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ABSTRACT
Efforts to share resources in collaborative pursuits are hindered by differing data
representations, redundant applications, and software incompatibilities. Members of a
collaborative effort often span different computational environments and the
heterogeneity of contexts disrupts software interoperability.

Sharing computational resources has become the focus of many research efforts. Efforts
in the 1980s led to the Component Object Model (COM) [Williams, 1998a, 1998b, 1990]
and the Common Object Request Broker (CORBA) architectures [Offall et al 1996;
OMG, 2003]. In the 1990s both technologies were extended for network support. In
recent years, Ian Foster, has phrased the distributed computing problem in terms of
sharing computational resources. The grid problem is, "coordinated resource sharing and
problem solving in dynamic, multi-institutional virtual organizations", "to support
collaborative problem solving in industry, science, and engineering in a data rich
environment ". [Foster et al, 2001]

This work presents a new resource sharing platform architecture for information products
that leverages the lessons learned from physical product platforms, the concepts of web
services, and grid computing. The platform developed in this thesis integrates the
contributions of these three areas into a system that is shown to be more efficient and
effective at producing software products.

Thesis Supervisor: John R. Williams
Title: Professor of Civil and Environmental Engineering and Engineering Systems Division
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Chapter 1 Preface
This chapter begins with a brief introduction followed by a chapter guide.

1.1 Introduction

Sharing computational and information resources has become the focus of many research

efforts. Efforts in the 1980s led to the Component Object Model (COM) [Williams,

1998a, 1998b, 1990] and the Common Object Request Broker (CORBA) architectures

[Offall et al 1996; OMG, 2003]. In the 1990s both technologies were extended for

network support. In recent years, Ian Foster, has phrased the distributed computing

problem in terms of sharing computational resources. The grid problem is, "coordinated

resource sharing and problem solving in dynamic, multi-institutional virtual

organizations ", "to support collaborative problem solving in industry, science, and

engineering in a data rich environment". [Foster et al, 2001]

This work presents a new resource sharing platform architecture for information

products; leveraging the lessons learned from physical product platforms; leveraging the

concepts of grid computing and adding a binding (presentation) layer. Several bodies of

research help address this problem: grid computing, service oriented architectures, and

physical product platform research. The problem is addressed with the contributions of

these three areas and a prototype architecture is proposed and implemented.

1.2 Chapter Guide

This work starts by introducing the problem in Chapter 2, Problem Overview. It presents

the problem, the goals of this work, and the methodology. It also overviews the

contributing fields of research on which this thesis is based and details a sample XML

service.

Chapter 2 is followed by an early sample of a software system for collaboration. Chapter

3 Course Support as and Example of an Information Product. This chapter presents the
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Course Management and Delivery system research findings that illustrate the problems

posed in writing collaboration software. It details the functionality necessary to facilitate

course content delivery and class administration via the web, enable collaboration

between students, foster communication between student and instructor, empower users

to create their own content, and facilitate dissemination and institutionalization of web-

based teaching tools.

Teams, in academia, come together to find solutions to contemporary and classic

problems. The teams' objectives and character are varied, ranging from course work

projects to social activities.

The collaboration scenario is not limited to education. Observations made on the software

systems Command and TeamSpace lead the author to the Grid problem definition.

Chapter 4 Grids. This chapter discusses early grid-like ideas, current incarnations of grid

thought, .grid types, the importance of the grid, and the grid architecture solution.

Central to the grid problem is the sharing of resources. In each case, a number of

distrustful participants with varying degrees of prior relationship want to share resources

in order to perform some task.

Chapter 5 Inter-Organization Collaboration. This chapter discusses inter-organization

collaboration. It addresses virtual organizations and the need to share computational

resources, to have flexible sharing relationships, to have diverse control levels, and

diverse usage modes.

Chapter 6 Web Architectures. This chapter introduces web inspired architectures that use

XML based programming (XBP) as the glue to enable interoperability between

heterogeneous independent distributed computing platforms; a service oriented

programming model and a mesh of service oriented architectures (SOA).
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Chapter 7 XML Architecture. This chapter introduces XML architectures and

technologies. It contrasts SOAP, web services, and WSDL with COM, CORBA, and

RMI.

Chapter 8 Discovery Services. This chapter introduces the Universal Description

Discovery and Integration (UDDI) protocol. UDDI is used for description and discovery

in the portal grid. Samples of the UDDI XML documents are provided.

Chapter 9 Product Platform. This chapter discusses product platforms, product families,

and derivate products. It addresses the design and manufacturing of information products.

It investigates how information technology can be used to support the creation of new

products, create the manufacturing platforms, and modularize the product design. It

proposes an architecture for information products and it will addresses the strategic and

technical implications of the architecture.

The concept of Grid Computing is powerful but more is needed: a home for our services,

a way to define applications (portal types) quickly and inexpensively, a presentation layer

to the pool of computational resources, and a stateless version of the grid's abstract

framework for communication. Based on these needs the design of a Portal Factory can

be developed.

Chapter 10 Portal Factory. The concept of a portal factory is that of a core platform of

software from which individual products can be developed. The portal infrastructure data

model is composed of portals, component instances, component definitions, users, and

roles. The portal infrastructure also contains a rendering component, a module loader, a

portal loader, the portal context, satellite assemblies. In this chapter the infrastructure

component, data models, and designed are discussed.
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Chapter 11 Metrics. This section proposes metrics to asses the efficiency and

effectiveness of the research, development, and lifetime management of information

product platforms.

Chapter 12 Future Work and Contributions. This chapter introduces potential future

directions for work in the portal factory. The most direct paths of future work are

transaction support layers for the XML architecture and workflow management systems.

Other venues are mining the vast collected data of the command system. Similarly, it

presents contributions: grid extensions and implementation, information product

platform, and service oriented architecture.

Appendix 1, lists extensive data collected from the Command software system deployed

at MIT. Appendix 2 and 3 present the design guidelines used for the Command system.

Appendix 2. Designing for Communication: Layout, Structure, and Navigation. This

chapter presents guidelines for the design of site structure. It also goes on to discuss

graphic and text design in the context of graphical user interfaces.

Appendix 3. Technology in Education. An overview of technology in education.

Appendix 4. WSDL Generic Registration Sample. Web services description language

sample for a generic registration service.

Appendix 5 Federation. Federation is a term used for grouping in large decentralized

systems. This appendix discusses federation in the context of security systems.

Chapter 2 Problem Overview

Efforts to share resources in collaborative pursuits are hindered by differing data

representations, redundant applications, and software incompatibilities. As the members

of a collaborative effort span computational environments the heterogeneity of contexts

14



disrupts sharing attempts. The problem will only worsen as network connectivity

becomes ubiquitous and more resources are converted to software form.

Sharing computational resources has become the focus of many research efforts. Efforts

in the 1980s led to the Component Object Model (COM) [Williams, 1998a, 1998b, 1990]

and the Common Object Request Broker (CORBA) architectures [Offall et al 1996;

OMG, 2003]. In the 1990s both technologies were extended for network support. In

recent years, Ian Foster, has phrased the distributed computing problem in terms of

sharing computational resources. The grid problem is, "coordinated resource sharing and

problem solving in dynamic, multi-institutional virtual organizations", "to support

collaborative problem solving in industry, science, and engineering in a data rich

environment". [Foster et al, 2001]

This work presents a new resource sharing platform architecture for information

products; leveraging the lessons learned from physical product platforms; leveraging the

concepts of grid computing and adding a binding (presentation) layer. Several bodies of

research help address this problem: grid computing, service oriented architectures, and

physical product platform research. The problem is tackled with the contributions of

these three areas and a XML architecture is proposed and implemented.

This chapter begins listing the goals, the methodology, and the design guidelines. It then

overviews grid computing, XML architectures, product platforms, the portal factory, and

ends with the problem statement.

2.1 Goals

The goals of this thesis are:

1) A grid extension - A presentation layer for the grid concept

An Application Definition Layer (ADL) for the available pool of web services.

An XML application definition of distributed XML services on the network.

2) A modular platform for collaborative work

15



Loosely coupled XML components that encapsulate the functionality for a

service.

3) Lower cost for information products

Lower the cost, time, and efficiency of constructing new information products.

4) Framework to analyze information product platforms

A framework to study the stages in the production of information product.

5) Metrics to gage platform efficiency and effectiveness

Metrics to compare platforms and determine successful information product

families.

6) Service oriented platform design

A platform based on XML contracts and messages.

2.2 Methodology

This work is based on a series of experiments, beta trials, and implementations made at

the Massachusetts Institute of Technology (MIT). The initial observations were made on

the efforts to provide web based course support in academe.

Five years ago many professors, groups, and departments were putting course content on

the web. However, developers were programming and authoring independently.

Everyone's course looked different. Everyone's content data model was different. The

functionality across efforts varied according to savvy, resources, budget, and time.

Groups with a lot of time, a large budget, and computer savvy built high quality course

support. However, many faculty did not have the resources needed and offered minimal

or none existent web support. Even in the case of a high quality resource, there was still

the issue of sharing the information product programmatically across platforms and

external groups.

The authoring and programming explosion of the web happened for course support but

reuse was missing. Everyone was solving the same set of problems over and over. Time
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and time again groups devised independent systems for authentication/authorization,

schemas, and data structures to support courses.

Five years ago, a framework to address the instructional integration of technology was

designed and tested using three prototype web applications deployed in the schools of

Engineering, Business, and Architecture.

The systems scaled well and became the largest course management and delivery system

at MIT. The system reached over 16,000 users, over 250,000 pages, and over 60,000

attached files. The most common request from users was to leverage parts of the system

for collaborative efforts outside of courses. In time an extension was made for generic

team collaborations. The team support system also had a wide adoption and acceptance.

The heavy use of the system flagged an unmet need in the MIT community. Web course

support was indicative of a broader need to share resources. In other words, the

collaboration scenario is not limited to education. The course platform observations and

specially the team platform observations lead the to the same conclusion as the Grid

problem definition: the need for individuals and organizations to share computational

resources [Foster et al, 2001]. That is, the course platform provided a consistent and

predictable service for courses. However, the platform fell short in leveraging existing

services and sharing services generically.

The problem focus is the redundant work, redundant services, and the inability to

leverage existing resources on the network. Examples are course sites, department sites,

laboratory sites, student activities sites, virtual engineering, and remote experimentation

sites. Several bodies of research help address this problem: grid computing, service

oriented programming, service oriented architectures (e.g. SOA [Cabrera, 2003], OGSA

[Foster et al, 2002]), and physical product platform research. The problem is tackled with

the contributions of these three areas and a XML architecture is proposed and

implemented. The observations were made at MIT but collaborative efforts and resource

sharing are prevalent though all organizations.
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2.3 Design Principles

This works follows the emerging service oriented architecture (SOA) and web services

programming paradigm.

The design principles are modular and composable components that can work standalone

or as part of an application. The services are general purpose services that are abstracted

by a layer of XML to be agnostic to the execution environment. The protocols are based

on HTTP, XML, and the SOAP standards. The web service layer is federated. There is

not central point of administration, control, or failure.

2.4 Grid Computing

The fundamental problem of grid computing is:

" Coordinated resource sharing and problem solving in a dynamic, multi-

institutional virtual organizations.

- To support collaborative problem solving in industry, science, and engineering in

a data rich environment.

as defined by Ian Foster in the "Anatomy of the Grid" [Foster et al, 2001], where a virtual

organization is a set of individuals and/or institutions defined by sharing rules.

The grid computing literature presents interoperability as the key to enable resource

sharing architectures. The grid needs to support sharing relationships among arbitrary

parties, accommodating new participants dynamically, across different platforms,

languages, and programming environments. With out interoperability, VO applications

are forced to enter into bilateral sharing agreements. With out interoperability, dynamic

VO formation is all but impossible, and the types of VOs that be formed are severely

limited. Interoperability is thus the central issue to be addressed. In a networked

environment interoperability means common protocols.
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The Grid architecture is first and foremost a protocol architecture, with protocols defining

the basic mechanisms by which VO users and resources negotiate, establish, manage, and

exploit sharing relationships. For an in depth discussion of the grid see the "Grids"

chapter.

This work proposes a protocol architecture based on XML and HTTP. The XML and

HTTP architecture addresses shortcomings of the dominant distributed object

technologies of the past twenty years.

2.5 XML and HTTP Architecture

HTTP architectures have scaled like no other in history. Coupled with XML the Simple

Object Access Protocol (SOAP) [W3C-SOAP, 2003] presents a new opportunity to lower

the barriers of interoperability. SOAP messages are encoded using XML and uses HTTP

as Remote Procedure Call (RPC) style transport.

The kernel of the architecture is XML, HTTP, and SOAP. XML parsers and HTTP

processors are ubiquitous and at the time of writing there were over 50 implementations

of SOAP [SOAPLite-Toolkits, 2003]. With a SOAP handler any server becomes a SOAP

object request broker.

2.5.1 RPC and ORPC

In 1980s the dominant RPC protocols were Sun RPC and the Distributed Computing

Environment (DCE) RPC. The most visible implementations were the Network File

System (NFS) for UNIX systems for Sun and Windows NT for DCE [Box, 2000].

In the 1990s, the proliferation of Object Oriented Programming (OOP) led to Object RPC

(ORPC). ORPC coupled objects with a transport. Likewise, ORPC constructed the

mechanism needed to expose a handle for the remote object down into the programming

language.
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Object End Point ID Status Code
(which object) (did it work?)

Interface Identifier Extension Headers
(which interface) (what did you forget to build into the protocol?)

Method Identifier Parameter Data
(which method) (here are the out and inout parameters)

Extension Headers
(what did you forget to build into the protocol)

Parameter Data
(here are the in and inout parameters)

Figure 2-1 ORPC [Box, 2000]

Currently, the dominant ORPC protocols are the Distributed Component Object Model

(DCOM) and the Component Object Request Broker Architecture's (CORBA) Internet

Inter-ORB Protocol (IIOP) [Box, 2000].

2.5.2 Problems with ORPC

ORPC implementations were successful with in the organization in controlled

computational environments. However, both CORBA and DCOM had problems going

across organizational boundaries and onto the internet.

IIOP/GIOP

GloP

version+flags+msgtype

message-size

service context

requestid

Response-expected

object.key

operation

principal

payload

Logical Components

Object End Point ID

Interface Identifier

Method Identifier

Expansion Header

Parameter Data

DCOM

version+flags+msgtype

ndrdatarep

frag-length/auth-length

call-id

allochint

p-contjid

opnum

object uuid
(COM interface pointer ID)

ORPCTHIS
(protocol extensions)

payload

Figure 2-2 ORPC Requests [Box, 2000]

The successful implementations of ORPC were platform dependent. Although

Independent Software Vendors (ISV) made adaptations to other platforms, the cost of

maintenance and complexity of the solution limited the adoption rate.
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Each ORPC implementation also had specific implementation issues. DCOM had

scalability problems with DCE's keep alive messages on the network. The security issues

as systems spanned computational environments and the required message volume

restricted the deployment scenarios.

CORBA is turn had ORB problems. The number of ORBs in the market led to

incompatibilities. ORBs did not interoperate. Software developed for one ORB had no

guarantee to work in another ORB.

Another barrier was the technical complexity of the technologies. The complexity of the

technology limited to development to senior staff and experts. The plumbing, the

programming languages, and protocols restricted the number of people qualified to

design applications.

2.5.3 HTTP, XML, and SOAP

The distributed architecture using HTTP, XML, and SOAP is very loosely coupled.

Many parts are not specified to promote interoperability. For example, SOAP does not

specify a programming model. SOAP does not specify and API or ORB. Instead with a

XML parser and minimal code any HTTP server can become a SOAP ORB. The local

mapping from the incoming XML message to the local object is left as implementation

detail.

The missing part of HTTP is a standardized format for RPC calls, SOAP and XML

answer this need. XML plays the message encoding role. XML is a platform independent,

language independent, text based, and human readable representation protocol. Outgoing

messages can be serialized into XML and deserialized to the local object representation

upon arrival.
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Figure 2-3 SOAP Mapped to ORPC [Box, 2000]

HTTP, XML, and SOAP is presented as better kernel for RPC: HTTP as a Better RPC

and XML as a Better Network Data Representation (NDR).

Next is a detailed example using HTTP, XML, SOAP, the Web Service Description

Language (WSDL), and the Universal Description Discovery and Integration (UDDI)

[UDDI, 2003].

2.5.4 Email Service Sample

The first step is to write the service - edited for clarity. The email service is a simple

service with one method. The "Send" method sends and email from the consuming client.

The message is passed in the "Message" class.
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namespace email
{

// - --/ - - - - - -
// class to hold the email message
//--------------------------------------------

public class Message

public String to =
public String cc =
public String from =
public String bcc =
public String body =
public String subject =f"l
public String contentType = TEXT";

--------------------------------------------
/ email class with "send" method
/ ---------------------------------------------

public class Email : System.Web.Services.WebService
{

[WebMethod]
public bool Send(Message msg)
{

SmtpMail .SmtpServer = "outgoing.mit .edu" ;
MailMessage mailMsg = new MailMessage();
mailMsg.Cc = msg.cc;
mailMsg.Body = msg.body;
mailMsg.Bcc = msg.bcc;
mailMsg.Subject = msg.subject;
mailMsg.To = msg.to;
mailMsg.From = msg.from;
SmtpMail .Send (mailMsg);
return true;

Next the service needs to be described using the Web Service Description Language

(WSDL) [W3C-WSDL, 2003]. Note that the "Send" method and the "Message" class are

in the WSDL types.

The HTTP GET, POST, and SOAP are supported protocols in this WSDL document.

SOAP encoding is document and literal as opposed to RPC.

The end points are the URL where the XML will be sent.
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<definitions
xmlns :http="http: //schemas.xmlsoap.org/wsdl/http/ "
xmlns : soap="http: //schemas.xmlsoap.org/wsdl/ soap/ "
xmlns:s="http://www.w3 .org/2001/XMLSchema"
xmlns:sO="http://tempuri.org/'"
xmlns:soapenc="http: //schemas.xmlsoap.org/soap/encoding/"
xmlns :tm="http: //micro so ft. com/wsdl/mime/textMatching/"
xmlns :mime="http: //schemas. xmlsoap.org/wsdl/mime/
targetNamespace="http: //tempuri.org/"
xmlns="http: //schemas.xmlsoap.org/wsdl/ ">

<!-- TYPES - ->

<types>
<s :schema elementFormDefault= "qualified" targetNamespace="http://tempuri.org/">

<s:element name="Send">
<s: complexType>

<s: sequence>
<s:element minOccurs="0 " maxOccurs="l" name="msg" type=" sO :Message" />

</s :sequence>
</s :coiplexType>

</ s: element>

<s:corplexType name="Message">
<s: sequence>
<s:element minOccurs="O " maxOc cur s= "1" name="to" type=" s:string" />
<s:element minOccurs=O" maxOccurs="1" name="cc" type="s:string" />
<s:element minOccurs="O raxOc cur s= "1" name=" from" type=" s: string" />
<s:element minOccurs="O" maxOccurs="l" name="bcc" type="s:string" />
<s:element minOccurs="O " maxOc cur s= "1" name=" body" type="s: string" />
<s:element minOccurs="O" maxOccurs="1" name="subject" type="s:string" />
<s:element minOccurs="O" maxOccurs="1" name="contentType" type="s:string" />

</s :sequence>
</ s: complexType>

<s:element name="SendResponse">
<s: corrplexType>

<s: sequence>
<s:element minOccurs="1" maxOccurs="l" name="SendResult" type="s:boolean" />

</s :sequence>
</s :complexType>

</ s:element>

</s: schema>
</types>

<!-- MESSAGES -->

<message name="SendSoapIn">
<part name="parameters" element="sO:Send" />

</message>

<message name="SendSoapOut">
<part name="parameters" element="sO: SendResponse" />

</message>

PORT TYPES - INTERFACE
port now called interface

<portType name="EmailSoap">
<operation name="Send">

<input message="sO:SendSoapIn" />
<output message="sO:SendSoapOut" />

</operation>
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</portType>

<portType name="EmailHttpGet" />

<portType name="EmailHttpPost" />

< ! -- BINDING -- >

<binding name="ErailSoap" type="sO:EmailSoap">
<soap:binding transport= "http: / /schemas .xinlsoap. org /soap /http " style="document" />
<operation name="Send">

<soap:operation soapAction="http://tenpuri.org/Send" style="document" />
<input>

<soap:body use="literal" />
</input>
<output>

<soap:body use="literal" />
</output>

</operation>
</binding>

<binding name="EiailHttpGet" type="s0:EmailHttpGet">
<http:binding verb="GET" />

</binding>

<binding name= "EmailHttpPost" type=" sO :EmailHttpPost">
<http:binding verb="POST" />

</binding>

<! -- SERVICE AND END POINT
<!-- port now called endpoint

<service name="Email">
<port name="EmailSoap" binding="sO:ErnailSoap">

<soap:address location="http: //biztalk.mit.edu:81/email/email.asmx" />
</port>
<port name=" EmailHttpGet" binding= "sO:EmailHttpGet">

<http:address location="http: //biztalk.mit.edu:81/email/email.asmx" />
</port>
<port name="EmailHttpPost" binding="sO:ErmailHttpPost">

<http:address location="http: //biz talk.mit.edu: 81 /email/email. asmx " />
</port>

</service>
</definitions>

Next the service is entered into the Universal Description Discovery and Integration

(UDDI) database.

The business entity corresponds to the provider, MIT in this case. The web service is

"Notifications". "Email" is only one type of notification. The binding template is the

destination of the XML message. The tModel holds the metadata for the service. In this

case, the WSDL document for the email service.
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<UniversalDescriptionDiscoveryIntegration>

<!-- Business Entity entry - THE PROVIDER

<businessEntity
businessKey="0 0000000 -0000-0000-0000-000000000 000"
operator= "Massachusetts Institute of Technology"
authorizedName=" Abel Sanchez : 86">
<discoveryURLs>

<discoveryURL useType="Home Page">http: //portals.mit.edu/training/</discoveryURL>
<discoveryURL

useType="businessEntity">http: //uddi.mit.edu/discovery?businessKey=00000000-0000-0000-
0000-000000000000</discoveryURL>

</discoveryURLs>
<name>Academic Portal</name>
<description>Academic Portal - An instance of the Academic Portal type in the Portal

Factory< /description>

<!-- The Notification service - THE WEB SERVICE -- >

<businessService
serviceKey="11111111-1111-1111-1111-111111111111"

businessKey="00000000-0000-0000-0000-000000000000">
<name>Notification</name>
<description>Notification service in the portal factory</description>

<bindingTemplates>

<!-- first binding: Email Service - THE ENDPOINT OR PORT

<bindingTenplate
serviceKey="11111111-1111-1111-1111-111111111111"1
bindingKey="22222222-2222-2222-2222-222222222222">

<description>Email</description>
<!-- The service's endpoint URL -- >

<accessPoint URLType="http">
http: / /portals.mit .edu/ Email .asmx

</accessPoint>
<tModelInstanceDetails>

<!-- reference to the tModel describing the Email Send interface -- >
<tModelInstanceInfo

tModelKey="uuid: 55555555-5555-5555-5555-555555555555">
<description>Email tModel</description>
<instanceDetails>

<description>SDK document</description>
<overviewDoc>

<description/>
<overviewURL/>

</overviewDoc>
<ins tanceParms>http: / /portals .mit. edu/SDK</instanceParms>

</instanceDetails>
</tModelInstanceInfo>

</tModelInstanceDetails>
</bindingTemplate>

<!-- second binding: Instant Messaging Service - THE ENDPOINT OR PORT -- >
<bindingTerplate

serviceKey="1lllllll-1111-1111-1111-111111111111"
bindingKey="33333333-3333-3333-3333-333333333333">

<description>Instant Messaging</description>
<!-- The service's endpoint URL -- >

<accessPoint URLType="http">

http: //portals. mit. edu/ InstantMessaging. asmx
</accessPoint>
<tModelInstanceDetails>

<!-- reference to the tModel describing the Instant Messaging interface -- >
<tModelInstanceInfo tModelKey="uuid:44444444-4444-4444-4444-444444444444">

<description>Instant Messaging tModel</description>
<instanceDetails>
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<description>SDK document< /description>
<overvi ewDo c>

<description/>
<overvi ewURL />

</overviewDoc>
<instanceParms>http: //portals .mit. edu/SDK</instanceParms>

</instanceDetails>
</tModelInstanceInfo>

</tModelInstanceDetails>
</bindingTemplate>

</bindingTemplates>
</businessService>

</businessEntity>

<!-- tModel for the Email Service - METADATA STATEMENT

<tModelDetail>
<tMo del

tModelKey= " uuid: 55 555 55 5- 555 5- 555 5- 555 5- 555 55 555 55 55"
operator="MIT"
authorizedName="Abel Sanchez">

<name>Email Send Service</name>
<description>This interface is to be implemented by services that send

email. </descript ion>
<overviewDoc>

<description>WSDL document< /description>
<overviewURL>http ://portals .mit. edu/Eail. asmx?WSDL</overviewURL>

</overviewDoc>
<categoryBag>

<keyedRe ference
tModelKey="uuid:01010101-0101-0101-0101-010101010101"

keyName="Specification for a web service described in WSDL"
keyValue="wsdlSpec"/>

</ cat egoryBag>
</ tModel>

</tModelDetail>

<!-- tModel for the Instant Messaging Service -- >
<tModelDetail>

<tModel
tModelKey="uuid: 44444444-4444-4444-4444-444444444444"
operator="MIT"
authorizedName="Abel Sanchez">

<name>Instant Messaging Service</name>
<description>This interface is to be implemented by services that Instant

Messages .</description>
<overvi ewDoc>

<description>WSDL document< /description>
<overviewURL>http : //portals .mit. edu/InstantMessaging .asmx?WSDL</overviewURL>

</overviewDoc>
<categoryBag>

<keyedRe ference
tModelKey="uuid: 01010101-0101-0 101-0101-010101010101"

keyName= "Specification for a web service described in WSDL"
keyValue="wsdlSpec "/>

</ cat egoryBag>
</ tModel>

</tModelDetail>
</Universal DescriptionDiscoveryIntegration>

The next step is to write a proxy to consume the email service and send a message. Note

that the proxy is a local representation of the email service "Send" method.
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namespace wsclient.email {

[System. Web.Services. WebServiceBindingAttribute (Name= "EmailSoap,
Namespac e=" ht tp: / /tempuri .org/ ") ]

public class Email System.Web.Services. Protocols. SoapHttpClientProtocol

/// <remarks/>
public Email() {

this.Url = "http://biztalk.mit.edu:81/email/email.asmx";

// <remarks/>
public bool Send(Message msg) {

object[] results = this.Invoke("Send", new object[]
msg});

return ((bool) (results[0]));

/ <remarks/>
[System.Xml. Serialization. XmlTypeAttribute(Namespace="http: //tempuri .org/ ")]
public class Message {

/// <remarks/>
public string to;

/// <remarks/>
public string cc;

/// <remarks/>
public string from;

/// <remarks/>
public string bcc;

/// <remarks/>
public string body;

/// <remarks/>
public string subject;

/// <remarks/>
public string contentType;

The next step is to build the client to the email service. The consumer codes against the

local proxy as if the method was local. Serialization and messaging is handled by the

proxy.
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namespace wsclient

/ <summary>
// Email client class
// </summary>
class EmailClient
{

// <summary>
// The main entry point for the application.
/// </summary>
[STAThread]
static void Main(string[] args)

Email.Message msg = new Email.Message();
msg.to = "abel_user@hotma il.com";
msg.from = "doval@mit.edu";
msg.subject = "Xml is Stringy";
msg.cc = "abel_user@hotmail.com";
msg.body = "Xml is human readable";

Email.Email email = new Email.Email();
email. Send (ms g)

When the client is executed, the message below goes on the wire. The top 8 lines are

HTTP headers. In this platform, SOAP action signals the web server this is web service

call.

<!-- MESSAGE REQUEST TO SERVICE -- >

POST /email/email.asmx HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; MS Web Services Client Protocol
1.0.3705.288)
Content-Type: text/xml; charset=utf-8
SOAPAction: "http: //tempuri. org/Send"
Content-Length: 451
Expect: 100-continue
Connection: Keep-Alive
Host: biztalk.mit.edu

<?xnl version="1.0" encoding="utf -8 "?>
<soap: Envelope

xmlns : soap="http: //schemas. xmlsoap.org/ soap/ envelope!"
xmlns:xsi="http://www.w3 .org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3 .org/2001/XMLSchema">

<soap :Body>
<Send xmlns="http://terpuri.org/">

<msg>
<to>iesl@mit. edu</ to>
<cc>abeluser@hotmail.com</cc>
<from>doval@mit. edu</ from>
<body>Xml is human readable</body>
<subject>Xml is Stringy</subject>

</msg>
</Send>

</soap:Body>
</soap:Envelope>
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The service returns the following response after a successful message.

MESSAGE RESPONSE FROM SERVICE

HTTP/1.1 100 Continue
Server: Microsoft-IIS/5.0
Date: Tue, 12 Aug 2003 04:57:31 GMT

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Tue, 12 Aug 2003 04:57:31 GMT
Cache-Control: private, max-age=0
Content-Type: text/xml; charset=utf-8
Content-Length: 332

<?xrnl version="1l.0" encoding="utf -8"?>
<soap: Envelope

xmlns :soap="http: //schemas. xmlsoap.org/ soap/ envelope/"
xmlns :xsi= "http://www.w3 .org/200 1/XMLSchema- instance"
xmlns:xsd="http://www.w3 .org/2001/XMLSchema">

<soap :Body>
<SendResponse xinlns="http://tempuri.org/">

<SendResult>true</SendResult>
</SendResponse>

</soap:Body>
</soap:Envelope>

This sample has shown the cycle from writing the service, describing it using WSDL,

publishing it using UDDI, writing a proxy, consuming the proxy, and the SOAP

messaging between the service and client. For more on this topic see the chapter on Xml

Architecture.

2.6 Application Definition Layer

Grid computing and XML architectures are powerful but more is needed: a home for the

web service pool; a way to define applications (portal types) quickly and inexpensively; a

presentation layer to the pool of computational resources; a stateless version of the grid's

abstract framework for communication.

This thesis presents an Application Definition Layer (ADL). The ADL is a new resource

sharing platform. The ADL is a presentation layer for a web services federation,

leveraging lessons from physical product platforms (see next section), leveraging the grid

computing architecture to create a platform for information products - the Resource

Sharing Platform Architecture for an Information Product Factory.
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The design of the portal factory grid is a XML architecture for a stateless grid computing

implementation. An implementation to enable reusable services and in a information

products assembly line.

To see a detailed description of the ADL see the portal factory chapter. The next section

discusses the contributions of physical products platform research to this work.

2.7 Product Platforms

The "platform" term refers to the basic product or process design from which derivate

products can be produced. Two types of platforms are singled out: the product and

process.

The product platform is the physical form of the architecture, where as the architecture is

the design concept of the product. The process platform is the end-to-end process

encompassing technologies, facilities, and processes.

Derivative products from a platform are called product families. Products families share a

number of subsystems and technologies. The commonality leads to efficiency and

effectiveness.

The portal factory uses a product platform called a repository. The repository is a

directory of available web services from which information products can be created.

The process platform is a refinery. The refinery is composed of five steps: acquisition,

refinement, storage/retrieval, distribution, and presentation.

For complete coverage on products platforms see the chapter on platforms, the one on

metrics, and the Universal Description Discovery and Integration (UDDI).
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2.8 Problem Statement

This work presents a new resource sharing platform architecture for information

products; leveraging the lessons learned from physical product platforms; leveraging the

concepts of grid computing and adding a binding (presentation) layer.

The motivation of this work is to address the needs of virtual organizations (VOs) which

are defined as a set of individuals and/or institutions bound together by sharing rules. In

each case, a number of distrustful participants with varying degrees of prior relationship

want to share resources in order to perform some task.

The design of the portal factory grid is an XML architecture for a stateless grid

computing implementation. The new architecture presents the following innovations:

* Lower cost for information products

" A new way to organize development

" A new way to develop and organize distributed development

" A platform for collaborative work

" Metrics to gage platform effectiveness and efficiency.
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Chapter 3 Course Support as an Example of

an Information Product

This chapter presents selected portions of the Course Management and Delivery system research

findings. It covers the goals, implementation model, design analysis, and design foundations.

3.1 Introduction

Among the most important issues facing educators today are the instructional integration of

technology and user support. These issues, coupled with the trend toward using web sites as a

point of comparison for courses as well as schools, provide strong motivations for investigating

how the web can be used to support and augment classroom instruction.

Five years ago, a framework to address the instructional integration of technology was developed

and tested using three prototype web applications deployed in the schools of Engineering,

Business, and Architecture. These courses involved faculty, teaching staff, and students, as well

as professionals in industry. The prototypes sought to identify the following: (a) educational

opportunities afforded by the web based on various teaching styles; (b) tasks that lent themselves

well to its asynchronous, albeit ubiquitous, nature; (c) issues involved in web site preparation and

management, including web authorship and student use.

Emphasis was placed then, as in this work, on developing interactive features and designing

general templates or containers that could accommodate various subjects and empower both

professors and students, while shielding them from complexity, to create and maintain web

content without having to rely on an intermediary.

This section discusses the requirements, design, development and implementation, of web sites,

as a course delivery system scales up and plans for institutionalization.

The first part of this chapter briefly details the design approach and presents observations based

on data of the running system.

33



3.2 Command Goals

Develop 'generic' web-based models/templates that can be easily customized and

extended to meet the needs of various classes and students at a distance.

Design general templates and continuously refine these to create a base set of containers that are

scaleable and customizable.

Facilitate dissemination and institutionalization of web-based teaching tools and

ensure quality control in course module development.

Use the standard set of templates to initiate a "mass customization" effort targeted at enabling

teachers to set up home pages quickly and effectively, while shielding them from complexity, and

institutionalizing this practice.

Empower users to create their own content.

Users refers to professors as well as their teaching assistants, and students. One goal is to develop

a model that does not rely on a central authority, such as a webmaster, to post materials. There are

two benefits of this approach, namely: (a) professors need not rely on technical support at the

institutional or even departmental level; and (b) they can control what is published and how it

appears on the web. The latter is important because they are the domain experts and know best

how to present the material. In addition, empowering the students to contribute directly to the

class web site lessens the overhead involved in administering the class and gives more room for

creativity.

The models considered for the production release are listed bellow.
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3.3 Centralized Model

* Hardware, software and human (application development and technical support)

resources maintained at a central site. Content provider needs to go through this

intermediary for application design changes and possibly publication of content.

* Advantages: Economies of scale resulting from sharing of resources, control of

standards, availability of critical mass of skills.

* Disadvantages: Author does not have full control over application design and

publication of content, larger start-up costs (for central site), slower response/turnaround

time for user requests.

3.4 Decentralized Model

* Content provider has full control over the design and content of the web site. In a fully

decentralized model, the 'course developers' (i.e. professor, teaching staff) maintain the

hardware and server software needed to keep the web site up and running. A deviation of

this model has the hardware and server software maintained by a central resource, such as

Athena, but leaves development of the web application and html pages to the course

developers. The latter model may constrain the application design capabilities. For

instance, relying on the Athena web server prevents course developers from using

cgiscripts in their web sites.

9 Advantages: Author has full control over publication and can see results immediately,

no need to rely on an intermediary

* Disadvantages: Lack of hardware/software support and technical expertise, larger

overall costs to the university, reinvention of wheels, variable standards, no synergy and

integration.

3.5 Proposed Model

The templates have the following characteristics:

" Support a common set of course delivery and management tasks;

" Be easily customized and extended to meet to the unique needs of the various classes;

" Empower both the teaching staff and students to publish and edit content without the

intervention of a webmaster;
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* Run on a development and production environment that supports multiple platforms, is

scaleable, provides industrial-strength security and database management support.

