
Rendering from Unstructured Collections of Images
by

Christopher James Buehler
B.S., Electrical Engineering MAS

B.S., Computer Science
University of Maryland at College Park, 1996

S.M., Computer Science and Electrical Engineering
Massachusetts Institute of Technology, 1998

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2002

© Christopher James Buehler, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in

part.

Author . . .

Certified by

............ ...

Department of Electrical Engineering and Computer Science
May 3, 2002

Leonard McMillan
Associate Professor
-T'esi , -pervisor

Accepted by........ ,.........
Arthur C. Smith

Chairman, Department Committee on Graduate Students

'ACHUSETTS ITUrE
OF TECHNOLOGY

JUL 3 1 2002

LIBRARIES

Rendering from Unstructured Collections of Images

by

Christopher James Buehler

Submitted to the Department of Electrical Engineering and Computer Science
on May 3, 2002, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Electrical Engineering

Abstract

Computer graphics researchers recently have turned to image-based rendering to achieve
the goal of photorealistic graphics. Instead of constructing a scene with millions of poly-
gons, the scene is represented by a collection of photographs along with a greatly simplified
geometric model. This simple representation allows traditional light transport simulations
to be replaced with basic image-processing routines that combine multiple images together
to produce never-before-seen images from new vantage points.

This thesis presents a new image-based rendering algorithm called unstructured lumi-
graph rendering (ULR). ULR is an image-based rendering algorithm that is specifically
designed to work with unstructured (i.e., irregularly arranged) collections of images. The
algorithm is unique in that it is capable of using any amount of geometric or image infor-
mation that is available about a scene.

Specifically, the research in this thesis makes the following contributions:

* An enumeration of image-based rendering properties that an ideal algorithm should
attempt to satisfy. An algorithm that satisfies these properties should work as well as
possible with any configuration of input images or geometric knowledge.

" An optimal formulation of the basic image-based rendering problem, the solution to
which is designed to satisfy the aforementioned properties.

* The unstructured lumigraph rendering algorithm, which is an efficient approximation
to the optimal image-based rendering solution.

" A non-metric ULR algorithm, which generalizes the basic ULR algorithm to work
with uncalibrated images.

" A time-dependent ULR algorithm, which generalizes the basic ULR algorithm to
work with time-dependent data.

Thesis Supervisor: Leonard McMillan
Title: Associate Professor

2

Acknowledgments

Completing this thesis would not have been possible without the help and support of many

people. I would like to thank the following people for making the experience fun and

rewarding.

" My advisor Leonard McMillan, for being a great advisor and giving me the freedom

to pursue my own ideas while gently guiding me in the right direction.

" My thesis committee members Steven Gortler, who has been a source of many ideas

and inspiration, and Eric Grimson, who provided a refreshingly different point-of-

view.

" All of the members, past and present, of MIT's Computer Graphics Group.

" All of my friends at Microsoft Research, especially Michael Cohen, whom I consider

an unofficial thesis committee member.

" My good friends Michael Carr, Michelle Carr, and Lisa Kozsdiy, who have been

helpful and supportive throughout my entire graduate career, even when thousands

of miles away.

* My roommates J.P. Grossman and Michael Bosse, who are great guys and good

cooks.

" My mother and father, who are always there for me, and my brother Tom, for being

a great little brother.

3

Contents

1 Introduction 17

1.1 PreviousWork. 18

1.1.1 Single-Image Methods . 19

1.1.2 Sparse Multi-Image Methods . 21

1.1.3 Dense Multi-Image Methods . 23

1.1.4 Uncalibrated Methods . 27

1.2 The Contributions of this Research . 29

1.3 Thesis Organization . 29

2 Background 31

2.0.1 Overview 32

2.1 Images. 32

2.2 Pinhole Cameras 33

2.2.1 Projection Matrix .. 34

2.2.2 Parameterizations.. 35

2.2.3 Radial Distortion .. 37

2.2.4 Inverse Projection Matrix. 38

2.3 Multiple Cameras 39

4

2.3.1 Epipoles

2.3.2 Homographies

2.4 Cameras and Scenes

2.4.1 Euclidean Reconstruction

2.4.2 Non-metric Reconstructions

2.5 Camera Calibration

2.6 Summary .

3 Properties of Image-Based Rendering Algorithms

3.0.1 Overview

3.1 The Image-Based Rendering Problem

3.2 Desirable Properties for Algorithm Flexibility

3.2.1 Property #1: Unstructured Input

3.2.2 Property #2: Natural Navigation

3.2.3 Property #3: Real-Time Performance

3.3 A Hypothetical Algorithm

3.3.1 The Empty-Space Assumption

3.4 The Radiance Reconstruction Problem

3.5 Desirable Properties for Radiance Reconstruction

3.5.1 Property #4: Use of Correspondence

3.5.2 Property #5: Angle-Based View-Dependence

3.5.3 Property #6: Epipole Consistency

3.5.4 Property #7: Radiance Consistency

3.5.5 Property #8: Continuity

3.5.6 Property #9: Sensitivity to Non-Ideal Effects

3.6 Summary .

39

40

41

42

42

44

45

47

48

. 48

. 48

. 49

. 50

. 50

. 5 1

. 52

. 53

. 55

. 55

. 57

. 58

. 60

. 61

. 62

. 64

4 Optimal Radiance Reconstruction

4.0.1 Overview .

4.1 Linear Minimum Mean Squared Error Estimation

4.1.1 Correlation Functions for Images

5

67

67

68

70

4.1.2 An Image Model for Radiance Reconstruction .

4.1.3 Example I .

4.2 MMSE with Generalized Similarity Matrix

4.2.1 Field-of-View Dissimilarity Measure

4.2.2 Resolution Dissimilarity Measure

4.2.3 Example II .

4.3 Problems with the Optimal Approaches

4.4 Summary .

5 Unstructured Lumigraph Rendering

5.0.1 Overview .

5.1 Radiance Reconstruction Optimizations

5.1.1 Optimization #1: Simplified Similarity Matrix

5.1.2 Optimization #2: Simplified Resolution Measure

5.1.3 Optimization #3: Sparse Sampling

5.1.4 Optimization #4: Use of Graphics Hardware

5.1.5 Optimization #5: k-Nearest Camera Weighting

5.2 Real-Time Unstructur

5.2.1 Selecting Wei

5.2.2 Triangulating

5.2.3 Drawing Triat

5.3 Examples

5.3.1 Example #1

5.3.2 Example #2

5.3.3 Example #3

5.3.4 Example #4

5.3.5 Example #5

5.4 Summary

ed Lumigraph Rendering

ght Vector Sample Points

Sample Points

ngles

. 7 1

. 74

. 76

. 77

. 79

. 81

. 83

. 84

85

. 85

. 86

. 86

. 87

. 88

. 89

. 90

. 92

. 92

. 95

. 97

. 97

. 9 8

. 10 2

. 10 5

. 1. 1 1

. 1 13

. 114

6 Non-Metric Unstructured Lumigraph Rendering

6.0.1 Overview

116

117

6

6.1 Problems with Non-Metric Rendering

6.1.1 Angle Measure

6.1.2 Resolution Measure

6.1.3 Geometry Proxy

6.1.4 Navigation

6.2 Non-Metric Modifications to ULR

6.2.1 Angle Measure

6.2.2 Resolution Measure

6.2.3 Geometry Proxy

6.2.4 Navigation

6.3 Non-metric ULR for Video Stabilization

6.3.1 Other Approaches to Video Stabilization

6.3.2 The IBR Approach to Video Stabilization

6.4 Stabilizing Video

6.4.1 Computing a Projective Reconstruction .

6.4.2 Camera Trajectory Filtering

6.4.3 Rendering

6.5 Examples .

6.5.1 Example #1

6.5.2 Example #2

6.5.3 Example #3

6.6 Summary .

117

117

118

118

118

118

119

122

122

123

124

124

125

126

126

127

131

132

132

135

138

140

7 Time-Dependent Unstructured Lumigraph Rendering 141

7.0.1 Overview . 142

7.1 Time-Dependent Lumigraphs . 143

7.1.1 Time-Dependent Extensions to ULR 143

7.2 Time-Periodic Lumigraph Rendering . 145

7.2.1 Time-Periodic Lumigraph Acquisition 146

7.2.2 Examples . 148

7

7.3 Sum m ary 149

8 Conclusions and Future Work

8.1 Future Areas of Research

8.1.1 Better Image Correlation Functions

8.1.2 Non-static Video

8.1.3 Multi-Image Editing

8.2 Conclusion

8

152

153

153

154

154

155

.

.

.

.

.

List of Figures

1-1 (a) A spherical panoramic image of MIT's lobby 7. (b) A view of the

panorama as seen from an interactive viewing application. Images courtesy

of M ichael Bosse. 19

1-2 A multiple-center-of-projection image. Both sides of the elephant can be

represented in a single image. Image courtesy of Paul Rademacher. 20

1-3 (a) The architectural model constructed in the Fagade system. (b) A view-

dependent rendering of the model using 16 photographs. Images courtesy

of Paul Debevec. 23

1-4 The light field and lumigraph techniques represent all radiance entering

and leaving a volume, a four dimensional entity. Image courtesy of Steven

G ortler. 24

1-5 (a) In both the light field and lumigraph techniques, rays are parameter-

ized by their intersections with two parallel planes. (b) These planes are

uniformly sampled to facilitate signal reconstruction. The points on the

st plane correspond to camera positions, while the points on the uv plane

correspond to pixels in the cameras' images. Images courtesy of Steven

G ortler. 25

1-6 MIT's single-camera light field capture device. 26

9

1-7 A view morph of the Mona Lisa. The left image and right image (reflected)

are the source images. The center image is the morphed image halfway

between the source images. Images courtesy of Steven Seitz. 28

2-1 An illustration of a pinhole camera showing the center of projection, the

optical axis, the principal point, and an example viewing ray. 34

2-2 Example calibration images. 45

3-1 (a) Unknown radiances (bold arrows) can be determined from known radi-

ances along any set of "nearby" rays (dotted arrows). (b) It is simpler to

use only corresponding rays, which are defined to be rays that intersect in

a common point on the unknown ray. 54

3-2 When available, approximate geometric information should be used to de-

termine which source rays correspond well to a desired ray. Here C1 ... C6

denote the positions of reference cameras, and C, is the virtual viewpoint

whose field-of-view is shown as a gray triangle. The proxy is represented

with a gray shape. 56

3-3 The proxy is a coarse approximation to the true scene geometry, which in

this case consists of multi-colored boxes and ovals. Since the proxy is not

exact, a point on the proxy may be seen with different colors from different

reference cameras. In this case, some cameras see the green color while

others see the yellow color. 57

3-4 The "closest" ray measured by distances di and d2 is not necessarily the

closest one when measured by angles 01 and 02. 58

3-5 When a virtual viewing ray passes through a reference camera center, that

reference camera should contribute the exact color to the virtual image.

Here this case occurs for cameras C1, C2, C3, and C6 59

10

3-6 When ray angle is measured in the desired view, one can get different re-

constructions for the same ray. The algorithm of Heigl et al. would deter-

mine C2 to be the closest camera for Ci, and C1 to be the closest camera for

C 2 . The switch in reconstructions occurs when the desired camera passes

the dotted line. 61

3-7 When cameras have different views of the proxy, their resolution relative to

the virtual view differs. Here cameras C1 and C5 have different resolutions

because of their distances from the proxy. 63

4-1 Two example images generated from the falling-leaves image model. 71

4-2 An example correlation function from the falling-leaves model. 73

4-3 A set of 262 images used to demonstrate the radiance reconstruction pro-

cedure. (a) An example from the image collection. (b)-(d) Three different

views of the input camera configuration. The virtual camera is shown in red. 75

4-4 (a) An example image using the optimal radiance reconstruction procedure.

(b) A visualization of the blended images. 76

4-5 (a) The field-of-view measure is zero outside the field-of-view, one inside

the inner field-of-view, and between zero and one in the intermediate re-

gion. (b) A cross-section of the field-of-view measure. The values in the

intermediate region are determined from a raised cosine function 78

4-6 The Jacobian matrix describes how small increments in one image are

mapped to small increments in another image. 79

4-7 An example resolution measure. Cameras that observe the scene point at

lower resolution receive smaller measures. 81

4-8 (a) An example image using the angle and field-of-view measures (a = 0.5

and y = 1). (b) A visualization of the blended images. 82

4-9 (a) An example image using the angle and resolution measures ((X = 0.5

and 1 = 1). (b) A visualization of the blended images 83

5-1 The pseudocode for the real-time, unstructured lumigraph rendering algo-

rithm . 93

11

5-2 The real-time renderer uses the projection of the proxy, the projection of the

source camera centers, and a regular grid to triangulate the image plane. In

this figure, the proxy is a cube, the camera centers are labeled C, and their

projections are labeled e.. 94

5-3 A sequence of images showing the effect of the ULR optimizations on

image formation. Top to bottom: original, simplified correlation matrix,

simplified resolution measure, k-nearest weighting, and sparse sampling. . . 99

5-4 Plots of the error caused by using a sparse sampling of image reconstruction

weights. (a) The error in the actual image. The blue curve with circles

shows error with epipole sampling, and the red curve with crosses shows

without. (b) The error in the false-color visualization.The blue curve with

circles shows error with epipole sampling, and the red curve with crosses

shows without. 101

5-5 Images rendered from a video taken at the Staples center in Los Angeles.

Top to bottom: data configuration, rendered images, false-color visualiza-

tions, and image-plane tessellations. 103

5-6 Images showing the effect of field-of-view consideration. Rendered images

(top) and false-color visualizations (bottom) 104

5-7 Camera configuration geometry proxy (top), and example images (bottom)

from the hallway example. Three planes (front, back, and top) have been

removed from the proxy for visualization purposes. 105

5-8 Two rendered images from a hallway at MIT (top), the false-color visual-

izations for each (middle), and the image plane tessellations (bottom). . . . 107

5-9 Images demonstrating the impact of field-of-view on the hallway example.

The top images ignore field-of-view, resulting in black areas where cameras

do not see anything. 108

5-10 Images demonstrating the impact of resolution on the hallway example.

Note the orange paper on the left wall. 109

12

5-11 A comparison of original images (first column) to rendered images (second

column). The third column shows the absolute value of differences between

the images in the first two columns. 110

5-12 Virtual images from the car example. Top to bottom: data configuration,

rendered views, false-color visualizations, and image-plane tessellations . . 112

5-13 A closeup showing how the car silhouette is determined by the images (left)

and not the geometry (right). 113

5-14 Two views of a flat-shaded proxy constructed with the polyhedral visual

hull system . 113

5-15 (a) The textured polyhedral visual hull. The unstructured lumigraph con-

tains only 4 images. (b) The associated false-color visualization. Note that

only two images (colored red and green) contribute most of the textures. . . 114

6-1 The Euclidean ULR algorithm uses the angular distance from the desired ray. 120

6-2 Vanishing point distance measurement. (a) An alternative angle measure

is the distance of the vanishing points vi from the projection of the scene

point Pdes. (b) The vanishing point shows which ray in the desired view is

parallel to the observer ray. 120

6-3 A comparison of false-color visualizations that use true angles (a), and van-

ishing point approximations (c). The differences between (a) and (b) are

shown greatly exaggerated in (c). 121

6-4 Three iterations of the feature filtering procedure. The initial feature loca-

tions are drawn as solid lines, and the target locations are shown as dots.

The desired focus of expansion is marked with a circle. (top) Before opti-

mization. (middle) After one iteration. (bottom) After all iterations. 128

6-5 An example triangulation that is used for determining the proxy. 131

13

6-6 Feature tracks for a video sequence with forward camera motion. The orig-

inal features are solid black, and stabilized features are red dots. The fea-

tures are stabilized using the linear motion with constant velocity model,

whose focus of expansion is shown with a circle. An original frame from

the sequence is shown in the top image. 133

6-7 Renderings from the first video stabilization example. Stabilized frames

(right half) are compared to original frames (left half) in split-screen images

(first column). The associated false-color visualizations are shown in the

second column. 134

6-8 Feature tracks for a video sequence with sideways camera motion. The

original features are solid black, and stabilized features are red dots. The

features are stabilized using the linear motion with constant velocity model,

whose focus of expansion (not shown) is to the left-hand side of the image.

An original frame from the sequence is shown in the top image. 135

6-9 Renderings from the second video stabilization example. Stabilized frames

(right half) are compared to original frames (left half) in split-screen images

(first column). The associated false-color visualizations are shown in the

second column. 136

6-10 Feature tracks for a video sequence with motion that approximates Hitch-

cock's Vertigo effect. The original features are black lines. Stationary fea-

tures (on the bear) are marked with bold X's. The remaining features are

constrained to move radially from the center of the fixed features. These

features are shown with red dots. An original frame from the sequence is

shown in the top image. 137

6-11 Rendered frames from the Hitchcock Vertigo effect motion model: (a) the

original frames (b) the stabilized frames (c) the associated false-color visu-

alizations. Note how the size of the bear, which is the focus of the effect,

remains constant in the stabilized images. 139

14

7-1 MIT's 8 x 8 array of video cameras. The array delivers a 64-image light

field that users can interact with in real-time. 142

7-2 A function that modifies the time difference between two images. Images

within 1 frame period of one another are considered equivalent, while dif-

ferences greater than 1 frame period are penalized. 144

7-3 The results of space-time calibration. The top plot shows the motion of the

camera (in x), and the bottom plot shows the camera positions remapped

into one period of the lumigraph. 147

7-4 A zoomed view of a unit width time window superimposed on top of the

space-time plot. The window contains 14 cameras. 148

7-5 Three virtual views of a rotating lamp. 150

7-6 Three virtual views of a helicopter with spinning rotors. 151

15

List of Tables

3.1 Properties of existing multi-image IBR algorithms. 'The input images

are regularized in a pre-processing stage. 2The angular weighting scheme

does not handle dense image collections. 3The images must be rectifi-

able. 4Resolution mismatch is not measured relative to the virtual view. 5A

real-time implementation is suggested but not demonstrated. 6Extremely

accurate geometry is required. 65

3.2 Nine desirable properties for an image-based rendering algorithm. 66

16

CHAPTER 1

Introduction

For the past three decades, computer graphics researchers have strived for photorealism, the

elusive goal of producing synthetic images that have the appearance of photographs. Great

progress has been made: computers have become powerful enough to process the tens

of millions of polygons used to represent scenes, complex shading languages have been

created to describe the surface properties of these scenes, and sophisticated light transport

simulations have been used to predict the appearance of these scenes under any imaginable

lighting conditions. However, despite these advances, true photorealism arguably has not

been achieved.

As a consequence, researchers recently have turned to a different approach in achiev-

ing the goal of photorealism: image-based rendering (IBR). Instead of representing a

scene as a set of millions of polygons, the scene is represented by a collection of pho-

tographs. Surfaces are no longer described by a carefully programmed shading proce-

dure; they are implicitly described by their appearance in multiple photographs taken from

different positions. Time-consuming light transport simulations are replaced with simple

image-processing routines. These routines combine multiple images together to produce

never-before-seen images from new vantage points.

17

Image-based rendering has a number of advantages over traditional computer graphics.

First, image-based rendering "solves" the photorealism problem. Novel images are com-

posed of real photographs, which by definition are photorealistic. Second, image-based

rendering largely eliminates the modeling problem. Image-based modeling consists of tak-

ing photographs rather than arranging millions of triangles. Third, image-based rendering

is very efficient. In most cases, it is possible to generate output images at greater than 60

frames per second.

Of course, image-based rendering is not without its faults. One of the biggest obstacles

to the widespread use of image-based rendering techniques is restrictions placed on the

configuration of the input images. For example, it is common for an algorithm to require

that cameras face forward and lie on a regular grid, or that cameras face radially inward

from the surface of a sphere. Such restrictions make the algorithms easier to implement

on the computer, but they also make the algorithms much more difficult to use in practice.

Difficulties arise because it is nearly impossible to place real cameras in precise locations.

To combat this problem, the rendering algorithms presented in this thesis are designed to

operate with almost any configuration of input images. This flexibility allows the algo-

rithms to be used in a wide variety of situations, including some that were never before

possible.

1.1 Previous Work

Modern image-based rendering techniques started appearing in the computer graphics com-

munity less than a decade ago. Much of the earliest work involves techniques for warping,

or "reprojecting," a single image to simulate a novel view of a scene. Later, researchers

turned their attention to multi-image methods, which sidestep some single-image problems

and enable greater algorithm flexibility and simplicity. These methods roughly fall into

two classes: sparse multi-image methods, which use a small number of images, and dense

multi-image methods, which use a large number of images. Of course, the distinction

between "small" and "large" can be rather arbitrary; the terms wide-baseline and small-

baseline are perhaps more applicable. Sections 1.1.1, 1.1.2, and 1.1.3 highlight some of the

18

details of the various methods.

In largely parallel work, the computer vision community has developed techniques for

rendering novel views from sets of images. This work tends to emphasize techniques that

use uncalibrated cameras instead of calibrated cameras, which are preferred in the graphics

literature. Section 1.1.4 surveys these methods.

1.1.1 Single-Image Methods

(a) (b)

Figure 1-1: (a) A spherical panoramic image of MIT's lobby 7. (b) A view of the panorama as seen

from an interactive viewing application. Images courtesy of Michael Bosse.

The simplest single-image methods use wide field-of-view (e.g., 360 degree cylindrical

or spherical) panoramic imagery (see Figure 1-la). T~rpically, these panoramic images are

created by using image mosaicking [Szeliski 1996; Szeliski and Shum 1997], a technique

in which a single high-resolution, wide field-of-view image is created from multiple low-

resolution, small field-of-view images. More recently, panoramic lenses and mirrors have

been developed to capture panoramas with a single exposure [Nayar 1997].

Panoramic imagery is generally very high-resolution, and it immerses the viewer in the

environment. However, the available control over the desired view is very limited. The

viewer can look in any direction and change the zoom (see Figure 1-1b). However, the

viewer can not change the position of the virtual camera. That is, translation of the vir-

tual camera is not allowed. Nevertheless, panoramic images have been the most successful

image-based rendering technique to date, having been commercially deployed in many

19

M

products, including Apple's QuicktimeVR [Chen 1995] and Interactive Picture Corpora-

tions's IPIX.

In order to allow virtual camera navigation, the single image can be augmented with

auxiliary geometric information about the scene. A natural representation for this informa-

tion is a depth map, which stores a single depth value per image pixel. An image with an

associated depth map is often called an image-with-depth. A good example is McMillan's

plenoptic modeling system [McMillan and Bishop 1995], which uses cylindrical panoramic

images that have been augmented with per-pixel depth information. This system provides

an immersive experience like a panorama, and it also allows for virtual camera translation.

The pixels in the image-with-depth are reprojected into the virtual view using a forward

mapping approach.

Figure 1-2: A multiple-center-of-projection image. Both sides of the elephant can be represented
in a single image. Image courtesy of Paul Rademacher.

One of the problems associated with this approach is the appearance of "holes" when

regions that are occluded in the original image become visible in the virtual view. The

Layered Depth Image (LDI) [Shade et al. 1998] combats this problem by storing multiple

depth and color values at each pixel in the original image (LDIs are generally used with

synthetic data). The extra depth layers help fill in holes in the virtual view. Another ap-

proach is multiple-center-of-projection (MCOP) images [Rademacher and Bishop 1998]

20

(see Figure 1-2). In MCOPs, each column of pixels contains color and depth data that are

acquired from a different vantage point (i.e., a multi-perspective image). MCOPs can be

created, for example, by moving a line camera (and depth sensor) along a linear path. In

doing so, MCOPs can store the image of a scene from many different positions, which

allows for greater sampling of potentially visible surfaces.

Another problem with the image-with-depth approach is deducing the depth map. For

convincing renderings, the depth map needs to be reasonably faithful to the true geometry

of the scene. Some of the highest quality single-image techniques use completely manual

specification of the scene depth. In the "Tour into the Picture" system [Horry et al. 1997],

the user specifies the depth map as a "spidery mesh" using vanishing points and lines.

Foreground objects are manually segmented, and occluded regions are manually painted.

A similar approach is used in [Oh et al. 2001], which further allows for scene editing and

relighting with only a single image.

1.1.2 Sparse Multi-Image Methods

Some of the best single-image techniques use manual painting of occluded regions. The

problem of occlusion can also be attacked in more automatic ways using additional views

of the scene. However, using multiple images introduces the interesting problem of how

best to combine multiple source images together into one output image.

View interpolation [Chen and Williams 1993] represents a scene with multiple images-

with-depth. Virtual image sequences are created by interpolating frames from an origi-

nal image to a virtual view. In-between images are created by linearly interpolating two-

dimensional motion vectors from the source pixels in the original images to the destination

pixels in the virtual images. The motion vectors are computed from depth maps, which are

acquired from a ray-tracer.

Holes in the interpolated frames are filled in by using a weighted combination of multi-

ple source images. The weights are determined by a spatial graph connecting the positions

of the source images. For example, a triangular mesh is used to connect source images

arranged in a two-dimensional plane. The weights for a given virtual view are taken to be

21

the barycentric coordinates of that virtual view in the triangular mesh. This approach can

be generalized to cameras arranged in one-dimensional or three-dimensional spaces.

View interpolation forms a linear combination of source images using a single weight

per image. This weight is calculated based on the physical distance between the virtual

view and the source images. A similar approach is taken in [Pulli et al. 1997] and [Pighin

et al. 1998], except that the image weights are calculated based on the angular distance

between the virtual view and the source images. A single "view direction" is computed for

each image, typically from the camera position to a target point, and the angles between

these directions and the virtual view direction are used to weight the images. Source images

with smaller angles are assigned larger weights. In both of these methods, texture-mapped

triangular meshes (acquired from laser range scans) are rendered multiple times, once for

each source image with a non-zero weight. The renderings are blended together according

to their weights to arrive at the final image.

The approach in [Pighin et al. 1998] also includes other factors in the image weighting

process. Interestingly, these additional weights are applied at the per-pixel level rather

than at the per-image level as with the view-direction weight. The first additional weight

attenuates a source image's contribution for pixels close to the edge of its field-of-view.

