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Abstract

Uncertainty about the reliability of numerical approximations frequently undermines the
utility of field simulations in the engineering design process: simulations are often not
trusted because they lack reliable feedback on accuracy, or are more costly than needed
because they are performed with greater fidelity than necessary in an attempt to bolster
trust. In addition to devitalized confidence, numerical uncertainty often causes ambigu-
ity about the source of any discrepancies when using simulation results in concert with
experimental measurements. Can the discretization error account for the discrepancies,
or is the underlying continuum model inadequate?

This thesis presents a cost effective method for computing guaranteed upper and
lower bounds on the values of linear functional outputs of the exact weak solutions to
linear coercive partial differential equations with piecewise polynomial forcing posed on
polygonal domains. The method results from exploiting the Lagrangian saddle point
property engendered by recasting the output problem as a constrained minimization
problem. Localization is achieved by Lagrangian relaxation and the bounds are com-
puted by appeal to a local dual problem. The proposed method computes approximate
Lagrange multipliers using traditional finite element discretizations to calculate a pri-
mal and an adjoint solution along with well known hybridization techniques to calcu-
late interelement continuity multipliers. At the heart of the method lies a local dual
problem by which we transform an infinite-dimensional minimization problem into a
finite-dimensional feasibility problem.

The computed bounds hold uniformly for any level of refinement, and in the asymp-
totic convergence regime of the finite element method, the bound gap decreases at twice
the rate of the 'H -norm measure of the error in the finite element solution. Given a finite
element solution and its output adjoint solution, the method can be used to provide a
certificate of precision for the output with an asymptotic complexity that is linear in the
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number of elements in the finite element discretization. The complete procedure com-
putes approximate outputs to a given precision in polynomial time. Local information
generated by the procedure can be used as an adaptive meshing indicator. We apply the
method to Poisson's equation and the steady-state advection-diffusion-reaction equation.

Thesis Supervisor: Jaime Peraire

Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Uncertainty about the reliability of numerical approximations frequently under-

mines the utility of field simulations in the engineering design process: simula-

tions are often not trusted because they lack reliable feedback on accuracy, or are

more costly than necessary because they are performed with greater fidelity than

necessary in an attempt to bolster trust. In addition to devitalized confidence,

numerical uncertainty often causes ambiguity about the source of any discrepan-

cies when using simulation results in concert with experimental measurements.

Can the discretization error account for the discrepancies, or is the underlying

continuum model inadequate?

To disambiguate, we define precision to be the conformity of a simulation re-

sult to the exact solution of the continuum model, and we define accuracy to be

the conformity of a simulation result to the physical fact. Three essential questions

must be answered before a simulation result can be trusted and effectively used in

the making important decisions. Do the mathematical equations model the rele-

vant phenomena? Does the software actually solve the discretized mathematical

13



CHAPTER 1. INTRODUCTION

model? Does the simulation result contain sufficient precision to be considered a

solution of the mathematical model?

The verification and validation process has emerged to help answer these ques-

tions [AIA98, OT02, SWCP01]. Verification ensures that the simulation repro-

duces known analytical results and trusted benchmarks, while validation ensures

that the simulation results agree with trusted experimental data. The former con-

firming that the simulation software solves the discretized mathematical model

with sufficient precision for the verification test cases, and the latter substantiat-

ing the capacity of the mathematical model to represent the relevant phenomena

for the validation test cases. Verification and validation are necessary steps in

assessing the reliability of simulation results, but these steps alone do not certify

the accuracy of results for cases outside the test suite.

The reliability of every simulation result used in decision making should be

taken into account, but it is often prohibitively expensive to do so. A priori error

estimates inform us of the asymptotic rates of convergence, but cannot answer the

ever present engineering question, "can I trust the current approximation?" Such

questions often revolve around concerns of mesh fidelity and feature resolution

- issues of numerical uncertainty which erode confidence in the simulation. As

confidence erodes, so does the utility of the simulation in the engineering design

process: either the simulation is not trusted, or it is more costly than necessary.

While confidence in the precision of a field simulation can be buoyed by per-

forming convergence studies, such studies are computationally very expensive and

in practice are often not performed at more than a few conditions, if at all, due to

cost and time constraints. For this reason, researchers and practitioners employ

14
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adaptive methods to converge the solution in a manner that costs less in time and

resources than uniform refinement. Adaptive methods powered by current error es-

timation technology {Ver94, BKROO, BR78a, BSUG95b, BR96a, BBRW98, HR99,

RS97, RS99, SBD+00, VD03, VD02], however, provide only asymptotic guarantees

of precision, at best, and no guarantees of precision, at worse, since the conver-

gence of adaptive methods remains an open question [MNS02, BV84, Dor96].

Our observations of engineering practice inform us that integrated quantities

such as forces, total fluxes, average temperatures and displacements are frequently

queried quantitative outputs from field simulations and that design and analysis

does not always require the full precision available. In particular, we will restrict

our attention to integrated outputs defined by linear functionals, which depend

linearly on the solution field. The primary objective of our method, therefore, is

to certify the precision of integrated outputs for low fidelity simulations as well as

high fidelity simulations.

We call our bounds uniform to differentiate our goal of obtaining quantitative

bounds for all levels of refinement from the lesser goal of obtaining quantitative

bounds only asymptotically in the limit of refinement. In this regard, the com-

plete procedure can be viewed as a polynomial time algorithm in the number

of mesh elements that provides a certificate of precision for a predicted output.

The certificate guarantees a minimum level of precision in the output from a

particular finite-dimensional approximation with respect to the output from the

infinite-dimensional model that it is approximating. Furthermore, the procedure

provides local information that can be used in conjunction with adaptive meshing

to efficiently drive a solution to an arbitrary and guaranteed precision.



CHAPTER 1. INTRODUCTION

The method can answer the question "Does the simulation result contain suf-

ficient precision to be considered a solution of the mathematical model?" by

certifying the precision of integrated outputs from finite element simulations for

any level of mesh refinement. The method can help answer the question "Does the

software actually solve the discretized mathematical model?" because it has eas-

ily checkable preconditions to help verify correctness of the simulation software.

The quantification of numerical error removes uncertainty about the fidelity of

the discretization and aides the practitioner in distinguishing modeling error from

numerical error when validating the simulation and thus can aid in answering the

question "Do the mathematical equations model the relevant phenomena? ". In

particular, the method can invalidate mathematical models when the error bounds

returned by the method do not overlap with the experimental data. This can even

be done with relatively low fidelity simulations in cases of gross deviation of the

mathematical model from physical reality.

1.1 Techniques for Reliability Assessment

Verification and a posteriori error analysis have a long history in the development

of the finite element method with a plethora of different approaches forwarded

and investigated beginning with the pioneering work of Fraeijs de Veubeke in

the mid-1960s and early 1970s [Fra64, Fra65, FH72]. Although powerful, his

method was not practical because it required a global computation. In the late

1970s, Babuska and Rheinboldt initiated work on modern error estimation tech-

niques by proposing the first inexpensive method requiring only local computa-

'R78a, BR78b, BR81]. Ainsworth and Oden giv ummary account of

16



1.1. TECHNIQUES FOR RELIABILITY ASSESSMENT

the work on a posteriori error estimators in [A097], while Babuska, Strouboulis,

Updahyay and collaborators probe the quality and robustness of a number of con-

temporary error estimators in [BSUG97, BSUG94, BSUG95a, BSU+94, ZSB01]

with numerical experiments. Additional comparisons and descriptions of the more

popular methods can be found in [ODRW89, Zhu97, SH98, AC92, Ver94].

1.1.1 Recovery Based Error Estimators

Finite element a posteriori error estimators can be broadly classified as recovery

based methods or residual based methods, although evidence exists that some meth-

ods which appear distinct under this categorization are equivalent [Zhu97, ZZ99]

in special circumstances. Recovery based methods estimate the error in the energy

norm by comparing the native finite element solution with one enhanced through a

post-processing procedure. The post-processing procedure typically smoothes the

finite element solution or exploits special superconvergent properties of the dis-

cretization to obtain a recovered solution which is assumed to be more accurate

than the original. Zienkiewicz and Zhu first proposed recovery based methods in

the late 1980s [ZZ87] and have subsequently improved them [ZZ92a, ZZ92b] by ex-

ploiting superconvergence. Recovery based methods have experienced popularity

due to their simplicity as well as being very effective in practice [ZBS99, ZSBO1I].

Recovery based methods produce asymptotically exact error estimates when

the post-processing produces a superconvergent recovered solution [CB02]. Asymp-

totically exact error estimates converge to the exact error in the asymptotic limit

of mesh refinement, but do not provide any guarantees of one-sidedness required

for bounding the error. Asymptotic exactness is a very useful property for an error

17



CHAPTER 1. INTRODUCTION

estimator, but without uniform one-sidedness an error estimator cannot provide

confirmation of precision. Even if the error estimator produces reliable estimates

for a number of validation cases, there is little to assure the practitioner that the

estimate can be trusted for the case of interest. Such limitations relegate the error

estimator to serving as an oracle for balancing error contributions (of uncertain

magnitude) in mesh adaptivity, and undermine their effectiveness as methods for

confirmation and building adaptive meshes with guaranteed error tolerances.

1.1.2 Residual Based Error Estimators

Residual based methods, like the first locally computed error estimators which

were introduced by Babuska and Rheinboldt, estimate the error in the energy

norm either from an explicit evaluation of the local residual or by solving an

implicit relationship with the local residual as the data. The majority of the

work on error estimation has focused on residual based methods and the method

proposed by this thesis can be categorized as such a method. Consider the simple

model problem for an unknown real scalar field variable u and some nonnegative

scalar coefficient y and data f posed on a two-dimensional domain

-Au + pU = f in Q C R2

subject only to homogeneous Dirichlet boundary conditions. The variational-weak

statement follows as: find u in R'(Q)

a(u, v) = e(v), Vv E (1(1))

18
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1.1. TECHNIQUES FOR RELIABILITY ASSESSMENT

where

a(u, v) = Vu -Vv + puv dQ,

and

f(v) = jfvdQ.

The operator a : V(Q) x X-(Q) is symmetric, bilinear, continuous and coercive.

We have introduced the usual Hilbert space

-H1() = { v v E £ 2 (Q), Vv E (E2(Q))d

where d is the number of physical dimensions and

2 (Q V IV12 dQ < +oo

is the space of square integrable functions on Q.

1.1.2.1 Explicit Estimators

Many of the first residual based a posteriori error estimators computed an error

indicator explicitly from the approximate solution, without solving any additional

problems [BR79, KGZB83, BM87]. Following Ainsworth and Oden [A097], we

can build an explicit error estimator for the above model problem by the so called

error equation or residual equation

a(e, v) = a(u, v) - a(uh, v) = f(v) - a uh, v), VV E (1.()),

19
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20 CHAPTER 1. INTRODUCTION

in which the error is defined as e - u - uh, where Uh E Vh is a finite element

approximation to the solution on some triangulation of the domain, Th. The error

equation expands to

a(e, v) = j fV - VUhVV - IUhv dQ, Vv E H'(Q).
T ETh T

Assuming Uh to be in H 2 (Q) and integrating by parts over the elements decom-

poses the error equation into local error contributions from each element

a(e, v) = E rvdQ - VUh - nv dF Vv (E H(Q),
T En E T faT0

where r f + Auh - pUh and n is the unit outward normal vector to 9Th. The

trace of v is continuous along an edge, which allows the last term of the previous

equation to be written as the jump discontinuity in the approximation to the flux.

a(e, v) - rv dQ - > [Vuh - n] v dF, Vv E H1(Q),
TGThJ -Y9h\9 f

where

[VUa - n] = VuhIT+ - n + VUhT - = -R

is the jump discontinuity in the flux. We can now write

a(e, v) =Z rvdQ + Rv dl.
T E~ T 8 Q
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Galerkin orthogonality, a(e, vh) = 0, Von E Vh, implies that

0 = Zjrvv dQ + E fRvhv dr,
TET -T E

where LVh -H 1(T) -* Vh(T) is the linear operator that projects the members

of the infinite-dimensional continuous space, 7-(T), onto the finite-dimensional

approximation subspace, Vh(T). We can subtract the previous two equations to

obtain

a(e, v) = r(v - vhv) dQ + R(v - Hvhv) df, Vv E H (Q).
TET T Th J

Applying the Cauchy-Schwartz Inequality gives

a(e, v) ||r 1|2(T) I I Hv lVftI2(T)
TETh

+ ||2 || - Hv oI L2(, Vv E XMG)
yETh

Interpolation theory [Cia78, QV971 informs us that there exists a constant C which

is independent of v and h, the diameter of the element, such that

l|v - UvhvLe2 (T) < ChvI7- (T*),

||v - flvhVllL 2(,) ChiVl(T*),

where T* denotes the subdomain consisting of all elements sharing a common edge

with element T, and h is the diameter of T. Inserting these estimates into the

21



CHAPTER 1. INTRODUCTION

previous equation and absorbing the various constants, yields

a(e,v) < CjvfH1(Q) h2 |Ir|12 (T) + ( h||R||12h)}-
TETh -YE a7h

Finally, recalling that IVol ( ) < a(v, v), an a posteriori error estimate can be

written

a(e,e) C { h2||r|12(T) + ( h||R|12) .
T ETh -yE'Th

Both interior and edge residual quantities comprise the estimate, but in many

situations the edge contribution dominates the estimate [KVOO, CV99].

Although simple, explicit error estimators of this sort have two obvious draw-

backs. First and foremost, the estimate contains a generic unknown constant

which renders the estimate useless for certifying the absolute precision of a nu-

merical result. Second, the quantity on the right estimates the error in the energy

norm measure which may or may not be relevant to particular decision for which

the simulation was undertaken.

