
Retrieval of Cloud-Cleared Atmospheric Temperature

Profiles from Hyperspectral Infrared and Microwave

Observations

by

William Joseph Blackwell

B.E.E., Georgia Institute of Technology (1994)
S.M., Massachusetts Institute of Technology (1995)

BARKER
MASSACHUSETS tN§TITUTE

OFTECHNOLOGY

JUL 3 12002

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

@ Massachusetts Institute of Technology 2002. All rights reserved.

I

Author.............................
Departmenof Electrical

Certified by.......

...................................
Engineering and Computer Science

May 14, 2002

David Hyotaelin
Professor of Electrical Engineering

Thesis Supervisor

Accepted by .................
Arhur C. Smith

Chairman, Departmental Committee on Graduate Students

I





Retrieval of Cloud-Cleared Atmospheric Temperature Profiles from

Hyperspectral Infrared and Microwave Observations

by

William Joseph Blackwell

Submitted to the Department of Electrical Engineering and Computer Science
on May 14, 2002, in partial fulfillment of the

requirements for the degree of
Doctor of Science

Abstract

This thesis addresses the problem of retrieving the temperature profile of the Earth's at-
mosphere from overhead infrared and microwave observations of spectral radiance in cloudy
conditions. The contributions of the thesis are twofold: improvements in 1) microwave in-
strumentation and 2) hyperspectral signal processing and estimation algorithms.

The NPOESS Aircraft Sounder Testbed-Microwave (NAST-M) passive spectrometer
was designed, fabricated and deployed. NAST-M provides accurate brightness temperature
measurements in 16 channels near the oxygen absorption lines at 50-57 GHz and 118.75
GHz, permitting the first reliably accurate retrieval images of temperature profiles and
precipitation structure in cloudy areas.

The correlation structure of the NPOESS Aircraft Sounder Testbed-Infrared (NAST-I)
instrument noise was analyzed in the spectral and spatial domains using the Iterated Order-
Noise (ION) algorithm [1] for two representative flights. Results indicate that vibration-
induced noise was the dominant component, but that it could be significantly reduced by
filtering in the spatial domain.

Novel multi-pixel cloud clearing and temperature profile retrieval algorithms were devel-
oped for simulated Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sound-
ing Unit (AMSU) radiances using neural networks. RMS temperature profile retrieval errors
of -0.5 K were obtained for all levels of the atmosphere from 0-15 km in clear air at a hori-
zontal resolution of 2000 km2 and a vertical resolution of 1 km. RMS radiance errors under
cloudy conditions for altitudes from 0 to 10 kilometers ranged from 1.25 K to 0.1 K for
radiance retrievals near 15 microns, and from 0.8 K to 0.05 K for radiance retrievals near 4
microns.

Validation of the simulation results with NAST observations was hampered by the lack
of a statistically-diverse data set accompanied by cloud truth. An upper bound on cloud-
clearing performance (NEAT) was estimated to be approximately a factor of two worse than
the simulation results accompanied by ground truth. An improvement of approximately 25
percent in RMS radiance cloud-clearing performance was realized by rejecting 20 percent
of soundings based on a neural network-derived metric.
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Chapter 1

Introduction

1.1 Motivation

M EASUREMENTS of the state and composition of the Earth's surface and atmo-

sphere have been made using passive microwave and infrared sensors for over fifty

years[2]. Applications of these remote measurements are numerous, and encompass fields

ranging from meteorology to oceanography and geology. For example, satellite measure-

ments of atmospheric temperature are used to improve weather forecasting models, analyze

climate change, and study the radiation budget of Earth.

Recent advances in airborne and spaceborne platforms have made atmospheric measure-

ments possible on a global scale, and advances in sensor technologies have pushed the limits

of achievable spatial and temporal resolution to unprecedented levels. These performance

improvements, however, are not without concomitant data processing difficulties. The vast

amount of data generated by present- and next-generation sounders must be transmitted

and processed in a timely manner (usually real-time), which requires processing algorithms

that are both efficient and robust. The latter requirement is often more challenging, as most

processing methods are sensitive to noise originating both from the measurement system

and from geophysical "clutter", such as surface variability, trace constituents, and clouds.

Clouds often introduce the largest source of error in atmospheric profiling measurements,

and in the case of the temperature profile retrieval, can contribute errors of several degrees

Kelvin [3]. The problem is compounded by the ubiquity of clouds - a global study from
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1989-1993 found that, on average, clouds cover approximately 65 percent of the Earth's

surface over land and approximately 80 percent over water [4].

Current weather prediction models require measurements of radiances characterizing the

Earth's temperature profile to within small fractions of a degree Kelvin. While this level

of accuracy is currently obtainable in clear air, significant instrumentation and data pro-

cessing improvements are needed to achieve this accuracy in cloudy conditions. This thesis

addresses both of these areas. The NPOESS Aircraft Sounding Testbed-Microwave (NAST-

M) sounder was developed and deployed, providing the first high-resolution microwave data

co-registered near two opaque oxygen lines and also co-registered with hyperspectral im-

agery near 3.6-16.1 /Lm. Signal processing and estimation techniques were derived and

evaluated for retrieving the atmospheric temperature profile in the presence of clouds.

1.2 Problem statement and general approach

Input output
Message Input Transducer/ R Channel M Output Transducer/ Message

Transmitter 1_ Receiver

nj n2

Figure 1-1: Canonical communication system.

The canonical communication system shown in Fig. 1-1 can be generalized to define

the remote sensing retrieval problem in a familiar context. In this example, information is

converted into electrical signals and transmitted over a channel. The signal is corrupted by

noise processes (represented schematically in the figure by ni) along the transmission path,

distorted by the channel, and then corrupted by measurement error (represented schemat-

ically in the figure by n2) at the receiver. In the simplest case, the noise processes are

additive white Gaussian noise, and the channel is a linear time-invariant (LTI) system. It

is not uncommon to encounter multiplicative noise processes and non-linear time-varying
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channels. While there has been a great deal of research on signal processing techniques

that recover information transmitted over an LTI channel in the presence of white Gaus-

sian noise[5], the existence of multiplicative noise and/or nonlinear time-varying channels

complicates the analysis.

A remote sensing system operates in much the same way as the communication system

previously discussed. Information about the state and composition of the atmosphere is

related to the radiation intensity measured by a sensor. This relation is described by

Planck's radiation law and the equation of radiative transfer, to be discussed in Chapter 2.

As a simple example, consider the task of retrieving the surface temperature of the Earth

(the message) given a remote measurement of upwelling radiation intensity. The surface

emits a radiance R that is a well-known function of its temperature, however this radiance

must travel through the Earth's atmosphere to the sensor (analogous to a communication

signal traveling through a channel). The atmosphere will change the radiance in a fashion

that depends on a number of parameters, including the composition of the atmosphere, the

amount of cloud cover present, and the frequency of the measured radiation, to name a

few. The sensor will also introduce random errors during the course of measurement. The

receiver in the remote sensing context is very similar to the receiver in the communication

context; the desired signal, or information, must be extracted from a noisy measurement

M.

This thesis addresses the specific problem of retrieving the temperature profile of the

Earth's atmosphere in the presence of clouds as a function of altitude, given observations

of electromagnetic radiation measured by a sensor at different frequencies. The exact prob-

abilistic relationships of all the geophysical signals and contaminant signals (noise and

geophysical clutter) will generally not be known, and must be estimated. The primary

goals of the thesis are therefore twofold: first, information content analysis methods will be

developed that characterize and reduce noise processes and/or geophysical clutter; second,

linear and nonlinear estimators will be developed that produce estimates of the desired

geophysical parameters.
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1.3 Thesis outline

Chapter 2 summarizes the relevant physical issues in passive atmospheric sounding.

The composition and thermal structure of the atmosphere is discussed, including a brief

overview of cloud microphysics. Fundamentals of electromagnetic wave propagation are cov-

ered, including polarization and reflection/transmission at a boundary. The mechanisms

of gaseous absorption are outlined, and the absorption coefficient and transmission func-

tion are defined. Scattering is then discussed, with a focus on Mie theory and the Rayleigh

approximation. Simple radiative transfer concepts are introduced, including equilibrium ra-

diation, weighting functions, and linearization methods. Finally, a survey of radio-frequency

and optical instrumentation techniques is presented.

Chapter 3 summarizes the signal processing and estimation techniques commonly used

in hyperspectral data analysis. Two interpretations of the information content in a mea-

surement are given and related: information theoretic (Shannon) and the degrees of free-

dom. Principal components analysis techniques (both nonlinear and linear) are introduced.

Blind signal processing is briefly discussed. A Bayesian formulation of geophysical esti-

mation theory is then discussed, including minimum mean-square error estimators. Non-

Bayesian estimators are then covered, including the minimum-information estimator and

the maximum-resolution estimator. Artificial neural networks are then introduced in an

estimation context.

Chapter 4 details the NAST-M instrument and representative flight results from the

Third Convection and Moisture Experiment (CAMEX-3) and the Winter Experiment (WIN-

TEX). A brief summary of the NPOESS Aircraft Sounding Testbed-Infrared (NAST-I) is

given. In Section 4.1, the radiometer specifications are discussed, including the local os-

cillator frequencies and passband characteristics. The scanning assembly and field-of-view

specifications are then given. The construction of the calibration loads is summarized.

Auxiliary systems, instrument control, and data handling are outlined. The calibration

of NAST-M is discussed in Section 4.2. A weighted least-squares calibration procedure is

outlined. A thermal gradient through the heated calibration load is modeled, and a correc-

tion is formulated. Antenna-beam spillover while viewing the internal calibration loads is
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modeled, and a correction is formulated. In Section 4.3, the final calibration is checked by

comparing observed brightness temperatures with a coincident overpass of the Advanced

Microwave Sounding Unit (AMSU) instrument on the NOAA-15 satellite during WINTEX.

Chapter 5 provides a characterization of NAST-I system noise and methods for its

reduction. Section 5.1 outlines the sources of noise in the NAST-I instrument and categorizes

them as "additive" or "scene-dependent". A mathematical characterization of the dominant

noise source (vibration-induced noise) is given. A summary of the flight data used for the

analyses appears in Section 5.2. An analysis of the spectrally-uncorrelated component of

the NAST-I system noise is given in Section 5.3. An estimate of the RMS variation of

the spectrally-correlated component is also given. Section 5.4 provides a characterization

of the spectral correlation structure of the spectrally-correlated noise component. Twenty-

four representative channels are chosen for the analysis, and their properties are discussed.

Section 5.4 provides a characterization of the spatial correlation structure of the spectrally-

correlated noise component. Two NAST-I "pseudochannels" are formulated for the analysis.

Chapter 6 presents a methodology for the development and evaluation of estimators

for retrieving the cloud-cleared temperature profile. Simulated radiances from the Atmo-

spheric Infrared Sounder (AIRS), AMSU instruments are used to derive the estimators and

test the performance. Section 6.2 summarizes the simulation procedure, including the char-

acterization of the temperature profile set, the surface model, and the cloud model used.

The single-pixel information content of clouds is examined in Section 6.3 using principal

components analysis. Single-pixel temperature profile retrievals using neural networks are

discussed in Section 6.4. The retrievals are then used to derive a single-pixel cloud im-

pact metric (cloud flag). In Section 6.5, the single-pixel algorithms are extended to include

spatial information present in multi-pixel "clusters". Multi-pixel cloud flags are derived.

Multi-pixel statistical cloud-clearing algorithms are developed to retrieve clear-column ra-

diances using regression and neural network estimators. Finally, the sensitivity to surface

emissivity is examined in Section 6.6.

Chapter 7 presents NAST-I/M flight results from CAMEX-3 and WINTEX. NAST-M

data from several overpasses of Hurricane Bonnie during CAMEX-3 are analyzed in Section

7.1. A two-band image of an eye overpass is shown, and a retrieval of the temperature
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perturbation within an eye is given. Particle size information is presented using a metric

derived from simulated data. The Multispectral Atmospheric Mapping Sensor (MAMS)

used to provide high-resolution visible and infrared cloud imagery is summarized in Section

7.2. The construction of the CAMEX-3 cloudy radiance database is discussed in Section

7.3. The information content of cloud-induced radiance variations is examined in Section

7.4 using principal components analysis.

Chapter 8 evaluates some of the results of single-pixel results Chapter 6 using NAST

observations of clouds over water from CAMEX-3. The information content of clouds ob-

served in the CAMEX-3 measurements are compared with the simulation results in Section

8.1. The impact of NAST-observed clouds on simulated retrieval performance is evaluated

in Section 8.2. A neural network estimator that estimates the magnitude of the NAST

cloud-clearing error is developed in Section 8.3.

Chapter 9 summarizes the contributions of the thesis and suggests opportunities for

further research.
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Chapter 2

Physical Foundations of

Atmospheric Sounding

T HE following is a broad overview of relevant physical issues in passive atmospheric

sounding and is intended to provide background and context to results presented

later in the thesis. For additional details, the reader is referred to references on tropospheric

remote sensing [6], atmospheric physics [7], atmospheric radiation [8], and electromagnetic

wave propagation [9].

2.1 Overview of the Composition and Thermal Structure of

the Earth's Atmosphere

The Earth's atmosphere extends over 100 km from its surface, and can roughly be

categorized into four layers based on the thermal and chemical phenomena that occur within

each layer. These layers are (in increasing altitude) the troposphere, the stratosphere, the

mesosphere, and the thermosphere. The boundaries between each layer are usually not

well-defined, but do show characteristic features. They are the tropopause, stratopause,

and mesopause, respectively. The troposphere extends from the surface to an altitude of

approximately 12 km and is characterized by a steady decrease in temperature with altitude.

Almost all of the Earth's weather is created in the troposphere, and therefore it is the focus of
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most atmospheric sounding research, including this thesis. The tropopause marks the region

of the atmosphere where the temperature gradually changes from decreasing with altitude

to increasing with altitude, and forms a somewhat nebulous boundary layer between the

troposphere and the stratosphere. The stratosphere extends to an altitude of approximately

40 km, and is characterized by a sharp increase in temperature with altitude due to the

absorption of ultraviolet radiation by ozone. High cirrus clouds sometimes form in the

lower stratosphere, but for the most part there are no significant weather patterns in this

layer. The mesosphere extends from approximately 40km to 80km, and is characterized by a

decreasing temperature with altitude. Extremely low temperatures (- -150' C) present at

the top of the mesosphere sometimes allow the formation of noctilucent clouds, thought to

be made of ice crystals clinging to dust particles. The transition from the mesosphere to the

final thermosphere layer begins at an altitude of approximately 80 km. The thermosphere

is characterized by warmer temperatures caused by the absorption of the sun's short-wave

ultraviolet radiation. This radiation penetrates the upper atmosphere, stripping atoms of

their electrons and giving them a positive charge. These electrically charged atoms build

up to form a series of layers, often referred to as the ionosphere.

2.1.1 Chemical composition of the atmosphere

The Earth's atmosphere is composed of a variety of gases. Each gas interacts char-

acteristically with electromagnetic radiation of a given frequency. This relationship forms

the physical basis by which the atmospheric temperature can be measured by observing

radiation of different frequencies that has been emitted by and transmitted through the

atmosphere.

The average fractional volumes of various species in the Earth's atmosphere are given

in Table 2.1. Perhaps the most important gases in the atmosphere, from the point of

view of their interaction with electromagnetic radiation, are water vapor, oxygen, carbon

dioxide, and ozone. Oxygen and carbon dioxide are well-mixed in the atmosphere below

approximately 100 km, and therefore frequencies near the resonances of these molecules

are desirable for temperature sounding. The vertical distribution of ozone has a maximum

number density near 25 km. Above 30 km, ozone is rapidly formed by photochemical
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Table 2.1: Composition of the Earth's atmosphere [6].

Molecule[ Volume Fractiont Comments
Photochemical dissociation high

in the ionosphere; mixed

at lower levels

Photochemical dissociation

above 95 km; mixed

at lower levels

Highly variable; photodissociates

above 80 km

Mixed up to 110 km;

diffusive separation above

Slightly variable; mixed up to

100 km; dissociated above

Mixed in troposphere; dissociated

in mesosphere

Slightly variable at surface;

dissociated in stratosphere

and mesosphere

Variable photochemical

and combustion product

Highly variable;

photochemical origin

Industrial origin; mixed

in troposphere, dissociated

in stratosphere

tFraction of lower tropospheric air

N 2

02

H2 0

A

Co 2

CH4

N2 0

Co

03

CFC13 and

CF 2 Cl 2

0.7808

0.2095

< 0.04

9.34 x 10-3

3.45 x 10- 4

1.6 x 10-6

3.5 x 10-7

7 x 10-8

~ 10~8

1-2 x10- 0
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reactions from oxygen so that an equilibrium is established during the daylight hours. Below

this level, ozone is created more slowly and is highly variable. Water vapor is especially

important in the troposphere because of its role in the formation of clouds and precipitation

and in transporting significant amounts of energy in the form of latent heat and infrared

radiation. Water vapor is extremely variable near the surface-water vapor may account for

up to 4 percent of a tropical atmosphere, while the abundance in a polar atmosphere may

be more than an order of magnitude less.

2.1.2 Vertical distribution of pressure and density

Vertical variations in the pressure and density of the Earth's atmosphere are much

greater than either the horizontal or temporal variations. It is therefore helpful to define

a reference or "standard"1 atmosphere which is a representation of the atmosphere as a

function of height only. Below an altitude of 100 km, the atmospheric pressure and density

are almost always within ±30 percent of the standard atmosphere.

Atmospheric density decreases with altitude due to the Earth's gravitational field. If a

condition of static equilibrium is assumed, the relationship between density and pressure as

a function of altitude may be expressed by the following differential equation:

dp = -gp dz, (2.1)

where p and p are the pressure and density at altitude z measured vertically upward from the

surface. The change in gravitational force with altitude is small enough over the relatively

short extent of the atmosphere to be ignored. The ideal gas equation PV = nRT can be

used to relate the density of an ideal gas of molecular weight Mr to its temperature and

pressure:

Mrp
p= -RT, (2.2)

'The horizontal and temporal variations of the Earth's atmosphere do vary substantially on a global
and seasonal scale. A wide variety of "standard" atmospheres have been tabulated for various geographical
regions and seasonal periods [10].
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where R is the gas constant per mole, and T is the temperature (K). Equation 2.1 can then

be expressed as

dp = -dz (2.3)
p H

which can be integrated to find the pressure p at altitude z:

P = P0 exp - zf , (2.4)

where po is the surface pressure and H = RT/Mrg is known as the scale height. The scale

height is the increase in altitude necessary to reduce the pressure by a factor of e. In the

troposphere, H typically varies between -6 km at T = 210 K to -8.5 km at T = 290 K.

2.1.3 Thermal structure of the atmosphere

The macroscopic thermal features of the atmosphere were outlined previously. We now

examine features that occur on a finer vertical scale, with a focus on the lower troposphere.

The bottom 1-2 km of the atmosphere exhibits the greatest thermal variability due to strong

surface interactions and diurnal variations. At some latitudes, temperature inversions exist

in the lowest 2-3 km of the atmosphere. Above 3 km, there is a systematic decrease of

temperature with altitude that can be characterized by an adiabatic lapse rate, as follows.

Continuing the assumption of the previous section that the atmosphere is in hydrostatic

equilibrium, the first law of thermodynamics can be applied to a unit "parcel" of atmospheric

mass:

dq = c, dT + p dV, (2.5)

where c, is the specific heat at constant volume. Provided no heat enters or leaves the

parcel (i.e., the process is adiabatic), the quantity dq is zero. Equation 2.5 can then be

substituted into the differential form of the ideal gas law to yield:

dT g , (2.6)
dZ cp
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where c, is the specific heat at constant pressure and ' is the lapse rate. Equation 2.6

shows that the change in temperature with altitude is constant, for constant c, and g.

Under typical tropospheric conditions, c, varies slightly with altitude, and the dry adiabatic

lapse rate in the troposphere is approximately 10 K/km. If the latent heat released by the

condensation of rising moist air is considered, the average lapse is approximately 6.5 K/km.

2.1.4 Cloud microphysics

Clouds affect the energy balance of the atmosphere through two mechanisms: 1) water

cycle changes, including the release of latent heat through condensation and the removal

of liquid water through precipitation, and 2) radiation budget changes, including the scat-

tering, absorption, and emission of solar and terrestrial radiation. In future sections of the

thesis, the microphysical properties of clouds (taken here to mean the size and shape of the

particles and their volume concentration) will be used to characterize regions of precipita-

tion by examining their interaction with microwave radiation. It is therefore useful to review

several of the salient details of the microphysical structure of clouds and precipitation.

The microphysical properties of clouds depend highly on the size, shape, and phase of

the water particles. Water droplets are typically smaller than 100 pm and are spherical. The

distribution of water droplet concentration (the number of droplets per volume existing in a

differential radius range dr) is reasonably approximated by analytic functions. A modified

Gamma distribution is often used for this purpose. Table 2.2 gives average values of the

number of particles (No), mean droplet radius (rm), and cloud liquid water density (1) for

a variety of clouds. Raindrops are generally nonspherical, resembling oblate spheroids

with an aspect ratio (width-to-length ratio) that decreases as the drop size increases. One

analytic function that is commonly used to relate raindrop size distributions to rainrate

is the Marshall-Palmer distribution [12]. Ice crystals form in a wide variety of sizes and

shapes. In addition to simple polyhedron forms, irregular crystals or combinations of simple

shapes readily appear in nature.
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Table 2.2: Representative dropsize concentrations (No), mean particle radius (rm), and
liquid water content (1) for several cloud types [11].

2.2 Electromagnetic wave propagation

The thermal and compositional state of the atmosphere affects both the generation and

propagation of electromagnetic (EM) waves. For now, we ignore the source of the EM waves

and focus instead on their propagation through a homogeneous, lossless medium.

2.2.1 Maxwell's equations and the wave equation

In a source-free, homogeneous, and isotropic medium with permittivity E and permeabil-

ity p, the spatial and temporal variation of electric and magnetic fields are related according

to Maxwell's equations:

V X H =E-E
at

V -E= 0

V - = 0.

(2.7)

(2.8)

(2.9)

(2.10)

Cloud Type No rm I

(cm- 3 ) (Am) (gm- 3)
Stratus (ocean) 50 10 0.1-0.5

Stratus (land) 300-400 6 0.1-0.5

Fair-weather Cumulus 300-500 4 0.3

Maritime Cumulus 50 15 0.5

Cumulonimbus 70 20 2.5

Cumulus Congestus 60 24 2.0

Altostratus 200-400 5 0.6
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A wave equation can be derived by taking the curl of Eq. 2.8 and substituting Eq. 2.9. After

using the vector identity V x (V x $) = V(V - ) V2 E and Eq. 2.10, we find:

- 2
E = E 5j2 E(2.11)

where the Laplacian operator V 2 in a rectangular coordinate system is

02 a2 02
V 2 =-+ 7+

The wave equation (2.11) is a second-order partial differential equation of space and time

coordinates x, y, z, and t. A simple solution to the wave equation is

E(F, t) = Eo cos(27rt ± k -F) (2.12)

where k = kkx + Sky + skz and r = kr + yy + iz. Equation 2.12 represents two waves

propagating in opposite directions in the k direction with temporal phase 27rvt and spatial

phase k - F. A spectrum of values of frequency (v) found in atmospheric remote sensing

systems is shown in Fig. 2-1.

2.2.2 Polarization

The electric field vector of a uniform plane wave traveling in the +z direction must lie

in the xy-plane perpendicular to the z-axis. As time progresses, the tip of the electric field

vector traces a curve in the xy-plane. It is the shape of this curve (linear, circular, or ellipti-

cal) that determines the polarization of the plane wave. If the curve is circular or elliptical,

the tip may move in either a clockwise or counterclockwise direction. Two electromagnetic

waves, identical in all respects except for their polarization state, can interact differently

with matter. It is the very nature of these differences that are exploited in certain remote

sensing methods.
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Stokes parameters

A mathematical discussion of polarization can be facilitated by decomposing the E

vector into two components perpendicular to the direction of propagation, k, for a fixed

point in space:

E = hEh + 9E, = heh cos(27rv - 'Ph) + 1 e, cos(27rv - p,) (2.13)

where k, h, and ' form an orthogonal system mutually perpendicular to one another. The

four Stokes parameter may then be defined as follows:

I = -(e2 + ) (2.14)
77 h+e

Q = ( 2) (2.15)

2
U = -ehev cos(P) (2.16)

2
V = -ehev sin(P) (2.17)

77

where 'p is the phase difference Ph - ov and r = V,/-1i7L is the characteristic impedance. In

practice, it is often easier to measure the Stokes parameter rather than measure eh, ev, and

'P directly.

2.2.3 Reflection and transmission at a planar boundary

Electromagnetic radiation from the sun or the cosmic background can reflect off cloud

tops and the surface of the Earth. The characterization of the transmitted and reflected

components of radiation is necessary to develop cloud and surface models. Consider a

linearly-polarized plane wave propagating in free space along direction ki that is incident

upon a planar dielectric material with index of refraction n = cyji at an incidence angle

of 0j. The electric fields for the incident, reflected, and transmitted waves can be expressed
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as (assuming a TE wave propagating in the xz plane):

Ei= yEie3

Er =yEre- (2.18)

Et = TEte-jk,-

where F and T are the complex reflection and transmission coefficients, respectively. The

tangential components of the net electric field must vanish at the boundary, requiring the

tangential components of all three k vectors to be equal along the boundary. The tangential

components of the k vectors can be expressed in terms of the angles of incidence, reflection,

and transmission to yield

ki sin Oi = kr sinOr = kt sinOt, (2.19)

where ki = kr = wvftzi is the magnitude of the propagation vectors ki and kr,. The

magnitude of the transmitted wave vector is kt = wV7lit, which is in general not equal to

ki. Substitution into Eq. 2.19 gives the reflection law

O, = oi, (2.20)

and Snell's law

sin Ot k - (2.21)
sinO kt nt

Given k, and kt, the complex reflection and transmission coefficients can be found by

supplementing the boundary condition for continuity of the electric field with a similar

equation for the tangential magnetic field. For TE waves,

Tit cos Oi - qj cos (2
rt cos &i + ri cos (2

TTE = co(2s23)
rt cos 9 i + 7ii cos (

41



42 CHAPTER 2. PHYSICAL FOUNDATIONS OF ATMOSPHERIC SOUNDING

and for TM waves,

nicos 04- nt cos Ot
lFTM = 9 + (2.24)

T/i Cos Oi + ?It Cos Ot
2,qj cos Oi

TTM = -(2.25)
?7jcos 9i + 7t Cos Ot

As an important consequence of the preceding equations, unpolarized radiation incident

upon a planar dielectric surface can become partially or totally polarized on reflection. For

example, a portion of the unpolarized microwave radiation emitted by the atmosphere is

reflected by the ocean surface and another portion is absorbed and re-emitted by the ocean

surface. However, the TE and TM components of the emitted radiation are different when

viewed from oblique angles, a characteristic that can be used to discriminate surface water

from rainfall.

2.3 Absorption of electromagnetic waves by atmospheric gases

A knowledge of the mechanisms of electromagnetic radiation interaction with matter,

as well as some of the fundamental properties of matter itself, is necessary to infer and

interpret information about the atmosphere. In the following two sections, the interactions

are described on a microscopic (molecular) and macroscopic (particle) level.

2.3.1 Mechanisms of molecular absorption

The total internal energy of an isolated molecule consists of three types of energy states,

£ = Ee + Ev + Er (2.26)

where E, = electronic energy, E, = vibrational energy, and Er = rotational energy. Rota-

tional energy is associated with rotational motions of the atoms of the molecule about its

center of mass, and vibrational energy is associated with vibrational motions of the atoms

about their equilibrium positions. Radiation is absorbed (or emitted) when a transition

takes place from a lower (or higher) energy state to a higher (or lower) energy state. The
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frequency (v) of the absorbed (or emitted) photon is given by the Bohr frequency condition,

= h , (2.27)

where h is Planck's constant and Sh and E1 are the internal energies of the higher and

lower molecular states, respectively. The absorption spectrum due to a single transition

is called an absorption line. Absorption by molecules in the mid- and near-infrared occur

by vibration (although a mixture of vibrations and rotations are usually induced at these

frequencies). In the microwave and far infrared, rotational transitions are the dominant

mechanism of energy transfer.

2.3.2 Line shapes

Based on Eq. 2.27, the absorption (or emission) spectrum of an isolated, unperturbed,

stationary molecule consists of sharply-defined frequency lines corresponding to transitions

between quantized energy levels of the molecule. Atmospheric gases, however, consist of

molecules that are in constant motion, interacting and colliding with one another. These

disturbances cause the absorption lines to broaden. The two most important sources of line

broadening are Doppler (thermal) broadening and pressure (collision) broadening, which is

dominant for most frequencies up to an altitude of approximately 40km [13].

2.3.3 Absorption coefficients and transmission functions

Line shape f(v - vo), line position (vo), and line strength (S) mathematically define the

absorption coefficient:

K = S f(v - vo). (2.28)

The line strength of a specific atmospheric gas is governed by the number of absorbing

molecules of that gas per unit volume, the temperature of the gas, and the molecular

parameters associated with that transition.

Absorption of radiation by gases in the Earth's atmosphere is described in terms of

transmission functions (or simply, transmittance). Lambert's law states that the change in
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radiance intensity along a path ds is proportional to the amount of matter along the path:

dRV = -V Rv ds (2.29)

where r,, is the volume absorption coefficient. Integration of Lambert's law along the path

connected by si and S2 yields

R,(s2 ) = T(si, s 2)R,(si) (2.30)

where T,(si, s2) is the monochromatic transmittance defined as

Tv (si, s 2) = e f,,d. (2.31)

The optical path (or thickness)2 between si and s 2 is defined as

f32

The absorption coefficient, transmittance, and optical path form the mathematical basis

for the subject of Section 2.5 - radiative transfer. In practice, these quantities are not

monochromatic, but band-averaged over some spectral response function of the instrument.

2.3.4 The atmospheric absorption spectra

The atmospheric absorption spectrum for microwave frequencies is shown in Fig. 2-

2. Notable features include the water vapor absorption lines centered at 22.235, 183.31,

and 325.15 GHz (lines at 380.20 and 448.00 GHz are difficult to identify on the plot) and

oxygen absorption lines near 60, 118.75, 368.50, 424.76, and 487.25 GHz. The atmospheric

absorption spectrum for infrared wavelengths between 3.6 and 16.1 Pm is shown in Fig. 2-3.

Notable features include the water vapor absorption lines near 6-7 pm, ozone absorption

lines near 10 pm, and carbon dioxide absorption lines near 4.3-4.6 pm and 13-15 pm.

2 The related quantities optical depth and opacity will be defined later.
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2.4 Scattering of electromagnetic waves by atmospheric par-

ticles

In addition to the molecular absorption mechanisms discussed earlier, electromagnetic

waves are also scattered and absorbed by much larger particles often found in the atmo-

sphere, such as cloud water droplets, raindrops, or even dust. The scattering of electro-

magnetic waves upon interaction with atmospheric particles provides a tool that can be

used to help retrieve many microphysical parameters related to clouds and precipitation.

The fundamental concepts derived here are used in Chapter 4 to qualitatively characterize

several microphysical parameters of the rainbands surrounding Hurricane Bonnie (August,

1998) based on microwave observations made by NAST-M.

2.4.1 Mie scattering

A suspended particle of geometrical cross-section A will absorb a fraction of incident

power and will also scatter incident power in all directions. The ratio of absorbed power P

(W) to incident power density S (W/m 2 ) is known as the absorption cross-section

Ca = Pa, m 2  (2.33)
S

and the ratio of Ca to the physical cross-section A is known as the efficiency factor Qa. For

a spherical particle of radius r, A = rr 2 and therefore

= (2.34)S rr2

Analogous quantities for scattering, the scattering cross-section C, and the scattering effi-

ciency Q, are defined as

P
C8 = -p-, m (2.35)

C= (2.36)Q rr2
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The total power lost due to absorption and scattering (known as the extinction) is Pa + Ps

and the resulting extinction cross-section Ce and efficiency Qe are

Ce = Ca + C8 ,9

Qe = Qa + Qs.

(2.37a)

(2.37b)

The solution for the scattering and absorption of electromagnetic waves in free space by

a dielectric sphere of radius r was formulated by Mie in terms of the "size parameter"

27rr
X = A (2.38)

and

n = V/c , (2.39)

where A is the wavelength of the incident wave, n is the complex refractive index of the

particle and E, is the corresponding complex dielectric constant. Mie's expressions for the

scattering and extinction efficiencies of the sphere are given by

Q,(n, X) = (2m + 1)( 2 + lb 2)
m=1

200
Qe(n, X) = (2m + 1)Re{am + bm}

m=1

where am and bm are known as the Mie coefficients

am Jm(TnX)[Xjm (X)]' - jmr(X) [nXjm(nX)]'
jm(nX)[xhm(X)]' - hm(X)[fnXjm(nx)]'

(2.40a)

(2.40b)

(2.41a)
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bm = jm(X)[nxjm(nx)]' - n2jm(nX)[Xjm(X)]' (2.41b)
hm(X)[nXjm(nX)]' - n2jm(nX)[Xhm(X)]'

where j m (-) and hm(-) are the spherical Bessel and Hankel functions of the first kind, and

the (.)' operator denotes the complex conjugation.

2.4.2 The Rayleigh approximation

The Mie expressions for Q, and Qe can be approximated with negligible error if the

particle size is much smaller than the wavelength of the incident wave (InxI < 1). The

Rayleigh approximation is obtained by retaining only the most significant terms in the

series expansion:

Q 8 = X4 K 12 (2.42)3

Qe = 4XIm{-K} + 8X4IK12 (2.43)

and

Qa = 4XIm{-K}, (2.44)

where K is a complex quantity defined in terms of the complex index of refraction n

K = 2 _ 1 E_ 1. (2.45)
n2 + 2 Ec + 2'

Note that in the Rayleigh limit the scattering efficiency scales as the fourth power of fre-

quency, whereas the absorption efficiency scales linearly with frequency, for a fixed particle

size and a frequency-independent index of refraction. For water, the index of refraction

is frequency-dependent, and the absorption efficiency scales as frequency squared (for fre-

quencies below 90 GHz or so) when this dependence is included.
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2.4.3 Comparison of scattering and absorption by hydrometeors

Fig. 2-4 shows scattering and absorption contributions of water spheres, both in the

liquid and ice phases. Deirmendjian's recursive procedure [14] was used to calculate the Mie

coefficients; 80 terms were used to approximate the series. For liquid droplets, absorption

is dominant in the Rayleigh region and scattering is dominant in the Mie region. For

ice, scattering is dominant for all but the lowest microwave frequencies. The frequency

dependence of scattering and absorption can be used to retrieve information about the

particle size distributions of clouds, and the related quantity, rainrate. The distribution

and type of hydrometeors found in typical clouds vary widely, and monodispersive models

are inadequate. More complicated modeling is beyond the scope of this thesis; an excellent

discussion can be found in [15].

2.5 Radiative transfer in a non-scattering planar-stratified

atmosphere

A sensor high above the Earth's surface receives emission from the Earth and its at-

mosphere, along with any reflected components of solar and cosmic background radiation.

Measurements of this emission allow the retrieval of many atmospheric parameters, includ-

ing the temperature and water vapor profile, the amount of cloud liquid water, rainrates,

and sea surface temperatures.