This paradigm lends itself well to prototyping, rapid application development and mass

customization, and can be adapted to both the centralized and decentralized models. The use of

generic templates that can be easily replicated and customized enables, but does not require,

development of standards, promotion of best practices, flexibility in both application design and

publication of content. Given the short lead times and limited technical resources available to

most professors in developing web content, the generic toolkit described above enables them to

get a jumpstart on their web site and focus on development of course material.

3.6 Architecture

The architecture of command was designed in an object oriented paradigm and well

encapsulated components. However, as many software today the components all had

proprietary interfaces. The data stores, the authentication and authorization model, the

rendering model, the agents, the clients, and servers were all based on interfaces that

were proprietary.

As the system began to gain acceptance and was deployed in more places the architecture

constraints started to become apparent. One of the first was the registration agent. When

the system was deployed integrating users automatically was desired when registering

large numbers of students. The types of integration were different at each deployment.

Some had proprietary systems, others had databases, and some had the increasingly

popular directories like LDAP.

Interfacing the registration agents was done on a case by cases basis. Each institution

created a custom solution that only worked for them and could not be reused unless the

exact information technology infrastructure existed somewhere else.
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A similar issue arose around the data stores. Each institution localized data exchange to

relational database management systems (RDBMS), proprietary stores, and even flat text

files with value pairs. The lack of a common data exchange format limited leveraging

peer institutions work.

The programmatic agents themselves could only be called through proprietary protocols.

Although the platform provided interfaces in several popular programming languages, C,

C++, and Java, developers still had to interface the platform, create a session, access the

platform classes, and create objects, all of which constrained customization and

ultimately adoption.

3.7 Users

The target audience was students and faculty, both on-campus and remote. Consequently,

users connected from commercial internet service providers (ISP) and local area

networks (LAN). The typical bandwidth for these connections was 14.4 kbps - 56 kbps

for ISPs, 128 kbps for ISDNI, and 1 mbps for LANs.

As the course delivery system scaled up the audience diversity increased. The different

users came from the schools of Engineering, Science, Humanities, Architecture, and

Management.User needs, both students and faculty, varied across disciplines due to

academic culture, teaching models, computer facilities, and the degree of computer

literacy.

These classes, conducted in different schools within MIT, subscribed to different

teaching models, thereby providing a representative cross-section of the academic

population from which to base the functional requirements and system design. The

findings are shown in the following diagram.
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TEACHING
MODEL

ROLE OF
TEACHER

PRIMARY
ROLE
OF WEB

USE OF WEB
BY CLASS
PARTICIPANTS

INSTRUCTIONIST

"Sage on the Stage"
Provider of Information

Knowledge Assignment
Base Placeholder

* t

Access/Digest Material
Submit Assignments

CONSTRUCTIVIST

"Guide on the Side"
Facilitator

Shared Space
for Discussions,
Class Projects

Express/discuss ideas
Organize events
Develop projects

INSTRUCTIONIST
(Division of Labor)
CONSTRUCTIVIST

"Project Leader"
Supervisor

Container of
Pointers to Other
Sites (Resources,
Group Projects)

Share information
Develop group projects

Figure 3-1 Models of Teaching and Web Use

3.8 Web Model

Currently most courses follow a centralized or decentralized web site management model

[Hidalgo, 1997].

3.8.1 Centralized Model

" Hardware, software and human (application development and technical

support) resources maintained at a central site. Content provider needs to go

through this intermediary for application design changes and possibly

publication of content.

* Advantages: Economies of scale resulting from sharing of resources, control

of standards, availability of critical mass of skills.
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* Disadvantages: Author does not have full control over application design and

publication of content, larger start-up costs (for central site), slower

response/turnaround time for user requests.

3.8.2 Decentralized Model

* Content provider has full control over the design and content of the web site.

In a fully decentralized model, the 'course developers' (i.e. professor, teaching

staff) maintain the hardware and server software needed to keep the web site

up and running. A deviation of this model has the hardware and server

software maintained by a central resource, such as Athena, but leaves

development of the web application and html pages to the course developers.

The latter model may constrain the application design capabilities. For

instance, relying on the Athena web server prevents course developers from

using cgi-scripts in their web sites.

" Advantages: Author has full control over publication and can see results

immediately, no need to rely on an intermediary

* Disadvantages: Lack of hardware/software support and technical expertise,

larger over-all costs to the university, reinvention of wheels, variable

standards, no synergy and integration.

3.8.3 Proposed Model

The templates have the following characteristics:

" Support a common set of course delivery and management tasks;

" Be easily customized and extended to meet to the unique needs of the various

classes;

" Empower both the teaching staff and students to publish and edit content

without the intervention of a webmaster;
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0 Run on a development and production environment that supports multiple

platforms, is scaleable, provides industrial-strength security and database

management support.

This paradigm lends itself well to prototyping, rapid application development and mass

customization, and can be adapted to both the centralized and decentralized models. The

use of generic templates that can be easily replicated and customized enables, but does

not require, development of standards, promotion of best practices, flexibility in both

application design and publication of content. Given the short lead times and limited

technical resources available to most professors in developing web content, the generic

toolkit described above enables them to get a jumpstart on their web site and focus on

development of course material.

3.9 Sample COMMAND Data

At the time of writing the COMMAND had 16,199 users, 476 course instances, 84 team

spaces, 2749 administrative email messages, and over 200,000 pages of content.

Sample course sizes in megabytes:

Size: 5.44 MB
Size: 7.43 MB
Size: 14.6 MB
Size: 0.17 MB
Size: 127.8 MB
Size: 118.41 MB
Size: 23.32 MB
Size: 104.29 MB
Size: 43.39 MB
Size: 0.19 MB

1.041
1.070
1.103
1.118
1.118_F01
1.120F99
1.124
1.124_FOO
1.125

Size:
Size:
Size:
Size:
Size:
Size:
Size:
Size:
Size:

30.91 MB
0.18 MB
4.05 MB
59.33 MB
112.08 MB
39.1 MB
20.11 MB
6.47 MB
11.62 MB

Table 3-1 Sample Course Sizes

Sample course file type counts:

- Document folder: Assignments -- Document folder: LectureNotes
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- html, 1
- Document folder: By Category

- html, 2
- Document folder:

CourseMaterial
- html, 1

- Document folder: HWByNo
- xls, 3
- txt, 6
- pdf, 1
- zip, 14
- html, 50
- htm, 1
- gz, 2
- vsd, 3

- total section files: 80

- ppt, 24
- pdf, 3
- zip, 1
- html, 1
- total section files: 29

- Document folder: Readings
- xls, 2
- txt,1

- pdf, 14
- ps, 2
- zip, 7
- exe, 2
- html, 2
- htm, 14
- total section files: 44

- Document folder: Solutions
- html, 1
- htm, 1
- total section files: 2

Table 3-2 Sample File Type Counts

For comprehensive data on command data stores and content see the appendix.

3.10 COMMAND Design Guidelines

The appendix presents guidelines for the design of site structure. It also goes on to

discuss graphic and text design in the context of graphical user interfaces.

3.11 Observations

Teams in academia come together to find solutions to contemporary and classic

problems. The teams objectives and character are varied, ranging from course work

projects to social activities. Regardless of the group's objective, there are common

collaboration objectives.

Sample common collaboration objectives:

* Problem identification
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* Informing and knowledge exchange
* Events
* Evaluating alternatives
* Choice
* Implementing
* Review/feedback
" Coordination
* Socialization
" Motivation
" Negotiation

The collaboration scenario is not limited to education. Command and specially

TeamSpace observations lead us to the same conclusion as the Grid problem definition.

The need for individuals and organizations to share computational resources.
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Chapter 4 Grids

4.1 Introduction

There is no universally agreed upon definition of Grid Computing. There are many

systems that have grid like qualities. There are many systems that use grid technologies

and there are many systems that use grid specifications. A simple Google search will

return hundreds of hits on grid "like" systems.

Adding to the mix, the original and still most recognized grid technology [Globus, 2003]

had undergone considerable changes in its short history. The original implementation has

evolved so much there are legacy issues with early adopters. The current implementation

has moved to XML architectures while the initial code base was based on the Java

platform.

The grid domain presents many new ideas and possibilities. However, the unique aspect

of the grid is the web service and XML protocols. The advantages of the architecture and

protocols are discussed in the sections to follow.

4.2 Galactic Network

The early days of supercomputing saw many high performance computing centers be

funded by the national science foundation and the like. As time went on the number of

supercomputing centers was reduced to a few well known centers. The big machine

problem received less funding and there was a focus change to distributed computing.

The next challenge was to aggregate, link, and marshal distributed computers and

computational resources. Many of these ideas resonate with the long standing goal to link

computers and resources.

The idea of connecting computers and sharing resources is not new. Back in 1962, J.C.R

Licklider from MIT introduced the idea of a "Galactic Network" a network to enable
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social interactions and collaboration. By the end of the sixties, in pursuit of such goals, a

contract was awarded to BBN by the Defense Advanced Research Projects Agency

(DARPA) to build a packet switching network. The developments continued, in the mid

seventies the work on the Transmission Control Program (TCP) began and by the eighties

TCP/IP and the Domain Name System had been implemented. TCP/IP and DNS brought

about a connectivity boom as record numbers joined the internet.

By the end of the eighties the number of internet hosts had surpassed 100,000 [PBS,

2003]. Widespread of local area networks and lowered technological barriers enabled the

internet to flourish. However, even though many in academe and industry were connected

collaboration was still complex enough that sharing resources remained for the computer

savvy. Tools for the personal computer user were few and not very friendly. Text based

interfaces with monochrome displays were the norm and Graphical User Interfaces (GUI)

were the exception.

Figure 4-1 Computer Linking

The great advances in internetworking protocols of the past twenty plus years would be

introduced to the mainstream by a killer application: enter the World Wide Web. The

nineties started with Tim Berners Lee introduction of the World Wide Web (WWW). The

web, based on the Hypertext Transfer Protocol, was the revolutionary and transcendental

next step in connectivity. The HTTP step, starting out slow in the early nineties, had an

exponential take off blast with the introduction of the web browser, Mosaic in late 1993.
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The web browser and the simplicity of the web publishing had a take off like nothing

before it in history. By the end of the nineties every country in the world was connected

to the web and the technology penetrated every facet of society.

TCP/IP had connected computers, HTTP connected documents. Technically, what HTTP

offered was not very different than what was possible with TCP/IP. A user could just as

well pick up a document from specified a TCP/IP port given he had the right tools and

knowledge of the programmatic interface. However, the exchange would require a

bilateral agreement and information exchange between the client and server teams. HTTP

standardized the exchange. As long as the server adhered to the protocol the client could

consume documents from the standardized interface with having to talk to the service

owners.

Figure 4-2 Document Linking

Starting in the late nineties Grid computing and Grid computing protocols are vying to

take the next step/leap in connectivity. Grid protocols link software, databases,

simulations and visualizations tools, and the number crunching power of computers - see

diagram bellow. If successful, the impact of grid protocols could be even bigger than

linking documents (HTTP).
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Figure 4-3 Computing Resources Linking

The fundamental problem of grid computing is:

Coordinated resource sharing and problem solving in a dynamic, multi-

institutional virtual organizations.

" To support collaborative problem solving in industry, science, and engineering in

a data rich environment.

As defined by Ian Foster in the "Anatomy of the Grid" [Foster et al, 2001].

Resource sharing has three dimensions that can be singled out for discussion. The first is

client type; operating systems in academe and industry vary with in families and across

vendors. For example to mention a few with in Linux there is Red Hat, Mandrake,

Debian, Knoppix, Slackware, Caldera, Turbolinux, ELX, and Lycoris to name a few. At

last count there were 131 available distributions online from DistroWatch,

distrowatch.com. Likewise, UNIX and Windows have arrays of operating systems. The

plethora of operating systems necessitates connectivity that is independent of the

operating system, much like browsers.

A second dimension is access type. There is a need to connect to computers, software,

and data. For example, in cases of distributed computation there is need to distribute
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computation over the pool of available hosts. Computing hosts need to communicate

status and overall computation may need to be coordinated. The access must be granular

enough to be able to connect to the software running on each machine and interact with

the data. The access must also be done in a platform independent manner to promote

scalability and easy of deployment.

The third dimension is control. Control refers to more than permissions; it refers what is

shared such as software on a machine, and/or computational cycles, and/or data. Who is

allowed to share, users or groups, conditional situations in which sharing will occur,

delegation of sharing, and policies of sharing.

A set of individuals and/or institutions defined by sharing rules is a Virtual Organization

(VO). For more on VOs see the section on virtual organizations.

More and more so, collaborative efforts involve individuals from different parts of an

organization - or across organizations - where the information technology infrastructure

is different enough that online collaboration is a challenge. On each effort, a number of

individuals whose level of trust needs to be established with varying degrees of prior

relationship want to share computational resources in the course of a collaborative effort.

4.3 Grid Types

Most of the discussion on the grid is centered on computation, data, and services grids.

The computational grid has three major variations. In the simplest case existing

applications run on an available machine on the grid rather than locally. In the second

case applications are broken down into parts in order to execute each part in parallel

among machines on the grid. The third is an application that needs to run many times on

many machines on the web [Jacob, 2003].

While on one type of grid high performance servers are set aside to provide computing

power on the other desktop machines are scavenged for available CPU cycles and other
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resources. Sample applications of the concept are SETI and Google. Depending on the

type of application, a larger number of machines or higher computing power on a single

machines maybe a more advantageous grid solution.

In the computational grid, the user or customer is requesting raw resources. The grid can

perform everything from brokering computing cycles to complete solutions such as an

application service provider. Much like the super computing of past decades but offered

on new protocols and architectures. Grid proposals are leveraging the new scalable

architectures of web programming and publishing web capability to expose the

application programming interfaces of grid applications. Though enabling solutions exist

today, there are still many more in the making that will round out the web programming

model like protocols for transaction, coordination, addressing, and security.

In the data grid each available machine provides some storage for grid use. Storage can

be in memory or secondary storage in hard disk or other storage device. The trade-off

between the storage types is speed and persistence. Secondary storage can be used to

increase capacity, reliability, and performance. Capacity can be increased by using

storage in multiple machines and making it available through a unifying file system or

protocol. Distributed implementations of data striping can improve performance and

redundancy for data safety.

The third type of grid is a "federation of services". The grid offers a number of services

for consumption. Each grid having a number of domain specific services as well as a

common set that is shared among grids of the same type. In and academic grid, examples

of the common services are registration, document store, calendar, and forums. Grid users

deliver data to an algorithm for processing at the service end point. This work presents a

federation of services architecture.
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4.4 The Grid

Ian foster, from Argonne National labs coined the "grid" name and defined the grid

problem, "integrate services across virtual organizations formed from disparate resources

within and with out an enterprise" [Foster et al, 2001]. The grid problem is also stated in

terms of protocols and services.

A service approach is important because a service is defined solely by the communication

protocol and the implemented functionality. The services offered can be used as is or

extended to create new services. That is, the user is not burdened with setup or

installation issues. The resource specific dependencies on the server side are hidden and

invisible to the service consumer. For more on services architectures, see the section on

web and XML architectures.

Application programming interfaces (API) and software development kits (SDK) are

important but secondary to protocols and services. API and SDKs can improve

application robustness, development costs, and maintenance costs and are important.

However, with out common protocols interoperability can only be achieved by having a

single implementation or by having every consumer learn the details of every interface it

wants to consume. Thus, while APIs and SDKs are beneficial they are even more so

when coupled with open protocols.

Protocols are the lingua franca used between applications. A protocol specifies the

structure of information used in messaging between the protocols. The protocol does not

involve any internal applications issues, instead it acts as a go between for application

messaging. Protocols are key to the grid because a protocol defines how a distributed

system interacts with another and the structure of the information exchanged during this

interaction. The focus on the descriptive external resource hooks facilitates an

engagement foregoing the preoccupation of implementation issues. Resources being

shared or consumed must still integrate into local policies and allow individual

institutions to maintain ultimate control over their own resources. Since protocols focus
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on the information exchange and not the implementation, the control of local resources is

maintained.

Another critical component of the grid problem is trust and heterogeneous distributed

computing. The issue of trust is a difficult problem in distributed computing. Grid

participants must be able to trust a remote service with their data and/or application. The

returning result must be trusted to be uncompromised. The remote service must be trusted

to not copy the data. The remote services must be trusted to not copy the executing code.

Finally, the remote service and the calling application must device and implement a

security protocol to prevent interception, guarantee message integrity, and prevent

identity impersonation.

The challenge of trust is compounded by the need for a heterogeneous computing

solution. Trust architectures need to exist independent of programming model, operating

system, or component technologies. An early effort for a federated security architecture

in XML has already been proposed by IBM and Microsoft.

This work presents the grid as federation of web services. The implementation is for

information products. However, given the architecture, applications can also be made to

large scale science and engineering data problems. Possible scenarios are web service

taking data from other programs or users. Another possibility is data mining and data

stores.

The architecture is the next step in easy data publication and access - where data is

complex. The architecture of web services, WSDL, and UDDI makes it easy to publish,

find, and explore computing resources. The wire protocols are text based making possible

for every operating system and platform to interoperate. The other big advantage is the

architecture now has internet scale distributed computing.

What is different?

0 Programming interoperable systems is easier.
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" Leveraging services is easier.

" Having access to the wire's text based protocols makes it easier to debug.

" The architecture has web scalability.

A central focus of the information products portal grid architecture is data. The grid can

be thought of as a data federation of web services whose focus is the manipulation of

data.

4.5 Why is the grid important?

Today's computing environment is very diverse. With in an organization, say a

university, the major information technology infrastructure applications vary a

significantly across departments. Starting with operating systems (OS), organizations

tend to have OS camps, the most notable being Apple, UNIX, Linux, and Windows. The

variety surpasses even the major pockets since with in each category there is an array of

additional offerings. Other major applications like Relational Database Management

System (RDBMS), web servers, security systems, groupware, and workflow servers

follow the same pattern. When crossing organization boundaries the problem is

magnified. Not only is there the possibility of yet more technical variations but there are

added complexities such as organizational culture and security policies to overcome.

Many of these issues exist even within one organization but multi-organization

compound the problem as each additional organization carries with it baggage of

integration issues.

The variety in information technology packages discussion resonates with the business-

to-business (B2B) pursuit, the exchange of services, information and/or products from

one business to another. The problem stems from businesses representing information

and/or products differently. The B2B differences can be seemingly small issues as

different representations for date fields. On other cases, the data models for transactions

maybe incongruous or non-existent. Efforts for businesses to exchange data have been

underway for some time. One of the earliest efforts was the Electronic Data Interchange
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(EDI) with roots in the seventies and gaining traction in the eighties, still being used

today by legacy applications and some business communities. A number of other

standards have followed, such as Biztalk, ebXML, and RosettaNet. However, businesses

still face the issue of exchanging information between Enterprise Planning Systems

(ERP), exchange standard such as EDI and other business languages. The problem of

integration persists. As companies come together to do business they must come up with

a solution to share/exchange data.

There are several shortcomings with today's dominant distributed computing

technologies. The World Wide Web's (WWW) Hypertext Transfer Protocol (HTTP) has

a built in post and request mechanism that can be used to create a sharing framework. A

big problem though is the absence of formalized standardized semantics for transferring

complex data. If company "A" is to collaborate with company "B" what posting

mechanism would they use (HTTP has two)? How would data structures, objects, be

represented? There are a lot of choices. Companies could not share computational

resources with out engaging in a bilateral agreement and establishing a communication

standard and a protocol. The necessary coordination affects scalability. The WWW could

not function at the same scale if meetings and agreement were needed every time two

parties needed to exchange documents. Other technologies designed purposefully for

distributed objects like the Common Object Request Broker Architecture (CORBA) and

the Distributed Component Object Model (DCOM) have also had scalability difficulties.

Both technologies added a layer of plumbing over TCP/IP to enable calls to remote

methods as if they were local. DCOM was limited to windows and calls outside the

organization ran into firewall barriers. CORBA, choose to use a different network

protocol than DCOM preventing interoperability between the two object technologies.

CORBA also had difficulty establishing a dominant ORB and received competition from

the Remote Method Invocation (RMI) ORB that was not CORBA compliant. Both

technologies had success with an organization but stumbled crossing organizational

boundaries. At issue were platform interoperability, complexity in the interface definition

language (IDL), firewall blocks, and the knowledge transfer that had to occur - in the
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form of phone calls, meetings, agreements - before one organization could remotely use

another's remote objects.

Reviewing the technologies discussed in the previous paragraphs there are several

motivations for a computational grid, a resource sharing network for computational

resources in collaborative activities. The web lacks a standardized protocol to transfer

computational objects and make remote method invocations. Distributed object

technologies formalized remote object access but as discussed have stumbled in scale.

The B2B problem is a microcosm of the general need for the grid, organizations coming

together to exchange data with issues of interoperability, legacy, and competing

standards. Next we discuss what the grid architecture solution.

4.6 The Grid Architecture Solution

The root of the grid effort goes back to 1997. Along the years of development there have

proposals for distributed management, storage, large datasets, scheduling, coordination,

replication, asynchronous, synchronous, sharing, authentication, and authorization

solutions. During this time the sample implementations have evolved into the current

architecture for sharing computation resources.

Protocols are at the heart of communication between computational resources. A protocol

is an agreed-upon format for transmitting data between two devices. The protocol

determines the type of error checking to be used, the data compression method, and

message delivery reliability. Protocols have had a tremendous impact on connectivity

between computational resources.

The grid architecture is a protocol solution:

"The Grid architecture is first and foremost a protocol architecture, with

protocols defining the basic mechanisms by which VO users and resources
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negotiate, establish, manage, and exploit sharing relationships." [Foster et al,

2001]

Protocol architectures have given way to the most scalable architectures to data, namely

the internet and the World Wide Web. Starting with the transmission control protocol

(TCP) coupled with the internet protocol (IP) computing had a robust protocol for

routing, packing, and messaging. The implementation of TCP/IP spread from the research

lab to academe and industry as the protocol became widely adopted. In time TCP/IP

became the standard for the internet and later coupled with the Hypertext Transfer

Protocol (HTTP) the World Wide Web. In the mid to late nineties, learning from the

interoperability difficulties of past, exchange protocols moved to what has become the

lingua franca between platforms, the Extensible Markup Language (XML).

The grid needs to be able to establish relationships among any of the participating

members. Being able to put all participant on the same computational context sharing

resources and enabling resource sharing relationships is the most the most important and

distinct aspect of the grid architecture. Thus, interoperability is the central issue the

architecture needs to address. In the current computational environment of linked

computer systems interoperability takes the form of common protocols. XML protocols

are human-readable, text-based, and can be parsed on any platform. XML is information

enclosed in tags, bracket delimited. XML allows designers to create their own customized

tags enabling the definition, transmission, validation, and interpretation of data between

applications and between organizations. The flexibility and simplicity of XML has been

leveraged in the specification of recent protocols to access software in the network,

distributed software.

The architecture has adopted XML protocols to establish sharing relationships.
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4.7 Grid Technology

The underlying protocol of remote method invocation is the Simple Object Access

Protocol (SOAP). SOAP originally conceived for remote object access has been

generalized as a lightweight protocol for the exchange of information in a decentralized,

distributed environment. The XML based protocol, much like HTTP, is very simple and

allows extensibility. SOAP consists of three parts: the envelope, the header, and the body.

The envelope is the top most or root element in the XML document that represents the

SOAP message. The header is a generic container where additions can be made to SOAP

in a decentralized way. The header allows you to place a payload header in the top of

your SOAP message. The additional information is used to better describe the payload in

the SOAP body. The body is mandatory information for the message receiver. In RPC,

the body of a SOAP envelope is where the information for the remote method call is

placed.
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Chapter 5 Inter-Organization Collaboration
Inter-organization collaborations have always had a number of challenges. One of them is

the lack of a common software applications or information technology infrastructure.

Applications to support collaboration typically evolve slowly over time with in single

organization [Anson, 2001]. A workflow application, to name one, is derived from the

organizational process is trying to support. The task of gathering requirements, design,

architecture, integration to the organization's existing infrastructure, and deployment is a

lengthy and expensive process [McConnell, 1996]. Along the way there are logistical,

technical, and cultural hurdles to overcome.

Inter-organization collaborations compound the challenges and bring to bear new ones.

Part of the challenge is that a "new" organization is being created with a multi-

organization membership [Blair, 1991]. The diversity of interests and stake holders raises

the number of issues in creating the new organization. Often, these organizations are

short lived and hence have no physical or virtual infrastructure. For now, let us call these

"Collaboration Organizations" (COs).

5.1 Collaboration Organizations Samples

Life Long Learning (LLL)

Boos Allen Hamilton engaged by MIT's Council of Educational Technology (CET) to

recommend a strategy for Life Long Learning (LLL)

MIT Course

1.124J Foundations of Software Engineering, Information technology course, MIT,

course 1.

Product Development
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CIPD, MIT, ONR, and Xerox; collaborative product development

5.2 Organization Differences

COs need an information technology infrastructure that goes beyond document exchange

and webs together computers, software, and data.

Even in the cases where document exchange is the core of the collaboration - say

government, academia, and industry groups writing new law - document exchange is

only part of the resources needed. Version control, changes audit, history tracking, roll

back to earlier versions, integration manager, and publishing model are some of the

additional computing resources that would be needed.

There are many differences among the collaboration organizations. The organizations

vary in purpose, scope, size, duration, structure, community, community, and sociology

[Foster et al, 2001]. However, collaboration organizations also have a common set of

requirements.

The common requirements are discussed in the sections to fallow.

5.3 Software & Data

Each CO member brings different expertise, skills, and computing resources to the

collaboration effort. To leverage the COs resources there is a need integrate computers

and software. The IT industry has a niche of system integrators, companies dedicated to

integrating software to an organization's information technology infrastructure. The

market exists because there is tremendous variety in the information technology used by

each organization and even with in each corporation. The variety comes in the form of

programmatic interfaces, protocols, and operating systems among others. Integration in a

company is not trivial, across organizations it is a formidable task.
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Many of the same challenges of software integration exist in data integration. Members

must open part of their data stores and connect to the rest to create a distributed data

model. Normalization of data, data integrity, and foreign/private key relationships are

modeled as part of one system. Current protocols and languages to model data do not

address the distributed inter-organization scenario. As with software there also

interoperatibility issues to address. Ownership of data is another issue to resolve among

the members.

5.4 Permissions

The integration and sharing that occurs needs to be very granular. Permissions are

determined by each organization and then each resource. Prescribed is who can access,

when access is permitted, what level of access is authorized, and under which conditions

access is permitted. Each resource implements organization permissions or a custom set.

Therefore, the integrated set of resources will have an array of permissions sets to

manage.

Two core components of permissions are authentication and authorization.

Authentication is the process of verifying the user credentials; making sure the user is

who he claims to be. Once a user is authenticated, authorization determines what the user

is permitted do. For convenience functionality and authorization are grouped into roles.

Example roles are: administrator, editor, author, reader.

A user may have multiple roles and the roles can be dynamic. As a user works through an

application permissions maybe granted and then removed. For example, a user submitting

material for evaluation must have authoring/editing permission during creation. However,

once the material is submitted, the user must loose the ability to author/edit the material.
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Another sought functionality is system policies. At a global or local scope the application

of system rules establishing default behavior. Roles are resource specific while policies

are system wide.

There are situations in which is necessary to defer to another authority the access

decision. It maybe that the current resource does not have the credentials to verify access

or that the user does not belong to the domain. In other cases it is advantageous to not

replicate data and simply provide a pointer to the authentication authority.

5.5 Scalability

The resulting mesh of shared resources must be able to scale and be extended to

encompass new resources and new organizations. The collaborative application design

must choose protocols, interfaces, clients, and data stores that favor scalability. The

design must also be flexible; new resources should bolt on with out the need for redesign

or reconstruction. And authentication and authorization needs to be able integrate new

organizations into the system.

5.6 Virtual Organizations

The collaboration organization bound by the sharing rules derived from the programmatic

resources they share has come to be known as a Virtual Organization (VO) [Foster et al,

2001].

The information technology challenge of the Virtual Organization is the focus of this

work. Moreover, the infrastructure required to build applications for collaboration

organizations and the unique challenges of resource authentication, authorization, access,

discovery, presentation, and scalability.
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The diversity of participants brings a cornucopia of differences among the VOs. Starting

with the objectives and purpose; each participant is apt to have different stakeholders,

affecting the scope and duration of engagement and commitment of resources.

Over the lifecycle of a project the duration of the participation will vary among

participants. Some members will be involved in the formative process and decide to fade

out as the project continues. Likewise, other members will only join the advanced stages

of the collaboration. The length of duration and degree of involvement will change based

on the interests and motivation of the members.

VOs will differ in structure and community. The structure and matching software will be

chosen based on the domain of the project. For example, projects collecting experimental

data are apt to have a longer duration than ones coming together for a practical

implementation. Similarly, the communities formed around collaborative projects will

vary in expertise, character, and interaction levels reflecting the personality of the

domain.

As might be expected, just as there are many differences there is also a fundamental set

of common requirements for VO collaborative efforts. The commonalities have four

dimensions that maybe singled out for discussion.

The first is the need for sharing of varying resources. Collaborative efforts need to be

able to share resources at various levels of granularity. Probably one of the most visible is

documents. The hierarchical structuring of documents, the programmatic representation

of the document, the metadata associated with each document are some of the design

decisions to store and share documents. Another resource to be shared is data.

Collaborative efforts often have data stored that needs to be shared. The organization of

the data to be shared, how it is shared, and the format of the data are all sharing

considerations. Software running on machines would another desired resource to share.

In collaborative efforts there is often domain software that needs to be shared with the

rest of the group. One example of such software is simulators. These programs are
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typically exotic enough that distribution is unrealistic. The best solution in these cases is

to share the software from where it lives. Moreover, often it is convenient to share

unsophisticated software. A common example is a calendar, once one is written and

implemented resources would be saved by reusing it. In case of a collaborative a calendar

application has the added advantage of centralizing the group's calendar events.

Oftware Files

Dataases yc es

Figure 5-1 Computational Resources

A second group of common requirements are flexible sharing relationships. The

resources shared need to be accessed from more then one client type and more then one

client server model. Clients need to connect from an unknown number of platforms and

collaborative efforts need to accommodate the variety. Beyond platform flavors there is

the client server model. Resources need to be shared on a traditional client server model

as well as a peer-to-peer architecture where every client is also a server.
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Figure 5-2 Flexible Sharing Relationships

A third common requirement is the need for diverse control levels. The granularity and

diversity of control must be very rich to accommodate sharing collaborative resources.

Resources being shared quickly run into the need of the concept of roles for users sharing

the same functionality. Implicit is the need to have a mechanism to create and manage

users and groups. The user management component is necessarily modular, accessible,

and portable enough that it can be used by all the resources. For resources or users that

span security zones and additional requirement will be the ability to delegate permission

credentials to other security systems. To facilitate management resource control should

implement policies. Given the distributed nature of resources the collaboration solution

needs to have the concept of local as well as global policies.
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Figure 5-3 Diverse Control Levels

The forth common requirement is diverse usage modes. For example, resources need to

allow usage by individuals or groups. That is, users need to be able to access resources

and perform operations individually or as a group. The usage modes exceed user access

and include operating modes that favor or conserve performance. A resource at times will

need/want to operate in a cost sensitive context. The context will seek to minimize the

resource execution tax on the host. The host may also want to do the opposite, devote all

the host resources to the resource being shared. Furthermore, there are bound to be

unforeseen usage modes the sharing framework must extensible to accommodate future

modes.

Single Multi
User User Cost

Sensitive

Performance
Sensitive

Figure 5-4 Diverse Usage Modes
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Chapter 6 Web Architectures

6.1 Introduction

This chapter introduces web inspired architectures. XML based programming (XBP) as

the glue to enable interoperability between heterogeneous independent distributed

computing platforms. A service oriented programming model and a service oriented

architecture.

6.2 Web-Like Design

As many observers have pointed out, the web was not well designed as a protocol. The

web lacked persistent connections, central tag control, and it ignored earlier hypertext's

theoretical work like the need for bidirectional links. However, as many have also

pointed out, the weaknesses were also the strengths of the protocol.

Other protocols of the day like Gopher were too rigid, strong, and robustly attached to a

designed implementation. The web in contrast was a minimalist, weak, and extensible

protocol. It was no more than a pointer collection at the start but it was the weakness that

was the strength of the protocol. For example, all hypertexts models at the time called for

bidirectional links but the level of coordination and complexity added by this feature

would have been prohibitive for the web. Dangling links in contrast scaled like no prior

architecture in computing history.

The lesson appears to be that in the fast changing world of computing weak evolvable

designs will win over strong, focused, and rigid designs.

Looking closer there are a number of additional observations. Instant satisfaction,

implementations must work immediately even if only partly implemented. A bottom up

approach, the implementation can start with a few pockets and then can scale to the

network.
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Evolvable applications are ever changing, adapting, and for the same reason not at the

bleeding edge. Critics are fast to point out the shortcomings of the design but one would

do well to remember the lessons of the web architecture where the shortcomings are the

strength. Sam Ruby, IBM architect, said it well, "Centrally designed protocols start out

strong and improve logarithmically. Evolvable protocols start out weak and improve

exponentially. Infrastructure built on evolvable protocols will always be partially

incomplete, partially wrong and ultimately better designed than its competition."

6.3 XML

This work is based on web architectures and extensively in XML. XML has evolved and

matured extensively from its origins in the late 1990s. Below is an image presenting the

current breath of XML.
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Figure 6-1 XML Family of Specifications [Sall, 2002]

65

Na

XM

X



One of the differencing characteristics of XML is its flexibility. The flexibility can be

noted on data models where XML data does not have the limitations of Relational

Database Management Systems (RDMS). At any point, new attributes can be added, data

can be incomplete, and there is always the capability of carrying "<any>" tags where

unplanned XML can go. Even though XML can be bound to object models and made

rigid, the underlying tagged data flexibility is always be there.

It is the flexibility, adaptability, interoperability, and extensibility that have caused XML

to spread at a phenomenal rate. XML has penetrated databases, querying, office suites,

web servers, security, messaging, component technologies, and many other technologies

as depicted in the image above.

In basic XML web services there is a close analogy to basic web pages in HTTP. Basic

web pages use URL, HTML, and HTTP. Web services use a URI, XML, schema, and

SOAP. As in basic web pages there is much that is not addressed. There are issues like

security, transactions, and attachments to name a few. However, even at the minimalist

level web services work well just like web pages did in the early days of the web.

Weather the basic functionality is enough to have ubiquitous buy in remains to be seen.

So far web service implementations abound and organizations like the Web Services

Interoperability Organization (www.ws-i.org) have representation from every major

player in the IT industry.

6.4 XML Based Programming

XML is positioned to become the lingua franca between computational resources. The

glue to enable interoperability between heterogeneous independent distributed computing

platforms.

Component technologies architects design computational abstractions which become

infrastructure to facilitate component development. Building on the abstractions
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leverages computational building blocks that shorten the construction time, enables

component reuse, lowers construction costs, and once a pool of components exists

enables greater product variety. However, in the heterogeneous computing environment

of the market place, competing component technologies have been a hotly debated

subject. The division lines have mirrored the already established divisions among

operating systems, programming languages, and development environments. The

corporations and organizations behind the technologies have fought hard to gain market

share, developers, and become the dominant component building platform.

The leading component technologies at the time of writing are: the Component Object

Model (COM), the Common Request Broker Architecture (CORBA), and Java

technology. Although the technologies act as the glue between the computational

resources built on the platform, the degree of interoperability beyond it can be discussed

in terms of fours layers:

" In-memory interoperation standardization can offer excellent performance and

still offer rich component management services.

" Standardizing on an application programming interface (API) to access

computational resources the platform can provide source code interoperation.

" By providing a standardized programmatic description of the component

consuming platforms can localize the type information gaining type information

interoperation.

" Wire interoperation, using network protocols component technologies aim to

leverage remote components with the same ease of local components.

