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ABSTRACT
An integrative methodology for architecture development in a product development

environment is described. The methodology combines the use of the design structure matrix
technique with constraint-based modeling to create a process that satisfies the following
requirements:

1. Provide a means for modeling the system that provides the capability to gain feedback on
proposed decisions. This promotes rapidly system learning.

2. Provide a definition of the linkage between product requirements and design parameters.

3. Provide documentation that makes the architecture explicit and enables others to have
access to the architectural knowledge.

4. Increase confidence in the proposed system so that product design can proceed with a
minimum of risk.

The application of the methodology in the context of the development of the xerographic
module architecture for color printing system is described. The project was a clean sheet design
using a new color architecture and implementing seven new technologies. A significant result is
that once the architecture was accepted and placed under change control, the architecture has
not changed in four years. Traditionally, similar projects have had to make significant changes as
the design matured.

Based on the case study, there is anecdotal evidence to support the hypothesis that the
methodology can be successfully used to develop complex systems. It is shown that the
methodology is closely aligned to the product development process. During the pre-concept and
concept phases, the models were used to develop the system architecture. During the detailed
design phase, the models can be used to maintain the integrity of the architecture as the design
and technologies mature. Finally, in order for the methodology to be successfully applied it must
have the full support of program management and the design and technology organizations.

Thesis Supervisor: Daniel Frey
Title: Assistant Professor Aeronautics & Astronautics
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1 PROBLEM REVIEW

Developing a new system is a significant undertaking requiring the

expenditure of numerous resources to ensure that the system meets the

intended needs. The task becomes more formidable when the system is based

on a new architecture. If new subsystem and component technologies are

involved then the task of developing the system is even more complex as the

knowledge of interactions is less certain. Managing the product development of

a complex system is prone to delays due to lack of knowledge of system

interactions, poor design decisions, and unanticipated performance shortfalls.

These problems usually cause a delay in the bringing the product to market. If

the intended market is rapidly changing, then being late to market can mean that

competitors have gained the first mover's advantage and have gained a strong

position in the market. Given enough of an advantage, the competition might be

able to achieve system lock-in and command a majority share of the market

profits.

As an illustration of the complexity in existing products, Eppinger [8] has

reported that a copier redesign requires 400 people, 125 subassemblies, 2000

engineering drawings and over 1 million decisions. Many of these decisions are

made at the later stages of product development and have a limited effect on the

total system. However, during the architecture development stage of a project

the decisions made have a profound effect on product success.

An often-used heuristic is that the biggest mistakes are made on the first day.

When a project is in its initial architectural phase of the design process many
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decisions are made that are the basis for future decisions as the design matures.

With these decisions the architecture provides the definition of interfaces

between interacting components and provides structure for the product. Many

times these decisions are made without full knowledge of the interactions

between system elements. This lack of understanding can lead to poor

decisions. Unfortunately, poor decisions made during the early stages of the

program have a significant compounding effect. Once the architecture is frozen

and product development teams are starting to create and implement the

supporting design tasks, it becomes increasingly costly make significant revisions

to the system architecture. Using Eppinger's [8] example from above, if a

problem is discovered in the system architecture during the later stages of a

design cycle, it might affect the work of up to 400 people. The impact can be

mandatory design rework as well as delays in system verification and validation

as a portion of the team has to delay activities while the others work on design

recovery activities.

Since the initial architecture phase determines many of the important

decisions about the structure and form of the product, it has been shown that the

initial design stages are the major determinant of life cycle costs. For instance,

Whitney and Nivens [21] suggest that about 70% of the life cycle cost of a

product is determined at the conceptual design stage. Thus, in order to increase

the probability of satisfying market requirements within the desired time to market

window it is vitally important to develop system architectures that are "almost

correct" at the start of the design process. One way to do this is to document the
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relationship between market requirements and system components, as well as

between components within the system, and use this information to generate the

system architecture.

This thesis suggests a methodology using design structure matrix techniques

in combination with a constraint satisfaction problem solver to develop the

system architecture. This approach allows detailed evaluation of proposed

architectures early in the product development cycle. Shortfalls in the proposed

architectures can be revised via model-based iteration while identifying key areas

where system knowledge is lacking. Management can direct the team to focus

their attention on filling the knowledge gaps early in the development process

and funneling the new information into the architecture model. The result is a

product architecture that meets the known requirements, has improved stability,

and contains the documented decisions that will be required for future analysis

and review.

2 REVIEW OF PRIOR WORK - TOWARDS A FRAMEWORK

The architectural phase of product development has received considerable

attention in recent years as companies work to improve their capability to

develop complex products. Many researchers have made significant

contributions to understanding the complexity of product development. Others

have focused their research in the more general area of understanding the

dynamics of complex systems. In order to develop the framework that supports

the proposed methodology it is useful to review the dynamics of complex
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systems prior to reviewing the research in the development of complex products

and systems.

According to Sterman [28], all learning and decision making is based on

feedback. We make decisions that alter the real world, receive feedback, and

use the new information to revise our understanding and decisions to bring the

state of the system closer to our goals. This model of learning and decision

making is closely aligned to the role of the systems architect and the decision-

learning feedback cycle that occurs when a new system is being developed.

One of the problems with the decision-learning feedback process is that

there may be a considerable time lag between when the decision is made and

when meaningful feedback is received to enable learning. This is especially true

in the case of architectural development on complex systems. From the time the

architectural decisions are being made to the time that a system is operational

might be several years. With a lag time of years, it is difficult to ensure learning.

In addition, for the particular project at hand, the learning will do little good. The

focus will be on how to solve any emergent problems in the shortest amount of

time and not on the reflective learning. Any realizable benefits will be

appropriated by the next generation of products.

Sterman [28, pg. 292] attempts to address these concerns and states:

"The challenge facing all is how to move from generalizations about
accelerating learning and systems thinking to tools and processes that help
us understand complexity, design better operating policies, and guide
organization ...- wide learning... I argue that successful approaches to
learning about complex dynamic systems require 1) tools to articulate and
frame issues, elicit knowledge and beliefs and create maps of the feedback
structure of an issue from that knowledge; 2) formal models and simulation
methods to assess the dynamics of those maps, test new policies, and
practice new skills; and 3) methods to sharpen scientific reasoning skills,
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improve group processes, and overcome defensive routines for individuals
and teams."

Sterman proposes a learning model utilizing "virtual worlds" as a means to

develop and test decisions prior to implementing them in the real world. This

enables "on the job learning", reduces the lag time between when a decision is

made and when feedback is provided on the quality of the decision, and

improves our understanding of the system. With refined understanding of the

system behavior the system's complex interactions become easier to manage.

This model, shown in Figure 1, forms a framework by which abstractions such as

modeling and simulation can be used to increase our ability to develop and

manage the development of complex systems.
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Figure 1 Sterman's Model for Learning

Sterman suggests a general frarnework for learning about complex systems.

In this framework, the use of predictive models that represent the relevant parts

of the system is crucial for both learning about the system and for promoting

dialogue about discrepancies in the predicted performance with respect to the

desired performance. This concept forms the basis for the development of the

proposed methodology.
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Modeling and simulation has been widely applied in the development and

design of systems, including the initial architectural stages of product

development. Several researchers have suggested methods and tools to

improve the quality of product design at this stage of the product development

cycle.

Jandourek [9] discusses product platform development and points out that, in

traditional product development, the product architecture may be implicit and

may not be written down. The architectural knowledge of a product is contained

within the head of a single architect or small group of architects. Implicit and

informal architectures are acceptable when team sizes are small and the level of

complexity is low. However, as the level of complexity increases and team size

and coordination issues become larger a more formal method is required.

Formal architecture documents in the form of diagrams and text are required to

make the system architecture explicit and enable others on the program to have

access to the architectural knowledge they need to complete their design and

implementation tasks. Having an explicit architecture also makes it possible to

quantify trade-offs in a systematic way.

Yohannan [38] discusses the impact of increasing complexity on system

development and concludes that with system complexity growing exponentially,

even the most experienced system architects are hard pressed to anticipate and

analyze all implications of different system architectures at the front end of the

design process. Referring to the pre-concept and concept phase of a project as

the front-end, the author also states that front-end errors can carry overwhelming
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consequences at the back-end of the project. Tools that offer the ability to

determine the architecture is right in the initial phases of design are in demand.

The article goes on to describe an architectural development and evaluation tool

suitable for the Internet-based products. This lends further support for the need

to develop models of learning that support the creation and evaluation of system

architectures.

Newbern and Nolte [22] in discussing the tension between art and science in

systems engineering state that in their experience the most severe problems in

developing large, complex systems originate from the "art-side". They describe

the art-side as making decisions on the high-level structure of the system in the

absence of absolute knowledge and certainty. The art is making judgement calls

based on limited information. They found that the most severe problems that

arise later in the development process derive from early judgement decisions on

the decomposition of the system. Again, the ability to increase the rate of system

learning and being able to gain feedback on potential decisions via a model of

learning before building the physical system would help to minimize these types

of problems.

Thornton [31] has done considerable work in the area of key characteristics

(KCs) and their use in successful product design. Key characteristic are defined

as product, sub-assembly, part, or process features that significantly impact the

performance, cost, or safety of a system. Variations in KCs outside of a specific

range result in significant degradation in product performance. Thornton [32] has

worked with several major design and manufacturing firms such as Xerox, GM,

Page 16 of 104



Ford, and Boeing. All use some variation of a KC flowdown to identify the key

characteristics. Thornton [31, p. 5] describes the KC flowdown process as:

"A KC flowdown is a hierarchy of variation-sensitive product requirements and part
and process features that contribute to their variation.... Product KCs are at the top
of the tree and each product KCs has several contributing subsystem-KCs..."

According to this definition Product-KCs are variation-sensitive product

requirements. These requirements are satisfied by the implementation of a

unique collection of functional elements combined in the manner described by

the product architecture.

According to Thornton [31 p. 9], in many cases, companies do not systematically

flow KCs through the product level.

"Rather, they start by identifying product requirements; next, they identify, based
on their engineering judgement, what individual features contribute to product
requirements. Subsystem-KCs are often not identified. When a design team
fails to create a systematic flowdown, too many KCs are identified, it can be hard
to trace root causes (Lee and Thornton, 1996)..."

Although many companies are using key characteristics processes to identify

and control sources of variation in their design, they are often failing on the first

critical step in the process - identifying the linkage between product

requirements and subsystem parameters. One of the outputs of an architecture

development task should be to identify these linkages.

Based on the review of research presented thus far, it is possible to delineate

some of the needs that an architecture methodology should satisfy. In particular

the methodology needs to:

1. Provide a means for modeling the system that provides the capability to
gain feedback on proposed decisions. This promotes rapid system
learning.

2. Provide a definition of the linkage between product requirements and
design parameters. From a key characteristic point of view, this creates a
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map from product requirements (Product-KCs) to subsystem parameters
(subsystem-KCs).

3. Provide documentation that makes the architecture explicit and enables

others to have access to the architectural knowledge (decisions).

4. Increase confidence in the proposed system so that product design can

proceed with a minimum of risk.

Two techniques provide capabilities that will help to achieve these goals. One of

these is the design structure matrix (DSM) technique and the other is the

constraint satisfaction problem (CSP) technique. The next section will briefly

review these techniques and help establish the basis for their use in developing

system architectures.

2.1 DESIGN STRUCTURE MATRIX TECHNIQUE

The design structure matrix (DSM) was first introduced by Steward [29] in

1981 as a framework for information flow analysis. A DSM consists of an N-

square diagram showing the interaction of each element with every other

element in the model. A sample DSM is shown in Figure 2.

Figure 2: Sample DSM

The marks (X) indicate the existence and direction of information flow between

elements in the matrix. Reading across a row, an X indicates information flow

from the element in marked column. The element in the row is dependent on

information from the element in the marked column and the element can not be
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completed until the information is available. Reading down a column indicates

which elements require information flow from the current element. In the

example shown above, reading across row 'C' indicates that element C needs

information from elements A, B, D, and E. Reading down column 'C' indicates

that elements A, and E need information from element C. One of the properties

of the DSM is that it can be used to highlight dynamics loops in the form of feed

forward information flow and feed back information flow. To illustrate this point,

again consider the example shown in Figure 2. Element C needs information

from A, and element A needs information from element C. This forms an iterative

loop. Element A can be completed by initially making an assumption about

element C (for completeness an assumption also needs to be made about

element D and G). When element A is completed, its output is used to revise the

information for element C. Upon completion of element C, its information is

again used to iterate element A whose output is used to revise element C, and so

on. The number of iterations required depends upon the nature of the problem.

Using the nomenclature adopted by Steward [29], elements below the

diagonal represent the forward flow of information (feed forward). Elements

above the diagonal indicate a feedback of a later element to an earlier one.

Since the DSM is a matrix structure, matrix operations can be performed on it.

By using matrix manipulation algorithms, it is possible for the user to restructure

the order of elements in a matrix.

