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Abstract

We describe theoretical and practical aspects of the particle trap as an inertial sensor. The
insight motivating this approach is that a trapped particle acts like a mass on a spring, but the
restoring forces are provided by electrostatic fields. Exquisitely machined physical mechanisms
can be replaced by carefully tuned mechanical physics. Such inertial sensors could be simpler to
build yet exhibit superior performance because their operating parameters can be dynamically
controlled.

Most currently available inertial sensors are inherently planar devices that obtain no more than
two degrees of motional sensitivity from a given proof mass. The availability of an accurate, inex-
pensive, integrated six-degree-of-freedom inertial sensor would enable new applications of inertial
sensing that are presently either infeasible or unconsidered.

By adding inertial terms to the Paul trap dynamics we derive classical observables that depend
on the local acceleration field. We also confirm that these observables appear in practice, in what
we believe to be the first electrodynamic particle trap accelerometer. An important (and unusual)
aspect of our accelerometer is its dynamic tunability: its effective spring constant depends on the
trap drive parameters. Our roughly constructed trap also exhibits a large region of linear response
to acceleration, and we present evidence suggesting that our accelerometer has performance com-
parable to commercially available sensors.
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Chapter 1

Introduction

This dissertation explores the use of particle traps as inertial sensors. The insight motivating this

approach is that a trapped particle acts like a mass on a spring, but the restoring forces are provided

by electrodynamics. Exquisitely machined physical mechanisms can be replaced by carefully tuned

mechanical physics. Such inertial sensors could be simpler to build yet exhibit superior performance

because their operating parameters can be dynamically controlled.

1.1 Overview

Without further ado, here is an outline of the present document.

1.1.1 Introduction

This chapter provides an overview of the methods and motives that have driven the present

work.

1.1.2 Inertial user interfaces

Why is this thesis concerned with the problem of inertial measurement? The problem is stated

clearly, by providing context to expose its relevance and impose constraints upon its solution.

An accelerometer can be most simply described as a mass on a spring, at equilibrium with the

local acceleration field, along with some means to read out the equilibrium position and thence

infer the applied acceleration. In fact, this model of an accelerometer will suffice for most of the

exposition to follow.
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For many years the market for inertial measurement was restricted to defense and aerospace

applications; accordingly, devices were optimized for high accuracy and low bias, while volumes

remained low, prices and complexity high. The first accurate, mass-manufactured accelerometers

were MEMS devices that found application as automotive collision detectors. Since then, new

applications and markets have begun to emerge, but at this writing none yet have a volume

comparable to that of the automotive niche. One might reasonably argue that these applications

have not yet emerged because available inertial sensors still do not meet niche requirements in terms

of price per degree of freedom, physical sensor size, sensitivity, bandwidth, and drift, to name the

most critical parameters.

Particle traps are key to many of today's most sensitive and accurate metrological techniques.

They are commonly used as mass balances and spectrometers, but also provide the isolation and

control necessary to manipulate atoms, ions, and electrons singly and stably for arbitrarily long

intervals. The overarching, long-term goal of this work is to dynamically construct micron-scale

electromechanical structures in traps and to stabilize them against inertial effects. As a beneficial

side-effect, we show in this thesis how to use suspended structures as inertial sensors.

1.1.3 Inertial effects in particle traps

To use a particle trap as an inertial sensor it is necessary to determine how the trap dynamics

depend on inertial perturbations. To a surprising degree, trapped particles can be considered to

be elastically constrained to a point by an effective linear restoring force.

As with any approximation, several caveats pertain. The guiding fields of an electrodynamic

trap cannot have arbitrary geometries, as Maxwell's equations disallow free-standing, static electric

potential minima. While it is not possible to create a static potential that acts like a spring, it is

possible to create a time-dependent potential that focuses charged particles to stable equilibria.

The end effect is that particles can be stably constrained to a fixed coordinate based on their

charge and mass as well as the spectrum of guiding fields applied to the trap. Furthermore, the

zones of stability in parameter space are effectively widened when a trap operates in a dissipative

regime.
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A useful approximation is the pseudopotential, an effective potential that arises as the time-

averaged effect of the trap electric potential acting on a charged particle. The pseudopotential

is overwhelmingly quadratic: trap symmetries allow only even-order terms, while electrostatics

tends to smooth out any higher-order features. Using the pseudopotential, we derive the effects of

inertial signals upon the system, showing distinct channels for the proportional readout of applied

acceleration, both in a particle's center of motion as well as its amplitude of motion, and that these

readout are decoupled for each spatial degree of freedom.

1.1.4 Experimental methods

The presence of inertial readout channels is first confirmed through numerical experiments that

simulate the dynamics of a Paul trap in an inertial field. Unfortunately, the ideal hyperboloidal

geometry of the Paul trap poses challenges in fabrication, so through finite element modeling we

greatly simplify the trap's electrode geometry while retaining the necessary field geometry, with

the goal of realizing a planar structure. The planar geometry simplifies not only field modeling

and fabrication, but also mounting and trap loading.

A practical, manufacturable sensor would use a simple, accurate readout technique such as

optical interferometry, optical leverage, or resonant electric field absorption (to name the leading

candidates). However, to allow flexibility in construction and characterization of our sensors, we

use metrological techniques based on video microscopy and particle tracking by image processing.

Since the prototype accelerometers are large structures with many mechanical resonances,

characterization is performed at known applied static accelerations by rotating the trap in the

earth's gravitational field. To demonstrate the tunability of the trap, operating parameters such

as guiding potential scale and frequency are also varied. Since the image of a particle on the

sensor covers several pixels, particle positions may be determined to sub-pixel resolution by simple

interpolation.

Although video microscopy affords a high pixel bandwidth (on the order of MHz), the temporal

resolution of image features is limited to the frame rate (tens of Hz). While this does not greatly

limit long-term drift or bias measurements, we would like to perform measurements of the noise

spectral density over a wider band. Accordingly, a second experiment is devised to provide a

readout of a particle's motional noise from the reflected intensity profile as it intersects the waist

of a focused beam. The measurement is calibrated by the application of small static accelerations.
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1.1.5 Results

From the characterization by video microscopy, we obtain calibration curves for trap sensitivity,

as well as confirmation of readout linearity over a large range. This allows measurement of the effec-

tive spring constant and demonstration of its tunability as a function of trap operating parameters.

From the characterization by scalar intensity readout, we reveal interesting features in the

noise spectrum that correspond to trap tuning and system thermalization and obtain an estimate

of sensitivity.

1.1.6 Discussion

This thesis makes several contributions pertaining to the development of inertial sensors based

on particle traps. It derives the inertial signature present in trap dynamics and demonstrates

these effects by construction of a simplified 2-axis accelerometer with performance comparable to

commodity sensors.

Having demonstrated the feasibility of this approach, we plot a course toward the realization of

a practical sensor. We outline the work to come, focusing on issues of readout, realization of six-

degree-of-freedom measurement, packaging, and economics.



Chapter 2

Inertial user interfaces

As inertial sensors improve in resolution and accuracy, new forms of inertial user interface will

become possible. This paper seeks to first identify the pertinent performance metrics of inertial

sensors likely to be found in tangible user interfaces, then bound their expected performance,

and finally relate performance metrics to the gestural feature spaces they make accessible to the

interface designer. This rough taxonomy is then used to sketch the INERTIAL FRAME, a proposed

application for mediating interpersonal communication. It is the intent of this exercise to glimpse

new modes of user interface that have been heretofore unconsidered.

It is probably safe to say that the measurement of position and orientation is central to the

development of new forms of human-computer interfaces involving the manipulation of physical

objects. Of the many ways to obtain these measurements, inertial sensing - i.e. the detection of

changes in an object's physical reference frame - stands out as the most autonomous. Indeed,

the importance of inertially-informed UI has been noted since the earliest visions of Ubiquitous

Computing [34].

In its most generic form, inertial sensing provides a foundation on which to develop tangible

interfaces ranging from the personal to the architectural by providing certain unique capabilities,

chief of which are a) the ability to function without a supporting infrastructure, b) a wide dynamic

range, and c) broad frequency response.

In the present work, I aim first to provide a semi-rigorous introduction to the pertinent char-

acteristics of inertial sensors and to identify the gestural feature spaces they make accessible

to the interface designer. Then, by assuming sufficiently accurate sensors, I will consider some

of the limits of tangible interfaces thereby enabled. Then I will consider the inverse problem of

converting an inertial signal into motion and show how a free-standing object might obtain the

ability to accelerate itself in an arbitrary direction. Finally, a proposed application that I call the

INERTIAL FRAME shows how the foregoing pieces might fit together into a novel interpersonal

haptic communicator.

