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ABSTRACT 

Of the 35 million people living with HIV-1 globally, approximately 71.4% are in the 

resource-limited sub-Saharan Africa. The immense sequence diversity of HIV-1, even 

within subtypes, makes it challenging to develop effective vaccines that target a wide 

range of HIV subtypes. Mosaic immunogens have been computationally designed to 

specifically overcome this hurdle by maximizing the inclusion of common T cell 

epitopes. When compared to consensus immunogens, polyvalent mosaic immunogens 

of HIV-1 group M have shown increased breadth and depth of antigen-specific T-cell 

responses. More than 90% of HIV positive individuals in sub-Saharan Africa are infected 

with HIV-1 subtype C (HIV-1C). We therefore designed, constructed, and evaluated 

candidate vaccines expressing HIV-1C mosaic Gag (GagM) in a proof of concept study.  

Gag was chosen as the most appropriate target for a T cell-based vaccine as there are 

many studies correlating control of HIV viral load with T cell responses to Gag. The 

immunogen was designed by Fischer et al., 2007 (1). Three different vaccine platforms 

were chosen based on their different strengths to be used in prime-boost regimens to 

determine the immunogenicity of HIV-1C GagM in mice. The first was a pantothenic 

auxotroph of the tuberculosis vaccine Mycobacterium bovis Bacille Calmette Guérin 

(BCG). The second was a DNA vaccine vector with enhanced expression of transgenes 

due to a novel enhancer element from porcine circovirus type 1, which has been 

demonstrated to increase gene expression. The third vaccine vector selected was the 

well characterised poxvirus modified vaccinia Ankara (MVA).  

BCG, DNA, and MVA vaccines expressing the HIV-1C GagM immunogen were successfully 

constructed (BCG-GagM, DNA-GagM, and MVA-GagM, respectively).  The GagM 

immunogen, although computationally generated, was expressed as a correctly sized 

protein of 55kD, budded from cells infected with MVA-GagM, and formed virus-like 

particles (VLPs).  The BCG-GagM vaccine retained its integrity in vaccine stocks and 11.5 

weeks post vaccination in BALB/c mice.   

Immune responses to these candidate vaccines were evaluated in homologous and 

heterologous prime-boost vaccinations. Heterologous vaccination regimens were more 

immunogenic than the homologous vaccination regimens with each of the individual 

vaccines. Although the GagM immunogen was the same in all vaccines, the use of 
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different vectors gave different types of immune responses.  The DNA homologous 

prime boost vaccination elicited predominantly CD8+ T cells while the homologous BCG 

and MVA vaccination induced predominantly CD4+ T cells. The heterologous prime 

boost vaccinations where MVA-GagM was used as a boost induced a more balanced CD4+ 

and CD8+ T cell response.  

The BCG-GagM prime MVA-GagM boost regimen (BCG-GagM/MVA-GagM) elicited T cell 

responses of high magnitude and quality. Gag-specific IFN-γ ELISPOT responses and 

frequencies of cytokine-positive CD8+ and CD4+ T cells were at least two-fold higher 

than those induced by a control BCG prime (without a gag insert; BCGE), MVA-GagM 

boost. The DNA-GagM prime, MVA-GagM boost vaccination regimen (DNA-GagM/MVA-

GagM) was more immunogenic than the BCG-GagM/MVA-GagM prime boost regimen. A 

DNA-GagM/MVA-GagM prime boost regimen induced a high magnitude of HIV Gag-

specific IFN-γ ELISPOT responses that was 7.1-fold higher than those induced by a 

control DNA prime (without a gag insert; DNAE), MVA-GagM boost (2675 ± 292.8 

sfu/106 and 375 ± 70.74 sfu/106splenocytes, respectively). Cytokine-positive CD8+ and 

CD4+ T cells were 2 and 1.4-fold greater, respectively, for the DNA-GagM/MVA-GagM 

prime boost vaccination regimen in comparison to the control regimen (DNAE/MVA-

GagM). Both the BCG-GagM/MVA-GagM and the DNA-GagM/MVA-GagM prime boost 

vaccination regimens generated cytokine-positive CD8+ and CD4+ T cells with 

predominant effector memory phenotype. These vaccination regimens also induced 

responses with a Th1 bias as determined by the predominant secretion of IFN-γ, TNF-α, 

and IL-2. 

Superior immune responses were elicited by the mosaic (GagM) in comparison to those 

elicited by an HIV-1C natural Gag (GagN). This was done by directly comparing the DNA 

vaccines expressing these antigens. DNA-GagN expresses a natural HIV-1C Gag with a 

sequence that was closest to the consensus sequence of subtype C viruses sampled in 

South Africa. A DNA-GagM homologous vaccination (DNA-GagM/DNA-GagM) induced 

cumulative HIV-1 Gag-specific IFN-γ ELISPOT responses that were 6.5-fold higher than 

those induced by the DNA-GagN vaccination (DNA-GagN/DNA-GagN; 882.3 ± 297.8 

sfu/106 and 135.7 ± 14.01 sfu/106splenocytes, respectively). The frequencies of 

cytokine-positive CD8+ and CD4+ T cells were 7 and 1.2-fold greater, respectively, for 
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the DNA-GagM/DNA-GagM homologous vaccination regimen in comparison to the DNA-

GagN/DNA-GagN homologous vaccination regimen.   

A low dose of MVA (104 pfu) effectively boosted the BCG prime and a low dose prime of 

the novel DNA vaccine (10µg) expressing the same mosaic immunogen. This could 

result in dose sparing of MVA and DNA vaccines and is particularly attractive for 

resource-limited countries. In this study, we have demonstrated novel ways of 

improving immunogenicity of subtype-specific vaccines even further by using a mosaic 

antigen and a novel enhancer element in the DNA vaccine. The breadth of the immune 

response elicited by these vaccines would need to be assessed in non-human primates 

in a separate study. However, our findings are particularly attractive for a vaccine that 

will eventually be used in the resource limited countries of sub-Saharan Africa and India 

where the predominating virus is subtype C. An ideal HIV-1 vaccine should induce both 

T cell and humoral immune responses. We have made one component that induces T 

cell responses. Future work will include vaccinating in conjunction with antibody-

generating mosaic immunogens or boosting with HIV-1C Env protein. 
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1.1 THE ORIGIN OF HIV 

Human Immunodeficiency Virus (HIV) is a retrovirus that belongs to the Lentiviridae 

family. It was discovered in the early 1980s as the causative agent of Acquired 

Immunodeficiency Syndrome (AIDS; (2,3)). HIV originates from the zoonotic 

transmission of Simian Immunodeficiency Viruses (SIV), most likely through hunting, 

butchering, and handling contaminated uncooked meat (4-6). The earliest evidence of 

HIV infection in humans was from a plasma sample collected in 1959 from an adult 

Bantu man living in Congo (6-8). However, HIV is estimated to have been introduced 

into the human population between 1915 and 1941. This was estimated using in-depth 

full-length sequence alignment of the envelope gene. These were used to estimate the 

phylogeny and origin of HIV using intensive computational algorithms (9). 

 

1.2 CLASSIFICATION OF HIV 

There are two species of HIV, HIV-1 and HIV-2. They differ in terms of geographical 

distribution, pathogenicity (10), and genomic organization (11). The more pathogenic of 

the two lineages is HIV-1, which is responsible for the global epidemic. Cases of HIV-2 

infection on the other hand, have been reported mostly in West Africa (12,13). HIV-1 

consists of four sub-lineages (M-Major; O-Outlier; N-non-M and non-O; and P) which 

arose from autonomous zoonotic infections (14-19). The HIV global epidemic is a result 

of group M infections (20,21). This group is further subdivided into nine subtypes (A, B, 

C, D, F, G, H, J, K, and L), six sub-subtypes (A1-A4; F1-F2), and over 70 inter-subtype 

circulating recombinant forms (CRF) based on phylogenetic relatedness (20-23). There 

are also many fully sequenced, but unclassified group M HIVs. These are too diverse to 

be included in the existing CRF grouping or subtype (24). 

 

1.3 GLOBAL IMPACT OF HIV-1 SUBTYPE C 

There are 35 million people living with HIV-1 globally. Approximately 71.4% (25 

million) are living in sub-Saharan Africa and the same region makes up 73% of the 1.5 

million AIDS-related deaths worldwide (25). In South Africa, HIV-1 prevalence in 
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women attending government antenatal clinics is 29.5%, and an estimated 6.4 million 

South Africans are infected with HIV (25,26). 

HIV-1 subtype C (HIV-1C) is the most prevalent, accounting for over 50% of all the 

global infections (27,28).  This subtype was initially described in Karonga District, 

Malawi from sequenced blood samples that had been collected between 1982 and 1984 

(29,30). HIV-1C is also commonly associated with heterosexual transmission and has 

since spread to east, central, and southern Africa (31-34). In southern Africa, HIV-1C 

accounts for more than 95% of all HIV-1 infections (35-38). HIV-1C infections among 

heterosexual couples who attend sexually transmitted infections clinics in Wales and 

England have been on the increase. These findings are notably among young attendees, 

suggesting recent transmission and spread of this subtype (39). Brazil has recently 

reported an exponential increase on the spread of HIV-1 subtype B and C isolates. HIV-

1C is spreading at a rate that is almost double that of the B subtype and seems to be 

spreading throughout South America (40,41). India accounts for 6% of the HIV-1 global 

prevalence (26), the second after South Africa, and subtype C is the dominant subtype 

(38,42-44).  

The prevalence, transmissibility, and pathogenesis of HIV-1C, particularly in 

heterosexual couples, are not fully understood. However, some research groups have 

made some interesting findings. Ball and colleagues (2003; (45)) compared the viral 

fitness of HIV-1 subtype A, B and C using a growth competition assay. They co-infected 

macrophages, CD4+ T cells, peripheral blood mononuclear cells (PBMCs), and 

Langerhans cells with a combination of two viruses at a time. HIV-1C was outcompeted 

in all cell lines except in Langerhans cells. This was an interesting finding as Langerhans 

cells line the genital tract mucosa and are therefore the first immune cells to encounter 

HIV-1 following infection (46). In a different study, Rodriguez et al., (2009) found HIV-

1C isolates to be more fit than HIV-1A isolates in a growth competition assay on infected 

PBMCs. PBMCs were infected with an HIV-1 A/C recombinant that had the 5'end from 

HIV-1A, and the 3' end from HIV-1C. Interestingly, the recombinant was equally fit as 

the HIV-1A isolate. The viruses were also used to infect some ex vivo cervical tissue. 

HIV-1C had greater transmissibility than the subtype A and recombinant A/C viruses. It 

is therefore likely that HIV-1C 3' terminus region has features that make it highly 

transmissible and fit compared to other subtypes (47). 
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1.4 MOTIVATION FOR MAKING HIV-1 VACCINES 

The number of deaths associated with HIV-1 infection and HIV-1-related illnesses have 

been reduced over the years (25). Various strategies have contributed to this, including 

expansion of educational programs, use of condoms, male circumcision, as well as the 

use of anti-retroviral (ARV) drugs. ARVs are used as pre-exposure prophylaxis, in 

microbicides, against mother-to-child transmission, and for HIV-1 treatment in infected 

individuals. The biggest challenge with some of the interventions is that they require 

lifetime adherence. Non-compliance of these strategies is therefore a major drawback 

regarding HIV-1 eradication. ARV usage on the other hand is prone to viral resistance 

(48-50) and patients often have undesirable side effects (51,52).  

Vaccination, however, has demonstrated to be one of the most successful medical 

measures to reduce mortality and morbidity. It has liberated the human population 

from some threatening infectious diseases like measles (53), smallpox (54), and polio 

(55,56) by complete or near eradication. A prophylactic HIV-1 vaccine is the best long-

term means of preventing the spread of this epidemic. There is therefore need for 

increased efforts toward the development for an HIV-1 vaccine to ensure its eradication.  

1.5 THE STRUCTURE AND MORPHOGENESIS OF HIV-1 

The HI virion is roughly spherical in structure and has a lipid bilayer envelope with a 

diameter of 80-120nm. Within the virion are two copies of the genome, viral enzymes, 

and nucleocapsid proteins enclosed by a conical capsid (Figure 1.1A). The HIV genome 

is a positive sense, single-stranded RNA of 9.8 kilo base (kb). It is made up of 9 genes 

that code for 15 proteins (Figure 1.1B). The group specific antigen (Gag), polymerase 

(Pol) and envelope (Env) are structural genes; regulator of virion expression (Rev) and 

trans-activator of transcription (Tat) are regulatory genes; the rest, viral protein 

unknown (Vpu), viral protein regulatory (Vpr), viral infectivity factor (Vif), and negative 

regulatory factor (Nef) are accessory proteins.  Two non-coding regions (long terminal 

repeats; LTR) are located on either terminal of the viral genome. The 5' LTR is involved 

in the regulation of viral gene expression. It has a transcriptional initiation site as well 

as several transcriptional factor binding sites (57,58). A single messenger (m) RNA is 

transcribed, from which 9 open reading frames (ORFs) are translated. An HIV-1 Gag  



 

Chapter 1: Literature review  6 
 

 

 

 

Figure 1.1: Structure and genomic organization of HIV-1. (A) Structure of the HIV-1 virion. 
Envelope glycoproteins gp120 and gp41 are protruded from a lipid bilayer originated from the host cell 
plasma membrane. The viral core consists of two copies of positive single stranded RNA enclosed by the 
viral capsid protein p24 together with the reverse transcriptase and integrase enzymes required for the 
formation of new HIV particles (Adapted from Rubbert et al., 2011; (59)). (B) The genetic organisation 
of HIV genome. The proviral genome is composed of nine genes that are flanked by long terminal repeats 
(LTRs; 5’ and 3’). The nine open reading frames code for at least 15 proteins. The gag gene is translated 
into the structural Gag precursor that is cleaved into matrix (MA), capsid (CA), nucleocapsid (NC). The pol 
gene is translated by a -1 ribosomal frameshift as a Gag-Pol precursor polypeptide that yields the four 
enzymes Reverse Transcriptase (RT), Integrase (IN), Protease (PR) and Ribonuclease H (RNaseH) upon 
cleavage. The env gene encodes the anchor structural precursor Env, gp160, which is cleaved into the 
surface (SU; gp120) and trans-membrane (TM; gp41) glycoproteins. The Gag-Pol mRNAs are spliced to 
encode the regulatory (Rev, Tat) and accessory (Nef, Vpr, Vpu and Vif) proteins. Taken from Yasutsugo et 
al.,(60). 

A 

B 
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immunogen was used for the vaccines made in this study, HIV-1 Gag is therefore 

reviewed in Section 1.5.1. The functions of the other proteins are listed in Table 1.1.  

The morphogenesis of HIV-1 has several distinct stages (Figure 1.2) and is regulated by 

both viral and host cell proteins. 

Table 1.1: Functions of HIV-1 proteins  

 Precursor 
polyprotein 

protein Function and properties 

 Gag p55  Structural protein. p55 is post 
translationally cleaved into  MA, CA, NC,  
p6, and spacer regions 1 and 2 (sp1 and 
sp2) Reviewed in Section 1.3.1 

  p10 (PR) Post-translational processing of viral 
proteins; Gag-Pol cleavage and maturation 

Structural 
proteins 

Pol p66, p51 (RT) Reverse transcription of viral RNA genome; 
has DNA polymerase activity 

  p15 (Rnase H) Rnase H activity; cleaves RNA from DNA-
RNA hybrids 

  p32  (IN) DNA provirus integration into host genome 

 Env gp120 (SU) Envelope surface protein; interacts with 
CD4 and co receptors 

  gp41 (TM) Envelope transmembrane protein 

 Tat p14 Transcriptional activation; not virion 
associated 

Regulatory 
proteins 

Rev p19 Regulation of viral  mRNA expression; not 
virion associated 

 Vpr p15 Helps with virus replication and 
transactivation 

 Vpu p16 Assists with virus release; disrupts gp160-
CD4 complexes;  inhibits expression of HLA 
I molecules; not virion associated 

Accessory 
proteins 

Nef p27 Can increase or decrease virus replication; 
down regulation of surface HLA I and II 
molecules; inhibits expression of  CD4; 
CCR5 and CXCR4 down regulation to avoid 
superinfection; prevents apoptosis of the 
infected cell 

  
Vif 

 
p23 

Increases virus infectivity and cell-to-cell 
transmission; helps with proviral DNA 
synthesis and/or virion assembly; down 
regulation of the  antiviral restriction factor 
APOBEC3G 

APOBEC3G - apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G. Adapted from 

Chakraborty et al., 2014 (61) 
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Figure 1.2: The HIV-1 life cycle. (1) The infection process begins when gp120 binds CD4 and interacts 
with a coreceptor. (2) A membrane fusion reaction, induced by gp41, occurs between the lipid bilayer of 
the virion and the host cell plasma membrane, releasing the viral core into the cytoplasm. (3) A collective 
series of steps, referred to as uncoating, takes place. During this process, CA is lost, while at least some 
MA, as well as NC, the pol-encoded enzymes IN and RT, and Vpr are thought to be retained as part of a 
high-molecular weight complex. (4) During uncoating, reverse transcription of the viral RNA to generate a 
double-stranded DNA copy is largely completed. (5) The high-molecular-weight complex, now referred to 
as the pre-integration complex is transported across the nuclear membrane. (6) In the nucleus, 
integration of the viral DNA into the host cell chromosome is catalyzed by IN. (7) The integrated viral 
DNA, known as the provirus, serves as the template for the synthesis of viral RNAs, which are transported 
to the cytoplasm. (8) The Env glycoproteins are synthesized in the endoplasmic reticulum (ER) and are 
transported to the plasma membrane via the secretory pathway. (9) The Gag and Gag-Pol polyprotein 
precursors are synthesized and transported to the plasma membrane. During or after transport, the Gag 
precursor recruits two copies of the single-stranded viral RNA genome, interacts with the Gag-Pol 
precursor, and assembles into structures visible by electron microscopy as dense patches lining the inner 
face of the plasma membrane. (10) The assembled Gag protein complex induces membrane curvature, 
leading to the formation of a bud. (11) During budding, the viral Env glycoproteins are incorporated into 
the nascent particles. (12) Budding is completed as the immature virus particle pinches off from the 
plasma membrane. (13) During or immediately after budding, the viral PR cleaves the Gag and Gag-Pol 
polyprotein precursors to the mature Gag and Pol proteins. PR cleavage leads to core condensation and 
the generation of a mature, infectious virion which is now capable of initiating a new round of infection. 
Major steps in the cycle are underlined. The life cycle is subdivided into early and late stages. Taken from 
Freed 1998 (62). 
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1.5.1 Functional properties of HIV-1 Gag  

The HIV-1 Gag precursor protein, Pr55Gag, is the main viral structural protein. Pr55Gag, 

through its various domains, is responsible for complexing with genomic RNA (63-66) 

and host proteins (67-69). These are then incorporated into the virion particle (70). 

Pr55Gag is then responsible for directing itself towards the plasma membrane for 

oligomerization, and for exploiting the host’s cellular endosomal-sorting complex 

required for transport (ESCRT) to facilitate budding. Several thousand Pr55Gag poly-

proteins assemble at the membrane of virus-producing cells in regions that are fatty-

acid rich (71-74). Within these regions, the Pr55Gag molecules are organised into a 

lattice that eventually start to bud as immature virus-like particles (VLPs). HIV-1 Env is 

also incorporated at this stage at the plasma membrane (Figure 1.2 step 11). In the 

presence of viral PR, the Pr55Gag polyprotein is sequentially cleaved at five different 

sites into different proteins and peptides; the matrix (MA; p17MA), capsid (CA; p24CA), 

nucleocapsid (NC; p7NC), and p6 (75). Two small “spacer” peptides (sp1 and sp2) flank 

the NC (Figures 1.3A and B). Protease cleavage of viral precursor proteins leads to the 

formation of mature virions (Figure 1.4). Pr55Gag can also form immature VLPs in the 

absence of any other HIV-1 proteins (76-78). The immature virions are also slightly 

larger (120-140nm) and more circular than mature virions (100-110nm) (79,80). 

1.5.1.1 Function of the matrix (MA) protein (p17) 

The MA protein forms the N-terminal region of Pr55Gag and is made up of 128 amino 

acids (81). The MA is a part of Pr55Gag and p41 (MA, CA, and p2) before it is finally 

cleaved into the mature p17 protein (reviewed by Bell and Lever 2013; (82)).  It is 

involved in both the early and late stages of the HIV-1 replication cycle (reviewed by 

Bukrinskaya 2007; (83)). The MA is involved in the transport of the viral genome to the 

nucleus. It has a conserved nuclear localisation signal (GKKXYKLKH; Figure 1.3B) 

similar to that of the simian virus 40 (SV40) large T antigen (84). Various studies have 

detected the MA protein in the pre-integration complex (85,86). Heterologous proteins 

coupled to the HIV-1 MA protein have been targeted to the nucleus in non-replicating 

cells (87).  
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The MA N-terminal domain has properties that enhance translation of Pr55Gag (88). The 

signal recognised by Pr55Gag to initiate genome packaging is in the 5' LTR of the HIV-1 

RNA (89). This is also the region were the translation initiation complex forms (57,58).  

 
Figure 1.3: HIV-1 Pr55Gag. (A) Schematic representation of the HIV-1 genome organization, detailing the 
domain organization of Gag. (B) Full length amino acid sequence of HIV-1 Pr55Gag derived from the 
pNL4.3 HIV molecular clone. The domains are color coded accordingly; matrix – orange, capsid – red, 
nucleocapsid – blue, and p6 – green, SP1 – purple, SP2 – pink. The second glycine residue (underlined) is 
post translationally modified by myristylation. The nuclear localisation signal is highlighted in orange. 
Adapted from McKinstry et al., 2014 (90).  

 

Figure 1.4: Architecture of the HIV-1 budding site and of released particles. (A) Electron micrograph 
of a HIV-1 budding site showing immature and mature virions at the plasma membrane of a virus 
producing T-cell. Scale bar 100 nm. (B) Schematic representation of the structures shown in (A). The 
arrow indicates Env.  Adapted from Baumgärtel et al., 2014 (91). 
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Using in vitro and in vivo models, Anderson and colleagues (2006) reported that 

translation was initiated at low Pr55Gag levels but inhibited at high levels in order to 

regulate the translation and packaging processes. They mapped the inhibition process 

to NC which bound the packaging signal. Using gel mobility shift assays, the MA protein 

was identified as the domain responsible for the stimulatory activity. A Pr55Gag with the 

MA deleted was unable to stimulate translation (88). 

The MA domain is responsible for targeting Gag to the host plasma membrane (92-94). 

Pr55Gag is post-translationally modified by the addition of myristic acid at the glycine 

amino acid residue at position 2 in the N-terminal domain by the enzyme N-

myristyltransferase (Figure 1.3B). This modification is crucial for Pr55Gag host cell 

membrane targeting and virus assembly. The myristic acid is masked within a 

hydrophobic region in the MA domain and binds to cell membranes by interacting with 

phosphatidylinositol-4,5-bisphosphate (PIP2; (94-96)). Mutating the glycine residue 

results in blocking of the virus particle budding and intracellular accumulation of Gag 

(97,98). Following virus budding, MA molecules remain attached to the virion lipid 

bilayer to stabilize the virus particle (99). To prevent its non-specific binding to other 

lipid membranes as it traffics through the host cell, Pr55Gag, through the MA domain, 

binds RNA in the cytoplasm (stage 9 of Figure 1.2; (100)). 

1.5.1.2 Function of the capsid (CA) protein (p24) 

CA is a component of Pr55Gag, p41 (MA, CA, and p2) and p25 (CA and p2) before the 

mature p24 is generated by further proteolytic cleavage (reviewed by Bell and Lever 

2013; (82)). The commonly used p24 ELISA diagnosis assay quantitatively detects the 

presence of virion-free and/or virion-bound CA by anti-p24 antibodies bound to a 

microtitration well (101,102). 

The CA domain in Pr55Gag is divided into the N- and C-terminal domains (NTD and CTD 

respectively) connected by a flexible hinge which is essential for correct assembly of the 

core, viral replication and viral infectivity (103). The CTD is responsible for the 

formation of CA-CA dimers (104-106) and for viral core formation.  In the mature virion, 

the CA forms a conical shell around the core-associated proteins and the viral genome 

(Figures 1.1A and 1.4). The NTD on the other hand forms two different morphological 

polymers which are necessary for forming this conical shape (107,108).  The immature 
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virion has about 5000 copies of Pr55Gag. However, about 1000 - 1500 CA proteins form 

the core in the mature virion (107,109-112).  

1.5.1.3 Function of the nucleocapsid (NC) protein (p7) 

NC is a low molecular weight protein with mostly basic amino acid residues, and is 

conserved in retroviruses that are replication-competent (113,114). During the virion 

maturation process, NC is a component of the proteins Pr55Gag, p15 (NC, p1, and p6) and 

p9 (NC and p1). The p1 is eventually cleaved from p9 forming a mature NC (reviewed by 

Bell and Lever 2013; (82)). 

Although it is one of the smallest components of Gag, the NC has been extensively 

researched and actually has many different functions in HIV-1 morphogenesis. NC 

protects and packages viral RNA within this nucleoprotein core (109,111,115-118). 

Darlix and colleagues (119) have demonstrated that NC assists with reverse 

transcription of the viral genome, by destabilizing the nucleic acid double stranded helix 

and allowing cDNA elongation (120-122). NC has a structural role in forming immature 

viral particles through Gag-Gag interactions (111,123) and it is also implicated in virus 

particle budding via the ESCRT-associated protein, ALIX, which binds NC and p6 to 

facilitate the budding process (115). 

1.5.1.4 Function of the p6 protein 

The p6 protein is the most variable region of Gag (124). Recently, p6 was shown to bind 

cyclophilin A and may be implicated in further protection of the HIV-1 virion against 

TRIM5α (125). HIV-1 Gag takes advantage of the ESCRT for budding out of the host cell 

(70,126,127) and the p6 C-terminus domain is vital for recruiting this host machinery, 

particularly the proteins ALIX and TSG101 (64,128,129).  p6 is also responsible for 

recruiting the viral accessory protein, Vpr, into the HIV-1 virion (128). Mutations in the 

p6 domain of Pr55Gag block incorporation of the Env glycoprotein into the HI virus 

particle (130) , suggesting that p6 is responsible for this process. 

 Deletions or mutations in p6 result in a rather dramatic phenotype where virus 

particles fail to complete budding. Incompletely processed particles can be seen on the 

host membrane surface bound to the budding stalk (64,131-133), indicating that 

portions of the p6 domain are involved in releasing the budding virus from the plasma 
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membrane. When the p6 mutation was reversed, virus particles were released from the 

host cell (66,134). However, some groups have deleted the p6 domain to stabilise the 

expression and purification of HIV-1 Gag (64). 

The size of some retroviral particles is determined by the CA protein (135). While some 

authors argue that this is the case for HIV-1 (136), there is compelling evidence 

suggesting otherwise. Garnier and colleagues 1998 (137)  analysed over 30 HIV-1 Gag 

deletion mutants. The mutations spanned different regions of Gag and the constructs 

encoded inactivated PR. Using rate zonal gradient assays, constructs with mutations in 

the MA, CA, and NC regions did not alter virion particle size. However, mutations within 

p6 resulted in larger virus particles.  Rous sarcoma virus (RSV) uses the CA domain to 

regulate its particle size. RSV CA mutants produce particles of different sizes. Insertion 

of the HIV-1 p6 domain downstream of an RSV CA mutant resulted in the production of 

normal-sized particles.  

1.5.1.5 Function of the spacer regions, sp1 and sp2 

The NC lies between two spacer proteins, sp1 and sp2 in Pr55Gag. The p2 protein 

influences CA assembly as determined by the appearance of clusters of 

ribonucleoprotein at the host cell plasma membrane following deletion of p2. The p2 

domain is part of the p41 (MA, CA, and p2) and p25 (CA and p2) precursors. It has been 

shown that p2 helices also stabilize the HIV-1 Gag hexamer complexes within the 

immature particle (138). This implies that p2 cleavage from NC is necessary for CA core 

condensation and formation of the ribonucleoprotein with genomic RNA. The cleavage 

of p2 from CA, which occurs later in HIV-1 viral morphogenesis, probably modulates 

CA-CA interactions as shown by Gross and colleagues (139). Their electron microscopic 

studies indicated that the CA-p2 integrity was essential for forming the immature CA 

sphere and cleavage of p25 facilitates viral core maturation and condensation. The p1 

peptide of Gag on the other hand is associated with the incorporation of Gag and Pol 

into the virus during assembly (140).   

 

1.6 IMMUNOLOGICAL RESPONSES TO HIV-1 INFECTION 

HIV-1 infects cells vital to the immune system, particularly T helper (h) cells, 
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macrophages, dendritic cells (DCs), as well as, to a certain extent, microglial cells. These 

cells all express the primary HIV-1 receptor CD4 (reviewed by Grossman et al., 2006 

(141), and Peterlin and Trono 2003 (142)). HIV-1 further requires the co-receptors CC-

chemokine receptor 5 (CCR5) and CX-chemokine receptor 4 (CXCR4) for host cell 

infection (143-145). HIV-1 infection most commonly occurs through sexual intercourse, 

sharing of contaminated needles by intravenous drug users, and from a mother to their 

baby during birth or breastfeeding (reviewed by Girad et al., 2011; (146)). The genital 

mucosae and gastrointestinal tracts are the main sites of HIV-1 infection (147). Once the 

target cells are infected, the virus replicates and spreads to lymphoid organs and the 

bloodstream. Eventually the virus reaches the gut-associated lymphoid tissues where 

there is the largest amount of CD4+ T cells which eventually causes illness and the onset 

of AIDS (reviewed by Murphy 2012; (148)). The immune responses to HIV-1 infection 

are detailed in Figure 1.5.  

Neutralising antibodies (NAb) to HIV-1 appear within 3 weeks in almost all infected 

individuals (Figure 1.5). However, these antibodies are often strain-specific [150] 

because they target variable regions of HIV-1 Env. Furthermore HIV-1 Env differs 

markedly between viruses (Section 1.8.1; [151,152]). The immune pressure causes the 

virus to escape by compensatory mutations, to which new antibodies develop 

[153,154]. The HIV-1 continues to mutate forming more variants within an infected 

individual and this causes the production of non-protective cross-reactive NAbs [155]. 

Broadly NAbs (bNAb), that recognise structurally conserved Env epitopes capable of 

blocking multiple variants of HIV-1 (80-90%), can protect target cells from being 

infected. However, these antibodies only develop about 3 years after HIV-1 infection, by 

which time the virus would have established latent reservoirs and it will be too late to 

control the infection and restore the immune system ([156]; reviewed by Overbaugh 

and Morris 2012; [157]). Another hurdle is that only a few infected individuals (15-

30%) develop these bNAbs [158-160]. Non-neutralizing antibodies (NoNAbs) to HIV-1 

develop after natural infection, but only in about 1% of infected individuals [161]. These 

cells potently neutralises serum-associated virus using mechanisms mediated by the 

fragment crystallisable (Fc) region of the antibody. The Fc region recruits antigen-

presenting cells (APCs) that promote antibody-dependent cellular cytotoxicity (ADCC) 

and (ADCVI) involving the secretion of antiviral cytokines and proteases (reviewed by 
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Lema et al., 2014; [162]). 

Figure 1.5: The earliest innate and adaptive immune responses detected after HIV-1 transmission. 
The first systemically detectable immune responses to HIV-1 infection are the increases in levels of acute-
phase proteins in the plasma, which are observed when virus replication is still largely restricted to the 
mucosal tissues and draining lymph nodes (eclipse phase). When virus is first detected in the plasma (T0), 
broad and dynamic increases in plasma cytokine levels are also observed. Within days, as plasma 
viraemia is still increasing exponentially, the first antibody–virus immune complexes are detected. 
Expansion of the earliest HIV-1-specific CD8+ T cell responses also commences prior to peak viraemia, 
followed by detection of the first free glycoprotein (gp)41-specific but non-neutralizing IgM antibodies. 
Complete virus escape from the first CD8+ T cell responses can occur rapidly, within 10 days of T cell 
expansion. By this time, viral reservoirs exist, possibly becoming established within days of infection. The 
earliest autologous-virus-neutralizing antibodies are detected around day 80 following infection, as viral 
loads are still declining prior to the onset of the viral set point. Antibody escape virus mutants emerge in 
the plasma within the following week. Taken from McMichael et al., 2010 (149). 

T cell responses on the other hand develop much quicker compared to antibody 

responses in natural infection (Figure 1.5). HIV-1-specific CD8+ T cells become 

detectable 2-3 weeks post exposure (reviewed by Walker et al., 1990; (150,151)). These 

cells can inhibit HIV-1 replication in vitro (152). The CD8+ T cell frequency continues to 

increase until they reach a peak point when HIV-1 virus levels decline (149). About 30 

days post-infection and at the time of peak CD8+ T cell responses, HIV-1 begins to 

mutate in an effort to escape the CD8+ T cell pressure (153-155). Meanwhile, the CD8+ T 

cells corresponding to the initial viral epitopes begin to rapidly decrease and new CD8+ 

T cells that recognise the mutated HIV-1 sequences may arise. This causes new selection 

pressure on the virus, which in turn fuels new compensatory mutations (156,157). The 

number of HIV-1 epitopes targeted broadens and HIV-1-specific CD8+ T cells persist at 
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high frequencies during chronic infection (158,159). Throughout the asymptomatic 

phase of infection, this race between the CD8+ T cell responses and HIV-1 compensatory 

mutations takes place. However, eventually, the virus may restore its infectious ability 

with the acquired mutations (160-164). The CD8+ T cells eventually become 

progressively exhausted and have limited efficacy in controlling HIV-1 replication (159). 

HIV-1-specific CD8+ T cells function by producing cytokines (interferon-gamma (IFN-γ) 

and tumour necrosis factor alpha (TNF-α)) that induce antiviral activity in infected cells 

(165);  secreting chemokines (CCL3 and CCL4) that block co-receptor molecules, thus 

preventing the entry of HIV-1 into target cells (166-168); and other unidentified viral 

factors which directly suppress viral replication (reviewed by McMichael et al., 2001 

(169)). CD8+ T cells also secrete cytotoxic granules like granzyme B and perforin, which 

directly lyse viral-infected cells or trigger a programmed cell death process (170-172).  

CD8+ T cells require help from CD4+ T cells to function maximally (173,174).  CD4+ T 

cells are vastly depleted from the lymphoid system during acute HIV-1 infection. As 

demonstrated in mouse models that have depleted CD4+ T cells, their CD8+ T cell 

population becomes greatly impaired (175-177), and rapidly reaches a state of 

exhaustion (178). Although CD4+ T cells are greatly depleted in HIV-1 infection they are 

not altogether absent, however, abnormalities in CD8+ T cell response development 

does occur (179).  

Not all HIV-infected individuals progress to AIDS in the absence of ARV treatment. 

About 1–5% of HIV-1-infected individuals do not experience a decline in CD4+ T cell 

counts. They can control virus replication to levels below 1000 HIV RNA copies/ml for 

at least 7–10 years without ART (reviewed by Walker and Korber 2001 (180)) and are 

referred to as long term non-progressors (LTNPs; (155)). Another group of HIV-1 

infected individuals, generally <1%, can actually control the levels of HIV-1 replication 

to below undetectable levels (<50 HIV-1 RNA copies/ml). They are referred to as Elite 

Controllers (ECs; reviewed by Deeks et al., 2007 (181)). Ferrando-Martinez and 

colleagues carried out an intriguing study on 40 untreated HIV-1 infected individuals in 

Spain. LTNPs and ECs always had HIV-1-specific CD4 and CD8 T cell responses, while a 

third of HIV-1 progressors had undetectable T cell responses to the virus (182). Thus, 
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studies of both LTNPs and ECs have led to key insights into T cell correlates of viral 

control that should be considered in HIV-1 vaccine development. 