There are two types of restructuring algorithms that are commonly used in a

DSM analysis. The first is partitioning whose goal is to render the matrix lower
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triangular to the extent that it is possible. This minimizes the feedback loops,

which are represented by marks above the matrix diagonal. A structure without

feedback loops is typically easier to understand and implement. Partitioning is

typically used to eliminate iteration cycles in decision structures and project

plans. It provides a structured flow of information in a project. Figure 3 shows

how partitioning would change the matrix shown in Figure 2. The elements have

been reordered such that element F is now the first element that should be

completed and then element G. Also the partitioning has concentrated the

iteration loops such that there are two nested loops consisting of elements A, B,

C, and D in one loop and elements B, C, D, and E in the second.

AX
B

Figure 3 Partitioned DSM

The second restructuring algorithm is known as clustering where the matrix is

manipulated to produce tightly coupled feedback loops. The goal of clustering is

to find subsets of DSM elements (i.e. clusters or modules) that are mutually

exclusive or minimally interacting subsets. The intent of clustering is to identify

the set of elements in which the internal relationships have a high level of

interaction, while external interactions are eliminated or at least minimized.

Clustering is typically used for decomposing organizations into logical teams, but

can also be used to organize systems into subsystems and modules. Figure 4
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shows the effect of clustering on the DSM from Figure 2. The restructured matrix

has been clustered into four groups. These clusters have a high level of internal

interactions and low levels of external interactions. These clusters could be

product development teams, or product subsystems.

A """X I X X

D X

F g g

Figure 4: Clustered DSM

During the different stages of the architectural development phase, there is a

need for both types of restructuring. Clustering is appealing in that the creation

of tightly knit modules (and teams) enables simpler system interfaces.

Complexity resides within the modules not in the interfaces. Partitioning enables

better organization of development tasks and helps to identify which elements

need immediate attention.

During the past few years, DSM has received significant attention as a

means to organize and structure complex systems. These applications have

tended to concentrate on the decomposition of organizations into team structures

and systems into the appropriate "design" chunks [35, 24 12, 27].

Steward [30] provides a simplified example of the application of DSM to the

design of an electric car. The first step is creating a list of the pertinent tasks.

The tasks are the set of activities required to develop and implement the design

such as the determination of design variables, the execution of design tasks, and

Page 21 of 104

-6d



the preparation of documentation. In the second step, the precedence

relationships between the tasks are documented in the DSM structure, including

a measure of the strength of the relationship. Finally, the matrix is partitioned to

order the tasks to reduce iterative coupling.

Pimmler and Eppinger [24] suggest a three-step methodology to define the

architectural chunks. These steps are (1) decompose the system into to

elements, (2) document the interactions between elements, and (3) cluster the

elements into chunks. The DSM technique is used to document the interactions

and to reorder the elements into architectural chunks using clustering.

They suggest that the system decomposition be completed such that the

elements are specified to one level of detail further than that desired for the

product architecture. In addition, they note that functional and physical elements

can be used in the decomposition. They suggest that in a clean-sheet design

situation one would primarily utilize functional elements because most of the

physical elements would not have been identified. In a variant design situation,

where physical design elements are available and well understood then they

would be used in the decomposition. In many cases, a mixture would mostly

likely be used. The example discussed in [24] creates a DSM using the physical

elements of an automobile climate control system. In general, DSM has been

used very successful to capture the interactions between elements and enable

the ordering of the interactions to be optimized for a given problem domain.
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The design structure matrix technique has been shown to be a very powerful

tool in ordering and reducing the complexity inherent in systems with numerous

tasks. Other researchers have suggested similar techniques using network

diagrams to capture dependencies. For example, Fujita and Shinsuke [5]

propose an agent-based distributed design method for complicated, large

engineering systems. They illustrate their method using examples from ship

design. Their methodology identifies dependency and concurrency in design

activities, which are classified into the following activities: generating system

structures, configuring spatial relationships, determining system attributes, and

selecting system components. Their method uses the dependencies between

objects to develop the system architecture.

In another example, Kusiak and Wang [13] propose a methodology to assist

designers in negotiation of constraints. They propose a network model to

represent relationships among design variables and an algorithm is developed to

derive dependencies between design variables and goals. They illustrate the

methodology using an example of a spring design in a mechanical system.

Other techniques have been developed that to ease the task of system

design by explicitly documenting the relationship between customer requirements

and design parameters. One such method is the Quality Function Deployment

(QFD) process. The process was developed to improve the alignment between

customer-requested attributes and the design implementation.

The QFD technique uses a series of matrix-like structures to systematically

map the requirements (referred to as the "WHATS") to the product engineering
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elements (referred to as the "HOWS"). The "WHATS" are listed in the first

column of the matrix and the "HOWS" are listed in the first row. Relationships

are indicated at the intersection of the columns and rows. In addition a triangular

matrix is placed on top the "HOWS" and is used to indicate relationships between

the various "HOWS". This gives the QFD matrix a house-like structure. QFD is

sometimes referred to as the "house of quality".

QFD has been successfully used to capture the relationship between

customer requirements and product design variables. A multi-stage "house of

quality" process has been used successfully to establish the relationship between

customer requirements and product-KCs, and from product-KCs to part-KCs.

For example, Portanova, and Tomei [25] discuss the use of the QFD process in

launch operations in a paper prepared for the Space Systems Division of Air

Force Systems Command. The report describes the application of the QFD

methodology to launch operations with a goal of developing a more efficient

launch capability that is more reliable and lower cost than current systems. The

paper emphasizes that QFD enables the development team to systematically

analyze the customer requirements and identify linkages between the critical

characteristics that determine an efficient launch system capability.

DSM VERSUS QFD
The QFD process captures much of the same information as a DSM.

Although some versions of QFD capture competitive benchmarking data and

other related information.
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A valid question is "Why use the DSM technique when other techniques have

been developed specifically for capturing the linkage between customer

requirements and design parameters?" Put simply "Why not use the Quality

Function Deployment (QFD) process?"

For the architectural development framework being developed in this paper, I

believe that the DSM technique offers several advantages over the QFD

technique. The biggest advantage is that the DSM is a matrix structure and is

therefore amenable to matrix analysis. As mentioned earlier, the DSM can be re-

structured using matrix operations. This presents several opportunities:

0 The relationships can be easily reorganized to communicate efficiently
with diverse groups. Partitioning and clustering provide different views of
the system. In addition, the architecture DSM can be used to suggest
organizational team structures.

l The DSM can be used to drive the development of the CSP model in an
organized manner. Large programs become difficult to manage and the
structure becomes unorganized as changes are made to the original
program. The DSM technique can be used to suggest "modules" for the
constraint-based model.

In addition, Smith and Eppinger [27] developed a process by which DSM

relationships can be quantified and analyzed using eigenvalues. This analysis

allows for a deeper understanding of the relationships within the DSM.

Determining the eigenvectors and eigenvalues of the modified form of a DSM

enabled Eppinger and Smith to identify the areas of the design problem that

would require lengthy iteration to reach a technical solution. They were also able

to identify the rate at which iteration occurred in the project loops. This capability

can be applied to architectural modeling as a means to judge the impact of

potential changes to the design. As the project progresses the model can be
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used to guide the project management team in making informed choices about

seemingly equivalent changes.

In the author's opinion, the DSM technique offers several advantages over

and above those offered by the QFD technique. Those advantages can be

exploited to improve the development of system architecture and improve the

communication of architectural decisions.

One of the concerns with the DSM technique is that although the relationship

between elements can be identified in the DSM matrix, it is difficult to capture the

exact form of the dependency. For example consider the DSM shown in Figure 5

which represents the dependencies between print speed (pages/sec),

photoreceptor length (mm/rev), process velocity (mm/sec), and the number of

0)

U ) -

a)

0 0

0 E

0- -C

Process Speed C La

Nurnber Pitches
Photoreceptor Length
Print Speed

Figure 5: DSM Example for Print Speed

pitches on the photoreceptor (prints/rev).

Although the DSM structure shows that Print Speed has a dependency on the

other three elements, it does not show the form of the dependency. The

arithmetic relationship is shown below.
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Print Speed = NumberPitches x ProcessVelocity
(PhotoreceptorLength)

In order to create a comprehensive framework, a complementary technique

is needed - one that can capture and use the detailed relationship between

elements to enable architectural development. One possible approach is to use

constraint satisfaction techniques.

2.2 CONSTRAINT SATISFACTION PROBLEMS

Design problems can be thought of in terms of satisfying a set of constraints.

An acceptable design would be one in which all of the constraints are

successfully satisfied. In this light, design activities are focused on solving the

constraint satisfaction problem.

A more formal definition of a Constraint Satisfaction Problem (CSP) is a

problem in which the problem variables are described by a set of variables each

with a finite domain of values and a set of constraints on these variables. The

discrete set of values that satisfy the constraints on the set of variables is a

solution to the CSP. Using Constraint Satisfaction Problems methods to develop

a design solution is frequently referred to as constraint-based design.

Thornton [33] describes the use of constraint-based design for embodiment

design. Embodiment phase of design is defined as the process by which design

concepts are given geometric form. She proposes that one way to characterize

mechanical design is to describe it as a process of constraint specification and

satisfaction. She describes the development of a computer tool to aid in

constraint specification and satisfaction of mathematical constraints for the

embodiment design phase of mechanical design. The intent of the tool is to aid
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designers in the development of detailed level designs. The design objects

available in the tool are lower level components such as shafts, pins, and gears.

Although the author discusses constraint-based design for use in detailed design,

it can also be applied at higher levels of abstraction.

Charman [2] describes a knowledge-based system that generates all

possible floor plans satisfying a set of geometric constraints on the rooms. The

constraints, which are derived from the architect's specifications, describe

boundaries on acceptable room floor plan architectures such as non-overlap,

adjacency considerations, minimum/maximum area, and minimum/maximum

dimensions.

System architectural constraints are derived from a multitude of sources.

Some of the possible sources are:

0 Product Requirements - These are usually the first and highest level of
constraints. They specify what the design must ultimately accomplish.

0 Object Technology - The chosen technology set imposes another layer of
constraints at the functional level. Technologies need to be combined in
such a way that they perform the desired system functions.

0 Object geometry and relationships - This is the preferred physical
embodiment of the technology set. In order to achieve the desired
functionality geometric components need to be properly oriented. This
produces constraints for position/location, absolute orientation and
orientation relative to another object.

0 Serviceability/Manufacturability - The requirement that the system be
manufacturable and serviceable places constraints on the architectural
design. An example of a constraint would be minimum clearances
between modules to ease installation and removal.
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In order to be solved with the aid of a computer, the constraints need to be

expressed mathematically. The expression will take the form of equalities,

inequalities, and conditional statements.

One of the drawbacks of the constraint-based design approach is that the

design variables and constraints tend to be encapsulated in a programming

environment. Communication and documentation of the linkages is done at a

detailed level and the constraints are typically expressed in terms of

mathematical formulations. This makes communication difficult and

cumbersome. It is difficult for a person who is not associated with the effort to

grasp the detailed relationships and be able to equate the constraints to the

proposed architecture.

The use of the DSM technique to capture and communicate architectural

dependencies and the constraint-based model technique to develop a model

capable of proposing suitable architectural designs provides the foundation from

which the architecture development methodology will be created.

3 IMPLEMENTATION OF PRACTICAL METHODOLOGY

In the previous section, it was noted that an architecture methodology should

satisfy the following needs:

1. Provide a means for modeling the system that provides the capability to gain
feedback on proposed decisions. This promotes rapid system learning.

2. Provide a definition of the linkage between product requirements and design
parameters. From a key characteristic point of view, this creates a map from
product requirements (Product-KCs) to subsystem parameters (subsystem-
KCs).

3. Provide documentation that makes the architecture explicit and enables
others to have access to the architectural knowledge (decisions).
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4. Increase confidence in the proposed system so that product design can
proceed with a minimum of risk.

In this section, a general methodology for developing system architecture

that is capable of satisfying these needs is described. Before discussing the

methodology, it important to discuss the context in which the method is intended

to be used.

3.1 PROCESS CONTEXT

The development of system architecture has to be an integral part of the

product development process. Figure 6 shows a schematic of a product

development process.

Architecture development starts in the Pre-concept phase and is completed

during the Concept phase. The Product Strategy phase provides the product

and market requirements that define the goals that the system must meet. The

system architecture must be designed such that the resultant system will satisfy

those goals.

MarketFige
andMaktt& 

utneProduct Atac I 'vTI ::q
Strategy&I
Vision Tlito

Figure 6: Product Delivery Process
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As shown in Figure 7 [15], the market requirements are mapped to goals and

then to system functions. The elements on the left are the upstream influences

and are typically captured in the Product Strategy documentation. The elements

on the right are some of the more important downstream influences. These

constraints are placed on the systems by manufacturing capabilities and

serviceability requirements.

Regulation

Corporate
Strategy ARCHITECTURE

Market Data - need - goIs - - function form

Market Strategy

Technology Manufacturin

S[erViceability

Figure 7: Influences on System Architecture

The influences will be transformed into the dependencies, captured in the

design structure matrix, and form the basis for the constraints in the constraint-

based design. These techniques will be used to create the concept that maps

the required functions into the physical form.

3.2 ORGANIZATIONAL CONTEXT

The product development process is tightly linked to its product delivery

organizational structure. In the case study discussed in section 4, two

organizations play an important role in the development of the system

architecture. The corporate research group develops the core technologies for

printer products, and product development teams are responsible for system
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development and refining the subsystem technologies for use in a particular

application.