The intent of this exercise is to sketch emerging sensing capabilities, to elucidate the parameters

and limits of those capabilities, and to suggest ways in which designers can anticipate technological

trends to develop new modes of inertial UI.
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2.1 Black-box inertial navigation

The performance of an interface is ultimately determined by user testing in the intended application

scenario rather than the specific technologies used in its implementation. If the interface design

requires position information with a given resolution, this specification alone is insufficient to deter-

mine which spatial input scheme is the most applicable. Nonetheless, each position measurement

technology imposes its own set of constraints.

One of these constraints is the need for an infrastructure. Many position measurement tech-

nologies require external references with well-known locations to establish a reference frame. Two

examples of such systems are GPS on the global scale and Polhemus on the local scale. Although

they can both be used to locate objects with millimeter precision, GPS requires said objects to

be located outdoors within view of a constellation of signal source satellites (precluding indoor

operation) while Polhemus requires objects to be located within a few meters of a reference antenna.

Inertial navigation on the other hand requires only that the local space-time continuum sup-

ports Newton's laws of motion as embodied by the equation F =ma, which is to say that objects

only change their motion in response to an applied force. There is good reason to believe that

these laws hold universally, so the necessary infrastructure is already in place.

Inertial navigation has its own drawbacks, however, chief among which is the accumulation of

error. When using an angular rate sensor, one may integrate the angular rate over time to determine

orientation with the result that error accumulates linearly over time. Very accurate, affordable

MEMS gyroscopes are on the horizon, with drift rates of tiny fractions of a degree per hour.

The situation is markedly worse when integrating a time-varying acceleration vector to obtain

position, because as we shall see below, errors in acceleration accumulate quadratically over time.

Of course, a multi-modal position sensing scheme will be better than one that relies solely on either

inertial navigation or radiolocation, but a bound on the required performance of an inertial sensor

can be obtained by considering the task of interest.

2.2 An exemplary pointing device

Suppose that we would like to build a general-purpose pointing device based entirely on inertial

sensing, one that a user could simply pick up and point at objects in space, describe trajectories,

or perhaps sketch or write on a surface. By first specifying its performance as seen by the user, we

can then estimate its requisite inertial sensitivity by a quick calculation.

We can calculate a lower bound on the required inertial sensitivity by picking typical values

based on experience. Suppose that a gestural "phrase" takes up to 10 seconds, requires a spatial

resolution of 1 mm, and includes motional frequencies from 0 to 100 Hz.

From this rough specification we can determine the required noise and drift characteristics of

the accelerometer. Position is obtained from acceleration by integrating twice

x= j ad 2t = -at2 (2.1)
X T T.f
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so the error 6x in integrated position due to an error 6a in measured acceleration is simply

6x= t26a . (2.2)

The acceleration error 6a itself can be determined from the average noise q present in the inertial

signal and the signal's bandwidth

6a= (6f)2 (2.3)

Combining these to obtain a figure for the noise floor q yields

Ja 26 &(2.4)

v'ff t2,tf_

In order to meet the specifications given above, the required sensor noise floor will be

2 (10-3 m) 1 g
(10s)2V00 Hz 9.81ms 2

which corresponds to 77 = 2.038 x 10-7 g/vi. This level of performance lies somewhere between

that of today's commercially available accelerometers and the most sensitive accelerometry tech-

niques currently in practice [6].

The Analog Devices ADXL202 [1] is exemplary of commodity devices. It costs approximately

$15 US (in 2002) and has a maximum noise density of q = 10- g/v/Ifz, and is currently one of the

most popular devices among user interface designers and researchers [14].

2.3 Inertial sensing of human motion

How practical would it be to use inertial measurement to directly sense human beings and their

transit through ambient media? In the next section a few calculations reveal the limiting capabil-

ities of present practice in accelerometry.

Consider the transit of an adult human with a mass m=50 kg past an inertial acceleration

sensor, with a nearest approach of 1 m along a path 10 m long (as shown in Figure 2.1).

S10M

Figure 2.1. Path of human subject relative to a sensitive accelerometer.

I



Inertial user interfaces

Given the gravitational constant G = 6.672 x 10- 1 1 m 3 kg- 1 S-2, we find the acceleration due to

the human (assuming a spherical human) to be

G m
a r (2.6)

which varies from 1.28 x 10-10 m s-2 to 3.33 x 10-9 m s- 2, or from 1.31 x 10-11 g to 3.40 x 10-10

g. The only inertial sensor which presently admits this level of performance is the cold atom

interferometer [6], which can resolve 10- 10 g (over an integration period of approximately 1 second).

Now consider the transit of a human hand with a mass m = 0.20 kg past an inertial acceleration

sensor, with a nearest approach of 1 cm along a path 1 m long, as might be typical in a desktop

user interface. By redoing the foregoing calculation with these parameters, we find the acceleration

due to the hand at closest approach to be 1.36 x 10-8 g, a signal two orders of magnitude greater

than the noise floor of the cold atom interferometer. This figure suggests future interfaces based

upon direct measurement of the acceleration field due to a user's mass distribution. It also sets a

benchmark for the sensitivity required to enable a new class of inertial user interfaces.

Note that accelerometric detection does not distinguish between individuals or objects; the

pertinent characteristics are the objects' masses and motions. Signal amplitude will vary directly

as the object's mass and inversely as the square of the object's distance. However, it may be

possible to infer an object's identity from behavioral modeling or by using signal processing to

detect characteristic motion signals.

2.4 Inertial interface regimes

The useful range of inertial effects in user interfaces extends roughly from the greatest accelerations

that users are likely to generate or experience (102 g) to the smallest effects they are likely to create

directly (1010 g). Figure 2.2 depicts this range with existing or representative inertial sensors as

well as classes of inertial effects in human motion and activity.

Large-magnitude effects are more familiar in the UI literature [32, 14] because of the availability

of commercial devices sensitive in those regimes. The ADXL202 [1] is representative these devices.

The next lower regime is covered by the expected capabilities of interferometric MEMS

accelerometers [7][22] developed at the MIT Media Lab. Applications in this regime involve the

detection of surface acoustic waves [17, 25, 5] generated by user contact with a rigid, anchored

surface.

The lowest regime on the graph indicates the limits set by the most sensitive accelerometers

[6, 18, 2] available today. The corresponding application domain reflects the scale of accelerations

due to human-scale masses.



2.5 GENERALIZED SURFACE INERTIAL CHANNEL

101 Hadamuprbd

10 0

10 1Hand/wnistlIfinger10 2

10-2

t 10 'Jnertal measurement-3ra

1 0 -4

- 10-5

10 -6

10 -7 adcelerometer

108 Inertial effects
Hofhumand/ass

Cold atom inte eM c o10 -10101 I f Inee - I I I I*

10- 3  10-2 10-1 100 101 102 103 104

Frequency (Hz)

Figure 2.2. Inertial UI signals and sensor capabilities.

2.5 Generalized surface inertial channel

PINGPONGPLUS [17] determines the impact point of a ping-pong ball (or a finger tap) on a rigid

surface by correlating the first arrival times of acoustic waves at multiple points on the surface,

using electret microphones as detectors. The Responsive Window [25, 5] uses similar techniques

to recover the location of finger and knuckle taps using piezoelectric film sensors bonded to the

surface to detect surface acoustic waves.

As indicated in Figure 2.2, these signals are at the limit of sensitivity of the ADXL202. A more

appropriate sensor for such signals would be the interferometric MEMS accelerometer [7]. A simple

calculation based on the geometry shown in Figure 2.3 relates the angular resolution # of a two-

point tap measurement to the distance 6x between sensors ai and a2. The path length difference

is 61 = 6x sin p, hence

4=sin-1- (2.7)
6x

I
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Letting c be the acoustic propagation velocity, a distance 61 corresponds to a propagation delay

6t =1 (2.8)
C

Given the system cutoff frequency f =116t, the angular resolution works out to

#=sin_ 1 c
f6x

(2.9)

For example, if the distance between accelerometers is 6x = 15 cm, the acoustic velocity is c = 450

rn/s (typical of safety glass), and the sampling frequency is f = 100 kHz (typical of modern

embedded microcontrollers), then the angular resolution works out to

=sin- 1  (450m -s- 1 ) - 1.720
(100 kHz)(15 cm) -

(2.10)

which corresponds to a lateral position resolution of 2.5 cm at a distance of 1 meter.

a1  6 a2

r

r

Figure 2.3. Path difference 61 of tap signal reaching two sensors al, a2 separated by distance 6x (<p~6/2, r >Jx).

One immediate benefit to using an accelerometer with an appropriate surface mating is

improved linearity in readout of the acoustic excitation. The microphonic pickup of PINGPONG-

PLUS and the PVDF sensor of the Responsive Window are both likely to have a nonlinear response

to surface excitations, which complicates the process of inverting those signals to recover the

epicenter of excitation (i.e. the tapping point.) It is worth noting that acoustic propagation in

a shallow is highly dispersive

Another benefit is portability of the resulting sensor constellation. In PINGPONGPLus and the

Responsive Window, it was necessary to permanently affix sensors to the active surface in order

to reduce noise and spurious signals.