An association of Gag targeting by CD8+ T cells and lower viral loads has been observed 

in HIV-1-infected adults (183-185), HIV-1-infected children (186-188), HIV-2-infected 

individuals (189), and ECs ((182); reviewed by Genovese et al., 2013; (190)). Early in 

2014, Riou and colleagues identified highly functional Gag- and Nef-specific CD8+ T cell 

responses as the best determinants of a low viral set point from a South African cohort 

of HIV-1-infected individuals (191). In a different study, the immune responses elicited 

by HIV-1-infected individuals during the chronic phase of infection indicated that Gag 

targeting was associated with lower viral load (183,184,192). In contrast, responses 

targeted towards Env or the accessory proteins were associated with higher viral loads 

(184,193). Gag-specific CD8+ T cells also play an important role in slowing down HIV-1 

disease progression (Figure 1.5). These responses are also cross reactive for diverse 

strains of HIV-1 (194,195).  

 

1.7 THE VACCINE EVALUATION PROCESS 

The evaluation of HIV vaccines is a lengthy but necessary process. Preclinical evaluation 

in animal models is an essential step for this. When a new vaccine concept is developed, 

studies are done in animal models to determine its safety and immunogenicity. The 

animals used include, but are not limited to mice, rabbits, guinea pigs, and non-human 

primates. This evaluation aims to predict the outcome in humans should the candidate 

vaccine reach clinical trials. Evaluating HIV-1 vaccine efficacy, however, can only be 

done in people since only humans get infected by HIV-1 that can develop into AIDS, and 

the immune systems of animals does differ from that of humans (196). From vaccine 

conceptualisation to Phase I clinical trials it can take at least 9 years. Only after the 

Phase 1 and 2 trials can Phase 3 or efficacy trials take place. After the completion of 

efficacy trials, it will take a further 1- 2 years for a vaccine to be licenced for distribution 

and use (Figure 1.6). This is mostly due to ethical regulations that need to be put into 

place and reviewed at each stage to ensure the safety and protection of volunteers 

(196,197).  
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Figure 1.6: The vaccine development pipeline.  Taken from Burgers et al., 2005 (198).  

 

1.8 CHALLENGES ASSOCIATED WITH HIV-1 VACCINE DEVELOPMENT 

From the time HIV-1 was discovered (199), it seemed that its eradication was going to 

be straightforward. This impression was mostly due to the vaccine development track 

records of other infectious diseases  (200,201) as well as the development of antibody-

based vaccines against HIV-1 at that time (Section 1.9; Table 1.2; (202,203)). However, 

the vaccine development proved to be a mammoth task despite technological 

advancement and efforts being collaborated globally. Results from the RV144 Thai trial 

(Section 1.9; Table 1.2; (204)) have given the scientific community the hope that an 

effective HIV-1 vaccine is achievable. However, there are still some challenges in making 

that hope a reality.  

1.8.1 HIV-1 high mutation rate and diversity 

There are several factors associated with the challenges of developing an effective HIV 

vaccine.  HIV-1 has a high mutation rate due to non-specific recombination events and a 

reverse transcriptase enzyme that incorporates errors during viral replication (205). 

HIV-1 mutates faster than any other known RNA virus, including influenza. Any 

developed vaccine will therefore need to target multiple conserved epitopes within the 

virus to prevent mutational escape. 
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Viral sequences of Env within a clade vary by 15%, and by more than 35% between 

clades (206,207). The diversity of HIV-1 in an individual can equate to that observed in 

a country in a year for an influenza outbreak (207). The most common means of vaccine 

protection is the development of binding or broadly neutralising antibodies against the 

infectious agent. HIV-1 diversity makes it difficult to obtain a single prototype virus to 

represent the genetic and geographical range of viral isolates (208-212) or to obtain a 

vaccine that will elicit such antibody responses towards all clades and CRFs. HIV-1 is 

also heavily glycosylated, making it difficult for neutralising antibodies to access the 

virus to prevent infection (213). 

1.8.2 The neutralisation antibody challenge 

Most viral infections are controlled by vaccines that induce NAbs (reviewed by Delany 

et al., 2014 and Rappuoli and Aderem 2011; (214,215)). The first HIV-1 vaccines were 

designed to induce NAbs; this was however unsuccessful due to the immense diversity 

of circulating viral strains in comparison to laboratoty-adapted strains (Section 1.9.1; 

(216)). Production of bNAbs by vaccine candidates in clinical trials has been equally 

disappointing (217-219). Therapeutic means of passively administering non-human 

primates (NHPs) with NAbs (220-222) and bNAbs (223) block infection from SHIV 

challenge, indicating that sterilizing immunity is achievable. Moog and colleagues 

(2014; (222)) showed that passive administration of NoNAbs reduced viral loads in 

challenged NHPs.  However, passive administration of anti-HIV-1 antibodies does not 

offer lasting immunity. Nonetheless, this approach would be too expensive to apply on a 

large scale, particularly in resource-limited areas where the HIV-1 pandemic is most 

severe. Some non-human primate studies (224) and early phase clinical trials (225,226) 

have, however, shown induction of durable bNAbs. Efficacy trials will indicate the ability 

of the generated bNAbs to neutralise the diverse circulating HIV-1 strains. Research is 

also underway to develop vaccines that induce neutralising antibodies based on the 

mutational changes of the virus (227), and the clinical significance of such vaccines is 

yet to be determined. The RV144 clinical trial (Table 1.2; Section 1.9.3) demonstrated 

that NoNAbs-mediated means of protection are also important for preventing HIV-1 

infection (218).  
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1.8.3 Latent reservoir establishment 

HIV-1 is a retrovirus, it therefore integrates within the human genome upon infection of 

host cells (Figure 1.2 stage 6; reviewed by Haase et al., 2010; (228)). HIV-1 can 

therefore rapidly establish latent reservoirs within days following infection (229,230).  

The reservoirs are difficult to eliminate. With the exception of the “Berlin” patient who 

got cured of HIV-1 through bone-marrow transplant (231), there has not been any 

reported case of elimination of HIV-1 infection, even in patients taking ARVs. This 

makes HIV-1 infection life-long. For an HIV-1 vaccine to achieve sterilising immunity 

and overcome the viral reservoir hurdle, it will need to generate highly effective 

immune responses soon after infection. These could be in the form of nAbs and bNAbs 

to neutralise the virus, NoNAbs to induce antibody dependant cell-mediated immune 

responses, and/or effector memory T cells to efficiently kill any infected cells. 

1.8.4 Animal models to test HIV vaccine candidates 

Although they have less complex immune systems than those of humans, mice make 

suitable models to test HIV-1 vaccines as a first test of vaccine stability and 

immunogenicity. They are small, have a short gestation period, require small amounts 

of space, and are relatively affordable.  A number of mice strains are available for use in 

HIV-1 vaccine immunogenicity studies. The HLA binding peptides can also be easily 

ordered for use in in vitro assays that evaluate T cell responses following vaccination. 

Our laboratory has used laboratory-bred Bagg albino (BALB)/c mice named after their 

founder and phenotype (232). The “c” refers to their genotype of coat colour.  We 

therefore chose this animal model to compare the results to those previously obtained 

by our group and others. 

HIV-1 vaccine efficacy can only be evaluated in humans, however, preclinical studies to 

evaluate vaccine safety and immunogenicity must first be carried out (Section 1.7). 

Indian or Chinese rhesus macaque monkeys are the preferred model of choice (233,234). 

HIV-1, however, does not cause immune-deficiency syndrome in macaques. An ancestor 

of HIV-1, SIV, or hybrids of SIV and HIV-1 (SHIVs) are used instead for challenge 

experiments and these cause clinical symptoms similar to those of HIV-1 infected 

individuals (reviewed by Silvestri et al; 2007 and Morgan et al., 2008 (235,236)). The 

major drawback is that the SIV and SHIV isolates are limited to represent the immense 
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diversity of the HIV-1 strains (reviewed by Girard et al., 2011; (146)). Chimpanzees are 

the only non-human primates that can become infected with HIV (237,238). However, 

they seem not to develop AIDS following HIV infection; thus a more pathogenic strain 

would need to be used for challenge following vaccination (239). Unfortunately, 

chimpanzees are facing the risk of extinction and they are very closely related to 

humans, making it ethically questionable to do challenge experiments on them (240). 

NHPs are still the preferred animal model for preclinical evaluation of candidate HIV-1 

vaccines. However, it is imperative that the results from these studies are carefully 

designed and interpreted before advancing the candidate vaccines to clinical trials 

(241). 

Bosma and colleagues described an immuno-deficient mouse that did not reject 

transplanted human tissue (242). These humanised mice have lymphoid systems 

derived from human beings, they get infected with HIV-1, the virus persists and causes 

disseminated infection, dissemination of disease occurs, and the mice have low CD4+ T 

cell counts following HIV-1 infection (243-245). Various models have since been 

generated as reviewed by Nischang and colleagues (246). This model is still not the best 

as various components of the human immune system are lacking (247). Some groups 

have “knocked-in” genes to circumvent these problems and the mice have been 

manipulated in a way that suits the research being carried out (248-250).  

 

1.9 SUMMARY OF HIV-1 VACCINE EFFICACY TRIALS  

There have been over 256 HIV-1 vaccine trials conducted to date involving nearly 

50 000 volunteers. The majority of the trials are Phase I and II, and these include 

ongoing studies (23,251). It is essential to do many clinical trials as correlates of 

protection can be identified from clinical trials that display partial effectiveness (252). 

Despite such a huge number of clinical trials, only six have reached Phase IIb or III 

clinical efficacy stages, one of which showed modest protection (Table 1.2).  

1.9.1 VAX003 and VAX004 trials 

The first two vaccines evaluated in efficacy trials aimed to induce neutralizing 

antibodies against HIV-1 to prevent infection (Table 1.2; (202,203)). Although the  
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Table 1.2: HIV-1 vaccine efficacy trials conducted to date 

Trial Period Phase Vaccine type and doses administered 
Desired immune 
response Result 

 
Reference 

VAX004 1998-2003 III 7 X gp120 (subtype B) in alum  Humoral  No efficacy (202) 

VAX003 1999-2003 III 7 X gp120 (subtype B and E) in alum  Humoral  No efficacy (203) 

STEP 
 
 
 

*2004-2007 
 
 
 

IIb 
 
 
 

3 X rAd5 gag/pol/nef (subtype B) 
 
 
 

 Cellular 
 
 
 

Increased HIV-1 infection 
risk in uncircumcised men 
with pre-existing rAd5 
immunity 

(253,254) 

Phambili §2007 IIb 3 X rAd5 gag/pol/nef (subtype B)  Cellular  No efficacy (255,256) 

RV144 
 
 
 
 
 

2003-2009 
 
 
 
 
 

III 
 
 
 
 
 

4 X canarypox gag/pro (subtype B)  env 
(subtype B and CRF01_AE) + 2 X gp120 
(subtype B and E) in alum 
 
 
 

Cellular + Humoral 
 
 
 
 
 

 31.2% efficacy at 42 
months. ADCC means of 
protection. No effect on 
plasma viral load and CD4 
count 
 

(204,218) 

HVTN 505 
 
 
 

‡2009-2013 
 
 
 

IIb 
 
 
 

3 X DNA plasmids gag/pol/nef (subtype 
B) and env (subtypes A, B and C) + 1 X  
rAd5 gag-pol (subtype B) env (subtype 
A, B and C) 

Cellular + Humoral 
 
 
 

 No efficacy 
 
 
 

(219) 

*Trial terminated for possible increase in susceptibility to HIV-1 infection in vaccine recipients                                                                                          
§Terminated due to the STEP trial results. Long term follow up indicated  increased risk to HIV-1 infection in vaccine recipients                                                                                                                                                                                                                                        
‡Prematurely terminated due to initial results that showed the vaccine to be ineffective in preventing HIV infections and lowering viral load in 
participants that did become infected                                                                                                                                                                                                                                                                                               
Adapted from Lema et al., 2014 and Kim et al. , 2014 (257,258) 
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vaccines neutralised HIV-1 isolates from the laboratory, this was not the case with 

circulating strains (216). No efficacy was detected in these clinical trials.  

1.9.2 The STEP, Phambili, and HVTN 505 trials 

The second “wave” of HIV-1 vaccines to be tested for efficacy induced cellular mediated 

immune responses. This was evaluated in the STEP and Phambili trials (Table 1.2). The 

hope was to induce T cell responses that would recognise and kill HIV-1 infected cells, 

providing partial or complete protection. T cell-based vaccines may not necessarily provide 

sterility against HIV-1 infection, but instead control the clearance of the virus. In the STEP 

trial, there was evidence of increased responses induced by the vaccine in some 

participants, particularly by the induction of HIV-1-specific CD8+ T cells. A total of 77% 

(258/354) of the male vaccine recipients had HIV-1-specific T cells secreting IFN-γ and 

62% (218/354) recognised two or three HIV-1 proteins (Gag, Pol, and Nef) as detected by 

ELISPOT assays (259). Using multiparameter flow cytometric studies, similar proportions 

of participants had virus-specific cytokine- secreting cells. The CD4+ T cell responses were 

Gag-specific and were characterised by secretion of interleukin 2 (IL-2) alone, or in 

combination with IFN-γ or TNF-α. The CD8+ T cell responses were Pol-specific. They were 

more predominant than the CD4+ T cell responses and were characterised by predominant 

secretion of IFN-γ alone, or in combination with IL-2 and TNF-α. The STEP trial was 

terminated prematurely. Male participants who were not circumcised and had pre-existing 

immunity to adenovirus serotype 5 (Ad5) had a higher rate of HIV-1 infections than did 

placebo recipients. It is noteworthy that the male volunteers who had no pre-existing 

immunity to Ad5 had significantly greater CD8+ T cell numbers than volunteers who did 

have anti-vector immunity (259). This study therefore showed that HIV-1 vaccines that 

elicit cellular immune responses induce virus-specific responses; however, there is need to 

use vectors to which vaccine recipients will not have pre-existing immunity. The results 

also showed a limited breadth (number of epitopes recognised) and future vaccines will 

need to account for this, especially through the use of improved immunogens. 

The Phambili study was a sister trial to the STEP study conducted in South Africa.  The trial 

was prematurely terminated following the futility of the STEP study. At the time of 
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termination, there were no signs of increased risk of HIV-1 infection in the vaccine 

recipients (255). However, long term follow ups done 42 months post vaccination 

suggested otherwise with 16% and 9% of the vaccine and placebo recipients getting HIV-1 

infections respectively (256). These findings caused major concerns regarding the use of 

rAd5 as an HIV-1 vaccine vector.  

The HVTN 505 trial recruited male or transgender women participants that were Ad5-

seronegative and circumcised (219). The vaccination regimen included priming with DNA 

vaccines and boosting with rAd5-based vaccines. An Env immunogen was also included in 

both the priming and boosting vaccines to elicit humoral immune responses against HIV-1. 

28 weeks post the first vaccination, 27 and 21 participants were infected with HIV-1 from 

the vaccine and placebo arms respectively. In April 2013, the trial was terminated due to 

lack of efficacy.  

Pre-existing immunity to the Ad5 vaccine vector may have increased the numbers of 

activated CD4+ T cells in the STEP, Phambili, and HVTN505 trials (259), the very target for 

HIV-1 infection. A non-human primate study was conducted to investigate this (260).  

Rhesus macaques were chronically infected with a mutant Ad5 prior to vaccination with a 

rAd5 expressing Gag, Pol and Nef from a SIVmac239 strain. There was an increased 

magnitude of activated CD4+ T cells and particularly in the gastrointestinal mucosa. The 

animals that received the vaccine also had increased SIV acquisition post challenge. The 

animals in the control group that were not infected with the mutant Ad5 did not have 

increased SIV acquisition post challenge (260). Biopsies obtained from the guts of the 

HVTN 505 trial participants had increased numbers of activated CD4+ T cells. What was 

unexpected was that high levels of the HIV-1 co-receptor, CCR5, were detected on the 

surface of these cells (261). 

1.9.3 The RV144 study 

The RV144 trial was conducted in Thailand.  The HIV-1 gp120 protein, used in VAX003 

trial, was used to boost recombinant canarypox prime vaccinations (Table 1.2). At 42 

months, the results indicated a 31.2% level of protection from HIV-1 acquisition; ironically, 
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analysis of the Step trial indicated a 33% higher HIV-1 infection rate for vaccinees 

compared to the individuals who received the placebo (253,254).  

The study suggested that vaccine-induced IgG1 and IgG3 antibody subclasses to the 

variable regions 1 and 2 (V1V2) of gp120 may be involved in protection against HIV-1 

infection. Vaccine-induced IgA antibodies directed towards HIV-1 Env, on the other hand, 

correlated with the HIV-1 infection rate (218). The rate of HIV-1 infections in the RV144 

placebo group was ten-fold lower than that of all the other efficacy trials tested to date 

(reviewed by Kim et al., 2014; (258)). This highlights the relevance of including pox-

vectored vaccines in clinical trials.  

Plans are underway to increase the durability and effectiveness of the RV144 vaccine 

(262). The same vaccination regimen is currently being evaluated in 100 high risk 

volunteers in South Africa (HVTN097: (263)). Preliminary results indicate that T cell 

responses are similar to those observed in the RV144 trial and immunoglobulin G (IgG) 

responses to V1V2 regions of HIV-1 Env are not influenced by body mass index, age or 

gender. Thus, the group of South African volunteers is responding well to the vaccination 

regimen, and the immune responses seem slightly better than those reported in Thailand. 

Plans are also underway to vaccinate a South African cohort using the same vaccination 

strategy as in the RV144 trial, but using subtype C based immunogens (264).  

 

1.10 DESIRABLE RESPONSES OF AN EFFECTIVE T CELL-BASED VACCINE 

Ideally, an HIV-1 vaccine should induce both humoral and cellular immunity. The NAbs 

and/or bNAbs should neutralize transmitted virus, while NoNAbs induce antibody-

dependant cell-mediated immunity. The immense diversity of HIV-1 results in some virus 

escaping neutralisation, infecting cells, and becoming inaccessible to NAbs and bNAbs.  The 

T cell immunity, together with NoNAb responses, will therefore be necessary to control 

breakthrough virus by killing infected cells.  Thus, T cell-based vaccines alone will not 

necessarily eliminate HIV-1 in infected individuals. They will however lower the viral load 

(Figure 1.7), preferably to undetectable levels. This approach, with or without 
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simultaneous ARV administration,  offers the advantage of prolonging the time it will take 

for HIV-1-infected individuals to progress to AIDS as well as reduce transmission rates.  

For a T cell-based vaccine, desired immune read-outs include: breadth, magnitude, 

specificity, polyfunctionality, proliferative capacity/cytotoxicity, avidity, memory  

 

Figure 1.7: Control of SIV or HIV-1 by vaccines that stimulate cytotoxic T cells (CTL). Effect of various T 
cell–stimulating vaccines (key) on viral load over time (with infection on day 0) during natural infection with 
HIV or SIV, showing the decrease in viral load achieved without a vaccine (None), by CTL responses 
(suboptimal vaccine; Barouch et al., 2000 (265)), by the rhesus cytomegalovirus (RhCMV) vaccine (Slow 
eradication; Hansen et al., 2009, 2011, and 2013; (266-268)) and by a hypothetical vaccine that targets the 
virus at the site of infection (Rapid eradication). Adapted from Barouch 2008 and McMichael et al., 2014 
(269),(270). 

 

phenotype, and persistence. In addition, such a vaccine induced immune response will 

need to have the capacity to abrogate CD4+ T cell destruction, and the ability to prevent 

viral escape. Each of these properties has been reviewed below. 

1.10.1 Breadth 

The breadth of T cell responses to an antigen (the capacity of a vaccine to induce an 

immune response that recognises multiple viral epitopes) is beneficial for clearing virus in 

HIV-1-infected individuals. HIV-1 is immensely diverse. If a vaccine can induce responses to 

multiple epitopes, it will in turn be able to elicit an immune response to multiple HIV-1 
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strains. McElrath and colleagues (2008; (259)) showed that virus-specific T cells generated 

by the MRKAd5 vaccine in the STEP trial (Section 1.9.2) had limited breadth. Despite the 

large amount of virus-specific T cells recorded, the breadth and specificity (Section 1.10.1) 

were only focused on limited epitopes that were different from those in transmitting 

strains. Kiepiela and colleagues (2007) discovered that an increased breadth of Gag-

specific responses correlated with decreased viremia in HIV-1-infected individuals who 

were not under treatment (184). Other studies have also recorded similar findings (271-

273). An added advantage of the elicitation of increased breadth of T cell responses 

induced by an HIV-1 vaccine is that some of the mutations within the virus will not result in 

immune escape.  

1.10.2 Magnitude 

To destroy virus-infected cells, there needs to be a sufficient number/magnitude of killer 

cells. These include cytotoxic and memory CD8+ T cells and CD4+ T cells (148). CD4 helper 

cells that stimulate the function of CD8 T cells and B cells are also necessary to have in high 

magnitudes, although increased CD4+ T cells may mean increased targets for HIV-1 

infection (261). NHPs give a good indication that the magnitude of CD8+ and CD4+ T cells 

can prevent progressive systemic dissemination of SIV infection (266) and can reduce viral 

levels to almost undetectable levels (268). When CD8+ T cells are depleted in NHPs by the 

use of CD8-specific antibodies, the animals lost early viral control upon SIV infection 

(170,274). In another study, high magnitudes of CD4+ T cells prior to SIV infection 

correlated with lower peak and viral set points compared to animals that had lower CD4+ T 

cells numbers (275). In the STEP study (Section 1.9.2), 77% of vaccinated individuals 

generated HIV-1-specific T cells to HIV-1 before infection. Compared to HIV-1-specific T 

cells induced by LNTPs, the STEP experimental vaccine induced a 43% lower CD8+ T cell 

response. Thus, there may be a threshold magnitude of T cells that probably needs to be 

reached for sufficient protection against HIV-1 infection (unpublished data in McElrath et 

al., 2008 (259)).  
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1.10.3 Specificity 

The specificity of an HIV-1 vaccine refers to an immune response that is targeted towards a 

particular region of the virus. This is largely a property of the vaccine immunogen and is 

discussed below where immunogens can be derived from the conserved or variable regions 

of the virus (Section 1.11). The induction of immune responses to vaccine epitopes is 

meaningless if the epitopes are not present in circulating viruses. Thus, the vaccine 

immunogen needs to closely match circulating viruses. Initial studies of HIV-1 infected 

individuals using the IFN-γ ELISPOT assay suggested that the specificity of the immune 

response obtained following vaccination may be critical for viral control (276,277). 

1.10.4 Polyfunctionality 

Polyfunctional T cells have been shown to possess superior capacity to control/suppress 

HIV-1 replication in LTNPs. In an effort to compare the capacity of CD8+ T cells from HIV-1-

infected progressors and non-progressors to produce different cytokines, Betts and 

colleagues (2006) measured five different functions of CD8+ T cells; secretion of IFN-γ, IL-2, 

TNF-α, MIP-1β, and expression of CD107a as a marker for degranulation. Interestingly, 

polyfunctionality (the capacity to simultaneously produce three or more cytokines) was 

associated with control of viral replication (278)  and is determined by how sensitively the 

antigen is recognised as well as viral sequence diversification (279). IFN-γ facilitates the 

up-regulation of HLA class I and II molecules as well as stimulate the loading of peptides 

onto HLA class I molecules, thus up-regulating the antigen-presenting function of this 

molecule (280-282). IFN-γ can also facilitate the induction of other cytokines, thus 

promoting the cytotoxic function of CD8+ T cells (148). IL-2 is an essential growth factor for 

T cells, TNF-α induces apoptosis of cells infected by virus (148), and MIP-1β activates 

granulocytes and attracts more T cells to sites of infection (283). In Betts’ study (278), 

LTNPs consistently maintained such functional CD8+ T cells. Polyfunctional T cell responses 

have also been implicated in the immunological control of other viral infections (reviewed 

by Seder et al., 2008; (284)). It has also been noted that polyfunctional cells secrete 

increased levels of cytokine on a per-cell basis (285). An effective T cell-based vaccine 

should generate such responses, particularly in the acute stages of HIV-1 infection. 
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1.10.5 Cytotoxicity 

Cytotoxicity (the ability to kill virus-infected cells) is equally important for the control of 

HIV-1 replication. Various studies have associated cellular cytotoxicity with reduced viral 

loads. Hersperger and colleagues (2010) detected an up-regulation of perforin, production 

of cytokines, and degranulation following stimulation with peptide pools to all HIV-1 

proteins in various HIV-1-infected groups, including ECs, LTNPs, and progressors. 

Interestingly, CD8+ T cells from elite controllers produced significantly more perforin and 

granzymes than those from progressors (172).  Further characterisation of the generated 

HIV-1-specific T cells highlighted that highly cytotoxic HIV-1-specific T cells were 

distinguished by up-regulation of perforin and IL-2 (172). An effective HIV-1 vaccine will 

therefore need to show production of these markers of cellular cytotoxicity. 

1.10.6 T cell Avidity 

The functional avidity (the capability of T cells to respond to low concentrations of antigen) 

of HIV-1-specific T cells may also be of importance for a T cell-based vaccine. High avidity 

CD8+ T cells can effectively clear HIV-1 and potentially suppress viral replication (286). A 

study by Mothe et al. (2012) on T cell responses to HIV-1 Gag p24 in controllers and non-

controllers showed comparable breadth and magnitude between the two groups. However, 

significantly higher avidity responses were observed in controllers but not in non-

controllers (287).  

1.10.7 Maturation phenotype 

The phenotype of CD8+ T cells is a key parameter of viral control. Fully differentiated HIV-

1-specific CD8+ effector cells were more frequently detectable in individuals who 

controlled the virus compared to those who did not (288-290). Central memory CD8+ T 

cells were associated with lower viral set points in acute phases of HIV-1 infection. 

Findings from the studies of Hansen and colleagues (266-268) mentioned below further 

emphasise the importance of effector functions in a T cell-based vaccine. However, it is 

critical that these T cells do not express any exhaustion markers like PD-1 (291-294). 



 

Chapter 1: Literature review  30 
 

1.10.8 Persistence of effector CD8+ T cells 

Live attenuated HIV-1 vaccines are not acceptable in humans (Section 1.12). However, 

administration of live attenuated SIV vaccines in non-human primates followed by viral 

challenge indicated that protection against viral infection might be a result of memory CD8+ 

T cell persistence in the lymph nodes (295,296). Studies of the RhCMV vaccine vector 

indicated that persisting CD8+ T cell responses correlated with reduction of viral load (266-

268). A total of 13 out of 24 animals given a recombinant live CMV-SIV vaccine restricted 

viral loads to below detection levels following challenge with the virulent SIVmac239. 

Although sterilising protection was not achieved, strong and persistent effector memory 

CD8+ T cells were responsible for controlling and maintaining the viral load through 

persistent antigen presentation. What was astonishing was that there was no rebound of 

viremia following the depletion of CD8+ T cells in monkeys that had cleared the virus (266-

268).  The vaccine also had incredible breadth, targeting 34 epitopes in Gag alone, while the 

targets recorded for other vectors have been 9 or 10 (297). This vaccine platform has not 

yet entered clinical trials. However, safer CMV vectors are under development (298).  

Live viral vectors have been considered for HIV-1 vaccine development. Such vaccines 

persistently express heterologous antigens inducing a durable and broadly effective 

immune protection (299). Such vectors will additionally need to induce robust immune 

responses at mucosal sites, which are the entry and replicative sites for HIV-1 (300).  

Preferential targeting of lymphoid tissues by such vaccines will also be an added advantage 

(296,301) as these organs are the sites of antigen presentation to T cells where the 

adaptive immune response is initiated (148). 

 

Some replication competent viral-vectored vaccines are currently under evaluation in 

Phase I and II clinical trials worldwide as reviewed by Parks and colleagues (302). These 

include the Tian Tan vaccinia virus (TT), Sendai virus (SeV), Vesicular stomatitis virus 

(VSV), a derivative of New York vaccinia virus (NYVAC; NYVAC-C-KC), and the measles 

virus (264,303). The TT vaccine expressing HIV-1 Gag, Pol, and Env was used to boost a 

DNA prime in a murine model. The heterologous prime-boost regimen showed a significant 

induction of HIV-1-specific antibody and cellular immune responses compared to 
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homologous vaccination regimens (304). A Phase I trial in China was completed using this 

vaccination regimen. The vaccine was safe and tolerable in study participants. The vaccine 

has now advanced to a Phase II clinical trial (303,305). 

 

Although replicating vectors seem attractive, there is a need to use safe vectors that do not 

cause anti-vector immunity or disseminated infection, particularly in resource-limited 

regions already burned with various infectious diseases. Thus, although there are desirable 

immune read-outs, some of them may have to be compromised for the safety of vaccine 

trial participants.  

 

1.11 IMMUNOGENS FOR T CELL-BASED VACCINES 

An optimal immunogenic antigen for a T cell-based HIV-1 vaccine will need to initiate an 

immune response to many diverse HIV-1 strains.  

1.11.1 First and second generation HIV-1 immunogens 

Initially, HIV-1 immunogens were derived from sequences of circulating or more virulent 

HIV-1 isolates. Isolates were also obtained from recent seroconverters. To obtain cross-

reactivity to all circulating viruses would be impossible with this approach, given a 35% 

amino acid difference in the HIV-1 Env protein between subtypes (206). It is noteworthy 

that the only vaccine trial that has shown some efficacy (204) included immunogens 

obtained from different natural HIV-1 strains, including the first strain of HIV-1 to be 

isolated (199,306). If the immunogens can be improved the vaccines should be more 

efficacious. 

Taking HIV-1 diversity into consideration and in an attempt to reduce sequence differences 

between the antigen and circulating viruses, a second generation of immunogens was 

developed. This approach involved constructing the HIV-1 immunogens based on 1) 

consensus sequences of amino acids derived from aligned natural isolates (206,307), 2) a 

most recent common ancestral sequence derived from an appropriate evolutionary model 

(206), or 3) a centralised isolate on a phylogenetic tree, centre of the tree, where the 
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evolutionary distance to all isolates on the tree is minimised (308). The drawback of these 

types of artificial vaccine immunogens is that they will need to be constantly updated as 

long as there are more entries of sequences in a database. Constructing Env immunogens in 

this way is also a challenge.  

At the University of Cape Town, Williamson et al., 2003 (309) obtained a consensus 

sequence from 111 HIV-1 strains isolated from individuals with acute and chronic stages of 

infection from different provinces in South Africa. The sampling cohort included female sex 

workers, women attending an antenatal clinic, and men who were attending a sexually 

transmitted disease clinic. A naturally occurring isolate that had the closest sequence 

similarity to the generated consensus sequence was then selected for use in vaccine 

immunogens. A Phase I clinical trial (HVTN 073) was conducted in South Africa and USA 

using DNA and MVA vectors expressing genes from this isolate (303,310). An extended trial 

(HVTN 086) with 184 volunteers was initiated in 2011. This extension included a gp140 

protein component to the vaccine with an adjuvant administered in different combinations 

with the MVA and DNA vaccines described above (303). The vaccines were safe, tolerable, 

and immunogenic in both studies. The results also indicated that the more vaccinations 

individuals were given, the better and prolonged the immune response. Unfortunately, and 

as in the RV144 Thai trial (204), the antibody responses waned after 6 months from the 

last vaccination.  

1.11.2 Third generation immunogens 

1.11.2.1 Mosaic immunogens 

In an effort to address the tremendous diversity of HIV-1, new generation immunogens can 

be designed computationally. Sequences from naturally occurring HIV-1 isolates are 

entered into a computer program for repeated in-silico recombination. The recombination 

mimics that which happens naturally in HIV-1 evolution. The resultant artificial sequence is 

made up of fragments of naturally occurring HIV-1 proteins. The process is 

bioinformatically optimised using computer algorithms and the output recombinant 

protein used as an immunogen (Figure 1.8). Mosaic immunogens are bioinformatically 

optimised to increase the coverage of both CD8+ and CD4+ T cell epitopes from natural 
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sequences with the hope of blocking the escape pathways of HIV-1 (1,311-316). Although 

the recombination is artificial, the natural processing and expression of the epitopes is 

preserved. Infrequent epitopes are also excluded through this process. The recombination 

can be done on subtype-specific or on group M sequences and the number of input 

sequences is up to the investigator. One can also chose to have a monovalent, bivalent, 

trivalent or whatever number of desired output sequences from the artificial 

recombination. The chosen number of output sequences should however be used as one 

“vaccine cocktail” (1).  

 

Figure 1.8: Schematic for the generation of mosaic immunogens. Viral sequences (top single coloured 

lines with black regions) are obtained from natural isolates. The coloured regions represent highly variable 

regions within HIV-1. The black regions represent less variable regions of HIV-1. Artificial recombination 

using computer algorithms generates the mosaic sequences. Mosaic immunogens include the most commonly 

occurring T cell epitopes from the input sequences. The resultant recombinants can have the variable regions 

in a mono-, bi-, trivalent, or more output sequences. Adapted from McMichael et al., 2014 and Fischer et al., 

2007 (1,270). 

A summary of studies done using mosaic immunogens is given in Table 1.3. It is interesting 

that although mosaic immunogens were initially designed to elicit T cell immune responses 

they induce antibody responses too [237,324]. It is suggested that this may be a result of 

better cross-presentation of the Envs during the selection of antibodies and affinity 

maturation. The presence of a third Env in a trivalent immunogen would have also  
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Table 1.3: Preclinical studies done using HIV-1 mosaic immunogens 

HIV-1 
clade/group and 
Immunogens  

Valency Vaccine 
vector 

Study 
subjects 

Key findings Reference 

Group M Env 1, 2 and 
3 

DNA mice Bi-and tri-valent mosaic vaccines elicited an increased breadth (8 peptide pools) 
compared to the monovalent mosaic vaccine and vaccines with immunogens obtained 
from natural sequences (2 peptide pools). Mosaic vaccines elicited a predominant CD8 T 
cell response 

(317) 

Group M Gag, Pol, 
Env 

2  rAd5 and 
rAd26  

Rhesus 
macaques 

Vaccines expressing mosaic immunogens elicited 4 times more immune responses 
compared to those expressing consensus or natural sequence immunogens. Mosaic 
vaccines induced T cell responses with greater depth* than antigens obtained from 
natural or consensus sequences. 

(318) 

Group M Gag, Nef 4 DNA prime-
Vaccinia 
virus boost 

Rhesus 
macaques 

Increased breadth, depth, and magnitude of responses were observed to the mosaic Gag 
immunogen compared to consensus immunogens. Cellular immune responses to Nef 
were comparable between the two types of immunogens. 

(319) 

Groum M Gag 2 rAd26 Human 
PBMCs 

Mosaic immunogens elicited cross-clade immune responses that were superior that those 
induced by natural antigens. Mosaic immunogens are processed in a manner that causes 
epitope recognition by human CD8+ T cells 

(320) 

Group M Env 2 and 3 DNA prime 
rAd5 boost 

Rhesus 
macaques 

The trivalent vaccine induced T cell responses that were comparable to those induced by 
the bivalent vaccine. Neutralising antibody responses elicited by the trivalent vaccine 
were significantly higher than those elicited by the bivalent vaccine. The polyvalent 
mosaic immunogens elicited stronger cellular immune responses compared to those 
elicited by consensus and natural immunogens. 

