LCP 0.1227 0.1761 0.2399 0.3020
(104838) (208759) (310021) (412725)

5% BF 0.2362 0.2617 0.4155 0.4004
(215502) (354085) (604464) (657641)

LCP 0.1270 0.1796 0.2553 0.3197
(108133) (214710) (343990) (445848)

25% BF 0.2230 0.2552 0.3123 0.4091
(206548) (345684) (468855) (693154)

LCP 0.1248 0.1908 0.2897 0.3842
(107341) (234547) (409372) (519576)

50% BF 0.2022 0.2264 0.3090 0.3463
(186446) (304845) (487260) (580808)

LCP 0.1369 0.2097 0.3199 0.4009
(117569) (262841) (424170) (619572)

100% BF 0.1664 0.1881 0.2700 0.2407
10 (150297) (247762) (412812) (466600)

Table 3.7: Total running times (in sec) and total numbers of iterations required
by LCP and BF to solve the one-to-all shortest path problems for departure times
1, 2, ... , 100 in strict FIFO networks (Type I) as a function of number of nodes. The
numbers in parentheses are the total number of iterations

108

strict FIFO networks (Type I) with n=100
M= 500 1000 2000 3000 4000

LCP 0.0067 0.0103 0.0180 0.0240 0.0309
(10151) (10163) (10185) (10152) (10169)

0% BF 0.0089 0.0154 0.0306 0.0349 0.0519
(15251) (16463) (19392) (15352) (17473)

LCP 0.0066 0.0105 0.0173 0.0250 0.0311
(10140) (10196) (10174) (10176) (10157)

5% BF 0.0077 0.0182 0.0275 0.0395 0.0516
(12954) (19607) (17424) (17323) (17484)

LCP 0.0070 0.0104 0.0184 0.0245 0.0333
25 P (10765) (10262) (10563) (10200) (10677)

25% BF 0.0085 0.0185 0.0291 0.0368 0.0544
(14231) (19268) (16657) (15843) (18602)

LCP 0.0070 0.0105 0.0177 0.0249 0.0316
(10345) (10243) (10402) (10384) (10182)

50% BF 0.0098 0.0148 0.0262 0.0384 0.0466
(16989) (15955) (16216) (16716) (15510)

LCP 0.0072 0.0108 0.0191 0.0252 0.0335
(11115) (10727) (11294) (10460) (10458)

50% BF 0.0078 0.0131 0.0266 0.0321 0.0395
(13151) (13431) (16116) (13418) (12862)

Table 3.8: Total running times (in sec) and total numbers of iterations required
by LCP and BF to solve the one-to-all shortest path problems for departure times
1, 2, , 100 in strict FIFO networks (Type I) as a function of number of arcs. The
numbers in parentheses are the total number of iterations

109

strict FIFO grid networks
n x n 40x40 50x50 60x60

LCP 0.0878 0.1441 0.2209
LCP (165883) (257561) (376000)

0% BF 0.2090 0.2712 0.5581
(594183) (763661) (1616000)

LCP 0.0983 0.1466 0.2214
LCP (196258) (258823) (409436)

5% BF 0.1782 0.3074 0.3737
(470395) (866312) (1077044)

LCP 0.0818 0.1615 0.3694
LCP (188121) (334628) (986061)

25% BF 0.1570 0.2562 0.4551
(474805) (750309) (1381843)

LCP 0.1065 0.2784 0.4594
LCP (291311) (857060) (1354481)

50% BF 0.1147 0.2528 0.4024
(342883) (798691) (1217600)

LCP 0.0963 0.1984 0.3304
LCP% (279282) (585266) (884954)

100%BF 0.0619 0.1019 0.1648
(174149) (264495) (379088)

Table 3.9: Total running times (in sec) and total numbers of iterations required
by LCP and BF to solve the one-to-all shortest path problems for departure times
1, 2, ... , 100 in strict FIFO grid networks as a function of network size. The numbers
in parentheses are the total number of iterations

110

source node 0 33 38 123 153 272 average
0.000207 0.000235 0.000223 0.000188 0.000229 0.000217 0.0002184

n=5 BF (773) (812) (847) (686) (867) (814) (805.2)
nzC0 0 .000176 0.000196 0.000247 0.00017 0.000217 0.000192 0.0002044
LCP (500) (541) (866) (500) (780) (699) (677.2)

source node 0 130 397 725 798 955 average

BF 0.000416 0.000526 0.000525 0.000456 0.000469 0.000467 0.0004886

n=1000 (1534) (1951) (1907) (1547) (1584) (1614) (1720.6)

LCP 0.000364 0.000456 0.000407 0.000408 0.000491 0.000441 0.0004406
(1000) (1633) (1373) (1429) (1740) (1560) (1547)

source node 0 182 549 1609 1884 1904 average

BF 0.001061 0.001042 0.000909 0.000971 0.001045 0.000941 0.0009816

n=2000 (3299) (3163) (2944) (3179) (3289) (2976) (3110.2)

LCP 0.000755 0.00086 0.000854 0.000946 0.000959 0.000925 0.0009088
(2000) (2859) (2954) (3272) (3012) (3152) (3049.8)

source node 0 671 1430 2218 2332 2683 average

BF 0.002034 0.001845 0.001659 0.001609 0.001926 0.001715 0.0017508

n=3000 (6588) (5835) (4968) (4808) (5495) (5090) (5239.2)

LCP 0.001596 0.002029 0.001483 0.001511 0.001812 0.001627 0.0016924
(3000) (5757) (4910) (4695) (5340) (4570) (5054.4)

source node 0 144 840 1297 1641 2179 average

BF 0.002664 0.002554 0.002799 0.002804 0.00253 0.002858 0.002709

n=4000 (6916) (6363) (7249) (7099) (6474) (7558) (6948.6)
0.002616 0.003247 0.003583 0.002827 0.002834 0.002859 0.00307