2.5.1 Equilibrium radiation: Planck and Kirchhoff's laws

The solution to the simple differential equation presented by Lambert's law (Eq. 2.29)

is referred to as Beer's law

R,(s" ) = R,(s')e- .' K, ( .)ds (2.46)

In addition to absorption of radiation by the gas contained within path s' to s", Kirch-

hoff's law states that if in thermal equilibrium, the gas also emits radiation in an amount
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Figure 2-4: Scattering and absorption efficiency for water spheres with 1-mm radius. Liquid

water spheres (273 K) are shown in the top plot and ice spheres (266 K) are shown in the

bottom plot.
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proportional to the absorption coefficient r,,:

R,(emission) = i,J,(T), (2.47)

where J,(T) is the radiation intensity produced (at each of two orthogonal polarizations)

by a blackbody at temperature T and frequency v:

Jv(T) = h/ 3  1 1 W -m- 2 . ster- 1 - Hz-1. (2.48)
C2 ehv/kT - 1

Values for the following physical constants can be found in the Appendix: Planck's constant

(h), Boltzmann's constant (k), and the speed of light in a vacuum (c). The Planck equation

exhibits a nonlinear relationship between intensity and temperature. The degree of the non-

linearity is frequency-dependent, and is shown in Fig. 2-5. The nonlinearity is most severe

at the higher frequencies (shorter wavelengths) and almost nonexistent at the microwave

frequencies. The approximation of the Planck radiance by the linear Taylor series term is

called the Rayleigh-Jeans (RJ) approximation, and the microwave brightness temperature

is defined as the scaled intensity:

C2

BV = 2 ,2k RV. (2.49)

Note that if a radiometer is calibrated against a blackbody and all departures from the

Rayleigh-Jeans law are ignored, brightness temperature is effectively redefined as

c2 hv
Bv= Ru + (2.50)

2v 2k 2k

and accuracy is better than 0.1 K for frequencies up to 300 GHz and terrestrial tempera-

tures. When extremely cold temperatures are encountered (e.g., the cosmic background)

corrections to the RJ approximation are needed.
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Figure 2-5: Nonlinearity of the Planck function as a function of wavelength.
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2.5.2 Radiative transfer due to emission and absorption

The net change in radiation along ds due to the combination of emission and absorption

is

dRV = dRv(emission) + dRv(absorption). (2.51)

Substitution of Eq. 2.29 and Eq. 2.47 into Eq. 2.51 yields the Schwartzchild equation

d R
d =- -,[Rv - Jv(T)], (2.52)

which mathematically describes how radiation is transferred from one layer to another

layer as a result of absorption and emission. The intensity of radiation leaving the path

is therefore a function of both the absorber along the path and the temperature along the

path. Passive (emission-based) sounding of constituent concentration and temperature is

based upon this principle.

2.5.3 Integral form of the radiative transfer equation

Differentiation of Eq. 2.32 gives

dry(s) = -n,(s) ds, (2.53)

where we adopt the convention that r increases from zero downward from the top of the

atmosphere to a maximum value r* (the opacity of the atmosphere) at the surface. Multi-

plying both sides of Eq. 2.52 by e--(') and combining terms gives

dRe = ()-Je~(8) 
(2.54)

d-rv

which upon integration from path s' to s" yields

R,(s" )e-'r-(") - Rv(s')er,(s') - j , (s)e-L"(s) dr(s). (2.55)
f(81")
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Figure 2-6: Geometry of the planar-stratified atmospheric radiative transfer equation.

Equation 2.55 can be rearranged into the integral form of the radiative transfer equation as

follows:

(2.56)R,(s") = R,(s')e- 1/(8')-'r(S") + Ji(s, e-ri(*)-v(8")] dry(s).

The equivalent relation in terms of the absorption coefficient K. is

R, (s") = R,(s')ef' K.(s)ds + KV(s)J.(s)e- i ,(a)da ds. (2.57)

The angular properties of emission have thus far been neglected, but can easily be in-

cluded for the case of a horizontally-homogeneous vertically-stratified atmosphere by noting

that an angular tilt of 0 results in an increase in the pathlength by a factor of sec 0 (see

Fig. 2-6). Optical depth is related to optical path as follows:

r(s) = r(z) sec(0). (2.58)

After including the angular terms, the final form of the radiative transfer equation describ-

zi

z 2

Z = 0,
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ing the radiation intensity observed at altitude L and viewing angle 0 can be formulated by

including reflected atmospheric and cosmic contributions and the radiance emitted by the

surface:

R, (L) = v(z)Jv[T(z)]e-Jz secOK,(z')dz'sec0dz

1L+ pveT* SecO jL v (z)Jv [T(z)]e 1;:ec OK, (z') dz' sec 0dz (2.59)

+ pve-2*sec JV(TC)

+ eve~-**seJV(Ts)

(2.60)

where e, is the surface emissivity, pv is the surface reflectivity, T, is the surface temperature,

and Tc is the cosmic background temperature (2.736 ± 0.017K).

2.5.4 Weighting function

The first term in Eq. 2.60 can be recast in terms of the transmittance function T(z):

R,(L)= j J[T(z)] dTjz) dz. (2.61)

The derivative of the transmittance function with respect to altitude is often called the

weighting function

AdT,(z)
WV(z)= dz (2.62)

and gives the relative contribution of the radiance emanating from each altitude. Note

that the Planck radiances are weighted, not the temperature profile. It is sometimes use-

ful to define a temperature weighting function, where the temperature profile is weighted

directly. One approach is to express the radiance intensity Rv(L) in terms of a "blackbody-

equivalent" brightness temperature TB,v(L) (the temperature of a blackbody that produces

a radiance equivalent to Rv(L), N.B. TB,,(L) 7 Bv) and linearize about a nominal temper-

ature profile To(z) and corresponding radiance Ro,,(L).
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Temperature weighting function

For a particular frequency, the blackbody-equivalent radiance may be written as follows:

TB,v(L) = J; 1 (Wv(Jv(Tz))), (2.63)

where J,(.) is the Planck function, W(.)v is the integration against the weighting function,

and J-'(.) is the inverse Planck function. The first-order Taylor series approximation of

J;'-(Wv(Jv(.))) is then

dJ3-1 dW, dJ3
Rv(L) = Ro,v(L) + - " [T(z) - To(z)] (2.64)

dWv djv dT
- WT,v(z)[T(z) - To(z)] + Ro,,(L) (2.65)

where WT,v(z) is defined as the temperature weighting function:

A dJ-1 dW, dJv
WT,V(Z) = dWv djv dT T (2.66)

The difference between the Planck weighting function and the temperature weighting

function can be significant for short-wavelength channels, as shown in Fig. 2-7. The tem-

perature weighting functions are sharper and peak lower in the atmosphere. The RMS

errors (in units of blackbody-equivalent brightness temperature) resulting from the use of

the first-order approximation given by Eq. 2.65 (and assuming the weighting functions are

independent of atmospheric parameters) over a representative set of atmospheric profiles

T(z) (with To(z) = E[T(z)]) are shown in Fig. 2-8 for the AIRS channel set. The two

dominant sources of error are the nonlinearity of the Planck function (most evident in the

short-wavelength channels) and the nonlinearity of the atmospheric transmittance (most

evident in the water vapor channels). Temperature weighting functions are almost never

used directly to evaluate the radiative transfer equation because of the large errors intro-

duced by the exclusion of nonlinearities. Nevertheless, the temperature weighting functions

provide a useful characterization of the way different layers of the atmosphere at different

temperatures contribute to the radiation emitted at the top of the atmosphere.

Returning to the special case of microwave frequencies and terrestrial temperatures (i.e.,
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6 8 10
Wavelength (am)

Figure 2-8: AIRS RMS radiance error due to first-order Planck approximation.

the Rayleigh-Jeans regime), Eq. 2.60 can be expressed in terms of the

profile T(z) and the brightness temperature B,:

physical temperature

B,( L) = j K(z)T (z )e -fsec On,(z') dz' sec 0 dz

+ pve-' sec0 KV(z)T (z) e- fJ sec Or.,(z') dz' sec 9 dz

Spe-2* sece0~

(2.67)

+ Eve-r*sec0TS

where T is the corrected cosmic background temperature

hv (ehv/kTc + 1)
= 2k e(hv/kT -1) (2.68)

Note that in the microwave case, WT,V(z) = Wv(z).

2.6 Passive spectrometer systems

Measurement of the Earth's radiation at a spectral resolution high enough to study

details of molecular absorption bands is achieved using spectrometer sensor systems. The

chapter concludes with a brief discussion of various spectrometer technologies, with a focus
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on performance advantages, disadvantages, and engineering tradeoffs that must be consid-

ered when selecting an instrument to carry out a given remote sensing task. The concepts

presented here are rudimentary; for more details, the reader is referred to [16] and [17].

2.6.1 Optical spectrometers

For the purpose of an elementary discussion, optical spectrometers can be grouped into

three system types: prism dispersion, diffraction grating, and radiation interference. The

systems differ primarily in the mechanisms used to separate incident radiation into discrete

spectral components.

Prism dispersion systems

A prism spectrometer produces radiance spectra by passing the incident radiation through

a prism. The prism causes the radiation to disperse (bend) by a frequency-dependent angle.

The degree to which the radiation is dispersed is determined by the refractive index of the

prism. The spectra are usually detected either by sweeping the dispersed radiation across

a fixed detector (e.g., a photomultiplier), or sweeping the detector across the radiation

field. The spectral resolution achieved by prism spectrometers is relatively coarse, and they

are therefore used typically in imaging systems. The calibration of prism systems is also

problematic because of the frequency dependence of the index of refraction of the prism.

Diffraction grating systems

A diffraction grating disperses radiation into spectra through angular-dependent inter-

ference patterns that result when radiation is passed through a dense array of small slits.

Diffraction grating systems operate by either transmitting radiation through or reflecting

radiation from a series of closely-spaced parallel lines etched on plastic film (for transmis-

sion) or a metallic surface (for reflection). Transmission gratings generally perform poorly

in comparison with reflection gratings, which are used in high-performance space spectrom-

eters. The spectral resolving power of grating spectrometers typically exceeds that of prism

spectrometers by an order of magnitude, at the expense of increased instrumentation com-

plexity. The AIRS instrument, which is simulated in Chapter 6, is a diffraction grating
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spectrometer.

Interferometer systems

The interferometer spectrometer operates quite differently than the prism or grating

spectrometer in that interference effects instead of dispersion effects are used to separate

spectra. One of the simplest types of interferometers is the Michelson interferometer, which

splits incoming radiation into two beams of unequal length by a partially-silvered plate

(beam splitter) and later recombines the beams with a known path difference. The path

difference can be varied uniformly by moving a mirror at a constant speed, causing the two

beams to move in and out of phase at the detector. The intensity of the resulting waveform

(termed the interferogram) is related to the spectral intensity of the incident radiation by the

Fourier transform. The interferogram is the autocorrelation function of the optical signal.

The performance of the interferometer spectrometer relative to the grating spectrometer

depends on a number of factors, including the nature (e.g., mechanical and electrical) and

origin (e.g., photon and thermal) of system noise. A more detailed treatment of some of

these factors is given in Chapter 5 for the NAST-I interferometer spectrometer.

2.6.2 Microwave spectrometers

Microwave and optical spectrometer systems are conceptually similar. Perhaps the

most pernicious source of error in microwave spectrometer systems is the instability of the

receiver, and the primary difference among microwave systems is the way in which receiver

sensitivity is compromised for receiver stability. Three types of microwave spectrometers 3

are now discussed.

Total power spectrometer

The simplest type of microwave spectrometer measures the power of incident radiation

over a collection of bandwidths B., integrated over a time r. The RMS sensitivity of the

measurement at any given channel is a function of the receiver noise (TR, expressed in

3 The term "radiometer" is used when incident electromagnetic power is measured across a given frequency

band. The term "spectrometer" is used when power across several frequency bands (or channels) is measured.
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units of temperature), the incident radiation (TA, expressed in units of temperature), the

bandwidth (Ba, Hz), and the integration time4 (r, sec):

TR+TA
ATrm* . (2.69)

Equation 2.69 assumes that the receiver gain is perfectly stable. Fluctuations in receiver

gain reduce the system sensitivity as follows:

1 /AG\ 2
ATrmS = (TR + TA) + ( I (2.70)

Bar \G/

where AG/G is the fractional receiver gain drift. It is not uncommon for the gain drift

component to dominate the noise expressed in Eq. 2.70. The system noise performance of

NAST-M, a total-power spectrometer, is discussed in more detail in Chapter 4. The follow-

ing two microwave spectrometer systems demonstrate different approaches for minimizing

the noise due to receiver gain drift.

Dicke spectrometer

The Dicke spectrometer is essentially a total-power spectrometer with two additional

features: 1) a switch used to modulate the receiver input signal, and 2) a synchronous de-

tector, placed between the detector and integrator. The modulation consists of periodically

switching the receiver input between the antenna and a reference source (Tref) at a rate

higher than the highest significant spectral component of the gain variation. If the noise

temperature of the reference source is close to the antenna temperature TA, the system

sensitivity of the Dicke spectrometer becomes

/ATrms - 2(TR+TA)
A Trm = .(2.71)

4It is assumed for the purposes of this discussion that the detector signal is convolved with a boxcar of
length r. Other averaging kernels may be used, with tradeoffs between sensitivity and memory effects.
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Table 2.3: Comparison of certain characteristics of
tral regions [18]. Detector noise RMS: 0.15 K (IR)

the 4.3-pm, 15.0-pm, and 5.0-n
and 0.7 K (MW).

11 4.3-pm 15.0-pm 5.0-mm

ENERGY 200 K 1.25 5000 1

(Relative Planck Radiance) 300 K 200 15000 1

TEMPERATURE SENSITIVITY 200 K 1 10 4

(Relative to Detector Noise) 300 K 20 6 1

CLOUD TRANSMISSION Water 6% 1% 96%
Ice 1% 1% 99.98%

mm spec-

Correlation spectrometer

Another possible method of stabilizing a receiver system involves the correlation of

signals. Two separate receivers are used in a correlation spectrometer, and the resulting

output voltages are multiplied and detected. The average value of a product of two inde-

pendent noise temperatures is zero, and because only correlated noise voltages yield a DC

output, receiver gain instabilities will not affect the sensitivity of the correlation spectrom-

eter. The sensitivity of the correlation spectrometer is a factor of V2 better than the Dicke

spectrometer. However, two separate receivers are needed.

2.7 Summary

The Earth's atmosphere and its interaction with electromagnetic radiation has been ex-

amined on microscopic (molecular absorption) and macroscopic (particle extinction) levels.

If the atmosphere is assumed to be non-scattering, horizontally homogeneous, and verti-

cally stratified, straightforward relations can be derived for the radiation intensity observed

by a downward-viewing satellite or aircraft sensor. The frequency dependence of scatter-

ing, absorption, and the Planck radiance offers various advantages for atmospheric profile

sounding in the presence of clouds (see Table 2.7). Various instrument technologies present

performance advantages and disadvantages that must be considered when implementing a

remote sounding system.
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Chapter 3

Hyperspectral Signal Processing

and Estimation Techniques

M ODERN atmospheric sounders measure radiance with unprecedented resolution (spa-

tial, spectral, and temporal) and accuracy. For example, the Advanced InfraRed

Sounder (AIRS, operational in late 2002) will provide a spatial resolution of -15 km, a

spectral resolution of AA/A = 1/1200 (with -2400 channels), and a radiometric accuracy

on the order of 0.1 K. Approximately 90 percent of the Earth's atmosphere is measured

(in the horizontal dimension) every 12 hours or so. This wealth of data presents two ma-

jor challenges from the point of view of retrieval algorithm development. The first deals

with the robustness of the retrieval operator, and involves maximal use of the geophysical

content of the radiance data with minimal interference from instrument and atmospheric

noise (both of which will be defined in more detail later). The second deals with compu-

tational efficiency, where it is desirable to implement a robust algorithm within a given

computational budget.

This chapter reviews techniques for the assessment of the information content of a mea-

surement, and the subsequent estimation of a related geophysical parameter. Information

Mathematical notation: henceforth, lowercase characters will be used to denote scalars, uppercase char-
acters will be used to denote vectors, and bold uppercase characters will be used to denote matrices. Bold
lowercase characters will be used to denote vector-valued functions with vector inputs. The expected value
operator is E(.) and the transpose operator is (.)T.
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theoretic and principal component techniques are discussed, and Bayesian and non-Bayesian

estimators are reviewed.

3.1 Analysis of the information content of hyperspectral data

The information content of a measurement can be defined in a number of ways. Two

common scalar metrics that are used to measure the information contained in a measurement

are the Shannon information content [19] and the number of degrees of freedom present in

the signal, both of which are related to the eigenvalues of data covariance matrices. For the

following analyses, we assume that an observation of a random radiance vector R is related

to some atmospheric state vector S through a forward model m(.) as follows

R = m(S) + T = X + T, (3.1)

where 4I is a random error vector, and X is the "noise-less" radiance observation. For the

remainder of the chapter, we assume without loss of generality that all random vectors are

mean-centered.

3.1.1 Shannon information content

The Shannon definition of information content arises from information theory and de-

pends on the entropy of the underlying probability density functions (pdf's) that charac-

terize the measurement. The entropy of a continuous pdf P(r) can be defined as

H(P) = - J P(R)log [P(R)] dR. (3.2)

The base of the logarithm is usually taken to be 2, in which case the units of entropy

are bits, or e, in which case the units of entropy are nats. The information content of a

measurement in the Shannon sense can be defined as the reduction of entropy upon making

a measurement of R:

I(X, R) = H[P(X)] - H[P(XIR)], (3.3)
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or equivalently

I(X, R) = H [P(R)] - H[P(RIX)]. (3.4)

For example, the entropy of R can be calculated assuming a multivariate Gaussian distri-

bution

P(R) = (27r)N/ 2 CRR 1/ 2 exp

where CRR is the covariance of R:

N

H[P(R)] =log(2,7reAi)1/2

= Nlog(27re)1/2 + -log
2

= Nlog(27re) 1/ 2 + logCRRI

= ci + log|Cxx + CzqI. (3.9)

The information content of a measurement of R can be calculated under the assumption

of Gaussianity. The covariance of R before the measurement is Cxx + Cqq, while the

covariance of R after the measurement is Cqijp. These values are used in Eq. 3.4:

I(X, R) = H[P(R)] - H[P(RIX)]

1 1= !log|Cxx + CqP4 - -logIC*Pl

= logiC(Cxx + Cq)

= log|C-1/2CXXC /2 + I,

= logIlxx + II,

(3.10)

(3.11)

(3.12)

(3.13)

where

1 xx n C-1/ 2 CXXC / 2

~RTCNJR},

N

SAi

(3.5)

(3.6)

(3.7)

(3.8)
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is the whitened covariance matrix describing X. Note that Eq. 3.13 can be easily calculated

from the eigenvalues of ixx

I(X, R) = 1 log(1 + Ar). (3.15)

The information content of simulated hyperspectral measurements for several channel con-

figurations is shown in Fig. 3-1. The figure shows that the information content increases as

the logarithm of the number of channels, which agrees with results reported in [20].

3.1.2 Degrees of freedom

Another measure of information contained within a measurement is the number of De-

grees of Freedom (DOF), where a degree of freedom can be loosely defined as an independent

component of R that contains some information about X and the uncertainty of this in-

formation is smaller than the measurement error of the component. For example, if R is

prewhitened and projected onto the eigenvectors of Cxx + I, the eigenvalues of Cxx give

the signal-to-noise ratio (SNR) of each uncorrelated component. It is intuitive that the

number of degrees of freedom should be the number of components with SNR > 1. Fur-

thermore, it is convenient to make a distinction between a degree of freedom due to signal

(DOF,) and a degree of freedom due to noise (DOF,). The previous description assumed

implicitly that the degree of freedom was due to signal. If there are N elements of R, we

require

DOF, + DOF, = N. (3.16)

Rodgers [21] suggests the following definitions of DOF, and DOF,:

DOFs = tr(Cxx [Cxx + I]')

1Ai (3.17)
(1 + Ai)

DOFn tr([bxx + I]-')

= 1 .(3.18)
(1 + Aj)'
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These definitions do not necessarily yield integer values; for example, a component with

SNR = 1 would contribute . to DOF, and 1 to DOF,. Equation 3.16 is satisfied, however.

As a final comment, it is interesting to note the similarity between Eq. 3.4 and Eq. 3.17,

both of which depend only on the eigenvalues of Cxx. The number of degrees of freedom

for simulated hyperspectral measurements assuming several channel configurations is shown

in Fig. 3-1.

3.2 Principal components analysis (PCA)

It is often useful to decompose a random vector (of atmospheric radiance intensity

observations at N frequencies, for example)

Rvi

R I, R2 (3.19)

. RVN j

into a vector 2r of r statistically independent components (where 1 < r < N)

11 f1 (R)

A 12 A f 2(R) A

r .. fr(R), (3.20)

where f : RN -- r is a continuous (usually nonlinear) function. The radiance vector R

may be reconstructed from the independent components Ir (possibly with some distortion)

as follows:

91(2r)

~A g2(Ir) A
£4 = -r (Ir), (3.21)

9N(Ir)
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Information Content for 1000-Channel Sounder
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where g : R' --+ RN is a continuous (usually nonlinear) function. The vector-valued func-

tions f,(-) and g,(.) are usually chosen to minimize some scalar-valued cost function

C(R - Rr) (3.22)

over 1 < r < N. Note that Rr = R for r = N, and possibly for r < N if the elements of R

are statistically dependent. The functions fr(.) and g,(.) and the statistical moments of I1

provide a measure of the statistical structure of R.

If the cost function to be minimized is the expected value of the sum of the squares of

the error of R - Rr, i.e.,

C(.) = E [(R - &r)T (R - &r)] (3.23)

then the elements of I are called principal components of R.

3.2.1 Nonlinear PCA

Generally, fr(-) and g,(.) are nonlinear and cannot be found analytically. Several meth-

ods have been proposed for finding fr(-) and gr(-) using feedforward neural networks given

an ensemble of observations of R [22, 23]. An autoassociative feedforward neural network

was used in [24] to find fr(-) and g,(-) for remote sounding data.

3.2.2 Linear PCA

We now consider a special case where fr(-) and g,(.) and constrained to be linear func-

tions:

fr(R) = FR (3.24a)

gr(Ir) = GI, 

71

(3.24b)
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where F is an r x N matrix and G is an N x r matrix (r < N). Equation 3.21 becomes

Nr = GFR (3.25)

and the minimization to be carried out in terms of the cost function given by Eq. 3.23 is

{F, G} = arg min E [(R - GFR)T(R - GFR)] . (3.26)
F,G

We begin by assuming that G is orthonormal. If this is not the case, a QR decomposition

can be performed on G (its columns are linearly independent) and the non-orthonormal

part can be included in F. The joint minimization posed in Eq. 3.26 is separable, and F can

be determined for a fixed choice of G, and vice versa. For a fixed G, R can be decomposed

into two orthogonal components:

R = (I - GGT)R + GGTR (3.27)

= Ri + Ri

where I is the identity matrix. Replacing R in Eq 3.26 with 3.28 yields

E [(R_ + R11 - GFR)T (R 1 + R11 - GFR)] = (3.28)

E [RTRI] + E [(R1 - GFR)T (R11 - GFR)],

where we use the fact that R 1 is orthogonal to R11 - GFR:

E [RT(I - GGT)(GGTR - GFR)] =

E [RTGGTR - RTGGTR - RTGFR + RTGFR] = 0. (3.29)

For a given G, E [RTR] does not depend on F, and Eq. 3.26 reduces to

F = arg min E [(GGTR - GFR)T (GGTR - GFR)]. (3.30)
F
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Upon inspection of Eq. 3.30 it is obvious that the choice of F that minimizes the cost

function is

F=GT. (3.31)

Substituting F - GT into Eq. 3.26 we obtain

G = arg min E [(R - GGTR) T (R - GGTR), (3.32)
G

where the cost function can be simplified as follows:

E [(R - GGTR) T (R - GGTR)] = E [RTR] - E [RTGGTR] (3.33)

= tr (CRR) - tr (GT CRRG) (3.34)

where CRR is the data covariance matrix E[RRT]. Note that the first term in Eq. 3.34

does not depend on G, and the minimization in Eq. 3.32 is equivalent to the following

maximization

r

G = arg max tr (GT CRRG) = arg max GTCRRGi, (3.35)
G G i

where Gi is the ith column of G. The maximization carried out in Eq. 3.35 is the well-known

quadratic maximization with unit-length constraint problem, which is solved by choosing

the Gj's to be the r eigenvectors of CRR with the r largest corresponding eigenvalues

G = [Qi I Q2 1 -I -Qr]. (3.36)

3.2.3 Principal components transforms

In light of the previous discussion, the principal components transform (PCT) is de-

fined as the multiplication of R by the transpose of the eigenvectors of CRR (ordered by
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eigenvalue)

P QTR, (3.37)

where the elements of vector P are the principal components of R. The plot of eigenvalue

versus eigenvalue number is known as the screeplot.

It is often advantageous to normalize R before computing the PCT. We briefly consider

three examples.

Noise-Adjusted PCT

Prewhitening the radiance measurements before application of the PCT results in un-

correlated components with maximal signal-to-noise ratio [25]. This transform is widely-

used for dimensionality reduction in many hyperspectral imaging and sounding applications

(see [26] and [3] for example).

Normalized PCT

An alternative to the NAPCT is the NPCT, where each element of R is normalized by its

standard deviation. The noise-adjusted PCT (NAPCT) is then applied to the normalized

R. This transform is often used if the noise statistics are unknown.

Blind NAPCT

If the statistics of the noise are unknown, it may be possible to estimate them, and

subsequently apply the NAPCT. This approach is called blind processing, and attempts to

extract properties of F(S) and IQ (from Eq. 3.1), usually under the assumption that F(S) is a

linear "mixing matrix" and IQ is a Gaussian random vector with uncorrelated elements. One

example of a blind NAPCT is the Blind noise-Adjusted Principal Components Transform

(BAPCT) [27], which uses the Iterated Order-Noise (ION) algorithm [1] to estimate the

noise statistics.
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3.2.4 Projected PC transform

Cost functions other than Eq. 3.23 are sometimes used in practice. For example, suppose

we wanted to find the r x N transform matrix QT which gives components that, when

regressed against S, minimize the resulting sum-squared error for any ordered subset of

components P given by

Pr QTR. (3.38)

The estimate of S in terms of P, is

Sr = CS1,C p, P (3.39)

= CSRQr[Q CRRQr[T 1QTR (3.40)

and the cost function to be minimized is given by

C(.) = E [(S - Sr)T (S -r) , (3.41)

where CSR is the cross-covariance of S and R. It can be shown using a derivation similar

to that in Section 3.2.2 that the Qr's that minimize Eq. 3.41 are the r right eigenvectors

with highest singular value of the reduced-rank regression matrix Lr:

Lr = VrVTCsRCN, (3.42)

where

Vr [V|IV21 -. - - Vr]. (3.43)

are the r most-significant eigenvectors of CSRC CTR. This transform is sometimes

called the Projected PCT (PPCT) because the measurements R are projected into an

r-dimensional subspace of S spanned by Vr. Note, however, that the elements of Pr are

not uncorrelated, which is a basic requirement of any PCT.
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Figure 3-2 compares the performance of the PC, NAPC, and PPC transforms for three

specific decompositions/reconstructions of a simulated 1000-channel radiance vector:

1. Noisy radiance:

R = QrQTR, (3.44)

2. Signal portion of noisy radiance:

X = Q QIR, (3.45)

3. Temperature profile retrieval:

T = CTRQr Q CRRQr]~ - QTR. (3.46)

3.3 Estimation of geophysical parameters

In this section, we address the problem of estimating the state vector S given an obser-

vation of R (the retrieval or inverse problem), where we use S(R) to denote the estimate

of S given an observation of R. There are a number of ways to proceed. The model-based

(or physical) approaches use knowledge of F(.) to find an S which is consistent with an

observation of R. This is usually an ill-posed problem with no mathematically unique solu-

tion. The statistical description of R and S, if available, can be used to choose the "best"

solution from all the possible ones consistent with the model.

3.3.1 The Bayesian approach

The Bayesian approach to estimation involves the incorporation of a priori knowl-

edge about the state vector S with knowledge gained by measuring R. Mathematically,

this knowledge is formulated in terms of five related probability density functions (pdf's):
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Figure 3-2: Performance comparisons of the PC, NAPC, and PPC transforms for a hypo-

thetical 1000-channel infraxed (4 pm - 15 pm) sounder. The first plot shows the distortion

introduced I- representing a noisy radiance vector with r components. The second plot

shows the distortion of the signal portion of the radiance. The third plot shows the inte-

grated sum-squared error of the temperature profile estimated using r components.
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P(S) The prior (i.e., before the measurement) pdf of state S

P(R) The prior pdf of the measurement R

P(R, S) The joint prior pdf of R and S

P(RIS) The conditional pdf of R given state S

P(SIR) The conditional pdf of S after measurement R. This is the quantity of interest

for the solution of the estimation problem.

Bayes' theorem relates the conditional probabilities as follows:

P(SIR) = P(RIS)P(S) (3.47)
P(R)

Therefore, the Bayesian framework allows probabilities to be assigned to possible choices of

S(R) given knowledge of the joint and conditional probabilities of R and S. A reasonable

choice for S(R) is the value of P(SIR) which has the highest probability (known as the

Maximum A Posteriori (MAP) estimator).

Bayes' least-squares estimator

An alternative to the MAP estimator is the estimator that minimizes some suitable cost

criterion:

S(.) = arg min C(S, f(R)). (3.48)

f(-)

The mean-squared error (MSE) cost criterion is commonly chosen for this purpose and re-

sults in the following estimator, sometimes called the Bayes Least-Squares (BLS) estimator:

S(R) = E[SIR]. (3.49)

Linear least-squares estimator

The BLS estimator has two practical disadvantages: it is often a nonlinear function

of R, and it requires a complete statistical representation of the relationship between R
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and S, which is rarely available. If we constrain the estimator in Eq. 3.48 to be linear,

the resulting estimator depends only on a second-order characterization of the statistical

relationship between R and S. This estimator is the linear least-squares estimator (LLSE):

S(R) = CSRC R (3.50)

with error covariance

CE S = S - CSRCJCSR. (3.51)

The LLS estimator equals the BLS estimator when R and S are jointly Gaussian.

3.3.2 Bayesian alternatives

The previous estimators are based entirely on the statistical relationship between R

and S. Other methods use knowledge of the forward model F(-) together with whatever

limited statistical characterization of R and S is available. One example is the minimum-

information retrieval, which only depends on a "nominal" state So.

Minimum-information retrieval

The minimum-information retrieval picks the S which is "closest" in the least-squares

sense to So and satisfies

(R - F(S) R-F(S)) = Mu2 , (3.52)

where Mo2 is a scalar quantity related to the measurement error. If we linearize about

R 0 , So and replace F(.) with a matrix, K, then the minimum-information solution in the

presence of noise with covariance Cjq, is

S(R) = KT (KT + /C) -'R, (3.53)
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where # is some constant (in units of 1/T 2 ). No statistical relationships between S and R

are used in the minimum-information retrieval. As a final note, if the covariance matrix of

S is known and a linear model R = KS + T is assumed, Eq. 3.53 can be modified to include

the a priori information about S as follows:

S(R) = CssKT(KCssKT + Cp)-R. (3.54)

If a second-order statistical characterization of R and S is available, Eq. 3.54 can be updated

with this information in the form of Eq. 3.50

Figure 3-3 shows the performance of three operators used to retrieve the temperature

profile from simulated AMSU radiances in clear-air: minimum-information (Eq. 3.53), lin-

ear model with known Css (Eq. 3.54), and the LLS estimator (Eq. 3.50). The graph

demonstrates the significant impact of a priori statistics on the retrieval performance.

Maximum-resolution retrieval

The preceding retrieval techniques have all minimized some form of the mean-square

error cost function. Another quantity that could be minimized is the resolution of the

retrieval. Assuming a forward model and a linear retrieval (D), the estimate of the state

vector can be written as

S= DR = DK(S+ x) =AS+ D , (3.55)

where the following error contributions are noted: A = DK is a measure of the way the

observing system smoothes the profile and D' is the "retrieval" error.

It is possible to develop a retrieval that optimizes resolution (i.e., minimizes the effects

of smoothing). Backus and Gilbert [28] introduced the following "spread" function that can

be minimized subject to a unit-area constraint:

s(z) = Di(z)Qij (z)Dj (z), (3.56)



3.3. ESTIMATION OF GEOPHYSICAL PARAMETERS

/
/

-I

- - ---
---.-.--.-

..... ......... ............... - - ... ...........

-. .... ....... .

..~- -.. ....... ....-.. ........ .. .......

-. .....-. .....-. .

- ......... . . . . . . . . . .. . . . . . . . . .

-. . ....

2 3 4 5
RMS Temperature profile

6 7 8 9 10
retrieval error (K)

- - A priori
-- Minimum information

- TR' C RR

Figure 3-3: Comparison of temperature retrieval techniques. The minimum information

retrieval (with 3 = 1K- 2 ) only uses information contained in the weighting function matrix.

The optimal linear model retrieval uses the weighting function matrix and CTT only. The

direct multiple regression retrieval uses statistical characterizations of CRR and CTT.

- - - . . -

- .

50

45

40

35

-30E
-25

020

10

10

5

0

0 1

81



82 CHAPTER 3. HYPERSPECTRAL SIGNAL PROCESSING AND ESTIMATION

where Qj, (z) depends only on the weighting functions:

Qjj (z) = 12 J(z - z') 2 W j(z')W (z') dz'. (3.57)

Given Qij (z), the solution is

g(z) - Q-(z)B
BTQ-l(z)B' (3.58)

where the vector-valued function g(z) has elements Gj (z), the matrix-valued function Q(z)

has elements Qij (z), and the vector B contains the areas of the weighting functions. Because

no constraint has been imposed on the noise, it is likely to be large, especially if the weighting

functions have significant overlap. It is possible to minimize a weighted sum of spread and

noise variance, which results in the following solution

(Q + pCq ')-'(z)B
g(z) = BT(Q + pC**)-1(z)B'

where p is a tradeoff parameter and Ce is the noise covariance matrix. The tradeoff

between resolution and noise is endemic to every retrieval problem.

3.3.3 Neural networks

The artificial neural network, or simply, "neural net", has gained widespread popularity

as a universal function approximator [29, 30]. The neural net is able to find input-output

relationships directly from the data without requiring underlying assumptions about the

distribution of the data. Purthermore, a neural net with only a single hidden layer hav-

ing non-linear activation functions is capable of approximating any real-valued continuous

scalar function [31]. This section introduces the basic features of neural networks and the

considerations involved in designing and training a network.

Artificial Neurons

A neural network is an interconnection of simple computational elements. The computa-

tional elements, or nodes, in neural networks perform simple calculations that are typically
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non-linear and analog. The output of each node is computed in a two step process. A

weighted sum of the node inputs is first computed:

Y, = WTx (3.60)

where W = [wo w 1 ... WN]T is a vector of weights and x = [1 X1 ... XN]T is the vector of

N input variables augmented with a one in the first entry of the vector to provide a bias.

This value is then passed through a non-linear function known as the activation function of

the node:

y = f(y1) = f(W T x) (3.61)

The activation function is generally chosen to be monotonically increasing and differentiable

to facilitate the training process; sigmoids of the form y = tanh(.) are often chosen for this

purpose..

Neural network training by backpropagation

The process of determining the weights of a network is called training, and generally

involves minimization of the mean-squared error between the target output and the network

output. Backpropagation is a common training method [32], and operates in two phases.

First, the input is presented and propagated through the network to determine the output

value for each node. Second, a backward pass is taken through the network to propagate

the error signal back to each node and update the weights. A gradient descent algorithm is

used to calculate the perturbations in the weight vectors, therefore the activation function

must be differentiable. Training is continued on the network until the mean-squared error

on a validation set of data (a set of data different from that used to train the network)

reaches a minimum.
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3.4 Summary

Information content analysis techniques including the Shannon information and degrees

of freedom provide a useful characterization of the geophysical signal present in hyperspec-

tral data. Principal components transforms can be used to represent radiance measurements

in a statistically-compact form. Bayesian estimation techniques, including LLSE, offer a

convenient tool for geophysical parameter estimation. Neural networks are a nonlinear

alternative to LLSE estimators.



Chapter 4

NAST-M: Instrument Description

and Calibration

T HE National Polar-orbiting Operational Environmental Satellite System (NPOESS)

Aircraft Sounder Testbed, or NAST, has recently been developed and deployed on

the NASA ER-2 high-altitude aircraft. The testbed consists of two collocated cross-track

scanning instruments: a Fourier-transform interferometer spectrometer (NAST-I) [33] with

spectral coverage of 3.6-16.1 pm, and a passive microwave spectrometer (NAST-M) [34,

35, 36] with 17 channels near the oxygen absorption lines at 50-57 GHz and 118.75 GHz.