(312) 

Group M Gag, Pol, 
Env 

2 rAd26, 
rAd35, and 
MVA 

Rhesus 
macaques 

Challenge using a high dose of a difficult-to-neutralise heterologous virus (SHIV-
SF162P3) lowered the risk of infection by approximately 90%. Correlates of protection 
included nAbs, ADCD, and ADCP.  

(224) 

Group M Gag and 
Env independently 
administered in 
separate animal 
groups 

2 DNA prime-
rAd5 boost 

Rhesus 
macaques 

T cell immune responses elicited by the mosaic vaccines were robust compared to those 
elicited by vaccine expressing natural antigens. Immune responses elicited by SIV Env 
immunogens are essential for protecting non-human primates against SIV infection. 
However, mosaic vaccine-elicited humoral responses were lower and very distinct from 
those elicited by vaccines expressing natural immunogens 

(321) 

Group M Env 1 of 2 Trimeric 
protein 
with CpG/ 
Emulsigen 
adjuvants 

Guinea pigs Higher neutralising antibody titres were elicited against subtype B viruses than did a 
clade C trimeric Env did. The subtype C Env however elicited more neutralising antibody 
titres against subtype C and A viruses. Vaccination of guinea pigs with the two Env 
trimmers elicited superior antibody responses than the Envs did alone. 

(316) 

*depth – ability to recognise more variants within a given epitope;  PBMCs – peripheral blood mononuclear cells; nAb – neutralising  antibody; ADCD – antibody-
dependent complement deposition; ADCP – antibody-dependent cellular phagocytosis 
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increased the number of Env epitopes to elicit such a response [324]. Increasing the 

number of output sequences simultaneously increases the coverage of epitopes from the 

input sequences. Unfortunately, this also means that the number of rare epitopes is 

included. Thus, di- or tri-valent output sequences are regarded as optimal [1,324].  

Mosaic immunogens can also been used for making vaccines against other diverse viruses. 

Bi- and tri-valent adenoviral-vectored vaccines expressing Hepatitis C mosaic antigens 

induced potent cellular immune responses in mice. These were superior to the immune 

responses elicited by mice immunised with vaccines expressing natural immunogens [329]. 

Fenimore and colleagues computationally assessed the potential of using mosaic vaccines 

against filoviruses like Ebola [325]. They reported that the mosaics “substantially 

outperformed” vaccines designed from natural strains. An extension of the study using 

DNA vaccines expressing the filoviral mosaic envelope antigens was done by Shedlock and 

colleagues in a murine model [326]. Both humoral and cellular potent immune responses 

were induced by the vaccines and the antibody responses were strong enough to protect 

animals against virus challenge. Clinical trials to evaluate the safety and immunogenicity of 

these immunogens are being planned (303). It will be through such trials that the utility 

and potential of these immunogens can be further evaluated. It will be exciting to see if the 

results obtained in animal studies can also be duplicated in humans. Clinical trials will also 

be able to inform on the ability of HIV-1 to escape immune pressure exerted by mosaic 

vaccines. 

1.11.2.2 Conserved immunogens 

HIV-1 has functionally conserved regions within the Env, Gag, Pol, and RT (194,315,322). 

As the name suggests, conserved immunogens are derived from the most functionally 

invariable regions of HIV-1 (Figure 1.9).  The output is a single chimeric protein sequence 

comprised of consensus amino acid regions from HIV-1 isolates [337,338]. The rationale is 

to circumvent any viral escape mutations which are often within the variable regions of the 

virus. Should there be any escape mutations due to the immune pressure elicited by 

conserved antigens, it will come at a cost to the virus [339,340]. An added advantage of 
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using conserved immunogens is that the processed epitopes can be targeted by different 

HLA types [337,341]. 

 

Figure 1.9: Schematic for the generation of conserved immunogens. Viral sequences (top single coloured 
lines with black regions) are obtained from natural isolates. The coloured regions represent highly variable 
regions within HIV-1. The black regions represent less variable/conserved regions of HIV-1. The conserved 
immunogen can be translated from the whole HIV-1 genome or from specific genes (323). The resultant 
recombinant is a single sequence made only of the conserved regions. 

It has also been demonstrated that during the transition from acute to chronic HIV-1 

infection, CD8+ T cell targeting of conserved regions correlates with reduced levels of virus 

than targeting of more variable regions (324). Like other HIV-1 antigens, conserved 

immunogens can be expressed from different types of vectors for use in prime-boost 

vaccinations, and this has been done both in animal models (325-327) and clinical trials 

(328) with encouraging results. In the study by Borthwick and colleagues, T cells induced 

by immunisation with conserved antigens were able to inhibit HIV-1 replication in a viral 

inhibition assay. 

In a recent study, participants received two doses of adenoviral-vectored vaccines 

expressing clade A env as well as a gag, rt, int and nef fusion immunogen. Blood was drawn 

and PBMCs isolated. Using a viral inhibition assay, they showed a correlation between HIV-

1 replication control and cellular immune responses to the conserved regions of the virus 

(329). In another study involving 980 untreated HIV-1 infected patients, Mothe and 

colleagues (2014) used 410 overlapping peptides to determine epitopes associated with 
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virological control. Interestingly, the majority of the epitopes were highly conserved and 

were in Pol or Gag p24. Moreover, their participants were from Peru, Spain, USA and South 

Africa and infected with either subtype B or C virus (330) yet the results were similar 

despite the different geographical sampling and virus clade differences. 

While conserved immunogens look promising, their coverage is not as extensive as that of 

mosaic immunogens.  

 

1.12 VECTORS FOR T CELL-BASED HIV-1 VACCINES  

Most vaccines against infectious diseases use whole killed, or attenuated versions of the 

infectious agent.  Whole inactivated SIV administered in conjunction with a formalin 

adjuvant protected macaques against SIV challenge (331,332). These approaches cannot be 

applied for making an HIV-1 vaccine.   There are risks involved, including that of reversion 

to infectious virions, recombination between the attenuated and infecting strain, 

modifications of the host genome due to provirus integration, as well as bad batches that 

may contain live virus (reviewed by Whitney et al., 2004 (333)) . There is therefore a need 

to use host vectors as “carriers” of the HIV-1 antigens (reviewed by Paris et al., 2010 

(334)). The most common vectors used, particularly for the induction of T cell responses, 

are plasmid DNA, replication competent viruses, attenuated viruses, and bacterial vectors. 

In this thesis, Mycobacterium (M) bovis Bacille Calmette Guérin (BCG), DNA, and modified 

vaccinia Ankara (MVA), were used as vaccine vectors and will be reviewed in more depth. 

1.12.1 BCG as an HIV-1 vaccine vector 

BCG is a live attenuated vaccine against tuberculosis (TB) that was developed in the early 

20th century at the Pasteur Institute (335), (336). The vaccine was generated following 

more than 200 passages of a virulent tubercule bacillus strain on glycerin-bile-potato 

media (337,338) and intensive in vitro and in vivo safety evaluation (339,340). Since then, 

BCG has been administered to over 4 billion infants and is accessible to 80% of infants 

globally (341-343). This makes it the most widely used vaccine worldwide, and BCG 
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vaccination does correlate with a TB non-specific reduction in infant mortality (344,345). 

This, together with other reasons listed in Table 1.4 make BCG a potential vector for an 

HIV-1 vaccine. The most attractive feature for using BCG as an HIV-1 vaccine vector is its 

affordability. This is associated with ease of manufacturing the vaccine and that an 

extensive and costly cold chain to maintain efficacy is not a prerequisite. Approximately 

70.8% of global HIV-1 infections are from resource limited countries. A cost effective 

vaccine is therefore desirable in the regions most affected by the HIV-1 epidemic. However, 

there are also some limitations associated with the use of BCG as a vaccine vector for HIV-1, 

and these are listed in Table 1.4. 

Vaccinating immunocompromised individuals against TB with BCG is a major setback. 

Children on highly active antiretroviral therapy (HAART) develop BCG complications 

including ipsilateral axillary lymphadenitis and disseminated BCG infection which 

increases mortality (346). Strategies have however been developed for the production of 

safer strains of BCG, particularly auxotrophic BCG strains that have received much 

attention. These strains have mutations in genes required for the production of essential 

growth compounds, and so cannot replicate unless supplemented with the necessary 

growth compounds (347,348)-(349,350). Safety profiles of auxotrophic recombinant (r) 

BCG strains have been demonstrated in immune compromised animal models (347,351-

353). Attenuated BCG strains have also been shown to not interfere with the tuberculin 

skin test (351). In the event that HIV-1-infected and immunocompromised individuals 

might unintentionally get enrolled in BCG-vectored HIV-1 vaccine campaigns, it is essential 

to use the safer BCG strains as vectors (354). Furthermore, since safer strains of BCG are 

being developed against childhood TB, it is important to use these strains as HIV-1 vaccine 

vectors for use as dual vaccines.  Methods of generating better BCG vaccines include 

deleting the urease gene and incorporating a membrane-perforating listeriolysin (hly) gene 

from Listeria monocytogenes. This rBCGΔUreC::hly TB vaccine is currently under Phase II 

clinical assessment as rBCG VPM1002 (355-358). BCG localizes within the phagosomes of 

antigen-presenting cell where it prevents maturation and phagolysosome fusion by 

neutralizing the phagosomal compartment. Phagosomes that harbor rBCGΔureC::hly, 

however, have a low pH due to the urease deletion which catalyses  
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Table 1.4: Advantages and disadvantages of using BCG as an HIV-1 vaccine vector 

Advantages Reference 
Low cost of manufacturing (359) 
Can be stored at room temperature (359-362) 
Commercial production is well established (363) 
Can prime immune system for VLP, protein, or viral vectored vaccine boost (354,364-371) 
Safe for healthy individuals. Safer strains have been developed for immunocompromised individuals (372,373) 
Elicits cellular immune responses that can last up to 50 years as it infects and persists within antigen-presenting 
cells 

(372-374) 

BCG has adjuvant properties within its cell wall (375) 
Can be administered at birth or anytime thereafter (376)  
Can be administered orally, targeting the gastrointestinal mucosa which, together with vaginal mucosa,  are the 
primary sites of entry in HIV-1 natural infections 

(367,376) 

Large foreign genes can be incorporated into the BCG genome for expression (368,377,378) 
Not affected by maternal antibodies (372) 
Has been tested as a vector for other vaccines (379-383) 
It can be genetically modified  to make it potent as a vaccine vector (347,384,384-387) 
Antigen can be expressed as a membrane-anchored or secreted protein to improve immunogenicity (356,382,388-390) 
Mucosal vaccination induces strong immune responses to HIV-1 and SIV antigens (391,392) 
  
Disadvantages  
Causes disseminated disease in immunocompromised individuals (338,393-396) 
Sensitizes for the tuberculin skin test (351,397) 
Causes BCG—induced immune reconstitution inflammatory syndrome in children receiving ARVs (346,398) 
Protective immunity against TB wanes over time (399,400) 
BCG grows very slowly in vitro  and can form clumps  in liquid vaccine cultures which can compromise vaccine 
stocks 

(401) 

rBCG expressing full-length HIV-1 Env is unstable. Truncated forms of HIV-1 Env have to be used (361,370,377,402,403) 
It is effective against childhood TB but not so effective in adults. It is also less effective in tropical regions like 
India and  Africa 

(340,404-409) 

There is lack of an animal model that truly reflects the use of BCG as a suitable vector for HIV-1 (410) 
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ammonia production. The resultant acidic environment is optimal for the hly activity 

(411) and phagosome-lysosome fusion, which in turn enhances apoptosis, releasing 

rBCG-derived antigens into the cytosol and potentially improving the immunogenicity 

of the vaccine (358,412,413). The HLY protein is in turn degraded in the non-acidic 

cytosol, preventing host cell damage (414). Results of the clinical trial could provide 

platforms for improved BCG vectors for HIV-1 antigen delivery. 

Many rBCG vaccines have been tested extensively to express antigens from bacteria, 

parasites and viruses (356,379-383,390,415-418), highlighting the potential of using it 

for delivery and expression of HIV-1 antigens. Studies of rBCG expressing HIV-1 

antigens in prime-boost vaccination regimens have been conducted in various animal 

models to date, including mice, guinea pigs, and baboons ((419)reviewed by Chapman 

et al., 2010 (362,362)). The results obtained indicate that rBCG can be used as a vaccine 

vector that can induce both humoral and antigen-specific cellular immune responses to 

HIV-1. Ami and colleagues (2005; (371)) used recombinant BCG Tokyo (rBCG-SIVgag) 

and replication incompetent vaccinia virus expressing SIV Gag (rVV-SIVgag) to 

vaccinate cynomolgus macaques using a prime-boost regimen. In animals that received 

a rBCG-SIVgag prime and rVV-SIVgag boost regimen, high levels of Gag-specific IFN-γ 

responses were induced.  The vaccinated animals were challenged with pathogenic 

SHIV strains, but were protected from infection for up to a year. The alternative prime-

boost regime or either vaccine alone neither induced similar immune responses nor 

protected animals against SIV challenge. Thus, BCG-vectored HIV-1 vaccines elict potent 

immune responses when used as a prime in heterologous prime-boost vaccinations. 

Such regimens can protect non-human primates against SHIV challenge. In another 

study, Jensen and colleagues (2013 and 2014; (420,421)) orally vaccinated neonatal 

macaques with a Mycobacterium tuberculosis (Mtb) H37Rv prime at birth expressing SIV 

Gag and Env. They used a strain with a panCD, leuCD and secA2 triple deletion. The 

panCD and leuCD deletions are known to reduce the replicative capacity of the vector, 

thus increasing safety. The secA2 deletion on the other hand, improves immune 

recognition and reduces immune evasion, thus increasing the vaccine immunogenicity 

(420,422-424). The animals were boosted with MVA expressing the same antigens. 

Although the vaccination did not prevent SIV infection, animals that produced 

antibodies to SIV Env had significantly lower viral loads and set points than animals that 
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were not vaccinated (420,421). In the current study, an auxotrophic BCG mc26000 

strain with a panCD deletion (BCGΔpanCD; constructed in the same way as MtbΔpanCD; 

(425)) was used as a vaccine vector and is described in Section 2.1. BCG-vectored HIV-1 

vaccines are also yet to be evaluated in clinical trials.  

1.12.2 DNA as an HIV-1 vaccine vector 

DNA-based vaccines are the simplest means of inducing immunity that is broad. Their 

construction involves cloning one or more viral antigens into a DNA plasmid vector 

under the expression of a transcriptionally efficient promoter. The antigen presenting 

cells (APCs) within sites of vaccination are directly transfected with the vaccine or 

uptake the immunogen from transfected non-immune cells. The APCs then migrate to 

primary lymphoid organs, cross-present the target antigen, and initiate immune 

responses (426-430). The first of such vaccines was described in 1993 for the 

expression of an influenza protein in a murine model (431). DNA vaccines have since 

been used as vaccine vectors for cancer (432,433), bacterial, viral, and parasite 

infections (reviewed by Alarcon et al., 1999 (434)), including hepatitis B (435), malaria 

(436), and notably HIV-1 (437-440). Some advantages and disadvantages of using DNA 

as HIV-1 vaccine vectors are listed in Table 1.5. 

Table 1.5: Advantages and disadvantages of using DNA-based HIV-1 vaccines 

Advantages References 
Relatively easy and affordable to produce; thermostable which is important for 
storage and shipping 

(441-445)  

Versatility. Can be easily manipulated to enhance expression of foreign antigens (441) 
Stable; foreign genes rarely get knocked out during in vitro vaccine production (441) 
Safe, with no risk of virulence or anti-vector immunity and can be administered 
multiple times 

(446,447) 

In vivo antigen expression results in post-translational modification. The 
expressed protein therefore, closely resembles the normal structure of the 
infectious agent 

(434) 

They can generate both cellular and humoral immune responses (448) 
They can induce persistent immunogenicity (434) 
Multiple plasmid vaccines can be mixed as used as a broad spectrum vaccine (443) 
  
Disadvantages  
Insertion of DNA vaccine into the host genome may results in cancerous cells (443) 
Conventional and affordable vaccination routes result in sub-optimal 
immunogenicity in clinical trials 

(449,450) 

Adapted from Khan 2013 (439)  
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DNA-based vaccines expressing HIV-1 antigens induce antigen-specific T cell responses 

in non-human primate models. The elicited immune responses are even strong enough 

to partially or completely protect the animals against SIV challenge (451,452). 

When used in homologous vaccination regimens in clinical studies, DNA vaccines elicit 

suboptimal immune responses that are short-lived, of low magnitude, and biased 

towards CD8+ T cell responses (reviewed by Lu et al., 1998 (453)). This could be a result 

of one or more of the following; low transfection efficiency, insufficient transcription of 

the antigen, insufficient DNA uptake by non-APCs, and low antigen presentation. DNA-

based HIV-1 vaccines, however, prime cellular immune responses to candidate viral 

vectors very efficiently. Thus, they have been used extensively in heterologous prime-

boost vaccinations with MVA (225,310,328,454-456), NYVAC (457,458), fowlpox (459), 

and adenoviruses (219,460); (reviewed in (225,334,440,457)). DNA vaccines also elicit 

a more balanced immune response between CD4+ and CD8+ T cell responses in 

heterologous vaccination regimens (440).  

The potency of DNA-based HIV-1 vaccines can be improved by electroporation means of 

delivery (448,461-465), bioinjector or gene gun means of immunisation (466-468), 

combined vaccination with adjuvants and cytokines like IL-15, IL-2, and IL-12 (469-

471), as well as co-administration with proteins (472-474). Delivery and 

immunogenicity of antigens by DNA vaccines can also be enhanced by use of improved 

promoters, use of enhancer elements (475-477), codon optimisation of the immunogen, 

and incorporation of signal peptides that aid trafficking of expressed antigens 

(478,479).  

Over 80 clinical trials have been conducted using DNA as an HIV-1 vaccine vector, alone 

or in combination with protein or viral vectors (303). The majority of the trials were 

Phase 1 safety studies. Efficacy trials with DNA prime vaccines included the terminated 

STEP, Phambili, and HVTN 505 trials (Table 1.2; Section 1.9). While DNA vaccines are 

safe and immunogenic, they do need to be used in combination with the right vector to 

boost the primed immunity.  
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1.12.3 Poxviral vaccine vectors 

Poxviruses are divided into the Chordopoxviridae and Entomopoxviridae subfamilies. 

Poxviruses that can complete their replication cycle in humans belong to the 

Chordopoxviridae subfamily (Figure 1.10; (480)).  

Poxviruses are large, brick-shaped enveloped viruses that have a dumb-bell shaped core 

within which lies viral enzymes and a double-stranded DNA genome of up to 360kb. The 

genomes have over 200 open reading frames reviewed by Brave et al., 2007 and Moss 

2013 (481,482). The poxvirus genome has a central conserved region and two external 

variable regions on either side of the conserved region (Figure 1.11A and B).  

Replication takes place in the cytoplasm as shown in Figure 1.12. They code for almost 

all of their viral replication machinery, thus requiring minimal host assistance for DNA 

replication and transcription. The replication cycle can be divided into the pre-

replicative stage (controlled by early gene products), intermediate stage, and a post 

replicative stage (controlled by late gene products) (483).  

 

Figure 1.10: Phylogenetic schematic of the Poxviridae family. The most common genera and species 
are included. Vaccinia virus, from which MVA and NYVAC are derived, is highlighted in red. Canarypox 
virus, the vector in which the RV144 ALVAC vaccine was used is highlighted in blue 
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Figure 1.11: A. Schematic of a poxviral genome (not drawn to scale). Adapted from Mercer et al., 2007 
(484) B. ORFs of Vaccinia virus strain Copenhagen. Genes are coloured using a sliding scale; dark blue 
– genes present in all pox viruses; green – genes present in 1 -3 poxviruses; pink dots – genes absent or 
mutated in modified vaccinia Ankara (MVA). The arrows represent the direction of transcription. Adapted 
from Antoine et al., 1998 and Lefkowitz et al., 2006 (485,486). 

A. 

B. 
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Figure 1.12: The reproductive cycle of vaccinia virus. Infectious extracellular enveloped virus (EEV) 
attaches and infects a susceptible host cell (1). Primary uncoating takes place, and the viral core is 
released into the cytoplasm and early mRNAs synthesised (2). Early mRNAs exhibit features typical of 
cellular mRNAs and are translated by the cellular protein-synthesizing machinery (3). Some early 
proteins are secreted from the cell and have sequence similarity to cellular growth factors, which can 
induce proliferation of neighbouring host cells, or are proteins that counteract host immune defense 
mechanisms (4). Synthesis of early proteins induces a second uncoating reaction in which the core wall 
opens and a nucleoprotein complex containing the genome is released from the core (5). Other early 
proteins catalyze the replication of the viral DNA genome (6). Newly synthesized viral DNA molecules can 
serve as templates for additional cycles of genome replication (7) or as templates for transcription of viral 
intermediate-phase genes as required host cell factors like Vitf2 (8). The proteins encoded by 
intermediate mRNAs (9) include those necessary for transcription of late-phase genes (10). The latter 
genes encode the proteins from which virions are built as well as the virion enzymes and other essential 
proteins that must be incorporated into virus particles during assembly (11). Viral membrane proteins 
are unglycosylated, and the role of cellular membranes in early stages of assembly is controversial (12). 
The initial assembly reactions result in formation of the immature virion (IV; 13). This is a spherical 
particle delimited by a membrane that may be acquired from an early compartment of the cellular 
secretory pathway. The IV matures into a brick-shaped intracellular mature virus (IMV; 14) which is 
released only when cells are lysed (15). However, the IMV can acquire a second, double membrane from a 
trans-Golgi or early endosomal compartment to form the intracellular enveloped virion (IEV; 16). The 
IEVs move to the cell surface on microtubules where fusion with the plasma membrane forms cell-
associated virions (CEV; 17). These CEV induce an actin polymerization that promotes a direct transfer to 
surrounding cells (18) or they can dissociate from the membrane as extracellular enveloped virus (EEV). 
About 85% of the virions remain within infected cells and therefore lack the outer external membrane 
naturally found on released virions. Taken from Flint et al., 2003 (487). 
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Several factors make poxviruses attractive as vaccine vectors. 1) There is a lack of 

genomic integration into the host DNA due to independent cytoplasmic replication; 2) 

they are able to induce humoral and cellular immune responses to heterologous 

antigens; 3) recombinant poxviral-vectored vaccines can be freeze-dried. Such vaccines 

are thermostable, and there are therefore low costs associated with ease of 

manufacturing, delivery, and administration; 4) large and multiple foreign DNA 

sequences can be inserted into poxvirus genomes; 5) high titre vaccine stocks can be 

prepared from chicken embryo fibroblasts (CEFs) and baby hamster kidney (BHK) cells.  

Various poxviruses (MVA, NYVAC, Fowlpox, and Canarypox) have been used as vectors 

for HIV-1 vaccines in 85 completed, 12 ongoing, and 5 scheduled clinical trials (303).  Of 

6 trials involving high risk individuals in Phase IIb and III trials, only one consisting of a 

canarypox-based vector prime and a protein bost was modestly protective (Table 1.2; 

(204)). There is therefore now much interest in using poxviruses as vaccine vectors. Our 

lab has used MVA (310,488) and Lumpy skin disease virus (489-491) as vaccine vectors 

for HIV-1 immunogens. We have also recently characterised local isolates of 

Avipoxviruses which are potential vaccine vectors (492-494). MVA was used as a 

vaccine vector in this project, and is reviewed in the next section. 

1.12.3.1 MVA as a vaccine vector 

Vaccination of individuals with VACV resulted in the eradication of smallpox in 1979 

(54). Infrequent, but serious and unacceptable complications were associated with 

vaccination using some VACV strains. This led the scientific community to develop safer 

derivatives of smallpox vaccines, which are now being used as vectors for cancer (495-

498) and other infectious diseases including tuberculosis (499), respiratory illnesses  

(500,501), and HIV (reviewed by  Gomez et al., 2008 and 2012 (497,502)).   

MVA is a highly attenuated strain of a Turkish VACV that is severely host restricted. In 

an effort to eradicate smallpox by producing host restricted and safer vaccines, Mayr 

and colleagues produced MVA following 572 passages of chorioallantois vaccinia virus 

(CVA) in CEFs at the Institute of Infectious diseases and Zoonoses (previously known as 

Institute of Medical Microbiology, Infectious and epidemic diseases) at the University of 

Munich, Germany (503). In 1974, over 120 000 individuals were vaccinated with MVA 

against smallpox in Germany.  Strikingly, none of the MVA-immunised individuals had 
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severe adverse reactions as had been previously reported with VACV vaccinations 

(504,505). The molecular basis associated with MVA attenuation and host restriction 

was only uncovered about two decades later. It was discovered that independent 

deletions and mutations in six large genomic regions representing 15% of the CVA 

genome were lost during the 572 passages (Figure 1.11; (485,506)).  The majority of the 

genes deleted affect VACV host interaction and immune evasion (485,507). 

Although MVA efficiently infects most mammalian cells, its replication is abortive soon 

after the formation of immature virions (Figure 1.12, stage 13), meaning the virus does 

not replicate or spread to neighbouring cells (508). However, viral and foreign genes 

can still be efficiently expressed. MVA is therefore a safe and effective antigen delivery 

platform (508). There are additional features of MVA that make it an attractive vaccine 

vector. Advantages and disadvantages of using MVA as a vaccine vector are listed in 

Table 1.6.  

Table 1.6: Advantages and disadvantages of using MVA-based HIV-1 vaccines 

Advantages References 
MVA cannot complete its replication cycle in humans, therefore there is no risk 
of it spreading to neighbouring cells following vaccination. Its safety record was 
evident in the smallpox vaccination campaign. It can be safely administered to 
immune-compromised individuals and neonates 

(505,508-510) 

Deletion of immune-modulatory genes results in a rapid local immune response 
at the point of infection. MVA thus has adjuvant properties and has the potential 
of inducing long-lasting immunity 

(485,511) 

Large and multiple foreign DNA sequences can be inserted into MVA genomes (512) 
Able to induce humoral and cellular immune responses to heterologous 
antigens 

(513,514) 

Mucosal vaccination induces site-specific immune responses (515) 
High titre vaccine stocks can be prepared from CEFs and BHK cells (484,509) 
  
Disadvantages  
Recombinant MVA construction is a lengthy process Personal experience;  

(484,516) 
Transgenes inserted into the delI and del III regions can be unstable (517); reviewed in 

(518) 

 

Since smallpox was eradicated and vaccination ceased in 1979, people up to 35 years of 

age would not have been exposed to either Variola virus or vaccinia virus. The majority 

of the target population for HIV-1 vaccination would be individuals who were not 

immunised against smallpox; thus, there would be a low prevalence of anti-vector 
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immunity. MVA is therefore unique in that it provides the safety of an attenuated or 

killed virus vaccine because of its limited capacity to replicate in human cells, yet 

provides the immunogenicity of a live virus vaccine with its ability to express foreign 

antigen. 

There are three types of promoters that have been identified in VACV, early, 

intermediate, and late (519). Antigens that are expressed by strong late promoters 

induce a strong humoral immune response (520) while antigens transcribed by early 

promoters seem to induce mostly cytotoxic T lymphocyte responses (521,522). The 

commonly used poxvirus promoters have early and/or late activity and include the 

p7.5, modified (m) H5, and the short synthetic promoter, pSS (523-525). 

In murine studies, correlation has been shown between the magnitude of immune 

responses and the levels of foreign antigen expressed by recombinant MVA (526). Mice 

immunised with a vaccine that highly expressed an HIV-1 Env had antibody titres that 

were 15 times more than in mice immunised with a weaker Env expressing 

recombinant vaccine. The Env-specific T cell responses were also many magnitudes 

greater in the higher expressor. In the same study, the Env responses did not negatively 

affect the Gag responses induced by the same vaccine. In a more recent study, Isshiki 

and colleagues compared Env expression from a recombinant VACV under the 

expression of two different promoters, a moderate early/late p7.5 and a strong early 

/late pSFJ1-10 promoter (527). Interestingly, the p7.5 promoter induced stronger 

antigen-specific T cell responses, while the pSFJ1-10 promoter induced stronger Env-

specific antibody responses. Thus, a desired immune response can be induced by 

manipulating poxviral vector promoters. 

Recently, a naturally occurring promoter, MVA13.5L, was identified (528). It can induce 

potent immune responses of foreign antigens and drives very early gene expression. 

Another VACV transcriptional promoter derived from the pS promoter was designed in 

silico, Late-Early Optimised (LEO; (529)). Enhanced gene expression, which correlated 

to CD8+ T cell immune responses in mice, could be detected within an hour of infection. 

Using an appropriate promoter in recombinant poxvirus vaccine studies is therefore 

crucial in eliciting the desired immune responses. 
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There have been 24 Phase I and 5 Phase II clinical trials that have been completed 

worldwide using MVA alone or in combination with other vaccine vectors expressing 

different HIV-1 subtype genes. Of the ongoing clinical trials, there are 6 in Phase I trials, 

and 2 in Phase II (303). One of these is being done in South Africa (HVTN 086, SAAVI 

103) with 184 adult participants.  Vaccines that were previously made in our lab, SAAVI 

DNA-C2 and SAAVI MVA-C (488,530), together with a Novartis subtype C gp140 in 

MF59 adjuvant are being evaluated for their safety and immunogenicity. 

Recently, a Phase IIa clinical trial (HVTN 205) was conducted using a DNA and MVA 

prime boost regimen (225,226). The vaccines produced VLPs in vitro that displayed 

membrane-bound HIV-1 Env in its trimeric form (531-533) and induced predominant 

gp41-specific antibodies. This study demonstrated antibody responses that were 

durable and only declined by <3-fold 6 months after completion of vaccination. When 

the gp120 protein was used to boost a canarypox prime vaccination in the RV144 

vaccine efficacy trial (Table 1.2; (204)), and when it was used with an adjuvant in a 

prime/boost regimen (534), the magnitudes of binding antibodies had 10-fold 

decreases 6 months after vaccination (535). These results are exciting since the durable 

Env-specific antibody responses have the greatest capability of preventing HIV-1 

infection. The magnitude of T cell responses in the HVTN 205 trial was also durable, 

declining by 1.6 – 2.1- fold 6 months after the last vaccination (225). The T cell 

responses generated largely targeted Gag, and not Env as in the case of the DNA/rAd5 

prime/boost regimen (HVTN 204; (536)), or Pol as in the case of the STEP study (Table 

1.2;(259)). Over 70% of responding T cells induced by the DNA/MVA vaccinations in 

this study produced 2 or 3 cytokines. This was greater breadth compared to those 

obtained using rAd5-based vaccines (259,536).  The vaccines are now being considered 

for an efficacy trial. 

 

1.13 SUMMARY  

HIV-1 infections are among the leading causes of death in low income countries (Section 

1.3; (25)). Current measures of preventing HIV-1 infection are largely dependent on 

patient adherence. Vaccination has proven to be the most efficient and economical 
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means of preventing and eradicating viral infections as well as saving millions of lives 

(reviewed by Rappuoli and Aderem 2011; (215)). The RV144 Thai trial has given the 

scientific community hope that an effective HIV-1 vaccine is possible to obtain and free 

the human population of this devastating disease (204). A vaccine that elicits bNAbs 

towards HIV-1 would be desirable to achieve sterilising immunity (Sections 1.6 and 

1.8.2). There is also a need for the vaccine to induce cellular immune responses as these 

have been shown to lower viral load and slow disease progression in natural infection 

by LTNPs and ECs (reviewed by McMichael and colleagues 2010; (149)). Notably, these 

responses are targeted towards Gag (Section 1.6). T cell immune responses have also 

been associated with disease control in SIV and SHIV vaccine studies using non-human 

primates (reviewed by Genovese et al., 2013; (190)).  If the T cell read outs are 

appropriate (Section 1.10), SIV infections can also be cleared from non-human primates 

(266-268). Cellular immune responses are also essential for killing cells infected with 

any virus that may escape neutralisation by antibodies (reviewed by Wei et al., 2003 

and Moore et al., 2009; (537,538)). T-cell based HIV-1 vaccines are often limiting as the 

virus can also evade the immune pressure through escape mutations ((154,157); 

reviewed by McMichael et al., 2001; (169)). The mosaic vaccine approach is designed to 

curb the hurdle of HIV-1 diversity. This is achieved by maximising T cell epitopes, and 

excluding those that rarely occur in nature by the artificial recombination of naturally 

occurring sequences done in silico (1). This approach also generates variants that are 

likely to be generated during viral mutational escape (1). This concept has been 

evaluated in non-human primates using M group-based immunogens which have been 

shown to process and present T cell epitopes generated during natural HIV-1 infection 

(320). HIV-1 vaccines expressing M group mosaic immunogens are scheduled to be 

evaluated in clinical trials (539). The mosaic vaccine concept, however, has not been 

evaluated using subtype-specific immunogens. HIV-1 Gag also makes a good target for a 

T cell vaccine since it is the main structural protein of HIV-1 (Section 1.5.1) and is 

relatively conserved across HIV-1 strains. Escape mutations in Gag will affect viral 

fitness (160).  
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1.14 PROJECT MOTIVATION  

In an effort to produce affordable vaccines suitable for the regions most affected by HIV-

1, our research group at the University of Cape Town made subtype-specific vaccines 

that entered Phase I clinical trials (303,540). Although the results were encouraging, the 

vaccine immunogenicity and stability could be improved. The aim of this project was to 

develop stable subtype-specific HIV-1 vaccines - based on BCG, DNA, and MVA vectors - 

expressing an HIV-1C mosaic Gag immunogen. We also aimed to assess the vaccine 

immunogenicity and to compare it to that elicited by a natural Gag immunogen.  

To enhance the immunogenicity of the vaccines, we used a mosaic antigen that is 

designed in silico to specifically increase the breadth and depth of T cell responses to the 

highly diverse HI virus (1). Since this was a proof of concept study, only HIV-1C Gag was 

included. The mosaic immunogen is also designed to exclude rare epitopes which are 

often incorporated in consensus sequence-based immunogens. Matching vaccine 

epitopes to circulation infectious HIV-1 strains has been shown to induce potent 

immune responses (322,541,542). As the dominant HIV-1 subtype in Southern Africa is 

subtype C a subtype-specific HIV-1 mosaic Gag immunogen was selected for this project.  

Three vaccine vectors were used to deliver the mosaic Gag immunogen (GagM); 

BCGΔpanCD, DNA, and MVA; for their safety record, affordability, and/or ease of 

construction. Various studies have reported plasmid instability when expressing 

transgenes in rBCG (reviewed by Chapman et al., 2010; (362)). We therefore used an 

mtrA promoter (543-545) and a 19kD leader sequence to reduce metabolic load on 

rBCG, which in turm helps to maintain vaccine integrity. Furthermore the BCG strain we 

used, BCGΔpanCD, has a proven safety track record in immune-compromised SCID mice 

(353) and is known to improve transgene immunogenicity (354,364,365). DNA-based 

HIV-1 vaccines are known to be immunogenic in animal studies in prime-boost 

vaccination regimens (310,546). This does not always translate to clinical trials and so 

equires multiple vaccinations, delivery of large doses, co-immunisation with adjuvants, 

or delivery by electroporation which are expensive (Section 1.12.2). To improve the 

immunogenicity of the DNA-based vaccine, we used a vector with a novel enhancer 

element which results in much greater gene expression levels, and was developed at the 

University of Cape Town (475). MVA is known to be a safe vaccine vector (Section 
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1.12.3.1). Insertion of transgenes into the delII and delIII regions of MVA is known to 

cause vaccine instability (517). We explored the use of the MVA conserved region for 

insertion of GagM to improve stability as has been described by others (517,547).  The 

construction of these vaccines (BCG-GagM, DNA-GagM, and MVA-GagM) is detailed in 

Chapter 2. In addition, expression of GagM from all three vectors is investigated. 