Linear Functional Output Error Measure An explicit estimator in a lin-

ear functional output can be bootstrapped from the above energy estimator and

an output adjoint. These estimators, of course, still contain unknown constants

which make them unsuitable for confirmation and validation, but by serving as in-

dicators for mesh adaptivity they can be used to improve the efficiency with which

engineering quantities of interest can be approximated with greater precision.

Defining a linear continuous output functional f' : V -+ R. First, find Oh E Vh

22
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such that

a(0h, vh) = (Vh), Vo E Ph. 113

Galerkin orthogonality and the Cauchy-Schwarz Inequality allow us to write

EG(e) = a(e, @) = a(e, 0 - 0h) e C y~evh h1' - IhJJvh, (1.1.4)

where the solution error lJeJVh was obtained above. A bound on the term ||$ -

Oh!IVh, where 4 E H'(Q) is the exact adjoint defined as

a(@, v) = 0 (v), Vv E (),

can be obtained in an analogous manner to the solution error. This equation

gives a lower bound, an upper bound can be found with the same process, but by

solving for -ED.

1.1.2.2 Implicit Estimators

The simplicity and low computational cost of explicit estimators makes them

attractive despite their lack of quantitative feedback, while the quantitative po-

tential of implicit estimators makes them attractive despite their additional cost.

That implicit estimators are typically formulated without explicit constants, how-

ever, belies the fact that the vast majority of such estimators tacitly depend on

uncomputable quantities which must be approximated in a vitiating manner. As

a result, existing implicit estimators cannot be used with confidence to validate

the precision of a simulation result, despite the additional cost of such estimators.

An implicit estimator for the error in a linear functional output can be con-

23



CHAPTER 1. INTRODUCTION

structed from the error equation (1.1.2) using the approximate working solution

Uh and the approximate adjoint Oh previously introduced. In order to reduce the

computational cost of the resulting estimator, we introduce a domain decomposi-

tion by partitioning the domain with the finite element triangulation, Th. On the

aggregate of elements, which we call the broken domain, we define a broken space

V = HTETh 7 (T) and a continuity bilinear form b : V x A constructed so that

V() = {E V(Q) b(, A) = 0, VA E A ,

where A is the space of bounded linear edge functions (the dual of the trace space

of 7-(T)). Introducing the domain decomposition allows us to localize the error

estimator computation to a single element.

After computing Uh and ih with standard methods, we can compute equili-

brating fluxes Au and A0 by solving the equations

b( , Au) = E(0) - a(Uh, 0), VWE 4

b(0,A') = - 0 (i) -a(,@bh), Vi E Vh,

using well established and inexpensive equilibration techniques. Equilibrating lo-

calization techniques like this are an important ingredient to formulating robust

and asymptotically exact implicit error estimators [AO93a, Ain96, ABF99, A097,

BW851.

By choosing a high fidelity finite-dimensional approximation space V, (T) which

we assume can safely be a surrogate for the infinite-dimensional space N 1 (T), we
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1.1. TECHNIQUES FOR RELIABILITY ASSESSMENT

can solve a pair of high fidelity reconstructed error problems on each element

2a(eu, v) = f(v) - a(uh, v) - b(v, Au), Vv E V,(T),

2a(el, v) = -E2(v) - a(v,'h) - b(v, AO), Vv E V,(T).

Upper and lower bounds on the output s - f 0 (u) can then be computed from the

expression

s = 1i(u) - 2 1: a(e',e) ± 2 ( a(e,er) 1

TGTh T E T T ET ) T )

The quantities s* are quantitative bounds on the output from the hypothetical

global high fidelity solution u,: s;- < 20 (u) < s+.

The method we have outlined here follows that of Patera, Paraschivoiu, Peraire,

et al. [PPP97, PP98, MPP99, PPOO, BP02] in which the high fidelity approxima-

tion space V, (T) is an h-refinement of the local element subdomain. As the method

uses both a working mesh and "truth" mesh, it also falls under a category of two-

level finite element methods studied by Brezzi and Marini [BM02]. Methods by

other workers in the field have a similar character but use p-refinement for the

local enriched approximation. Numerous implicit error estimation methods fall

into this overarching scheme of computing high fidelity reconstructed errors from

a localized working approximation. They differentiate themselves by the methods

they choose for each step and how they measure the error. For instance, flux-free

local problems may be computed on a patch of elements resulting from a partition

of unity [MMPOO, BPP01], or the error might be measured with respect to the

constitutive law [LadOO, LR97, LL83].
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What the methods all have in common is substitution of a computable finite-

dimensional problem where an uncomputable infinite-dimensional problem is re-

quired to guarantee bounds [AK01, A093b, BSG99, SBG00]. Error estimates that

do not have the guarantee of one-sidedness, or that approach exactness but only

in the asymptotic limit of either global or local problem resolution, cannot certify

the precision of simulations posed on arbitrary meshes and require additional work

to estimate the error in the error [SBG+99I.

1.1.2.3 Summary of Residual Based Error Estimators

Residual based error estimators like the ones introduced above can be viewed

broadly with the conceptual matrix of Table 1.1. Notice that the proposed method

targets the lower-right quadrant, which yields both greater utility (output metric)

and greater rigor (implicit methodology).

Methodology
Metric Explicit Implicit

Babuska, Miller Bank, Weiser, Ladeveze,

Energy RheinboldtVerfrth Leguillon, Babuska, Rhein-
E el ,Verfrth boldt, Verffirth, Ainsworth,
Kelly, Gago Oe

Oden
Output Becker, Rannacher Patera, Peraire, et al.

Table 1.1: Error Estimator Methodology Conceptual Matrix

1.1.3 Relation to Other Methods

As the method presented in this thesis appeals to the dual of a minimization

reformulation of the original problem, it can be conceptually viewed as an ex-
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tension of complementary energy techniques for error estimation, first proposed

by Fraeijs de Veubeke [Fra65] in the early 1970s and later pursued by Lade-

veze and Leguillon [LadOO, LL83, LR97, LRBM99], and others [Kel84, DM99],

to more relevant error measures and to problems without intrinsic minimiza-

tion principles such as the advection-diffusion-reaction equation. Similarly, as

the method solves equilibrated elemental residual subproblems, it can be concep-

tually viewed as an extension of the work of Bank and Weiser [BW85], Ainsworth

and Oden [A097, AO93b], and others [CKS99], which does not require exact min-

imums of infinite-dimensional subproblems to guarantee bounds. Like Becker and

Rannacher [BR96a, BR96b, BKROO, RS98, RS97, RS99] and others [VD03, VD02],

we are interested in the precision of integrated output quantities and focus the

adaptive refinement process on improving the precision of the desired output quan-

tity in particular and not the solution in isolation.

In contrast to the work of Ladeveze, we endeavor to compute uniformly guar-

anteed two-sided bounds on an output, not an estimate of the error in an abstract

norm. While the work of Ainsworth and Oden as well as the related work of Cao,

Kelly and Sloan [CKS991 require the exact solution of infinite-dimensional local

problems in order to guarantee bounds, our method guarantees bounds uniformly

with the solution of a finite-dimensional local problem. Our method differs from

that of Destuynder in that it is not burdened with the explicit construction of

globally conforming approximations to dual admissible vector fields and the local

nature of our method readily provides an adaptive refinement indicator. More-

over, the method introduced in this thesis extends to problems without intrinsic

minimization principles such as the advection-diffusion-reaction equation.
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Bertsimas and Caramanis have recently proposed a novel global method for

computing bounds on functionals of partial differential equations using semidefi-

nite optimization [BC02, BC00]. Like the method presented in this thesis, their

method reformulates the output problem as an optimization problem. Initial nu-

merical trials which included the non-coercive Helmholtz equation were promising

but unfortunately the cost of performing the semidefinite optimization makes the

method impractical at present.

Tangibly, the work presented in this thesis extends earlier work done by Pa-

tera, Paraschivoiu, and Peraire [PPP97, PP98] on two-level residual based tech-

niques for computing output bounds. The method presented in this thesis fol-

lows the overarching scheme of this and other implicit methods, but transforms

the local uncomputable infinite-dimensional subproblem into a computable finite-

dimensional one and thereby retains the strong bounding property other methods

loose. While the method has the very strong properties mentioned above which

are not provided by other methods, it cannot yet be applied to curved domains

or mathematical models with non-polynomial forcing and the extension to non-

coercive equations is non-trivial.

1.2 Overview

In Chapters 2 and 3, we focus on the overarching structure of the method and do

not consider the details of its implementation, nor more general equations such

as non-symmetric dissipative operators, which will be presented in Chapter 4.

Chapter 2 presents the core concepts in the simpler setting of energy bounds for

Poisson's equation, where the method has a clear variational meaning and a direct
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relationship to hybrid methods. Chapter 3 recasts the energy bound method as a

method for linear functional output bounds for Poisson's equation, simultaneously

extending the energy bound to more relevant error measures and preparing the

way for more general model problems. In Chapter 4 we generalize the method in

a variety of ways while extending it to the advection-diffusion-reaction equation.

Beginning with the description of the model problem and continued throughout

the chapter, we give a more general presentation of the method which explicitly

considers non-homogeneous boundary data. Numerical examples are given at the

end of each chapter which demonstrate the potential for the method to deliver

simulation results with certified precision.
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Chapter 2

Energy Bounds for Poisson's

Equation

In the first two chapters we will consider Poisson's equation posed on polygonal

domains, , in d spatial dimensions and, only for the sake of simplicity of pre-

sentation, homogeneous Dirichlet boundaries, F = 8Q. The Poisson problem is

formulated weakly as: find u E V such that

jVu -VvdQ = jfvdQ, VvEV, (2.0.1)

where V(Q) = { u E H'(Q) I ur = 0 } and the domain Q is assumed when oth-

erwise unspecified, that is, V = V(Q). As a consequence of all the Dirichlet

boundaries being homogeneous, V serves as both the function set and test space

in our presentation. While we present the method for homogeneous Dirichlet

data, it can be easily extended to non-homogeneous data and Neumann boundary

conditions.
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2.1. AN INTRINSIC MINIMIZATION PRINCIPLE

2.1 An Intrinsic Minimization Principle

We begin by developing a lower bound on the total energy of the system, j fo Vu-

Vu dQ - fn fu dQ, which in the context of heat conduction, combines the heat

dissipation energy, 1 fo Vu -Vu dQ, and the potential energy of the thermal loads,

- fn fu dQ. There is a well known physical principle at work in this problem,

related to the symmetric positive definite nature of the diffusion operator, which

states that the solution, u, is the function that minimizes the total energy with

respect to all other candidates in V

u = arg inf j Vw -VwdQ - fwd, (2.1.1)

as can easily be verified by comparing the Euler-Lagrange equation of this mini-

mization statement to Poisson's equation (2.0.1). This minimization formulation

makes it clear that if we look for a discrete approximation of (2.0.1) in a finite

set of conforming functions, Vh, for which Vh C V, then the resulting total energy

predicted by the approximation will approach the exact value from above.

While insightful, this upper bound on the total energy has limited usefulness

for two primary reasons. First, only rarely will the total energy be relevant to

the purpose of solving the original problem. Second, even when it is relevant, the

upper bound will most likely not be helpful for managing approximation uncer-

tainty. In an engineering design task, the upper bound usually corresponds to

the "best case scenario," as opposed to the "worst case scenario" which would be

required to ensure feasibility of the design.

Our strategy for obtaining lower bounds on the energy in a cost efficient man-
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CHAPTER 2. ENERGY BOUNDS FOR POISSON'S EQUATION

ner is to first decompose the global problem into independent local elemental

subproblems by relaxing the continuity of the set V along edges of a triangular

partitioning of Q, using approximate Lagrange multipliers, then accumulate the

lower bound from the objective values of approximate local dual subproblems.

2.2 Weak Continuity Reformulation

We begin by partitioning the domain into a mesh, Th, of non-overlapping open sub

domains, T, called elements. The partition has the property UTEh T = Q, where

the over-bar indicates the closure of the domain. We denote by BT the edges, -y,

constituting the boundary of a single element T, and by 0Th the network of all

edges in the mesh. We have not yet evoked a discretization of V, but merely a

domain decomposition represented by a mesh. With the broken space

S= { v E L 2 (Q)|v ITE 'H(T), VT E Th , (2.2.1)

in which the continuity of V is broken across the mesh edges, 0Th, we can re-

formulate the energy minimization statement (2.1.1) by explicitly enforcing con-

tinuity

u = arg inf -fV . V& dQ - f b dQ

st IV(2.2.2)
s.t. 1 ar TzA dI' = 0, VA E A,

T67 Th
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2.2. WEAK CONTINUITY REFORMULATION

where, for TN C Th and an arbitrary ordering of the elements, T < TN,

-1 xETflTN,T<TN
0-T(X) = (2.2-3)

+1 otherwise.

Integrals over the broken domain, such as fj V* -V dQ, are understood as sums

of integrals over the subdomains, such as EZT fT VI T - Vi)H dQ. As there is

no ambiguity, we have suppressed the trace operators from our notation for the

boundary integrals to simplify the appearance of the expressions.

To see how the constraint arises, consider a single edge, 7 E 0Th, with neigh-

boring elements T and TN, for which a strong continuity constraint can be written

roughly as ZbITO - I|TNy = 0 on -y. An integral weak representation is obtained

by multiplying by an arbitrary test function, A-, taken from an appropriate space,

A(7), integrating along the edge, and ensuring the resulting integrated quantity

is zero for all possible test functions: fY (ZbT,- - &I TN,) Ay dl = 0, VAy E A(7).

The constraint used above is obtained by re-writing the combination of all edge

constraints as a combination of elemental contributions, using oT to track the

sign of the contribution. Since GlT is a member of H1(T), the trace of &iI on an

edge -y is a member of H2 (OT). Therefore, A on -y is a member of the dual of the

trace space, H-21(7), and the continuity multiplier space A is the corresponding

product space taken over all the edges of the mesh.