2.8 A HOPPING KINETIC DISPLAY

Finally, the signal generated by the accelerometers permit inertial navigation as well as active

surface sensing.

2.6 Inertial actuation

Inertial actuation is the inverse of inertial sensing, wherein a body in free space is able to arbitrarily

accelerate or orient itself. This type of actuation is perhaps most familiar from vibrating pagers

or mobile phones, which spin an unbalanced rotor to generate a cyclic inertial signal.

Artificial satellites also employ a form of inertial actuation to make fine orbital adjustment. By

increasing or decreasing the rotation rate of internal rotors, a satellite can effect a torque on its

rigid body, exploiting the principle of conservation of angular momentum.

Similarly, one might imagine a user interface that includes inertial actuation. A candidate

actuator might be found in the miniature electrostatic gyroscope [23], in which a suspended spher-

ical rotor provides an inertial reference for sensing rotations and accelerations. It is compelling to

consider a single device that could provide both inertial sensing and actuation in a single package

with a single sensing center.

2.7 A "hopping" actuator

A simple thought experiment suggests a more attainable actuator based on a multiplicity of unbal-

anced rotors and inertial feedback. Figure 2.4 illustrates the principle of locomotion of a rigid

body with two internal unbalanced rotors and indicates the forces due to each rotor as well as their

vector sum at the body center of mass.

If the rotors spin with a fixed phase difference (here 1200) they will exert a periodic force on

the center of mass of the rigid body. Assuming a frictional contact between the rigid body and

the supporting surface, the rotating force will on each cycle lift one end of the rigid body, push

it forward, and then push it back down again. Reversing the phase difference between rotors will

reverse the direction of locomotion.

2.8 A hopping kinetic display

When combined with inertial navigation to integrate paths of motion, the hopping actuation mode

could be used to accurately position a hopping object. Furthermore, such an object could be

entirely autonomous, with an embedded controller, battery or wireless power source, and wireless

data link. To be capable of planar motion, an object needs only three points of support, each

actuated by its own unbalanced rotor.
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It is interesting to consider a multitude of coordinated, self-actuating autonomous objects acting

as a kinetic display. While the details of the coordination scheme are beyond the present scope, it

is worth pointing out the utility of the inertial channel for communication, ranging, and collision

detection.

For example, hoppers might define separate communication channels by rotor spin frequency. A

hopper's distance might be gauged by comparison of the signal amplitude received from each "foot-

fall".

00 1200

AX

2400 00

Figure 2.4. One "hop" cycle using unbalanced rotors dephased by 120 *, resulting in a net displacement Ax.

2.9 The INERTIAL FRAME

The INERTIAL FRAME is a picture frame that provides an emotional frame of reference for inertial

communication between users, and is intended to be an ambient, interpersonal haptic communi-

cator.

In proposing this application for inertial sensing I have drawn on several prior works for inspi-

ration, primarily: the LUMITOUCH emotional communication device [4], which lends the notion of

a picture frame as the interface, adding new meaning to interactions with an object that is already

familiar as the focus of emotional attention; the PINGPONGPLUS collaborative tangible interface

[17], which points out the use of a surface as an interactive medium; and an as-yet unnamed sensor-

augmented palm-sized PC [14], which exploits sensor fusion and behavioral modeling to enrich a

portable computer's user interface.

The INERTIAL FRAME is sketched in Figure 2.5. It comprises a picture frame with an embedded

controller and a constellation of accelerometers and actuators. A self-contained power source and

wireless data link are assumed and not shown in this sketch.
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Figure 2.5. Schematic view of the Inertial Frame interpersonal haptic communication device.

The embedded controller generates three high-level channels from the raw inertial stream. First,

low-frequency inertial data (e.g. below 100Hz) are integrated and conditioned by a Kalman filter to

produce an inertial navigation channel that describes the motion of the entire system, permitting

the use of the INERTIAL FRAME as a gestural sensor.

Secondly, the inertial data are Fourier-transformed and fed to a behavioral model (as in [14])

that recognizes patterns of user behavior transmitted through the supporting surface, such as

impatient finger-drumming, typing, writing, etc. Intentional gestures such as finger or stylus taps

may also be detected through this channel.

Finally, pairwise differences of inertial signals will reveal propagating surface excitations. These

difference signals may then be time-correlated to obtain the direction of propagation (as in [25,

5]). Three receivers yield three pairwise differences and hence three signal source orientations.

These channels may of course be used in combination. For example, the behavioral channel can

be used to recognize stylus taps and the orientation channel may be used to recover tap points.
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Figure 2.6. Tap location using multiple orientations.
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The three propagation directions obtained above also permit location of the signal source on

the surface: two oriented lines intersect at a unique point (or not at all) and the intersection points

of three oriented lines will form a triangle around the signal source (see Figure 2.6).

Finally, the raw inertial signals may be filtered and replayed by the receiving INERTIAL FRAME

using the unbalanced rotors described above either to effect motion of the entire object or simply

to create tangible disturbances (audible or vibratory) on the tabletop.

It is worth noting that, of the inertial channels derived from sensor data by the INERTIAL

FRAME, all but the orientation channel may be reasonably obtained from existing sensors. This

suggests that the INERTIAL FRAME might be built today and later enhanced by the addition of

accelerometers with the wider bandwidth and greater sensitivity necessary to provide a high-

resolution orientation channel.



Chapter 3
Inertial effects in particle traps

Most accelerometers trace their origins to the simple harmonic oscillator, comprising a known

("proof') mass m and a spring with a known tension/extension ratio k. In Figure 3.la, this system

is shown at equilibrium. When a gravitational field is imposed as in Figure 3.1b, the upward force

exerted by the spring balances the downward force due to gravity, that is, Fspring = kx = m

g = Fgravity, permitting derivation of the applied acceleration g = k x /m from known quanti-

ties. A similar situation is depicted in Figure 3.1c, but in this case the force exists between the

mass (as it tends to remain at rest) and its constraining frame of reference.

X a
k k k

X 
gI

a) At rest b) gravity g c) acceleration a

Figure 3.1. Spring-mass accelerometer.

It is worth nothing that this is the basic operational principle of nearly all classical accelerometers.

Accelerometer design is a combination of efforts to increase sensitivity to inertial signals, to decrease

total system noise, and to broaden response about the resonant frequency

WO = -. (3.1)
m

We will return to this model later in the chapter to explore the role of noise in accelerometry. First

we consider the mechanics of proof mass suspension in particle traps.

3.1 The particle trap as accelerometer
The following discussion will consider only electrodynamic particle traps, of which the Paul trap

[26] is a well-known example. A particle is said to be trapped if it is elastically bound to an axis or

coordinate in space by a restoring force. For simplicity's sake we will consider a particle bound by

a linear restoring force F = - k - , implying a quadratic potential

W oc (ax 2 + 3y 2 +Yz 2) (3.2)
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surrounding the constraint coordinate. As the system evolves classically to minimize its potential

energy, the particle's motion will describe an orbit centered about the minimum of this parabolic

potential. Such a potential is preferred because it is one of only two potentials that leads to harmonic

motion - the other being an inverse-law (r- 1 ) potential.

If it were possible to construct a parabolic potential minimum in free space, a three-dimensional

accelerometer could be constructed trivially by suspending a charged particle in a static field and

reading out its position by electrometry, optical interferometry, or other means. It is therefore

unfortunate that Earnshaw's theorem pertains: maxima (or minima) of the electric potential cannot

be imposed at points in free space. This follows from the divergence of the electric field in free space

V -E = 0 (3.3)

and the relation between the electric field and the electric potential

E = V) @(3.4)

which yield the Laplace equation

V2=(= 2 + + &2)4 =0. (3.5)

Note that this equation admits no static convex solutions. Now consider a saddle-shaped potential

such as z = x y2 . Such a potential forms the basis of the Paul trap [26] by creating a hyperbolic

fixed point in the trap's dynamics.

The Paul trap potential assumes a parabolic potential geometry and a harmonic time dependence

(r, t) = 4 (ax 2 + #y2 + / z 2) (3.6)
a0

where ao is the absolute scale of the trap, determined by its three characteristic radii

2as =| 1 z8+|# y +Y7|z2 (3.7)

and (o is the time-dependent potential

O = U + V cos wo t (3.8)

The Laplace equation requires V2 p = 0 everywhere in the free volume of the trap, so the above

potential yields

V 2 D= 0 2 (a + +) (3.9)
ao

Two points are immediately apparent. First, the scale of effects in the trap will be determined by

(o /ro. Second, the field geometry will have a constraint

a + +Y=0 (3.10)

to be satisfied.