The testbed provides the first co-registered imagery from high-resolution microwave and

infrared sounders, and will provide new data that will help: 1) validate meteorological

satellite environmental data record (EDR) feasibility, 2) define future satellite instrument

specifications, and 3) demonstrate operational issues in ground validation, data calibration

and retrievals of meteorological parameters.

In this chapter, the NAST-M instrument and calibration procedure are described. Data

from NAST-M are also compared with data from a coincident NOAA-15 AMSU overpass

which occurred on March 26, 1999 (00:41:30 UTC, 47.1390'N, -86.9670'W) during WIN-

TEX (WINTer EXperiment, Wisconsin, March/April 1999).
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Figure 4-1: NAST ER-2 configuration.

4.1 Instrument Overview

The NAST-M instrument consists of two independent total-power radiometer systems

that share a cross-track scanning reflector. The first radiometer (henceforth referred to as

the "54-GHz radiometer") is a single-sideband system with eight channels from 50.3 GHz to

56.02 GHz, and the second radiometer (henceforth referred to as the "118-GHz radiometer")

is a double-sideband system with nine channels from 118 ± 0.120 GHz to 118 ± 3.5 GHz.

Both radiometers measure a single linear polarization; the electric field is oriented along-

track at nadir and rotates with the scan angle. The package typically flies unpressurized at

a nominal ER-2 cruising altitude of approximately 20 km at a speed of -200 m/sec. The

NAST configuration, as flown in the NASA ER-2, is shown in Figure 4-1. The NAST-M

instrument, complete with all supporting flight hardware, weighs approximately 225 lbs.,

occupies a volume of approximately 15 ft3 , and consumes approximately 1.5 kW @ 120 VAC

(1.2 kW of which is for heaters).
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Figure 4-2: Radiometer block diagram.

4.1.1 Radiometer systems

A block diagram of the 54-GHz radiometer system is shown in Figure 4-2. The 118-GHz

system is conceptually identical, except for the absence of the low-noise RF amplifier. Both

systems utilize superheterodyne receivers; the local oscillator (LO) frequencies are 46 GHz

and 118.75 GHz. Both LO's are temperature-controlled using thermo-electric devices to

prevent frequency drift, and all amplifiers are temperature-controlled to prevent gain drift.

The gain as a function of input power of the IF amplifiers, video amplifiers, square-law

detectors, and A/D converters was measured [37] and found to be linear to within instrument

thermal noise. The system noise temperatures of both systems are shown in Figure 4-3 The

calibration and noise performance of the three channels closest to the 118.75-GHz line is

degraded by LO power which is reflected off the calibration targets and re-enters the antenna

feed, stimulating instabilities involving the preamplifiers. These instabilities are partially

remedied by means of a small capacitor placed in series with the preamplifier input. The

IF band of each radiometer is divided into channels using multi-section Chebyshev filters:

four-section cavity filters are used in the 54-GHz system, and five-section lumped-element

filters are used in the 118.75-GHz system. Channel specifications for the 54-GHz and 118-

GHz radiometers are given in Tables 4.1 and 4.2. Additional similar radiometer systems

operating near the 183-GHz water vapor line and the 425-GHz oxygen line are presently

being added to the NAST-M package.
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Figure 4-3: NAST-M receiver temperatures: 50-57 GHz (top), 118.75-GHz (bottom).
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4.1. INSTRUMENT OVERVIEW

Table 4.1: Channel specifications for the 54-GHz radiometer. The nominal local oscilla-
tor frequency is 46 GHz. The brightness temperature offset from AMSU (at nadir) was
calculated from a coincident overpass on March 26, 1999 (see Section 4.3, Fig. 4-8).

Frequency Bandwidth Sensitivity Offset from
No. (GHz) (MHz) (RMS K) AMSU (K)

1 50.30 180 0.21 0.1
2 51.76 400 0.13 0.3
3 52.80 400 0.12 0.4
4 53.75 240 0.16 0.5
5 54.40 400 0.13 -0.5
6 54.94 400 0.15 -0.4

7 55.50 330 0.18 -0.2
8 56.02 270 0.18 -0.1

Table 4.2: Channel specifications for the 118.75-GHz radiometer. The nominal local oscilla-
tor frequency is 118.75 GHz The brightness temperature offset from AMSU (at nadir) was
calculated from a coincident overpass on March 26, 1999 (see Section 4.3, Fig. 4-9).

Frequency Bandwidth Sensitivity Offset from
No. Offset (MHz) (MHz) (RMS K) AMSU (K)

1 ± 3500 1000 0.19 0.7
2 ± 2550 500 0.23 0.9
3 ± 2050 500 0.21 0.7
4 ± 1600 400 0.25 0.6
5 ± 1200 400 0.28 0.7
6 ± 800 400 0.34 0.9
7 ± 450 300 0.45 >2
8 ± 235 130 0.90 >5
9 ± 120 100 1.17 >10
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weighting functions (downward-looking). The
surface was assumed for the calculations.

Values for channel sensitivities include errors due to noisy calibration measurements.

Brightness temperature offsets based on a March 26, 1999 AMSU overpass are also shown

(see Section 4.3). Temperature weighting functions for the channels of both radiometers

are shown in Figure 4-4.

4.1.2 Field of view

The NAST-M scanning sub-assembly is shown in Figure 4-5. The 3-dB (full-width at

half-max) beamwidth for both antenna beams is 7.5' (2.6-km nadir footprint diameter at

an altitude of 20 km). The downward-looking port of NAST-M allows an unobstructed view
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Figure 4-5: NAST-M scanning assembly.

for nadir ±65', which yields a cross-track swath width of approximately 100 km from an

altitude of 20 km. The reflector is stepped through a full rotation approximately every 5.5

seconds. A single scan consists of 19 spots across nadir ±65', and three calibration spots:

a heated internal blackbody, an ambient internal blackbody, and a zenith view through a

port in the top of the instrument of the cosmic background. The nominal integration time

for all spots (including calibration spots) is 100 msec.

4.1.3 Internal calibration targetsi

Two blackbody calibration targets (20cm x 20cm x 4cm) were fabricated from alu-

minum and iron-loaded epoxy. Both loads have surfaces covered with tessellated pyramids

machined from Emerson-Cuming CR-112 Eccosorb that are 12-mm tall with square bases

with 8-mm sides. The aluminum backing extends up into the cores of the pyramids to min-

imize temperature gradients between pyramid bases and tips. Rectangular channels with

square edges 4-mm wide and 3-mm deep were cut into the aluminum, thereby increasing

'See Appendix A for a more detailed description of the construction and characterization
of the internal calibration targets.
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the volume of absorbing material at the base of the pyramids and increasing return loss

with negligible change in thermal conductivity. Thin-film platinum resistive temperature

device (RTD) sensors were placed on the surface of the Eccosorb, embedded in the Eccosorb,

and epoxied to the back of the aluminum. The temperature sensors were calibrated 2 to an

accuracy of ±0.05 K. The loads are insulated on the front with a 1-cm thick layer of Sty-

rofoam and on the back and sides with extruded polystyrene. Time-domain reflectometry

measurements at 75-110 GHz yield average return losses exceeding 30 dB (emissivity of

0.999). The thermodynamic temperature of the heated target is maintained at an average

temperature of 334 ± 0.1 K and the thermodynamic temperature of the ambient target is

typically 245 ± 5 K at altitude. While the thermodynamic temperature of the cosmic back-

ground is 2.736 ± 0.02 K, the measured brightness temperature can range from 2.9 ± 0.05 K

for the most-transparent channel to 150 ± 5 K for the least transparent channel, depending

on aircraft altitude.

4.1.4 Control and data handling

Instrument control and data collection tasks are coordinated by a microcomputer with

an AMD 5x86 processor incorporating a flash-RAM hard drive and PC104 A/D cards. The

Real-Time Linux [38] operating system was used. Built-in TCP/IP support allows real-

time instrument control (via satellite uplink on the ER-2) and post-flight data download

via Ethernet.

4.1.5 Digital video system

A wide-angle (1110), high-resolution (640x480 pixels per frame) video camera (Panasonic

GP-KS162 with GP-LM3TA lens) is flown with the microwave package to provide continuous

imagery of clouds and surface conditions. The video output is digitized (24-bit RGB) by a

frame grabber board (one frame every five seconds), compressed (to -56 kbps), and stored

on a flash-RAM hard drive (-200 MB per 8-hour flight).

2 See Appendix B for more details.
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4.2 Instrument calibration

The radiometer output voltage C for each channel is converted into units of brightness

temperature by the application of the linear calibration equation:

C
B(C) = gC + b = g b - = xc. (4.1)

The gain (g) and baseline (b), represented by the vector x, are derived by fitting a line to the

three calibration points (Cz, Tz), (CA, TA), (CH, TH), where the subscripts Z, A, and H

indicate the zenith, ambient, and heated calibration sources, respectively. The parameters

of the linear fit are determined by weighted least-squares:

x = (ATWA)-lA TWb (4.2)

- Z 0 0

A = C C C b = TZ T A TH W = 0 U-A 0 .

0 0 UH

The W matrix is the inverse of the error covariance of the calibration data, and includes

contributions due to instrument noise (see Tables 4.1 and 4.2), unknown thermal gradients

in the internal targets, and, for the 54-GHz system, antenna beam spillover. The latter

two contributions are discussed in more detail in Sections 4.2.2 and 4.2.3. The calibration

counts, CH and CA, are typically filtered over several scans to reduce sensor noise using

methods such as described in [39].

4.2.1 Radiometer power spectrum

The radiometer power spectrum was estimated using 1000 consecutive observations of

the heated target during a March 25, 1999 flight. Periodograms were computed and averaged

using the Welch-Bartlett windowing technique [40]. The results for a typical 54-GHz channel

are shown in Fig. 4-6, and the results for a typical 118-GHz channel are shown in Fig. 4-7.

Also shown are least-squares fits of V, a, and f, for the following noise model suggested
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Figure 4-6: NAST-M noise power spectrum near 54 GHz. Also shown are least-squares fits

of V, a, and f, for the noise model given in Eq. 4.3.
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Figure 4-7: NAST-M noise power spectrum near 118.75 GHz. Also shown are least-squares

fits of V, a, and f, for the noise model given in Eq. 4.3.
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by [411:

P(f) = V [1 + (f/fe)~a] (4.3)

which describes a mixture of white and 1/f noise. Vo is the white noise spectral power

density and fc is the frequency at which the white and 1/f components are equal. The

data in Figures 4-6 and 4-7 suggest that calibration data may be averaged over a period of

approximately 50 seconds (10 scans). Empirical analyses [37] yielded an optimal averaging

range of approximately seven scans.

4.2.2 Correction for thermal gradients in the heated target

Temperature sensors embedded throughout the heated and ambient targets allow de-

tection of thermal gradients, both across and through the load. These must be measured

at high altitudes because the low air pressure and temperature are difficult to replicate

on the ground, as is the impact of this gradient on the load radiance at each frequency.

Measurements of the ambient target temperature have indicated a worst-case gradient of

±0.1 K; therefore no correction is required. Temperature differences through the heated

target as large as 3 K have been observed, and correction is necessary. It is assumed that the

brightness temperature BH observed while viewing the heated target is a weighted average

of the temperatures TH measured by the seven embedded sensors:

7

BH _ WT TH,where w(i) = 1. (4.4)
i=1

Radiometric measurements at 118 ± 3.5 GHz of the ambient target and the cosmic back-

ground (known to within ±0.1 K) are used as calibration points for determining the bright-

ness temperature of the heated target. The solution to Eq. 4.4 is chosen such that E w2 is

minimized:

1 11 t  BH
w = H (4.5)
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Table 4.3: RTD weights calculated on March 29, 1999.

RTD 1 RTD 2 RTD 3 RTD 4 RTD 5 RTD 6 RTD 7
0.1568 0.1435 0.1402 0.1330 0.1412 0.1449 0.1402

where (.)t denotes the pseudoinverse. These weights are typically calculated for each 54-

and 118-GHz channel using only the 118 ± 3.5 GHz channel for calibration. Because the

penetration depth into the load is frequency-dependent, the weights are also frequency-

dependent, but this dependence has been found to be negligible (on the order of ±0.1 K)

for both radiometer systems. Note that by using the zenith and ambient calibration sources

to correct the heated load at 118 ± 3.5 GHz, we have effectively replaced the three-point

calibration with a two-point calibration for this channel. However, all other channels use

a weighted average of all three calibration sources. Weights calculated from data observed

over Lake Michigan on March 29, 1999 are given in Table 4.3.

4.2.3 Characterization and correction of antenna beam spillover

An antenna beam spillover problem affecting views of the internal calibration targets for

the 54-GHz radiometer results in a correctable worst-case absolute calibration bias of ~3 K

in the transparent channels. The "corrupted" temperature of the ambient/heated load can

be modeled as a linear combination of the spillover through the zenith port, the spillover

through the nadir port, and the "true" load temperature (i.e., the brightness temperature

[TA or TH] that would be observed if there were no spillover) as follows:

TI= TZ +71AT TN + (1 - ?,- T$A (4 .)

Ti =NHTZ + 7HTN + (1- _ HTH (4 )

The four q values (for each radiometer channel) can be accurately measured in the labora-

tory3 , TZ and TN can be estimated from flight data, and Eq. 4.6 and 4.7 can be substituted

3 See Appendix C for more details.
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in Eq. 4.5 to provide a correction. The q values depend on the azimuthal and lateral position

of the reflector relative to the motor shaft, and consequently need to be measured again

if the reflector position relative to the motor shaft changes. Unfortunately, the NAST-M

scanning assembly underwent numerous repairs over the course of CAMEX-3 and WIN-

TEX that affected the reflector position relative to the motor shaft, and the laboratory

measurements of the 7 values were no longer applicable.

However, lab-derived measurements of the q values can be "tuned" for flight observations

by comparing calibrated NAST-M data to radiosonde (or AMSU) data. Specifically, let Blm

and BPm represent upwelling and downwelling brightness temperatures calculated from

radiosonde data for a particular NAST-M channel. Let BU, and BD8 represent NAST-M

calibrated (using only ambient and heated targets) brightness temperatures (using lab-

derived 7j's) when viewing the nadir and zenith positions, respectively. The tuned values of

,q are the solutions to the following constrained minimization problem:

minimize (77 - 70 j)T( - ,o) subject to: (4.8a)

7 T > [ 0.001 0.001 0.001 0.001 (4.8b)

(BUs -BLm) 2  a 2 (4.8c)

(Bs, -Bm )2 <u2o (4.8d)

where qo is the vector of laboratory measurements. The error terms o2 and a2 include

contributions due to instrument noise (see Table 4.1), profile error (assumed to be less than

+1 K for radiosonde observations and AMSU at NAST-M vertical resolution), and forward

model error (assumed to be less than ±0.3 K). The minimization is carried out numerically

using a sequential quadratic programming (SQP) method [42]. Laboratory measurements

of the parameters before and after a March 15, 1999 tuning appear in Table 4.4.
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Table 4.4: Antenna beam coupling coefficients before and after March 15, 1999 tuning.

Frequency Laboratory Measurements After March 15, 1999 Tuning

No. (GHz) 77Z 7y 7 77R 7A zj _ _ _

1 50.30 0.0048 0.0016 0.0057 0.0014 0.0055 0.0017 0.0086 0.0024
2 51.76 0.0066 0.0021 0.0053 0.0014 0.0066 0.0021 0.0071 0.0020
3 52.80 0.0077 0.0024 0.0054 0.0013 0.0093 0.0023 0.0023 0.0010
4 53.75 0.0071 0.0024 0.0045 0.0014 0.0141 0.0024 0.0089 0.0026
5 54.40 0.0073 0.0023 0.0050 0.0016 0.0084 0.0024 0.0010 0.0010
6 54.94 0.0082 0.0027 0.0056 0.0018 0.0092 0.0028 0.0012 0.0010
7 55.50 0.0107 0.0031 0.0080 0.0023 0.0091 0.0029 0.0025 0.0010
8 56.02 0.0163 0.0044 0.0129 0.0034 0.0101 0.0032 0.0010 0.0010

4.3 Comparisons with AMSU

NAST-M radiances observed on March 26, 1999 over Lake Michigan were compared

with radiances observed by AMSU in the following way. First, a temperature retrieval was

performed using the AMSU-A channels [43]. A humidity profile was obtained using data

from a coincident radiosonde, and the surface temperature was retrieved using the 11-tim

and 12-ptm channels from the Advanced Very-High Resolution Radiometer (AVHRR) on

the NOAA-15 satellite. These data were used with a forward model [44] and a sea-surface

model [45] to simulate NAST-M radiances for viewing angles ±500 from nadir. Simulated

brightness temperatures were band-averaged over the NAST-M passbands using laboratory

measurements of the radiometer frequency response over 1200 frequencies. A Gaussian an-

tenna beamshape was assumed in the radiative transfer calculations, as suggested by [46].

The errors associated with the simulated NAST-M brightness temperatures due to AMSU

calibration/retrieval errors [43, 47], forward model errors [48], surface emissivity model

errors [45], AVHRR calibration/retrieval errors [49], and temporal and spatial offsets are

believed to be less than 1.5 K for all channels. Corrections for antenna sidelobe spillover

affecting the 54-GHz system were derived from a March 15, 1999 overflight of Lake Michi-

gan using temperature and humidity profiles retrieved from AMSU and surface temperature

data from buoy station 45007 (NOAA National Data Buoy Center). The results are shown

in Figure 4-8 and 4-9. Channels 7-9 of the 118-GHz system are significantly degraded
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Figure 4-8: Comparison of NAST-M 54-GHz channels with AMSU (March 26, 1999 over-
pass, 00:41 UTC). Brightness temperatures calculated from AMSU radiances are shown
with a solid line, and NAST-M radiances (corrected for antenna beam spillover) are shown
with circles. NAST-M radiances before spillover corrections have been applied are indicated
with asterisks.
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due to RF losses in the preamplifier circuits, and are not shown. The brightness tempera-

tures calculated from AMSU radiances are shown with a solid line, and NAST-M radiances

(averaged from 00:36 - 00:44 UTC; straight and level flight over water) are shown with

circles. NAST-M brightness temperatures near 54 GHz before spillover corrections are in-

dicated with asterisks. Agreement to within 1 K is obtained for all channels of the 54-GHz

radiometer and channels 1-6 of the 118-GHz radiometer (see Tables 4-1 and 4-2 for exact

brightness temperature offsets at nadir). AMSU/AVHRR/NAST-M comparisons on March

29, 1999 over Lake Michigan demonstrate similar agreement.

The excellent agreement between NAST-M and AMSU, while encouraging, is only in-

dicative of the calibration of NAST-M relative to AMSU. More extensive studies are needed

in order to validate the absolute calibration accuracy of NAST-M under all circumstances.

4.4 Discussion and Summary

NAST-M offers several noteworthy improvements over most prior aircraft and satellite-

based instruments, as discussed below.

The zenith port provides: 1) an additional highly-stable calibration source for the more

transparent channels, 2) a mechanism for measuring and compensating a thermal gradient

in the heated target (thereby improving the calibration of the more opaque channels), and

3) a source of data for validating transmittance models.

The use of commercial, off-the-shelf (COTS) components dramatically reduced devel-

opment time and cost. Thermal and mechanical environments throughout the instrument

housing were engineered to ensure reliability of COTS hardware. NAST-M was designed,

developed, and flown in under two years at a cost under $800,000.

NAST-M provides the first high-resolution, collocated, multiband passive microwave

measurements for three-dimensional temperature sounding, cloud and precipitation stud-

ies, and transmittance modeling. The 2.6-km resolution provided by the NAST suite also

facilitates interpretation of unresolved satellite observations of meteorological phenomena.

The three-point calibration on NAST-M provides accurate brightness temperature mea-

surements in two oxygen bands, permitting the first reliably accurate temperature profile
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retrieval images.

NAST-I/M provides an atmospheric sounding platform with sufficient accuracy and

sensitivity for validating satellite observation system concepts. Data from NAST-I and

NAST-M are used in Chapters seven and eight to retrieve temperature profile images, as

well as cloud and precipitation structure. The temperature profile retrieval performance

in cloudy atmospheres using both NAST-I and NAST-M is significantly better than the

performance obtained by using either instrument alone.
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Chapter 5

NAST-I: Characterization and

Reduction of White and Colored

Noise

IT was demonstrated in Chapter 3 that measurement error has a significant effect on

temperature profile retrieval performance. A statistically-optimal estimator requires

knowledge of both the variance and correlation structure of the noise, and possibly higher-

order characterizations as well. In this chapter, we present a second-order analysis of

NAST-I measurement noise in both the spectral and spatial domains for two flights: Sep.

13, 1998 (CAMEX, Florida) and Mar. 29, 1999 (WINTEX, Wisconsin / Great Lakes).

5.1 Overview of NAST-I noise sources

The Michelson interferometer spectrometer was introduced in Chapter 2 and the NAST-I

instrument was outlined in Chapter 4. We now briefly summarize the significant mechanisms

that contribute to the NAST-I system noise [50], and discuss the mechanism identified

in [51, 52] to be the dominant noise source: vibration-induced optical jitter.
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5.1.1 Additive noise sources

The noise processes that are independent of the scene temperature are termed "addi-

tive". The significant sources of additive noise are:

Photon and detector noise Photon (or quantum) noise results from the statistical fluc-

tuations in the number of photons converted to photoelectrons by a photon detector.

Detector noise in semiconductor infrared detectors is produced by charge carriers gen-

erated by thermal excitation across the band gap (thermal generation-recombination

noise).

Electronics noise Electronics noise is thermal in character, and arises in electronic com-

ponents following the detector, primarily the input stages of the preamplifier.

Aliasing noise The spectral radiance signal is filtered before sampling: by optical com-

ponents (e.g. beamsplitter and dichroics), by the detector and by the post-detection

filter. Any components remaining above the Nyquist frequency are aliased.

Low-frequency "1/f" noise Semiconductor devices generally exhibit low-frequency noise

with a power density of the form cof-', where a is a constant on the order of unity.

This type of noise may be correlated in the spectral domain.

Quantization noise Quantization noise is introduced by the analog-to-digital converter

when the analog detector signal is represented by a finite number of bits.

Sampling errors The interferogram must be sampled at constant time offsets to faithfully

restore the spectral information. If the signals triggering the sampling contain position

errors, these errors will be manifested in the spectral domain.

5.1.2 Scene-dependent noise sources

The following sources of noise depend on the scene temperature measured by the in-

terferometer, and the noise is therefore correlated in the spectral domain. The significant

sources of scene-dependent noise are:
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Mirror velocity errors Deviations from a constant mirror velocity (and therefore a con-

stant sampling interval of the interferogram) affect the measured amplitude and phase

of any given spectral component.

Optical jitter-induced noise Any tilt of the mirrors reduces the frequency-dependent

modulation efficiency of the interferometer. The modulation caused by the jitter

results in a multiplicative noise in the autocorrelation and interferogram spectral

domains.

5.1.3 Mathematical description of jitter-induced noise

We now develop a mathematical relationship between the interferogram domain and the

spectral domain and show how noise is transferred from one domain to the other.

The interferogram

The interferometer splits a monochromatic beam of radiation (wavenumber = A = A-1)

into two beams of unequal path length (path difference = Ax), which are recombined at

the detector:

1 1
a1 = -Iocos (27rxf), a2 = -Io cos [21r(x + Ax)P] (5.1)

4 4

al + a2 = Io[1 + cos (21rAxr/)]. (5.2)

For a polychromatic source, Eq. 5.2 is integrated over all wavenumbers:

00G 00

s(x) = 210 Sp[l + cos (27rAxC/)]dP = ko + 21 Sp cos (2A7rAz)dP, (5.3)

where Sp is the power spectral density of the source at wavenumber P in units of power per

wavenumber. The interferogram is defined as the second term in Eq. 5.3:

m(x) = 2 j S cos (27rAxF/)dP, (5.4)
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which can be rewritten (assuming Sr is an even function of wavenumber) as

M(x) = -O Sp ei vdf. (5.5)

This is the familiar relation expressing the interferogram and the spectral intensity as Fourier

transform pairs.

Effect of mirror misalignment

If the fixed mirror is tilted by a small angle (e), the effective path difference is no longer

constant for each ray in the collimated beam. The effective path difference for a given ray

is a function of the position of the ray in the plane perpendicular to the beam. Letting r

and 0 denote this position, the effective path difference becomes

x'(r, /) = x + 2er sin z, (5.6)

and the net effect of the mirror tilt is obtained by integrating over the plane perpendicular

to the beam. Equation 5.3 becomes:

s(x) = S [1 + He (P, x)]dF, (5.7)

where

H,(Fl, x) = ,2 cos[2irP(x + 2er sin@ )]r dr do (5.8)

= Ji(k) cos (27rix), (5.9)

A
where R is the radius of the collimated beam, k = 47rPeR, and J1 (-) is the Bessel function

of the first kind. The interferogram becomes:

m(x) = SO [Ji(k) ei 27PxdP. (5.10)
J-000 ITk
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Figure 5-1: The contribution of the dME(") term in the Kelly model of NAST-I jitter-

induced noise [51].

The term [2Ji(k)] is known as the modulation efficiency, ME(F,E). If the mirror tilt is

constant over the entire interferogram, then Sp is attenuated by a factor of ME(/, E)- 1. In

practice, the angular tilt is a random variable, with power spectrum Pjitter-

Model for jitter-induced noise

Kelly et al. [51] suggest the following model for the jitter-induced component of NAST-I

noise in RMS radiance units:

NEDRjitter(P) = (B (P, Tscene) - Bbkgd(P) )

where * is the convolution operator. Values of d ME(o) for static tilts of 10, 20, and 30

microradians are shown in Fig. 5-1.

-. - 30 .a

(5.11)

. ..................... ............ .. ..... ............. _ _ ' ........... ... ..
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Table 5.1: Flight segments used for NAST-I noise analyses.

Deployment Date Time Latitude Longitude

(UTC) (*N) (OW)

CAMEX-3 Sep. 13/14, 1998 23:44:15 - 23:48:15 24.69 - 25.13 77.83 - 77.56

WINTEX Mar. 29/30, 1999 1:05:31 - 1:09:26 43.07 - 43.53 87.39 - 87.12

5.2 Summary of flight data used for noise analyses

One representative flight was chosen from both the CAMEX-3 and WINTEX deploy-

ments. Only data within ± 200 of nadir (middle five pixels) was retained. The correlation

effects of the atmosphere were removed by selecting homogeneous, cloud-free regions and

operating only on the difference of adjacent pixels (with the exception of the ION analysis,

for which all flight data was used). High-resolution infrared data from MAMS (CAMEX-3)

and MAS (WINTEX) was used to identify cloud-free regions over water. The details of

each flight segment are given in Table 5.2, where the spatial and temporal bounds apply to

the cloud-free regions.

5.3 Analysis of spectrally-uncorrelated noise

The ION algorithm [1] was used to estimate the spectrally-uncorrelated component of

the NAST-I system noise. ION estimates of the RMS variation of the uncorrelated noise

are shown in Fig. 5-2. Also shown are similar estimates based on the analysis of calibration

data. The ION estimates are in excellent agreement with the calibration estimates. The

principal discrepancies arise in the water vapor bands and in extremes of the shortwave

band. These discrepancies could be due to a number of factors, including water vapor in

the instrument canister that affected the calibration data to a greater extent than the scene

data, and possibly and varying instrument background temperature.

Histograms of the ION-estimated noise sequences for two temperature-band channels

with weighting function peaks near 8 km are shown in Fig. 5-3. The Gaussian pdf as-

sociated with thermal noise processes is clearly revealed. The spectral correlation of the
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Figure 5-2: Estimates of the RMS variation of the uncorrelated component of NAST-I

system noise for two flights and two methods. Estimates using the ION algorithm are

offset by 1 K from estimates obtained using calibration analysis. Also shown are NEAT

differences (K RMS) between the ION estimates and the calibration estimates.

1(D)

QD

3

z

. .. . . . . . . . . . . .

500

a)C.)
Ca)
L..a)

0

0.5

0 --

-0.5--

.-

3

2 - -

1

Cn
H

wz
A

0500

ill

..........

A[



NAST-I: WHITE AND COLORED NOISE

13 Sep. 1998
14.1719 gm

-0.5 0 0.5

TP(mW - m-2 *ster 1 cm-)

14.1719 pm

>0.08
C
0)0.06

0.04

0.02
05

4.1909 pm

I.

-0.06

Mar. 29, 199

0 0.5 1

T (mW - m-2. ster-1 - cm- )

0.08

C 0.06
0r
CD
0 0.04

0.02

-0.03 0 0.03 0.06
T (mW - m-2 - ster-1 -cm-)

9 4.1909 pm

I ... I......- ...-. .-

0
-0.06 -0.03 0 0.03 0.06

T (mW - m-2 *ster- * cm- )

Figure 5-3: Histograms of ION-estimated noise sequences for two temperature-band chan-

nels. The weighting function of both channels peaks near 8 km.
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Figure 5-4: Spectral correlation of ION-estimated noise sequences for two temperature-band
channels. The weighting function of both channels peaks near 8 km.

ION-estimated noise sequences for the same two temperature-band channels selected in

Fig. 5-3 is shown in Fig. 5-4. The shape is characteristic of a white-noise process.

Finally, the RMS variation of the spectrally-correlated noise component was estimated

in the following way. First, the ION-estimated noise sequences were subtracted from the

100 NAST-I pixels in the cloud-free region given in Table 5.2. Adjacent-pixel differences

were then taken in the cross-track direction and the RMS variation of the residuals was

computed. The resulting estimate of correlated RMS variation may be artificially high for

two reasons. If there is a horizontal temperature gradient (or thin cloud layer undetected

by MAMS) in the cross-track direction, this will appear as correlated noise. In addition, if
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2

- Total
- Uncorrelated

1.5 - -- Correlated
C0,

z
Z 0 .5 -.. - -.. .. ~.. . ...... ...... ....

500 1000 1500 2000 2500 3000

2
- Total
- Uncorrelated

1.5 - - Correlated - -

C0,

0-
500 1000 1500 2000 2500 3000

Wavenumber (1/cm)

Figure 5-5: The estimated RMS variation of the spectrally correlated and uncorrelated noise

components of NAST-I system noise. Also shown is the RMS variation of the total noise

component.

the noise is spectrally correlated but spatially uncorrelated, the differencing operator will

amplify the noise. The spatial correlation structure of the spectrally correlated noise will be

examined in a future section. The estimates of the RMS variation of the correlated noise are

shown in Fig. 5-5. Several features are noteworthy. First, the correlated noise component

is dominant in all three spectral bands for the Sep. 13, 1998 flight. However, the correlated

noise component is significantly larger in the middle portion of the shortwave band on Mar.

29, 1999 than on Sep. 13, 1998.
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Figure 5-6: Properties of simulated NAST-I channels used in Fig. 5-7. The top graph shows

the correlation between a channel with weighting function peak near 10 km and 11 other

channels with weighting function peaks from approximately 2-10 km. The bottom graph

show the altitude at which the weighting function for each channel is maximum.

5.4 Analysis of spectrally-correlated noise

We limit the present study of the spectral correlation structure of the NAST-I system

noise to a representative set of twelve channels from each of the two temperature bands. The

channels are chosen such that the peaks of the weighting functions sample the atmosphere

uniformly from approximately 2 to 10 km. The weighting function peak heights for the

channel sets are shown in Fig. 5-6. Note that peak heights of the temperature weighting

functions for the shortwave bands (see Fig. 2-7, for example) are significantly lower than the

Planck weighting function peak heights shown in Fig. 5-6. This is the reason the spectral

correlation of the shortwave channels asymptotes after channel nine.
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Also shown in Fig. 5-6. is the spectral correlation calculated from simulated NAST-I

radiances over a set of 10,000 atmospheric profiles. This correlation structure will be used

to delineate atmospheric and non-atmospheric correlation.

The spectral correlation between the channel with the highest weighting function peak

and the other channels was calculated after taking cross-track adjacent pixel differences.

The results are shown in Fig. 5-7. Also shown are the spectral correlation results from

simulated NAST-I data. The shortwave bands for the Sep. 13, 1998 flight exhibit spec-

tral correlation that is fairly consistent with with the simulated atmospheric correlation

structure. Both bands for the Mar. 29, 1999 flight deviate slightly from the simulated at-

mospheric correlation structure, with the longwave band exhibiting a relatively high degree

of spectral decorrelation for small spectral offsets. This decorrelation could be caused by an

over/underestimation of the uncorrelated noise component for the segment of flight data.

The spectral correlation structure exhibited by the longwave band on Sep. 13, 1998 is much

higher than predicted by simulated data, and could be the result of correlated instrument

noise.

As a final observation, the correlation structure of both bands differs significantly from

the Sep 13., 1998 flight to the Mar. 29, 1999 flight. A similar observation was noted

by [52], and the difference was attributed primarily to: 1) different vibration environment

due to new instrument shock mounts installed after CAMEX-3, and 2) a change in system

responsivity due to a reduction in the hot blackbody setpoint used after CAMEX-3.

5.5 Analysis of spatial noise correlation

The spatial correlation of the spectrally-correlated noise component was investigated by

computing the correlation in the cross-track and along-track directions. Again, the lack of

data precludes a full characterization of the correlation structure. We therefore compute the

spatial correlation for a set of NAST-I "pseudochannels" (a linear combination of NAST-I

channels).
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Figure 5-7: Correlation structure of NAST-I spectrally-correlated noise component. The
correlation structure of simulated radiances over an ensemble of 10,000 atmospheric profiles
is also shown.
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Figure 5-8: Template temperature weighting function used for the NAST-I pseudochannels.

5.5.1 Formulation of NAST-I pseudochannels

Two NAST-I "pseudochannels" were constructed (one for the longwave band and one for

the shortwave band), each with the temperature weighting function shown in Fig. 5-8. This

weighting function is very similar to that of the 54.4-GHz and 118.75 ± 1.6-GHz NAST-M

channels. Define the weighting function matrix for a band of N NAST-I channels as:

WT',V [k]

WT,v2[k]

WT,VN[k]

,k= 1, ... ,A, (5.12)

.... ...... ........ . ... ...... . .. ..... ....

... ........ ...... ... ........ ... .. ...... ... . .. .......

.... ..... ........ ....... ....... ..... ... ......

. ...... ..... ...... .......... ....... ........ ....... .. .. ....... ..... .....

...... ........ . ...... ....... . ..... ... .... ....... ... .. . ....... ...... ...

... ..... .. ........ ... ...... ...... ........ ......... . .... .... ..... ...
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.... ...... .. ....... ....: ...... ... .... ....... . ..... ...... ......

Surface weight:= 0.17
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where W,,, [k] is a discretization over M atmospheric levels of WT,, (z) (defined in Eq. 2.66).

We seek the linear combination of NAST-I channels, A, that satisfies

KT A = WTemplate, (5.13)

where the M-element row vector WTemplate is the template weighting function shown in

Fig. 5-8. Equation 5.13 is a linear system of M equations with N unknowns. N is usually

much larger than M for hyperspectral sounders, and the system of equations is underde-

termined. We therefore pick the solution that minimizes the noise of the pseudochannel,

ACepITTAT, where C*T*T is the noise covariance matrix of the band of NAST-I channels

expressed in Noise-Equivalent AT (NEDT 1 ). This constrained minimization problem can

be solved by introducing a vector of M Lagrange multipliers (f) and setting the derivative

with respect to A equal to zero:

d [ACGPT4A AT + 4T (K TA - WTemplate) = 0, (5.14)

which results in the following set of linear equations:

2CT*T K A 0 (5.15)

K KT 0 (D WTemplate_

with solution

A 2CPTrTT K 0 (5.16)
4D K T 0 WTemplate

5.5.2 Calculation of spatial noise correlation

The spatial correlation in the cross-track direction was calculated after taking adjacent-

pixel differences in the along-track direction. The spatial correlation in the along-track

direction was calculated after taking adjacent-pixel differences in the cross-track direction.