Notice that we have relaxed the Dirichlet boundary conditions as well as the

interior continuity. The homogeneous Dirichlet conditions are weakly enforced

implicitly by the continuity constraint. We shall not prove it here, but it is impor-

tant to know that the minimizer of the constrained minimization problem (2.2.2)
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is indeed u, the exact solution of Poisson's equation (2.0.1) [A097, BF91].

2.3 Localization by Continuity Relaxation

Considering the Lagrangian of the constrained minimization (2.2.2),

L(j; A) Vz - Vzb dQ-f d- o T T d', (2.3.1)

we recall from the saddle point property of Lagrange multipliers and the strong

duality of convex minimizations that for all I E A

E- < inf L(ib; I) sup inf L(d; A) = inf sup L(b; A) = E,

where the value at optimality is the minimum total energy of the continuum

system, e = 2 fQ Vu -Vu dQ - fQ f v dQ. The lower bounding minimization for

a given I is separable, an important property allowing us to treat each element

independently as will be discussed further in Section 2.4. In order to obtain a

non-trivial (i.e. finite) lower bound, ~ cannot be chosen arbitrarily. We obtain A

by approximating the problem using finite elements in a manner that guarantees

the relaxed minimization is bounded from below.

2.3.1 Continuity Multiplier Approximation

We now introduce the finite element approximation of Poisson's equation (2.0.1)

as means of obtaining an approximate Lagrange multiplier. We first solve the
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2.3. LOCALIZATION BY CONTINUITY RELAXATION

finite-dimensional Poisson problem: find uh E Vh such that

j Vuh .-VvdQ = f fvdQ, Vv E Vh, (2.3.2)

where Vh- { v E V I vIT E PP(T), VT E T } for PP(T) the space of polynomials

on element T (in d spatial dimensions) with degree less than or equal to p. Once

we have obtained Uh, we solve the gradient condition of (2.3.1) to obtain Ah: find

a Ah E Ah such that

-TOjAhd VUh -V dQ - jf dQ, V E 9h, (2.3.3)
T ET

where Ah = { A E A | Alj E PP(y), V'y C &T } for PP(y) the space of polynomials

on element edge -y (in d - 1 spatial dimensions) with degree less than or equal to

p. We call this the equilibration problem, and we call any compatible Lagrange

multiplier "equilibrating," since the problem has a non-unique solution. In the

context of hybrid methods [BF91], this continuity multiplier is often referred to

as a hybrid flux. As mentioned previously, this particular choice for the Lagrange

multiplier ensures a finite lower bound.

Lemma 2.3.1. If a Lagrange multiplier Ah G Ah satisfies the equilibration condi-

tion (2.3.3), then infEp 1 L(ib; Ah) is bounded from below.

Proof. Recall that the null space for the Laplace operator is the one dimensional

space of constants, P0, and let P0 =HTCTh P(T) denote the null space of the

broken operator. Considering 6 E IP C Vh in the equilibration problem (2.3.3)

and that any zi C V can be represented as '6 for fv' E V \#W0, it is easily shown

that C(&' + a; Ah) = L('; Ah). For the Poisson equation, equilibration ensures
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that null space of the operator does not cause the minimization to be become

unbounded below. The existence of a minimum now follows from the coercivity

of the Poisson operator in 9 \ #P0.

While not part of the classical finite element problem set, the equilibration

problem has been addressed a number of times and in a number of contexts in

the finite element community, not the least of which is in the context of error

estimation [AO93a, LM96, MPOO]. The equilibration problem can solved with

asymptotically linear computational cost in the number of mesh vertices and in

some cases is already solved as a component of domain decomposition techniques

for parallel computations [Par0l]. For our implementation, we use a method due

to Ladevaze [LL83, A097].

2.4 Local Dual Subproblem

Now that we have successfully decomposed the global problem into local elemen-

tal subproblems, we can write the lower bounding minimization induced by the

Lagrange saddle point property as

inf L(tb; A) = inf J(w)
7eV TG h wcV(T)

for

JT(w) - jVw -VwdQ - j fwdQ - j Twl dF, (2.4.1)

and consider a representative minimization subproblem. The minimization sub-

problem simply corresponds to a Poisson problem of the type represented in equa-
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tion (2.0.1) with Neumann boundary conditions posed on a single subdomain. We

have done nothing to change the nature of original problem, but have only acted

to decompose the global problem into a sequence of independent local problems.

We do not require, and in general cannot compute, the exact minimum of the

infinite-dimensional local subproblem, but we do require a lower bound for it and

we proceed now to introduce the primary ingredient for obtaining this local lower

bound.

Proposition 2.4.1. If we define the positive functional

JT(q) =j q -qdQ (2.4.2)

where q E 7H(div; T) and H(div; T) ={q I q c (L 2 (T))d, V -q E L2 (T)} for a

problem posed in d spatial dimensions, then we have

JT(w) -Jr(q), Vw C H-1(T), Vq E Q(T), (2.4.3)

for the set of functions

Q(T) {q E (div;T) jV-qvdQ- q-nvdF

=- fvdQ - jA vdf, Vv E'H1(T)}.

(2.4.4)

Proof. We begin by appealing to the following positive expression

f(q Vw)2 dQ > 0,
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for any w E ' 1 (T) and any q E Q(T). This expression expands to

- q - qdQ + - Vw -VwdQ - j q -VwdQ > 0,

in which we apply the Green's identity

- q-Vwd= jV-qwdQ- q-nwdF

to obtain

Iq - q dQ +
12J
- TVw -VwdQ + f V -qw dQ - q . nwdP > 0.

The constraint included in the definition of Q(T) makes this expression equivalent

to

[q - q 1d + -
T 2 IT

Vw -VwdQ - jfwdQ -

Identifying JT(w) and Jy(q) we arrive at the desired expression for the local lower

bound. 0

To obtain the best possible local lower bound, we might consider the following

maximization problem

sup -J (q) < inf JT(w),
qEQ(T) WEV(T)

with equality being obtained as a result of the convexity of JT and Jj.

(2.4.5)

1

aT Tw~dF > 0. (2.4.6)
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clear that we have derived a classic dual formulation1 for our local elemental

minimization problem and essentially transformed a primal minimization problem

into a dual feasibility problem. As we have alluded to earlier, the functional J (q)

is often called the complementary energy functional [QV97], when taken over the

whole domain, Q, with a globally admissible complementary field.

2.4.1 Subproblem Computation

Significantly, we can make these subproblems computable by choosing an appro-

priate finite-dimensional set in which to search for q. At the very least the set

must be chosen so that the divergence of its functions contain the forcing function,

f, in T and the normal traces of its functions contain the approximate continuity

multiplier, Ah, on &T. In multiple dimensions, however, the polynomial approx-

imation for the continuity multiplier will nullify any components of the set with

non-polynomial normal trace. Therefore, we choose the polynomial approximation

subset

Qh(T) -{ q E (pq(T))d V -qvdQ - q -nvdF
JT J T

= - f vdQ j T AhvdF, Vv E I'(T) ,

(2.4.7)

with q > p. As a consequence, the method as we have presented it is limited to

forcing functions, f IT, that are perforce members of the polynomial space P(T)

for q > r on each elemental domain. While in one dimension we gain no advantage

'The classic derivation for the dual of the Poisson problem would begin by letting q = Vw

(a statement of Fourier's law in the context of heat conduction) and proceed by eliminating w
from the problem.
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in taking q greater than r +1, in multiple dimensions we can do so in an attempt to

sharpen the bounds. The interior constraint data, f, and the boundary constraint

data, UTAh, cannot be chosen independently of each other, but must satisfy a

compatibility condition in order to ensure solvability as manifest by the following

lemma.

Lemma 2.4.2. Suppose the forcing function f T is a member of P(T) and that

Ah satisfies (2.3.3), then there exists at least one dual feasible function, q, that is

a member of Qh(T) for q p and q > r.

Proof. We begin by expressing q, a member of (Pq(T))d, as the combination

q = qD +q 0 , with qD a normal boundary condition satisfying component, qDn =

UTAh on 0T, and q0 a homogeneous normal boundary condition satisfying com-

ponent, q0 -n = 0 on 0T. With this lifting, we can write the feasibility constraint

as

-jV- q0 vdQ= jfvdQ+ V -qDvdQ.
JT JT JT

Recognizing the divergence operator on the left hand side, which maps (Pq(T))d

into Pq-l(T), we note that we need only test against v E P-1 (T). Furthermore,

finite-dimensional linear equations are solvable if and only if the right hand side

data lies in the range of the operator, which is orthogonal to the null space of

the adjoint operator. The adjoint operator is easily found to be fT q0 Vv dQ

which has the null space v E PO(T), and thus the right hand side data must be in

Pq- I(T) \ P0 (T).-

To prove solvability, we need only to verify that the right hand side data is

orthogonal to the constants, since the requirements that q > p and q > r ensure

that the right hand side data is in pq1. Choosing v = const in the right hand
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side of the constraint, rewritten as

j f vdQ+ j V -qvdQ = f vdQ - jqD VvdQ+J UTAhv d,

reveals the compatibility condition

JT 0TAhdF = T f dQ, (2.4.8)

which is satisfied by our choice for Ah, as can be seen by choosing v const on T in

the equilibration condition (2.3.3). The equilibration condition thus ensures that

the constraint data is compatible and that there exists at least one q satisfying

the constraint.

2.5 Energy Bound Procedure

In discussing the global procedure and its properties, we denote the global ag-

gregate of independent elemental quantities by accenting them with a diacritical

hat as we did for the global broken quantities, and we denote the aggregate of

local functional forms by dropping the subscript T. In particular, Qh denotes the

aggregate approximate dual function space, 1TEh Qh(T), and Jc(ei) the aggre-

gate dual energy functional, ETTh J (qlT). The complete method for the energy

bounds consists of three steps:

1. Global Approximation: Find Uh E Vh such that

jVUh - VvdQ = j fvdQ, Vv E Vh, (2.5.1)
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and calculate the upper bound E+ = -} fa Vh V h dQ.

2. Global Equilibration: Find )h G Ah such that

SIT UTVAh dF = JVuh -V' dQ - jf d, W E 9h. (2.5.2)
T ETh

3. Local Dual Approximations: Find e- such that

E = sup -J'(4h) (2.5.3)
elhEdh

The last step requires the solution of a series of finite-dimensional quadratic

programming problems with convex objective functions and linear equality con-

straints. The per-element cost remains low due to the small size of the elemental

subproblems, while the total cost of computing the lower bound is asymptotically

linear in the number elements.

2.5.1 Properties of the Energy Bound

As previously discussed, the upper bound follows directly from the conforming

nature of the finite element approximation and the lower bound follows directly

from Proposition 2.4.1. We close our presentation of the energy bound method

by showing that the lower bound converges at the same rate as the upper bound,

and thus inherits the well known a priori finite element convergence property for

the energy norm of the error. We begin by proving an orthogonality result.

Lemma 2.5.1. Let Oh be any dual feasibility correction to Vuh such that 4h =
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Vuh ± Ph is a member of Qh, then Ph satisfies the orthogonality property

S Jp1 v -V dQ=0, VVEh. (2.5.4)
TETh T

Proof. We begin by examining the condition that the feasibility correction Ph must

satisfy by substituting Vuh + Ph into the constraint contained in the definition of

Qh, summed over the elements, to obtain

V .Phib dQ - nJT -n dF= - f f dQ - V - Vhi) dQ
TEn oT fn n

-o-rAsd E+ VUh -n dr, V E 9. (2.5.5)
T ETh TE h

Applying Green's formula to both the Ph and Uh terms yields the equivalent

constraint

jPh -VbdQ = fn dQ -jVuh -VbdQ+ I o-rA dP, V' E w .

(2.5.6)

Restricting i to Vh produces the sought orthogonality property as a consequence

of equilibration (2.5.2). L

Lemma 2.5.2. Let Pi be the dual feasibility correction to VUh that maximizes

Jc(Ph) such that Vuh + P* is a member of Qh, then P* is bounded from above

by

Jc(O*) < Clu - uhl, (2.5.7)

for the semi-norm Iv|= fn Vv - Vv dQ, if the approximate continuity multiplier
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Ah computed in (2.5.2) has the bound

h2I|A - AhIIT 5 ClU - UhI1, (2.5.8)
TeTh

where A)Ior -T7 is the exact continuity multiplier and ||V||2 laT v 2 dT .

Everywhere, C is a generic constant independent of h = diam(T).

Proof. Using the constraint (2.5.6) and the definition Ph = HTCTh (pq(T))d, the

constrained maximization for Pn can be written as sup,,,5 -1 fa Ph - Ph dQ such

that

-Ph - VdQ j Vuh - V dQ - f dQ - Er Ah dr, (2.5.9)
C C T E T

for all E pq+1. The gradient condition, fo ih-P* dQ =f f -V* dQ, Vfr E

informs us that * Vs*. Since q* is defined uniquely only up to a constant on

each element because of compatibility, we can choose q* to be of zero mean over

each element, f, * ITdQ = 0.

The approximate solution uh has an associated approximate continuity multi-

plier Ah satisfying (2.5.2), while the exact solution u also has an associated exact

continuity multiplier A satisfying

: I cTTOA dF = Vu -V0dQ - f dQ, W E , (2.5.10)
T ET fT ro JI

as can be verified by integration by parts. Adding (2.5.10) to the constraint
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of (2.5.9) with Ph= P* and i = we find for |T 2 = VT TV2 dQ that

* d = - Ulh)I V * I+dQ -T(A - A) * dF

T Th

CIu - uhi1 V *||+ y Chl IA - AhI1TIIV II,
TEh

in which we applied the inequality IwIl&T 1 ChIl1W1,T, valid for any w E '(T)

that has zero mean [MPOO]. Finally, after invoking the bound (2.5.8) we complete

the proof by substituting V * = *, dividing both sides by ||hn I|, and recognizing

that ||p* ||2 = 2Jc(n*).