3.1 THE PARTICLE TRAP AS ACCELEROMETER

The values a = # = 1 and y = - 2 provide a simple solution to this constraint and yield the

geometry of the familiar three-dimensional Paul trap. By writing the radius as r2 =2+ y2 we obtain

4(F, t) = (o (r2 - 2z 2 ) (3.11)

which has the hyperbolic form illustrated in Figure 3.2.

Figure 3.2. Isopotential surfaces of <D oc (r 2 2z 2).

Because hyperbolic shells are difficult both to draw and to fabricate, a Paul trap is often depicted

schematically as in Figure 3.3.

+}(U + V Cos wt)

-- k(U + V cos wt )

V coswt U

+} (U + V Cos wt)

Figure 3.3. 3D Paul trap (schematic).

The potential difference between the ring electrode and the end caps is to and the corresponding

force acting on the particle is

F (r*, t)=- e V' (r, t) .(3.12)

Writing out the Hamiltonian for this system, we add a potential energy term to account for accel-

erational shifts S(t) of the trapping frame:

? = T + V = +D(i, t) q+ m3(S(t) 1)3
2m (3.13)
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From this Hamiltonian we obtain the system's equations of evolution

m

- 2x- (3.14)

= -ns- 2 2y
ao -4 z

which may be restated as the driven equations of motion

Li (DO e 2x 1 (3.15)9 + "2 2y = sy (.5
z mao -4z- sZ

Because these three decoupled equations are similar up to a constant we will consider only the first,

z + e 2 (U+Vcoswot) 2x=O (3.16)
mao

which recalls the Mathieu equation

z + (a+2qcos2T)x=O (3.17)

whose stability depends on the dimensionless parameters a and q.

By comparing the Mathieu equation (3.17) with the ion trap equation of motion (3.16), we can

identify the parameterization

-16eV 8eU w
a= _ 6V, q= r= W t (3.18)a- 2 2 ' 2 2 T t(.8

mWo ao mWo ao 2

necessary to determine operational stability.

q -- O

Figure 3.4. Lowest stability region in ion trap (revised from [26]).



3.2 DERIVATION OF THE PSEUDOPOTENTIAL

Figure 3.4 illustrates the lowest trapping region of the three-dimensional Paul trap. Note the

parameters #r and #z which relate a trapped particle's fast micromotion of frequency wo to its

secular motion in the r plane and the z axis by

Wr = Or W0, Wz = O2 Wo . (3.19)

3.2 Derivation of the pseudopotential

Consider the static and oscillating components of the force acting on a trapped particle

F(i, t)= f,(1) + f.(Y, t)

= - e Ox Pstatic() =- e UOJ#g

- e V (cos Wo t) &xq#g f cos Wo t

(3.20)

(3.21)

(3.22)

f =- eV8 #g

a 2 + 0y2 + yz2
#,- 2a0

(3.23)

(3.24)

Now assume the following: the secular motion S(t) and the micromotion M(S, t) are known, that

S > M (the secular motion is much greater than the micromotion), and that S < M (the secular

motion is much slower than the micromotion). Rewrite the total motion as

X(t) = S(t) + M(S, t) (3.25)

noting that M depends on and is considered to be a perturbation of S.

Now that the motion has been separated into components with two distinct characteristic time

scales, it becomes amenable to two-timing analysis [30]. Micromotion occurs on a fast time scale

r =- (3.26)

compared to the secular motion and averages to zero in a single period:

(M(t)), = M(t) dt ~0 .2
JO

where

and

V4 WSWOMMOMMMOVS&WAMW

(3.27)
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Expanding the equation of motion in M around a path described by S

m z = F (z , t)= m(S + M)= f,(S) + fo(S, t)+ [ ! ] (fU() + fo(x, t)) (3.28)
_k=1 . X=S

to first order yields

m(5 + M)= f=(S) + fo(S, t) + M (A2 fM(X) +x r fo(x, t) ) (3.29)

By supposing that mM ~ fo(S, t), an approximate solution for M(S, t) can be found by integration:

M(S,t) ~- 2f(S)coswot (3.30)

In this approximation, the micromotion M is found to be harmonic with frequency w, phase opposite

to the driving signal, amplitude depending on the secular motion, and average kinetic energy

(km)= 4f2 (3.31)

Equations for slow secular motion S(t) can be found by averaging m (S + M) over one period T of

micromotion and using the approximate solution (3.30) for M(S, t):

m( +M)) =(f 5 (S)) + (fo(S, t)) + KM f ~x) )+ M&fo(X,t) x_ (3.32)

Only the 5, f8 , and cos 2 terms survive averaging:

Km(5+M)) (fO(S)) + M f, t) (3.33)

m 5dt= - j f,(S)dt - 1 f f(x) cos wo t a, fo(x) cos wo t dt (3.34)
Tm T 0 W o 0 x=S

leaving

m 5 = f,(S) - 2mw2 [f() axf(x)]s (3.35)

By expressing f, and f as derivatives of the pseudo- and secular potentials Ops and (Psec we obtain

the definition of Psec

m S = - 8, (eUg(x) + ops(x)) - - ax psec(x) (3.36)

where

PsWx) 4mw2 (V (cos wo t) #g)2 (3.37)

- -1-1-10"'No 1 0 00 , , r- , .-- .. - -- I - - 11 - - -1- - - -- I I I . - - - - -1 Ll-- --- m T - I - - - -- l' --- 1-1 - I - I.-' - -- - - - --



3.3 INERTIAL SIGNATURE IN TRAP DYNAMICS

The average of the pseudopotential over one cycle is of most interest in understanding the compar-

atively slow secular motion:

((PPS) = f ps(t) dt

e 2 v 2 (Ox g(X)) 2  cos 2 wot dt
4mwo T I

e 2 v 2 2

2mw2 0 +yO+2zJ (3.38)

From the last form it is clear that the pseudopotential is approximately quadratic for the given

conditions S>M and S>M.

3.3 Inertial signature in trap dynamics

A clear inertial signature appears in the approximate system described by the pseudopotential

(3.38). To see this, start by assuming that a trapped particle oscillates harmonically to first order

as it moves in the quadratic pseudopotential ps. This oscillation has a secular frequency w,= w

(0 , 3, < 1), distinct from the particle's micromotion at the trap frequency w.

Let the Hamiltonian for a particle trapped in a pseudopotential and subject to an acceleration

s be

2__ +ms 2
H 2 + ps(x) + ms e= (p2+KX2) +ms where= a (3.39)2 m 2 m (woao

The equation of motion will be that of the driven harmonic oscillator

z + w2 = - s (3.40)

where Wo2= ,/m. By substituting the general solution x = + co eiwt + cle-i t into this equation,

one quickly finds that the particle oscillates about a mean position

I 1 2W2 a4

= (X) = - = - m2 w 2 s. (3.41)

This mean position is equivalent to the secular position S(t) identified above. Recalling that the

micromotion M depends on S~x, the RMS amplitude of M(2, t) is found to be

1 f ( eV 2 2 2X) 2  
2 eV (4

(M(X, t)2 I 0 W 2) cos wo t 2 2 dt = v/2 W 2 (3.42)
Tjo \mw 0 a ) m 0 0
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Finally, by substituting the mean value 2f from above into the RMS amplitude

Mt)2)- eV mao v/2 s (3.43)
mwo2 ao W eV

one finds that x and Mrms both depend linearly on the applied acceleration s. We have learned

that a trapped particle has two constants of motion directly proportional to applied accelerations,

and that these constants of motion are decoupled for all three degrees of freedom.

3.4 Geometry of a 3-symmetric inertial measurement trap

The Paul trap as described above has a preferred axis and a corresponding radial symmetry, adequate

for applications in which particles are kept close to the equilibrium position. In developing an inertial

measurement unit, however, it is preferable to have equivalent equations of motion in all three

directions. What follows is a derivation of the electrode geometry for such a trap.

To obtain closed forms for the potential, we wish to satisfy both

V 20=0 (3.44)

and

#=ax2 +#y 2 + 7Z2  (3.45)

Equation (3.44) leads to the condition

a+ #+ -Y=0 (3.46)

Two common choices of geometric factors which satisfy this condition are

a=1, O==-1, -y=o (3.47)

for the linear quadrupole trap,

a=1, #=1, 'y - 2  (3.48)

for the three-dimensional quadrupole trap, and the general form

a = AO, y = - (A +1) # (3.49)

where A = 1 corresponds to the circular quadrupole trap and A > 1 corresponds to the elon-

gated, elliptical quadrupole trap. These are the most commonly considered solutions and practical

approximations are often made to reduce fabrication complexity [3] or to enhance certain trapping

configurations in many-body systems [11].