There are a number of choices for leveraging computational resources and achieving

interoperability. Organizations and corporations have made platform choices and invested

people, training, and software among others to make the most of the platform. Changing
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the component technology requires reinvestment and will be resisted. However, the

promise of interoperability has proven difficult in the current platform incarnations and

moving to a more scaleable, loosely coupled, and firewall friendly protocol namely

HTTP and XML is very attractive.

Xml in the context of interoperability standardizes the text based wire protocol to

exchange data and messages. In so doing using Xml builds a minimal standard for

component communication. Although XML applications, schemas, and extensions are

growing rapidly, the fundamental XML used for documents is human readable, the w3C

standard is stable, and widely adopted.

One of the biggest appeals of XML is platform indifference. Operating systems are not an

issue. Neither is programming languages, application servers, or application domain. The

absence of application programming interface conformances is added flexibility to the

messaging client/server. The host receiving the wire message can pick up the data

document, parse it, and under the hosts control determine how to act on the message.

J2EE com

Different platforms, w
languages,
programming
environments, and
remote object models

NET

Figure 6-2 Diverse Computing Environment

Much like the Hyper Text Transfer Protocol (HTTP) XML is user friendly. XML

documents are human readable and can be composed by any text editor. The hierarchical

representation of data like HTTP tags reveals the document structure and content to the

document reader. By contrast COM, CORBA, and Java are binary protocols that require
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component construction using specialized programming environments and low-level

programming languages.

Another big plus of XML is the flexibility of the message document. As time passes

organizations needs evolve and the XML messages need to be extended. Making changes

to an application programming interface is difficult if the interface is widely consumed.

However, adding extra information to an XML message document need not affect the

consuming client. The component picking up the wire message can simply ignore the

additional information. Inclusion of common identifiers can be cleaned up with

namespaces. Namespaces can also be applied to document sections to explicitly declare

the message context.

Given the large investment by organizations into their current computing platforms major

changes are unlikely. COM, CORBA, and Java will continue to be used in the software

industry. However, for interoperability between component platforms XML is fast

becoming the lingua franca of choice.

6.5 Service Oriented Programming and Architecture

6.5.1 Background

The emergence of XML web services has initiated discussion on a service oriented

programming model. The term most commonly used is SOA (Service Oriented

Architecture) not to be confused with SOAP (Simple Object Access Protocol). In some

instances SOAP is repurposed to mean Service Oriented Architecture and Programming.

In this section SOAP refers to the protocol definition.

Like no other technology before it, with the exception of HTTP, software vendors are

uniting to support service oriented architectures. SOA does not necessarily mean web

services. However, practically, SOA is enabled by SOAP like the internet is enabled by

TCP/IP. A service in this section is referred to as a SOAP callable operation.
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6.5.2 OOP

Object oriented programming (OOP) introduced by Brian Cox introduced a new

paradigm to the world of procedural programming. In time objects were embraced by the

software industry. And objects were used for modularization and really shined in creating

abstraction layers. Architects grouped abstractions to create common visions leading to

many of the platforms in existence today.

Objects lowered the cost of abstraction. The purpose of OOP designers was not

executables but to architect new abstractions. As systems were developed and deployed it

was noted that the tight coupling of the programming model meant that objects were not

built for field replacement. The idea of reusable/replaceable software parts has been

difficult to realize. There are some widely used libraries like the Microsoft Foundation

Classes (MFC). However, in general libraries rarely span the birth project. The time and

cost required to make abstractions generally useful make it prohibitive. As a consequence

the resulting libraries require extensive customization to be leveraged by new projects.

6.5.3 OOP Disadvantages

Time makes abstraction expensive. When creating objects at design time abstraction is

cheap. However, when building new systems trying to leverage existing software,

abstraction is expensive.

Distance makes abstraction expensive. Local in memory abstractions do not always

translate to the distributed case.

Extensibility makes abstraction expensive. Multiple extensibility coupled with unknown

extensibility is very difficult to manage. Open extensibility is even worse.

Standardization makes abstraction expensive. Design by committee is a barrier for speed

and focus. The interests of multiple stake holders waters down the original use case focus
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as more interests influence the specification. The politics of standard bodies also lengthen

the creation process.

6.5.4 The SOA Alternative

SOA offers a new architecture for software reuse. SOA brings a new set of tools and a

new approach to software reuse.

The XML kernel addresses the shortcomings of OOP. The XML kernel, the core for

applications, is SOAP, HTTP, and XML. SOAP limits the number of abstractions

required for interoperation. Much like HTML the XML header is minimal. And like

HTTP much more can be added if needed.

Service oriented architectures are about having a small set of fixed abstractions and no

more. Services assume a minimal shared kernel: XML, HTTP, and SOAP. Unlike prior

architectures SOA expects high latency and low fidelity communication channels. All

communication between hosts and clients is made in XML documents. As such, the

operating system and platform is irrelevant.

New XML layers take care of transactional elements. However, the architecture is bottom

up and granular. The additions to the XML message are simply more text in the

document being passed between members of the transaction.

New systems are composed of services at the boundary of course grained messages.

Instead of changing the application, the service "A" can become part of a new service

"B" that encompasses service "A". A previous consumer of "A" continues to use the

service with out interruption of change. The consumers of "B" will have the functionality

of "A" plus any that "B" may have added.

Services share schemas and contracts but not types. The services contract metadata

details the interface contract exposed by the service. Knowledge of the contract is
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necessary to build the remote service proxy. The schema validates the data on the wire.

Integration is not about sharing types it is about sharing machine readable validation

instructions.

6.5.5 OOP SOA Differences

There a number of differences between the OOP and SOAP paradigms. Object oriented

development and testing lifecycle models are well known and managed. Construction is

done on abstraction driven integrated development environments. Objects are platform

dependent and additional abstractions are needed to port modules. Each vendor

implements security privately.

In contrast, services are designed for an unknown integration partner. As such,

input/output constraints are the key to service consumption. Services are also built to be

consumed by unknown platforms. It follows that the sine qui non of SOAP is

interoperability.

Given such requirements, service based applications have a potential to be distributed and

more universal than any prior architecture. Given the number of vulnerability exposure

points, service oriented architectures need comprehensive security at all phases of

transactions. In contrast to OOP, SOAP is just starting and the construction tools are

segmented, myopic, and rudimentary.

The shift from OOP to SOAP is a focus shift from types and abstractions to schemas and

contracts. The binary specification of the past are replaced with simple, minimalist, and

granular XML based protocols. The shift to XML document based messaging between

systems offers a looser coupling than remote procedure calls architectures and offers new

levels of flexibility in the long enterprise supply chains.
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6.5.6 SOA Observations

Thinking in terms of software oriented architectures has motivated industry and

government to work towards an enterprise architecture. That is, business capabilities,

functions, and processes that are supported by an application architecture. An example of

such a system is the Federal Procurement Data System from the federal government. The

system is a services-oriented architecture employing web services, open standards, and

XML, and is targeted to be base for a federal enterprise system. The government is

undergoing an effort to create a common architecture for all key agencies. The effort is

being driven by the current information technology disarray. The current collections of

legacy applications correspond to generations of incompatible architectures, non-

interoperable platforms, ever increasing incongruent data silos, and incompatible

technology.

The next challenge is to create a service oriented architecture virtual fabric of web

services. The fabric is constructed on the services that solve holistic business problems.

The thread that connects systems is web services. The glue between threads is the

overarching applications and roles. The difference to traditional glue is that it behaves

more like velcro. A completely new fabric can be constructed by rearranging the threads.

Thinking in terms of services is conducive to product line architectures (PLA). PLA

thinking has been employed successfully in embedded systems and real time. The

productivity gains come when a platform is designed to be leveraged to create new

products. See the chapter on platforms for an in depth discussion on this topic.

6.5.7 SOA Fabric

One of the insights of service oriented architecture is that the power of SOA does not

come from the services themselves but instead from how the services are composed into

new applications. Services are not required to do more than before. Instead, SOA is

extended through services (threads) woven into new applications by creating a new fabric
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(messaging routes). The services interfaces remain constant but the applications

composed from the services and the services using the threads are free to grow.

Small, robust, well designed services can perform tremendously complex tasks as a group

(fabric). The simpler the service (thread) the lower the tax on the service consumer. The

limitation is the ability to model the messaging routes through the service fabric

application. At the same time simpler components lower the cost of maintenance. The

abstraction boundary forces a cleaner encapsulation of functionality and replacement of a

service (thread) is more modular.

SOA is akin to software agents in behavior. A SOA service is a program that performs

some information gathering or processing task independently. The services, as discussed,

are very small and well defined. Complexity beyond the discrete agent-like service comes

in the form of the web services infrastructure and applications defining the message

routes for the application.

Message routes themselves are included in the service promoting independence further

decoupling the infrastructure and negating the need for a coordinator.

SOA posits that it is much easier to manage change in the composition of many small

web services who share few well known abstractions than it is to manage change in

varying abstractions exposed by the same set of services. In the former the difficulty lies

in composing messaging routes. In the latter the barrier lies in propagating the knowledge

to consume each abstraction. The two approaches highlight the two possible

programming models discussed in this section. The case has been made for the high cost

of abstraction in programming models. SOA in contrast seeks to minimize the

abstractions, maximize the connectivity, minimize services complexity, and push

complexity into the connections. The tradeoff can be labeled 'Fat Versus Thin". In one

case the service is "fat"; the service has heavy built in logic, many abstractions, and many

interfaces. In the "thin" case the service is minimal, has few and well known abstractions

and interfaces, and complexity is pushed into the connections. The vision is thus:
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flexibility, extensibility, and interoperability enabled by software oriented architectures

(SOA) and XML web services.

6.6 Protocol Independence and SOA

The service oriented architecture approach can also be followed independent of the

implementation protocol. The application can add a messaging abstraction to generalize

communication. Abstracting messaging and protocol to a separate layer allows the

implementation to replace the protocol with out having to touch the application. As

mentioned, currently SOAP messaging has most industry support and it is used in this

work.

6.7 Business processes

One of the roots for component technologies are business processes. Business processes

are distributed and need distributed software. Distributed systems with in an organization

have been challenging; distributed systems across organizations are one of the big goals

of industry, government, and academe.

Systems need to need to adapt to the host devices, scale up on high performance

computers, or distribute across computing farms, and span geography and organizations.

To meet such requirements services need to be interoperable across platforms and

devices. Applications must be composed of reusable service components that can work

individually or coupled with other services. And to realize inter-organization applications

participating organizations must federate and standardize.
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Chapter 7 XML Architecture

7.1 Schema Definition Language

Types are composed of both properties and behaviors. Properties contain the data that is

exposed by the type. Behaviors are the functionality of the instance of the type, the

object, and are defined by the public methods (also called member functions) and events

of the type. Collectively, the public properties and methods of a class are known as the

object interface.

A type system is the common infrastructure defining base value and operation space.

Using type information compilers can validate code and can generate code for referenced

types. Similarly, compilers and runtime engines use the type system information to

manage memory during program execution.

Reflection, a feature of attribute-based programming is the process that allows a type to

query its own metadata. Reflection allows an application to discover information about

itself so that it may display this information to the interfacing application, modify its

behavior at runtime, and loading components at runtime to build dynamic extensible

applications on the fly. Reflection underlies much of the infrastructure type support in

managed code applications like Microsoft .Net Framework and Java [Campione, 2000;

Liberty, 2003].

The Schema Definition Language (XSD) introduces the type system lacking in XML 1.0.

XSD is the metadata that describes types in XML [W3C-Schema, 2003]. A schema is

analogous to a class and an instance of a schema, a XML document, is analogous to an

object in the language of object orient programming (OOP).

XSD is analogous to the programming language you use to define classes. The C#

definition of a user class is:
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public class User

public int userId;

public string firstName;

public string lastName;

public string Password;

}

The equivalent declaration in XSD is:

<complexType name="User">

<sequence>

<element name="UserId" type="int" />

<element name="FirstName" type="string" />

<element name="LastName" type="string" />

<element name="Password" type="string" />

</sequence>

<complexType>

XSD type system is composed of simple and complex types. Elements are complex if

they have attributes or children as in our "User" declaration. Conversely simple elements

are scalar values with out attributes or children.

All types in the XSD type system derive from a base type. XSD has a hierarchy of types

with "anyType" at the root. Both user defined and built in types derive from another type.

The recommended built-in hierarchy tree of types specified by W3C is:
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Figure 7-1 Schema Types [W3C-Schema-Types, 2003]

Types that derive directly from "anySimpleType" are called primitives. All complex

types are called derived.

Schemas are composed of user defined types, built-in types, elements, attributes, and

properties. An element definition needs a name and a type, for example:

<element name="Age" type="int">

The element can be qualified with maximum/minimum, for example, but must be unique.
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When it comes to types, XSD permits designers to construct simple and complex types.

Simple types have a value set that is a subset of the built-types. A simple type is defined

by specifying a type and a restriction, using the restriction element. For example:

<simpleType name="AdultAge">
<restriction base="int">

<maxLength value="150" />

<minLength value="18" />

</restriction base>

</simpleType>

Restriction is often done using facets. The standard has predefined a number of facets for

each of the built-in types. To follow is an example using enumeration.

<simpleType name="PortalTypes">
<restriction base="string">

<enumeration value="Team">

<enumeration value="Course">

<enumeration value="Department">

<enumeration value="University">

<enumeration value="Event">

<enumeration value="Notification">

</restriction>
</ simpleType>

For a complete list of facets visit W3C.

Complex types are used to represent data types. The complexType uses a compositor

used to describe the type's content model. XSD defines three compositors: sequence,

choice, and all. Compositors hold repeating data. Attributes are not considered

compositors because they do not repeat and are declared outside of compositors. A

complex type example follows.

<complexType name="User">
<sequence>

<element name="IUserId" type="int" />

<element name="FirstName" type="string" />

<element name="LastName" type="string" />

<element name="Password" type="string" />

</sequence>
<attribute name="PortalType" type="string" use="required"/>

<attribute name="PortalID" type="string" use="required"/>

<complexType>
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The Schema Definition Language (XSD) offers a rich platform independent type system

to express classes and interfaces.

7.2 Serialization

There is currently some discussion over XML RPC and XML messaging - exchanging

data between components using XML documents. The web service description language

(WSDL) supports both XML RPC and XML messaging.

Interestingly, RPC can also be used for document style messaging and conversely. RPC

specifies the remote method and arguments but it could still be used to exchange

messages using XML documents. Since XML messaging is even more flexible it can

certainly be used as RPC. "Document/literal used by XML messaging is a superset of

RPC/literal. For any given RPC/literal WSDL description, an equivalent document/literal

WSDL description can be created such that the wire messages are identical. All that's

needed is some schema manipulation to formally describe the RPC/literal message."

[Shohoud,2003]

Going by flexibility, XML messaging is a better choice than XML RPC. Messages are

used to exchange objects and interfaces by distributed components. Before the exchange

objects need to be transformed from the computing language and in memory

representation in case of instances to a XML representation. The conversion to XML is

called serialization. Once the message reaches the destination it needs to be

reconstructed. The XML message needs to be parsed, the object reconstructed, and the

data mapped to the component. The process of remapping the XML document to an

object is called deserialization. Serialization is supporter by both .Net and Java [JavaSoft,

2003; Obermeyer, 2001].

Considering a "user" class represented in C# as an example:
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public class User

{
public string userId;

public string firstName;
public string lastName;

public string Password;
}

The class is represented in an XML document schema as:

<complexType name="User">

<sequence>
<element name="UserId" type="string" />

<element name="FirstName" type="string" />

<element name="LastName" type="string" />

<element name="Password" type="string" />

</sequence>
<complexType>

An instance of the "user" class in XML:

<User>
<UserId>johnd@mit.edu</UserId>
<FirstName>John</FirstName>
<LastName>Doe</LastName>

<Password>John'sPassword</Password>
</User>

Components exchanging messages need to agree on a schema before hand. The schema

serves as the template for serialization and deserialization. When a target component

receives an XML document it validates the document using the schema. The receiving

host then needs to create a new class to represent the "user". In the case where a schema

does not exist, one can be derived as long as the XML file contains enough data to

accurately derive the data structure.

Since the creation of the "user" class is controlled by the receiving host it can be

extended or customized if desired. In the example we are considering, the receiving host

may wish to add attributes like address, telephone, and birthday. The loose coupling

provided by XML messaging gives the target host complete freedom to manipulate and

bind the message.
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7.3 Object Technologies

Distributed computational systems are attractive for a number of reasons. The

encapsulation that happens as components are distilled and distributed often has the nice

effect of producing a collection of reusable modules. Once the computational logic has

been modularized and is listening for requests it can be consumed by more than one

application. For example, once a user registration module is built all systems requiring

registration need only reference the one that already exists. Furthermore, the distributed

components themselves can then be referenced and grouped in new ways to produce new

computational products. Other benefits are: updating source with out affecting the rest of

the system; distributing computational load among machines; and moving application

logic close to data stores.

In a move to facilitate building computational objects and later distributed remote

objects, several software companies initiated efforts to build object technologies.

7.3.1 Object Technologies

The leading object technologies in the ninety's were Microsoft's COM (Component

Object Model Architecture) and OMG's (Object Management Group) CORBA (Common

Object Request Broker Architecture) [Box, 2000]. Both technologies added a unifying

layer to access binary self-contained entities (components) that consist of properties and

procedures to manipulate data.

As more and more computers joined the internet in the ninety's it became increasingly

important to leverage computational objects in a distributed environment. Developers

could write components that connected an application to a network protocol, typically the

Transmission Control Protocol/Internet Protocol (TCP/IP). Developers sent and received

TCP/IP messages by opening a socket and reading and writing data to and from the

socket. Sockets programming required the developer to write a client server in every

case, implementing low level protocols for encoding and decoding messages. Having to

code a socket solution every time was wasteful and error-prone.
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Microsoft extended COM to DCOM (Distributed Component Object Model). DCOM is a

network protocol based on DCE (Distributed Computing Environments). DCOM enabled

execution COM components on other machines. DCOM replaced the interprocess

communication with a network protocol. A local component could call a remote COM

component as if it was local.

Client COMClient
Y*O L Run-Time JRnTm

Security DCE RPC Security DCE RPC
Provider Provider

Protocol Stack Protocol Stack

DOOM Network-
Protocol

Figure 7-2 Component Object Model (COM)

DCOM unlike the World Wide Web was designed to be a stateful protocol. DCOM

requires constant keep-alive messages to maintain state. Without keep-alive messages the

server can become tied up holding components for clients whose session has ended.

However, as the number of clients increase, the amount of network traffic causes

congestion and limits scalability [Rammer, 2002].

Object Request Brokers in the CORBA solution played the connectivity role of COM in

the Microsoft solution. Many expected CORBA to use DCE (Distributed Computing

Environment) for the network protocol. However, a new protocol, IIOP(Inter-ORB), was

developed for CORBA's remote objects. IIOP much like DCE specified how ORBs

communicate over the network.
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Figure 7-3 CORBA

Much like the many flavors of UNIX/Linux has created consistency, implementation, and

adoption challenges the same was true of CORBA. The implementation variety and lack

of a dominant ORB plagued the platform [Rammer, 2002]. To make things worse Sun

developed a proprietary ORB called RMI (Remote Method Invocation) based on the Java

language. RMI was the obvious choice for the Java programmers. However, the Java

platform brought even more variations and integration points. What is more, the Java

solution is not even CORBA compliant.

Client Server

Stubs & Skeletons Stubs & Skeletons

R MI Remote Reference Layer Remote Reference Layer

Transport Layer - JRMP (Java Remote Method Protocol)

Figure 7-4 RMI

One of the shortcomings of both technologies, COM and CORBA, was interoperability.

Meaning CORBA could not use COM objects and conversely - the same was true for

RMI. Although, independent software vendors developed bridges to connect COM and

CORBA; the addition was yet another integration point, adding to the cost and

complexity of the solution.

The object technologies for remote object access had a number of additional

disadvantages that hindered adoption. Towards the latter part of the ninety's HTTP
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became the dominant protocol for remote access, neither DCOM or CORBA used HTTP.

Encoding in DCOM was in NDR (Network Data Representation) and in CDR (common

Data Representation) in CORBA while the software industry moved to XMIL (Extensible

Markup Language).

Another barrier, neither object technology was cross-platform. Implementations remained

with the supported operating system creating an operating system barrier between the

technologies. Then there were practical issues like firewall friendliness. Both CORBA

and DCOM were blocked by firewalls.

As time went on CORBA and COM we most successful as intranet implementations. And

as the ninety's pushed to a close the industry moved toward HTTP architectures for

remote computational objects.

7.3.2 HTTP Architecture Sample

Application Server SQL Server

Web Browser

Web Server

Application Server Application Server

Figure 7-5 Sample HTTP Architecture

The most widely used clients are web browsers. Currently the most widely used browsers

are the ones from Microsoft and Netscape. Both make requests on behalf of the user to

the web server in the form of universal resource locator (URL) addresses. Web Server
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side the URL identifies a resource to be served. The resource can be a static web page.

The resource can be a dynamic page that is built on the fly and maybe tailored to the user

based on his/her identity and the transaction context. The page being served may also

source several another server(s).

The previous figure illustrates the architecture may be 3 tier or "n" tier. One of the most

common setups is the 3 tier architecture where the web browser is the first tier, the web

server is the second, and the database server is the third. The pages are dynamic and the

data on each page comes from the database server. Other web applications compose

pages from the information gathered from several servers. For example, a portal page like

"My Yahoo" interfaces a weather server, a financial stocks server, a news server, and so

on for every component of the portal page. The source servers themselves may have a

multi-tier architecture to compose replies to the requesting web applications. Thus,
serving a seemingly simple web page maybe the result of a complex process spanning

several servers being orchestrated by the web server receiving the request.

7.3.3 HTTP Architectures

The World Wide Web (WWW) programming model has been adopted at a faster rate

than anything prior in history. Seemingly overnight everyone could extend the largest

distributed system today, the web. The exponential adoption came from a bottom up

decentralized architecture. The low implementation barriers and loose coupling compared

to RPC, DCOM, and CORBA made the web very attractive. Clients and server exchange

Multipurpose Internet Mail Extensions (MIME) typed messages accompanied by a

number of header fields.

The absence of centralized control and low technical barriers made it possible for

corporations to build systems incrementally. Adding servers and clients to the web can all

be done in decentralized fashion. Remarkably, given the scale, the variety, and the

geographic location all systems can interoperate using the web protocols.
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In contrast object serving and managing architectures had so many implementation

challenges that most successful implementations only happened with in the same

organization (in-house). As discussed, examples of object architectures are: the

Distributed Component Object Model (DCOM), and the Common Object Request Broker

Architecture (CORBA).

In a departure from CORBA and DCOM the core idea behind web services is to follow

the architectural decisions that made the web so successful and extend them to software

objects we want to interface programmatically. Being able to reach and use an application

programming interface with the same ease as reaching a document in the World Wide

Web.

Web services are independent, stateless, and atomic. These properties much like the

properties of http allow decentralized development and high scalability.

There are a tremendous number of software applications that are accessible through a

web browser. Everything from online banking, ordering take-out, to radio station music

streams. Unfortunately, these applications are not accessible programmatically and

though there is some level of standardization in the industry, consuming a company's

API requires a bilateral coordination that is prohibitive in terms of cost and negates

scalability. Web services establish the minimum set of rules for interoperability.

Web services communicate using the Simple Object Access Protocol (SOAP) instead of

mime messages [W3C-SOAP, 2003]. SOAP is a lightweight, extensible, XML based

protocol for a decentralized, distributed environment.
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Figure 7-6 SOAP

SOAP can be used over the TCP/IP internet infrastructure. However, with the ubiquitous

presence of web servers it is advantageous to use the protocol over HTTP. Looking at the

image above, the message is routed and delivered using TCP/IP. Once at the destination

host, the message is picked up by the web server, parsed, and passed to the application.

In more detail, SOAP runs over HTTP POST. In this sense, it is no different that any

other web request which uses the POST method. For example, filling out and submitting

a web form. The SOAP difference is additional information in the HTTP header sent to

the server.

Alternatives to SOAP are HTTP POST and HTTP GET. HTTP GET has of number of

disadvantages. The biggest is that all parameters passed to the server need to be appended

to the URL. It is easy to discover web applications relying on HTTP GET while browsing

the web. They are the ones with the really long URLs, with all kinds of parameters in the

string. Due to the HTTP standard and browsers restrictions, the URL string length and

content is limited. These restrictions limit the both the size and type of data passed.

HTTP POST designed to pass value pairs to the HTTP server does not have length

limitations. However, value pairs are not enough to pass complex data structures.

Schemes can be designed to pass complex data and the necessary semantics for receiving

host data structure deconstruction. The problem in devising schemes is the lack of

standardization. Every designer would be solving the same problem over and over. What

88

I t Application I



is worse is interoperability would be extremely difficult due to the variability of

solutions.

In contrast SOAP was designed for the purpose of exchanging semantically rich XML

information. The standard specifies the protocol for remote method calls. The initial soap

protocol is short and minimalist. The simplicity lowers the barriers of implementation.

However, enterprises will still need additional services like security, routing, and

transaction support. The SOAP protocol is extensible and services can be added as

needed [Box, 2000].

Client Server

0-
D-

0-
0-

0-
0-

a r~ I

F Network Protocol - HTTP

Figure 7-7 Web Service

To program against an available web service the client gets a web service description -

more on the web service descriptions in later sections - and creates a skeleton of the

service locally, called a proxy or stub. The programmer can then write against the web

service using the local proxy. At execution time when the proxy is instantiated and the

web service consumer client interfaces the stub, the data structure is serialized into an

XML document by the runtime classes and sent to the server using SOAP over HTTP

POST. The host's web server receives the SOAP message over HTTP POST. The xml

message is deserialized and the data structure reconstructed using the runtime classes.

The data is then sent to the web services methods.

To follow is discussion on the SOAP specification.
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7.3.4 SOAP

Formally, from the SOAP 1.2 specification [W3C-SOAP, 2003]:

SOAP is a lightweight protocol intended for exchanging structured information

in a decentralized, distributed environment. SOAP uses XML technologies to

define an extensible messaging framework, which provides a message

construct that can be exchanged over a variety of underlying protocols. The

framework has been designed to be independent of any particular

programming model and other implementation specific semantics.

SOAP provides a flexible, platform independent, XML messaging framework for

information exchange in a decentralized, distributed environment. SOAP specifies how

messages between systems should be structured and processed. SOAP specifies how data

must be serialized and encoded The SOAP protocol found a nice fit with remote method

invocation and the transfer of rich and complex data types.

The SOAP standard was written as XML began to mature and become the lingua franca

of interoperability of the software world. SOAP proposed a standardized way to convey

messages and remote procedure calls between systems. A big positive of SOAP was its

simplicity. The protocol was designed to be simple and extensible. The protocol did not

include common components of distributed system such as: security, routing,

transactions, and coordination. The resulting handshake between systems was greatly

simplified and the learning curve flattened. Yet, the framework allows the missing

components to be added incrementally as layered extensions.

SOAP is not transport specific. SOAP messages can be used over any transport protocol

like SMTP for example. SOAP is flexible enough to allow the definition of new protocol

bindings.

Although SOAP was initially envisioned for remote method access and later targeted to

remote method access, the protocol is not tied to Remote Procedure Calls (RPC). The

underlying model best fits a messaging system where SOAP specifies a model for
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processing individual one-way messages. The composition, number of messages, and

requirement of a response are all flexible. Stated differently, SOAP defines a message-

processing model but not itself define any application semantics.

Figure 7-8 SOAP

The SOAP message is formed of three parts: the envelope, the header, and the body. The

envelope is the top most or root element in the XML document that represents the SOAP

message. The header is a generic container where additions can be made to SOAP in a

decentralized way. The header allows you to place a payload header in the top of your

SOAP message. The additional information is used to better describe the payload in the

SOAP body. The body is mandatory information for the message receiver. In RPC, the

body of a SOAP envelope is where the information for the remote method call is placed.

7.3.5 WSDL

SOAP provides a communication protocol to call remote methods and pass complex data

types. XML Schemas describe the data structures but it does not describe the end points.

The Web Service Description Language (WSDL) is an XML-based document that
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specifies message end points using an extensible grammar that includes XML schema

definitions (XSD) [W3C-WSDL, 2003]. Informally, WSDL describes the specifics on

how to connect to the web service and its methods.

The Web Service Description language (WSDL) document, as the name implies,

describes the web service to the consuming client. WSDL much like Interface Definition

Language (IDL) in COM and CORBA defines the exposed interface. WSDL is a contract

between the service and consumer promising a structured response on specified input. In

contrast to CORBA and COM, WSDL was designed to be platform independent. The

WSDL XML document can be consumed from any platform, application, and system and

used to create a proxy of the service.

Technically, WSDL is not necessary to consume a web service. SOAP messages are self

describing and specify data types and the values they contain. However, WSDL provides

a standardized description that facilitates knowledge transfer. WSDL includes the

supported communication protocols, location, encoding, methods exposed, data types

involved. Once a WSDL document exists, a big plus is being able to write automated

proxy generating tools to easily consume a web service without having to think about

SOAP. None of which would be possible with out a standard.

Client Web Server

WSD~L
rox HTTP/XML L ]ric

Build Proxy

Client

Web Servlce
Proxy

Consume Service

Figure 7-9 WSDL

Web Server
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The WSDL document can be divided into two sections containing six elements. The first

group, abstract definitions also called the Service Interface Definition, has the Type,

Messages, Operation, and PortTypes elements. The abstract section defines SOAP

messages, in XML, in platform neutral manner. The second group, concrete definition

also called the Service Implementation Definition, has the Bindings, Port, and Services

elements. The concrete definitions specify how to create an instance of the service. The

abstract and concrete sections are linked by the binding element.

Abstract Definitions

Types

Reference

Messages

Reference

PortTypes -1Cnanet Operations

Rfrnce Modifier

Bindings . L4o eet Operations

Reference

Services Contnment Ports

Concrete Definitions

Figure 7-10 WSDL Description

Port types are analogous to application progranuming interfaces (API). A port type is

group of methods, called operations in WSDL speak, belonging to a service. To consume

a method the client sends an input message containing the data for the interface. The

reply comes in the form of an output message. Data items in the message are called

message parts. The common protocols are SOAP, HTTP GET, and HTTP POST. The

service protocols are specified in the bindings section. The hook(s) applications can grab

onto is the service port(s). Ports list the network address and the protocol used with the

port.

93

(

\I-



To follow is a diagram depicting a service that returns the server time, called Time

Service.

Part Parami Parnam Param3 Param4

References to XML Schemas defining
Message GetServerTimeSoapl GetServerime SoapOut the different parts of the message

Opro Lists the messages involved in one

Operation GeverTIme message flow of the endpoint.

The set of message flows (operations)
PortType TimeServiceSoapPortType expected for an end point type

The transport and encoding for a port
Binding TimeService~oapBindtfg .. typej

Port The network address of an end point
Portme~rvicS .o , p~oand the binding

Service Tieervice A collection of related end points

Figure 7-11 WSDL Sample

The schema for the time service

<s:schema targetNamespace="http: //hostname/">

<s :element name="GetServerTime">
<s:complexType />

</s:element>
<s:element name="GetServerTimeResponse">

<s: complexType>
<s :sequence>

<s:element name="GetServerTimeResult" type= "s:string " />

</s: sequence>
</s: complexType>

</s:element>
<s:element name="string" nillable="true" type="s:string" />

</s: schema>

The messages for the time service
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<message name="GetServerTimeSoapIn">

<part name="parameters" element="sO :GetServerTime" />

</mes sage>
<message name=" GetServerTimeSoapOut">

<part name="parameters" element="sO:GetServerTimeResponse" />

</message>

The port types for the time service

<portType name="TimeServiceSoap">
<operation name=" Get ServerTime">

<input message="sO:GetServerTimeSoapIn" />

<output message="sO :GetServerTimeSoapOut" />

</ operation>
</portType>

The bindings for the time service

<binding name="TimeServiceSoap" type="sO :TimeServiceSoap">

<soap:binding transport="http: //schemas.xmlsoap.org/soap/http"

style="document" />

<operation name="GetServerTime">

<soap:operation soapAction="http: //tempuri .org/GetServerTime"

style="document" />

<input>
<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />
</output>

</operation>
</binding>

The service definition for the time service

<service name="TimeService">
<port name="TimeServiceSoap" binding=" sO: TimeServiceSoap">

<soap:address location="http://hostname/time/timeService.asmx" /

</port>

</ service>
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Chapter 8 Discovery Services
The Universal Description Discovery and Integration (UDDI) protocol is becoming

increasingly important as the adoption of web services scales up [UDDI, 2003]. "UDDI

creates a standard interoperable platform that enables companies and applications to

quickly, easily, and dynamically find and use Web services over the Internet. UDDI also

allows operational registries to be maintained for different purposes in different

contexts." As defined by OASIS in www.uddi.org.

As more interfaces move to a web services model there is an opportunity for domains to

standardize interfaces to be implemented by service providers. For example, universities

can publish a lecture interface for the listing of lecture notes, lecture materials, and

lecture discussions. The lecture interface can then be registered with UDDI. Then every

university offering lecture notes resources can implement the interface and register with

UDDI using the publishing services. Content creators can then search UDDI for

universities that implement the lecture interfaces. The search is done programmatically

using the inquiry application programming interface (API). Operations on UDDI are done

programmatically and built into the application logic to remove the burden on the end

user. Interfaces to UDDI are web services themselves and interacting with the interface is

done with XML documents.

Organizations operating public UDDI registries replicate content among the operators.

For this reason it is only necessary to register with one UDDI operator as the interfaces

are propagated to all UDDI registries. Some specialized domains implement specialized

registrars to facilitate registration or add value to the default interface.

There are a number of UDDI servers available for implementation with in an

organization. Large organizations have hundreds of departments with software

components. UDDI servers may take place of in house solutions to register and reuse

components. The standard can help large organizations with a diversity of solutions to
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standardize component registration and discovery. To follow are application examples of

UDDI.

Consider a scenario where you need mathematics tutoring services and would like to find

the services is your city. You could search UDDI for a list of the services in your

geographic region. Once you have selected a service you could then schedule a session.

In this sense UDDI is providing a matching service. Likewise once you find a service

provider you can explore other services by searching on the provider's name.

UDDI can also offer service location resolution for address changes. Service consumers

have no service interruption since the protocol can transparently obtain the new URL,

contained in UDDI, as part of the same service invocation.

Where as most web services are data pull models, coupled with UDDI, web services can

be used in a push model. Typically, web service consumers execute and pull data from

the service provider. Using UDDI, the service provider can publish an interface to be

implemented by all the service consumers. One the interface has been implemented; the

service provider can push data to each implementation for a twist on data delivery. The

variation of the model accommodates subscription models. An application of the

subscription could be made to distribute educational content.

Many content creation companies, educational institutions, and governments have

become interested in the Massachusetts Institute of Technology (MIT) open courseware

(OCW) offering. However, at the time of writing there was no programmatic delivery or

publishing. The previously described subscription scenario would fit OCW very well.

OCW could publish an interface to UDDI and all interested organizations could

implement the interface. MIT could then dynamically poll UDDI for all the implementers

and push OCW content to them. In this model MIT does not have to manage

subscriptions; the management is done by UDDI.
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Organizations that see the need can also become an additional node on the UDDI fabric.

UDDI information is propagated through all nodes through replication. Thus, uploading

information need only be done in one place and it propagates to all existing UDDI nodes.

In this sense UDDI is like DNS being logically centralized and physically distributed. In

UDDI's case the propagated information linked to an organization name is software

access contracts instead of domain names and internet protocol numbers.

To follow is a discussion on the data model and extensibility of UDDI.