This weight reduces discontinuities at the boundaries of invisible regions, where one image

takes over from another. The second additional weight attenuates a camera's contribution

for polygons that are obliquely oriented to the camera. This weight penalizes poor sampling

densities, and it is intended to reduce blurriness in the rendered image.

The per-image view-direction weight is based on the notion that viewing direction is a

better measure of "image closeness" than physical proximity. However, the "view direc-

tion" is different for every pixel in the virtual view, so this weight is best computed on a

per-pixel basis as well. Per-pixel angular weighting is the approach taken in the Fagade

system described in [Debevec et al. 1996]. In that system, simple architectural models are

textured with a small number of source images (see Figure 1-3). In regions that multiple

source cameras see, the cameras' contributions are weighted according to their angles rela-

tive to the viewing ray from the virtual view. This approach, called view-dependent texture

mapping (VDTM), favors the camera that views the scene point at an angle close to that

22

(a) (b)

Figure 1-3: (a) The architectural model constructed in the Fagade system. (b) A view-dependent

rendering of the model using 16 photographs. Images courtesy of Paul Debevec.

of the virtual camera, and it may use all source images in different regions of the virtual

image.

VDTM can produce photorealistic images, provided the scene geometry is reasonably

good. The main drawbacks of the approach are (1) it is slow and (2) its particular angu-

lar weighting scheme only works well with small numbers of images. The first problem

has been addressed in [Debevec et al. 1998], which describes a real-time algorithm for

implementing VDTM. In this algorithm, image blending weights are computed on a per-

polygon basis, which works fine for small numbers of images or finely tesselated models.

The second problem is addressed in later chapters of this thesis.

1.1.3 Dense Multi-Image Methods

One common characteristic of sparse multi-image methods is that they assume a fairly

accurate geometric model of the scene. However, it is possible to generate convincing views

of a scene without a model if enough densely-spaced views are available. This notion is

nicely quantified in [Chai et al. 2000] by the minimum sampling curve, which demonstrates

the inverse relationship between number of input images and geometric model complexity.

The light field [Levoy and Hanrahan 1996] and lumigraph [Gortler et al. 1996] papers

originate the idea of using large numbers of images to render without a geometric model.

23

Figure 1-4: The light field and lumigraph techniques represent all radiance entering and leaving a

volume, a four dimensional entity. Image courtesy of Steven Gortler.

The basic approach is to represent all of the radiance (i.e., color) in a three-dimensional

volume as a four-dimensional function (see Figure 1-4). This four-dimensional radiance

representation is called a light field. Images of the scene within the volume are simply

two-dimensional slices through the four-dimensional light field. The process of generating

a virtual view is then seen as a signal reconstruction process: first a continuous repre-

sentation of the light field is reconstructed from two-dimensional samples (i.e., the source

images) and then virtual views are extracted from this continuous light field. To facilitate

this signal reconstruction, a regular sampling of the four-dimensional light field is assumed

(see Figure 1-5). This assumption is in contrast to most sparse multi-image techniques,

which place few restrictions on the camera configurations.

Many extensions and modifications to the basic light field/lumigraph techniques have

been proposed. Some authors propose different ray parameterizations [Camahort et al.

1998], dynamic parameterizations [Isaksen et al. 2000], and lower dimensional representa-

tions [Shum and He 1999].

However, even with a large number of images (greater than 1000), "pure" light field

techniques exhibit objectionable artifacts such as blurring and image ghosting. The lumi-

graph authors sought to reduce to these artifacts by modifying the signal reconstruction

24

000

000000

4D parameterization*

GridPoit(ij,p,q)

(a) (b)

Figure 1-5: (a) In both the light field and lumigraph techniques, rays are parameterized by their

intersections with two parallel planes. (b) These planes are uniformly sampled to facilitate signal

reconstruction. The points on the st plane correspond to camera positions, while the points on the

uv plane correspond to pixels in the cameras' images. Images courtesy of Steven Gortler.

filters with geometric information about the scene (so-called depth correction). For this

reason, the term "lumigraph" is often reserved for light fields that have been augmented

with geometric information, which is the terminology adopted in this thesis. The idea of

using scene geometry recalls the sparse multi-image techniques, and suggests that lumi-

graph rendering is simply a dense VDTM technique (or, conversely, that VDTM is a sparse

lumigraph technique).

Both interpretations are fundamentally correct, but the details of the algorithms pre-

vent either from being used in place of the other. For example, the basic VDTM blending

strategy does not scale well to many images because its blending strategy causes too much

blurring . The problem with light field and lumigraph techniques is that they assume that the

data is regularly sampled, or, equivalently, that the input images are arranged in a regular

grid structure. In fact, this grid structure requirement turns out to be a major impediment

to the practical use of light field and lumigraph techniques. Satisfying it generally re-

quires the use of a computer-controlled camera gantry (see Figure 1-6), which limits light

field subjects to static scenes inside of a laboratory. Recently, the Digital Michelangelo

project [Levoy et al. 2000] has acquired regularly sampled light fields of famous statues in

25

Figure 1-6: MIT's single-camera light field capture device.

Italy, although the work entailed considerable effort and expense.

Interestingly, the original lumigraph paper describes a procedure called rebinning that

converts an unstructured set of images into a grid-structured set. The rebinning procedure,

as described in [Gortler et al. 1996], is undesirable because it introduces degradations to

the lumigraph data by resampling the data and by filtering it with a non-linear algorithm to

fill in gaps.

It turns out that rebinning is not even necessary. In an attempt to accelerate lumigraph

rendering, Sloan et al. [Sloan et al. 1997] demonstrated that lumigraphs can be rendered

directly even if the st (camera) plane is sampled irregularly. The basic technique uses

an arbitrary triangulation of the st plane to derive simple linear basis functions for the

lumigraph reconstruction. Taking this idea one step further, Heigl et al. [Heigl et al. 1999]

generalize the camera plane to a non-planar two-dimensional manifold of cameras. This

camera manifold approach allows the use of lumigraph techniques for rendering drectly

from video sequences, simplifying the acquisition of lumigraph data.

Unfortunately, camera manifold techniques do not work in all situations. For example,

a static non-planar manifold may fold over on itself when viewed from different vantage

points. Heigl et al. deal with this particular problem by dynamically recomputing the cam-

26

era manifold from the virtual camera's point-of-view. But this stop-gap solution ignores the

bigger problem: what if the cameras do not naturally lie on a two-dimensional manifold?

Dealing with cameras in general position is a central problem of this thesis.

1.1.4 Uncalibrated Methods

The previously discussed methods all assume that the images are calibrated. That is,

the camera focal lengths (single- and multi-image methods) and relative camera positions

(multi-image methods) are known in advance. Such information is generally obtained by

using ray-traced source images or by applying three-dimensional computer vision tech-

niques. However, the need for calibrated images often makes an algorithm difficult to use

in practice, since the calibration information is not always easily available. Thus, uncali-

brated rendering methods are a popular topic of research.

In the work of Faugeras and Laveau [Faugeras and Laveau 1994], novel views are

generated with only knowledge of the fundamental matrix between pairs of views. The

fundamental matrix between two views is a weak form of calibration, which is generally

far simpler to obtain than a strong calibration. Their approach highlights one of the biggest

difficulties of working with uncalibrated images: specifying a virtual camera view. In their

work, the viewer specifies the virtual view by constraining the positions of four image

points. This form of virtual navigation is unintuitive at best, and it may lead to non-rigid

transformations of the scene elements.

A similar technique is described in [Avidan and Shashua 1997], except that trilinear

tensor relationships are used instead of fundamental matrices. The trilinear tensor for three

views is analogous to the fundamental matrix for two views. In the trilinear tensor tech-

nique, the virtual view specification is simplified by roughly guessing the cameras' focal

lengths.

Other uncalibrated methods sidestep the virtual navigation problem by constraining the

virtual camera motion to easily specified positions. For example, view morphing [Seitz

and Dyer 1996] produces physically valid novel views from a pair of uncalibrated source

images. The virtual views are constrained to lie on the line connecting the two source

27

Figure 1-7: A view morph of the Mona Lisa. The left image and right image (reflected) are the

source images. The center image is the morphed image halfway between the source images. Images

courtesy of Steven Seitz.

cameras' positions, which enables the physically valid morph. An example view morph is

shown in Figure 1-7.

A similar approach is taken in [Lhuillier and Quan 1999], except that the interpolated

images only approximate a physically valid camera. Scharstein [Scharstein 1996] general-

izes the view morphing approach to virtual camera motions that are in the plane connecting

three source cameras.

In his Ph.D. thesis, McMillan [McMillan 1996] generalizes his image warping algo-

rithm to use uncalibrated cameras. In his method, he assumes that the virtual view has the

same focal length as the source image and derives a parameterized family of valid image

warps. Using one of these warps results in a convincing rendering. Chang [Chang and Za-

khor 1997] also starts with uncalibrated images and then upgrades to a pseudo-calibrated

state that is sufficient for convincing rendering.

28

1.2 The Contributions of this Research

This thesis presents a new image-based rendering algorithm called unstructured lumigraph

rendering (ULR). As its name suggests, ULR is a lumigraph-style rendering algorithm that

is specifically designed to work with unstructured (i.e., irregularly arranged) collections of

images. The algorithm is unique in that it is capable of using any amount of geometric

or image information that is available. Thus, the algorithm operates similarly to view-

dependent texture mapping when the images are sparse and the geometry is good. At the

other extreme, the algorithm behaves like a light field renderer when many images are

available and the geometry is unknown.

Specifically, the research in this thesis makes the following contributions:

" A set of image-based rendering properties that an ideal algorithm should attempt to

satisfy. An algorithm that satisfies these properties should work as well as possible

with any configuration of input images or geometric knowledge (Chapter 3).

" An optimal formulation of the basic image-based rendering problem, the solution to

which is designed to satisfy the aforementioned properties (Chapter 4).

" The unstructured lumigraph rendering algorithm, which is an efficient approximation

to the optimal image-based rendering solution (Chapter 5).

* A non-metric ULR algorithm, which generalizes the basic ULR algorithm to work

with uncalibrated images (Chapter 6).

* A time-dependent ULR algorithm, which generalizes the basic ULR algorithms to

work with time-dependent images. Specifically, the time-dependent extensions as-

sume that the images are calibrated in time, although the time dimension may be

irregularly sampled (Chapter 7).

1.3 Thesis Organization

Chapter 2 introduces the computer graphics and computer vision background necessary to

understand the content of this thesis. The formal definition of an image is presented as

29

well as the mathematical constructs for manipulating images and geometry. Mathematical

notation and terminology are introduced.

Chapter 3 introduces the basic image-based rendering problem that is addressed in this

thesis. It also presents nine properties of "ideal" solutions to this problem. It is proposed

that an algorithm that satisfies (at least) these nine properties will generate maximal image

quality given any configuration of input images and geometry. No existing algorithm satis-

fies all nine properties, although each of the properties has been addressed by at least one

previous algorithm.

Chapter 4 presents an optimal solution to the problems introduced in Chapter 3. The

solution is optimal in the sense of minimizing the expected square error in color values at

each pixel of a virtual view. The solution requires knowledge of the image autocorrelation

function, which is derived using statistical image models. A generalized autocorrelation

function is proposed, which accommodates more of the desirable properties from Chap-

ter 3.

Chapter 5 describes the unstructured lumigraph rendering algorithm, which is an effi-

cient approximation to the optimal solution of Chapter 4. ULR accelerates the rendering to

real-time performance through a series of five optimizations. Numerous examples demon-

strate ULR's effectiveness on a variety of scenes.

Chapter 6 extends the ULR algorithm to uncalibrated cameras. The aspects of ULR

that assume calibrated cameras are replaced with alternative techniques that do not require

calibration. The effectiveness of the approach is demonstrated with a video stabilization

example.

Chapter 7 extends the ULR algorithm to scenes containing time-dependent aspects.

The basic approach is to augment each image with a timestamp, essentially calibrating

the images in both space and time. The technique is demonstrated with a special class

of time-dependent lumigraphs: time-periodic lumigraphs. Time-periodic lumigraphs are

interesting because they can be acquired with a single continuous video sequence from one

video camera. The resulting lumigraphs are irregularly sampled in both space and time.

Chapter 8 concludes the thesis and presents areas for future research.

30

CHAPTER 2

Background

Image-based rendering draws heavily from the field of computer vision. In many cases,

traditional computer vision problems need to be solved before the actual graphics problems

can be approached. For example, in order to use the unstructured lumigraph rendering

algorithm, it is necessary to know the camera positions and orientations that produced the

input images. Also important is the related problem of finding the positions of objects in

the world. Fortunately, calculating camera and object positions from images is a classical

computer vision problem that has been addressed in many computer vision papers.

This chapter introduces the mathematical background that is necessary to understand

the image-based rendering techniques presented in this thesis. This treatment covers basic

computer vision and computer graphics topics, such as camera calibration and projective

texture mapping. It also introduces the mathematical notation that is used throughout the

rest of the thesis. Readers that are already familiar with the basics of three-dimensional

computer vision and graphics can safely skip this chapter.

31

2.0.1 Overview

The chapter begins by presenting the most basic image-based rendering primitive: the im-

age. Next, the relevant details of real image formation are covered, with particular empha-

sis on the pinhole projection camera model and the various parameterizations used in this

thesis. Then the discussion moves on to other useful concepts, including inverse projec-

tion matrices, homographies, and epipoles. Next, the distinction between projective, affine,

and Euclidean scene reconstructions is explained. Finally, the topic of camera calibration is

briefly covered, focusing primarily on the techniques that are used to calibrate the examples

presented later in this thesis.

2.1 Images

The term "image" means different things to different authors. In this thesis, an image

is defined to be all of the radiance through a single point in space, called the center of

projection. This definition excludes, for example, an MCOP image since MCOPs represent

the radiance through multiple centers of projection.

Radiance is a measure of power per unit solid angle per unit area in a particular di-

rection. Thus, an image typically has two dimensions, corresponding to the degrees of

freedom of directions through a point. In this thesis, images are denoted by the letter I with

an identifying subscript. The center of projection is generally understood from the context.

Images can be treated like a two-dimensional function from angles to radiance, so the

notation

R = I(0,)

means that the radiance in the direction specified by 0 and $ through the center of pro-

jection associated with I is equal to R. While there are exceptions [Debevec and Malik

1997], in practice images generally contain quantized RGB color values instead of actual

radiance measurements. So R = (Rres,Rgreen, Rblue), where the red, green, and blue values

are between 0 and 255 inclusive. As a consequence, the terms "radiance" and "color" are

used interchangeably.

32

Real images are formed through an imaging process, typically using some sort of cam-

era. In most cases, the scene radiance is focused through the center of projection onto

a planar imaging surface, where it is recorded. The recorded radiance is digitized into

a two-dimensional array of pixels for processing on a computer. In this thesis, the two-

dimensional image plane is parameterized by the variables u and v, so the notation I(u, v)

refers to the radiance at pixel (u, v) in image .

The imaging process can be characterized by the camera's projection function. The

projection function maps directions (0, $) to pixel coordinates (u, v):

The inverse projection function is simply in the inverse of the above relationship. Projection

functions mapping three-dimensional points (rather than directions) to pixel coordinates are

also commonly used. In this case, the inverse function is not uniquely defined.

The projection function can be any mapping, even a non-linear one. For example, the

projection function for the image in Figure 1-1 maps most of a unit sphere into a rectangular

image. However, one of the simplest and most commonly used projection functions belongs

to the simple pinhole camera, which is examined in more detail in the following section.

2.2 Pinhole Cameras

The pinhole camera model is central to image-based rendering. Real cameras have com-

plex optical properties, but for computational simplicity they are generally represented by

a simple mathematical model known as the pinhole projection model. In the pinhole pro-

jection model, a camera simply consists of a center of projection (i.e., the pinhole) and a

planar imaging surface, or image plane. The camera forms a planar image, which consists

of the radiance along all rays that pass through the center of projection and intersect the

image plane. These rays are called viewing rays. One viewing ray is considered special:

that is the ray that passes through the center of projection and is perpendicular to the image

plane. This ray is called the optical axis of the camera, and the point at which it intersects

the image plane is called the principal point (see Figure 2-1).

33

Optical Axis

Center of Principal
Projection Point

Figure 2-1: An illustration of a pinhole camera showing the center of projection, the optical axis,

the principal point, and an example viewing ray.

2.2.1 Projection Matrix

The pinhole camera can be concisely represented with a single 3 x 4 matrix, called a pro-

jection matrix. The projection matrix transforms a three-dimensional point in the "world"

to its two-dimensional coordinates in the camera's image plane:

u =PX. (2.1)

Here, lowercase symbols represent three-dimensional points (e.g., image plane coordi-

nates) and uppercase symbols represent four-dimensional points (e.g., world coordinates)

or matrices. These points are represented with homogeneous coordinates, which add an

extra dimension to each point.

The symbol represents equality up to scale. It is important to note that projection

matrices are projective quantities, and that equality holds in equation 2.1 only up to an

arbitrary scale factor. Correspondingly, the three-dimensional world point X is represented

(up to a scale factor) with four coordinates (X, Y, Z, W) T, and the two-dimensional image

point u is represented with three coordinates (u, v, w) T. One can think of the "extra" degree-

of-freedom as representing the scale factor.

The projection matrix transforms all world points, even those "behind" the camera, to

34

image points. The only exception is the camera's center of projection, which transforms to

(0, 0, 0)T (the zero vector is never a valid projective point). That is, the center of projection

is the null-space of the projection matrix, so one can find the center of projection of any

projection matrix by computing its null-space.

2.2.2 Parameterizations

A projection matrix has twelve elements but only 11 degrees of freedom because of the

arbitrary scale factor. Thus, one simple parameterization is simply the eleven elements of

the matrix with the twelfth element arbitrarily set to 1. This representation works for all

projection matrices, except those whose twelfth element is zero, in which case some other

element can be set to 1. However, this representation is neither intuitive nor easy to work

with, so other parameterizations are generally used.

The parameterization most often used in this thesis factors the projection matrix into

two components:

P=A (R t), (2.2)

where A is a 3 x 3 matrix that represents internal properties of the camera, and (R t)

is a 3 x 4 matrix that represents the position and orientation of the camera in the world.

Implicit in the use of this parameterization is the assumption that the world is represented

in a Euclidean space. When working with non-Euclidean spaces, it is necessary to use the

more general parameterization. These issues are discussed further in section 2.4.

The position and orientation constitute six degrees of freedom. As shown in the next

section, the matrix A contains five degrees of freedom, which results in a total of 11 degrees

of freedom.

Camera Intrinsics

The A matrix is called the instrinsics matrix for the camera, and it encapsulates physical

properties of the camera such as focal length and pixel aspect ratio. The A matrix is an

35

upper-diagonal matrix with five parameters:

fi, s c "

A = 0 f c,. (2.3)

0 0 1

The diagonal elements, fi and f, are the horizontal and vertical focal lengths of the

camera. For cameras with typical lenses, fi equals f, (in the case of digital cameras, the

camera is said to have square pixels). In cases where f" does not equal f, the fraction LA
is called the aspect ratio of the camera. Cameras with anamorphic lenses have non-unity

aspect ratios. Other common examples include miniDV camcorders, which have aspect

ratio 8

The elements cu and c, are the coordinates of the camera's principal point in the image

plane. In typical cameras, this point is close to the center of the camera's image. However,

this is not always the case, especially for skewed-frustum cameras or other "camera-like"

devices such as video projectors.

The final intrinsics parameter s is called the skew parameter. A non-zero skew parame-

ter indicates non-orthogonality of the image plane coordinate axes. In almost all cases, the

skew parameter is zero, which means the axes are perpendicular.

Since many cameras have unit aspect ratio and zero skew, it is common to use a reduced

parameter version of A consisting of parameters f, cu, and c,. A single parameter version

is also possible by assuming that the principal point lies at the center of the image plane,

but this assumption is generally less accurate.

The entries of A are measured in the same units as the two-dimensional coordinate

system of the image plane. In this thesis, the image plane has its origin in the upper-left

corner of the image. The positive u-axis is to the right, and the positive v-axis is down.

The coordinates are specified in units of pixels. Thus, for an image of W x H pixels, the

upper-left pixel has coordinates (0,0), the lower-right pixel has coordinates (W - 1, H - 1),

and the principal point generally has coordinates close to (W/2, H/2).

Often it is more convenient to specify the field-of-view of the camera rather than the

focal length. The focal length of the camera is directly related to the camera's field-of-view.

36

The simple relation is
w

f =
2tan(OFTV)'

where OFOV is the field-of-view of the camera measured in radians.

Camera Extrinsics

The second matrix of the parameterization, (R t), is simply a rigid transformation that

maps points in the world to the camera's coordinate system. The 3 x 3 submatrix R is an

orthonormal rotation matrix and the 3 x 1 subvector t is the origin of the world coordinate

system represented in the camera's frame. Note that this formulation of the projection

matrix assumes that three-dimensional points in the world are represented by (possibly

scaled versions of) (X, Y, Z, 1) T.

The camera coordinate system used in this thesis is a right-handed system. The origin

is located at the center of projection, and the positive z-axis is along the optical axis of the

camera. Thus, after transformation, points with positive z values are in front of the camera.

When looking along the optical axis, the positive x-axis is to the right, and the positive

y-axis is down.

2.2.3 Radial Distortion

The pinhole camera is generally a good approximation to a real camera with typical lenses.

However, it fails to model some imaging effects that may be important for improved ren-

dering quality. One of these non-pinhole effects is radial distortion, which is a nonlinear

stretching along radial directions in the image. Radial distortion has the effect of making

straight lines in the image appear curved. In typical images, radial distortion becomes ap-

parent only near the edge of the image, although with wide-angle lenses it can be quite

apparent.

The relationship between undistorted image points u' and distorted image points u' is

37

generally expressed with a series approximation:

u' =Ud + Ud Kiri,
i=1

V I=v' = d v+ +V Kirdi.
1=1

The constants Ki are called the radial distortion coefficients, and rd = U/ +v2 is the squared

radius of the point. In most cases, only the first one or two radial coefficients are needed.

Note that the pixel coordinates u' and ud are not actual pixel coordinates. For these

primed coordinates, the principal point has been subtracted and a non-unity aspect ratio

has been corrected. All of these issues are easily handled by pre-transforming the pixel

coordinates by the inverse of the intrinsics matrix

U/ = A-'ud,

and rescaling the result such that the third coordinate is equal to one. Of course, the radial

coefficients Ki must be calculated with this transformation in mind. The actual pixel coor-

dinates of the undistorted points can then be recovered by transforming with the intrinsics

matrix,

uu = Au.

Given the radial distortion parameters, it is possible to undistort the image so that it fits

the standard pinhole model. In this thesis, it is assumed that all images have been corrected

for radial distortion, unless noted otherwise.

2.2.4 Inverse Projection Matrix

The projection matrix maps world points to image coordinates. Logically, the inverse of

this matrix should map world coordinates to world points. However, this inverse is not

unique, which is clearly seen by noting that multiple world points (i.e., those along the

same viewing ray) project to the same image coordinates. Thus, an inverse projection

matrix is defined to be any 4 x 3 matrix P+ that results in identity when multiplied by its

corresponding projection matrix:

PP+ - 1.

38

Inverse projection matrices are denoted with a superscript +.

A simple way to compute an inverse projection matrix is to first augment the projection

matrix P with a fourth row:
P

Paug = -

Then, invert the augmented matrix and take the first three columns of the result as an inverse

projection matrix:

P+ = P-1p3

This procedure has an intuitive interpretation. The augmented row H can be interpreted

as the equation of a plane. The resulting inverse projection matrix maps image coordinates

to world points on this plane H. This mapping is unique, except in the case when the

plane H contains the center of projection. However, in this case, the plane H is a linear

combination of the other three rows of the projection matrix, which results in a singular

matrix Paug that cannot be inverted.

When working with Euclidean projection matrices, the inverse projection matrix can be

computed in the same way. There is one interesting case when H = (0,0,0, 1), which is the

equation of the plane at infinity. In this case, the inverse projection matrix is

R-1A-
P! = ,

(0 0 0)

which maps image coordinates to directions in the world coordinate system.

2.3 Multiple Cameras

The previous sections covered mathematical notions concerning a single camera. In the

following sections, the relationships between two or more cameras are explored.

2.3.1 Epipoles

Given the projection matrices of two or more cameras, it is possible to compute the image

of one camera as seen by another. If Co is the center of projection of camera Po, then its

39

image in camera P1 is

eio = PIC 0.

This point is called the epipole, and it is useful in many contexts.

2.3.2 Homographies

A homography is a 3 x 3 matrix that performs a projective change of basis between 2 two-

dimensional projective spaces. Intuitively, a homography simply maps a two-dimensional

projective point to another. In this thesis, homographies are used to map points from the

image plane of one camera to the image plane of a second camera. Unlike an inverse

projection matrix, which maps image points to world points, a homography maps from

image points to image points.

Planar Homographies

Of particular interest is a class of homographies known as planar homographies. Given two

projection matrices and a plane equation, the planar homography relating them is defined

as follows:

Hol~1 PIP+n

This homography maps points from the image plane of Po onto the plane I, and then to

the image plane of P1. Planar homographies are interesting because they form the basis of

projective texture mapping, which is an important graphics tool for image-based rendering.

Projective Texture Mapping

In traditional texture mapping, an artist or designer specifies an affine mapping between an

image and the planar surfaces of a geometric model. Then, a rendering process forms an

image of the textured model, usually through a perspective projection matrix. Thus, the

entire process of texture mapping can be seen as an affine map from the texture coordinate

system to the model's surface followed by a projective map from the model's surface to

the final image plane. Not surprisingly, this image-to-image mapping can be concisely

represented with a single homography.

40

Projective texture mapping takes this process one step further. Instead of using an

affine map from the texture image to the planar surface, projective texture mapping uses a

full projective map (e.g., an inverse projection matrix). The homography for a projective

texture map is specified by equation 2.3.2, in which P0 is the projection matrix associated

with the texture image, H is the plane equation of the surface, and Pi is the projection

matrix of the viewing camera.