The desirable immune readouts for a T cell-based HIV-1 vaccine are known from 

studies on ECs, LTNPs, and animal studies. These have been described in Section 1.10.  

Since the mosaic immunogens are expected to be more immunogenic than natural 

immunogens, the optimal MVA-GagM dose to boost a BCG- GagM and DNA-GagM prime 

first had to be determined. The vaccines we made were tested for immunogenicity to 

GagM in mice (Chapter 3). This included measuring the magnitude of T cells responding 

to Gag-specific peptide, the production of cytokine-positive cells, and determination of T 

cell memory phenotype. We also investigated whether the different vaccine vectors 

gave different Th1/Th2 responses.  Comparisons were made between the three 

different vectors and different prime-boost regimens. 
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2.1 INTRODUCTION 

In this chapter, the construction of BCG, DNA, and MVA vaccines expressing a full length 

HIV-1C mosaic Gag (GagM) immunogen is described. The functional properties of HIV-1 

Gag have been reviewed in Section 1.5.1 and mosaic immunogens have been described 

in Section 1.11.2.1. This chapter also describes the characterisation of the GagM 

immunogen expression since it was computationally generated (1) and, to our 

knowledge, has not been characterised before.  

 

The use of BCG as an HIV-1 vaccine vector was described in Section 1.12.1. In this study, 

we used the BCG mc26000 (BCGΔpanCD) strain (constructed in the same way as 

MtbΔpanCD; (364,425). BCGΔpanCD is a pantonthenic acid (vitamin B5) auxotrophic 

strain of BCG Pasteur 1172 P2 that is non-virulent, yet protective against Mtb challenge 

in guinea pigs and immunocompromised mice (347,352,353,353,386,425). Pantothenic 

acid is essential for coenzyme A and acyl carrier protein synthesis which are vital for 

several intracellular processes in mycobacteria including polyketide biosynthesis, fatty-

acid metabolism, and the tricarboxylic acid cycle (548). BCGΔpanCD has also been 

shown to be a better HIV-1 vaccine candidate than wild type BCG in mice. Previous 

studies carried out in our laboratory have indicated reduced inflammation and an 

improved CD8+ T cell response to HIV-1 Gag expressed by BCGΔpanCD in comparison to 

the parent BCG Pasteur strain (364,365). In a separate mouse study, Chapman and 

colleagues (2013; (365)) observed potent antigen-specific T cell responses induced by 

rBCGΔpanCD vaccines expressing HIV-1 Gag, RT, and Gp120. The T cell responses were 

also characterized by IFN-γ, TNF-α, and IL-2 production, which are characteristic of 

viral control in ECs (182). Heterologous antigens in rBCG vaccines have often been 

under the transcriptional control of mycobacterial hsp60 and hsp70 promoters which 

result in high antigen expression (reviewed by Chapman et al., 2010; (362)). However, 

the increased expression levels result in plasmid instability (549-551). Use of the Mtb 

mtrA and M. leprae 18kD antigen promoters on the other hand reduce transgene 

expression in vitro, but upregulate their expression in vivo (543-545). Furthermore, the 

accumulation of heterologous proteins in the cytoplasm of BCG may be toxic to the cell. 

Targeting the expressed proteins to the bacterial cell wall or into the extracellular space 

may reduce the metabolic load. This is achieved by fusing the transgenes to leader 

sequences within the shuttle vectors (reviewed by Chapman et al., 2010; (362)). 
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Targeting transgenes to the cell wall or extracellular space has resulted in improved 

immunological responses by rBCG vaccines (reviewed by Bastos et al., 2009; (337)).  

 

Construction of DNA-based HIV-1 vaccines is simple and not time-consuming. Using 

DNA as an HIV-1 vaccine vector was reviewed in Section 1.12.2. The most commonly 

used DNA vaccine vectors are pTH and pVRC (477,552). Mice are usually vaccinated 

with doses of 50-200 µg of these vaccines when immune responses to the DNA vaccines 

are being assessed. Our lab has recently patented a novel pTHpCapR DNA vaccine vector 

backbone with a porcine circovirus enhancer element upstream of the CMV promoter 

((475); Appendix A1). Antigen expression and immune responses that are 3- and 2-fold 

greater, respectively, can be obtained in mice vaccinated with only 10µg of the novel 

vectored vaccine compared to mice that were vaccinated with 100µg of the standard 

pTH-vectored vaccine (475). We therefore used pTHpCapR as the vector backbone for 

our DNA vaccines in this study. 

MVA was used as a vaccine during the smallpox eradication campaign (54). Since then, 

it has been used as a vaccine vector for other infectious diseases and cancer (reviewed 

in Section 1.12.3.1). Recombinant MVA vaccines have often utilised the del II and del III 

regions which lie within the variable terminal regions as sites of insertion (Figure 1.11). 

These regions are often prone to deletions and other mutational changes. Inserting a 

foreign gene into the variable terminal region makes it prone to such deletion 

mutations. To increase transgene stability, foreign genes have been inserted between 

transcriptionally convergent genes where no possible transcriptional promoters could 

be disrupted (517,547). To detect partial MVA recombinants, marker (colour or 

fluorescence), or selection genes (antibiotic resistance or host range extension) have 

been used when making recombinant poxviruses (508,553-561). To ensure stringent 

selection of recombinants, a combination of marker and selection genes have been used 

by some groups (547,562,563).  For this project, green fluorescent protein (GFP; which 

causes cells to fluoresce green) was chosen as a reporter gene and blasticidin (BSD) as a 

selection gene. BSD kills mammalian cells, however, if the bsd resistance gene (bsdR) is 

expressed, the cells survive.  

Generating recombinant MVA involves designing a transfer vector which is a plasmid 

with MVA flanking sequences on each side of the gene of interest (Figure 2.1). The 
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transfer vector is transfected into cells infected with MVA. The flanking sequences in the 

transfer vector homologously and sequentially recombine with the MVA genome in the 

regions that match the flanking sequences. A positive selection gene can be placed 

between or outside the viral flanking sequences. In the former, the positive selection 

gene is retained in the final recombinant poxvirus and in the latter the final 

recombinant loses the selection gene through transient selection (557). Having the 

positive selection gene eventually lost through homologous recombination is however 

recommended for vaccines that will eventually be used in clinical trials. VACV-specific 

promoters are included upstream of the foreign gene and the selectable marker (Section 

1.12.3.1). These are often different promoters to reduce the chances of recombination 

within the transfer vector and subsequent loss of the gene of interest.    

A permissive cell line is infected with MVA, followed by transfection with the transfer 

vector. Using the positive selection marker, the recombinant MVA can be preferentially 

grown and detected in cultured cells. If transient selection is employed the fluorescing 

intermediate recombinant is purified before a final recombinant is isolated. The final 

recombinant can then be isolated by selecting nonfluorescing foci for further growth 

under conditions permissive to the desired final recombinant virus. Figure 2.1 

diagrammatically shows the generation of a recombinant poxvirus by transient 

selection. Both intermediate and final recombinants are identified by polymerase chain 

reaction (PCR) and the final recombinant is confirmed to be correct by DNA sequencing 

across the insertion site. Expression of the transgene is then determined. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Design and synthesis of the HIV-1C GagM immunogen 

HIV-1 vaccine design requires the use of an immunogen inserted into a vaccine vector 

(Section 1.12). In this study, the mosaic immunogen approach was used (Section 

1.11.2.1). A monovalent HIV-1C GagM amino acid sequence was obtained from the 

supplementary data of Fischer et al., (2007; (1)). Two full length gagM genes were 

synthesised by the company GeneArt (USA). One gag gene was codon optimized for 

expression in BCG (Appendix B1) and the other for expression in humans for use in the  
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Figure 2.1: Schematic representation of the production of recombinant poxviruses. DNA 
recombination occurs between the transfer vector and the insertion site of interest in the MVA genome 
within a permissive cell line. The transfer vector has a positive selection gene, reporter gene, and the gene 
of interest, all with suitable poxvirus promoters. The gene of interest is flanked by DNA sequences that 
are homologous to the insertion site within the poxvirus genome (flank 1 and flank 2). The recombinant 
poxvirus is generated by infection and simultaneous transfection of cells with the transfer vector plasmid 
DNA. Recombination occurs between the homologous sequences of the transfer vector and poxvirus 
during DNA replication at either of the two flanks to form an intermediate recombinant poxvirus. This 
diagram depicts recombination at flank 1. In a similar manner, recombination could take place at flank 2. 
The intermediate recombinant poxvirus can be detected and selected for by means of the reporter and 
positive selection gene respectively. A second recombination step with the second flank results in the 
formation of the final recombinant. Adapted from Schnierle et al., 2007 (516) and Shen 2010 (564). 

DNA and MVA vaccines (Appendix B2). During the optimization process, the following 

sequences were avoided: typical promoter-like and ribosomal binding site sequences to 

avoid nonsense translation events, AT- and GC-rich sequence stretches, chi-sites, repeat 

sequences, RNA instability motifs, and RNA secondary structures. TTTTTNT poxvirus 

termination sequences were also excluded in the human codon optimised GagM  

immunogen. Restriction enzyme sites used for cloning purposes were avoided within 

the immunogen coding sequence.  The HIV-1C gagM DNA sequences were cloned into 

pUC18/19-based plasmid vector backbone (Appendix A2) to make pGag-BCG and pGag-
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MVA (Figure 2.2; Appendix A3 and A4, respectively). The additional features of pGag-

MVA are described in Section 2.2.6.1. 

 

Figure 2.2: Schematic representation of the plasmids pGag-BCG and pGag-MVA. The plasmids were 
designed as part of this project and synthesised commercially by GeneArt (USA). Restriction sites used for 
subsequent cloning are indicated in black bold and underlined type. OriE – E. coli origin of replication; 
AmpR – ampicillin resistance; CmpR – chloramphenicol resistance gene; mH5 – modified H5 promoter; 
A11R and A12L flanks – partial MVA ORFs; the gagM gene is indicated in dark blue and the gag sequences 
shown in Appendix B1 and B2.  

2.2.2 Source of plasmids, bacteria, viruses, and cell lines 

The plasmids, bacteria, viruses and cell lines used in this study are listed in Table 2.1. 

2.2.3 Recombinant BCG vaccine construction 

2.2.3.1 BCG shuttle vector construction 

The BCGΔpanCD was used as one of the vaccine vectors in this study. To facilitate 

foreign gene expression using BCG, the gene of interest is cloned into a plasmid shuttle 

vector. The shuttle vector is then transformed into competent BCG cells by means of 

electroporation. The shuttle vector backbone, pHS400 (Table 2.1; Appendix A5), which 

has been used previously in our lab for vaccine evaluation in mice and non-human 

primates (354,364,365) was also used in this study. The cloning procedure used to 

construct the BCG shuttle vector is outlined in Figure 2.3. To generate the BCG shuttle 

vector pTJBCG3 (Appendix A7), which contained the gagM gene, pGag-BCG was digested 

with ClaI and HpaI (Appendix C1). A 1511bp HIV-1C gagM insert was excised from an 

agarose gel (Appendix C2) using the QIAquick® Gel Extraction kit (Qiagen, Germany)  
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Table 2.1: Plasmids, bacteria, viruses and cell lines used in this study 

 Description Source/Reference 
Plasmids   
pHS400 This vector has i) an Escherichia (E). coli origin of 

replication for growth in this bacteria, ii) a kanamycin 
resistance gene for selection of clones that have the 
recombinant plasmid, iii) a mycobacterial origin of 
replication for propagation in M. bovis BCG,  iv) a mtrA 
promoter which in mycobacteria expresses the 
immunogen weakly in vitro and strongly in vivo, and v) a 
19kD signal sequence which should result in the expressed 
immunogen being targeted to the M. bovis BCG cell wall 
and prevent accumulation of the HIV immunogen within 
the host cell, and to improve antigen recognition in the 
immunised individual (390).  (Appendix A5) 
 

(364) 

pTHpCapR A pTH DNA vaccine with a novel enhancer element for 
improved antigen expression. (Appendix A1) 
 

(475) 

Bacteria   
E. coli DH5α Has deletions in the following genes to make it highly 

efficient for transformation procedures: fhuA2, 
lac(del)U169, phoA, glnV44,  Φ80' lacZ(del)M15, gyrA96 
recA1, relA1, endA1, thi-1, hsdR17. Bethesda Research 
Laboratories in Taylor et al., 1993 (565) 
 

Laboratory stocks 

BCGΔpanCD Pantothenic auxotrophic strain derived from an M. bovis 
Pasteur 1172 P2 strain 
 

Kindly provided by  
William R Jacobs (364) 

Viruses   
Wild type 
(wt)MVA 

A highly attenuated strain of a Turkish VACV (503). Kindly provided 
by Bernard Moss, 
National Institute of 
Health 

MVA-GagN MVA expressing a truncated natural HIV-1C Gag (GagN). 
The natural HIV-1 isolate was obtained from a commercial 
sex worker, Du422, in South Africa (309) and the 
truncation was in the p6 domain. P6 is the most variable 
region of HIV-1 Gag (124) and has previously been deleted 
to stabilise the expression and purification of Gag 
(64,566). GagN in MVA-GagN was under the transcriptional 
control of a VACV mH5 promoter and inserted into the 
delIII region of MVA.  
 

Constructed by 
Nicolette Johnston, a 
former member of our 
laboratory (364). 

Cell lines   
Human 
embryonic 
kidney (HEK) -
293 cells 

Easily transformable epithelial cells, derived from the 
kidneys of a human embryo 

American Type Culture 
Collection (ATCC®, 
USA),  CRL-1573™; 
(567) 
 

Baby hamster 
kidney (BHK)-21 
cells 
 

Fibroblast cells derived from the kidneys of the Syrian 
golden  hamster, Mesocricetus auratus  

ATCC® (USA), CCL-
10™; (568) 

HeLa cells Human epithelial cells derived from the cervix of a patient 
who had cervical cancer 

ATCC® (USA), CCL-2™; 
(569) 

http://www.lgcstandards-atcc.org/Products/All/CRL-1573.aspx
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Figure 2.3: Schematic representation of the cloning procedures used to construct the BCG shuttle 
vectors, pTJBCG3, and pEM19. Restriction sites used for subsequent cloning are indicated in black bold 
and underlined type. OriE – E. coli origin of replication; AmpR – ampicillin resistance; OriM – 
mycobacterial origin of replication, 19kD ss – 19kD signal sequence; KanR – kanamycin resistance gene. 
mtrA promoter – a promoter of M. tuberculosis origin. pGag-BCG was designed as part of this project. 
pEM19 and pTJBCG3 were constructed as part of this project. 
 
 

following the manufacturer’s instructions and recommendations. The plasmid pHS400 

((364); Appendix A5) was similarly digested and the 4917bp vector backbone ligated to 

the 1511bp mosaic HIV-1C gag insert. T4 DNA ligase (New England Biolabs, UK) was 

used for the ligation according to the manufacturer’s instructions. A control plasmid 

that had no insert in it (pEM19; Figure 2.3; Appendix A8) was included in the study. The 

plasmid pHS400 was digested with SnaBI and HpaI (Appendix C1) to generate a plasmid 

of 4912bp with blunt ends. The plasmid was then used for a blunt end ligation using T4 

DNA ligase (New England Biolabs, UK) according the manufacturer’s recommendations. 

Following BCG shuttle vector construction, the plasmids were transformed into 

competent E. coli cells (Appendix C3). To map the plasmids, restriction enzyme digests 

were carried out on 5µl of plasmid DNA that had been extracted on a small scale 
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(Appendix C4). The plasmids were then extracted on a larger scale using the High Pure 

Plasmid Isolation™ kit (Roche, Switzerland) following the manufacturer’s instructions 

and recommendations.  To confirm the cloning sites and to confirm that no additional 

DNA sequence changes were introduced, the shuttle vectors were sequenced using the 

ABI Prism® BigDye™ Terminator Cycle Sequencing kit (Applied Biosystems, USA) 

according to the manufacturer’s instructions. This was done as a service offered by the 

Central Analytical Facilities laboratory (Stellenbosch University, South Africa). 

 2.2.3.2 Preparation of BCG competent cells 

Insertion of the shuttle vector into BCG requires that the cells are competent.  

BCGΔpanCD competent cells were prepared as described by Parish and Stoker (2001; 

(570)) from a culture grown in Middlebrooks 7H9 media (Appendix D1) supplemented 

with 10% oleic acid-albumin-dextrose-catalase (OADC), 48µg/ml vitamin B5, 0.2% 

glycerol, and 0.05% Tween-80.  A 0.1 volume of 2M glycine (final conc 1.5%) was added 

to the cell culture 24 hours before harvesting to improve transformation efficiency 

(571,572).  The competent cells were aliquoted into 200 l aliquots and either used 

immediately for transformation with shuttle vectors or stored at –80˚C until required. 

 2.2.3.3 Electroporation of BCG competent cells 

Electroporation of BCG competent cells is required to facilitate insertion of the shuttle 

vector into the cells. Thawed and washed competent BCG cells were mixed with 1µg of 

recombinant or control plasmid DNA as recommended by Parish and Stoker (2001; 

(570)). The mixture was placed in a 0.1cm electrode-gap electroporation cuvette 

(Biorad, USA) and electroporated using the Gene Pulser (BioRad, USA) set at voltage: 

2.5 kV, Capacitance: 25 F and resistance: 1000 . The time constants to determine the 

efficiency of the electroporation were noted. The transformation mix was incubated at 

37˚C after adding 1ml of expression media (7H9 media supplemented with 10% OADC, 

48µg/ml vitamin B5, and 0.05% Tween-80). Cultures of recombinant BCG were plated 

on the appropriate selective Middlebrooks 7H10 agar (Appendix D2) containing 10% 

OADC, 48µg/ml vitamin B5, 0.5% glycerol, 25µg/ml hygromycin, and 10µg/ml 

kanamycin.  Control plates did not contain kanamycin. The plates were sealed in plastic 

bags to prevent dehydration and incubated at 37˚C for 3 weeks. Recombinant BCG 
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vaccine stocks were made as previously described (364) and stored at -80˚C until 

required. 

2.2.3.4 Preparation of crude BCG cell lysates 

The stability of transgenes in recombinant BCG can be compromised in vitro and in vivo 

due to metabolic load. This can be caused by not codon optimising the transgenes (364) 

or high expression of the recombinant antigen due to the promoter used or strong 

translational signals (550,573).  To evaluate the integrity of the shuttle vector in the 

vaccine stocks, vaccine stocks were plated onto 7H10 agar (Appendix D2) with 

antibiotics and incubated at 37oC. Colonies were picked and crude lysates prepared 

from the obtained BCG colonies or directly from thawed vaccine stocks using a protocol 

previously developed in our laboratory. To prepare the crude lysate, a recombinant BCG 

colony was resuspended in 100µl high performance liquid chromatography (HPLC) 

water. Alternatively, a thawed aliquot of a BCG vaccine stock was centrifuged at 

14000rpm (Eppendorf Centrifuge 5417C, Germany) for 2 minutes and resuspended in 

100µl HPLC water. The cell suspension was lysed using a FastPrep FP120 machine 

(Savant, USA) on speed 6 for 20 seconds in the presence of 0.1mm silica beads. The 

crude extraction cycle was repeated two more times with 2 minute incubations on ice 

between cycles. Genomic DNA obtained from the supernatant following a 5 minute 

centrifugation step at 14000rpm (Eppendorf Centrifuge 5417C, Germany) was stored at 

-20˚C or 5µl used for electroporating into E. coli DH5α electro-competent cells (Section 

2.2.3.5). 

2.2.3.5 Electroporation of E. coli electro-competent cells 

The quantities of extracted plasmid from mycobacterial species are often very low 

(384,574). Thus, the shuttle vectors obtained from the crude lysate (Section 2.2.3.4) 

may not be sufficient for subsequent analysis.  To obtain sufficient quantities of the 

shuttle vector from crude BCG lysates, propagation in more amenable species like E.coli 

is recommended. The method described by Parish and Stoker (2001; (570)) was used 

for this. A 5µl aliquot of crude BCG lysate was added to 100µl of thawed E. coli electro-

competent cells and incubated on ice. The cell and DNA mixture was added to a 0.2cm 

electroporation cuvette and electroporation was carried out under the following 

conditions: 200Ω, 2.5kV, and 25µF. Time constants between 4.5 and 5.5 were recorded 
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as a measure of transformation efficiency. Super Optimal broth with Catabolite 

repression (SOC) media (900 µl; Appendix D3) was added and the cells were incubated 

at 37˚C with shaking for an hour for expression of the antibiotic resistance genes. The 

transformation mix was plated onto LB agar plates (Appendix D4) containing the 

appropriate antibiotic at the recommended concentration and incubated overnight at 

37˚C. Shuttle vectors were recovered from E. coli colonies by small scale plasmid 

extraction (Appendix C4) and mapped by restriction enzyme digests (Appendix C1). 

2.2.3.6 Evaluating plasmid DNA integrity from BCG-vaccinated mice 

Since plasmid integrity in BCG can be compromised in vivo, it was essential to determine 

the shuttle vector integrity post vaccination. Thus, to determine the integrity of 

pTJBCG3 (Appendix A7) and pEM19 (Appendix A8) following mice vaccination with the 

BCG vaccines (Table 3.1; Section 3.2.1), we used a protocol previously developed in our 

laboratory. Lymph nodes from each vaccine group were pooled and left over 

splenocytes from each mice group (Section 3.2.2.1) were homogenised in 1ml BCG 

resuspension buffer (Appendix D9) using an OMNI tissue homogeniser (OMNI 

international, USA). A 1 in 10 dilution was made and 100µl plated in triplicate on 7H10 

agar plates (Appendix D2). The plates were incubated at 37˚C for 18 – 21 days sealed in 

plastic bags. BCG crude lysates (Section 2.2.3.4) were obtained from a total of 10 

individual colonies (5 from the splenocyte homogenate and 5 from the lymph node 

homogenate) per vaccine group. An aliquot of 5µl DNA from the crude lysate was used 

as template in a PCR reaction. The PCR components were 25µl PCR ImmoMix Red 

(Bioline, USA), 10µM each primer (pCB119F: 5' – CAT ATG AAG CGT GGA CTG AC – 3' 

and pEMRev: 5' – AGC AGA CAG TTT TAT TGT TC - 3') and 10µl distilled water. A 

negative control was included with no DNA to detect possible contamination of any of 

the reagents. The PCR reaction conditions were initial denaturation at 95˚C for 10 

minutes, followed by 30 cycles of DNA denaturation at 95˚C for 30 seconds, annealing of 

primers at 56˚C for 30 seconds, and DNA extension at 72˚C for one minute with a 5 

second increment per cycle. A final extension step at 72˚C for 4 minutes completed the 

reaction. The PCR products were stored at 4˚C or analysed by agarose gel 

electrophoresis (Appendix C2) immediately. PCR products were also sequenced to 

confirm shuttle vector integrity. This was done as a service offered by the Central 

Analytical Facilities laboratory (Stellenbosch University, South Africa). 

http://en.wikipedia.org/wiki/Catabolite_repression
http://en.wikipedia.org/wiki/Catabolite_repression
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2.2.4 DNA vaccine construction  

DNA vaccines are simple to make and manufacture (Section 1.12.2). To make such 

vaccines, a gene of interest is cloned into a chosen vector backbone. Three DNA vaccines 

were constructed for this project; pTJDNA4, pTJDNA5, and pTJDNA6 (Appendix A9, 10, 

and 11 respectively), and cloning procedure is illustrated in Figure 2.4. The pTHpCapR 

vector backbone was obtained from an EcoRI/ HindIII digest (Appendix C1) of 

pTHpCapRgrttnC ((475); Appendix A1). The 5008bp vector backbone fragment was 

excised from an agarose gel using a dark reader spot lamp (Clare Chemical Research, 

USA) and recovered using the QIAquick Gel Extration kit (Qiagen, Germany) following 

the manufacturer’s instructions and recommendations.   

 

To generate plasmid pTJDNA4 which contained the gagM gene, pGag-MVA was digested 

with EcoRI, HindIII, and KpnI (Appendix C1). The DNA was purified as detailed in 

Appendix C5 and used for ligation with the gel extracted pTHpCapR vector backbone. 

The KpnI restriction site lies upstream of the A11R gene in pGag-MVA, outside of the 

mosaic HIV-1 gag sequence. The KpnI restriction enzyme was therefore included to 

reduce the chances of pGag-MVA re-ligating to itself and to reduce the chances of the 

pGag-MVA backbone ligating into the pTHpCapR vector backbone. 

 

pTJDNA5 contains no insert and was used as control. It was obtained by blunting the 

EcoRI and HindIII sites of the gel extracted pTHpCapR vector backbone using T4 DNA 

polymerase (Thermo Scientific, USA) following the manufacturer’s instructions. The 

DNA polymerase was inactivated for 10 minutes at 75˚C, and 20ng of plasmid used for a 

blunt end ligation using T4 DNA ligase (New England Biolabs, UK) according the 

manufacturer’s recommendations.  

 

The plasmid pTJDNA6 contains a full length gagN gene derived from the HIV-1C strain 

Du442 (309). The full length gagN gene was previously cloned into pTHgagMr 

(Appendix A13) by Dr Nyasha Chin’ombe, a former member of the Medical Virology 

division at UCT. pTHgagMr was digested with EcoRI, HindIII, and BglII (Appendix C1). 

The DNA was purified as detailed in Appendix C5 and used for ligation with the gel 

extracted 5008bp pTHpCapR vector backbone. The BglII restriction site lies 

downstream of the AmpR gene in pTHgagMr, outside of the HIV-1 gagM sequence. 
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Figure 2.4: Schematic representation 
of the cloning procedures used to 
construct the DNA vaccines pTJDNA4, 
pTJDNA5, and pTJDNA6. The 
pTHpCapR vector backbone [45] was 
used for constructing the DNA-based 
vaccines used in this project. pTJDNA5 
has no insert and was used as a negative 
control,  pTJDNA4 has the gagM and 
pTJDNA6 has a natural Du422 gag 
cloned in the EcoRI and HindIII sites of 
the pTHpCapR vector backbone. Pcap – 
porcine circovirus enhancer element; 
Pcmv – CMV promoter; CmpR – 
Chloramphenicol resistance gene; 
AmpR –  ampicillin resistance gene; 
OriE; E. coli plasmid origin of 
replication; A11R and A12L flanks – 
partial MVA ORFs. pGag-MVA was 
designed as part of this project. 
pTJDNA4, 5, and 6 were constructed as 
part of this project. 
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The BglII restriction enzyme was therefore included to reduce the chances of pTHgagMr 

re-ligating to itself and to reduce the chances of the pTHgagMr backbone ligating into 

the pTHpCapR vector backbone. The extracted fragments were ligated overnight using 

T4DNA ligase (New England Biolabs, UK) according the manufacturer’s 

recommendations. The DNA was purified as detailed in Appendix C5 and the 1530bp 

fragment used for ligation with the gel extracted pTHpCapR vector backbone. 

Following the ligation experiments, the DNA plasmids were transformed into E. coli 

DH5α cells (Appendix C3). To map the plasmids, restriction enzyme digests (Appendix 

C1) were carried out on plasmid that had been extracted on a small scale (Appendix C4). 

The plasmids were then extracted on a larger scale using the EndoFree Plasmid Maxi 

kit® (Qiagen, Germany) following the manufacturer’s instructions and 

recommendations.  This plasmid extraction kit was used to exclude endotoxin 

contamination for subsequent cell culture experiments (Section 2.2.5). To confirm the 

cloning sites and to confirm that no additional DNA sequence changes were introduced, 

the plasmids were sequenced using the ABI Prism® BigDye™ Terminator Cycle 

Sequencing kit (Applied Biosystems, USA) according to the manufacturer’s instructions. 

This was done as a service offered by the Central Analytical Facilities laboratory 

(Stellenbosch University, South Africa). DNA vaccine stocks were prepared 

commercially by Aldevron (USA) and aliquots stored at -80˚C until required. 

2.2.5 Cell culture 

2.2.5.1 Thawing and culturing of cell lines 

Various cell lines (Table 2.1) were used for different assays in this study. The cells were 

stored at -80˚C and required thawing and maintenance. The cells were thawed by 

incubation in a 37˚C water bath as recommended by our laboratory.  This was followed 

by resuspension in 10ml of pre-warmed (37˚C) Dulbecco's Modified Eagle's medium 

(DMEM)-10 (DMEM supplemented with 10% fetal calf serum (FCS; Biochrom, England), 

1000U/ml penicillin (Lonza, Belgium), 1000U/ml streptomycin (Lonza, Belgium), and 

10µg/ml fungin (Invivogen, USA)) as soon as the cells had thawed. Cells were subjected 

to centrifugation at 1500rpm (Eppendorf Centrifuge 5810, Germany) for 5 minutes and 

re-suspended in DMEM-10. The cells were seeded into tissue culture (TC) flasks and 
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incubated at 37˚C in a 5% humidified CO2 incubator until the required confluence was 

reached.  

2.2.5.2 Trypsinizing, counting, maintaining, and freezing cell lines 

After cells reached 80 – 90% confluence, they needed to be detached from the TC flasks 

by trypsinizing for maintenance, counting, or to make frozen stocks. To trypsinize the 

cells, the protocol described by Doyle and Griffith (1998; (574)) was followed. The cells 

were washed twice with phosphate buffered saline (PBS) and incubated with a 

trypsin/EDTA solution (Lonza, Belgium; diluted 1 in 10 in PBS) for 5 minutes at 37˚C. 

The trypsin was deactivated by adding DMEM-10. A 1 in 2 dilution of the cells was 

stained with Trypan Blue (Life Technologies, USA) and counted using a Neubauer cell 

counting chamber (Marienfield, Germany) and an Olympus Optical C011 microscope 

(Olympus, Japan). Cell numbers were adjusted to seed flasks or TC plates and the cells 

were incubated at 37˚C, 5% CO2 in DMEM-10.  

For general maintenance and growth, cell lines were cultured in DMEM-10. To make 

frozen cell stocks, the cells were detached from TC flasks using a trypsin/EDTA solution. 

The cells were then harvested by centrifugation at 1500rpm (Eppendorf Centrifuge 

5810, Germany) for 5 minutes. The pellet was resuspended in FCS with 10% dimethyl 

sulfoxide (DMSO). Cells were counted and readjusted to 2 x 106 cells/ml with FCS 

containing 10% DMSO. The cells were stored in 1ml aliquots at -80˚C. 

2.2.6 Recombinant MVA construction 

2.2.6.1 Transfer vector construction 

Recombinant (r) MVA vaccine construction requires the gene of interest to first be 

inserted in a transfer vector (Figures 2.1 and 2.5). The transfer vector pTJMVA2 was 

constructed from two plasmids, pGag-MVA and pGFP-BSD. The transfer vector was 

designed to insert the gagM gene into the conserved region of MVA in a two-step 

recombination process between the A11R (encoding a 36.1kD putative protein; (485)) 

and A12L (which encodes a 20kD virion protein; (485)) transcriptionally convergent 

open reading frames. The vaccinia virus mH5 transcriptional promoter (484) was  
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Figure 2.5: Schematic representation of the construction of the transfer vector pTJMVA2 from the 
plasmids pGFP-BSD and pGag-MVA. Following an SphI/SalI restriction digest of pGFP-BSD, the 1167bp 
gfp-bsd fusion gene was cloned into a similarly digested pGag-MVA. pSS – MVA synthetic promoter 
promoter; gfp –green fluorescent protein gene; bsdR – blasticidin resistance; OriE – E. coli plasmid origin 
of replication; AmpR – ampicillin resistance; CmpR – chloramphenicol resistance gene; bsdR – blasticidin 
resistance gene; mH5 – modified H5 promoter; A11R and A12L flanks– partial MVA ORFs. pGag-MVA and 
pGFP-BSD were designed as part of this project. pTJMVA2 was constructed as part of this project. 
 

included upstream of the gene. For cloning purposes, unique restriction enzyme sites 

were included upstream and downstream of the mH5 promoter, and flanking 

sequences. The transfer vector pTJMVA2 was obtained from cloning the gfp-bsd fusion 

gene from pGFP-BSD into the SalI/SphI sites of pGag-MVA (Figure 2.5) and was 
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designed in such a way that the selection and marker genes would be deleted following 

the final recombination event. BSD expression resulted in the selection of the first 

recombinant which expressed GFP. The final recombinant could be isolated as a non-

fluorescing plaque. 

Following the ligation experiments, the transfer vector was transformed into E. coli 

DH5α cells (Appendix C3). To map the plasmid, restriction enzyme digests (Appendix 

C1) were carried out on plasmid that had been extracted on a small scale (Appendix C4). 

The plasmids were then extracted on a larger scale using the EndoFree Plasmid Maxi 

kit® (Qiagen, Germany) following the manufacturer’s instructions and 

recommendations.  This plasmid extraction kit was used to exclude endotoxin 

contamination for subsequent cell culture experiments (Section 2.2.5). To confirm the 

cloning sites and to confirm that no additional DNA sequence changes were introduced, 

the transfer vector was sequenced using the ABI Prism® BigDye™ Terminator Cycle 

Sequencing kit (Applied Biosystems, USA) according to the manufacturer’s instructions. 

This was done as a service offered by the Central Analytical Facilities laboratory 

(Stellenbosch University, South Africa). 

2.2.6.2 Generation of a BSD kill curve 

The BSD antibiotic (Invitrogen, USA) was used for the positive selection of intermediate 

recombinants during the construction of MVA expressing the HIV-1C (MVA-GagM). Any 

cells containing the intermediate recombinant would express the bsd gene and survive 

in the presence of the antibiotic (575). In order to optimise this selection, it was 

necessary to determine the optimal concentration that would prevent the growth of 

cells without the presence of the selection gene. To determine the optimal BSD 

concentration, 1 x 105 BHK-21 cells per well were seeded in a 12 well TC plate. BSD was 

added at various concentrations (2.5, 5, 7.5, 10, and 15μg/ml in DMEM-2 (DMEM 

supplemented with 2% FCS (Biochrom, England), 1000U/ml penicillin (Lonza, 

Belgium), 1000U/ml streptomycin (Lonza, Belgium), and 10µg/ml fungin (Invivogen, 

USA)) in triplicate. BHK -21 cells with no BSD were included as a negative control. Cells 

were observed daily for viability using a light microscope (Olympus Optical CK2, Japan) 

up to 3 days. The optimal concentration was determined as the minimum concentration 

required to kill all cells within 3 days.  
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2.2.6.3 MVA virus infection of cells 

Adherent cell monolayers were used for MVA or recombinant MVA infection. When cells 

were 60-70% confluent, as estimated by visual examination using an inverted Olympus 

Optical CK2 microscope (Olympus, Japan) in TC plates, they were infected with wtMVA 

(multiplicity of infection (MOI) = 0.1) diluted in DMEM-0 (DMEM supplemented with 

1000U/ml penicillin (Lonza, Belgium), 1000U/ml streptomycin (Lonza, Belgium), and 

10µg/ml fungin (Invivogen, USA) only; 100µl/well for 12-well plates and 500µl/well for 

6-well plates) and left to adsorb for 2 hours at 37˚C. The inoculum was then removed 

and fresh DMEM-2 was added. Cells were incubated at 37˚C in a 5% CO2 humidified 

incubator for 72 hours post infection (h.p.i.), unless otherwise stated.  

