
Numerical solution of differential equations
through empirical eigenfunction expansions

by

Peter S. Wyckoff

Submitted to the Department of Chemical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the
Massachusetts Institute of Technology

September 1995

© MCMXCV. Peter S. Wyckoff. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Author ----
Department of Chemai Engi i4Ing

August , 995Certified by - - --- - ---- -- ---- - ---- -- - --- -n--- -- --- -- --.- --
-gorregory J. McRae

--- Joseph R. Mares Professor
Thesis SupervisorR E.

Accepted by

Chairman,
"ASSACHUSETTS INSTITUTE

OF TECHNOLOGY

OCT 0 2 1995

Robert E. Cohen
Committee on Graduate Students

ARCHIVES

LIBRARIES

Numerical solution of differential equations
through empirical eigenfunction expansions

by

Peter S. Wyckoff

Submitted to the Department of Chemical Engineering
in partial fulfillment of the requirements for the degree

of Doctor of Philosophy at the
Massachusetts Institute of Technology

August 11, 1995

Abstract

This thesis considers some common chemical engineering problems in a broad frame-
work and applies knowledge from other fields in simplifying their solutions. The
general theme is to reduce the total time to solution which includes the entire path
from initial model development and analysis through actual simulation and verifi-
cation of the results.

The computational solution of the differential equations in models remains the bot-
tleneck in solution time, especially for models which will be executed multiple times.
such as in an optimization loop or process control algorithm. To remedy this situa-
tion, a system is presented which generates the optimal representation of a problem
given information about its previous solutions and solves the model in the much
smaller coefficient space of the chosen expansion instead of in the physical domain.

Thesis supervisor: Gregory J. McRae
Joseph R. Mares Professor of Chemical Engineering

Contents

1. Introduction 10
1.1 Thesis statement 10
1.2 Chemical engineering modeling 11
1.3 Motivation 12
1.4 Objectives. 13
1.5 Thesis outline 13
1.6 Acknowledgments 14

I Mathematical analysis, modeling, and implementation
2. Topology of a flow 17

2.1 Flow geometry 17
2.2 Equations of fluid motion 18
2.3 Mapping 18
2.4 Euler-Poincar6 characteristic 21
2.5 Index of a singularity 21
2.6 Connection 23
2.7 Acceptable flows. 23
2.8 Extensions 26
2.9 Conclusion 27

3. Unsteady catalysis 28
3.1 Motivating example 28
3.2 Nonlinear analysis 30
3.3 Conclusion 33

4. Data analysis 36
4.1 Vibrating string 36

4.1.1 Introduction 36
4.1.2 Experimental setup and data set description 37
4.1.3 A synchronized empirical model 39
4.1.4 Template identification 44
4.1.5 Symbol plane 47
4.1.6 Periodic orbit spectra 49
4.1.7 Concluding remarks 52

4.2 Further applications 52

5. Representation 54
5.1 Optimal functional mapping of reactive systems 55
5.2 Subexpression superoptimizer 61

5

II Optimal field representation
6. Differential equation solving: previous approaches 67

6.1 Parameterization 67
6.2 Multigrid and adaptive grid methods 68
6.3 Wavelet finite elements 68
6.4 Faster machines 69

7. GalErkin methods 70
7.1 Background 70
7.2 Method of weighted residuals 71
7.3 Variational formulation 73
7.4 Choice of basis 74

7.4.1 Finite elements 74
7.4.2 Spectral methods 75
7.4.3 Finite differences 75
7.4.4 Wavelet bases 76
7.4.5 Problem-specific basis functions 76

8. Basis computation 77
8.1 Previous solutions 77

8.1.1 L2 -optimal basis generation 78
8.1.2 General overview .. 81

8.2 Coping with a lack of information 84
8.3 Static error determination 84

8.3.1 System-generated error 84
8.3.2 Basis-generated error 87

6

III Use of optimal bases in integration
9. System conversion 93

9.1 Ordinary differential equations 93
9.1.1 Non-polynomial nonlinearities. 99
9.1.2 Inhomogeneities 101

9.2 Partial differential equations 101
9.3 Boundary conditions 103
9.4 Bulk motion transforms 103
9.5 Automatic conversion . 115

10. Dynamic error tracking 116
10.1 Initial condition error 116
10.2 Projection error . 118
10.3 integrator error . 119
10.4 Conclusion 121

11. Numerical results . 123
11.1 Three-reaction ozone 123
11.2 AIRSHED chemistry 126
11.3 Burgers' equation 140
11.4 Bootstrap Burgers' equation 144
11.5 Iterative matrix solutions 149
11.6 Conclusion 151

7

12. Summary 152

13. Appendices 153
13.1 All the tools 15313.1.1 Preparing for a basis space integration 153

13.1.2 Mechanism parser: parse 153
13.1.3 Fields control file: fields. 158
13.1.4 Integrator executable 162
13.1.5 appendbasis. 163
13.1.6 basismul . 163
13.1.7 basisproj 163
13.1.8 compare 164
13.1.9 constant 164
13.1.10 deriv . .. 164
13.1.11 discrete 164
13.1.12 dropbytes 164
13.1.13 expand 164
13.1.14 fcat 165
13.1.15 fieldascii.. 165

13.1.16 headbasis 165

13.1.17 headbytes 165

13.1.18 loglO 165
13.1.19 makebasis 165
13.1.20 makeorthtog 166
13.1.21 normalize. 166
13.1.22 orthbasis 166
13.1.23 power 167
13.1.24 projgoodness 167
13.1.25 project 16713.1.26 select 16813.1.27 snap 168
13.1.28 stretch 168
13.1.29 subtract 168
13.1.30 testbasis 169
13.1.31 toascii. 169
13.1.32 writeints 169
13.1.33 zeros 169

8

13. Appendices (continued)
13.2 Behind the scenes . 169

13.2.1 Mechanism parser 170
13.2.2 Basis generator . 171

13.3 Compiler technology 172
13.3.1 xmap 173
13.3.2 chemap 175

13.4 Documentation175
13.4.1 Introduction. 175
13.4.2 Uncommented code . 176
13.4.3 Code documentation using internal comments 176
13.4.4 Documented code using TX 17713.4.5 Simple UNIX Documentation 182
13.4.6 Automatic retrieval of internal documentation 182
13.4.7 Source control. 183
13.4.8 Conclusion 183

14. References 184

9

Introduction

1.1 Thesis statement
The complexity of chemical engineering processes has been steadily increasing over the lifetime of
the field due to increased scientific understanding of the underlying physics, more sophisticated
demands from consumers of manufactured items, and expansion of the field itself into novel areas of
operation. As a result of this continual advancement, the characteristics of basic research in chemical
engineering are changing to continue to be able to provide the field with new ideas. These include
delving into uncharted areas of work: using new substances, developing revolutionary operating
techniques or managing old plants in new ways, and relying more on pre-construction design and
modeling.