Radiance units (NEDR) can be converted to NEDT as follows: NEDT = J,- 1 (J,(To) + NEDR) - To,
where To is some nominal temperature. To = 290 K in this thesis, unless stated otherwise.
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The results are shown in Fig. 5-9. The relatively large correlation present in the along-track

direction is an artifact of a smoothing algorithm employed by the distributor of the NAST-I

data: a triangular filter with coefficients of 1, ., and 1 was convolved with the NAST-I4 2 4

data in the along-track direction. If the noise were spatially white before the application of

the smoothing, the spatial correlation after the smoothing for a one-pixel offset would be

, which is consistent with the values shown in Fig. 5-9. The spatial correlation appears

to be significantly smaller than the spectral correlation, which suggests that noise can be

filtered spatially.

5.6 Summary

The ION-estimated RMS variation of the spectrally uncorrelated component of NAST-I

system noise is in excellent agreement with calibration analysis. Uncorrelated noise can

therefore be removed by subtracting the ION-estimated noise sequences. The spectrally

correlated component of NAST-I system noise was dominant in all bands for Sep. 13, 1998.

This component was smaller by approximately a factor of two (in RMS) in the longwave

band for Mar. 29, 1999. The spectral correlation structure for the longwave band on Sep.

13, 1998 and the shortwave band on Mar. 29, 1999 are not consistent with correlation

structure due to simulated atmospheric variability. The spatial correlation is smaller than

the spectral correlation, and sufficiently low that spatial filtering should reduce its effects

significantly. For example, Figures 5-5 and 5-9 suggest that a two-dimensional spatial filter

with the following coefficients would reduce the variance of the correlated noise component

component below that of the nominal uncorrelated (thermal) component for both the Sep.

13, 1998 and Mar. 29, 1999 flights:

1 1 11
8 8

18 9 18
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Figure 5-9: Spatial correlation of the spectrally correlated component of NAST-I system

noise. Correlation was computed in both the cross-track and along-track directions. Cross-

track correlation computed from spatially-coincident NAST-M data (118.75 ± 1.6 GHz,
weighting function peak near 5 km) observed on Mar. 29, 1999 is shown for comparison.
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Chapter 6

Retrieval of Cloud-Cleared

Temperature Profiles: Simulation

Studies

S IMULATED radiance observations from the Atmospheric InfraRed Sounder (AIRS) [53],

Advanced Microwave Sounding Unit-A (AMSU-A) [54], and (AMSU-B1) [55] instru-

ments are used in this chapter to derive and evaluate methods for retrieving the temper-

ature profile (single-pixel) or clear-column AIRS radiance (multiple-pixel) in the presence

of clouds. Principal components analyses are performed on the radiance data to determine

the contributions of clouds and the temperature profile to radiance variation. The signif-

icant superiority of a neural network relative to a linear least-squares estimator (LLSE)

is demonstrated for both temperature profile and clear-column radiance (cloud clearing)

retrievals.

'The AQUA satellite launched May 4, 2002, carrying the AIRS and AMSU instruments, among others.
AMSU-B was replaced with the Humidity Sounder-Brazil (HSB), which is identical to AMSU-B, except
that it has no 89-GHz channel.
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6.1 Introduction

The temperature profile retrieval performance of airborne and spaceborne atmospheric

infrared sounders is significantly degraded by clouds. Methods for combining infrared and

microwave radiance data to retrieve temperature profiles and clear-column infrared radi-

ances in the presence of clouds have been proposed by several investigators (see [3, 56, 57],

for example). Neural network estimators have been proven effective for retrieving tem-

perature profiles from hyperspectral infrared measurements in clear air [58, 59]. In the

following sections, novel methods are derived using combined infrared and microwave mea-

surements together with neural network estimators to retrieve the temperature profile and

clear-column infrared radiances in the presence of clouds.

6.2 Simulation of cloudy radiance observations

The cld21r profile database constructed and used by the AIRS science team in approx-

imately 1995 [60] was used to simulate radiances from the AIRS, AMSU-A, and AMSU-B

instruments. The atmospheric profile statistics, cloud models, and surface model used in

the cld21r database are summarized, and the radiative transfer codes used to perform the

radiance calculations are briefly described. Finally, the assumed instrument specifications

are outlined.

6.2.1 Atmospheric profile data

A set of 12,000 atmospheric profiles (uniformly distributed seasonal and global coverage)

was generated using a Numerical Weather Prediction (NWP) model [60]. The mean and

standard deviation of the temperature, water vapor, and ozone profiles generated by the

model are shown in Fig. 6-1.

6.2.2 Vertical cloud model

Clouds at two levels were introduced into every profile by relating the cloud-top altitude

and fraction to a relative-humidity threshold. Histograms of the cloud fraction and cloud-

top altitude for the two cloud layers are shown in Fig. 6-2. Cloud tops were assumed to
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Figure 6-1: Temperature, water vapor, and ozone profile statistics for the cld21r database,
given in units of Kelvin, grams of water vapor per kilogram of dry air, and parts per million
(volume), respectively.
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be opaque to the infrared channels with a non-random emissivity of 0.9. Solar reflection

was not modeled. Microwave channels were perturbed by clouds only through liquid water

absorption; scattering was not modeled. Cloud liquid water statistics are shown in Fig. 6-3.

6.2.3 Horizontal cloud models

Two horizontal cloud models were used in the simulation analyses: "single-pixel" and

"multiple-pixel". The single-pixel model assumes that the cloud and surface properties

of each pixel are independent. For the multiple-pixel model, AIRS/AMSU-B radiance
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cloud altitudes; the cloud altitudes were independent from cluster to cluster, and generally

consistent with the associated atmosphere. The surface emissivity across each nontuple was

fixed. A corresponding AMSU-A brightness temperature vector was generated for each

AIRS/AMSU-B nontuple. The temperature and moisture profile over the nontuple was

assumed to be homogeneous.

6.2.4 Surface model

Random surface emissivities were chosen for each profile, and were modeled as random

variables with clipped-Gaussian pdf's (with the clip at +1a). The mean and standard

deviation assumed for the AIRS instrument were 0.975 and 0.025, respectively. The mean

and standard deviation assumed for the AMSU instrument were 0.95 and 0.05, respectively.

The surface emissivities of one instrument were assumed to be uncorrelated with any other;

emissivities of each channel of a given instrument were assumed to be perfectly correlated.

6.2.5 Radiative transfer codes

The profiles in the cld21r database with the assumptions outlined above were used

to simulate radiance observations of the AIRS and AMSU instruments. The AIRS Fast

Transmittance Codes [61, 62] were used to calculate clear-air transmittances for the in-

frared channels. The Rapid Transmittance Algorithm [63, 64, 65] was used to calculate

transmittances for the microwave channels. The airsbt radiative transfer package [60] was

used to calculate cloudy radiances for the single-pixel and multiple-pixel cloud models.

6.2.6 Instrument specifications

The AIRS instrument provides spectral coverage over the 3.74-4.61 pm, 6.20-8.22 pm,

and 8.8-15.4 pm infrared bands, with approximately 2375 channels. The specified weighting

function peak height and modeled (specified) measurement noise (NEAT) for each channel

are shown in Fig. 6-4. AIRS will provide a nominal footprint diameter of 13.5 km at nadir.

The AMSU-A instrument measures microwave radiation in 15 channels from 23.8-89.9

GHz at a nominal footprint diameter of 40.5 km at nadir. The AMSU-B instrument mea-
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Table 6.1: Channel specifications for AMSU-A. The weighting function peak heights were
calculated using the US standard atmosphere viewed at nadir over a nonreflective surface.

Channel Center Bandwidth ATRMS Weighting function
No. freq. (s) (MHz) (MHz) (K) peak height (km)

1 23,800 t 72.5 2 x 125 0.30 0
2 31,400 50 2 x 80 0.30 0
3 50,300 50 2 x 80 0.40 0
4 52,800 ± 105 2 x 190 0.25 0
5 53,596 ± 115 2 x 168 0.25 4
6 54,400 ± 105 2 x 190 0.25 7
7 54,940 ± 105 2 x 190 0.25 10
8 55,500 ± 87.5 2 x 155 0.25 12
9 57,290.344 = fLo± 87.5 2 x 155 0.25 17
10 fLo± 217 2 x 77 0.40 21

11 fLOe 322.2 ± 48 4 x 35 0.40 24
12 fLo± 322.2 ± 22 4 x 15 0.60 28
13 fLo± 322.2 ± 10 4 x 8 0.80 35
14 fLo± 322.2 ± 4.5 4 x 3 1.20 40
15 89,000 ± 900 2 x 1000 0.50 0

sures microwave radiation in 5 channels from 88-191 GHz at a nominal footprint diameter of

13.5 km at nadir. The bandpass characteristics of the AMSU-A and AMSU-B instruments

are summarized in Tables 6.1 and 6.2.

6.3 Principal components analysis of AIRS/AMSU

Principal components analysis (PCA) techniques were performed on AIRS/AMSU data

to determine a more compact representation of the information contained in the radiance

spectra. This reduces the number of inputs to the retrieval operator, and in the case of a neu-

ral network, provides a more stable network and significantly reduces training time because

fewer nodes are needed. In this section we compute the noise-adjusted principal components

(and associated eigenvalues) of clear and cloudy radiance data, the noise-adjusted princi-

pal components of the infrared radiance perturbations due to clouds, and the projected

(temperature) principal components of clear and cloudy radiance data.
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Table 6.2: Channel specifications for AMSU-B. The weighting function peak heights were
calculated using the US standard atmosphere viewed at nadir over a nonreflective surface.

Channel Center Bandwidth ATRMS Weighting function
No. freq. (GHz) (GHz) (K) peak height (km)

1 89 ± 1 2 x 1 0.6 0
2 150 ± 0.9 2 x 1 0.6 0
3 183.31 1 2 x 0.5 0.8 2
4 183.31 3 2 x 1 0.8 4
5 183.31 7 2 x 2 0.8 7

6.3.1 NAPC of clear and cloudy radiance data

The 2371 AIRS radiances were converted from spectral intensities to brightness temper-

atures using Eq. 2.48, and were concatenated with the 20 microwave brightness tempera-

tures into a single vector R of length 2391. The noise-adjusted principal components were

computed as follows:

PNAPC = QT R, (6.1)

where Q are the eigenvectors of Cxx + I, sorted in descending order by eigenvalue. ixx

is the prewhitened covariance matrix given by Eq. 3.14. The eigenvalues corresponding to

the top 100 NAPC's are shown in Fig. 6-5 for simulated clear-air and cloudy data. Also

shown are scatterplots of the first three NAPC's.

The eigenvalues of the 90 lowest-order terms are very similar. The principal differences

occur in the three highest order terms, which are dominated by channels with weighting

function peaks in the lower part of the atmosphere. The eigenvalues associated with the

clear-air and cloudy NAPC's cluster into roughly five groups: 1, 2-3, 4-9, 10-11, 12-100.

The first 11 NAPC's capture 99.96 percent of the total radiance variance for both the clear-

air and cloudy data. The top three NAPC's of both clear-air and cloudy data appear to be

jointly-Gaussian to a close approximation, with the exception of clear-air NAPC 1 versus

NAPC 2.
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6.3.2 NAPC of infrared cloud perturbations

Define the infrared cloud perturbation ARIR as

IR Rdr - R 'g, (6.2)

where Rdr is the clear-air infrared brightness temperature and R'1 is the cloudy infrared

brightness temperature. The NAPC's of ARIR were calculated using the method described

above. The results are shown in Fig. 6-6.

The six highest-order NAPC's of ARIR capture approximately 99.96 percent of the

total cloud perturbation variance, which suggests that there are more degrees of freedom

in the atmosphere than there are in the clouds. Furthermore, there is significant crosstalk

between the cloud perturbation and the underlying atmosphere, and this crosstalk is highly

nonlinear and non-Gaussian. Evidence of this can be seen in the scatterplot of NAPC #1

versus NAPC #2, shown in the lower left corner of Fig. 6-6. The temperature weighting

functions of NAPC #1 and NAPC #1 are shown in Fig. 6-7. NAPC #1 consists primarily of

surface channels and NAPC #2 consists primarily of channels that peak near 3-6 kilometers

and channels that peak near the surface. Therefore, NAPC #1 is sensitive principally to

the overall cloud amount, while NAPC #2 is also sensitive to cloud altitude.

6.3.3 PPCA of clear and cloudy radiance data

The projected principal components transform discussed in Chapter 3 was used to iden-

tify temperature information contained in the clear and cloudy radiances. Figure 6-8 shows

the mean temperature profile retrieval error for the reduced-rank regression operator given

in Eq. 3.42 as a function of rank (the number of PPC coefficients retained) for clear-air and

cloudy radiance data. Both curves have asymptotes near 15 coefficients.

6.4 Single-pixel temperature retrievals

The cld21r profile/radiance data set was used to derive and evaluate a retrieval of

the average tropospheric temperature in 1-km thick slabs (vertically). Retrievals were con-
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structed using LLSE and neural network techniques.

6.4.1 Training and validation sets

The cld21r data set was divided into a "training set", which was used to calculate

statistical information and train the neural network, and a separate "validation set", which

was used to test the performance of the retrievals. The validation set was constructed

by choosing 2,000 profiles, evenly-spaced throughout the dataset. The remaining 10,000

profiles comprised the training set.

6.4.2 LLSE retrieval

The LLSE retrieval discussed in Chapter 3 was to estimate the temperature profile in

the lower 15 kilometers of the atmosphere, in approximately 0.33-km increments. These

estimates were then smoothed to obtain the 1-km thick layer averages. The infrared radi-

ance data was converted into units of brightness temperature before the sample covariance

matrices were computed from the training set. All instrument noise was assumed to be

uncorrelated.

6.4.3 Neural network retrieval

A neural network was trained to estimate the temperature profile in the lower 15 kilo-

meters of the atmosphere. Five separate networks were trained, each of which estimated

the temperature in a 3-km slab of atmosphere, in approximately 0.33-km increments. The

inputs and topology of the five networks were identical.

Neural network inputs

The AIRS and AMSU observation vectors were consolidated into one vector, and the

PPC transform was performed. The 30 highest-order coefficients were retained. These

30 coefficients were normalized to unit-variance and input to the neural networks. The

instrument noise was regenerated for each epoch of training.
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Network topology

The neural network was comprised of one hidden layer with 20 nodes, and one linear

output layer with approximately six outputs. These values were chosen by considering the

degrees of freedom in the radiances (approximately 20, see Fig. 3-2) and the number of

training vectors. Empirical analyses indicated that the number of training vectors should

exceed the number of degrees of freedom in the neural network (number of inputs times

number of hidden nodes + number of output nodes) by at least a factor of ten. The following

sigmoidal activation function was used for the hidden layer:

__ 2

- i ± e2  - 1. (6.3)

Training algorithm

The Levenberg-Marquardt training algorithm was used. Training times for a single

network averaged two hours on an AMD Athlon 1-GHz PC. A typical training curve is

shown in Fig. 6-9.

6.4.4 Error analysis

The RMS errors for the LLSE and neural network retrievals are shown in Fig. 6-10

for clear and cloudy atmospheres. The neural network estimator significantly outperforms

the LLSE in both cases. The sensitivity of the retrieval to instrument noise is examined

by repeating the retrieval with instrument noise set to zero. The difference in retrieval

errors (with and without noise) is shown in the first panel of Fig. 6-11. The atmospheric

contribution to the retrieval error (i.e., the noise-free retrieval error) is shown in the second

panel of Fig. 6-11. Finally, the differences (net minus LLSE) in error contributions for the

two methods are shown in the third panel of Fig. 6-11. It is noteworthy that the neural net

is a much better filter of instrument noise than is the LLSE.

As a final test of sensitivity to instrument noise, the LLSE and neural network retrievals

were repeated while varying the instrument noise between 10 percent and 1000 percent of

its nominal value. The resulting retrieval errors are shown in Fig. 6-12. The neural network

retrieval is significantly less sensitive to instrument noise than is the LLSE retrieval.
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6.5. CLOUD FLAGGING

6.5 Cloud Flagging

It is often useful to estimate a (possibly channel-dependent) measure of infrared "cloud-

impact", which can subsequently be used as an input to a cloud clearing routine. We

henceforth refer to this quantity as a flag. While "flags" are generally regarded as "0"

or "1", we allow the single-pixel cloud flags to vary between ±oo. Consider the following

example:

f(v) - M, b(v) - k(ROsb(VV)) (K) (6.4)

where f(v) is a cloud flag for infrared radiance Ro, (v), M,,& (v) is an observed microwave

"pseudochannel" (linear combination of microwave channels, for example) peaking near

Robs (v), and k(R, (Vv)) is an estimate of Mobs (v) using all infrared channels. One possible

choice for the microwave pseudochannels is the linear combination that yields the sharpest

(in the Backus-Gilbert [28] sense) temperature weighting function with the same peak as

the companion infrared channel. Fig. 6-13 shows plots of "true" cloud impact (defined as

Rd? - Rcld) versus the Backus-Gilbert flag for nine different nontuples (a 4.19-tm AIRS

channel peaking near 5 km is shown). The relationship for a given nontuple is nearly

linear, and a reasonable cloud-clearing methodology would be to derive a regression line

and extrapolate back to an estimate of Rdr(v).

6.6 Statistical Cloud Clearing

The problem of estimating an infrared clear-column radiance vector from one or more

cloud-impacted radiance observations has been addressed by a number of investigators

(see [66] and [67], for example). Various strategies have been suggested including spa-

tial processing, spectral processing, and a combination of both. We examine the latter

approach here using only statistical methods based on a large and simulated global data

set, the cld2lr database discussed earlier.

In the previous example, statistics are only used to derive the cloud flags for each non-

tuple separately. One could construct an ensemble of nontuples and derive a statistical
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Table 6.3: Input channel configuration for the neural network 3 x 3 radiance cloud-clearing
algorithm.

Warmest pixel Each of eight remaining pixels

I(difference from warmest pixel)

AIRS 20 NAPC's 4 NAPC's
AMSU-B All 5 channels All 5 channels
AMSU-A 8 most transparent channels = 89 GHz

relationship between the clear-column infrared radiance and the cloud-impacted nontu-

ple/microwave observations. Two statistical estimators were used here: linear regression

and a neural network. The estimators were constructed using a training set of approximately

5000 nontuples and a validation set of approximately 1000 nontuples.

A neural network with two hidden sigmoidal layers (30 and 20 nodes, respectively)

and one linear output layer was trained to estimate 30 NAPC's of the clear-column AIRS

radiance from 105 inputs, derived as follows. Several 10-Am AIRS channels were used to

identify the warmest of nine pixels. 20 noise-adjusted principal components (NAPC's) [26

of the 2371-element AIRS radiance vector corresponding to this pixel were used. The five

AMSU-B channels corresponding to this pixel were also used. The remaining eight pixels

were expressed in terms of the difference from the warmest pixel. Four NAPC's of the

infrared difference for each of eight pixels were used. All five AMSU-B differences were

used. Finally, the eight most-transparent AMSU-A channels were used (not including the

89-GHz channel, which is duplicated on AMSU-B). The input channel configuration is

summarized in Table 6.3. The neural network was trained to estimate 30 NAPC's of the

clear-column AIRS radiance.

Representative results are shown in Fig. 6-14, Fig. 6-15, and Fig. 6-16. RMS cloud

clearing errors are shown as a function of channel weighting function peak height. For

Fig. 6-14 and Fig. 6-15, the channels with the lowest RMS error at each height were chosen;

the resulting curves therefore establish a lower bound on RMS errors using these methods.

In Fig. 6-16, the RMS cloud clearing error for all channels is shown for the neural net-

work clearing method. The sensitivity of error performance to weighting function width is

examined in Section 6.7.2.
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6.7. SENSITIVITY ANALYSES

The cloud-clearing error associated with channels near 15 pim is higher than the cloud-

clearing error associated with channels near 4 pm. This is because the a priori cloud

variance is higher near 15 pm as shown in Fig. 6-14 and demonstrated for CAMEX-3 NAST-

I observations (see Fig. 8-1). If the cloud-clearing error is expressed in terms of a ratio to

the a priori, the error near 4 jim is greater than the error near 15 jim by approximately a

factor of two at altitudes below eight kilometers.

Several features of Fig. 6-15 are noteworthy. The neural network improved on the per-

formance of the linear regression by approximately 0.2 K in the most transparent channels of

the shortwave band. The removal of microwave channels degraded performance by approxi-

mately 0.25 K in the most transparent channels of the longwave band. The use of statistics

significantly improves performance relative to the Backus-Gilbert clearing method.

This is expected, because the Backus-Gilbert method is a subset of the linear regression

method in two ways. First, the linear combination of microwave channels which give the

sharpest peak is non-optimal statistically (see Section 3.3.2. Second, a better estimate of

the radiance statistics is obtain by computing the sample covariances over an ensemble

of nontuples, rather than for each nontuple individually, as is done in the Backus-Gilbert

regression method.

As a final point, it should be noted that the relationship between the cloud flags and the

infrared radiance perturbation becomes more nonlinear near the surface, due to cross-talk

from microwave surface emissivity. The neural network method is able to represent this

nonlinearity, and outperform the linear regression method near the surface.

6.7 Sensitivity analyses

6.7.1 Surface emissivity

The impact of random surface emissivity was studied by comparing the performance

of the nontuple linear statistical cloud clearing method for three combinations of surface

emissivity randomness (for sets of nontuples, the surface emissivity within each nontuple is

identical, as before): 1) AIRS and AMSU surface emissivity both random, with statistics

given in Section 6.2.4, 2) AIRS surface emissivity fixed at 0.9 (nonrandom) and AMSU
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surface emissivity random (as before), and 3) AIRS surface emissivity random (as before)

and AMSU surface emissivity fixed at 0.9 (nonrandom). The best results were obtained

when both the infrared and microwave surface emissivities were fixed at 0.9. The microwave

surface emissivity impacted performance the most; cloud clearing errors increased by 0.75

K in the most transparent long-wave channels if the random microwave surface emissivity

model was used instead of the fixed 0.9 model. Variable infrared surface emissivities had

very little impact on performance.

6.7.2 Weighting function width

The relationship between weighting function width and cloud clearing error is also of

interest. Figure 6-18 shows the cloud clearing errors for channels peaking near 1.25 km as

a function of weighting function width (second moment, normalized by the second moment

of a nominal channel peaking near 1.25 km). Channels with sharp weighting functions

were more difficult to clear than channels with broad weighting functions because the high-

altitude content of sharp function is less.

6.8 Summary

Simulated AIRS/AMSU radiances were used to develop and evaluate methods for re-

trieving the temperature profile in the presence of clouds and for flagging and clearing

cloud-impacted infrared radiances. The neural network single-pixel temperature retrieval

outperformed the linear statistical method by over 30 percent (K RMS) for all levels of

the atmosphere. For nontuple cloud clearing, both linear and nonlinear statistical methods

yielded results superior to flag-based regression methods, such as illustrated in Fig. 6-13.

Combining microwave and infrared radiances at the pixel level improved performance, al-

though microwave surface emissivity uncertainties were a key contributor to residual errors.

The neural network nontuple cloud-clearing algorithm yielded the best results: residual

RMS radiance errors for broad weighting functions peaking below 10 km of 0.1-1.2K and

0.1-0.7K for the 13-15 pm and 4.3-4.6 pm bands, respectively; no nontuples were rejected

due to clouds. These errors approximately double for the sharpest weighting functions
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peaking at the same altitudes.

For direct assimilation of radiances into NWP models, channels peaking at altitudes

below 1-2 km may be problematic. Conversely, channels peaking above some low altitude

(~ 0-3 km) should all be usable. By rejecting some soundings, we expect lower-altitude

channels can be utilized (see Section 8.3).
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Chapter 7

NAST Observations of Cloud and

Precipitation Structure During

CAMEX-3

A IRBORNE atmospheric sounding instruments with high spatial and spectral resolu-

tion provide a convenient platform for the development and validation of transmit-

tance codes, surface models, cloud models, and present and future remote sensing systems.

The study of clouds is particularly important, as they present the biggest challenge for high-

fidelity sounding of the vertical temperature and moisture structure of Earth's atmosphere.

In this chapter, infrared imagery collected by NAST-I and the Multispectral Atmospheric

Mapping Sensor (MAMS) and microwave imagery collected by NAST-M during CAMEX-3

are used to characterize the impact of clouds and precipitation on sounding data.

7.1 Microwave observations of thermal and precipitation struc-

ture in Hurricane Bonnie

Aircraft-based imaging of temperature and precipitation using passive microwave ra-

diometry has been studied by a number of investigators (see [68], [69], and [70] for ex-

ample). Multispectral microwave sounders exploit the frequency dependence of scattering
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from hydrometeors to provide information about particle sizes [71], cloud-top altitudes [69],

and rain rate [72, 73]. Recent studies [70] have demonstrated the ability of high-resolution

microwave imagery to clearly resolve hurricane eyewalls and warm cores within the eyes.

7.1.1 NAST-M brightness temperature images of Hurricane Bonnie

Figure 7-1 presents the brightness temperature images observed in the window channels

associated with the NAST-M 54- and 118-GHz radiometers during an overflight of Hurricane

Bonnie on August 26, 1998. The lower brightness temperatures observed in the center

of the eye near 50 GHz result partly from the reflection of cold space from the ocean

surface, whereas such surface effects are largely absent near 118 GHz because of the greater

absorption there by tropospheric water vapor. The cold temperatures observed near 118

GHz (upper left of the top image) arise due to scattering of cold space off hydrometeors

in a rain band on the edge of the hurricane eye. A band of moist air or cloud crosses the

eye near 16:30 UTC. Other interesting features include the Rayleigh-scattering cloud in the

lower left-hand corner (prominent near 118-GHz and invisible near 50-GHz) and the "eye

within the eye" visible near 50 GHz, marking the touch-down of the very dry air descending

in the eye.

7.1.2 Retrieval of the temperature perturbation in the eye of Hurricane

Bonnie

The temperature profile of the warm core in the eye of Hurricane Bonnie (relative to

clear air nearby) was retrieved using NAST-M observations in the following way. The eight

temperature sounding channels near 54 GHz and the six near 118 GHz were used as inputs

to a neural network with one sigmoidal hidden layer of 55 nodes to retrieve temperature

profiles [37]. A training ensemble of 500 radiosondes (±450 latitude, all seasons) selected

from the TIGR profile set [74] were used with the forward and sea-surface models described

in Section 4.3 to produce simulated brightness temperatures at the NAST-M frequencies.

Temperatures were retrieved along-track (nadir only) at 22 levels ranging from 0 to 16 km.

The retrievals were filtered (in the along-track direction only) with a triangular filter of

length five, and were then bilinearly interpolated by a factor of two in the vertical and
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Figure 7-1: Brightness temperature images over the eye of Hurricane Bonnie, August 26,

1998, at window frequencies near 50.3 GHz and 118.75 ± 3.5 GHz. The swath width is

approximately 40 km at an altitude of 10 km. Contour lines axe drawn in black for every

4-K change from 240 K to 280 K (warmest contour at 280 K), and in white for every 5-K

change from 190 K to 235 K (warmest contour at 280 K). Values on the ordinate indicate

distance from the flight track in kilometers.
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Figure 7-2: Warm core temperature profile retrieval for the eye of Hurricane Bonnie, August

26, 1998, relative to clear air 180 km to the east. The horizontal extent of the retrieval is ap-

proximately 35 km. Contour lines are drawn for every 1-K change in retrieved temperature,
with the warmest contour at 7.7 K.

along-track directions. Figure 7-2 illustrates the difference between the temperature profile

retrieved by NAST-M near nadir as it crossed the eye of Hurricane Bonnie on August

26, 1998 near 16:30 UTC, and the temperature profile observed a few minutes earlier in

relatively clear air 180 km to the east. The warm core aloft appears to peak near 8 K

at altitudes between 5 and 10 km. The magnitude and form of hurricane warm cores are

well-known indicators of wind speed and structure of hurricanes, and have been used to

monitor hurricane strength [72, 75, 76, 77].
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7.1.3 Analysis of cloud particle size distributions using NAST-M

The combination of 54- and 118-GHz spectral data reveals information about hydrome-

teor size distributions and cell-top altitudes, and about the correlated parameters, vertical

wind velocity and precipitation rate. Precipitation increases directly with the vertical veloc-

ity of saturated air into cold condensing regions, provided we neglect re-evaporation at lower

altitudes. Figure 7-3(a) illustrates how such spectral data reveals precipitation structure.

This figure shows a narrow cold band near 50.3 GHz that corresponds to higher precipita-

tion rates in the eyewall of Hurricane Bonnie on August 23, 1998, while Figure 7-3(b) also

highlights smaller hydrometeors that delineate the broader (cold) rain bands visible near

118.75 ± 3.5 GHz from 19:52 - 19:53 and 19:56 UTC.

From such data it is difficult to retrieve separately precipitation parameters such as rain

rate, drop size, cell-top altitude, and cloud density because they are highly correlated. For

example, high vertical winds will generally increase the rate of condensation, support larger

drops aloft, push to higher altitudes, and result in greater cloud densities. Nonetheless,

certain trends in the distinctive effects of these various parameters are evident in radiative

transfer calculations based on simple cloud models. Figure 7-4 suggests how spectral differ-

ences between the 54- and 118-GHz oxygen absorption bands can reveal information about

hydrometeor sizes and cell-top altitudes. The distribution of lower brightness temperatures

extending downwards and to the left results from greater numbers of larger hydrometeors

aloft at higher altitudes, and therefore generally greater precipitation rates. Observation

offsets orthogonal to this reference direction "z" provide additional information. For exam-

ple, the cloud model presented by Gasiewski and Staelin [80] exhibited iso-altitude contour

lines in the 53.65/118.75 ± 1.45 GHz plane that were generally oriented between the z and

horizontal (53.65-GHz) axes.

A similar set of theoretical contours [79, 78] is overlaid on Figure 7-4 based on a trop-

ical standard atmosphere with 1 g/m 3 water (ice, below 0' C) in spherical drops having

exponentially distributed diameters from the surface up to a variable cloud-top altitude.

The contours are labeled with median mass-weighted drop diameters (half the mass is in

larger drops) and cell-top altitudes. The contour lines associated with constant drop size

are generally oriented between the z and vertical (118.75 ± 3.5 GHz) axes, and closer to z,
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with larger drops corresponding to colder 50.3-GHz brightness temperatures. These same

contours applied to the data of Figure 7-3(a-b) yield the inferred-drop-size image shown in

Figure 7-3(c), which suggests that the largest particles are found toward the inner edge of the

hurricane eyewall, consistent with stronger convection there. No diameters are presented for

inferred cell-top altitudes below 4.9 km because this model and data are less reliable there.

Particle diameter is only one of the links between spectral observations and precipitation

rates; others include cell-top altitude, absolute albedo, and the adjacent temperature and

humidity profiles. Further treatment of these retrieval issues requires additional modeling

and data, and are being pursued separately [73].

7.2 The Multispectral Atmospheric Mapping Sensor (MAMS)

The Multispectral Atmospheric Mapping Sensor (MAMS) [81] is a multispectral scanner

that measures reflected radiation from the Earth's surface and clouds in eight visible/near-

infrared bands, and thermal emission from the Earth's surface, clouds, and atmospheric

constituents (primarily water vapor) in four infrared bands. The 5.0 mRa aperture of

MAMS produces an instantaneous field-of-view (IFOV) resolution of 100 m at nadir from

the nominal ER-2 altitude of 20 km. The width of the entire cross-track field of regard is

37 km. The MAMS channel characteristics are given in Table 7.1.

7.3 The CAMEX-3 radiance/cloud-truth database

7.3.1 Data description

Channel 12 (12.4-pm) of MAMS was used to derive an estimate of the cloud fraction

(percent) and mean cloud perturbation (K) in each NAST-I/M pixel. Channel 11 (11.2-

pm) was used when channel 12 was unavailable. Data from four daytime flights over the

Atlantic ocean were used: two flights (August 23 and 26, 1998) near Hurricane Bonnie, one

flight (August 30, 1998) near Hurricane Danielle and one flight (September 13, 1998) near

Andros Island, Bahamas. A catalog of cloudy CAMEX-3 data used in the thesis is shown

in Table 7.2.

162



7.3. THE CAMEX-3 RADIANCE/CLOUD-TRUTH DATABASE 163

Table 7.1: Channel specifications for the Multispectral Atmospheric Mapping Sensor
(MAMS).

Channel Spectral range (pm) NEAT (K)
1 0.42-0.45
2 0.45-0.52
3 0.52-0.60
4 0.57-0.67
5 0.60-0.73
6 0.65-0.83
7 0.72-0.99
8 0.83-1.05
9 6.20-6.90 0.3

10 10.32-12.02 0.1
11 10.32-12.02 0.1
12 12.20-12.56 0.4

Table 7.2: Catalog of cloudy flight data available from CAMEX-3
and MAMS. Only scan angles between ± WS are included.

for NAST-I, NAST-M,

Available Pixels
Date NAST-I & NAST-M & NAST-I &

MAMS MAMS NAST-M All Three

23 Aug 98 1383 650 7655 650
26 Aug 98 389 389 8640 389
30 Aug 98 612 612 3650 612
13 Sep 98 704 704 3970 704
21 Sep 98 2507 0 0 0
22 Sep 98 1650 0 0 0

Totals 7245 2355 23915 2355
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7.3.2 MAMS-derived estimates of cloud parameters

The cloud fraction and mean cloud perturbation estimates were derived as follows. The

mean and standard deviation of all MAMS pixels falling within a NAST-I/M pixel are

calculated. The NAST-I/M pixel is classified as "clear" if both the following conditions are

satisfied:

1. The mean MAMS pixel temperature exceeds a flight-dependent threshold Tc. This

threshold is determined from an empirical examination of the MAMS data, and is

typically several degrees below the warmest pixel temperature.

2. The standard deviation of the MAMS pixels is below 0.25 K.

For those NAST-I/M pixels classified as "cloudy", the cloud fraction (percent) is defined as

CF = number of MAMS pixels < (Tc - 1.5 K) X 100 (7.1)
total number of MAMS pixels

and the mean cloud perturbation AT is the difference in brightness temperature between the

mean of all the MAMS pixels in the NAST-I/M pixel and the nearest clear-air temperature

(determined by MAMS).

This cloud classification algorithm was used to construct a NAST-I radiance database

of 7245 pixels, where only scan angles between ±15 degrees were included. NAST-M data

were available for 2355 of these 7245 pixels. For each cloudy NAST-I/M pixel, a companion

"clear" pixel was established by choosing the closest clear pixel as defined by MAMS.

Representative results of the cloud classification algorithm are shown in Fig. 7-5, and results

for each flight segment used in the database can be found in Appendix D. The resulting

histograms of cloud fractions and mean MAMS brightness temperature perturbations are

shown in Fig. 7-6.

7.3.3 Error due to slowly-varying cloud amount

One problem that was encountered was the failure of MAMS to distinguish between

slowly-varying (spatially) cloud cover and clear air. One example of this is illustrated in

Fig. 7-7 for a flight segment from August 23, 1998. A bias of almost eight degrees results
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Figure 7-5: Representative MAMS cloud imagery from CAMEX-3. The top image shows

MAMS brightness temperatures over a 40 x 120 km swath. A histogram of pixel brightness

temperatures for the 12.4-pm image is given in the second image. The clear-air background

is shown in the third image. Contour lines are drawn every 0.5 K. The clouds (background

removed) are shown in the last image.
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Figure 7-6: Histograms of cloud fractions and mean MAMS brightness temperature pertur-

bations for the CAMEX-3 radiance/cloud-truth database.
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7.3. THE CAMEX-3 RADIANCE/CLOUD-TRUTH DATABASE

Hurricane Bonnie 23Aug98: MAMS (12.4 gm)
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Figure 7-7: Example of clear-air misclassification by MAMS. The top plot shows a brightness

temperature image for the 12.4-pm MAMS channel. The bottom plot shows the microwave

estimate of the NAST-I 13.71 pm channel (weighting function peak near 4 km) exhibiting

no drift, while the MAMS-derived estimate of the clear-air brightness temperature at 13.71

pm drifts cold as the cloud deck is encountered. Also shown is the brightness temperature

of the cloudy 13.71 NAST-I /Lm channel, which decreases sharply in brightness temperature

near 18:29 UTC.
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Figure 7-8: Scatterplot of the brightness temperature drift in the 12.4-yim MAMS channel
as a function of the brightness temperature difference between the 11.2-pm and 12 .4 -/tm
MAMS channels.

as a gradually-intensifying cloud layer is misclassified as clear air. The 12.4-ym channel

is mildly sensitive to water vapor, and it is possible that absorption due to water vapor is

responsible for the drift. A split-window approach using 11.2-ym data to correct for the

error due to water vapor absorption was explored. Figure 7-8 shows the drift in the 12.4-am

channel versus the difference between the split-window channels for a portion of the data

shown in Fig. 7-7. The data suggest that a correction could be made to reduce the drift

in the 12.4-pm channel if the correction proved to be predictable globally. No attempt was

made to implement a correction because the drifting phenomenon occurred infrequently in

the CAMEX-3 data selected for the analyses.
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7.4. PCA OF NAST-I CLOUD IMPACT

7.4 Principal components analysis of NAST-I cloud impact

The principal components analysis techniques applied to AIRS/AMSU data in Sec-

tion 6.3 were applied to NAST-I CAMEX-3 data for three cases: clear-air, cloudy, and

clear-cloudy ("cloud perturbation"), where MAMS was used as described earlier to deter-

mine whether each NAST-I pixel was cloudy or clear. In each case, the covariance matrix

was prewhitened using ION estimates of NAST-I system noise (see Section 5.3). The NAST-

I radiances were not converted into brightness temperatures, because some channels give

negative readings for extremely cold scenes, including clouds, due to calibration problems.