Projective texture mapping has an intuitive interpretation. One can imagine that the

texture is "projected" onto a planar "screen", much like a slide from a slide projector.

This screen is then viewed from another vantage point. Image-based rendering algorithms

commonly use projective texture mapping to map photographs onto a three-dimensional

model, which is then viewed from arbitrary viewpoints. Since almost all modem graphics

hardware supports projective texture mapping, it is an attractive procedure for real-time

implementations.

2.4 Cameras and Scenes

The previous sections have considered the representation of cameras in terms of projection

matrices. Equally important is the representation of the environment, or scene, that the

cameras populate. One factor that greatly influences the design of rendering algorithms is

the scene representation.

Consider a typical computer vision scenario: one has a set of images Ii, each with

a list of point image features uij. The task is to recover projection matrices and three-

dimensional world points (often called structure points) such that the projections of the

points match the images features,

Uii - PiXj, (2.4)

for all images and points. Assuming perfect data, a valid solution, also called a reconstruc-

tion of the scene, will satisfy equation 2.4.

However, equation 2.4 does not provide enough constraints to uniquely specify the

scene reconstruction. For example, there is an inherent scale ambiguity; it is not possible

to tell if the images view the "true" scene or a miniature version of it. Also, the choices of

41

origin and coordinate axes are of course arbitrary, which leads to different representations

of the same scene. In general, a reconstruction of a scene can be transformed to yield a

different, but equivalent, representation of the scene.

2.4.1 Euclidean Reconstruction

When the reconstructed scene differs from the "true" scene by a rigid transformation (and

possibly a uniform scale), the reconstruction is said to be Euclidean. It is also known as

a metric reconstruction or a strongly calibrated scene. A Euclidean reconstruction corre-

sponds to how we perceive the real world. Distances measured from the reconstruction

correspond to the distances in the true scene, and angles between elements of the recon-

struction reflect the true angles. Euclidean reconstructions are preferred for image-based

rendering because they mesh well with traditional computer graphics. They are also intu-

itive to work with and easy to visualize.

Unfortunately, from a computer vision standpoint, accurate Euclidean reconstructions

are also the most difficult to achieve. Computer vision researchers distinguish three dif-

ferent types of reconstructions (in order of difficulty to compute): projective, affine, and

Euclidean. The three types differ in the types of transformations needed to convert the re-

construction to a Euclidean one. Appropriately, an affine reconstruction can be converted to

a Euclidean one by applying an appropriate affine transformation, and a projective recon-

struction can be converted by applying an appropriate general projective transformation.

Non-Euclidean reconstructions are referred to as non-metric reconstructions or weakly cal-

ibrated scenes.

2.4.2 Non-metric Reconstructions

Consider a Euclidean reconstruction consisting of projection matrices Pi and structure

points X. Since the reconstruction is Euclidean, the parameterization in Equation 2.2

can be used:

uij='= Ai (Ri ti) X;.

42

Converting this Euclidean reconstruction to projective is easily done by transforming the

projection matrices and the structure points with an arbitrary, non-singular 4 x 4 matrix T:

Uij = (Ai (Ri ti) T)(T-1Xj). (2.5)

It is obvious that the projection equation is still satisfied, although the projection matrices

and structure points are now represented in a projective space. That is, the reconstruction

is now a projective one.

Generally, one does not convert a Euclidean reconstruction into a non-metric one. Non-

metric reconstructions (both affine and projective) satisfy the basic projection relation of

equation 2.4, but provide little other knowledge about the scene. For example, distances

and angles measured in these spaces are not meaningful. They also cause problems for

computer graphics: virtual cameras are difficult to control in non-metric spaces, and z-

buffers become useless. However, because non-metric reconstructions are often easier to

obtain, it is useful to understand their limitations and how they can be used in graphics.

To better understand the difference between Euclidean, affine, and projective recon-

structions, it is instructive to examine how to convert a projective reconstruction back into

a Euclidean one. Given a projective reconstruction, the task is to recover the unknown

projective transformation T. Without loss of generality, assume that Po has Ro equal to the

identity matrix and to equal to the zero vector. Then the transformed Po becomes

T T

PoT=Ai T ,

T T

where TT, TT, and TT are the first three rows of the unknown projective transformation.

Assuming that Ai is known, the first three rows of the unknown projective transformation

are readily available. The difficulty lies in determining the fourth row, which is the equa-

tion of the plane at infinity IL in the projective space. Once it is found, however, the

43

reconstruction can be transformed by the projective transformation

1t4 0 0 0

T. 0 4 0 0

0 0 714 0

where n4 is the fourth element of IL.This transformation annihilates the fourth row of the

projective transformation, resulting in an affine transformation that has the form

ti1 t 12 t 13 t 14

TT. = t2 t 22 t23 t24

t31 t 32 t33 t 34

0 0 0 1

Of course, this affine transformation can be further annihilated to achieve a Euclidean re-

construction.

In practice, converting a projective reconstruction to a Euclidean one is not so simple.

First, the camera intrinsics matrix A is not always known, although techniques exist for

estimating F. in the absence of A [Hartley et al. 1999; Pollefeys et al. 1999]. Second,

estimating the plane at infinity, with or without A, is very difficult to do. The process of

obtaining a Euclidean reconstruction from a collection of images falls under the topic of

camera calibration, discussed in the next section.

2.5 Camera Calibration

In this thesis, the entire process of obtaining a reconstruction of a scene is referred to

as camera calibration. Given a collection of images, the goal is to obtain a Euclidean

reconstruction of the scene. A large number of methods for solving this problem have been

documented in the computer vision literature. This section is not intended to be a survey

of calibration techniques; it merely outlines the basic approach that is used to calibrate the

image collections in this thesis.

Calibration proceeds in three steps. First, the intrinsic parameters of the camera are

determined using multiple images of a checkerboard pattern. Figure 2-2 shows example

44

Figure 2-2: Example calibration images.

calibration images. The corners of the checkerboard pattern are automatically tracked, and

the resulting features are used in Zhang's calibration algorithm [Zhang 1998]. Zhang's al-

gorithm computes the five intrinsic parameters of the camera as well as two radial distortion

coefficients.

The second step is to obtain a projective reconstruction of the scene. An initial solu-

tion is computed using a projective factorization technique [Triggs 1996]. The solution is

refined using standard robust bundle adjustment techniques [Triggs et al. 2000]. For large

image collections, the solution is partitioned into overlapping subsets of images, for which

independent solutions are computed. The independent solutions are registered by comput-

ing pairwise projective transformations that map each solution into a common projective

frame. While this method does not always give a globally consistent solution, it works well

enough in most situations.

Finally, the reconstruction is upgraded to a Euclidean one by using the known intrinsic

camera parameters and a procedure for estimating the plane at infinity [Pollefeys et al.

1999]. Unfortunately, this procedure occasionally fails, in which case the images can not

be used or must be used in a weakly calibrated sense (see Chapter 6).

2.6 Summary

This chapter has presented the basic mathematical background needed to understand the

algorithms in this thesis. The most basic primitive is the image, and the most commonly

45

used camera model is the pinhole model (with perhaps some radial distortion parameters).

The pinhole model is concisely represented by a 3 x 4 projection matrix. This matrix

has no unique inverse; instead a family of inverse projection matrices is defined, which

is parameterized by a plane equation. An important class of image-to-image transforms,

the planar homography, is defined in terms of projection and inverse projection matrices.

Planar homographies form the basis of projective texture mapping, a key computer graphics

technique for image-based rendering.

The distinction between Euclidean, affine, and projective representations is explained,

with the Euclidean representation being the easiest to work with and the most difficult

to obtain. Under a Euclidean representation, the projection matrix can be factored into

intrinsic and extrinsic camera parameters, an intuitive and useful form.

A stratified approach to camera calibration is described. First the camera's instrinsic

parameters are recovered, followed by a projective reconstruction of the scene. Then, using

the camera intrinsic parameters, the plane at infinity is estimated and used to upgrade the

reconstruction from projective to Euclidean.

46

CHAPTER 3

Properties of Image-Based Rendering Algorithms

In recent years, researchers have developed many different image-based rendering algo-

rithms. All of the algorithms attempt to solve the same basic image-based rendering prob-

lem: given a collection of images from known viewpoints, generate images from unknown

viewpoints.

These algorithms have many similarities and differences. Although all algorithms pur-

port to solve the same problem, in many cases these differences preclude the use of one

algorithm in favor of another. For example, standard VDTM algorithms do not perform

well (in terms of output image quality) with large numbers of input images, while light

field techniques only perform well in this case. One could attribute this behavior to vio-

lating the input assumptions of the VDTM algorithm. However, this particular limitation

is peculiar, as it seems reasonable to assume that any IBR algorithm should perform better

as more images are available. Understanding these differences is key to developing new

algorithms that produce high-quality images with a wide range of input configurations.

47

3.0.1 Overview

This chapter investigates these differences between algorithms. It begins by formally pre-

senting the particular version of the image-based rendering problem that is considered in

this thesis. The discussion then turns to three properties that help maximize the flexibil-

ity and utility of the IBR algorithms. To illustrate these properties, the chapter develops

a hypothetical IBR algorithm as a thought experiment. This algorithm is not intended for

actual use, and in fact, it is shown to be deficient because it does not properly exploit the

empty-space assumption. The empty-space assumption simplifies the solution of the radi-

ance reconstruction problem, which is a key sub-problem that most modem image-based

rendering algorithms address. The chapter concludes with a discussion of six properties of

good solutions to the radiance reconstruction problem.

3.1 The Image-Based Rendering Problem

IBR algorithms attempt to solve the following problem:

Given a collection of calibrated images of a static scene and a specification for

an unknown view, generate the image of that scene as seen from that unknown

view.

Of course, the above definition contains a number of assumptions that make the problem

more tractable. A "calibrated" image has known internal and external camera parameters,

which are specified in a Euclidean reference frame. The "static scene" assumption specifies

that there are neither motion changes nor lighting changes visible in the reference images.

Note that the actual scene does not need to be static, as the static scene assumption can be

satisfied with, for example, multiple synchronized cameras.

3.2 Desirable Properties for Algorithm Flexibility

Just from the definition of the IBR problem, it is possible to identify certain properties that

enable some algorithms to be more flexible than others. A more flexible algorithm can, for

48

example, handle a wider range of inputs or generate a wider range of outputs.

3.2.1 Property #1: Unstructured Input

It is desirable for an image-based rendering algorithm to accept input images from cameras

in general position. One barrier to the use of most existing IBR algorithms is the common

restriction that their input images must come from cameras arranged in very specific spatial

structures.

For example, the original light field method assumes that the cameras are arranged

at evenly spaced positions on a single plane. This limits the applicability of this method

since it requires a special capture gantry that is both expensive and difficult to use in many

settings [Levoy et al. 2000]. Other algorithms require linear, circular, cylindrical, spherical,

or other camera positions that are equally difficult to achieve precisely.

Some researchers suggest "regularizing" the images before applying a rendering al-

gorithm that requires regular inputs. For example, the lumigraph paper describes an ac-

quisition system that uses a hand-held video camera to acquire unconstrained input im-

ages [Gortler et al. 1996]. Instead of rendering directly from these images, they apply a

preprocessing step, called rebinning, that resamples the input images to virtual source cam-

eras situated on a regular grid. Rebinning has at least two drawbacks. First, the rebinning

process adds an additional reconstruction and sampling step to lumigraph creation. This

extra step tends to degrade the overall quality of the representation. Second, the process of

rebinning really does not solve the problem. Rebinning a lumigraph is equivalent to ren-

dering a grid of regularly arranged novel views from unstructured input images. In essence,

to rebin a lumigraph one needs to know how to render from an unstructured collection of

images, which is the problem that rebinning is intended to circumvent.

Algorithms could be made even more flexible by removing the requirement for strongly

calibrated cameras. Since it is generally easier to obtain weak (or no) calibration, such al-

gorithms could be used with data for which calibration is not available or difficult to obtain.

Unfortunately, using weak or no calibration strongly impacts the property discussed in the

following section, "Natural Navigation." Nonetheless, rendering with weakly calibrated

49

cameras is useful, and it is discussed in detail in Chapter 6.

3.2.2 Property #2: Natural Navigation

One often-overlooked aspect of the image-based rendering problem is the specification

of the output view. In order for an algorithm to be generally useful, it should be easy

and natural to specify the output view. Computer graphics researchers are accustomed to

controlling the position, look direction, and field-of-view of the rendering camera, and the

IBR algorithm should not restrict this freedom.

Generally, navigation only becomes a problem when dealing with weakly calibrated

cameras. The scene may be represented by a non-Euclidean reconstruction, in which case

it is difficult to specify a desired camera projection matrix that actually corresponds to a

realistic camera.

The view morphing algorithm [Seitz and Dyer 1996] is a good example of an algorithm

with a restrictive navigation mode. View morphing uses only weakly calibrated cameras

(just a fundamental matrix is required), but it limits the position of the virtual camera to be

on the line connecting the two input cameras. As a result, view morphing can synthesize

convincing linear motions, but it has limited suitability to other tasks.

3.2.3 Property #3: Real-Time Performance

It is also desirable that the image-based rendering algorithm run at interactive rates. While

this property is desirable for almost all computer graphics algorithms, it is especially true

for image-based rendering algorithms, which have been billed as real-time alternatives for

photorealistic graphics.

Typical applications of IBR algorithms require high performance. For example, image-

based algorithms are often targeted at immersive, virtual reality applications in which re-

sponsiveness is very important. They are also useful for three-dimensional displays and

video processing applications, both of which require real-time performance.

Furthermore, most existing image-based algorithms run an interactive rates. It is rea-

sonable to expect new algorithms to ensure that images are still computed efficiently.

50

3.3 A Hypothetical Algorithm

To illustrate the above properties, consider a hypothetical image-based rendering algorithm.

The input to this algorithm is a collection of images Ii and their corresponding projection

matrices:

Pi = Ai (Ri ti).

It is assumed that the input images are scattered randomly throughout the three-dimensional

region of space in which navigation is desired. The virtual image is specified with another

projection matrix,

Pou = Aou (Rou tou)

In this hypothetical algorithm, the virtual image is formed as a linear combination of

four warped input images. The algorithm first selects four images that are "close" to the

virtual image. Then these images are warped so that their orientations are compatible with

the virtual image. Finally, the four images are blended together to form the virtual image.

Formally, the virtual image is defined by the following equation:

Io =wiHiIi + w^H Ij +Wk HkIk + wi HiI,

where I, are the four images, H, are homographies that warp the images, and w, are weight-

ing factors that sum to one.

The four "closest" input images It, Ij, Ik, and I, are determined by using a tetrahedral

decomposition of space. First, the three-dimensional positions of the input cameras are

connected in a tetrahedral mesh (much like a triangulation of two-dimensional points in

the plane). The desired virtual camera can then be localized to within one tetrahedral cell

in the mesh (in this algorithm, virtual views are limited to within the convex hull of the

input cameras). The four cameras forming the vertices of this cell are used for the image

interpolation, and the four weighting factors are just the barycentric coordinates of the

virtual camera's location within the cell.

Before forming the linear combination, it is necessary to warp the input images so that

their orientations and internal parameters match those of the virtual view. Assuming planar

51

projection cameras, this warp is accomplished by applying the following homography:

Hi = AoLJRoutRT 'Ai.

Intuitively, this algorithm simply blends together four input images that "surround"

the desired virtual image. Of the four, the images that are physically closer to the virtual

camera contribute more than those that are farther away.

In terms of the previously discussed properties, this algorithm does very well. It ac-

commodates cameras in general position because it uses a tetrahedral mesh to determine

interpolation neighborhoods rather than a fixed regular structure. It also handles differences

in camera orientation by using a homography to warp images before interpolation. The vir-

tual camera can be completely specified using a simple Euclidean projection matrix, and

the algorithm would be trivial to implement in real-time on modem graphics hardware.

However, under the surface, this algorithm has serious flaws. These flaws are primarily

due to the fact that the algorithm does not exploit the empty-space assumption.

3.3.1 The Empty-Space Assumption

A typical scene consists of opaque objects that are arranged in empty space. Of course,

the space is not really empty; it contains air, which is generally assumed to be a non-

participating medium. This assumption means that the color of a point in the scene remains

the same no matter the distance from which it is viewed. In other words, the transmission

medium (air) does not change the radiance that travels through it.

This assumption about empty space (i.e., that it is non-participating) is very important

for image-based rendering algorithms. It turns out that there are very few scenes for which

this assumption does not at least partially hold. For example, scenes with participating

media, such as smoke or water, often violate the static scene assumption, and thus they are

already considered invalid. In other cases, such as outdoor scenes with distant haze, the

effect may not be noticeable in the desired navigation region.

Exploiting the empty-space assumption gives an image-based rendering algorithm two

advantages. First, it allows the algorithm to utilize potentially all input images to form the

highest quality virtual image. As an example, consider rendering an virtual image from

52

a collection of N input images. The virtual image can be considered to be a collection of

viewing rays (say, one for each pixel in the image). The task is to determine the radiance, or

color, along each of the viewing rays in the virtual image. A special subset of these viewing

rays connect the center of projection of the virtual camera to the centers of projection of the

N input cameras. The empty space assumption allows the colors along these N viewing rays

to be determined exactly, because these colors have been directly observed by the N input

cameras. Note that as N increases, the colors along more viewing rays can be determined

exactly. Thus, the "error" in the virtual image (e.g., measured as the squared difference

from the unknown true image) decreases as the number of input images increases. In the

limit as N -+ oo, the exact virtual image can be recovered.

The second, and most significant, advantage of the empty space assumption is that it al-

lows for a reduction in dimensionality of the rendering algorithm's input data. In the hypo-

thetical algorithm, the input data consists of two-dimensional images scattered throughout

three-dimensional space, a five-dimensional data structure. By utilizing the empty space

assumption, the dimensionality can be reduced to four. Consider a collection of N cameras

that are scattered along a two-dimensional surface that encloses a convex volume of space.

For any virtual view inside the volume, the cameras along the surface contribute N viewing

rays to image. As N increases, more viewing rays are available. In the limit as N -+ co,

the exact output image can again be recovered, but in this case the cameras populate a

two-dimensional surface instead of a three-dimensional volume.

Of course, regardless of the organization of the input cameras, practical rendering sys-

tems can not expect an infinite number of input cameras. Current systems typically work

with images numbering in the hundreds to thousands, but sometimes much less. Typical

output images can have a million pixels, which means that at best only 0.1% of the pixels

can be colored exactly. The remaining 99.9% of the pixels need to recovered from the rest

of the input data by solving the radiance reconstruction problem.

3.4 The Radiance Reconstruction Problem

The radiance reconstruction problem is defined as follows:

53

41

i '
J M

I *

(a) I

44

I Reconstruction
-O Point

I II
SI Ii

I I,

(b)

J#
do,

I,
I#,F

Figure 3-1: (a) Unknown radiances (bold arrows) can be determined from known radiances along

any set of "nearby" rays (dotted arrows). (b) It is simpler to use only corresponding rays, which are

defined to be rays that intersect in a common point on the unknown ray.

Given a collection of calibrated images of a static scene and a specification for

an unknown ray, determine the radiance along that ray.

The radiance reconstruction problem is closely related to the image-based rendering

problem. In fact, given a solution to the radiance reconstruction problem, it is simple to

solve the IBR problem: simply determine the radiance along all viewing rays in the desired

output image. Many IBR algorithms take this approach, including the ones developed in

this thesis.

There are many possible ways to attack the radiance reconstruction problem. For ex-

ample, the hypothetical algorithm of section 3.3 forms the radiance along an unknown ray

as the weighted sum of radiances from parallel rays in four neighboring input images. In

general, any set of rays from the input images could be used to solve the problem (see

Figure 3-la).

To keep the analysis simpler, the techniques described in this thesis determine the un-

known radiance as a weighted sum of radiances of corresponding viewing rays in the input

images. In this context, viewing rays correspond if they all intersect at a single point in

54

space. Equivalently, this simplification can be seen as choosing a special reconstruction

point along the unknown ray around which the radiance is estimated (see Figure 3-1b).

Restricting attention to a single point on the ray has a number of advantages. First, a

set of radiances through a single point is simply an image, so existing image analysis and

reconstruction techniques can be brought to bear on the problem. Second, when the point

happens to lie on the surface of an object, the radiance variation obeys certain well-studied

rules relating to the surface reflectance and the illumination of the scene. These rules can

be used to improve the reconstruction. Third, the input rays that intersect this point can be

ordered very simply according to their angles relative to the unknown viewing ray. This fact

turns out to be important because rays with smaller angles tend to have the best estimates

for the unknown radiance.

3.5 Desirable Properties for Radiance Reconstruction

There are a number of properties that a good solution to the radiance reconstruction prob-

lem should have. Following these guidelines can help ensure that a radiance reconstruction

algorithm gives the best possible results in a wide variety of situations.

3.5.1 Property #4: Use of Correspondence

When pixel correspondence is known, it should be exploited to determine the reconstruc-

tion point on the unknown ray (see Figure 3-2). This pixel correspondence can be specified

in a variety of ways, such as a geometric model, a depth map, or an optical flow field. Since

the IBR problem assumes a static scene, pixel correspondence generally implies some sort

of fixed geometry, which is the representation most commonly used in this thesis.

In this thesis, such approximate geometric information is called a proxy. The term

proxy is used to emphasize that the geometry is just a stand-in for the true geometry, and

that the proxy may in fact be an extremely coarse approximation. As shown in [Isaksen

et al. 2000; Chai et al. 2000], the proxy need not be exact when many input images are

available. Conversely, when few images are available, the proxy requires more fidelity.

55

C I

C2
C3

C4

CV

C5
C6

Figure 3-2: When available, approximate geometric information should be used to determine which

source rays correspond well to a desired ray. Here C1 ... C6 denote the positions of reference cam-

eras, and C, is the virtual viewpoint whose field-of-view is shown as a gray triangle. The proxy is

represented with a gray shape.

To understand the role of the proxy in radiance reconstruction, consider the case of a

perfectly Lambertian scene. In this case, it is well-known that the color of a scene point

does not depend on the viewing direction. Thus, if the reconstruction point is on the proxy,

then all of the known viewing rays observe the same radiance, and only one observation is

needed to reconstruct the correct radiance.

In the case of an imperfect proxy, the reconstruction point may lie in front of or behind

the true scene surface. The known viewing rays then do not intersect the true geometry

in a single point, but rather in an area on the surface. If this surface area is small, then it

is more likely that it is has a nearly uniform color. If the intersection area is large, then

the known viewing rays may actually intersect multiple regions of different colors (see

Figure 3-3). In the former case, the radiance reconstruction is likely to be good despite

the incorrect geometry. In the latter case, the reconstruction will be poor. In both cases,

the area of intersection can be made smaller by improving the proxy, leading to a better

radiance reconstruction.

56

CC

C2 C3

C 4

CV

C5

C6

Figure 3-3: The proxy is a coarse approximation to the true scene geometry, which in this case

consists of multi-colored boxes and ovals. Since the proxy is not exact, a point on the proxy may

be seen with different colors from different reference cameras. In this case, some cameras see the

green color while others see the yellow color.

3.5.2 Property #5: Angle-Based View-Dependence

The area of intersection can be made smaller in another way: by reducing the angles be-

tween the known viewing rays and the unknown ray. Rays with smaller angular differences

are much less sensitive to errors in the proxy, as they "spread out" less as the proxy devi-

ates from the true geometry. The behavior helps explain the inverse relationship between

number-of-images and quality-of-geometry. As the number of images increases, there are

more known viewing rays that are angularly close to the unknown ray.

The angular closeness of viewing rays is even important when the scene geometry is

known. Consider the case of a non-Lambertian scene and precise geometry. The radiance

observed at the reconstruction point may vary with the viewing angle (e.g., because of

specular highlights or other reflections). In general, one should reconstruct the radiance

using rays that view the reconstruction point at an angle close to that of the unknown ray,

57

C1 did2 C2

C,

Figure 3-4: The "closest" ray measured by distances dl and d2 is not necessarily the closest one

when measured by angles 01 and 02-

just as in the case with a poor geometry proxy.

Clearly in a more realistic setting, such as a non-Lambertian scene with unknown ge-

ometry, the radiance reconstruction algorithm should consider very strongly the angular

deviations of the known viewing rays from the unknown one. That is, the algorithm should

try to reconstruct the radiance in a view-dependent way. View-dependence has two as-

pects: first, known viewing rays that are close in viewing angle to the unknown ray should

be weighted more heavily in the reconstruction. Second, these weights should fall off very

quickly as the angular difference increases. Including too many radiance measurements in

the reconstruction can lead to excessive blurring and reduction of view-dependent effects

such as highlights and reflections.

Interestingly, the light field, lumigraph, and other "camera manifold" rendering algo-

rithms that select rays based on how close the ray passes to a source camera manifold do

not always favor the angularly closest radiance measurements. As shown in figure 3-4,

the "closest" ray measured by distances d, and d2 is not necessarily the closest one when

measured by angles 01 and 02. While this problem is not very noticeable with traditional

light field techniques, it can become a problem with irregular camera manifolds.

3.5.3 Property #6: Epipole Consistency

Related to the notion of view-dependence is the idea of epipole consistency, which was al-

luded earlier in the discussion of the hypothetical rendering algorithm. When a desired ray

passes through the center of projection of a source camera it can be trivially reconstructed

58

C,

C2
C3

0
C 4

C1,

C6

Figure 3-5: When a virtual viewing ray passes through a reference camera center, that reference

camera should contribute the exact color to the virtual image. Here this case occurs for cameras CI,

C2, C3, and C6.

(assuming a sufficiently high-resolution input image and the ray falls within the camera's

field-of-view) (see Figure 3-5). In this case, an ideal algorithm should return the exact color

from the source image. This property is called epipole consistency because the pixels for

which colors can be exactly reconstructed are simply the epipoles of the input cameras as

seen by the virtual camera.