LCP (4000) (6525) (7201) (6804) (6355) (5747) (6526.4)
source node 0 924 1224 2947 3426 3646 average

0.003931 0.003801 0.004091 0.004229 0.004162 0.004774 0.0042114

n5000 B (8419) (8855) (8692) (8483) (8552) (9791) (8874.6)

LCP 0.005004 0.00433 0.004824 0.005498 0.004758 0.005815 0.005045
L (5000) (5000) (8644) (8271) (8332) (9831) (8015.6)

Table 3.10: Running times (in sec) and number of iterations of Algorithm BF and
LCP for 1-to-all static shortest path problems in random networks (Type I) as a
function of network size (m=3n). The numbers in parentheses are the number of
iterations

111

source node 0 108 303 319 331 339 average

BF 0.001267 0.001356 0.001218 0.001252 0.001253 0.001342 0.0012842

n=500 (1086) (1196) (1054) (1077) (1085) (1136) (1109.6)
n=0 0.00056 0.001072 0.00093 0.001053 0.000832 0.001074 0.0009922
LCP (500) (1035) (904) (1015) (804) (1050) (961.6)

source node 0 263 350 426 834 923 average

BE 0.001482 0.001312 0.001506 0.001378 0.001401 0.001453 0.00141

n=500 (2169) (1971) (2322) (2025) (2019) (2107) (2088.8)

LCP 0.000734 0.00075 0.001294 0.001216 0.00094 0.001153 0.0010706
(1000) (1026) (2086) (1955) (1537) (1913) (1703.4)

source node 0 209 420 1278 1494 1885 average

0.001915 0.001844 0.00158 0.001723 0.001894 0.001651 0.0017384

n=1000 B (4050) (4237) (3446) (3934) (4372) (3759) (3949.6)
n100 0.001042 0.00133 0.001299 0.001687 0.001699 0.001687 0.0015404
LCP (2000) (3331) (3288) (3782) (4288) (3498) (3637.4)

source node 0 234 687 1298 2130 2437 average

BE 0.00172 0.001902 0.001725 0.001961 0.002034 0.001759 0.0018762

n=2000 (4579) (4599) (4694) (5507) (5931) (4621) (5070.4)

LCP 0.001847 0.001364 0.001303 0.001804 0.001767 0.001621 0.0015718
(3000) (3000) (3000) (5482) (4790) (4750) (4204.4)

source node 0 1218 1629 1798 2468 3146 average

BF 0.001812 0.001895 0.002215 0.002344 0.002103 0.001943 0.0021

n=3000 (5610) (5709) (6375) (6219) (6687) (6225) (6243)

LCP 0.002593 0.002042 0.002125 0.003212 0.003185 0.002862 0.0026852
(4000) (5524) (6092) (6602) (6513) (6222) (6190.6)

source node 0 538 1133 2398 3158 4601 average

BE 0.002452 0.002437 0.002098 0.003114 0.002885 0.002264 0.0025596

n=4000 (7444) (8104) (7171) (7228) (8076) (7313) (7578.4)

LCP 0.004861 0.003842 0.003247 0.004141 0.0036 0.004176 0.0038012
(5000) (7819) (6836) (8801) (8605) (5000) (7412.2)

Table 3.11: Running times (in sec) and number of iterations of Algorithm BF and LCP
for 1-to-all
of number

iterations

static shortest path problems in random networks (Type I) as a function
of nodes (m=10,000). The numbers in parentheses are the number of

112

source node 0 7 16 74 89 95 average

BF 0.058 0.055 0.056 0.063 0.059 0.054 0.057

M=500 (153) (163) (153) (180) (160) (141) (159.4)

LCP 0.046 0.051 0.049 0.061 0.064 0.052 0.055
(100) (129) (125) (152) (164) (127) (139.4)

source node 0 9 42 54 62 97 average

BF 0.100 0.100 0.116 0.086 0.091 0.108 0.100

m=1000 (169) (169) (199) (147) (155) (179) (169.8)

LCP 0.070 0.077 0.107 0.071 0.074 0.088 0.083
(100) (128) (177) (111) (111) (143) (134.0)

source node 0 28 53 71 85 88 average

BF 0.206 0.181 0.179 0.207 0.192 0.211 0.194

m=2000 (204) (180) (174) (200) (189) (210) (190.6)

LCP 0.112 0.182 0.155 0.173 0.184 0.206 0.180
(100) (176) (152) (168) (175) (200) (174.2)

source node 0 3 4 47 72 95 average

BF 0.263 0.287 0.253 0.279 0.297 0.273 0.278

m=3000 (171) (182) (164) (183) (201) (181) (182.2)

LCP 0.154 0.197 0.221 0.245 0.228 0.174 0.213
(100) (131) (149) (166) (156) (114) (143.2)

source node 0 45 49 53 53 91 average

BF 0.357 0.367 0.359 0.341 0.335 0.348 0.350

m=4000 (189) (186) (186) (170) (170) (172) (176.8)

LCP 0.195 0.306 0.197 0.308 0.304 0.293 0.282
(100) (163) (102) (164) (164) (153) (149.2)

source node 0 11 52 64 69 92 average

BF 0.481 0.482 0.569 0.437 0.438 0.418 0.469

m=5000 (185) (197) (191) (180) (176) (171) (183.0)

LCP 0.247 0.263 0.387 0.358 0.319 0.367 0.339
(100) (110) (167) (156) (137) (157) (145.4)