3.4 GEOMETRY OF A 3-SYMMETRIC INERTIAL MEASUREMENT TRAP

In Paul's two-phase systems, the electrode geometry is defined by isosurfaces of (3.45) cor-

responding to the phase factors 1 and -1. This can be generalized to multi-phase systems with

isosurfaces defined by the modulus of # and partitioned by the phase of #. For example, the complex

geometric factors

. 2 . 4

a= 1, #= e'", e2 (3.50)

(i.e., complex cube roots of unity) will satisfy condition (3.46). The isosurfaces of this form are

determined by solving j#= a or equivalently 1|2 = a2 = #* #= (Re #)2 + (Im 0)2, which yields the

polytope

x4 + y4 + z 4 - X 2y 2 _ y 2z 2 - z2 a2 a2 (3.51)

or equivalently

a 2  1[(z4 -2x 2y 2 + y4 ) + (y 4 -2 y2z 2 + Z4 ) + (z 4 -2z 2x 2 + 4 )]

(X2 - y2)2 + (y 2 - z 2 )2 + (z 2 _ X2)2 = 2a 2

(3.52)

(3.53)

as shown in Figure 3.5.

Figure 3.5. Isosurfaces of I ax 2 +/3y 2 + yz 2I=1, 9.4).

As before, the Laplace equation V2 4 =0 leads to the constraint a + + y=0, which is satisfied

by this choice of phase factors a, #, y. Furthermore, Re (a + 3 + Y) = 0 is a hint that these phase

factors will be relevant to the dynamics of a real harmonic system.
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Finally we must confirm that the isopotential surface, which naturally partitions into fcc (face-

centered, cubic) regions, is likewise partitioned in phase so that each region has a single phase. By

symmetry, we need only demonstrate this for one face (i.e., z =1) and only on one quadrant of that

face.

Because the phase of # is determined by the factors a, ,3, y, it is independent of radius and the

phase can be fully characterized by mapping it on the region {x = [0, 1), y = [0, 1), z = 1}. Figure 3.6

reveals that the phase on this face varies over the interval [ - 7r, - "] (which can be readily proven),

therefore the faces of the cube are each partitioned in phase to one-third of the unit circle.
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Figure 3.6. Phase plot of ax 2 + #ey2 + YZ2 |z=.

Starting once again with the full form of the electric potential

4(F, t) = (ax 2 + 3y 2 + y z 2)
0

and the force arising from it

F (r, t) =-e V 4(rr, t)

we can write the system Hamiltonian

7R = T + V = -L+ (F, t) e + m(W(t) -Y)2m

(3.54)

(3.55)

(3.56)

and obtain the system's equations of evolution (adding a viscous drag term where r is the radius of

the particle in question, r/ is the viscosity of the medium through which it moves, and ' = [a, #, 7]T)

= -p

2 (Do er -
= -631 = - 2 (2-C - 6 x rz -

.-a

A ~

(3.57)
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leading to the driven, dissipative equations of harmonic motion

5 + rrr/ 2
<boeC - = (3.58)
T o

3.5 Accelerometer noise models

Error in measured acceleration may be attributed chiefly to 1) noise inherent to proof mass motion

and 2) noise in the readout of proof mass motion. We will return to the issue of readout error in the

sections on experimental methods and results, and for now consider only the inherent motional noise.

Of the mechanisms contributing to motional noise of trapped (macroscopic) particles, we consider

the leading sources to be phase/magnitude error in the trapping field and thermomechanical effect.

Since the effective spring constant depends quadratically on the trapping voltage, which is readily

determined to 1 part in 10 4 , errors due to trapping field amplitude are taken to be small.

Phase errors in the field are taken to be uncertainties in trapping frequency, upon which the

effective spring constant again depends quadratically; if they are considered as fractions of cycles,

their noise contribution is seen to be smaller still than errors in field magnitude. More importantly,

these effects are more amenable to control than thermal effects.

To estimate thermal noise effects in a particle's motion, we invoke the theorem of energy equipar-

tition among quadratic degrees of freedom. The equipartition theorem applies both because the

pseudopotential is quadratic and because we can reasonably assume that micron-scale particles in

air at room temperature are in thermal equilibrium with their environment.

The expected free energy in a thermal degree of freedom is kBT/2 and variations in the pseu-

dopotential will go as

(4opps)= r ((6X)2 (3.59)

so the motional noise will be on the scale of

6z= kBT (3.60)

Because readout of acceleration is taken to be a =- ix/m, the scale of thermal noise effects in

acceleration measurements will be

K (kBT eV kBT(3.61)
m mo a2 m

If the accelerometer is operating in a dissipative regime, it can be thought of as a damped resonator

and described by the equation of motion

mci +vi +KX=0 (3.62)
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and solutions derived by substitution of x =eA to obtain the characteristic equation

(mA 2 + vA + )= 0 (3.63)

with solutions

A1,2  v v2- 4 m m \v - 2m) (3.64)2m 2m iv

There are four regimes of solutions, depending on the eigenvalues A1,2 :

Re(Ai, 2) Im(Ai, 2) Classification
=0 #0 undamped
#0 #0 damped (3.65)
= 0 =0 critically damped
# 0 = 0 overdamped

The system quality factor is a measure of energy loss per cycle or spectral width of a resonance,

Q = wcycle = = [Re(A)]K (3.66)

For the damped resonator,

Q _ m Wo - (3.67)
V ii

and the transfer function in terms of Q can be expressed

|G(f) 2  1f= WO) (3.68)

The thermal energy in a damped resonator will be distributed over its entire spectrum

1
- kB T= G (E(w))do (3.69)
2 WO

Taking G(f) to be normalized the thermal motional noise density will be

(()2 4kBT G- (3.70)
K Woj

and finally, the noise density in acceleration readout due to these effects will be

16al = ((Sz)2)

_ An4kBT G
m2 WO/

_eV kBT G(W-m 2 m \Om w0 a0 B (3.71)

Now we turn to experimental methods to demonstrate these effects.



Chapter 4

Experimental methods

We have shown that the motion of a particle in a Paul trap has two (leading) characteristic

timescales corresponding to a slow secular motion S(t) and a fast micromotion M(S, t). These in

turn depend linearly on an inertial term in the trap's governing equation. This inertial signature is

expected to be a robust effect in traps with quadratic confining potentials. Here, we demonstrate

these effects in both numerical and physical experiments.

4.1 Simulation of an inertial measurement trap

To observe the previously derived inertial terms in simulation, we start with the term (- vy) to

model dissipation:

m

(e2 x-~ 
-12

M m- Vp -2 yi
a0 [-4z-
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This set of six linear, coupled differential equations are then numerically integrated to obtain the

motion F(t) using a fourth-order fixed-step Runge-Kutta algorithm[27].

Parameters were chosen to simulate the operation of a macroscopic oil droplet trap [28] and a

time-dependent acceleration s2 was applied to accelerate the trap upward. The relevant parameters

are

Xo, Yo
zo
U
V
W
rparticle

mparticle

eparticle

= 2.5 mm
= 5.0 mm
=0 V
= 1.0 kV
= 27r -100 Hz

10 m
9.3pg
1.3mC-g-1

(4.2)

while the simple dissipation term has a prefactor v = 10, chosen to provide an underdamped

simulation.

Applied acceleration and filtered position vs. time
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Figure 4.1. Particle micromotion compared with applied acceleration (simulated).
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4.1 SIMULATION OF AN INERTIAL MEASUREMENT TRAP

Figure 4.1 compares the micromotion z, of a trapped particle with the applied acceleration as

sz goes from 0 to - 10 m -s--2, illustrating the linear relationship between the two. In this case

z, represents the particle position z filtered in a narrow band around the excitation frequency w

by a third-order Chebyshev FIR filter. This filtering leads to the time-delayed response seen in the

graph.

The linear relationship of micromotion on acceleration is also apparent in the graphs of position

vs. time shown in Figure 4.2 for each of the particle's Cartesian coordinates. The particle's orbit

starts out from the injection point (x, y, z)= (0, 1,0) and is seen to decay due to damping. As the

particle moves farther from equilibrium on any axis, its micromotion along that axis increases. From

t = 0.25 to 0.75 s, the applied acceleration sz is ramped down, causing variations in micromotion

amplitude MzrmS and mean position f.

Particle position vs. time

0.5 --
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E;

0 -0.5 --
CL

z
V --- -----
X ------ -

-1.5 ' 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (s)

Figure 4.2. Simulated particle trajectory in trap in each axis.
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Finally, Figure 4.3 shows the particle's trajectory projected onto the three principle planes and

in a rotated orthogonal projection. The orbit in the xy plane is seen to decay toward equilibrium,

even as the equilibrium point moves downward and the micromotion in z increases.
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Figure 4.3. Projections of simulated particle trajectory.

This simulation is representative of several numerical experiments run with parameters corre-

sponding to stable trapping and suggests that it is reasonable to seek similar results in physical

experiments.