The need for future printing capabilities is identified as part of the Product

Strategy activities. The corporate research groups are responsible for

developing suitable subsystem technologies that will satisfy future market needs.

As the technology matures, the product development teams work with the

research groups to transition the technology into the product. It is at this point

that the system architecture is defined in enough detail to enable the product

development team to design a production system.

3.3 METHODOLOGY DESCRIPTION

In many ways, this approach is an integrative approach to product

architecture. Subsystem technologies are combined to compose a system that

satisfies a set of product requirements. However, market needs change from the

time that the initial need for new technologies are identified and when the product

development team begins development of a specific product. Because of these

changes, it is not uncommon for revised market requirements to require changes

in the subsystem technologies. For example, the market might have matured or

a competitive offering might have emerged such that a higher print speed is now

needed to satisfy market requirements. This requires that the subsystem

technologies be able to operate reliably at a higher speed. Thus, the integrative

approach becomes more complex than simply putting together pieces of a

puzzle. Oft times, the size and shape of the pieces change at the time when they

are being put together.
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With these concerns in mind, Figure 8 shows the process steps for an

integrative architecture development methodology.

Review model outputs
and validate models to
ensure they correctly

capture influences

Collect and revise
relevant

information

Document
interactions

between elements

Exercise
constraint-based cons

model to produce
candidate architectures

)evelop
traint-based
model(s)

Figure 8: Process Flow for Integrative Architecture Development Methodology

As the teams use the models to develop a deeper understanding of the

relationships embodied in potential architectures, they will need to loop back to

previous steps to make sure that the models capture their understanding. The

remainder of this section reviews the major elements in each step of the

methodology.

COLLECT THE RELEVANT INFORMATION
During this step all requirements that need to be considered are pulled together.

This will include product requirements, technology selections, and design and

manufacturing concerns. Based on prior experience, it is recommended that
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one-on-one meetings be held with each contributor. This is especially important

for understanding the theory of operation behind the new subsystem

technologies.

DOCUMENT INTERACTIONS BETWEEN THE ELEMENTS
During this step, the initial DSM is created from the information gathered in step

one. In addition, reviews with research teams and product development teams

are required. These should be a combination of one-on-one reviews and formal

design review meetings. To further verify requirements and linkages, it is

sometimes beneficial to begin the development of the constraint-based model.

The detailed nature of the constraint-based model helps to provide a clearer

understanding of the relationships between elements. The output from this step

is the initial documentation of architecture relevant key characteristics,

subsystem design rules of thumb, physical constraints, and system requirements.

BUILD CONSTRAINT-BASED MODELS
During this step, the dependencies are translated into a format acceptable for the

constraint-based modeling system. This requires that the key characteristics

nominal and ranges, design rules, and requirements be converted into algebraic

constraints. Typically, these take the form of equalities, inequalities, and logical

assertions.

It is important to work with the subsystem teams to ensure that this translation is

acceptable and maintains the intent of the given design rules. The geometric

model is linked with the functional constraint model to produce the constraint-

based model.

Page 34 of 104



EXERCISE CSP MODEL TO PRODUCE CANDIDATE ARCHITECTURES
The constraint-based model will use the requirements and dependencies to

develop architectures that satisfy all the constraints. The output is a high-level

design for the system.

ENSURE MODELS CORRECTLY CAPTURE INFLUENCES
This is the single most important step in the process. After the constraint-based

model is producing reasonable results, it is critical to go back to the original

sources of the requirements and validate that the model correctly represents the

intent of the requirements. One way to do this is to have an architectural review

meeting on a regular basis. This allows for a group discussion of the formulation

of the architecture and helps to share the rational for decisions. It also provides

a forum to discuss trade-offs and prioritization between requirements. This is a

source of information feedback Sterman [28] discusses in his model of learning.

3.4 ToOLS TO SUPPORT METHODOLOGY

This section discusses applications and tools that support the methodology.

Two tools are needed for this approach, a DSM tool and a constraint-based

modeler. This section is not intended to be an exhaustive discussion of all

applications in these areas of study. Instead, it is included to provide a practical

assessment of the tools that the author has used and to provide a starting point

for others interested in this approach.

DSM TOOLS
Several tools automate the creation and manipulation of a DSM.

Problematics offers a Windows-based application, and Jim Rogers of NASA has

developed DeMAID that runs on many Unix platforms as well as the Apple
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Macintosh. MIT has developed a set of macros to enable DSM creation and

manipulation in Excel [17].

Although any of the tools can be used to create the DSM, the following

observations can be noted. DeMAID is more suited towards task or activity

based analysis. Problematics uses tearing algorithms and does not support

clustering. The MIT Excel macros support tearing, partitioning and a clustering

algorithm will be available in the near future [17]. Fortunately, the data can be

shared between the applications using the CSV file format.

CONSTRAINT-BASED MODELER
The constraint-based modeling system used in the case study described in

section 4 is Mechanical Advantage by Cognition Corp. It is part of the modeling

environment used by mechanical engineering and design groups at several large

companies.

Mechanical Advantage is a comprehensive mechanical modeling

environment that allows an engineer to model the function and performance of a

design concept. At its core is an intelligent sketcher that can be used to capture

design intent including all geometry and geometric constraints. A design

coordinator allows the engineer to build a complete product design model by

linking the geometry/constraint model to the performance model (equation sets),

empirical data sets, external programs, tolerance models, documentation

models, and manufacturing process models [3].

The Mechanical Advantage application is well suited for a constraint-based

approach to architecture. The combination of flexible geometry creation with

geometric constraints, and the ability to link geometric objects to algebraic and
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logical "design rules" provides many of the capabilities that are needed to

develop a constraint-based model. The availability of this type of tool is critical

for this methodology.

Figure 9 shows a simple example created in the Mechanical Advantage

environment. A rectangle is created in the Sketch Note and an algebraic

equation in a Math Note is used to constrain the length of side B to be twice that

of side A. In this example, the engineer can specify side B and the system

calculates side A. User controlled variables have padlock icon next to them,

while a calculated variable has a .*. symbol next to it.

In the example, the variables for the length of side A and B are linked to

dimensions of the rectangle. Links are represented by a >> or a << symbol. The

<< indicates that the link originates from this variable and the >> indicates that

the link is going to this variable. The area, which is a property of the rectangle, is

linked from the rectangle's physical property sheet to the Area variable in the

Math Note.
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Figure 9: Example in Mechanical Advantage
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The Sketch Note also shows the geometric constraints of the rectangle. The

rectangle is constructed by having the ends of the sides be coincident with other

sides. This is represented by a symbol. The opposite sides are constrained

to be parallel, which is represented by Ii . Two adjacent sides are constrained

to be perpendicular. This constraint is represented by Besides the two

linear dimensions, two other geometric constraints are required to fully constrain

the rectangle. The first one is a fixed-point constraint and the second is a fixed

angle constraint. These are used to fix the location and orientation of the

rectangle within the Sketch Note.

3.5 ROLE OF THE ARCHITECT

The last concern in the methodology is to discuss the role of the architect. In

the proposed methodology, the architect plays the role of integrator. As noted

above, given a product development process that identifies key technologies in

advance of actual product embodiments, the development of product or platform

system architecture is integrative in nature. The architect's job is to match

technology capabilities with market requirements. This section discusses some

of the important decisions that the architect needs to make.

One of the essential roles of the architect is to determine the boundary of the

activity. This is true for the physical domain as well as for the models being

developed to guide the architect. These decisions can have a significant impact

on the scope and complexity of the DSM structure and the constraint-based

model. The two decisions although tightly coupled can be made in a quasi-

independent manner if the boundary and therefore the scope of the physical
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system architecture are determined first. Then the boundary of the supporting

models can be selected.

Once the boundary for the physical architecture has been determined, the

architect can start to consider the working boundaries for the supporting models.

The decision on what to include and how to include it depends on technical

complexity and organizational relationships. The architect must also determine

the form of the model and the level of detail at which the model will be

implemented. Each of these decision points will be briefly discussed in the

following sections.

FORM AND LEVEL OF DETAIL OF MODEL
After defining the boundary for the system, the next consideration is to

decide the content of the models. This is an important consideration. Since

subsystem technologies have already been developed to at least a partially

functional level, there is a good chance that analytical models exist for some of

the subsystems. The same is true for certain system models. For example, in

the case study discussed in section 4, the company's system image quality

model has been developed over the past twenty years and captures much of the

physics involved in electrophotography. The question the architect must face is

whether the architecture model should duplicate existing models and to what

extent should there be analysis overlap. Figure 10 illustrates the issue. The

large ellipse represents the boundary of the physical domain that the architect is

working in. The small ellipses inside the boundary represent the various models

that contain information relevant to the creation of the system architecture. The

models can be subsystem, functional descriptive models such as a model
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predicting voltage uniformity on a photoreceptor due to the configuration of a

charge device. The models can also be structural analysis models such as FEA,

which determine the minimum required size for physical elements. System

models have been developed, sometimes in parallel with the architecture model

and sometimes as part of long-term development effort, that spans several

product generations.

Boundary of
Architecture in
the Physical
Domain

Subsystem
Functional Model

Subsystem
Functional Model Subsystem

Functional Model

Subsystem Structura
Analysis Model

Subsystem Structural
Analysis Model System Functional

Architecture Model Space

Figure 10 Physical Domain and Model Boundaries

Clearly one would not want to duplicate all of the capabilities in existing

analysis. Instead the architect needs to understand what is the minimum amount

of information required to complete the architectural model and negotiate with the

subsystem teams on when and how relevant information will be shared.

This raises an interesting point in terms of key characteristics. In order to

avoid duplication of efforts, it seems reasonable that the information included in

the architecture model be an output from the subsystem functional analysis. In
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many cases, these will be the physical attributes of the subsystem design. In

such a case, the architecture model will include the subsystem's part-KCs.

For cases in which there is not an existing subsystem analysis, it is

appropriate that the architecture model include the functional analysis of that

subsystem. The architectural model might include a module to calculate the

parameters needed to represent the subsystem. Thus, the model will include

subsystem-KCs.

In an actual product development environment, the architecture model

contains product-KCs (requirements), subsystem-KCs, and part-KCs. This is

similar to the finding reported by Pimmler and Eppinger [24] that functional and

physical elements can be used in the decomposition. The additional burden in

this methodology is that since a high level design is produced by the constraint-

based model, it must include the physical elements of the system. This suggests

the use of distributed subsystem models with an integrative system model.

TECHNICAL COMPLEXITY & TECHNICAL EXPERTISE
Similar to the concerns raised in the previous section, a complementary

concern is one of architect's technical expertise and the complexity of the

system. For a simple system, it is possible that a single person could understand

the interactions and decide how to create acceptable system architecture. In

others words, it is possible that the architect would have the required technical

expertise to understand the interactions and trade-offs. However, in a complex

system, especially a clean sheet product with many new technologies, it is

unlikely that anyone understands all of the subsystem and system level

interactions. Therefore, the development of the system architecture becomes a
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team effort with the architect acting as the central integrator of information. The

distributed subsystem with an integrative, system architecture, model structure

discussed in the previous section fully supports this approach to architecture

development.

ORGANIZATIONAL RELATIONSHIPS
Using the product development process, described in Figure 6, and the

description of the organizational structure, it is apparent that the architecture

development phase of a project requires coordination of the organizational

relationships as well as the technical relationships. In fact promoting open,

honest communication and creating an environment in which people are willing to

share their insights, is possibly more important than any single technical detail.

One of the roles of the architect is to help to promote this type of an environment.

It should also be pointed out that the fostering of open communication needs to

be one of the primary objectives of the project management team. The

distributed subsystem with an integrative, system architecture, model structure

discussed in the previous sections can be used to create a more open

environment. This approach prevents the creation of an all powerful system

model that tends to stifle communication as opposed to embrace it.

In order to create this type of an environment, the following steps are
recommended:
0 Multiple one-on-one meetings with important technology and product

development stakeholders. Discussions should center on the architectural
implications of using a given technology set. The intention is to build a
relationship that encourages open dialog. Agreement should be reached on
the type and frequency of information exchange. The following table lists
some of the information that needs to be discussed.
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Technology Checklist Subsystem Design Checklist
1. Description of technology

2. Guidelines for technology
implementation

3. Technology scaling rules

4. Alternate technology options and
technology breakpoints

5. Description of technology
development models and
agreement on their use to support
the architecture development effort.

6. Description of key characteristics
that influence the architecture

7. Acceptable nominal and ranges for
key characteristics as well as limits
at which the technology will no
longer meet its function, even with
additional investments.

8. Explicit agreement on the
relationships to be represented in
the DSM

9. Explicit agreement on the
mathematical expressions to be
used in the constraint-based model

1.

2.

Description of subsystem interfaces

Description of design
implementation, this is especially
important for assemblies that
embody multiple functions.