Table 3.12: Running times (in 10-3 sec) and number of iterations of Algorithm BF
and LCP for 1-to-all static shortest path problems in random networks (Type I) as a
function of number of arcs (n=100). The numbers in parentheses are the number of
iterations

113

source node 0 292 590 596 777 1366 average
1.358 1.121 1.395 1.313 1.061 1.141 1.206

40x BF (4413) (3412) (4507) (4161) (3133) (3596) (3761.8)

LCP 0.593 1.012 1.217 1.198 0.927 1.137 1.098
(1600) (3054) (3816) (3933) (2922) (3662) (3477.4)

source node 0 167 185 1230 1637 2478 average

BF 2.675 2.423 2.367 2.127 2.063 2.156 2.227

50x5 B (8626) (7765) (7673) (6390) (5997) (6396) (6844.2)

LCP 0.993 1.675 1.832 1.797 2.012 2.063 1.876
(2500) (4847) (5631) (5469) (5811) (6322) (5616.0)

source node 0 251 283 662 1743 3546 average

BF 3.269 3.926 3.947 4.488 3.344 5.683 4.278

60x6 B (9425) (12030) (12521) (14328) (9831) (19079) (13557.8)

LCP 2.031 2.642 3.775 2.347 2.771 5.733 3.454
(3600) (6237) (11105) (5406) (7173) (18041) (9592.4)

source node 0 1519 2875 3197 4143 4446 average

BF 8.696 5.594 6.076 5.138 5.634 5.807 5.650

70x7O (28869) (16429) (18615) (14830) (16221) (17374) (16693.8)

LCP 3.425 6.181 6.222 5.214 5.377 7.362 6.071
(4900) (16342) (16811) (13743) (14595) (20812) (16460.6)

Table 3.13: Running times (in 10-' sec) and number of iterations of Algorithm BF
and LCP for 1-to-all static shortest path problems in random grid networks as a
function of network size. The numbers in parentheses are the number of iterations

114

Chapter 4

Additional Ideas on Shortest Path

Algorithms - Algorithm Delta and

Algorithm Hierarchy

The previous chapter presents a description of an improvement in the area of shortest

path algorithms, consisting of an algorithmic framework, its applications, and numer-

ical tests to solve shortest paths in dynamics and static networks. In this chapter, we

outline two additional ideas in the field of shortest path algorithms.

The first idea is motivated by the observation that in certain types of dynamic

FIFO networks, shortest path trees for all departure times typically remain un-

changed. This is typically the case if the number of arcs with time-dependent travel

times (we later refer to such arcs as dynamic arcs) is a small portion of all arcs,

and/or the frequency of changes in travel times in dynamic arcs is small. For the ease

of discussion, we term arcs with time-dependent travel times as dynamic arcs. For a

dynamic arc, we use link dynamics to describe the frequency of the changes in travel

times. If the link travel time of a dynamic arcs changes frequently, we say the link

dynamics are large. If the link travel time rarely changes, we say the link dynamics

are small. We propose a way to compute the time interval during which a shortest

path tree is always valid, thus avoiding the computation of shortest path trees during

such intervals. The resulting algorithm is called Algorithm Delta and is outlined in

115

,,

Section 4.1.

The second idea is motivated by an observation in shortest path problems in

static networks. In a static network with n nodes and m arcs, the number of arcs in

a shortest path tree is n - 1, which means that m - n + 1 arcs can be removed from

the original network without affecting the correct computation of the shortest path

tree. The idea involves the partitioning of the network into two layers. The shortest

path tree is first computed in the lower layer and then the arcs in the higher layer

are checked for the optimality condition. Algorithm Hierarchy is developed under

this idea. Recall that in Chapter 3 static shortest path algorithms can be applied in

dynamic FIFO networks to solve shortest path problems. Algorithm Hierarchy is then

applicable in dynamic FIFO networks. Details of Algorithm Hierarchy is presented

in Section 4.2.

4.1 Algorithm Delta

4.1.1 Problem Definition

We focus on the one to all minimum time path problem for all departure times in

dynamic networks. When considering dynamic networks in practice, one can note the

following characteristic. Not all the links are dynamic, that is, not all the links have

time-dependent travel times, and for those do, there can be a significant amount of

time between two consecutive changes. Therefore in a dynamic network, there may

exist multiple periods of departure time from the origin, during which the network

remains static. We term such an interval as a stationary period of duration A. In

such a situation, the shortest path tree will remain unchanged and we need not spend

time to recalculate it , because it has already been computed at the beginning of such

a stationary period.

116

4.1.2 The Algorithm

The statements of the algorithm are shown in Figure 4-1. We denote the shortest

path tree from source node at departure time t as Tt. The duration of the stationary

period since departure time t is denoted as A(t). T is the maximum departure time.

ALGORITHM DELTA (N, A, s)

1 t <- 0;
2 while t < T do
3 compute Tt ;
4 compute A(t);
5 t+-t+A(t);
6 endwhile

Figure 4-1: Statement of Algorithm Delta

The remaining question is how to calculate the duration of the stationary period

A(t). For each node i, we examine the outgoing arcs. Starting from time 0, we

record the time when the travel time along any of the outgoing arcs changes as

tj(1), t (2),... , tj(k). a (t) is the minimum arrival time at node i departing the source

at time t. a (t) must fall between an interval [t (w), t (w + 1)). Let Az (t) = t (w +

1) - ai(t) and A(t) = miniENAi(t).

The shortest path tree computed at departure time t will remain as the shortest

path tree for an interval of duration A(t). Because of the way A(t) is calculated, for

departure times in interval (t + 1, t + A(t)], the dynamic network is actually static.