Ainsworth and Oden prove in [AO93b] that under certain assumptions the

flux average of the finite element solution across the edges is bounded by (2.5.8)

so that, by way of the triangle inequality, the burden rests in showing that the

non-unique equilibrating corrections required to satisfy (2.5.2) decrease at the

requisite rate. Maday and Patera give in [MPOO] a basic method for computing

approximate continuity multipliers that has been proven a priori to satisfy (2.5.8).

Lemma 2.5.3. Suppose that Ah is the solution of the equilibration problem (2.5.2)

for uh the solution of the finite element approximation problem (2.5.1) then

E - E- < Cu-u . (2.51_)
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Proof. Let f* be chosen according to Lemma 2.5.2, then

- JC(Vuh + P*) sup - Jc(4h) = J'( )

$h6 Qh

for 4* = arg supghCgh Jc(4h). From this relationship and from the definition of

-we know that JC(*) Jc(Vuh) + Jc(p*), because ZTETh fT n*P VuhdQ = 0

from Lemma 2.5.1 and the fact that Uh is a member of 9h. Adding the exact energy

6 = -JC(Vu) to each side and recalling that e = -Jc(Vuh) and 6- = -Jc(4*)

we have our desired result

- - eh + Jc(f*) Clu - Uh1,

where we have again evoked Lemma 2.5.2 in addition to the well known finite

element energy error bound. E

2.6 Numerical Results

We close this chapter by considering the unit square, Q = [0,1]2, with all homo-

geneous Dirichlet boundary conditions and uniform forcing f = 10. The problem

has the analytical solution

160 (-1)(i+j)/2-1 co 7x

U(X, Y) = (i 2
+ cos(2 ) cos(3 2 y),

odd i=1

which yields the analytically exact energy E = -1.757. We give in Table 2.1 and

in Figure 2.6.1 the results of a uniform refinement trial with method parameters

p = 1 and q = 2. The numerical results exhibit the bounding property and
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asymptotically approach the optimal convergence rate of 2, corroborating the

theoretical results developed in this chapter.

h (e - c)/e (E+ - _)/ _

1 0.7982 0.5554 1.702
1 0.2678 0.1802 1.67

0.0738 0.0489 1.66
0.0190 0.0125 1.66

Table 2.1: Uniformly forced square domain.

-0.5 -

-1 -

-1.5 -

-2 -

-2.5 -

-3 -

I | | | |
0 0.1 0.2 0.3 0.4 0.5

Mesh Diameter, h

Figure 2.6.1: Uniformly forced square domain convergence history.

o FE Approximation, Eh

V Lower Bound, eh
A Upper Bound, -

El Bound Average, 6h
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Chapter 3

Output Bounds For Poisson's

Equation

In this chapter, we will continue to keep the presentation simple by considering

only simple linear functional interior outputs of Poisson's equation. In particular,

we will develop upper and lower bounds, s*, on the output quantity

s - ffOu dQ, (3.0.1)

where u is the exact solution of Poisson's equation (2.0.1) and f 0 IT is a member of

Pr(T) for all elements T in Th. We stress, however, that more interesting outputs,

such as boundary fluxes, can also be treated using techniques previously employed

in the context of two-level methods (see, for example, the treatment of the normal

force output for linear elasticity in [PPP97] or the normal derivative output used

in the numerical examples of the next chapter).
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3.1 Weak Continuity Reformulation

To begin, we must formulate a generalized analogue to the minimization state-

ment (2.2.2). There are two parts to this task. First, we must replace the intrinsic

energy of the variational problem with an energy reformulation of the linear out-

put functional. Second, now that the minimization of the objective functional

no longer corresponds to the solution of our original equation, we must explic-

itly ensure that the minimizer is the solution to our problem by including it as

a constraint. Furthermore, to obtain both upper and lower bounds, we consider

two cases which vary by the sign of the original output. The resulting pair of

constrained minimization statements for the homogeneous' Dirichlet boundary

problem under consideration are

~Fs = inf - f Gi dQ + - VG+ . V(t* - i) dQ - f (Gi - U) dA
T-*±Ev Jo 2 Qaj

s.t. VG - V d = Lfo dQ, V0 E V,

0-oTzbA dF = 0, VA E A,
TCTh DT

(3.1.1)

where ii is any element of space V, and r, is a positive real scaling parameter which

serves both as a coefficient providing dimensional consistency in the engineering

context and as an additional degree of freedom which we will use to tighten the

bounds. The quadratic objective functional has been constructed so that all terms

but the desired output functional vanish when tb* is the exact solution, u, while

'The extension to non-homogeneous Dirichlet boundaries requires choosing u from the set
of admissible functions and weakly enforcing the Dirichlet boundary data, UD, by replacing the
continuity constraint with EZT faT oTd±A dF = E aI fy ~Tam A UD dF, VA 6 A.
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the constraints enforce equilibrium and interelement continuity.

Paraschivoiu, Peraire and Patera [PPP97, PP98] originally proposed this re-

formulation in the context of two-level output bounding methods which appeal to

a second refined but localized finite element approximation and therefore provided

bounds only against a refined finite element approximation instead of the exact

infinite-dimensional solution. With this constrained minimization reformulation,

we can proceed more or less mechanically to apply the ideas from the energy

bound to this more general context. The development of the output bound is

very close to that for the energy bound, but with the extra burden of carrying

an additional Lagrange multiplier for the equilibrium constraint and of managing

the concurrent development of both upper and lower bounds on the output, as

neither arise implicitly from the finite element discretization.

3.2 Localization by Continuity Relaxation

Considering the Lagrangian of problem (3.1.1),

-F f i dQ + { V&+ . ( -ii) d - f ( - ii) dQ (3.2.1)

+ fo± dQ - V±. V ± dQ - at*J A* d',
a n 7 T
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we know, as we did for the energy bound, from the saddle point property of

Lagrange multipliers and from the strong duality of convex minimizations that

inf E(z;/AAI) < sup inf L*(&iA; @*, A*) = Ts.

AeA

for all (i/, A*) E V x A. The lower bounding minimization for a given I+ and

?/ is separable and, for an appropriate choice for li, provides non-trivial upper

and lower bounds on the exact output s.

3.2.1 Lagrange Multiplier Approximation

We proceed, as we did for the energy bound, to obtain approximate Lagrange

multipliers with a finite element discretization of the gradient condition of Equa-

tion (3.2.1). Let $1 = tVa, A± = 'A' t A0, and i = Uh, all of which we find by

solving the following discrete problems

1. Find nh E Vh such that

j VUh Vo dQ = fv dQ, Vv E Vh, (3.2.2)

2. Find <Oh E Vh such that

j Vv - V~h dQ = - f 0 v dQ, Vv E Vh, (3.2.3)

51



CHAPTER 3. OUTPUT BOUNDS FOR POISSON'S EQUATION

3. Find A' E Ah such that

-TJVdF = U -V dQ - f dQ, V E ), (3.2.4)

4. Find A E Ah such that

TJT d - f d-jVoW - VhdQ, Vi) E fh. (3.2.5)

The first two problems comprise the well known primal-adjoint pair which occur

often in output oriented a posteriori error estimation techniques as well as in

computational approaches to design optimization, while the last two problems are

their independent equilibrations. The first and third problems are identical to the

global approximation problems required for the energy bound. These particular

choices for the Lagrange multipliers ensure a finite lower bound in the saddle point

property.

Lemma 3.2.1. If the Lagrange multipliers $ = ±h and A' = ± A0 satisfy

the equilibration conditions (3.2.4) and (3.2.5), then the minimums

inf C(7b'; pg,- A-')

are bounded from below.

Proof. This is true for essentially the same reason that it is true for Lemma 2.3.1.

The only algebraic difference being that in the present output bounding case the

property E±(7i9' + ; 0±, A') = L(6bi'; 04, Ah) results from the combined action
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of both equilibration conditions.

3.3 Local Dual Subproblem

Restricting our attention to a single elemental subproblem, T E T , we first re-

write our local Lagrangian functional in a form suitable for applying the ideas

developed for the energy bound. Every term other than the dissipative energy

term, ! fr Vw - Vw dQ, must not involve derivatives of zib, which we can do

in the present case by application of the Green's identity - fT Vu - Vw dQ =

fT Au w dQ - far Vu - n w dF to obtain the equivalent local Lagrangian functional

L£(wl; te, " iI) = j Vw1 -Vwl dQ

(f - An) w± dQ + f -(UT-u + V n) w± dF + fa dQ
2 T r

-F{j (fo - A ) widQ + (-A+V-n)w*dF±+ fedQ}. (3.3.1)

The functional we wish to minimize over w+ can now be defined as

JT (w±) , j Vwi -Vwl dQ - f w+ dQ - jg±w+ d', (3.3.2)

for f* = K{f - Aa} i± {f - AN} and g* {rT"uV -n}i{o-riA +

V' - n}. Thus, the local relaxed primal minimization once again corresponds

to a Poisson problem of the type represented in equation (2.0.1) with Neumann

boundary conditions posed on a single element.

As was the case for the energy bound, we do not require, and in general cannot
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compute, the exact minimum of this local infinite-dimensional primal subproblem,

but we can apply the same technique of dualizing this minimization problem in

order to procure a computable lower bounding approximate to it.

Proposition 3.3.1. If we define the positive functional

J (q) ' q - q dQ, (3.3.3)

where q E H(div; T), then we have

J±(wi) ; -- J (q±), Vw± E 7-(T), Vq E Q±(T), (3.3.4)

for the set of functions

Q(T) -{q E -(div; T) V -qvdQ - j q -nvdF

=- f±v dQ - g v dr, Vv 'H'(T)}
JT J'T

(3.3.5)

Proof. The local dual problem is derived as it was for the energy bound, but with

modified data and the addition of the scaling parameter, K. After expanding the

positive expression for q E Q'(T)

(q± - kVw) 2 dQ > 0, (3.3.6)

applying a Green's formula, and substituting the constraint from Q*(T), we ob-
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tain the expression

q -q d+ jVw' -Vw dQ -- f+'wd* dg - 0g w-' ;> 0. (3.3.7)

Identifying J#(wi) and J (q*) we arrive at the desired expression for the local

lower bound. l

As the functional J1(wi) only contains the terms from the Lagrangian that

depended on w*, we must reintroduce the constant terms to secure the complete

contributions from the local dual subproblems

S f (r ± @h) dQ + sup -- JS(q'). (3.3.8)
T q±EQ±(T)

3.3.1 Subproblem Computation

Consider the splitting implied by the definition qh = rVu+ q±q0. Propagation

of this definition into the elemental subproblem reveals through the linearity of

the gradient condition that indeed qu and q1P can be computed independently.

The resulting subproblems are

qu =arg inf JC(qh),

qh =arg inf Jc(qh),
qh E Q" (T)
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for the dual feasible approximation sets

Qh(T) q E (Pq(T))d jV.qvdQ- q-nvdd= - (f + Uh) v dQ
TT J T7J1T

- I(uT Au - VUh - n) o d1F, Vv E H (T),

Q(T) q E (pq(T))d V qvdQ - q - nvdF = (f O - Ah) v dQTT c1T }T

f(o-T A -+- V~bh - n) v dr, Vv Ez 'H(T),

(3.3.10)

in which we have again chosen ii u=, commensurate with our choice for the

approximate multipliers. As the additional terms in the data of the dual feasibility

constraint are just polynomial functions in the local finite element basis, there

are no difficulties in choosing our dual approximation sets in this manner. The

solvability of these subproblems is addressed by the following result.

Lemma 3.3.2. Suppose the forcing function f IT and output function f 0 IT are

members of Pr(T), that Au satisfies (3.2.4), and that A0 satisfies (3.2.5), then

there exists at least one dual feasible function qu that is a member of Qu(T) and

one dual feasible function qV that is a member of QO(T), for q > p and q > r.

Proof. Applying Green's formula to the uh Laplacian term in the constraint data

for Qu(T) of (3.3.10) and duplicating the proof of Lemma 2.4.2 with the resulting

constraint data reveals the compatibility condition

JT TAu dF = - f dQ, (3.3.11)
aT h J T

which is satisfied by our choice for Au as can be seen by choosing () = const on T

in the equilibration condition (3.2.4). The same argument holds for the adjoint
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dual subproblem, yielding the analogous compatibility condition

/ITUTA dF = -jfo dQ,
h~ fT

(3.3.12)

for f0 and Ab.

With the subproblem splitting just defined, the aggregated contributions to

the upper and lower bounds become

f ('Ui h±) dQ ± Jc(KVUh + - efu± h
K 2 h

f (nU i Oh) dQ Vuh. Vuh dQ +

+ 1 4u -4) dQ

=- fh dQ +j

K 1
t ~JC(q%) ± J"(4f)

44

in which we have invoked (3.2.2) with V = Uh as well as used orthogonality rela-

tionships analogous to that proved in Lemma 2.5.1.

3.4 Output Bound Procedure

The introduction of the scaling parameter r allows us to optimize the sharpness of

the computed bounds in addition to providing dimensional consistency. From the

previous section we have the expression for the upper and lower output bounds

S± =-hIKU Z
Sh 8 hK h 7

s = ~

= J0 -VuhdQ

I jc(4(),
K h
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where

h 4u A4dQ- f~h dQ, zu =Jc (4), zb =Jc(4"), (3.4.1)

Maximizing the lower bound and minimizing the upper bound with respect to K

yields the optimal value n2 = zO/z.