The total radiance perturbation (expressed as NEAT) due to clouds is shown in Fig. 7-9.

Note that the RMS NAST-I radiance variability due to clouds is more than twice the RMS

atmospheric temperature profile variability in the cld21r database (shown in Fig. 6-1).

The eigenvalues corresponding to the top 100 NAPC's for clear and cloud-contaminated

pixels are shown in Fig. 7-10. Also shown are scatterplots of the first three NAPC's. In

both clear and cloudy cases, two coefficients capture most of the radiance variance. The

radiance variation due to clouds is much greater than the radiation variation due to the

atmosphere. This is expected, because only four flights were used to compile the pixel

database and the atmospheric variation over the four flights was small (i.e., not "global").

The scatterplots for clear-air NAPC's are less Gaussian and show more clustering than

the cloudy NAPC's. The clear-air NAPC's appear to fall within the space of simulation

NAPC's. A detailed comparison of the CAMEX-3 cloud-impact NAPC's and the simulated

cloud-impact NAPC's is given in Chapter 8.

The NAPC's of NAST-I radiance perturbations due to clouds (clear radiance minus

cloudy radiance) are shown in Fig. 7-11. The characteristics of the cloud perturbation

NAPC's are very similar to the cloudy NAPC's, which again suggests the clouds are the

dominant source of radiance variation. Furthermore, the scatterplots exhibit Gaussian

characteristics, with the exception of NAPC #2 versus NAPC #3, which is neatly divided

into two clusters.
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Figure 7-9: RMS NAST-I radiance variation due to clouds.
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7.5. SUMMARY

7.5 Summary

The utility of microwave dual-absorption-band measurements for characterization of

convective precipitation was illustrated by observations of rainbands in Hurricane Bonnie.

Dual-band microwave data collected by NAST-M during CAMEX-3 was used to provide:

1. The first 54/118-GHz particle size and cell-top altitude retrievals of convective precip-

itation. The ER-2 platform provided high spatial resolution of this storm's structure,

including its warm core and the larger hydrometeors seen near the eye walls.

2. The first 54/118-GHz high-resolution temperature retrievals in the eye of a hurricane.

The warm core and convection morphology of Hurricane Bonnie (August, 1998) was

clearly revealed both by aircraft-based microwave brightness temperature imagery and

temperature retrievals within the eye. Clouds above most of the eye precluded the

use of infrared data for temperature sounding.

NAST-M, NAST-I, and MAMS were used to assemble a radiance database of 2355 pix-

els from four daytime flights during CAMEX-3. For the first time, principal components

analysis of hyperspectral infrared observations of clear-air and cloudy data were performed,

which quantitatively demonstrated both the amount and spectral structure of the radiance

variability due to cloud perturbations. The NAST-I cloud perturbation observations are

compared to simulation results in Chapter 8.

173



CHAPTER 7. NAST CAMEX-3 OBSERVATIONS174



Chapter 8

Analysis of cloud impact on

atmospheric sounding performance

using NAST

D ATA collected by airborne infrared (NAST-I, MAMS) and microwave (NAST-M)

sensors during CAMEX-3 (Florida, Summer, 1998) are used to quantify the cloud

impact on atmospheric sounding performance in several ways. The degrees of freedom intro-

duced by clouds were estimated in Chapter 7 by applying principal component transforms

to cloud-perturbed (clear minus cloudy) NAST-I spectra. These results are compared to

those obtained using NAST-I radiance simulations with two-level clouds. The radiance

cloud-clearing performance for NAST-type clouds is evaluated and compared with results

for simulated two-level clouds. Finally, a neural network is trained to identify soundings

associated with large cloud-clearing errors. When these soundings are rejected, the errors

are modestly reduced.

8.1 Comparison of cloud information content

A thorough statistical comparison of the information content of simulated and observed

hyperspectral sounding data is impossible in this study given the limited atmospheric vari-

ability observed over only four flights in three weeks during CAMEX-3. However, the
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observed cloud characteristics are sufficiently random that statistical comparisons of cloud

effects (including crosstalk from solar and surface reflection) are justified. We begin by

defining a cloud impact vector:

AR = Rclr - Rcld (8.1)

where Rcld is the observed (or simulated) infrared radiance vector upwelling from the top of

a cloudy atmosphere, and Rclr is the corresponding radiance that would have been observed

if the cloud effects were removed. Henceforth, a radiance vector observed by NAST-I will

be denoted Robs and a simulated radiance vector will be denoted Rsim. An observed

(simulated) vector of NAST-M brightness temperatures will be denoted Bobs (Bsim).

8.1.1 Simulation of NAST radiances

A set of 12,000 NWP-generated atmospheric profiles (uniformly distributed seasonal

and global coverage) was used to generate a database of simulated NAST-I/M radiances.

Random surface emissivities were chosen for each profile; they were uniformly distributed

from 0.95 to 1.0 for NAST-I and from 0.6 to 0.7 for NAST-M (consistent with an ocean

surface). The surface emissivities of one instrument were assumed to be uncorrelated with

the other; emissivities of each channel of a given instrument were assumed to be perfectly

correlated. Clouds were introduced at two levels into the profile set by relating the cloud

top pressure and fraction to a relative humidity threshold as discussed in Section 6.2.2.

The resulting cloud fractions were approximately uniformly distributed between 0 and 100

percent. Cloud tops were assumed to be opaque to the infrared channels with a non-random

emissivity of 0.9. Microwave channels were perturbed by clouds only through liquid water

absorption; scattering was not modeled, therefore the following results apply only to non-

precipitating pixels. Clear-air NAST-I radiances were computed using the UMBC NAST-I

Fast Transmittance Codes [62], and NAST-M brightness temperature were computed using

a line-by-line model [44].
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8.1.2 Principal components analysis of cloud impact

The total radiance perturbation (expressed as NEAT) due to clouds is shown in Fig. 8-

1 for the CAMEX-3 NAST-I observations and the simulated NAST-I observations. Also

shown is the cloud noise remaining after the two most-significant cloud-impact NAPC's have

been removed. This residual higher-order noise presumably would be more difficult to clear.

The relatively large errors in the shortwave channels result from reflected solar radiation off

the cloud tops, and are not well-represented by the two NAPC's. This could be explained

in part by the nonlinearity of the Planck function, and a nonlinear principal components

transform would achieve greater energy compaction. Note that the RMS NAST-I radiance

variability due to clouds during the four CAMEX-3 flights is approximately twice that

observed over 12,000 simulated profiles. The ION algorithm was used to filter the instrument

noise from the cloud noise in the CAMEX-3 observations to facilitate comparisons with the

simulation-derived cloud noise, which is free from instrument noise.

Another interesting feature of Fig. 8-1 is the fact that the cloud noise variance near 15

ptm is significantly larger than the cloud noise variance near 4 pm. This was also evident

in the AIRS simulations of cloud noise (see Fig. 6-13). One cause of this may be the larger

water vapor opacities associated with the 4-tIm channels that reduces cloud/background

radiance differences.

The eigenvalues of E(ARsim ARim) and E(L\ LRRbS) are shown in Fig. 8-2, where

AR was normalized for unity noise on each channel. We use an overbar to denote that the

mean has been removed from a random vector. 5000 NAST-I channels (evenly distributed

among the 8632) were used in the calculations. About six times more cloud variance is

evident in the CAMEX-3 hurricane-season observations, and NAST exhibits more degrees

of freedom. However, both NAST observed and simulated data have fewer than -20 degrees

of freedom that appear to be above any noise threshold.

The eigenvector distributions associated with the eigenvalues shown in Fig. 8-2 are

shown in Fig. 8-3 using nine scatterplots, where the scatterplot in position (i, j) corresponds

to the ith eigenvector of the simulated AR data plotted against the jth eigenvector of

the CAMEX-3 observed AR data. The first two pairs of eigenvectors (graphs [1,1] and

[2,2]) are similar, but the third eigenvectors pair (graph [3,3]) differ substantially. These
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Figure 8-1: Top plot: comparison of RMS NAST-I cloud noise observed during CAMEX-3

and simulated using c1d21r database. The thick line (small amplitude below 2000 cm-1)
shows the RMS variation due to solar reflection. The middle plot shows the cloud error

after the two most-significant NAPC's have been removed. The thick line (slightly below

the CAMEX-3 line on the bottom plot) shows the cloud noise after instrument noise has

been filtered with the ION algorithm. The bottom two plots present the cloud noise shown

in the top graph as a function of weighting function peak altitude to facilitate comparisons

with the AIRS simulation results shown in Fig. 6-13.
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Figure 8-2: Observed (circles) versus simulated (asterisks) cloud-impact Noise-Adjusted

Principal Components (NAPC's) for 5000 NAST-I channels. Solax, surface, and cloud

effects contribute to both.
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8.2. COMPARISON OF CLOUD CLEARING PERFORMANCE

results suggest that the cloud models used in the simulations capture large-scale features of

cloud observations, but may fail to capture fine spectral structure. Scatterplots of NAPC's

exhibit similar characteristics, and indicate that the CAMEX-3 cloud perturbations are

statistically less global than the simulated cloud perturbations. As a final comment, it

should be noted that transmittance errors could contribute to the fine-scale discrepancies.

This hypothesis could be examined by comparing simulated and observed clear-air principal

components. Unfortunately, the lack of a statistically-diverse set of clear-air pixels from

CAMEX-3 precludes that analysis here.

8.2 Comparison of cloud clearing performance

Numerous investigators (see [66, 67], for example, as well as Section 6.6 of this thesis)

have suggested methods for producing clear-column radiances given observations of cloudy

radiances. We follow the development in [82] here, with no claims of optimality. To summa-

rize, CAMEX-3 observations of cloud impact (ARo,,) are combined with simulated clear-air

radiances (Ri ) to form a "synthetic" cloudy radiance vector (Rdd):

Acld = Rig - ARb,. (8.2)

Both microwave and infrared radiances are included in RcId. The simulated clear-column

radiance Rcg is estimated from Acd using a linear least-squares estimator. The error

covariance of the estimate is given by Eq. 3.51:

-dr F-r -dr FdT F d1Hd1 ' ddr...,
CEE = E(Rsim mJ) E(Rsim E J) SM ] E( [ )

(8.3)

and it can easily be shown that CE depends only on E(R [[ ],iE(R [ )

and E(ARoyb[sAR] T ).

The error covariance CEE was computed using two assumptions regarding the cross-

covariance E(RI[r [-,]T): 1) the cross-covariance is zero, or 2) the cross-covariance is

the same as that calculated from simulated radiances. Fig. 8-4 shows the cloud clearing
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results for three cases: 1) simulated radiances, 2) CAMEX-3 radiances (with zero correlation

between ARobS and R' ) and 3) CAMEX-3 radiances (using simulation-derived correlation

between ARobS and R'). 2355 NAST-I/NAST-M/MAMS pixels were used in the analysis.

The CAMEX-3 results are worse than the simulation results by roughly a factor of

two, but it must be noted that the NAST-I cloud impact observed during CAMEX-3

was approximately a factor of two larger than that exhibited by the simulated profiles.

Similar analyses on a more statistically diverse set of NAST-I observations are needed

for definitive conclusions. Nevertheless, the results shown here are consistent with the

performance predicted by simulation studies.

8.3 Rejection of cloudy soundings

A neural network with a single hidden layer (10 sigmoidal nodes with transfer function

given by Eq. 6.3) was trained to estimate the magnitude of the error made by the regression

operator discussed previously. Soundings corresponding to high error estimates (relative to

a pre-defined threshold) by the neural network were discarded.

8.3.1 Training and validation datasets

Clear-air radiances (microwave and infrared) simulated using the cld21r profile database

were combined with CAMEX-3 Rcld observations as described by Eq. 8.2. Training and val-

idation sets were constructed as follows. Of the 2355 CAMEX-3 pixels for which NAST-I,

NAST-M, and MAMS data are available, 1962 pixels were randomly assigned to the train-

ing set and 393 pixels were randomly assigned to the validation set. The c1d21r profile

database was randomly segmented into 10,000 training vectors and 2,000 validation vectors.

The 1962 CAMEX-3 training pixels were randomly matched to the 10,000 cld21r train-

ing profiles, and the 393 CAMEX-3 validation pixels were randomly matched to the 2,000

cld21r validation profiles. Each CAMEX-3 pixel was therefore matched to approximately

five different c1d21r profiles. No correlation was assumed between ARoj, 8 and R".
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Figure 8-4: Comparison of simulated and CAMEX-3 observed cloud clearing performance.

Results are shown in groups of three (from left to right): Simulation, NAST-I/M assuming

no cloud and atmospheric correlation (offset to the right by 0.15 km), and NAST-I/M

assuming model-based cloud and atmospheric correlation (offset to the right by 0.15 km).
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8.3.2 Neural network input and output format

The input vectors were comprised of the 14 most-significant NAPC's of the infrared

component of Reid and 16 NAST-M channels (channel 9 of the 118-GHz system was not

used). The network was trained to estimate one output: the mean of the trace of CE (given

by Eq. 8.3).

8.3.3 Training algorithm

The Levenberg-Marquardt training algorithm was used. Training was typically stopped

after approximately 50 epochs, corresponding to less than one hour on an AMD Athlon

1-GHz PC.

8.3.4 Performance results

The cloud-clearing performance improved as shown in Fig. 8-5 for the simulation case

presented in Fig. 8-4. The "ideal" (dashed) curves in Fig. 8-5 represent the cloud-clearing

error improvement if the soundings associated with the largest mean-squared cloud-clearing

error are eliminated from the validation set. The neural network sometimes misidentifies

soundings as excessively cloudy, and the resulting cloud-clearing errors (solid curves) are

slightly worse than ideal. For example, the RMS error for the channels peaking below

1km dropped by ~ 0.15K after the neural network excluded 10% of the soundings. Similar

analysis using statistics of aircraft observations showed that RMS single-pixel radiance

cloud-clearing errors dropped below 1K for all channels peaking above 2km if 10% of the

soundings were excluded by the neural network.

8.4 Discussion

The chapter concludes with a brief synopsis of other cloud-clearing experiments that were

either attempted and produced inconclusive or specious results, or could not be attempted

given the limited statistical diversity of the NAST cloud observations. Finally, implications

of the results presented in this chapter for next-generation sounders such as the AIRS and

(Cross-track Infrared Sounder) CrIS instruments are given.
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Figure 8-5: Simulated radiance performance improvement by rejection of soundings. Only
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8.4.1 Other cloud-clearing experiments

Cloud clearing of NAST data using statistics derived only from observations

The 2355 CAMEX-3 pixels were divided into a training and validation set. The training

set was used to derive a linear least-squares estimator, which was applied to the validation

set. The resulting cloud-clearing errors were very low (below 0.5 K RMS, for all channels).

While encouraging, this level of performance is artificially good due to the limited degree

of atmospheric variability present in the CAMEX-3 observations. Additional observations

are needed to ensure that a "global" set of atmospheres comprises the training set. Such a

training set could be assembled quite easily from satellite data (e.g., AIRS, which includes

high-resolution visible/near-infrared channels that could be used to provide cloud truth),

and the performance of statistical estimators could be reliably evaluated.

Nonlinear and multi-pixel cloud clearing

Simulated cloud-clearing studies in Chapter 6 demonstrated that nonlinear methods

operating on multiple pixels achieved the lowest RMS cloud-clearing errors for all AIRS

channels. Only linear, single-pixel methods were applied to NAST CAMEX-3 observations,

due to the lack of a statistically-diverse dataset, and the failure of the cloud models to ade-

quately represent the fine-scale spectral and spatial structure of CAMEX-observed clouds.

Again, a comprehensive set of satellite observations would facilitate an examination of the

more-advanced nonlinear and multi-pixel methods.

"Hole hunting" approaches

A final area worthy of study is the use of high-resolution infrared instruments to identify

cloud-free pixels (the so-called "hole-hunting" approach). One potential liability of this

method was demonstrated with MAMS data in Chapter 7-the inability to detect and correct

slow drifts due to low-level clouds. However, it was also demonstrated that MAMS data

was in most cases effective in identifying cloud-free areas. Further analyses with more

comprehensive datasets are again warranted.
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8.5 Summary

Principal components analysis of infrared cloud perturbations suggest large-scale spec-

tral similarities between simulated and observed radiance data. Fine-scale spectral structure

appears to differ substantially between simulated and observed cloud impact. Single-pixel

cloud clearing performance for both simulated and observed radiance data is better than 1K

RMS for all temperature channels peaking above 3km. Neural network rejection of 10 per-

cent of soundings achieves better than 1K RMS performance for all temperature channels

peaking above 2km. A dataset more statistically diverse than CAMEX-3 is needed to evalu-

ate fully the statistical single- and multi-pixel cloud-clearing methods developed in Chapter

6. Nonetheless, results obtained for CAMEX-3 are consistent with simulation results, and

suggest that results could be improved if a global CAMEX-3 training set were available.
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Chapter 9

Conclusions

9.1 Summary of the thesis

T HE objective of this thesis was to improve combined microwave/infrared atmospheric

temperature retrievals, and the error characterization thereof, in the presence of

clouds. This was accomplished in two areas: 1) The development of improved instrumen-

tation (NAST-M) and collection of data, and 2) the development and evaluation of signal

processing and estimation techniques, including novel combinations of principal components

transforms, neural network estimators, and iterated order-noise estimates.

NAST-M provides the first high-resolution, collocated, multiband (54, 118 GHz) passive

microwave measurements for three-dimensional temperature sounding, cloud and precipi-

tation studies, and oxygen transmittance modeling. The 2.6-km resolution provided by the

NAST suite also facilitates interpretation of unresolved satellite observations of meteoro-

logical phenomena. The three-point calibration on NAST-M provides accurate brightness

temperature measurements in two oxygen bands, permitting the first reliably accurate tem-

perature profile retrieval images. The utility of dual-absorption-band measurements for

characterization of the drop size distribution and cell-top height for convective precipita-

tion was illustrated by observations of rainbands in Hurricane Bonnie. The ER-2 platform

provided high spatial resolution of this storm's structure, including its warm core. The

warm core and convection morphology of Hurricane Bonnie (August, 1998) was clearly re-

vealed both by aircraft-based microwave brightness temperature imagery and temperature
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retrievals within the eye.

The ION algorithm was shown to be a very useful tool for the blind analysis of hyper-

spectral noise processes. The ION-estimated RMS variation of the spectrally uncorrelated

component of NAST-I system noise is in excellent agreement with calibration analysis. ION

was used to identify and characterize the spectrally and spatially correlated components of

NAST-I system noise.

Principal components analyses on clear, cloudy, and clear-minus-cloudy simulated AIRS

radiances revealed that cloud effects are the dominant source of radiance variation, but

dominate only two to three degrees of freedom. The principal components of cloud impact

are non-Gaussian, and respond to different cloud properties (e.g., cloud fraction and cloud

height).

Neural network estimators were trained on projected principal components of simulated

clear and cloudy global AIRS/AMSU data. The neural network single-pixel temperature

retrieval outperformed the linear statistical method by over 30 percent (K RMS) for all

levels of the atmosphere, and exhibited significantly less sensitivity to measurement noise.

Cloud-cleared radiance errors less than 1 K were achieved for all atmospheric levels above

1 kilometer.

Both linear and nonlinear statistical methods yielded results superior to flag-based re-

gression methods. The neural network nontuple cloud-clearing algorithm yielded the best

results: residual RMS radiance errors for weighting functions peaking below 10 km of 0.1-

1.2K and 0.1-0.7K for the 13-15 pm and 4.3-4.6 pm bands, respectively; no nontuples

were rejected due to clouds. Combining microwave and infrared radiances at the pixel level

improved performance by approximately 0.2 K in the most-transparent channels, although

microwave surface emissivity uncertainties were a key contributor to residual errors.

NAST-M, NAST-I, and MAMS were used to assemble a radiance database of -2500

pixels from four daytime flights during CAMEX-3. Principal components analyses were

performed on NAST-I observations, and the results were compared to those obtained with

simulated data. Single-pixel cloud clearing performance for both simulated and observed

radiance data is better than 1K RMS for all temperature channels peaking above 3km,

based on all NAST cloud-impacted data plus global simulated clear-air radiances. Neural
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network rejection of 10 percent of soundings achieves better than 1K RMS performance for

all temperature channels peaking above 2km.

9.2 Main contributions

The main thesis contributions are summarized as follows.

9.2.1 NAST-M

The NAST-M sounder is a passive microwave spectrometer with 17 channels near the

oxygen absorption lines at 50-57 GHz and 118.75 GHz. It is a cross-track scanning instru-

ment with a 2.6-km diameter footprint at nadir, and cross-track field of regard of approx-

imately 100 kilometers. It has collected over 300 hours of flight data and flown on two

aircraft: the NASA ER-2 and the Scaled Composites Proteus.

9.2.2 Techniques for the blind characterization of hyperspectral noise

processes

ION analysis on NAST-I data from CAMEX-3 and WINTEX demonstrated that the

spatial correlation of noise is smaller than its spectral correlation, and sufficiently low that

spatial filtering should reduce its effects significantly.

9.2.3 Novel techniques for the estimation of atmospheric temperature

profiles and clear-column infrared radiances

Novel combinations of projected principal components transforms and neural networks

were developed for infrared and infrared/microwave data that were computationally ef-

ficient relative to iterative nonlinear model-based methods. In addition, the single-pixel

and nontuple neural network estimators yielded approximately 30 percent lower RMS re-

trieval errors than linear statistical methods and provided greater immunity to measurement

noise. Statistical nontuple cloud-clearing methods were shown to be superior (in some case

by more than 1 K in the most-transparent AIRS channels) to generalized adjacent-pixel

(Backus-Gilbert clearing) methods.
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9.2.4 Application of principal components analysis to simulated and ob-

served NAST data to characterize cloud impact and its effect on

cloud-clearing performance

Principal components analysis of NAST-I CAMEX-3 radiance perturbations due to

clouds suggest large-scale spectral similarities between simulated and observed radiance

data. Fine-scale spectral structure appears to differ between simulated and observed cloud

impact, but this could be a statistical artifact.

9.3 Implications for next-generation sounders

The results obtained in the thesis have significant implications in terms of the devel-

opment of operational algorithms for next-generation sounders such as AIRS and CrIS

(Cross-track Infrared Sounder). The most important of these are summarized below.

9.3.1 Instrumentation issues

" Inclusion of microwave channels improved cloud clearing and temperature profile re-

trieval performance by approximately 0.2 K in the infrared window channels.

" Based on preliminary MAMS hole-hunting experiments, further experiment and study

of clear-air misclassification is warranted.

" If next-generation interferometer sounders exhibit vibration-induced noise as NAST-I

does, spatial smoothing might be needed. Experiments with NAST-I suggest such

noise can be reduced to levels below nominal instrument thermal noise with modest

3x 3 spatial averaging.

" Absolute calibration using aircraft instruments can be problematic because the cal-

ibration parameters of NAST-M and other microwave instruments at altitude are

different from calibration parameters at the surface.
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9.3.2 Algorithm issues

" The first statistical, multi-pixel cloud-clearing algorithm was developed and evaluated,

and shown to achieve performance superior to generalized adjacent-pixel approaches

for simulated global AIRS/AMSU radiances.

" A new altitude-based method for the operational benchmarking of cloud-clearing per-

formance was introduced. The performance at a given altitude depends on the channel

weighting function width.

" Neural networks were superior to LLSE methods for cloud clearing simulated global

AIRS/AMSU radiances.

" Analyses of a limited set (not global) of NAST observations suggest statistical cloud-

clearing methods could be effective, but further study with a more comprehensive set

of measurements is needed.

" Analyses of both simulated and observed infrared cloud impacts indicate that the

number of degrees of freedom due to clouds is small, but the total contribution to

radiance variance is large.

D The rejection of bad (excessively cloudy) pixels helps reduce cloud-clearing error vari-

ances, but not dramatically.

9.3.3 New products

" Based on NAST-M results presented in the thesis, next-generation microwave sounders

such as ATMS (Advanced Technology Microwave Sounder, 30-km spatial resolution)

should be able to provide improved retrievals of cloud particle size and cell-top height

on a global scale.

* NAST-M also demonstrated the potential of high-resolution microwave sounders to

penetrate the eyes of hurricane and measure warm anomalies and deduce hurricane

energy dynamics.
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9.4 Suggestions for further research

9.4.1 NAST-M upgrades

The addition of radiometers with spectral coverage near 23, 31, 183, and 425 GHz

would allow the estimation of atmospheric water vapor profiles and improve the estimation

of temperature profiles, cloud microphysical properties, and precipitation rates. Addition-

ally, the performance of the high-frequency bands could better model current and future

NPOESS instruments, and could be evaluated as a potential component of a geostationary

instrument, where small antenna size is of paramount importance.

9.4.2 NAST-I noise characterization

The analyses performed in Chapter 5 could be applied to a more extensive dataset,

including calibration data. Detailed comparisons with model-based results are also war-

ranted.

9.4.3 Simulation analyses

Improved cloud models (frequency-dependent, two-formation, for example) and surface

models (frequency-dependent or varying every 15-km, for example) could be evaluated and

compared with NAST observations.

9.4.4 NAST observations: cloud clearing and temperature profile re-

trievals

Cloud clearing and temperature profile retrieval analyses using a globally-representative

(geographically and seasonally) set of NAST observations over a variety of surfaces (land,

snow, etc.) and cloud conditions would provide a better understanding of how performance

is affected by atmospheric conditions. A more thorough comparison of simulated and ob-

served radiance statistics could also be carried out.
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Appendix A

Construction and Characterization

of NAST-M Blackbody Targets

by: M. J. Schwartz and W. J. Blackwell

T WO blackbody calibration targets (20cm x 20cm x 4cm) were fabricated from alu-

minum and iron-loaded epoxy. Both loads have surfaces covered with tessellated pyra-

mids machined from Emerson-Cuming CR-112 Eccosorb that are 12-mm tall with square

bases with 8-mm sides. The aluminum backing extends up into the cores of the pyramids

to minimize temperature gradients between pyramid bases and tips. Rectangular channels

with square edges 4-mm wide and 3-mm deep were cut into the aluminum, thereby increas-

ing the volume of absorbing material at the base of the pyramids and increasing return

loss with negligible change in thermal conductivity. Thin-film platinum resistive temper-

ature device (RTD) sensors were placed on the surface of the Eccosorb, embedded in the

Eccosorb, and epoxied to the back of the aluminum. The loads are insulated on the front

with a 1-cm thick layer of Styrofoam and on the back and sides with extruded polystyrene.

Figure A-1 shows a detail of the load design. One-inch thick aluminum was machined to

give a bed of pointed pegs. The pyramidal tips were machined with a carbide tool with a

3:1 angle on its flutes. A thin wall of unmachined aluminum around the perimeter forms

the basin into which the castable resin (CR) was poured and permits placement of heaters

to minimize lateral temperature gradients in the hot load. Eccosorb CR-112 was poured
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over the aluminum structure and then the pyramidal faces were machined into the Eccosorb

with the tool raised 3 mm above the level at which the pyramidal tips were machined on

the aluminum cores. The resulting layer of Eccosorb is just less than 1 mm thick on the tips

of the pyramids and ranges from 3 mm to 6 mm thick in the valleys between the pyramids.

Machining was done by the MIT Central Machine Shop'.

A.1 Eccosorb Casting

The Eccosorb was cast following the manufacturer's recommendations, as follows. Parts

X and Y were heated to 150*F, thoroughly mixed individually, using a paddle on an electric

drill. The resin (Part X) must be stirred prior to measuring, as it becomes stratified in

storage. The two parts were mixed in a coffee can, placed in a vacuum chamber2 and

bubbles were removed by vacuum evacuation (~8 minutes.) Care must be taken to lower

the pressure slowly or the mixture will foam out of the container. The mixture has a pot-

life of 1 hour, and significant stratification is observed in cross-sections of samples cured

at room temperature. After the mixture stopped foaming, it was immediately poured

into the pre-heated aluminum load and bubbles were removed a second time by vacuum

evacuation. The load was placed in an oven at 200*F for 1 hour and then the temperature

was reduced to 165'F. Shrinkage of the epoxy during curing resulted in some cracking

between the aluminum sides and the absorber in the corners of the loads. This shrinkage

may be reduced with slower (cooler) curing. The increased stratification of the absorber

may be an advantage if stronger absorption is desired deeper in the load.

Further experiments should be made in the curing process. The temperature of the

oven might be reduced as soon as the viscosity of the epoxy resin has increased sufficiently

to inhibit settling of the suspended absorber particles. Over a period of several days, the

material will cure even at room temperature, and low temperature curing is expected to

minimize shrinkage, or at least to allow relaxation of the material into the mold as it shrinks.

'Andrew Gallant (617-258-0789), agallantOMIT.EDU
2The vacuum chamber was borrowed from the Physics Junior Lab, Jay Kirsch, 617-253-3421,

jkirschOMIT. EDU
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A.2 RTD Placement

The temperature sensors used in calibration load construction are the same sensors used

throughout the NAST-M package, only lacking the plastic packaging and pre-wiring. The

sensor elements are thin-film, platinum RTDs (Minco 5245PD) and their small size (1.6

mm x 2.2 mm x 1.1 mm) allows them to be embedded within the loads after construction

without significantly altering their microwave or thermal properties. RTDs were placed in

the tips of the aluminum spikes by drilling holes (approximately 1 mm in diameter) through

to the back of the aluminum, filing a slightly larger socket in the tip, and epoxying the sensor

into place with thermally-conductive epoxy. Four-wire connections to the sensors were made

with extremely fine-gauge, low-thermal-conductivity wire. It was difficult to work with this

wire, and its use was probably not warranted. RTDs were also placed against the sides of

the spikes in the trenches between the pyramids. The hot load has additional RTDs on

the back and sides of the aluminum block and on the surface of the pyramids in a corner

of the load. Wires for the RTD on the load surface run over the surface of the load for a

short distance. Multiple RTDs allow control and independent monitoring of the hot load

temperature and reveal gradients as large as 3 K from the front to back of the hot load

during flights. The positions of the sensors are shown in Figures A-2 and A-3. RTD A was

disconnected before CAMEX-3 because of a wiring problem, and is no longer used.

A.3 Load Insulation

The loads are insulated by a 1-cm layer of Styrofoam insulation. Extruded polystyrene

cut from bats intended for house construction were used on the sides and back of the load.

It is less crumbly than expanded polystyrene (AKA Dylite, AKA coffee-cup material.)

Expanded polystyrene, also from home insulation bats, was used for the window. Extruded

polystyrene is lossy (typically 1 dB/ft near 100 GHz) since the demise of CFCs as a foaming

gas[83]. The window surface is covered with a thin film (HR500/2S).
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NAST-MTS Cold Calibration Load (Front view)
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Figure A-2: Cold load RTD placement.
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NAST-MTS Hot Calibration Load (front view)
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Figure A-3: Hot load RTD placement.

200

-i- R - - - - - - - - - - -- - - , -- - -- .. .... ............... ...... ................ "I'll.111- '-I"..",", I 1 11 11 11 11 11 - - - 11 A



A.4. HOT LOAD HEATER PLACEMENT 201
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Figure A-4: Hot load heater placement.

A.4 Hot Load Heater Placement

Minco Thermofoil heaters were placed on the back and sides of the hot load's aluminum

backing. The heaters are controlled in three banks, labeled 'A', 'B' and 'C' in Figure A-4.

Heaters labeled A and B are 1 in by 6 in and those labeled C are 2 in by 6 in. All heaters

provide 5 W/in2 when operated at 115 V. Relays allow each bank to be run either in parallel

or in series, so the heaters on the sides (A and B) can provide either 120 W or 30 W and the

heaters on the back can provide either 180 W or 20 W. The hardware exists for independent

computer control of the banks.

A.5 Load Emissivity Measurement

Measurements were made of the load surface reflectivity in the lab at MIT by viewing

the load with the radiometer while changing the scene behind the radiometer from 293 K to

77 K. The observation was repeated with the load replaced by a polished aluminum surface.

This measurement was made at approximately 450 incidence angle, while the load is viewed

at near normal incidence in flight. The load reflectivity was estimated to be less than

.... .......... .... .. ....... .. ...... .......
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1.5%, but the measurement was considered to be somewhat crude. Further measurements

were made with the help of Ed Tong at the Harvard Smithsonian Center for Astrophysics

using an HP8510C high-frequency network analyzer and an HP85105A mm-wave controller.

Figure A-5 shows the time-domain reflections from the hot load. The approximately -40 dB

reflection at 0.6 ns is a reflection from the feed horn used in the test setup. Reflections at

markers 2 and 3 are from the front and back of the Styrofoam insulation respectively. The

difference in round-trip times of 0.1 ns corresponds to the insulation thickness of 1.5 cm.

The most significant reflection (marker 1) is from a surface 2.44 cm deeper than the back

of the insulation, which is the level of the aluminum plane at the bottom of the moats

between pyramids. Sweeps through two accessible bands of the test setup (75-110 GHz and

185-205 GHz) are shown in Figures A-6 and A-6. These figures show total reflections to

be more than 25-dB below the baseline established with an aluminum plate. Values for

the extremal frequencies in the higher-frequency band are not considered to be reliable.

The time-domain plot, Figure A-5 indicates that load performance is, in fact, considerably

better than expected. The largest reflection is actually due to mismatch in the horn of the

test-setup. The largest return from the load is 44-dB below the baseline. It is reasonable to

believe that this behavior holds for the NAST-M 118-GHz band. Frequencies comparable to

the 50-57-GHz NAST-M band were not accessible to the test setup at the CFA, however it

is reasonable to believe that returns are far less than the -20-dB level and likely better than

-30-dB. The largest Bragg peak from the periodic load surface would be straight backwards,

and no large changes in backscatter intensity were seen for small changes in the viewing

angle, so there appears to be no measurable Bragg scattering from the periodic pyramidal

structure. The combination of a -30-dB load (99.9% emissivity) with a metallic shroud on

the scan mirror redirecting reflections back to the load makes error due to load reflectivity

inconsequential compared to sources of error such as temperature gradients in the hot load.

Observation from 20-km altitude of cold-space up the sky-pipe provides a further test of

load emissivity and instrument linearity, however there are significant temperature gradients

from the front to the back of the hot load resulting in uncertainties in the correct effective

microwave temperatures of the loads. Cold-sky observations are consistent with theory to

within the uncertainty of the load temperature.
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Appendix B

Calibration of the NAST-M

Temperature Measurement System

T HE calibration of the system used for monitoring the thermodynamic tempertures

of the internal blackbody targets is considered in this chapter. Platinum Resistive

Devices (PRD's)' are used throughout the instrument to monitor the physical temperatures

of various components. The resistance of these devices changes as a function of temperature.