It comes with no surprise that the shortest path tree remains unchanged. A formal

proof of the correctness of Algorithm Delta can be found in [56]. The computation of

shortest path trees can be accomplished by any shortest path algorithms, for example,

Algorithm LCP developed in Chapter 3.

We also note that A(t) has the following property.

Proposition 9 If A(t) > 1, A(t + 1) = A(t) - 1, for t E {1, 2, .. , To- 1}.

Proof: When A(t) > 1, we have A(t + 1) = miniENAi(t + 1) = miniEN(ti(w + 1) -

ai(t + 1)). Because A(t) > 1, by the definition of A(t) we have ai(t + 1) = ai(t) + 1.

Therefore, A(t + 1) = miniEN (ti(w + 1) - ai(t) - 1) = miniEN (ti(w + 1) - ai(t)) - 1

A(t) - 1. E

117

In the presentation of Algorithm Delta, we assumed that we work in increasing

order of time, that is, we compute the shortest path trees in the order T 1, T2 ,-- , TT.

Actually, we could have computed the shortest path trees in decreasing order of time.

In such a condition, we have to re-define Ai(t) as ai(t) - ti(w).

4.1.3 Experiment Evaluation

The objective of this section is to investigate the duration of A and perform some

preliminary sensitivity analysis with respect to the size of the network, the percentage

of dynamic arcs, and link dynamics. The effectiveness of Algorithm Delta highly

depends on the duration of A(t). The larger the A(t), the better the performance.

The test networks are random networks (Type I) with m = 3n. As is stated in

Section 3.6, two parameters a and 0 are used to describe the dynamics of the network.

Figure 4-2 through Figure 4-10 show the curves of the A. If there is a jump in the

curves, a new shortest path tree need to be computed. For example, in the second

figure in Figure 4-3, two shortest path trees should be computed for departure time

0 and 24 respectively. One can note that the magnitude of A is very sensitive to the

size of the network. When we increase n from 10 to 1,000, A decreases dramatically.

If n = 1, 000 even when the percentage of dynamic arcs a is 5% and / = 0.005, the

magnitude of A is almost 1.

We also note that the product of a and # determines the appearances of the

curves. The figures in Figure 4-3 have similar patterns to the figures in Figure 4-

5 when n is the same, because both of them has a x / = 0.0005. The figures in

Figure 4-6, and the figures in Figure 4-8 enjoy similar patterns when n is the same,

because they all have a x / = 0.001. This does make sense as the total number of arc

travel time changes is proportional to the product of a and 3 and the total number

of arc travel time changes directly determines the magnitude and trend of A. The

experiment tests show that Algorithm Delta can be quite efficient in networks where

the total number of arc travel times is small.

Another observation is that the negative slope of the curves are always -1, which

is consistent with Proposition 9.

118

350r n=10

300

250

2001 . I 5 . 1 .

Departure Time t

20 - n=100

15 -

10 -

5

0 25 50 75 100
Departure Time t

5 - n=1000

4 -

3 -

2

0 25 50 75 100
Departure Time t

Figure 4-2: A as a function of the size of the network. a = 0.05, # = 0.005, m = 3n

119

n= 10

25 50
Departure Time t

n=100

25 50
Departure Time t

n=1000

25 50
Departure Time t

Figure 4-3: A as a function of the size of the network. a = 0.05, / = 0.01, m = 3n

120

looF

75 100

80

80

40

20

15

10

5

3

2)

75 100

75 100

. . . A i I

20r0

I . .

35

30

25

E20

15

10

5

3'

2
0

2

n=J0

25 5

25 50
Departure Time t

n= 100

75 100

5 25 50 75 100
Departure Time t

n=1000

I , I . I,
25 50

Departure Time t
75 100

Figure 4-4: A as a function of the size of the network. ac = 0.05, 3 = 0.05, m = 3n

121

I1 5 ,
1

n=J0
140 -

120 -

=100

80

60

0 25 50 75 100
Departure Time t

20 -
n= 100

15 -

10 -

5

0 25 50 75 100
Departure Time t

n= 1000

2 -

0 25 50 75 100
Departure Time t

Figure 4-5: A as a function of the size of the network. a = 0.1, # = 0.005, m = 3n

122

50
n=JO

45

40

35

30

25

20

15

10

0 25 50 75 100
Departure Time t

n=100

a

S5 -

- 25 50 75 100
Departure Time t

2 ~n= 1000

0 ' 25 50 75 10
Departure Time t

Figure 4-6: A as a function of the size of the network. a = 0.1,/3 = 0.01, m = 3n

123

101
n=JO

5 -

0'

0 25 50 75 100
Departure Time t

n=100

2-

1 U

0 25 50 75 100
Departure Time t

2 n=1000

I .1

00 25 50 75 100
Departure Time t

Figure 4-7: A as a function of the size of the network. a = 0.1, 3 = 0.05, m = 3n

124

n=1O
35

30

25

20

a 15

10

5

0

15

10

5

2

C

3 25 . .50.75 . 10

0 25 50 75 10
Departure Time t

n=1000

CI I I I I
25 50

Departure Time t

0

75 100

Figure 4-8: A as a function of the size of the network. a = 0.2, 0 = 0.005, m = 3n

125

25 50 75 100
Departure Time t

N
n= 100

35

30

25

20

15

10

5

5

4

3

2

-, I

n=JO

25 50
Departure Time t

75 100

n=100

M\ M.
1 LA ji l billl . I I1111 1 I h I , I
0 25 50 75 100

Departure Time t

2 n=1000

1

0 25 50
Departure Time t

75 100

Figure 4-9: A as a function of the size of the network. a = 0.2, 0 = 0.01, m = 3n

126

0

0

10-
0n=10

0 -

0 25 50 75 100
Departure Time t

2 n=100

00 25 50 75 100
Departure Time t

2 n=1000

0 L, L.I
0 25 50 75 100

Departure Time t

Figure 4-10: A as a function of the size of the network. a = 0.2, 3 = 0.05, m = 3n

127

4.2 Algorithm Hierarchy

In this section, we start from the one-to-all shortest path problem in static networks.