8.1 Data Model

The core data structures of UDDI are: business entity, business service, binding template,

and something called tModels [UDDI, 2003]. The business entity has a business

description, unique handle, category, and a pointer to further information.

businessEntity
discoveryURLs
name businessService
description name
contacts description
business Services bindingTemplates
identifierBag categoryBag
categoryBag serviceKey
businessKey businessKey
operator
authorizedName

IModel Binding Template
name description
description accessPoint
overviewDoc hostingRedirector
identifierBag tModelinstaceDetails
categoryBag serviceKey
tModelKey bindingKey
operator
authorizedName

Figure 8-1 UDDI Basic Data Model

Organizations joining UDDI start by creating a business entity, see below for a sample.

The business entity entry is differentiated by a unique key and can have a number of
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description documents referenced by discovery URLs. Identifier and category bags are

used to classify the entity and are optional.

Each business entity is linked to 0-to-N business services. For example, the popular

online retailer Amazon can create a business entity and then create and link book

services, electronics services, toys services, and services for numerous services under the

online brand. As software niches become commoditized the organization of services, the

ease with which new services are integrated, and the ability to derive new services

becomes part of the strategy for software providers. UDDI was designed to be very

generic and business services are not limited to web services. The service can be anything

like a simple HTML page or a fax number. Business services, like business entities, can

also be classified using and identifier and category bags.

Business services are mapped to binding templates for the technical implementation. The

binding template most important elements are the access point and the redirector. The

access point is the address of the service location. If the access point is not given a

redirector must be provided. The redirector points to another binding template. The

additional layer of indirection is useful to relocate services and to permit other services to

have different metadata yet link to the same binding template.

The technical model (tModel) is a very flexible entity. The tModel is a generic pointer to

metadata outside UDDI. As such, the key attribute, the address, is contained in the

overview document attribute. The address can point to web service metadata, a text file,

an AutoCAD file, or anything that is addressable.

In the case of web services, tModels point to a document describing the service interface.

The document does not need to be a web service description language (WSDL) document

but it must contain the metadata describing the service. The document describes the

service but has no information about the endpoint. The endpoint, access point,

information is contained in the binding template.
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TModels are also used to extend UDDI with metadata. The UDDI designers used a

commonly used technique is database design to make extensible tables. The technique

involves creating a table with a variable for new attributes and another for the attribute

values. To avoid attribute uniqueness the attributes are mapped to a tModel key as shown

in the figure below. In this sense the tModel serves a similar role to namespaces where

definitions and declarations are cast in a predefined context.

keyedReference tModel
keyName name
keyValue description
tModelKey overviewDoc

tModelKey

Figure 8-2 tModels

Each binding template can link to many tModels. Likewise, each tModel can link to

many binding templates. The tModel instance information (tModelInstanceInfo) table is a

mapping for the many-to-many table links. A sample including keyed references is

shown below.
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publisherAssertion businessEntity
fromKey discoveryURLs
toKey name businessService
keyedReference description name

contacts description
business Services bindingTemplates
identifierBag categoryBag

keyedReference categoryBag serviceKey
keyName businessKey businessKey
keyValue operator
tModelKey authorizedName

I Binding Template
todel Mdescription

name tModeInsancInfo accessPoint
description description hostingRedirector
overviewDoc + tModelKey tModellnstaceDetails
identifierBag instanceDetails serviceKey
categoryBag bindingKey
tModelKey
operator
authorizedName instanceDetails

description
overviewDoc
instanceParms

Figure 8-3 UDDI Data Model

As the UDDI server scales there is a need to relate business entities. The entities might be

members of the same organizations that have entered UDDI separately or independent

entities that have a logical relation. To relate two business entities the owner of each

entity must create a publisher assertion. A bilateral assertion is necessary to avoid

undesired business entity relationships. The publisher assertion table contains three

fields: from key, to key, and keyed reference. The first two are pointers to the two

entities. The third points to value pair defined in the context of a predefined UDDI

relationship tModel.

Below is a comprehensive UDDI data model diagram using the uniform modeling

language (UML) format.
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Figure 8-4 UDDI Extended Sample (Source msdn.microsoft-com)

In the sample below MIT has setup a UDDI server and a registered a business entity with

business services. The business entity is an academic portal entry as a handle for

academic portal services. Note that the discovery URL points to local UDDI server in the

MIT domain.

The listed business service is for course documents. The business service has two binding

templates. The first exposes course lectures notes and the second course assignments. The

binding templates point to files that act as the web service interface. The proxy built by

the service consumers then post data to the address given in the access point tag. The
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tModel in turn points to the metadata address. The metadata holds the information needed

to create the proxy. Thus, the binding template tells the service consumer where to send

the data and the tModel how to format the data to be sent.
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Modelr fo h ore Le-K NtsSevc
<tModelDetail>

<tModel
tModelKey="uuid:55555555-5555-5555-5555-555555555555"
operator="MIT"
authorizedName="Abel Sanchez">

<name>Course Lecture Notes Service</name>
<description>

This interface is to be implemented by services that return course
lecture notes.

</description>
<overviewDoc>

<description>WSDL document</description>
<overviewURL>

http://portals.mit.edu/AcademicPortal/CourseLectureNotes.asmx?WSDL
</overviewURL>

</overviewDoc>
<categoryBag>

<keyedReference
tModelKey="uuid:01010101-0101-0101-0101-010101010101"

keyName="Specification for a web service described in WSDL"
keyValue="wsdlSpec" />

</categoryBag>
</tModel>

</tModelDetail>

<tModelDetail>
<tModel
tModelKey="uuid:66666666-6666-6666-6666-666666666666"
operator="MIT"
authorizedName="Abel Sanchez">

<name>Assignments Service</name>
<description>

This interface is to be implemented by services that return course
Assignments.

</description>
<overviewDoc>

<description>WSDL document</description>
<overviewURL>

http: //portals.mit. edu/AcademicPortal /Assignments. asmx?WSDL
</overviewURL>

</overviewDoc>
<categoryBag>

<keyedReference
tModelKey="uuid:01010101-0101-0101-0101-010101010101"

keyName="Specification for a web service described in WSDL"
keyValue="wsdlSpec"/>

</categoryBag>
</tModel>

</tModelDetail>

<businessEntity
businessKey="00000000-0000-0000-0000-000000000000"
operator="Massachusetts Institute of Technology"
authorizedName=" Abel Sanchez : 86">

<discoveryURLs>
<discoveryURL useType="Home Page">

http://portals.mit.edu/AcademicPortal/training/
</discoveryURL>
<discoveryURL useType="businessEntity">

http://uddi.mit.edu/discovery?businessKey=00000000-0000-0000-0000-
000000000000
</discoveryURL>

</discoveryURLs>
<name>Academic Portal</name>
<description>Academic Portal - An intance of the Academic Portal type in the
Portal Factory</description>
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<businessService
serviceKey="11111111-1111-1111-1111-111111111111"

businessKey="00000000-0000-0000-0000-000000000000">
<name>Course Content</name>

<description>Course documents</description>

<bindingTemplates>

<bindingTemplate

serviceKey="11111111-1111-1111-1111-111111111111"
bindingKey="22222222-2222-

2 2 2
2-

2 2 2 2
-
2 2 2 2 2 2 2 2 22 22

">

<description>Course Lecture Notes Service</description>

Ts U. >

<accessPoint URLType="http">

http://portals.mit.edu/AcademicPortal/CourseLectureNotes.asmx
</accessPoint>
<tModelInstanceDetails>

: r c e t ..he ck d scr

<tModelInstanceInfo

tModelKey="uuid:55555555-5555-5555-5
5 5 5 - 5 5 5 5 5 5 5 5 5 5 5 5 ">

<description>Course Lecture Notes tModel</description>

<instanceDetails>
<description>SDK document</description>

<overviewDoc>
<description/>
<overviewURL/>

</overviewDoc>
<instanceParms>

http://portals.mit.edu/AcademicPortal/SDK
</instanceParms>

</instanceDetails>

</tModelInstanceInfo>
</tModelInstanceDetails>

</bindingTemplate>

b sV -

<bindingTemplate
serviceKey="11111111-1111-1111-1111-111111111111"
bindingKey="33333333-3333-3333-

3 3 33
-
3 3 3 3 33 33 3 3 3 3

">

<description>Course Assignments Service</description>

<accessPoint URLType="http">

http://portals.mit.edu/AcademicPortal/CourseAssignements.asmx
</accessPoint>
<tModelInstanceDetails>

< re:reC .to ihC.:M.d d CCCesCribing -he C2urseAssinme2; n >2ac

<tModelInstanceInfo
tModelKey="uuid:66666666-6666-6666-666

6 - 6 6 6 6 6 6 6 6 6 6 6 6 ">

<description>Course Assignments tModel</description>

<instanceDetails>
<description>SDK document</description>

<overviewDoc>
<description/>
<overviewURL/>

</overviewDoc>
<instanceParms>

http://portals.mit.edu/AcademicPortal/SDK

</instanceParms>
</instanceDetails>

</tModelInstanceInfo>
</tModelInstanceDetails>

</bindingTemplate>

</bindingTemplates>
</businessService>

</businessEntity>
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The naming of the data structures are colored by the era of conception, the internet boom.

As used in this work, business entities are the provider of the service(s). The provider is

the contact point for service operation. The business services are the web services

associated with a provider. The web service endpoint is the binding template. The

endpoint holds the URL for the web service address. Lastly, the tModel is metadata

statement with a URL address to the web service description language document.
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Chapter 9 Product Platforms

Platform research has been leveraged in many fields for gain [Meyer,1997; Baldwin,

2002]. This section discusses product platforms, product families, and derivate products.

It addresses the design and manufacturing of information products. It investigates how

information technology can be used to support the creation of new products, create the

manufacturing platforms, and modularize the product design. It proposes an architecture

for information products and it addresses the strategic and technical implications of the

architecture.

Towards this goal, this chapter presents insights from platform research. In parallel will

be an effort to apply platform research to software information architectures. In this

work, software information products are software defined products used to manipulate

information. The term information product is used interchangeably with that of software

information product. The application of the architecture goes beyond information

products since it is generic. However, the focus of this work is on products that consume

and manipulate data. This chapter extends the work of Mark H. Meyer's, ""The Power of

Product Platforms" [Meyer, 1997], to the academic grid platform.

The information product is defined as a collection of web services. For example, a

weather analysis product maybe comprised of a temperature, wind metrics, pressure,

humidity, and rain gage web service modules. The chapter on the portal factory expands

this topic.

The targeted consumers of the information products are external as well internal

consumers. The information products definition of sale varies according to domain. For

example in research and academe sales are taken as product adoptions since frequently

the products are public domain. In this case, the use/implementation of an information

product by an individual(s) constitutes a sale.
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9.1 Architecture

The identification of commonalities in product construction and the inception of shared

abstractions layers is the architecture of a product. Variations in the used commonalities

will produce different architectures and different functionality. Architectures can also be

developed to maximize a sought dimension. For example, constructing a product favoring

high performance will result in an architecture where all design decisions are made

favoring performance. Likewise, different architectures will result in different product

functionality, cost, and quality. An architecture focuses the product developer on a pre-

selected design path. Effective architectures gain adoption by product developers and are

a basis for productivity. At the same time, the design concept of the architecture and the

focus it provides, necessarily constrains the variety of product versions that can be

offered.

Important to effective architectures and design is modularization [Meyer,1997; Baldwin,

2002]. Breaking down a product into modules is a principle of design that divides a

mechanical system or structure into standardized elements. The modules can then be

reused by other systems. Once the interface has been standardized, the modules can also

be replaced by newer modules that perform the same task in a perhaps lower cost, higher

performance, or more robust manner. Interchangeable modules can also be paired in new

ways. Making modules interchangeable with standardized interfaces has the added

benefit of being able to pair modules together in new and different ways to create new

products [Ulrich, 2000].

Products are composed by many subsystems. For example, an automobile has numerous

subsystems like the steering system, the cooling system, and the breaking system. Each of

which can be further broken down into components. The granularity of the components,

the interfaces, and targeted reuse become competitive dimensions for the product. A

grouping of subsystems and components can be grouped and used as base to build new

products. The set of subsystems and interfaces that form a common structure from which

a stream of derivate products can be efficiently developed and produced is a product

platform [Tabrizi, 1997].
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The overall design concept, the sequence of design decisions, the process of dividing the

product construction into modules, and creation of abstractions from functional layers is

presented as the product architecture.

9.2 Black and Decker - Architecture Renewal Example

One of the flagship examples of architecture renewal is the Black and Decker (B&D)

Company [Meyer & Lehnerd, 1997]. Back in the nineteen seventies Black and Decker's

product architecture efforts had many problems. The architecture had little commonality

between products groups and even between them. Each product was designed and

redesigned one at a time. The product design did not leverage the design of existing

products. Similarly, products were not designed and modularized so modules could be

reused. A standout example of the product design approach was that B&D had over 100+

different motors, no common design, and different production lines. As the company

sought to improve its inefficiencies in product creation it underwent and architecture

renewal effort.

B&D designed a new architecture of all tools - drill, sander, saws, hedge trimmers, etc.

One the key components identified for commonality was a motor that could be used by

several tools. The new architecture featured a new universal motor that could be used for

all tools. The motor had a motor range of 65 watts to 650 watts. A similar approach was

taken with all key subsystems. The results were striking.

Under the new architecture B&D saw a 50% reduction is costs to reduce products. The

convergence to fewer reusable modules resulted in higher quality components and more

durable products. The products were also lighter.

B&D experienced no restraints on product variety. The opposite effect occurred, common

subsystems enabled variety. B&D product variety actually increased over time. B&D
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advantages drove much of the competition out of business. B&D market share went from

20% to 80%.

9.3 Product Platform

The design concepts comprising a product's architecture are physically implemented as

"platforms" for the product and for the process to produce it [Meyer & Tertzakian, 1997].

The platform is the grouping of product or process designs that are used as a base to

derive products. The platform can be thought of as a framework that chums out new

products. The components and design of the framework are the architecture while the

physical implementation of the architecture is the product platform.

Platform "effectiveness" can be measured in terms of successful derivative products or

market attractiveness. The first is the measure of the stream of new products derived from

the same platform. The second is the measure of the product attractiveness to the chosen

markets.

For information products, the basic structural dimension of the repository is the web

service. The web service defines the atom of functionality to be stored, retrieved, and

manipulated.

The product platform of information products is a repository of web services. The

repository becomes the foundation from which families of information products will

derive. Each web service is a subsystem module that can be used to compose information

products. The richness of the pool of web services reflects the potential number of

products that can be made. The modularity of components permits focusing resources of

key modules that will be shared by a large number of products. The level of complexity,

granularity, and the structure of the repository are design constraints. The more ways the

repository can be sliced and diced, the greater the potential to create new products.

The definition of products will be a listing of the paired modules. The loose coupling of

web services is an ideal property to create flexible products that can even be defined on
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the fly. The product platform is comprised of three stages: acquisition, refinement, and

storage/retrieval.

The acquisition stage is done using the web services description language (WSDL).

Computing resources are exposed using the Hypertext Transfer Protocol (HTTP) and

described using WSDL. Consumers of computing resources can hook onto the resources

and create stubs. As the platform comes together there will be a pool of web services,

representing computing resources, available. The loose coupling not only provides

flexibility but also creates a way to easily perform platform renewal through module

updates, removals, and new additions.

The refinement can vary from pairings of web services to wrapping web services in

modules for presentation - graphic user interface - delivery. Certain modules will be

consumed server side and not have a presentation element while others will need a

presentation layer.

The platform web services will need an interface to store and retrieve modules. The

Universal Description Discovery and Integration (UDDI) protocol creates a standard

layer to quickly, easily, and dynamically find and use web services over the internet. It

contains and industry supported standard for service description and discovery using

XML and HTTP. Cross platform programming is supported using the messaging Simple

Object Access Protocol (SOAP).

9.4 Process Platform

The process platform as the name indicates consists of the processes used to manufacture

a firm's products. The technologies, the assembly, the staging of manufacturing, the

testing, the physical housing of the infrastructure, the integration of outsourced modules

are all potential parts of a process platform. Depending on the industry the process

platform may be in a high rate of continual renewal. For example, computing devices
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parts, casing, and software change so rapidly that OEMs strategy needs to plan for a

continual renewal of process platforms.

Process platform investment is about more than high product throughput, it is an

additional opportunity for innovation to facilitate greater product variety. Process

platforms can be designed and built to enable product variety. The advantage, or lack of

there of, comes from the flexibility built into the production process. Such allowances

expand the production possibilities. In the absence of flexibility, the variety of products is

constrained. Thus, care should be taken to not construct a process platform that not only

hass high volume and capacity but also one that is flexible and will welcome product

variety.

For information products, at a high level, the process platform consists of: acquisition,

refinement, storage/retrieval, distribution, and presentation. Acquisition of the web

services, the first step of product construction, gathers the base structural units upon

which the platform will be build and products based on. Issues to address are quality,

reliability, robustness, scalability, security, control, exclusivity, and timeliness. Some of

these issues like robustness are technical, while others like exclusivity are determined by

the policy, license, or contract. Even when all the computing resources are self-owned

verification of module robustness, security, and scalability is needed.

Once the web services have been secured and tested the next step is to refine the

resources. Not all web services will be built to needed specifications, many will need to

be extended or wrapped for a better fit into the product design. Other will have to be

paired to get the need functionality. Most web services will need to be integrated into a

common software foundation for the platform. The software foundation is the

computational context addressing things like identity, authorization, authentication,

culture, and language. Refining not only adds value adapting web services for

consumption in the platform but also structuring the pool of resources in a flexible and

logical manner to facilitate product variety.
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Storage and retrieval represent a transition between the product platform and the

distribution and presentation. The platform structural elements, web services, need a

strategy for storage and retrieval. An organization scheme is needed plus and interface for

searching plus a registry process for new modules that are available to the platform.

Interfaces for web services pool can be best leveraged if the interfaces are standardized.

The software industry identified the need to access computational resources in a

standardized way to leverage the efforts being replicated in many software houses. Led

by IBM and Microsoft the Universal Description Discovery and Integration (UDDI)

specification was proposed to define and discover web services. The specification is

based on internet standards. It is platform and implementation neutral. And it has gained

buy in from a majority of the industry leaders. UDDI is a natural choice to create a web

service registry to be exposed for the platform consumption. UDDI can help to quickly

and dynamically discover the sought after module.

The form in which a product is delivered to users represents the distribution. The

distribution channels and types can spider into several different products and different

business models. To take an example, a newspaper can be delivered to a mobile phone in

a reduced format charging per packet much like the NTT DoCoMo business model. The

same newspaper can be distributed through a web site, to be consumed by a web browser,

on a monthly subscription basis. The distribution of the information product also

considers the timing and the frequency.

The last stage in the process is the presentation. The presentation of information products

refers to the graphical user interface delivered to the end user. Quality, usability, and

transparency as well as aesthetics are all dimensions for differentiating products in the

market place. A powerful, robust, and scaleable process with poor presentation will

negatively affect the attractiveness of the product. In domains where competitors'

information content and process is similar, the presentation effectiveness will become a

competitive edge.
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9.5 Product Families

An effective platform gives way to an array of new products based on the same platform

at a fraction of the cost. Product families are the streams of related products. In our

previous example of architecture renewal, families refer to products that share a number

of key modules and subsystems. Similarly, a product family is defined as a set of

products that share a common technology and address a related set of market

expectations [Meyer & Tertzakian, 1997]. The commonality shared between different

products permits the company to devote more resources to the common elements. Higher

investment in the common modules leads to more testing, higher robustness,

effectiveness in manufacturing, distribution, and service.

The product platform, the repository for information products, the process platform, and

the refinery are the infrastructure to derive product families. As discussed in previous

sections the repository serves to create the web services pool, extend the services,

integrate the services, and create a registry of modules consumption of the platform. The

process platform is presented as five stages: acquisition, refinement, storage/retrieval,

distribution, and presentation. Using the product and process platform are the

infrastructure to modularize and integrate internal and external web services for

information products and derive product families.

9.6 Product Platform Evolution

If platforms do not evolve they will eventually become obsolete. This section discusses

transitions states in platform evolution. The transition events are: new platform

generation; new platform; and platform renewal.

The initial platform architecture consists of common subsystems and interfaces for an

array of products.

A new platform generation takes place when the interfaces between modules remain

constant but the modules and subsystems change. Internally the modules might be doing
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something very different but the interface to other systems continues to have the

functionality. Other modules consuming the interface would continue to function

properly. The modules would change but since the interfaces did not change the platform

would continue to function into the new generation.

Platform extensions are a new generation where the number and type of subsystems

remain constant but where the subsystems and interfaces are enhanced.

A new platform occurs when a new architecture, new modules, and interfaces are

introduced. Modules and interfaces maybe reused from priors platforms and paired with

the new components in the new architecture. The new platform is not simply an extension

but a completely new approach, a new concept, and a new design.

9.7 Technological Leverage

This work will discusses two types of leverage: technological leverage and market

leverage. Technological leverage is the extent to which investments in the basic platforms

serve as a foundation for efficiently developing derivative products. This section

introduces the basic measures for leverage; later sections cover metrics in detail.

One of the first measures is that the cost of the derivative product needs to be lower than

the cost of the platform development plus the research and development. The measure is

a fundamental first check to answer the question "is the platform making any

difference?" The measure is a viability test of the platform. If a platform can not pass this

simplest of tests then the platform has failed to produce any savings and should be

discarded or redesigned. Having passed the test, the cost of derivative products should be

significantly lower than the platform creation cost. The goal of platforms is to reduce the

cost of derivative products and in this pursuit the lower the cost of derivatives the more

promise for the platform.
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Another measure is platform efficiency defined as the engineering cost of underlying

platforms divided by the average engineering cost of product derivatives. Given the ratio,

values approaching one, or under one, are poor efficiencies. Values close to one would

mean the price of derivative products are costing just as much as the cost to create

platform. Conversely, the larger the efficiency number the more positive and efficient

the platform. High efficiency numbers means the cost of derivative products is

significantly lower than the cost of the platform. As discussed previously, there needs to

be a periodic investment in the platform to maintain its viability. For this reason, values

should not go to infinity as there needs to be continual investment into the platform. The

investment should be reflected through cost of derivatives. Values that are abnormally

high may indicate a platform that is outdated and will become obsolete.

The third measure to be discussed in the context of technological leverage is cycle time.

Products are only useful is they are available when needed. A product that has great

efficiency but unavailable in time can not be used. Cycle time is the time required to

create a derivative product divided by the time it took to create a platform. Sample values

of derivative products can be in the months while the platform maybe in years, varying

accordingly by industry.

For information products the ability to rapidly and efficiently engineer new products is

based on the in product platform. The number of web services in the platform will have a

direct impact on the products that can be made. A good stock of web services is

necessary to enable product variety. Other dimensions are the way the web services are

packaged, the structure of the module registry, and the forms and levels of access the

module pool.

9.8 Market Leverage

The market leverage is the return provided on the platform investment. The return maybe

measured differently depending on the organization. For example, in academe and

research the measure maybe the number of product adoptions by academic groups. More
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often the return will be measured in terms of sales. The accrued sales for a set of

derivative products divided by the total engineering costs of those products is defined as

the platform effectiveness [Meyer & Tertzakian, 1997].

The discussions of the last sections have led to leverage. The leverage that a platform can

give when creating new products. Evolving product families are based of product and

process platforms. Leverage is gained when robust efficient platforms are constructed

that produce successful product families in short cycles times efficiently.

9.9 Distinctions from Physical Products

The time to take products to market is much shorter when compared to physical products

[Sundgren, 1995]. There is a tremendous pressure to get products to market in the fastest

time possible. Especially in the interest of speed the importance of a platform can not be

overstated. Although the time to build the platform may take longer than to build a single

product, once the platform is in place products will be derived quickly. An efficient

platform will permit the derivation of products at a much faster cycle time than when

constructed independently [Wheelwright, 1992].

Once an efficient, effective, low cycle time platform is built the construction of new

products is very fast. In many cases the new products can be created on the fly on

demand. Likewise, the incremental cost is very small.

On some cases the creation of platform interfaces that can also be leveraged by external

developers and systems can lead to market domination. When a platform clearly exposes

and documents the interfaces there is an opportunity to become the market standard. How

much market share, developer friendliness, and developer tools are some of the

dimensions that win developers [Meyer, 1998].

From a physical product perspective the platform can become a channel of distribution.

As external developers leverage the platform, the number of products offered expands
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with out any additional cost to the platform maker. The more products developed on a

platform, the larger the number of users and visibility of the platform. Several products

with varying degrees of success have attempted to win developers over to a platform

focusing on software abstractions like data, presentation, or language. For example the

Oracle Corporation, at the time of writing the world's second-largest software company,

established itself as a relational database management system (RDBMS) platform.

RDBMS platforms have become so common place that product manufacturers leverage

them routinely for the data layer of the software product.

The modularity of information products permits mixing and matching to create new

products. Products originally created for web site distribution can be repackaged for

mobile phone distribution. Similarly, the content from several sources can be combined

to create a new product or the content from one source distilled to provide a different

offering.

One more way in which information products differ from physical products is in the

frequency of purchase. Information has a shelf life after which it must be renewed or

replaced. Periodic purchases of information products will be a common model for

consumers.

9.10 Barriers for competition

Exclusivity of the data interface or data would limit competitors. Even though exclusivity

of data is the strongest position, in the case where data can be equally obtained by all,

securing the lowest cost channel would be an advantage over the competition.

As the module pool grows and grows the size and the management of the repository will

become a barrier to competitors. New competitors will not have the stock of modules and

will need to manage and optimize their repositories as they grow.
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Developing a platform creates barriers to entry for the competition. One of the first is

product variety and cycle time. As discussed in previous sections a well designed product

architecture allows the rapid development of products. Companies creating products one

at a time will be at disadvantage with a longer product cycle and less variety.

When competing with other platforms, the technology used in the platform can be

another barrier to entry. Technologies to refine, categorize, and structure the module pool

with create value. Similarly, ease of use, flexibility, and extensibility will facilitate

content renewal and product variety at lower costs.

9.11 Platform Conclusions

The design approach in general is to design/consume small modular pieces with the goal

of creating an underlying platform where new modules can be snapped on at a low cost.

The plugin framework is the platform that will be leveraged to create product families

and in some cases used as a market standard, a shared framework.

Well designed platform architectures can rapidly construct families of derivative products

at a low cost. The software platform is something to be carefully managed to provide

flexibility through modularity and standardization. In some cases, the interfaces

themselves may become a market standard enabling the company to become a channel of

distribution. In any case the flexibility and customization possibilities are an added

benefit.

Key to the platform architecture is the basic unit of the module pool. In this work the

basic information unit was the information web service. The basic unit was coarser than

on a text feed but it was also more modular and the grouping and handle more obvious.

The interface to the module pool was done though the Universal Discovery Description

Integration (UDDI) registry for web services.
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The market advantages, as discussed, are many and can be used as a business model.

Using a platform approach products have a timelier introduction to market. The product

family will be richer and more flexible. The scope in the market will be broader. Finally,

competitors with out an equivalent robust product line will face a barriers to entry.
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Chapter 10 Portal Factory
Grid computing has many advantages as has been discussed in prior sections. However,

for information products there are a number of shortcomings. The literature is missing a

home or container for services. Designers need a way to define applications (portal types)

quickly and inexpensively. The presentation meta-layer to the pool of computational

resources is unspecified. This chapter presents a stateless version of the grid's abstract

framework for communication.

For information products the connection to computational resources is short lived and

stateless connections are sufficient. Removing the stateful requirement for connections

simplifies the architecture and makes it more scaleable. The resulting application is very

much like the web. Web servers responding to web services requests can scale very much

in the same manner web servers scale today. The difference is quite significant as the

Hypertext Transfer Protocol (HTTP) has scaled globally

10.1 Introduction

The portal platform is built upon a pool of web services. The web service forms the basic

architectural unit for portal construction. Everything from infrastructure components like

user registration to custom components like a weather module are constructed and

integrated as a web service. There is no distinction in the construction process between a

custom module that displays the top ten movies of the week and an infrastructure module

like registration. Both modules can be loaded and leveraged dynamically by the portal

factory.

The imposed architectural mandate is that every component must truly encapsulate

functionality, execution, and logic. The component does not have a priori knowledge of

when, how, and in what context it will be used. Therefore, the logic, functionality, and

execution can not be dependent on computing resources that are not contained with in the

component itself. The designer of the component is forced to design a component no with
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dependencies. The restrictions of the programming model enable a long sought after goal,

reuse of computing resources. The restrictions are no more than a stricter adherence to

the object oriented programming principles.

Once web services are constructed they are registered with the Universal Description

Discovery and Integration (UDDI) Server. Computing resources constructed locally or

remotely expose their interface, their usage contract, using UDDI. The UDDI server as

discussed in previous sections is a platform that enables organizations to quickly, easily,

and dynamically find and use web services over the Internet. The UDDI protocol enables

the registration, publication, and implementation of the web service. The UDDI protocol

is open standard, XML based, interoperable, and accessible over HTTP. The UDDI

contract is a web service contract.

Web service implementations and development environments have been implemented in

most computing platforms. The open source group has Apache and Axis, Windows has

the .Net Framework, and there are implementations by IBM, Sun, Oracle, and Hewlett

Packard. One of the big draws to the development paradigm is that much like the HTTP

architecture the architecture of web services is open, simple, and the protocol is human

readable XML documents. The technical barriers are low compared to component

technologies of the past, like the Common Object Request Broker Architecture (CORBA)

and the Component Object Model (COM). The core infrastructure needed is a HTTP

server to listen for XML documents and an XML parser. Considering web servers and

XML parsers have become ubiquitous in today's computing infrastructures; the cost of

leveraging components across operating systems and computing platforms has been

lowered and simplified much in the same manner that HTTP made linking to documents

much simpler than the days before the World Wide Web (WWW).

10.2 The Portal Infrastructure

The portal infrastructure implementation is based on the Common Language

Infrastructure (CLI) ECMA standard. The programming language used is C#, also part
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the ECMA standard. For more information on the ECMA CLI and C# standards see

http://www.ecma.ch/ecmal/STAND/ecma-335.htm and

http://www.ecma.ch/ecmal/STAND/ecma-334.htm. On the Windows platform, the .Net

development platform from Microsoft is based on ECMA standard. The Mono Project

sponsored by Ximian Inc. is an open source Linux/Unix version of the Microsoft .Net

development platform. Like Microsoft .Net Mono is a complete development platform

including a Common Language Infrastructure (CLI), virtual machine, just-in-time (JIT)

compiler, a garbage collection runtime, C#, and a class library. There is also Rotor, a

shared source implementation of the same ECMA standards. Both Mono and Rotor offer

full source code for their implementations.

The same computing architecture approach can be taken on other computing platforms.

The reference to ECMA is mentioned for completeness and context for the reader. The

architectural discussion of the portal factory is made generically.

The portal factory infrastructure is a framework in the classic sense composed of a

collection of patterns. The context of the framework and patterns is collaborative portal

applications. Examples are:

" Problem identification

" Informing and knowledge exchange

" Events

" Evaluating alternatives

" Choice

" Implementing

" Review/feedback

" Coordination

" Socialization

" Motivation

* Negotiation
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In spite of the context, the granularity of the platform is such that modules, like a weather

component, are written independently and can be leveraged by any application in need of

such a component.

The portal infrastructure data model is composed of portals, component instances,

component definitions, users, and roles. The portal infrastructure also contains a

rendering component, a module loader, a portal loader, the portal context, satellite

assemblies. In the sections to follow the infrastructure components and data model are

discussed.

10.3Users

The management of registration, authentication, and authorization has become

increasingly important as organizations try to integrate the constantly expanding number

of heterogeneous systems that make up the enterprise. The complexity has grown with

distributed systems and the internet highlighting the need for security, delegation, and

federation.

There are a number of solutions and protocols on the market for the management of user

identities. Some of the major offerings are the Lightweight Directory Access Protocol

(LDAP) which has been adopted in enterprise products by Microsoft, IBM, Hewlett

Packard, Sun, and an open source flavor called OpenLDAP. Each major platform also has

a server to manage identity. Examples are Microsoft's Active Directory and the open

source Kerberos Server. Microsoft, with a web service solution, is making a big push

with the "Passport" service. Users need only register once and they can login to every

application, service, or web site using Passport with out having to reregister. Sun is

backing a similar open source service called the "Liberty Alliance". Not to be outdone

America Online (AOL) has announced "Magic Carpet" with the same goals. All three

services seek to provide registration, authentication, and authorization. For hosts, the

advantage of signing on with an identity manager is automatic access for every user
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subscribed with the service - Passport had more than 200 million users at the time of

writing. Users also get the benefit of only remembering one username and password.

With the variety of software applications, platforms, protocols, and operating system

management of identity has become increasingly complex. The portal infrastructure uses

a web service solution. Given the model's required abstraction and encapsulation, the

registration service can also be used for authentication on other systems. A simplified

data model is shown in the figure below.

Users
Userld GroupMembers
UserName Groupid
FirstName Userld
LastName Role
Email
Password

Groups GroupQueue
Groupid Groupid

UsersAttributes GroupName Userki
Userld Description
Attributeld
AttributeValue

GroupRoles
I. Groupid

Attributes Role
Attributeld
AttributeName

Figure 10-1 Users Data Model

The data model is presented in an entity relationship (ER) diagram for ease of discussion.

However, the reader should keep in mind that the model is not exclusive to a Relational

Database Management Systems (RDBMS). The ER model can just as well be

implemented in XML using the Schema Definition Language (XSD).

Applications need to able to create groups, assign roles, and extend the registration

attributes. In the given data model groups are created in the "Groups" table and the

group's roles in the "GroupRoles" table. Group members are added by role with a

separate entry for every role. In a course portal a faculty member may have a grader role,

a lecture author role, and an announcement author role.
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No matter how many registration fields a user table has new applications always have a

need for new ones. For example, a portal for structural engineers may need a field for

design manual that would have been missed by the most comprehensive user registration

tables. A way to deal with an unknown number of fields at design time is to create a table

of attributes to be defined on the fly as new portals are created. The attributes can then be

mapped to users with a data relationship.

A common extension to the given model is a table of actions in which each role is

mapped to a number of actions. The read lecture, edit lecture, author lecture, and delete

lecture can be mapped to the faculty role in course portal. One of the advantages of this

approach is lower granularity of authorization. For example, to allow all users with the

student role to have the faculty action of "authoring announcements" the administrator

can selectively add the author announcement action to the student role. If the logic was

solely dependant on roles, the student role could not be given partial actions of the faculty

role. The users with the student role could be given the faculty role but it would have to

be done on a one-by-one basis and what is worse they would receive the full actions of

the faculty role. To achieve the partial authorization, the logic of the affected components

would have to be modified to allow both the faculty role and the student role to author

announcements.

There are lots of interfaces that can be written to manipulate the data model. Below is

sampling of interfaces (for the WSDL interface see the appendix).

* AddUserToGroupWithGroupld

* AddUserWithUserldToGroupWithGroupld

* ChangeUserPassword

* CreateAccount

* CreateGroupRole

" CreateUserGroupWithGroupTypeName

" DeleteUserFromGroup

* GetRoleslnUserGroup

* GetUsersInGroup
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* GetUserAttributes

" GetUsersAttributes

* GetUserAttributesByUserld

* GetUserGroupFromGroupld

" GetUserldFromUsername

" GetUsernameFromUserld

* GetUserPicture

* GetUserRoleInGroup

* GetUsersFromGroupWithThisRole

* IsUserInGroup

* LogIn

" LogOut

" ListGroups

* ListGroupsUserlsln

* LogInWithoutSiteld

* SaveAttributeValue

" SaveUserPicture

" UpdateGroupByGroupld

" UpdateUserRolelnGroup

10.4Rendering

The number of target panes supported by the portal infrastructure has no limit. However,

the implementation has standardized on 5 panes: header pane, footer pane, left pane, right

pane, and content pane as shown on the image below.
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Figure 10-2 Rendering Panes

The addressable panes can always be extended by the user. The addressable panes can

also be decreased, changed, deleted, or completely recreated.