2.2.6.4 Transfection 

Transfection was carried out to fascilitate the recombination of wtMVA with the 

transfer plasmid pTJMVA2 within a permissive cell line as depicted in Figure 2.1. A total 

of 5 x 104 cells were seeded per well in 6 well plates and adhered to the TC plates 

overnight at 37˚C in a 5% CO2 humidified incubator. The cells were infected with MVA 

(Section 2.2.6.3) and then transfected with a 1:1 ratio of 4µg of recombinant plasmid 

DNA: 4µl X-treme Gene HP® transfection reagent obtained from Roche (Switzerland) 

according to manufacturer’s instructions. Cells were incubated at 37˚C in a 5% CO2 

humidified incubator for 48 hours.  

2.2.6.5 Plaque purification 

Following cell infection (Section 2.2.6.3) and transfection (Section 2.2.6.4), individual 

plaques were picked to initially obtain intermediate recombinants (single cross-over), 

and then eventually to obtain final recombinants (with double cross-over). The 

intermediate recombinants contained the transfer vector and formed fluorescent 

plaques. The final recombinants, on the other hand do not contain the selection or 

marker genes and the plaques do not fluoresce. Intermediate fluorescing plaques were 

initially picked and passaged in the presence of 10µg/ml BSD to eliminate any 

contaminating wild type MVA virus. Before picking plaques, the plates were viewed 

using a fluorescence microscope (Zeiss, Germany) to select plaques with rMVA. The 

positions of plaques showing green fluorescence were marked from beneath the plate 

with a permanent marker. Medium was aspirated from infected cells in TC plates. The 
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cells were then washed twice with 500µl PBS and the marked plaques were picked by 

scraping the cells from the marked positions with a pipette tip and transferred into 

300µl of DMEM-0. The recombinant MVA virus was released from the cells by doing 

three freeze thaw cycles and vortexing after each cycle. The lysates were stored at -20˚C 

or used immediately, using 10-fold serial dilutions, to infect a fresh monolayer of cells. 

The use of BSD in the culture media was stopped after an intermediate recombinant 

was identified by PCR. After this, non-fluorescent plaques were picked and lysates 

prepared for PCR (Section 2.2.6.6). At this stage, recombination produces either wild 

type MVA or the desired recombinant MVA virus containing the GagM insert (See Section 

2.3.3 in Results). The lysate was passaged three more times until a final recombinant 

was identified by PCR.  

2.2.6.6 Polymerase chain reaction of recombinant MVA 

The polymerase chain reaction (PCR) was carried out to determine the presence of the 

intermediate and final MVA recombinants in cell lysates of infected cells. A final 

recombinant, MVA-GagM, was isolated after a two-step procedure of isolating an 

intermediate recombinant containing the entire transfer vector (pTJMVA2), followed by 

the deletion of the gfp-bsd gene fusion to give a final MVA recombinant containing the 

HIV-1C gagM sequence only. The presence of the intermediate recombinant MVA was 

confirmed by PCR amplification using a gag-specific primer in combination with a 

primer which bound adjacent to the insertion site in the MVA genome (Table 2.2; Figure 

2.14 in Results section). The presence of the final recombinant was confirmed by PCR 

using primers that were located on either side of the insertion site in MVA (Table 2.2; 

Figure 2.14 in Results section). The cell lysate for PCR was obtained using a method 

described by David Tscharke (personal communication). BHK-21 cell monolayers in 12-

well TC plates were infected (Section 2.2.6.3) using 100µl of 10- fold dilutions of 

freeze/thawed suspensions of picked non-fluorescent plaques (Section 2.2.6.5). After 

two to three days at 37˚C in a 5% CO2 humidified incubator, when plaques were visible, 

the culture medium was aspirated and the cells gently washed with 1ml PBS/well.  A 

volume of 250µl 1 X PCR buffer (Appendix D5) with proteinase K (10µg/ml; Sigma-

Aldrich, USA) was added to the cells. The cells in the TC plate were incubated at -80˚C 

until frozen, and then thawed at 37˚C. Cell lysates were transferred to clean and well 

labelled eppendorf tubes and incubated in a 56˚C water bath for 20 minutes. 
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Table 2.2: Primers and PCR assays used for detecting intermediate and final MVA recombinants 

Primer sets and MVA 
recombinant detected 
 

Primer 
name 
 

Primer sequence     (5 '         3') 
 
 

Primer target *PCR cycle (X 25) Product size (bp) 
 
 

Set 1: Intermediate 1 
 
 

A11Rfor 
gfprev 
 

ACA AAC ACC ATC CTT GGG AGTA 
AAA GTT CTT CAC CCT TAG ACG CC 
 

A11R (upstream of  flank) 
gfp 

95˚C (30'') 60˚C (30'') 72˚C (40'') 1100 
 
 

Set 2: Final recombinant/ gagfor CCC TAG AAA GAA AGG CTG CTG GAA gag 95˚C (30'') 60˚C (30'') 72˚C (40'') 791 

Intermediate 1 A12Lrev AAT CGG TGG AGA TGC AGC CGT CAA A12L (downstream of  flank)   

      

Set 3: Final recombinant/ 
A11Rfor ACA AAC ACC ATC CTT GGG AGTA A11R (upstream of  flank) 95˚C (30'') 60˚C (30'') 72˚C (2') Final recombinant  

3042/  

wtMVA A12Lrev AAT CGG TGG AGA TGC AGC CGT CAA A12L  (downstream of  flank)  wtMVA 1014 

      
Set 4: Final recombinant/ 
Intermediate 2 
 

A11Rfor 
gagrev       
 

ACA AAC ACC ATC CTT GGG AGTA TTC 
TTT CCG CCA GGC CTC AGT 
  

A11R (upstream of  flank) 
gag 

95˚C (30'') 60˚C (30'') 72˚C (40'') 
 

724 
 
 

Set 5: Intermediate 2 
 
 

colE1for 
A12Lrev 
 

GCG TGA GCT ATG AGA AAG CGC CA AAT 
CGG TGG AGA TGC AGC CGT CAA 
 

E. coli origin of replication 
A12L  (downstream of  flank) 

95˚C (30'') 60˚C (30'') 72˚C (40'') 1211 
 
 

 

 

 

 

Initial denaturation was 95˚C for 10 minutes and final elongation was 72˚C for 5 minutes for all assays. Final elongation time was 7 minutes for set 3 PCR to detect the 
final recombinant. 25 PCR cycles were performed as indicated in column 4.  
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The proteinase K activity was inactivated by incubating the lysates in an 85˚C water 

bath for 10 minutes. Cell debris was removed by centrifuging the lysate for 10 minutes 

at 2000 rpm (Eppendorf Centrifuge 5417C, Germany) and transferring the supernatant 

to a clean, well labelled eppendorf tube. A 5 – 10µl aliquot was used for PCR using the 

ImmoMix Red PCR mix (Bioline, USA) according to the manufacturer’s instructions. The 

PCR conditions for each primer set are listed in Table 2.2. The PCR product for the final 

recombinant was confirmed by sequencing using the ABI Prism® BigDye™ Terminator 

Cycle Sequencing kit (Applied Biosystems, USA) according to the manufacturer’s 

instructions. This was done as a service offered by the Central Analytical Facilities 

laboratory (Stellenbosch University, South Africa). 

2.2.6.7 Large scale recombinant MVA virus preparation 

To generate MVA-GagM vaccine stocks for animal immunisations and vaccine 

characterisation, BHK-21 cells were infected with recombinant MVA at an MOI of 0.01 in 

T75cm2 TC flasks. When all the cells were infected after 3 days, they were freeze-

thawed three times. The media was transferred to McCartney bottles and cell debris 

removed by centrifugation at 1400rpm (Boeco U-320, Germany) for 30 minutes. MVA-

GagM was harvested by high speed centrifugation at 15000rpm (Sorval RCSC Plus, USA), 

4˚C for 1 hour on a sucrose gradient (36% in PBS). The pellet was resuspended in 10ml 

PBS and centrifuged at high speed for an hour at 4˚C on a sucrose-dextran gradient 

(36% sucrose; 10% dextran). The harvested MVA-GagM was resuspended in 500µl PBS 

and stored in aliquots at -80˚C until required. MVA-GagM virus titration was done on 

BHK-21 cells as previously described by Chapman et al., 2012 (364). 

2.2.7 Confirmation of HIV-1C Gag expression  

The GagM immunogen sequence is computationally generated.  To determine its ability 

to be expressed, various experiments were carried out as part of this study. 

2.2.7.1 Lysate preparation and protein concentration determination 

Total protein lysates from infected (Section 2.2.6.3) or transfected (Section 2.2.6.4) cells 

were obtained to detect HIV-1C GagM expression. A lysis buffer was made by dissolving 

a protease inhibitor tablet (cOmplete EDTA-free®; Roche, Switzerland) in 1ml distilled 

water and adding 400µl of the solution to 10ml of Glo Lysis buffer (Promega, USA). The 

protease inhibitor was added to prevent protein degradation from protease enzymes. A 
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volume of 200µl of the lysis buffer was added to infected or transfected cell monolayers 

that had been washed twice with 1ml PBS/well. After a 5 minute incubation at room 

temperature with the lysis buffer, the lysate and debris was transferred to clean, well-

labelled eppendorf tubes, and centrifuged at 4˚C for 10 minutes at 13 000rpm 

(Eppendorf Centrifuge 5417C, Germany). The supernatant was used immediately or 

stored at -80˚C in 50µl aliquots. The protein concentration of samples was determined 

by using the Bio-Rad DC protein assay kit (Bio-Rad, USA) using the manufacturer’s 

recommendations, and the absorbance readings were measured at 750nm using a 

VERSAmax microplate reader (Molecular Devices, USA).  

2.2.7.2 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and 
Western blot analysis 

To confirm the expression of the correct sized protein (55kD) from the DNA and MVA 

vaccines made, proteins obtained from cell lysates (Section 2.2.7.1) were separated by 

SDS-PAGE using 12.5% denaturing polyacrylamide gels (Appendix C6; BioRad, USA) and 

subjected to Western blot analysis as outlined in Appendix C7. This was done using cell 

lysates obtained from DNA-transfected HEK-293 (Section 2.2.6.4) and from MVA-GagM-

infected BHK-21 cells (Section 2.2.6.3) and Gag was detected using HIV-1 gag p24-

specific anti-serum (ARP432, NIBSC Centralised Facility for AIDS Reagents, MRC, 

England). 

2.2.7.3 Immunostaining 

To detect the presence of Gag in infected cells and to titrate wt and recombinant MVA, 

immunostaining was performed. Immunostaining of BHK-21 and HeLa cells infected at 

an MOI of 1 with wtMVA, MVA-GagM , or MVA-GagN was done as described by Chapman 

et al., 2012 (364). This was done to determine the expression of the HIV-1C GagM in 

permissive (BHK-21) and non-permissive (HeLa) cells at 12, 18, 24, 30, and 48h.p.i.  The 

experiment was also done to determine the optimal time point to prepare samples for 

electron microscopy (Section 2.2.7.5). 

2.2.7.4 p24 ELISA assay 

The p24 ELISA assay was carried out as described by Tanzer et al., 2011 (475)  to 

confirm expression of the HIV-1C GagM and to determine the optimal time to set up 



 

Chapter 2: Construction and characterisation of HIV-1C mosaic Gag vaccines  75 
 

samples for electron microscopy (Section 2.2.7.5). HeLa cells (0.2x106 cells/well) and 

BHK-21 cells (0.3x106 cells/well) were infected at an MOI of 1 with wtMVA, MVA-GagN 

or MVA-GagM in 6-well TC plates (Section 2.2.6.3).  Uninfected cells were included as 

controls. Supernatants and lysates were obtained at 3, 6, 9, 12, 18, 24, and 30h.p.i. to 

detect HIV-1 p24. Protein concentrations were determined by using the Bio-Rad DC 

protein assay kit (Bio-Rad, USA) using the manufacturer’s recommendations. The 

absorbance readings were measured at 750nm using a VERSAmax microplate reader 

(Molecular Devices, USA). A total of 1µg protein from the lysates in 200µl distilled water 

was used for p24 detection. Capture ELISA was done using a MiniVidas machine 

(bioMérieux, France) and an Elecsys HIV Ag® (p24) kit (Roche, Switzerland). This was 

done as a service offered by the National Health Laboratory Service (NHLS, Cape Town). 

A 200µl aliquot of the supernatant was used for p24 detection. Where necessary, 1 in 10 

dilutions of the samples were made to obtain readings within the limits of the p24 

detection kit.  

2.2.7.5 Electron microscopy  

HIV-1 Pr55Gag can self-assemble and form VLPs without other HIV-1 proteins. The VLPs 

look like immature HIV-1 and bud from the membrane of the infected cell into the 

culture medium (Section 1.5.1; Figure 1.4). Electron microscopy was used to determine 

the ability of the HIV-1C GagM immunogen to bud and form VLPs in permissive and non-

permissive cell lines. Cells were infected (Section 2.2.6.3) with an MOI = 5 of wtMVA, 

MVA-GagN or MVA-GagM in duplicate. A negative control of uninfected cells was also 

included. A total of 2x105 BHK-21 cells/well and 3x105 HeLa cells/well in 6-well TC 

plates were used for the infection.  At 6, 12, and 48h.p.i, the cells were pooled and 

pelleted at 13000rpm (Eppendorf Centrifuge 5417C, Germany) for 3 minutes. The cells 

were washed in 1 ml PBSand then fixed in situ at 4˚C overnight with 2.5% ice cold 

gluteraldehyde (Merck, Germany) diluted in PBS, pH 7.4, at 10X the volume of the pellet. 

Fixed cells were pelleted at 5000rpm (Eppendorf Centrifuge 5417C, Germany), washed 

twice in 200µl PBS, and resuspended in 10-20µl of 2% low melting point agarose 

(Lonza, Belgium) depending on the pellet size. To enhance the electron density of the 

protein material, samples were incubated in 500µl of 0.5% Tannic acid (Sigma-Aldrich, 

USA; diluted in distilled water) for 1hour at room temperature and washed once in 1 X 

PBS prior to the post-fixation step with osmium tetroxide (Sigma-Aldrich, USA). 
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Samples were washed in 500µl of 2 X PBS for 5 minutes and once in 500µl of distilled 

water for 5 minutes. This was followed by dehydration in an ethanol gradient (30%, 

50%, 70%, 80%, 90%, 95%, 100%) for 10min in each ethanol dilution. Samples were 

incubated a second time in 100% ethanol for 10 minutes, and twice in acetone for 10 

minutes. The samples were incubated overnight in 400µl of a 1:1 acetone: Agar Low 

Viscosity Resin (Agar Scientific, UK) mixture, followed by an 8 hour incubation in a 1:3 

acetone: resin mixture. After an overnight incubation in 100% resin, the samples were 

incubated for a further 2hours on in fresh 100% resin, oriented into moulds, topped up 

with more resin, and polymerised at 60oC for 24 hours.  Thin sections were cut using a 

diamond knife as a service provided by the UCT Electron Microscope Unit (UCT, South 

Africa), stained in 1% uranyl acetate (Agar Scientific, UK) and lead citrate (Agar 

Scientific, UK), and viewed using a FEI Tecnai 20 transmission electron microscope (FEI, 

Netherlands). 

2.2.8 Summary of vaccines made in this project 

A list of the plasmids and vaccines made in this project is given in Table 2.3. 

Table 2.3: Vaccines made and used in this study 

Vaccine name Vector Insert Vector name 

BCG-GagM BCGΔpanCD  HIV-1C gagM pTJBCG3 

BCGE BCGΔpanCD None pEM19 

MVA-GagM MVA HIV-1C gagM pTJMVA2 

MVA-GagN *MVA HIV-1C Du422 Δgag * 

DNA-GagM DNA (pTHpCapR) HIV-1C gagM pTJDNA4 

DNAE DNA (pTHpCapR) None pTJDNA5 

DNA-GagN DNA (pTHpCapR) HIV-1C gagN pTJDNA6 

*This vector and vaccine was previously made by Nicolette Johnston a former member of the Medical Virology 
division at UCT (364).  
 

2.3 RESULTS 

2.3.1 BCG shuttle vector construction and the confirmation of plasmid integrity of 

BCG vaccines prior to and post vaccination 

The BCG shuttle vectors, pTJBCG3 (expressing a monovalent HIV-1C GagM immunogen) 

and a control vector pEM19 lacking the gag gene were constructed (Figure 2.6; 

Appendix A7 and A8), electroporated into competent BCGΔpanCD, and vaccine stocks 



 

Chapter 2: Construction and characterisation of HIV-1C mosaic Gag vaccines  77 
 

generated. As the stability of recombinant BCG (rBCG) can be compromised in vitro and 

in vivo (reviewed by Chapman et al., 2010; (362)), the genetic integrity of the rBCG 

vaccine stocks was assessed by restriction enzyme mapping of the shuttle vectors using 

XhoI (pTJBCG3) and SmaI (pEM19). Plasmid DNA isolated from vaccine stocks of BCG-

GagM and BCGE gave DNA fragments of the expected size, following restriction digestion 

(Figures 2.7A and B).  

Figure 2.6: Schematic representation of the BCG shuttle vector pTJBCG3 and the control vector 
pEM19.  Restriction sites used for cloning and restriction mapping analysis are indicated in black bold 
type.OriE – E. coli origin of replication; OriM – mycobacterial origin of replication, 19kD ss – 19kD signal 
sequence; Kan R – kanamycin resistance gene.  

The genetic integrity of the BCG shuttle vectors in vivo was determined by isolating mice 

spleens and lymph nodes 11.5 weeks post vaccination. The organs were homogenised 

and plated onto MiddleBrook 7H10 agar plates (Appendix D2) supplemented with 

vitamin B, hygromycin and OADC. Plasmid DNA was isolated from rBCGΔpanCD colonies 

(Section 2.2.3.4) and the gagM gene amplified by PCR to determine plasmid integrity 

(Section 2.2.3.6). The primers pCB119F and pEMRev that bind to the 19kD leader 

sequence and upstream of the kanamycin resistance gene, respectively (365), were used 

in the PCR amplification. PCR products of the expected sizes of 344bp and 1869bp were 

obtained from pEM19 and pTJBCG3 respectively. Eight PCR products were also 

sequenced to confirm genetic integrity and no mutations were observed (data not 

shown). The shuttle vectors within the recombinant BCGs were found to have 

maintained their integrity before and after immunisation (Figures 2.7C and D). 
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Figure 2.7: Genetic integrity of plasmids pTJBCG3 and pEM19 isolated from recombinant BCG in 
vitro and in vivo. (A) pTJBCG3 digested with XhoI, to yield fragments of 2259bp and 4169bp. Lane 1 is a 
positive control of pTJBCG3 DNA prior to transformation into BCGΔpanCD. Lanes 2-21 contain pTJBCG3 
DNA obtained from recombinant BCG-GagM vaccine stocks. (B) pEM19 digested with SmaI. Fragments of 
2118bp and 2794bp were obtained. Lanes 1–15 contain pEM19 plasmid DNA isolated from recombinant 
BCGE vaccine stocks, and lane 16 pEM19 plasmid DNA isolated prior to transformation into BCGΔpanCD 
(positive control). PCR amplification from plasmid DNA isolated from rBCG found in the spleens and 
lymph nodes of mice vaccinated with BCG-GagM (C) or BCGE (D). Lane 1 – negative control; Lane 2 – 
positive control; Lane 3 – 12 are PCR products from the shuttle vectors of randomly picked rBCG from 
previously vaccinated mice obtained from homogenised spleen (3-7) or lymph nodes (8-12). Lanes M in A 
- D contain the molecular weight marker O’GeneRulerTM 1kb DNA ladder (Appendix E1) and the sizes are 
indicated. 

2.3.2 DNA vaccine construction and immunogen expression 

The plasmid pTHpCapR contains the commonly used pTH DNA vaccine vector backbone 

(552) and has a porcine circovirus enhancer element upstream of the cytomegalovirus 

(CMV) AD169 immediate-early promoter to facilitate increased expression of the 

immunogen, thus enabling dose sparing of the vaccine (475). In this study, three DNA 

vaccines were constructed using the pTHpCapR backbone (Figure 2.8). The vaccine  
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Figure 2.8: Schematic representation of the DNA vaccines pTJDNA4, pTJDNA5, and pTJDNA6. The 
pTHpCapR vector backbone (475) was used for constructing the DNA-based vaccines used in this project. 
pTJDNA5 has no insert and was used as a negative control,  pTJDNA4 has the gagM and pTJDNA6 has a 
gagN cloned in the EcoRI and HindIII sites of the pTHpCapR vector backbone. The gagN was obtained from 
a natural HIV-1C isolate in a previous study (309).Pcap – porcine circovirus enhancer element; Pcmv – 
CMV promoter; AmpR –  ampicillin resistance gene; OriE; E. coli plasmid origin of replication. 

vector, pTJDNA5, was made for use as an empty vector negative control (DNAE). 

pTJDNA4 contains the HIV-1 subtype C gagM insert (DNA-GagM), and pTJDNA6 has a 

gagN insert (DNA-GagN; Figure 2.8). The natural HIV-1 subtype C gag gene was isolated 

from an HIV-1 positive sex worker, Du422, in South Africa and had the closest sequence 

similarity to the consensus sequence following a subtype C Gag alignment (309). 

Cloning of all three DNA vaccines was verified by restriction enzyme digestion (Figure 

2.9) and sequencing (data not shown) of plasmid prepared on a large scale. Gag 

expression from the constructed plasmids was determined by SDS PAGE and Western 

blot analysis of lysates obtained from HEK-293 transfected with the individual plasmids 

(Section 2.2.7.2). Western blots of cell lysates were probed with a rabbit anti-HIV-1-p24 

Gag antibody (ARP432), followed by an anti-rabbit antibody conjugated to alkaline 

phosphatase (Sigma-Aldrich, USA). A HEK-293 cell lysate transfected with a plasmid 
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known to express full length Gag was used as a positive control. The presence of a 55kD 

fragment indicated the expression of a full length Gag (Figure 2.10).  

 

 

Figure 2.9: Restriction enzyme digests of DNA vaccines. (A) pTJDNA4 digested with EcoRI and HindIII 
(lane 1; 1530bp and 5008bp fragments), and EcoRI only (lane 2; 6538bp). (B) pTJDNA5 digested with 
XbaI and PvuI (lane 1; 1965bp and 3043bp fragments), and PvuI only (lane 2; 5008bp). (C) pTJDNA6 
digested with EcoRI and HindIII (lane 1; 1491bp and 5008bp fragments), and EcoRI only (lane 2; 
6499bp). Lanes M in (A), (B) and (C) contain the molecular weight marker O’GeneRulerTM 1kb DNA 
ladder (Appendix E1) and the sizes are indicated to the left. 

 

Figure 2.10: In vitro expression of HIV-1 Gag in HEK-293 cells transfected with DNA vaccines. Cell 
lysates were prepared from HEK-293 cells transfected with pTJDNA4 (DNA-GagM; lane 1), pTJDNA5 
(DNAE; lane 2), pTJDNA6 (DNA-GagN; lane 3), and from untransfected cells (lane 5). HEK- 293 cells 
transfected with a plasmid known to express full length Gag was used as a positive control (lane 4). A 
Precision Plus Protein Kaleidoscope pre-stained standard (lane M; Appendix E3) was used and the sizes 
are indicated to the right. The expression of full length Gag is indicated by a 55kD fragment. 
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2.3.3 MVA vaccine construction and immunogen expression 

The MVA transfer vector used in this study, pTJMVA2, was designed to insert the HIV-1C 

GagM into a conserved region of the MVA genome, between the A11R and A12L ORFs as 

described in Section 2.2.6.1 (Figure 2.11A). The transfer vector pTJMVA2 was 

constructed and shown to produce bands of the correct size upon SnaBI digestion 

Figure 2.11B.  

 

Figure 2.11: The transfer vector pTJMVA2 used for making recombinant MVA. (A) Schematic 
representation of the transfer vector pTJMVA2 (B) Mapping of pTJMVA2 by restriction enzyme digestion. 
Fragments of 810bp and 4658bp were obtained following a SnaBI digest (lane 1). Lane marked M has the 
molecular weight marker O’GeneRulerTM 1kb DNA ladder (Appendix E1) and the sizes are indicated to the 
left. pSS – MVA synthetic promoter promoter; gfp –green fluorescent protein gene; bsdR – blasticidin 
resistance; OriE – E. coli plasmid origin of replication; AmpR – ampicillin resistance; CmpR – 
chloramphenicol resistance gene; mH5 – modified H5 promoter; A11R and A12L flanks – partial MVA 
ORFs.  

To determine the minimum BSD concentration required to kill BHK-21 cells within 3 

days, a kill curve was carried out (Section 2.2.6.2; Figure 2.12). BHK-21 cells with the 

transfer vector, pTJMVA2, expressing the bsd resistance gene would therefore be 

selected for during the recombinant MVA construction process. After 3 days cell death 

was observed with 2.5-15µg/ml BSD (Figure 2.12, panels F, I, L, O, R). Live cells were 

still detectable when incubated with 2.5, 5 and 7.5µg/ml BSD (Figure 2.12, panels F, I 
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and L). No live cells were detectable at 10 and 15µg/ml BSD (Figure 2.12, panel O and 

R). We therefore used 10µg/ml BSD for the subsequent experiments.  

 

Figure 2.12: Determination of the optimal BSD concentration required to kill all cells by day 3. 
BHK-21 cells were seeded with various concentrations of BSD (0-15µg/ml). The concentration required 
to kill all cells by day 3 was determined by viewing the cells using a light microscope. 
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Recombinant MVA was isolated as described in Section 2.2.6. Initially, a fluorescing 

single cross-over recombinant containing the entire plasmid was purified (Figure 2.13).  

 

Figure 2.13: Expression of GFP in BHK-21 cells infected with recombinant MVA. BHK-21 cells were 
infected with MVA (MOI = 1) and transfected with 4µg pTJMVA2. MVA virus was harvested and passaged 
onto fresh monolayers of BHK-21 cells in the presence of 10µg/ml BSD for 4 passages. The phase contrast 
(A) and fluorescence (B) images of uninfected cells were included as a negative control. Panels C and D 
are phase contrast and fluorescence images, respectively, of cells infected with rMVA after 4 passages in 
BHK-21 cells, 48h.p.i. Individual fluorescing plaques (D) were picked and passaged further. Scale bars are 
shown on each image. 

PCR was used to detect the presence of this intermediate recombinant using the 

primers and conditions described in Table 2.2 (Section 2.2.6.6). Primers were designed 

to distinguish between insertion into either the A11R or the A12L ORF. Figure 2.14 

shows two scenarios of how the transfer vector pTJMVA2 could homologously 

recombine into the MVA genome. Recombination could initially take place at the A12L 

site (pink; Figure 2.14C). Primer sets 1 and 2 would detect the presence of this 

recombinant with 1100bp and 791bp PCR amplicons respectively. A second 

recombination event would then take place between the A11R flank (light blue) within 

pTJMVA2 and within the MVA genome to generate a final recombinant with the gagM 

gene (dark blue), under the control of an mH5 promoter, inserted between the A11R 

and A12L ORFs (Figure 2.14E).           
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Figure 2.14: Transfer vector and primer design used to construct and detect a recombinant MVA 
expressing HIV-1C GagM. (A) The transfer vector pTJMVA2 designed for insertion of gagM into the MVA 
genome between ORFs A11R and A12L. pSS – MVA synthetic promoter promoter; gfp –green fluorescent 
protein gene; bsdR – blasticidin resistance gene; CmpR – chloramphenicol resistance gene; OriE – E. coli 
plasmid origin of replication; A11R and A12L flanks – partial sequences of MVA ORFs; mH5 – modified H5 
promoter. (B) Schematic of a partial wtMVA genome showing positions of the A11R and A12L ORFs. (C) 
Schematic of the transfer vector inserted into A12L. (D) Schematic of the transfer vector inserted into 
A11R. (E) Final MVA-Gag recombinant with the GagM inserted between the A11R and A12L ORFs. Arrows 
indicate the position and direction of primers used to detect the intermediate recombinants and the final 
recombinant by PCR. The expected PCR product sizes are indicated for each primer set.  

A 
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A 791bp PCR product using primer set 2 would also confirm the presence of a final 

recombinant. Alternatively, recombination could have also taken place at the A11R site 

first (light blue; Figure 2.14D). Primer sets 4 and 5 would detect the presence of this 

recombinant by generating 724bp and 1211bp PCR amplicons respectively. A second 

recombination event would then take place between the A12L flank within pTJMVA2 

and within the MVA genome to generate a final recombinant with the gene of interest 

inserted between the A11R and A12L ORFs. A 724bp PCR product using primer set 4 

would also suggest the presence of a final recombinant. In both scenarios, primer set 3 

was used to detect the presence of wild type MVA (1014bp; Figure 2.14B) and the final 

recombinant (3042bp; Figure 2.14E). 

PCR amplification of DNA isolated from fluorescing plaques obtained from the 

intermediate in Figure 2.13D is shown in Figure 2.15. PCR with primer sets 1 and 2 

yielded no PCR products (results not shown). PCR with primer set 3 (Figure 2.15A) 

yielded a PCR product of 1014bp suggesting the presence of wild type MVA. PCR with 

primer set 4 yielded a 724bp product suggesting the presence of a final recombinant 

and/ or an intermediate where the initial recombination was in the A11R ORF of MVA 

(Figure 2.14D; Figure 2.15B). There was, however, no final recombinant present at this 

stage of passaging since primer set 2 did not give a 791bp product (result not shown). A 

PCR product of 1211bp was obtained using primer set 5 and confirms the presence of 

an intermediate that recombined into the A11R ORF of MVA. 

The purified intermediate was passaged 4 times in the absence of BSD, and non-

fluorescing plaques were picked and screened using PCR until a final recombinant was 

obtained. After 7 rounds of plaque-picking in the absence of BSD, a final recombinant 

was identified by PCR using primer set 3 which bind on either side of the insertion site 

in MVA (Figure 2.14E). Figure 2.16A shows that there was a mixture of wild type and 

recombinant MVA viruses. The recombinant MVA was passaged three more times at 

which stage no wtMVA could be detected by PCR (Figure 2.16B). Figure 2.16B shows 

that the MVA virus isolated is the desired final recombinant, MVA-GagM as the expected 

PCR product of 3042bp was generated using primer set 3. This PCR product was 

sequenced and confirmed the composition of MVA-GagM. 
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 Figure 2.15: PCR detection of an MVA intermediate recombinant. A 1% agarose gels showing PCR 
products amplified from primer sets 3 (A), 4 (B) and 5 (C) of lysates obtained from the plaque in Figure 
2.13. The same template was used for each gel. Lane 1 is empty; Lane 2 is a negative control and has no 
lysate; Lane 3 has lysate from uninfected cells; Lane 4 has lysate from the fluorescing plaque in Figure 
2.13; Lane 5 has lysate from another fluorescing plaque in the same well as the plaque in Figure 2.13. 
Lanes marked M have the molecular weight marker O’GeneRulerTM 100bp Plus DNA ladder (Appendix E2) 
and the sizes are indicated to the left.  

 

Figure 2.16: PCR detection of MVA-GagM. (A) Agarose gel showing PCR products from the lysates of 
BHK-21 cells (lane 2), MVA-infected BHK-21 cells (lane 3), and lysate from cells passaged 4 times in the 
presence of BSD, followed by 7 plaque purification steps in the absence of BSD to obtain the potential 
recombinant (lane 4 and 5). Lane 1 was included as an additional negative control and had no lysate 
added. The final recombinant is detected by the 3042bp fragment, and wild type MVA is detected by a 
1014bp PCR product. Both samples screened (lane 4 and 5) had both wild type MVA and MVA-GagM 
present. (B) Agarose gel of PCR products from the lysates of uninfected BHK-21 cells (lane 2) and cell 
lysates obtained after 4 passages on BHK-21 cells followed by 10 plaque pick purification steps (lanes 3 - 
10). Lane 11 had lysate from cells passaged 4 times, followed by 7 plaque picks. Lane 1 was included as a 
negative control and had no lysate added. Lanes marked M have the molecular weight marker 
O’GeneRulerTM 100bp Plus DNA ladder (Appendix E2)  and the sizes are indicated to the left. 
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Vaccine stocks of MVA-GagM were generated by infecting BHK-21 cells in multiple large 

TC flasks. MVA-GagM was then harvested, and titrated on BHK-21 cells (Section 2.2.6.7). 

The titre was determined by averaging results of immunostaining using both an anti-

HIV-1 p24 Gag antibody (ARP432) and anti-vaccinia virus antibody (AbSerotec, UK). 

Uninfected cells and cells infected with wild type MVA were used as negative controls.  

As a positive control, we included BHK-21 cells that were infected with MVA-GagN 

(309,364) (Figure 2.17). MVA-GagM virus titres of 7.8 x 107 pfu/ml and 9.4 x 107 pfu/ml 

were obtained on BHK-21 cells by immunostaining using the anti-Gag and anti-MVA 

antibodies, respectively. The titre was averaged to 8.6 x 107 pfu/ml. The anti-Gag 

immunostain results also confirmed the expression of the GagM immunogen. The similar 

values obtained for the two titrations indicates that all the MVA-GagM virus expresses 

GagM and there is no residual wtMVA present in the vaccine stock. 

 

Figure 2.17: Titration and in vitro expression of Gag by BHK-21 cells infected with MVA-GagM as 
determined by immunostaining. BHK-21 cells were infected with 10 fold serial dilutions of MVA-GagM, 
MVA-GagN, wild type MVA (wtMVA), or left uninfected for 72 hours. HIV-1 Gag was detected with anti-Gag 
antibody ARP432 (α-Gag; top panels) as well as an anti-vaccinia virus antibody (α-MVA; bottom panels), 
followed by an anti-rabbit HRP-conjugated antibody. The titre was determined by averaging the number 
of stained foci using the anti-Gag and anti-vaccinia antibodies, and factoring in the dilution factor and 
infection volume.  

In vitro expression of the GagM protein in the vaccine stocks was confirmed by Western 

blot analysis following SDS PAGE. Cell lysates derived from BHK-21 cells infected with 

MVA-GagM, when probed with a Gag-specific antibody, showed expression of a protein 

of the correct size of 55kD (Figure 2.18, Lane 4). Lysates from uninfected cells were 

used as a negative control and a HeLa cell lysate transfected with a plasmid known to 



 

Chapter 2: Construction and characterisation of HIV-1C mosaic Gag vaccines  88 
 

express full length Gag was used as a positive control This experiment confirmed the 

expression of the GagM protein from MVA-GagM. 

 

Figure 2.18: In vitro expression of a GagM immunogen from lysates of BHK-21 cells infected with 
MVA-GagM. Cell lysates were prepared from BHK-21 cells infected with MVA-GagM (lane 4), wild type 
MVA (lane 3), or left uninfected (lane 2). HeLa cells transfected with a plasmid known to express full 
length Gag was used as a positive control (lane 1). Western blots were probed with a rabbit anti-HIV-1-
p24 Gag antibody (ARP432), followed by an anti-rabbit antibody conjugated to alkaline phosphatase 
(Sigma-Aldrich, USA). A Precision Plus Protein Kaleidoscope pre-stained standard (lane M; Biorad, USA; 
Appendix E3) was used and the sizes are indicated to the left. 