In sparse networks, the queue implementation of Bellman-Ford algorithm (Algorithm

BF) [47, 48] is very efficient in practice and performs much better than the binary-

heap implementation of Dijkstra's algorithm [45, 46]. However, when the network

is dense, the performance of Algorithm BF degrades. Algorithm BF spends a lot of

time scanning the forward star of each node in the scan eligible list, although only

one of those outgoing arcs will actually appear in the shortest path tree.

4.2.1 The Algorithm

An idea to improve the performance of Algorithm BF is to partition the arcs in the

network into two hierarchical layers. The lower level layer A, contains arcs with small

link travel times; while the higher level layer Ah = A \ A, contains arcs with large link

travel times. We want to keep as few arcs in Al as possible while most or all of the

arcs in the shortest path tree are contained in A,. The algorithm is shown in Figure

4-11. Although it is motivated by the bad performance of Algorithm BF in dense

networks, it can also speed up the algorithm in sparse networks if A, is well chosen.

There are several ways to partition A. For example, find a threshold value

dthreshold. Let A= {(i, j) di <; dthreshold, (i, j) E A}, Ah = {(i, j)dij > dthreshold, (i, j) C

A}.

Algorithm Hierarchy can be viewed as a strategy of prioritization of links in short-

est paths computation. The set of links in the lower level layer are those links that

has a higher probability to appear in the shortest path tree. Whenever a node is

picked and scanned for its forward star, we scan its forward star in the lower level

layer first and delay the scan of its forward star in the higher level layer. The forward

stars in the higher level layer are only scanned when all the links in the lower level

layer satisfy the optimality condition. If the shortest path tree computed in the lower

level is the real shortest path tree for the network, then the higher level layer links

will be just scanned only once to check their optimality.

128

ALGORITHM HIERARCHY (N, A, A, Ah, s)

1 d,- 0;
2 d <-- oo for each j c N \ {s};

3 compute the shortest path tree in (N, Al)
4 SE <- N; PSE +- 0;
5 while SE 5 0 do
6 remove a node i from SE;
7 for j E Ah(i) do
8 if di > di + di then
9 PSE +- PSE U {j} ;
10 while PSE $ 0 do
11 remove a node i from PSE;
12 for j c A,(i) do
13 if dj > di + dj then
14 PSE <- PSE U {j};
15 SE <- SE U{j};
16 endif
17 endfor
18 endwhile
19 endif
20 endfor
21 endwhile
22 return the shortest path tree

Figure 4-11: Statement of Algorithm Hierarchy

4.2.2 Runtime Complexity Analysis

There are two loops in the statements of Algorithm Hierarchy shown in Figure 4-11.

The outer loop is from line 6 to line 21. The inner one is from line 11 to 18. Suppose

that the outer loop is executed at most nh times, and the inner loop is executed at

most nj times in each outer loop. Note that 0(n) is also the bound for the number

of node visits in line 4. We have the following proposition:

Proposition 10 The runtime complexity of Algorithm Hierarchy is in O(ni|Ai| +

nh(IAhI + niIAti)).

Proof: The first term O(njlAi) comes from line 4. In one iteration of the inner

loop, O(IAiI) arcs are scanned. In one iteration of the outer loop, O(IAhI + niIAiI)

arcs are scanned. Therefore the complexity for the outer loop is O(nh(IAhI +niIAI)).

The overall complexity is O(nIAlI + nh(IAhI + nIAul)).

129

We now investigate the complexity of Algorithm Hierarchy in different situations.

Note that there are two parameters ni and nh in the expression.

The best-best case complexity: If A, is exactly the set of arcs in the shortest

path solution, nj = 0, nh= 1, A, = - 1, and Ah = m - n+ 1. Therefore the runtime

complexity is in O(m).

The worst-worst case complexity: We know that both nh and n is in order of

n. Therefore the worst worst case complexity is 0(nm + n2IAuI).

The best-worst case complexity: If A, contains the shortest path tree and is in

Q(n), we obtain the best-worst case. The complexity is O(IAiIn + Ah I). The time

to find the shortest path tree in the lower level graph (N, A,) is O(IAIn). The time

spent to check whether the arcs in the higher level verify the optimality condition will

cost O(Ah|). Therefore the overall complexity is O(IAjn + IAhI).

4.2.3 Experimental Evaluation

Algorithm Hierarchy performs very well in dense networks. Figure 4-12 shows some

statistics. The test networks are fully dense, which mean m = n(n - 1) and the

maximum link travel time is 100. The shortest path trees are computed and the

figure shows the histograms of the link travel times of the links in the shortest path

trees. When n = 50, the histogram is flat, which means it is hard to find A, such

that it contains the shortest path tree while has a small number of arcs. However,

when n = 300, the histogram is shifted to the left and the counts decreases sharply

when the link travel time increases. If we set dthreshold = 30, the shortest path tree

will be contained in A, therefore we will expect a speedup around 3 compared to the

Bellman-Ford Algorithm.

130

140

A n=50
120 - n=100

- - n=200
-E- n=300

100 -

80 -

0
0 60

40-

20-

0 20 4 1 UO

Figure 4-12: The histograms of the link travel times of the links in the shortest path

tree in fully dense networks, that is, m = n(n - 1). The link travel times vary between

1 and 100

131

4.2.4 Application in One-to-all Dynamic Shortest Path Prob-

lems

The area of one-to-all dynamic shortest path problem for all departure times in FIFO

networks provides another venue for Algorithm Hierarchy. For departure time t, we

can use the shortest path tree found in time t - 1 as A, while let all the other arcs be

Ah. Recall that in Chapter 3, we defined T as the shortest path tree for departure

time t and T as the maximum departure time. The algorithms is shown in Figure

4-13.