At this point it is worth having some discussion on rendering components.

A rendering component executes server side, provides a programmable object model, and

renders markup text to a web browser. The component is a fundamental building block of

the web application portion of the architecture.

The component object provides the basic functionality for participating in the portal page

framework. In particular, it provides the functionality that allows a component to be

placed within the component collection as a page is rendered. Another useful layer of

abstraction is to uniformly handle rendering HTML content. The underlying base class

can provide support for styles through properties such as font, dimensions, and color.

Components are reusable application logic that involves a modularized solution to a

problem context. Components are namespaces that contain classes with methods and

properties that can be reused. One of the advantages of components is they increase the

rendering speed of dynamic web pages. Because components are compiled into machine

code they execute faster than pages that are interpreted at rendering time.

128



Components promote robustness. A component can be shipped as a black box that

performs a function. Consumers of the black box can leverage the component and need

not worry about the inner workings.

Components can also be used to divide web application functionality into a number of

smaller, self-contained chunks of code. Using these methods can help web applications

become more scalable and easier to manage.

Below is the pseudo code for a class of html images, the number of properties have been

abbreviated for convenience. All components are written as stand alone modules and

know how to render themselves.

public class WebImage

{
private String src;
private String alt;

public String Src{get(return src;} set{src=value;}}

public String Alt(get{return alt;} set{alt=value;}}

public String render()

/render HTML

Much like the logic and HTML generation have been packaged into the "WebImage"

class above, bigger blocks like a calendar or a contacts list can also be rolled into a

component. The resulting module maybe have a number of classes and supporting

methods but the rendering logic can treat the module like any other object that knows

how to render itself. The objectification of modules enables very flexible rendering

options.

Using reflection, the framework can load components written by remote contributors and

dynamically populate pages in the rendering cycle. The next section discusses reflection

and its role in rendering portal pages.
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10.5Reflection

Recent programming languages like Java and C# have been built to be self describable.

The description information is contained in what is called metadata, data about the data.

Metadata describes structures, enumerations, classes, method's contracts, referenced

types, as well as defined types with in a component or application.

Metadata is used to enforce type-safety by comparing the executing code versus the self

description, an important check for robustness. Metadata is also used to discover and

query components dynamically, called reflection.

Reflection is the ability to discover information and query the metadata about a type at

runtime. By reflecting over an application or component it is possible to find what types,

methods, and interfaces it has. Furthermore, applications can be written to dynamically

load and instantiate components using reflection. For example, you can use reflection to

dynamically create an instance of a type, bind the type to an existing object, or get the

type from an existing object. You can then invoke the type's methods or access its fields

and properties.

Using reflection the portal infrastructure has developed a rendering cycle that loads

components dynamically, instantiates them, and targets a pane(s). The computation

performing the rendering does not need to know the components a priori at compile time.

This means that what it loads, where it loads it from, how much it loads, when it loads,

and the graphical user interface target are variables determined at runtime. The flexibility

is such that the loaded components could be determined based on user input at runtime.

A less apparent benefit is the capability of loading federated components. The software

boundaries and imposed framework treats components at arms length imposing a strict

separation on the logic, execution, and functionality of the component. The separation

negates the necessity to centrally control the development of components. This property

of the architecture is very important. With it, components can be constructed by anyone

and still be leveraged by the portal factory framework. This means developer groups and
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individuals anywhere may contribute components to the portal infrastructure. The image

bellow depicts a scenario where components have been constructed by many different

groups, loaded dynamically at run time, and rendered targeting graphical interface panes.

'I

Figure 10-3 Late Binding Using Reflection

10.6Portal Data Model

The portal factory data model is composed of modules, module definitions, pages, and

portals as shown below.

Modules
ModulelD
PagelD
ModuleDefiD
DisplayOrder
PaneName
PrettyName
EditRoles

ModuleDefinitions
ModuleDeflD
PortallD
PrettyName
AssemblyName
AssemblyType

Pages
SPagelD)

DisplayOrder
PortallD
PageName
ReadRoles

Portals
PortallD
Title
Banner
StyleSheet

Figure 10-4 Portal Data Model
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Modules are defined by specifying the path, the name of the type to instantiate, and the

portal the modules are to be listed under. It is that modules definitions are unique with in

a portal instance. Meaning there can be modules that only appear in some portals.

Each instance of a module is unique and linked to a page. There can be many instances of

a module even with in one page or a pane. There are no collisions since each instance is

unique and its associated data is linked to the instance. Even though there are many

instances they are all mapped to the execution code of one module and the mappings

handled through the data model. The target pane in the portal page is dynamic and

handled through a module property.

The number of pages just like modules instances and module definitions is dynamic.

Each page is linked to a portal and is unique in the portal framework. Pages are the

containers for modules. The panes are the graphical interface targets for the modules with

in each page.

In practice there is often the need to have the same module appear on many pages or

appear on a page more than once. An example maybe a banner image or a menu that need

to be shown on all pages. The data model can be extended as with a mapping table to

map modules to pages.

Modules MappingTablePae
ModulelD +--ModulelDPge
ModuleDeflD PagelD M PagelD
ModuleTitle DisplayOrder DisplayOrder
EditRoles PaneName PortallD

PageName
ReadRoles

ModuleDefinitions
ModuleDeflD Portals
PortallD PortallD
PrettyName Title
AssemblyName Banner
AssemblyType StyleSheet

Figure 10-5 Model Pages Mapping

132



In the extended data model shown above, a module can appear in as many pages as

needed. The same module can also exist in different panes in each page, multiple times

on a page, and multiple times on each pane. Below is a sample set of data for the

mapping table.

Modules
ModulelD ModDefID Titj 1EdItRoes

010

011
012

013

014

100

101

102

101

102

Menu

Links

Html

Links

Html

Author

Author

Author

Author

Author

4
nm{

MappingTable
ModulelD PagelD PaneName DisplayOrder

010 000 Content 00

011 000 Content 01

012 000 Content 02

010 001 Content 00

013 001 Content 01

014 001 Content 02

010 002 Left 00

010 002 Content 00

010 002 Right 00

010 002 Right 01

Pages
PagelD DisplayOrder PortaliD PageName ReadRoles

000 00 1000 Home Reader

001 01 1000 About Reader

002 02 1000 E mpty Reader

Figure 10-6 Mapping Sample

10.7Language and Culture

Distributed on the World Wide Web (WWW) software, small and large, has a global

reach. On the web, the barrier to global distribution is lowered to post access to a HTTP

server. However, software localization to the myriad of possible cultures on the world

requires design time consideration. The image below shows a small sample of existing

cultures.

Afrikaans

Afrikaans - South Africa

Albanian

Albanian - Albania

Arabic

Arabic - Algeria

Arabic - Bahrain

Arabic - Egypt

Arabic - Iraq

Arabic - Jordan

Arabic - Kuwait

Arabic - Lebanon

Chinese - Hong Kong SAR

Chinese - Macau SAR

Chinese - China

Chinese (Simplified)

Chinese - Singapore

Chinese - Taiwan

Chinese (Traditional)

Dhivehi

Dhivehi - Maldives

Dutch

Dutch - Belgium

Dutch - The Netherlands

Finnish - Finland

French

French - Belgium

French - Canada

French - France

French - Luxembourg

French - Monaco

French - Switzerland

Galician

Galician - Galician

Georgian

Georgian - Georgia
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Arabic - Libya

Arabic - Morocco

Arabic - Oman

Arabic - Qatar

Arabic - Saudi Arabia

Arabic - Syria

Arabic - Tunisia

Arabic - United Arab Emirates

Arabic - Yemen

Armenian

Armenian - Armenia

Azeri

Azeri (Cyrillic) - Azerbaijan

Azeri (Latin) - Azerbaijan

English

English - Australia

English - Belize

English - Canada

English - Caribbean

English - Ireland

English - Jamaica

English - New Zealand

English - Philippines

English - South Africa

English - Trinidad and Tobago

English - United Kingdom

English - United States

English - Zimbabwe

German

German - Austria

German - Germany

German - Liechtenstein

German - Luxembourg

German - Switzerland

Greek

Greek - Greece

Gujarati

Gujarati - India

Hebrew

Hebrew - Israel

Hindi

Hindi - India

Figure 10-7 Cultures and Languages

Localization goes beyond language. A truly global application needs to be culture-neutral

and language-neutral. Though language is the cornerstone of localization, culture needs

to also address the writing system, calendar type, date/time formatting, sorting rules,

currency and numbering conventions. The most flexible solutions create a culture

abstraction

Modern computing frameworks like Java and .Net have built culture abstractions to

facilitate localization. Although these abstractions are helpful there is still graphical user

interface text and user input to consider.

It is important to have perspective on culture and the multiple layers that come into play

as an application executes. At the base is the operating system with a culture specific

code page. Calls to the operating system will return code page specific values. Likewise

the relational database system and the virtual machine will have code pages that are

independent from the operating system and as such may differ. Database code pages are

particularly important since lookups, queries, and record sets will be ordered according to

the culture rules. The diagram below illustrates the layers of a sample web service.
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Figure 10-8 Culture Layers

In this work the culture is delegated to the virtual machine underlying the executing code.

The database code page is set to the local culture in each case. And the user interface

language is dynamically loaded conditional on the user profile. A data sample follows:

<languageFile>
<langStr>

<varName>contactLang</varName>
<en-US>Contact</en-US>
<es-MX>Contacto</es-MX>

<ja-JP>E E </ja-JP>
</langStr>
<langStr>

<varName>editLang</varName>
<en-US>Edit</en-US>
<es-MX>Corregir</es-MX>

<ja-JP>U E E E E D </ja-JP>
</langStr>
<langStr>
<varName>nameLang</varName>
<en-US>Name</en-US>
<es-MX>Nombre</es-MX>

<ja-JP>U U </ja-JP>
</langStr>

</languageFile>

Using data structures like the sample above the user interface language can be set on the

fly giving each user the language of choice. Translation to new languages can be done

with a simple grid text editor like the one below.
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Figure 10-9 Language Editor

The translation is only for the user interface text and text that exists at the time of the

portal construction. The reader should note that applications have evolving text that is

contributed by several users in collaborative applications. Translation of user contributed

text is outside the bounds of this discussion.

10.8Portal Architecture

LL~

Figure 10-10 High Level Portal Architecture

The common language runtime (CLR) lies at the base of the application. In an analogous

manner to Java the CLR acts a virtual machine. As mentioned previously, the underlying
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vaiName en-US es-MX .a-JP
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contactDetailsLang Contact Details Detalle de el contacto 4
nameLang Name Nombre i+J
roleLang Role Puesto
emailLang email Correo Electronico -7
contacti Lang Contact 1 Contacto 1 4 1
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platform and operating system are variable. Successful tests were made on Apache/Axis

and Ximian/Mono.

The web services layer holds the pool of services available to assemble information

products. A service oriented architecture virtual fabric of web services. The fabric is

constructed on the services that solve holistic information product's problems. The glue

between threads is the overarching applications and roles. The difference to traditional

glue is that it behaves more like Velcro. A completely new fabric can be constructed by

rearranging the threads. See the image bellow for an illustration.

Virtual Fabric - Service Oriented Architecture (SOA)

WS

The glue between strands is the
WS02 wprocess and roles. The glue is not

WS01 WS05 hard setting it is more like Velcro. A
W 4 WS08 new carpet can be created by

W WS1 1 changing the patterns and process.
W

<soap:Envelope
WS = Web Service xmlns:soap="http:/

<soap:Body>
<x:TransferFunds

ws03 <from>22-342439
WS06 <to>98-283843

wS09 <amount>100

WS02 WS12

WSo1 WS05

wS04 S08
S07 WSi

WS10
At every point there is real time
visibility into the fabric's messages

Figure 10-11 Virtual Fabric

The portal framework provides the computational context for the portal. The portal

composition is completely dynamic. That is, the portal does not exist anywhere until a

request is made for it. Each time a user requests a portal the portal is composed on the fly

and personalized for the user. It is important to note that not only does the portal not exist

before each request but that it goes out of existence once the request has been processed
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and a response has been created. So every request is completely independent and

stateless. The portal context is the glue of the application. The context of the portal

composition is the language/culture, security, and the rendering engine loader.

Based on the user profile, the user interface language and culture is selected on each

portal request. On anonymous requests the portal returns the default language and culture.

The portal can load any language and culture as long as the definitions have been made in

the data model and the language strings translated.

A control, also called component or module in this work, is a unit of software that knows

how to generate a user interface for itself. Controls are well encapsulated and developed

independently from the portal. The autonomy of the control is advantageous in a

distributed development environment where programmers can create controls remotely

and deliver the unit as a dynamically linked library to be accessed by the rendering

engine. Controls also function as a front end to web services. Each control is a client to

one or more web services grouping the required functionality for a portal element. For

example, the bookmarks control is a client to the bookmarks web service. When the

bookmarks control is instantiated it goes out and retrieves the bookmarks for the portal

from the bookmarks web service.

To preserve design simplicity the module designer is encouraged to construct simple

modules and manage complex needs by grouping modules. Much in the same way as

service oriented architectures address complex needs by grouping web services and

maintaining each web service as simple as possible. The advantages are maintainability,

modularity, and reuse.

The modules registered with each portal page are dynamically loaded on each request. A

portal request is really a request for a portal virtual page. Each portal page is composed of

a header, footer, style sheet, and a module collection. When the portal request arrives at

the server, the loader looks up the modules registered on the portal page. The next step is

to get a handle on the modules and load them into the page. Each module in turn contacts
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web services and its own data model to bind the data corresponding to this module

instance. The module instances themselves need unique identifiers to differentiate a

module instance from instances on other pages and from multiple instances on the same

page.

The rendering engine loops over the module collection, targets panes on the request page,

and asks each module to render itself. Once the rendering engine has a handle on the

module collection it targets the defined panes on the requested page.

Page
Information
Collection

Module
Information
Collection

Render
Composition

Page Information Collection
Page hierarchy construction
Authorized Roles

Module Information Collection
Panes
Order
Names
Authorized roles

Figure 10-12 Rendering

The steps outlined are a high level description of the instantiation of a portal. The

diagrams below present two distinct phases of the portal construction. In the first stage,

once the portal framework context has been computed, the handshakes to each web

service fire, the services are instantiated, and handles propagated. The second stage

illustrates the connection between web services and page rendered.
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Announcements

Surveys/Polls

P h s

Bookmt rks q'

Securit

Registration Calendar

Figure 10-13 Portal Composition

.....................................................

Figure 10-14 Portal Rendering

10.9 Going Multi-Portal

The dynamic architecture of the portal has proven beneficial for the reuse of

computational resources. However, the speed with which new applications could be
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constructed led to the problem of maintenance. Quickly there were many portals custom

built to support a number of collaborative efforts. Shortly after the individual portal

constructions the code sets began to diverge. Keeping track of the changes, patching, and

leveraging new code became difficult as the number of independent portals increased. So,

while it was possible to quickly compose applications there was no planned structure for

portal evolution. A multi-portal abstraction was sought.

The multi-portal abstraction needed to run multiple portals off the same code base. Since

all portals execute of the same code, any updates or additions would be global and

instantaneous. Each instance needed to be independent and have variable paging,

modules, format, security, and culture. The portal context needed to be independent for

each portal. For example, user's permission and roles in one portal needed to be striped

as users moved from one portal to the next. The same issues needed to be addressed with

the rest of the portal context.

The portal data models were revised and iterated to arrive at the multi-portal solution. See

the portal data models in previous sections to see the end result.

10.10 Portal Types

As more and more portals were built, portal types started to emerge. Early samples were

course portals, team portals, and discussion forum portals. A new type abstraction was

added to represent portal types. Types were referenced each time a new portal instance

was created. Custom portals could still be created but every time a new pattern was

spotted a new portal type could be defined.

Portal types enabled portal creation automation. Portals could now be created on demand.

The difference was very noticeable. There was a ten fold increase in the number of

portals. The portal automation cycle is illustrated below.
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Create e New Portal Computing Context
New 9 New Security Context

Portal * New Format Context
* New Language Context

Create - Page Order, Numbering
Virtual e Page Security
Pages Page Titles

Create e Add Modules To Portal
Module e Module Security

Instances - Web Service References

Populate . Populate Pages and Panes
Portal * Module Security
Virtual - Order, Location
Pages

Figure 10-15 Portal Automation Cycle

Hence, a portal type definition involves the web service references, module registration,

page registration, module registration, and security setup. The diagram below emphasizes

the distributed nature and loose coupling of the portal definition. Using XML messaging

obfuscates the operating system hosting the web service. The web service abstraction

directs the designer to compose applications thinking at the service level and focusing on

message paths as the definition of the application. Much like in the portal definitions,

changing the chaining and services produces a different portal path.

The architecture is even more flexible than a portal factory. The derived information

products need not be a portal. The application can be anything the user desires based on

the services pool. For example, the application can be a front end for high performance

computing, a television programming aggregation site, or a real time link to laboratory

equipment. The focus on collaborative applications has been chosen because it is at the

heart of the grid problem definition.
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Figure 10-16 Peer Servers in a Services Grid

10.11 Portal Managers

As the number of portals increase at a rapid pace soon there is a management problem.

Locating a portal, inter-portal navigation, sharing relationships between portals, and

logical grouping and categorization are issues that need to be addressed. The portal

managers are defined by portal type.

The sharing relationships between portals can be very complex. The use cases and

workflow for sharing resources between portals can be rich and varied. For example, the

access to portal resources is too broad and too permissive. The permissions need to be

more granular to share portal components/modules. Each module needs an approval cycle

for each member/portal request. The member/portal receiving the permission also needs

another approval cycle for the delegation of permissions with in its own portal.
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Portal managers lie at the root of the portal type hierarchy. The manager is a portal itself

and portal creation, portal deletion, and portal management is performed through the root

portal. The portal manager also holds modules for portal type statistics.

0
CU

-J
0

(U

a)
(0
0

0.

-C
\-

Web Services

.NTFramework (CLR)

Figure 10-17 Portal Managers

10.12 Portal Factory

The architecture as introduced in this section is a platform to create platforms. Each new

portal type being a new application platform that can be extended, derived, and edited.

For example, the "events" portal type creates events types which in turns are instantiated

for each event instance. A seminar and a conference would be event types. Each new

conference would be a new portal and a new instance of the conference event type. At the

time of writing there were eleven portal types, listed below.
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Figure 10-18 Portal Types

Sample of portal instances

C Learning Team Coursefcenter Project

.8 : ESLC Agents 1.124

DEM 1125

L E 1.961

S LL

L I Events

IESL IUNC

Figure 10-19 Portal Instances

The portal architecture can be extended from one installation to a grid of multi-portal

installations. The messaging infrastructure is loosely coupled, distributed, and based on

XML. Spanning multiple installations is a well supported by the portal infrastructure.
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London Boston

Figure 10-20 Multi-Portal Grid

The diagram above illustrates a scenario where three multi-portal installation systems and

supporting services are located in three different geographic locations. The three

independent installations can integrate at the service level.

The portal is built on a service oriented architecture (SOA) and all portal components are

services. Any system can remotely bind to remote services like registration, documents,

and web logs. Portal implementations can converge on one registration, authentication,

and authorization service or they can delegate credentials. Likewise, several

implementations can agree to share documents and use the same service. On the flip side

one installation can decide to leverage services from through out the world, see below.
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Figure 10-21 Referencing the Global Grid

At rendering time the modules would go out and bind the remote web service. The web

service response is computed and targeted to a portal page pane.
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Chapter 11 Metrics
This section proposes metrics to asses the research and development of information

product platforms.

Product platform literature, has studied how product series can be efficiently constructed

on successive generations of underlying product architectures commonly referred to as

product platforms. (Sanderson and Uzumeri, 1991; Wheelwright and Clark, 1992; Meyer

and Utterback, 1993). Measurements of an organizations ability to efficiently create new

products of a product platform are important in validating the existence of platforms.

Numerous metrics approaches have been proposed to measure research and development

in the literature. However, a survey by 248 R&D executives by the Industrial Research

Institute found that measuring and improving R&D productivity and effectiveness

remained the biggest problem [Industrial Research Institute, 1993] [Rockwell &

Particelli, 1982]. The focus of this section is to extend the work on Mark H. Meyer's,

"Metrics for Managing Research and Development in the Context of the Product Family"

[Meyer & Tertzakian, 1997], to the academic grid platform. The aim is to better

understand the technical and economic effectiveness of research and development based

on product platforms.

The measurement dimensions are efficiency, effectiveness, and research and

development productivity. Efficiency is a ratio of product derivatives cost to that of the

platform. The efficiency puts a monetary relationship on the generation of derivative

products. The effectiveness is the sales of a derivative products line divided by the total

engineering costs of these products. The productivity measures how well an organization

translates technological advantage into financial gain through products. Overarching all

measures are the resource inputs to research and development: the engineering budge and

the project time.
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The implementations and measurements were done in an academic setting. In this setting,

product adoptions were taken as sales since the considered products are public domain. In

this case, the use of an information product by an individual(s) constitutes a sale.

Products sales are a better measure of commercial outcomes than profits. The way in

which profits are calculated varies significantly for from product to product and from

firm to firm. [Patterson, 1983]

The application analysis sought to identify [Meyer & Tertzakian, 1997]:

" The initial new platform development efforts

" Extensions to the existing platforms

* The creation of the whole new platforms or product architectures to replace those

in existence

* The specific products associated with each platform generation

The application analysis sought to measure [Meyer & Tertzakian, 1997]:

* Individual products within the platform version of a product family

* An aggregated level for the product family as a whole for successive platform

versions

* Comparatively across different platform versions for the different product

families

The raison d'etre for measurement is to help quantify platform development; to help

understand effective/efficient products across product lines. To determine, in a field of

competing platforms, the ones that can continue to regenerate and derive products

flexibly and at a low cost.

The parameters are sales(S), costs(C), and an adjustment factor(D) for inflation in very

long product cycles. There are also a number of indices:
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NP = Number of portal types in a product family excluding the base portal type version
or architecture.

NV = Number of portal type extensions, or new types created off the base type
architecture, excluding the base portal type.

NF = Number of follow-on portal types in a platform, or type extensions, excluding
the base portal type.

NTD = The total number of follow-on portal types in a family excluding the base portal
type.

TD = The last time period number prior to entering the academic term.
TC = The last time period for which implementations were recorded in the academic

term.
p = portal type index; p = base, 1, 2, 3 .... , NP
v= portal type version index; v = base, 1, 2, 3, ..., NV
f= follow-on product index;f= base, 1, 2, 3, ..., NF
t = time period index; t = 1, 2, 3, ..., TD or TC

The formulas below represent the aggregated product implementation (S) and cost (C) for

individual follow-on products within the specific platform version within the same

product family. The quantities aggregate the implementations and costs of a product over

time.

T,

SPVf = (SPVf )t
pvf t=1pvf

TD

CPVf = >(CPVf )t
t=1

Implementations and costs are recorded at regular time intervals, t, through the academic

term. The academic term can be exchanged for any product cycle. Implementations are

added from inception until the product is discontinued. Research costs are added from

inception.

"To accumulate costs at the platform version level, the summations are extended. For

example, the accumulated inflation adjusted sales for an entire platform, p, including all

its platform extensions, would be given by" [Meyer & Tertzakian, 1997]
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NV N1

S' = I Z S'PVf
v=base f=base

Where S' is

Stpvf = >(Spvf)t Dt
t=1

The corrected expenses for the platform are calculated using the implementation variable,

C.

11.1 Efficiency

The efficiency of developing an individual follow-on product relative to its base platform

is [Meyer & Tertzakian, 1997]

Platform Efficiency =
R & D Costs for Derivative product

R & D Costs for Platform Version

At the individual follow-on product level, the mathematical formulation for E, the

efficiency of developing an individual follow-on product relative to its base platform, is

given by [Meyer & Tertzakian, 1997]

E = 1P~~
EPIVf CI pv,base

Determines the cost of the product as fraction of the amount spent on the base platform

architecture [Meyer & Tertzakian, 1997]
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1 Nf C,
-p Nf f =1 p,v,f

Cp,v,base

Is the average cost.

Differential comparisons across platforms are important to gage efficiency between

platforms built by different groups.

A cumulative efficiency for a product family is given by:

1 ZNJ NV Nf C
_NTF f=base v=base f=1 p,v,f

LNp-
Zp=base E v=base C p,v,f

Platform efficiency should improve with each revision and generation. However, there

must be a continual investment in the platform to incorporate the latest technologies and

processes. Absence of investment in the platform leads to platform death [Foster, 1985].

Platform efficiency can be used as an indicator of platform demise. An increase in E over

successive follow-on products may indicate weakness in the underlying product

architecture. The S-curve phenomenon where, after a certain point, little additional

product performance is achieved from incremental investment. [Foster, 1986]

Cycle time is another measure of efficiency. Architects must strive for platforms that not

only are efficient but also have short cycle times. Cycle time can be measured as:

E cYcleTime _ TPvf
p,v,base T

p,v,base
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11.2 Effectiveness

Efficiency answers the questions, "can the product be made in a cost effective manner?"

And, "can the product be made in a timely manner?"

Effectiveness measures whether the market is interested in the product. The return

provided on the product development investment. That is, is the product being used,

implemented, or sold.

Platform effectiveness questions [Meyer & Tertzakian, 1997]:

* What have been the returns realized on the firm's R&D investments as seen in

comparing sales from products to the costs of developing them?

* How has a particular product family's sales to development costs effectiveness

trended over time through successive platform versions? Have these returns

improved or declined?

* Have certain development groups proven to be more effective in creating leverage

from their respective platform development efforts than other groups?

Platform effectiveness:

Lp,v,f , '~Stp,v,f

Aggregated platform effectiveness:

L f=base StPvf

f=base p7vf
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The effectiveness is the accrued sales for a set of derivative products divided by the total

engineering costs of those products.

Across all platforms with in a product family:

NV Nf S,

= v=base f=base p,v,f
P NV {NJ ,v=base If=base p,v,f

11.3Declining platform effectiveness.

As platforms cease to yield low cost products, leveraging the platform subsystems, the

life of the platform can be questioned. One of the first flags is declining adoptions. On the

flip side platform investment may increase as the platform becomes less efficient. If this

is the case, the efficiency and effectiveness become inversely related. Possible reasons

are organizational process or the emergence of new technologies [Utterback, 1993].

Unless a continuous investment is made platforms become outdated and obsolete.

However, those are not the only reasons for platform demise. New technologies that are

orthogonal to the platform architecture may make a redesign imperative. Changes in the

organization, such as mergers, may disrupt the smooth flow of a platform. There are more

that can be found in the literature [Meyer & Tertzakian, 1997].

11.4 Observations

More work is needed to incorporate better measures in the following areas:

* The technology buzz that accompanies some technologies brings forth a

large number of adopters. Less attractive technologies that are better

designed and are more efficient experience slow growth. Over many years
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the differences are reflected in the metrics. However, platforms do not

always survive that long. Over the short cycles of software developments

they are hard to detect.

* In academe product timing is very important. Introducing a product at the

end of an academic term is doom. Time pressures and end of term

commitments absorb the academe audience.

" A strong market brings more research funds to academe. With more

research funds come more resources and more opportunities to

experiment. Platforms introducing products into a strong market can more

easily achieve high efficiencies and effectiveness. However, is a weak

period a more efficient/effective platform maybe introduced with poorer

results.

A Final point on platform investment, "The failure to develop new platform architectures

on a continuous basis subjects the firm to substantial market risk. Research has found that

engineering managers generally understand this. Business managers often do not, leading

to inappropriate expectations regarding project time and cost (ie. new platforms are

different than platform enhancements, and both are different than specific product

developments)" [Meyer & Tertzakian, 1997].
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Chapter 12 Future Work and Contributions

12.1 Future Work

The most direct paths of future work are transaction support layers for the XML

architecture and workflow management systems. Other venues are mining the vast

collected data of the command system.

12.1.1 XML Transactions

Since work began on the portal grid, software architects have been hard at work writing

new protocols for the web services federation. There are proposals for:

Routing

Referral

Inspection

Security

Attachments

Coordination

Transaction

Trust

Secure Conversation

Security Policy

Policy

Policy Attachment

Policy Assertions

Addressing

Reliable Messaging

Figure 12-1 Web Service Specifications [IBM-WS, 2003]

Many architects have worked on the web service specification group. As the

heterogeneity of grid applications spreads and the complexity of distributed systems

increases many of the specification's insights will be valuable.

The current work being done in federated architecture specifications will likely be the

most relevant to the portal grid work in the short run. In the long run, transactions

coupled with workflow will have a big impact in the flexibility and scale of the

implementations.
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12.1.2 Workflow

Today's information systems need to manage the flow of work through the organization.

Complex business processes highlight the need for concepts, techniques, and tools to

support the management of workflow. The problem area is called workflow management;

applications written to support the definition, execution, registration and control of

processes. More formally, the Workflow Management Coalition [WfMC, 2003] defines

workflow management systems as a system that completely defines, manages, and

executes workflows through the execution of software whose order of execution is driven

by a computer representation of the workflow logic.

Once workflow is built into an application it is expensive to generalize and leverage in

other applications. The dependencies of the application environment force developers to

create custom solutions for each application. The commonality of the problem is lost and

efficiency is lost. The generic functionality of workflow should be pushed out of the

applications into a framework much like data was pushed out of applications into

relational database management systems (RDBMS).

The portal grid goes a long way to isolate services and make it easy to build new

applications based on services building blocks. However, more needs to be done to

approach the goal of efficiently, practically, and affordably building workflows.

Several models, like the finite state machine, have been proposed to model and analyze

workflow processes. A suggested approach is Petri nets. Petri nets are a well known

process modeling technique with a firm mathematical foundation. Petri nets have been

used to model processes in protocols, hardware, and flexible manufacturing systems.
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Resource Dimension

'case

Case Dimension

Figure 12-2 Workflow Dimensions

resource

activity

task

Process Dimension

'work item

In the diagram above each dot represents either a work item (case + task) or an activity

(case + task + resource). The figure shows that workflow management is the glue

between the cases, the tasks, and the organization.

The Petri nets solution focuses on the case and process dimension. For these dimensions,

workflow to support cases, routing is the core issue. A workflow process definition

specifies how cases are routed along the tasks execution order. The WfMC has identified

four types of routing constructs:

A .- - C Sequential Routing

Sequential routing, tasks are executed sequentially if the execution of one task is

followed by the next.
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AND-Split
B~

AND-Join Parallel Routing

In parallel routing tasks are executed at the same time.

EA mm R-Split OR-Join D Conditional Routing

In conditional routing a choice is made between tasks and only one is executed.

Aj BC Iterative Routing

A tasks that is repeated a number of times is an example of iterative routing.

To model workflow using Petri nets tasks are modeled as transitions, conditions as

places, and cases as tokens.

To reduce complexity it is advantageous to separate the workflow process model from

the resources model. Not only is the complexity reduced but the separation facilitates

modularity, code reuse, and workflow process updates with out touching the

organizational model.

Workflow parameters like the address in a registration form are supported through the

high-level Petri with color extension. The variables are not part of the workflow process

definition but are associated with the task and used for execution.

The discussion on work is meant as a brief introduction to the future work on the portal

grid and workflow management systems.

159



12.1.3 Data Mining

A tremendous amount of data exists for the Course Management and Delivery

(COMMAND) System. Data logs and operations have been recorded for the five years

the system has been in operation. The course databases have been archived at the end of

each academic term for future analysis.

The data captured includes HTTP logs, course materials, and discussions forums. HTTP

logs include operating systems, browser, IP, and the myriad of CGI variables that

accompany each HTTP request. Course materials are lecture notes, syllabi, readings,

assignments, and videos. The forums include discussion threads and every entry made by

students and faculty.

All operations were recorded in a data store. Every create action, read action, update

action, and delete action was recorded individually in each course database. Every

operation has a date and time stamp. The time and data patterns are thus preserved for

future analysis. The data stores will be available for analysis as part of this work. The

data will be in a masked form to protect student and faculty privacy.

After 5 years of operation the system has in store 476 course instances. There are over

200,000 documents, 16,199 users, and 61,627 submitted files. There are also 84 team

spaces for which data has been captured in an similar fashion.

12.2 Contributions

12.2.1 Grid Extension and Implementation

This work has introduces a presentation layer to a stateless grid implementation. The

presentation layer acts as a run time portal definition, dynamically binding services. The

late binding permits on the fly manipulation of the portal components and just in time
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portal creation. The presentation layer draws on the pool of computational resources

stored in UDDI.

12.2.2 Information Product Platform

Leveraging lessons learned from product platforms, an information product platform was

architected. The realized goals were:

" Lower cost for information products

" A modular platform for collaborative work

" A framework to analyze information product platforms

" Measures to gage the efficiency and effectiveness of the platform.

12.2.3 Service Oriented Architecture

This work presents an implementation of the proposed service oriented portal grid

architecture. The portal makes the case that it is much easier to manage change in the

composition of many small web services who share few well known abstractions than it

is to manage change in varying abstractions exposed by the same set of services. In the

former the difficulty lies in composing messaging routes. In the latter the barrier lies in

propagating the knowledge to consume each abstraction.

12.2.4 Lower cost for information products

This work presented a combination of technologies, protocols, and architectures as a

reference infrastructure to create lower cost information product families.

" The success of the product platform is measured using the metrics for efficiency

and effectiveness.

" The infrastructure recommends a refinery and repository model to analyze

information product platforms.