3. Description of CAD models and
agreement on their use to support
the architecture development effort.

4. Description of key characteristics
that influence the architecture

5. Acceptable nominal and ranges for
key characteristics.

6. Explicit agreement on the
relationships to be represented in
the DSM

7. Explicit agreement on the
mathematical expressions to be
used in the constraint-based model

0 Regular architecture design reviews. All interested parties need to be invited
and given a chance to provide input. Unlike the one-on-one meetings that
focus on a specific subsystem, this meeting focuses on the system and the
interaction between competing requirements and design rules. The system
models are used to focus the conversation on the key problem areas.
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3.6 METHODOLOGY FLOW DIAGRAM

Figure 11 provides a graphical overview of the methodology.
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Figure 11: Methodology Flow Diagram
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4 CASE STUDY -- XEROGRAPHIC COLOR ARCHITECTURE

4.1 CASE INTRODUCTION

This section of the paper discusses the use of the proposed methodology on

a digital printer. The project is a clean sheet design for a high volume, digital

color press. The case study will focus on the development of the xerographic

module architecture.

In early 1994, I was given the opportunity of being on the Product

Architecture Assessment Team for a new digital color printer and participated in

the development of the architecture of the xerographic module. The case study

covers a four-year time span during which the product transitioned from the pre-

concept phase to the detailed design phase.

The xerographic architecture was successfully developed using a constraint-

based model using Cognition's Mechanical Advantage. The DSM technique was

not used on the project. The DSM technique was added to the methodology

based on the author's experience as the architect/integrator of this xerographic

module. The DSM constructed for this paper has been reviewed by others

involved in the development of the product. Whereas the comments and insight

into the value of the constraint-based model technique are based on first hand

experience, the discussion on the use of DSM is necessarily based on hindsight.

4.2 ARCHITECTURAL PARTITIONING

The high speed, digital printer is partitioned into four modules: the digital front

end, input devices, output devices, and the print station. The digital front end is

responsible for decomposing and preparing a client's job for printing. The print

station creates the printed sheets for the job. The input devices provide cut
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sheet media to the print station, and the output devices produce completed

documents from the printed sheets in the format requested by the client.

The print station is decomposed into two major mechanical modules: the

paper path and the xerographic module. The paper path modules include all the

subsystems that are required to register, fix, duplex and otherwise move the

media through the machine. The xerographic module includes all subsystems

required to create a physical image and transfer it to the media.

4.3 XEROGRAPHIC MODULE

Before discussing the application of the methodology, it is worthwhile to

provide and overview of the xerographic process. The overview will discuss

monochrome xerography. The discussion will then be extended to include the

further complications of color xerography. This will help to establish the technical

framework for the rest of the case study.

OVERVIEW OF XEROGRAPHY
The key component of xerography is the photoconductor. A photoconductor,

also referred to as a photoreceptor, changes charge states when exposed to

light. The xerographic process is based on this phenomenon.

Figure 12 shows a typical xerographic module for a monochrome printing

system. The important steps in the process are:

1. A charge device is used to create a uniform charge on the photoreceptor.

2. The photoreceptor is then exposed using a source of light, such as a laser,
creating a latent image. In most digital printing systems, exposing the
photoreceptor causes it to discharge.

3. The photoreceptor with the latent image is then exposed to a field of charged
particles, called toner, that is charged so as to be attracted to the latent image
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on the photoreceptor. This stage is typically called development in reference
to the similar step in photography when the image becomes visible.

4. The photoreceptor now has a fully developed image on its top surface
consisting of charged toner particles. The next step is to pre-treat the image
with a charged field to prepare it for transfer to a piece of paper. The
pretransfer treatment reduces the strength of the charge holding the toner to
the photoreceptor.

5. A piece of paper with a charge that will attract the toner from the
photoreceptor is brought into to contact with the photoreceptor. The toner is
transferred to the paper, which continues to the fixing subsystem, which melts
the toner into the paper.

6. The photoreceptor is subjected to a cleaning cycle that removes any residual
toner.

7. The cycle is repeated for the next image.

Exposure Deivice
Cleaner Charge (Imaging Device)

Device

Photoreceptor Module

Paper Photoreceptor Belt

Figure 12: Monochrome Xerographic Engine

ADDITIONAL CONCERNS WITH COLOR XEROGRAPHY
Color xerography is more complex than monochrome xerography. A color

xerographic image is created using multiple layers of toner. Subtractive

colorants, typically magenta, cyan, and yellow, with the addition of black are used

as the base colors for the system. Multiple imaging sequences are needed to
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build the color image from the base colorant toners. These systems require

more parts with more complex interactions. There are three predominant

designs that are used to create a colored image.

Recirculating architecture

The earliest color xerographic products used a recirculating architecture. In

this design, multiple revolutions of the photoreceptor are required to create a

color image. Multiple development stations, each containing a different color, are

sequentially positioned against the photoreceptor and the image for that color

separation is developed and transferred to the paper. The sequence is repeated

until all color separations have been imaged and transferred to the paper.

Productivity is one-fourth the productivity of the comparable monochrome

system, Image quality is affected by the ability to maintain image registration

while repeatedly aligning the paper to the next image.

Tandem architecture

Tandem color architecture has multiple xerographic engines arrayed such

that each engine prints a single color image. The images are combined either on

an intermediate substrate or directly on the paper.

Productivity is 100% for a color image. The drawback is a greater number of

parts and therefore a greater concern for reliability and total cost of ownership.

Single pass multi-color architecture

The latest approach to color xerography is to create the full color on the

photoreceptor and transfer the complete image to paper. This requires that the

color image be built on the single image panel by going through multiple
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xerographic stations. In this implementation, the term xerographic station is used

to describe the set of charge devices, exposure device, and development

devices required to produce a single color image. In a four color system there

would be four xerographic stations - one for each color. The system is often

referred to as an image on image system. Refer to Figure 13 for a schematic

view of the architecture [23]. Appendix A describes the system in more detail.

Similar to the tandem architecture the productivity is 100% for a color image, no

recirculation is needed create a full color image. One of the key architectural

concerns for development of this system is the management of the allocation of

space around the photoreceptor module. The architecture shown in the figure

was developed as part of this case study. Its development will be discussed in

the following sections.
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increased and the architecture of the systems become more complex. As can be

seen from the comparison of the two architectures, as shown in Figure 14, the

number of subsystems located around the photoreceptor has increased

dramatically. Also, note that the density of the components has also increased.

In addition, new interactions determine the location and size of certain

components that are not obvious from the illustration. These will relationships

will be discussed in the following sections.

E~pasur e Mce

Photoreceptor Module

Photoreceptor Belt

)

P.-

Monochrome Architecture

76 1

34
36

0 12
20 12 3

332

12 0 e 30 16

40

42 ' 0 1
28

22 2

44 " 80

508 077

14 0

C3 0
462

48 -- 6 6

ColorArchiectur

Figure 14: Comparison of Architectures

Originally, it was possible to perform the required architectural analysis with a

few simple calculations. The geometric constraints were not significant drivers in

Page 52 of 104

L~i



the systems. As the systems became more complex, the analysis became more

elaborate with the need to link functional constraints with geometric constraints in

a heterogeneous analysis.

4.5 CASE STUDY

In this section of the report the system architecture model for the single pass,

multi-color system described earlier will be developed. The case follows the

methodology outlined in section 3.

DEFINING THE BOUNDARY OF THE MODEL
In attempting to decide the bounds of the architecture model, several

possibilities were considered:

Option 1. The complete xerographic module including all xerographic
subsystems and structural supports.

Option 2. A single xerographic station

Option 3. The area surrounding the p/r module including the important
functional and physical aspects of each xerographic subsystem.

Option 1, the development of the full xerographic module, was determined to

be too complex and too wide of scope. The level of effort required to develop a

model at this level of detail would be overwhelming. Completing this analysis

would be roughly equivalent to completing the detailed module design. Since the

arrangement of xerographic elements around the p/r module would have to be

determined prior to completing other areas of the module architecture, option 3

would need to be completed as an integral part of option 1. Considering the

additional complexity embedded in option 1 would result in delaying the

completion of the core architecture decisions.
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On the other hand, option 2, a model of a single xerographic station, was

thought to be too narrow of a scope. Considering a single xerographic station

would not capture the interactions between the stations or system level issues.

Option 3 has the most suitable boundary for this architectural design

analysis. The arrangement of the xerographic elements around the

photoreceptor module was felt to be the core of the architecture. The models

would be used to describe the relationships within a narrow boundary,

approximately one to two inches, on either side of the photoreceptor belt. This

boundary definition was termed a "waterfront analysis" and is shown graphically

in Figure 15.

This selection of the boundary accomplishes the following key aspects of

architectural design:

1. The boundary includes all of the important functional interactions required for
color xerography. The analysis space includes the xerographic subsystems
most responsible for system performance. The desired function is captured
within the boundary.

2. The boundary includes the important physical components and their
relationships. As mentioned previously, one of the architectural concerns for
development of the single pass, multi-color system is the management of the
allocation of space around the photoreceptor module. The form is captured
within the boundary.

3. Maintains the right level of abstraction. The boundary does not include
aspects that could be determined at the next level of implementation detail.
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The key design related outputs from the model are:

1. Specific arrangement and position of xerographic subsystems around the

periphery of the photoreceptor module.

2. Specific size and shape of the photoreceptor module. The output from the

constraint-based model was used as a template for the production design.

3. Length of the photoreceptor belt

4. Process velocity for the system
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It was felt that these four outputs would described the xerographic architecture in

sufficient detail to enable the design teams to continue to the next phase of the

design process.

MAPPING OF THE MODEL SPACE.
As stated earlier, one of the decisions that needed to be made early in the

process is the scope of the architectural models. Should they include all aspects

and all details of the system to create an all powerful system architecture model

or should the model be constructed with carefully defined interfaces to other

system and subsystem models? The distributed subsystem with an integrative,

system architecture, model structure discussed earlier in this paper was adopted.

This decision was influenced by the product development and technology

readiness processes used by the teams. As part of the technology development

process, numerous functional models are developed to aid the development of

the subsystem technologies. These models are transitioned to the product

development team as an integral part of technology delivery. Therefore, the

distributed model approach is the most logical course of development. Figure 16

represents some of the more important models.
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Figure 16: Mapping of Model Space

4.6 PRODUCT REQUIREMENTS, DESIGNS RULES, AND GEOMETRIC CONSTRAINTS

Architectural constraints were collected from numerous sources with the

most important being marketing, systems engineering, subsystem/technology

teams, and manufacturing. The constraints can be classified into product

requirements, system integration rules, and subsystem design rules. Examples

of each of these will be discussed below.

Product Requirements
IA System productivity per unit time

IA Maximum system height

IA Maximum number of base colors (ie: the number of discrete xerographic
stations)
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System Integration Rules

System integration rules are inter-component requirements. They specify a

requirement or a constraint between components or groups of components.

Some examples are:

0 System Timing
0 The time between end of charge and start of imaging must be greater

than or equal to the minimum charge to exposure timing. The discrete
value is determined by the formulation of the photoreceptor.

R1 The time between end imaging and start of development must be
greater than or equal to the minimum exposure to development time.
Again, the discrete value is determined by the formulation of the
photoreceptor.

Z The time between end of charge and start of development must be
less than or equal to the maximum charge to development time. This
is a function of the physical sizes of the charge, exposure, and
development subsystems as well as the formulation of the
photoreceptor.

Z Color Registration
RI The image pitch length, the distance along the belt from one imager to

the next, should be equal to an integer multiple of the circumference of
every rotating member that moves and supports the belt [4].

Subsystem/Technology Design Rules

Subsystem technology design rules are explicit constraints placed on the

design by the chosen technology or are general rules of thumb that have been

used in similar design embodiments. The distinction between system integration

rules and subsystem technology design rules is somewhat ill defined. In general,

a constraint was considered a system integration rule if more than one

subsystem was required to satisfy the constraint or if the constraint specified a

relationship between subsystems. A constraint was considered a subsystem rule
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if the constraint could be satisfied within the subsystem or by the orientation of

the subsystem. Some examples are:

R Developer
0 Developer augers must be in a horizontal position

2 Developer to photoreceptor interface scales with process speed in
discrete steps.

0 Charge
E Length of the charge device is a function of the charge technology and

the system process velocity. Scaling is based on discrete steps at
which another charge element is added to the charge array.

Manufacturability and Serviceability Concerns
0 Spacing between components must adhere to standard serviceability

recommendations. For example, there must be at least 5mm clearance
between subsystem assemblies that will slide passed each other for
service actions.

The list above provides a cross sectional sample of the constraints that needed

to be satisfied to develop a suitable architecture.

4.7 A CLARIFYING EXAMPLE

The development of the xerographic architecture quickly grows in terms of

complexity and the full disclosure of the details would overwhelm the discussion

of the methodology. In order to focus on the methodology while at the same time

showing its use in an actual application, this section will discuss a simplified but

meaningful example using the design rules and constraints discussed in the

previous section. Upon completion of the example, the full system model will be

discussed in order to draw conclusions from the actual case study.

EXAMPLE DESCRIPTION
The proposed methodology will be used to determine the image pitch length

for the system. The image pitch length is the distance along the belt from one

imager to the next. It is one of the key-characteristics for the color registration
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subsystem and the system architecture. The image pitch length is determined by

the physical size of the charge, exposure, and development components as well

as the xerographic timing rules that determine the components relative

placements. All of these elements have a dependency on the process velocity.

Because image pitch spans between the xerographic stations, it is one of the

most important considerations in the management of the system's waterfront -

the positioning of elements around the periphery of the photoreceptor module.