An algorithm with epipole consistency can reconstruct these special rays correctly with-

out any geometric information (the angular difference is zero). With large numbers of

source cameras, algorithms with epipole consistency can create accurate output images

with essentially no geometric information. Light field and lumigraph algorithms are de-

signed specifically to maintain this property, which is why they are well-suited to large

image sets.

Surprisingly, many real-time VDTM algorithms do not ensure this property, even ap-

proximately, and therefore, will not work properly when given poor geometry. The algo-

rithms described in [Pulli et al. 1997; Darsa et al. 1997] reconstruct all of the rays in a fixed

desired view using a fixed selection of three source images but, as described in Section 3.3,

59

proper reconstruction of a desired image may involve using some rays from each of the

source images. The algorithm described in [Debevec et al. 1998] always uses three source

cameras to reconstruct all of the desired pixels on a single polygon (rather than a single

point) of the geometry proxy. This approach departs from epipole consistency if the proxy

is coarse.

Generally, satisfying the view-dependence property implies that an algorithm satisfies

epipole consistency, at least approximately. However, it is possible for an algorithm to

satisfy epipole consistency without strictly satisfying the view-dependence property. This

situation occurs in the algorithm of Heigl et al. [Heigl et al. 1999]. This algorithm uses a

point on the proxy to determine corresponding rays. However, instead of measuring angular

differences relative to this point, it measures angular differences relative to the position of

the desired camera. While this procedure works with some camera configurations, it does

not work with arbitrary camera configurations.

3.5.4 Property #7: Radiance Consistency

Through any empty region of space, the ray along a given line-of-sight should be recon-

structed consistently, regardless of the viewpoint position (See Figure 3-6). This property

states that the radiance reconstruction algorithm should enforce the empty space assump-

tion. This property often holds for algorithms that always choose the same reconstruction

point on the unknown ray (e.g., the point of intersection with the proxy), but not always.

As mentioned in the previous section, the algorithm of Heigl et al. [Heigl et al. 1999]

uses the current desired camera location as the point for measuring angular differences (the

algorithm actually uses a measurement in the image plane of the desired camera, which is

equivalent to an angle measure). Figure 3-6 illustrates the problem: two desired cameras

that share a desired viewing ray have different "closest" cameras, therefore giving different

reconstructions. As a result, the algorithm does not satisfy radiance consistency.

60

%
C1%% % 9

*
%%

%

' '2

Figure 3-6: When ray angle is measured in the desired view, one can get different reconstructions

for the same ray. The algorithm of Heigl et al. would determine C2 to be the closest camera for

Ci, and C1 to be the closest camera for Cy2. The switch in reconstructions occurs when the desired

camera passes the dotted line.

3.5.5 Property #8: Continuity

Reconstruction continuity is very important in image-based rendering for avoiding render-

ing and animation artifacts. There are two notions of continuity: spatial and temporal.

Spatial continuity refers to continuity in the reconstruction of a single image. Individual

pixel color values should be reconstructed according to underlying continuous basis func-

tions. Temporal continuity refers to the evolution of the reconstructed images over time. If

the desired camera moves in a continuous manner, then the image reconstructions should

evolve continuously as well. In most applications, minimal CO continuity is sufficient for

pleasing results.

Spatial and temporal continuity follow directly from the continuity of the radiance re-

construction algorithm. Consider two points in space: a desired camera location and a

geometric proxy point. These two points define a viewing ray for which the radiance is

to be reconstructed. To ensure spatial continuity, the radiance reconstruction procedure

should be continuous with respect to small changes in the proxy point. To ensure temporal

61

continuity, the procedure should be continuous with respect to changing the virtual camera

location.

Some algorithms do not guarantee continuity of reconstruction. The VDTM algorithm

of [Debevec et al. 1998] uses a triangulation of directions to source cameras to pick the

"closest three" cameras for radiance interpolation. This procedure does not provide spatial

continuity when evaluated at different points on the proxy. Nearby points on the proxy

can have very different triangulations of the "source camera view map" resulting in very

different reconstructions. While this objective is subtle, it is nonetheless important, since

lack of such continuity can introduce noticeable artifacts.

3.5.6 Property #9: Sensitivity to Non-Ideal Effects

The previous discussions of the empty space assumption and radiance reconstruction make

some "ideal" assumptions. For example, it is implicitly assumed that cameras have infinite

resolution, 360 degree field-of-views, and that they perfectly sample the radiance of the

environment. Unfortunately, real cameras have finite resolution, finite field-of-views, and

they actually integrate radiance over the area of a pixel.

These non-ideal effects often violate the empty space assumption. For example, a low-

resolution camera may observe a different color than a high-resolution one, even along the

same direction. Or, a camera may not observe the color at all because it falls outside of

its field-of-view. Furthermore, the empty space assumption can be violated by occlusion

interactions. Two cameras may observe different colors because of an intervening opaque

object between them.

While these effects are often so minor as to be ignored, a good algorithm should be

sensitive to their impact on the image quality. In addition, it is important to maintain

continuity while handling these issues.

Resolution

In reality, image pixels are not really measures of a single ray, but instead an integral over a

set of rays subtending a small solid angle (See Figure 3-7). For example, if a source camera

62

IC1

0C2
C3

0
C4

"C

0C6, C5

Figure 3-7: When cameras have different views of the proxy, their resolution relative to the virtual

view differs. Here cameras C1 and C5 have different resolutions because of their distances from the

proxy.

is far away from an observed surface, then its pixels represent integrals over large regions

of the surface. If these ray samples are used to reconstruct a ray from a closer viewpoint,

an overly blurred reconstruction will result (assuming the desired and reference rays sub-

tend comparable solid angles). Resolution sensitivity is an important consideration when

combining source rays from cameras with different focal lengths, or when combining rays

from cameras with varying distance and obliqueness relative to the imaged surface. It is

seldom considered in traditional light field and lumigraph rendering, since the source cam-

eras usually have common focal lengths and are located roughly the same distance from any

reconstructed surface. However, when using unstructured input cameras, a wider variation

in camera-to-surface distances can arise, and it is important to consider image resolution

in the radiance reconstruction process. To date, no image-based rendering approaches have

dealt with this problem.

63

Field-of-View

Some cameras may not see the reconstruction point and consequently should not be used

in the radiance reconstruction algorithm. This situation is easy to check for, but care must

be taken that the field-of-view is accounted for in a way that preserves reconstruction con-

tinuity. For example, the contribution due to any particular camera should fall gradually to

zero as one approaches the boundary of its field-of-view [Debevec et al. 1996].

Visibility

With a highly accurate geometric model, the visibility of any surface point relative to a par-

ticular source camera can also be determined. If a camera's view of the point is occluded by

some other point on the geometric model, then that camera should not be used in the recon-

struction of the desired radiance. When possible, image-based algorithms should consider

visibility in their reconstruction. Again, it is key to incorporate visibility information in

such a way as to not violate the continuity requirement, as in [Raskar et al. 1999].

3.6 Summary

This chapter has introduced the two problems that are tackled in this thesis. The the image-

based rendering problem is the basic problem that the algorithms presented in this thesis

solve. The radiance reconstruction problem is a key sub-problem whose successful solution

can be used to solve the larger image-based rendering problem.

Many researchers have proposed algorithms for these problems. However, many of

these algorithms have restrictions on the form of the inputs, restrictions on the type of out-

puts, or sub-optimal image quality. In light of this situation, this chapter outlines a set of

nine properties that an IBR algorithm should have in order to be usable with a wide array

inputs and outputs while maintaining high image quality. Table 3.1 summarizes how exist-

ing IBR algorithms stack up against the desired properties. The properties are summarized

in Table 3.2.

64

Algorithm

I
0P
*a

I

Cu

Cu

0
PC

Cu

PIE

0P

;0

0

0:21

Z 0

[Chen and Williams 1993] V V V

[Faugeras and Laveau 1994] / / V/ V

[Levoy and Hanrahan 1996] V V V

[Gortler et al. 1996] V V/ /

[Debevec et al. 1996] V / V /2

[Seitz and Dyer 1996] 3 V V V

[Scharstein 1996] 3/ V V V

[Pulli et al. 1997] V_ V_ ___

[Chang and Zakhor 1997]

[Debevec et al. 1998]

[Pighin et al. 1998]V/ V

[Heigl et al. 1999] V V

[Lhuillier and Quan 1999] VV V V V V

[Wood et al. 2000] /1 V 6VV

Table 3.1: Properties of existing multi-image IBR algorithms. 'The input images are reg-

ularized in a pre-processing stage. 2The angular weighting scheme does not handle dense

image collections. The images must be rectifiable. 4Resolution mismatch is not measured

relative to the virtual view. 5A real-time implementation is suggested but not demonstrated.
6Extremely accurate geometry is required.

65

Property Description

Unstructured Input Allows the algorithm to use images and geometry in

any arrangement.

Natural Navigation Allows for flexible specification of the desired virtual

view.

Real-time Performance Allows the algorithm to be used in interactive appli-

cations.

Use of Correspondence Improves radiance reconstruction when the density

of images is low.

Angle-Based View-Dependence Improves radiance reconstruction when the pixel cor-

respondence (e.g., geometry) is poor.

Epipole Consistency Ensures that the algorithm reproduces its inputs.

Radiance Consistency Ensures that the algorithm exploits the empty-space

assumption.

Continuity Minimizes artifacts by ensuring spatial and temporal

continuity in radiance reconstruction.

Sensitivity to Non-ideal Effects Allows the violation of properties 4-8 to deal with

field-of-view limitations, finite resolution, etc.

Table 3.2: Nine desirable properties for an image-based rendering algorithm.

66

CHAPTER 4

Optimal Radiance Reconstruction

The radiance reconstruction problem is important for image-based rendering, and it lies at

the heart of the new unstructured lumigraph rendering algorithm described in Chapter 5

of this thesis. This chapter investigates different "optimal" solutions to the radiance re-

construction problem. These solutions differ in how faithfully they adhere to the desired

properties outlined in Chapter 3. Ultimately, approximations to these optimal solutions

form the basis of the unstructured lumigraph rendering algorithm.

4.0.1 Overview

The chapter begins by considering a linear minimum mean-squared-error estimator for the

unknown radiance. This problem is simple to solve if the correlation function of the data

is known. In the IBR case the exact correlation function is not known, but a reasonable

approximation can be taken from the image modeling literature. This solution to the radi-

ance reconstruction problem satisfies many ideal properties from Chapter 3, but it does not

handle non-ideal effects, such as finite fields-of-view and resolution mismatches between

cameras.

To deal with this deficiency, the image correlation function is generalized to account

67

for differences in field-of-view and resolution. Simple dissimilarity measures for field-of-

view and resolution are proposed, and the correlation function is modified to take them into

account. This modification results in a radiance reconstruction procedure that can handle

non-ideal effects and that is easily generalized to other non-ideal effects.

4.1 Linear Minimum Mean Squared Error Estimation

The radiance reconstruction problem is difficult to solve. In general, it is possible to con-

struct pathological cases in which the unknown radiance is completely unrelated to any

observed radiances. However, these cases do not occur frequently, and it is reasonable

to consider estimating the unknown radiance as a linear combination of known radiances,

which is the approach taken in this thesis. This approach generally works well in practice,

especially when the reconstruction point is chosen such that the radiance through it is a

smooth function.

Consider a reconstruction point in space. This point and all the radiance that passes

through it constitute an unknown image I. By parameterizing directions with two angles 0

and $, I can be considered a function 1(8, $) from directions to radiance.

Under the empty space assumption, a set of N known images Ij provides N radiance

samples of the unknown image I. These samples can be represented by the direction (0j, $j)

from the unknown image to the known one. Thus, given an arbitrary direction (0, $), the

task is to determine a set of linear weights w1 such that

I(0, $) = wiI(01, $1)+ W2I(02,0$2) + -+ WNI(ON, ON)

is the "best" estimate of the unknown radiance 1(0, $).

There are many possible notions of "best," and the particular choice depends on the ap-

plication. One commonly used criterion is to minimize the average squared error between

the estimate and unknown quantity. Since the unknown quantity is, of course, not known,

the mean-squared-error (MSE) is defined in a statistical sense using the notion of expected

value:

eMSE (0, $) = E I(0, $) -BwjI(O, $j)
j=1

68

The error eMSE (0, $) is simply a quadratic expression in the unknown weighting factors

wj. This error can be minimized by taking derivatives with respect to the unknown weights

and exploiting the linearity of the expected value operator E[.]. The following system of

linear equations is found,

E[III] E[II12] ... E[IIIN] wi E[III]

E[I2I1] E[I2I2] ... E[I2IN] W2 E[I2I]
, (4.1)

E[INII] E[INI2] ... E[ININ] wN E[INI]J

where the shorthand notation E[IjI] stands for E[I(1 ,$4)I(MOk,4,k) and E[IjI] stands for

E[I(Oj, $j)I(0, $)].

In order to solve this equation, it is necessary to know the function

RI(01, $1,02, $2) = E[I(01, $1)I(02, $2)], (4.2)

which is known as the correlationfunction of image I. Intuitively, the correlation function

describes how similar two "pixels" (or radiance values) in image I are expected to be.

Thus, the matrix on the left hand side of equation 4.1 can be seen as a similarity matrix S

measuring the expected similarity of all pairs of known radiance samples. Likewise, the

vector on the right hand side of equation 4.1 measures the expected similarity between the

unknown radiance and the known radiances.

The solution to equation 4.1 results in the optimal weights for radiance reconstruction

in the minimum mean squared error (MMSE) sense. In many cases, it is desirable to have

a solution in which the weights sum to one. This property is useful, for example, for

maintaining constant intensity levels during rendering.

Lagrange multipliers can be used to compute the optimal weights subject to the con-

straint that Yj wj = 1. Doing so leads to an equation of the form

SwI = y+X,

where S is the similarity matrix, wl is the new weight vector, y is the original right-hand

side, and X is a constant added to each element of y. The constant X is given by

6i,isi,'69

where sij is the (i, j)h element of S- 1. This procedure gives optimal weights subject to the

constraint, but it requires that S-I be explicitly computed. Although sub-optimal, it is often

much easier to simply renormalize the weights so that they sum to one. The renormalization

approach is used in this thesis with good results.

4.1.1 Correlation Functions for Images

The correlation function for an image is generally unknown. However, a few assumptions

can be made about its form. First, it is generally assumed that the distribution of radiance

values in an image is stationary. Mathematically, stationarity implies that

R1 (0 1, $ 1, 02, 02) = R, (0, 0, 02 - 01, 02 - 01)

or that the correlation function depends only on the difference in its arguments. In the case

of images parameterized by (0, $), stationarity means that changing the "yaw" and "pitch"

angles of the camera does not change the statistics of the image. This assumption reduces

the dimensionality of the correlation function by two.

Furthermore, it is generally assumed that the two-dimensional correlation function is

rotationally invariant, reducing its dimensionality to one. Intuitively, this means that chang-

ing the "roll" angle of the camera does not affect the image statistics either. Now the cor-

relation function has the form RI(0), which measures the expected similarity in radiance

between two pixels separated by the angle 0.

Even in its simplified form, the correlation function is not trivial to determine. If a large

collection of representative images is available, then the correlation function can be esti-

mated. However, such a correlation function is valid only for images "similar" to those in

the original collection. This poses a problem for radiance reconstruction, since the recon-

struction point generally does not correspond to a known image (i.e., it is generally a point

on the geometric proxy). In fact, it is likely that reconstruction points lie very close to the

scene geometry, which would result in a set of images with drastically different statistics

from the input images. Thus, a different source for the correlation function is needed, such

as a parametric image model.

70

Figure 4-1: Two example images generated from the falling-leaves image model.

4.1.2 An Image Model for Radiance Reconstruction

Image models offer a concise way to describe the statistics of an image. With a small

number of parameters, an image model can describe the statistics (e.g., correlation function,

joint co-occurrence function, etc.) of an image, assuming the appropriate parameters are

used. In this thesis, a simple image model is used to derive an analytical expression for

the correlation function of an image. This image model, an instance of the more general

falling-leaves model [Cowan and Tsang 1994], has two parameters that can be varied to

accommodate a wide range of behaviors.

The general falling-leaves model is a constructive image model. That is, the images it

models are described constructively rather than mathematically. The falling-leaves model

is effective because this construction process mimics the process by which real images are

made.

The falling-leaves model models images that are formed in the following way. Imagine

an infinite image plane. Flat two-dimensional objects are dropped onto the plane at random

locations and orientations, overlapping previously dropped objects. The objects can have

random sizes and colors. After a while, the image plane is entirely covered, and the balance

between new objects and old reaches a steady-state equilibrium. The resulting mosaic is

71

an example of a falling-leaves image. Two sample falling-leaves images are shown in

Figure 4-1.

Images from the falling leaves model consist of different regions of pixels. Within a

region, the colors of pixels are highly correlated. Between regions, there is no correlation.

One can think of these correlated regions as surface patches that have approximately the

same reflectance properties and lighting conditions. Given the discussion of the view-

dependence property in Section 3.5.2, it is reasonable that the falling-leaves image model

is appropriate for image-based rendering applications.

The correlation function of a falling-leaves image has an extremely simple form,

Ri(0) = CoPsame(0), (4.3)

where Co is a constant and Psame(0) is the probability that two pixels separated by angle 0

belong to the same object in the image. Equation 4.3 assumes that the image I has mean

pixel value zero (i.e., the equation actually represents the covariance function). Although

most images do not have mean value zero, this is not a problem since the mean is left

unchanged by requiring that the linear weights sum to unity.

The specific form of Psame(0) depends on the details of the "leaves" in the model. In

the simple case used in this thesis, the falling objects are uniformly colored circles. The

sizes of the circles are distributed according to a j law, where r is the radius of the circle

(the radii are measured in angles). This distribution has been found to result in statistics

that mimic those of real images [Lee et al. 1999]. The circles are constrained to have radii

greater than rmin and less than rmax. These two extremal radii constitute the only model

parameters, which must be chosen manually.

The image on the right in Figure 4-1 is an example of the type of image generated by

the model used in this thesis. Although they look nothing like a "real" images, these types

of images model quite closely the correlation functions of real-world imagery.

This circular-leaf model has been extensively studied [Lee et al. 1999; Ruderman 1997],

and it has been shown that, to a close approximation,

Psame(0) = B(0) (4.4)
2 In - B(0)'

rmin

72

Falling Leaves Correlation Function
1

0.9

0.8

0.7

C0.6

.2
0.5

0.4

0.3V

0.2

0.1

0 10 20 30
Angle (degrees)

40 50 60

Figure 4-2: An example correlation function from the falling-leaves model.

The function B(O) has three cases:

0

B(O) = 91(S3 U3)+ 9(S2 - U2) +a(s -u)+aoln

S(8 - u3)+ 9(4 -u 2) +al(2 - u)+aoln ()
3 0

if 0 > 2rmax,

if 0 < 2 rmin,

otherwise,

(4.5)

where s = , u = -, ao = 1.0, al = -0.61, a2 = 0.051, and a3 = 0.052.

For most settings of rmin and r,,x, the shape of R, (0) follows a power law,

RI (O) = -JAI +JBIO-I, (4.6)

as illustrated in Figure 4-2.

In turns out that the basic shape of this function is more important than the specifics of

A, B, or in. The shape reinforces the notion that radiance samples that are close in angle to

one another are highly correlated, while those farther away quickly become less important-

a reiteration of the view-dependence principle from Section 3.5.2.

73

4.1.3 Example I

This section demonstrates the optimal radiance reconstruction algorithm on real data. The

data consists of 262 images of a scene that contains various items in front of a black back-

ground. Figure 4-3a shows a sample image from the data set.

The images are arranged in a semi-structured manner. They were taken with a camera

mounted on a tripod and attached to a FARO digitizing arm. The digitizing arm was used to

determine the position and orientation of each image. Multiple images were taken at each

tripod location by raising the tripod between exposures. As a result, clusters of images tend

to lie along linear paths, although no attempt was made to adjust or place the tripod in a

regular way.

Figures 4-3b through 4-3d show the camera configuration from three different angles.

Each input camera is represented by a small blue pyramid. The apex of the pyramid is

located at the camera's position, and the sides of the pyramid show the field-of-view of

the camera. The red camera is the virtual view for which the output image is generated.

The large gray triangle is the geometric proxy that is used for determining rough pixel

correspondence. In this example, the proxy is simply a planar surface.

The desired view is generated in a ray-tracing fashion. For each pixel in the desired

view, the corresponding viewing ray is intersected with the proxy geometry (in this exam-

ple, a single triangle). This intersection point serves as the radiance reconstruction point

for this pixel. The similarity matrix and right-hand side of Equation 4.1 are constructed by

evaluating the correlation function (Equation 4.3) for each pair of cameras. In this example,

rmin = 0.001', r,x = 50, and the similarity matrix has dimensions 262 x 262. The weight

vector is then obtained by solving the system of 262 linear equations. Finally, the pixel

color is taken to be a weighted sum of colors from each of the input images.

Figure 4-4a shows the image obtained for the virtuald camera from Figure 4-3. The

image has a photorealistic quality, and it is not readily apparent that it is a blend of 262

other images. The image is less sharp than any one of the input images, which results from

using an extremely crude proxy geometry.

In order to better understand how the output image is formed, it is useful to visualize

74

(a) (b)

a

(c) (d)

Figure 4-3: A set of 262 images used to demonstrate the radiance reconstruction procedure. (a) An

example from the image collection. (b)-(d) Three different views of the input camera configuration.

The virtual camera is shown in red.

how the input images combine to form the output image. One simple way to do this is to

assign each input image a unique, random color. Then, when forming the estimated color

for a pixel, these assigned colors can be blended together instead of the actual colors from

the images. This process results in a "false color" image that more clearly indicates the

contributions of each of the input images.

Figure 4-4b shows the false color visualization for the image in Figure 4-4a. The bright

spots in the visualization correspond to camera epipoles. The colors for these pixels come

from a single camera (recall the epipole consistency property of Chapter 3). The pixels

near the epipoles tend to be colored similarly to the epipole itself, which indicates that the

cameras have large influence on pixels near their corresponding epipoles. Some epipoles

75

(a) (b)

Figure 4-4: (a) An example image using the optimal radiance reconstruction procedure. (b) A

visualization of the blended images.

have smaller areas of influence than others (see, for example, the three epipoles in the

upper-right corner). Generally, epipoles with smallers areas of influence are farther away

from the desired camera than those with large areas of influence.

This false-color visualization greatly aids in understanding the image formation pro-

cess. It is especially helpful for visualizing the effects of non-ideal issues, such as field-of-

view limitations or resolution mismatches between images, as discussed in the next section.

4.2 MMSE with Generalized Similarity Matrix

The correlation functions derived from image models handle the purely angle-dependent

aspects of the radiance reconstruction problem. However, as mentioned in Section 3.5.6, a

good radiance reconstruction procedure should be able to accommodate non-ideal effects

such as field-of-view limitations or resolution mismatches.

One way to handle these effects is by generalizing the notion of similarity between radi-

ance samples. By augmenting the similarity matrix of Equation 4.1 to reflect differences in,

for example, field-of-view or resolution, it is possible to achieve a more flexible radiance

reconstruction procedure.

There are a variety of ways to generalize the similarity matrix. Perhaps the simplest

way is to modify the correlation function R1(0) to include dependencies on field-of-view

76

and resolution mismatches, resulting in an augmented function Ri,gen (0, f, r), where f and r

measure differences in field-of-view and resolution, respectively. For example, such depen-

dencies could be represented by using a separable representation of the correlation function:

Ri,gen(, f, r) = RI(0)Rfov(f)Rres(r),

where the functions Rfov(f) and Rres(r) attenuate the original correlation function based

on differences in field-of-view and resolution.

An alternative approach is to use the field-of-view and resolution measures to modify

the input parameter of the original correlation function. The correlation function becomes

RI(0'), where 0' is a perturbed version of 0. The generalized correlation function is then

Ri,gen(0, f, r) = R,(h(0, f, r)),

where h(O, f, r) is a function that modifies 0 based on the field-of-view and resolution

mismatches. This approach (rather than the separable one) is followed in this thesis. The

function h(0, f, r) is considered a "generalized angle," and it is simply a linear combination

of the variables,

h(0, f, r) = c +yf +Or. (4.7)

The constants a, y, and 1 control the relative importance of the input variables. For exam-

ple, y can be set to zero to ignore field-of-view issues. The linear combination assumes that

the three measures are independent.

The variables f and r are assumed to be measures of field-of-view and resolution

dissimilarity-that is, they are zero for perfect matches and greater than zero for mismatches.

The following two sections describe ways to compute these measures.

4.2.1 Field-of-View Dissimilarity Measure

The field-of-view pairwise dissimilarity measures whether a radiance sample is inside or

outside the fields-of-view of two cameras that observe it. For example, if a point is inside

both fields-of-view, the the dissimilarity is small. Likewise, the dissimilarity is small if the

point is outside both of the fields-of-view. If a point is inside one field-of-view but outside

the other (or vice versa), then the dissimilarity is large.

77

0

to

100

> 300

400

00

18

1.6-

Outslde FOV Inside FOV
.4-

0.2 -
06

- 6 160 800 70 -200 -100 0 100 20 M " W O M W
U axis (pixeis) U or V axis (pixels)

(a) (b)

Figure 4-5: (a) The field-of-view measure is zero outside the field-of-view, one inside the inner

field-of-view, and between zero and one in the intermediate region. (b) A cross-section of the

field-of-view measure. The values in the intermediate region are determined from a raised cosine

function.

A simple way to compute this dissimilarity is to compute a value fi for each camera

that measures how far outside (or inside) the field-of-view the point lies. This value is

determined by dividing the image plane of the camera into three regions: (1) outside the

field-of-view, (2) inside a smaller, inner field-of-view, and (3) inside an intermediate region

between the first two regions (see Figure 4-5a). The value is zero for viewing rays in region

(1), it is one for rays in region (2), and it varies continuously between zero and one in region

(3). A raised cosine function is used for determining the values in the intermediate region

(see Figure 4-5b). Values for both the x- and y-dimensions are multiplied together to arrive

at the final field-of-view value fi.