Chemical engineering has always been considered an interdisciplinary field, drawing on knowl-
edge from chemistry, operations research, mechanical engineering, and others. Appealing to the
more pure sciences is quickly becoming the vogue, especially considering the benefits that it often
brings. In particular, there is a large literature of research on strictly theoretical mathematical
problems which have no obvious physical applications but a knowledge of the foundations of this
body of work may yield insights during analysis of an engineering problem.

This thesis considers some common chemical engineering problems under a more general frame-
work in which knowledge from other fields may be readily employed. An overriding theme in the
topics to follow is that of reducing the total time to solution. This is defined as the real time required
to complete a problem, starting from problem inception through development of a model, validation
and verification, execution of that model, plus design iterations which may reformulate the original
goal itself, as illustrated in Figure 1. In fact the answer to a given problem may very well be that the
question itself should not be asked. Traditional research too often falls into the habit of accepting
as given the assumptions in the problem statement and making advancements in only the narrow
regime defined by those constraints, when often there is much to gain by considering the larger
picture.

Considering the vertical flow in Figure 1, initial considerations of a given problem should start at
the highest possible analytic stage, and use any of a wide array of mathematical analysis techniques
and modeling capabilities. This first means of attack may provide properties useful in later stages,
such as symmetries or qualitative rules of thumb. Analysis of data produced by similar models or real
physical processes may enter into the modeling stage as well. Next, since the lifetime of chemical

10

§1.2 Chemical engineering modeling

Problem

Design iterations

results

Figure 1. Conceptual illustration of the various facets involved in chemical engineering problem solving.

engineering models tends to be much longer than that of any particular piece of computational
hardware, consideration must be given to choosing the best representation of a problem, independent
of any particular architectural design. This representation will ideally use information learned from
the first stage of analysis. and be optimal for the specific problem. The final stage is to produce
actual results by mapping the chosen problem representation onto available hardware, optimizing its
method of execution, and solving. The results can be used to guide further iterations of the design.
The crucial concepts of parsing and documentation enter into both the representation and mapping
stages as additional constraints: choose the language such that it is as natural as possible, and make
the documentation of the process easy and complete.

1.2 Chemical engineering modeling
The models used in chemical engineering have enough common features to set them apart from
generic modeling efforts. First. due to the all-encompassing nature of the field. a whole range of
disparate physical processes often must be considered: convective transport. diffusion, chemical
reaction, radiative heating, and many others. The implication of dealing with more than a few of
these at once is that common simplifications cannot be applied to the phenomena independently.
magnifying the complexities inherent in any single process.

A browse through a few recent issues of AIChE Journal shows how far this field has wandered
away from standard BSL*-style analysis. The first set can be classified as advanced uses of BSL

* A classic text by Bird, Stewart, and Lightfoot [19].

11

Chapter 1. Introduction

and include residue curve maps in reactive distillation [139], mathematical solution techniques of
diffusion-convection-reaction in multicomponent mixtures [57], and using optimization to synthesize
nonequilibrium reactive distillation processes [32]. The second class is that of new techniques and
contains two papers using molecular models to derive pure component properties and vapor-liquid
equilibria [35, 78]. Next are new materials, namely supercritical water [144]. Finally is a paper which
brings together the fields of chemistry, physics, and biology in explaining the leaching of ores [13].
These examples serve to illustrate the necessity of broadening one's background in doing research in
chemical engineering, and suggest a more interdisciplinary future.

Chemical engineering models tend to be, in general, rather large. Furthermore the models
are not written to be used only once, but instead to be placed inside larger structures, such as an
optimization loop or model-predictive controller. Even without a formal optimization procedure,
the models will be invoked many times during testing and validation as well as when new data
are received. This extensive reuse of any particular model is what makes the use of an empirically
derived basis space advantageous, as will be discussed in later chapters.

1.3 Motivation

Problem solving in chemical engineering involves a number of steps: proper identification of the
problem, its description in the appropriate mathematical language, analyzing that description to
ascertain characteristics which suggest or constrain the choice of solution method, generation of the
computational solution method, and finally, an application. That final executable is not the end
of the project-output from it will indicate problems or inaccuracies in the model which leads to
further design iterations. Overall development time must be the metric for gauging the requirements
of a problem solution, not simply the execution speed of the final model. Furthermore, if the model
is to be at all useful to those other than its developer, documentation of the model plays a crucial
role all the way from problem identification down to the source code itself. Brian Kernighan showed
the sizes of the program awk and the accompanying documentation [73]: 3000 lines for the program
source code in about eight major sections, and 50000 lines worth of manuals, change lists, and
test problems. In light of this, a major emphasis in this thesis is the hierarchical organization of
the various (and numerous) components which are necessary to implement a field-based integration.
This organization includes, of course, many user guides and examples, and switches to produce either
easily readable and alterable output, or output which is highly optimized for speed, attempting to
offer the best of both worlds.