The complete method with optimal scaling for upper and lower bounds on

linear functional outputs can now be written as three steps:

1. Global Approximation:

Find UhE Vh such that

VUh - VvodQ = jfvdQ, Vv E Vh, (3.4.2)

and find 4h E Vh such that

jo VV- V~h dQ = - f 0 v dQ, Vv E Vh. (3.4.3)

2. Global Equilibration:

Find Au E Ah such that

T j uh -*VdQ - f dQ, V E Vh, (3.4.4)
TTh7 J8T f9 d o

and find A' E Ah such that

o-TiAJ d = - f dQ - W - VPhdQ, V c 9h. (3.4.5)
T ETh J T JQ I
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3. Local Dual Subproblems:

Find 4u such that

4uh= arg inf JC(4), (3.4.6)
4heQuh

find di such that

= arg inf J"(4h), (3.4.7)

and, from equation (3.4.1) and the optimal K, calculate

sh Sh± 2  ZuZh. (3.4.8)

The local dual subproblems for the output bounds can be solved in the same

manner as the local energy dual subproblems. The important point being that

once the finite element approximations Uh and 4 have been computed, the solu-

tions can be equilibrated and quantitative bounds computed on the exact output

to the infinite-dimensional continuum equation with asymptotically linear cost in

the size of the finite element discretization and in parallel.

3.4.1 Properties of the Output Bounds

The upper and lower bounding properties are direct consequences of the saddle

point property of the relaxed constrained minimization reformulation (3.1.1) and

the local dual property of Proposition 3.3.1. The following proposition addresses

the accuracy of the computed bounds by showing that the bounds will converge at

the optimal rate when both the primal and adjoint finite element approximations

are in the asymptotic convergence regime.
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Proposition 3.4.1. Suppose that uh, Oh, A, and A' are solutions of the above

finite element approximation problems and equilibration problems, then

S - ClU -Uh|1|@ - $hI1,

(3.4.9)
s+i - C u h|1|@ -@Ohl1-

Proof. Applying the definitions from the procedure, we know that the lower a

posteriori bound, for instance, itself has the bound

s- < s - s- 2VZhZh.

The arguments of Lemma 2.5.2 can be applied to the zu and z factors to show

that they are bounded by Clu - uhl1 and Cj#b - Ohl1, respectively. 1

3.4.2 Computational Complexity

The first step of the procedure solves two standard finite element problems. The

finite element solver has an asymptotic complexity of O(Nk), where N is the

number of unknowns in the discretization and 1 < k < 3 is a property of the

solver. A fully dense direct solver would provide the worst case complexity of

k = 3. Any solution method must visit each unknown at least once, in order to

assign the solution, thus the best case complexity is k = 1. Using Ladeveze's

method and assuming that the number of elements sharing a vertex is bounded

from above, the second step can be performed by solving V small local patch

subproblems, where V is the number of vertices in the triangulation. This yields

an asymptotic complexity of O(V) for the equilibration step. Finally, solving a
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sequence of small local elemental subproblems results in an asymptotic complexity

of O(K). As we have assumed that the number of elements sharing a vertex is

bounded from above, the asymptotic complexity of the latter two steps of the

procedure can be stated as O(V). We deduce that the leading order asymptotic

complexity of the entire procedure is O(Nk) since V < N and k > 1. The

important point being that the output bound computation does not increase the

asymptotic cost of the approximation. Moreover, the output bound computation

delivers certainty, which cannot be obtained by merely increasing N.

More relevant than the number of unknowns an approximation requires, how-

ever, is the desired precision of the approximation. Assuming that the finite

element approximation achieves 0(hP) convergence in the 'Hl-norm measure of

the error for both the solution and the adjoint, Proposition 3.4.1 informs us that

the bound gap will have 0(h 2 P) asymptotic convergence. For a desired precision,

Atoi, we have Atoi - h2'P. Therefore the required element diameter, h, for a given

precision will be O(A$). Finally, uniform refinement yields N ~ and thus the

asymptotic computational complexity of the complete procedure to produce an

output approximation of a prescribed accuracy is 0 A( dk). The important con-

clusion from this analysis is that the method can compute approximate outputs of

prescribed precision in polynomial time. For example, a problem posed on a two-

dimensional domain and approximated with a linear finite element approximation

has an asymptotic computational complexity of O(A-j).
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3.5 Adaptive Refinement

The elemental subproblems provide local error information which can be used as

an indicator for mesh adaptivity via the elemental contribution to the bound gap,

Ar = LJy(qu) + -!J4(q'). The elemental bound gaps can serve as informative

mesh adaptivity indicators for controlling the error in the output, as was done

in [PP97] for a two-level error bound method. Adaptive indicators have long been

the principle business of error estimators. For example, see [Ver94, ODRW89] for

energy-norm error measures, and more recently [BR96a, BKROO, RS97, SBD+00]

for more general measures. The principle business of the method we have pre-

sented, however, is to certify the precision of an approximate output. Nevertheless,

the local bound gap contribution can be used to improve both the precision of the

output and the sharpness of the certificate using adaptive refinement.

It is well known that the error in a finite element solution contains a local

contribution as well as a global contribution called the pollution error which both

need to be taken into account for effective adaptive refinement [BSUG95b, Ain99].

In addition, sophisticated adaptive algorithms attempt to predict the optimal

element diameter in order to both reduce the number of adaptive steps required

and the number of elements contained in the final mesh. We do not attempt to do

either of these things, but instead provide a simple demonstration of the potential

for the local bound gap contributions to act as refinement indicators.

At each level of refinement, only elements for which AT > Atoi/K are refined,

where At01 is a user specified tolerance for the precision of the output from the

global approximation and K is the number of elements in the triangulation at that

level. The meshes are generated and adaptively refined using the freely available
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Triangle mesh generator [She96]. By preferentially refining the mesh elements

contributing more than a target average error contribution, we obtain a simple

but effective adaptive strategy.

3.6 Numerical Results

We verify the method numerically for three cases: constant forcing on the unit

square, linear forcing on the unit square, and zero forcing on an L-shaped domain

with a corner singularity. Linear finite elements, p = 1, and quadratic subprob-

lems, q = 2, are employed with the domain average output

s= fOu dQ,

where f 0 = const, for all cases.

All three cases have analytically exact solutions with which we are able to

verify the method and calculate the effectivities of the bounds,

* = , (3.6.1)

which indicate the sharpness by comparing the error in the bounds to the error

in the finite element approximation. The results are summarized in Table 3.1.
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Uniformly Forced Square Linearly Forced Square Corner Singularity
h s- s+ 0-0 s- s+ 0- 0+ s- s+ 0- 0;
1 0.156 0.632 1.0 1.4 0.860 1.276 5.1 2.9 0.702 0.897 5.1 6.0

0.288 0.446 1.0 1.5 1.050 1.171 5.7 3.5 0.761 0.829 4.3 5.1
0.334 0.377 1.0 1.5 1.106 1.137 5.9 3.8 0.781 0.805 3.6 4.4

- 0.347 0.358 1.0 1.5 1.120 1.128 6.0 3.8 0.788 0.797 3.1 3.9

Table 3.1: Output bounds and effectivities for three numerical test cases.

3.6.1 Uniformly Forced Square Domain

The first case is a uniformly forced unit square domain with f = 0 = v10. The

analytical solution is given by

16/E (-1) (i+.0/2-1
U(z, y) = 4 cos(z z) Cos(j-)

odd i=1 I) 2

This case is special in that the forcing and output are identical and the boundary

data is homogeneous, leading to primal and adjoint problem data which differ

by only a sign. It is well known that for this special case, called compliance,

the finite element approximation for the output is a lower bound. The numerical

results demonstrate that our method, while more expensive, does no worse than

the inherent bound for this special case. The results for both the finite element

approximation and the output bounds asymptotically approach the optimal finite

element convergence rate of O(h 2 ). This example also evinces that the bound

average, Sh, can sometimes be a more accurate output approximation than the

that from the finite element approximation.

The uniformly forced Poisson equation posed on a two-dimensional domain

models the cross-sectional velocity distribution for viscous duct flow. Figure 3.6.2

illustrates how the method might be used to study the dependency of an output

64



3.6. NUMERICAL RESULTS

0.6-

0.5-

0.4-

0.3-

0.2 -

0
17
A

O

0

FE Approximation, Sh

Lower Bound, sh

Upper Bound, sh
Bound Average, sh

I I I I |
0.1 0.2 0.3 0.4 0.5

Mesh Diameter, h

Figure 3.6.1: Uniformly forced square domain convergence history.

on a parameter. In the context of duct flow, the uniform output we have been

considering calculates the flow rate. The upper and lower bounds our indicated

by horizontal bars, the bound average by a black box, the finite element approxi-

mation by a hollow circle and the analytically exact solution by a grey line.

3.6.2 Linearly Forced Square Domain

The second case is a linearly forced square domain with f0 = 1, and the forcing

and non-homogeneous boundary conditions chosen to produce the exact solution

u(x, y) = 3 y2(1 - y) + 4xy.
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4-

3-

C

1-

0
0.8 1 1.2

Figure 3.6.2: The
height.

dependency of flow rate through a viscous duct on channel

As this test case is not a special case, the convergence histories of Figure 3.6.3

depict the more general situation in which none of the computed quantities coin-

cide. Whereas in the first example we saw that the bound average can possibly be

a more accurate output approximation than the finite element approximation, in

this example we see that this is definitely not always true since the finite element

approximation for the output is 0.5% better. As for the first example, the results

for both the finite element approximation and the output bounds asymptotically

approach the optimal finite element convergence rate of 0(h2).

T

I 1 1
0.2 0.4 0.6

Channel Height
0
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Figure 3.6.3: Linearly forced square domain convergence history.
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3.6.3 Unforced Corner Domain

Last, we consider the Laplace equation on a non-convex domain with f0 = 1. The

domain is the standard L-shaped domain with a reentrant corner. The Dirichlet

boundary conditions were chosen to produce the solution

22
u(r,#) = rsin -'3,

where r is the distance from the corner point and # is the angle from the upper

surface of the corner.

0.9-

0.85 -

0.8-

0

0.75 -

0.7-

0
I I I I I

0.1 0.2 0.3 0.4 0.5
Mesh Diameter, h

Figure 3.6.4: Unforced corner domain convergence history.

In this example we demonstrate that the bounds are valid even for problems

with singularities. The results for both the finite element approximation and the

FE Approximation, sh
Lower Bound, s-
Upper Bound, sh
Bound Average, sh
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output bounds asymptotically approach the optimal finite element convergence

rate of 0(h) for elliptic problems posed on a domain with right-angled reentrant

corner [SF73]. Once again we see that the bound average has the potential to be

a better output approximation than the finite element method.

Finally, Figure 3.6.5 displays the end results of the simple adaptive strategy

previously outlined applied to the unforced corner domain problem.
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u: -0.35 -0.05 0.25 0.55

(a) Adaptive solution field.

W: -3.5x10-2 -2.Ox1O-2 -5.Oxl03

(b) Adaptive adjoint field.

Gap: 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

(c) Elemental bound gap contri-
butions on intermediate mesh.

(d) Final adaptive mesh.

Figure 3.6.5: Unforced corner domain adaptive solutions, local indicators and
meshes.
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Chapter 4

Output Bounds for the

Advection-Diffusion-Reaction

Equation

We will consider the steady scalar diffusion-dominated advection-diffusion-reaction

equation posed on a polygonal domain Q in d spatial dimensions with boundary F

composed of complementary regions ID and FN. The problem is written in weak

form as: find u c U such that

a(u, v) = E(v), Vv E V,

with the coercive non-symmetric bilinear form defined as

a(w, v) = vVw -VV + pwv + (a -Vw) v dQ,

(4.0.1)

(4.0.2)
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for a strictly positive real coefficient v E Ec' (Q), a nonnegative real coefficient

t E L(Q), and a prescribed vector field a E H(div; Q) which is assumed for sim-

plicity to be incompressible, V-a = 0. The set of admissible functions is defined as

U (Q) = {v E VK(Q) | vlrD = UD }, with Dirichlet boundary data UD E 2(FD)

and the space of test functions is defined as V(Q) { {v E V((Q) I VjrD = 0 }.

Additionally, we require the prescription of the solution field on inflow bound-

aries, that is F- c FD C F for - = (x E F | a - n(x) < 0}. The linear forcing

functional

e(v) = fdQ + gv dF, (4.0.3)

includes both interior f E - 1 (Q) and Neumann boundary g E R- -(FN) contri-

butions.

We are not directly interested in the field solution u, however, but in bounded

linear functional outputs from it, s = e 0 (u). In particular, we will develop upper

and lower bounds on the outputs produced by linear functionals such as

E = -- f 0 w dQ + j g w dF, (4.0.4)

for f 0 E 7-'(Q 0 ) and go E - (F9).

In order to guarantee bounds for any level of refinement, the method presented

in this chapter requires that the coefficients v, y, and a, and forcing data f, f0 ,

g and go are all piecewise polynomial. In addition, we will consider only constant

coefficients v and t for simplicity.
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4.1 Constrained Minimization Reformulation

In the context of the Poisson problem, we reformulated the model problem as a

constrained minimization with weakly enforced continuity in order to localize the

bounds computations and to obtain bounds on more informative output quantities

than the abstract energy. In the present context of a non-symmetric operator, the

reformulation also provides the means by which we can treat problems without

an intrinsic minimization principle.

4.1.1 Weak Continuity

As before, we begin by introducing a triangulation of the domain, 7h, into non-

overlapping open subdomains, T, called elements, for which UT h T = (. We

denote by DT the edges constituting the boundary of a single element T, and by

9Th the network of all edges in the mesh. On this triangulation, we introduce the

broken space

9=E {v E L2 IvITE '(T), VTE h}. (4.1.1)

in which the continuity of 9 is broken across the mesh edges, 89Th. Note that

the broken space relaxes the Dirichlet boundaries in addition to the interelement

continuity so that we have V C 9 and U C 9.

We enforce continuity between the elemental subdomains weakly through the

bilinear form b : V x A -+ R

b(zb, A) = O o-rA dl',
T T

73



CHAPTER 4. OUTPUT BOUNDS FOR THE ADR EQUATION

where, for TN E Th and an arbitrary ordering of the elements, T < TN,

-T(X) { xETTN,T< TN (4.1.2)

+1 otherwise

is a constant on each edge, and the edge functions A are members of the dual trace

space A =H17T,'H-2 (BT).