The RTD's used in NAST-M have a nominal resistance of 100 ohms at a temperature of

273.15 K (00 C) and an average temperature coefficient of resistance (ohms/ 0 C) of 0.385.

Four-wire sensors are used to minimize error due to lead resistance. The resistances of

the RTD's are measured using a custom measurement board, consisting of a precision,

programmable current loop and precision multiplexing/data conversion circuitry.

B.1 Calibration of the RTD Measurement Board

The RTD measurement board uses a 500-pA precision current source to excite a num-

ber of sensors in series. The voltage of a particular sensor is read by a multiplexed A/D

converter. A three-point calibration that relates resistance to voltage was determined em-

pirically using three precision loads (75.00, 100.00, and 123.64 ohms, ±0.01%, Precision

'PRD's are a subclass of sensors sometimes called "Resistive Temperature Devices" or RTD's
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Resistive Products, 319-394-9131).

" Step One. Uncorrected resistance is calculated by assuming ideal RTD and ideal

current source as follows:

R, = V/100.0/0.0005 (B.1)

where V is the voltage across the RTD measured by the A/D converter.

" Step Two. Resistance estimates are corrected as follows:

R = aR,+ bR 0 +c (B.2)

where a, b, and c are calibration coefficients listed in Table B.1.

B.2 Calibration of RTD's

The relation between resistance and temperature for the 100-ohm platinum RTD is

slightly nonlinear. A sixth-degree polynomial is used to approximate the nonlinear function:

T(R) = c6R 6 + c5R5 + c4 R4 + caR3 + c2R 2 + c1R' + co. (B.3)

The polynomial coefficients are given in Table B.2.

B.2.1 Calibration of blackbody target RTD's

After applying the nonlinear correction (Eq. B.3), the calibration accuracy of a given

RTD is approximately +0.5 K due to manufacturing inconsistencies. This level of accuracy

is acceptable for all measurements of temperature throughout NAST-M, with the exception

of the blackbody targets. To improve the calibration accuracy, a Lakeshore silicon-diode

temperature sensor (DT-471) was factory calibrated to an accuracy exceeding 50 mK. All

RTD's used in the blackbody targets were calibrated to the DT-471 standard by bringing

all sensors to thermal equilibrium in an insulated heating/cooling chamber. The RTD's
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# a I b [ c
0 0.00013869229702 1.05576801631774 -0.18566149495149
1 0.00013927449982 1.05601524836986 -0.21071077543916
2 0.00014101188313 1.05583499326767 -0.21265659171809
3 0.00016028346776 1.05219005877087 -0.05570389095445
4 0.00016359095485 1.05165643333656 -0.01735960966884
5 0.00015449511948 1.05366333238956 -0.14613707227112
6 0.00012924860764 1.05777736501955 -0.32908159419907
7 0.00012123259481 1.06015684751307 -0.46752392030633
8 0.00014737301848 1.05296646036783 0.06926327292225
9 0.00013661152544 1.05478226766433 0.01041032855573

10 0.00015526736239 1.05131521323410 0.15657835900886
11 0.00027867551630 1.02281074165312 0.98765315257951
12 0.00016965491704 1.04808488190457 0.27515788488792
13 0.00027329381037 1.02340523687909 0.83660973808433
14 0.00015832269411 1.05045324866483 0.13125171044363
15 0.00018046449911 1.04680581738250 0.29443331096929
16 0.00019307408658 1.04463145740507 0.36997423747051
17 0.00016305632600 1.05011961063873 0.12773389760980
18 0.00017014051452 1.04896097290410 0.17623048835974
19 0.00014204448793 1.05444988738145 -0.06501945085812
20 0.00018157776638 1.04510265591639 0.26204372425943
21 0.00016431337341 1.05021599143216 0.12158037553736
22 0.00016170307567 1.05069217328780 0.09240611245069
23 0.00012879666351 1.05328255971528 0.23304204528815
24 0.00012649508141 1.05346450033812 0.23388196317961
25 0.00013180089015 1.05275604272476 0.25598169443189
26 0.00013853491999 1.05130575862168 0.32099509243437
27 0.00012036610526 1.05473580636087 0.18189976755318

Table B.1: Calibration coefficients for the 28 sensors used in the WINTEX deployment:
March 1999

C6 C4 I C3

7.529465633863e-15 -6.212690630360e-12 1.984031043875e-09 -2.924240004671e-07

C2 Cl CO11 ii
1.725939573222e-03 I 2.240811515378e+00 | -2.421646935839e+02

Table B.2: Polynomial coefficients for 100-ohm platinum RTD.
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Operating point RTD 1 (E) RTD 2 (B) RTD 3 (H)
335 K 1.20 0.45 0.70

RTD 4 (F) RTD 5 (C) RTD 6 (D) RTD 7 (G)
1.10 .37 -0.63 .77

Table B.3: Calibration offsets (K) for hot load RTD's. The operating point at which the
calibration was performed is given in the leftmost column. The RTD designations used in
Appendix A is denoted in parentheses.

Operating point RTD 1 (B) RTD 2 (A) RTD 3 (D) RTD 4 (C) RTD 5 (E)
235 K .48 .64 .44 .42 .46
297 K .325 .28 .20 .15 .15

Table B.4: Calibration offsets (K) for ambient load RTD's. The operating points at which
the calibrations were performed is given in the leftmost column. The RTD designations
used in Appendix A is denoted in parentheses.

used in the heated target were calibrated at 335 K, and the RTD's used in the ambient

target were calibrated at 297 K and 235 K. The biases (i.e., values that must be added to

uncalibrated RTD readings) for the RTD's in the heated target are given in Table B.3, and

the biases for the RTD's in the ambient target are given in Table B.4.
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Appendix C

Laboratory Measurements of

NAST-M Antenna Beam Spillover

A N antenna beam spillover problem affecting views of the internal calibration targets

for the 54-GHz radiometer results in a correctable worst-case absolute calibration bias

of ~3 K in the transparent channels. The "corrupted" temperature of the ambient/heated

load can be modeled as a linear combination of the spillover through the zenith port, the

spillover through the nadir port, and the "true" load temperature (i.e., the brightness

temperature [TA or TH] that would be observed if there were no spillover) as follows:

TI = jnTZ + TN + (1 - n - 77)T A (.1)

TH = 7HTZ + HTN + (1 - 7H _H)TH (C.2)

The antenna beam coupling coefficients (7/ values) for each radiometer channel can be ac-

curately measured in the laboratory by switching calibration loads of known temperature

in and out of the zenith and nadir ports of NAST-M. A sketch of the laboratory setup is

shown in Figure C-1.
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Figure C-1: Labatory setup for measurement of antenna beam spillover.
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C.1. EXPERIMENTAL PROCEDURE

C.1 Experimental procedure

By switching the ambient targets in and out of the zenith and nadir ports, four operating

modes are possible: 2 (ambient target at zenith and nadir ports), 295K (ambient target

at zenith port and liquid nitrogen at nadir port), jf (liquid nitrogen at zenith port and

ambient target at nadir port), and 77 (liquid nitrogen at zenith and nadir ports). Fifty

spots are observed for each of the operating modes: [Z 24H N 24A], where the following

notation is used: Z = zenith port, H = heated load, N = nadir port, and A = ambient load.

The heated and ambient targets are observed at 24 angles ranging from 40.2' to 67.80 in

steps of 1.20. A "superscan" contains 200 spots defined as:

[Z 24H N 24A] 295K [Z 24H N 24A]295K [Z 24H N 24A] 77K [Z 24H N 24A] 77K
77K 295K 29 5K -7-7

(C.3)

Six superscans were collected (and averaged) for two cases: 1) The reflector was moved

to the far end of the shaft, and 2) The reflector was positioned as close as possible to the

chain sprocket. The total travel between these two points is approximately 3/8". The two

nadir views of liquid nitrogen and views of the intenal ambient target near 540 observed

during the 2 cycle were used as calibration points. The following sections describe the

mathematical methods used to calculate the antenna beam coupling coefficients.

C.2 Regression solutions for the beam coupling coefficients

Equations C.1 and C.2 can be applied to each of the four test cases, giving eight equations

and four unknowns (i.e., the four beam coupling coefficients). The resulting overdetermined

system of linear equations can then be solved using regression. The case of the heated target

is slightly more complicated, because TH is not well-known. TH is therefore considered

unknown, and a linear system of equations (with four equations and three unknowns) can

be solved using regression, as before.
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C.2.1 Case I: Ambient internal target

Equation C.1 can be rewritten as follows:

(TAI - TA) = (TZ - TA)7Jz + (TN - TA)TN. (C.4)

Equation C.4 can be expressed in matrix form by including the terms for all four test cases

as follows:

TA=

TA'( 77K TA

(C.5)

Tz(77K) - TA

Tz(295K) - TA

Tz(295K) - TA

Tz(77K) - TA

7 A .
A

7NZA
77A

TN(295K) - TA

TN(295K) - TA

TN(77K) - TA

TN (77K) - TA

_i
where TN(77K) is defined to be 79.5 K (warming of -2.5 K assumed, due to the reflection

of radiation off the surface of the liquid nitrogen [84, 85]) and Tz(77K), Tz(295K), and

TN(295K) are determined from calibrated radiometric data. The matrix equation to be

solved is therefore

TA = AA A 
(8

AA= (C.6)

(C.7)

(C.8)
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with solution

UA = (AAAA)-'AATA. (C.9)

C.2.2 Case II: Heated internal target

Equation C.2 can be expressed in matrix form by including the terms for all four test

cases as follows:

25 (C.10)
TI ( 77K

- T -

Tz(77K)

Tz(295K)

Tz(295K)

Tz(77K)

TN(295K)

TN(295K)

TN(77K)

TN(77K)

1

1

1

1

(C.11)

(C.12)

H7Z
H

( 7N

1 qH _7)THJ

where TN(77K), Tz(77K), Tz(295K), and TN(295K) are defined as before. The matrix

equation to be solved is therefore

TH = AHqH (C.13)

with solution

7 A = (AnAH)AT . ()

AH=

7H =

(C.14)
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Figure C-2: Antenna beam coupling coefficients for ambient load near 54 GHz.

The antenna beam coupling coefficients are shown in Figures C-2 through C-5. The values

used in the thesis are an average of the values obtained at the two extreme lateral reflector

positions, and are given in Table C.1.
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Figure C-3: Antenna beam coupling coefficients for heated load near 54 GHz.

Table C.1: Laboratory measurements of antenna beam coupling coefficients near 54 GHz.

No. Frequency (GHz) 77 A H _ H

1 50.30 0.0048 0.0016 0.0057 0.0014
2 51.76 0.0066 0.0021 0.0053 0.0014
3 52.80 0.0077 0.0024 0.0054 0.0013
4 53.75 0.0071 0.0024 0.0045 0.0014
5 54.40 0.0073 0.0023 0.0050 0.0016
6 54.94 0.0082 0.0027 0.0056 0.0018
7 55.50 0.0107 0.0031 0.0080 0.0023
8 56.02 0.0163 0.0044 0.0129 0.0034
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Figure C-4: Antenna beam coupling coefficients for ambient load near 118.75 GHz.
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Figure C-5: Antenna beam coupling coefficients for heated load at 118.75 GHz.
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Appendix D

MAMS-Derived Cloud Imagery

from CAMEX-3
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23Aug98: MAMS (12.4 pm)
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Figure D-1: MAMS imagery from August 23, 1998. The top panel shows MAMS brightness

temperatures. A histogram of pixel brightness temperatures for the image is given in the

second image. The clear-air background is shown in the third image. Contour lines are

drawn every 0.5 K. The clouds (background removed) are shown in the last image.
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23Aug98: MAMS (12.4 pm)
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Figure D-2: MAMS imagery from August 23, 1998. The top panel shows MAMS brightness

temperatures. A histogram of pixel brightness temperatures for the image is given in the

second image. The clear-air background is shown in the third image. Contour lines are

drawn every 0.5 K. The clouds (background removed) are shown in the last image.
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Figure D-3: MAMS-derived cloud statistics from August 23, 1998. The top panel shows

a histogram of cloud fraction. The second panel shows a histogram of mean cloud pertur-

bation. A scatterplot of cloud fraction versus mean cloud perturbation is given in the last

panel.
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Figure D-4: MAMS imagery from August 26, 1998. The top panel shows MAMS brightness

temperatures. A histogram of pixel brightness temperatures for the image is given in the

second image. The clear-air background is shown in the third image. Contour lines are

drawn every 0.5 K. The clouds (background removed) are shown in the last image.
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Figure D-5: MAMS imagery from August 26, 1998. The top panel shows MAMS brightness

temperatures. A histogram of pixel brightness temperatures for the image is given in the

second image. The clear-air background is shown in the third image. Contour lines are

drawn every 0.5 K. The clouds (background removed) are shown in the last image.
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Figure D-6: MAMS-derived cloud statistics from August 26, 1998. The top panel shows

a histogram of cloud fraction. The second panel shows a histogram of mean cloud pertur-

bation. A scatterplot of cloud fraction versus mean cloud perturbation is given in the last

panel.
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Figure D-7: MAMS imagery from August 30, 1998. The top panel shows MAMS brightness

temperatures. A histogram of pixel brightness temperatures for the image is given in the

second image. The clear-air background is shown in the third image. Contour lines are

drawn every 0.5 K. The clouds (background removed) are shown in the last image.
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Figure D-8: MAMS-derived cloud statistics from August 30, 1998. The top panel shows

a histogram of cloud fraction. The second panel shows a histogram of mean cloud pertur-

bation. A scatterplot of cloud fraction versus mean cloud perturbation is given in the last

panel.
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Figure D-9: MAMS imagery from September 13, 1998. The top panel shows MAMS bright-
ness temperatures. A histogram of pixel brightness temperatures for the image is given in

the second image. The clear-air background is shown in the third image. Contour lines are

drawn every 0.5 K. The clouds (background removed) are shown in the last image.
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Figure D-10: MAMS imagery from September 13, 1998. The top panel shows MAMS

brightness temperatures. A histogram of pixel brightness temperatures for the image is

given in the second image. The clear-air background is shown in the third image. Contour

lines are drawn every 0.5 K. The clouds (background removed) are shown in the last image.
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Figure D-11: MAMS imagery from September 13, 1998. The top panel shows MAMS

brightness temperatures. A histogram of pixel brightness temperatures for the image is

given in the second image. The clear-air background is shown in the third image. Contour

lines are drawn every 0.5 K. The clouds (background removed) are shown in the last image.
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Figure D-12: MAMS-derived cloud statistics from September 13, 1998. The top panel

shows a histogram of cloud fraction. The second panel shows a histogram of mean cloud

perturbation. A scatterplot of cloud fraction versus mean cloud perturbation is given in the

last panel.
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Figure D-13: MAMS imagery from September 21, 1998. The top panel shows MAMS

brightness temperatures. A histogram of pixel brightness temperatures for the image is

given in the second image. The clear-air background is shown in the third image. Contour

lines are drawn every 0.5 K. The clouds (background removed) are shown in the last image.
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Figure D-14: MAMS imagery from September 21, 1998. The top panel shows MAMS

brightness temperatures. A histogram of pixel brightness temperatures for the image is

given in the second image. The clear-air background is shown in the third image. Contour

lines are drawn every 0.5 K. The clouds (background removed) are shown in the last image.
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Figure D-15: MAMS-derived cloud statistics from September 21, 1998. The top panel

shows a histogram of cloud fraction. The second panel shows a histogram of mean cloud

perturbation. A scatterplot of cloud fraction versus mean cloud perturbation is given in the

last panel.
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Figure D-16: MAMS imagery from September 22, 1998. The top panel shows MAMS

brightness temperatures. A histogram of pixel brightness temperatures for the image is

given in the second image. The clear-air background is shown in the third image. Contour

lines are drawn every 0.5 K. The clouds (background removed) are shown in the last image.
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Figure D-17: MAMS-derived cloud statistics from September 22, 1998. The top panel

shows a histogram of cloud fraction. The second panel shows a histogram of mean cloud

perturbation. A scatterplot of cloud fraction versus mean cloud perturbation is given in the

last panel.
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Appendix E

Selected Source Code

T HIS appendix lists selected MATLAB scripts and functions that were used in the thesis.

All software was written by the author, with the following exceptions: 1) ION algo-

rithm code, which was written by Junehee Lee and modified by the author, and 2) NAST-M

data display functions, which were based on routines written by M. J. Schwartz. Additional

source code not listed here may be obtained from the author: billbalum. mit . edu.

E.1 NAST-M calibration and validation software

function [Tb, TH, TC, TS] = calib3wls(count-data, rtd-data, W, count-filter-length, eta)

% function for calibrating NAST-M counts using 3 calibration sources

% The calibration line is calculated using a weighted least-squares solution

% Corrections for spillover are implemented using wjb eta model

% usage: Tb = calib3wls(count-data, rtd-data, eta, W, count-filter-length)

% inputs:

10

% count-data structure with the following fields:

count-data.counts raw counts (17 x 25 x N)

count-data.time timestamp matrix (25 x N)

count-data.hcaLindex index of spots to be used as "hot" cal
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if more than one spot is given, we average

count-data.ccaLindex index of spots to be used as "cold" cal

if more than one spot is given, we average

count-data.scaLindex index of spots to be used as "sky" cal

if more than one spot is given, we average

structure

rtd-data.rt

rtd-data. ti

rtd-data.w

rtd-data.w

rtd-data.w

% rtd-data

%W

% countfil

% eta (opti

% outputs:

vith the following fields:

dfc interpolated, filtered, and corrected rtd values

(N x 29)

me timestamp (1 x N)

gtH weight of RTD's to be used for "hot" cal (17 x 30)

NOTE: the extra weight is the value for deltaH

gtC weight of RTD's to be used for "cold" cal (17 x 30)

NOTE: the extra weight is the value for deltaC

gtS weight of RTD's to be used for "sky" cal (17 x 30)

NOTE: the extra weight is the value for deltaS

matrix of weights for weighted least-squares (17x3x3)

ordering is [H C S]

length input to filtfilt

with the following fields:

eta values for ambient load (17 x 2)

first column is nadir contribution, second is zenith

eta values for heated load (17 x 2)

first column is nadir contribution, second is zenith

nadir temperatures (17 x N)

zenith temperatures (17 x N)

timestamps for T-N and T-Z

internal paramaters:

50

% written by WJB 2/3/00

20

30

40

240

ter.length

onal) structure

eta.etaC

eta. eta-H

eta. T-N

eta. T-Z

eta. time

Tb

TH

TC

TS

calibrated brightness temperatures (17 x 25 x N)

thermometric temperature used for "hot" load (17 x N)

thermometric temperature used for "cold" load (17 x N)

brightness temperature used for "sky" load (17 x N)



E.1. NAST-M CALIBRATION AND VALIDATION SOFTWARE

% REVISION HISTORY:

N = size(count-data.counts);

if (nargin < 5)

fprintf('Using ideal eta case. .. .\n'); 60

eta.etaC = zeros(17, 2);

eta.etaH = zeros(17, 2);

eta.TN = zeros(17, N(3));

eta.T-Z = zeros(17, N(3));

eta.time = zeros(1, N(3));

end

Tb = zeros(N(1), N(2), N(3));

% calibration counts 70

CH = squeeze(mean(count-data.counts(:,count-data.hcal-index,:), 2));

CC = squeeze(mean(count-data.counts(:,count-data.ccal-index,:), 2));

CS squeeze(mean(count-data.counts(:, count-data.scal-index,:), 2));

if (count filter-length > 1)

% filter the calibration counts

CH = filtfiltcol(ones(1,count-filter-length)/countfilter-length,1,CH')';

CC = filtfiltcol(ones(1,count-filter-length)/count-filter-length, 1,CC') ';

CS = filtfiltcol(ones(1,countfilter-length)/countfilter-length,1, CS') ';

end 80

% timestamp for calibration counts

t-CH = mean(count-data.time(count-data.hca-index,:), 1);

t-CC = mean(count-data.time(count-data.ccal-index,:),1);

tCS = mean(count-data.time(count-data.scal-index,:) 1);

% thermometric calibration data

TH = rtd-data.wgtH * [rtddata.rtdfc'; ones(1,size(rtd-data.rtdfc,1))];
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TC rtd-data.wgtC * [rtd-data.rtdfc'; ones(1,size(rtd-data.rtdfc,1))1;

TS rtd-data.wgtS * [rtd-data.rtdfc'; ones(1,size(rtd-data.rtdfc,1))]; 90

fprintf('\n');

% loop over the spots

for spots = 1:N(2)

fprintf('Calibrating spot %d of %d. . .\r', spots, N(2));

% interpolate calibration data to scene

CH_ = interpl(tCH', CH', count data.time(spots,:)' ,'linear', 'extrap')';

CC. = interpl(tCC', CC', count-data.time(spots,:)' ,'linear', 'extrap') '; 100

CS_ = interpl(tCS', CS', count-data.time(spots,:)', 'linear', 'extrap')';

TH_ = interpl(rtd-data.time' , TH ', count-data.time(spots,:)' , 'linear' , 'extrap') ';

TC_ = interpl(rtd-data.time' , TC', count-data.time(spots,:)' , 'linear', 'extrap') ';

TS_ = interp1(rtd-data.time' , TS', count-data.time(spots,:)' , 'linear', 'extrap') ';

TZ_ = interpl(eta.time' , eta .T_Z', count-data.time(spots,:)' , 'linear', 'extrap') ';

TN_ = interpl(eta.time ' , eta. T_N', count-data.time(spots,:)' , 'linear' , 'extrap') ';

% loop over the scans

for scans = 1:N(3)

% loop over the frequencies 110

for freqs = 1:N(1)

% calibrate with interpolated parameters

% correct ambient and hot loads

TC-c = eta.etaC(freqs,1) * TN_(freqs,scans) + ...

eta.etaC(freqs,2) * TZ-(freqs,scans) + ...

(1 - eta.etaC(freqs,1) - eta.etaC(freqs,2)) * TC_(freqs,scans);

TH-c = eta.eta-H(freqs,1) * TN-(freqs,scans) + ...

eta.etaH(freqs,2) * TZ-(freqs,scans) + ...

(1 - eta.etaH(freqs,1) - eta.etaH(freqs,2)) * TH-(freqs,scans);

A = [[CH-(freqs,scans); CC_(freqs,scans); CS_(freqs,scans)j ones(3,1)]; 120

b = [[TH-c; TC-c; TS_(freqs,scans)]];

gb = inv(A' * squeeze(W(freqs,:,:)) * A) * A' * squeeze(W(freqs,:,:)) * b;

Tb(freqs,spots,scans) = count-data.counts(freqs,spots,scans) * gb(1) + gb(2);

end

end
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end

fprintf('Calibrating spot %d of %d. . Done\n', N(2), N(2));

% Script to calculate RTD weights (heated load) using data from

% March 29, 1999 WINTEX flight

% WJB

% downwelling (sky data) for 19.42 km

TZ = [3.2265 3.5223 4.6198 11.4832 15.6511 28.9500 37.4925 69.5931]';

TZ_118 = [4.35 4.7093 5.2818 6.3674 8.4721 14.7136 37.8203 91.4319]';

% load data here (code omitted)

% need the following: 10

% t (radiometric timestamps)

% trtd (rtd timestamps)

% x (radiometric counts) (17 x 25 x N)

% rtdfc (rtd data, filtered and corrected) (29 x N)

CAL-RANGE = 1120:1220;

% fill in sturctures for calib2 (two-point cal)

x = x(1:16, :, CAL-RANGE); 20

count-data.counts = x;

count-data.time = t(:, CALRANGE);

count-data.hcal-index = [24:25]; % amb load

count -data.ccal-index = [1:2]; % sky cal

rtd-data.wgtH = ones(16,1) * [zeros(1, 23) .2 * ones(1,5) 0 0];

rtd-data.wgtC = [zeros(16, 29) [T-Z; T-Z_118]];

rtd-data.time = trtd(CALRANGE)';

rtd-data.rtdfc = rtdfc(CALRANGE,:);

30

[Tb, TH, TA] = calib2(count data, rtd-data, 4);
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% thermodynamic temps

hot-load-rtds = mean(rtdfc(CAL-RANGE,9:15));

% radiometric temps (use only 118.75 +/- 3.5)

hot-load-rad = mean(mean(Tb(9, 3:4, :)));

w = pinv([hotiload-rtds; ones(1,7)1) * [hot-loadrad; 1];

% Script to calculate antenna beam coupling coefficients (eta's)

% from laboratory measurements of liquid nitrogen

% WJB

% load data here (code omitted)

% need the following:

% t (radiometric timestamps)

% trtd (rtd timestamps)

% x (radiometric counts) (17 x 25 x N) 10

% rtdfc (rtd data, filtered and corrected) (29 x N)

% SCAN-RANGE (range of useful scans)

% crop data

t = t(:, SCAN-RANGE);

trtd = trtd(SCANRANGE)';

x = x(:, :, SCANRANGE);

rtdfc = rtdfc(SCANRANGE, :);

% The spot pattern is [S 24H N 24A] * 20

% A/N, A/A, N/A, N/N

% Assemble "superscans"

NUMSCANS = floor(size(x,3)/8)*8;

if (size(x,3) ~= NUMSCANS)

y = x(:, :, 1:NUMSCANS);

else

y =x;
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end

30

fprintf('Using %d scans of data\n', NUMSCANS);

y reshape(y, 17, 200, NUM-SCANS/8);

t = reshape(t, 200, NUMSCANS/8);

TN_77 = 79.5;

% fill in sturctures for calib3wls

count-data.counts = y;

count-data.time = t;

count-data.hcal-index = [86:89]; % Ambient - mean of four spots 40

count-data.ccal-index = 176; % Nadir LN2 #1

count-data.scal-index = 26; % Nadir LN2 #2

rtd-data.wgtH = ones(17,1) * [zeros(1, 23) .2 * ones(1,5) 0 0];

rtd-data.wgtC = [zeros(17, 29) ones(17,1) * TN77];

rtd-data.wgtS = [zeros(17, 29) ones(17,1) * TN-77];

rtd-data.time = trtd;

rtd-data.rtdfc = rtdfc;

% not enough data to filter calibration counts 50

COUNT.FILTERLENGTH = 1;

% Weight matrix - need to weight 2 cal looks equally with am look

for i = 1:17, W(i,:,:) = diag([sqrt(2) 1 1]);, end;

% call calibration routine

[Tb, TH, TC, TS] = calib3wls(count-data, rtd-data, W, COUNTFILTER-LENGTH);

% Use 54-GHz data to figure out temperature of absorbers....

T-N-A = mean(Tb(:, [76 126], :), 3); 60

pm-N-A = (max(max(TN.A(1:8,:))) - min(min(T_N_A(1:8,:))))/2;

TN-A = mean(mean(T_N_A(1:8,:)));

fprintf('Using nadir ambient temperature of %g K +- %g K\n', TNA, pmN..A);

TSA = mean(Tb(:, [51 1], :), 3);

pm-S-A = (max(max(TSA(1:8,:))) - min(min(TSA(1:8,:))))/2;
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T-S-A = mean(mean(TSA(1:8,:)));

fprintf('Using zenith ambient temperature of %g K +- Xg K\n', TSA, pmSA);

TS_77 = mean(Tb(:, [101 151], :), 3);

TS_77 = mean(TS_77(1:8,:)');

fprintf('54-GHz zenith measurements of LN2: Xg\n', TS_77); 70

TS_77 mean(T-S-77);

angles-h = 40.2:1.2:67.8;

angles-am = fliplr(angles-h);

% calculate the eta's for the heated targets....

A = [[T-NA T-S-77 1]; [T-NA TS-A 1]; [TN-77 TSA 1]; [TN-77 TS_77 1]];

Ai =inv(A' * A);

for i = 1:size(Tb,1) % loop over channels 80

TH-prime = mean(Tb(i, [(2:25) (2:25)+50 (2:25)+100 (2:25)+150], :), 3);

for j = 1:24 % loop over angles

eta-H-hat3(i, j, :) = Ai*AI*reshape(TH-prime( (0:24:72) + j), 4, 1);

eta-H-hat3(i, j, 3) = eta-H-hat3(i, j, 3) / (1 - eta-H-hat3(i, j, 1) - etaH-hat3(i, j, 2));

end

end

% calculate the eta's for the ambient targets....

A [[TN-A T-S_77]; [T-NA T-SA]; [TN_77 T-S.A]; [TN-77 T-S_77]] - mean(TH(1,:));

Ai = inv(A' * A); 90

for i = 1:size(Tb,1) % loop over channels

TA-prime = mean(Tb(i, [(27:50) (27:50)+50 (27:50)+100 (27:50)+150], :), 3) - mean(TH(1,:));

for j = 1:24 % loop over angles

eta-A-hat(i, j, :) = Ai*A'*reshape(TA-prime( (0:24:72) + j), 4, 1);

end

end

100
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% Script to tune lab measurements of antenna beam coupling

% coefficients (eta's) using coincident AMSU observations on March 15, 1999

% WJB

% AMSU temperature retrieval

marl5r = ...

[266.4880 265.1500 257.5120 251.7450 247.1640

225.6180 219.0610 214.9770 212.7880 211.3430

212.1850 212.2240 212.5570 212.9830 213.3050

213.4240 213.4600 213.5200 214.0940 216.0040

230.1150 233.5270 236.7200 239.8500 243.1790

258.5420 260.9290 263.1190 265.2270 267.1790

274.1660 275.1130 275.7710 276.4100 276.1900

273.1350 272.2730 271.5060]' ;

242.1180 237.8270 233.5290

211.1300 211.1620 211.1510

213.2660 213.0850 213.2170

218.2880 220.8070 223.3010

246.7280 250.1370 253.1500

268.9410 270.6240 272.1090

275.9310 275.3180 274.7950

% AMSU water vapor retrieval

H20profile =

0.00

0.02

0.68

2.41

2.93

0 0 0 0 0

0 0 0 0 0

0 0 0.0009 0.0011 0.0012

20 0.0022 0.0024 0.0033 0.0046

90 0.0637 0.0889 0.1219 0.1694

69 0.8421 1.0094 1.1958 1.3958

22 2.6105 2.8240 3.0444 3.1015

18 3.1864 3.0509]' ;

0

0

0.0014

0.0065

0.2380

1.5979

3.1452

0

0

0.0014

0.0091

0.3264

1.8148

3.1194

0

0

0.0016

0.0123

0.4284

2.0289

3.1064

0 ...

0 ...

0.0018 ...

0.0185 ...

0.5525 ...

2.2128 ...

3.0253 ...

% AMSU pressure grid

pres.am..mar5=

[1 2 3 4

15 20 30 40

110 120 130 140

220 240 260 280

425 450 475 500

675 700 725 750

925 950 975 1000

5

50

150

300

525

775

1025

6 7

60 70

160 170

320 340

550 575

800 825

10501' ;

8

80

180

360

600

850

9

90

190

380

625

875

10 ...

100 ...

200 ...

400 ...

650 ...

900 ...

229.3660 ...

211.4750 ...

213.2850 ...

226.4920 ...

256.0460 ...

273.1310 ...

273.9860 ...

10

20

30

[I
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% set surface parameters from buoy 45007

Ts=276.45; % from buoy 3.3C

Ps = 1018; 40

emis=3; % use fastem to calculate surface emisivity

alt=std76mb(49.91); % ~20.58 km

% use hydrostatic equation to calculate altitudes

if (Ps < 1000)

pres-am-marl5(64) = Ps;

pres-am..marl5(65:66) [];

H20profile(65:66)=[];

marl5r(64)=Ts;

mar15r(65:66)=[]; 50

H = ([marl5r(2:64)] + marl5r(1:63))/2;

H = H * 8.3143 / (28.8 * 9.8);

avgP = exp((log(pres-am-mar15(2:64,:)) + log(pres-ammarl5(1:63)))/2);

diffP = diff(pres-am-marl5);

dz = H .* (diffP ./ avgP); % km

height = flipud(cumsum(flipud(dz)));

height(64) = 0;

else

pres-am-mar15(65) = Ps;

pres-am-mar15(66) =[]; 60

H20profile(66)=[];

marl5r(65)=Ts;

marl5r(66)=[];

H = ([marl5r(2:65)] + marl5r(1:64))/2;

H = H * 8.3143 / (28.8 * 9.8);

avgP = exp((log(pres.am-marl5(2:65,:)) + log(pres-am-mar15(1:64)))/2);

diffP = diff(pres-am-marl5);

dz = H .* (diffP ./ avgP); % km

height = flipud(cumsum(flipud(dz)));

height(65) = 0; 70

end

profile-marl5.tbarray=[height marl5r pres-am-mar15 H20profile];
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% call radiative transfer routines (see fastem.f)

% upwelling...

[Tb54r_,Tbl18r_]=findTbfastem(profile-mar15,Ts,alt,emis,0,0);

% downwelling...

[Tbl18s,Tb54s]=skytb(alt,profile-marl5);

80

% load data here (code omitted)

% need the following:

% t (radiometric timestamps)

% trtd (rtd timestamps)

x (radiometric counts) (17 x 25 x N)

% rtdfc (rtd data, filtered and corrected) (29 x N)

CAL-RANGE = 2800:2880; 90

RANGE = 11:70;

% crop data

x = x(1:16, :, CAL-RANGE);

% set structures for calib3wls

count-data.counts = x;

count-data.time = t(:, CAL-RANGE);

count-data.hcal-index = [3:4]; % hot load

count.data.ccal-index = [24:25]; % amb load 100

count-data.scal-index = [1:2]; % sky cal

% rtd weights

w = [0.1568 0.1435 0.1402 0.1330 0.1412 0.1449 0.1402]';

rtd-data.wgtH = ones(16,1) * [zeros(1, 8) w' zeros(1,15)];

rtd-data.wgtC = ones(16,1) * [zeros(1, 23) .2 * ones(1,5) 0 0];

% TIGR profile set used to compute zenith data statistics (code omitted)

% values for 19.42 km 110
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TZ1942 = [3.2263 3.5300 4.6601 11.6876 15.8043 29.1484 37.6094 69.5979]';

T-Z-118-1942 [4.2479 4.7093 5.2818 6.3674 8.4721 14.7136 37.7476 91.1371]';

sigma-Z-1942 = [0.0152 0.0262 0.2728 1.7239 1.8919 2.9926 2.6230 0.7413]' ;

sigmaZ-118-1942 = [0.0701 0.1233 0.1888 0.3120 0.5464 1.2050 3.1599 5.0097]';

% values for 20.58 km

TZ_2058 = [3.1179 3.3423 4.2023 10.1784 12.7607 23.6231 28.9200 53.7995]';

TZ_118-2058 = [4.0544 4.3702 4.7626 5.5082 6.9596 11.3126 28.1133 71.4057]'; 120

sigma-Z-2058 [0.0107 0.0228 0.2167 1.4821 1.4786 2.4243 1.9871 0.3000]' ;

sigma-Z_118_2058 = [0.0493 0.0867 0.1331 0.2206 0.3887 0.8748 2.4879 4.8909]';

% interpolate to actual altitude

T_Z = interpl([19.42; 20.58], [T._.Z_1942'; TZ-2058'], alt, 'linear' , 'extrap') ';

TZ_118 interpl([19.42; 20.58], [TZ-118_1942'; T-Z_118-2058'], alt, 'linear', 'extrap')';

sigma-Z = interpl([19.42; 20.58], [sigmaZ-1942'; sigma-Z-2058'], alt, 'linear', 'extrap')';

sigma-Z-118 = interpl([19.42; 20.58], [sigma- Z_118-1942' ; sigma-Z_118_2058'], alt, 'linear' , 'extrap')';

rtd-data.wgtS = [zeros(16, 29) [T-Z; TZ.118]]; 130

rtd-data.time = trtd(CALRANGE)';

rtd-data.rtdfc rtdfc(CALRANGE,:);

% First-pass calibration to get T.N ...