In spite of the above discussion about reducing the total time to solution, however, the bottleneck
in the use of current models is frequently in the differential equation solvers. The emphasis lies on the
word use, suggesting repeated invocations of the model after the initial development stage has been
completed. This is the case since many models are used as the inner loop of some larger framework.
One example is an atmospheric chemistry model which was used inside an optimization code to
determine what the ground-level emissions should be to match observed pollutant concentrations.
The model, which takes roughly 80 CPU minutes to solve on a single-processor Cray 90, is invoked for
each search position chosen by the line search loop and by necessity must be fast for the optimization
to be even feasible. Another example is a model of a chemical vapor deposition reactor including a
complex set of chemistry, transport, and heating by both radiation and convection, which is used in
a real-time controller to maintain chip temperature by adjusting heat lamp input. The time scale
of the entire process is no more than two minutes, greatly constraining the execution time available
for the model. In general complex chemical engineering models are often run repeatedly with rather
similar parameters, such as initial conditions and reaction rate constants, and this consistent reuse
allows for the construction of a solution method which takes into account the knowledge of these
previous solutions in future calculations.

12

§1.5 Thesis outline

1.4 Objectives
The goal of this thesis at the outset was to bring about a radical change in the way differential
equations are solved numerically by incorporating all the available knowledge of the problem. Models
of interest are those which need to be simulated repeatedly, perhaps inside an optimization loop or
model predictive controller. To do this requires three major steps: development of the theory behind
the method, implementation of that theory, and examination of numerical results.

The theoretical issues involved begin at the choice of representation of the system. The way in
which the equations are written down determine the structure of the problem and set up character-
istics of its execution, hence great care must be taken in choosing a representation that is robust
across the set of problems considered as well as optimal for any single problem. Numerical issues
arise regarding the implementation of a chosen representation, including convergence, stability, and
numerical round-off error tolerance, and must be considered in the theoretical stages such that
support will be available to the implementation.

Implementation of large numerical solutions of differential equations is a complex process in-
volving the participation of many modules and transformation utilities, and is inherently an iterative
procedure. The general system design is worked out before coding begins. but unforseen complica-
tions are bound to arise. Overriding themes in the implementation of any section of the modeling
process are

1. Modularity. Conceptually distinct components of the process must be kept apart, either
through the use of multiple small executables or just placing groups of functions in separate
source files.

2. Reusablity. Any part of the implementation, taken individually, must be self-contained and
easily understandable. Furthermore, no section may be implemented in more than one place.

3. Efficiency. Although this requirement sometimes seems at odds with the first two, the whole
goal is to speed up differential equation solution strategies. Crucial sections should be written
automatically by an optimizing pre-compiler which handles the per-problem details. guided by
more natural high-level language descriptions of the model. Input and output is all through
the use of binary files, but utilities to convert between this and an ASCII representation will be
available.

These themes also ensure that the results will be easily accessible and usable by others.
Finally. actual numerical results will be generated to verify the success of the method and

suggest further avenues for improvement. Example implementations are the best sort of illustration
of the method as well.

1.5 Thesis outline
This thesis is organized into three major parts. as designated by the three topics in the backbone of
Figure 1. The first part discusses four related ideas of mathematical analysis and modeling. First,
given a model and its boundary conditions, symmetries of the domain are shown to limit qualitatively
the class of possible flows using topological analysis. The second topic considers numerical probing
of a model to classify the various modes in parametric space, and using that classification to suggest
improved operating strategies. Next a type of system identification is presented, where the model
is generated directly from the data and is constrained by topological parameters of the template
underlying the data. The final topic in the first part has two major sections dealing with the problem
of choosing the optimal mapping strategy of a simulation onto underlying computational hardware.

The second part is concerned with how to choose the optimal representation for a problem, the
second major step in a full problem solution strategy. Previous approaches to differential equation
solving are considered, then the focus is narrowed to Galerkin methods in particular, which will be
seen to encompass the majority of the commonly employed schemes. The success of any Galerkin
method depends strongly on the appropriateness of the choice of test and trial functions used in

13

Chapter 1. Introduction

the expansion. The final chapter shows how to choose optimal functions given a history of previous
solutions of the problem and its constraints.

The actual solution of a complex model always reduces to numerical computation, and accord-
ingly, the final part of this thesis explains how to use the results of earlier sections in implementing
integrations of differential equations. The major concerns here are conversion of the system equations
into the optimal representation chosen for the problem and the ability to track errors dynamically
during a simulation. Numerical results and timing information are presented for a variety of prob-
lems.

1.6 Acknowledgments
This work was directly supported by the Computational Science Graduate Fellowship Program of the
Office of Scientific Computing in the U. S. Department of Energy. Additional funding was provided
by the following: Cray Research, National Science Foundation, U. S. Environmental Protection
Agency, Pittsburgh Supercomputing Center, and Digital Equipment Corporation.

14

Part I

Mathematical Analysis,

Modeling,
and
Implementation

The time evolution of differential equations in general describes a wide class of phys-
ical situations, and techniques to follow this evolution are sufficiently mature that
there is little novelty in such an analysis. Neither, however, is there much qualita-
tive information to be gained. Other fields of mathematics provide alternative ways
of studying the features of a problem and may prove beneficial before invoking the
standard time evolution analysis.

The following four chapters present different aspects of mathematical analysis tech-
niques used in modeling. The first is a topological study of a class of fluid flow
problems, where the equations themselves are used to restrict qualitatively the be-
havior of the system. The second is a geometric approach to a bifurcating catalytic
system, in which the model equations are probed numerically to find character-
istic operating regimes depending on parameters in the model. Next, data from
an existing system is used to discover the underlying model, and characterize it
topologically, working backward from the usual modeling sequence. Finally, the ac-
tual implementation of a given model on high-performance distributed computers
is considered, as eventually all but the most qualitative modeling efforts reduce to
numerical computation.

Topology of a flow

Before embarking on any sort of numerical analysis of a problem, it is often worthwhile to study it
from a more abstract perspective. There may be special symmetries to exploit, or the problem may
have already been considered by others, only under a different name. Palis [108] says in his book on
dynamical systems:

The qualitative study of a differential equation consists of a geometric description of its
orbit space. Thus it is natural to ask when do two orbit spaces have the same description,
the same qualitative features; this means establishing an equivalence relation between dif-
ferential equations. An equivalence relation that captures the geometric structure of the
orbits is what we shall define below as topological equivalence.

This section describes such a study of a particular class of fluid flow.
Flow geometries in which the fluid flow may be characterized by closed streamlines, that is a

constant enclosed volume of fluid, lead to a surprisingly wide variety of problems. In this section,
only two-dimensional geometries of unit aspect ratio are considered for ease of presentation but this
should not limit the general applicability of the ideas presented. In fact, more complex geometries
would be an interesting test of the validity of the results obtained using a square domain.