In addition to weak enforcement of interelement continuity, the Dirichlet data

will also be enforced weakly in our reformulation through the forcing provided by

the linear functional D : A --+ R

ED(A)= J 0-TUDA dl?, (4.1.3)

so that b(b, A) = ED(A) for all 'i E U and A C A.

4.1.2 Operator Decomposition

A non-symmetric operator can be split into symmetric, as(w, v) = as(v, w), and

antisymmetric, ass(w, v) = -ass(v, w), contributions

1 1
as(w, v) = [a(w, v) + a*(v, w)] , ass(w, v) =- [a(w, v) - a*(v, w)] , (4.1.4)

2 2

where a*(v, w) is the formal adjoint of a(w, v) for w E U and v E V. Integration

by parts yields a(u, w) = a*(w, u) + C*, from which we note that ass(w, w) = 1C*

and thus a(w, w) = as(w, w) + 1C*. Additionally, we note from the above that

a(v, w) = as(v, w) + ass(v, w) = as(w, v) - ass(w, v). It is easily shown for the

T4
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advection-diffusion-reaction equation that

a*(v,w) = I

C* = fD

vVv -Vw + tvw - (a -Vv)w dQ +
IFN

v (a - n) wdF,
(4.1.5)

(a -n)U2 dF,

and therefore

vVw -Vv + pwvdQ +

Vw) v dQ - -1
2 rN

- w (a -n
2 frN

w (a -n) o dH.

4.1.3 Constrained Minimization Statement

Using the above definitions we can write the following energy-like functional E

S--+ R

=a'(b, iv) + I C* - f(b) + f(ii) - a(z, ii),2
(4.1.7)

where ii is a member of U. This functional has two essential properties. First, it is

coercive on the space 9 for y > 0 and for p = 0 is coercive on the quotient space

9 \ NO, where NPO is the space of constants over each element. Second, it reduces

to zero when & = u.

The weakly continuous constrained minimization problem for the non-symmetric

model problem can now be written as

:s = inf

s.t. a(*, ) = f W)

b(i, A) = ED(A),

(4.1.8)V' E V,

VA E A,

: to (Z+) + "E( )

a(w,v) =

ass(w, v) = j (a

)v dF,
(4.1.6)
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where rK is a strictly positive real scaling parameter which provides dimensional

consistency as well as an additionally degree of freedom which we will later use

to tighten the bounds. This apparently trivial constrained minimization reformu-

lation, first introduced in [PP98, PPP97] and whose constraints also arise in the

context hybrid finite element methods [BF91], serves as the launching point for

developing our method.

4.1.4 Localization by Lagrangian Relaxation

The above constrained minimization (4.1.8) has the Lagrangian: L* : x V x A -

R

+ as wi ) + C* -f (zb) + f(u) - (G±, f) (4.1.9)

+ f(V$') -a(Th., ip) + fD(A)- b(7b' A:)

for given candidate Lagrange multipliers /* C V and A* E A. The Lagrangian

saddle point property for the constrained minimization reformulation engenders

the following relationships for all ( 1*, A*) E V x A

inf L'(tb±; 4 <, ) < sup inf. L*(ib*; 0±, A') = -s, (4.1.10)

A+ EA

which we will exploit for developing inexpensive local subproblems for computing

bounds. Equality on the right of (4.1.10) results from the strong duality of convex

minimizations, but the bound property would still hold with weak duality.
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4.1.4.1 Lagrange Multiplier Approximation

We compute approximate Lagrange multipliers using the finite element method

by first choosing ,I =4th, ~* = ± A", and i = Uh, where Uh and 4h are

members of the usual piecewise polynomial finite element approximation set

Uh-= {w E I Tf|r E PP(T), VT E Th },

and space

Vh { v E V I VIT E PP(T), VT E T },

and both Au and A0 are members of the piecewise polynomial space

Ah = { A E A | Al, E PP(7), V7y E OT}

. We have used the notation PP(T) for the space of polynomials on element T (in

d spatial dimensions) with degree less than or equal to p, and PP(-) for the space

of polynomials on edges 7 (in d - 1 spatial dimensions) with degree less than or

equal to p.

By approximating u, the optimizer of the constrained minimization (4.1.8),

with Uh and noting from (4.1.4) that a(v, Uh) = as(Uh, v) - ass(uh, v), we can write

an approximate gradient condition

- {-f(0) + a(i, Uh) + b(b, A')}
2 {
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with 9h - { E E 2 | VIT c PP(T), VT E T }. We can compute approximate La-

grange multipliers from (4.1.11) by solving the discrete problems:

Find Uh E Uh such that

a(uh, v) = e(v), VV E Vh, (4.1.12)

Find $h E Vh such that

a(v, #h) = -i(v), VV E Vh, (4.1.13)

Find Au E Ah such that

b(i, Au) = E(i) - a(Uh, W), Vi E h, (4.1.14)

Find A0 E Ah such that

b(i, AO) = -E'() - a(i, $h), V'b E Vh. (4.1.15)

The first two problems are standard finite element approximation problems and

the second two problems are equilibration problems which can be solved with an

asymptotic complexity that is linear in the number of vertices in the triangulation

using Ladeveze's procedure [LL83].

Lemma 4.1.1. If the Lagrange multipliers Au and A) satisfy the equilibration

78



4.2. ELEMENTAL SUBPROBLEMS

conditions (4.1.14) and (4.1.15), then the minimizations

inf L*(z; -, ± \u t A)) (4.1.16)

are bounded from below.

Proof. A strictly positive reaction term in as(tb*, &:+) ensures that the lower

bounding minimization (4.1.10) is bounded below without the aid of equilibra-

tion. For p = 0, the constant function is not controlled by as(zb*, 1i+) and with-

out equilibration it would become possible for the subproblems, which only have

Neumann boundary conditions, to be driven to arbitrarily large negative values of

the Lagrangian functional. Equilibration ensures the nullification of the constant

function, as can be checked by setting ' = const in (4.1.14) and (4.1.15). El

4.2 Elemental Subproblems

The continuity relaxation of §4.1.4 decomposes the triangulation so that after

computing the approximate Lagrange multipliers we may consider each element

independently when computing the bounds. We perform the global lower bounding

minimization (4.1.10) by minimizing the local contribution of the Lagrangian on

each elemental subdomain and accumulating the results to produce upper and

lower bounds on the exact output

s- < s < s+ (4.2.1)
T ETh TETh

We can write the local contribution of the Lagrangian on an arbitrary element
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T of the triangulation T as

s= inf -as(w+, *) + l(w+) + C, (4.2.2)w±E7-H2(T) 2 ( ±(± T

where we have collected the constant and linear contributions to the local La-

grangian with the definitions

if (v) = { - E(V) - aT(v, Uh) ± bT(v, A) (4.2.3)

-±E (v) - aT(v,, V) -- bT(v,

{rT(h) - fD(Au) + C}

± {T(?I)

Ah,

(4.2.4)

+ D

The subscript T denotes restrictions to a single element of the triangulation. For

example, we have

aT(w, v) = T

T(V) = fvdQ+j
JT JfrN

vVw - Vv + pwv + (a -Vw)v dQ,

gvdf,

in which rI denotes the local Neumann edges, BT n pN as well as

bT(w, A') = UTwA d1F,

S(A) = TUDA dF
Jr Dg

in which IF' denotes the local Dirichlet edges, B9T n IPD
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Recall from §4.1.2 that for the advection-diffusion-reaction equation we have

asr(w, w) = vIVw|2+ w2 d + - (a .n) w 2 dF, (4.2.5)
T JT2 rN

which is coercive on V(T) for y > 0 (and on V(T) \ PO(T) for p = 0) for all T in

Th because c -n is perforce positive on FT.

4.2.1 Dualization of Local Minimization

The localized unconstrained minimization (4.2.2) remains uncomputable in gen-

eral, since the minimization must be performed over an infinite-dimensional space

in order to guarantee the bounding property. Nevertheless, by once again apply-

ing the powerful ideas of Lagrangian saddle point theory, we can compute a lower

bound to this lower bound and thus procure guaranteed computable bounds on

the exact output of interest.

Proposition 4.2.1. The optimal value of the local unconstrained minimization

problem (4.2.2) can be found by solving the local constrained maximization problem

-s= sup - a u * * * ,*)) + C±

,1(,C2 (T) (4.2.6)q±E(l22(T))

s.t. rc "((q+,r±),v) = -E(v), Vv E 7-(T),

where the form a" d: (L2(T))d x W'(T) x (L2(T))d x 7-(T) -+ R is defined as

a u((q, r), (p, v)) = vq -p + prv dQ + - j(a - n)rv dE. (4.2.7)
T ~ 2 rN
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and the form cT": (L2(T))d x H7(T) x H1(T) - R is defined as

cu((q, r), v) = vq - Vv + prv d + (a - n)rvd. (4

Proof. We begin formulating the dual problem by introducing the auxiliary vari-

able i- E (L2(T))d which satisfies the constraint

IT v(Vwl - Tri) -p d = 0, Vp E (L 2(T))d (4.2.9)

and the auxiliary variable p* E C2 (T) which satisfies the constraint

Vv E L2(T). (4.2.10)

Defining B to be the set of all triples (wi,7ripi) in 'H0(T) x (1 2(T)) x2

which satisfy the constraints (4.2.9) and (4.2.10), we can write the local uncon-

strained minimization (4.2.2) as an equivalent constrained minimization

inf
(w±,r±,p*)E

'- { j v(irI)2 + p(pI)2 dQ +
2 Jr

This equivalent constrained minimization can be formulated as the Lagrangian

saddle point problem

sup inf
k W 2'(T)

qrE(,C2 (T) )

P ±EZ 2 (T)

J± (w', 7r±, p±; q±, r±) + CT,

IT
p (w+- p)v dQ + -J

2 frN
(a - n)(wi - P*)v dF = 0,

-s± =
2 I(a

frT

(4.2.11)

-FsT (4.2.12)
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where the Lagrangian functional is defined as

J(w, 7r, p; q, r) = rfv( I7r+ - q)7r± + ( p )p± dQ

+ K j(a - n)( pi - r)p± dF

+ { j vVw- q' + puw r+ dQ (4.2.13)

+ - (a - n)wlr*dF
2 rN

+ f(w).

Equality on the left of (4.2.12) results from the quadratic Lagrangian functional,

but the bound method can also be derived when only weak duality holds.

A necessary condition for optimality of the inner minimization of (4.2.12) with

respect to the principle primal variable w+ is

r, vVv - q±'* + pvr±'* dQ + (a - n)vrC* dF =-T(v), Vv E 'H'(T),

(4.2.14)

where the superscript * indicates optimality of the variable. Necessary conditions

for optimality with respect to the two auxiliary primal variables -r* and p* are

J v(7ri'* - q±'*)p dQ = 0, Vp C (L2(T))d, (4.2.15a)

p(p'* - r+'*)v dQ + r (a -n)(p+,* - r±'*)v dF = 0, Vv E E 2 (T).
Jo 2 JrN

(4.2.15b)

After substituting the auxiliary variable optimality conditions (4.2.15) into the
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Lagrangian (4.2.13) and retaining the principle primal variable condition (4.2.14)

as a constraint in the outer maximization of the saddle problem (4.2.12), we arrive

at the local dual constrained maximization (4.2.6) formulation of the original

unconstrained local minimization (4.2.2). El

Significantly, we may inexpensively compute a quantitative lower bound on

T-s, and thereby upper and lower bounds on the exact output s, by performing

the local dual constrained maximization (4.2.6) over a finite-dimensional set so

long as the set is rich enough to allow the dual constraint to be satisfied exactly.

Indeed, while maximization will improve the sharpness of the bounds, we only

require dual feasibility to obtain bounds.

4.2.2 Dual Subproblems

The local dual maximization problem (4.2.6) has the optimality conditions: find

(qi, ) E (L2(T))d x 70(T) x 71(T) such that

-saiu ((q*,r), (p, v)) - ,cp"((pv), 7I) =0, V(p,v) E (L42(T) x 'H'(T

(4.2.16a)

- KcT"((q', r'), v) =tf'(v), Vv E H'(T), (4.2.16b)

which, as a result of the linear equality constraint and convex objective functional,

are both necessary and sufficient. For the purpose of computing bounds, the

Lagrange multiplier (* is an artifact of solving the constrained maximization

problem and we will not make direct use of it.

As formulated, the optimality conditions depend explicitly upon the scaling
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parameter K, but the substitutions

-q, -Uh-
K

1 1 1
2 K 2

will transform the above -dependent problems into the following two K-independent

problems: find (qu, ru,(u) E (L2(T))d x 7H((T) x 7H1(T) such that

aT ((q", ru), (p, v)) + cT"((p, v), ) =0,

cTj"((qu, ru), v) =N'(v),

V(p,v) E (C 22(T))d x -1(T),

(4.2.17a)

Vv E H'(T) (4.2.17b)

and find (qv),,ro , ) E (L2(T))d x X11 (T) x 71(T) such that

dua ( , v), () =0,aT ((q r'), (p, V)) + 4U ((p , 0 V(p,v) E (12 (T)) d

v), Vv E 'H(T),&

x -H'(T),

(4.2.18a)

(4.2.18b)

where we have defined the the localized residual forms

(4.2.19)

(4.2.20)

Equilibration ensures that all dual feasible functions (qu, ru) and (q), r )) are

orthogonal to the local finite element basis.

Lemma 4.2.2. Any pair (qu,ru) in (L 2 (T))d x H1(T) that satisfies the con-
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straint (4.2.17b) has the orthogonality property

adu((qu, ru), (Vv, v)) = cu((qu, ru), v) = 0, Vv E Vh(T),

and any pair (q, r") in (L2(T ))d x H'(T) that satisfies the constraint (4.2.18b)

has the orthogonality property

aT"((q*,r*), (Vv,v)) = c"((q', r'), v) = 0, Vv E Vh(T).