161



Appendix 1
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Command Data
Document Counts per Category - System Wide
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Directory Sizes
1.00 Size: 5.44 MB
1.OOFall0l Size: 7.43 MB
1.OOSpringO2 Size: 14.6 MB
1.010 Size: 0.17 MB
1.012 Size: 127.8 MB
1.013 Size: 118.41 MB
1.030 Size: 23.32 MB
1.033 Size: 104.29 MB
1.040 Size: 43.39 MB
1.041 Size: 30.91 MB
1.051 Size: 0.19 MB
1.070 Size: 0.18 MB
1.103 Size: 4.05 MB
1.118 Size: 59.33 MB
1.118_FOl Size: 112.08 MB
1.120F99 Size: 39.1 MB
1.124 Size: 20.11 MB
1.124_FOO Size: 6.47 MB
1.125 Size: 11.62 MB
1.130 Size: 0.17 MB
1.155J Size: 16.2 MB
1.200 Size: 0.17 MB
1.201 Size: 0.18 MB
1.201J Size: 0.17 MB
1.202 Size: 5.98 MB
1.204 Size: 2.52 MB
1.204_SO2 Size: 11.9 MB
1.206J Size: 26.77 MB
1.207 Size: 177.95 MB
1.221 Size: 0.93 MB
1.222 Size: 3.56 MB
1.223J Size: 0.22 MB
1.224 Size: 0.17 MB
1.224J Size: 25.8 MB
1.225 Size: 12.12 MB
1.225F00 Size: 37.02 MB
1.225F01 Size: 32.91 MB
1.231J Size: 8.1 MB
1.258 Size: 0.19 MB
1.259 Size: 0.17 MB
1.260J Size: 63.94 MB
1.262 Size: 1.94 MB
1.264 Size: 50.55 MB
1.265 Size: 0.57 MB
1.266 Size: 23.17 MB
1.267 Size: 0.17 MB
1.364 Size: 286.72 MB
1.432 Size: 432.34 MB
1.432F99 Size: 408.52 MB
1.44 Size: 6.47 MB
1.441 Size: 123.9 MB
1.46 Size: 4.32 MB
1.464 Size: 0.92 MB
1.472 Size: 0.26 MB

1.51 Size: 0.17 MB
1.561 Size: 5.51 MB
1.562 Size: 0.17 MB
1.570 Size: 77.68 MB
1.571 Size: 0.57 MB
1.691 Size: 0.18 MB
1.715 Size: 0.17 MB
1.77 Size: 0.17 MB
1.89 Size: 0.17 MB
1.961 Size: 19.21 MB
1.962 Size: 62.73 MB
1.963 Size: 0.17 MB
1.963_FOl Size: 2.66 MB
1.977 Size: 0.38 MB
1.987 Size: 0.17 MB
1.999 Size: 7.48 MB
11.205 Size: 0.52 MB
11.255 Size: 0.71 MB
11.361 Size: 0.17 MB
11.362 Size: 7.02 MB
11.366 Size: 74.39 MB
11.495 Size: 0.23 MB
11.522 Size: 0.17 MB
11.952 Size: 0.46 MB
13.49 Size: 0.17 MB
13.64 Size: 6.37 MB
15.001 Size: 0.17 MB
15.012 Size: 0.17 MB
15.012a Size: 9.94 MB
15.012b Size: 11.91 MB
15.034 Size: 2.61 MB
15.053 Size: 6.36 MB
15.053_Fall_2001 Size: 1.52 MB
15.057 Size: 28.58 MB
15.061 Size: 1.33 MB
15.062 Size: 3.93 MB
15.064J Size: 1.06 MB
15.064JLFMO3 Size: 0.61 MB
15.064_LFMO2 Size: 2.95 MB
15.066J Size: 11.85 MB
15.071 Size: 1.68 MB
15.081 Size: 5.2 MB
15.082J Size: 16.17 MB
15.083 Size: 4.9 MB
15.083J Size: 1.39 MB
15.084J Size: 17.48 MB
15.099 Size: 4.69 MB
15.099_F2001 Size: 12.99 MB
15.227B Size: 0.17 MB
15.311 Size: 0.45 MB
15.390 Size: 0.21 MB
15.433 Size: 11.25 MB
15.433_Lo Size: 0.21 MB
15.433_Pan Size: 0.18 MB
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15.760H2 Size: 0.17 MB
15.761 Size: 0.17 MB
15.761_LFM Size: 27.16 MB
15.761_SDM Size: 70.74 MB
15.769 Size: 6.78 MB
15.783 Size: 2.97 MB
15.840 Size: 0.2 MB
15.875 Size: 9.15 MB
15.876 Size: 157.95 MB
15.923 Size: 3.39 MB
15.960 Size: 0.17 MB
15.962 Size: 18.27 MB
15.967 Size: 0.17 MB
15.968 Size: 11.77 MB
15.980 Size: 20.42 MB
15.981 Size: 525.96 MB
15.982 Size: 27.42 MB
15.982A Size: 31.53 MB
15.982B Size: 2 MB
15.982C Size: 11.38 MB
15.982D Size: 0.17 MB
15.983 Size: 46.37 MB
15.984 Size: 15.39 MB
15.987 Size: 0.17 MB
15.A03 Size: 0.2 MB
16.010 Size: 9.25 MB
16.050 Size: 0.19 MB
16.070 Size: 0.17 MB
16.221 Size: 36.07 MB
16.30 Size: 0.17 MB
16.355 Size: 4.42 MB
16.423J Size: 0.17 MB
16.83 Size: 16.12 MB
16.851 Size: 0.56 MB
16.852 Size: 150.94 MB
16.852J Size: 128.89 MB
16.872 Size: 122.99 MB
16.880 Size: 22.02 MB
16.881 Size: 43.29 MB
16.882 Size: 224.8 MB
16.888 Size: 81.8 MB
16.89 Size: 88.89 MB
16.89.01 Size: 12.29 MB
16.899 Size: 101.04 MB
16.899a Size: 44.11 MB
16.982 Size: 12.44 MB
16.982a Size: 8.23 MB
16.983 Size: 0.17 MB
17.253_4 Size: 0.25 MB
17.577 Size: 0.17 MB
18.337 Size: 0.24 MB
19.001 Size: 0.17 MB

2.000 Size: 55.54 MB
2.007 Size: 46.4 MB
2.009 Size: 0.17 MB
2.010 Size: 2.73 MB
2.151 Size: 0.17 MB
2.739J Size: 117.28 MB
2.744 Size: 0.17 MB
2.82 Size: 6.25 MB
2.830 Size: 0.61 MB
2.875 Size: 44.29 MB
2.882 Size: 4.4 MB
22.351 Size: 3.69 MB
22.38 Size: 18.84 MB
3.14 Size: 5.48 MB
3.21 Size: 18.99 MB
3.23 Size: 0.17 MB
3.52J Size: 0.17 MB
4.155 Size: 0.2 MB
4.156 Size: 0.17 MB
4.182 Size: 0.18 MB
4.189 Size: 0.17 MB
4.195 Size: 0.94 MB
4.199 Size: 0.17 MB
4.272 Size: 0.17 MB
4.290 Size: 0.17 MB
4.351 Size: 7.11 MB
4.361 Size: 0.17 MB
4.390 Size: 0.17 MB
4.395 Size: 0.17 MB
4.401 Size: 1.12 MB
6.011 Size: 0.17 MB
6.046J Size: 0.17 MB
ESD-999 Size: 0.17 MB
ESD-PD21 Size: 4.46 MB
ESD.000 Size: 18.42 MB
ESD.121J Size: 6.03 MB
ESD.185J Size: 72.9 MB
ESD.260J Size: 196.46 MB
ESD.263J Size: 0.32 MB
ESD.269J Size: 5.3 MB
ESD.33J Size: 92.91 MB
ESD.33J.01 Size: 147.39 MB
ESD.34 Size: 229.41 MB
ESD.34.SDM-UTC Size: 0.17 MB
ESD.811 Size: 0.24 MB
ESD.87J Size: 0.52 MB
ESD.89 Size: 0.29 MB
MAS964 Size: 0.17 MB
MITCET Size: 6.59 MB
SMAOO1 Size: 0.17 MB
SMA002 Size: 0.17 MB
URIT2000 Size: 26.18 MB
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File Types

File Type Count per Course

-----------------------
COURSE 1.00

-----------------------
txt, 161
zip, 306
html, 823
tar, 1
java, 928
ZIP, 1
jpg, 24
class, 2
fig, 33
java-, 1

TOTAL FILE NUMBER: 2280
---------------------

COURSE 1.00Fall0l
-----------------------
txt, 114
zip, 342
html, 695
java, 820
rtf, 4
ZIP, 29
jpg, 21
class, 13
java-, 10

TOTAL FILE NUMBER: 2048
-----------------------

COURSE 1.00Spring02
-----------------------
xis, 1
txt, 35
zip, 368
exe, 1
html, 1690
dat, 49
java, 3273
rtf, 3
ZIP, 25
jpg, 21
class, 41
java-, 29
rar, 1

TOTAL FILE NUMBER: 5537
----------------- --------

COURSE 1.010
------------- h -----
html, I I

jpg, 21

TOTAL FILE NUMBER: 32

COURSE 1.012

zip, 4
html, 21
htm, 19
dwg, 10
jpg, 74
JPG, 77

TOTAL FILE NUMBER: 205

COURSE 1.013

ppt, 6
txt, 4
html, 71
jpg, 66
JPG, 12
tif, 8

TOTAL FILE NUMBER: 167

COURSE 1.030

ppt, 3
pdf, 44
html, 12
htm, 1
jpg, 21

TOTAL FILE NUMBER: 81

COURSE 1.033

ppt, 2
pdf, 27
ps, 25
html, 12
htm, 2
jpg, 21

TOTAL FILE NUMBER: 89
---------- ---- - ----

COURSE 1.040

ppt, 16
xis, 15
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zip, 10
html, 90
rtf, 2
jpg, 23

TOTAL FILE NUMBER: 156

COURSE 1.041

ppt, 7
xis, 3
html, 33
htm, 1
PPT, 2
jpg, 21
DOC, 1

TOTAL FILE NUMBER: 68
-----------------------------

COURSE 1.051
----------------------------
html, 11
jpg,21

TOTAL FILE NUMBER: 32

COURSE 1.070

html, 11
dat, 1
jpg, 21

TOTAL FILE NUMBER: 33
----------------------------

COURSE 1. 103

xls, 14
pdf, 9
zip, 16
html, 12
dat, 1
jpg, 21
DOC, 5

TOTAL FILE NUMBER: 78
-----------------------------

COURSE 1.118
------------------------------
ppt, 17
xis, 3
txt, 1
pdf, 3
ps, 2
zip, 10
exe, 2
html, 86

htm, 18
js, 1
ZIP, 1
jpg, 24
DOC, 2
class, 2

TOTAL FILE NUMBER: 172

COURSE 1.118_FO1
-------------- -------------
ppt, 24
xis, 5
txt, 7
pdf, 18
ps, 2
zip, 22
exe, 2
html, 62
htm, 16
jpg, 21
gz, 2
vsd, 3

TOTAL FILE NUMBER: 184

COURSE 1.120F99

ppt, 14
xis, 1
pdf, 2
ps, 2
zip, 8
html, 108
htm, 1
tar, 1
dwg, 1
ZIP, 2
jpg, 26

TOTAL FILE NUMBER: 166
-----------------------------

COURSE 1.124

ppt, 4
pdf, 4
ps, 2
exe, 1
html, 69
htm, 34
jpg, 22
C, 1

TOTAL FILE NUMBER: 137
---------------------------
COURSE 1. 124-FOO
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-------------------------
ppt, 3
pdf, 7
ps, 1
html, 79
htm, 5
jpg, 21

TOTAL FILE NUMBER: 116
---------------------------
COURSE 1.125
--------------------------

ppt, 6
pdf, 8
zip, 11
html, 65
htm, 4
java, 6
jpg, 21

TOTAL FILE NUMBER: 121

COURSE 1.130
--------------------------
html, 12
jpg, 21

TOTAL FILE NUMBER: 33
---------------------------

COURSE 1.155J
-----------------------
xis, 9
pdf, 65
zip, 1
html, 105
htm, 1
PDF, 5
jpg, 21

TOTAL FILE NUMBER: 207
---------------------------

COURSE 1.200
--------------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
----------------------------

COURSE 1.201
--------------------------
html, 11
htm, 2
jpg, 21

TOTAL FILE NUMBER: 34
--------------------------

COURSE 1.201J

html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE 1.202
------------ ------- -------
ppt, 1
pdf, 3
html, 17
dat, 2
jpg, 21
asc, 5
say, 5
mcd, 1

TOTAL FILE NUMBER: 55

COURSE 1.204

txt, 7
pdf, 37
zip, 2
html, 45
dat, 2
PDF, 22
jpg, 21
c, 20
C, 27
h, 4
tif, 5

TOTAL FILE NUMBER: 192
-- -- - - - - - - - - - - - - -

COURSE 1.204_SO2

ppt, 15
xis, 11
txt, 33
pdf, 27
ps, 1
zip, 24
html, 95
tar, 4
java, 19
rtf, 1
PPT, 1
jpg, 22
c, 12
gz, 2
cc, 11
cpp, 19
C, 15
h, 1
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rar, 3

TOTAL FILE NUMBER: 316
--- -- -- -- --- - - - - -- ----

COURSE 1.206J

xis, 99
pdf, 26
html, 66
PDF, 5
jpg, 21
XLS, 1

TOTAL FILE NUMBER: 218
--- -- -- -- --- -- -- -- - --

COURSE 1.207
-- -- -- -- - --- - - - -- --

ppt, 16
pdf, 29
ps, 14
html, 39
tar, 25
jpg, 22
tex, 15
dvi, 2
prn, 3
wpd, 1
cgi, 3

TOTAL FILE NUMBER: 169
--- --- --- --- -- ..-- ----

COURSE 1.221
--- - - - - - - - - ----- ----.
html, 16
jpg, 21

TOTAL FILE NUMBER: 37
-- - -- - - - - ---- ---- ----

COURSE 1.222
------ - ------ -------

ppt, 3
xis, 1
txt, 1
pdf, 7
zip, 1
html, 11
jpg, 21

TOTAL FILE NUMBER: 45

COURSE 1.223J

html, 11
jpg, 21

TOTAL FILE NUMBER: 32

--------------------------
COURSE 1.224

--------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
-------------------------- ~

COURSE 1.224J
--------------------------
ppt, 9
xis, 99
txt, 1
pdf, 20
zip, 17
html, 110
mod, 70
PPT, 2
ZIP, 2
jpg, 21
XLS, 5
dvi, 4
MOD, 3
csv, 1

TOTAL FILE NUMBER: 364
------------------- --

COURSE 1.225

ppt, 2
xis, 16
pdf, 32
ps, 1
html, 26
jpg, 21
XLS, 2
prn, 1
cgi, 1

TOTAL FILE NUMBER: 102
------------------------

COURSE 1.225F00
--------------------- --
xis, 47
pdf, 34
html, 46
PDF, 3
jpg, 21
m, 2

TOTAL FILE NUMBER: 153

COURSE 1.225F01
-----------------------
ppt, 19
xls, 45
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pdf, 9
html, 38
jpg, 21
XLS, 1

TOTAL FILE NUMBER: 133
--------------------------

COURSE 1.231J
-------------------------
xis, 3
pdf, 91
html, 13
PDF, 6
jpg, 21

TOTAL FILE NUMBER: 134
-----------------------

COURSE 1.258
---------------- ------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE 1.259
---------- ------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE 1.260J

ppt, 13
xis, 390
html, 366
htm, 3
jpg, 21
XLS, 12

TOTAL FILE NUMBER: 805

COURSE 1.262
----------------- - - - -
ppt, 20
xis, 7
html, 29
jpg, 21

TOTAL FILE NUMBER: 77

COURSE 1.264
---------- ------------
ppt, 28
mdb, 2
pdf, 2

zip, 2
html, 19
htm, 5
js, 1
PDF, 2
jpg, 24
MDB, 1
vsd, 1
xml, 6
css, 2

TOTAL FILE NUMBER: 95
- - -- - --- - - - - - - - - -

COURSE 1.265

ppt, 1
html, 11
htm, 4
jpg, 21

TOTAL FILE NUMBER: 37

COURSE 1.266

ppt, 2
pdf, 32
html, 11
htm, 8
PDF, 9
jpg, 21

TOTAL FILE NUMBER: 83

COURSE 1.267

html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE 1.364

pdf, 6
html, 11
PDF, 1
jpg, 21

TOTAL FILE NUMBER: 39

COURSE 1.432

ppt, 74
xis, 38
zip, 183
exe, 1
html, 955
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rtf, 105
PDF, 2
mdl, 154
ZIP, 42
vdf, 6
jpg, 21
DOC, 9
mpp, 1
RTF, 3
MDL, 2

TOTAL FILE NUMBER: 1596
-------------------------

COURSE 1.432F99
---------------------------
ppt, 66
xis, 8
txt, 1
pdf, 1
zip, 110
exe, 1
html, 362
rtf, 2
mdl, 22
ZIP, 13
vdf, 2
jpg, 25
DOC, 1
mpp, 4

TOTAL FILE NUMBER: 618
-----------------------------

COURSE 1.44
-----------------------------
ppt, 3
xis, 2
pdf, 2
html, 300
rtf, 1
jpg, 21

TOTAL FILE NUMBER: 329

COURSE 1.441

ppt, 8
xis, 376
pdf, 1
html, 998
htm, 31
rtf, 2
jpg, 26
DOC, 16

TOTAL FILE NUMBER: 1458
---------------------------

COURSE 1.46
-------------------------
ppt, 2
pdf, 1
html, 11
jpg, 21

TOTAL FILE NUMBER: 35
--------------------------

COURSE 1.464

ppt, 1
xis, 1
html, 11
htm, 18
PDF, 1
jpg, 21

TOTAL FILE NUMBER: 53
----------------------------

COURSE 1.472
-----------------------------
xis, 2
html, 11
jpg, 21

TOTAL FILE NUMBER: 34
--------------------------- -

COURSE 1.51

html, 11
jpg, 21

TOTAL FILE NUMBER: 32
---------------------------

COURSE 1.561
--------------------------
pdf, 20
html, 14
jpg, 21

TOTAL FILE NUMBER: 55

COURSE 1.562

html, 11
htm, 1
jpg, 21

TOTAL FILE NUMBER: 33
-----------------------------

COURSE 1.570
----------------------------
xis, 2
pdf, 10
ps, 8
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zip, 1
html, 12
htm, 3
jpg, 21
m, 5

c, 31
gz, 4
TXT, 3
C, 1
sit, 1

TOTAL FILE NUMBER: 62

COURSE 1.571

pdf, 6
html, 12
jpg, 21

TOTAL FILE NUMBER: 39

COURSE 1.691

html, 11
jpg, 21
tex, 2

TOTAL FILE NUMBER: 34
---------------------------

COURSE 1.715
----------------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
-------------------------

COURSE 1.77
--------------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE 1.89
---------------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
-------------------------

COURSE 1.961
--------------------------
ppt, 1
txt, 23
pdf, 10
ps, 2
zip, 6
html, 48
tar, 1
PPT, 1
jpg, 21

TOTAL FILE NUMBER: 153

COURSE 1.962

ppt, 9
pdf, 5
html, 36
htm, 1
jpg, 21

TOTAL FILE NUMBER: 72

COURSE 1.963

html, 11
jpg, 21

TOTAL FILE NUMBER: 32
-- - ---- - - - -- - - - - - -

COURSE 1.963_FOl

ppt, 5
xis, 2
txt, 1
pdf, 2
html, 11
jpg, 21

TOTAL FILE NUMBER: 42

COURSE 1.977

html, 12
htm, 2
jpg, 21

TOTAL FILE NUMBER: 35
------------------- - ---

COURSE 1.987

txt, 1
html, 11
jpg, 21

TOTAL FILE NUMBER: 33

COURSE 1.999

html, 14
jpg, 21

179



TOTAL FILE NUMBER: 35
-------------------------

COURSE 11.205

html, 12
htm, 12
jpg, 21

TOTAL FILE NUMBER: 45
---------------- -------

COURSE 11.255
------------------------
txt, 1
html, 38
jpg, 21

TOTAL FILE NUMBER: 60

COURSE 11.361

html, 11
jpg, 21

TOTAL FILE NUMBER: 32
--------------------------

COURSE 11.362
-------------------------------
txt, 3
pdf, 2
html, 11
htm, 5
jpg, 36
dbf, 4

TOTAL FILE NUMBER: 61
-----------------------------

COURSE 11.366
---------------------------
ppt, 1
txt, 3
pdf, 8
zip, 1
html, 11
htm, 1
jpg, 29

TOTAL FILE NUMBER: 54
---------------------------

COURSE 11.495
---------------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
------------------------------

COURSE 11.522
-------------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
--------------------------

COURSE 11.952

html, 75
jpg, 21

TOTAL FILE NUMBER: 96
------------------ -------

COURSE 13.49
---------------- - ------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE 13.64
----------------- - ---
xis, 8
zip, 3
html, 28
jpg, 21
tif, 1

TOTAL FILE NUMBER: 61
---------------------------

COURSE 15.001
---------------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
---------------------------

COURSE 15.012
--------------------------
html, 11
jpg,21

TOTAL FILE NUMBER: 32
---------------------------

COURSE 15.012a

ppt, 12
xis, 5
pdf, 1
html, 16
jpg, 21

TOTAL FILE NUMBER: 55
--------------------------

COURSE 15.012b
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ppt, 11
xis, 2
html, 17
rtf, 1
jpg, 21

TOTAL FILE NUMBER: 52
---------------------------

COURSE 15.034
---------------------------
html, 11
jpg, 21
DOC, 5
XLS, 7

TOTAL FILE NUMBER: 44
---------------------------

COURSE 15.053
-------------------------
ppt, 20
xis, 3
pdf, 19
ps, 1
html, 14
PDF, 13
jpg, 21

TOTAL FILE NUMBER: 91
---------------------

COURSE 15.053 Fall 2001
----------------------
ppt, 2
html, 14
jpg, 21

TOTAL FILE NUMBER: 37
-------------------------

COURSE 15.057
-----------------------
ppt, 22
xis, 11
pdf, 35
html, 87
htm, 2
PDF, 10
jpg, 21

TOTAL FILE NUMBER: 188
-----------------------

COURSE 15.061
------------------------
ppt, 1
xis, 2
html, 13
jpg, 21

TOTAL FILE NUMBER: 37

COURSE 15.062

ppt, 2
xis, 6
pdf, 23
zip, 1
html, 11
jpg, 21

TOTAL FILE NUMBER: 64

COURSE 15.064J

html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE 15.064JLFM03

ppt, 1
html, 11
jpg, 21

TOTAL FILE NUMBER: 33
- - - - - - - - - --------- -

COURSE 15.064_LFM02
-- - - ---- ---- - - - - - -

ppt, 1
txt, 2
pdf, 2
html, 11
jpg, 21

TOTAL FILE NUMBER: 37

COURSE 15.066J

ppt, 7
xis, 42
pdf, 18
zip, 1
html, 12
htm, 1
jpg, 21

TOTAL FILE NUMBER: 102

COURSE 15.071

ppt, 3
xis, 2
txt, 1
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pdf, 34
html, 14
jpg, 21

TOTAL FILE NUMBER: 75
-- -- -- -- -- -- - - - ----

COURSE 15.081

txt, 3
ps, 44
html, 12
jpg, 21
m, 5
dvi, 2

TOTAL FILE NUMBER: 87

COURSE 15.082J

ppt, 2
pdf, 40
ps, 24
html, 13
PDF, 5
jpg, 21

TOTAL FILE NUMBER: 105

COURSE 15.083

pdf, 11
html, 67
htm, 4
PDF, 13
jpg, 21

TOTAL FILE NUMBER: 116

COURSE 15.083J

pdf, 39
html, 11
jpg, 21

TOTAL FILE NUMBER: 71

COURSE 15.084J

ppt, 12
pdf, 49
ps, 1
html, 12
jpg, 21

TOTAL FILE NUMBER: 95

COURSE 15.099
-------------------- -- ---
ppt, 10
pdf, 4
ps, 3
html, 11
jpg, 21

TOTAL FILE NUMBER: 49
------------- -- --- --- - -

COURSE 15.099_F2001
------------- ----- ~-- -- -
ppt, 7
pdf, 18
ps, 1
html, 12
jpg, 21

TOTAL FILE NUMBER: 59
--------- --------- --------

COURSE 15.227B
------------- --- ----------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
-----------------------

COURSE 15.311
------------- ------ ------ ~
html, 17
jpg, 21

TOTAL FILE NUMBER: 38
------------- -- ---- ---

COURSE 15.390

html, 12
jpg, 21

TOTAL FILE NUMBER: 33
--------- -- ~----- -- ~----- -- -

COURSE 15.433
-- ------- -- ---- - -- - -
xis, 5
pdf, 29
html, 29
jpg, 21

TOTAL FILE NUMBER: 84
------------- ----- ~~-- -

COURSE 15.433_Lo
---------- - --- ----- --- ~-
pdf, 1
html, 11
jpg, 21
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TOTAL FILE NUMBER: 33
---------------------------

COURSE 15.433_Pan

html, 26
jpg, 21

TOTAL FILE NUMBER: 47
----------- ------------ ------

COURSE 15.760H2

html, 11
jpg, 21

TOTAL FILE NUMBER: 32
------------- ------------

COURSE 15.761

html, 12
jpg, 21

TOTAL FILE NUMBER: 33
-----------------------------

COURSE 15.761_LFM
-----------------------------
ppt, 18
xis, 1
txt, 1
pdf, 6
exe, 1
html, 12
htm, 2
PDF, 1
jpg, 22

TOTAL FILE NUMBER: 64
-----------------------------

COURSE 15.761_SDM
---------------------------
ppt, 36
xis, 18
mdb, 2
pdf, 4
exe, 1
html, 70
htm, 1
PDF, 1
jpg, 25
DOC, 1
XLS, 1
MDB, 2

TOTAL FILE NUMBER: 162

COURSE 15.769
-------------------------------

ppt, 16
html, 32
jpg, 21

TOTAL FILE NUMBER: 69
-----------------------------

COURSE 15.783
--------------------------
html, 13
jpg, 21

TOTAL FILE NUMBER: 34
-------------------------------

COURSE 15.840
----------------------------
html, 14
jpg, 21

TOTAL FILE NUMBER: 35
----------------------------

COURSE 15.875
----------------------------
zip, 1
exe, 1
html, 14
mdl, 1
jpg, 21
vip, 4

TOTAL FILE NUMBER: 42
-------------------------------

COURSE 15.876
-----------------------------
ppt, 11
xls, 4
txt, 3
pdf, 12
zip, 41
html, 345
mdl, 71
ZIP, 6
jpg, 21
DOC, 2
vmf, 12
VIP, 4
mws, 20
sit, 2
MDL, 1
tif, 2

TOTAL FILE NUMBER: 557

COURSE 15.923

ppt, 11
pdf, 1
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html, 14
htm, 1
vdf, 1
jpg, 21
vmf, 1
vgd, 1

TOTAL FILE NUMBER: 51
-------------------------------

COURSE 15.960
---------------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
--------------------------

COURSE 15.962
--------------------------------
ppt, 11
xls, 3
pdf, 5
html, 44
jpg, 21
DOC, 1

TOTAL FILE NUMBER: 85
-----------------------------

COURSE 15.967
-----------------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE 15.968
------------ --- ------- -----
ppt, 14
pdf, 11
html, 29
htm, 4
jpg, 21

TOTAL FILE NUMBER: 79

COURSE 15.980

ppt, 11
xls, 1
pdf, 13
zip, 1
exe, 1
html, 194
htm, 1
PDF, 1
PPT, 1
mdl, 17

vdf, 1
jpg, 21
DOC, 1
vmf, 9
vip, 2
VIP, 4
mws, 4
MDL, 3
jar, 1

TOTAL FILE NUMBER: 287
---------------------------

COURSE 15.981

ppt, 43
txt, 1
pdf, 2
zip, 17
exe, 2
html, 327
htm, 3
PPT, 14
mdl, 19
jpg, 21
ram, 3
RAM, 54
vip, 6
cin, 14
vgd, 1

TOTAL FILE NUMBER: 527

COURSE 15.982

ppt, 11
pdf, 25
zip, 1
html, 289
PDF, 2
mdl, 38
vdf, 3
jpg, 21
vmf, 1

TOTAL FILE NUMBER: 391

COURSE 15.982A
------------------------------
ppt, 1
txt, 1
pdf, 1
zip, 4
exe, 1
html, 56
htm, 3
PDF, 12
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jpg, 21
ram, 6

TOTAL FILE NUMBER: 106
-------------------------

COURSE 15.982B
----------------- --------
ppt, 11
pdf, 1
zip, 4
exe, 1
html, 11
htm, 2
mdl, 2
ZIP, 5
jpg, 21
ram, 4

TOTAL FILE NUMBER: 62
----------- --- ---------

COURSE 15.982C

ppt, 9
pdf, 1
zip, 1
exe, 1
html, 177
htm, 3
mdl, 6
jpg, 21
DOC, 14
ram, 4
MDL, 1

TOTAL FILE NUMBER: 238
---------------------------

COURSE 15.982D

html, 11
jpg, 21

TOTAL FILE NUMBER: 32
----------------------------

COURSE 15.983

xis, 4
pdf, 10
zip, 5
html, 535
htm, 15
PDF, 19
mdl, 31
jpg, 23
vmf, 5
MDL, 1

TOTAL FILE NUMBER: 648
-- -- -- - -- -- ---------- -

COURSE 15.984
------------------------
ppt, 9
xis, 1
txt, 3
pdf, 23
zip, 1
html, 821
rtf, 13
PDF, 1
jpg, 21
TXT, 2

TOTAL FILE NUMBER: 895
------------------------

COURSE 15.987
-------------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
--------------------------

COURSE 15.A03
----------------------------
xis, 1
html, 12
jpg, 21

TOTAL FILE NUMBER: 34
-----------------------

COURSE 16.010

html, 13
jpg, 21
tif, 5

TOTAL FILE NUMBER: 39
----------------------------

COURSE 16.050
----------------------------
html, 12

jpg, 21

TOTAL FILE NUMBER: 33
----------------------------

COURSE 16.070
---------------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
C1-------------------
COURSE 16.221
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pdf, 22
zip, 2
html, 11
PDF, 1
jpg, 21

TOTAL FILE NUMBER: 57
--- - - - - - --- --- - - - -

COURSE 16.30
--- --- .-- - -- ---- ----

html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE 16.355

ppt, 3
pdf, 14
zip, 1
html, 92
jpg, 21

TOTAL FILE NUMBER: 131
- --- - - - - - - -- - - ---

COURSE 16.423J
-- - - - - - -- - - - - - --- -

html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE 16.83

ppt, 8
html, 13
PDF, 9
jpg, 22

TOTAL FILE NUMBER: 52
-- -- - - - ---- - --- - -- -

COURSE 16.851

html, 11
jpg, 21

TOTAL FILE NUMBER: 32
--- - - - - - - - - - --- --- -

COURSE 16.852
--- - - - --- - - -- ---.--
ppt, 55
xis, 1
pdf, 10
html, 60
PDF, 1
PPT, 2

jpg, 23

TOTAL FILE NUMBER: 152
- ---------------- ----

COURSE 16.852J

ppt, 75
xis, 15
pdf, 45
html, 134
PDF, 1
jpg, 21
DOC, 1
XLS, 1

TOTAL FILE NUMBER: 293

COURSE 16.872
-------------------------
ppt, 41
xis, 4
pdf, 9
zip, 5
exe, 1
html, 16
htm, 1
PPT, 1
jpg, 21
vsd, 9

TOTAL FILE NUMBER: 108

COURSE 16.880

ppt, 7
xis, 2
pdf, 12
zip, 1
html, 11
htm, 1
PDF, 2
jpg, 21

TOTAL FILE NUMBER: 57
-------------------------

COURSE 16.881
-----------------------
ppt, 22
xis, 3
txt, 1
pdf, 1
html, 16
rtf, 21
jpg, 21
mcd, 11
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TOTAL FILE NUMBER: 96
-------------------------

COURSE 16.882
- - - - - - -------- --- - -
ppt, 48
xis, 7
pdf, 47
zip, 3
html, 403
rtf, 2
PDF, 34
jpg, 24
m, 1
vsd, 1

TOTAL FILE NUMBER: 570

COURSE 16.888

ppt, 48
xis, 4
txt, 1
pdf, 37
zip, 7
exe, 1
html, 29
htm, 1
avi, 1
PDF, 6
jpg, 21
DOC, 1
m, 5

TOTAL FILE NUMBER: 162
---------------------------

COURSE 16.89
------------------------
ppt, 33
xis, 7
txt, 1
pdf, 6
zip, 3
html, 18
htm, 1
PDF, 5
mdl, 1
ZIP, 2
jpg, 21

TOTAL FILE NUMBER: 98
-------------------------

COURSE 16.89.01
---------------------------
ppt, 10
xis, 1
pdf, 2

html, 76
jpg, 21

TOTAL FILE NUMBER: 110

COURSE 16.899

ppt, 18
xis, 6
pdf, 45
html, 72
htm, 1
PDF, 1
jpg, 23

TOTAL FILE NUMBER: 166

COURSE 16.899a

ppt, 6
pdf, 11
html, 70
htm, 1
jpg, 21
MDL, 1

TOTAL FILE NUMBER: 110
- --- - - - - - - --- - --- - -

COURSE 16.982
--- - - - - - - - - --- - -
ppt, 4
txt, 1
pdf, 21
ps, 17
html, 211
rtf, 2
jpg, 21

TOTAL FILE NUMBER: 277
- - - - - - - - ---- - - - - -

COURSE 16.982a
------------- - - --- - -
ppt, 2
xis, 1
pdf, 1
html, 76
jpg, 21

TOTAL FILE NUMBER: 101
--------------- ------ ----

COURSE 16.983
-------------------- - -
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
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COURSE 17.253_4
-- - -- - --- - -- --------
html, 11
htm, 2
jpg, 21

TOTAL FILE NUMBER: 34

COURSE 17.577

html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE 18.337

txt, 3
html, 40
jpg, 21
gz, 2
dvi, 1

TOTAL FILE NUMBER: 67
-------------------------

COURSE 19.001
------------ -----------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
--------- -----------------

COURSE 2.000
--------- -----------------
ppt, 2
xls, 2
pdf, 5
zip, 1
html, 109
dat, 1
rtf, 1
PDF, 2
jpg, 128
JPG, 2
TIF, 2
wps, 1

TOTAL FILE NUMBER: 256
------------------------

COURSE 2.007
--------------------------
pdf, 28
html, 13
jpg, 21

TOTAL FILE NUMBER: 62
-----------------------

COURSE 2.009
-------------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE 2.010

pdf, 29
html, 13
PDF, 1
jpg, 21

TOTAL FILE NUMBER: 64

COURSE 2.151
----------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
-----------------------

COURSE 2.739J
------------------------
ppt, 16
xis, 24
pdf, 1
zip, 5
html, 94
avi, 5
jpg, 21
efx, 4
tif, 2

TOTAL FILE NUMBER: 172
---------------------

COURSE 2.744
--------------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
----------------------

COURSE 2.82

ppt, 4
xls, 4
pdf, 1
html, 11
htm, 2
PPT, 1
jpg, 21
XLS, 1
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TOTAL FILE NUMBER: 45
----------- --------------

COURSE 2.830

pdf, 6
html, 11
htm, 1
jpg, 21

TOTAL FILE NUMBER: 39
-------------------------

COURSE 2.875
---------------------------
ppt, 13
xls, 6
exe, 1
html, 22
avi, 1
rtf, 1
jpg, 21
m, 7

TOTAL FILE NUMBER: 72
-------------------------

COURSE 2.882

ppt, 6
pdf, 3
html, 21
jpg, 21

TOTAL FILE NUMBER: 51

COURSE 22.351

xls, 2
txt, 1
zip, 1
exe, 1
html, 24
htm, 6
jpg, 21

TOTAL FILE NUMBER: 56
------------------------

COURSE 22.38
------------ ------------
html, 11
PDF, 12
jpg, 21

TOTAL FILE NUMBER: 44
---- --------------

COURSE 3.14

pdf, 14
html, 11
htm, 6
jpg, 21

TOTAL FILE NUMBER: 52
- - - - - ----..--- - - - - -

COURSE 3.21
- - - - - - --- ------ - -- - -
pdf, 31
html, 11
jpg, 21

TOTAL FILE NUMBER: 63
--.----------- ---------

COURSE 3.23
-- - - - - - ----------- -
html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE 3.52J
--------------- ------- -
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
- - - - - - - - - - - --------

COURSE 4.155
- - ---- -- --- - - - - - -
html, 18
jpg, 21

TOTAL FILE NUMBER: 39

COURSE 4.156
-- - - ------ --- --- - - -
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
----------- ------ -- -

COURSE 4.182
-----------------------------
html, 11
htm, 7
jpg, 21

TOTAL FILE NUMBER: 39
--------------- --- -

COURSE 4.189
------------------------
html, 11
jpg, 21
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TOTAL FILE NUMBER: 32

COURSE 4.195

ppt, 2
html, 26
jpg, 21
JPG, 6

TOTAL FILE NUMBER: 55

COURSE 4.199

html, 11
jpg, 21

TOTAL FILE NUMBER: 32
------ -- ---- ---- --- - -- -

COURSE 4.272

html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE 4.290

html, 11
jpg, 21

TOTAL FILE NUMBER: 32
--------- ---- ---- ---- ---

COURSE 4.351

html, 34
htm, 12
avi, 1
jpg, 23

TOTAL FILE NUMBER: 70
---- --- --- ---- --- --- ----

COURSE 4.361

html, 11
jpg, 21

TOTAL FILE NUMBER: 32
--- --- --- --- --- --- -- --

COURSE 4.390

html, 11
jpg, 21

TOTAL FILE NUMBER: 32
CO - 4- ---
COURSE 4.395

----------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
------------------------

COURSE 4.401
-------------------------
pdf, 10
html, 11
htm, 5
jpg, 21

TOTAL FILE NUMBER: 47
--------------------------

COURSE 6.011
--------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
----------------- --------- ~

COURSE 6.046J
----------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
-------------------------- ~

COURSE ESD-999
-----------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
-------------------------- ~-

COURSE ESD-PD21
---------------- ----------
ppt, 13
txt, 2
html, 18
htm, 1
rtf, 2
jpg, 21

TOTAL FILE NUMBER: 57
------------------------

COURSE ESD.000
-------------------------
xls, 14
mdb, 1
pdf, 21
html, 11
PDF, 83
jpg, 30
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TOTAL FILE NUMBER: 160

COURSE ESD.121J

xis, 5
pdf, 1
html, 16
jpg, 21

TOTAL FILE NUMBER: 43
------------ ----------- ----

COURSE ESD. 185J
----------------------------
ppt, 30
xis, 5
pdf, 2
html, 590
PDF, 1
PPT, 1
mdl, 10
jpg, 22
DOC, 2
mpp, 2

TOTAL FILE NUMBER: 665

COURSE ESD.260J

ppt, 19
xis, 804
pdf, 7
html, 821
htm, 3
PDF, 10
PPT, 4
jpg, 21
DOC, 2
XLS, 20

TOTAL FILE NUMBER: 1711
------------------------

COURSE ESD.263J

ppt, 1
html, 11
jpg, 21

TOTAL FILE NUMBER: 33
------------------ --------

COURSE ESD.269J
-------------------------
ppt, 1
xis, 10
pdf, 10
html, 21
PDF, 5

jpg, 21

TOTAL FILE NUMBER: 68

COURSE ESD.33J
- - - - - - ----- -- - - - - -
ppt, 36
xis, 66
pdf, 9
zip, 6
exe, 1
html, 330
tar, 1
rtf, 1
PDF, 4
PPT, 1
ZIP, 2
jpg, 21
DOC, 1
XLS, 1
mpp, 10
JPG, 1
vsd, 1

TOTAL FILE NUMBER: 492

COURSE ESD.33J.01

ppt, 34
xis, 32
txt, 1
pdf, 34
zip, 1
exe, 1
html, 260
htm, 5
tar, 1
PDF, 9
PPT, 1
jpg, 21
mpp, 3
rdt, 40

TOTAL FILE NUMBER: 443
-----------------------

COURSE ESD.34

ppt, 76
xis, 6
txt, 2
pdf, 11
html, 241
PDF, 13
jpg, 21

TOTAL FILE NUMBER: 370
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COURSE ESD.34.SDM-UTC

html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE ESD.811
--- - - --- - -- -- -- --

html, 11
htm, 20
jpg, 21

TOTAL FILE NUMBER: 52
-----. ------------ ----

COURSE ESD.87J
-------- ------ -------
pdf, 1
html, 14
htm, 18
PDF, 3
jpg, 21

TOTAL FILE NUMBER: 57
--------- ---------------

COURSE ESD.89
---------------------- -
pdf, 1
html, 11
htm, 11
PDF, 2
jpg, 21

TOTAL FILE NUMBER: 46
------------ -------------

COURSE icons
------------------------

TOTAL FILE NUMBER: 0

COURSE MAS964

A.1.3.2
ppt, 1366
xis, 2355
mdb, 5
txt, 425
pdf, 1567
ps, 151
zip, 1563
exe, 23
html, 16364

html, 11
jpg, 21

TOTAL FILE NUMBER: 32

COURSE MITCET

ppt, 2
pdf, 3
html, 32
jpg, 21

TOTAL FILE NUMBER: 58
---------------------

COURSE SMAOO1
---------------------
html, 11
jpg, 21

TOTAL FILE NUMBER: 32
------------ ---- -- ----

COURSE SMA002

html, 11
jpg, 21

TOTAL FILE NUMBER: 32
------------------- ---

COURSE URIT2000
----------------------
ppt, 5
xis, 5
pdf, 8
zip, 1
html, 12
htm, 4
dat, 1
PDF, 7
jpg, 21

TOTAL FILE NUMBER: 64

File Type Count Totals for the Entire System
htm, 349
tar, 34
dwg, 11
avi, 8
dat, 57
js, 2
java, 5046
rtf, 164
mod, 70
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PDF, 346
PPT, 32
mdl, 372
ZIP, 130
vdf, 13
jpg, 4735
c, 63
gz, 10
TXT, 5
DOC, 65
XLS, 52
m, 25
MDB, 3
ram, 17
RAM, 54
cc, 11
cpp, 19
vmf, 28
vip, 12
cin, 14
efx, 4
mpp, 20
rdt, 40
class, 58
fig, 33
java-, 40
JPG, 98
vsd, 15

asc, 5
C, 44

h, 5
rar, 4
tex, 17
dvi, 9
MOD, 3
dbf, 4
VIP, 8
mws, 24
sit, 3
vgd, 2
say, 5
mcd, 12
prn, 4
wpd, 1
cgi, 4
csv, 1
xml, 6
css, 2
RTF, 3
MDL, 9
jar, 1
tif, 23
TIF, 2
wps, 1
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Appendix 2 Designing for

Communication: Layout, Structure, and

Navigation.
This section presents guidelines for the design of site structure. It also goes on to discuss

graphic and text design in the context of graphical user interfaces.