2.1 Flow geometry
The flow geometry under consideration is presented in Figure 2, where a fluid is contained by two
immobile walls on the sides and two movable ones on the top and bottom, all of equal length. V1
and V2 may take on any values, and be in the same or opposite directions. The moving walls are
taken to be infinitely long such that the system may remain at steady state forever. The depth
of the container (into the page) is considered zero for now, although it will be shown later what
further solutions are allowed for a three-dimensional configuration. Also it is assumed that the fluid
is Newtonian and that temperature effects are unimportant. For the case in which V and V2 are in
opposing directions and of approximately equal magnitudes, one prediction is that the flow might
resemble what is presented in the figure, with a stagnation point near the center.

For varying values of V and V2, one may imagine that other more complicated flow patterns
are possible, like that shown in Figure 3. The small circles represent points of flow stagnation. In
this case there are three points in the interior of the flow volume where zero fluid velocity will be
found in addition to others on the stationary walls where shear stress along the wall changes sign
due to the divergence of flow at those points. The four stagnation points in the corners are common

17

Chapter 2. Topology of a flow

t ,,)I 1

V~..t .fllllllllllllllllllllll 1111 --
V~~t2t V7

V1

Figure 2. Container geometry with a likely flow. Figure 3. Another flow.

to all flows in this geometry due to the discontinuity of flow there required by the abrupt change of
boundary conditions.

2.2 Equations of fluid motion
For an incompressible fluid with constant density and viscosity under the effect of no external forces
other than the four walls, and Newtonian behavior, the following equations completely describe the
flow:

v = (continuity)

Dv
PD = -p + tV2v (motion)Dt

with these boundary conditions:
at x = O0, vy = =0
at x = L, vy = 0
at y = 0, v = V2

at y = L, v = V1

where L is the length of a side of the square and the origin of the coordinates is taken at the lower
left corner of the box.

These equations are not solvable analytically although Weiss and Florsheim [140] present so-
lutions for two special cases, using the assumption that vorticity is constant along streamlines ne-
glecting convection of vorticity, v Qv. The resulting linear equation can be solved and predicts a
single center as in Figure 2 for the case V2 = 0 or two symmetrically located centers for the case
that both plates are moving at the same rate in the same direction (Figure 11).

Due to the nonlinearity in the term on the left side of the equation of motion, a single solution is
not guaranteed for the problem. Bozeman and Dalton [22] applied various numerical methods to the
unapproximated problem and give some example results, copied in Figure 4. Pan and Acrivos [109]
have shown numerically, using the same method as Burggraf [29], and experimentally that multiple
solutions do indeed occur (Figure 5).

2.3 Mapping
A convenient method to study this problem involves considering the two-dimensional vector field of
velocity at any point in the square as the tangent vector field of some two-dimensional manifold. In
order to perform this transformation, it is convenient (and necessary) to replicate the flow geometry
first. Let the original square be duplicated by placing its mirror image beside it and adjoining two
stationary edges, as in Figure 6 where the moving plates have been designated by a single or double
arrowhead and the immobile ones by a single slash each. (Here is one reason for restricting the

18

§2.3 Mapping

0.

0.;

0.7

z0

:009

0.3

0.

0.1

0

z
0
5
619

X- DIRECTION X- DIRECTION

Figure 4. Example numerical solutions from Bozeman and Dalton [22]. (a) single center; (b) two
centers with two half-hyperbolas on opposite walls.

Figure 5. Photographs

with two divergences on
high Reynolds number.

from experiments by Pan and Acrivos [109]. (a) single center; (b) two centers
opposite walls; (c) development of a third vortex with two more divergences at

problem to two-dimensional flows: it is not intuitively obvious to the observer trapped in a three-
dimensional world how to "fold" the cube out of its volume in order to construct a mirror image.)
Repeating this procedure once more results in the final drawing in the figure and conceptually four
identical systems have been oriented as shown by rotating them and reversing the signs of l or V2
where necessary to effect the flips. No changes have been made to whatever flow field may have
been inside the containers originally.

From algebraic topology (see Kosniowski [79] in particular), two topological spaces X and Y are
homeomorphic if there is a continuous invertible function f such that f : X - Y and f -1: Y - X.
That is, if f is applied to every point in X. the space Y is obtained. and applying the continuous

19

1 1

0.6

0.5

0.4

Chapter 2. Topology of a flow

K

Figure 6. Sequence of flips.

20

_

"tse -(• e'el_ ~ ef

\ : · · · ·.......................
· I · e

· .*2"'* · .O

· <

'B I .. '0P.l0· I · d
00 0 0 · 0

7..>'

S

A!-.

....
I _

100O, ME

§2.5 Index of a singularity

inverse f-1 to Y returns the original X. As a simple example, a square {(x, y) = ±41,-1 < y <
1 and y = ±1,-1 < x < 1 } may be pulled into a rectangle of six times the area by the function
f(x, y) = (2x, 3y), and the rectangle may be pushed back into a square by g(x, y) = (x/2, y/3)
where g - - 1 . Notice that "corners" may be added to apparently smooth spaces and vice versa,
still fulfilling the requirements for homeomorphism. f(x, y) = (x/m, y/m) where m = max(JxJ, lyJl)
will flatten out the unit circle into the unit square while g(x, y) = (x/r, y/r) where r = /x 2 + y2

achieves the inverse.
Intuitively two shapes are homeomorphic if one can twist, bend, stretch, or shrink one into the

other without joining sections or making cuts in the process. For example, the series of homeo-
morphisms depicted in Figure 7 fold the final square of Figure 6 into a torus. The first operation
is just stretching the replicated systems out of the page to form almost a cylinder (where internal
line segments have been omitted for clarity). The second operation involves the use of topological
identification whereby the equivalence classes of a space are obtained by applying a certain equiva-
lence relation. In this case, the equivalence relation is simply that both the left and right edges of
the first drawing represent identical stationary edges so they may be joined together. Next comes
a stretching of the cylinder such that the edges almost touch, then an identification of those edges
which represent the same moving plate (V) with the two seams separating the opposite directions
from each other. (The seams are again not shown but would be circles running the long way around
the torus.)