The section discussing the full constraint-based model will provide further

discourse on the importance of the waterfront analogy. Figure 17 illustrates the

concept of the image pitch length.

Photoreceptor Belt

Expose Devif-e (nImager)

A Charge Backer Bar

Expose Backer Bar

a Pitch Length r- Developer Backer Bar

Developer Device

+

Figure 17: Image Pitch Length Diagram
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IMAGE PITCH LENGTH DSM
Figure 18 shows the partitioned DSM for determining the image pitch length.

The DSM shows the relationships between the image pitch length and the

xerographic components, xerographic timing rules, and technology requirements.

For example, the DSM shows that the number of developer rolls, length of the

charge device, and length of the exposure device (imager), is a function of the

process velocity. The developer device length is a function of the number of

developer rolls and the process velocity. This information is obtained by reading

across the rows of the DSM for each variable. The last row of the DSM shows

that the image pitch length is the summation of the physical segments of the

photoreceptor belt that are located between each imager such as the spans

between the backer bars and the wrap length on the backer bar (wrap angle x

radius). The spans are dependent on the subsystem lengths, and serviceability

clearances or xerographic timing rules. Consider the Charge Backer to Expose

Span. The relationships in the DSM indicate that this span is a function of

Charge to Expose Distance, Charge Device Length, and Expose Device Length.

The DSM also contains the dependencies for these elements. The Charge

Device Length and the Expose Device Length are dependent on the Process

Velocity. The Charge To Expose Distance is a function of the Charge to Expose

Min Time, the Process Velocity, and the Serviceability Clearance. Thus by

reading the partitioned DSM, one can extract the hierarchy of relationships that

are needed to calculate the image pitch length.

Using these relationships and the geometric representations for the subsystems,

a constraint-based model can be created to calculate the image pitch length.
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Within the constraint-based model the dimensions are linked to the algebraic

relationships developed from the constraints. The some of these constraints are

reviewed below. In order to show the linkage between equations and geometry

the variables corresponding to the dimensions are underlined in the following

equations. In addition, the dimensions are indicated with a large dot in Figure 19.

It is important to note that these are the relationships represented in the DSM.

Not all of the constraints are described in the following section, instead an

attempt was made to provide sufficient level of detail such that fundamental steps

of linking the DSM information to the constraint-based could be understood.

For the Charge Device Length, the algebraic equation describing the relationship

from the DSM is:

Charge Device Length
Length of the charge device is a function of the charge technology and the system process
velocity.

ChargeDeviceLength = ActiveDeviceLength + 2 x AirHandlingDeviceLength

ActiveDeviceLength 2 x DCDeviceMountLength +

(NumberOfPinArrays- 1) x PinToPinSpacing

NumberOfPinArrays 1 PrIcess ±

The Charge To Expose Distance is given by:

Charge To Expose Distance
Distance is dependent on the charge to expose min time and the serviceability requirements,

'Charge To Expose Min Time
or

Charge To Expose Distance = MAX Service ClearanceMin +

ChargeDevicelnternalRelationship +

sExposeDevicelnternalRelationship )

Note that the equation contains several geometric parameters whose dimensions were omitted
from the figure for the sake of clarity. They are included in the DSM under the Charge Device
Length and Expose Device Length variables.
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The Charge To Backer Expose Span is given by the following equation.

Charge Backer To Expose Span
This is the length of the span of the belt between the charge backer bar and the expose (image)
backer bar.

Charge Backer To Expose Span = Charge To Expose Distance -

ExposeDeviceIntemalRelationship+ ChargeDevicelnternalRelationship

Note the equation contains several geometric parameters whose dimensions were omitted from
the figure for the sake of clarity. They are represented captured in the DSM as part of the Expose
Device Length and Charge Device Length

The Image Pitch Length is then calculated by summing the appropriate spans

and wrap lengths of the photoreceptor belt. Again, these relationships are

reflected in the DSM.

Image Pitch Length
The image pitch length is the distance between sequential imager stations.

ImagePitchLength = ExposureBackerToDevBackerSpan +

+ (NDev - 1) x DevHsgSpan + DevBackerToChargeBackerSpan + ChargeBackerToExposureSpan

rNDev x DeveBackerWrapAngle + x BackerBarRadius
ChargeBackerWrapAngle + ExposureBackerWrapAngle)

The example presented here showed how the DSM and constraint-based

modeling work together as integral parts of the methodology. The DSM is used

to map the relationships. The detailed algebraic constraints for the constraint-

based model are developed through successive refinement of the dependency

relationship. The DSM provides a graphic mapping of the relationships that are

represented in the constraint-based model. The DSM can be used as a guide in

the development of the more detailed model. The DSM highlights the

dependencies without providing an overwhelming amount of detail. While the

constraint-based model captures the level of detail required to perform the actual
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calculations. The DSM and the constraint-based model have complementary

attributes that help to form a complete methodology and enable discussions

about the system on multiple levels.

4.8 XEROGRAPHIC ARCHITECTURE MODEL

The remainder of this paper will discuss the use of the methodology on the

development of xerographic module architecture and draw conclusions on its

applicability.

CONSTRUCTION OF SYSTEM DSM
The detailed constraint-based model contained over 140 variables. A DSM

using this level of detail would be 140X140. Although not a tremendously large

matrix in terms of linear algebra, it is very large in terms of the DSM's primary

function within this methodology. The purpose of introducing the DSM technique

into the methodology was to communicate the dependencies in the architecture

in a clear and succinct manner. The intention is to provide a document that

describes the architectural relationships within a page or two. Clearly, a matrix of

140 rows and columns would not be considered succinct. In addition, it is hard to

imagine that such a document would to useful to the design teams. Therefore,

the most important consideration in developing the DSM is the selection of the

appropriate level of abstraction.

Choosing the level of abstraction for the DSM aggregates portions of the

architecture to reduce the complexity of the resulting DSM matrix. This

aggregation is a clustering of the architectural relationships before creating the

DSM and must be done with care.
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One possible approach is to aggregate the architectural elements to be

consistent with the distributed subsystem with an integrative system architecture,

model structure adopted earlier. Internal subsystem relationships are

aggregated into a single element in the matrix. For example, the charge

subsystem size is an aggregation of three or four variables that determine the

size. System level or integrative relationships are kept explicit. Thus, the

recommended elements consist of aggregated intra-component relationships and

explicit inter-component relationships. This approach maintains the intended

function of the DSM technique by reducing the complexity of the resultant matrix

and improving its readability.

DSM REVIEW
Figure 20 shows the DSM matrix developed for this model. Several

iterations were required to improve the readability of the matrix. In addition some

details have be omitted due to their proprietary nature. Further modifications

could be made to further reduce the complexity and improve the readability. The

DSM shown in the figure was built using Steward's PSM32 code. The DSM has

been partitioned and one tearing operation was performed to help to simplify the

large iteration loop in the lower right of the matrix. Tearing is a DSM technique in

which a set of feedback marks are chosen such that if removed from the matrix

repartitioning will render the matrix lower triangular. The marks that are removed

from the matrix are called "tears". Tears can be thought of as an initial guess.

For this DSM structure, the belt length was selected as the tearing element. This

selection was based on the assumption that knowledge of the belt length of the

technology development fixtures would provide an adequate initial guess. This
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also reflects the development of the constraint-based model, which required the

belt to be a closed loop, and therefore a known quantity before the other

constraints could be satisfied.

The DSM shown in the figure has three iteration loops. The first deals with

the wrap angles on the various rolls and support bars (called backers or backer

bars). The upper and lower triangles are nearly full which implies that its

interactions are tightly coupled. This is because the number of degrees of wrap

is limited to 360 degrees. With numerous elements requiring belt wrap due to

subsystem and technology constraints there is contention in satisfying the

constraints. Numerous iterations are needed to resolve the constraint network.

The majority of this loop is captured in the geometry elements in the sketch note

of the Mechanical Advantage application.

The next two loops need to be considered together for one of the loops is

embedded in the other. First consider the larger loop. This loop deals with

determining the layout of the arrangement of components around the belt

module, calculating the image pitch length, the belt length, and process speed for

the system. The belt length can be thought of as the summation of the image

pitch lengths, the roll wrap length, the cleaner and tension mechanism spans,

and the remaining spans needed to "wrap" the belt around the belt module.

The purpose of the large loop is to determine the size of the image pitch

length, the size of the rolls, the resultant belt length, and the process speed

required to meet the product print rate requirements.
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The inner loop determines the placement of the cleaner and preclean erase

with respect to the first charge device. This placement is determined by the size

of the cleaner device as well as a xerographic timing rule.

These two loops are captured as algebraic equations in the Math Note of the

constraint-based model and are linked to the appropriate geometric elements in

the Sketch Note in the manner described by the example shown in Figure 9.

The DSM does a good job at highlighting the interactions in the development

of the architecture. It shows the areas that are tightly coupled and captures the

important system and subsystem level constraints that influence the architecture.

Although it contains nearly 80 elements, the matrix can be used to as a

communication tool. The important aspects of the architecture and the critical

dependencies are clearly highlighted.
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Although the DSM was not used during the development of the actual

architecture, the Mechanical Advantage application has similar capabilities on a

variable by variable basis.

One of the features of the Mechanical Advantage environment is called

"Show Connected Items". When selected this feature provides dependency

information for the chosen variable by highlighting the appropriate variables in

the environment windows. The option window for this feature is shown in Figure

21. The first option is "Show what drives me directly". This option is equivalent

to reading across the row of a DSM element. "Show what I affect directly " is

equivalent to reading down the column of a DSM element. The options titled

"Show what drives me at all" and "Show what I affect at all" highlight direct and

indirect dependencies.

Fu Show Connected Items

OK Apply Gf-s

Show
wha drvesmeat all

whatI afectat all

Figure 21: Show Connected Items

This capability was used during the development of the architecture model to

explain the dependencies. In fact, this capability was one of the primary reasons

the DSM technique was included in the methodology. The DSM communicates
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the same level information for all the variables by using the matrix structure

described in previous sections. Use of the DSM technique enabled better

communication by presenting a "systems view" of the architectural

dependencies. Thus although the original effort did not use the DSM technique,

it did have access to many of the benefits of the DSM technique.

In order to quantify the value of the DSM technique when used in

combination with a constraint-based model, several members of the design

teams that participated on the architecture development task were asked to

review the DSM matrix. The lead designer for the photoreceptor module

provided the following comments.

"...[T]he DSM looks like a nice supplement to the [Mechanical Advantage] model. I like that it
shows the dependencies so clearly compared to ... seeing the dependencies in the
[Mechanical Advantage] model alone. I'm not sure you could locate and visualize all of
these relationships from the [Mechanical Advantage] model without generating some other
document to display it. The DSM is graphical, easy to read, would be a nice communication
tool, would assist in interface discussions, and would assist in creating a system. When I
first saw this DSM format, it reminded me of [a] QFD model. That model showed all of the
relationships between the System level Critical Parameters and the Critical Specifications
that flowed into them. Why couldn't this be used to help create a software architecture or
any relatively complex system with a lot of relationships?"

The attributes mentioned - easy to read due to its graphical nature and a

good communication tool - are the reason that the DSM technique was selected

as the "front end" of the methodology. The next section discusses the

development of the constraint-based model.

CONSTRAINT-BASED MODEL CONSTRUCTION
As mentioned earlier in this paper, the boundary definition for the model was

selected such the constraint-based model describes the relationships within a

narrow boundary, approximately one to two inches, on either side of the

photoreceptor belt. This boundary definition was termed a "waterfront analysis"
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and is shown graphically in Figure 15. The physical elements of the waterfront

are the xerographic subsystems and the backer bar support members. Backer

bars are used to support the photoreceptor. Since the photoreceptor is wrapped

around the backer bars, they responsible for providing the shape of the

architecture. Figure 22 shows the waterfront elements for two xerographic

stations.

_ xpose Device (

Develope

Imarge) Photoreceptor Belt

harge Backer Bar

Expose Bocker B

Developer Backer B

r Device

The waterfront is the
between the heavy s

ar

area
:lid lines

Figure 22: Waterfront Illustration

The waterfront analysis is appropriate for the analysis because it includes the

required functions as well as the required physical components. In addition,

framing the problem in terms of a waterfront analysis constrains the geometric

Page 73 of 104

:ir



domain of the problem to two dimensions instead of three. This significantly

reduces the complexity of the problem. The terminology of waterfront analysis

was chosen because the resultant architectural layout looks like a "map" of the

area surrounding a body of water, i.e. picture a map showing the buildings

surrounding Boston Harbor. This selection is further supported by the fact that

the xerographic portion of the print engine is primarily a planar machine and

therefore amenable to two-dimensional analysis.

The few constraints acting in the third dimension that affect the architecture,

such as the seam angle and maximum desired image width, were handled by

including their influence in the algebraic constraints.

The creation of the constraint-based model consisted of three primary

activities.

1. Creation of constrained geometric objects to represent the important
features of the xerographic subsystems.

2. Translation of the constraints, product requirements, subsystem design
rules, technology requirements, and system integration rules, into
algebraic and logical equations.

3. Building the integrated assembly model such that geometric components
are properly constrained with geometric and equation based constraints.