% 54:

% Assume 2K error on H load and 1.5K error on A load due to spillover

% Assume 0.5K error on H due to gradient

% 118:

% Assume 0.2K error on H 140

% Assume 0.1K error on A

C = zeros(14, 3, 3);

W = C;

dT-54 = [.21 .13 .12 .16 .13 .15 .18 .18];

dT_118 = [.19 .23 .21 .25 .28 .34 .61 .89];

for i = 1:8

C(i,:,:) = diag([dT_54(i)^2 + 4.25 dT_54(i)^2 + 2.25 dT-54(i)^2 + sigma-Z(i)^2]);

250



E.1. NAST-M CALIBRATION AND VALIDATION SOFTWARE

end

for i = 1:8 150

C(i+8,:,:) = diag([dT-118(i)^2 + 0.04 dT118(i)^2 + 0.01 dT _118(i)^2 + sigmaZ-118(i)^2]);

end

for i = 1:16

W(i, : :) = inv(squeeze(C(i, :,

end

[Tb, TH_, TA_, TS_, CH_, CA-, CS-] = calib3wls(count-data, rtd-data, W, 4);

Tb54-uncorrected = Tb(1:8, :, :); % First pass

T-N = squeeze(mean(Tb(1:8, 7:21, :), 2)); 160

TN = TN(:, RANGE);

TZ = TZ * ones(1, length(TN));

% sky data...

TH = squeeze(mean(TH_(1:8, 1:2, RANGE),2));

TA = squeeze(mean(TA_(1:8, 1:2, RANGE),2));

CH = squeeze(mean(CH_(1:8, 1:2, RANGE),2));

CA = squeeze(mean(CA_(1:8, 1:2, RANGE),2));

CZ = squeeze(mean(CS_(1:8, 1:2, RANGE),2)); 170

C = squeeze(mean(x(1:8, 1:2, RANGE),2));

Tb54_u-sky = mean(((TH - TA) .* (C - CA) ./ (CH - CA) + TA)')';

al = mean(((TN - TH) .* (C - CA) ./ (CH - CA)),)';

a2 = mean(((TZ - TH) .* (C CA) ./ (CH - CA))')';

a3 = mean(((TN - TA) .* (CH - C) ./ (CH - CA))')';

a4 = mean(((TZ - TA) .* (CH - C) ./ (CH - CA))')';

A = [al a2 a3 a4];

% nadir data... 180

TH = squeeze(mean(TH_(1:8, 14, RANGE),2));

TA = squeeze(mean(TA_(1:8, 14, RANGE),2));

CH = squeeze(mean(CH_(1:8, 14, RANGE),2));

CA = squeeze(mean(CA_(1:8, 14, RANGE),2));

CZ = squeeze(mean(CS_(1:8, 14, RANGE),2));
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C = squeeze(mean(x(1:8, 14, RANGE),2));

Tb54_u-nadir = mean(((TH - TA) .* (C - CA) ./ (CH - CA) + TA)')';

bi = mean(((TN - TH) .* (C - CA) ./ (CH - CA))')';

b2 = mean(((TZ - TH) .* (C - CA) ./ (CH - CA))')'; 190

b3 = mean(((TN - TA) .* (CH - C) ./ (CH - CA))')';

b4 = mean(((TZ - TA) .* (CH - C) ./ (CH - CA))')';

B = [bi b2 b3 b4J;

% First guess for eta:

% etaH and eta-A are the lab measurements of the etas

eta.first-guess = [etaH eta-A]';

delta-Tb54_sky = Tb54s - Tb54_u-sky;

Tb54r = Tb54r-(:,10); % nadir 200

delta-Tb54_nadir = Tb54r - Tb54-u-nadir;

deltaTb54 = [delta-Tb54_sky delta-Tb54-nadir]';

% solve minimization numerically.

% if no solution feasible, relax constraints

for i = 1:8

[deltaeta(:,i), fval, exitflag]

fmincon(inline( 'norm (x)'), eta-first-guess(:,i), -eye(4), eta-first-guess(:,i)- .001,

[A(i,:); B(i,:)], deltaTb54(:,i) - [A(i,:); B(i,:)] * eta-first-guess(:,i)); 210

if (exitflag < 0)

pcounter = 1;

ncounter = 1;

pertp = [dT..54(i) 0]1';

pertn = -pertp;

fprintf('***Beginning relaxation for channel %d\n', i);

end

while (exitflag < 0)

if (mod(pcounter+ncounter,2))

pert = pertp * pcounter; 220

pcounter = pcounter + 1;

else
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pert = pertn * ncounter;

ncounter = ncounter + 1;

end

% try again ...

[delta-eta(:,i), fval, exitflag] =

fmincon(inline( 'norm(x) '), eta-first -guess(:,i), -eye(4), eta-first .guess(:,i)-.001, ...

[A(i,:); B(i,:)], deltaTb54(:,i) - [A(i,:); B(i,:)] * eta.first.guess(:,i)+pert);

if (exitflag > 0) 230

fprintf(' SUCCESS! ! Relaxation %d with perturbation of %g.\n\n', pcounter+ncounter, pert(1));

else

fprintf(' Finished relaxation %d with perturbation of %g. Still trying. . .\n\n', pcounter+ncounter, pert('));

end

if ((ncounter+pcounter) > 250)

fprintf(' No solution found after %d relaxations.\n\n', ncounter+pcounter);

break

end

end

% Script to apply eta corrections to March 25, 1999 WINTEX data

% WJB

alt = 20.25;

% estimated statistics

sigma..N = [10 7 3 3 3 3 2 2]';

sigmaH = 0.5 * ones(8,1);

sigmaA = 0.1 * ones(8,1);

10

% sky data from TIGR

T-Z_1942 = [3.2263 3.5300 4.6601 11.6876 15.8043 29.1484 37.6094 69.5979]';

T-Z_118-1942 = [4.2479 4.7093 5.2818 6.3674 8.4721 14.7136 37.7476 91.1371]';

sigmaZ...1942 = [0.0152 0.0262 0.2728 1.7239 1.8919 2.9926 2.6230 0.74131' ;

sigma- Z_ 118-1942 = [0.0701 0.1233 0.1888 0.3120 0.5464 1.2050 3.1599 5.0097]';

TZ_2058 = [3.1179 3.3423 4.2023 10.1784 12.7607 23.6231 28.9200 53.7995]1';

T-Z_118-2058 = [4.0544 4.3702 4.7626 5.5082 6.9596 11.3126 28.1133 71.4057]';
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sigmaZ-2058 = [0.0107 0.0228 0.2167 1.4821 1.4786 2.4243 1.9871 0.3000]';

sigma-Z-118-2058 = [0.0493 0.0867 0.1331 0.2206 0.3887 0.8748 2.4879 4.8909]'; 20

T_Z = interpl([19.42; 20.58], [TZ_1942'; TZ_2058'], alt)';

T-Z_118 = interpl([19.42; 20.58], [TZ-118-1942'; T-Z-118_2058'], alt)';

sigmaZ interpl([19.42; 20.58], [sigma.Z-1942'; sigma-Z_2058'], alt)';

sigmaZ-118 = interpl([19.42; 20.58], [sigma.Z-118_1942'; sigma-Z-118-2058'], alt)';

% thermal noise stats

dT_54 = [.21 .13 .12 .16 .13 .15 .18 .18];

dT_118 = [.19 .23 .21 .25 .28 .34 .61 .89];

30

% load data here (code omitted)

% need the following:

% t (radiometric timestamps)

% trtd (rtd timestamps)

x (radiometric counts) (17 x 25 x N)

% rtdfc (rtd data, filtered and corrected) (29 x N)

CAL-RANGE = 1500:1700;

RANGE = 51:150; 40

% fill in sturctures for calib2 (two-point cal)

x = x(1:16, :, CALRANGE);

count-data.counts = x;

count-data.time = t(:, CALRANGE);

count-data.hcal-index = [3:4]; % hot load

count-data.ccal-index = [24:25]; % amb load

count-data.scal-index = [1:2]; % sky cal

% rtd weights 50

w = [0.1568 0.1435 0.1402 0.1330 0.1412 0.1449 0.1402]';

rtd-data.wgtH = ones(16,1) * [zeros(1, 8) w' zeros(1,15)];

rtd-data.wgtC = ones(16,1) * [zeros(1, 23) .2 * ones(1,5) 0 0];

rtd-data.wgtS = [zeros(16, 29) [T.Z; T-Z-118]];
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rtd.data.time = trtd(CALRANGE)';

rtd...data.rtdfc = rtdfc(CALRANGE,:);

% First-pass calibration to get TN ...

60

% 54:

% Assume 2K error on H load and 1.5K error on A load due to spillover

% Assume 0.5K error on H due to gradient

% 118:

% Assume 0.2K error on H

% Assume 0.1K error on A

C = zeros(16, 3, 3);

W = C;

for i = 1:8 70

C(i,:,:) = diag([dT_54(i)^2 + 4.25 dT-54(i)^2 + 2.25 dT-54(i)^2 + sigmaZ(i)^2J);

end

for i = 1:8

C(i+8,:,:) = diag([dT_118(i)^2 + 0.04 dT_118(i)^2 + 0.01 dT-118(i)^2 + sigmaZ_118(i)^2]);

end

for i = 1:16

W(i, :, :) inv(squeeze(C(i, :,

end

[Tb, TH, TA, TS] = calib3wls(count.data, rtd-data, W, 4); 80

Tb118-new = Tb(9:16, :, :); % Final product

Tb54_uncorrected = Tb(1:8, :, :); % First pass

TN = squeeze(mean(Tb(1:8, 7:21, :), 2));

T-N-mean = mean(TN(:, RANGE)')';

TA-mean = mean(TA(1,RANGE));

TH-mean = mean(TH(1,RANGE));

% Need expected errors in TA and TH after correction 90

% load tuned etas with expected errors (code omitted)

255
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sigma-A = sqrt( T-N-mean.^2 .* sigma-etaA(:, 1).^2 + TZ.^2 .* sigma-etaA(:, 2).^2 + ...

TA-mean.^2 .* (sigmaetaA(:, 1).-2 + sigma-etaA(:, 2).^2) + sigma..A.^2);

sigma-H = sqrt( TN-mean.^2 .* sigmaetaH(:, 1).^2 + TZ.^2 .* sigma-etalH(:, 2).-2 + ...

TH-mean.-2 .* (sigma-etaH(:, 1).^2 + sigma-etaH(:, 2).^2) + sigma-H.^2);

% Now, calibrate with corrections

count-data.counts = x(1:8, :, :); 100

rtd-data.wgtH = ones(8,1) * [zeros(1, 8) w' zeros(1,15)];

rtd-data.wgtC = ones(8,1) * [zeros(1, 23) .2 * ones(1,5) 0 0];

rtd-data.wgtS = [zeros(8, 29) TZ];

C zeros(8, 3, 3);

W = C;

for i = 1:8

C(i,:,:) = diag([dT_54(i)^2 + sigma-H(i)^2 dT_54(i)^2 + sigmaA(i)^2 dT-54(i)^2 + sigmaZ(i)^2]);

end

for i = 1:8 110

W(i, :, :) inv(squeeze(C(i, :,

end

eta.TN = T_N;

eta.TZ = TZ * ones(1, length(T-N));

eta.etaC = eta-A;

eta.eta-H = eta-H;

eta.time = mean(t(7:21,CALRANGE),1);

120

[Tb54-corrected, TH, TA, TS] = calib3wls(count -data, rtd-data, W, 4, eta);

% AMSU temperature retrieval

% Script to generate NAST-M equivalent Tb's from AMSU: March 26, 1999

% WJB

256
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mar25r = ...

[265.9870 260.7420

219.6710 215.0550

212.6520 213.6390

218.6200 219.0790

228.3120 230.8910

252.6370 255.0450

270.1200 271.4190

274.9100 274.8250

251.0490 244.2440 238.9910

212.5960 211.9200 210.6610

214.5100 215.3150 216.0390

219.4740 219.7040 221.0670

233.3160 235.8290 238.5130

257.3440 259.5640 261.7190

272.5730 273.7060 274.2010

274.7210]' ;

234.1420 230.1000 226.2930

210.2610 210.2570 210.4540

216.5430 216.9600 217.5330

222.1690 223.0830 224.0140

241.6020 244.5930 247.4100

263.6780 265.6020 267.3200

274.6850 274.9110 275.1120

% Water vapor profile (g/cm^3) from x3260112 raob

H2Oprofile =

[0 0

0 0

0

0

0

0

0 0 0 0

0 0 0 0

0.0109 0.0190 0.0360 0.0753

0.3735 0.4592 0.5565 0.5157

0.8850 1.1296 1.3084 1.4626

2.6173 2.6173 2.6173]';

% AMSU pressure grid

pres.am-mar25 =

[1 2 3 4

15 20 30 40

110 120 130 140

220 240 260 280

425 450 475 500

675 700 725 750

925 950 975 1000

5

50

150

300

525

775

1025

0

0

0

0.0011

0.1101

0.5402

1.9406

6 7

60 70

160 170

320 340

550 575

800 825

10501';

0

0

0

0.0028

0.1548

0.5114

2.3058

8

80

180

360

600

850

0

0

0

0.0041

0.1733

0.3480

2.5464

9

90

190

380

625

875

Ts=275.35; % from AVHRR

Ps=1030; % from buoy

% use hydrostatic equation to calculate altitudes

if (Ps < 1000)

222.8360 ...

211.3600 ...

218.1110 ...

225.8450 ...

250.1190 ...

268.7200 ...

275.0640 ...

10

0

0

0

0.0065

0.2471

0.1712

2.5980

0 ...

0 ...

0 ...

0.0102 ...

0.3641 ...

0.3422 ...

2.6173 ...

20

30

10 ...

100 ...

200 ...

400 ...

650 ...

900 ...

40
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pres-am-mar25(64) = Ps;

pres-am-mar25(65:66) = [];

H2Oprofile(65:66)=[];

mar25r(64)=Ts;

mar25r(65:66)=[];

H = ([mar25r(2:64)] + mar25r(1:63))/2;

H = H * 8.3143 / (28.8 * 9.8);

avgP = exp((log(pres-ammar25(2:64,:)) + log(pres-am-mar25(1:63)))/2);

diffl? = diff(pres-am-mar25); 50

dz = H .* (diffl? ./ avgP); % km

height = flipud(cumsum(flipud(dz)));

height(64) = 0;

else

pres-am-mar25(65) = Ps;

pres-am-mar25(66) =[;

H2Oprofile(66)=[];

mar25r(65)=Ts;

mar25r(66)=[];

H = ([mar25r(2:65)] + mar25r(1:64))/2; 60

H = H * 8.3143 / (28.8 * 9.8);

avgP = exp((log(pres-am-mar25(2:65,:)) + log(pres-am-mar25(1:64)))/2);

diffP = diff(pres-am-mar25);

dz = H .* (diffl? ./ avgP); % km

height = flipud(cumsum(flipud(dz)));

height(65) = 0;

end

profile-mar25_tbarray=[height mar25r pres.am-mar25 H20profile]; 70

emis=3;

alt=20.25;

% slight angular offset

offset=-1.5;

[Tb54fastem-tbarray,Tb1 18fastem-tbarray]=findTbfastem-tbarray(profile-.mar25 tbarray,Tsalt,emis,0,offset);
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% Script to make nice displays of the NAST-M window channels

% Based heavily on the code written by Mike Schwartz

% WJB

% load data here (code omitted)

% need the following:

% t (radiometric timestamps)

% trtd (rtd timestamps) 10

x (radiometric counts) (17 x 25 x N)

% rtdfc (rtd data, filtered and corrected) (29 x N)

% broad range used to define baseline; not very critical

RANGE=3500:4600;

% range used for eye retrieval

EYE=3710:3745;

% range used for image plots 20

EYE1=3695:3830;

% range used for eye perturbations

CLEAR=3895:3904;

% need to define colormap to use all colors

% note that ghostview-based pdf converters aren't real happy with this

colormap(ones(110,3));

map = colormap('jet');

colormap(ones(290,3)); 30

% use blue for all values below 180 K

map = [zeros(180,3); map];

% put up figure

f=figure(1)

cif

orient landscape
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% move figure so it doesn't go off-screen

foo = get(f,'position');

set(f, 'position' ,[foo(1) foo(2)-300 foo(3) foo(4)]) 40

wysiwyg

[h, colbar-ax]=show8strip2-contour(Tbf, [1 9],EYE1,0,[190 280],[4 4],map)

set(colbar-ax, 'position',[0.075 0.0500 0.0200 0.8500])

axes(colbar-ax)

ylabel( 'Brightness Temperature (K)','fontsize',14)

ax=getsub;

set(ax(1), 'xtickla', hrminsec(t(get(ax(1), 'xtick'))))

set(ax(2), 'xtickla', hrminsec(t(get(ax(2), 'xtick'))))

title-ax = text(29, 283.5, 'Microwave Images of Hurricane Bonnie', 'f ontsize',16) 50

function [hand, colbar-ax]=show8strip2-contour(Tb, chs, r, rbase, Tran, Interp, cmap)

% Tb is a 3-dim matrix [channels x angle x recordsj

% there need not be eight channels. More or less are allowed.

% chs channels to display 1. .8 (THIS COULD BE SELECTED BY RANGE IN Tb)

r scans to show

% rbase range of scans to set as zero baseline

% (use 0 or " for no baseline subtraction)

% Than range of temperatures to scale to colormap 60

% Interp /xinterp yinterp] interpolates data for smoothing between values

% cmap optional colormap (tweaked zebra is default)

if exist(' chs')=1, chs=[7:-1:1 8]; end;

if chs == ': ', chs=[7:-1:1 8]; end;

if exist( 'r')~=1, r=1:size(Tb,3); end;

if r == ':', r=1:size(Tb,3); end;

if exist('Interp')~=1, Interp=[1 1]; end;

if exist('cmap')~=1, cmap=olicolors(1); end; 70

if exist(' Tran')~=1, Tran=[-100 10]; end;

if length(Tran)~=2, Tran=[-100 10]; end;

if exist( 'rbase')~=1, rbase=1:size(Tb,3); end;

if ~isempty(rbase) & rbase==0, rbase=''; end;
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Nch=length(chs);

% set up some dimensions

top = .1;

bot = .05; 80

separ = .05;

Imar .17;

rmar = .08;

wid = (1 - (Nch-1)*separ -top-bot)./Nch

for i=1:Nch,

axes('Position', [imar bot + (i-1) .*(wid+separ) 1-lmar-rmar wid ]);

hand(i)=showstrip-contour(squeeze(Tb(chs(i), 5:23, :)), r, rbase, Tran, Interp, cmap,i);

90

if (i == 1)

title('50.3 GHz', 'fontsize', 14)

else

title('118.75 \pm 3.5 GHz', 'fontsize',14)

end

end

colbar-ax = colbar-wjb([.1 bot .02 1-top-bot], Tran)

100

function hand=showstrip-contour(ch, r, rbase, Tran, Interp, cmap, i)

% display a strip chart of channel data

% ch is a matrix of calibrated brightnesses, typically [14,L] or [16,L]

% r is a range of columns to be displayed

% rbase is a range of columns to use as a zero baseline

% IF rbase is the same length as the scan width, it is take to be the baseline itself

% Tran is [minT maxT] of temperatures to map to extremes of the colormap

% Interp is [rowfactor columnfactor] for interpolation (default [1 1])

% cmap is optional colormap 110
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if size(ch,1)==16, r1=1:14;

else r1=1:size(ch,1); end;

if exist('cmap')~=1, cmap='zebra'; end;

if isstr('cmap'), colormap(cmap);cmap=colormap; end;

if exist('rbase ')=1,

BASE=zeros(length(r1),1);

elseif length(rbase)==O, BASE=zeros(length(r1),1); 120

elseif length(rbase)==length(r1), BASE=rbase(:);

else BASE= median(ch(rl,rbase)')';

end

if exist('Interp')~=1, Interp=[1 1]; end;

if Interp(1)==1 & Interp(2)==1,

X = ceil((((ch(r1,r)- BASE *ones(1,length(r)))-Tran(1))./(Tran(2)-Tran(1))).* length(cmap));

else

X = ch(rlr)- BASE *ones(llength(r)) ; 130

if (0) % mike's old code

X = interp2(1:C, (1:R)' , X, (Interp(2): (C*Interp(2) ))./Interp(2), (Interp(1): (R*Interp(1))) './Interp(1));

end

% code to unwarp the swath

[R,C]=size(X);

angle-dis = 10 * tan([(- 7.2*9):7.2:(7.2*9)] * pi/180);

bo-diddly linspace(min(angle.dis), max(angle-dis), Interp(1) * (R-1) + 1);

X = interp2(1:C, angle-dis', X, (Interp(2):(C*Interp(2)))./Interp(2), bo-diddly', 'spline');

end 140

r-all = interpl(1:C, r, (Interp(2):(C*Interp(2)))./Interp(2));

hand=image(r-all, bo-diddlyX);

hold on

if (i == 1) % 50.3
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contour(r-all, bo-diddly, X, [240:4:280], 'k-'); % ~ 10K per contour

xlabel('Time (UTC) August 26, 1998','fontsize',14) 150

else % 118.75 +/- 3.5

contour(r-all, bo.diddly, X, [240:4:280, 'k-'); % ~ 10K per contour

contour(r-all, bo.diddly, X, [190:5:235], 'k-'); % - 10K per contour

end

ylabel('Distance (km) ',fontsize',14)

set(gca,'DataAspectRatio',1 0.9 1]) % get scale right - 1 scan 1.1 km

function Cax=co1bar-wjb(pos, Tran) 160

if exist('pos')~=1, pos=[.05 .1 .02 .7]; end;

ax=gca;

map=colormap;

mapsize=size(map,1);

if exist('Tran'),

CLim = Tran;

else

CLim=get(gca, 'CLim')

end; 170

delete(findobj(gcf, 'userdata', 'colbar'));

Cax=axes('Position', pos, 'userdata', 'colbar');

set(Cax, 'userdata', 'colbar')

step=(CLim(2)-CLim(1))/(mapsize- 1);

image(1:2, CLim(1):step:CLim(2), (ones(2,1)*(CLim(1):step:CLim(2)))") ;

set(gca, 'YDir', 'Normal', 'XTickLabels', [], 'XTick', [], 'Box', 'on', 'TickDir', 'out', 'userdata', 'colbar');

set(gcf, 'CurrentAxes', ax);

E.2 ION

function [S, noise, order] = ion(x, iter)

% ION Iterative Order and Noise estimation algorithm

263
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/S, NOISE, ORDER] = ion(X, ITER)

X is an m-by-n data matrix. m represents the number of

observations, and n represents the number of variables.

ITER is the desired number of iterations of the ION algorithm. 10

We have found that ITER = 10 is generally more than sufficient.

S (n-by-1 vector) is the noise variance vector.

NOISE (m-by-n matrix) is the retrieved noise sequence(s).

ORDER is the estimated number of independent signals.

Also see SOEBS, SCREEORDER, FIXEIG, NEBEM2.

20

% This version of the ION algorithm is written in MATLAB 5.2. and

% includes four subroutines: SOEBS, SCREEORDER, FIXEIG, NEBEM2.

% The Iterated Order and Noise estimation (ION) algorithm was

% developed by Junehee Lee and David H. Staelin at the

% Massachusetts Institute of Technology (MIT) under sponsorship of

% the MIT Leaders for Manufacturing Program. It is documented in

% Junehee Lee's Ph.D. thesis, MIT Department of Electrical Engineering

and Computer Science, March, 2000. 30

% ION iteratively estimates the noise variance associated with

% each variable of a multivariate data set, and the order of the

% underlying signal set. No apriori information about the data set

% is required provided that the input data is properly arrayed in

% a matrix. If the data set is to be used subsequently for linear

% regression to predict target variables, these target variables

% should also be included in the input matrix. This version of ION

% employs the scree plot to estimate order and the EM algorithm to

% estimate noise. Any of several other published methods can 40

% alternatively be used to estimate order or noise within the
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% structure of the ION algorithm.

% The order, noise, and noise variance estimates produced by the

% ION algorithm can be used in a variety of ways. For example, they

% can offer improved noise estimates, principal components, Wiener

% filtering, and linear regressions based on limited training data

% sets. The greatest benefits are achieved for cases where the number

of variables is very large, typically more than a minimum of ten

or twenty, and at least three times the order of the underlying 50

% signal; cases where the training set is small also typically yield

% greater benefits. These benefits have exceeded 10 dB in some test

cases.

% (c) Copyright 2000 M.LT.

% Permission is hereby granted, without written agreement or

% royalty fee, for Hewlett Packard Corporation (HP) to use, copy,

modify, and distribute within HP this software and its 60

documentation for any purpose, provided that the above copyright

% notice and the following three paragraphs appear in all copies of

this software.

% In no event shall M.I. T. be liable to any party for direct,

% indirect, special, incidental, or consequential damages arising

% out of the use of this software and its documentation, even if

% M.I.T. has been advised of the possibility of such damage.

M.I.T. specifically disclaims any warranties including, but not 70

limited to, the implied warranties of merchantability, fitness

% for a particular purpose, and non-infringement.

% The software is provided on an "as is" basis and M.I.T. has no

obligation to provide maintenance, support, updates, enhancements,

or modifications.
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80

[Nobs, Nvar] = size(x);

G = ones(Nvar,1); S = ones(Nvar,1);

for it = 1 : iter

Sx = cov(x * inv(diag(sqrt(S))));

[evect, evals] = eig(Sx);

[evect, evals] = fixeig(evect, evals);

est-p = screeorder(evals)

[G, est-signal,expi1v]=nebem2(x* inv(diag(sqrt(S))) , est-p 10);

S-old = S;

S = S.* G;

end

est-signal est-signal * diag(sqrt(S-old));

noise = x - est-signal;

order = est-p;

function [evect,evals] = fixeig(evectevals)

FIXEIG [NewEvect, NewEvals] = fixeig(EVECT, EVALS)

EVALS is a vector of eigenvalues.

% EVECT is a matrix whose column is the eigenvectors.

The first column of EVECT is the eigenvector corresponding

to the first element of EVALS.

NewEvals is the eigenvalue in descending order.

NewEvect is the re-ordered eigenvector matrix.

90

100

10

266
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(c) Copyright 2000 M.I.T.

Permission is hereby granted, without written agreement or

royalty fee, for Hewlett Packard Corporation (HP) to use, copy,

% modify, and distribute within HP this software and its

documentation for any purpose, provided that the above copyright 20

notice and the following three paragraphs appear in all copies of

% this software.

% In no event shall M.I.T. be liable to any party for direct,

indirect, special, incidental, or consequential damages arising

% out of the use of this software and its documentation, even if

M.I.T. has been advised of the possibility of such damage.

M.I.T. specifically disclaims any warranties including, but not

% limited to, the implied warranties of merchantability, fitness 30

% for a particular purpose, and non-infringement.

The software is provided on an "as is" basis and M.I.T. has no

% obligation to provide maintenance, support, updates, enhancements,

% or modifications.

evals = diag(evals);

evals-temp = evals; 40

dim = size(evals);

for i = 1:dim(1)

mx = max(evals);

for j = 1:dim(1)

if mx == evals(j,1)

l0c = j;

end

end

evals-temp(i) = mx; 50
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evect-temp(:,i) = evect(:,loc);

evals(loc,1) = (-1) * (abs(evals(loc1)));

end

evals = evals-temp;

evect = evect-temp;

[evectevals];

function

% LR1

%//

%O

%//

%5/

[ab,R-SQUARED]=lr1(x,Y)

[a, b,R-squaredf=rl (x, Y)

Multi-dimensional linear regression

x is a m by 1 vector

Y is a m by n matrix

a and b is ther coefficient which fits the data points on

x=a+Y*b

10

If Y and x is not normalized, this command will NOT normalize

them before the regression (as opposed to LR).

R-squared is the variability of x explained by Y

(in terms of percentage)

% (c) Copyright 2000 M.L T.

Permission is hereby granted, without written agreement or

% royalty fee, for Hewlett Packard Corporation (HP) to use, copy,

% modify, and distribute within HP this software and its

% documentation for any purpose, provided that the above copyright

% notice and the following three paragraphs appear in all copies of

% this software.

20
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% In no event shall M.I.T. be liable to any party for direct,

% indirect, special, incidental, or consequential damages arising

% out of the use of this software and its documentation, even if 30

% M.I.T. has been advised of the possibility of such damage.

M.I.T. specifically disclaims any warranties including, but not

% limited to, the implied warranties of merchantability, fitness

% for a particular purpose, and non-infringement.

% The software is provided on an "as is" basis and M.I.T. has no

% obligation to provide maintenance, support, updates, enhancements,

or modifications.

40

mY=mean(Y);

mx=mean(x);

new-Y=Y-ones(size(Y, 1),1)*mY;

newx=x-mx;

b=regress1 (new-x,new-Y);

a=ones(size(x,1),1)*mx-mY*b; 50

Sxx=(x-mean(x)) '* (x-mean(x));

Rss=(x-a-Y*b)I*(x-a-Y*b);

RSQUARED=(Sxx-Rss)/Sxx*100;

function [S, estimated-signal,Explv] = nebem2(x, p, it)

% [S, estimated-signal,Exp-lv] = nebem2(x, p, it)

% NEBEM2 Noise Estimation through EM algorithm

269
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% x is an m-by-n data matrix. m represents the number of

observations, and n represents the number of variables.

10

% p is the number of latent variables.

'it' represents how many iterations will be performed for EM.

S is the estimated noise variances for each variables.

% (c) Copyright 2000 MI. T.

% Permission is hereby granted, without written agreement or 20

%0 royalty fee, for Hewlett Packard Corporation (HP) to use, copy,

% modify, and distribute within HP this software and its

% documentation for any purpose, provided that the above copyright

% notice and the following three paragraphs appear in all copies of

% this software.

% In no event shall M.I.T. be liable to any party for direct,

indirect, special, incidental, or consequential damages arising

out of the use of this software and its documentation, even if

M.I.T. has been advised of the possibility of such damage. 30

% M.I.T. specifically disclaims any warranties including, but not

% limited to, the implied warranties of merchantability, fitness

% for a particular purpose, and non-infringement.

% The software is provided on an "as is" basis and M.I.T. has no

% obligation to provide maintenance, support, updates, enhancements,

% or modifications.

40

[im, n] size(x);

A-est randn(np);

% A-est = ones(n,p);



E.2. ION 271

G-est diag(0.5*ones(n,1));

S = [I;

for repeat = 1 it

% E - STEP 50

Exp-lv = x * (G-est \ A-est) / (A-est' * (G.est \ A-est) + eye(p,p));

Exp_lv2 = m *eye(pp)/ (A-est' * pinv(G.est) * A-est + eye(p,p)) +

((A-est' * (G-est \ A.est) + eye(p,p)) \ A-est') * (G-est \ x') * x *

(G-est \ A-est) /( A-est' * (G.est \ A.est) + eye(p,p));

% M - STEP

Aest = (x'* Expjlv) / Exp-lv2; 60

G-est = [ ];

for index-j = 1:n

G-est-j = (x(:,index-j)' * x(:,indexj) - Aest(indexj,:) * Explv' *x(:,index.-j)) / m;

G-est = [G-est; G-est-jj;

end

G-est = diag(G-est);

end

70

S = diag(G.est);

estimated-signal = Exp-lv * A-est'

function b= regress1 (y,Xalpha)

% REGRESS1 Performs multiple linear regression using least squares.

% b = REGRESS1(y,X) returns the vector of regression coefficients, B.

% Given the linear model: y = Xb,

% (X is an nxp matrix, y is the nxl vector of observations.)

% References:
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% [1] Samprit Chatterjee and Ali S. Hadi, "Influential Observations,

% High Leverage Points, and Outliers in Linear Regression",

% Statistical Science 1986 Vol. 1 No. 3 pp. 379-416. 10

% [2] N. Draper and H. Smith, "Applied Regression Analysis, Second

Edition", Wiley, 1981.

% B.A. Jones 3-04-93

% Copyright (c) 1993 by The MathWorks, Inc.

% $Revision: 1.4 $ $Date: 1993/10/04 12:26:29 $

if nargin < 2,

error('REGRESS requires at least two input arguments.');

end 20

% Check that matrix (X) and left hand side (y) have compatible dimensions

[n,p] = size(X);

[nicollhs] = size(y);

if n~=nl,

error('The number of rows in Y must equal the number of rows in X.');

end

if collhs ~= 1,

error('Y must be a vector, not a matrix'); 30

end

% Find the least squares solution.

[Q R]=qr(X);

b = R\Q'*y;

function p = screeorder(evals)

% SCREEORDER Automatic Order Estimation Based on the Scree Plot.

% EVALS is a vector of eigenvalues in decending order.
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(c) Copyright 2000 M.I. T.

10

% Permission is hereby granted, without written agreement or

% royalty fee, for Hewlett Packard Corporation (HP) to use, copy,

% modify, and distribute within HP this software and its

% documentation for any purpose, provided that the above copyright

% notice and the following three paragraphs appear in all copies of

% this software.

% In no event shall M.I.T. be liable to any party for direct,

% indirect, special, incidental, or consequential damages arising

% out of the use of this software and its documentation, even if 20

% M.I. T. has been advised of the possibility of such damage.

M.I.T. specifically disclaims any warranties including, but not

limited to, the implied warranties of merchantability, fitness

for a particular purpose, and non-infringement.

The software is provided on an "as is" basis and M.I.T. has no

obligation to provide maintenance, support, updates, enhancements,

or modifications.

30

Nvar = length(evals);

log-evals = loglO(abs(evals));

[slope, intersect] = soebs(evals);

est-eig = intersect + [1: Nvar]' * slope; 40

L = log-evals - est.eig;

% The following changed from .4 and .6 to .1 and .2 - works better

% for some NAST-I data
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begins = floor(Nvar * 0.1);

ends = ceil(Nvar * 0.2);

p = min(find(L - 20 * std(L(begins : ends)) < 0)) -1

50

function [slope, intersect] = soebs(eigenvalues)

SOEBS [slope, intersect] = soebs(eigenvalues)

Signal Order Estimation by Scree plot

EIGENVALUES are the eigenvalues of the

covariance matrix of data in descending order.

SLOPE and INTERSECT are the slope and intesect of

the linear line which fits best the noise eigenvalues

when the scree plot is in logarithmic y-axis.

10

(c) Copyright 2000 M.L T.

Permission is hereby granted, without written agreement or

royalty fee, for Hewlett Packard Corporation (HP) to use, copy,

modify, and distribute within HP this software and its

documentation for any purpose, provided that the above copyright

notice and the following three paragraphs appear in all copies of

this software. 20

In no event shall M.I. T. be liable to any party for direct,

indirect, special, incidental, or consequential damages arising

out of the use of this software and its documentation, even if

M.I. T. has been advised of the possibility of such damage.

% M.I. T. specifically disclaims any warranties including, but not



E.3. NEURAL NETWORK TEMPERATURE PROFILE RETRIEVAL

limited to, the implied warranties of merchantability, fitness

for a particular purpose, and non-infringement.

The software is provided on an "as is" basis and M.L T. has no

obligation to provide maintenance, support, updates, enhancements,

or modifications.

n = length(eigenvalues);

logeig = loglO(eigenvalues);

% The following changed from .4 and .6 to .1 and .2 - works better

% for some NAST-I data

begins = floor(n * 0.1);

ends = ceil(n * 0.2);

[intersect, slope, foo] = lr1(logeig(begins:ends),[begins:ends]');

intersect = intersect(1);

E.3 Neural network temperature profile retrieval

% NNET-CLEAR.m

% Script for estimating temperature profile from AIRS/AMSU-A/MHS

% observations. Uses MATLAB neural network toolbox.