4.2 Physical realization of Paul traps

The classic Paul trap is an exquisite assembly of precision-machined hyperboloid shells. In practice,

however, almost any quadrupolar arrangement of electrodes will yield a workable trap. A common

configuration of electrodes such as might be used in a classroom demonstration [28] is shown in the

background of Figure 4.4, and was used to create the images in Figures 4.5 and 4.6. In contrast,



4.2 PHYSICAL REALIZATION OF PAUL TRAPS

the simplified planar trap used in IMIT 1.0 is shown in the foreground of Figure 4.4.

Figure 4.4. Demonstration trap (background) and simplified planar trap (foreground).

Figure 4.5. Demonstration trap suspending a Coulomb crystal of charged particles.
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Figure 4.5 shows a common version of the Paul trap along with a Coulomb crystal structure

consisting of 49 mutually repelling charged microspheres. The spheres appear as streaks because

of their micromotion within the trap, and it can be seen that particles further from the equilibrium

position (the trap center) have larger motion amplitude than those close to the center.

An extensive body of literature describes the application of linear quadrupole and hyperboloidal

traps, particularly in the fields of mass spectrometry and aerosol microscopy[15][28]. Typically

these techniques cancel the gravitational acceleration on a suspended sample by application of

a static, homogenous electric field that balances the particle in the center of the trap and thus

minimizes its micromotion.

By imaging a particle balanced in the plane of a hyperboloidal trap, one observes its amplitude

of micromotion to depend on accelerations applied to the trap as well as gravitational acceleration,

as discussed above. Furthermore, trapped many-body structures such as Coulomb or Wigner-

Seitz "crystals" [31] - formed by the mutual repulsion of charged particles in a potential minimum -

are known to demonstrate rigid-body dynamics, including conservation of angular momentum [16].

Figure 4.6. A Coulomb crystal of 7 charged particles in the z = 0 trapping plane, without (left) and with (right)

an acceleration applied in the plane.

Figure 4.6 shows the effect of an applied acceleration on particle micromotion. In the first
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image, the central particle of a Coulomb crystal appears as a dot because it is at the equilibrium

position, while the surrounding particles exhibit similar amounts of micromotion according to their

similar displacements from the center. In the second image, the trap is accelerated toward the lower

left corner of the image and the crystal is displaced from equilibrium. The central particle now

appears as a streak, exhibiting a micromotion amplitude that corresponds to the applied amplitude.

4.3 Developing a practical trap

\ W image sensor

objective

PIN photodiode

- - HV vacuum'4eedthrough

Driven electrodes collimator, diode laser
- - - spatial filter,

expander

metal
endcaps

bulk particle source Particle
Injector

nylon bushing

vacuum port
polycarbonate endcap

Side view

Figure 4.7. Schematic embodiment of an inertial measurement particle trap.

A typical experiment is detailed in Figure 4.7, embodying a design similar to those employed in
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early studies of electrodynamically suspended particles [35]. To load the trap, a high-voltage step

function is applied between the endcaps of the bulk particle source container, projecting inductively

charged particles into the center of the trapping region where their motion is analyzed optically.

A diode laser and associated optics illuminate the trapping volume, which is projected onto

a image sensor array. Backscattered light from the trapping volume is mixed with a fraction of

the illuminating reference beam by a non-polarizing beam splitter and directed onto a photodiode

detector. The resulting signal may be amplified, filtered, and integrated to provide interferometric

readout of the particle's motion.

The actual trap consists of two driven ring electrodes while the grounded cylinder containing

the entire assembly acts as a third, central ring electrode. The trapped particles are glass, metal, or

liquid microspheres, anywhere from 0.1 to 100 pm in diameter and charged to a few pC/gm. The

active trapping volume is approximately lcm3 and trapping voltages are on the order of 500 V to 5

kV, at frequencies from 50 Hz to 5000 Hz. A coherent collimated light source provides illumination

for particles to be imaged on a CCD or CMOS camera. It also permits light scattered by particles

to be mixed with a reference beam at a detector, allowing interferometric determination of the

position at nanometer resolution.

The configuration shown in Figure 4.7 permits a great deal of flexibility in the development of

experimental protocols, yet it fails to demonstrate the trap's viability as a micromachined sensor.

Furthermore, a guiding principle of the experimental plan has been to simplify construction as

much as possible - but not more so - relying on standard fabrication techniques.

Of the many variations on the hyperbolic geometry, the planar trap is most relevant. Its

simplified geometry enables lithographic fabrication in micrometer dimensions, either individually

or in arrays, and leads to "the possibility of ion-trap and integrated-circuit technology merging with

a single chip containing the trap, diode lasers, and associated electronics." [3] This is the direction

in which we pursue development of an integrated, embeddable inertial sensor.

4.3.1 Planar traps

In the traps shown in Figures 4.5 and 4.7, the cylindrical symmetry of the Paul trap has been

retained, and in particular the central ring electrode defining the radial trapping plane; however,

the endcap electrodes have changed from hyperboloid shells to spherical shells and finally to rings.

In the center of the trap, the field geometry is determined less by these particulars and more by the

smoothing effect of the Laplacian operator acting upon the axially symmetric boundary conditions.
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Figure 4.8. Finite-element calculation of field geometry in three-layer planar trap.

Figure 4.8 depicts the fields in a three-layer planar trap that has been fabricated as a printed

circuit board. The structure is axisymmetric about the vertical centerline. The upper and lower

electrodes are chosen to be the reference, while the central ring electrode is driven with an AC

voltage to generate the trapping fields.

The electrostatic energy density is at a maximum at the edge of the driven electrode, and falls

off to minima at the center and the periphery of the trap. Particles in the intermediate region will

experience strong focusing effects that alternately push them towards and away from the center.

The net effect is that particles with the correct charge-to-mass ratio e/m will be focused to the

central region, just as with the canonical Paul trap. The central isoenergy surfaces in both cases

are ellipsoidal, as details of the boundary geometry are smoothed out on the dipole length scale.

In the case where the fields are determined by a central electrode, with a ground reference

supplied by a lower plane and a surrounding ring, the field geometry exhibits similar structure in

the trap center. Figure 4.9 illustrates the situation: note that the isopotentials form a saddle as
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before (albeit a warped saddle) but the isoenergy surfaces are clearly no longer closed.

Figure 4.9. Finite-element calculation of field geometry in half-planar trap.

4.3.2 Trap loading

To demonstrate a working trap with particles of known mass and charge, one must be able to inject

particles with known values of these quantities on demand. Since we are working with macroscopic

particles with variable mass and geometry and bulk effects, this is not as simple as it may be in

the case of ion traps. The literature of aerosol microscopy reveals a number of methods for particle

charging and dispersal, but these require the use of conductive liquid media which we would rather

avoid.

Ultimately it would be desirable to use proof mass particles with well-known charge and mass

at low temperature, e.g., ions of a naturally monoisotopic species (Cs+ comes to mind) forming an

optically probed and cooled Wigner crystal.

For the experiments at hand, however, less exotic proof masses were chosen. Experiments were

conducted with pm-scale spheres of borosilicate glass, aluminum, and gold. Gold particles were

preferred because of their high density, low reactivity, and high conductivity. All experiments were

performed using Au spheres with a mean diameter d = 7.25 pm and standard deviation a = 0.58

pm. At a density PAu = 19300 kg -m 3, these particles have an average mass rh = 3.85 x 10- 9 kg

(or 3.85 ng).

We solve the problem of charging and loading particles into the trap as shown in Figure 4.10.

This technique is particularly applicable when the upper induction electrode also serves to generate

the trapping field.