A.2.1 Structural Guidelines

Once the features in the application have been determined the next step is to construct the

containing structure. The designer should think on structure from the conceptual stage

and revisit often his vision of structure.

As the structure begins to take form it is useful to simulate the users experience to the

design group and get feedback on shortcomings. Team meetings are a good opportunity

to present potential site structures on whiteboards or overheads. In this setting, everyone

can contribute and quick changes can be incorporated.

Presenting information in familiar forms helps the learner feel comfortable. Fortunately,

there are many classic informational structures that work well. Among these are:

" linear or temporal (e.g., process)

" topical or conceptual (e.g., perspectives)

* hierarchic or categorical (e.g., analysis)

" logical (e.g., persuasion, discussion)

* pedagogical (e.g., tutorial)

" spatial (e.g., organization chart)
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The forms of the structure should be varied and take advantage of web possibilities. For

example, JavaScript can be used to recreate the Windows 95 desktop and plugins can

create interactive structures. Also, the virtual reality modeling language (VRML) can be

used to create a varied landscape and environments that can be manipulated.

A.2.2 Explicate Structure

A web site structure is it self aform of content. Therefore, the same care that is taken to

explain content should be taken to explain structure. Explanations should not just be in

the form of graphics but also in the form of strategically placed help through out the

system.

The structure should be such that the learner knows where he/she is at all times.

Transparent navigation will make the learner feel more secure in the web environment. It

will also minimize or obliterate the time spent learning site structure.

Using common standard structural practices help the user by tapping into knowledge he

already possesses. Examples are chapters, sections, introductions, headings, and other

familiar forms.

Links to the home page are sometimes overlooked by designers. The learner must always

be able to go home from any part of the site. This simple feature encourages the user to

explore the site with out fear of getting lost.

A.2.3 Emphasize Central Structure

Most sites have complex file structures on the developer's side. It is the job of the

designer to mask the file structure and present a central, one dimensional, continuous

structure

Large jumps in the site structure should be hidden from the average user. Overlooking

this point, can create discontinuities in the structure, through which, users unfamiliar with
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the site structure can lose their way. Thus, large jumps should be confined to a site map

or made inaccessible to new users.

Layering can be used to provide information to the user, on demand. JavaScript permits

an additional layer of information to be written into a web page. Designers use this layer

to write help on a "onMouseOver" function. The help text is displayed when the user

places the mouse over the hidden layer

Finally one must remember that with bookmarks users can access a site at any place. This

means that regardless of where a user enters the site he/she must get some sense as to the

structure and where he/she is.

A.2.4 Graphics Design

Graphic Design considerations:

" organizing the visual field

" guiding the hand and eye within that field

" encouraging exploration by creating an appealing visual environment

0 unified (and thus comprehensible)

0 varied (and thus interesting)

0 balanced (and thus satisfying)

Variables Associated with Graphics:

" Location (relative to screen, other elements)

" Size (typesize, graphic size)

" Style (typeface or artistic style)

" Emphasis or visual weight (density, line weight)

" Texture
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* Color

0 Whitespace (amount, shape)

There are four principles of graphics design that will be discussed: contrast, repetition,

alignment, and proximity.

The contrast of graphics can be a powerful tool to convey differences in a graphical user

interface. Strong differences in size, style, weight, texture, and color send a clear message

to the user saying "this are different". However, in order to avoid clutter and

overwhelming the user, the designer should take care to use strong elements sparingly,

try to use them only to point out important features, and create a focal point. This way the

user will quickly see the important points with out being distracted by the cosmetic

aspects.

Repeating elements can imply unity. Emphasizing consistent elements such as

navigational bars, headers, typefaces, colors, icons, locations creates a "feel" for a

particular web site. It is the designer's job to create an environment that will be consistent

through out the entire site. A web site has achieved this goals if the user can immediately

know if he/she is still in the site by looking (not reading) at a page.

Alignment can create visual connections between elements. It aids the organization of a

page by directing the eye and it's important both in text justification and the alignment of

images. Mixed text alignment should be avoided as it misdirects the eye. Also, alignment

at a page edge is undesirable.

Organization can be improved by grouping related elements. The natural tendency of a

viewer is to look for relationships and the proximity of elements implies relationships. A

good example, is a paragraph header, the closer it is to the body of text, the clearer the

message that they belong together. In general, try not to use more than 3-5 eye-stoppers

groups.
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A.2.5 Text Design

Text design (choosing font, style, color, weight) in web environments is limited unless

the text is an image. (Users control default font, size choices; HTML specifies only

relative sizing, and even specified fonts may not be available). Given this limitations

consideration will only be given to:

" Concordant type

(one type family, little variation in style, size, weight...)

" Conflicting type

(two different type families, similar style, size, weight...)

* Contrasting type

(two different type families, distinct style, size, weight...)

In most situations the only true font type variations are serif and sans serif.

Concordant layouts are very soothing and should be used to achieve a calm and formal

effect. The opposite practice creates a disconcerting feeling on the user. However,

contrasting type elements such as monotype vs. proportional can be used as a simple way

to achieve contrast (outline differences) in design.

Web pages differ from software screens and print media in the following ways:

" Variable page size. The designer can not be sure if the user will view material

at 600x400, 800x600, 1024x768, 1152x864, or 1280x1024.

" Primacy of the top four inches: people will not scroll. Thus, the top four

inches must engage the user.

200



* Bandwidth limitations of users. In some cases limited bandwidth will

eliminate many TCP/IP applications. For example, real time video is virtually

impossible to do over 14.4 kbps connection.

" Client Browser setup. Users on occasion may disable Java, JavaScript, and

Cookies. Other may choose unusually large or small fonts destroying an

otherwise effective layout.

" Version of HTML the client browser will support. Currently only the last

releases of the major browsers support dynamic HTML (DHTML) a feature of

HTML 4.0. In contrast it is still possible to download browsers that are several

generations old and that only support HTML 3.0 or HTML 2.0.

Thus, due to the many configurations available to the user a developer must do extensive

testing on different:

" operating systems

* display sizes

* browsers

" bandwidths

A.2.6 The Graphical User Interface

The inessential parts of a graphical user interface (GUI) are the page layout, site

structure, and site navigation. Using lessons learned from software design the discussion

to follow will focus on: 1) the principle of user correctness, 2) the principle of least

astonishment, and 3) the principle of user centeredness.

A.2.6.1 The Principle of User Correctness
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When it comes to user interfaces, the common expression of retail sales applies: the user

is always right. A design can meet every theoretical principle but if users are confused,

misled, or disconcerted by the GUI, it is useless. A successful design should require no

explanation.

An effective GUI is a difficult task. The designer should not test his own GUI. Designers

are not typical users. This is especially true when one person does all the development.

The problem lies in familiarity; the designer becomes so familiar with the project that a

logical navigation and transparent content are no longer necessary.

A.2.7 The Principle of Least Astonishment

Some of the key elements in a predictable user interface are: simplicity, clarity,

completeness, consistency, and robustness.

A.2.7.1 Navigational Bars

When designing navigational aids such as bars, preference should be given to simple

structures. Some of the least complicated and familiar to users are the horizontal and

vertical structures (see below).

Vertical
Horizontal

ALIZ

Appendix Figure 11 Navigational Structures
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The key is making the structure apparent, easily comprehensible, and keeping the

navigation decisions at any point, simple. For example, horizontal and vertical navigation

styles could be combined as long as the end result was apparent to a casual user. In the

example below, numbers are used to give the user a navigational reference.

Appendix Figure 12 Navigational Aides

Other ways of promoting simplicity are: reducing the number of controls, no more than

five is a good principle. Group related controls, separate control groupings that have

different functional types, and use contrast to highlight the important controls

A.2.7.2 Clarity

The purpose and use of controls should be immediately clear. Important buttons should

dominate the page. The designer should take advantage of web standards such as arrows,

text navigation bars, house icon for home button, and rollover scripts. Another important

aspect is to make use of the users natural tendencies. For example, people in western

cultures search a page left to right and top to bottom. Thus, a good place for an essential

piece of information is in the top left hand corner.

A.2.7.3 Completeness

Control buttons for essential features, should always be present. The designer must

identify the key functions and incorporate them to every view the user will see. It is also a

good idea to provide a link home from every page. In many occasions a user will enter
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the site at a random point (as a result of a search or a bookmark) and with out a link to the

home page the user can become lost or confused as to its location.

Consideration should also be given to how a page will print. If the content of the pages

will be printed often, the designer should take into consideration a color scheme that will

be readable in gray scale. A better solution is to have an additional version (different

format) of the information for printing purposes only. Some of the common current

formats are portable document format and postscript.

In order to create a complete interface the designer must take into account the clients

browser. Many browsers do not support the latest versions of HTML and thus may

display nothing or incomplete information. One strategy used to avoid this problem is to

discover the clients browser when the HTTP server is propositioned. Once the browser is

determined the designer can conduct the client to the appropriate web page. Another

option is to present a text only welcome page with several browser options.

A.2.7.4 Consistency

The user should be able to know if he is in the web site by looking at the page (not

reading it). Similarities can be supported using appearance, placement, and operation. It

follows that all aspects of the site should appear and function consistently. Successful

implementation will align the designer's conceptual organization with the users perceived

site structure.

A.2.7.5 Robustness

Users will commit errors and perform unexpected tasks. Therefore, the designer must

anticipate user actions, prevent accidents, and give helpful feedback when errors occur.

A.2.7.6 User-Centeredness

Place the user at the center of your creation.

" Control: give the user control, or the appearance of it

" Responsivity: respond immediately to user actions, and keep him/her informed
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0 Keep download times short

0 specify height, width of graphics

0 use fast servers

* Forgiveness: (related to Robustness) assume users will make mistakes, and

provide a means to correct them.
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Appendix 3 Technology and Education

According to David Perkins the goals of education are very simple: retention,

understanding, and active use of the knowledge and skills. The problem with these goals,

though simple, is that they are deceptively difficult to attain. This is particularly true

when it comes to conceptual themes and abstractions. Students often leave classes

confused or with the wrong idea.

What does information technology offer to help solve this problem? How can it help

constructivism? Are both concepts working together more than the sum of their parts?

Constructivism is the view that learners are not passive but constantly try to understand

the information they are receiving, try to apply it, and make conclusion about it.

The facets of a learning environment can be grouped into five categories: information

banks, symbol pads, construction kits, phenomenaria, and task managers.

A.3.1 Information Banks

The classic information banks are the professor and texts provided in class. In addition to

these there might be films, slides, group presentations, and guest speakers.

Information technology contributes to these course web sites, the web in general,

simulations, and the ability to collaborate remotely with experts in the field.

A.3.2 Symbol Pads
A notebook is an example of a symbol pad. Basically, any device that will let a student

record information for retrieval at a later date.

Lab top computers provide a wealth of resources at the fingertips of the student with out

having to leave the classroom. Other tools are cameras, still and video, which can capture
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lectures for later review. In case a student misses an important lecture he/she can play it

back and catch up.

A.3.3 Construction Kits

Laboratory instruments, formwork in a materials laboratory, and model materials in an

architecture class are all construction kits. Information technology has had a big impact in

this area taking virtual construction (modeling) to new heights.

Some of the most notable contributions are computer aided design and drafting (CADD),

computer aided engineering (CAE) modeling, and virtual laboratories and testing

facilities in the virtual reality modeling language (VRML).

A.3.4 Phenomenaria

Defined by Perkins as an area for the specific purpose of representing phenomena and

making them accessible to scrutiny and manipulation.

In the conventional classroom this has been laboratory experiments meant to capture and

demonstrate one phenomenon or law of nature. Examples that come to mind are the

classic physics experiments "shooting the falling monkey" and the "pendulum".

Information technology can represent phenomenaria in new and wonderful ways. The

construction kits mentioned in the last section when tied to control programs can

represent and recreate nature for experimentation. In fact, as the traditional way of

experimenting in laboratories is often expensive and time consuming, computer modeling

has replaced laboratory testing at many educational institutions.

A.3.5 Task Managers

The person or process that controls the learning activities of the student is the task

manager. In the typical classroom this person is the professor.
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Computer instruction provides the opportunity for programmed instruction control. The

designer will take the student on the path he/she deems to be the best.

A.3.6 Caveats for Applications of Information Technology

Care should be given when isolating systems. When the designer is creating an

application that isolates a part of a system, care must be taken to include some sense of

the greater system into the design. "It is not that focused attention ... is disallowed, but

rather that whatever focused attention they get should be part of some larger enterprise

transparent not just to the teacher but the learner" (source ????).

Assessment is an integral part of learning; hence, computer systems aimed at teaching

should provide the user with feedback. Computer systems are currently limited to user

input to assess progress. The users mood, expressions, and gestures are challenges that

have not been solved by artificial intelligence.

A.3.7 Information Technology

The tools discussed undeniably aid instruction. However, are they more than a tool? In

the author's opinion they are.

While many tools are simply no more than a symbol pad, others are complex systems that

can let a student interact with a system in ways that were previously impossible. Complex

simulations of mechanical systems, for example, will let the user observe a system as it

changes through time, as material properties are changed, and as changes to initial

conditions are made.

Another example is a project that fellow researchers are collaborating on, in structural

dynamics. "Teaching and learning in dynamics has great potential for improvement with

the use of visual tools provided by computer graphics, especially since the phenomenon

under study is time dependent. Computers offer the ability to create animations and

interactive figures, which is not possible with current teaching tools such as textbooks

and chalkboards. The advantage of using computer graphics is that they are able to
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represent the dynamic phenomena adequately and allow the user to experiment with the

effect of parameters" (source ????).

A.3.8 Educational Models

A.3.8.1 Theory One
Educators like David Perkins, in "Smart Schools", list four minimal ingredients for

learning to occur: 1) clear information, 2) thoughtful practice, 3) informative feedback,

4) strong motivation.

This can be applied to the proposed educational web sites in the following way:

" Clear information - Descriptions and examples of the goals, knowledge needed,

and the performances expected. Transparent navigation, clean uncluttered

graphics, and obvious grouping link sections.

" Thoughtful practice - Opportunity for learners to engage actively and reflectively

whatever is to be learned. Wizards for common site tasks.

" Informative feedback - Clear, thorough counsel about performance, helping

learners be more effective. Abundant help and quizzing of material.

" Strong motivation - Activities that are rewarded, because they are interesting in

themselves, or because they feed other achievements that concern the learner.

Animations and simulations.
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A.3.8.2 Tutorial Cycle

Furthermore, when it comes to educational software the tutorial cycle as described by

George Brackett presents a simple but effective instruction model.

Appendix Figure 13 Tutorial Cycle

Present Present information related to goals
Informfiation,

Elicit student action toward goals
Elicit

Offer Action Assess student action
Guidance Manage

Process Provide feedback to student

Access Offer strategic guidance to student
Provide Action
Feelback Manage and motivate the process

These elements can vary in style and implementation. However, for an effective teaching

tool all should be included.

A.3.8.3 Present Information

Information will be presented in various forms and categories. The obvious ones: lecture

notes, assignments and solutions, readings, and announcements. In addition, discussion

sections, calendars, and presentations will also add to class knowledge base.

A.3.8.4 Elicit Student Action Toward Goals

Students will able to obtain information for the system and once processed the

opportunity for online testing will be available.

A.3.8.5 Asses Students Action

The results of online testing will be immediate. In addition a record will be kept in order

to measure the effectiveness of the available questions.
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A.3.8.6 Provide Feedback to the Student
The results of online testing and simulations will be immediate. Users will be able to

know the effect of their actions in real time.

A.3.8.7 Offer Strategic Guidance to the Student

Help Sections will be populated for each course on the system.

A.3.8.8 Manage and Motivate the Process
The user's interaction will be managed by scripts.

From the previous discussion it can be said that the internet and computer networks gives

a students four key aids in the educational process: 1) access to information, 2)access to

communication, 3)access to remote computing power, 4)access to collaboration.

A.3.9 Designing Clear Information

When designing educational content for the web, content guidelines and structural

guidelines should established. In past sections the performances of understanding have

been described. Now, to be more precise and describe the knowledge, skills, and

understandings it is useful to use an input/output analysis modeling the learner, expert,

and identify the suboutcomes that reduce the difference.

A.3. 10 Content Guidelines

A.3.10.1 The Learner

In order to describe the learner we should consider his knowledge, skills, interests, and

his strategies for learning.

211



In order to create an experience that will be fruitful to a user, the designer should know

what is the knowledge level and common misconceptions of the learner. This knowledge

will permit the designer to create and experience which will be at the correct level of

complexity and will strive to point out the common misconception to the learner as

he/she goes along.

Knowing the learner skills will allow a design which exploits the users strongest points.

For example, for users that hate to read on the screen (as most people do) a graphical

approach is better.

One of the key aspects for any project on the web is being able to capture the user's

attention. Knowing before hand the interests of learners is a big advantage when

designing to capture an audience. The designer should try to exploit the advantages of the

medium and make the learning experience fun. In addition, to learners preferences,

adding pleasing graphics, sound, and animation sections always spices up a web site.

Students in different disciplines have different learning habits. Learners very a lot from

the fine arts to the hard sciences. Thus, a design that targets the different academic

cultures will be more effective.

It follows from the previous discussion, that the broader the audience the harder it is to

optimize a design.

A.3.10.2 The Experts

In order to build a learning model the designer must answer the same question posed for

the "the learners":

" knowledge, both immediate and retrievable, and its interconnections, if possible

from protocols, interviews

" skills (what do experts really do when they perform, not always obvious)

* strategies for learning, acting in new situations
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* interests, world view, etc....

This is important because experts, are the goal of learners.

Suboutcomes

After performing an analysis on learners and experts compare the two. The designer

should set aims that support and strengthen similarities, diminish differences, and

develop elements missing from learners but present in experts.

A.3.10.3 Structural Guidelines

Once the content has been determined the next step is to construct the containing

structure. The designer should think on structure from the conceptual stage and revisit

often his vision of structure.

When thinking about the structure the team should use visual aids to layout the suggested

structures. Often in team meetings the suggested structure would be drawn as a flow chart

or concept map on a white board. This way everyone could contribute and quick changes

could be incorporated.

As the structure begins to take form it is useful to simulate the users experience to the

design group and get feedback on shortcomings.

Presenting information in familiar forms helps the learner feel comfortable. Fortunately,

there are many classic informational structures that work well and are easy to implement.

Among these are:

" linear or temporal (e.g., process)

" topical or conceptual (e.g., perspectives)

" hierarchic or categorical (e.g., analysis)

" logical (e.g., persuasion, discussion)
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0 pedagogical (e.g., tutorial)

0 spatial (e.g., organization chart)

The forms of the structure should be varied and take advantage of web possibilities.

Currently, the web presents a wonderful variety of possibilities like audio, text, streaming

video, plus 3D environments. Making use of these tools the instructor can deliver content

or interact with the learner.

These tools should also be taken advantage of to engage the learner. Virtual environments

are very effective in this area. The most successful provide a varied landscape and

manipulable landscape.

A.3. 11 Explicate Structure

A web site structure is it self aform of content. Therefore, the same care that is taken to

explain content should be taken to explain structure. Explanations should not just be in

the form of graphics but also in the form of strategically placed help through out the

system.

The structure should be such that the learner knows where he/she is at all times.

Navigation should lead the learner in an obvious path. Transparent navigation will make

the learner feel more secure in the web environment. It will also minimize or obliterate

the learning curve (learning the structure).

Using common standard structural practices help the user by tapping into knowledge he

already possesses. Examples are chapters, sections, introductions, headings, and other

familiar forms.

A simple thing to overlook is links to home. The learner must always be able to go home

from any part of the site. This simple feature encourages the user to explore the site with
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out worrying about getting lost. No matter what happens the user knows he/she can go

home.

A.3.12 Emphasize Central Structure

Most sites have complex file structures and many structures that are browsable. However,

only one central structure should be emphasized to the user. Several techniques can be

used to achieve this goal.

Layering can be used to provide on information to the user on demand. JavaScript

permits the designer to add additional layers of information to a web page. A common

practice of designers is to write help on a "onMouseOver" function. The way this works

is that when a user places the mouse over the object in questions, a rectangle appears

displaying the help text.

Large jumps in the site structure should be hidden from the average user. When users

unfamiliar with the site structure are dropped in the middle of a site they can easily loose

their way. Thus, jumping about in the site should be confined to a site map or another

place as long as is not the main navigation.

Finally one must remember that with bookmarks users can access a site at any place. This

means that regardless of where a user enters the site he/she must get some sense as to the

structure and where he/she is.

Appendix 4 WSDL Generic Registration

Sample

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns: sl="http: / /microsoft. com/wsdl/types/" xmlns:http="http: //schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas. xm1soap.org/wsdl/soap/" xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s0="http://YourHostName/GenericReg/" xmlns:s2="http://YourHostName/GenericReg/AbstractTypes"
xmlns: soapenc="http: //schemas. xmlsoap.org/soap/encoding/" xmlns: tm="http: //microsoft. com/wsdl/mime/textMatching/"
xmlns :mime="http: //schemas. xmlsoap.org/wsdl/mime/" targetNamespace="http: //YourHostName/GenericReg/"
xmlns="http: //schemas. xmlsoap.org/wsdl/">

<types>
<s: schema elementFormDefault="qualified" targetNamespace="http: //YourHostName/GenericReg/">
<s:import namespace="http: //microsoft.com/wsdl/types/" />
<s:import namespace="http://www.w3.org/2001/XMLSchema" />
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<s:element name="LogInWithoutSiteId">
<s: complexType>

<s: sequence>
<s:element minOccurs="O" maxaccurs="1" name="username" type="s:string" />
<s:element minoccurs="O" maxOccurs="1" name="password" type="s:string" />

</s: sequence>
</s:complexType>

</s:element>
<s:element name="LogInWithoutSiteIdResponse">
<s:complexType>

<s :sequence>
<s:element minOccurs="l" maxoccurs="1"

</s: sequence>
</s: complexType>

</s:element>
<s:element name="LogIn'>
<s:complexType>

<s: sequence>
<s:element minOccurs="O" maxoccurs="1"
<s:element minOccurs="O" maxoccurs="l"
<s:element minOccurs="1" maxoccurs="l"

</s:sequence>

</s:complexType>
</s:element>
<s:element name="LogInResponse">

<s:complexType>
<s:sequence>
<s:element minoccurs="O" maxoccurs="l"
<s:element minOccurs="1" maxOccurs="1"

</s:sequence>
</s: complexType>

</s:element>
<s:element name="LogOut">
<s:complexType>

<s: sequence>
<s:element minOccurs="O" maxoccurs="1"
<s:element minOccurs="O" maxoccurs="1"

</s: sequence>
</s: complexType>

</s:element>
<s:element name="LogOutResponse">
<s:complexType />

</s:element>
<s:element name="CreateAccount">
<s:complexType>

<s: sequence>
<s:element minOccurs="O" maxoccurs="1"
<s:element minOccurs="O" maxoccurs="l"
<s:element minoccurs="l" maxOccurs="1"

</s:sequence>
</s:complexType>

</s:element>
s:element name="CreateAccountResponse">
<s:complexType>

<s: sequence>
<s:element minOccurs="l" maxOccurs="l'"

</s: sequence>
</s: complexType>

</s:element>

<s:element name="SaveAttributeValue">
<s:complexType>

<s :sequence>
<s:element minOccurs="1" maxOccurs="1"
<s:element minOccurs="O" maxaccurs="1"
<s:element minOccurs="O" maxoccurs="1"

</s:sequence>
</s:complexType>

</s:element>
<s:element name="SaveAttributeValueResponse">
<s:complexType />

</s:element>
<s:element name="SaveUserPicture">
<s:complexType>

<s: sequence>
<s:element minOccurs="I" maxoccurs="l" r
<s:element minOccurs="O" maxOccurs="l" r
<s:element minOccurs="1" maxoccurs="1" r
<s:element minOccurs="O" maxqccurs="" r

</s:sequence>
</s:complexType>

</s: element>
<s:element name="SaveUserPictureResponse">
<s:complexType />

</s:element>
<s:element name="GetUserPicture">
<s:complexType>
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" r

</s:sequence>
</s: complexType>

</s:element>
Cs:element name="GetUserPictureResponse">

<s:complexType>

<s: sequence>
<s:element minOccurs="O" maxoccurs="l" r

name="LogInWithoutSiteIdResult" type="sl:guid" />

name="username" type="s:string" />
name="password" type="s:string" />
name="siteId" type="sl:guid" />

name="key" type="s:base64Binary" />
name="userId" type="sl:guid" />

name="username" type="s:string" />
name="token" type=s:base64Binary" />

name="username" type="s:string" />
name="password" type="s:string" />
name="siteId" type="sl:guid" />

name="userId" type="sl:guid" />

niame="userId" type="sl:guid" />
iame="attName" type="s:string" />
iame="attValue" type="s:string" />

name="userId" type="sl:guid" />
name="imageData" type="s:base64Binary" />
name="length" type="s:int" />
name="imageType" type="s:string" />

name="userld" type="sl:guid" />

name="imsgeDate" type="s:base64Binary" />
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<s:element minOccurs="1" maxOccurs="l" name="length" type="s:int" />
<s:element minOccurs="O" maxOccurs="1" name="imageType" type="s:string" />

</s: sequence>
</s: complexType>

</s: element>
<s:element name="GetUserAttributes">

<s: complexType>
<s: sequence>

<s:element minOccurs="O" maxOccurs="1" name="username" type="s:string" />
</s: sequence>

</s: complexType>
</s: element>
<s:element name="GetUserAttributesResponse">

<s: complexType>
<s: sequence>

<s:element minOccurs=" O " maxOccurs="l" name="GetUserAttributesResult">
<s: complexType>

<s: sequence>
<s:element ref="s:schema" />
<s:any />

</s:sequence>
</s:complexType>

</s:element>

</s:sequence>
</s: complexType>

</s:element>
<s:element name="AddUserToGroupWithGroupId">
<s:complexType>

<s: sequence>
<s:element minOccurs="O" maxOccurs="1" name="username type="s:string" />
<s:element minOccurs="l" maxaccurs="1" name="groupId" type="sl:guid" />
<s:element minOccurs="O" maxOccurs="1" name="role" type="s:string" />
<s:element minOccurs="O" maxOccurs="l" name="creationUserName" type="s:string" />
<s:element minOccurs="O" maxOccurs="1" name="status" type="s:string" />

</s:sequence>
</s: complexType>

</s:element>
s:element name="AddUserToGroupWithGroupIdResponse">
<s:complexType />

</s:element>

<s:element name="AddUserWithUserIdToGroupWithGroupld">
<s: complexType>

<s: sequence>
<s:element minOccurs="1" maxOccurs="1" name="userId" type="sl:guid" />
<s:element minOccurs="1" maxOccurs="1" name="groupId" type="sl:guid" />
<s:element minOccurs="O" maxOccurs="1" name="role" type="s:string" />
<s:element minOccurs="O" maxoccurs="1" name="creationUserName" type="s:string" />
<s:element minOccurs="O" maxOccurs="l" name="status" type='ls:string" />

</s:sequence>
</s:complexType>

</s:element>
<s:element name="AddUserWithUserIdToGroupWithGroupIdResponse">
<s:complexType />

</s:element>
<S:element name="GetUserIdFromUsername">
<s:complexType>

<s:sequence>
<s:element minOccurs="O maxOccurs="1" name="username" type="s:string" />

</s:sequence>
</s: complexType>

</s:element>
<s:element name="GetUserIdFromUsernameResponse">

<s: complexType>
<s : sequence>
<s:element minOccurs="" maxOccurs="1"

</s:sequence>
</s: complexType>

</s:element>
<s:element name="IsUserInGroup">
<s:complexType>

<s : sequence>
<s:element minOccurs="l" maxOccurs="1l
<s:element minOccurs="1" maxOccurs="1"

</s:sequence>
</s:complexType>

</s:element>
<s:element name="IsUserInGroupResponse">

<s:complexType>
<s : sequence>
<s:element minOccurs="l" maxOccurs="l"

</s:sequence>
</s: complexType>

</s:element>
<s:element name="CreateGroupRole">

<s : complexType>
<s:sequence>
<s:element minOccurs="l" maxOccurs="1"
<s:element minOccurs="O" maxOccurs="l"

</s:sequence>
</s:complexType>

</s:element>
<s:element name="CreateGroupRoleResponse">
<s:complexType />

</s:element>

<s:element name="GetUserRoleInGroup">

name="GetUserIdFromUsernameResult" type="sl:guid" />

name="UserId" type="sl:guid" />
name="GroupId" type="sl:guid" />

name="IsUserInGroupResult" type="s:boolean" />

name="groupId" type="sl:guid" />
name="role" type="s:string" />
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<s:complexType>
<s: sequence>

<s:element minOccurs="1" maxoccurs="1" name="userId" type="sl:guid" />
<s:element minOccurs="1" maxOccurs="1" name="groupId" type="sl:guid" />

</s: sequence>
</s:complexType>

</s:element>
<s:element name="GetUserRoleInGroupResponse">

<s :complexType>
<s:sequence>

<s:element minOccurs="O" maxOccurs="l" name="GetUserRoleInGroupResult" type="sO:ArrayOfAnyType" />
</s: sequence>

</s: complexType>
</s: element>
<s:complexType name="ArrayOfAnyType">

<s: sequence>
<s:element minOccurs="O" maxoccurs="unbounded" name="anyType" nillable="true" />

</s:sequence>
</s:complexType>
<s:element name="UpdateUserRoleInGroup">

<s: complexType>
<s: sequence>
<s:element minOccurs="l" maxoccurs="l" name="groupld" type="sl:guid" />
<s:element minOccurs="l" maxOccurs="l" name="userId" type="sl:guid" />
<s:element minOccurs="O" maxOccurs="l" name='role" type=,s:string" />

</s:sequence>
</s:complexType>

</s:element>

<s:element name="UpdateUserRoleInGroupResponse">
<s:complexType />

</s:element>

<s:element name="CreateUserGroupWithGroupTypeName">
<s:complexType>

<s:sequence>

<s:element minOccurs="O" maxOccurs="l" name="typeName" type="s:string" />
<s:element minOccurs="O" maxOccurs="l" name="groupName" type='s:string" />
<s:element minOccurs="l" maxaccurs="l" name="userId" type="sl:guid" />
<s:element minOccurs="O" maxOccurs="l" name="status" type="s:string" />
<s:element minOccurs="O" maxOccurs="l" name="newMemberPolicy" type="s:string" />
<s:element minOccurs="O" maxOccurs="l" name="parentGroupId" type="s:string" />
<s:element minOccurs="l" maxOccurs="l" name="isMultipleRoleAllowed" type="s:unsignedByte" />
<s:element minOccurs="O" maxoccurs="l" name="notes" type="s:string" />
<s:element minOccurs="l" maxOccurs="l" name="areNotesInHTML" type="s:unsignedByte" />

</s: sequence>
</s: complexType>

</s: element>
<s element name="CreateUserGroupWithGroupTypeNameResponse">

<s: complexType>
<s :sequence>

<s:element minOccurs="l" maxOccurs="l" name="CreateUserGroupWithGroupTypeNameResult type="sl:guid" />
</s:sequence>