Due to the numerous deletions in MVA, compared to the parent vaccinia virus 

(485,506), the host range has been compromised, particularly in mammalian cell lines 

(508,509). MVA can, however, complete its replication cycle in BHK-21 cells (509) and 

rat IEC-6 cells(576). To assess the expression of the GagM in a non-permissive cell line, 

HeLa cells were infected with MVA-GagM at an MOI of 1 (Section 2.2.6.3). An 

immunostaining assay using a rabbit anti-HIV-1-p24 Gag antibody (ARP432) followed 

by a peroxidase-conjugated anti-rabbit antibody, (AbSerotec, UK) was carried out at 

different time points post infection ((364); Section 2.2.7.3).  MVA-GagN-infected, and 

uninfected HeLa cells were included for comparison (Figure 2.19). The presence of 

stained cells indicated the expression of Gag from MVA-GagM in a non-permissive cell 

line (panels A-E) from as early as 12 hours post infection (panel A; Figure 2.19). 

Although the same MOI and number of cells were used for the infection, there were 

more brown-stained cells in the Gag-immunostain of cells infected with MVA-GagM 

(panels A-E) than those infected with MVA-GagN (panels F-J). In the latter, only a few  
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Figure 2.19: In vitro expression of Gag in a non-permissive cell line infected with recombinant MVA. HeLa cells were infected at an MOI of 1 with MVA-GagM 
(panels A-E), MVA-GagN (panels F-J), or left uninfected (panels K-O). HIV-1 Gag was detected with an anti-Gag antibody ARP432 (α-Gag) followed by an anti-rabbit 
HRP-conjugated antibody. Expression of Gag was detected as brown-stained cells. Camera settings were the same at for time points. 
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stained cells were visible by 48 hours as most cells had rounded and lifted (panels E, J, 

and O).  To further confirm the expression of GagM in permissive and non-permissive 

cell lines, a p24 ELISA assay was done on supernatants and lysates of permissive (BHK-

21) and non-permissive (HeLa) cell lines infected with MVA-GagM or MVA-GagN at 

various time points (Figure 2.20). Since Gag expression was detected from as early as 

12h.p.i with the immunostaining, the p24 ELISA assays were done from 3h.p.i. Gag p24 

production from cells infected with MVA-GagM was detected from as early as 3h.p.i in 

both lysates and the supernatants of both cell lines (Figure 2.20A) at values ≥ 400pg/ml. 

The amount of p24 increased over time in the cell supernatants, reaching 7480pg/ml at 

30h.p.i in infected BHK-21 cells. However, detectable p24 decreased in the cell lysates 

over time, dropping to below 200pg/ml in HeLa cells by 12h.p.i and in BHK-21 cells by 

18h.p.i. 

Overall, there was more p24 detected in the supernatants than lysates from both cell 

lines infected with MVA-GagM (Figure 2.20A). In contrast, for cells infected with MVA-

GagN, there was a large difference in the amount of detectable p24 in the supernatant 

BHK-21 compared to HeLa cells (Figure 2.20B). The peak p24 levels in the supernatant 

of MVA-GagM-infected BHK-21 cells (maximum 7480pg/ml at 30h.p.i.) were 25.7-fold 

higher than those of MVA-GagN-infected BHK-21 cells (maximum 291.3pg/ml at 

30h.p.i.). Interestingly, at the same time point, the p24 detected in the supernatant of 

BHK-21 cells infected with MVA-GagM was already dropping. Detectable p24 from cell 

lysates of MVA-GagN infected BHK-21 and HeLa cells did not exceed 50pg/ml until after 

30 hours in BHK-21 cell lysates.  

The presence of p24 Gag in the supernatant of infected cells suggests the formation of 

VLPs. Transmission electron microscopy on permissive BHK-21 and non-permissive 

HeLa cells infected with MVA-GagM (panel C; Figures 2.21 - 2.24) was carried out. Cells 

infected with MVA-GagN (panel D; Figures 2.21 - 2.24) were included to compare VLP 

production, and cells infected with wtMVA (panel B; Figures 2.21 - 2.24) were included 

to compare the viral morphogenesis at 6 and 12h.p.i. Uninfected cells were included as a 

negative control, and no signs of viral infection were detectable (panel A; Figures 2.21 - 

2.24). VLPs were detected in both permissive and non-permissive cell lines infected 

with MVA-GagM from as early as 6h.p.i (panels C and E in Figures 2.21 -2.24). Budding 

particles were also evident in HeLa cells 12h.p.i (panel C and E in Figure 2.24). 
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Immature poxviruses (IV) and/or viral crescents (VCs) which indicate that MVA 

morphogenesis occurred were detected in both cell lines infected with MVA-GagN. 

Surprisingly, no VLPs were detected in both cells lines at 6 and 12h.p.i. (panel D; Figures 

2.21 - 2.24). 

  

  

Figure 2.20: p24 Gag production and release by recombinant MVA in BHK-21 and HeLa cell lines. 
Gag p24 was detected using an ELISA assay. Permissive (BHK-21) and non-permissive (HeLa) cell lines 
were infected at an MOI of 1 with recombinant MVA and samples taken at the indicated time points. (A) 
Gag p24 production by MVA-GagM (B) Gag p24 production by MVA-GagN. Note, the Y axis scale is different 
between A and B. 

A 

B 



 

 

Chapter 2: Construction and characterisation of HIV-1C mosaic Gag vaccines 92 
 

 

Figure 2.21: Electron micrographs of VLP formation in permissive BHK-21 cells infected with 
recombinant or wtMVA 6.h.p.i.  BHK-21 cells were either left uninfected (A) or infected with wtMVA 
(B), MVA-GagM (C), or MVA-GagN (D) with an MOI of 5. Cells were processed for the detection of VLPs by 
transmission electron microscopy. The nucleus (N), extracellular VLPs, and immature virus (IV) are 
labelled. The insert (E) is a magnification of extracellular VLPs in the selected area of cells infected with 
MVA-GagM (C). Scale bars represent 500nm. 



 

 

Chapter 2: Construction and characterisation of HIV-1C mosaic Gag vaccines 93 
 

 

Figure 2.22: Electron micrographs of VLP formation in permissive BHK-21 cells infected with 
recombinant or wtMVA 12.h.p.i.  BHK-21 cells were either left uninfected (A) or infected with wtMVA 
(B), MVA-GagM (C), or MVA-GagN (D) with an MOI of 5. Cells were processed for the detection of VLPs by 
transmission electron microscopy. The nucleus (N), extracellular VLPs, viral crescents (VC), and 
immature virus (IV) are labelled. The insert (E) is a magnification of extracellular VLPs in the selected 
area of cells infected with MVA-GagM (C). Scale bars represent 500nm. 
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Figure 2.23: Electron micrographs of VLP formation in non-permissive HeLa cells infected with 
recombinant or wtMVA 6.h.p.i.  HeLa cells were either left uninfected (A) or infected with wtMVA (B), 
MVA-GagM (C), or MVA-GagN (D) with an MOI of 5. Cells were processed for the detection of VLPs by 
transmission electron microscopy. The nucleus (N), extracellular VLPs, and viral crescents (VC) are 
labelled. The insert (E) is a magnification of extracellular VLPs in the selected area of cells infected with 
MVA-GagM (C). Scale bars represent 500nm. 
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Figure 2.24: Electron micrographs of VLP formation in non-permissive HeLa cells infected with 
recombinant or wtMVA 12.h.p.i.  HeLa cells were either left uninfected (A) or infected with wtMVA (B), 
MVA-GagM (C), or MVA-GagN (D) with an MOI of 5. Cells were processed for the detection of VLPs by 
transmission electron microscopy. The nucleus (N), extracellular VLPs, viral crescents (VC), and 
immature virus (IV) are labelled. The insert (E) is a magnification of extracellular VLPs in the selected 
area of cells infected with MVA-GagM (C). The asterisk (*) indicates a budding VLP. Scale bars represent 
500nm. 
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At 48h.p.i almost all MVA-GagM–infected BHK-21 cells were lysed and dead, although a 

few VLPs were detectable (Figure 2.25C). VLPs were also detectable in MVA-GagN– 

infected BHK-21 cells at the same time point (Figures 2.25A and B) and appear to be the 

same size as those formed by MVA-GagM under the same TC conditions. Thus, the 

computationally generated HIV-1C GagM is expressed in mammalian cells, buds and 

forms extracellular VLPs. The expression of GagM appears to be more efficient than that 

of GagN (in the DNA vaccines) as evidenced by Western blot analysis of transfected HEK-

293 cells (Figure 2.10), and immunostaining (in the MVA vaccines; Figure 2.19) and p24 

ELISA (in the MVA vaccines; Figure 2.20) analysis of rMVA-infected BHK-21 and HeLa 

cells. However, MVA-GagN does not have the p6 domain which is known to influence 

VLP formation. The expression of GagM in non-permissive HeLa cells suggests that it 

would be expressed in humans who are the ultimate target for the generated vaccine.  

 

 Figure 2.25: Electron micrographs of VLP formation in permissive BHK-21 cells infected with 
rMVA 48.h.p.i. BHK-21 cells were infected with MVA-GagN (A and B), or MVA-GagM (C) with an MOI of 1. 
Cells were processed for the detection of VLPs by transmission electron microscopy. The cytoplasm is 
labelled. The VLPs are indicated by an arrow in A and the scale bar represents 200nm. 



 

 

Chapter 2: Construction and characterisation of HIV-1C mosaic Gag vaccines 97 
 

2.4 DISCUSSION 

The stability and expression of transgenes is critical in vaccine development. This is 

essential for memory cells to elicit a correct and potent immune response to the antigen 

in the event of an infection. In this study, three vaccines expressing a monovalent HIV-

1C GagM were constructed (BCG-GagM, DNA-GagM, and MVA-GagM).  

Recombinant BCG vaccines expressing heterologous antigens can be unstable 

(364,550,551,573). This can be a result of not codon optimising the transgenes (364), 

their over expression and cytoplasmic accumulation (550,573), or due to the use of a 

strong promoter ((573); reviewed by Chapman et al., 2010; (362)).  These, in turn, can 

cause metabolic overload on the recombinant BCG and results in vaccine instability.  To 

overcome the BCG-GagM vaccine instability, the gagM DNA sequence in our study was 

codon optimised for maximal expression in BCG, which would also potentially translate 

to increased immunogenicity. A 19kD signal sequence was also included upstream of 

gagM, to direct the immunogen to the M. bovis BCGΔpanCD cell wall and prevent 

accumulation of the HIV immunogen within the host cell. GagM expression from the 

BCG-GagM vaccine was however not assessed in vitro. This was due to the presence of 

the mtrA promoter which downregulates antigen expression in vitro, and upregulates 

antigen expression in vivo (543,550). Thus, the GagM would only be expressed at high 

levels in vivo, and not during the generation of vaccine stocks. This modification was 

also done so that vaccine stocks could be bulked up without compromising the shuttle 

vector or immunogen integrity. The shuttle vectors in the BCG-GagM and BCGE vaccines 

we constructed here were detectable in peripheral lymphoid organs (spleen and lymph 

nodes) of vaccinated mice 11.5 weeks post vaccination. This was encouraging, as these 

are sites where adaptive immune responses are initiated (148). Furthermore, the gagM 

DNA sequence obtained from BCG-GagM in the peripheral lymphoid organs was 

unaltered as determined by PCR and sequencing.  

The expression of a correctly sized 55kD GagM protein was determined from the DNA-

GagM and MVA-GagM vaccines (Figures 2.10 and 2.18, respectively). Western blot 

analysis for Gag expression shows a fainter band for DNA-GagN (Figure 2.10; lane 3) in 

comparison to the band obtained from the lysates of HEK cell transfected with DNA-

GagM (Figure 2.10; lane 1).  This suggests that GagM is expressed better than GagN from 
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the pTHpCapR DNA vaccine vector backbone. Pilot HIV-1 Gag p24 ELISA assays were 

carried out on lysates of HEK-293 cells and expression of the GagM immunogen was 3-

fold greater than that of the GagN immunogen. Both genes were confirmed to be full 

length gag by sequencing. For both the Western blot and p24 ELISA assays, the 

transfection experiments for the two DNA vaccines were conducted in parallel, using 

the same DNA concentrations and other conditions. There are various DNA sequence 

features that influence protein expression levels during transcription (e.g. polymerase 

slippage sites), mRNA processing (e.g. the free energy of stable RNA and secondary 

structure of the mRNA), translation (e.g. ribosomal binding sites) and protein folding 

(e.g. translation pause sites (577)). It would therefore be interesting to investigate 

further if the mosaic sequence somehow causes more efficient translation or production 

of a more stable protein. GagM was successfully cloned into the conserved region of 

MVA, between ORFs A11R and A12L. MVA-GagM titration on BHK-21 cells using 

antibodies to Gag and MVA gave similar results (Figure 2.17), showing that the gagM 

insert was maintained and not lost during vaccine scale up in BHK cells.  

Mosaic immunogens are designed computationally to increase the coverage of T cell 

epitopes of vaccines (1). We have shown that an HIV-1C GagM budded and formed stable 

VLPs (Figures 2.20-2.25). The amount of p24 detected by the ELISA assay continued 

decreasing between 18 and 30 hours in the lysates of MVA-GagM-infected cells (Figure 

2.20A), suggesting cell death. However, the amount of p24 detected in the culture 

supernatants did not decrease. However, this could also be a result of the produced 

VLPs being stable and remaining in the supernatant, a desirable property for candidate 

HIV-1vaccines expressing Gag. The experiment could be repeated with additional time 

points.  

The control gagN gene had been previously cloned into MVA by Nicolette Johnston, a 

former member of our laboratory. Although it was inserted in a different region (delIII) 

from gagM (A11R-A12L), it was expressed from the same mH5 transcriptional promoter 

and was shown to be stable (364). The use of an MVA vaccine expressing a full length 

GagN inserted between the A11R and A12L ORFs would have been an ideal control for 

comparative purposes in this study.  The differences in Gag expression levels, as 

determined by immunostaining on HeLa cells (Figure 2.19), reduced p24 detection for 

gagN (Figure 2.20B), and delayed VLP formation for gagN (Figures 2.21-2.25), could be 
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due to the differences in the gag gene sequences, gene transcription, mRNA stability, or 

protein translation or folding as suggested above. RSV studies have shown that VLP 

production is dependent on a threshold expression of Gag (578). When expressed at low 

concentrations, HIV-1 Gag is known to remain in the cytoplasm (579,580).  However, as 

the Gag concentration increases in the cytoplasm of a host cell, its concentration at the 

plasma membrane also increases, and so does VLP formation. This is most likely to be 

due to an increase in the Gag multimerisation process (580). Furthermore, the gagN 

gene in MVA-GagN was truncated and lacked the p6 domain. This region of HIV-1 Gag 

affects virus particle budding and subsequent release from the host cell into the 

extracellular space (132,133). The presence of GagM p24 in supernatants and lysates of 

DNA-GagM-transfected HEK-293 cells was determined 48 hours post transfection. A p24 

assay on lysates and supernatants of DNA-GagM and DNA-GagN transfected HEK-293 

cells would give a more quantitative comparative measure of Gag expression by the two 

DNA vaccines.  

Studies done by others have shown HIV-1 Group M mosaic vaccines to be more 

immunogenic than the vaccines expressing antigens derived from natural or consensus 

HIV-1 sequences (312,318,319). High immunological responses to candidate vaccines 

have been also been correlated to stability and increased expression levels of the 

antigen (365,526). The biochemical properties of HIV-1 mosaic antigens have not been 

described before; we speculate that they may be responsible for the increased 

expression/accumulation of Gag we observed in our study. Immunological evaluation of 

the HIV-1C GagM vaccines constructed here was determined in female BALB/c mice and 

is described in the next chapter. 
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3.1 INTRODUCTION 

This chapter describes the assessment of the immunogenicity of the BCG, DNA and MVA 

vaccines expressing GagM that were described in the previous chapter. Pilot studies 

were carried out to determine the optimal dose of MVA for use in a BCG or DNA prime 

MVA boost regimen. Using the determined optimal dose of MVA, the immunogenicity of 

the vaccines expressing GagM was compared in both heterologous and homologous 

prime boost combinations. In addition DNA and MVA vaccines expressing GagN protein 

derived from HIV-1C strain Du422 were included in the comparisons. The Gag protein 

from HIV-1C strain Du422 was selected previously on the basis of its similarity to a 

derived South African consensus sequence (309,530). 

It is essential to determine the immunogenicity and safety of candidate vaccines prior to 

advancing a vaccine to clinical trials. Thus the immunological evaluation of the vaccines 

constructed in this study was carried out in BALB/c mice (reviewed in Section 1.8.4). 

Mice are suitable animal models for the initial evaluation of HIV-1 vaccines because 

their HLA type is well studied and there are generally low costs associated with their 

use. Preclinical studies will be carried out in non-human primates once the 

immunogenicity of these vaccines has been confirmed in mice. 

Prime-boost vaccination regimens using attenuated vaccines induce more potent 

immune responses than single dose vaccinations.. In particular, the heterologous prime-

boost vaccinations delivering the same antigen but in different vectors elicit immune 

responses of better quality and magnitude than homologous prime-boost vaccinations 

(reviewed by Ondondo et al., 2014, Garcia-Arriaza et al., 2014, and Girard et al., 2011; 

(146,440,581)). The ideal HIV-1 vaccine will need to elicit T cell and humoral immune 

responses; and heterologous prime-boost vaccinations have been shown to do this in 

non-human primates and in clinical trials (reviewed by Hutnick et al., 2011; (582)). 

Heterologous prime-boost vaccinations also offer the advantage of boosting immunity 

to the immunogen and not the vaccine vector, unlike homologous vaccinations (583). 

The frequency of memory T cells has also been shown to increase with heterologous 

prime-boost vaccinations, with effector memory T cells being generated with an 

increased number of vaccinations (reviewed by Nolz et al., 2011; (584)). Priming with a 

DNA-vectored vaccine is advantageous for focusing the immune response to the 
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immunogen, unlike priming with viral or bacterial vectors that have multiple other 

antigens in their backbone (reviewed by Hutnick et al., 2011; (582)). Roederer and 

colleagues showed that rhesus macaques were significantly protected from a SIVsmE660 

strain challenge following vaccination with three DNA and one rAd5 vaccine expressing 

SIV mosaic Gag and Env genes (321). The RV144 study used a canarypox-based vaccine 

for priming a protein boost. This is the only efficacy clinical trial that has shown some 

promise towards an HIV-1 vaccine (204). It supports the use of heterologous prime-

boost vaccinations and this study showed that potent immune responses can be elicited 

when priming with a viral vector.  

 For T cell-based candidate HIV-1 vaccines, the immunological evaluation of pre-clinical 

studies involves the use of assays that determine the responses desirable for such 

vaccines (reviewed in Section 1.10). These are based on studies done on ECs and LTNPs 

where such immune responses correlate  with lower viral load and slow disease 

progression (reviewed by McMichael and colleagues 2010; (149)). The functions of 

some of the cytokines evaluated in response to viral infection have also been reviewed 

in Section 1.6.  IFN-γ secretion by CD4+ and CD8+ T cells is associated with the 

suppression of HIV-1, SIV, and SHIV replication during viral infections (585). The 

production of IL-2 is essential for viral control. This phenotype is also typical of ECs 

(182) who can control HIV-1 levels to below undetectable levels (reviewed by Deeks et 

al., 2007; (181)). CD4+ and CD8+ T cell responses associated with simultaneous 

secretion of IFN-γ, IL-2, and TNF-α are also associated with viral control in ECs (586-

589). The IFN-γ ELISPOT assay is used to measure the number of cells secreting IFN-γ 

(590). The cytometric bead array (CBA) assay quantifies cytokine production from a 

given number of cells per test. Each test can measure the production of 3 or more 

cytokines. The cytokines secreted can then be used to determine if the immune 

response elicited is Th1 or Th2 biased. IFN-γ, IL-2, and TNF-α are associated with a Th1 

response, while IL-4, IL-6, and IL-10 are associated with a Th2 response (148).*- 

Intracellular cytokine staining (ICS) coupled with flow cytometry is used to detect 

multiple parameters of immune cells including size, granularity, and the expression of 

surface and intracellular markers at the single cell level (591,592).                      
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3.2 Materials and Methods 

The immunogenicity of the vaccines made in this study was evaluated in mice.  

3.2.1 Mice vaccinations 

The vaccines used in this study are listed in Table 2.3 (Section 2.2.8). Groups of four or 

five 6–8 weeks old female BALB/c mice were used for each experiment and mice were 

vaccinated as detailed in Table 3.1. BALB/c mice have the H-2Kd gene in their HLA 

which allows them to respond to specific HIV-1 Gag epitopes. 

 

The BCG vaccine inoculums were administered intraperitonially by needle injection in 

200µl BCG re-suspension buffer (Appendix D9). Prior to all intramuscular vaccinations, 

the mice were anaesthetised with a mixture of ketamine hydrochloride (120mg/kg) and 

xylazine (16mg/kg) in saline (injection water). The DNA vaccines were re-suspended in 

100µl PBS and administered intramuscularly by needle injection, 50µl in the tibialis 

muscle of each hind leg. The MVA vaccines were re-suspended in 100µl PBS and 50µl 

administered by needle injection in the tibialis muscle of each hind leg.   

3.2.2 Immunogenicity assays to evaluate mosaic vaccines 

3.2.2.1 Isolation of splenocytes and lymph nodes 

On sacrifice dates (Table 3.1), spleens from mice that received the same vaccination 

regimen were pooled and so were the lymph mesenteric nodes from the BCG 

vaccinations. A single cell suspension from the spleens was prepared as described 

(364,564) for use in the IFN-γ ELISPOT assay (Section 3.2.2.2), intracellular cytokine 

staining (Section 3.2.2.3), and for the cytometric bead array assay (Section 3.2.2.4). 

Mesenteric lymph nodes and left over splenocytes from the BCG vaccinations (Table 

3.1) were stored at -80˚C in BCG resuspension buffer (Appendix D9) until required for 

evaluating the integrity of the shuttle vectors (Section 2.2.3.6). 

3.2.2.2 ELISPOT assay 

Secretion of IFN-γ by CD4+ and CD8+ T cells, from vaccinated mice, in response to 

stimulation with HIV-1 Gag peptides was determined by ELISPOT assays. The Mouse 

IFN-γ ELISPOT kit (BD Bioscience, USA) was used according to manufacturer’s 

instructions (590) and as described by our group (310,365). 



 

 

Chapter 3: Immunological evaluation of HIV-1C mosaic Gag vaccines in BALB/c mice                                                                                                             104  
 

                 Table 3.1: Vaccination schedule used on female BALB/c mice for this study 

Group Prime Prime Boost Sacrifice Mice per group 

A. Determination of the optimal MVA dosage to boost a BCG prime vaccination     

1 Day 0: 2x107 BCG-GagM  - Day 70: 102 pfu MVA-GagM Day 82 4 

2 Day 0: 2x107 BCG-GagM  - Day 70: 104 pfu MVA-GagM Day 82 4 

3 Day 0: 2x107 BCG-GagM  - Day 70: 106 pfu MVA-GagM Day 82 4 

4 Day 0: 2x107 BCGE  - Day 70: 102 pfu MVA-GagM Day 82 4 

5 Day 0: 2x107 BCGE  - Day 70: 104 pfu MVA-GagM Day 82 4 

6 Day 0: 2x107 BCGE  - Day 70: 106 pfu MVA-GagM Day 82 4 

B. Determination of the optimal MVA dosage to boost a DNA prime vaccination     

7 Day 0: 10µg DNA-GagM Day 28: 10µg DNA-GagM Day 56: 102 pfu MVA-GagM Day 68 5 

8 Day 0: 10µg DNA-GagM Day 28: 10µg DNA-GagM Day 56: 104 pfu MVA-GagM Day 68 5 

9 Day 0: 10µg DNA-GagM Day 28: 10µg DNA-GagM Day 56: 106 pfu MVA-GagM Day 68 5 

10 Day 0: 10µg DNAE Day 28: 10µg DNAE Day 56: 102 pfu MVA-GagM Day 68 5 

11 Day 0: 10µg DNAE Day 28: 10µg DNAE Day 56: 104 pfu MVA-GagM Day 68 5 

12 Day 0: 10µg DNAE Day 28: 10µg DNAE Day 56: 106 pfu MVA-GagM Day 68 5 

C. Vaccination groups used for comparison     

13 Day 0: 10µg DNA-GagN Day 28: 10µg DNA-GagN Day 56: 104 pfu MVA-GagN Day 68 5 

14  - Day 0: 10µg DNA-GagN Day 28: 10µg DNA-GagN Day 40 5 

15  - Day 0: 10µg DNA-GagM Day 28: 10µg DNA-GagM Day 40 5 

16 Day 0: 2x107 BCG-GagM  - Day 70: 2x107 BCG-GagM Day 82 4 

17  -  - Day 0: 104 pfu MVA-GagM Day 12 5 

18  - Day 0: 104 pfu MVA-GagM Day 28: 104 pfu MVA-GagM Day 40 5 
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Peptides that correspond to known CD4+ and CD8+ T cell epitopes in HIV-1 Gag (Table 

3.2) were synthesized at Bachem (Switzerland), diluted in complete medium and used 

to stimulate splenocytes at a final concentration of 2µg/ml.  An irrelevant peptide was 

also included as a negative control (Table 3.2) while ConA, a polyclonal stimulant, 

(0.1µg/ml; Sigma-Aldrich USA) was included as a positive control. Each peptide or 

control were added in triplicate for each group of mice with 500 000 cells/well. Spots 

were developed using the Nova red (Vector Laboratories, USA) substrate according to 

manufacturer’s instructions. ELISPOT plates were analysed with a CTL ImmunoSpot 

system (Cellular Technology Limited, USA). 

Table 3.2: Control and peptide stimulants used in the ELISPOT, ICS and CBA assays 

Stimulant/control Description Peptide sequence 

ConA Assay positive control N/A 

Irrelevant peptide H-2Kd binding peptide 

(negative peptide control) 

TYSTVASSL 

GagCD8 Gag H-2Kd – restricted class 

I peptide (CD8 peptide) 

AMQMLKETI 

GagCD4(13) Gag MHC class II-restricted 

peptide (CD4 peptide) 

NPPIPVGDIYKRWIILGLNK 

GagCD4(17) Gag MHC class II-restricted 

peptide (CD4 peptide) 

FRDYVDRFFKTLRAEQATQE 

Adapted from Shen 2010 (564). 

For each group of vaccinated mice, the mean number of spots and SD of the mean were 

calculated and expressed as spot forming units per 1 x 106 splenocytes (sfu/106).  The 

background response per group was determined as the mean number of spots and its 

SD in the absence of peptide. Responses were considered as positive if the sfu/106 

splenocytes was greater than the background plus two standard deviations (SDs). 

Responses below this background valuewere assigned a value of 0 sfu/106 splenocytes. 

The background responses were subtracted from the HIV-1 Gag specific responses and 

the final response expressed as net sfu/106 splenocytes. 
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3.2.2.3 Intracellular cytokine staining (ICS) 

The production of IFN-γ, TNF-α, and IL-2 in response to peptide stimulation was 

measured by ICS and flow cytometry. Splenocytes pooled from 4 or 5 mice per group 

were adjusted to 2 x 106 cells/ml with wash buffer (PBS with 1% normal mouse serum) 

with or without HIV-1 Gag stimulants and incubated for 6 hours at 37˚C. Each group 

consisted of a negative unstimulated control (cells and 0.02µg/µl brefaldin A (BFA; 

Sigma-Aldrich, USA)), positive control (cells, 0.02µg/µl BFA and 4µl Leukocyte 

activation cocktail (phorbol 12-myristate 13-acetate and ionomycin; BD Biosciences, 

USA) and the test (cells, 0.02µg/µl BFA, 2µg/ml Gag CD8 peptide, 2µg/ml Gag CD4(13) 

peptide, 2µg/ml Gag CD4(17) peptide – (Table 3.2). Cells were washed in 1 ml of wash 

buffer and blocked in 50µl blocking solution (0.12µl normal mouse serum, 0.12µl 

normal rat serum, 0.16µg CD16/32(BD Biosciences, USA)) for 15 minutes at 4˚C. Cells 

were stained in 98.75µl stain buffer (BD Biosciences, USA) with 0.05µg of each 

fluorochrome-conjugated surface antibody (CD3-Alexa 700, CD4-PE-Cy7, CD8-APC-Cy7, 

CD62L-APC, and CD44-FITC). Unbound antibodies were removed by a wash step before 

adding 100µl fixation/permeabilization buffer (BD Biosciences, USA) and incubating at 

4˚C for 30 minutes. The fluorochrome-conjugated cytokine antibodies (0.2µg TNF-PE, 

0.06 µg IL-2-PE, 0.06 µg IFN-γ-PE) were diluted in Perm/Wash buffer (BD Biosciences, 

USA). A 100µl aliquot of the master mix was added to each tube and the cells incubated 

at 4˚C for 20 minutes. Cells were washed twice in 1ml wash buffer before being 

resuspended in 200µl stain buffer and incubated at 4˚C until acquisition on a BD LSRII 

(BD Biosciences, USA). The gating strategy is illustrated below (Figure 3.1), and a 

representative plot shown in Appendix B3). The results were analysed using FlowJo. 

Experiments were done in triplicate for each mice group. Cells were positive for 

cytokine production if the proportion was ≥ 0.05% after subtracting the background. A 

response was considered positive if >10 cytokine-positive memory T cells were 

detected. 

3.2.2.4 Cytometric bead array assay (CBA)  

Quantification of extracellular antigen-specific cytokine production was determined by 

cytokine bead array (BD Bioscience, USA) on aliquots of splenocytes pooled from 4 or 5 

mice a group cultured with HIV-1 Gag peptides. The splenocytes were adjusted to 15 X 
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106 splenocytes/ml with complete medium and 100µl (1.5 X 106 splenocytes) added to 

each well in a 96 well round-bottomed micro-titre plate. The responses to each peptide  

 

 

Figure 3.1: Gating strategy used for flow cytometry analysis of Gag-specific CD8+ and CD4+ 
cytokine - producing cells. Progressive gating strategy: lymphocytes (plot 1, T1), singlets (plot 2, T2), 
CD3+ cells (plot 3, T3), CD4+ and CD8+ T cells (plot 4, T4 and T5), cytokine-producing CD4+ and CD8+ cells 
(plot 5, T6 and plot 6, T7, respectively), effector (TEM) and central (TCM) memory cytokine detection.  

or control (Table 3.2) were done in triplicate for each group of mice. Complete media, 

and (1.5 X 106 splenocytes) were added to each well in a 96 well round-bottomed 

micro-titre plate. Each peptide or ConA or the stimulant peptides (100µl) were added to 

the allocated wells. The plate was incubated at 37˚C in a humidified incubator with 5% 

CO2 for 48 hours. The supernatants were harvested (150µl) without disturbing the cell 

pellets and stored at -20˚C until the cytokine content was determined using a CBA 

mouse Th1/Th2 cytokine kit (BD Biosciences, USA) that measures IFN-γ, TNF-α, IL-2, 

IL-4, IL-6, and IL-10. The method was performed according to the manufacturer’s 

instructions. The samples were analysed by flow cytometry on a FACS Calibur (Beckton 

Dickinson, USA). Results were calculated as picogram (pg) of cytokine per 1ml. The 

background response per group was determined as the mean amount of cytokine 

released and its SD in the absence of peptide. The background responses were 

subtracted from the HIV-1 Gag specific responses and the final response was expressed 



 

 

Chapter 3: Immunological evaluation of HIV-1C mosaic Gag vaccines in BALB/c mice       108  
 

as pg/ml. After subtracting the background, a cytokine level of 8pg/ml was considered a 

cut off for a positive response. 

3.2.3 Statistical analysis 

 Data was statistically analysed using Prism version 5.0 (Graphpad Software, San Diego, 

CA). The t test for independent unpaired non-parametric comparisons was applied to 

assess the level of significance of comparisons between means. All tests were two-tailed. 

P values ≤ 0.05 were considered significant. 

 

3.3 RESULTS  

3.3.1 Pilot experiment to determine the optimal MVA-GagM dosage to boost a BCG 

prime 

To determine the optimal MVA dose required to effectively boost the BCG vaccines mice 

were primed with 2 x 107 cfu of either the recombinant BCG-GagM, which expresses the 

HIV-1C mosaic Gag immunogen, or the mock BCGE, which contained a plasmid with no 

gag insert, and boosted on day 70 with 102, 104, or 106 pfu of MVA-GagM which 

expresses the HIV-1C mosaic Gag immunogen (see table insert in Figure 3.2A).  The BCG 

vaccine dose of 2 x 107 cfu was previously determined as optimal in our lab (Dr Ros 

Chapman, personal communication).  

3.3.1.1 Magnitude of HIV-1 Gag-specific IFN-γ ELISPOT responses   

As previously determined (364), twelve days following the MVA-GagM boost, mice 

spleens were pooled from each group for immunological assays (Section 3.2.2.1). An 

IFN-γ ELISPOT assay was used to quantify induced Gag specific CD4 and CD8 T cells 

(Figure 3.2B). Results from cells stimulated with an irrelevant peptide or with no 

peptide have not been included. 

Priming with the recombinant or mock BCG vaccines and boosting with 102 pfu MVA-

GagM elicited no Gag-specific responses in mice (Figure 3.2B; Groups 1 and 4 

respectively). High cumulative HIV-1 Gag-specific IFN-γ ELISPOT responses were 

induced in mice primed with BCG-GagM and boosted with 104 and 106 pfu MVA-GagM, 
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with response evenly balanced between CD4 and CD8 T cells (Figure 3.2B, Groups 2 and 

3 respectively).  

Priming with BCG-GagM and boosting with a dose of 104 pfu MVA-GagM (Group 2) 

elicited responses of 534 and 739 sfu/106 splenocytes to CD8 and CD4 peptides 

respectively. These responses were 5.4 and 1.6 fold higher, respectively, compared to 

those induced in mock-primed mice boosted with a 104 pfu dose of MVA-GagM (Group 

5). Priming with BCG-GagM and boosting with a dose of 106 pfu MVA-GagM (Group 3) 

elicited cumulative Gag-specific responses of 2023 sfu/106 splenocytes, which were 4.1 

fold higher than those induced in mock-primed mice boosted with a 106 pfu dose of 

MVA-GagM (496 sfu/106 splenocytes, Group 6). Thus, MVA-GagM efficiently boosts a 

BCG-GagM prime at a dose of 104 pfu or 106 pfu but not at a dose of 102 pfu.  

Background responses in mice boosted with 102 and 104 pfu MVA-GagM (Groups 1, 2, 4 

and 5) were below 20 sfu/106 splenocytes in the presence of an irrelevant peptide and 

when not stimulated. Background responses in mice boosted with 106 pfu MVA-GagM 

(Groups 3 and 6) however, were between 273 and 367 sfu/106 splenocytes when not 

stimulated, and between 292 and 420 sfu/106 splenocytes in the presence of an 

irrelevant peptide (results not shown). A dose of 106 pfu MVA-GagM was regarded as too 

high a dose for experimentation, and a dose of 104 pfu MVA-GagM was regarded as 

optimal.  

3.3.1.2 Cytokine production and phenotype 

To further characterise the immune responses induced by boosting BALB/c mice with 

different doses of MVA-GagM following a BCG prime, ICS followed by flow cytometry was 

carried out (Section 3.2.2.3).  The cytokine response profile and the memory phenotype 

of the cytokine-producing cells were assessed on mice splenocytes. IFN-γ, TNF-α, and 

IL-2 antibodies were conjugated to a PE fluorochrome and the combined responses 

recorded (Figures 3.2C and D). 