% Bill Blackwell

[errcodehostnamel = system('hostname');

hostname(end) = []; 10

% training/validation profiles

30

40

275
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NUM-TRAINING = 10000;

TRAINING = round(linspace(1, 11997, NUMTRAINING));

VALIDATION = 1:11997;

VALIDATION(TRAINING) [];

% Number of PPC coefficients to use

TEMP-KEEPERS = 30;

20

% Number of nodes in hidden layer

NUMNODES1 = 20;

% Maximum number of training epochs

MAX-EPOCHS = 100;

% load training data

fprintf('*** Starting to load data. . .\n

load /usr/dickel/bill/AIRS-cloud-clearing/matlab/Airs-Freq

load /usr/dickel/bill/AIRS-cloud-clearing/matlab/NoiseVector 30

load /usr/dickel/bill/AIRS-cloud-clearing/matlab/Anvec

load /usr/dickel/bill/AIRS-cloud-clearing/matlab/Mnvec

load /usr/dickel/bill/AIRS-cloud-clearing/matlab/p66

iwd = '/usr/dicke/bill/AIRS-cloud-clearing/airs-radiances/';

awd = '/usr/dickei/bill/AIRS-cloud-clearing/amsu-radiances/';

mwd = '/usr/dicke/bill/AIRS-cloudclearing/mhs-radiances/';

noise = [anvec mnvec noise-vector];

40

load /usr/dickel/bill/AIRS-cloud-clearing/airs-radiances/airs.clear.night.ir04.1013. Nc .mat

airs-clear = x(:, 1:11997);

clear x

mean-airs-clear = mean(airs-clear(:, TRAINING)')';

airs-clear = diag(l./noise-vector) * (airs-clear - mean-airs-clear * ones(1, length(airs-clear)));

Crr = airs-clear(:, TRAINING) * airs-clear(:, TRAINING)' / (length(TRAINING)-1) + eye(2371);

[evects, evals] = eigs(Crr, NAPC-KEEPERS);
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% load temperature data 50

load /usr/dickel/bill/AIRS-cloud-clearing/profiles/ld2Ir.mat tsurf t

tsurf = tsurf(1:11997)' ;

mean-tsurf = mean(tsurf(TRAINING));

tsurf = tsurf - mean-tsurf;

% Use only 0-15 km data

t = t(20:64,1:11997);

mean-t = mean(t(:, TRAINING)')';

t = t - mean-t * ones(1,11997);

t = [t; tsurf]; 60

Ctt = t(:, TRAINING) * t(:, TRAINING)' / (length(TRAINING)-1);

Ctr = t(:, TRAINING) * airs-clear(:, TRAINING)' / (length(TRAINING)-1);

% Linear regression (just to check)

L = Ctr / Crr;

lin-err = sqrt(diag(Ctt - L * Ctr'));

lin-est = L * (airs-clear(:, VALIDATION) + randn(size(airs-clear(:, VALIDATION))));

MSE = mean(lin-err.^2); 70

% Compute PPC coefficients

[ppc-evects, ppc-evals] = eigs(L * Ctr', TEMPKEEPERS);

[U, S, V] = svd(ppc-evects' * L);

clear Crr

V = V(:, 1:TEMPKEEPERS);

pcs = V' * airs-clear;

% Normalize data

s-pcs = std(pcs(:, TRAINING)')'; 80

pcs = diag(1./s-pcs) * pcs;

Snn = sqrtm(diag(1./spcs) * V' * diag(noise-vector.^2) * V * diag(1./spcs));

% Compute nine retrievals separately

levels_1 = [1 7 12 17 22 27 32 37 42];

levels-2 = [6 11 16 21 26 31 36 41 46];
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for j = 1:length(levels-1)

fprintf('--- Preparing neural network. . .\n'); 90

nnet=newff(minmax(pcs') ',NUM-NODES1 levels-2(j) - levels_1(j) + 1],{'tansig', 'purelin'}, 'trainlm');

% set pertinent intialization parameters and reinitialize

nnet.layers{2}.initFcn = 'initwb';

nnet.layers{1}.initFcn = 'initwb';

nnet.inputWeights{1}.initFcn= 'rands';

nnet.layerWeights{2,1}.initFcn = 'rands';

nnet.biases{2}.initFcn= 'rands';

nnet.biases{1} .initFcn= 'rands';

nnet=init(nnet);

nnet.IW{l}=0.5.*nnet.IW{1}; 100

% set pertinent training parameters

nnet. trainParam.max..fail=300;

nnet.trainParam.show = 250;

nnet.trainParam.epochs = 1;

nnet.trainParam.goal = le-10;

nnet.trainParam.searchFcn = 'srchgol';

nnet.trainParam.minstep = 0;

nnet.trainParam.time = inf;

nnet.performFcn= 'mse'; 110

TV.T = t(levels_1(j):levels_2(j),VALIDATION);

% For graphical output

fig = figure;

nnet.best = zeros(size(nnet));

validation-error-best = inf;

clear training-error validation-error

for i = 1:MAXEPOCHS 120

% Change noise every epoch

foo = pcs(:,TRAINING) + Snn * randn(size(ps(:,TRAINING)));

TV.P = pcs(:,VALIDATION) + Snn * randn(size(ps(:,VALIDATION)));
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[nnettr]=train(nnet, foo, t(levelsI(j):levels-2(j),TRAINING), [], [], [3, TV);

validation-error(i) = tr.tperf(end);

training-error(i) = tr.perf(end);

if (validation-error(i) < validation-error-best)

nnet-best = nnet;

validation-error-best = validation-error(i);

fprintf(' NEW minimum found! (Chunk %d of %d: Training error = %g, Validation Error = Xg)\n', 130

j, length(levels_1), training.error(i), validation-error(i));

end

figure(fig)

clf

plot(1:i, training-error)

grid on; hold on

plot(l:i, validation-error, 'r')

drawnow

if (rem(i, 10) == 0)

eval(['save traingdx-outj hostname '_simrunij num2str(i) ... 140

.mat nnet nnetbest tr training-error validation-error']);

end

end

eval(['save nnAIRS-clear_' num2str(j) ' nnet-best ...

training-error validation-error']);

end

E.4 Neural network cloud clearing

% Script to estimate clear-column radiances (derived from AIRS, AMSU, and MHS)

% Training data: airs.cld2lr.night.ir04.1013.[1 3 7 9].Nc2.mat

amsu. cld2lr. night. mw075.1013.[ 3 7 9].Nc2.mat

mhs. cld2lr.night.mw075.1013.[1 3 7 9].Nc2.mat

% Validation data: airs. cld2lr.night.ir04.1013.5.Nc2.mat

279
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% amsu. cld2lr. night.mw075.1013.5.Nc2.mat

% mhs.cld2lr.night.mw075.1013.5.Nc2.mat

10

% Number of radiance PC's from warmest spot

nn-param.WARM-KEEPERS = 30;

% Number of PC's from each pixel pair

nn-param.DIFF-KEEPERS = 5;

% Numper of clear-column PC's to estimate

nn-param.OUT-KEEPERS = 30;

% Number of nodes in first hidden layer 20

nn-param.NUMNODES1 = 60;

% Number of nodes in second hidden layer

nn-param.NUMNODES2 = 45;

% IR channels to estimate

nn-param.IR-OUTPUT-CHANNELS = [101:400 1901:2000 floor(linspace(2001, 2089, 75)) 2090:2114];

% Number of surface PC's to filter

nnparam.SURFACEFILTERPCS = 0; 30

% Change the noise after this many epochs

nn-param.NOISEROTATE = 5;

% Save output after this many epochs

nn-param.SAVEOUTPUT = 50;

% Size of each batch of training vectors

nn-param.TRAIN-LENGTH = 5000;

40

% Training algorithm

nn-param.TRAINALG = 'trainscgwjb';

% load training stats
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load /usr/dickel/bill/AIRS-cloud..clearing/neural-nets/NNSTATS_092501

% load training data

CHUNKS = [1 3 7 9];

NUM-CHUNKS = length(CHUNKS);

50

fprintf('*** Starting to load data. . .\nl);

load /usr/dickel/bill/AIRS-cloud-clearing/matlab/Airs-Freq

load /usr/dickel/bill/AIRS-cloud-clearing/matlab/NoiseVector

load /usr/dickel/bill/AIRS-cloud-clearing/matlab/Anvec

load /usr/dickel/bill/AIRS-cloud-clearing/matlab/Mnvec

load /usr/dickel/bill/AIRS-cloud-clearing/matlab/p66

% The following are 50 15-micron channels with peaks between levels

% 56-60 (inclusive) which corresponds to ~ 1-2km

load /usr/dicke1/bill/AIRS-cloud clearing/neuraLnets/airs-warmspot-detect..channels

iwd '/usr/dickeI/bill/AIRS-cloud-clearing/airs radiances/'; 60

awd = '/usr/dicke1/bill/AIRS-cloud-clearing/amsu-radiances/';

mwd = '/usr/dickel/bill/AIRS-cloud-clearing/mhsradiances/';

noise = [anvec mnvec noise-vector];

load /usr/dickel/bill/AIRS-cloud-clearing/airs-radiances/airs.clear.night.feis.1013.Nc .mat

airs-clear =x;

clear x

airs-clear_ = airs-clear - mean-airs-clear * ones(l, length(airs-clear));

clear airs-clear 70

if (nn-param.SURFACE-FILTERPCS > 0)

fprintf('*** Using surface filter: Removing %/d surface PC' 's.\n', nn-param.SURFACEFILTERPCS);

load napcs-2_surf.mat evects

surface-filter = eye(2391) - diag(noise) * evects(:, 1:nn-param.SURFACE.FILTERPCS)

* evects(:, 1:nn-param.SURFACE-FILTERPCS)' * diag(1./noise);

else

fprintf('*** NOT USING SURFACE FILTER ***\n');

surface-filter = eye(2391);

nn-param.SURFACEFILTER-PCS = [1; 80

end
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for chunk-loop = 1:NUM-CHUNKS

ifile = ['airs. cld21r.dif surf .night.ir04.1013. ' num2str(CHUNKS(chunk-loop)) '.Nc2.mat 'I;

fprintf(['Loading ' iwd ifile '\n']);

eval(['load ' iwd ifile]);

airs-cloudy =x;

clear x

90

% AIRS

airs-cloudy = airs-cloudy - mean-airs-cloudy * ones(1, length(airs-cloudy));

clear airs-cloudy

% AMSU-A

afile = ['amsu. cld21r.difsurf.night.mw075.1013.' num2str(CHUNKS(chunk-loop)) '.Nc2.mat'];

fprintf(['Loading ' awd afile '\n']);

eval(['load ' awd afile]);

amsu-cloudy = a;

clear a 100

amsu-cloudy = amsu-cloudy - mean-amsu-cloudy * ones(1,length(amsu-cloudy));

% Average blocks of nine to get 50-km AMSU

amsuavg-cloudy_ = zeros(15, 1333);

for i = 1:1333

amsuavg-cloudy-(:, i) = mean(amsu-cloudy (:, (9*i-8):(9*i))')';

end

clear amsu-cloudy

bar = vertcat(ones(9,1) * (1:1333));

amsuavg-cloudy- = amsuavg-cloudy.(:, bar); 110

clear bar

% MHS

mfile = ['mhs .cld21r .dif surf . night . mw075.1013.' num2str(CHUNKS(chunk-loop)) '.Nc2.mat'I;

fprintf(['Loading ' mwd mfile '\n']);

eval(['load I mwd mfile]);

mhs-cloudy = m;

clear m

282
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mhs-cloudy- = mhs-cloudy - mean-mhs-cloudy * ones(l,length(mhs-cloudy));

clear mhs-cloudy 120

% surface clear

foo = surface-filter * [amsuavg-cloudy_; mhs-cloudy-; airs-cloudy-;

amsuavg-cloudy. = foo(1:15, 5:9:end);

mhs-cloudy- = foo(16:20,:);

airs-cloudy = foo(21:end,:);

% Find warmest spot

% Use 50 15-micron channels with peaks between levels 130

% 56-60 (inclusive) which corresponds to ~ 1-2km

fprintf('*** Finding warmest spot ... \n

diff_8_airs-cloudy = zeros(2371, 8*1333);

for i = 1:1333

fool = airs-cloudy-(AIRS-WARMSPOT-DETECT-CHANNELS,(9*i-8):9*i);

% add noise here

fool = fool + diag(noise-vector(AIRS-WARMSPOT-DETECTCHANNELS)) * ...

randn(length(AIRSWARMSPOT-DETECT-CHANNELS), 9);

fool = mean(fool); % not optimal, but probably pretty close 140

indl(i) = find(fool == max(fool)); % warmest spot

ass = 1:9;

ass(indl(i)) =

ind2(i) = 9*(i-1) + indl(i);

for j = 1:8

diff-8-airs-cloudy(:, 8*(i-1) + j) = airs-cloudy-(:, 9*(i-1) + ass(j)) - airs-cloudy-(:, 9*(i-1) + indl(i));

end

end

mhs-8-cloudy- = mhs-cloudy-;

mhs-8-cloudy_(:, ind2) = []; 150

warmest-airs-cloudy- = airs-cloudy_(:, ind2);

clear airs-cloudy_

warmest-mhs-cloudy = mhs-cloudy_(:, ind2);

warmest-all-rad = [amsuavg.cloudy-; warmest-mhs-cloudy_; warmest-airs-cloudy_];
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% Estimate clear radiance

load regress-coeL2 regress-coeL2

eval(['est-airs-clear-j num2str(CHUNKS(chunkloop)) ' = regress-coef2 * warmest-all-rad;']);

% Compute ouput PC's 160

eval(['err.airs-clear' num2str(CHUNKS(chunk-loop)) ' = est-airs-clear.. num2str(CHUNKS(chunk-loop))

' - airs-clear-(:, CHUNKS(chunk_loop):9:end);']);

load pcs-TEMP-ONLY-norm-3 evects

evects-pcs-3 = evects;

clear evects

%load std-err-airs-clear

eval(['pc-err-airsclear' num2str(CHUNKS(chunk-loop)) ...

= evects-pcs-3(:, 1:nn-param.OUTKEEPERS)'' *

diag(l./std-err-airs-clear(nn-param.IROUTPUT-CHANNELS)) * err-airs-clear' ...

num2str(CHUNKS(chunk-loop)) '(nn-param . IROUTPUT-CHANNELS,:);']); 170

% Assemble Projected PC's of warmest spot

fprintf('*** Assembling %d Projected PC' 's of warmest spot. . .\n', nn-param.WARM-KEEPERS);

load ppcs-1 evects ppc-regress-coef

evects-ppc = evects;

clear evects

pcs-warmest = evects-ppc(:, 1:nn-param.WARM-KEEPERS)' * ppc-regress-coef * warmest allrad;

% Assemble 8 IR deltas 180

fprintf('*** Assembling %d PC''s of AIRS differences. . .\n', nn-param.DIFF-KEEPERS);

load pcs_2 evects

evects-pcs-2 = evects;

clear evects

pcs-diff-8_airs-cloudy = zeros(nn-param.DIFF-KEEPERS*8, 1333);

foo = evectspcs_2(:, 1:nn-param.DIFF-KEEPERS)' * ...

diag(l./(noise-vector*sqrt(2))) * diff-8-airs-cloudy;

for i = 1:1333

for j = 1:8

pcs-diff-8-airs.cloudy((nn-param.DIFF-KEEPERS*(j-1)+1):(nn-param.DIFF-KEEPERS*j), i) =... 190

foo(:, 8*(i-1) + j);

end
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end

clear foo diffL8_airs-cloudy

% Assemble other 8 15-km MHS pixels

fprintf('*** Assembling MHS pixels. .\n');

pcs-mhs_8-cloudy = zeros(40, 1333);

for i = 1:1333

for j = 1:8 200

pcsmhs-8-cloudy( (5*(j-l)+1):(5*j) , i) = mhs-8-cloudy-(:, 8*(i-1) + j);

end

end

eval(['data' num2str(CHUNKS(chunk-loop)) ...

I = [pcs.warmest; pcs-diff_8_airscloudy; pcs-mhs_8-cloudy];']);

fprintf('--- FINISHED assembling data chunk '/d (%d of Xd).\n',
CHUNKS(chunk-loop), chunk-loop, NUMCHUNKS);

end % looping over num-chunks 210

data = [datal data3 data7 data9];

pc-err -airs..clear = [pc-err-airs-clearl pc-err-airs-clear3 pc-err-airs-clear7 pc-err-airs-clear9];

% Normalize to unit variance....

std-data = std(data')';

std-pc-err-airs-clear = std(pc-err-airs-clear')';

% calculate noise stats

cov-pcs-warmest-noise = (evects-ppc(:, l:nn-param.WARM.KEEPERS)' * ppc-regress-coef * . . . 220

diag(noise)) * (evects-ppc(:, 1:nn-param.WARM-KEEPERS)' * ppc-regress-coef * diag(noise))';

cov-pcs-warmest noise-sqrt = sqrtm(cov-pcs-warmest-noise);

stdpcs-warmest-noise = sqrt (diag(cov-pcs-warmest-noise));

std-diff-noise = diag(eye(nn-param.DIFF-KEEPERS));

std-mhs-noise = mnvec';

covpc-err-airs-clear-noise = (evects-pcs_3(:, 1:nn-param.OUTKEEPERS)' * . .

regress-coeL2(nn-param.IR-OUTPUTCHANNELS,:) * diag(noise)) * (evects-pcs-3(:, 1:nn-param.OUTKEEPERS) *

regress-coef-2(nn-param.IR-OUTPUT-CHANNELS,:) * diag(noise))';



APPENDIX E. SELECTED SOURCE CODE

stdpc-err-airs-clear-noise = sqrt(diag(cov-pc-err-airs.clear-noise)); 230

cov-pc-errairs.clear-noise-sqrt = sqrt m(cov-pc.err-airs-clear-noise);

cov-err-airs-clear-noise = regress-coeL2(nnmparam.IROUTPUT-CHANNELS,:) * diag(noise) * ...

(regress-coeL2(nn-param.IROUTPUTCHANNELS,:) * diag(noise))';

% need to take real part because of numerical error

cov-err-airs-clear-noise-sqrt = real(sqrt m(cov-err-airs clear-noise));

std-data-noise = [std-pcs-warmest-noise; std-diff-noise; std-diff-noise; std-diff-noise; std-diffnoise; ...

std-diff-noise; std-diff.noise; std-diffnoise; std-diff-noise; std-mhs-noise; std-mhs-noise; .-. 240

std-mhs-noise; std-mhs-noise; stdmhs-noise; std-mhs-noise; std-mhs-noise; std-mhs-noise ];

eval(['save stddatadifsurf-surf clear' num2str(nn-param.SURFACEFILTERPCS) '_'

num2str(nn-param.WARMKEEPERS) ' std-data std.data-noise']);

eval(['save std-pc.err-airsclear TEMPONLY-dif surf _surf clear' num2str(nn-param.SURFACE-FILTERPCS)

num2str(nn-param.WARMKEEPERS) ' std-pc-err-airs-clear std-pc-err.airs-clear-noise']);

clear err-airs-clear* est-airs-clear-* pc-err-airs-clearl pc-err-airs-clear2 pc-err-airs-clear3 ...

pc-err-airs-clear4 airs-clear_ regress-coef-2 warmest-airs-cloudy. warmest-all-rad 250

fprintf('*** Loading/assembling test set. . .\nl);

CHUNKS = [5];

NUMCHUNKS length(CHUNKS);

for chunk-loop = 1:NUM-CHUNKS

ifile = ['airs . cld2lr . dif surf .night. ir04. 1013.' num2str(CHUNKS(chunk _loop)) '.Nc2.mat'];

fprintf(['Loading ' iwd ifile '\n']);

eval(['load ' iwd ifile]);

airs-cloudy = x; 260

clear x

airs-cloudy = airs-cloudy - mean-airs.cloudy * ones(l, length(airs-cloudy));

clear airs-cloudy

% airs-cloudy_ = airs-cloudy_ + diag(noise-vector) * randn(2371, 11997);

% airs-cloudy_ = diag(noise-vector) * randn(2371, 11997);
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afile = ['amsu. cld21r.dif surf .night.mw075.1013.' num2str(CHUNKS(chunk-loop)) '.Nc2.mat'];

fprintf(['Loading I awd afile '\n']);

eval(['load ' awd afile]); 270

amsu-cloudy = a;

clear a

% Average blocks of nine to get 50-km AMSU

amsuavg-cloudy = zeros(15, 1333);

for i = 1:1333

amsuavg-cloudy(:, i) = mean(amsu-cloudy(:, (9*i-8):(9*i))');

end

amsuavg-cloudy_ = amsuavg-cloudy - mean-amsu-cloudy * ones(1,1333); 280

clear amsuavg-cloudy amsu-cloudy

mfile = ['mhs .cld21r .dif surf .night .mw075. 1013. ' num2str(CHUNKS(chunk-loop)) '.Nc2 . mat'];

fprintf(['Loading ' mwd mfile '\n']);

eval(['load ' mwd mfile]);

mhs-cloudy = ;

clear m

mhs-cloudy. mhs-cloudy - mean-mhs-cloudy * ones(1,length(mhs-cloudy));

clear mhs-cloudy

% surface clear 290

bar = vertcat(ones(9,1) * (1:1333));

amsuavg-cloudy_ = amsuavg-cloudy_(:, bar);

clear bar

foo = surface-filter * [amsuavg-cloudy-; mhs-cloudy_; airs-cloudy_];

amsuavg-cloudy_ = foo(1:15, 5:9:end);

mhs-cloudy = foo(16:20,:);

airs-cloudy = foo(21:end,:);

clear foo

300

% Find warmest spot

fprintf('*** Finding warmest spot . .. \n');

diff_8_airs-cloudy = zeros(2371, 8*1333);
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for i = 1:1333

fool = airs-cloudy_(AIRS-WARMSPOTDETECTCHANNELS,(9*i-8):9*i);

fool = fool + diag(noise-vector(AIRSWARMSPOTDETECTCHANNELS)) * ...

randn(length(AIRSWARMSPOTDETECTCHANNELS), 9);

fool = mean(fool);

indl(i) = find(fool == max(fool)); % warmest spot 310

ass = 1:9;

ass(indl(i))

ind2(i) = 9*(i-1) + indl(i);

for j = 1:8

diff_8-airscloudy(:, 8*(i-1) + j) = airs.cloudy-(:, 9*(i-1) + ass(j)) -

airs-cloudy_(:, 9*(i-1) + indl(i));

end

end 320

ind3 = ones(9,1) * [1:1333];

ind3 = ind3(:);

all-rad- = [amsuavg-cloudy-(:, ind3); mhs-cloudy-; airs-cloudy-];

mhs-8-cloudy_ = mhs-cloudy-;

mhs-8-cloudy_(:, ind2) = [];

warmest airs-cloudy_ airs-cloudy_(:, ind2);

clear airs-cloudy_

warmest-mhs-cloudy= mhs-cloudy-(:, ind2);

warmest-all-rad = [amsuavg-cloudy-; warmest-mhs-cloudy_; warmest-airs cloudy-; 330

% Estimate clear radiance

load regress-coeL2 regress-coeL2

eval(['est-airs-clearI num2str(CHUNKS(chunk-loop)) ' = regress-coef _2 * warmest allrad; ']);

eval(['est-airsclearall_' num2str(CHUNKS(chunk-loop)) ' = regress-coef_2 * all-rad_; )

clear all-rad-

% average blocks of nine - old method

%eval(['for i = 1:(size(est-airs-clear-alL' num2str(CHUNKS(chunk-loop)) ' , 2)/9)'])

for i = 1:(size(est-airs-clear-all-5 , 2)/9)

eval(['airs-clear-est-old(:,i) = mean(est-airsclearall' ... 340
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num2str(CHUNKS(chunk-loop)) '(:, (9*i-8) :(9*i))' ')' '; '])

end

eval(['clear estairsclear-all' num2str(CHUNKS(chunk-loop))])

% Compute ouput PC's

load /usr/dickel/bill/AIRS-cloud-clearing/airs-radiances/airs.clear.night.femis. 1013.Nc .mat

airs-clear =x;

clear x

airs-clear-= airs-clear - mean-airs-clear * ones(1, length(airs-clear));

clear airs-clear 350

eval(['errairs.clear' num2str(CHUNKS(chunkiloop)) ' = estairs-clear _.

numn2str(CHUNKS(chunkiloop)) ' - airs-clear_(:, CHUNKS(chunk-loop):9:end);']);

eval(['pc-err-airsclear' num2str(CHUNKS(chunk-loop)) ...

= evects-pcs_3(:, 1:nnparam.OUTKEEPERS)'' * ...

diag(1./std-err-airs-clear(nn-param.IR-OUTPUT-CHANNELS)) * err-airs-clear' ...

num2str(CHUNKS(chunk-loop)) '(nn-param. IROUTPUTCHANNELS,:);']);

% Assemble Projected PC's of warmest spot

fprintf('*** Assembling %d Projected PC' 's of warmest spot. . .\n', nn-param.WARM-KEEPERS); 360

load ppcs_1 evects ppc-regress-coef

pcs-warmest = evects(:, 1:nn-param.WARM-KEEPERS)' * ppc-regress-coef * warmest_allrad;

% Assemble 8 IR deltas

fprintf('*** Assembling %d PC''s of AIRS differences. . .\n', nn-param.DIFFKEEPERS);

pcs-diff_8_airs-cloudy = zeros(nn-param.DIFF-KEEPERS*8, 1333);

foo = evects-pcs_2(:, 1:nn-param.DIFFKEEPERS)' * ...

diag(1./(noisevector*sqrt(2))) * diff-8_airs-cloudy;

for i = 1:1333

for j = 1:8 370

pcs-diff_8_airs-cloudy( (nn-param.DIFF-KEEPERS*(j-1)+1):...

(nn-param.DIFFKEEPERS*j) , i) = foo(:, 8*(i-1) + j);

end

end

clear foo diff-8-airs-cloudy
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% Assemble other 8 15-km MHS pixels

fprintf('*** Assembling MHS pixels. . .\n');

pcs-mhs_8-cloudy = zeros(40, 1333); 380

for i = 1:1333

for j = 1:8

pcs-mhs_8_cloudy( (5*(j-1)+1):(5*j) , i) = mhs-8_cloudy-(:, 8*(i-1) + j);

end

end

eval(['data' num2str(CHUNKS(chunk-loop)) ...

I = [pcs-warmest; pcs-diff_8-airs-cloudy; pcs-mhs-8-cloudy];']);

fprintf('--- FINISHED assembling data chunk %d (%d of %d).\n'... 390

, CHUNKS(chunk-loop), chunk-loop, NUMCHUNKS);

end % looping over num-chunks

% Normalize to unit variance....

TV-P-clean = data5;

TVT-clean = pc-err-airs-clear5;

clear surface-filter data5 pc-err-airs-clear5

400

fprintf('--- Preparing neural network. . \n');

nnet=newff(minmax(data') ',[nn-param.NUMNODES1 nn-param.NUMNODES2 nn-param.OUTKEEPERS],...

{'tansig','tansig','purelin'},nn-param.TRAIN-ALG);

% set pertinent intialization parameters and reinitialize

nnet.layers{2}.initFcn = 'initwb';

nnet.layers{1}.initFcn = 'initwb';

nnet.inputWeights{1}.initFcn= 'rands ';

nnet.layerWeights{2,1}.initFcn = 'rands';

nnet.biases{2}.initFcn= 'rands';

nnet.biases{1}.initFcn= 'rands'; 410

nnet=init(nnet);

nnet.IW{1}=0.5.*nnet.IW{1};

% set pertinent training parameters
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nnet.trainParam.max fail=30;

nnet.trainParam.show = ceil(nn-param.NOISEROTATE/2);

nnet.trainParam.epochs = nn-param.NOISEROTATE;

nnet. trainParam. goal = 0.1;

nnet.trainParam.searchFcn = 'srchgol';

nnet.trainParam.minstep = 0; 420

nnet.trainParam.time = inf;

nnet.performFcn= 'mse';

if 1

fprintf('\n\n### WARNING - Loading previously trained net ... ###\n\n);

load traingdxwjb-outwarm30-v9-run1_2.mat

nn-param.WARM-KEEPERS = 30;

nn-param.DIFFKEEPERS = 5;

nn-param.OUTKEEPERS = 30;

nn-param.NUMNODES1 = 60; 430

nn-param.NUM-NODES2 = 45;

nn-param.IR-OUTPUTCHANNELS = [101:400 1901:2000 floor(linspace(2001, 2089, 75)) 2090:2114];

nn-param.SURFACE-FILTERPCS = 0;

nn-param.NOISEROTATE = 5;

nn-param.SAVEOUTPUT = 50;

nn-param.TRAIN-LENGTH = 5000;

nn-param.TRAIN-ALG = 'trainscgwjb';

nnet.trainFcn=nn-param.TRAIN-ALG;

nnet.trainParam.max-fail=30;

nnet.trainParam.show = ceil(nn-param.NOISEROTATE/2); 440

nnet.trainParam.epochs = nn-param.NOISEROTATE;

nnet.trainParam.goal = 0.1;

nnet.trainParam.searchFcn = 'srchgol';

nnet.trainParam.minstep = 0;

nnet.trainParam.time = inf;

nnet.performFcn= 'mse';

START = length(training-error) + 1;

else

START = 1;

end 450
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fprintf('*** Starting training . . .\n');

% new noise

fig = figure;

addpath /usr/dickel/bill/AIRS-cloud-clearing/matlab

clear err-airs-clear5

clear warmest-airs-cloudy-

airs-clear_ = airs-clear_(nn-param.IR-OUTPUT-CHANNELS,5:9:end); 460

est-airs-clear-5 = est-airs-clear-5(nn-param.IROUTPUTCHANNELS,:);

clear airs-clear-est-old

for i = START:Inf

% add noise to training set

foo3 = randperm(length(data));

pcs-warmest-noise = cov-pcs-warmest-noise-sqrt * ...

randn(nn-param.WARM-KEEPERS, nn-param.TRAINLENGTH);

diff-noise randn(nn-param.DIFF-KEEPERS*8, nn-param.TRAINLENGTH);

mhs-noise = diag([mnvec mnvec mnvec mnvec mnvec mnvec mnvec mnvec]) * ... 470

randn(40, nn-param.TRAINLENGTH);

additive-noise2 = cov-pc-err-airs-clear-noise-sqrt * ...

randn(nn-param.OUTKEEPERS, nn-param.TRAINLENGTH);

additive-noisel = [pcs-warmest-noise; diffnoise; mhs-noise];

fool = diag(1./sqrt(std-data.^2 + std-data-noise.^2)) * ...

(data(:, foo3(l:nnparam.TRAINLENGTH)) + additive-noisel);

foo2 = diag(l./sqrt(std-pc-err-airs-clear.^2 + std-pc-err-airs-clear-noise.^2)) * ...

(pc-err-airs-clear(:, foo3(1:nnparam.TRAINLENGTH)) + additive-noise2);

% add noise to validation set 480

pcs-warmest-noise = cov-pcs-warmest-noise-sqrt * ...

randn(nn-param.WARM-KEEPERS, length(TVP-clean));

diff-noise = randn(nn-param.DIFF-KEEPERS*8, length(TVP-clean));

mhs-noise = diag([mnvec mnvec mnvec mnvec mnvec mnvec mnvec mnvec]) * ...

randn(40, length(TV-P-clean));

additive-noise2 = cov-pc-err-airs-clear-noise-sqrt * ...

randn(nn-param.OUTKEEPERS, length(TV-P-clean));

additive-noisel = [pcs-warmest-noise; diffnoise; mhs-noise];
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TV.P = diag(1./sqrt(std-data.^2 + std-data-noise.^2)) * ...

(TVP-clean + additive-noisel); 490

TV.T = diag(I./sqrt(stdpc-err-airs..clear.^2 + std-pc-err-airs-clear-noise.^2)) * ...

(TVT-clean + additive-noise2);

[nnet,tr]=train(nnet, fool, foo2, [], [1, [1, TV);

fprintf('*** Calculating cloud clearing error. . .

pc-err-air-clear-est = diag(sqrt(std-pc-err-airs-clear.^2 +

std-pc-err-airs-clear-noise. ^2)) * sim(nnet, TV.P);

err-airs-clear-est = diag(std-err-airs-clear(nn-param.IR-OUTPUTCHANNELS)) * ...

evects-pcs_3(:, 1:nn-param.OUTKEEPERS) * pc-err-air-clear-est; 500

est-airs-clear-5 = regress-coeL2(nn-param.IR-OUTPUT-CHANNELS,:) * warmest-all-rad + ...

cov-err-airs-clear-noise-sqrt * randn(length(nn-param.IROUTPUT-CHANNELS),length(TV-P-clean));

airs-clear-est = est-airs-clear_5 - err-airs-clear-est;

err = airs-clear-est' - airs-clear_.;

err9 = sqrt(mean(err. ^2));

for j = 1:length(nn-param.IROUTPUTCHANNELS)

err9T(j) = rad2brit(freq(nn-param.IROUTPUTCHANNELS(j)),

brit2rad(freq(nn-param.IROUTPUTCHANNELS(j)), 290) + err9(j)) - 290;

end

fprintf('Error = %g K\n\n', mean(err9T)); 510

cloud-clearing-validation-error(i) = mean(err9T);

training-error(i) = tr.perf(end);

validation-error(i) = tr.tperf(end);

figure(fig)

clf

plot(training-error)

grid on; hold on

plot (validation-error, 'r')

plot(cloud_clearing-validation-error, 'g') 520

drawnow

if (rem(i, nn-param.SAVEOUTPUT * 2) == 0)

eval(['save ' nn-param.TRAINALG '_out_warm30v9_run2_1.mat nnet tr training-error . .

validation-error cloud-clearing-validation-error err9T nn-param']);

elseif (rem(i, nn-param.SAVEOUTPUT) == 0)
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eval(['save ' nn-param.TRAIN-ALG '_outwarm30_v9_run2_2.mat nnet tr training-error ...

validation-error cloud clearing-validation-error err9T nn-param']);

end

530

end
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List of Symbols and Acronyms

Constants

60 = permittivity of free space = 8.854 x 10-12 F/m

p0 = permeability of free space = 47r x 10-7 H/m

7r = 3.1415926535 ...

e = 2.7182818285 ...

c = speed of light in a vacuum = 2.99793 x 10 8 M/s

g = mean acceleration of gravity at Earth's surface = 9.80665m/s 2

h = Planck's constant = 6.6252 x 10-34 J.s

k = Boltzmann's constant = 1.38046 x 10-23 J/K

R = gas constant = 8.3143 J/(K-mole)
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Greek Symbols

E permittivity

e surface emissivity

r7 antenna beam coupling coefficient

A1Z contribution from zenith port while viewing ambient load

H/Z contribution from zenith port while viewing heated load

rA contribution from nadir port while viewing ambient load

HN contribution from nadir port while viewing heated load

rK absorption coefficient

' adiabatic lapse rate, reflection coefficient

p mass density

Pc cloud-top reflectivity (IR only)

p, surface reflectivity

02 error variance on downwelling B - Beim residual

o2 error variance on upwelling Bob, - Bejm residual

w optical depth (thickness)

T* opacity

296



297

Roman Symbols

b radiometer baseline voltage

B MW brightness temperature vector

Bdr clear-air MW brightness temperature vector

Bcld cloudy MW brightness temperature vector

Bsim simulated MW brightness temperature vector

Bobs observed MW brightness temperature vector

Bclr observed, clear-air MW brightness temperature vector

BcI observed, cloudy MW brightness temperature vector

B simulated, clear-air MW brightness temperature vector

Bdr simulated, cloudy MW brightness temperature vector

C radiometer output voltage (counts)

cp, c, specific heat at constant pressure, volume

g radiometer gain

H scale height

R IR radiance vector

Rcir clear-air IR radiance vector

Rcld cloudy IR radiance vector

Rsim simulated IR radiance vector

Rob, observed IR radiance vector

R"' observed, clear-air IR radiance vector

Rcij observed, cloudy IR radiance vector

Rcim simulated, clear-air IR radiance vector

Rjdm simulated, cloudy IR radiance vector

T temperature

V volume

w weights for heated-load RTDs which minimize error

due to thermal gradient
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Calligraphic Symbols

T Transmittance, transmission coefficient

Acronyms

AIRS Atmospheric InfraRed Sounder

AMSU Advanced Microwave Sounding Unit

CAMEX Convection And Moisture EXperiment

ER-2 NASA U-2 high-altitude environmental research aircraft

IF Intermediate Frequency

ION Iterated Order-Noise

IR InfraRed

LLSE Linear Least-Squares Estimator

LO Local Oscillator

MHS Microwave Humidity Sounder

MAMS Multispectral Atmospheric Mapping Sensor

MW Microwave

NAPC Noise-Adjusted Principal Components

NAST-I NPOESS Aircraft Sounder Testbed-Infrared

NAST-M NPOESS Aircraft Sounder Testbed-Microwave

NN Neural Network

NPOESS National Polar-orbiting Operational Environment Satellite System

PC Principal Components

PPC Projected Principal Components

RAOB RAdiosonde OBservation

RMS Root-Mean-Square

RTD Resistive Temperature Device

UTC Univeral Time Code

WINTEX WINter EXperiment
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