To summarize the whole procedure, the square with two moving plates was copied into four
adjoining squares then that larger square was stretched in such a way as to form a torus, sewing
up the edges by identification of the equivalences of those edges. Now topological properties of the
torus may be employed to give solutions of the original problem.

2.4 Euler-Poincare characteristic
It can be shown that every compact manifold has a decomposition into smaller solids of the same
dimension. (See O'Neill [104] for references to a proof.) The most useful decompositions employ
regular shapes, as will be seen shortly. In particular, the torus is a two-dimensional compact manifold
and can be constructed by gluing together enough sufficiently small rectangles in the appropriate
way. Each of these rectangles has one face, four edges, and four vertices, by way of definition.
The Euler-Poincard characteristic of a manifold is defined as v - e + f where v is the number
of vertices, e is the number of edges, and f is the number of faces of some decomposition of the
manifold. This characteristic is an example of a topological invariant which is a property preserved
by homeomorphisms.

For example, a cube has 8 vertices, 12 edges, and 6 faces so its Euler-Poincar6 characteristic
x(C) = 8 - 12 + 6 = 2. A tetrahedron has x(R) = 4 - 6 + 4 = 2 also. Notice that "inflating"
either shape results in a sphere, which must also have x(S) = 2 due to the nature of the "inflation"
homeomorphism.

For the more conceptually difficult case at hand, the torus can be pictured as the revolution of
a circle about a non-intersecting line in its plane then three distinct circles which are swept out can
be chosen. Replacing them with triangles and connecting similar points forms a three-dimensional
solid, effecting a decomposition of the torus into rectangles. This solid has 9 vertices, 18 edges, and
9 faces so a torus must have x(T) = 9 - 18 + 9 = 0.

2.5 Index of a singularity
A vector field on a manifold is defined as a function that assigns to each point of the manifold one
of the tangent vectors at that point, where the tangent vectors are simply the set of tangents to all
curves passing through the point. In mapping the flow problem from a flat square into the torus, the
velocity vectors at each point in the square may be taken as a vector field on the torus. Stagnation

21

Chapter 2. Topology of a flow

,b q, q,

Figure 7. Twisting a square into a torus, with identifications.

22

I -- - I

- ~~ - - - d r --NW

I

f

§2.7 Acceptable flows

points of the flow in the square do not assign a tangent vector to their corresponding points on the
torus, and are called singularities of the vector field on the torus due to the indeterminate nature of
the mapped point. Each of the small circles in Figures 2 and 3 becomes a singularity when mapped
to a torus; in complex analysis they are called "zeros."

Poincar6 has defined the index of a singularity. (Stoker [127] contains a reference.) Consider
a simple closed curve which has at most one singularity in its interior and none on its boundary.
The angle, which an arrow representing the vector field at each point on the curve, will continuously
change as the curve is traced out. On making one circuit in the counterclockwise direction the angle
changes by an amount 27rj where j is the index of the enclosed singularity. In accordance with the
definition, the index of singularity about a region which is nonzero everywhere is zero. A "center"
or "spiral" has index +1, regardless of the direction of rotation. A "source" or "sink" also has index
+1, the name depending on whether the fluid is entering or leaving the point. A "hyperbola" has
index -1. (See Figure 8.)

In fact, Milnor [91] states that the index of the vector field at a non-degenerate zero is t±1
depending on the sign of the determinant of the matrix of derivatives evaluated at the zero. This
gives another way to calculate the index. An example of a degenerate zero is the "clover" given in
Figure 8.

2.6 Connection
Lefschetz [81] performs a complex derivation of the fact which will link together the concepts of index
of a singularity and characteristic of a manifold. The proof is much too lengthy and dependent on
a large background of information about fixed point theory in general to present here. It suffices
simply to summarize that the sum of the indices of all the zeros of a vector field on a manifold is
equal to the Euler-Poincar6 characteristic, x(M), of that manifold. Milnor [91] also asserts the same
fact without proof.

This apparently simple statement is what will allow the determination of all possible solutions
of the flow problem by just counting up all the different types of stagnation points.

2.7 Acceptable flows
From the previous sections, there is a set of conditions which provide information about flow fields
which satisfy the equations of motion. Considering the construction of streamlines on the four-fold
system in Figure 6:

1. No fluid is permitted to flow across the perpendicular lines which represent edges
of distinct systems.

2. Vector fields must be symmetric about both internal lines.
3. The sum of the indices of all stagnation points must be equal to zero.

The first and second conditions stem from the method in which copies and flips were performed
to obtain the diagram. The third is the crucial result from algebraic topology which applies over
the whole torus (represented by the four-square) and over the original system due to the induced
symmetry. (If the problem had been mapped to a different manifold with non-zero characteristic,
then it would be necessary to divide that value by four to obtain the sum of indices in an individual
square.) Note that any solution to the equations must satisfy these conditions, but vector fields
obtained from the conditions may not necessarily be physically realizable flows. Only the qualitative
nature of attainable flows can be gathered from this method, not exact velocities.

Using such a diagram is simply a convenience to ensure symmetry and aid in visualizing possible
flows. Consider the example in Figure 9. First it must be recalled that due to the boundary
conditions where the moving walls meet the stationary ones, divergent (hyperbolic) stagnation points
must be placed in all four corners of each box. This "empty box" can not be a possible flow since it
does not satisfy condition number three. Each divergent point counts for -1 in the summation, but

23

Chapter 2. Topology of a flow

a) Constant vector field, j = 0. b) Hyperbolic zero (saddle point), j = -1.

d) Clover point, j = +2.

e) Center zero, j = +1.

Figure 8. Examples of stagnation point singularities.

f) Spiral zero, j = +1.

24

C

- -
-

- -
-

1

I--,"

11�

1.11

§2.7 Acceptable flows

the ones on the edges contribute only - and the corners only - 4. This can be seen by replicating
the system under discussion four more times to make a sixteen-fold set of boxes. Picking any two
adjoining four-boxes and computing their index sums and that of the total system will show on
comparison that each half-circle must have the same index, and that two half-circles have an index
of -1. This process may be continued to obtain the index number of the quarter circles as well. The
characteristic number of one cell of interest is therefore 4 x - = -1 0.