Given the values fi and f2 for two cameras, the field-of-view dissimilarity is simply

f = 2rmaxIf, - f21,

where rmax is the constant used in Equation 4.5. Scaling by this constant causes the cor-

relation to fall to zero at maximum field-of-view dissimilarity. Note that the dissimilarity

measure is symmetric, and that it is equal to zero when both cameras are the same. When

one of the cameras is the unknown camera (for which the point is assumed to be within its

78

Inside FOV

I I

. I
--------- -------

IntsoMSt Fegion

Otu"d FOV

Figure 4-6: The Jacobian matrix describes how small increments in one image are mapped to small

increments in another image.

vield-of-view, i.e., ft = 1), the measure is

f = 2rmaxlI - f2j.

This expression is zero when the point is within the observer camera's field-of-view and

large when it is not.

4.2.2 Resolution Dissimilarity Measure

The resolution dissimilarity compares the sampling densities of two cameras that observe

the same reconstruction point. Two cameras that sample the radiance at about the same

sampling rate should observe similar radiances, while two cameras with vastly different

resolutions may observe different radiances, even along the same viewing direction.

There are a variety of reasons for resolution mismatches. First of all, the camera's

distance from the reconstruction point influences the sampling density. The farther the

distance, the lower the effective resolution of the observing camera. Also, if the point is

on a surface, the surface obliqueness can also affect the sampling density. Cameras best

observe surfaces that are oriented perpendicular to their image planes.

All of these resolution concerns can be described in a simple homography [McMillan

1996; Shade et al. 1998]. The resolution of an observer camera is measured relative to

the desired camera, a reconstruction point, and a surface normal at this point. The recon-

struction point and normal define a plane TI. This plane combined with the desired camera

79

and an observer camera define a planar homography Hnj, where j is the index of the ob-

server camera. This homography maps points in an observer camera to points in the desired

camera. The Jacobian matrix of this mapping (a 2 x 2 matrix), evaluated at a pixel (x,y),

describes how small increments (Ax, Ay) in an observer image map to increments in the

desired camera image (see Figure 4-6). If the entries of Hnj are

A B C

Hnj= D E F ,

\G H Il

then the Jacobian matrix is given by

fau au\I
Jnh, I,, ;X7 1 (AH -GB)y+AI -GC (GB -AH)x+BI-HC

av aj Gx+Hy+I (DH-GE)y+DI-GF (GE-DH)x+EI-HF

The singular values a1 and a2 of this matrix can be used to measure the resolution mismatch

between the two cameras. Intuitively, the singular values indicate the amount of "stretch"

that occurs in the transformation from an observer camera to the desired camera. Large

singular values (those greater than one) indicate undersampling-a small step in an observer

image maps to a large step in the desired image. That is, an observer camera views the

point at a lower resolution than the desired camera. Excessive amounts of undersampling

can lead to blurriness in the desired image. Small singular values (those less than one)

indicate oversampling-an observer camera views the point at a higher resolution than the

desired camera. This situation can lead to aliasing in the desired image.

In general, undersampling is worse than oversampling, since the missing information

in the undersampled observer images can never be recovered. On the other hand, oversam-

pling can be circumvented either by pre-filtering the observer images or by supersampling

the desired image.

In light of this observation, resolution dissimilarity is determined by examining the

largest singular value (i.e., worst-case undersampling) of the Jacobian matrix, a = max(a i, a2).

This singular value is transformed into a resolution measurement value ri by using a func-

tion similar to that used for the field-of-view measure (see Figure 4-7). The shape of this

function can be controlled to favor images within a certain resolution range of the desired

80

1.-

1.6-

1.4 -

1.2-14

0A -

0.6-

04 -

0.2

0 05 1 16 2 2.5 3 .5 4 4.5 5
Maximum Resokion SIretch

Figure 4-7: An example resolution measure. Cameras that observe the scene point at lower resolu-

tion receive smaller measures.

camera. For example, the function shown in Figure 4-7 penalizes cameras whose resolu-

tions differ by more than a factor of three along any dimension. While this may seem like

an excessively large range, it is necessary to allow some resolution mismatch in order to

extrapolate virtual views away from the observer images.

Given the resolution values for two cameras, the resolution dissimilarity measure is

r = 2rmaxIr1 - r21, (4.8)

where r,,x is the constant used in Equation 4.5. When one of the cameras is the desired

camera, the dissimilarity is given by

r = 2raxl - r21,

in which the resolution value for the desired camera, relative to itself, is one.

4.2.3 Example II

The field-of-view and resolution measures can be demonstrated using the same example

image from Section 4.1.3. The output images are produced in exactly the same manner as

before, except that the field-of-view and resolution issues are accommodated by adjusting

a, y, and 3 from Equation 4.7.

81

0

(a) (b)

Figure 4-8: (a) An example image using the angle and field-of-view measures (a = 0.5 and y = 1).

(b) A visualization of the blended images.

Field-of-View Example

Figure 4-8a shows the image that results from using the field-of-view dissimilarity measure

(a = 0.5 and y = 1). The center of the image is unchanged from that in Figure 4-4, but more

of the scene is visible around the perimeter. In particular, the green background, which was

invisible in Figure 4-4, is now visible on the left-hand side of the image. Also, more of the

brown cloth on the lower right-hand side of the image is visible.

The false color visualization in Figure 4-8b reveals how the image is formed. In the

image center, where the angularly close images actually see the proxy, the image blending

is the same as in Example I. However, around the perimeter of the image, pixels are taken

from images that are not the closest angularly. Instead, the colors are taken from the an-

gularly closest images that actually see the proxy at the reconstruction point. In essence,

the algorithm interpolates the output color only from those images that can see the recon-

struction point. Of those images, the ones that are closest angularly receive the largest

weights.

Resolution Example

The effect of the resolution measure is not as apparent in the image shown in Figure 4-

9a, since the resolution-affected areas fall within the black background region. However,

the effect is apparent in the false color image shown in Figure 4-9b. In comparison with

82

I QW-A - - - - - - -

(a) (b)

Figure 4-9: (a) An example image using the angle and resolution measures (a = 0.5 and = 1).

(b) A visualization of the blended images.

Figure 4-4b, the resolution sensitive image has a slightly different set of epipoles. In partic-

ular, the three epipoles in the upper-right corner of Figure 4-4b are absent from Figure 4-9b.

These epipoles correspond to cameras that are farther away from the desired view and thus

have a larger difference in resolution. Their influence has been suppressed by the use of

the resolution measure. The influence of the resolution measure is much more apparent in

an example shown in the next chapter.

4.3 Problems with the Optimal Approaches

The generalized radiance reconstruction procedure described in this chapter satisfies most

of the properties of Chapter 3. However, it fails miserably on property #3: real-time per-

formance. The procedure, as described, necessitates the solution of a linear system of

hundreds of equations at each pixel of the desired output image. Generating one image

takes hours on a high-end computer.

In order to meet the real-time constraint, some key changes are needed in the radi-

ance reconstruction procedure. The algorithms described in this chapter coupled with the

necessary modifications for real-time performance constitute the heart of the unstructured

lumigraph rendering algorithm, which is described in detail in the next chapter.

83

4.4 Summary

This chapter has presented optimal (in the MMSE sense) approaches to the radiance recon-

struction problem. The first approach considers only the angular differences between radi-

ance observations. This problem can be solved if the image correlation function is known.

Although difficult to measure, this function can be analytically derived from a falling-

leaves statistical image model, which predicts a power-law shape for the image correlation

function. This useful result not only reinforces the notion of angle-based view-dependence

from Chapter 3, but it gives a concrete form for the relative importance between different

radiance observations.

The second optimal approach generalizes the image correlation function to take into

account non-ideal effects such as field-of-view limitations and resolution mismatches. As

a simplification, it is assumed that the generalized correlation function has the same power-

law shape as the original version. This assumption allows the generalized function to be ex-

pressed as a simple modification of the original image correlation function. It is shown that

this generalized function has the desired behavior (disregarding performance) for image-

based rendering applications.

84

CHAPTER 5

Unstructured Lumigraph Rendering

The generalized radiance reconstruction procedure described in Chapter 4 satisfies most of

the desirable properties of an image-based rendering algorithm. As a result, it is very effec-

tive at producing high-quality renderings from unstructured collections of images. How-

ever, it fails to satisfy one property: real-time performance. Because of this failing, the

optimal radiance reconstruction procedure is not suitable for many rendering tasks includ-

ing virtual reality simulations, games, or interactive scene walk-throughs.

This chapter presents a series of optimizations that can accelerate the radiance recon-

struction task to real-time performance. The resulting algorithm, called unstructured lumi-

graph rendering, is the core development of this thesis.

5.0.1 Overview

The chapter begins by describing five different optimizations to the radiance reconstruction

procedure. Two of the optimizations deal with simplifying the optimal radiance recon-

struction equations. By making some reasonable assumptions, it is possible to reduce the

amount of computation considerably. Two other optimizations reduce computation further

by limiting the radiance reconstruction to only select pixels and by reducing the number

85

of cameras that are used in each reconstruction. A final optimization is a technique for

blending the images together using graphics hardware.

Following independent descriptions of the five optimizations, the complete unstructured

lumigraph rendering algorithm is presented. The operation of the algorithm is demonstrated

with a number of diverse examples, which highlight the flexibility and quality of the algo-

rithm.

5.1 Radiance Reconstruction Optimizations

In order to develop a real-time rendering algorithm based on the optimal radiance recon-

struction procedure from Chapter 4, the rendering time per frame must be reduced from

hours to milliseconds. This section describes a series of optimizations that achieve this

goal without sacrificing overall image quality.

5.1.1 Optimization #1: Simplified Similarity Matrix

The single slowest aspect of the optimal radiance reconstruction approach is the need to

solve a large system of linear equations (typically hundreds) for each output pixel. Written

in matrix notation, the system of equations is

Sw =y,

where S is the generalized similarity matrix, y is the correlation vector between the un-

known radiance sample and the known radiance samples, and w is the system's solution,

the unknown weight vector.

Systems of linear equations such as this one can be solved much more quickly if the

matrix S has a known and sparse structure. In this case, S has ones on the diagonal since

the correlation function R1(O) equals one for 0 = 0. The correlation function also falls to

zero rapidly for 0 > 0. Thus, the matrix S could be simplified by quantizing small elements

to zero, leading to a much sparser system of equations. Typically, it is even reasonable to

approximate S with the identity matrix. This leads to the system of equations,

Iw = y,

86

which has the trivial solution

w = y.

Unstructured lumigraph rendering assumes that the similarity matrix is the identity ma-

trix, which eliminates the need to solve a large system of equations. The algorithm only

needs to compute the vector y and renormalize the result using one of the methods dis-

cussed in 4.1.

5.1.2 Optimization #2: Simplified Resolution Measure

Computing the correlation vector y requires evaluating the generalized correlation function

once for each observer camera. The angle, field-of-view, and resolution measures for each

camera are required for this computation. Of the three measures, the resolution measure

is by far the most expensive to compute. Simplifying this measure results in considerable

speed-up.

In the simplest case, the resolution measure can be completely bypassed by setting s
to zero. This approach works well for a large class of data sets, especially traditional light

fields and lumigraphs in which the images are all arranged at roughly the same distance

from the scene. However, in unstructured image collections it is still important to handle

resolution mismatches.

In special cases, the resolution measure can be approximated by examining the dis-

tances of the cameras from the geometry proxy. This approximation assumes that all of the

cameras have the same focal lengths and orientations.

Given a reconstruction point p, its distance to any camera is easily computed. The sim-

plified resolution measure is simply the ratio of the observer camera's distance to virtual

camera's distance. This ratio approximates the resolution "stretch" measure from Chap-

ter 4, and it can be mapped through a weight function shaped like that shown in Figure 4-7

to arrive at a simplified resolution measure. Equation 4.8 is used as before.

87

5.1.3 Optimization #3: Sparse Sampling

Even with simplifications in both the similarity matrix and the resolution measure, com-

puting the weight vector at every pixel of the desired view is still too slow for real-time

performance. However, by exploiting the smoothly varying nature of the weight vector, it

is possible to drastically reduce the number of pixels at which the weight vector is com-

puted.

As mentioned in Chapter 4, false color rendering is a useful way to visualize the vari-

ation of the weight vector across the desired image plane. From the visualization in Fig-

ure 4-4b, it is apparent that the weight vector for that particular image varies slowly across

the image plane. The only exceptions occur at the epipoles, which stand out as disconti-

nuities in the radiance reconstruction. It turns out that this variation of the weight vector

is typical of a large class of synthesized images, and it can be exploited for a performance

gain.

Since the weight vector varies slowly across the image plane, it is possible to reconstruct

it at every pixel from a small set of weight vectors that are sparsely sampled across the

image plane. The only potential problems occur near the epipoles, where the weight vector

changes more rapidly. These epipole areas can either be ignored for simplicity, or the

sampling density can be increased in these areas.

The approach used in unstructured lumigraph rendering is to sample the weight vector

at a small set of selected pixels in the desired view. These sampling locations are then

triangulated to form a tessellation of the desired image plane. The weight vector for a

pixel inside of a triangle is taken to be a linear combination of the weight vectors at each

vertex of the triangle. The coefficients of the linear combination are simply the barycentric

coordinates of the pixel within the triangle.

Using this approach, the weight vector for every pixel in the desired view can be in-

terpolated after performing the full computation for just a small percentage of pixels. In

practice, good results can be obtained by carrying out the full calculation for less than one

percent of the pixels in the desired view. This optimization becomes even more significant

in light of optimization #4, which demonstrates how to use graphics hardware to do the

88

barycentric weight interpolation.

5.1.4 Optimization #4: Use of Graphics Hardware

The triangle-based weight-vector interpolation enables the use of graphics hardware for

blending images together. Modern graphics hardware is sophisticated enough to perform

both the weighted image blending and the proxy-based pixel correspondence simultane-

ously.

Image Blending

Image blending is done using the hardware's built-in alpha blending capability. Each trian-

gle vertex can be assigned a transparency value (called the alpha value) from zero to one.

Zero indicates the vertex is perfectly transparent, while one means the vertex is completely

opaque. The graphics hardware automatically interpolates these alpha values across the

face of the triangle. When drawing the triangle, any textures applied to the triangle are

modulated with the barycentrically interpolated alpha values. This modulation has the ef-

fect of attenuating the triangle's texture in transparent areas while preserving it in opaque

areas. The attenuated texture is then added into the frame buffer, which stores the accumu-

lated color values. Many textures can be linearly combined by drawing the same triangle

multiple times with different textures and alpha values.

This hardware function maps well onto the unstructured lumigraph rendering problem.

Alpha values correspond exactly to radiance reconstruction weights, and the final output

image is made by rendering triangles once for each reference image.

As an example, consider rendering a desired view from a set of N images. First, the

weight vectors are sampled at M locations, and those locations are triangulated. Each

vertex vi of the resulting triangulation has associated with it a vector of N weights wi,1,

where 1 < i < M and 1 < j: N. The pixels in the interior of a triangle can now be colored

by accumulating the results of drawing the triangle N times. Each time, the texture is set

to image j, and the alpha values are set to wa,j,Wb,j, and wc,j, where Va,Vb, and ve are the

vertices of the triangle.

89

Pixel Correspondence

When using graphics hardware, it is still necessary to blend corresponding pixels together.

As mentioned in Chapter 4, correspondence is established by a geometric proxy. When

the proxy is represented by planar polygons, this correspondence is easily done using the

projective texture mapping capabilities of modern graphics hardware.

When a triangle is textured, three-dimensional points on the triangle are mapped into a

texture image to determine their colors. Typically, this mapping is a simple affine transfor-

mation. However, modern graphics hardware has the ability to use an arbitrary projective

transformation (called the texture transform) to map points on the triangle to points in

the texture image. Thus, by setting the texture transform to be the projection matrix of

the observer image, the hardware can determine the colors of three-dimensional points by

projecting them into the image of the observer camera. This projection is precisely how

corresponding pixels are determined in Chapter 4. Thus, as long as the proxy is represented

with polygons, the graphics hardware can efficiently blend corresponding pixels.

5.1.5 Optimization #5: k-Nearest Camera Weighting

The final optimization improves the efficiency of the hardware-accelerated blending algo-

rithm. As described in the previous section, a triangle must be drawn N times, once for

each observer image. For typical values of N (> 100), this approach is impractical for a

few reasons.

First, the graphics hardware does not have the bandwidth to draw each pixel hundreds

of times. Drawing a pixel multiple times is called "overdraw," and even the best hardware

can only overdraw every pixel a couple dozen times.

Second, for any given triangle, many of the image contributions and their corresponding

vertex weights are very close to zero. In these cases, many textures may not add anything

to the output for that particular triangle. Thus, drawing these textures wastes CPU time and

contributes nothing to the image.

In light of these issues, the unstructured lumigraph algorithm limits the number of non-

zero weights at each vertex to a small, fixed number k that is much less than N. By limiting

90

the number of non-zero weights in this manner, the algorithm can bound the worst-case

computational load. Note that the number k is fixed, and only the cameras with the k

largest weights are used even if other cameras have comparably sized weights.

An alternative approach might be to only use cameras whose weights fall above a cer-

tain threshold value. The difficulty of this approach lies in choosing a proper threshold. If

the threshold is too small, then too many cameras may be used and performance suffers. If

the threshold is too large, then it is possible that no cameras may be selected. In fact, when

faced with unstructured input data, both of these cases may occur during the rendering of

a single image. Thus, the k-nearest camera weighting can be seen as a "variable" thresh-

old technique, in which the threshold is chosen dynamically such that only k cameras are

selected.

Using only the k-nearest cameras does introduce some problems with regard to the

continuity of the reconstruction. As the weight vector varies over the image plane, the

radiance reconstruction experiences discontinuities whenever the set of k-nearest cameras

changes. This discontinuity occurs because weights may enter and leave the set of k-nearest

with non-zero values. Thus, the algorithm modifies the weights to ensure that they always

fall to zero at the k + 1st camera. This attenuation of the weight vector is accomplished by

"windowing" the correlation function RI(0).

Consider a correlation function, such as that described in Chapter 4, which has the form

B
RI(O) = -A + -,

On

where A, B, and q are positive constants chosen such that the function is greater than zero

for all 0 of interest. Given a set of N cameras and a reconstruction point, the angles Oj

(or generalized versions taking into account field-of-view and resolution) can be computed

and sorted such that 0j > Oj+1. In general, the unmodified correlation function is non-zero

for 0 > Ok+ . In order to force the function to be zero for these values of 0, the correlation

function can be modulated with a windowing function that is non-zero at the origin and

falls to zero at 0 = Ok+ 1. One such window function is a hat function:

0
W(0) = 1- .

0k+1

91

Using this window function, the modified correlation function becomes

A _BO1FRl(0) = W (O)RI (0) = -A+ A0 + BO- - B0-.
Ok+1 Ok+1

It has been found that the constants A = 0, B = 1, and Ti = 1 work well in practice, and

they lead to a particulary simple form of the modified correlation function:

~1 1
R (0) =.(5.1)

0 Ok+1'

This function is simpler to evaluate than Equation 4.4, which makes it appropriate for a

real-time implementation. The only issue is dealing with f1(0), which results in a division

by zero. In practice this case is not a problem, since it occurs at epipole locations for which

the weight vector can be trivially computed, without evaluating the correlation function.

5.2 Real-Time Unstructured Lumigraph Rendering

The operation of the real-time unstructured lumigraph renderer proceeds as follows. First,

the algorithm selects a set of points (i.e., pixels) in the desired view at which to evaluate

the weight vector. The blending weights are evaluated at each of these points using the

k-nearest camera weighting and Equation 5.1.

Next, the sampling points are triangulated to form a tessellation of the desired view, per-

haps adding new sampling points in the process. After triangulation, the windowed weight

vectors are computed for all sampling points using the optimized radiance reconstruction

procedure. Finally, the resulting triangles are blended together using the graphics hard-

ware's alpha blending and projective texture mapping capabilities. The pseudocode for the

algorithm appears in Figure 5-1, and the following sections describe the main procedures

in more detail.

5.2.1 Selecting Weight Vector Sample Points

The weight vectors are sampled at a sparse set of points in the desired image plane. These

points correspond to desired viewing rays. A number of heuristics are used when selecting

which rays to sample. First, the rays to all of the geometric proxy vertices are used. These

92

Clear frame buffer to zero

Select weight vector sample points

Triangulate sample points

for each sample point j do

for each input image i do

Evaluate generalized Oij

end for

Sort Oij

Construct windowed correlation function using k+ 1st Oij and Equation 5.1

for each input image i do

Evaluate k non-zero wij

end for

end for

for each input image i do

Set current texture to image i

Set current texture transform matrix to Pi

for each sample point j do

Set vertex alpha values to wili

end for

for each triangle t do

if at least one vertex has non-zero alphas then

Backproject t onto proxy surface

Draw t, accumulating result in frame buffer

end if

end for

end for

Figure 5-1: The pseudocode for the real-time, unstructured lumigraph rendering algorithm.

93

C2
6

C1C

Figure 5-2: The real-time renderer uses the projection of the proxy, the projection of the source

camera centers, and a regular grid to triangulate the image plane. In this figure, the proxy is a cube,

the camera centers are labeled Cx, and their projections are labeled e,.

rays are selected so that the tessellation of the sample points does not span more than

one planar facet of the geometric proxy (see the next section for more details). This is

done because the graphics hardware's projective texture mapping ability only works with a

single plane (i.e., it uses a simple planar homography).

Second, to assure epipole consistency, rays to every source camera are also used. These

rays correspond to the epipoles, and they should be included in the sampling to maintain

exact epipole consistency. However, they can be often omitted with little perceptible loss

of image quality since other nearby samples generally reflect the strong influence of the

epipole. So, if more performance is needed, the epipole samples can be safely ignored.

Finally, a regular grid of viewing rays is included to obtain a sufficiently dense sample

set. These extra samples help capture the interesting spatial variation of the weight vectors.

They also contribute samples to areas that are potentially undersampled by the previously

selected sample points. In some cases, especially when the proxy contains many polygons,

these extra grid samples are unnecessary. Figure 5-2 shows the sample points selected for

an unstructured lumigraph with two cameras and a cubical proxy.

Generally, a uniform sampling of the virtual image plane provides the best results.

94

Thus, the number of grid samples is related to the number and density of proxy and epipole

samples. If the proxy and epipole samples are uniformly distributed over the image plane,

then few or no grid samples are necessary. On the other hand, if the proxy or epipole sam-

ples are very sparsely or non-uniformly distributed, then grid samples should be used to

even out the uniformity of the sampling. For large numbers of non-uniformly distributed

cameras, the required number of grid samples may be impractical from a performance

standpoint. In these cases, the number of grid samples should be chosen to meet the per-

formance requirement. For most of the examples in this thesis, a 16 x 16 grid of samples is

sufficient, although up to 32 x 32 can be used without much performance degradation.

5.2.2 Triangulating Sample Points

Triangulating the sample points must be done with some care. It is not sufficient simply

to construct, for example, a Delaunay triangulation of the selected sample points. This

approach fails because of the constraint that the sample point triangles must "see" only one

geometry proxy plane. More precisely, the projections of edges from a geometry proxy

polygon must not cross any edges in the virtual image plane tessellation. Consider the

example shown in Figure 5-2. The projected proxy edges are shown in bold, while the

additional tessellation edges are shown in gray. None of the bold edges cross the gray

edges (without the addition of a new vertex). Note the bottom edge of the projected cube;

an extra vertex has been inserted where it crosses a grid edge.

Further, given a tessellation that conforms to this requirement, it is necessary to know

which geometry proxy polygon the sampling triangle sees. Fortunately, a constrained De-

launay triangulation can be used to overcome these problems.

Constrained Delaunay Triangulation

A constrained Delaunay triangulation is a Delaunay triangulation in which certain edges

are forced to exist in the triangulation. Thus, the problem of spanning multiple geometry

polygons can be easily solved by requiring that the projected edges of the geometry proxy

appear in the final triangulation. Enforcing this constraint is made possible by including the

95

projections of the geometry vertices in the set of sample points. In addition, the edges of the

regular sample grid can also be included. These grid constraints are useful because regular

grids have ambiguous Delaunay triangulations that change randomly and cause temporal

artifacts.

Given this set of vertices and constraint edges, the constrained Delaunay triangulation

of the sample points is computed using Shewchuk's software [Shewchuk 1996]. This code

automatically inserts new vertices at all constraint edge-edge crossings. These new vertices

become additional sample points at which the weight vectors must be evaluated.

Associating Image Plane Triangles with Proxy Planes

When rendering the unstructured lumigraph, the vertices of the sample tessellation must

be associated with three-dimensional points on the surface of the geometry proxy. The

graphics hardware needs the three-dimensional position of the triangle to compute the pla-

nar homography for projective texture mapping. However, the triangles from the sample

point tessellation are two-dimensional triangles situated in the desired image plane. Before

drawing a triangle, it must be backprojected onto the surface of the proxy. This backpro-

jection is easily done using an inverse projection matrix, assuming that the equation of the

proxy plane is known. Thus, every triangle in the constrained Delaunay triangulation must

be associated with a plane of the geometry proxy.

Fortunately, Shewchuk's software makes this association fairly simple. His implemen-

tation allows edges and regions of the input to be labeled. These labels are then propagated

to the edges and regions of the output triangulation. By labeling the input geometry con-

straint edges, it is possible to deduce which triangles of the tessellation correspond to which

planes of the proxy. This assocation process is done using a simple graph labeling proce-

dure that runs in time linear in the number of triangles.

Unfortunately, the above labeling process only works if the geometry proxy has unit

depth complexity, that is, if every viewing ray from the desired camera intersects the proxy

exactly once. In the case that the proxy has depth complexity greater than one, it is nec-

essary to generalize the labeling procedure. Instead of associating each sampling triangle

with a single proxy plane, each sampling triangle is associated with a set of proxy planes,

96

one for each surface of the proxy which is visible through the sampling plane. This gener-

alization changes the labeling procedure in a trivial way, and it still runs in linear time.