Priming with BCG-GagM or with the mock BCG, and boosting with 102 pfu MVA-GagM did 

not elicit any detectable HIV-1 Gag-specific cytokine-producing CD8+ T cells (Figure  
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Figure 3.2: Determination of the optimal dosage of MVA-GagM to boost a BCG-GagM prime. (A) Mice were primed on day 0 with 2 x 107 cfu BCG-GagM (Group 1 - 3) or BCGE 
(Group 4 - 6) and boosted on day 70 with 102 (Group 1 and 4), 104 (Group 2 and 5), or 106 (Group 3 and 6) pfu MVA-GagM. as indicated in the table insert. (B) Cumulative IFN-γ 
ELISPOT CD8+ and CD4+ responses of vaccinated mice to HIV-1 Gag peptides to determine the optimal MVA-GagM dosage to boost a BCG prime. The ELISPOT assay was carried out 
using three Gag-specific peptides for stimulation of pooled splenocytes that were isolated 12 days post the MVA-GagM boost. Bars represent the magnitude of net responses to 
individual peptides, expressed as sfu/106 splenocytes after subtracting the background. (C) and (D) Total frequency of T cells producing IFN-γ, IL-2, and/or TNF-α, after subtracting 
the background, in response to HIV-1 Gag peptide stimulation following a BCG prime and an MVA-GagM boost at different doses. Cells were positive for cytokine production if the 
proportion was ≥0.05% after subtracting the background. 
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3.2C, Groups 1 and 4). Mice primed with BCG-GagM and boosted with 104 pfu MVA-GagM 

(Group 2) elicited almost double the frequency of HIV-1 Gag-specific cytokine-

producing CD8+ T cells as compared to mock-primed mice that were similarly boosted  

(Group 5). Cytokine-producing CD8+ T cells from mice that received a BCG-GagM prime 

and a boosting dose of 106 pfu MVA-GagM (Group 3) were almost double those of the 

control group (Group 6), suggesting an effective BCG prime. 

The percentages of cytokine positive CD4+ T cells were generally lower than those of 

cytokine positive CD8+ T cells, with all values being less than 1%, irrespective of the 

vaccination regimen (Figure 3.2D). Both a dose of 104 and a dose of 106 pfu MVA-GagM 

efficiently boosted a BCG-GagM prime.  

3.3.2 Immune responses in BALB/c mice elicited by BCG prime-MVA boost 

vaccines expressing a GagM immunogen 

While the greatest cumulative immune response to the Gag peptides was detected from 

mice boosted with 106 pfu MVA-GagM (Figures 3.2; Group 3), the amount of background 

responses in the IFN-γ ELISPOT assay were high (up to 420 sfu/106 splenocytes). An 

MVA-GagM boost of 104 pfu for BCG-primed mice was therefore chosen as the optimal 

dose to compare immune responses to different BCG prime vaccinations. To validate the 

results obtained from a BCG prime and an MVA boost of 104 pfu, the experiments were 

repeated two more times. Mice vaccinated with a single dose of BCG-GagM or MVA-GagM 

and homologous prime-boost vaccinations with BCG-GagM or MVA-GagM were also 

included to compare the immune responses elicited (Figure 3.3).  The inoculation 

schedule is detailed in Figure 3.3A. Vaccinations were done in three separate 

experiments to produce data that could be assessed statistically. Spleens were pooled 

from each group 12 days after the last vaccination. 

3.3.2.1 Magnitude of HIV-1 Gag-specific IFN-γ ELISPOT responses   

An IFN-γ ELISPOT assay was used to determine the magnitude of Gag specific CD4+ and 

CD8+ T cells responses (Figure 3.3B). Cells stimulated with an irrelevant peptide or with 

no peptide produced less than 40 sfu/106 splenocytes and have not been included. 

There was also no detectable response from the BCG-GagM single vaccination (mice 

sacrificed on day 82), and this result has not been included. Mean cumulative responses 
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to Gag-specific CD4+ and CD8+ T cell peptides for Group 2 mice (BCG-GagM/MVA-GagM) 

reached a magnitude of 1143 ± 117 sfu/106 splenocytes with almost equally balanced 

responses to Gag CD8 (475 ± 55 sfu/106 splenocytes) and  Gag CD4 (668 ± 32.7 sfu/106 

splenocytes; Figure 3.3B). There was a 2.8-fold difference between the cumulative 

responses of mice primed with BCG-GagM (Group 2) and those that received a mock-

prime (Group 5 - 410 ± 98 sfu/106 splenocytes). Thus, BCG-GagM significantly primed an 

MVA-GagM boost (p<0.01).  

 Mean cumulative IFN-γ ELISPOT HIV-1 Gag responses of mice vaccinated with the BCG-

GagM/MVA-GagM heterologous prime-boost regimen (Group 2) were 3- and 1.7-fold 

greater than the BCG-GagM/BCG-GagM homologous prime-boost (Group 16; 380 ± 64.7 

sfu/106 splenocytes) and Group 18 (MVA-GagM/MVA-GagM homologous prime-boost; 

656.7 ± 8.5 sfu/106) mice respectively. The BCG-GagM/MVA-GagM heterologous prime-

boost was therefore significantly more efficient than the BCG-GagM/BCG-GagM 

(p<0.001) and MVA-GagM/MVA-GagM (p<0.01) homologous prime-boost vaccinations. 

Mean cumulative IFN-γ ELISPOT HIV-1 Gag responses from the mice that received a 

homologous MVA-GagM prime-boost (Group 18) were 1.7-fold significantly greater than 

the cumulative responses elicited by a homologous BCG-GagM prime-boost vaccination 

(Group 16; p<0.01), and 2-fold significantly greater than the mean cumulative 

responses elicited by a single MVA-GagM vaccination (Group 17; p<0.001). Interestingly, 

responses to the CD8 Gag peptide were similar for Groups 17 (MVA-GagM) and 18 

(MVA-GagM/ MVA-GagM; Figure 3.3C). The second MVA-GagM vaccination, however 

boosted CD4+ T cells responses to Gag (Figure 3.3D).  

3.3.2.2 Cytokine production and phenotype 

The proportions of cytokine-producing T cells as well as the memory phenotype were 

determined by flow cytometry (Section 3.2.2.3; Figures 3.3 C and D).  The frequency of 

Gag-specific CD8+ T cells was 2.3-fold higher but not significantly different for mice that 

received a BCG-GagM/MVA-GagM heterologous prime-boost regimen (Figure 3.3C; Group 

2) compared to those that received a mock prime (Group 5). The BCG-GagM/MVA-GagM 

heterologous prime-boost regimen (Group 2) resulted in CD8+ T cells with a greater 

effector memory phenotype (91.6%) than those in the control group (Group 5 - 66.5%).  
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Figure 3.3: (legend on next page) 
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Figure 3.3: Evaluation of a BCG-GagM prime/ MVA-GagM boost in BALB/c 
mice. (A) Vaccination schedule used. (B) Cumulative IFN-γ ELISPOT CD8+ 
and CD4+ responses of vaccinated mice to HIV-1 Gag peptides. The ELISPOT 
assay was done using pooled spleens on the day of sacrifice using three Gag-
specific peptides for stimulation. Bars are the mean and standard deviation 
of the mean responses for the indicated individual peptides from 3 
independent experiments. Responses are expressed as sfu/106 splenocytes 
after background subtraction. Horizontal bars with asteriks indicate 
statistical significance of the mean responses between the indicated groups. 
**p<0.01, ***p<0.001; Student t-test of unpaired data. (C) and (D) Total 
frequency of T cells producing IFN-γ, IL-2, and/or TNF-α in response to HIV-
1 Gag peptide stimulation. ICS and flow cytometry were carried out on 
pooled spleens per group using three Gag-specific peptides for stimulation. 
The memory distribution of the cytokine producing T- cells in the central 
and effector memory compartment (TCM and TEM) are represented as pie 
charts above each corresponding bar per group. Cells were positive for 
cytokine production if the proportion was ≥ 0.05% after subtracting the 
background. The cellular phenotype was positive if there were ≥ 10 cells per 
test. (E) Results from cytokine measurements in cell supernatants of mice 
vaccinated with different vaccine regimens using a CBA Th1/Th2 Kit and 
radial plot of cells producing six different cytokines in response to HIV-1 Gag 
peptide stimulation. The levels of cytokines in the culture supernatants were 
quantified using a Th1/Th2 cytokine bead array assay followed by flow 
cytometry. The recorded results were obtained after subtracting the 
background. The distance from the centre of the plot indicates a log10-fold 
change (ranging from 1 to 10 000) and cytokine levels were expressed as 
pg/ml. 
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No significant differences were detected in CD8+ T cell cytokine production for any of 

the vaccination regimens (Figure 3.3C). The cytokine producing CD8+ T cells elicited by 

a single MVA-GagM (Group 17) and double MVA-GagM (Group 18) vaccination had a 

predominantly effector memory phenotype (94% and 92% respectively). However, a 

BCG-GagM homologous prime-boost resulted in cytokine positive CD8+ T cells that were 

predominantly of a central memory phenotype (58%; Group 16). There were less 

cytokine-producing CD4+ T cells than there were cytokine-producing CD8+ T cells for all 

vaccination regimens except for the Group 18 mice that received an MVA-GagM  

homologous prime-boost vaccination (Figure 3.3C and D).  

The frequency of HIV-1-specific CD4+ T cell immune responses was 2.2-fold higher but 

not significantly different for mice that received a BCG-GagM/MVA-GagM heterologous 

prime-boost regimen (Figure 3.3D; Group 2) compared to those that received a mock 

prime (Group 5). There were however less CD4+ T cells with an effector memory 

phenotype in mice that received the BCG-GagM/MVA-GagM heterologous prime-boost 

regimen (Group 2 - 79.5%) than in the control group that received the mock/MVA-GagM 

prime-boost regimen (Group 5 - 87.2%).  

Cytokine-producing CD4+ T cells following an MVA-GagM homologous prime-boost 

(Figure 3.3D; Group 18 - 0.76%) were 9.5–and 5.4-fold significantly higher than those of 

the BCG-GagM homologous prime-boost (Group 16; 0.08% (27-43 cytokine positive 

cells); p<0.01), and the single MVA-GagM vaccination (Group 17 - 0.14%; p<0.05) 

respectively. A single MVA-GagM vaccination resulted in cytokine-positive CD4+ T cells 

with a predominant effector memory phenotype (Group 17 - 76%), and a homologous 

boost increased the proportion of effector memory CD4+ T cells to 99% (Group 18). 

Cytokine-positive CD4+ T cells following a BCG-GagM homologous prime-boost all had an 

effector memory phenotype (Group 16). 

3.3.2.3 Profile of cytokines secreted into the supernatant 

To assess the Th1/Th2 bias of the immune response to the vaccines used, a cytokine 

bead array assay was used. The Th1 and Th2 cytokines were quantified from the culture 

medium collected from splenocytes stimulated with Gag CD4 and CD8 peptides (Figure 

3.3E). IFN-γ, TNF-α, and IL-2 had the highest cumulative levels in all groups of mice, 

suggesting a Th1 bias. IFN-γ, TNF-α, and IL-2 were 2.4-, 4.9-, and 4.7-fold higher, 
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respectively, in Group 2 (BCG-GagM/MVA-GagM) compared to Group 5 mice (BCG-

GagE/MVA-GagM) suggesting an efficient prime with the BCG-GagM vaccine. 

The MVA-GagM vaccine also potently boosted the BCG-GagM prime. Cumulative IFN-γ, 

TNF-α, and IL-2 levels were 3.7-, 8.3-, and 3.3-fold higher, respectively, in mice that 

received the heterologous BCG-GagM/MVA-GagM prime-boost vaccination (Group 2) 

compared to Group 16 mice that received a BCG-GagM/BCG-GagM homologous 

vaccination. Splenocytes from the heterologous prime-boost vaccination (Group 2) 

produced high levels of IFN-γ, TNF-α, and IL-2 compared to any of the homologous 

prime-boost vaccinations (Group 16 and 18; BCG-GagM/BCG-GagM and MVA-GagM/MVA-

GagM respectively). However, two vaccinations with MVA-GagM (Group 18) produced 

more IFN-γ, TNF-α, and IL-2 than two vaccinations with BCG-GagM (Group16). The 

cumulative cytokine levels were higher in Group 18 mice by factors of 2.1, 1.9, and 2.4, 

respectively.  

Two vaccinations of MVA-GagM (Group 18) also induced the secretion of higher levels of 

cytokines as compared to mice that were vaccinated with a single dose of MVA-GagM 

(Group 17). The IFN-γ, TNF-α, and IL-2 levels were 2.7, 4.9, and 4.9 fold higher 

respectively.  

3.3.3 Pilot experiment to determine the optimal MVA-GagM dosage to boost a DNA 

prime 

To determine the optimal MVA dose required to effectively boost the DNA vaccines, 

mice were primed with 10µg of either the DNA-GagM, which expresses the HIV-1C GagM 

immunogen, or the mock DNAE, which has no gag insert. Mice were then boosted on day 

56 with 102, 104, or 106 pfu of MVA-GagM which expresses an HIV-1C GagM immunogen.  

Twelve days following the MVA-GagM boost, mice spleens were pooled from each group 

for immunological assays (Section 3.2.2.1). 

3.3.3.1 Magnitude of  HIV-1 Gag-specific IFN-γ ELISPOT responses   

An IFN-γ ELISPOT assay was used to quantify the Gag specific CD4 and CD8 T cells 

responses (Figure 3.4B). Results from cells stimulated with an irrelevant peptide or 

with no peptide have not been included. 
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Figure 3.4: Determination of the optimal dosage of MVA-GagM to boost a DNA-GagM prime. (A) Mice were primed on day 0 with 10µg DNA-GagM (Group 7-9) 
or DNAE (Group 10-11) and boosted on day 56 with 102 (Group 7 and 10), 104 (Group 8 and 11), or 106 (Group 9 and 12) pfu MVA-GagM. as indicated in the table 
insert. (B) Cumulative IFN-γ ELISPOT CD8+ and CD4+ responses of vaccinated mice to HIV-1 Gag peptides to determine the optimal MVA-GagM dosage to boost a 
DNA prime. The ELISPOT assay was carried out using three Gag-specific peptides for stimulation of pooled splenocytes that were isolated 12 days post the MVA-
GagM boost. Bars represent the magnitude of net responses to individual peptides, expressed as sfu/106 splenocytes after subtracting the background. (C) and (D) 
Total frequency of T cells producing IFN-γ, IL-2, and/or TNF-α, after subtracting the background, in response to HIV-1 Gag peptide stimulation following a DNA 
prime and an MVA-GagM boost at different doses. Cells were positive for cytokine production if the proportion was ≥0.05% after subtracting the background.  
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Priming with the two doses of DNA-GagM and boosting with a dose of 102 pfu MVA-GagM 

elicited cumulative T cell responses of 454 sfu/106 cells (Figure 3.4B; Group 7) that 

were balanced between CD4 and CD8 T cells. Increasing the MVA-GagM dose to 104 pfu 

and 106 pfu generated cumulative T cell responses that were 6.6- and >11-fold greater 

respectively, than the MVA-GagM dose of 102 pfu (Figure 3.4B; Group 8 - 2983 sfu/106 

cells; Group 9 - >5026 sfu/106 cells). These responses were predominantly CD8 T cell 

responses.  

The DNAE mock prime vaccine boosted with a dose of 102 pfu MVA-GagM elicited no 

detectable T cell responses with an IFN-γ ELISPOT assay (Figure 3.4B; Group 10). 

Priming with two doses of DNA-GagM and boosting with a dose of 104 pfu MVA-GagM 

(Group 8) elicited 1798 and 1185 sfu/106 splenocytes responses to CD8 and CD4 

peptides respectively. These responses were 12.1 and 4.1 fold higher, respectively, 

compared to those induced in mock-primed mice boosted with a 104 pfu dose of MVA- 

GagM (Figure 3.4B; Group 11 - 148 and 287 sfu/106 splenocytes responses to CD8 and 

CD4 peptides respectively). Priming with two doses of DNA-GagM and boosting with a 

single dose of 106 pfu MVA-GagM (Figure 3.4B; Group 9) elicited 2511 sfu/106 

splenocytes responses to Gag CD4 peptides. This was 2-fold higher compared to Gag 

CD4 responses induced in mock-primed mice boosted with a 106 pfu dose of MVA-GagM 

(Figure 3.4B; Group 12).  

While the immune responses to Gag increased proportionally with the MVA-GagM 

boosting dose, it is noteworthy that the HIV-1 Gag CD8 T cell responses for mice 

boosted with 106 pfu of MVA-GagM (Figure 3.4B; Group 9 and 12) were beyond the limit 

of accurate detection of the IFN-γ ELISPOT kit. The recorded results are therefore 

similar between the groups (2515 and 2532 net sfu/106 splenocytes for Group 9 and 12 

respectively). These responses were obtained from the highest number of spots 

detected for the ConA positive control responses on the ELISPOT plate in those 

experiments. All three doses of MVA-GagM investigated therefore efficiently boost two 

DNA-GagM prime vaccinations. The two doses of the DNA-GagM vaccine also potently 

prime the MVA-GagM boost. 

Background responses in mice boosted with 102 and 104 pfu MVA-GagM (Groups 7, 8, 10, 

and 11) were below 20 sfu/106 splenocytes in the presence of an irrelevant peptide and 
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when not stimulated. Background responses in mice boosted with 106 pfu MVA-GagM 

(Groups 9 and 12) however, were between 69 and 113 sfu/106 splenocytes when not 

stimulated, and between 61 and 133 sfu/106 splenocytes in the presence of an 

irrelevant peptide (results not shown).  

3.3.3.2 Cytokine production and phenotype  

To further characterise and compare the immune responses induced by boosting mock- 

and DNA-GagM primed animals with different doses of MVA-GagM, we evaluated 

cytokine production and memory phenotype by flow cytometry (Section 3.2.2.3; Figures 

3.4C and D).  

Priming with DNA-GagM and boosting with a dose of 102 pfu MVA-GagM elicited low 

frequency cytokine-positive CD8+ T cells (Figure 3.4C; Group 7 - 0.32% (246 cytokine 

positive CD8+ T cells out of 77831 CD8+ T cells after background subtraction)). 

Increasing the MVA-GagM dosage to 104 pfu elicited 5.8 fold more cytokine-positive 

CD8+ T cells (Figure 3.4C; Group 8 - 1.85%). Further increasing the MVA-GagM dosage to 

106 pfu elicited exceptionally high frequencies of cytokine-producing CD8+ T cells 

(Figure 3.4C; Group 9 - 9.63%). 

Mice primed with DNA-GagM and boosted with 102 pfu and 104 pfu MVA-GagM had 1.28 

and 2.2 fold higher levels of cytokine-positive CD8+ T cells respectively than those 

primed with the empty vector, DNAE, and boosted with the same doses of MVA-GagM. 

Boosting mice primed with DNA-GagM or DNAE with 106 pfu MVA-GagM elicited a very 

high frequency of cytokine-positive CD8+ T cells for (9.63% and 9.02% respectively). A 

106 pfu dose of MVA-GagM elicited such high CD8+ T cell responses that differences in 

the DNA prime could not be distinguished. 

The proportions of cytokine-positive CD4+ T cells were lower than those of cytokine-

positive CD8+ T cells (Figure 3.4D). No detectable cytokine-positive CD4+ T cells were 

elicited by Group 7 mice that received a DNA-GagM/ 102 pfu MVA-GagM heterologous 

prime-boost vaccination. Increasing the MVA-GagM dosage to 104 and 106 pfu elicited 

0.4% (Group 8) and 1.12% (Group 9) cytokine-positive CD4+ T cells respectively.  There 

was a 1.5-fold increase in the amount of cytokine-positive CD4+ T cells between Group 8 

and 11, suggesting an effective DNA-GagM prime. DNA-GagM was also effective priming  
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mice boosted with 106 pfu MVA-GagM (Group 9 - 1.12%) in comparison to the mock-

primed mice that received the same dose of MVA-GagM (Group 12; 0.55%) as there was 

a 2-fold increase in the proportion of cytokine-positive CD4+ T cells.  

3.3.4 Immune responses in BALB/c mice elicited by a DNA prime-MVA boost 

vaccine expressing a GagM immunogen and comparison to vaccines expressing 

natural Gag  

Although the highest immune responses were obtained from mice vaccinated with the 

DNA-GagM prime/106 pfu MVA-GagM boost (Figures 3.4 B, C and D; Group 9) and mock-

prime/106 pfu MVA-GagM boost (Figures 3.4 B, C and D; Group 12) regimens, these mice 

elicited high background IFN-γ ELISPOT responses as described in Section 3.5.3.1. The 

responses to the HIV-1 Gag CD8 peptide were also above the limit of accurate detection 

of the ELISPOT assay. A dosage of 104 pfu MVA-GagM was therefore chosen as the 

optimal boost for DNA-GagM-primed mice to further evaluate the immunogenicity of the 

mosaic Gag antigen and the experiments were repeated.  

DNA and MVA vaccines expressing a natural Gag have previously been constructed in 

our laboratory. Included in the experiment were mice vaccinated with a DNA-GagN 

prime/104 pfu MVA-GagN heterologous prime boost regime.  The DNA-GagN and MVA-

GagN vaccines express a natural HIV-1C Gag immunogen that was isolated from an HIV-

1 positive sex worker, Du422, in South Africa. The GagN had the closest sequence 

similarity to the consensus sequence following a subtype C Gag alignment (309). The 

MVA-GagN vaccine was previously constructed in our lab (364), and the DNA-GagN 

vaccine was constructed as part of this project.  Mice were vaccinated as indicated in 

Figure 3.5A. 

3.3.4.1 Magnitude of HIV-1 Gag-specific IFN-γ ELISPOT responses   

There was a 7.1-fold significant difference (p<0.001) in the mean cumulative Gag-

specific IFN-γ ELISPOT response of mock-primed mice boosted with 104 pfu MVA-GagM 

(Figure 3.5B; Group 11 - 375 ± 70.7 sfu/106 splenocytes) compared to mice primed with 

two doses of DNA-GagM and similarly boosted (Figure 3.5B; Group 8 - 2675.3 ± 292.8 

sfu/106 splenocytes).  Group 11 mice had a predominantly CD4 response (241.7 ± 29.7 

sfu/106 splenocytes) to Gag, whereas a prime with DNA-GagM elicited a fairly balanced 

response to Gag CD4 and CD8 peptides (Group 8 - 1200.3 ± 183.2 sfu/106 and 1475 ±  
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          Figure 3.5: (legend on next page) 
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Figure 3.5: Evaluation of a DNA-GagM prime/  MVA-GagM 

boost in BALB/c mice. (A) Vaccination schedule used. (B) 
Cumulative IFN-γ ELISPOT CD8+ and CD4+ responses of 
vaccinated mice to HIV-1 Gag peptides. The ELISPOT assay 
was done using pooled spleens on the day of sacrifice using 
three Gag-specific peptides for stimulation. Bars are the 
mean and standard deviation of the mean responses for the 
indicated individual peptides from 3 independent 
experiments. Responses are expressed as sfu/106 
splenocytes after background subtraction. Horizontal bars 
with asteriks indicate statistical significance of the mean 
responses between the indicated groups. *p<0.05, **p<0.01, 
***p<0.001; Student t-test of unpaired data. (C) and (D) 
Total frequency of T cells producing IFN-γ, IL-2, and/or 
TNF-α in response to HIV-1 Gag peptide stimulation. ICS 
and flow cytometry were carried out on pooled spleens per 
group using three Gag-specific peptides for stimulation. The 
memory distribution of the cytokine producing T- cells in 
the central and effector memory compartment (TCM and 
TEM) are represented as pie charts above each 
corresponding bar per group. Cells were positive for 
cytokine production if the proportion was ≥ 0.05% after 
subtracting the background. The cellular phenotype was 
positive if there were ≥ 10 cells per test. (E) Results from 
cytokine measurements in cell supernatants of mice 
vaccinated with different vaccine regimens using a CBA 
Th1/Th2 Kit and radial plot of cells producing six different 
cytokines in response to HIV-1 Gag peptide stimulation. The 
levels of cytokines in the culture supernatants were 
quantified using a Th1/Th2 cytokine bead array assay 
followed by flow cytometry. The recorded results were 
obtained after subtracting the background. The distance 
from the centre of the plot indicates a log10-fold change 
(ranging from 1 to 100 000) and cytokine levels were 
expressed as pg/ml. 
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91.6 sfu/106 splenocytes respectively). The efficiency of the DNA-GagM prime is also 

evident on comparison of the mean cumulative Gag-specific IFN-γ ELISPOT responses 

between Group 8 mice (2675.3±292.8 sfu/106 splenocytes) and Group 17 mice that 

were only vaccinated with a single dose of MVA-GagM (323.7 ± 23.9 sfu/106 

splenocytes). There was an 8.3-fold significant difference between the groups 

(p<0.001). A comparison of the mean cumulative Gag-specific IFN-γ ELISPOT responses 

in Group 17 mice (MVA-GagM) and Group 11 mice (DNAE/MVA-GagM) that were mock-

primed and boosted with MVA-GagM indicated that the mock-prime did not influence 

the immune response elicited by the MVA-GagM boost (Group 11 - 375 ± 70.4 sfu/106 

splenocytes). 

The MVA-GagM  vaccine significantly boosts two priming doses of DNA-GagM (p<0.01) as 

seen in the 3-fold increase in the mean cumulative Gag-specific IFN-γ ELISPOT 

responses between Group 8 mice (DNA-GagM/MVA-GagM) and Group 15 mice (DNA-

GagM/DNA-GagM) that only received two priming does of DNA-GagM (Figure 3.5B; 882.3 

± 297.8 sfu/106 splenocytes).  

There was a 2.3–fold significant difference (p<0.01) in the mean cumulative Gag-specific 

IFN-γ ELISPOT response between the heterologous DNA-GagM /MVA-GagM (vaccines 

expressing GagM) and the heterologous DNA-GagN prime/ MVA-GagN (vaccines 

expressing the natural Gag) prime-boost vaccinations (Figure 3.5B; Group 8 and Group 

13 - 1171 ± 124.2 sfu/106 splenocytes). Group 8 vaccination regimen elicited higher 

Gag-specific CD8 T cell responses compared to Group 13 mice (1475 ± 295.3 sfu/106 

and 444 ± 144.9 sfu/106 splenocytes respectively). Thus, the heterologous vaccination 

using vaccines that express a mosaic Gag immunogen elicited more potent IFN-γ 

ELISPOT immune responses compared to the vaccine expressing a natural Gag 

immunogen.  

Mice that were vaccinated with two doses of DNA-GagM only (Figure 3.5B; Group 15) 

had mean cumulative Gag-specific IFN-γ ELISPOT responses that were 6.5–fold greater 

than mice vaccinated with two doses of DNA-GagN (Figure 3.5B; Group 14 - 135.7 ± 14 

sfu/106 splenocytes). These results indicate that the mosaic Gag is significantly more 

immunogenic than the natural Gag (p<0.05). Surprisingly, two doses of DNA-GagM 

(Group 15) elicited mean cumulative Gag-specific IFN-γ ELISPOT responses that were 
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1.3–fold greater than mice vaccinated with two doses of MVA-GagM (Figure 3.5B; Group 

18 - 656.7 ± 8.5 sfu/106 splenocytes). Group 15 mice had higher responses to the CD8 

than the CD4 Gag peptide (604 ± 239.2 sfu/106 and 278.4 ± 32.6 sfu/106 splenocytes 

respectively). On the other hand, Group 18 mice had more responses to the CD4 than 

the CD8 Gag peptide (530 ± 20.5 sfu/106 and 126.7 ± 11.7 sfu/106 splenocytes 

respectively).  

3.3.4.2 Cytokine production and phenotype  

The proportions of cytokine-producing T cells as well as the memory phenotype 

induced by boosting BALB/c mice with a dose of 104 pfu MVA-GagM following a DNA 

prime were determined by flow cytometry (Section 3.2.2.3; Figures 3.5C and D). All 

vaccine regimens elicited cytokine-producing CD8+ and CD4+ T cells. However, the 

proportion of CD8+ T cells producing cytokines was greater than that of CD4+ T cells.  

 A DNA-GagM/MVA-GagM heterologous prime-boost vaccination elicited a cytokine-

positive CD8+ T cell response that was 2-fold significantly greater (p<0.05) than mock-

primed mice that were similarly boosted (Figure 3.5C; Group 8 - DNA-GagM/MVA-GagM - 

1.59%; Group 11 - DNAE/MVA-GagM - 0.81% respectively). Both vaccine groups had 

cytokine-positive T cells with an effector memory phenotype. There was no significant 

difference in the proportion of cytokine-positive CD4+ T cells between the two groups 

(Figure 3.5D; Group 8 – 0.5%; Group 11 – 0.35%). However, Group 8 mice (DNA-

GagM/MVA-GagM) had more cytokine-positive CD4+ T cells with an effector memory 

phenotype (97.5%) than Group 11 mice did (DNAE/MVA-GagM; 67%). Thus, two doses 

of the DNA-GagM vaccine significantly primed the MVA-GagM boost by increasing the 

proportion of cytokine-positive CD8+ T cells and the effector memory phenotype of 

cytokine-positive CD4+ T cells. 

The efficiency of the DNA-GagM prime is also demonstrated in the comparison of Group 

8 and Group 17 (single MVA-GagM vaccination) mice. Cytokine-positive CD8+ T cells in 

Group 8 mice were 3-fold significantly greater (p<0.01) than Group 17 mice (Figure 

3.5C). The proportion of cytokine-positive CD8+ T cells with an effector memory 

phenotype increased from 94% (Group 17), to 100% (Group 8). Cytokine-positive CD4+ 

T cells were 3.6-fold higher in Group 8 than in Group 17 mice (Figure 3.5D). The effector 
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memory phenotype of these cells increased from 76% to 97.5% (Figure 3.5D; Group 17 

and 8 respectively).  

The efficiency of the MVA-GagM boost was determined by comparing immune responses 

from mice that received the DNA-GagM/MVA-GagM heterologous prime-boost regimen 

(Group 8) to those vaccinated with the DNA-GagM/DNA-GagM regimen (Group 15).  

Cytokine-positive CD8+ T cells from Group 8 (1.59%) mice were 1.4-fold significantly 

higher than those elicited by Group 15 mice (1.12%; Figure 3.5C). All the cytokine-

positive CD8+ T cells had an effector memory phenotype in both groups. Surprisingly, 

there was only a 1.3-fold difference in cytokine-positive CD4+ T cells in mice that 

received the heterologous prime-boost vaccination (Group 8 - 0.8%) compared to those 

that only received the prime vaccination (Group 15 – 0.38%; Figure 3.5D). However the 

effector memory phenotype increased from 76.7% (Group 15) to 97.5% (Group 8) 

following the boost vaccination. Thus the MVA-GagM boost vaccination increases 

cytokine-positive CD8+ T cells significantly as well as the effector memory phenotype of 

cytokine-positive CD4+ T cells. 

The immune responses elicited by vaccines expressing the mosaic Gag immunogen was 

compared to those vaccinated with vaccines expressing the natural Gag. There was a 

significant 3.1-fold difference in cytokine-positive CD8+ T cells between Group 8 (DNA-

GagM/MVA-GagM heterologous prime-boost) and Group 13 (DNA-GagN/MVA-GagN 

heterologous prime-boost) mice (Figure 3.5C; 1.59% and 0.51% respectively; p<0.01). 

However, there was no difference between the memory phenotype of cytokine-positive 

CD8+ T cells in these two groups. Cytokine-positive CD4+ T cells in Group 8 mice were 

1.7-fold higher than Group 13 mice. The effector memory phenotype of the cytokine-

positive CD4+ T cells was very high in both groups, 92% for Group 13 and 97.5% for 

Group 2. Thus, the mosaic Gag immunogen seems to be more immunogenic by 

significantly increasing the proportion of cytokine-positive CD8+ T cells. 

A comparison of mice that were vaccinated with two doses of the DNA-GagM vaccine 

(Group 15) to those given two doses of the DNA-GagN vaccine (Group 14) also indicated 

increased CD8+ T cell responses due to the mosaic Gag immunogen. Cytokine-positive 

CD8+ T cells were 7-fold significantly higher in Group 15 mice (Figure 3.5C; Group 15 – 

1.12%; Group 14 – 0.16%; p<0.001). The effector memory phenotype in this T cell 
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compartment was 100% and 84.5% in Group 15 and 14 mice respectively. Cytokine-

production in the CD4+ T cell compartment was very similar between the two groups 

(Figure 3.5D; Group 15 – 0.38%; Group 14 – 0.31%). However, Group 15 mice had a 

lower proportion of cells that had an effector memory phenotype (76.7%).  

Interestingly, mice vaccinated with two doses of the DNA-GagM vaccine (Group 15) had 

predominantly CD8+ T cells responses, while those vaccinated with two doses of the 

MVA-GagM vaccine (Group 18) had predominantly CD4+ T cells responses (Figures 3.5C 

and D). Frequencies of cytokine-positive CD8+ T cells were 1.2-fold greater in Group 15 

mice (1.12%) compared to Group 18 mice (0.57%). The proportion of cytokine-positive 

CD8+ T cells with an effector memory phenotype was also higher in Group 15 mice 

(100%) compared to Group 18 mice (91.6%). On the other hand, cytokine-positive CD4+ 

T cells were 2-fold greater in Group 18 mice (0.76%) compared to Group 15 mice 

(0.38%). The proportion of cytokine-positive CD4+ T cells with an effector memory 

phenotype was also higher in Group 18 mice (99%) compared to Group 15 mice 

(76.9%). 

3.3.4.3 Profile of cytokines secreted into the supernatant 

To assess the Th1/Th2 bias of the immune response to the vaccines, a cytokine bead 

array assay was used. The Th1 and Th2 cytokines were quantified from the culture 

medium collected from splenocytes stimulated with Gag CD4 and CD8 peptides (Figure 

3.5E). IFN-γ, TNF-α, and IL-2 had the highest cumulative levels in all groups of mice, 

suggesting a Th1 bias. TNF-α was the lowest secreted cytokine of these three.  

The IFN-γ ELISPOT assay indicated a 7.1-fold difference in the cumulative number of 

cells producing this cytokine between mice that received a DNA-GagM/MVA-GagM 

heterologous vaccination (Group 8) and those that were mock-primed and boosted with 

MVA-GagM (Group 11; Figure 3.5B). Levels of IFN-γ secretion from cultured splenocytes 

differed by a factor of 22. Thus, exceptionally high cytokine levels were induced by the 

DNA-GagM/MVA-GagM heterologous vaccination. TNF-α, and IL-2 were 16.2- and 5.1-

fold higher respectively in Group 8 mice compared to Group 11 mice, suggesting an 

efficient DNA-GagM prime. A comparison of Group 8 and Group 17 mice (single MVA-

GagM vaccination) indicated a 35.2-, 6.3-, and 5.9- fold difference in IFN-γ, TNF-α, and IL-

2cytokine production levels respectively.  This also highlighted the potency of the DNA-
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GagM prime vaccination. An MVA-GagM boost was necessary to elicit potent cytokine 

production. Group 8 mice had 14.8-fold higher levels of IFN-γ than Group 15 mice 

(DNA-GagM homologous vaccination; Figure 3.5E). TNF-α, and IL-2 were 3.9- and 3.3-

fold greater respectively in Group 8 compared to Group 15. 

The DNA-GagM/MVA-GagM (Group 8) heterologous prime-boost vaccination regimen 

elicited more potent immune responses than the heterologous DNA-GagN/MVA-GagN 

(Group 13) vaccination regimen. IFN-γ, TNF-α, and IL-2 cytokine production levels were 

4.4-, 2.5-, and 2.4-fold greater, respectively, in Group 8 mice than in Group 13 mice. A 

comparison of the cytokines produced by the prime vaccinations only (Group 14; DNA-

GagN/DNA-GagN and Group 15; DNA-GagM/DNA-GagM) suggests that the mosaic 

immunogen elicits more potent immune response than the immunogen derived from a 

natural HIV-1C isolate.  