Proof. This is a direct consequence of equilibration provided by (4.1.14) and (4.1.15),

and the definitions (4.2.19) and (4.2.20). E

With the above orthogonality property we can calculate the objective from

dual feasible functions (qu, ru) and (q*10, rO) using

- s = - {a "((q", ru), (qu, ru)) - CI

2 rI a {((q i, r ) , (q , r )))

t la "u((q" , r") , (qo , r11))

with the definitions

1
C" =T (Uh) - asT(Uh, Uh) C(A) ± ,

C = ) ( )

CT)=eT(Vh) + f A)

(4.2.21)

(4.2.22)

+ CT} (4.2.23)

(4.2.24)

(4.2.25)
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4.2.3 Subproblem Computation

Recall from §4.2.1 that, by virtue of the dualization of the local minimization

problem, we can choose a finite-dimensional set within which to search for the

dual functions (qU, ru) and (q, rp), so long as the set is rich enough to admit at

least one pair (qU, ru) satisfying (4.2.17b) and at least one pair (qo, r*) satisfy-

ing (4.2.18b).

Lemma 4.2.3. If the interior data f IT, (a -Vuh)IT, f 0 IT, and (a V'Oh)IT are

all members of P"'(T), the boundary data g|,, g0 ,, and ((a - n)h)I-, are all

members of P"(y) for all -y E &T, and the continuity multipliers Au and A0 are

equilibrated according to (4.1.14) and (4.1.15), then there exists at least one pair

(q ,ru) e (pq(T ))d x IPq(T) satisfying (4.2.17b) and at least one pair (qV,rv) E

(p(T ))d x IPq(T) satisfying (4.2.18b) for q > p and q > m.

Proof. Let qu = q"D + q, with qu -n = -orTA- v(Vuh n) on BT \ F', q"Dn=

-o-TAu on F , qu -n = 0 on 0T, and let ru = 0 on F>. With this lifting and a

Green's formula we can write the constraint (4.2.17b) as

j(-vV -qu + pr")v dQ = j(f + vAuh - puh + a Vuh +vV ' qD)v dQ,

for all v in Pq(T). The requirements of the lemma ensure that the data on the

right is in the range of the operator on the left for the case y > 0 and ru, and

therefore at least one solution exists. Existence for the case p = 0 is guaranteed

by equilibration, as we previously addressed in [SBBHP03]. Analogous reasoning

applies for the pair (q", ri) with the exception that a Green's formula must also

be applied to the advection term, which results in the additional requirement of
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(a -n)@h)|, being in P"'(). D

Note that the requirement q > p suffices in the above lemma when a -n = 0

on ]p or F]= 0, as well as when yt = 0 and both ru and ro have been set to zero.

Further note that the Dirichlet data does not need to be piecewise polynomial

in order to guarantee bounds since it does not appear as data for the local dual

problem.

The above proof suggests one way to solve the subproblem, but other ap-

proaches are possible. For instance, we could set ru and ro to zero from the out-

set in order to produce a method which treats Poisson's equation, the advection-

diffusion equation and the advection-diffusion-reaction equation uniformly. Ex-

istence would be ensured by equilibration, but doing so reduces the number of

available degrees of freedom in the maximization and thus would most likely re-

duce the sharpness of the resulting bounds.

A particularly favorable circumstance for solving the subproblem arises for

both Poisson's equation and the advection-diffusion equation (p = 0) when the

problem data consists only of constants (m = 0) and linear finite elements (p = 1)

are employed with q = 1, and both ru = 0 and ro = 0. Under these circumstances,

the dual functions qu and qV can be explicitly constructed from the subproblem

boundary data.

More generally, we can formulate the pair of computable subproblems as: find

(qg, rU,(g) E Qu(T) x Pq(T) x P] (T) such that

au((qurg), (p,v)) + ci"((p,v), ) =0, V(p, v) E (pq (T))d x Pq(T), (4.2.26a)

u"((qu , rg) )=/() VV E Pq (T), (4.2.26b)
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and find (q1, rf,() E Q")pq (x x Pq(T) such that

adu((q , r ), (p, v)) + cdu((p, v), () =0, V(p, v) E (pq(T))d x P4(T), (4.2.27a)

cw ((qhr) w) = )(T), (4.2.27b)

where we have defined the sets

q E (Pc(T)

q E (Pq(T)

q-n= {

qn= {

O-TAh on BT \ IF'

-oUTA + g on FN

-OUTAh

-UTAh

-o h t

on DT \ FN

-g on T
I.

(4.2.28)

(4.2.29)

4.3 Output Bound Procedure

The elemental subproblems explicated in the previous section can be computed

independently and in parallel, accumulating the local contributions (4.2.23) to the

output bounds in the process. If we define the aggregated values

zu = au(qr), (qu, r')), z = 1 du"((qo, r"), (qb , rlb)) ,

T CzTh TETh

Zh = Z ah((q, r'), (q', ra)),
TETh

(4.3.1)

then we can write the total output bound expression as

s = -Zh - C Z rU± + z , (4.3.2)
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in which the constant Cu defined in (4.2.24) is eliminated by the fact that f(U) --

as(uh, Uh)- f(Au) + DC* = 0 which results from equilibration.

We introduced the scaling parameter K at the outset to allow us to optimize

the sharpness of the computed bounds as well as provide dimensional consistency.

Maximizing the lower bound and minimizing the upper bound with respect to K

yields the optimal value r2 = z4*/zu with which we can write the upper and lower

bounds succinctly as

Sh = s 2 Zhh, (4.3.3)

where we have defined the bound average 8 h = -zh - CO.

The complete method for computing output bounds can now be written as a

four steps procedure.

Step 1: Finite Element Approximation Find Uh E Uh such that

a(Uh, v) - £(v), VV E Vh, (4.3.4)

Find Oh E Vh such that

a(v, Oh) =- 0 (v), VV E Vh, (4.3.5)

Step 2: Finite Element Equilibration Find Au E Ah such that

b(i, Au) = E(i) - a(Uh, W), VE E h, ((4.3.6)
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Find A0 E Ah such that

b(, A" ) =o -2(i) - a (b0h),

Step 3: Elemental Subproblems Find (q', r', () e Q'(T) x Pq(T) x Pq(T)

such that

adu ((q , ru), (p, v)) + c4"((p, v), (,) =0, V(p, v) E (P( x P(T),

CT ((q ,r),v) =R+(v), Vv E P4(T).

Find (qo, r,(f) C Q$'(T) x Pq(T) x P4(T) such that

adu((q , r), (p, v)) + cu((p, v),) =0, V(p, v) E (p(T))d X P

C "((q', r ), v) =N (v), Vv EE P(T).

Calculate ZT, zT, and zV

zuu ((q u),(uju) adu ((qkr"), q ")

zy, = T hi h h h Z T h 2 Tqhh

ZT,h adu U

= z
TCTh

zh - T , h
TETh

,§= - I:
T Th

ZT,h - C-

Sh = sh 2 Z

The upper and lower bounding property of st and s- follows directly from
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V' E Vh - (4-3.7)

(4.3.8)

(4.3.9)

(4.3.10)

Step 4: Bounds

(4.3.11)

(4.3.12)
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the Lagrangian saddle point property of the constrained minimization reformu-

lation of the model problem. Either a strictly positive reaction coefficient, y, or

equilibration ensure that the independent local subproblems resulting from the

Lagrangian relaxation can provide non-trivial bounds. Forming the dual of the

unconstrained local minimization enables the computation of a lower bound on

the infinite-dimensional minimization problem with a finite-dimensional feasibility

problem. That the resulting dual subproblems are indeed computable is a conse-

quence of the subproblem constraint data being being polynomial and choosing a

polynomial subset for the local dual problem. The resulting bounds converge to

the exact linear functional output at twice the rate of the 7 1 -norm measure of

the error in the finite element solution, as proven in Chapter 2 and verified by the

numerical examples.

To a large extent the subproblems are independent of the finite element approx-

imation. We need only check that the localized data uhIT, /hIT, Au BT and A0lT

passed to the subproblem equilibrates the element according to (4.3.6) and (4.3.7).

As alluded to in the introduction, this precondition is entirely local and can easily

be checked. Moreover, it has very practical implications for building correct sim-

ulation software as it acts as a verifiable contract between the relatively simple

bounds subproblem and the much more complicated global approximation.

4.4 Numerical Examples

In this last section, we demonstrate the method with two numerical examples. In

both examples we employ a very simple adaptive strategy of Chapter 3 that uses

the local information produced during the calculation of the bounds to drive the
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output to a prescribed precision. At each level of refinement, only elements for

which AT = ±,h + z14, > Atoi/K are refined, where Atoi is a user specified

tolerance for the bound gap and K is the number of elements in the triangulation

at that level.

4.4.1 Quasi-2D Transport

In our first example we consider the unit square (x, y) E [0, 1]2 with the parameters

v = 1, a = (a, 0), the Dirichlet boundary conditions u(O, y) = 1 on the left side

and u(1, y) = 0 on the right side, and homogeneous Neumann boundary conditions

on the top and bottom sides. These conditions result in the well known one-

dimensional solution

e.e(a-~3)x - e!iCa+O)x

u(x, y) = _ , (4.4.1)
o-1

where # = 4 + a2.

For the output, we examine the average normal gradient on the right side

of the square, f0 Vu(1, y) - n dl, which we write with the interior test function,

x = X, as

fi (v) = vVV -VX + vX + (a -Vv) xdQ (4.4.2)

using the technique discussed in [PPP97].

Since we know the exact output for this example, we can calculate the effec-

tiveness of the bounds as an indicator of the error in the finite element solution

using

s+ - SSh h (4..3

7 21Sh - sj(143
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Our primary goal, however, is not estimating the error in the finite element so-

lution but providing an upper and lower bound on the exact output. The finite

element solution is mostly just a means to this end.

Table 4.1 and Figure 4.4.1 summarizes the results of uniformly refining an

initial mesh of 16 elements with method parameters p = 1 and q = 1. Both the

output and the bound gap asymptotically converge at the optimal rate of 2. The

last level of uniform refinement contains 16284 elements and produces a bound

gap of 0.000747, while the simple adaptive method described above can be used

to produce a bound gap of 0.000646 with a mesh containing only 4114 elements.

K (sh- s)/s (s-s-)/s (s - s)/s (s+ -s)/s

16 0.029963 0.296452 0.160602 0.457054 7.63
256 0.001178 0.023548 0.021966 0.045514 19.32
1024 0.000295 0.006097 0.005713 0.011810 20.01

16384 0.000018 0.000385 0.000362 0.000747 20.25

Table 4.1: Quasi-2D uniform refinement results with q = 1, a = 10 and yu = 10.

In the presentation of the method we left the door open for the parameter q

to be chosen larger than required for guaranteeing bounds in order to take advan-

tage of the possibility that doing so would improve the sharpness of the resulting

bounds. On the one hand one might expect a few extra degrees of freedom to go

to some utility, while on the other hand one will expect that eventually the low

dimensional finite element data driving the subproblem would cause the problem

to saturate. The evidence of Table 4.2 comparing the effect of using q = 2 and

q = 3 reveals that there is no tangible benefit in solving higher order subproblems

than required.

Table 4.3 summarizes the influence of the Peclet number, ca, on the effectivity
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0
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1.02-
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0.96-

0.94-

0.92 -

I I I | | |
0 0.05 0.1 0.15 0.2 0.25

Mesh Diameter, h

Figure 4.4.1: Quasi-2D uniform refinement results with q = 1, a = 10 and yi = 10.

q=2 q=3
K (s - s-)/s (s+ - s)/s r (s-sK)/s (s-s)/s r

16 0.2701 0.1496 7.00 0.2637 0.1471 6.85
256 0.0223 0.0217 18.66 0.0223 0.0216 18.64
1024 0.0058 0.0056 19.39 0.0058 0.0056 19.38

16384 0.0004 0.0004 19.63 0.0004 0.0004 19.63

Table 4.2: Quasi-2D uniform refinement results with q
I = 10.

= 2 or 3, a = 10 and

of the bounds in the context of the simple adaptive method with a tolerance of

Atoi = 0.001s. Although the method is valid for nonnegative a, the sharpness of

the bound degrades significantly with increasing Peclet number, but the bounding

property is retained.

We strive to produce guaranteed, if conservative, bounds on quantities typi-

o FE Approximation, sh

p Lower Bound, s-

A Upper Bound, sh

E Bound Average, Sh
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a K (sh - s)/s (s -- )/S s)/s (sh - Sh)/S I

0 384 -0.000045 0.000342 0.000068 0.000410 4.52
1 256 -0.000051 0.000535 0.000186 0.000721 7.12
5 2883 -0.000056 0.000412 0.000404 0.000816 7.23

10 6108 -0.000005 0.000458 0.000456 0.000913 98.21

Table 4.3: Quasi-2D transport adaptive refinement results with p = 1 and various
values of a.

cally queried from simulations and not estimates of the error. Consequentially, we

trade better estimates of the error for the confidence provided by one-sidedness.

Nevertheless, various enhancements to the basic method presented here, such as

the incorporation of gradient recovery heuristics, could be considered in order to

improve the effectiveness of the error estimate.

4.4.2 Rotating Transport

Our second example provides a qualitative demonstration of the method on a

more complicated example problem. We consider the unit square (x, y) E [0, 1]2

with the equation parameters v = 1, a = 500(y - 1, 1 - x), t = 10, and all

homogeneous Dirichlet boundary conditions. The problem is forced in the square

region [0.7, 0.8]2 with f = 1000 and the output is the average, f = 1, over

the square region Q0 = [0.2, 0.3]2 as indicated in Figure 4.4.3. The initial mesh

contains 100 elements and the method parameters are p = 1 and q = 2.