4.3 DEVELOPING A PRACTICAL TRAP

q~~ft- 1

E~1t-r+TFt

V

I
~~~~~1

(a)

(b)

(c)

(d)

Figure 4.10. Trap loading and particle charging system in action. a) A granular bed of Au particles adheres to the

conducting reference surface of a piezoelectric transducer. b) Voltage sources referenced to this surface are switched

on to excite the piezoceramic and to generate an electric field. Charge redistributes on the conducting surface of

the transducer and the adhered granular bed. c) The piezoceramic drive is switched off, the transducer relaxes, and

a particle is ejected from the granular bed, carrying away charge. d) The induction ring electrode is switched off,

allowing the particle to escape.
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4.3.3 Planar trap construction

Putting together the above insights into trap planarization and loading, we construct a simple trap

from common materials found in the electronics shop. Figure 4.11 shows the details of constructing

a half-planar trap with a ring electrode (ID = 1.0mm, zo = 1.3 mm, e,~ 4.3) from circuit prototyping

board stock and a common acoustic piezotransducer. A high-voltage flying lead drives the central

electrode while the brass disc of the transducer forms the common ground reference.

PCB prototyping board

OCaviOy

OOOOOC

Piezoelectric disk actuator

Figure 4.11. Construction detail of the half-planar trap (r ~500pm, z~1585 p)

Finally the entire structure is surrounded by a grounded ring and mounted on a positioning

stage as seen in Figure 4.12. The ring electrode is blackened with a permanent marker to enhance

image constrast. A bubble level with resolution of 5 arcminutes is used to estimate horizontality,

and an LED provides constant or synchronously strobed illumination for microscopic imaging.

I INOM
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Figure 4.12. Detail of positionable planar trap module.

4.3.4 Particle tracking and readout

Our sensor requires a readout of particle motion to permit determination of acceleration. Although

the classic technique of ion trap mass spectroscopy [9][10] employs resonant absorption of radiofre-

quency energy to determine trap loading, this is too coarse a measure for our requirements. We

require knowledge of the particle's position and breadth of motion from cycle to cycle of the trap-

ping frequency. Capacitive particle position readout techniques are ruled out because they would

require distinguishing small capacitive variations (on the order of 10-" F) in a large background

(100V to 1000V).

Optical readout techniques are more accessible and couple minimally to the large trapping field.

Optical levers have been employed in many sensitive experiments, and have been shown to give

resolution to 10 nm or better [331, while interferometric techniques can typically resolve motion to
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1 nm or better [361. However, optical levers are typically employed when the motion of interest is

small, while interferometry is typically limited to scattering apertures incommensurate with the

probe wavelength.

Since our present experimental techniques are performed without a closed control loop, large

excursions are expected and the use of optical leverage becomes more complicated. As the particles

of interest are spheres a few microns in diameter, their coherent scattering profiles significantly

complicate the interpretation of interference fringes to determine position [13].

By relaxing the temporal and spatial resolution requirements, we can choose to employ video

microscopy particle tracking, which is typically capable of locating submicron (> 200 nm) spheres

to within 10 nm in the focal plane and 150 nm in depth [8]. When information from individual

images are combined into time series of single-particle trajectories it becomes possible to measure

rheological parameters such as diffusion coefficients and pair-wise interaction potentials [12].

4.4 Experimental configurations

image sensor digier

20x objective LED strobe iage
nalysis

proof mass

planar trap 3 2 -1 0 1 2 3

Figure 4.13. Experimental configuration for characterization by video microscopy.

Putting these details together we arrive at the experimental configuration shown in Figure

4.13. An LED illuminates the trap center, and particles therein are imaged by a microscope

objective directly onto a CCD imaging array. The video signal is digitized into individually tagged

frames that together constitute a database. This database is then processed offline to recover

particle motion and other variables of interest. Finally, Figure 4.14 shows the physical apparatus

embodying this configuration.
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1L Focus adjustment

CCD camera

Rotary vernier stage

20x objective

Trap assembly

Figure 4.14. Experimental apparatus for characterization by video microscopy.

While this is a simple yet versatile system for trap characterization, readout bandwidth will

be limited by the video frame rate to a fraction of the trapping frequency. Figure 4.15 shows an

alternate configuration that may be used to measure small variations in particle position by a

technique we propose as a variation on the optical lever.

collimated
laser diode

" L-t +

photodiode IN amp ADC

signal
proof mass20obetvans

in beam waist 2xojcieaayi

planar trap

Figure 4.15. Experimental configuration for measuring spectral noise density.

In this configuration we measure the intensity of light scattered by a particle as it moves through
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the waist formed by a focused beam. This readout allows us to probe the spectral characteristics of

trapped particle motion, and may be calibrated to provide an estimate of the scale of these effects.

backscatter intensity

particle position

beam waist

periodic particle motion
with frequency w
through beam waist

intensity

beam waist I time
7r/w 27r/w

intensity

biam waist a time
7r/w 27r/w

Figure 4.16. Detail of beam waist intersection readout.
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Finally, Figure 4.16 shows a plan detail of the beam waist readout. As a particle moves through

the waist of a focused beam of light, it scatters light back into the focal cone. The observed

backscatter depends on the intensity profile of the beam (e.g., a diffraction-limited Gaussian), the

scattering form factor of the particle, and the position of the particle as it moves through the beam.

If we assume that the particle's motion is harmonic, then the time-domain intensity profile will

appear as a symmetric positive function. It is apparent that the intensity profile will depend on the

center of motion, and as the center of motion moves toward the center of the beam we expect the

intensity profile to widen or increase its duty cycle. Unfortunately, this effect will be complicated

by motion parallel to the beam axis, so we consider it to be a rough diagnostic suitable for the

measurement of small motions.
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Results

Our goal is to characterize the trap's response to acceleration. In the case of video microscopy,

readout is performed by determining the particle's motion parameters from images of its activity

in the trap. Center of motion was chosen as the readout statistic, but amplitude of micromotion

could also be used.

A typical image of a single particle suspended in a trap is shown in Figure 5.1, with a particle

suspended in the center of a 1 mm trapping cavity. In the image's corners the surface of the driven

electrode is visible. While the particle is spherical with a nominal 7.25 pm diameter, it appears as

a streak in this image due to micromotion.

Figure 5.1. Sample raw image from video microscope.
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The spot function of the particle image is taken to be Gaussian as it moves harmonically in the

pseudopotential. The cycle average of s(x) (the pixel value at position x in the image) has the form

(sk,A,,j)=e )-A) Acos[t]dt (5.1)
v/2 7r aJo

where o is the width of the particle's spot function and A, w, xo are the particle's micromotion

amplitude, frequency and center of motion respectively.

When numerically evaluated, this averaged spot function closely corresponds to the observed

image intensity. However, the lack of a closed-form solution for this integral and the computational

expense of its evaluation leads us to restrict attention to the center of motion statistic, which is

determined quite simply as the first moment of the pixel intensity.

Readout bandwidth is fundamentally limited by the trapping frequency (in this work, typically

100 Hz to 10 kHz) because the pseudopotential is an average effect. In the case of video microscopy,

readout is also band-limited by the video frame rate (here 30 Hz). We must be mindful of the

effects of frequency aliasing in readout of particle motion, but as the particle is strongly damped

(i.e., it has a low Reynolds number) these effects are expected to be more pronounced with respect

to the frame frequency than the trap frequency.

Here, we will restrict the use of video characterization to low-frequency effects (e.g., static

acceleration reponse) and use the alternate readout method of beam waist intersection to study

response over larger bandwidths.

5.1 Experimental protocol

An experimental protocol was developed to accomodate the uncertainties in particle charge and

mass. A candidate particle was identified and stabilized in the trap by a sweep through the full

range of parameters to be varied in an experiment. Specific lateral accelerations a were applied as

projections of the Earth's gravitational acceleration g by rotating the entire trap to an angle 0 in the

Earth's gravitational field (a= g sin 6). For small angles this corresponds to applied accelerations

of approximately 17.4 mg/degree of rotation from the vertical.

Data were collected as series of images corresponding to variations in the independent variables

of interest for each study. The imager employed was a Watec LCL-903K 1/3" monochrome CCD

camera. The analog video signal from the camera was digitized by a Hauppage WinTV tuner and

video capture board. Images were captured using the xawtv utility and the v41 video-for-Linux
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drivers runing on a Linux 2.4.20 kernel. xawtv can be used to capture video frames with or without

compression. Images captured for this study were uncompressed except where noted.

Individual images captured
as parameters vary

Crop to region of interest

Filter with Gaussian kernel

Project region of interest
onto X axis slice

Equalize pixel value range
for each slice

Threshold to isolate particle
image from background

Centroid to identify center
of motion

Figure 5.2. Image processing flow to reduce video microscopy data to particle motion parameters.
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Once the images were captured and tagged with their acquisition parameters (trap voltage, fre-

quency, etc.) they were processed to recover the particle motion parameters. Figure 5.2 illustrates

the flow of data. Individual images of particle motion were cropped to the region of interest to

reduce storage and processing requirements (as well as background noise). These cropped images

were then convolved with a Gaussian kernel chosen to subtract the background and enhance

features on the scale of the particle image [8].

The filtered, cropped images were then projected onto their long axis to create a single "slice"

that captures particles' motion along the axis of interest. Each slice was then equalized to maximize

image contrast. A hard threshold was applied to distinguish particles from background. Finally,

a centroid (first moment) operator was applied to obtain the center of particle motion.

5.2 Calibration

While it is not possible to determine the trap calibration a priori because of uncertainties in charge

and mass (as well as geometric correction factors), the trap may be calibrated by applying known