5.2.3 Drawing Triangles

Before a triangle can be drawn, it must first be backprojected onto the surface of the proxy.

As mentioned in the previous section, this backprojection is done using the plane equation

that is associated with the sampling triangle.

After the triangle is backprojected onto the proxy, it is drawn multiple times using dif-

ferent images and sets of alpha values each time. Previous algorithms have used graphics

hardware for similar blending strategies, but they typically blend only three images per tri-

angle (i.e., each image is opaque at one vertex and transparent at the others). It is important

to note that in unstructured lumigraph rendering, more than three images may be blended

across each triangle.

Suppose that there are a total of m unique cameras (k < m < 3k) with non-zero blending

weights at the three vertices of a triangle. Then this triangle is rendered m times, using the

texture from each of the m cameras. Thus, a triangle is textured with a minimum of k

images and potentially with as many as 3k images.

If a triangle has more than one proxy plane associated with it, then it is rendered once

for each plane. The graphics hardware's z-buffer resolves visibility.

5.3 Examples

In this section, the performance of unstructured lumigraph rendering is demonstrated with a

number of examples. First, the example from Chapter 4 is revisited. This example serves to

illustrate the impact of the approximations made by the unstructured lumigraph algorithm.

The remaining three examples demonstrate the flexibility of the unstructured lumigraph

algorithm.

Two of the remaining examples are based on video sequences. The first video example

comes from a hand-held video camera. The camera positions are computed using feature-

tracking and structure-from-motion techniques. The second video example is from a video

97

camera mounted on an instrumented robot. Camera positions are derived from the wheel

encoders and inertial motion sensors of the robot. In both of the video examples, the proxy

is composed of a small number of planes.

The final example demonstrates the algorithm with a more complex geometric proxy.

While the image collection has only 36 images, the proxy consists of 500 polygons, which

makes up for the lack of images. The algorithm handles this data as easily as the others.

5.3.1 Example #1

The sequence of images in Figure 5-3 illustrates the impact of the optimizations used in

the unstructured lumigraph rendering algorithm. The first row of images recalls the results

from Chapter 4. These images come from the optimal radiance reconstruction procedure

using angle and resolution measures (cx = 1 and B= 1) (field-of-view is ignored as none of

the ULR optimizations change this measure).

The second row of images in Figure 5-3 shows the result of optimization #1: assuming

the similarity matrix is the identity. Both the image and the false-color visualization look

similar to the first row. However, it is evident from the false-color image that the epipoles

are less distinct. This fuzziness is a direct result of assuming that the similarity matrix is

the identity. Using the proper similarity matrix removes the "contamination" (i.e., contri-

butions from other cameras) from the epipole samples. However, even with the epipole

contamination, the image quality suffers little.

The third row shows the result of optimization #2: using a simplified resolution mea-

sure. Since the simplified resolution measure is less conservative than the homography-

based measure, a slightly different range of "resolution stretch" is used for these images.

The second row allows resolution differences ranging from a factor of 0.5 to 2, while the

third row uses 0.7 to 2. In this case, the difference between the two measures is primarily

due to the fact that the desired camera and the observer cameras have different focal lengths,

which results in a systematic error in the simplified measure. However, after adjusting for

this error, the resulting images are very similar.

The fourth row shows the effect of optimization #5: using only the k-nearest cameras.

98

Figure 5-3: A sequence of images showing the effect of the ULR optimizations on image forma-

tion. Top to bottom: original, simplified correlation matrix, simplified resolution measure, k-nearest

weighting, and sparse sampling. 99

This optimization has a large effect on the image formation, as shown by the false-color

image. The colored regions are much more pronounced, which is a result of fewer cameras

contributing to each pixel. In a typical image generated using the optimal approach, up

to 30 or 40 cameras can have non-trivial weights at a pixel (i.e., greater than -, the256'

quantization level of the frame buffer). The images in the fourth row use k = 5 images

at each pixel. However, the final output image is not appreciably changed, since only the

cameras with the largest weights are retained.

The final row of Figure 5-3 demonstrates optimizations #3 and #4: sparse sampling and

hardware rendering. In this case, the weight vectors are sampled on a 25 x 25 grid covering

the desired view. The image and the false-color visualization are generated using graphics

hardware. While the false-color visualization shows slight differences in the interpolated

weight vectors, the resulting image does not exhibit noticeable artifacts. This fact is re-

markable, as the length of time to generate the image has been reduced from 5 hours to less

than 33 milliseconds through the use of the 5 optimizations.

The choice of sampling density involves a trade-off between rendering performance

and reconstruction fidelity. A very small number of samples results in a very fast rendering

time, but it may also negatively impact the image quality. On the other hand, an extremely

large number of samples may unnecessarily slow the algorithm with little benefit in quality.

The impact of sampling density on image quality is shown in the two plots in Figure 5-

4. Figure 5-4a shows the error in the sparsely sampled image as compared to the ray-traced

image (i.e., one sample per pixel). The error is expressed as the average squared error

per pixel, which is the squared error of each color channel summed over all pixels and

divided by the total number of pixels. Two error curves are shown; one that includes

epipole samples (blue curve with circles) and one that does not include epipole samples

(red curve with crosses). Clearly, there is more error at lower sampling densities, and the

error seems to level off at about 16 x 16 samples. Using epipole samples always improves

the error (this is always the case, since the epipole samples are additional samples), but

does not appreciably improve the error after 8 x 8 samples. Thus, for this configuration

of images, a 16 x 16 sampling density, without epipole samples, is sufficient for quality

rendering. The system remains interactive up to 32 x 32 samples, so a 16 x 16 grid results

100

0

W

6000

5000n

6 4000
w

~3000

2000

1000

x1 2x2 4x4 8x8 16x16 32x32 64x64
Sampling Density

(a)
False Color Visualization Error

000A

1x1 2x2 4x4 8x8
Sampling Density

16x16 32x32 6464

(b)

Figure 5-4: Plots of the error caused by using a sparse sampling of image reconstruction weights.

(a) The error in the actual image. The blue curve with circles shows error with epipole sampling,

and the red curve with crosses shows without. (b) The error in the false-color visualization.The blue

curve with circles shows error with epipole sampling, and the red curve with crosses shows without.

101

Image Error
600

500-

400-

300-

200-

100-

I

in quality, interactive rendering.

The plot in Figure 5-4b shows the same error curves applied to false-color visualiza-

tions. Although the false-color visualization is not the desired output of the system, it is

useful for investigating the "worst-case" performance of the rendering. Some of the error in

Figure 5-4 is hidden by the fact that many regions in the images are almost uniform in color

across many cameras. Thus, reconstruction errors may be masked because an incorrectly

interpolated pixel happens to be the same color as the correctly interpolated pixel. Since

the false-color visualization assigns unique colors to each input image, this error hiding

is much less likely to occur. As expected, the error in Figure 5-4b is higher than that in

Figure 5-4a. In this case, the errors level off and coincide at 32 x 32 samples, which also

allows for interactive rendering.

Of course, this analysis is only applicable to this particular collection of images viewed

from this particular virtual viewpoint. However, for all of the image collections considered

in this thesis, it has been found that a 16 x 16 sampling grid provides good quality images

at interactive rendering rates.

5.3.2 Example #2

The second example comes from a video sequence shot with a hand-held video camera at

the Staples center in Los Angeles. The camera intrinsics and extrinsics are determined by

tracking image features and by solving a structure-from-motion problem as described in

Section 2.5. The camera and proxy configurations are shown in the first row of Figure 5-5.

In this example, the proxy consists of two planar quadrilaterals. One corresponds to the

ground plane, and the other roughly aligns with the background objects. Each column of

Figure 5-5 represents a different desired camera. The desired cameras are shown in red in

the first row of images.

The second row of images shows the output of the unstructured lumigraph rendering

algorithm. The ragged tops and bottoms of the images reveal the rhythmic camera motion,

which corresponds to the walking gait of the person holding the camera. The rendered

images themselves, of course, do not exhibit this motion.

102

Figure 5-5: Images rendered from a video taken at the Staples center in Los Angeles. Top to bottom:

data configuration, rendered images, false-color visualizations, and image-plane tessellations.
103

Figure 5-6: Images showing the effect of field-of-view consideration. Rendered images (top) and

false-color visualizations (bottom).

The third rows of images shows the tessellation of the image plane. The shape of the

proxy is clear in the image on the right. A 25 x 25 grid of samples is used for these images,

although a smaller grid results in similar quality images.

The fourth row of Figure 5-5 shows the false-color visualizations for the two desired

views. The view on the left is closer to the original camera path, which results in fewer

cameras contributing to the final image. The view on the right is farther from the original

path, so more cameras contribute to the image, although each camera contributes a smaller

portion.

Figure 5-6 shows the effect of considering field-of-view. Here the images are rendered

again, although with y = 1, which weights cameras less if they can not see a portion of the

scene. For the view on the left, almost the entire view is filled. Regions that are invisible in

Figure 5-5 are filled in with angularly close cameras that observe the region. For the view

104

.... ...

Figure 5-7: Camera configuration geometry proxy (top), and example images (bottom) from the

hallway example. Three planes (front, back, and top) have been removed from the proxy for visual-

ization purposes.

on the right, the image is expanded somewhat, although there are still many regions that

are not seen by any camera.

The images in this example all view the proxy at approximately the same distance, so

including a resolution measure does not change the image quality.

5.3.3 Example #3

This example is constructed from a long video sequence in which the camera moves for-

ward down a hallway. The camera is mounted on an instrumented robot that records its

position as it moves. Such forward camera motion is not handled well by previous image-

105

based rendering techniques, but it is processed by the ULR algorithm with no special con-

siderations. The proxy for this scene is a six sided rectangular tube that is roughly aligned

with the hallway walls. Since the video contains many frames (1096), only every 5 1h frame

(219 total) is used in the lumigraph. This reduction in the number of images allows the data

to fit entirely on the graphics card for best performance.

None of the cabinets, doors, or other features in the hallway are explicitly modeled.

However, virtual navigation of the hallway gives the impression that the hallway is popu-

lated with actual three-dimensional objects. The camera configurations and some example

camera images from the image collection are shown in Figure 5-7.

Two rendered images and their corresponding false-color visualizations are shown in

Figure 5-8. Because of the unusual input camera configuration, the false-color visualization

looks unlike any blending pattern seen in other algorithms. It consists of two sets of circular

regions that meet in the middle of the image. One of the regions corresponds to cameras that

are in front of the desired view, while the other region corresponds to cameras behind the

desired view (in this case, the desired view is in the middle of the hallway). Smaller regions

belong to cameras that are physically farther away from the desired view. Their distance

causes the angular measure to weight these cameras less, except around the epipoles, which

are located roughly at the centers of the two circular regions. As the desired camera moves

down the hallway, one region "expands" while the other "contracts."

This example also demonstrates the need for both field-of-view and resolution consid-

eration. Figure 5-9 shows an extreme view of the hallway from a viewpoint at which it is

physically impossible to place a camera. When the field-of-view is not considered, then a

large portion of the image is invisible (top row). When field-of-view is considered, then the

invisible regions are filled in from near-by images.

The top row of Figure 5-10 shows the types of blurring artifacts that can occur if reso-

lution is ignored. The second row shows the result of using the simple resolution measure

(P = 1). Low resolution images are penalized, and the wall of the hallway appears much

sharper, with a possible loss of view-dependence where the proxy is poor. From the false-

color visualization, it is apparent that the resolution-sensitive rendering uses fewer images

on the left hand side of the image, which is where the original rendering had most problems

106

Figure 5-8: Two rendered images from a hallway at MIT (top), the false-color visualizations for

each (middle), and the image plane tessellations (bottom).

with excessive blurring. In this case, the attenuated cameras are too far behind the desired

view.

As mentioned previously, the hallway lumigraph uses about 219 frames from an original

collection of 1096 frames. Calibration information is available for all 1096 frames, which

107

Figure 5-9: Images demonstrating the impact of field-of-view on the hallway example. The top

images ignore field-of-view, resulting in black areas where cameras do not see anything.

allows for a comparison of images produced by the rendering algorithm to actual images

that are not within the lumigraph. Figure 5-11 shows a comparison for three frames from

the original sequence but not used in the lumigraph rendering. The first column shows the

original frames, the second column shows the unstructured lumigraph rendering, and the

third column shows a difference image.

Qualitatively, the images compare very favorably, except that the virtual images are less

sharp than the originals. The difference images reveal two common errors: errors around

the edges of objects and errors near specular reflections and highlights. The first type of

error is caused by the approximate geometry proxy. The second type of error is due to

angular differences between the original view and the views in the lumigraph. A denser set

of views in the lumigraph would better reproduce view-dependent effects such as highlights

and reflections.

108

Figure 5-10: Images demonstrating the impact of resolution on the hallway example. Note the

orange paper on the left wall.

109

Figure 5-11: A comparison of original images (first column) to rendered images (second column). The third column shows the absolute value of

differences between the images in the first two columns.

5.3.4 Example #4

While the previous examples primarily occupy the light field end of the image-based ren-

dering spectrum, this example demonstrates the view-dependent texture mapping aspects

of the algorithm. This unstructured lumigraph consists of only 36 images of a car and a 500

face polygonal geometric proxy. The images are arranged in 10 degree increments along

a circle around the car. The images are from an "Exterior Surround Video" (similar to a

QuicktimeVR object) database found on the carpoint.msn.com website.

The original images have no calibration information. Instead, it is simply assumed that

the cameras are on a perfect circle looking inward. Using this assumption, the proxy is

made by constructing a rough visual hull model of the car. Since the true focal lengths

are unknown, the camera focal lengths are optimized by hand to give the best reconstruc-

tion. The model is simplified to 500 faces while maintaining the hull property using the

progressive mesh variation described in [Sander et al. 2000].

Figure 5-12 shows two rendered views of the car. The top row shows the input camera

configurations, the proxy, and the desired views in red. The second row shows the rendered

virtual views, and the third row shows the false-color visualizations. In this case, since

there are so few images, each desired image is composed of a small number (three or four)

of input images. The fourth row shows the tessellation of the geometry proxy. In this

example, the proxy is sufficiently complex and the number of cameras is sufficiently small,

so that the camera weighting need only be sampled at the mesh vertices. This reduction in

the number of sampling locations increases the efficiency of the algorithm.

Note that the geometric proxy is significantly larger than the actual car, and it also has

noticeable polygonal silhouettes. However, when rendered using the ULR algorithm, the

rough shape of the proxy is largely hidden. In particular, the silhouettes of the rendered

car are determined by the images and not the proxy, resulting in a smooth contour (see

Figure 5-13).

111

Figure 5-12: Virtual images from the car example. Top to bottom: data configuration, rendered

views, false-color visualizations, and image-plane tessellations
112

Figure 5-13: A closeup showing how the car silhouette is determined by the images (left) and not

the geometry (right).

Figure 5-14: Two views of a flat-shaded proxy constructed with the polyhedral visual hull system.

5.3.5 Example #5

This example also exhibits a VDTM application of unstructured lumigraph rendering. In

this case, the proxy is a coarse geometric model of a person (see Figure 5-14). This model

is a snapshot from the polyhedral visual hull system [Matusik et al. 2001], an interactive

visualization system that constructs and renders three-dimensional models of objects in

real-time. The system works by constructing a three-dimensional model from multiple

silhouettes of an object. The silhouettes are obtained by segmenting four video streams.

The system uses the unstructured lumigraph rendering algorithm to provide a fast, view-

dependent visualization of the three-dimensional models. The lumigraphs have reasonably

good proxy geometry, but have only four images roughly arranged in a 180 degree semi-

circle around the object. Because of the highly tessellated geometry and small number of

113

(a) (b)

Figure 5-15: (a) The textured polyhedral visual hull. The unstructured lumigraph contains only 4

images. (b) The associated false-color visualization. Note that only two images (colored red and

green) contribute most of the textures.

images, the weight vectors are only sampled at the proxy vertices. The textured visual hull

and its associated false color visualization are shown in Figure 5-15.

5.4 Summary

This chapter has presented the unstructured lumigraph rendering algorithm, a real-time ap-

proximation of the radiance reconstruction routines described in Chapter 4. By exploiting

five optimizations, the running time of the algorithm is reduced from 5 hours per image to

less than 33 milliseconds per image (i.e., more than 30 frames per second).

The algorithm is demonstrated with a number of examples. Some of the examples use

hand-held video, which exploits the ability of the algorithm to handle unstructured inputs.

The hallway example uses images that exhibit forward motion, a common configuration

of input images that had never been effectively used before in an image-based rendering

algorithm. Unstructured lumigraph rendering handles this case because it is based on an

angle-based view-dependent rendering strategy that properly handles large numbers of im-

ages.

Other examples use higher-fidelity geometry proxies with fewer images, which demon-

strate the algorithm's ability to accommodate a wide range of inputs. One of these examples

114

comes from the polyhedral visual hull system, which is a real-time rendering system that

requires real-time performance.

115

CHAPTER 6

Non-Metric Unstructured Lumigraph Rendering

The unstructured lumigraph rendering algorithm outlined in the previous two chapters al-

lows for rendering from a wide variety of image collections. There are no restrictions on the

arrangement of input cameras, nor on the complexity of scene geometry. However, there

is one implicit restriction: the input cameras must be strongly calibrated. In other words,

the cameras' intrinsic parameters are known, and a Euclidean representation of the scene

(cameras and geometry) is available. Relaxing this restriction is the focus of this chapter.

Extending unstructured lumigraph rendering to non-metric image collections widens

the algorithm's applicability. In many cases, it is very difficult to obtain a strong calibration.

For example, the camera and lens may not be available, which makes calibrating the camera

focal length difficult. Many self-calibration techniques (i.e., calibrating the camera from

arbitrary images) have been proposed [Faugeras et al. 1992; Pollefeys et al. 1999], but these

techniques are fragile and do not work in all situations. The car example from Chapter 5

presents another approach: guess the calibration. However, guessing is very difficult in

situations in which the camera parameters may be changing, such as when the camera

zooms.

In light of these problems, an algorithm that works directly with non-metric scene rep-

116

resentations is very useful.

6.0.1 Overview

The first half of this chapter enumerates the aspects of unstructured lumigraph rendering

that need to be modified in order to accommodate non-metric data. It turns out that there

are four aspects of the ULR algorithm that make Euclidean assumptions. Each of these

problem areas are analyzed, and non-metric substitutions are proposed. The resulting non-

metric algorithm satisfies almost all of the desired properties outlined in Chapter 3, with

some noted exceptions.

The second half of the chapter applies the non-metric ULR algorithm to a common

problem: video stabilization. It is shown that non-metric ULR is a natural solution to this

problem, since the weaknesses of the non-metric approach are offset by the specific needs

of the video stabilization problem. The validity of the approach is demonstrated with three

examples.

6.1 Problems with Non-Metric Rendering

Recall that with a non-Euclidean (non-metric) scene reconstruction, distances and angles

between points and lines are not meaningful. Non-metric distances and angles certainly

do not reflect the "true" (i.e., Euclidean) values, but they also do not preserve relative

magnitudes or ordering.

The assumption of a Euclidean reconstruction enters into the unstructured lumigraph

rendering algorithm in multiple places. These places are described in more detail in the

following sections.

6.1.1 Angle Measure

The image correlation function from Section 4.1.1 is indexed by the angle between two

rays. This angle is the natural measure of angular difference between rays, but some other

measure is needed for a non-metric algorithm.

117

6.1.2 Resolution Measure

The simplified resolution measure from Section 5.1.2 is based on Euclidean distances be-

tween cameras. Again, these distances can not be used, so some other resolution measure

must be employed.

6.1.3 Geometry Proxy

The geometry proxy used in unstructured lumigraph rendering typically consists of a small

set of planes that are "close" to the scene structure. Since the idea of closeness assumes

Euclidean distance, some other way of specifying the scene proxy is needed.

6.1.4 Navigation

Unstructured lumigraph rendering specifies the desired camera in terms of standard com-

puter graphics techniques, which make Euclidean assumptions. In a Euclidean framework,

camera positions can be specified by setting a translation vector, a rotation matrix, and a

field-of-view. In a non-metric setting, the unknown intrinsic and extrinsic camera parame-

ters can not be decoupled in this way. Camera position, orientation, and field-of-view must

be specified differently, or constrained in such a way as to be realizable. This requirement

is the most difficult to satisfy in a non-metric setting.

6.2 Non-Metric Modifications to ULR

A non-metric ULR algorithm can be obtained by modifying the Euclidean ULR algorithm

so that the angle measure, resolution measure, proxy geometry, and navigation are specified

in a non-metric setting.

Begin by assuming that a projective reconstruction of a scene is known, and that it has

been obtained from a set of corresponding point features. The scene is represented as a

collection of 3 x 4 projection matrices Pi and 4 x 1 structure points Mj, which project onto

the corresponding point features mij. If the scene has not been obtained from point features,

then assume that corresponding point features have been selected and that the appropriate

118

structure points have been derived from these features (if the features truly correspond, then

this computation is a trivial matter).

The projective reconstruction specifies only that

mij - PiMj,

where mij is a point feature (represented (u, v, 1) T) in image It, and = denotes equality

up to scale. Note that a projective reconstruction is uniquely defined up to an arbitrary

projective transformation T. That is, transforming the projection matrices and the structure

points with T results in an equivalent projective reconstruction:

Mij ' (PiT--1)(TMj) = P M'j.

This unknown projective transformation makes it impossible to compare angles and dis-

tances in the non-metric space. However, it is clear that the projections of quantities into

the image space are unaffected by T. Thus, image-to-image transformations, such as pla-

nar homographies, are unaffected by the projective distortion introduced by T. In light of

this observation, non-metric unstructured lumigraph rendering uses direct image-to-image

transforms and image-space measures to avoid measuring quantities in the projective space.

However, it does so at the cost of some of the desired properties from Chapter 3.

6.2.1 Angle Measure

For each individual pixel in the desired view, the ULR algorithm blends between corre-

sponding pixels from multiple reference views. Given a set of corresponding pixels pi in

the reference views, the final color of the pixel Pdes in the desired view is computed as a

weighted average of these reference pixel colors. The colors are inversely weighted based

on the angular difference between the reference viewing rays and the desired viewing ray

(see Figure 6-1). In fact, the actual angles are not that important; rather, it is the relation-

ships between angles (e.g., which angle is bigger than another) that matter most.

Consider measuring relative angle sizes using the following measure defined in image

space. Compute the vanishing points vi of all the corresponding observer rays as seen in the

desired view. The distance di = I vi - Pdes I is then a relative measure of the angular distance

119

Desired Ray r,

r2

.-

Scene Point

Figure 6-1: The Euclidean ULR algorithm uses the angular distance from the desired ray.

Scene
Point

01,

Desired Image Plane

V

V Z ~v 'des

V1

des .

Reference
Desired View 1

View

(a) (b)

Figure 6-2: Vanishing point distance measurement. (a) An alternative angle measure is the distance

of the vanishing points vi from the projection of the scene point Pdes. (b) The vanishing point shows

which ray in the desired view is parallel to the observer ray.

between the desired viewing ray and the reference viewing ray (see Figure 6-2a). This

measure behaves enough like the true angle (i.e., smaller angles have smaller measures)

to compute interpolation weights. Note that in the case of known camera intrinsics, the

vanishing point distance can be trivially converted into an actual angle measurement. The

120

(a) (b)

Figure 6-3: A comparison of false-color visualizations that use true angles (a), and vanishing point

approximations (c). The differences between (a) and (b) are shown greatly exaggerated in (c).

diagram in Figure 6-2b demonstrates how this construction works. The vanishing point

tells which ray in the desired view is parallel to the observed ray. If the observed ray is

parallel to the desired ray (i.e., they are the same ray) then the vanishing point equals pdes

and the distance is zero.

The validity of this approach is demonstrated in Figure 6-3. This figure shows two

false-color visualizations for Example #1 from Chapter 5. The visualization on the left

uses the standard angle measure (recall that a Euclidean reconstruction is available for these

images), while the visualization in the middle uses the proposed vanishing point measure.

The two images are slightly different, particularly around the image borders, as shown in

the exaggerated difference image on the right. It is clear that the vanishing point measure

provides a good approximation to the true angle measure.

Of course, computing vanishing points requires knowledge of the plane at infinity Il.,

which is unknown in a projective reconstruction. If the plane at infinity is found, upgrading

the reconstruction from projective to affine, then vanishing points could be used to measure

relative angle magnitudes. Unfortunately, computing the plane at infinity is one of the main

reasons why obtaining a Euclidean reconstruction is so difficult. Finding the exact plane is

very sensitive to noisy data and the input camera configuration.

However, it is not critical to have the true plane at infinity to use this vanishing point

measure. It suffices to use a plane that satisfies cheirality constraints [Hartley 1993] to

approximate plane at infinity. The cheirality constraints require that all data (cameras and

121

(c)

structure points) lie on one side of the chosen plane. Further, choosing the furthest such

plane gives an improved approximation [Hartley et al. 1999]. Using such a plane, called

iL, results in a quasi-affine reconstruction of the scene [Hartley 1993]. Thus, non-metric

unstructured lumigraph rendering requires a quasi-affine scene reconstruction, which is

generally easier to obtain than a full Euclidean reconstruction.

Given this plane f., vanishing points can be computed using a planar homography

mapping from points in image Ij, onto the approximate plane at infinity, and back to van-

ishing points in image Ii. This homography is given by

Hij& =* PiPt, (6.1)

where Pi is the projection matrix for image It, and Pt is the inverse projection matrix

mapping points in image Ij onto the approximate plane at infinity.

Note that since this angle measure violates the radiance consistency property, as it de-

pends on the projection matrix of the desired view. For example, virtual views with dif-

ferent field-of-views or orientations may result in different reconstructions for the same

radiance.

6.2.2 Resolution Measure

The simplified resolution measure described in Section 5.1.2 uses the relative distances of

cameras from the scene point as an estimate of resolution similarity. Since it is based on

distances, this measure is unsatisfactory in a non-metric setting.