ALGORITHM HIERARCHY (N, A, T, s)
1 Compute the shortest path tree T for departure timel;
2 fort<-2to T do
3 T +-ALGORITHM HIERARCHY(N, A, T_ 1, A \ T- 1, s);
4 endfor

Figure 4-13: Algorithm hierarchy applied in 1-to-all dynamic shortest path problems
for all departure times

132

Chapter 5

Conclusions and Future Research

Directions

5.1 Contributions and Major Results

Dynamic Traffic Assignment (DTA) has been an intriguing topic in the past two

decades. It plays a central role in the simulation of traffic, either in real time appli-

cations or for off-line purposes. It covers a broad range of research areas, including

shortest paths, dynamic network loading, traffic flow theory, and discrete choice the-

ory. In recent years, there is a heightened interest in deploying DTA models in

large-scale networks and achieve real-time traffic management, which requires the de-

velopment of DTA models that can solve large-scale DTA problems fast. The main

objective of this thesis is to develop fast DTA models.

A DTA model can be decomposed into several sub-models: the user's route choice

model, where a dynamic shortest path problem is imbedded; the dynamic network

loading model, where the link flows and link times are computed from path flows. For

each model, there is a corresponding algorithm. For the user's route choice model,

we have the user's route choice algorithm; for the dynamic network loading model,

we have the dynamic network loading algorithm. In order to reach equilibrium for

the DTA model itself, there is also a DTA solution algorithm.

The research approaches we took is to develop fast DTA sub-models to improve the

133

overall efficiency of the DTA model. To be specific, in Chapter 2, we developed paral-

lel implementations of the dynamic network loading algorithm and the DTA solution

algorithm. To the best of our knowledge, this concerns the first parallel implemen-

tations of macroscopic DTA models. Two network loading algorithms are studied:

the iterative network loading algorithm (I-Load) and the chronological loading algo-

rithm (C-Load). We developed two decomposition strategies for the iterative loading

algorithm. A network topology decomposition strategy and a time-based decomposi-

tion strategy are tested in a distributed-memory platform using the Amsterdam A10

Beltway network example. Numerical results show that for the network topology de-

composition strategy, a speedup of 5 is observed when the number of processors is 10

and the asymptotic speedup is about 10. For the time-based decomposition strategy

a speed-up of 6.5 is observed when the number of processors is 10 and the asymptotic

speed-up is about 25. For the chronological loading algorithm, the network topol-

ogy decomposition strategy is tested in the same distribute-memory platform. The

speedup is not significant due to the highly efficient sequential algorithm and the

small size of the test network.

In Chapter 3 we proposed a new framework for static shortest path algorithms.

The characteristic of this framework is that it allows the prioritization of nodes with

optimal distance labels (or close to optimal distance labels), which means nodes with

optimal distance labels in the scan eligible list is pulled out before processing the

other nodes. This framework is applied in dynamic FIFO and strict FIFO networks

to design efficient one-to-all dynamic shortest path algorithms. Numerical tests are

done in two types of random networks: networks with random topology and networks

with grid topology. Computational results show that the new framework achieved

significant speedup (up to a factor of 4) compared to a repetitive application of the

queue implementation of Bellman-Ford algorithm. We extended our discussion to the

one-to-all, one-to-one and many-to-all shortest path problem in static networks. The

average speedup in the on-to-one problem is about 2. In the many-to-all problem,

the speedup highly depends on the position of the rest source nodes in the shortest

path tree rooted at the first source node; the average speedup is about 1.2.

134

In Chapter 4, we continued our discussion in the area of shortest paths. We

presented two ideas that could potentially lead to more efficient algorithms. The first

idea originates from the observation that in one-to-all fastest path problem for all

departure times in FIFO networks, the shortest path tree may remain unchanged for

a period of time. This means that we need not recompute the shortest path tree for

departures during that interval. Algorithm Delta is developed based on this idea.

Experimental evaluation showed that the performance of Algorithm Delta depends

on the size of the network and its dynamics. The smaller the network and/or the less

the dynamics of the network, the better the performance. The second idea is related

to improvements in static shortest path algorithms. It partitions the network into

two layers and solves the shortest path problem by moving back and forth between

the two layers. Algorithm Hierarchy is developed and the theoretical complexity is

analyzed.

5.2 Future Research Directions

In this section, we summarize future research directions related to the topics covered

in this thesis.

For the parallel implementations of DTA models in Chapter 2, future research

can be categorized into two directions: the improvements of the DTA models and the

improvements of the parallel implementations. Several limitations of the DTA models

are identified in [5], including the modelling of incidents, queues, spill-backs, and the

method to update path flows. It would also be useful to use a more sophisticated link

performance model. In the DTA models used in this thesis, a volume delay function

link model is used, which is a fairly simple one. It does not take into consideration

the distribution of traffic along links and this poses a potential threat to the accuracy

of the loading results. A more realistic link performance model shall be used in the

implementation.

On the side of parallel implementations, it would be useful to design better load

partition algorithms. The partition algorithms presented in the thesis are heuristics

135

and can be improved. It is would also be interesting to investigate the feasibility of

hybrid parallel implementations. In this thesis, we looked at distributed-memory im-

plementations and shared-memory implementations separately. One can also consider

a hybrid implementation combining the two and take advantages from both.