</s:complexType>

</s:element>
<s:element name="UpdateGroupByGroupId">

<s :complexType>
<s: sequence>

<s:element minOccurs="l" maxoccurs="l" name="groupId" type="sl:guid" />
<s:element minOccurs="O" maxOccurs="l" name="groupName" type="s:string" />
<s:element minoccurs="O" maxOccurs='l" name="status type="s:string" />
<s:element minOccurs="O" maxoccurs="l" name="newMemberPolicy" type="s:string" />
<s:element minOccurs="1" maxOccurs="l" name="isMultipleRoleAllowed" type="s:unsignedByte" />
<s:element minoccurs="O" maxOccurs="l" name="notes" type="s:string" />
<s:element minOccurs="l" maxOccurs="l" name="areNotesInHTML" type="s:unsignedByte" />

</s:sequence>

</s:complexType>
</s:element>
<s:element name="UpdateGroupByGroupIdResponse">

<s:complexType />
</s:element>
<s:element name="DeleteUserFromGroup">

<s:complexType>
<s :sequence>

<s:element minOccurs="1" maxOccurs="1" name="userId" type="sl:guid" />
<s:element minOccurs="1" maxOccurs="1" name="groupId" type="sl:guid" />

</s:sequence>

</s:complexType>
</s:element>
<s:element name="DeleteUserFromGroupResponse">

<s:complexType />
</s:element>
s:element name="GetRolesInUserGroup">
<s:complexType>

<s:sequence>
<s:element minOccurs="l" maxOccurs="1" name="groupId" type="sl:guid" />

</s:sequence>
</s: complexType>

</s: element>
<s:element name="GetRolesInUserGroupResponse">

<s :complexType>
<s: sequence>

<s:element minOccurs="O" maxOccurs="l" name="GetRolesInUserGroupResult" type="sO:ArrayOfAnyType" />
</s:sequence>

</s:complexType>
</s:element>
<s:element name="GetUsersInGroup">
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<s:complexType>

<s: sequence>
<s:element minOccurs="1" maxOccurs="1" name="groupId type="slguid />

</s:sequence>

</s: complexType>
</s:element>
<s:element name="GetUsersInGroupResponse">

<s: complexType>
<s: sequence>

<s:element minOccurs="O" maxoccurs="1" name="GetUsersInGroupResult">
<s:complexType>
<s:sequence>
<s:element ref="s:schema" />
<s:any />

</s:sequence>
</s: complexType>

</s:element>
</s:sequence>

</s:complexType>

</s:element>
<s:element name="ListGroups">

<s:complexType>
<s: sequence>

<s:element minOccurs="1" maxtccurs="1" name="groupId" type="sl:guid" />
</s: sequence>

</s: complexType>
</s:element>

<s:element name="ListGroupsResponse">
<s:complexType>

<s: sequence>
<s:element minOccurs="O" maxaccurs='l" name="ListGroupsResult">

<s:complexType>
<s: sequence>
<s:element ref="s:schema" />
<s:any />

</s:sequence>
</s: complexType>

</s:element>

</s:sequence>

</s:complexType>
</s:element>

<s:element name="ListGroupsUserIsIn">
<s:complexType>

<s: sequence>
<s:element minOccurs="1" maxOccurs="l" name="groupld" type="sl:guid" />
<s:element minOccurs="1" maxOccurs="1" name="userId" type="sl:guid" />

</s:sequence>

</s:complexType>
</s:element>

<s:element name="ListGroupsUserIsInResponse">
<s:complexType>

<s: sequence>
<s:element minOccurs="O" maxoccurs="l" name="ListGroupsUserIsInResult">

<s: complexType>
<s:sequence>
<s:element ref="s:schema" />
<s:any />

</s:sequence>
</s: complexType>

</s:element>
</s:sequence>

</s:complexType>
</s:element>
s:element name="GetUsernameFromUserId">
<s:complexType>

<s: sequence>
<s:element minOccurs="l" maxOccurs="1" name="userId" type="sl:guid" />

</s:sequence>

</s:complexType>
</s:element>
<s:element name="GetUsernameFromUserIdResponse">
<s:complexType>
<s:sequence>

<s:element minOccurs="O" maxOccurs="1" name="GetUsernameFromUserIdResult" type="s:string" />
</s:sequence>

</s:complexType>
</s:element>
<s: element name= "GetUsersAttributes">

<s:complexType>
<s: sequence>

<s:element minOccurs="O" maxOccurs="l" name="UserIds" type="sO:ArrayOfAnyType" />
<s:element minOccurs="O" maxOccurs="l" name="Attributes" type="sO:ArrayOfAnyType" />

</s:sequence>
</s:complexType>

</s:element>
<s:element name="GetUsersAttributesResponse">

<s:complexType>
<s :sequence>

<s:element minOccurs="O" maxOccurs="l" name="GetUsersAttributesResult">
<s:complexType>
<s:sequence>
<s:element ref="s:schema" />
<s:any />

</s:sequence>
</s:complexType>
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</s:element>

</s:sequence>

</s:complexType>
</s:element>
<s:element name="GetUsersFromGroupWithThisRole">
<s:complexType>

<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="groupId" type="sl:guid" />
<s:element minOccurs="O" maxOccurs="'" name="role" type="s:string" />

</s: sequence>
</s: complexType>

</s: element>
<s:element name="GetUsersFromGroupWithThisRoleResponse">

<s: complexType>
<s :sequence>

<s:element minOccurs="O" maxOccurs="l" name="GetUsersFromGroupWithThisRoleResult">
<s:complexType>

<s: sequence>
<s:element ref="s:schema" />
<s:any />

</s:sequence>
</s:complexType>

</s:element>
</s: sequence>

</s:complexType>
</s:element>
<s:element name="GetUserGroupFromGroupId">
<s:complexType>

<s: sequence>
<s:element minOccurs="l" maxOccurs="l" name="groupId" type="sl:guid" />

</s: sequence>
</s:complexType>

</s:element>
<s:element name="GetUserGroupFromGroupIdResponse">

<s:complexType>
<s s equence>

<s:element minoccurs="O" maxOccurs="l" name="GetUserGroupFromGroupIdResult">
<s:complexType>

<s: sequence>
<s:element ref="s:schema" />
<s:any />

</s:sequence>
</s:complexType>

</s:element>

</s:sequence>
</s:complexType>

</s:element>
<s:element name="ChangeUserPassword">

<s:complexType>
<s: sequence>

<s:element minOccurs="l" maxOccurs='l" name='userld" type="sl:guid" />
<s:element minoccurs="O" maxOccurs="l" name="password" type="s:string" />

</s:sequence>
</s: complexType>

</s:element>
<s:element name="ChangeUserPasswordResponse">
<s:complexType />

</s:element>
<s:element name="GetUserAttributesByUserId">

<s :complexType>
<s :sequence>

<s:element minOccurs="l" maxOccurs="l" name="userId" type="sl:guid" />
</s:sequence>

</s: complexType>
</s: element>
<s:element name="GetUserAttributesByUserIdResponse">

<s :complexType>
<S: sequence>

<s:element minOccurs="O" maxOccurs=1"' name="GetUserAttributesByUserIdResult">
<s:complexType>

<s: sequence>
<s:element ref="s:schema" />
<s:any />

</s:sequence>
</s:complexType>

</s:element>
</s:sequence>

</s:complexType>
</s:element>
<s:element name="guid" type="sl:guid" />
<s:element name="DataSet" nillable="true">

<s: complexType>
<s:sequence>

<s:element ref="s:schema" />
<s:any />

</s:sequence>
</s:complexType>

</s:element>
</s:schema>
<s:schema elementFormDefault="qualified" targetNamespace="http: /microsoft. com/wsdl/types/">
<s:simpleType name="guid">
<s:restriction base="s:string">

<s:pattern value="[0-9a-fA-F](8)-[0-9a-fA-F](4}-[0-9a-fA-F]{4}-[0-9a-fA-F(4)-[0-9a-fA-F]{(12" />

</s:restriction>
</s:simpleType>
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</s:schema>
<s:schema targetNamespace="http://YourHostName/GenericReg/AbstractTypes">
<s:complexType name="StringArray'>

<s:complexContent mixed="false">
<s:restriction base="soapenc:Array">

<s:sequence>

<s:element minOccurs="O" maxOccurs="unbounded" name="String" type="s:string" />
</s:sequence>

</s:restriction>

</s:complexContent>

</s:complexType>
</s:schema>

</types>
<message name="LogInWithoutSiteldSoapIn">
<part name="parameters" element="sO:LogInWithoutSiteld" />

</message>
<message name="LogInWithoutSiteIdSoapOut">

<part name="parameters" element="sO:LogInWithoutSiteIdResponse" />
</message>
<message name="LogInSoapIn">
<part name="parameters" element="sO:LogIn" />

</message>
<message name="LogInSoapOut">

<part name="parameters" element="sO:LogInResponse" />
</message>
<message name="LogOutSoapIn">

<part name="parameters" element="sO:LogOut" />
</message>
<message name="LogOutSoapOut">
<part name="parameters" element="sO:LogOutResponse" />

</message>
<message name="CreateAccountSoapIn">
<part name="parameters" element="sO:CreateAccount" />

</message>
<message name="CreateAccountSoapOut">

<part name="parameters" element="sO:CreateAccountResponse" />
</message>
<message name="SaveAttributeValueSoapIn">

<part name="parameters" element="sO:SaveAttributeValue" />
</message>
<message name="SaveAttributeValueSoapOut">

<part name="parameters" element="sO:SaveAttributeValueResponse" />
</message>

<message name="SaveUserPictureSoapIn">
<part name="parameters" element="sO:SaveUserPicture" />

</message>

<message name="SaveUserPictureSoapOut">
<part name="parameters" element="sO:SaveUserPictureResponse" />

</message>
<message name="GetUserPictureSoapIn">

<part name="parameters" element="sO:GetUserPicture" />
</message>
<message name="GetUserPictureSoapOut">

<part name="parameters" element="sO:GetUserPictureResponse" />
</message>
<message name="GetUserAttributesSoapln">
<part name="parameters" element="sO:GetUserAttributes" />

</message>
<message name="GetUserAttributesSoapOut">

<part name="parameters" element="sO:GetUserAttributesResponse" />
</message>
<message name="AddUserToGroupWithGroupIdSoapIn">

<part name="parameters" element="sO:AddUserToGroupWithGroupId" />
</message>
<message name="AddUserToGroupWithGroupIdSoapOut">

<part name="parameters" element="sO:AddUserToGroupWithGroupIdResponse" />
</message>

<message name="AddUserWithUserIdToGroupWithGroupIdSoapIn">
<part name="parameters" element="sO:AddUserWithUserIdToGroupWithGroupId" />

</message>
<message name="AddUserWithUserIdToGroupWithGroupIdSoapOut">

<part name="parameters" element="sO:AddUserWithUserIdToGroupWithGroupIdResponse" />
</message>
<message name="GetUserIdFromUsernameSoapIn">

<part name="parameters" element="sO:GetUserIdFromUsername" />
</message>

<message name="GetUserIdFromUsernameSoapOut">
<part name="parameters" element="sO:GetUserldFromUsernameResponse" />

</message>
<message name="IsUserInGroupSoapIn">

<part name="parameters" element="sO:IsUserInGroup" />
</message>
<message name="IsUserInGroupSoapOut">

<part name="parameters" element="sO:IsUserInGroupResponse" />
</message>
<message name="CreateGroupRoleSoapIn">

<part name="parameters" element="sO:CreateGroupRole" />
</message>
<message name="CreateGroupRoleSoapOut">

<part name="parameters" element="sO:CreateGroupRoleResponse" />
</message>

<message name="GetUserRoleInGroupSoapIn">
<part name="parameters" element="sO:GetUserRoleInGroup" />

</message>
<message name="GetUserRoleInGroupSoapOut">
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<part name="parameters" element="sO:GetUserRoleInGroupResponse" />
</message>
<message name="UpdateUserRoleInGroupSoapIn">

<part name="parameters" element="sO:UpdateUserRoleInGroup" />
</message>
<message name="UpdateUserRoleInGroupSoapOut">

<part name="parameters" element="sO:UpdateUserRoleInGroupResponse" />
</message>
<message name="CreateUserGroupWithGroupTypeNameScapln">

<part name="parameters" element="sO:CreateUserGroupWithGroupTypeName" />
</message>
<message name="CreateUserGroupWithGroupTypeNameSoapOut">

<part name="parameters" element="sC:CreateUserGroupWithGroupTypeNameResponse" />
</message>
<message name="UpdateGroupByGroupIdSoapIn">

<part name="parameters" element="sO:UpdateGroupByGroupId />
</message>
<message name="UpdateGroupByGroupIdSoapOut">

<part name="parameters" element="sO:UpdateGroupByGroupIdResponse" />
</message>
<message name="DeleteUserFromGroupSoapIn">

<part name="parameters" element="sO:DeleteUserFromGroup" />
</message>
<message name="DeleteUserFromGroupSoapOut">

<part name="parameters" element="sO:DeleteUserFromGroupResponse" />
</message>
<message name="GetRolesInUserGroupSoapIn">

<part name="parameters" element="sO:GetRolesInUserGroup" />
</message>
<message name="GetRolesInUserGroupSoapOut">

<part name="parameters" element="sO:GetRolesInUserGroupResponse" />
</message>
<message name="GetUsersInGroupSoapIn">

<part name="parameters" element="sO:GetUsersInGroup" />
</message>
<message name="GetUsersInGroupSoapOut">

<part name="parameters" element="sO:GetUsersInGroupResponse" />
</message>
<message name="ListGroupsSoapIn">

<part name="parameters" element="sO:ListGroups" />
</message>
<message name="ListGroupsSoapOut">

<part name="parameters" element="sO:ListGroupsResponse" />
</message>
<message name="ListGroupsUserIsInSoapIn">

<part name="parameters" element="sO:ListGroupsUserIsIn" />
</message>
<message name="ListGroupsUserIsInSoapOut">

<part name="parameters" element="sO:ListGroupsUserIsInResponse" />
</message>

<message name="GetUsernameFromUserIdSoapln">
<part name="parameters" element="sO:GetUsernameFromUserId" />

</message>
<message naxe="GetUsernameFromUserIdSoapOut">

<part name="parameters" element="sO:GetUsernameFromUserIdResponse" />
</message>
<message name="GetUsersAttributesSoapIn">

<part name="parameters" element="sO:GetUsersAttributes" />
</message>
<message name="GetUsersAttributesSoapOut">

<part name="parameters" element="sO:GetUsersAttributesResponse" />
</message>
<message name="GetUsersFromGroupWithThisRoleSoapIn">

<part name="parameters" element="sO:GetUsersFromGroupWithThisRole" />
</message>

<message name="GetUsersFromGroupWithThisRoleSoapOut">
<part name="parameters" element="sO:GetUsersFromGroupWithThisRoleResponse" />

</message>
<message name="GetUserGroupFromGroupIdSoapln">

<part name="parameters" element="sO:GetUserGroupFromGroupId" />
</message>
<message name="GetUserGroupFromGroupIdSoapOut">

<part name="parameters" element="sO:GetUserGroupFromGroupIdResponse" />
</message>
<message name="ChangeUserPasswordSoapIn">
<part name="parameters" element="sO:ChangeUserPassword" />

</message>
<message name="ChangeUserPasswordSoapOut">

<part name="parameters" element="sO:ChangeUserPasswordResponse" />
</message>
<message name="GetUserAttributesByUserIdSoapIn">

<part name="parameters" element="sO:GetUserAttributesByUserId" />
</message>
<message name="GetUserAttributesByUserIdSoapOut">

<part name="parameters" element="sO:GetUserAttributesByUserIdResponse" />
</message>

<message name="LogInWithoutSiteIdHttpGetInll>
<part name="username" type="s:string" />
<part name="password" type="s:string" />

</message>
<message name="LogInWithoutSiteIdHttpGetOut">
<part name="Body" element="sO:guid" />

</message>
<message name="LogOutHttpGetIn">
<part name="username" type="s:string" />
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<part name="token" type="s2:StringArray" />
</message>
<message name="LogOutHttpGetOut" />
<message name="GetUserAttributesHttpGetIn">

<part name="username" type="s:string" />
</message>
<message name="GetUserAttributesHttpGetOut">

<part name="Body" element="sO:DataSet" />
</message>
<message name="GetUserldFromUsernameHttpGetIn">

<part name="username" type="s:string" />
</message>
<message name="GetUserIdFromUsernameHttpGetOut">

<part name="Body" element="sO:guid" />
</message>

<message name="LogInWithoutSiteIdHttpPostIn">
<part name="username" type="s:string" />
<part name="password" type="s:string" />

</message>
<message name="LogInWithoutSiteIdHttpPostOut">

<part name="Body" element="sO:guid" />
</message>
<message name=" LogOutHttpPostIn">

<part name="username" type="s:string" />
<part name="token" type="s2:StringArray" />

</message>
<message name="LogOutHttpPostOut" />
<message name="GetUserAttributesHttpPostIn">

<part name="username" type="s:string" />
</message>
<message name="GetUserAttributesHttpPostOut">

<part name="Body" element="sO:DataSet" />
</message>
<message name="GetUserIdFromUsernameHttpPostIn">

<part name="username" type="s:string" />
</message>
<message name="GetUserIdFromUsernameHttpPostOut">

<part name="Body" element="sO:guid" />
</message>
<portType name="GenericUserDatabaseSoap">

<operation name="LogInWithoutSiteId">
<input message="sO:LogInWithoutSiteIdSoapIn" />
<output message="sO:LogInWithoutSiteIdSoapOut" />

</operation>
<operation name="LogIn">
<input message="sO:LogInSoapIn" />
<output message="sO:LogInSoapOut" />

</operation>
<operation name="LogOut">
<input message="sO:LogOutSoapIn" />
<output message="sO:LogOutSoapOut" />

</operation>
<operation name="CreateAccount">
<input message="sO:CreateAccountSoapIn" />
<output message="sO:CreateAccountSoapOut" />

</operation>

<operation name="SaveAttributeValue">
<input message="sO:SaveAttributeValueSoapIn" />
<output message="sO:SaveAttributeValueSoapOut" />

</operation>
<operation name="SaveUserPicture">

<input message="sO:SaveUserPictureSoapIn" />
<output message="sO:SaveUserPictureSoapOut" />

</operation>

<operation name="GetUserPicture">
<input message="sO:GetUserPictureSoapIn" />
<output message="sO:GetUserPictureSoapOut" />

</operation>
<operation name="GetUserAttributes'>

<input message="sO:GetUserAttributesSoapIn" />
<output message="sO:GetUserAttributesSoapOut" />

</operation>
<operation name="AddUserToGroupWithGroupId">

<input message="sO:AddUserToGroupWithGroupIdSoapIn" />
<output message="sO :AddUserToGroupWithGroupIdSoapOut" />

</operation>
<operation name="AddUserWithUserIdToGroupWithGroupId">

<input message="sO:AddUserWithUserIdToGroupWithGroupIdSoapIn" />
<output message="sO:AddUserWithUserldToGroupWithGroupIdSoapOut" />

</operation>
<operation name="GetUserldFromUsername">

<input message="sO:GetUserIdFromUsernameSoapln" />
<output message="sO:GetUserIdFromUsernameSoapOut" />

</operation>
<operation name="IsUserInGroup">

<input message="sO:IsUserInGroupSoapIn" />
<output message="sO:IsUserInGroupSoapOut" />

</operation>
<operation name="CreateGroupRole">

<input message="sO:CreateGroupRoleSoapIn" />
<output message="sO:CreateGroupRoleSoapOut" />

</operation>
<operation name="GetUserRoleInGroup">

<input message="sO:GetUserRoleInGroupSoapIn" />
<output message="sO:GetUserRoleInGroupSoapOut" />
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</operation>
<operation name="UpdateUserRoleInGroup">

<input message="sO:UpdateUserRoleInGroupSoapIn" />
<output message="sO:UpdateUserRoleInGroupSoapOut" />

</operation>
<operation name="CreateUserGroupWithGroupTypeName">

<input message=" sO:CreateUserGroupWithGroupTypeNameSoapIn" />
<output message="sO :CreateUserGroupWithGroupTypeNameSoapOut" />

</operation>
<operation name="UpdateGroupByGroupld">
<input message="sO:UpdateGroupByGroupIdSoapIn" />
<output message="sO:UpdateGroupByGroupIdSoapOut" />

</operation>
<operation name="DeleteUserFromGroup">
<input message="so:DeleteUserFromGroupSoapIn" />
<output message="sO:DeleteUserFromGroupSoapOut" />

</operation>
<operation name="GetRolesInUserGroup">
<input message="sO:GetRolesInUserGroupSoapIn" />
<output message="sO:GetRolesInUserGroupSoapOut" />

</operation>
<operation name="GetUsersInGroup">
<input message="so:GetUsersInGroupSoapIn" />
<output message="sO:GetUsersInGroupSoapOut" />

</operation>
<operation name="ListGroups">
<input message="sO:ListGroupsSoapIn" />
<output message="sO:ListGroupsSoapOut" />

</operation>
<operation name="ListGroupsUserIsIn">
<input message="sO:ListGroupsUserIsInSoapIn" />
<output message="sO:ListGroupsUserlsInSoapOut" />

</operation>
<operation name="GetUsernameFromUserId">
<input message="sO:GetUsernameFromUserIdSoapIn" />
<output message="sO:GetUsernameFromUserIdSoapOut" />

</operation>
<operation name="GetUsersAttributes">

<input message="sO:GetUsersAttributesSoapIn" />
<output message="sO:GetUsersAttributesSoapOut" />

</operation>
<operation name="GetUsersFromGroupWithThisRole">

<input message="sO:GetUsersFromGroupWithThisRoleSoapIn" />
<output message="sO:GetUsersFromGroupWithThisRoleSoapOut" />

</operation>
<operation name="GetUserGroupFromGroupId">
<input message='sO:GetUserGroupFromGroupIdSoapIn" />
<output message="sO:GetUserGroupFromGroupIdSoapOut" />

</operation>
<operation name="ChangeUserPassword">
<input message="sO:ChangeUserPasswordSoapIn" />
<output message="sO:ChangeUserPasswordSoapOut" />

</operation>
<operation name="GetUserAttributesByUserId">
<input message="sO:GetUserAttributesByUserIdSoapIn" />
<output message="sO:GetUserAttributesByUserIdSoapOut" />

</operation>
</portType>
<portType name="GenericUserDatabaseHttpGet">

<operation name="LogInWithoutSiteId">
<input message="sO:LogInWithoutSiteIdHttpGetIn" />
<output message="sO:LogInWithoutSiteIdHttpGetOut" />

</operation>
<operation name="LogOut">
<input message="sO:LogOutHttpGetIn" />
<output message="sO:LogOutHttpGetOut" />

</operation>
<operation name="GetUserAttributes">

<input message="sO:GetUserAttributesHttpGetIn" />
<output message="sO:GetUserAttributesHttpGetOut" />

</operation>
<operation name="GetUserIdFromUsername">

<input message="sO:GetUserIdFromUsernameHttpGetln" />
<output message="sO:GetUserIdFromUsernameHttpGetOut" />

</operation>
</portType>
<portType name="GenericUserDatabaseHttpPost">
<operation name="LogInWithoutSiteId">
<input message="sO:LogInWithoutSiteIdHttpPostIn" />
<output message="sO:LogInWithoutSiteIdHttpPostOut" />

</operation>
<operation name="LogOut">
<input message="sO:LogOutHttpPostIn" />
<output message="sO:LogOutHttpPostOut" />

</operation>
<operation name="GetUserAttributes">

<input message="sO:GetUserAttributesHttpPostIn" />
<output message="sO:GetUserAttributesHttpPostOut" />

</operation>
<operation name="GetUserIdFromUsername">
<input message="sO:GetUserIdFromUsernameHttpPostIn" />
<output message="sO:GetUserIdFromUsernameHttpPostOut" />

</operation>
</portType>
<binding name="GenericUserDatabaseSoap" type="sO:GenericUserDatabaseSoap">
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<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
<operation name="LogInWithoutSiteld">

<soap:operation soapAction="http://YourHostName/GenericReg/LogInWithoutSiteId" style="document" />
<input>

<soap:body use="literal" />
</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name=" LogIn">

<soap:operation soapAction="http://YourHostName/GenericReg/LogIn" style="document" />
<input>
<soap:body use="literal" />

</input>
<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="LogOut">

<soap:operation soapAction="http://YourHostName/GenericReg/LogOut" style="document" />
<input>
<soap:body use="literal" />

</input>

<output>
<soap:body use=" literal" />

</output>
</operation>
<operation name="CreateAccount">

<soap:operation soapAction="http: //YourHostName/GenericReg/CreateAccount" style="document" />
<input>

<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="SaveAttributeValue">

<soap:operation soapAction="http://YourHostName/GenericReg/SaveAttributeValue" style="document" />
<input>

<soap:body use="literal" />
</input>

<output>
<soap:body use="literal" />

</output>

</operation>
<operation name="SaveUserPicture">

<soap:operation soapAction="http://YourHostName/GenericReg/SaveUserPicture" style="document" />
<input>

<soap:body use="literal" />
</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="GetUserPicture">

<soap:operation soapAction="http://YourHostName/GenericReg/GetUserPicture" style="document" />
<input>

<soap:body use="literal" />
</input>
<output>

<soap:body use="literal" />
</output>

</operation>
<operation name="GetUserAttributes">

<soap:operation soapAction="http://YourHostName/GenericReg/GetUserAttributes" style="document" />
<input>

<soap:body use="literal" />
</input>
<output>

<soap:body use="literal" />
</output>

</operation>
<operation name="AddUserToGroupWithGroupId">

<soap:operation soapAction="http://YourHostName/GenericReg/AddUserToGroupWithGroupId" style="document" />
<input>

<soap:body use="literal" />
</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="AddUserWithUserIdToGroupWithGroupld">

<soap:operation soapAction="http://YourHostName/GenericReg/AddUserWithUserIdToGroupWithGroupId" style="document"

<input>
<soap:body use="literal" />

</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="GetUserIdFromUsername">

<soap:operation soapAction="http://YourHostName/GenericReg/GetUserIdFromUsername" style="document" />
<input>
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<soap:body use="literal" />
</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="IsUserInGroup">

<soap:operation soapAction="http://YourHostName/GenericReg/IsUserInGroup" style= "document" />
<input>

<soap:body use="literal" />
</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="CreateGroupRole">

<soap:operation soapAction="http://YourHostName/GenericReg/CreateGroupRole" style= "document" />
<input>
<soap:body use="literal" />

</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="GetUserRoleInGroup">

<soap:operation soapAction="http://YourHostName/GenericReg/GetUserRoleInGroup" style="document" />
<input>

<soap:body use="literal" />
</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="UpdateUserRoleInGroup">

<soap:operation soapAction="http: //YourHostName/GenericReg/UpdateUserRoleInGroup" style="document" />
<input>
<soap:body use="literal" />

</input>
<output>

<soap:body use="literal" />
</output>

</operation>
<operation name="CreateUserGroupWithGroupTypeName">

<soap:operation soapAction="http://YourHostName/GenericReg/CreateUserGroupWithGroupTypeName" style="document" /
<input>

<soap:body use="literal" />
</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="UpdateGroupByGroupId">

<soap:operation soapAction="http://YourHostName/GenericReg/UpdateGroupByGroupId" style="document" />
<input>
<soap:body use="literal" />

</input>
<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="DeleteUserFromGroup">

<soap:operation soapAction="http://YourHostName/GenericReg/DeleteUserFromGroup" style="document" />
<input>

<soap:body use="literal" />
</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="GetRolesInUserGroup">

<soap:operation soapAction="http://YourHostName/GenericReg/GetRolesInUserGroup" style="document" />
<input>
<soap:body use="literal" />

</input>
<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="GetUsersInGroup">
<soap:operation soapAction="http://YourHostName/GenericReg/GetUsersInGroup" style="document" />
<input>
<soap:body use="literal" />

</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="ListGroups">

<soap:operation soapAction="http://YourHostName/GenericReg/ListGroups" style="document" />
<input>

<soap:body use="literal" />
</input>
<output>

<soap:body use="literal" />
</output>

226



</operation>

<operation name="ListGroupsUserIsIn">
<soap:operation soapAction="http: //YourHostName/GenericReg/ListGroupsUserIsIn" style="document" />
<input>

<soap:body use="literal" />
</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="GetUsernameFromUserId'>

<soap:operation soapAction="http://YourHostName/GenericReg/GetUsernameFromUserId" style="document" />
<input>
<soap:body use="literal" />

</input>
<output>
<soap:body use="literal" />

</Output>
</operation>
<operation name="GetUsersAttributes">

<soap:operation soapAction="http: //YourHostName/GenericReg/GetUsersAttributes" style="document" />

<input>

<soap:body use="literal" />
</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="GetUsersFromGroupWithThisRole">

<soap:operation soapAction="http://YourHostName/GenericReg/GetUsersFromGroupWithThisRole" style="document" />
<input>

<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />

</output>
</operation>

<operation name="GetUserGroupFromGroupId">
<soap:operation soapAction="http: //YourHostName/GenericReg/GetUserGroupFromGroupId" style="document" />
<input>
<soap:body use="literal" />

</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="ChangeUserPassword">

<soap:operation soapAction="http: //YourHostName/GenericReg/ChangeUserPassword" style="document" />
<input>

<soap:body use="literal" />
</input>

<output>
<soap:body use="literal" />

</output>
</operation>
<operation name="GetUserAttributesByUserId">

<soap:operation soapAction="http://YourHostName/GenericReg/GetUserAttributesByUserId" style="document" />
<input>
<soap:body use="literal" />

</input>

<output>
<soap:body use="literal" />

</output>
</operation>

</binding>
<binding name="GenericUserDatabaseHttpGet" type="sO:GenericUserDatabaseHttpGet">
<http:binding verb="GET" />
<operation name="LogInWithoutSiteId">

<http:operation location="/LogInWithoutSiteId" />
<input>
<http:urlEncoded />

</input>
<output>
<mime:mimeXml part="Body" />

</output>
</operation>
<operation name="LogOut">
<http:operation location="/LogOut" />
<input>

<http:urlEncoded />
</input>
<output />

</operation>
<operation name="GetUserAttributes">
<http:operation location="/GetUserAttributes" />
<input>
<http:urlEncoded />

</input>

<output>
<mime:mimeXml part="Body" />

</output>
</operation>
<operation name="GetUserIdFromUsername">
<http:operation location="/GetUserIdFromUsername" />
<input>
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<http:urlEncoded />
</input>

<output>
<mime:mimeXml part="Body" />

</output>
</operation>

</binding>
<binding name="GenericUserDatabaseHttpPost" type= "sO:GenericUserDatabaseHttpPost">
<http:binding verb="POST" />
<operation name="LogInWithoutSiteId">

<http:operation location="/LogInWithoutSiteId" />
<input>

<mime:content type="application/x-www-form-urlencoded" />
</input>
<output>

<mime:mimeXml part="Body" />
</output>

</operation>
<operation name="LogOut">
<http:operation location="/LogOut" />
<input>

<mime:content type="application/x-www- form-urlencoded" />
</input>

<output />
</operation>
<operation name="GetUserAttributes">
<http:operation location="/GetUserAttributes" />
<input>

<mime:content type="application/x-www-form-urlencoded" />
</input>
<output>
<mime:mimeXml part="Body" />

</output>
</operation>
<operation name="GetUserIdFromUsername">

<http:operation location="/GetUserIdFromUsername" />
<input>

<mime:content type="application/x-www- form-urlencoded" />
</input>

<output>
<mime:mimeXml part="Body" />

</output>
</operation>

</binding>
<service name="GenericUserDatabase">
<port name="GenericUserDatabaseSoap" binding="s 0:GenericUserDatabaseSoap">

<soap:address location="http://YourHostName:81/GenericReg/GenericUserDatabase.asmx" />
</port>
<port name=" GenericUserDatabaseHttpGet" binding=" sO: GenericUserDatabaseHttpGet">
<http:address location="http://YourHostName:81/GenericReg/GenericUserDatabase.asmx" />

</port>
<port name="GenericUserDatabaseHttpPost" binding="sO:GenericUserDatabaseHttpPost">

<http:address location="http://YourHostName:81/GenericReg/GenericUserDatabase.asmx" />
</port>

</service>
</definitions>
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Appendix 5 Federation
IBM and Microsoft have recently proposed a standard for federation. "A federation is a

collection of realms/domains that have established trust. The level of trust may vary, but

typically includes authentication and may include authorization." [Bajaj et al,2003]

Federation is a timely topic with the resurgence of distributed computing, the World

Wide Web, and grid computing. Central to federated systems is the problem of

authentication across organizations. In practice many of the inter-organization problems

are mirrored internally in large organizations. Smaller organizations like universities with

diverse information technology infrastructures also mirror inter-organization issues.

The difficulties of authentication stem from several authentication sources. Converging

authentication is not always possible when aggregating sources go beyond the

organization. The authentication systems need to consider employees, business partners,

and customers. Like human relationships, organization's relationships change often and

the cost of managing identities is non-trivial.

The management of identities has privacy and liability issues for organizations. The legal

issues make outsourcing very difficult.

The end result for users has been to manage multiple identities. Users have multiple

accounts at work, multiple accounts in their private life, multiple accounts with clients,

multiple accounts with customers, and multiple accounts for online shopping to name a

few of the most prevalent account sources. Managing all these accounts is both a

nuisance and a waste of time. Federation management offers an alternative.

Identity management in a federated system offers a number of advantages. Among them

are inter-organization flexibility, outsourcing identity management, and business

integration. Organizations that offer services to consumers based on identity can couple

services through out the enterprise and establish trust with other identity managers to
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facilitate the user's experience. Organizations doing business together needing to

exchange user's identity information defer to an identity manager and delegate through

federation. Federation also is attractive for the supply chain. Organizations implementing

enterprise applications need to put employees, customers, and suppliers on the same

page. For portals there is a need for the organization to integrate/aggregate services based

on identity.

Federation goal is to reduce the cost of identity management by reducing duplication

efforts. Instead of every organization reinventing the wheel and developing its own

identity management solution, federation offers a standardized approach to the problem.

Part of the standard is to leverage existing identity managers. The standard permits

organizations to continue using the current identity managers while converging to a more

efficient solution. Federation preserves the autonomy of the identity manager using XML

messaging and loosely couple connections. The operation of the identity manager can

persist unchanged. An XML interface wrapper is added to join the federation. Granular

trust relationships are needed for flexibility. The trust relationship can be limited to the

trust target and not affect partners or customers as the case maybe.

Formally [Bajaj et al,2003]:

Federation starts with a notion of identity. That is, the requestor or the requestor's delegate (an

identity provider who is the authoritative owner for that identity data) asserts an identity and the

Identity Provider verifies this assertion. Federation then becomes a function of trust (direct,

brokered, and delegated) between identity providers and those relying on the provider's

determination of identity. Sometimes the relying party needs the ability to correlate the identities

from multiple providers - for example, correlation of an identity on a check, on a credit card, and

on a driver's license.

A security token service (STS) is a generic service that issues/exchanges security tokens using a

common model and set of messages. As such, any Web service can, itself, be an STS simply by

supporting the WS-Trust specification. Consequently, there are different types of security token

services which provide different supplemental services. An Identity Provider (IP) is a special type

of security token service that, at a minimum, performs peer entity authentication and can make
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identity or affiliation claims in issued security tokens. Note that in many cases an IP and STS are

interchangeable and many references within this document identify both.

The propose standard includes identity providers, single sign-in and sign-out, and

attributes and pseudonyms. Attributes are extensible properties associated with an

identity. Attributes are subject to authorization and privacy rules. Pseudonyms are aliases

to the identity principal. The pseudonym offers level of obfuscation to the identity.

Future portal work needs to address federation in more levels than security. However,

identity management is central to the federation concept and a good place to start.
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