However, recall that the full resolution measure, described in Section 4.2.2 is based on

the Jacobian of the planar homography relating two cameras and a plane in the scene. Since

this measure is based on an image-to-image transform, it is immune to the effects of the

unknown projective transformation. Thus, the original resolution measure, while slower

than the simplified one, is suitable for use in the non-metric algorithm.

6.2.3 Geometry Proxy

The ULR algorithm uses correspondence based on planar polygons. This correspondence

implies a series of homographies, one per polygon, that relate one camera to another.

122

Given a polygon k, its associated plane Ik, and two camera projection matrices Pi and

Pj, it is possible to compute the planar homography Hijk relating the pixels in the two

cameras:

Hijk jP l

where P+k is the 4 x 3 inverse projection matrix that maps pixels in image Ij onto the plane

1k. These homographies Hiik establish a correspondence between image Ii and image Ij

through plane HIk.

This type of correspondence is well-suited to a non-metric algorithm since it is based

on the image-to-image mapping Hijk. The only difficulty is specifying the polygonal proxy

in the first place. The typical approach of choosing polygons that are "close" to the scene

does not work, since it is difficult to define the closeness measure. However, it is possible

to define polygons that pass exactly through the known structure points. Since projective

transformations do preserve incidence, a set of polygons that passes through the projective

structure points also passes through the "true" Euclidean structure points.

The proxy polygons are defined by triangulating the projections of the structure points.

Given some desired view with projection matrix Pdes, the structure points Mj are projected

into that view. The Delaunay triangulation of these image points results in a tessellation of

the image plane. The topology of this triangulation is transferred to the projective structure

points to arrive at a polygonal proxy.

6.2.4 Navigation

Navigation is perhaps the most difficult problem when dealing with non-metric spaces. In a

projective setting, the projection matrix of a novel view can be computed by specifying the

desired image projections of the structure points [Faugeras and Laveau 1994]. However,

this method of navigation is not very intuitive and may lead to non-rigid camera motions

or other improbable motions. For example, one could move two vertices of a square and

leave the other two fixed, resulting in a distorted image of a square in the desired view. This

distortion may or may not correspond to a rigid camera motion.

To combat unwanted (e.g., non-rigid) image transformations, it is useful to use an a

123

priori motion model when positioning the projections of the structure points. The mo-

tion model constrains the structure points to motions that are realizable within the model.

For example, under a linear motion model, the projections of the structure points are con-

strained to move in straight lines. If the desired motion is not linear, then other models

may be used. For example, one might use a pure rotational model, a rotation-about-a-point

model, or something even more exotic. Two example motion models are discussed further

in Section 6.4.2.

This type of navigation, while a bit cumbersome, is well-suited to the problem of video

stabilization. By fitting the observed features motions to a smooth motion model, it is

possible derive a sequence of projection matrices that correspond to a stabilized video

sequence. The details of the video stabilization procedure are described in the following

sections.

6.3 Non-metric ULR for Video Stabilization

An unstabilized video is an image sequence that exhibits unwanted variations in the ap-

parent image motion. The goal of video stabilization is to remove these variations while

preserving the dominant motions in the image sequence.

Most video destabilization is due to physical motions of the camera. Thus, many so-

lutions to the problem involve hardware for damping the motion of the camera, such as a

Steadicam rig or gyroscopic stabilizers. This equipment works well in practice, but it is

very expensive. Recently, many consumer grade video cameras have been equipped with

video stabilization features. However, these methods are often not good enough to stabilize

gross motions of the camera. Because of these reasons, software solutions are attractive.

6.3.1 Other Approaches to Video Stabilization

Many previous software approaches to video stabilization assume little to no knowledge

of the actual three-dimensional camera motion, and instead work to minimize image space

motions directly. A common approach is to estimate a dominant planar homography that

124

stabilizes a large planar region in the video [Irani et al. 1994] or to use simple 2D transla-

tions to lock onto an object.

One basic problem with these approaches is that pure image transformations often do

not correspond to reasonable camera transformations. For example, stabilizing a video by

using pure translation of the video frames is equivalent to varying the camera's principal

point, which is unlikely to be the true cause of the destabilization. Homography-based

schemes do a better job, but they only stabilize planar scenes or rotational camera motions.

Highly non-planar scenes or translational camera motions are not stabilized.

6.3.2 The IBR Approach to Video Stabilization

This thesis proposes a software video stabilization algorithm based on image-based ren-

dering (IBR). The basic premise of the approach is simple. Assume that IBR can generate

novel views from some set of known reference images. Assume further that the unstabi-

lized camera trajectory (i.e., camera positions and orientations) is also known. Then, video

stabilization can proceed in two steps:

1. Remove unwanted motions from the known camera trajectory through some sort of

filtering or smoothing procedure.

2. Using the IBR algorithm, render a new image sequence along the stabilized camera

trajectory.

IBR stabilization methods potentially avoid the problems of two-dimensional approaches

because they can allow for virtual camera navigation in the scene. Thus, the virtual camera

can be moved on a smooth path, removing the video destabilization at its source and result-

ing in a stable video for all image regions. Not only can an IBR method remove unwanted

rotational and translational motions, it can also stabilize the velocity of the camera and the

variation in the camera's focal length. IBR methods can also merge information from mul-

tiple video frames to synthesize a completely new view, so they are not limited to simple

image warping.

The IBR approach defines two problems to solve: (1) filtering the camera trajectory and

(2) rendering new views given the original views.

125

In the method outlined here, non-metric unstructured lumigraph rendering is used to

generate novel views. The filtering procedure is implemented by fitting the observed data

to a priori motion models. Both of these tasks are done without requiring a Euclidean

reconstruction of the scene, which makes this approach generally applicable to a wide

range of video sequences.

6.4 Stabilizing Video

The first step in the proposed video stabilization procedure is to obtain a projective recon-

struction of the video sequence. It is not important how this reconstruction is obtained, just

that it conforms to the description given in Section 6.2.

6.4.1 Computing a Projective Reconstruction

Briefly, the projective reconstruction technique used in this thesis proceeds as follows.

First, image features are determined using off-the-shelf tracking software that implements

the algorithm described in [Shi and Tomasi 1994]. At least 300 features per frame are

tracked, because the resulting features generally contain many bad or poorly tracked fea-

tures. Occlusions, view-dependent effects (reflections and highlights), motion blur, and

other uncontrollable factors all contribute to poor feature tracking. Eliminating these bad

features is key to obtaining a quality reconstruction. As a first step, all features that exist for

less than 30 frames (i.e., one second) are eliminated. Short feature tracks often correspond

to bad features.

Next, an initial projective reconstruction is computed using a projective factorization

technique [Triggs 1996]. This factorization approach results in a rough solution that may

be contaminated by the remaining bad features. At this point, a bad feature can be identified

by examining its reprojection error, the distance between the feature's tracked location and

the projection of its corresponding structure point. If the reprojection error is large (e.g.,

greater than 20 pixels), then a feature is considered bad. After culling more bad features

in this way, the solution can be recomputed using projective factorization to obtain a better

initial guess.

126

This initial guess is still not an optimal solution (in terms of minimizing reprojection

error) even if all the features are good. The solution can be improved by using robust

bundle adjustment techniques [Triggs et al. 2000]. Bundle adjustment is simply a non-

linear optimization that minimizes the reprojection error of all the features in the projective

reconstruction. Bundle adjustment works by iteratively adjusting the parameters of the

projective reconstruction until the sum of reprojection errors reaches a local minimum. The

parameters of the projection reconstruction are simply the 12 elements of each projection

matrix and the 4 elements of each structure point. Bundle adjustment generally results in a

high-quality solution, even with this non-minimal parameterization.

For long image sequences, this process needs to be modified because the projective

factorization approach requires that all features be visible in all images. This restriction is

not satisfied in most video sequences. To deal with this problem, the image sequence is

divided into overlapping sub-sequences with independent solutions for each sub-sequence.

The independent solutions are then mapped into a common projective frame by computing

pair-wise projective transformations. While this method does not always give a globally

consistent solution, it is generally sufficient for the video stabilization task.

As a final step, the projective reconstruction is upgraded to a quasi-affine reconstruc-

tion by approximating a plane at infinity. The procedure detailed in [Hartley et al. 1999]

provides a suitable plane for this purpose. This approximate plane is used to compute

vanishing point homographies with Equation 6.1.

6.4.2 Camera Trajectory Filtering

Once a quasi-affine reconstruction of the original video sequence is available, the camera

trajectory must be filtered to remove unwanted motions. However, since only a non-metric

reconstruction is available, it is impossible to filter the three-dimensional camera trajectory

directly. Instead, the filtering is indirectly accomplished by filtering the two-dimensional

motion of the observed image features. These filtered image features are then used to derive

a sequence of stabilized projection matrices P that generate a stabilized image sequence.

This feature filtering starts by computing target locations for the tracked image features

127

Figure 6-4: Three iterations of the feature filtering procedure. The initial feature locations are

drawn as solid lines, and the target locations are shown as dots. The desired focus of expansion is

marked with a circle. (top) Before optimization. (middle) After one iteration. (bottom) After all

iterations.

128

0~j

0

0

in each frame. These target locations specify where the projections of the structure points

should appear in a stabilized video sequence.

Given the target locations, the stabilized projection matrices are computed by slightly

adjusting the unstabilized projection matrices so that they project the structure points onto

the target locations (instead of the original feature locations). This adjustment is done using

a non-linear optimization very similar to bundle adjustment (described in Section 6.4.1). In

this case, the parameterization consists of only 12 parameters for each projection matrix,

and the optimization is not allowed to adjust the positions of the structure points. The initial

parameter values are set to the unstabilized projection matrices. The minimized error is the

reprojection error between the projections of the structure points and the target locations.

After running this optimization, the quality of the solution can be evaluated by examin-

ing the reprojection errors. Large reprojection errors indicate that the target locations have

been poorly selected. In such cases, the target locations can be re-estimated from the new

solution and the optimization run again. It has been found empirically that this iterative

process quickly converges to a good solution.

Figure 6-4 illustrates the evolution of the stabilized projection matrices during the opti-

mization. The initial feature tracks (i.e., the curves that the features trace out over time) are

shown as solid lines. The target locations are dots. Here the target locations correspond to

a linear motion model, which is described in the next section.

Computing the stabilized target locations is the most difficult step. One way to stabilize

the locations of the features is to low-pass filter the spatial variation of the features over

time, and then map the original features to points on the new path. This technique reason-

ably filters the feature locations, but it enforces no constraints on the implied motion of the

stabilized camera. To enforce rigid-motion (and other) constraints, it is advantageous to

apply a prior model to the motion of the desired feature locations.

Using a motion model helps ensure that the new projection matrices correspond to rigid

motions. Some possible motion models include linear translation, fronto-parallel transla-

tion, circular motion about a fixed target, etc. In general, the selected motion model should

roughly correspond to the observed motion in the scene. If not, then the model fitting

procedure described previously is not likely to succeed.

129

The examples in this thesis use two different models: (1) the linear motion with constant

velocity model and (2) the Hitchcock "Vertigo effect" model. These models are described

in the following two sections.

Linear Motion with Constant Velocity Model

In this model, the stabilized camera should move at a constant velocity along a straight line

while looking in the same direction. With linear motion, it is well-known that all image

features move radially to (or from) a point called the focus of expansion [Horn 1986].

To use a linear motion model, it is first necessary to estimate (or specify by hand) the

focus of expansion, which may or may not be in the field of view, and to fit radial lines to

the initial feature tracks.

Next, the unstabilized features are mapped to points on the radial lines. These points on

the radial lines become the target locations of the unstabilized features. Often, the original

features do not map well onto the lines (see Figure 6-4a), but in any case the original

features are mapped to the closest point on the line.

Finally, the target locations are redistributed along the length of the line according to

the constant velocity assumption: as time progresses, points should move monotonically

toward (or away from) the focus of expansion. More specifically, the projection of a point

moving with constant velocity should fit a log function of the form alog It - to I + b, where

t is a time index and a, b, and to are unknown parameters. These parameters are estimated

for each target location, and they depend in some way on the relative depths of each struc-

ture point. The actual depths are unimportant, although proper distribution of the target

locations helps ensure a physically plausible camera motion.

Hitchcock "Vertigo Effect" Model

In this model, the camera simultaneously moves forward (backward) and zooms out (in) to

keep the size of a foreground object constant. This motion imitates a cinematographic effect

made popular by Alfred Hitchcock. Note that this motion model incorporates changes in

both the intrinsic and extrinsic camera parameters. As a result, the stabilized video has

smooth motion and zooming.

130

Figure 6-5: An example triangulation that is used for determining the proxy.

In the Hitchcock zoom model, there are two classes of features: foreground features

and background features. Foreground features are constrained to remain stationary, while

background features move radially much like in the linear motion model. The focus of ex-

pansion is taken to be the center of the foreground object. The background target locations

are redistributed uniformly along the radial lines.

In this implementation, the foreground features are selected by hand.

6.4.3 Rendering

As the final step, the stabilized image sequence is rendered using non-metric unstructured

lumigraph rendering. The execution of the rendering algorithm proceeds as in previous

chapters, except that the geometry proxy is created dynamically for each frame. For each

desired view, the renderer first computes the triangular tessellation of the visible structure

points. A structure point is deemed visible in a desired view if it is visible in the corre-

sponding original view. An example proxy is shown in Figure 6-5.

Briefly, for each pixel in the desired view, the renderer computes the corresponding

pixels in the reference views using the planar homographies Hijk. Each reference pixel is

131

assigned a weight according to the vanishing point distances, which are computed using the

homographies Hipj. Field-of-view and resolution can also be taken into account. Typically

k = 4 reference images are used at each pixel.

One additional modification to the original ULR algorithm can also be used. Because

arbitrary video sequences can contain moving objects (i.e., they violate the static scene

assumption), blending multiple images together from different points in time can lead to

temporal artifacts. To alleviate this problem, the images used to generate each output image

can be restricted to a subset that falls within a temporal window of the desired image time.

In the examples used in this thesis, a temporal window of 11 frames is used. That is, each

output image contains contributions from at most 11 images. At 30 frames-per-second, 11

frames corresponds to a temporal window of t. 183 seconds on either side of the desired

frame. The temporal window can be made bigger (smaller) if the video contains slower

(faster) motions.

6.5 Examples

This section presents three examples of the video stabilization technique in action. The first

two examples use the linear motion with constant velocity model, while the third example

uses the Hitchcock Vertigo effect motion model. All of the video sequences are acquired

with a hand-held video camera that has had its own video stabilization features disabled.

All other automatic features of the camera have been enabled.

6.5.1 Example #1

Figure 6-6 demonstrates the feature filtering results from the first linear motion model

example. In this example, the hand-held camera is moved forward down a hallway. The

figure plots the motion of the feature points over time. The tracks drawn with solid lines

are the original features that were tracked with automatic feature tracking software [Shi

and Tomasi 1994]. The tracks drawn with red dotted lines are the features as seen from the

stabilized camera trajectory. A small circle marks the focus of expansion that is used for

the linear motion model.

132

Figure 6-6: Feature tracks for a video sequence with forward camera motion. The original features

are solid black, and stabilized features are red dots. The features are stabilized using the linear

motion with constant velocity model, whose focus of expansion is shown with a circle. An original

frame from the sequence is shown in the top image.

Figure 6-7 shows example renderings from the stabilized video sequence. The first

column of images shows split-screen comparisons of the original videos (left half) and

the stabilized videos (right half). The stabilization is most clearly demonstrated by the

position of the red filing cabinet (right-center of the images). Note how the red filing

cabinet remains nearly stationary in the stabilized portion of the images, as the direction

of motion is constrained to be toward the top of the cabinet. In the unstabilized image

portions, the cabinet moves up-and-down and left-to-right in an uncontrolled way.

The second column of images in Figure 6-7 shows the associated false-color visualiza-

133

0

Figure 6-7: Renderings from the first video stabilization example. Stabilized frames (right half)

are compared to original frames (left half) in split-screen images (first column). The associated

false-color visualizations are shown in the second column.

tions for each of the three rendered frames. The visualizations have circular shapes similar

to those seen in the example of Section 5.3.3, which suggests that the quasi-affine angle

measure is reasonable. These visualizations do look slightly different because of the lim-

itation to only 11 images in each rendering. This limitation causes large portions of the

image to to be taken from a single image in the video sequence, which shows up as large

constant-color areas in the false-color visualization.

134

MMMM

Figure 6-8: Feature tracks for a video sequence with sideways camera motion. The original features

are solid black, and stabilized features are red dots. The features are stabilized using the linear

motion with constant velocity model, whose focus of expansion (not shown) is to the left-hand side

of the image. An original frame from the sequence is shown in the top image.

6.5.2 Example #2

Figure 6-8 demonstrates the feature filtering results from the second linear motion model

example. In this example, the hand-held camera is moved sideways in a furniture-filled

room. As before, the tracks drawn with solid lines are the original features, and the tracks

drawn with red dotted lines are the features as seen from the stabilized camera trajectory.

The focus of expansion, although not shown in this figure, is off to the left-hand side.

Figure 6-9 shows split-screen comparisons of the rendered images (right half) to the

135

9;'

Figure 6-9: Renderings from the second video stabilization example. Stabilized frames (right half)

are compared to original frames (left half) in split-screen images (first column). The associated

false-color visualizations are shown in the second column.

original images (left half). Note how the tables, railings, and other horizontal features

remain at the same height throughout the stabilized halves of the image. In the unstabilized

portions, the horizontal features show visible up-and-down deviations from the stabilized

trajectory.

The second column of images in Figure 6-9 shows the associated false-color visual-

izations for each of the three rendered frames. The visualizations have shapes similar to

those seen in the example of Section 5.3.2, which was made from a video sequence that

136

Figure 6-10: Feature tracks for a video sequence with motion that approximates Hitchcock's Vertigo

effect. The original features are black lines. Stationary features (on the bear) are marked with bold

X's. The remaining features are constrained to move radially from the center of the fixed features.

These features are shown with red dots. An original frame from the sequence is shown in the top

image.

also exhibits sideways motion. The 11 camera limitation is not as apparent in this example,

because the sideways motion prevents large numbers of cameras from being visible in any

single view.

137

OX X X

X

X

X

6.5.3 Example #3

This example simulates the Hitchcock Vertigo effect motion model. The unstabilized video

attempts to replicate Hitchcock's Vertigo effect by simultaneously moving and zooming

the camera by hand (Hitchcock used a mechanical apparatus in his movies). Even after

repeated attempts, the manual results are mediocre at best. However, the stabilized results

are effective. The algorithm is able to stabilize both the motion of the camera and the

variation of the focal length.

The feature track comparisons are shown in Figure 6-10. As before, the original fea-

tures are solid black. The Hitchcock Vertigo effect motion model is specified by fixing the

locations of a set of features, whose positions are marked with bold X's. The remaining

features are constrained to move radially from the center of the fixed features. The radial

features are shown with red dots, as in previous examples.

Figure 6-11 shows the rendering results from the Hitchcock Vertigo effect example. In

this example, the teddy bear is the focal object whose position is constrained to remain

fixed in the video frame. The background features are constrained to move radially. In this

example, the stabilization is dramatic enough that a split-screen comparison is unnecessary.

It is clear from these images that the bear stays in the same position in the stabilized images,

while it increases in size in the unstabilized video. Note that background objects that are

occluded by the bear in some frames become visible in other frames, indicating that the

background is indeed moving relative to the foreground.

138

(a) (b) (c)

Figure 6-11: Rendered frames from the Hitchcock Vertigo effect motion model: (a) the original frames (b) the stabilized frames (c) the associated

false-color visualizations. Note how the size of the bear, which is the focus of the effect, remains constant in the stabilized images.

6.6 Summary

This chapter has presented modifications to the unstructured lumigraph rendering algorithm

to make it suitable for use with non-metric image calibration data. Four aspects of the

original ULR algorithm need to be modified: the angle measure, the simplified resolution

measure, the proxy construction, and the virtual view specification. The first three aspects

can be accommodated with little trouble. However, specifying the virtual view in a non-

metric space is difficult. The proposed solution is to specify the desired locations of image

features using a predefined motion model.

While the proposed navigation mode is non-intuitive, it is well-suited to the task of

video stabilization, which is considered in the second half of this chapter. It is shown

how simple image motion models can be used to filter the motion in an unstabilized video

sequence. The result is a sequence of stabilized camera projection matrices, which can then

be used with the non-metric ULR algorithm to render a stable video sequence. The success

of this technique is demonstrated with three examples.

140

CHAPTER 7

Time-Dependent Unstructured Lumigraph Rendering

One of the main drawbacks to light field or lumigraph techniques is the static scene as-

sumption: that the scene and lighting remain constant within the collection of images. This

chapter considers a relaxation of the static scene assumption: allowing a scene to vary with

time.

Adding time-dependence to lumigraphs is conceptually simple. The primary difficulty

lies in data size and acquisition. First, time-dependence adds an additional dimension to

lumigraph data, which requires much more memory resources. Second, acquiring time-

dependent lumigraph data is non-trivial. One needs to capture multiple images of a dynamic

scene from dozens of different viewpoints, a daunting task.

However, with the ever-increasing power of computers, time-dependent lumigraphs are

becoming practical. It is not uncommon to see desktop computers with multiple gigabytes

of memory and even larger hard disks. Thus, storage requirements are becoming less of an

issue. Further, in recent years multi-camera systems have been developed that can capture

arrays of video data necessary for a fully general time-dependent lumigraph [Ooi et al.

2001; Naemura et al. 2002; Wilburn et al. 2002]. MIT has its own 64-camera array of

inexpensive 1394 video cameras (see Figure 7-1).

141

Figure 7-1: MIT's 8 x 8 array of video cameras. The array delivers a 64-image light field that users

can interact with in real-time.

In light of these developments, there is a growing need for rendering algorithms that can

handle time-dependent data. This chapter describes how to modify unstructured lumigraph

rendering for this purpose. Special emphasis is placed on unstructured time-dependent

lumigraphs, that is, lumigraphs that are sampled at irregular locations in space and time.

7.0.1 Overview

The chapter begins by describing a simple time-dependent representation of lumigraphs.

Next, the unstructured lumigraph rendering algorithm is modified to accommodate time-

dependent data.

The second half of the chapter describes a special type of time-dependent lumigraph:

the time-periodic lumigraph. A time-periodic lumigraph captures a scene that repeats itself

indefinitely. It is shown how time-periodic lumigraphs can be cheaply and easily acquired

using continuous video from a single video camera. The resulting time-periodic lumigraphs

are irregularly sampled in both space and time, making them perfect candidates for the

142

modified unstructured lumigraph algorithm.

7.1 Time-Dependent Lumigraphs

In previous chapters, a lumigraph consisted of a geometry proxy, a collection of images,

and the projection matrices Pi associated with those images. A time-dependent lumigraph

is defined to be a geometry proxy, a collection of images, the projection matrices Pi, and

a timestamp ti associated with each image. Note that this is not the only way to define a

time-dependent lumigraph (e.g., the proxy could also be time-dependent), but this is the

time-dependent lumigraph that is considered in this thesis.

The time-dependent image-based rendering problem is the same as that defined in

Chapter 3, if "calibrated images" is taken to mean calibrated in both space and time and

if the specification of the desired view includes a desired time tdes as well as a desired

projection matrix Pdes. A similar change of interpretation applies for the definition of the

time-dependent radiance reconstruction problem.

7.1.1 Time-Dependent Extensions to ULR

The modifications to ULR to support time-dependent rendering are similar to those used

for handling field-of-view and resolution issues. A time-dependent correlation function

R1(0, f, r, t) is defined, where t is a time dissimilarity measure defined much like the field-

of-view and resolution dissimilarity measures. Given the time dissimilarity t, the modified

correlation function is

Ri,gen(0, f, rt) = Ri(h(0, f, r,t)),

where h(0, f, r, T) is the generalized angle measurement (analogous to Equation 4.7 in Sec-

tion 4.2), given by a linear combination of the dissimilarity measures

h(0, f, r,r) = aO+yf +Pr+ et.

The constants a, $, y, and e control the relative importance of each type of dissimilarity

measure.

143

1.8

1.6-

1.4-

21.2 -

E
F- 0.8 -

0.6-

0.4-

0.2-

0
-1.5 -1 -0.5 0 0.5 1 1.5

Time (frame periods)

Figure 7-2: A function that modifies the time difference between two images. Images within 1

frame period of one another are considered equivalent, while differences greater than 1 frame period

are penalized.

Time Dissimilarity Measure

Given two radiance observations with timestamps t1 and t2, a simple time dissimilarity

measure is their difference,

It =14 - t21,

which is zero for identical times and increases unbounded for different times. For greater

control over the time dependent aspects of rendering, it is useful to transform the time

measure using a function f(r) similar to those used in Sections 4.2.1 and 4.2.2 for the

field-of-view and resolution dissimilarity measures. For example, the function shown in

Figure 7-2 does not penalize a difference in time until a certain threshold is passed. When

one of the cameras corresponds to the desired view, then this measure strongly penalizes

cameras when their time stamp differs by the threshold amount.

The operation of this time dissimilarity measure has a simple interpretation. It essen-

144

tially selects cameras that are within a window of time centered about the desired time

tdes. Of course, the time window should be "soft" so that the influence of a camera falls

off continuously as the camera leaves the time window. The width of the time window is

a parameter that determines a tradeoff between spatial and temporal resolution. A wide

window admits more radiance observations into the lumigraph and yields higher spatial

resolution at the cost of temporal blurring. Non-moving features are well-defined, but

moving ones are blurred. A narrow window gives good temporal locality, but may result in

sparsely populated spatial dimensions. The time window width is somewhat analogous to

the exposure time in traditional cameras.

Given this time dissimilarity measurement, it is simple to apply the unstructured lu-

migraph rendering algorithm to time-dependent data. The modified correlation function is

used in place of the normal one and rendering proceeds as usual.

7.2 Time-Periodic Lumigraph Rendering

In this section, simple techniques are presented for acquiring and rendering a restricted

class of time-dependent lumigraphs: time-periodic lumigraphs. A time-dependent lumi-

graph is time-periodic if the lumigraph at time t is identical to the lumigraph at time t + T

for some T, which is the period of the lumigraph. If the scene of interest exhibits period-

icity, then it can be represented with a time-periodic lumigraph. While this restriction may

seem extreme, time-periodic lumigraphs can represent useful scenes (and objects) such as

people walking or running, turning wheels and gears, or flashing lights.