The development of the geometric objects required close work with the

subsystem teams. In many cases the CAD geometry from the technology

prototype was imported into the Sketch Note and then modified, constrained, and

integrated into the system model. The original versions of the model included the

full geometry for all the subsystems. One drawback of this approach was that

the process had to be repeated every time there was a significant change in the

subsystem design approach. This tended to slow the development process.
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Eventually a better approach was developed in which the critical waterfront

dimension was identified for each subsystem and incorporated into the model.

Updating a single dimension was significantly quicker than rebuilding a portion of

the model.

Translating the constraints into equation sets posed a significant challenge

and required the cooperation of the subsystem and technology development

teams. This process was an iterative process requiring close communication

with the technology owner.

The creation of the constraint-based model used the same progression as

shown the Image Pitch Length example.

CONSTRAINT-BASED MODEL RESULTS
The model was developed in the Mechanical Advantage environment using

the process described in the previous section. The model was able to produce

the four design outputs required of the architecture development phase. These

outputs were:

1. Specific arrangement and position of xerographic subsystems around the
periphery of the photoreceptor module.

2. Specific size and shape of the photoreceptor module. The output from the
constraint-based model was used as a template for the production design.

3. Length of the photoreceptor belt, which enabled an early estimate of the
manufacturing yield and field service costs.

4. Process velocity for the system.

The following sections will provide more details and discuss the application of

this methodology within the context of the product delivery process.
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4.9 ORGANIZATIONAL STRUCTURE AND ROLES AND RESPONSIBILITIES

Before discussing the alignment of the architecture development

methodology, one more topic needs to be discussed with respect to developing

the architecture model. The topic is the organizational behavior that is required

to support the development activity.

SENIOR MANAGEMENT INFLUENCE
Support of this activity by the senior design managers on the program was

critical. Without their support the time and effort required to develop the models

would not have been available. In particular, the Xerographic Design Manager

played a pivotal role the genesis of the methodology as well as championing the

process and "buying time" so that the methodology and required skill set could be

developed.

From the start of the effort to the successful sign-off on the architecture was

approximately eighteen months. This is longer than most architecture

development activities. Xerographic Design Manager and Mechanical Design

Manager were strong supporters of this development process and provided

support, resources, and encouragement until the process yielded the results.

They felt that they were making the up-front investment to avoid problems during

the detailed design phase.

TEAM DEVELOPMENT PROCESS
The development of the architecture was truly a team effort and several

aspects of the team interactions are worthy of comment.

The development of the initial set of constraints was developed through a

series of one-on-one conversations with the technology development teams as

Page 76 of 104



well as the subsystem development teams. These meetings transferred much of

the knowledge that the teams had developed.

Once the initial model was developed and producing reasonable results, the

team held a weekly architecture meeting. The purpose of the meeting was to

share the status of the architecture, and capture issues with respect to the model

outputs. This forum brought together the appropriate members from the

technology development group and product development team to discuss and

resolve disagreements and concerns on the implementation of the

dependencies. It was in this forum that agreement was reached on prioritization

of conflicting constraints. Senior managers were key participants in the meeting.

Without the organizational behavior from the technology and product

development groups, the constraint-based architecture approach would have

failed. The model played the role of integrating the teams' combined knowledge

to produce a workable architecture.

4.10 ALIGNMENT OF METHODOLOGY WITH PDP PROCESS

One of the important considerations in developing the methodology is to

determine how well the methodology is aligned to the product development

process. A high value methodology will be closely aligned to the product

development process and its outputs will enable the product development team

to meet its deliverables with a higher quality product with less effort.

The methodology described herein has been used throughout the product

development cycle. As mentioned earlier, this case study covers the system

development from the product pre-concept stage to the detailed design stage.
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The next section describes the how the architecture models have been used as

part of the larger product development process.

MULTIPLE USES OF THE MODEL DURING EARLY DEVELOPMENT PHASES
Several architecture models were developed during the early stages of the

product development. The models progressed from abstract models that were

suitable for making high-level architecture decisions to models that contained

enough detail to help guide the detailed design.

Select Technology - using high-level model for architectural narrowiny
During the pre-concept phase of the development process, basic questions

need to be answered about the product. For example, the basic technologies

need to be selected as does the high level architecture or system design. At this

stage, the methodology can be used to develop high-level architecture models.

These models capture the "critical few" aspects that describe the decision the

team needs to make.

For the xerographic architecture the questions that needed to be answered

were:

(1) What type of photoreceptor archetype should be used a belt-based design or
a drum-based design?

(2) For the belt-based system, how should the individual xerographic stations be
positioned around the photoreceptor module. Should all the xerographic
stations be on one side of the module or should stations be on both sides of
the module?

The architecture development team decided to use a formal decision process

known as AHP (Analytical Hierarchy Process) to make the decision on the type

of photoreceptor system to use. The AHP decision model compared three high

level architectures that included a drum-based system and two belt-based
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systems. Architecture models were developed which provided estimates of size,

belt (drum) length, and process speed as well as an approximate layout for these

systems. The constraint-based models used to describe these candidate

architectures were kept as simple as possible. Rules of thumb and best guess

estimates were used in the place of detailed design rules. For example, an

approximation of the image pitch length based on estimates of the subsystem

device lengths was used to construct the models. Calculations were kept to a

minimum. The intention was to understand the shape and size of the various

architectures. Constraint-based models were used was to help to ensure that the

same "rules" were applied to each architecture. This enabled the architectures to

be compared on an equal basis. This was important because during the early

stages of the project many of the design rules and technology guidelines were

still being developed and were changing rapidly. It was essential to make sure

that the candidate architectures were developed using the same set of rules.

Without this, the basis for comparison would be lost. This information was used

as inputs to the team's decision model. Figure 23 in the next section shows the

layout of these architectures.

Upon the program's decision to use one of the belt-based systems. A more

refined model was developed that enabled the team to make the decision on the

orientation of the xerographic module and a further refinement of the technology

selection. The important area of concern for this decision was the height of the

transfer zone and access to the zone for jam clearance. The architecture models

indicated that the module height would be such that the total system would be
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over six feet tall. If the transfer zone was placed at the top of the module, then

the paper path geometry and jam clearance requirements became much more

difficult to achieve. One the other hand locating the transfer zone at the bottom

of the module would allow more reliable paper path geometry and provide easy

access for jam clearance, but would be a major change from previous products

and development fixtures using similar technology. This decision was made

based on the architecture model's ability to estimate the module height to a high

level of accuracy. Plywood models of the system were developed based on the

output of the model. Based on this information the program selected the bottom

transfer option.

Concept Phase - using detailed architecture model
The next stage of the architecture model development was to create a

detailed model of the system using the full set of constraints and requirements.

This model was refined until all product requirements were met. One of the

outputs from the model was a two-dimensional CAD file of the waterfront area.

In particular the product development teams needed to know the shape of the

photoreceptor module. This was provided by creating a two-dimensional CAD

file of the photoreceptor belt. This file was imported into the CAD system and

served as the template for the module design. As the model was refined and

improved, the CAD template was updated to reflect the latest results. This

process helped to coordinate the system design. This step of the process helped

to close the loop with the design teams. As mentioned earlier in the paper, when

the design teams made a modification to their subsystem design, the changes

were imported from the CAD system into the constraint-based architecture
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model. The loop was closed when the revised output from the architecture

model was imported into the CAD system to serve as the next version of the

architecture template.

Design Phase - using the detailed architecture model
During the detailed design phase of the project, the architecture model

served a different purpose. As the design progressed and the level of detail

increased the architecture model ceased to be the center of the development

activity. However, it still played an important role during this stage of

development. The role is best illustrated by an example.

During the detailed design stage, testing from some of the xerographic test

rigs indicated that an additional charge device was required for the first

xerographic station. However, that area of the module's "waterfront" was already

densely packed with other subsystem components and there was not enough

room to add it in. One of the more powerful features of the Mechanical

Advantage application is that the user can change the constraint network.

Variables that were set by the user can be "unlocked" so that they are calculated

by the constraint network and variables that were constrained can be "locked" so

that the user can change them. This capability enables the users to reconfigure

the model such that only certain types of changes are allowed. This capability

enabled the model to be used to develop a "minimum impact" solution for adding

the extra charge device. In this case the system level outputs determined during

the architecture development phase of the project such as the size of the

module, the length of the photoreceptor belt, and the process speed were not

allowed to change. All lower level changes had to be made without changing
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these values. By modifying the constraint network and manually tracking system

level changes, a solution was developed that had minimal system level impact.

In another example, testing indicated that the stripper roll was too large and

lightweight paper could not be reliably stripped from the photoreceptor belt. This

condition would result in unacceptable reliability problems for print jobs using

those paper types. The model was used to modify the waterfront while

maintaining the system level variables.

In both of these examples, the architecture model was used to develop a

solution to a problem that could have changed the architecture and caused the

design to deviate from the system and subsystem rules that constrain the design.

The model was used to maintain the integrity of the architecture as the design

matured. In this context, the architectural integrity is the satisfaction of the set of

constraints that were originally developed with the DSM and implemented in the

constraint-based model. Without the use of the constraint-based model to

ensure that the design changes did not violate the constraint set, the proposed

design modifications could have resulted in a product design that no longer met

its intended function. More importantly by ensuring that the system satisfies the

constraint set, the product development team can have a higher level of

confidence that the detailed design implementation will meet its goals.
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In summary, the methodology was used for the following purposes.

PDP Phase Methodology Usage and Alignment

Pre-concept Development of high level model for architecture narrowing.

(Selecting Technology) Selection between archetypes

Transfer zone location (module orientation)

Concept Phase Detailed model for architecture development and refinement

(Define Product) Providing an architecture template for the design task

Design Phase Update detailed model to reflect new knowledge,
technology/design refinements, and requirement changes
refinements.

As can be seen from the table, the architecture model developed with the

methodology described in this paper is closely aligned with the product

development process. In addition, the model continues to add value after the

selection of the architecture and the program focus has shifted to the detailed

design. During this phase of the process, the model can be used to maintain the

integrity of the architecture.

4.11 PROJECT TIMELINE

This section provides a graphical timeline showing the use of the model

during the different phases of the product delivery process. During the pre-

concept phase, the multiple models were developed to support technology

selection. The level of detail in the model was increased to develop more fully

the proposed architecture. Over twenty-two versions of the constraint-based

model were developed to analyze alternate technology and design

implementations. Approximately 18 months into the project the senior

management team had enough confidence in the architecture to freeze the

architecture. This was a significant decision, requiring the commitment of

hundreds of millions of dollars over the life of the program. Since that time the
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architecture has not changed. Minor design changes have been made and the

model has been used to guide those changes to preserve the integrity of the

architecture. Without the use of the constraint-based model to ensure that the

design changes did not violate the constraint set, the proposed design

modifications could have resulted in a product design that no longer met its

intended function. More importantly by ensuring that the system satisfied the

constraint set, the product development team had a higher level of confidence

that the detailed design implementation would meet its goals. The timeline is

shown in Figure 23.
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4.12 LESSONS LEARNED

Based on the development of the methodology and its application to a

system development process the following lessons have been learned.

1. The DSM technique and the constraint-based model both can play an
important role in the development of system architecture. The DSM is well
suited to map the system dependencies. The graphical representation
enables visualization of the relationships at a system level. It is well suited to
be used as a documentation and communication tool. The constraint-based
model provides the analytical capabilities to turn the dependencies into a
constraint network and produce detailed description of candidate
architectures. The strengths of the two techniques are complementary.
When combined with the organizational structure that supports their use the
methodology can be successful.

2. The waterfront analysis is the right level of abstraction for this type of system.
It captures the right level of detail without including unnecessary design
detailed that were best left for a later development phase. The selection of
the boundary included all of the xerographic functions, as captured in system
integration rules, as well the form of the subsystem components.

3. At the beginning of the paper, it was noted that prior research indicated that
the development of a copier required over 1 million decisions [8]. In order for
this methodology to be successful it is important to limit the scope of the
model so that only the information regarding the "critical few" decisions that
affect the architecture are included in the model. The scope of the model is
determined by the boundary definition as well as the level of detail included in
the model.

4. The architecture model, although important as a technical development tool,
is equally as important as an organizational tool. By having the model
development as the central focus point for the architectural development
activity, organizational behavior is focused. It enables bringing together the
right people to review the results of their inputs. Reviewing the model's
output on a weekly basis helped to raise system level issues. This served to
focus attention and align work priorities. In addition, this organizational
structure helped to promote co-production between the technology and
product development organizations and helped to improve organizational
learning.

5. The methodology is closely aligned to the product development process.
During the different phase of the development process, the models play
different roles. During the pre-concept and product definition phases, the
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model plays a central role in the development of the architecture. During the
detailed design phase, continued use of the model helps to maintain the
integrity of the architecture as the design matures.

6. The methodology is uniquely suited for a "clean sheet" design project. On
many clean sheet projects the level of domain expertise is low because of
changes in product scope as well as multiple new technologies, which are not
well understood. The methodology helps to capture and expand the domain
knowledge. In addition, the form of the technology implementation and
therefore the technology driven subsystem-KCs are not understood until the
architecture is defined. On a variant product, many of these issues have
been resolved and the domain knowledge is very high and well integrated
across the organization. Although the methodology could be used on a
variant, the returns on the effort will not be as high.