For the shortest path algorithms developed in Chapter 3, several directions can be

identified. 1) Both SE and PSE are implemented using a queue; however, they could

be implemented using other data structures, for example, dequeue. It is interesting

to see how the algorithms perform with different data structures. 2) A new method

should be sought to determine the frequency of the findmin operation when the

framework is applied in 1-to-all problems in static networks. 3) In the computational

tests, it is helpful if we can compare Algorithm LCP with other algorithms besides

Algorithm BF.

136

Appendix A

More on Parallel Implementations

The appendix is provided to get the reader started. We briefly introduce how to

set up the parallel computing environment, compile, and run the parallel codes. We

do not cover any MPI and Pthread related functions, because we believe it is much

easier and more convenient for interested readers to refer to reference books, such as

[22, 23, 25, 26, 27] if they want to look at the source code. For an extensive description

of the format of the input and output files, please refer to [5].

A.1 Distributed- memory Implementations

This distributed-memory implementations in this thesis are developed using MPICH,

the portable implementation of MPI. It is available for download at http://www-

unix.mcs.anl.gov/mpi/mpich/. We used MPICH-1.2.5 in the development and the op-

erating system is Red Hat Linux 8. The installation is quite straight forward following

the instructions in the Installation Guide. If we install MPICH in /var/local/mpich

and use SSH, the commands are:

%./configure -prefix=/var/local/mpich -rsh=ssh

%make

%make install

We use the GNU g++ compiler to compile the source code against MPICH li-

137

braries. The command is:

%g++ -Wall -o dta dta.cpp -I/var/local/mpich/include -Impich

L/var/local/mpich/lib

To run the code, use the command mpirun:

Xmpirun -np <n> -machinefile <machinelist> dta <arguments...>

The meaning of the arguments are:

-np <n> specify the number of processors to run on

-machinefile <machinelist> Take the list of possible machines to run on from

the file <machinelist>

<arguments...> Supply input to the dta program, for example,

the number of iterations, the name of the control

file, maximum demand time, etc. If no argument

is supplied, the program outputs the format of

input and quits.

A.2 Shared-memory Implementations

The shared-memory implementations in this thesis are developed using POSIX Thread.

The pthread library is available in Red Hat Linux 8, therefore there is no need for

installation.

To compile the code against pthread library, use command:

%g++ -Wall -o dta dta.cpp -lpthread

To run the code, use command:

%dta <arguments...>

If no argument is supplied, the program outputs the format of input and quits.

138

Bibliography

[1] D. Schrank and T. Lomax. The 2001 Urban Mobility Report. Technical report,

Texas Transportation Institute, The Texas A M University, 2001.

[2] Energy Information Administration. Annual Energy Outlook 2003 With Projec-

tions to 2025. Technical Report DOE/EIA-0383(2003), Department of Energy,

January 2003. also online at http://www.eia.doe.gov/oiaf/aeo.

[3] C.D.R. Lindveld. Dynamic O-D matrix estimation. PhD thesis, Delft University

of Technology, 2003.

[4] K. Nagel and M. Rickert. Parallel Implementation of the TRANSIMS Micro-

simulation. Parallel Computing, 27(12):1611-1639, Novermber 2001.

[5] Y. He. A Flow-Based Approach to The Dynamic Traffic Assignement Problem:

Formulations, Algorithms and Computer Implementations. Master's thesis, Mas-

sachusetts Institute of Technology, Cambridge, Massachusetts, June 1997.

[6] http://web.mit.edu/its/dynamit.html.

[7] http://www.ce.utexas.edu/prof/mahmassani/dynasmart-x/.

[8] H.J. Payne and H.M. Koble. A comparison of Macroscopic Simulation Models

(MACK and INTRAS). Technical Report OCR-78-11-9367-1, ORINCON Corp.,

March 1978.

[9] D.A. Wicks. INTRAS - A Microscopic Freeway Corridor Simulation Model.

Overview of Simulation in Highway Transportation, 1:95-107, 1977.

139

[10] D.A. Wicks. Development and Testing of INTRAS, A Microscopic Freeway Sim-

ulation Model. Program Design and Parameter Calibration, 1, 1980.

[11] C.F. Daganzo. The Cell-Transmission model: A Dynamic representation of high-

way traffic consistent with hydrodynamic theory. Transp. Res., 28B(4):269-287,

1994.

[12] N.J. Grier. Improved Methods for Solving Traffic Flow Problems in Dynamic

Networks. Master's thesis, Massachusetts Institute of Technology, 2001.

[13] H.J. Payne. FREFLO - A Macroscopic Simulation Model of Freeway Traffic.

Transportation Research Record, 722:68-75, 1979.

[14 R.D. Coombe, T.J. Annesley, and R.P. Goodwin. The Use of CONTRAM in

Bahrain. Traffic Engineering and Control, March 1983.

[15] D. Leonard, P. Gower, and N. Taylor. CONTRAM: Structure of the Model.

TRRL Research Report, (178), 1989.

[16] B. Ahn and J. Shin. Vehicle Routing with Time Windows and Time-varying

Congestion. Journal of Operational Research Society, 42:393-400, 1991.

[17] S.E. Dreyfus. An Appraisal of Some Shortest Path Algorithms. Journal of

Mathematical Analysis and Applications, 14:492-498, 1969.

[18] Intelligent Transportation Systems Program. Development of a Deployable Real-

Time Dynamic Traffic Assignment System: Executive Summary DynaMIT and

DynaMIT-P. Technical report, Massachusetts Intitute of Technology, June 2000.

[19] D.K. Merchant and G.L. Nemhauser. A Model and an Algorithm for the Dynamic

Traffic Assignment Problems. Transportation Science, 12(3):183-199, August

1978.