We examine the result of adaptively solving the output problem with At01 =

0.0005. Figure 4.4.5 displays a and b for the final solution, which has a guar-

anteed precision of 0.000488 and contains 2917 elements. The figure also shows

the distribution of elemental bound gap contributions, AT, for the initial solution,
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and it shows the final mesh obtained at the end of the adaptive process.
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u: 0.075 0.3 0.525 0.75

(a) Adaptive solution field.

xV: -0.045 -0.033 -0.021 -0.009

(b) Adaptive adjoint field.

Gap: 0.002 0.0065 0.011 0.0155 0.02

(c) Elemental bound gap contri-
butions on intermediate mesh.

(d) Final adaptive mesh.

Figure 4.4.2: Quasi-2D transport adaptive solutions, local indicators and meshes.
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0.2 0.3 0.7 0.8

Figure 4.4.3: Rotational transport forcing and output regions.
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Figure 4.4.4: Rotating transport uniform refinement results.
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u: 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a) Adaptive solution field. (b) Adaptive adjoint field.

4.0x10-0 3 2.2x10-02 4.0x10-02

(c) Elemental bound gap contribu-
tions on initial mesh.

(d) Final adaptive mesh.

Figure 4.4.5: Rotating transport adaptive solutions, local indicators and meshes.
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Chapter 5

Conclusion

Numerous barriers exist to safely and effectively exploiting partial differential

equation based computational models in the decision making process. The bar-

riers range from the expense required to develop the software and compute each

individual result to uncertainty over the reliability of the computed results. Un-

certainty about the reliability of the results undermines their utility by causing

them to not be trusted in the decision making process. Assessing the reliability of

computational results poses a key challenge to their safe and effective exploitation.

5.1 Contribution

This thesis contributes a cost-effective method for rigorously assessing the reliabil-

ity of results from partial differential equation based computational models. The

proposed method computes upper and lower bounds on linear functional outputs

from exact weak solutions to linear coercive partial differential equations. There

are five practical consequences of this statement.
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First, the method assesses the reliability of a simulation with respect to the

quantity of interest. Typically queried quantities of interest, such as average re-

gional concentrations, forces acting on bodies, and mass flow rates, can be repre-

sented as linear functionals of the field solution. Although attention has started

to turn to estimating errors in outputs, the vast majority of proposed estima-

tors measure the numerical error in an abstract norm, such as the energy norm.

While abstract measures can readily be integrated into the simulation process as

adaptive indicators, they are usually uninformative for the practitioner. Assess-

ing the reliability of a simulation with respect to the quantity of interest makes

the assessment immediately and unambiguously accessible to the human decision

makers.

Second, the method assesses the reliability of a simulation by producing upper

and lower bounds on the quantity of interest. Error estimates which do not have

the guarantee of one-sidedness forfeit the ability to quantitatively assess the error

because there remains uncertainty about the accuracy of the estimate. Upper and

lower bounds inform the practitioner of the range of possible values for the exact

answer. The important and practical corollary being that the method guarantees

the exact answer to not have a value outside this interval.

Third, the method bounds linear functionals of exact weak solutions to the

continuum mathematical model. Other proposed methods either evoke an ap-

proximate computation where an exact one would be required to guarantee the

error bound, or resort to solving an expensive global problem. Whether a method

solves a high order local problem as a surrogate for an infinite-dimension one or

appeals to quadrature in lieu of exact integration, the reference solution is tac-

102



5.1. CONTRIBUTION

itly exchanged for the solution of a modified equation. The method proposed in

this thesis transforms an infinite-dimensional minimization problem into a finite-

dimensional feasibility problem without breaking guaranteed bounds property.

By maintaining the original mathematical model as the reference, the proposed

method removes ambiguity over how well the modified equation represents the

original.

Fourth, the method can be applied to mathematical models with non-symmetric

operators, and thus no intrinsic minimization principle. Intrinsic minimization

principles are powerful allies in constructing error bounds measured by the energy

norm, but many interesting mathematical models contain advective contributions

which preclude such natural minimization principles.

Fifth, the method guarantees the validity of the bounds for all simulation

fidelities. Nearly all error estimation techniques only provide accurate estimates in

the asymptotic limit as the simulation fidelity is increased. By providing uniform

bounds, the proposed method removes ambiguity over whether the simulation

fidelity is high enough for the error assessment to be reliable. Furthermore, since

the validity of the bounds are mesh independent, the method can be applied

to adaptive meshes without concern about the mesh being sufficiently refined

everywhere to be considered asymptotic.

In addition to these five powerful properties, the method proposed by this

thesis has three attributes which make it a cost-effective approach to reliability

assessment. First, in the asymptotic regime the bound gap computed by the

method converges at the optimal rate of twice the H'-norm of the error in the

finite element solution. This rate is optimal in the sense that it is the same
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rate with which the finite element output itself asymptotically converges. Thus,

the reliability assessment experiences the same gains in precision with increasing

fidelity as the simulation result itself.

Second, the method is inexpensive. Another benefit of not solving finite-

dimensional problems as surrogates for infinite-dimensional ones is that the sub-

problems are low dimensional.

Finally, the method naturally generates local refinement indicators for mesh

adaptivity as a byproduct of calculating the bounds with contributions from inde-

pendent local subproblems. Even though the contribution from a single subprob-

lem may contain pollution error from other regions of the domain, the quantitative

character of the bounds ensures that the bound gap will be lowered by successive

adaptive refinement steps.

5.2 Recommendations

The method proposed by this thesis offers a rich context for future research. In

particular, we mention four broad directions of future pursuit. First, future re-

search should investigate extending the method to non-polynomial forcing and

non-polygonal domains. As formulated, the method is limited to polygonal do-

mains and piecewise polynomial interior and boundary forcing data, while many

applications contain non-polynomial forcing and curved boundaries. Extending

to non-polynomial forcing will either require including non-polynomial functions

in the local finite-dimensional dual basis, or deriving an inexpensively computable

bound on the influence of the non-polynomial forcing contribution on the local

minimization problem. Adding non-polynomial functions to the dual basis may
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require the concomitant enrichment of the continuity multipliers. Alternatively,

the "flux-free" partition of unity domain decomposition can be investigated as an

approach to eliminating the continuity multipliers altogether. A flux-free method

has the advantage of not requiring the Lagrange multipliers to be equilibrating.

Extending to curved boundaries requires formulating the method for parametric

elements in a manner which maintains solvability despite of the possibly non-

polynomial character of the subproblem data.

Second, future research should investigate extending the method to different

classes of problems. Constrained problems such as the Stokes equations require

either the introduction of a consistent penalty term on the Lagrange multiplier

for the constraint of the mathematical model (i.e. pressure) into the constrained

minimization reformulation of the output bound method, or modifying the local

subproblem in a manner which allows the Lagrange multipliers of the constrained

minimization reformulation to be locally projected onto a constraint-satisfying

subspace. Extension to non-coercive equations requires the formulation of an ap-

propriate energy-like augmented Lagrangian functional for the constrained min-

imization reformulation in a manner which produces computable subproblems.

Extending to nonlinear problems requires careful attention to ensuring that the

global extremizations used in the derivation and implementation of the method

can be found.

Third, future research should investigate improving the effectiveness of the

method through more sophisticated adaptive strategies and enhanced Lagrange

multipliers. The sharpness of the bounds depend upon the quality of the Lagrange

multipliers. In general, solution error consists of both local and pollution error,
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so that the local bound gap contribution may not be the best indicator of the

relative benefit to refining a particular element. Adaptive refinement strategies

can gain advantage by attempting to predict which elements will be most bene-

ficially refined using additional information available in the Lagrange multipliers.

The Lagrange multipliers can be enhanced as they need not be finite element ap-

proximations per se, but they do need to equilibrate. Significant potential exists

for increasing the computational efficiency of computing certifiable high precision

approximations by constructing equilibrating recovered solutions as is done for

recovery based error estimators.

Finally, future research should investigate integration of the method with re-

duced basis approximations [MMP01]. Reduced basis approximations can greatly

reduce the cost of repeatedly appealing to a mathematical model with different

problem parameters, but such approximations add an additional layer of numeri-

cal uncertainty to computational models. By building equilibrating reduced basis

models for the Lagrange multipliers, the output bound method proposed by this

thesis can be used to compute low order approximations with certified precision.
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Appendix A

Equilibration Procedure

This appendix gives a brief overview of the equilibration procedure we employ in

our numerical examples. We will restrict the presentation to linear finite element

approximations in two dimensions. The presentation draws on that of Ainsworth

and Oden contained in[AOOO, A097], to which we refer the reader for a more

detailed discussion of Ladeveze's method and related methods. Additionally, we

refer the reader to the original presentation of the method in [LL83] and to the

work of Bank and Weiser [BW85].

A.1 Problem Statement

Recall that we have a mesh, T , of non-overlapping open subdomains, T, called

elements. We denote by DT the set of edges, -y, constituting the boundary of a

single element T, and by 9Th the network of all edges in the mesh. We denote

by I4 the set of vertices in the mesh and by I," the set of vertices in a patch of

elements sharing vertex m. Further recall that the goal of equilibration is to find
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a A E Ah, which are polynomial functions defined independently over each edge

of the triangulation, such that

b(i, A') = - a(Uhi), V E Vh. (A.1.1)

Equivalently, this "p-th order equilibration" problem can be posed as: find for

each element, T, a AIT E 1,aT PP(y) such that

So-TvAu dF= fT(v)- aT(uh, v), Vv E PP(T). (A.1.2)

Note that these problems are not independent, as adjacent elements are coupled

by the unknown edge function supported by their common edge. The solvability

of the bounds subproblems requires only zeroth-order equilibration, but optimal

convergence of the bound gap requires the full p-th order equilibration. In general

this problem has many solutions, but any zeroth-order equilibrating solution will

ensure solvability and and p-th order equilibrating solution satisfying the condi-

tions of Lemma 2.3.1 will yield optimal convergence of the bound gap.

A.2 Preliminaries

Ladeveze's method decomposes the continuity multiplier function on an edge, Ag|,,

often referred to as an "equilibrated flux," into a flux average, (Vuh - n) |, and

a correction, oTg. The flux average, taking into account the known Neumann
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data, is defined as

(Vuh n)h T Uh T') ' n T, on OT\ , (A.2.1)

g, on T ,

where T' is the neighboring element sharing edge y with element T. Commensu-

rately, the correction oTg' is set to zero on Ty.

The globally coupled problem we must solve for the first-order equilibrating

correction can be decoupled into local vertex patch subproblems by choosing the

two function basis for the edge correction, g', required for first-order equilibration

so that the "left" correction basis function is orthogonal to the "right" finite element

edge function and visa versa. More precisely, for an edge y with endpoints xm

and xn, where m E 1h and n E Ih, we require that

/Om,n/m,n dF = om,n (A.2.2)

where /m,n is the correction basis function associated with point xm and edge -Y,

and 0m,n is the linear Lagrange finite element edge function that is unity at xm

and zero at xn. The resulting basis functions are found to be

2
#m,n = (20n,m - Om,n), (A.2.3)

where lyH is the length of edge -y. The representation for g' can now be written

in terms of basis functions #m,n and coefficients pm,n as

(A.2.4)g' = pm,n/m,n + pn,m3n,m,

109



APPENDIX A. EQUILIBRATION PROCEDURE

with which we can construct local problems for the equilibrating fluxes.

A.3 Subproblems

A particular subproblem is identified by its center vertex, m C h. In addition

to the center vertex, there are N halo vertices, n E Ih, participating in the local

subproblem. The equilibration algorithm computes the coefficients Pm,n by solving

a local problem involving all of the edges containing the center vertex m as an

endpoint. There are as many edges as there are halo vertices. We introduce a local

index, i = 1 ... N, which orders the halo vertices clockwise with increasing index

number. For boundary patches, the index is chosen to begin with the counter-

clockwise-most halo vertex.

There is a one-to-one correspondence between the local index i and the global

index pairs (n, n) formalized by the mapping i = t(m, n). Each halo vertex

is connected to the center vertex by an edge which contributes one unknown

coefficient to the local problem. We label the local unknown coefficients with

the corresponding local index associated to the halo vertex serving as the outer

endpoint of the edge. That is, the edges are indexed from 1 to N in counter-

clockwise order. Furthermore, each edge has an edge residual associated with it

defined as

Ri = R(m,n) = E(0m,n) - a(Uh, Om,n), (A.3.1)

where we have again used the linear Lagrange finite element edge basis functions

Om,n-

Figure A.3.1 depicts the typical case for an interior subproblem. An interior
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subproblem consists of N linear equations in N unknowns. Although the equa-

tions are linearly dependent with a rank deficiency of one, the equilibrium of the

patches produced by the finite element method ensures that the data is in the

range of the operator. We solve the resulting subproblem using the singular value

decomposition to compute a pseudo-inverse which provides us with a solution that

minimizes the discrete &-norm of the correction coefficients.

7N

T5

T4 TN , -
744

T3 [ Y-1 ] N-1 RN-1
T, 71 1 N RN

T2--

737

Figure A.3.1: Equilibration subproblem interior case.

Figure A.3.2 enumerates the boundary cases. From the planar geometry

of the subproblem, there arises three distinct boundary cases possible for local

boundary vertex patch subproblems. Case selection arises from the Neumann

boundary conditions inherited by the patch. The form of the boundary problems

comes about from our requirement that Neumann edges, for which we know the

exact flux, do not require a correction. In the special case of both boundary

edges being Neumann that Case 2 subsumes, it turns out that the Nth equation

is satisfied automatically as a result of finite element equilibrium.

Finally, the flux averages of (A.2.1) are updated using the edge basis defini-
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tion (A.2.3) as well as the flux correction definition (A.2.4).
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Figure A.3.2: Equilibration subproblem boundary cases.
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