accelerations and measuring the response in terms of displacement of particle center of motion.

This procedure may be repeated as trap parameters vary, allowing one to probe the tunability of

trap response.
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Figure 5.3. Calibration curve for displacement vs. acceleration.

Figure 5.3 shows the results of calibrating the trap as applied lateral acceleration varies from

- 1g to + 1 g. The trapping voltage was also varied, and as one would expect the response

in displacement is greater for weaker trapping fields. Less expected is the apparent linearity of

response over a fairly large central region of the trap.
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Figure 5.4. Calibration curve for displacement vs. acceleration, reduced range.

Figure 5.4 shows results that concentrating on the central linear region. Data points are plotted
and a linear fit is drawn for each set. A good fit is observed, but to quantify this we plot the
residual error of the fit in Figure 5.5.
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Figure 5.5. Residual error after linear fit.

5.3 Tunability

A unique feature of the inertial mode trap is its dynamic tunability or dependence of effective spring
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constant r = e2y 2/mwga' on trap voltage and frequency. When the trap's linearizized response

is plotted against the trap voltage, the expected quadratic characteristic emerges.

Displacement (gm mg~ ) vs. trap voltage
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Figure 5.6. Calibration constant vs. trap voltage.

This relationship is suggested by the 1/ dependence seen in Figure 5.6 and evidenced by a close

quadratic fit of the measured effective spring constant, as shown in Figure 5.7. Here we have used

the small-angle linearization (Figure 5.4) on the assumption that practical traps will be operated

in the linear region with closed-loop control.
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Figure 5.7. Effective spring constant vs. trap voltage.
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5.4 Drift

Long-term variations in readout bias may also be observed by processing a time series of images.

After data sets were collected for the above characterizations, the trap voltage was set to a midrange

value of 1.0kV and the trap rotated to an angle of 450, corresponding to an acceleration bias of

0.707g.

Images of the particle were captured for 5000 seconds at a rate of 2 frames per second and the

particle motion was determined through the same image processing chain as above. Variations in

the center of motion were then plotted according to the above calibrations. Figure 5.8 shows the

results of this measurement.
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Figure 5.8. Baseline drift vs. time, sampled at 2 Hz.
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The power spectral density of this measurement is flat up to 1 Hz (half the sampling frequency),

suggesting that the measurement error exceeds the trap's intrinsic physical noise from sources such

as Brownian motion or fluctuation-dissipation.

5.5 Noise power spectral density

To probe the noise structure intrinsic to our accelerometer, we turn to an alternate experimental

configuration utilizing readout of the beam waist intersection. This measurement was calibrated by

applying known small accelerations and recording long time series of scattering intensity. Typical

time-domain profiles of scattering intensity are shown in Figure 5.9.

Beamwaist intersection readout mean data
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Figure 5.9. Mean intensity profiles of beam waist intersection for varying applied acceleration.
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Here, the trap operated at 1.1 kV and 220.5 Hz, and the curves shown each correspond to a

different applied acceleration. Each curve is the mean profile obtained by phase-coherent averaging

of 25,000 samples. As we showed before, one might expect the observed widening of these profiles

to correspond to an increased intersection of the particle with the beam waist.

This widening can be recovered by taking as a statistic the (centered) second moment of the

intensity profile. We call the square root of the second moment the beam waist dwell time and

plot this against applied acceleration in Figure 5.10 as a calibration curve. Over the small range

of variations involved ( 10 mg) we are rewarded by observing a reasonably linear response.

Beamwaist intersection readout calibration curve

I I I I I I

-2 0 2 4 6 8 10

Applied acceleration (mg)

Figure 5.10. Beamwaist intersection readout calibration curve.
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Because this measurement compresses several degrees of motional freedom into one and the

beam waist geometry is not well-known, it is difficult to estimate the absolute scale of these

measurements. We can however reasonably conclude from this calibration curve that there are

no strong nonlinearities lurking in our measurement, and begin to consider features of the noise

spectral power density if not its absolute scale.
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Figure 5.11. Power spectral density of beam waist drift measurement. A moving average of 55 samples is plotted

over the field of data points. Solid lines provide scaled references for 1/f and VIf-f trends.

Figure 5.11 shows the power spectral density of the same data used to obtain the calibration

curve. Dots are plotted for individual points in the density along with a moving average of 50

points to accentuate features in the density. A peak at 23.7 Hz coincides with an apparent shift

in the noise density trend from f-1/2 to f-I (solid lines). A very strong peak appears at 60 Hz

as one might expect, but peaks also appear at 43.5 Hz, 80.0 Hz, and 100 Hz. The graph cuts off

at 110.25 Hz, half the trapping frequency.
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Chapter 6

Discussion

First, a brief note about contributions made in this dissertation.

We believe that this work has for the first time developed and demonstrated the theory and

practice of inertial measurement using an electrodynamically levitated proof mass. Specifically,
by adding inertial terms to the Paul trap dynamics we have derived classical observables that

depend on the local acceleration field.

We have also confirmed that these observables appear in practice, in what we believe to be the

first electrodynamic trap accelerometer. An important (and unusual) aspect of our accelerometer

is its dynamic tunability: its effective spring constant depends on the trap drive parameters.

Our roughly constructed trap exhibits a large region of linear response to acceleration and we

have presented evidence to suggest that the total noise power in typical operation of the trap

lies below a readout noise floor of ~0.2mg.

6.1 Future work

All of the traps used in this work were hand-crafted, leading to uncertainties in size, shape,

planarity, dielectric distribution, and symmetry. By fabricating traps on printed circuit boards

(PCBs) we expect to achieve tighter control over these physical trap parameters, as well as a

much more compact package than the experimental apparati used in this work. This will greatly

simplify the fixturing and characterization of traps. Our current experiments are not suitable to

studies of trap frequency response because the apparatus hosts numerous mechanical resonances

within the bands of interest.

The next step would be to simplify metrology. Two leading candidates are self-mixing laser

diode velocimetry (SMLDV) [19][29] and differential optical leverage [33]. SMLDV might be

accomplished simply by mounting a laser diode sufficiently close to the trap that scattering

from the particle influences mode selection in the laser diode [21] - in other words, the particle

effectively becomes a mirror defining a Fabry-Perot cavity external to the laser diode package.

Most laser diodes are packaged with a photodiode used for optical feedback mode locking; the

signal from this photodiode may also be used to observe laser intensity variations (due to the

action of the external cavity) analogous to the intereference fringes that occur in a Michelson

interferometer [?]. By placing several of these SMLDV sensors to track a particle along non-

parallel axes, we might expect to recover the particle's three-dimensional motion by triangulation

or orthogonalization of the combined interferometric signals.
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Figure 6.1. Trapped Coulomb crystal of Au particles at rest and harmonically accelerated at 210 Hz.

Trapping at V = 1.0 kV, wo = 240 Hz. Illumination strobe at 2400 Hz.

We have observed Coulomb crystals in traps both large [28] and small. In Figure 6.1 we

demonstrate the lateral inertial excitation of a Coulomb crystal. Trajectories appear discrete

because particles are stroboscopically illuminated. One of these trajectories has been manually

traced to clarify its form. This trajectory - essentially a 3-dimensional Lissajous pattern - holds a

wealth of information about the trapping fields, the applied acceleration, and the timing of these

events. It is the goal of future work to tease this information out of the system with simplified

metrological techniques.



6.1 FUTURE WORK

We also observe that these harmonically acclerated crystals to be stable for tens of hours.

The crystal shown above, for example, remained stable under this applied excitation for over 30

hours, at which point the experiment was interrupted.

Interestingly enough, this crystal maintained its orientation in the trap throughout the exper-

iment, although we expected to observe some net rotational drift by the end. Several reasons for

this (undesired) stabilization come to mind: trap electrode asymmetry might have been sufficient

to strongly define a preferred orientation; charge accumulation on the trap might also play a

role; or perhaps it is strong viscous damping due to the atmosphere in this 1mm 3 trap cell. We

hope to better determine the cause of this orientation to allow us to either a) free the crystal to

rotate or b) better understand the effective torque keeping the crystal oriented.

Our trap loading mechanism points to a wealth of follow-on work. Particle mass and charge

are not well-known with the current loading protocol, but could be better determined by using

the trap in a spectroscopic mode to determine the particle's e/m ratio [35]. If massive (micron-

scale) particles are to be used they must be stored when the trap is not operating, in such a way

as to maintain their integrity.

One might even consider the use of crystallized plasmas [31] as proof masses. Such struc-

tures are amenable to sensitive optical probes such as Bragg scattering [161 to determine lattice

parameters and also exhibit rigid body dynamics.

Simplified optical metrology has been mentioned, but we might even consider using the

beam waist intersection readout to measure small motions in a trap operating under closed-loop

control. Such a trap might have a more versatile electrode geometry [20] than those used in the

present work to permit force balancing or the current trap might be operated in a mode where

the spring constant is continuously retuned to keep the proof mass in a small measurement zone.

Finally, there is the matter of agile high-voltage control. In the course of this work we have

pushed our operating voltages from 6 kV down to 600 V (and as low as 200 V in some cases not

documented here). While it is important to identify ways to push the operating voltage lower

still, we must also develop or identify a means to drive small capacitive loads with good phase

control at frequencies from 50 Hz to 5 kHz and voltages up to 1 kV. Ideally, this high-voltage

signal generator could be controlled by a microprocessor and fit within 1cm3 .
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