[20] D.K. Merchant and G.L. Nemhauser. Optimality Conditions for a Dynamic

Traffic Assignment Model. Transportation Science, 12(3):200-207, August 1978.

140

[21] Y. Sheffi. Urban Transportation Networks. Prentice-Hall, Englewood, New Jer-

sey, 1985.

[22] D.R. Butenhof. Programing with POSIX Threads. Addison-Welsley professional

computing series. Addison-Welsley, September 2002.

[23] B. Nichols. Pthread Programming. O'Reilly Associates, Inc, 1996.

[24] Institute of Electronical and Electronics Engineers. Draft Standard for Informa-

tion Technology-Portable Operating System Interface (POSIX) - Part 1: System

Application Program Interface (API) - Amendment 2: Threads Extension [C

Language], Draft. October 1993.

[25] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming

with the Message-Passing Interface. Scientific and Engineering Computation

Series. The MIT Press, Cambrigde, Massachusetts, second edition edition, 1999.

[26] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI- The

Complete Reference. Scientific and Engineering Computation Series. The MIT

Press, Cambridge, Massachusetts, second edition edition, 1998.

[27] http://www-unix.mcs.anl.gov/mpi/mpich/.

[28] A. Chronopolous and P. Michalopoulos. Traffic Flow Simulation Through Par-

allel Processing. Technical report, Center for Transportation Studies, Minnesota

University, Minneapolis, MN, 1991.

[29] A. Hislop, M. McDonald, and N. Hounsell. The Application of Parallel Processing

to Traffic Assignment for Use with Route Guidance. Traffic Engineering and

Control, pages 510-515, 1991.

[30] G.N. Frederickson. A Distributed Shortest Path Algorithm for a planar Network.

Information and Computation, 86:140-159, 1990.

[311 Y. Xu, J. Wu, and M.A. Florian. The Continuous Time-Dependent Shortest Trail

Problem with Turn Penalties: Model, Algorithm and a Parallel Implementation

141

under the PVM Environment. INFORMS/CORS Spring 1998 Joint Meeting,

April 26-29 1998.

[32] I. Chabini and S. Ganugapati. Parallel Algorithms for Dynamic Shortest Path

Problems. International Transactions in Operational Research, 9(3):279-302,

May 2002.

[33] G.L. Chang, T. Junchaya, and A.J. Santiago. A real-time network traffic simu-

lation model for ATMS applications: Part I - simulation methodologies. IVHS

Journal, 1(3):227-241, 1994.

[34] W. Niedringhaus, J. Opper, L. Rhodes, and B. Hughes. IVHS traffic modeling

using parallel computing: performance results. Proceedings of the International

Conference on Parallel Processing, pages 688-693, 1994.

[35] G. Karypis and V. Kumar. METIS: A Software Package for Partitioning Unstruc-

tured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of

Sparce Matrices. University of Minnesota, Department of Computer Science/

Army HPC Research Center, Minneapolis, MN 55455, September 1998.

[36] I. Chabini. Discrete Dynamic Shortest Path Problems in Transportation Appli-

cations: Complexity and Algorithms with Optimal Run Time. Transportation

Research Record, (1645):170-175, 1999.

[37] http://www.cut-the-knot.org/do-you-know/isoperimetric.shtml.

[38] http://www-users.cs.umn.edu/ karypis/metis/metis/faq.html.

[39] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,

and Applications, chapter 3, pages 73-76. Prentice-Hall, Inc., Upper Saddle

River, NJ 07458, first edition, 1993.

[40] I. Chabini and B. Gendron. Parallel Performance Measures Revisited. Proceed-

ings of High Performance Computing symposium 95, Montreal, Canada, 1995.

142

[41] K. Ashok. Estimation and Prediction of Time-Dependent Origin-Destination

Flows. PhD thesis, Massachusetts Institute of Technology, 1996.

[42] http://www.myri.com/.

[43] http://www.myri.com/open-specs/.

[44] G. Gallo. Reoptimization Procedures in Shortest Path Problems. Rivista di

Matematica per le Scienze Economiche e Sochiali, 3:3-13, 1980.

[45] E.W. Dijkstra. A Note on Two Problems in Connection with Graphs. Numeriche

Mathematik, 1:269-271, 1959.

[46] G. Gallo and S. Pallottino. Shortest Path Algorithms. Annals of Operations

Research, 7:3-79, 1988.

[47] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, N.J.,

1957.

(48] L.R. Ford Jr. Network Flow Theory. The Rand Corportation, Santa Monica,

Cal., 1956.

[49] F. Glover, R Glover, and D. Klingman. The threshold shortest path algorithm.

Networks, 14(1), 1986.

[50] B. Golden. Shortest-Path Algorithms: A Comparison. Operations Research,

44:1164-1168, 1976.

[51] I. Chabini and S. Lan. Adaptions of the A* Algorithm for the Computation of

Fastest Paths in Deterministic Discrete-Time Dynamic Networks. IEEE Trans-

actions on Intelligent Transportation Systems, 3(1):60-74, March 2002.

[52] F. Glover, R. Glover, and D. Klingman. The Threshold Shortest Path Algorithm.

Networks, 14(1), 1986.

143

[53] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,

and Applications, chapter 2, pages 43-44. Prentice-Hall, Inc., Upper Saddle

River, NJ 07458, first edition, 1993.

[54] H. Tan. C programming. Tsinghua Univeristy Press, Beijing, China, 1991.

[55] S. B. Lippman and J. Lajoie. C++ Primer. Addison-wesley, third edition, 1999.

[56] I. Chabini. Computing Shortest Path Trees for all Departure Times in Discrete

Time Dynamic FIFO Networks. Internal Report, May 2003.

144