Figure 9. Building a flow, first an empty box.

In order to make this sum zero, it is necessary to add more stagnation points. One obvious
choice is a single center of rotation, placed arbitrarily. Due to the symmetry condition, that center
must appear in each of the other squares as well (Figure 10). Since a center has index +1, Figure 2 is
an acceptable flow pattern, and has been observed both numerically (Figure 4a) and experimentally
(Figure 5a). In fact, the location of the center depends on physical properties of the fluid, size of
the box, and velocities of the plates.

A 0

Figure 10. Adding one center zero symmetrically.

It is informative to see what happens when more singularities are added. The necessity of
replicating across the internal edges is merely a formality which may be dropped as long as the
original reasons for choosing such a geometry are kept in mind. First, another center, placed at
random, requires another divergent point, or parts of one. The resulting flow as illustrated by
arrows in the direction of motion (Figure 11) may not seem obvious working under the original
illustrations with V and V2 in opposite directions, but has been observed when the plates move in

25

19 k A

Chapter 2. Topology of a flow

Figure 11. A two-center flow with plates moving in the same direction.

the same direction (Figures 4b and 5b). Adding more centers and hyperbolic zeros in pairs gives rise
to further and more complicated flow patterns, justifying Figure 3 and corroborating with Figure 5c.

2.8 Extensions

It is plausible to believe that this method may be applied to three-dimensional geometries in much
the same manner. Figure 12 shows a flow which fits the criteria above and has intuitively the correct
shape, where the two centers have been replaced with a source point and a sink point. It can be
imagined that the fluid is rotating in the same fashion in every plane parallel to the page, with the
sources and sinks smoothly varying. A source of magnitude S in the topmost plane becomes a sink
of the same magnitude in the bottom plane to conserve the total amount of fluid in the volume.

AM pa

Figure 12. Two-dimensional slice of a possible three-dimensional flow.

No proof is offered to support this suggestion here but it would involve performing a similar
type of mapping except that instead of taking a rectangle onto the torus, the new mapping would
take the cube of volume onto some three-manifold embedded in four-space. Pan and Acrivos [109]
support this speculation by observing that the "presence of three dimensional fluid motions ... did
not extend into mid-section where to all appearances the flow was indeed two dimensional." They
had been worried that their two-dimensional results may have been jeopardized by the non-zero
depth of their experimental system and confined all measurements to a plane in the middle.

A spiral center has not been shown in any of the diagrams but it may be considered as just a
variation on the source or sink, depending on whether the fluid converges to or diverges from the
point, and drawn similarly as in Figure 12 except with rotating fluid elements in the vicinity of the
spiral. Other types of zeros are also possible when allowed an extra dimension, except that calling
them "stagnation points" is somewhat a misnomer now. Still given any plane containing such a
zero, an analog to one of the traditional points may be seen.

26

_

J

_` 1 P

-r n

§2.9 Conclusion

2.9 Conclusion
The presentation just completed connects two fields which rarely have any common interest: alge-
braic topology and incompressible fluid flow, to obtain a description of the restrictions placed on the
fluid flow system generated by the mathematical space in which the problem lies. Abstract analyses
such as the one demonstrated here provide an extra level of knowledge about a problem beyond that
normally given by consideration of the system in its own well-defined regime.

Another application of algebraic topology in determining the -'ualitative structure of a problem
is presented by Doherty [39], who finds conditions under which the presence or absence of ternary
azeotropes may be determined by knowing the number and stability type of any binary azeotropes
and the pure components in a three-component residue curve map.

27

Unsteady catalysis

A typical chemical engineering activity is the modeling of complicated systems by a series of math-
ematical equations which may then be manipulated in this abstract form to gain information about
the system at hand. Quite often these equations will be nonlinear, and require the application of
various assumptions and approximations before they are able to be solved. Characteristics of the
resulting simplified equations may be products of the reduction method itself instead of actual repre-
sentations of the physical system. In particular, bifurcation theory provides a method of classifying
behavior near singular points and will be used to describe a model of CO oxidation on single crystal
platinum surfaces.

The literature of chemical engineering abounds with situations where nonlinear analysis has
been used to better understand the basic structure of physical processes. For example, the Lorenz
equations [83] are a highly simplified form describing atmospheric motion, and exhibit chaotic be-
havior when analyzed. These model results do not support reality in this case due to exclusion
of stabilizing damping terms, and erroneously predict that the presence of a butterfly in Japan,
for instance, may influence storm formation in the Atlantic Ocean. Another interesting case is the
Belousov-Zhabotinskii [146] reaction sequence, named after those who first noted experimentally
this oscillating liquid-phase system. A complete mechanistic examination of the species present and
the reactions they might possibly undergo leads to fourteen ordinary differential equations which do
not reproduce the observed behavior. With reduction of the system down to seven or less equations
using knowledge about the rates of reaction [137, 121, 45], systems exhibiting the proper behavior
can be constructed.

With the ever-increasing availability of computer-aided modeling tools, the use of nonlinear
analysis in chemical engineering systems may be extended to the realm of process design. One
example is the development of control strategies to utilize knowledge about the underlying structure
of the system itself. A detailed investigation of a catalytic reactive process, including asymptotic
stability analysis of the governing differential equations, reveals that an oscillatory control strategy
will substantially improve performance.

3.1 Motivating example
The conversion of pollutants to form more acceptable by-products in industrial reactions is a popular
pursuit, with the goal being to eliminate harmful species such as carbon monoxide and nitric oxide at
the highest possible rate. Fick et al. [44] describe the reaction of NO and CO on a Pt(100) catalyst,

28

§3.1 Motivating example

and observe damped oscillations for certain sets of operating parameters. They also noticed hysteresis
depending on the direction of a temperature ramp applied to the system. To promote their studies
to the regime of industrially feasible operations, it is necessary to find out why these phenomena
are occurring and how to remove or avoid them. Another question which should be asked is, "Do
we really want to avoid these oscillations?"