It was interesting to note that a DNA-GagM homologous vaccination induced more 

cytokine production than an MVA-GagM homologous vaccination (Figure 3.5E). This 

correlated positively with the IFN-γ ELISPOT assay (Figure 3.5B), but not with the ICS 

and flow cytometry findings (Figures 3.5C and D).  

3.4 DISCUSSION  

HIV-1C vaccines expressing GagM were evaluated in mice and shown to be very 

immunogenic, particularly when the BCG-GagM and DNA-GagM were boosted with MVA-

GagM.  

Recombinant BCG vaccines have been used before to efficiently prime the immune 

system for a boost with recombinant poxvirus, recombinant adenovirus, protein, or Gag 

VLPs ((366,369-371,593) and reviewed by Chapman et al., 2010 (362)). In the BCG 

prime-MVA-boost experiments, the recombinant MVA doses often used range from 106 - 

108 pfu/mouse (369,594) and our group has often used 107pfu/mouse 

(310,364,365,387,488). In this study, we have shown that MVA-GagM at a dose of 104 pfu 

boosts a BCG prime to elicit potent immune responses in BALB/c mice. The responses 

we obtained were comparable or greater than those of others who boosted mice with 

100 to 10000 fold higher doses of MVA. For example, Hopkins and colleagues (369) 

primed BALB/c mice with 106 cfu of BCG expressing HIVA and boosted them with 108 
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pfu of MVA expressing the same antigen 12 weeks later. HIVA contains the p24 and p17 

portions of Gag fused to a string of 25 HIV-1 CTL epitopes (Hanke & McMichael, 2000). 

Despite using a 10000 fold higher dose of MVA they obtained similar frequencies of HIV 

specific CD8+ T cells to ours. This suggests that full length Gag immunogens may be 

better for use in vaccine candidates. Recently, Chapman and colleagues (387) primed 

BALB/c mice with 107 cfu BCG expressing a modified HIV-1C Gag on day 0. Mice were 

boosted with 107 pfu MVA expressing HIV-1C Gag on day 56 and killed on day 68. Gag-

specific CD8+ T cell responses of 1343 ± 17 sfu/106 splenocytes were obtained by an 

IFN-γ ELISPOT assay. This was almost 3-fold higher than what we obtained for the same 

assay (Figure 3.3B), however, only IFN-γ was detected by the CBA assay in their study. 

Our study showed the secretion of IFN-γ, TNF-α, and IL-2 (Figure 3.3E), cytokines that 

play a role in controlling HIV-1 viral load (Section 1.6). 

As discussed in Section 1.10.8 of the Literature Review, live attenuated SIV and CMV 

vaccines that elicited persistent CD8+ T cell responses, have been shown to control viral 

load in macaques (266-268). In this study, we demonstrated that recombinant BCG 

expressing the vaccine immunogen was persistent in the tissues of vaccinated mice as 

determined by the presence of the shuttle vector in BCG-GagM isolates in the peripheral 

lymphoid organs (spleen and lymph nodes) of these mice 11.5 weeks post vaccination 

(Chapter 2; Figure 2.7). Saubi and colleagues (2012; (595)) as well as Chapman and 

colleagues (364,365,387) have shown in vivo BCG vaccine stability and persistence over 

periods of 9.5 to 20 weeks post vaccination. The replication of BCG in vivo is slow. rBCG 

persistence subsequently results in low antigen expression and low levels of antigen 

presentation (596). Low T cell immune responses to the antigen are induced, 

differentiate in to memory phenotype, and get stimulated when boosted with a 

matching antigen (597). Vaccination with a BCG-GagM prime MVA-GagM boost also 

generated predominantly effector memory cytokine-positive T cells, a T cell subset 

shown to play a role in the control of viral load after vaccination with CMV-based 

vaccines (266). Splenocytes were isolated from mice 12 days after the MVA-GagM boost, 

this is when the peak response to the MVA vaccination is expected to occur, thus most of 

the memory T cell subset would be expected to be of the effector phenotype (598). It 

would be interesting to see if the memory phenotype changes if samples are taken at a 

later time point as MVA is not a persistent vector and so the T cell response might 
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contract and the memory phenotype of the T cells change to a predominantly central 

memory phenotype. 

Antigens derived from mycobacteria are processed and presented by macrophages. 

Antigens delivered into the phagolysosome usually get processed by the HLA class II 

pathway. Such antigens would induce CD4+ T cell responses (reviewed by Hess et al., 

2000; (599)). In our study, the BCG-GagM prime and MVA-GagM boost resulted in the 

frequency of cytokine-secreting CD8+ T cells being greater than that of CD4+ T cells 

(Figure 3.3C and D). The GagM antigen in our study was linked to the 19kD signal 

sequence in the BCG shuttle vector (Chapter 2; Figure 2.6; Appendix A7). This is meant 

to target GagM to the BCGΔpanCD cell wall, making it accessible for processing by the 

HLA class I pathway and inducing CD8+ T cell responses (550). Furthermore, the 

BCGΔpanCD strain is known to induce mostly CD8+ T cell responses to HIV-1 Gag 

(354,364,365).  

The BCG-GagM vaccines in our study induced a Th1 bias (Figure 3.3E). This could be 

attributed to the mosaic immunogen, but this was not explored further. A Th1 immune 

response has been shown to be important for protection against viral challenge in mice 

as reported by Someya and colleagues (2004; (600)) and by Betts and colleagues 

(195,278). In HIV-1 natural infection, CD8+ T cells function by producing IFN-γ and TNF-

α which, in turn, induce antiviral activity in infected cells as reviewed in Section 1.6. 

Furthermore, IL-2 production increases cytotoxicity and is associated with reduced 

virus loads in ECs as reviewed in Section 1.10.4. It is therefore desirable for candidate 

vaccines to induce these cytokines as potential correlates of protection. 

DNA vaccines elicit weak immune responses when administered alone in clinical trials 

and the response varies according to the route of immunisation (reviewed by Hutnick et 

al., 2011 (582)). Improved responses can be elicited when these vaccines are used as a 

prime in heterologous prime-boost regimens, co-administered with protein or an 

adjuvant, administered by electroporation, or when expression can be enhanced by 

modifying the DNA vaccine vector (Discussed in Section 1.12.2). This study explored the 

use of a porcine circovirus enhancer element to increase expression of mosaic Gag by 

our DNA vaccine vector. This strategy of improving DNA vaccines was indirectly 

demonstrated in a study by Tanzer and colleagues (2011; (475)) who showed high 
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immune responses to the target antigen using 5-20-fold lower doses than what is 

normally administered in mice  (601-607).  The use of enhancer elements to improve 

expression and /or immunogenicity is most likely associated with a combination of any 

of the following: 1) recruitment of host cell factors that improve the transcription of the 

transgene (608,609), 2) effective mRNA export from the nucleus and/or subsequent 

stabilization in the cytoplasm (610), 3) the enhancer element acting as a ribosomal 

entry site and so enhancing the post-transcriptional expression of the transgene (611), 

or 4) simply improving optimal expression in APCs which in turn improves T-cell 

responses specific for the transgene. Takebe and colleagues (1988; (612)) showed that 

an enhancer could increase in vitro expression levels of chloramphenicol 

acetyltransferase 10 – 40 times. This was achieved using a DNA vector with an enhancer 

element derived from the R segment of human T-cell leukemia virus type 1 (HTLV-1) 

upstream of an SV40 promoter. Using the same enhancer element upstream of the CMV 

promoter in a plasmid backbone (pCMV/R), Barouch and colleagues (2005; (477)) 

showed HIV-1 Env expression increased by 5 to 10 times as determined by Western blot 

analysis with an IgG primary antibody. Importantly, this increased expression 

translated to enhanced cellular immune responses in mice (≥900 sfu/106 splenocytes) 

when administered at 50µg, compared to the DNA vaccines delivered using the parental 

vaccine backbone at the same dose. Kong and colleagues (2009; (317)) obtained potent 

immune responses when they vaccinated B6D2FI/J mice with 15µg pCMV/R. The DNA 

vaccines expressed mono-, bi-, or tri-valent HIV-1 mosaic Env immunogens. The 

vaccines were administered four times at two week intervals by needle injection with 

no adjuvant. Although the mosaic vaccines expanded mostly the breadth of CD4+ T cell 

responses to Env, cumulative cytokine production (IFN-γ and TNF-α) was more 

pronounced with the CD8+ T cells as determined by ICS. The frequencies were 0.3, 0.5, 

and 0.8% for the mono-, bi-, and tri-valent HIV-1 Env mosaic vaccines respectively. The 

DNA vaccine alone in our study had a predominant response to the CD8 Gag peptide as 

determined by the IFN-γ ELISPOT assay (Figure 3.5B). However, the responses were 

balanced between Gag-specific CD4 and CD8 peptides in a DNA-GagM/MVA-GagM prime-

boost vaccination regimen as determined by the IFN-γ ELISPOT assay (Figure 3.5B). 

These findings were in agreement with those of others (reviewed by Ondondo et al., 

2014 and Lu et al., 2008 (440,453)). A balanced CD4+ and CD8+ T cell response is 
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desirable in an HIV-1 vaccine as CD8+ T cells will kill viral-infected cells while CD4+ T 

cells provide help for the cytotoxic T lymphocytes as discussed in Section 1.6. 

Boost vaccinations are also used to enhance the immunogenicity of DNA vaccines used 

to prime the immune system. When boosted with rMVA, the doses often used are 106 - 

107 pfu/mouse (469,603-605,613-615). Only relative comparisons can be made for the 

immunogenicity of candidate vaccines made by various research groups. This is mostly 

because protocols differ between the groups including the selection of HIV-1 genes for 

immunogens in the vaccines, promoters used for immunogen expression, vaccination 

regimens, routes of vaccine administration, timing between vaccinations, 

immunological assays used, panels used for ICS, and differences in peptides used for 

stimulations. Someya and colleagues obtained Gag-specific IFN-γ responses of 735 ± 

124 sfu/106 splenocytes when they primed mice with a eukaryotic expression DNA 

vector expressing SIV Gag-Pol. The vaccination was boosted by 106 pfu of vaccinia virus 

expressing the same genes in mice (600). Maeto and colleagues (2014; (616)) 

vaccinated mice with 50µg DNA and 107 pfu MVA expressing HIV-1 natural Env and in 

the presence of one or two adjuvants. They obtained Env-specific IFN-γ responses of not 

more than 1200 sfu/106 splenocytes. In both studies, their responses were lower than 

what we obtained using a lower dose of both the DNA and MVA vaccines, as well as a 

mosaic immunogen. 

To summarise the immunology data, the results obtained from the BCG, DNA, and MVA 

heterologous and homologous vaccination regimens were compared. The vaccination 

regimens that were compared are listed in Figure 3.6A and the immune responses 

shown in Figures 3.6 B-E. The heterologous prime-boost vaccinations elicited more 

robust immune responses than the homologous prime-boost vaccinations. Of the 

heterologous vaccinations, the DNA-GagM/MVA-GagM (Group 8) vaccine was more 

potent than the BCG-GagM/MVA-GagM (Group 2) vaccination regimen.  

The HIV-1 GagM vaccines elicited cytokine-positive T cells with a predominant effector 

memory phenotype. Effector memory cells act as the first line of defence at the sites of 

HIV-1 infection. When effector memory T cells are restimulated, they mature rapidly 

into effector cells that secrete large amounts of cytokines (148). Central memory T cells 

on the other hand take longer to differentiate into effector T cells and do not secrete as 
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Figure 3.6: (legend on next page) 
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Figure 3.6: Comparison of the immunological responses 
elicited by different vaccination regimens expressing a mosaic 
gag immunogen. (A) Vaccination schedule used. (B) Cumulative 
IFN-γ ELISPOT CD8+ and CD4+ responses of vaccinated mice to 
HIV-1 Gag peptides. The ELISPOT assay was done using pooled 
spleens on the day of sacrifice using three Gag-specific peptides for 
stimulation. Bars are the mean and standard deviation of the mean 
responses for the indicated individual peptides from 3 
independent experiments. Responses are expressed as sfu/106 
splenocytes after background subtraction. Horizontal bars with 
asteriks indicate statistical significance of the mean responses 
between the indicated groups. *p<0.05, **p<0.01, ***p<0.001; 
Student t-test of unpaired data. (C) and (D) Total frequency of T 
cells producing IFN-γ, IL-2, and/or TNF-α in response to HIV-1 Gag 
peptide stimulation. ICS and flow cytometry were carried out on 
pooled spleens per group using three Gag-specific peptides for 
stimulation. The memory distribution of the cytokine producing T- 
cells in the central and effector memory compartment (TCM and 
TEM) are represented as pie charts above each corresponding bar 
per group. Cells were positive for cytokine production if the 
proportion was ≥ 0.05% after subtracting the background. The 
cellular phenotype was positive if there were ≥ 10 cells per test. 
(E) Results from cytokine measurements in cell supernatants of 
mice vaccinated with different vaccine regimens using a CBA 
Th1/Th2 Kit and radial plot of cells producing six different 
cytokines in response to HIV-1 Gag peptide stimulation. The levels 
of cytokines in the culture supernatants were quantified using a 
Th1/Th2 cytokine bead array assay followed by flow cytometry. 
The recorded results were obtained after subtracting the 
background. The distance from the centre of the plot indicates a 
log10-fold change (ranging from 1 to 100 000) and cytokine levels 
were expressed as pg/ml. 
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many cytokines as effector memory T cells do following restimulation. They do, 

however, act to replenish effector memory T cells (148,617).  As described in Section 

1.10.8, Hansen and colleagues have shown that the protection of vaccinated non-human 

primates from SIV challenge was due to both CD4+ and CD8+ effector memory T cell 

responses (266-268).  

The mosaic vaccines used in heterologous prime-boost vaccinations also generated 

predominantly CD8+ T cell responses as determined by ICS assays (Figures 3.6 C and D). 

This supports studies done earlier by Barouch and colleagues (318) and by Santra and 

colleagues (319) testing mosaic vaccines in non-human primates. CD4+ cells are 

essential for providing help to CD8+ T cells (173,618-620). However, CD4+ T cells are 

also the target of HIV-1 infection (reviewed by Grossman et al., 2006 (141)). There is 

therefore a fine balance between inducing enough of a CD4+ response to provide help to 

CD8+ cells and inducing too many CD4+ cells, which will increase the pool of target cells 

for HIV-1 infection.  

Overall, the high immune responses observed in both heterologous vaccination arms 

could be attributable to the increased and early levels of GagM expression by MVA-GagM 

as described in Chapter 2. It has been shown that the levels of expressed Gag in a 

candidate vaccine correlate positively with the magnitude of immune responses (387). 

Furthermore, the ability of MVA-GagM to form VLPs as discussed in Chapter 2 may also 

be associated with the potent immune responses. VLPs can stimulate the immune 

system better than antigens that are not particulate (621). We did not test for VLP 

formation from the DNA-GagM vaccine; however, it has been shown that immune 

responses induced by a DNA-based HIV-1 vaccine can be elevated if the expressed 

antigen forms VLPs in vitro or is co-administered with HIV-1 VLPs (531,622). The 

preliminary p24 ELISA data from our DNA vaccines (Section 2.4) did suggest more VLP 

formation for the DNA-GagM, than for the DNA-GagN vaccine. 

There were however, some limitations in this work that possibly could be addressed in 

future studies. Gag is a vital component of an HIV vaccine. In natural infection, Gag-

specific responses are important for an effective T cell immune response. However, it is 

essential for an HIV-1 vaccine to induce potent bNAbs and NoNAbs, to protect from HIV 

virions, as well effective CD8+ T cell responses to kill virus-infected cells. It will be 
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essential to combine our HIV-1C GagM vaccine with a vaccine expressing HIV-1C mosaic 

Env or with a protein boost to induce humoral immunity. Both bi- and tri-valent mosaic 

immunogens have been shown to increase breadth which is essential for clearing 

diverse strains of HIV-1 in infected individuals (Section 1.10.1). BALB/c mice have a 

limited number of HIV-1 epitopes that can be used to evaluate the breath of candidate 

vaccines. This immune readout was therefore not evaluated as part of the study. 

Furthermore, cytokine-positive T cells in vaccinated mice were detected using 

antibodies conjugated to the same fluorophore (Section 3.2.2.3). We therefore could not 

detect the polyfunctionality of our candidate vaccines. Cytotoxicity and T cell avidity 

were also not evaluated as part of this study in determining desirable immune readouts 

for a T cell-based vaccine. It would also be of interest in future studies to compare the 

expression levels of Gag from the 3 vaccine platforms in vivo as this could be 

contributing to the differences in immunogenicity of the vaccines. 

Nonetheless, the novelty of this study lies in subtype-specific monovalent HIV-1 GagM 

vaccines being highly immunogenic in comparison to GagN when delivered as DNA 

vaccines. This immunogen delivered by a low dose MVA-GagM vaccine to boost a BCG-

GagM prime and a low dose DNA-GagM prime had potent immune responses in BALB/c 

mice. This is very attractive for dose sparing and reduced costs for the targeted 

resource-limited regions should the vaccine get to clinical trials, licencing, and large 

scale distribution. Further, the DNA vaccine had a novel enhancer element described by 

our colleagues here at UCT (475). To our knowledge, mosaic immunogens have not 

been characterised before. Here we show that GagM expressed from an MVA vaccine 

vector forms VLPs. A homologous DNA-GagM vaccination regimen elicited a more robust 

immune response than the equivalent homologous DNA-GagN vaccination regimen.We 

did not investigate further the properties that make GagM so immunogenic apart from 

increased expression and formation of VLPs. Although the same doses of vaccine were 

administered to mice, the actual dose of the immunogen may not be the same and may 

be influenced by codon optimisation, mRNA stability, post translational modification, 

protein folding, and/or VLP stability. Phase I (303,310,488) and II (225) clinical studies 

using DNA and MVA-based HIV vaccines expressing natural immunogens have been 

conducted with very promising results. Here, we show that a novel strategy of using 
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subtype-specific mosaic immunogens and a novel DNA vaccine with a Pcap enhancer 

element can further improve HIV-1C vaccine immunogenicity.  

The promising immunogenicity data generated from the HIV-1C vaccines expressing a 

monovalent mosaic Gag immunogen warrants further evaluation in non-human 

primates, and in combination with the HIV-1C vaccines expressing mosaic Env 

immunogens. 
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APPENDIX B: SUPPLEMENTARY DATA 

Appendix B1: HIV-1C GagM gene sequence codon optimised for maximal 
expression in the BCG vaccine. This sequence was used to make the BCG vaccines. 
Start and stop codons are in underlined bold text 

ATGAGCTCGGCGCCGGGCCCATCGATATGGGCGCGCGCGCGTCGATCCTGCGCGGCGGCAAGCTGGACAAGTGGG
AAAAGATCCGCCTGCGCCCCGGCGGCAAAAAGCACTACATGCTGAAGCACCTGGTGTGGGCGTCGCGCGAGCTGG
AACGCTTCGCCCTGAACCCGGGCCTGCTGGAAACCAGCGAAGGCTGCAAGCAGATCATCAAGCAGCTGCAACCGG
CCCTGCAAACCGGCACCGAAGAACTGCGCTCGCTGTACAACACCGTGGCCACCCTGTACTGCGTGCACGAGAAGA
TCGAAGTGCGCGACACCAAGGAAGCCCTGGACAAGATCGAAGAAGAACAGAACAAGTCGCAGCAGAAGACCCAGC
AGGCCAAGGCCGCCGACGGCAAGGTGTCGCAGAACTACCCGATCGTGCAGAACCTGCAAGGCCAGATGGTGCACC
AGGCCATCTCGCCGCGCACCCTGAACGCCTGGGTGAAGGTGATCGAAGAGAAGGCGTTCTCGCCGGAAGTGATCC
CGATGTTCACCGCCCTGTCGGAAGGCGCGACCCCGCAGGACCTGAACACCATGCTGAACACCGTGGGCGGCCACCA
GGCCGCCATGCAGATGCTGAAGGACACCATCAACGAAGAAGCCGCCGAGTGGGACCGCCTGCATCCGGTGCATGC
CGGCCCGATCGCCCCGGGCCAGATGCGCGAACCGCGCGGCTCGGACATCGCCGGCACCACGTCGACCCTGCAAGAA
CAAATCGCCTGGATGACCAGCAACCCGCCGATCCCGGTGGGCGACATCTACAAGCGCTGGATCATCCTGGGCCTG
AACAAGATCGTGCGCATGTACTCGCCGGTGTCGATCCTGGACATCAAGCAGGGTCCGAAGGAACCGTTCCGCGAC
TACGTGGACCGCTTCTTCAAGACCCTGCGCGCCGAGCAGGCCACCCAGGACGTGAAGAACTGGATGACCGACACC
CTGCTGGTGCAGAACGCCAACCCGGACTGCAAGACCATCCTGCGCGCCCTGGGTCCGGGCGCGACCCTGGAAGAG
ATGATGACCGCCTGCCAGGGCGTGGGCGGCCCGTCGCACAAGGCCCGCGTGCTGGCCGAAGCCATGTCGCAGGCCA
ACAACACCAACATCATGATGCAGCGCTCGAACTTCAAGGGCTCGAAGCGCATCGTGAAGTGCTTCAACTGCGGCA
AGGAAGGCCATATCGCCCGCAACTGCCGCGCCCCGCGCAAAAAGGGCTGCTGGAAGTGCGGCAAGGAAGGCCACC
AGATGAAGGACTGCACCGAGCGCCAGGCCAACTTCCTGGGCAAGATCTGGCCGAGCCACAAGGGCCGCCCGGGCA
ACTTCCTGCAATCGCGCCCGGAACCGACCGCCCCGCCGGCCGAGCCGACCGCGCCGCCCGCGGAATCGTTCCGCTT
CGAAGAAACCACCCCGGCCCCGAAGCAGGAACCGAAGGACCGCGAACCGCTGACCAGCCTGAAGTCGCTGTTCGG
CTCGGACCCGCTGTCGCAGCTGCAGCGCGGCCCCGGCCGCGCCTTCGTGACCATCTGACTGCAGGGTTAA 
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Appendix B2: HIV-1C GagM gene sequence codon optimised for maximal 
expression in humans. This sequence was used to make the DNA and MVA vaccines. 
Start and stop codons are in underlined bold text 

ATGGGAGCTAGGGCTAGCATCCTGAGAGGCGGAAAGCTGGATAAGTGGGAGAAGATTAGACTGAGGCCTGGCGG
AAAGAAACACTACATGCTGAAGCACCTGGTCTGGGCTAGTAGAGAGCTGGAAAGATTCGCCCTGAACCCTGGCCT
GCTGGAAACTAGCGAGGGCTGTAAACAGATCATTAAGCAGCTGCAGCCTGCCCTGCAGACCGGCACCGAGGAACT
GAGATCACTGTATAACACCGTGGCTACCCTGTACTGCGTGCACGAGAAGATCGAAGTGCGGGACACCAAAGAGGC
CCTGGATAAGATCGAGGAAGAACAGAACAAGTCACAGCAGAAAACCCAGCAGGCTAAGGCTGCCGACGGCAAAG
TGTCTCAGAACTACCCTATCGTGCAGAACCTGCAGGGCCAGATGGTGCATCAGGCTATTAGCCCTAGAACCCTGA
ACGCCTGGGTGAAAGTGATCGAGGAAAAGGCCTTTAGCCCTGAAGTGATCCCTATGTTCACAGCCCTGTCAGAAG
GCGCTACCCCTCAGGACCTGAACACTATGCTGAACACCGTGGGAGGCCATCAGGCTGCTATGCAGATGCTGAAGG
ACACCATTAACGAAGAGGCTGCCGAGTGGGATAGACTGCACCCCGTGCACGCTGGCCCTATTGCCCCTGGTCAGA
TGAGAGAGCCTAGAGGCTCAGATATCGCTGGCACTACTAGCACCCTGCAGGAACAGATCGCCTGGATGACCTCTA
ACCCTCCTATCCCCGTGGGCGACATCTATAAGCGGTGGATCATCCTGGGCCTGAACAAGATCGTGCGGATGTATA
GCCCTGTGTCAATCCTGGACATCAAGCAGGGACCTAAAGAGCCCTTTAGAGACTACGTGGACCGGTTCTTTAAGA
CCCTGAGAGCCGAGCAGGCTACTCAGGACGTGAAGAACTGGATGACCGACACCCTGCTGGTGCAGAACGCTAACC
CCGACTGTAAAACTATCCTGAGAGCCCTGGGACCTGGCGCTACCCTGGAAGAGATGATGACCGCCTGTCAGGGCG
TGGGAGGACCTAGTCACAAGGCTAGAGTGCTGGCCGAGGCTATGAGTCAGGCTAACAACACTAACATCATGATGC
AGCGGTCTAACTTTAAGGGCTCAAAGCGGATCGTGAAGTGCTTCAACTGCGGCAAAGAGGGCCACATTGCTAGAA
ACTGTAGAGCCCCTAGAAAGAAAGGCTGCTGGAAGTGTGGCAAAGAAGGCCATCAGATGAAGGACTGCACCGAG
CGGCAGGCTAACTTCCTGGGCAAGATCTGGCCTTCACATAAGGGCAGACCTGGCAACTTCCTGCAGTCTAGGCCT
GAGCCTACAGCCCCTCCTGCTGAGCCTACCGCTCCCCCAGCCGAGAGCTTTAGATTCGAGGAAACTACCCCTGCCC
CTAAGCAGGAACCTAAGGATAGAGAGCCCCTGACTAGCCTGAAGTCACTGTTCGGCTCAGACCCCCTGAGTCAGT
AA 

 

Appendix B3: Gating strategy used for flow cytometry analysis of Gag-specific CD8+ and CD4+ 
cytokine - producing cells. Progressive gating strategy: lymphocytes (plot 1), singlets (plot 2), CD3+ cells 
(plot 3), CD4+ and CD8+ T cells (plot 4), cytokine-producing CD4+ and CD8+ cells (plot 5 and plot 6), 
effector (TEM) and central (TCM) memory cytokine detection. 
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APPENDIX C: STANDARD PROTOCOLS 

C1. Restriction enzyme digest  

FastDigest restriction enzymes (Thermo Scientific, USA) were used for restriction 

enzyme digests of plasmids as recommended by the manufacturer. For cloning 

purposes, 2-5µg of purified plasmid DNA was used. For plasmid mapping following 

small scale plasmid extraction (Appendix B4), 5µl of extracted plasmid was used. 

Enzyme inactivation, were necessary, was done according to manufacturer’s 

instructions. 

C2. Agarose gel electrophoresis  

Agarose gels were prepared in Tris-borate-EDTA (TBE) buffer (Appendix D8) and 

stained with 0.01µg/ml of ethidium bromide (Sigma-Aldrich, USA). DNA was 

electrophoresed in gels submerged in TBE buffer at 3 volts (V)/cm alongside standard 

molecular weight markers (Thermo Scientific, USA; Appendix D1 and D2).  DNA was 

visualized at 302 nm by UV transillumination using an UVITEC UV light box (UK) and 

the results captured by an UVITEC camera (Japan). 

C3. Preparation and transformation of E. coli competent cells 

Competent E. coli DH5a cells were prepared using dimethyl sulphoxide as previously 

described by Chung and Miller (1988; (623)) with slight modifications. Briefly, a 1/200 

dilution was made from an overnight 5ml starter culture in Luria Bertani (LB) broth 

(Appendix D4). When the cell culture reached log phase (OD600 = 0.2-0.4) at 37˚C with 

shaking, the cells were harvested and resuspended in 1/10th culture volume of ice-cold 

TSB (Appendix D6). After a 10 minute incubation on ice, aliquots of 100µl were made 

and frozen on a dry ice-ethanol bath or liquid nitrogen for storage at -80˚C. 

 

For transformation, competent cell aliquots were used immediately after making them 

or the frozen stocks were thawed on ice. Plasmid DNA was added to the cells and 

incubated on ice for 30 minutes. To facilitate DNA uptake into the cells, the mixture was 

heat shocked at 42˚C for two minutes and then placed on ice for another two minutes to 

maintain the transformed plasmid within the competent cells (624).  A volume of 900µl 

TSBG (Appendix D7) was added and the cells incubated with shaking at 37˚C for an hour 
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to allow the expression of antibiotic resistance genes. The transformation mix was 

plated onto Luria agar plates containing antibiotic and incubated overnight at 37˚C.  

 

C4. Plasmid DNA extraction and quantification 

Small scale plasmid DNA extraction from E. coli colonies was done as previously 

described (625). Large scale plasmid DNA preparation from E. coli cells was done using 

the High Pure® Plasmid Isolation kit (Roche, Switzerland). Large scale extraction of 

endotoxin-free plasmid DNA was done using the EndoFree Plasmid Maxi® kit (Qiagen, 

Germany). All procedures using kits were carried out according to the manufacturer’s 

instructions. Plasmid DNA was quantified using a Nanodrop spectrophotometer, ND-

1000 UV/Vis (USA). DNA was stored at 4˚C for short term storage, and -20˚C for long 

term storage. 

C5. DNA purification 

  

The standard ethanol precipitation method of Ausubel and colleagues (1987; (626)) 

was used to clean up and recover DNA following restriction enzyme digests.  Glycogen 

(1μg/μl; Thermo Scientific, USA) was included to give a visible pellet containing the 

DNA following centrifugation.  

C6. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein samples were obtained from DNA and recombinant MVA cell lysates. The 

protein concentration of samples was determined by using the Bio-Rad DC protein 

assay kit (Bio-Rad, USA) using the manufacturer’s recommendations, and the 

absorbance readings were measured at 750 nm using the VERSAmax microplate reader 

(Molecular Devices, USA). A total of 20µg of each protein was mixed with 20% Sample 

buffer (BioRad, USA) and 2µl Reducing agent (BioRad, USA), made up to 40µl with PBS 

(Lonza, Belgium).  The samples were boiled for 5 minutes, cooled in ice and analyzed on 

a Criterion XT Tris acetate 12.5% denaturing gel (BioRad, USA). Precision Plus Protein™ 

Kaleidoscope™ Molecular Weight Marker (BioRad, USA; Appendix D3) was used as a 

standard. Purified Gag proteins from our Laboratory were used as positive controls and 

cell lysate from uninfected or untransfected cells were used as negative controls. 
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Initially the SDS-PAGE was run at 100 V for 20 minutes, and later increased to 150 V for 

55 minutes using 1X Tricine Running Buffer (Biorad, USA). 

C7. Western blotting analysis 

Prior to protein transfer, the denaturing gels, the extra thick blotting papers and the 

PVDF membranes (Biorad, USA) were equilibrated in 20 ml transfer buffer in small 

open containers for a maximum period of 30 minutes. The PVDF membranes were 

soaked in 20 ml 100% methanol for 5 minutes, the methanol was poured off and the 

membranes rinsed in distilled H2O with intermittent shaking. After 5 minutes, the water 

was discarded and 20 ml protein transfer buffer (Appendix D10) was added to the 

membranes and left for 20 minutes. A BioRad SD semi-dry Electroblotting apparatus 

(BioRad, USA) was used to transfer the protein from the denaturing gel to the PVDF 

membrane at 25 V for 60 minutes. The transfer sandwich was set up with the blotting 

paper at the bottom, followed by the gel, membrane, and more blotting paper 

The membranes were rinsed with 1 X TBS (Appendix D11), and stained with Ponceau S 

(Appendix D12) for 2 minutes to check for proteins on the membrane and finally rinsed 

with distilled H2O.  The membrane was then incubated in Block /Wash buffer (Appendix 

D13) overnight at 4˚C with gentle shaking.  A rabbit anti-HIV-1 p24 Gag primary 

antibody (ARP432) was prepared (1 in 10000 dilution) in 30ml Block/Wash buffer. The 

diluted antibody was added to the membrane and incubated for 2hours at room 

temperature with gentle agitation. The membrane was rinsed twice in 20ml Block 

/Wash buffer followed by four 20 minutes washes in fresh Block /Wash buffer on a 

shaker at a moderate speed. The blocking buffer was discarded and an anti-rabbit 

antibody conjugated to alkaline phosphatase (Sigma-Aldrich, USA) diluted 1in 10000 

(3µl in 19,997ml Block /Wash buffer), added to the membrane, and incubated for an 

hour at room temperature with gentle shaking. The membrane was rinsed and washed 

as described previously in Block /Wash buffer. The membrane was rinsed once in 1 X 

TBS and then developed using Nitro blue tetrazolium chloride/ 5-bromo-4-chloro-3-

indolyl phosphate (NBT/BCIP; Roche, Switzerland) according to manufacturer’s 

instructions.  
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APPENDIX D: MEDIA 

D1. MB-7H9 media: 4.7 g MB-7H9 broth (Difco); 100 ml OADC (Biolabs); 0.025% v/v 

tyloxapol (Sigma-Aldrich); 0.25% w/v glycerol); made up to 1litre of water 

D2. MB-7H10 agar: 19 g MB-7H9 agar (Difco); 100 ml OADC (Biolabs); 0.63% w/v 

glycerol; made up to 1litre of water 

D3. SOC media: 20g Tryptone powder; 5g Yeast Extract; 2ml of 5M NaCl; 2.5ml of 1M 
KCl; 10ml of 1M MgCl2; 10ml of 1M MgSO4; 20ml of 1M glucose per litre of water 

D4. LB broth/agar: 16 g Tryptone powder; 10 g Yeast extract; 5 g NaCl; (15 g agar) per 
litre of water 

D5. 1X PCR buffer: 10 mM TrisCl; 2.5mM MgCl2; 50mMKCl; pH to 8.3 

D6. TSB: 16 g  Peptone powder; 11 g  Yeast extract powder ; 5 g NaCl; 10% w/v PEG, 

5%  v/v DMSO, 10 mM MgCl2, 10 mM MgSO4 per litre of water 

D7.TSBG: 20% w/v Glucose; 100 ml TSB 

D8. TBE: 0.4 M Tris; 10 mM Na2EDTA; 10 mM Na acetate, pH 8.5. 

D9. BCG resuspension buffer: 8.5% w/v NaCl; 10%glycerol; 10% Tyloxapol 

D10. Protein transfer buffer: 0.303% Tris; 1.44% Glycine 

D11. 10 X TBS: 50 mM Tris; 150 mM NaCl; pH to 7.5 

D12. 10X Ponceau S staining solution: 0.1% w/v Ponceau S; 5% v/v Acetic acid 

D13. Block wash buffer: 1 X TBS; 0.5% v/v Tween-20; 4% w/v Elite milk powder 
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APPENDIX E: MOLECUAR WEIGHT MARKERS 

E1.    E2.  

E3. Precision Plus Protein™ Kaleidoscope™ (Biorad, USA) 
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“Our deepest fear is not that we are inadequate. Our deepest fear is that we are 

powerful beyond measure. It is our light, not our darkness that most frightens us. We 

ask ourselves, 'Who am I to be brilliant, gorgeous, talented, fabulous?' Actually, who are 

you not to be? You are a child of God. Your playing small does not serve the world. There 

is nothing enlightened about shrinking so that other people won't feel insecure around 

you. We are all meant to shine, as children do. We were born to make manifest the glory 

of God that is within us. It's not just in some of us; it's in everyone. And as we let our 

own light shine, we unconsciously give other people permission to do the same. As we 

are liberated from our own fear, our presence automatically liberates others.” 

Marianne Williamson, A Return to Love: Reflections on the Principles of "A Course in 

Miracles" 

 

 

 

"Science appears calm and triumphant when it is completed; but science in the process 

of being done is only contradiction and torment, hope and disappointment." 

Emile Roux 1853-1933 

 

 