The technique described here uses a single hand-held video camera for time-periodic

lumigraph acquisition. Because the scene is assumed periodic, a single moving video cam-

era can sufficiently sample the lumigraph in space and time. However, the resulting lu-

migraph is irregularly sampled, so unstructured lumigraph rendering is required to render

novel views from any point in space-time.

In order to use the time-dependent ULR extensions, the positions of the input cameras

must be known in both space and time. In Section 7.2.1, a simple space-time calibration

technique is described. Then, in Section 7.2.2 some examples of time-periodic lumigraphs

145

are demonstrated.

7.2.1 Time-Periodic Lumigraph Acquisition

Time-periodic lumigraph acquisition is essentially equivalent to calibrating a camera (i.e.,

determining its position) in both time and space.

Calibration in Time

To calibrate the camera in time, the period of the scene is sought in terms of the period

of the camera. The scene is assumed to exhibit periodic motion with fixed period Tscene.

The video camera has a fixed sampling period, which is taken to be Tcam = 1- With the

camera's position fixed, the scene is recorded for enough time to capture multiple (10 or

20) periods of motion (the images in this video are not used in the final lumigraph). The

video is manually inspected to determine two widely spaced (in time) frames that appear

identical. The number of scene periods and the number of frames between those two key

frames are counted. Then, the period of the scene can be expressed as

T -#frames
#periods

Now, given Tscene and the frame number of any video frame, the time in the scene's period

at which the video frame was taken is

tperiodic = frame # mod Tscene-

Calibration in Space

Next, the scene is recorded with a moving video camera. The images from this video form

the basis of the lumigraph. Care must be taken that the camera is not moved in a periodic

motion that has a period proportional to Tscene, or else the sampling will be inadequate. In

addition, the camera should be moved in a region of space that coincides with the desired

viewing region of the lumigraph. The length of the video is determined by the desired

number of spatial samples in a time window of the lumigraph. On average, the number of

146

Camera Position vs. Time

0.2

0

-0.2

-0.4

-0.6

-0.8-
200 400 600 800 1000 1200 1400 1600 1800 2000

Time

Camera Position Mapped to One Period

-0.2 -. ,

0 20 40 60 80 100 120 140
Periodic Time

Figure 7-3: The results of space-time calibration. The top plot shows the motion of the camera (in
x), and the bottom plot shows the camera positions remapped into one period of the lumigraph.

spatial samples in any time window of width 1 is given by

#samle__#frames

The required length of the video sequence can be determined from this equation.

To calibrate the camara in space, the time-varying elements of the scene are ignored,

and standard computer vision techniques for static scenes are applied (see Chapter 5 for

some example techniques). In this implementation, the time-varying elements are man-

ually segmented from the static elements. Since the time-varying elements tend to be

localized, this segmentation is trivial. This approach has the limitation that at least some

portion of the scene must be static for traditional computer vision algorithms to work. If

one can determine the position of the camera by other means (such as with a motion control

rig or motion sensors), then this limitation can be removed.

Some results of the space-time calibration are shown in Figure 7-3. The top plot shows

the position of the camera against absolute time. Only the x coordinate is shown, as the

147

Camera Position Mapped to One Period (zoom)

0.2-

0-

0.2

0a.

0.4

0.6 .

0.8 Time Window

82 84 86 88 90 92 94
Periodic Time

Figure 7-4: A zoomed view of a unit width time window superimposed on top of the space-time

plot. The window contains 14 cameras.

camera was moved (mostly) horizontally in an oscillating pattern. In the bottom plot, the

positions are remapped into one period of the lumigraph (Tscene is about 150 frames). This

second plot can be used to judge the uniformity of the sampling. Ideally, the space-time

plane would be uniformly sampled. The case in Figure 7-3 is far from ideal, although it is

good enough to make convincing renderings.

7.2.2 Examples

Two time-periodic lumigraphs captured using the technique described in Section 7.2.1 are

shown in Figures 7-5 and 7-6. The first is a scene containing a rotating lamp. It was

captured by waving a hand-held video camera in front of the lamp for a minute or so. The

period of the lamp is about 150 video frames, and about 2000 video frames are used in

the lumigraph. This leaves, on average, about 13 spatial cameras per unit time window.

Figure 7-4 illustrates the action of the time window. The unit time window shown has 14

148

temporally close images that (primarily) contribute to the desired image.

Three images from the lamp lumigraph are shown in Figure 7-5. The images show the

camera moving left and right with the lamp turning. Note that the virtual camera moves

horizontally because the lumigraphs only exhibit parallax in that dimension.

While these images demonstrate the viability of the approach, they also exhibit a num-

ber of artifacts. First of all, the spatial resolution is very low (only 13 cameras per unit

time window), so there is some image doubling and blurring in the images. These "out-of-

focus" effects are largely due to using a single plane as the geometry proxy. These artifacts

are especially noticeable in moving lumigraphs, and even more so in unstructured ones, as

it appears that the out-of-focus regions are "dancing" relative to the focused regions. These

problems are new to lumigraph rendering since unstructured time-dependent lumigraph

data has never before been available.

The second time-periodic lumigraph depicts a helicopter with rotating blades. The

scene period is only about 15 frames. About 900 video frames are used, achieving on

average 60 spatial samples per unit time window. The results are much better for the

helicopter (less image dancing) because of the higher spatial resolution, although the faster

motion produces more noticeable temporal blurring (which is also present as motion blur

in the original video). Figure 7-6 shows three virtual images of the helicopter lumigraph.

7.3 Summary

This chapter has presented simple techniques for extending unstructured lumigraph ren-

dering to time-dependent scenes. These techniques are demonstrated on a specific type of

time-dependent lumigraph, the time-periodic lumigraph.

Time-periodic lumigraphs represent scenes containing periodic motion. A method for

acquiring time-periodic lumigraphs is outlined. The distinguishing feature of this method

is that it uses a single continuous video sequence from one video camera to construct the

lumigraph. The resulting time-periodic lumigraphs are irregularly sampled in both space

and time, which is well-suited to the time-dependent ULR algorithm.

149

Figure 7-5: Three virtual views of a rotating lamp.

150

Figure 7-6: Three virtual views of a helicopter with spinning rotors.

151

CHAPTER 8

Conclusions and Future Work

Image-based rendering has become a popular alternative to traditional three-dimensional

computer graphics because of its promise to deliver photorealistic images at real-time rates.

This popularity is demonstrated by the recent development of a wide variety of rendering

algorithms and by the success of commercial systems using image-based representations.

This thesis introduces a new image-based rendering algorithm called unstructured lu-

migraph rendering. ULR is designed to produce high-quality images given any available

inputs (inputs consist of images and scene geometry). In doing so, it subsumes most earlier

algorithms, which can be largely distinguished by limitations in the types of inputs they

accept or do not accept. This flexibility allows ULR to generate views from input config-

urations that are unsuitable for any previous algorithm, such as hand-held video camera

footage with looming motions or images of a time-dependent scene that are irregularly

sampled in space-time.

152

8.1 Future Areas of Research

While unstructured lumigraph rendering solves many image-based rendering problems,

there are still many difficult problems that remain. The following sections detail weak-

nesses in the current ULR approach and suggests potential solutions that deserve more

investigation.

8.1.1 Better Image Correlation Functions

The image correlation function used in Chapter 4 provides a reasonable image model for

addressing image reconstruction, but it has some drawbacks. One problem is the assump-

tion that the same image correlation function is appropriate for each pixel in the desired

view. This assumption is often made because it simplifies the calculations and makes de-

termining the correlation function easier. However, in many cases, it would be better to

have a spatially-varying image correlation function.

As an example, consider the sequence of images that results from moving a video cam-

era toward an object. When the camera is far from the object, the image probably contains

the object of interest plus many others. As the camera moves toward the object, the object

becomes prominent in the images. When the camera is very close to the object, the object

generally fills the field-of-view of the camera. In this example, it is clear that Psame (0), the

probability that two pixels lie on the same object, varies as the camera moves toward the

object.

Spatial variations in the image correlation function would be expected in an image-

based rendering application with an approximate scene geometry. In areas where the ge-

ometry approximation is good, the image correlation function should have the "close to

object" form. In areas where the geometry proxy is poor, the correlation function should

reflect "far from object" behavior. Such spatial variation would provide a more "optimal"

solution to the radiance reconstruction problem.

Such a variation could be accommodated by manipulating the parameters of the analyt-

ical image correlation function given in Equations 4.4 and 4.5. Of course, some measure

of the fidelity of the geometry proxy is also required.

153

8.1.2 Non-static Video

One of the most compelling applications of ULR is rendering from simple video sequences.

This ability is extremely powerful and greatly simplifies the acquisition of image-based

scenes. However, the ULR algorithm does not work for every video sequence. It is re-

stricted to video sequences of static scenes: scenes in which objects do not move and the

lighting does not change. Equivalently, ULR is restricted to videos in which all image

variation is due to motion of the camera.

It would be a great advance to extend rendering techniques to handle video sequences

with moving objects, variable lighting, or both. In such an algorithm, a virtual view would

be specified not only by the projection matrix of a camera, but also by the desired lighting

of the scene and the desired positions of objects in the scene. Interactive techniques for

doing these operations on a single image have been developed [Oh et al. 2001], but these

techniques do not generalize well to video.

One way to handle moving objects is to segment the video frames into different re-

gions, where one region represents a static background and the other regions correspond

to different moving objects in the scene. Then, new views of the static background can be

generated using standard unstructured lumigraph rendering techniques. Holes in the back-

ground (from removed foreground objects) can be filled in using a modified version of the

field-of-view measure.

The moving objects can be recomposited into the scene using, for example, textured

billboards. A textured billboard is simply a two-dimensional planar surface with an image

mapped on it. The image can be moved slightly by changing the position of the billboard.

In this case, the textured billboard is essentially a time-dependent unstructured lumigraph

with only one image per time instant and a planar geometry proxy.

8.1.3 Multi-Image Editing

Manipulating objects within an unstructured lumigraph is useful even for static scenes. A

similar segmentation approach can be used for this task. This segmentation effectively

partitions the unstructured lumigraph into multiple unstructured lumigraphs, one for each

154

region.

By manipulating each lumigraph separately, individual objects can be moved relative to

one another and composited into new images. One drawback is that the lighting of the static

scene moves with the objects, so this approach may only be suitable for small motions or

for scenes in which the lighting is predominantly ambient.

Each of the sub-lumigraphs contains only a subset of the pixels from the original im-

ages. It is interesting to consider what to do with the "holes" in the images. It seems

necessary to distinguish two types of holes: background holes and foreground holes.

A background hole is a hole in a lumigraph that should remain a hole (i.e., the back-

ground should show through). When the lumigraph is composited on top of other lumi-

graphs, the other lumigraphs should be seen through the hole. These holes are easily rep-

resented using transparency in the lumigraph images.

A foreground hole is caused by an object that is in front of another. When rendering

a lumigraph with foreground holes, these holes should be filled in using nearby images in

the lumigraph. The rationale is that the foreground hole might contain partially occluded

objects that are visible in other views. These views can be used to fill in the hole. A good

example of this is a background lumigraph, which contains foreground holes where objects

have been segmented out.

8.2 Conclusion

Unstructured lumigraph rendering possesses a number of properties that make it well-suited

to many rendering tasks. For maximum flexibility, ULR admits unstructured inputs, both

in terms of placement and number of images as well as in the pixel correspondence (e.g.,

scene geometry) specification. It also allows simple and intuitive navigation so that users

have complete control over the virtual view. After applying number of optimizations, the

algorithm is efficient enough to run in real-time, making it suitable for interactive applica-

tions.

Unstructured lumigraph rendering takes advantage of pixel correspondence informa-

tion, when available, to generate quality renderings with sparse image information. It also

155

combines images in a view-dependent way to ensure quality rendering when geometric

information is approximate or poor. Finally, ULR can take into account the limited field-

of-view and resolution of real-world cameras. It automatically fills in invisible image re-

gions with information from other images, and it disregards input images whose apparent

resolution differ significantly from that of the desired view.

Unstructured lumigraph rendering is also very easy to extend to other modalities. Its

simple notion of a viewing ray distance can be easily extended to include other factors, as

demonstrated with time-periodic lumigraphs. Unstructured lumigraph rendering can also

be modified to work with non-metric scene representations, further extending its usefulness.

Although virtual navigation becomes much more difficult, a non-metric representation is

still useful, as shown by applying it to the practical problem of video stabilization.

156

Bibliography

AVIDAN, S., AND SHASHUA, A. 1997. Novel view synthesis in tensor space. In Pro-

ceedings of CVPR 1997, 1034-1040.

CAMAHORT, E., LERIOS, A., AND FUSSELL, D. 1998. Uniformly sampled light fields.

In Eurographics Rendering Workshop 1998, Springer Wein / Eurographics, Vienna, Aus-

tria, 117-130. ISBN 3-211-83213-0.

CHAI, J.-X., TONG, X., CHAN, S.-C., AND SHUM, H.-Y. 2000. Plenoptic sampling.

In Proceedings of ACM SIGGRAPH 2000, ACM Press / ACM SIGGRAPH / Addison

Wesley Longman, Computer Graphics Proceedings, Annual Conference Series, 307-318.

ISBN 1-58113-208-5.

CHANG, N. L., AND ZAKHOR, A. 1997. View generation for three-dimensional scenes

from video sequences. IEEE Trans. Image Process 6, 4 (April), 584-598.

CHEN, S. E., AND WILLIAMS, L. 1993. View interpolation for image synthesis. In Pro-

ceedings of SIGGRAPH 93, Computer Graphics Proceedings, Annual Conference Series,

279-288. ISBN 0-201-58889-7.

CHEN, S. E. 1995. Quicktime VR - an image-based approach to virtual environment

navigation. In Proceedings of SIGGRAPH 95, ACM SIGGRAPH / Addison Wesley, Los

157

Angeles, California, Computer Graphics Proceedings, Annual Conference Series, 29-38.

ISBN 0-201-84776-0.

COWAN, R., AND TSANG, A. 1994. The falling-leaves mosaic and its equilibrium

properties. Adv. Appl. Prob. 26, 54-62.

DARSA, L., SILVA, B. C., AND VARSHNEY, A. 1997. Navigating static environments

using image-space simplification and morphing. In 1997 Symposium on Interactive 3D

Graphics, ACM SIGGRAPH, 25-34. ISBN 0-89791-884-3.

DEBEVEC, P. E., AND MALIK, J. 1997. Recovering high dynamic range radiance maps

from photographs. In Proceedings of SIGGRAPH 97, ACM SIGGRAPH / Addison Wes-

ley, Los Angeles, California, Computer Graphics Proceedings, Annual Conference Series,

369-378. ISBN 0-89791-896-7.

DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. 1996. Modeling and rendering archi-

tecture from photographs: A hybrid geometry- and image-based approach. In Proceedings

of SIGGRAPH 96, ACM SIGGRAPH / Addison Wesley, New Orleans, Louisiana, Com-

puter Graphics Proceedings, Annual Conference Series, 11-20. ISBN 0-201-94800-1.

DEBEVEC, P. E., Yu, Y., AND BORSHUKOV, G. D. 1998. Efficient view-dependent

image-based rendering with projective texture-mapping. In Eurographics Rendering

Workshop 1998, Springer Wein / Eurographics, Vienna, Austria, 105-116. ISBN 3-211-

83213-0.

FAUGERAS, 0., AND LAVEAU, S. 1994. Representing three-dimensional data as a col-

lection of images and fundamental matrices for image synthesis. In Proceedings of the

International Conference on Pattern Recognition, Computer Society Press, 689-691.

FAUGERAS, 0. D., LUONG, Q.-T., AND MAYBANK, S. J. 1992. Camera self-

calibration: Theory and experiments. In Proceedings of European Conference on Com-

puter Vision, 321-334.

GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. F. 1996. The

lumigraph. In Proceedings of SIGGRAPH 96, ACM SIGGRAPH / Addison Wesley, New

158

Orleans, Louisiana, Computer Graphics Proceedings, Annual Conference Series, 43-54.

ISBN 0-201-94800-1.

HARTLEY, R. I., DE AGAPITO, L., REID, I. D., AND HAYMAN, E. 1999. Camera

calibration and the search for infinity. In Proceedings of ICCV '99, 510-517.

HARTLEY, R. 1993. Cheirality invariants. In Proc. DARPA Image Understanding Work-

shop, 745-753.

HEIGL, B., KOCH, R., POLLEFEYS, M., DENZLER, J., AND VAN GOOL, L. 1999.

Plenoptic modeling and rendering from image sequences taken by hand-held camera.

Proc. DAGM '99, 94-101.

HORN, B. K. P. 1986. Robot Vision. MIT Press.

HORRY, Y., ICHI ANJYO, K., AND ARAI, K. 1997. Tour into the picture: Using a spidery

mesh interface to make animation from a single image. In Proceedings of SIGGRAPH

97, ACM SIGGRAPH / Addison Wesley, Los Angeles, California, Computer Graphics

Proceedings, Annual Conference Series, 225-232. ISBN 0-89791-896-7.

IRANI, M., Rousso, B., AND PELEG, S. 1994. Recovery of ego-motion using image

stabilization. In Proceedings of ICVPR '94, 454-460.

ISAKSEN, A., MCMILLAN, L., AND GORTLER, S. J. 2000. Dynamically reparame-

terized light fields. In Proceedings of ACM SIGGRAPH 2000, ACM Press / ACM SIG-

GRAPH / Addison Wesley Longman, Computer Graphics Proceedings, Annual Confer-

ence Series, 297-306. ISBN 1-58113-208-5.

LEE, A. B., HUANG, J., AND MUMFORD, D. 1999. Random-collage model for natural

images. (Submitted to) International Journal of Computer Vision.

LEVOY, M., AND HANRAHAN, P. M. 1996. Light field rendering. In Proceedings of

SIGGRAPH 96, ACM SIGGRAPH / Addison Wesley, New Orleans, Louisiana, Computer

Graphics Proceedings, Annual Conference Series, 31-42. ISBN 0-201-94800-1.

159

LEVOY, M., PULLI, K., CURLESS, B., RusINKIEWICZ, S., KOLLER, D., PEREIRA,

L., GINZTON, M., ANDERSON, S., DAVIS, J., GINSBERG, J., SHADE, J., AND FULK,

D. 2000. The digital Michelangelo project: 3D scanning of large statues. In Proceedings

of ACM SIGGRAPH 2000, ACM Press / ACM SIGGRAPH / Addison Wesley Longman,

Computer Graphics Proceedings, Annual Conference Series, 131-144. ISBN 1-58113-

208-5.

LHUILLIER, M., AND QUAN, L. 1999. Image interpolation by joint view triangulation.

In Proceedings of CVPR '99.

MATUSIK, W., BUEHLER, C., AND MCMILLAN, L. 2001. Polyhedral visual hulls for

real-time rendering. In Rendering Techniques 2001: 12th Eurographics Workshop on

Rendering, Eurographics, 115-126. ISBN 3-211-83709-4.

MCMILLAN, L., AND BISHOP, G. 1995. Plenoptic modeling: An image-based rendering

system. In Proceedings of SIGGRAPH 95, ACM SIGGRAPH / Addison Wesley, Los

Angeles, California, Computer Graphics Proceedings, Annual Conference Series, 39-46.

ISBN 0-201-84776-0.

MCMILLAN, L. 1996. An Image-Based Approach to Three-Dimensional Computer

Graphics. PhD thesis, Dept. of Computer Science, University of North Carolina at Chapel

Hill.

NAEMURA, T., TAGO, J., AND HARASHIMA, H. 2002. Real-time video-based modeling

and rendering of 3d scenes. IEEE Computer Graphics and Applications, 66-73.

NAYAR, S. K. 1997. Catadioptric omnidirectional camera. In Proc. of IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) 1997.

OH, B. M., CHEN, M., DORSEY, J., AND DURAND, F. 2001. Image-based modeling and

photo editing. In Proceedings ofACM SIGGRAPH 2001, ACM Press / ACM SIGGRAPH,

Computer Graphics Proceedings, Annual Conference Series, 433-442. ISBN 1-58113-

292-1.

160

Ooi, R., HAMAMOTO, T., NAEMURA, T., AND AIZAWA, K. 2001. Pixel independent

random access image sensor for real time image-based rendering. IEEE Intern. Conf

Image Process. (ICIP2001) 20, 3, 193-196.

PIGHIN, F., HECKER, J., LISCHINSKI, D., SZELISKI, R., AND SALESIN, D. H. 1998.

Synthesizing realistic facial expressions from photographs. In Proceedings ofSIGGRAPH

98, ACM SIGGRAPH / Addison Wesley, Orlando, Florida, Computer Graphics Proceed-

ings, Annual Conference Series, 75-84. ISBN 0-89791-999-8.

POLLEFEYS, M., KOCH, R., AND VAN GOOL, L. 1999. Self-calibration and metric

reconstruction in spite of varying and unknown internal camera parameters. International

Journal of Computer Vision 32, 1, 7-25.

PULLI, K., COHEN, M. F., DUCHAMP, T., HOPPE, H., SHAPIRO, L., AND STUET-

ZLE, W. 1997. View-based rendering: Visualizing real objects from scanned range and

color data. In Eurographics Rendering Workshop 1997, Eurographics / Springer Wien, St.

Etienne, France, 23-34. ISBN 3-211-83001-4.

RADEMACHER, P., AND BISHOP, G. 1998. Multiple-center-of-projection images. In

Proceedings of SIGGRAPH 98, ACM SIGGRAPH / Addison Wesley, Orlando, Florida,

Computer Graphics Proceedings, Annual Conference Series, 199-206. ISBN 0-89791-

999-8.

RASKAR, R., BROWN, M. S., YANG, R., CHEN, W.-C., WELCH, G., TOWLES, H.,

SEALES, B., AND FUCHS, H. 1999. Multi-projector displays using camera-based reg-

istration. In IEEE Visualization '99, IEEE, San Francisco, California, 161-168. ISBN

0-7803-5897-X.

RUDERMAN, D. L. 1997. Origins of scaling in natural images. Vision Research 37, 23,

3385-3398.

SANDER, P. V., Gu, X., GORTLER, S. J., HOPPE, H., AND SNYDER, J. 2000. Silhou-

ette clipping. In Proceedings of ACM SIGGRAPH 2000, ACM Press / ACM SIGGRAPH

161

/ Addison Wesley Longman, Computer Graphics Proceedings, Annual Conference Series,

327-334. ISBN 1-58113-208-5.

SCHARSTEIN, D. 1996. Stereo vision for view synthesis. In Proceedings of CVPR '96,

852-858.

SEITZ, S. M., AND DYER, C. R. 1996. View morphing: Synthesizing 3d metamorphoses

using image transforms. In Proceedings of SIGGRAPH 96, ACM SIGGRAPH / Addison

Wesley, New Orleans, Louisiana, Computer Graphics Proceedings, Annual Conference

Series, 21-30. ISBN 0-201-94800-1.

SHADE, J., GORTLER, S. J., WEI HE, L., AND SZELISKI, R. 1998. Layered depth

images. In Proceedings ofSIGGRAPH 98, ACM SIGGRAPH / Addison Wesley, Orlando,

Florida, Computer Graphics Proceedings, Annual Conference Series, 231-242. ISBN 0-

89791-999-8.

SHEWCHUK, J. R. 1996. Triangle: Engineering a 2d quality mesh generator and delaunay

triangulator. First Workshop on Applied Computational Geometry, 124-133.

SHI, J., AND TOMASI, C. 1994. Good features to track. In 1994 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR'94), 593 - 600.

SHUM, H.-Y., AND HE, L.-W. 1999. Rendering with concentric mosaics. In Proceed-

ings of SIGGRAPH 99, ACM SIGGRAPH / Addison Wesley Longman, Los Angeles,

California, Computer Graphics Proceedings, Annual Conference Series, 299-306. ISBN

0-20148-560-5.

SLOAN, P.-P., COHEN, M. F., AND GORTLER, S. J. 1997. Time critical lumigraph

rendering. In 1997 Symposium on Interactive 3D Graphics, ACM SIGGRAPH, 17-24.

ISBN 0-89791-884-3.

SZELISKI, R., AND SHUM, H.-Y. 1997. Creating full view panoramic mosaics and

environment maps. In Proceedings of SIGGRAPH 97, ACM SIGGRAPH / Addison Wes-

ley, Los Angeles, California, Computer Graphics Proceedings, Annual Conference Series,

251-258. ISBN 0-89791-896-7.

162

SZELISKI, R. 1996. Video mosaics for virtual environments. IEEE Computer Graphics

and Applications (March), 22-30.

TRIGGS, B., McLAUCHLAN, P., HARTLEY, R., AND FITZGIBBON, A. 2000. Bundle

adjustment - A modem synthesis. In Vision Algorithms: Theory and Practice, W. Triggs,

A. Zisserman, and R. Szeliski, Eds., LNCS. Springer Verlag, 298-375.

TRIGGS, B. 1996. Factorization methods for projective structure and motion. In Pro-

ceedings of CVPR '96, IEEE Computer Society Press, 845-851.

WILBURN, B., SMULSKI, M., LEE, K., AND HOROWITZ, M. A. 2002. The light field

video camera. Proceedings of Media Processors 2002, SPIE Electronic Imaging 2002.

WOOD, D. N., AZUMA, D. I., ALDINGER, K., CURLESS, B., DUCHAMP, T., SALESIN,

D. H., AND STUETZLE, W. 2000. Surface light fields for 3d photography. In Proceedings

of ACM SIGGRAPH 2000, ACM Press / ACM SIGGRAPH / Addison Wesley Longman,

Computer Graphics Proceedings, Annual Conference Series, 287-296. ISBN 1-58113-

208-5.

ZHANG, Z. 1998. A flexible new technique for camera calibration. Microsoft Research

Technical Report: MSR-TR-98-71 (December).

163