The experimenters' observations constitute the "real world" which can be coerced into a mathe-
matical form by making suitable approximations. Typical of these are the continuum approximation
for the gas phase, and the assumption of a homogeneous substrate, but it should be realized that
our everyday philosophical tradition imposes even more structure on the mathematical forms.

A mathematical system of partial differential equations may be written down by considering all
the possible effects on the system: concentration and temperature gradients in the catalyst and gas
phases and between, and reactions between the participating species in all phases. Knowledge about
the system suggests assumptions which permit reduction to coupled ordinary differential equations.
For this case, everything except three surface reactions and the gas to solid adsorption and desorption
of NO and CO is neglected. Fick et al. propose a set of kinetic equations which will be used for
later analysis which is illustrated graphically in Figure 13.

CO C02 NO N2

catalyst site
Figure 13. Reaction of NO and CO on Pt(100).

The equations describing this mechanism can be immediately written down using standard
mass-action kinetic relations, here in terms of surface coverages:

9co = kpco(l - co - N) - k2 co - k3Ocoo0
9 NO = klPNo(1 - CO - NO) - k4ONO - k5ONOempty

9 = k50NOOempty - k30co0o

where

Oempty = max {1 - On h i }nh , 0

and ' denotes differentiation with respect to time. The inhibition coverages represent the require-
ment of auxiliary empty sites for the dissociation of NO and are given in Fick as 0.6 for NO and CO
and 0.4 for oxygen. A further assumption is that the presence of adsorbed nitrogen has no effect, since
is desorbs practically instantaneously after NO dissociation. Fick et al. report values for the ki in Ar-
rhenius form with activation energies as a function of coverage: Ei = E °-24 kcal/mol (co + -ONo)2.

The next natural step to pursue in this sequence of converting the real world to a set of mathe-
matical equations is to linearize or decouple or somehow add further assumptions about the system

29

k,

Chapter 3. Unsteady catalysis

to render it analytically solvable. This procedure produces "solutions" which have little relation-
ship to experimental results, similar to Lorenz's atmospheric motion equations mentioned in the
introduction.

3.2 Nonlinear analysis
Instead of searching for a method of solution of the equations, an alternative approach to gain
information about the solutions is by a qualitative stability analysis. For simplicity, the three
expressions for time change of coverages can be written as

* = f(x(t))

where x(t) is a three-vector of coverages and f(.) is the right hand sides of the equations above. The
asymptotic stability of the vector field near a fixed point x is given by Wiggins [143] by examining
the eigenvalues of DfI- *. For example, using the parameter values reported by Fick et al. to show
oscillatory motion, it is found that the system reaches a global steady state at {0.156, 0.391, 0.0209}
where the Jacobian has eigenvalues {-3.12, 0.119 + 0.0631i, 0.119 - 0.0631i}, a double saddle with
rotation on the unstable manifold, hence oscillatory as the experiments attest. As another example,
if the reaction had happened to be started with large amounts of both NO and CO already adsorbed
on the catalyst, a different fixed point is reached, x = {0.310, 0.269, 0.00467} where the eigenvalues
of the Jacobian are all negative, for asymptotic stability.

Rewriting the operating equation to show explicit dependence on parameters,

cx = f(x(t); T,pco),

a form is obtained which permits analysis of the change in qualitative behavior in response to changes
of the parameters. Temperature and CO partial pressure were chosen as two easily adjustable
quantities which can be implemented directly in an experimental or industrial setting. NO pressure
is assumed to change in response to keep the total pressure in the reactor constant. A global search
for fixed points x, where x = 0, using common root finding procedures from starting points on
several sides of the suspected stable region was systematically conducted, and determination of their
stability produces a diagram showing where the system jumps from one area of operation to another.
The algorithm is sketched in Table 1, and the results for this system are in Figures 14 and 15.

Table 1. Algorithm used to generate bifurcation diagrams.

In the literature, this type of figure is often called a bifurcation diagram since it shows how
solutions to the equations differ qualitatively as system parameters are adjusted. It does not show
the location in phase space of the fixed points, just the behavior of trajectories near them. The
various terms assigned to different regions are intuitive labels used to indicate the sign and presence
of imaginary components of the three eigenvalues of Df , and are listed in Table 2. The fact that
eigenvalues with nonzero imaginary component always appear in complex conjugate pairs reduces

* Solutions which produce any eigenvalues with zero real parts require special treatment by construction
of a center manifold at the fixed point.

30

For each point c in parameter space,
search over x for fixed points x
calculate Jacobian DflI
classify stability

Group regions of identical stability type
Identify boundaries

§3.2 Nonlinear analysis

the number of entries in the table. The fixed points which occur in a stable region have all negative
eigenvalues so that the system is at a local minimum. The presence of a single positive eigenvalue
indicates that the surface at the fixed point has the shape of a saddle, and a system finding itself at
that point will, under a slight perturbation, move away from the fixed point in the direction of the
eigenvector corresponding to the positive eigenvalue. A double saddle has two unstable dimensions
at the fixed point, and unstable points have all three. The presence of imaginary components has
the effect of causing trajectories to spiral towards or away from the fixed point, but does not change
the stability class.

stable-+ saddle
- + + double saddle
+ + + unstable

- -i -i spiraling stable
+ -i -i spiraling saddle
- +i +i spiraling double saddle
+ +i +i spiraling unstable

Table 2. Names assigned to the possible eigenvalue combinations. The sign always refers to that of the
real component of an eigenvalue, and i indicates the corresponding eigenvalue has a nonzero imaginary
component.

7

6

.,)-0a,

0
CY

two fixed points:
saddle, stable

5

4

3

2

1

stable

0

0 200

close-up
region

spiraling
stable

400 600

stable

800 1000
Temperature (K)

Figure 14. Bifurcation diagram showing regions of changing stability characteristics.

31

Chapter 3. Unsteady catalysis

tinhle

coM 3.5E0
is, sta
= 3.0
{t

Q.

co
a 2.5

t't

400 410 420 430

Temperature (K)

Figure 15. Close-up of bifurcation diagram in Figure 14.