4.13 UNIQUE VALUE CREATED BY SYSTEM/ARCHITECTURE MODEL

The methodology described in this paper leads to the development of a

system architecture model consisting of a DSM matrix and a constraint-based

model. These models add unique value to the development process. This

section will examine some the value adding capabilities of the methodology.

ROBUSTNESS OF THE METHODOLOGY
The xerographic module is one of the two mechanical modules in the print

engine. The other significant module is the paper path module. The paper path

architecture was developed using a different methodology. Comparing the

number of system level changes to the architecture during the detailed design

phase provides one informal measure of the capability of the methodology in that

application.

As mentioned earlier, the xerographic module went through several design

changes that could have affected the module architecture. In addition to the two

examples discussed in the case study, two additional design changes could have

affected the module architecture. The impacts of these changes were minimized
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by using the models to ensure that the design changes continued to satisfy the

architecture constraints. The changes could be incorporated into the next design

release and were considered to be minor changes. The paper path architecture

experienced a similar maturing process. However, three problems required

significant change to the original architecture.

There is no guarantee that the application of this methodology to the paper

path would have produced better results. There are obvious limits to what can

be captured in a model and emergent problems are difficult to anticipate.

However, the methodology provides a good foundation from which to make

design tradeoffs. In its one application, it has been very successful, although

more cases are needed to understand the extent of its capabilities. Given that

this project was the first application of the next generation of color xerographic

technology consisting of seven new subsystem technologies, it is significant that

the architecture developed, using many of the key attributes of this methodology,

has not changed in nearly four years.

CREATION OF INTELLECTUAL PROPERTY
Another measure of the value of the methodology is its ability to create

intellectual property. Because of the architectural modeling effort, two invention

proposals were filed. One has already been issued as a United States Patent

[23]. A copy of the patent is included in Appendix A. The other application is still

under review.

5 CONCLUSIONS AND SUMMARY

This paper developed an architecture development methodology by

combining the two powerful techniques, the DSM technique and the constraint-
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based model, and placing them in an organizational structure that championed

their use. A case study was reviewed in which the architecture of a xerographic

module for a color printer was created using many aspects of this methodology.

The case study made extensive use of the constraint-based model. The DSM

technique was added to the methodology based on the perceived shortfalls in

ease of communication in using the constraint-based model code to describe the

architectural dependencies. The judgement of the usefulness of the DSM was

based on the input from important participants in the development activity.

VALUE OF DSM TECHNIQUE
The primary decision that needs to be made when constructing the DSM is

choosing the right abstraction. By choosing a suitable level of abstraction, the

DSM can be made to convey information at the level of detail suitable for the

intended audience. The case study, the DSM was developed after the

constraint-based model and required several iterations to remove levels of

complexity. If the DSM was developed prior to or in parallel with the constraint-

based model, the level of detail might be easier to control.

The primary value the DSM technique is that it creates the ability to

communicate architectural dependencies without having to work at a high level of

detail. In addition, it provides reference documentation that the design teams

can use to know when and with whom they need to discuss proposed changes.

Another benefit is that the DSM provides a visual aid in the development of

the constraint-based model. Since the DSM can be partitioned to minimize

iterations or clustered to group related constraints; the DSM can be used as a

guide to structure the constraint-based model. In the case study, the DSM was
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partitioned and indicated a possible structuring for the creation of the constraint-

based model. This structure was very similar to the structure that was used in

the construction of the actual model.

Input from members of the design team supports these conclusions.

VALUE OF THE CONSTRAINT-BASED MODEL
The primary value of the constraint-based model is the ability to develop a

high quality abstraction of physical design based on known constraints. The

Mechanical Advantage application provides an environment in which geometric

objects, geometric constraints, and algebraic equations can be combined to

create the constraint-based model. This type of model is able to develop a

representation of the system architecture that can be used to drive design

decisions.

In the case study, the model provided high quality estimates of critical system

level variables. It was also used to determine the location of components around

the waterfront of the module. The flexibility of the development environment

enabled detailed "what-if' analysis of different design rules, technology limitations

and integration rules. One of the most useful outputs from the model was the

architectural template that was used to guide the detailed design.

It was also shown that the constraint-based model continued to play an

essential role in the system development as the program completed the detailed

design, by helping to maintain the integrity of the architecture as the design and

technologies matured.
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When these techniques are coupled with a proactive management team and

an organizational structure that supports model-based learning the methodology

produces significant and meaningful results.

In section 2 of the paper, four needs that an architecture methodology should

satisfy were developed. These needs were:

1. Provide a means for modeling the system that provides the capability to gain
feedback on proposed decisions. This promotes rapid system learning.

2. Provide a definition of the linkage between product requirements and design
parameters. From a key characteristic point of view, this creates a map from
product requirements (Product-KCs) to subsystem parameters (subsystem-
KCs).

3. Provide documentation that makes the architecture explicit and enables
others to have access to the architectural knowledge (decisions).

4. Increase confidence in the proposed system so that product design can
proceed with a minimum of risk.

Based on the details of the case study it is now possible to answer the

question of "does the methodology satisfy the four needs of architecture

development?"

Requirement 1: Provide a means for modeling the system that provides the
capability to gain feedback on proposed decisions. This promotes rapid system
learning.

The constraint-based model provides the means for modeling the system.

The organizational structure and behavior surrounding the development of the

model promotes organizational learning and creates the environment in which

immediate feedback can be received on proposed decisions.

Requirement 2: Provide a definition of the linkage between product requirements
and design parameters. From a key characteristic point of view, this creates a
map from product requirements (Product-KCs) to subsystem parameters
(subsystem-KCs).
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The DSM technique provides a mapping of the linkages at a high level of

abstraction. The constraint-based model provides a mapping of the linkages at a

detailed level. Both enable the direct mapping from product requirements to

system and subsytem-KCs.

Requirement 3: Provide documentation that makes the architecture explicit and
enables others to have access to the architectural knowledge (decisions).

The DSM provides one level of documentation in the form of mapping the

dependencies that determine the form of the architecture. The DSM is at a high

level of abstraction in order to keep the document to a "usable" length. The DSM

creates the ability to communicate architectural linkages upward to management

without providing all the details. It also provides a reference for design teams to

know when and with whom they need to discuss proposed changes.

The constraint-based model determines the system level details for

architecture. The model itself is another form of documentation that captures the

detailed relationships between variables. One of the primary outputs from the

model is the architecture template that can be imported into the CAD system to

guide the detailed design. This template provides another form of documentation

that captures the resultant layout of the system.

Requirement 4: Increase confidence in the proposed system so that product
design can proceed with a minimum of risk.

Confidence about the quality of the system was improved in several ways.

From a technical point of view, the constraint-based model is solved only when

the constraints have been satisfied. Thus, on this level the constraint-based

model approach provides the first level of confidence.
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From an organizational perspective, the use of the weekly meetings in which

the results from the model were reviewed and areas of contention were

highlighted and discussed increased confidence in the process. Reviewing the

results on a regular basis in an open forum helped to build credibility in the

process and in the results, this thereby increased confidence in the output of the

process. Lastly, the documentation created by the versions of the DSM and the

constraint-based model over the course of the architecture development provides

a valuable history for the program team. The ability to track and review changes

in this manner helps to build the confidence of program assessment teams

during phase gate reviews.

This thesis suggests a methodology using design structure matrix techniques

in combination with constraint-based models to develop system architecture.

This approach allows detailed evaluation of proposed architectures early in the

product development cycle. Shortfalls in the proposed architectures can be

revised via model-based iteration while identifying key areas where system

knowledge is lacking. Management can direct the team to focus their attention

on filling the knowledge gaps early in the development process and funneling the

new information into the architecture model. The result is a product architecture

that meets the known requirements, has improved stability, and contains the

documented decisions that will be required for future analysis and review.

Earlier in the thesis, Sterman's model of learning was discussed [28]. It

proposes a learning model using "virtual worlds" as a means to develop and test

decisions before implementing them in the real world. This enables rapid system
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learning, reduces the lag time between when a decision is made and when

feedback is provided on the quality of the decision, and improves our

understanding of the system. With refined understanding of the system behavior

the system's complex interactions become easier to manage. The information

presented in this thesis suggests that the proposed methodology creates a model

for learning. The framework in shown in Figure 1 has been updated to map the

elements of the methodology into this framework. The updated diagram is

shown in Figure 24.
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Figure 24: Methodology mapped to the model of learning
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Based on the case study presented here, there is anecdotal evidence to

support the hypothesis that the methodology described in this paper satisfies the

needs of an architecture methodology that enables efficient system development.

---- End ----
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[57] ABSTRACT

A single pass, multi-color electrophotographic printing
machine architecture uses a vertically oriented photocon-
ductive belt. Transfer of the toner powder images occur at
the lowermost portion of the photoconductive belt. The
photoconductive belt is elliptically shaped, having a major
and a minor axis. N image recording stations are positioned
adjacent an exterior surface of the photoconductive belt on
one side of the major axis thereof. N-1 image recording
stations are positioned adjacent the exterior surface of the
photoconductive belt on the other side of the major axis
thereof. The image recording stations record electrostatic
latent images on the photoconductive belt. This architecture
optimizes image registration while minimizing the overall
height of the printing machine.

11 Claims, 1 Drawing Sheet
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PRINTING MACHINE ARCHITECTURE

This invention relates to a printing machine architecture,
and more particularly, concerns an elliptically shaped pho-
toconductive belt having N image recording stations posi- 5
tioned adjacent an exterior surface of the photoconductive
belt on one side of the major axis, and N-1 image recording
stations positioned adjacent the exterior surface of the
photoconductive belt on the other side of the major axis to
record electrostatic latent images on the photoconductive 10belt.

A typical electrophotographic printing machine employs
a photoconductive member that is charged to a substantially
uniform potential so as to sensitize the surface thereof. The
charged portion of the photoconductive member is exposed
to a light image of an original document being reproduced. 1-5
Exposure of the charged photoconductive member selec-
tively dissipates the charge thereon in the irradiated areas to
record an electrostatic latent image on the photoconductive
member corresponding to the informational areas contained
within the original document. After the electrostatic latent 20
image is recorded on the photoconductive member, the
latent image is developed by bringing a developer material
into contact therewith. Generally, the electrostatic latent
image is developed with dry developer material comprising
carrier granules having toner particles adhering triboelectri- 25
cally thereto. However, a liquid developer material may be
used as well. The toner particles are attracted to the latent
image, forming a visible powder image on the photocon-
ductive surface. After the electrostatic latent image is devel-
oped with the toner particles, the toner powder image is 30

transferred to a sheet. Thereafter, the toner image is heated
to permanently fuse it to the sheet.

It is highly desirable to use an electrophotographic
printing machine of this type to produce color prints. In
order to produce a color print, the printing machine includes 35

a plurality of stations. Each station has a charging device for
charging the photoconductive surface, an exposing device
for selectively illuminating the charged portions of the
photoconductive surface to record an electrostatic latent
image thereon, and a developer unit for developing the 40

electrostatic latent image with toner particles. Each devel-
oper unit deposits different color toner particles on the
respective electrostatic latent image. The images are
developed, at least partially in superimposed registration
with one another, to form a multi-color toner powder image. 45

The resultant multi-color powder image is subsequently
transferred to a sheet. The transferred multi-color image is
then permanently fused to the sheet forming the color print.
Hereinbefore, a color printing machine used four developer
units. These developer units were all disposed on one side of so
the photoconductive belt with the other side thereof being
devoid of developer units. A color printing machine of this
type required an overly long photoconductive belt. A pho-
toconductive belt of this type would require eleven, nine-
inch pitches to operate at 100 ppm. A belt of this length will ss
have very low yields when being made in large quantities. In
addition, this results in an overly tall printing machine when
the photoconductive belt is arranged with the major axis
aligned vertically. The requirement of having all of the
developer units or exposure stations on one side of the 60
photoconductive belt is necessary in order to maintain
image-on-image registration. Thus, it is highly desirable to
reduce the overall height of the printing machine while still
maintaining the required image-on-image registration.

Various types of multi-color printing machines have 65
heretofore been employed. The following disclosures appear
to be relevant:

2
U.S. Pat. No. 4,998,145

Patentee: Haneda, et al.

Issued: Mar. 5, 1991

U.S. Pat. No. 5,270,769

Patentee: Satoh, et al

Issued: Dec. 14, 1993

U.S. Pat. No. 5,313,259

Patentee: Smith

Issued: May 17, 1994

U.S. Pat. No. 4,998,145 discloses an electrophotographic
printing machine having a plurality of developer units
adjacent one another on one side of the diameter of a
photoconductive drum.

U.S. Pat. No. 5,270,769 describes a printing machine
having a plurality of developer units disposed on one side of
a photoconductive belt. A cleaning unit is positioned on the
other side of the photoconductive belt. Different colored
developed images are transferred to an intermediate belt.
The resultant composite multi-color image is then trans-
ferred from the intermediate belt to a sheet of support
material and fused thereto. The photoconductive belt is
arranged vertically.

U.S. Pat. No. 5,313,259 discloses a multi-color electro-
photographic printing machine in which a photoconductive
belt is vertically oriented. The machine includes four groups
of stations for printing in cyan, magenta, yellow, and black.
Each station includes a charged corona generator, a raster
output scanning laser assembly, and a developer unit. These
stations are positioned on one side of the photoconductive
belt with the fourth station being disposed on the other side
thereof. Successive different color toner particle images are
formed in superimposed registration with one another on the
photoconductive belt and transferred to a copy sheet simul-
taneously. Transfer occurs at the lowermost position of the
photocoLductive belt.

In accordance with one aspect of the features of the
present invention, there is provided an electrophotographic
printing machine including an elliptically shaped photocon-
ductive belt having a major axis and a minor axis. N image
recording stations are positioned on one side of the major
axis and N-1 image recording stations are positioned adja-
cent the other side of the major axis to record electrostatic
latent images on the photoconductive belt.

Other aspects of the present invention will become appar-
ent as the following description proceeds and upon reference
to the drawing, which is a schematic, elevational view
showing a single pass multi-color printing machine archi-
tecture.

While the present invention will hereinafter be described
in connection with a preferred embodiment thereof, it will be
understood that it is not intended to limit the invention to
that embodiment. On the contrary, it is intended to cover all
alternatives, modifications and equivalents as may be
included within the spirit and scope of the invention as
defined by the appended claims.

For a general understanding of the features of the present
invention, reference is made to the drawing. In the drawing,
like reference numerals have been used throughout to des-
ignate identical elements.
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Referring now to the drawing, there is shown a single pass
multi-color printing machine. This printing machine
employs a photoconductive belt 10, supported by a plurality
of rollers or bars, 12. Photoconductive belt 10 is arranged in
a vertical orientation. Belt 10 advances in the direction of 5
arrow 14 to move successive portions of the external surface
of photoconductive belt 10 sequentially beneath the various
processing stations disposed about the path of movement
thereof. The photoconductive belt has a major axis 120 and
a minor axis 118. The major and minor axes are perpen- t0
dicular to one another. Photoconductive belt 10 is elliptically
shaped. The major axis 120 is substantially parallel to the
gravitational vector and arranged in a substantially vertical
orientation. The minor axis 118 is substantially perpendicu-
lar to the gravitational vector and arranged in a substantially
horizontal direction. The printing machine architecture is
includes five image recording stations indicated generally by
the reference numerals 16, 18, 20, 22, and 24, respectively.
Initially, belt 10 passes through image recording station 16.
Image recording station 16 includes a charging device and
an exposure device. The charging device includes including 20
a corona generator 26 that charges the exterior surface of
photoconductive belt 10 to a relatively high, substantially
uniform potential. After the exterior surface of photocon-
ductive belt 10 is charged, the charged portion thereof
advances to the exposure device. The exposure device 25
includes a raster output scanner (ROS) 28, which illuminates
the charged portion of the exterior surface of photoconduc-
tive belt 10 to record a first electrostatic latent image
thereon. Alternatively, a light emitting diode (LED) may be
used. 30

This first electrostatic latent image is developed by devel-
oper unit 30. Developer unit 30 deposits toner particles of a
selected color on the first electrostatic latent image. After the
highlight toner image has been developed on the exterior
surface of photoconductive belt 10, belt 10 continues to 35
advance in the direction of arrow 14 to image recording

station 18.
Image recording station 18 includes a recharging device

and an exposure device. The charging device includes a

corona generator 32 which recharges the exterior surface of 40
photoconductive belt 10 to a relatively high, substantially
uniform potential. The exposure device includes a ROS 34
which illuminates the charged portion of the exterior surface
of photoconductive belt 10 selectively to record a second
electrostatic latent image thereon. This second electrostatic 45
latent image corresponds to the regions to be developed with
magenta toner particles. This second electrostatic latent
image is now advanced to the next successive developer unit
36.

Developer unit 36 deposits magenta toner particles on the 50
electrostatic latent image. In this way, a magenta toner
powder image is formed on the exterior surface of photo-

conductive belt 10. After the magenta toner powder image
has been developed on the exterior surface of photoconduc-
tive belt 10, photoconductive belt 10 continues to advance in ss
the direction of arrow 14 to image recording station 20.

Image recording station 20 includes a charging device and
an exposure device. The charging device includes corona
generator 38, which recharges the photoconductive surface
to a relatively high, substantially uniform potential. The 60
exposure device includes ROS 40 which illuminates the
charged portion of the exterior surface of photoconductive
belt 10 to selectively dissipate the charge thereon to record
a third electrostatic latent image corresponding to the
regions to be developed with yellow toner particles. This 65
third electrostatic latent image is now advanced to the next
successive developer unit 42.

4
Developer unit 42 deposits yellow toner particles on the

exterior surface of photoconductive belt 10 to form a yellow
toner powder image thereon. After the third electrostatic
latent image has been developed with yellow toner, belt 10
advances in the direction of arrow 14 to the next image
recording station 22.

Image recording station 22 includes a charging device and
an exposure device. The charging device includes a corona
generator 44, which charges the exterior surface of photo-
conductive belt 10 to a relatively high, substantially uniform
potential. The exposure device includes ROS 46, which
illuminates the charged portion of the exterior surface of
photoconductive belt 10 to selectively dissipate the charge
on the exterior surface of photoconductive belt 10 to record
a fourth electrostatic latent image for development with cyan
toner particles. After the fourth electrostatic latent image is
recorded on the exterior surface of photoconductive belt 10,
photoconductive belt 10 advances this electrostatic latent
image to the cyan developer unit 48.

Cyan developer unit 48 deposits cyan toner particles on
the fourth electrostatic latent image. These toner particles
may be partially in superimposed registration with the
previously formed yellow powder image. After the cyan
toner powder image is formed on the exterior surface of
photoconductive belt 10, photoconductive belt 10 advances
to the next image recording station 24.

Image recording station 24 includes a charging device and
an exposure device. The charging device includes corona
generator 50 which charges the exterior surface of photo-
conductive belt 10 to a relatively high, substantially uniform
potential. The exposure device includes ROS 52, which
illuminates the charged portion of the exterior surface of
photoconductive belt 10 to selectively discharge those por-
tions of the charged exterior surface of photoconductive belt
10 which are to be developed with black toner particles. The
fifth electrostatic latent image, to be developed with black
toner particles, is advanced to black developer unit 54.

At black developer unit 54, black toner particles are
deposited on the exterior surface of photoconductive belt 10.
These black toner particles form a black toner powder image
which may be partially or totally in superimposed registra-
tion with the previously formed yellow and magenta toner
powder images. In this way, a multi-color toner powder
image is formed on the exterior surface of photoconductive
belt 10. Thereafter, photoconductive belt 10 advances the
multi-color toner powder image to a transfer station, indi-
cated generally by the reference numeral 56.

At transfer station 56, a receiving medium, i.e., paper, is
advanced from stack 58 by sheet feeders and guided to
transfer station 56. At transfer station 56, a corona generat-
ing device 60 sprays ions onto the back side of the paper.
This attracts the developed multi-color toner image from the
exterior surface of photoconductive belt 10 to the sheet of
paper. Stripping assist roller 66 contacts the interior surface
of photoconductive belt 10 and provides a sufficiently sharp
bend thereat so that the beam strength of the advancing
paper strips from photoconductive belt 10. A vacuum trans-
port moves the sheet of paper in the direction of arrow 62 to
fusing station 64.

Fusing station 64 includes a heated fuser roller 70 and a
backup roller 68. The back-up roller 68 is resiliently urged
into engagement with the fuser roller 70 to form a nip
through which the sheet of paper passes. In the fusing
operation, the toner particles coalesce with one another and
bond to the sheet in image configuration, forming a multi-
color image thereon. After fusing, the finished sheet is
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discharged to a finishing station where the sheets are com-
piled and formed into sets which may be bound to one
another. These sets are then advanced to a catch tray for
subsequent removal therefrom by the printing machine
operator.

One skilled in the art will appreciate that while the
multi-color developed image has been disclosed as being
transferred to paper, it may be transferred to an intermediate
member, such as a belt or drum, and then subsequently
transferred and fused to the paper. Furthermore, while toner
powder images and toner particles have been disclosed
herein, one skilled in the art will appreciate that a liquid
developer material employing toner particles in a liquid
carrier may also be used.

Invariably, after the multi-color toner powder image has
been transferred to the sheet of paper, residual toner particles
remain adhering to the exterior surface of photoconductive
belt 10. The photoconductive belt 10 moves over isolation
roller 78 which isolates the cleaning operation at cleaning
station 72. At cleaning station 72, the residual toner particles
are removed from photoconductive belt 10. The belt 10 then
moves under spots blade 80 to also remove toner particles
therefrom.

It has been determined that belt tensioning member 74,
preferably a roll, which is resiliently urged into contact with
the interior surface of photoconductive belt 10, has a large
impact on image registration. Heretofore, tensioning of the
photoconductive belt was achieved by a roll located in the
position of steering roll 76. In printing machines of this type,
the image recording stations were positioned on one side of
the major axis, with at most there being one image recording
device on the other side thereof. Thus, there would be an
image recording device on one side of the major axis of the
photoconductive belt, separated by the tensioning roll, fol-
lowed by four image recording devices positioned on the
other side of the major axis of photoconductive belt 10. It
has been determined that when the height of the photocon-
ductive belt is reduced, requiring two image recording
stations to be positioned on one side of the major axis and
three image recording stations to be positioned on the other
side of the major axis, image-to-image registration deterio-
rated. This has been overcome by changing the location of
the tensioning roll so as to position it between stripping
roller 66 and isolation roll 78 adjacent cleaning station 72.
This configuration enabled image-on-image registration to
be maintained at the same levels as a printing machine of the
previous type, provided that the tensioning mechanism was
interposed between stripper roller 66 isolation roll 78. Ten-
sioning roll 74 is mounted slidably on brackets. A spring
resiliently urges tensioning roll 74 into contact with the
interior surface of photoconductive belt 10 to maintain belt
10 at the appropriate tension.

In recapitulation, it is clear that the present invention is
directed to a printing machine architecture having N image
recording stations positioned adjacent an exterior surface of
the photoconductive belt on one side of the major axis
thereof and N-1 image recording stations positioned adja-
cent an exterior surface of the photoconductive belt on the
other side of the major axis. These imaging stations record
electrostatic latent images on the photoconductive belt.

It is, therefore, apparent that there has been provided in
accordance with the present invention, a printing machine
architecture which fully satisfies the aims and advantages
hereinbefore set forth. While this invention has been
described in conjunction with a specific embodiment
thereof, it is evident that many alternatives, modifications
and variations will be apparent to those skilled in the art.
Accordingly, it is intended to embrace all such alternatives,

6
modifications and variations that fall within the spirit and
broad scope of the appended claims.

We claim:
1. An electrophotographic printing machine, including:
an elliptically shaped photoconductive belt having a

major axis and a minor axis;
N image recording stations positioned adjacent an exterior

surface of said photoconductive belt on one side of the
10 major axis thereof, whereby N is greater than one; and

N-1 image recording stations positioned adjacent the
exterior surface of said photoconductive belt on the
other side of the major axis to record electrostatic latent
images on said photoconductive belt.

15 2. A printing machine according to claim 1, further
including a plurality of developer units, with one of said
plurality of developer units being positioned between adja-
cent said image recording stations, to develop the electro-
static latent images recorded on said photoconductive belt

20 with different color toner to form a developed image on the
exterior surface of said photoconductive belt.

3. A printing machine according to claim 2, further
including a transfer station, positioned adjacent said photo-
conductive belt, to transfer the developed image from said

25 photoconductive belt to a receiving medium.
4. A printing machine according to claim 3, further

including a cleaning station, positioned adjacent said pho-
toconductive belt, to remove material therefrom after said
transfer station transfers the developed image to the receiv-
ing medium.

30 5. A printing machine according to claim 4, further
including a tensioning member, positioned between said
transfer station and said cleaning station and contacting an
interior surface of said photoconductive belt, to maintain
said photoconductive belt in tension.

35 6. A printing machine according to claim 5, further
including an isolation member contacting the interior sur-
face of said photoconductor belt adjacent said cleaning
station between said tensioning member and said cleaning
station.

40 7. A printing machine according to claim 6, wherein each
of said image recording stations includes:

a charging device, located adjacent said photoconductive
belt, for charging the exterior surface of said photo-
conductive belt; and

45 an exposure device for illuminating selected areas of the
charged exterior surface of said photoconductive belt
so as to discharge selected portions of the charged
exterior surface of said photoconductive belt to record
the electrostatic latent images thereon.

50 8. A printing machine according to claim 7, wherein said
charging device includes a charging corona generator.

9. A printing machine according to claim 8, wherein said
transfer station includes:

a transfer corona generator positioned adjacent the exte-
55 rior surface of said photoconductive belt; and

a stripping member, positioned in contact with the interior
surface of said photoconductive belt between said
transfer corona generator and said tensioning member.

10. Aprinting machine according to claim 9, wherein said
60 photoconductive belt moves in a recirculating path.

11. A printing machine according to claim 10, further
including a fusing station, operatively associated with the
receiving member, to fix the image transferred to the receiv-
ing member.
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