Based on the nonlinear analysis, adjustments may be made to the system to elicit certain
behavior. From the plot of Figure 14, it can be seen that there is a wide range of stable operation,
and a goal of pure stability is easily met. But industrial application of catalytic reactors such as
this often specify that the yield of products or conversion of reactants should be maximized, within
certain safety limits. There may not be just one stable location which produces a maximum yield in
the system as given, and employing non-steady control strategies could produce a higher conversion
rate overall.

For example, the system at hand can be operated across the edge that connects the basins of
attraction for two different stable points. The transition from one basin to another can be forced by
altering any of the system parameters; here T and pco are assumed to be the easiest to adjust with
a controller. The system can be forced to move from one zone of operation to another completely
different one with minute adjustments of temperature and/or feed pressure.

As an example of the profound change in system output, consider a steady flow reactor designed
to consume as much NO and CO as possible. Under the model outlined above, instantaneous
consumption can be defined as:

L . MWco kOO

YNO = N k5NOempty
Navg

One particular operating condition in the stable region is at a temperature of 415K and with a CO
feed pressure of 3.0 x 10- 7 mbar, giving a consumption of 29.4 g/(hr g-cat) for both species. At the
parameter values of Fick's experiments, in the nearby oscillatory region, the yields are Yco = 26.5
and YNO = 28.3 g/(hr g-cat), slightly lower. Figure 16 shows graphically the changes in the variables
as a function of time to illustrate the nature of this operation.

With a minor controller modification to cause it to apply a step function to the inlet temperature
of 40 K over a period of 30 seconds, so that in the reactor

T=400K+ f 40 13 < t mod 30 < 30 sec.

0, 0 < t mod 30 < 13,

one obtains forced oscillations between two stable conditions. This is illustrated graphically in
Figure 17 and the yields with their improvements are given in Table 3. By the introduction of a

32

§3.3 Conclusion

consumption
g/(hr g-cat) improvement
CO NO CO NO

stable 29.4 29.4 - -

oscillatory 26.5 28.3 -9% -4%
driven 34.4 36.8 17% 25%

Table 3. Effect of three possible operating conditions on consumption. "Improvement" is the percent
consumption gain over stable operation.

variable control strategy, the NO/CO/Pt(100) process has moved from the domain of experimental
science where negligible amounts of reactants were consumed into the world of possible industrial
application.

3.3 Conclusion
The model calculations presented in this section are but one possibility for optimizing chemical
reaction systems through a non-steady state control strategy. The bifurcation diagram of Figure 14
shows that many more regions of operation are available for exploration in this particular system as
well. Further refinement of operating conditions could be aided by the construction of a Poincar6 map
perpendicular to either orbit of the consumption functions and solving the simpler two-dimensional
system just generated to discover the resonant frequencies of the system. This particular application
of nonlinear analysis techniques to a chemical engineering problem is but one of a wide range of
possibilities for these tools.

33

Chapter 3. Unsteady catalysis

Oscillatory example

0.4

0

0.6

0.2
0)

0 0.4
0

0

0.4

0

0

0
O

. 50Q.

E
:3
C,

0o 0

0 20 40 60 80 100 120 140 160 180
time [sec]

Figure 16. Catalyst surface coverages and consumptions during natural oscillatory operation.

34

§3.3 Conclusion

Forced oscillations for higher consumption

440 K

400 K

0.2

0

0.4

0

0J

0
0.4

0
0.4

0

100

A

I-

- 200

c
.o0°.
E
c
0
0 100

0

0 10 20 30 40 50 60 70 80 90

time [sec]

Figure 17. Catalyst surface coverages and consumptions during forced oscillatory operation.

35

Data analysis

Characteristics of the data generated by a process under study may yield information which can
not be derived from any a priori source. This information can be used, perhaps, in developing low-
dimensional faithful approximations of the system, or to elucidate inherent structures of the system
otherwise undiscoverable, as discussed in the sections below.

4.1 Vibrating string
This section discusses topological analysis of a vibrating string, work done in collaboration with Nick
Tufillaro at Los Alamos National Laboratory, and uses much of the material from the paper [135]
produced by that work. Techniques called "topological time series analysis" are used to obtain the
template organizing the chaotic dynamics and topological parameter values of a vibrating string
directly from experimental time series. This information shows that the string is governed by a
dissipative horseshoe map whose periodic orbit spectrum is well described by a unimodal map.
Further, a model can be synchronized to the system allowing the creation of "synthetic data" which
topologically agrees with the experimental data and can be used to obtain a finer characterization
of the system which would not have been possible using only the original data.

4.1.1 Introduction
Study of the nonlinear and chaotic vibrations of a string is motivated by two intertwining concerns.
First, we want to know strings. Or at least what we can know of strings via experiments show-
ing chaotic motions in a vibrating wire. Second, given an experimental times series from a low
dimensional chaotic process, we would like to provide a quantitative characterization of the chaotic
attractor-or at least those properties of the attractor which are possibly shared by a large class
of similar chaotic systems. Such a characterization should be robust under the effects of noise and
smooth parameter changes. Such a characterization is necessarily topological.

Interest in a string's motion has a long and illustrious history. In 1883 Kirchoff derived an
inherently nonlinear differential equation which properly took into account the simultaneous longi-
tudinal and transverse displacements of a physical string [74]. In 1968 Narashima rederived a scaled
version of Kirchoff's equation [101]. Miles in 1984, beginning with Narashima's equation, derived
and analyzed a four dimensional model of the averaged oscillations of a string and discovered a Hopf
bifurcation [90]. In 1989, after careful numerical studies, Johnson and Bajaj detected the presence of
chaotic orbits in this same model [66]. Guided by these theoretical insights, experimental detection

36

§4.1.2 Experimental setup and data set description

of these chaotic oscillations soon followed [99, 107]. More complete historical references are found
in several recent PhD studies on the nonlinear vibrations of a string [106, 131, 97].

Of particular interest to our experimental studies are the theoretical examinations of low
dimensional nonlinear string models by Miles [90], Bajaj and Johnson [11], Tufillaro [130], and
O'Reilly [107, 105, 89]; and the experimental reports of chaotic vibrations in a string by Molteno
and Tufillaro [99], Molteno [97], and O'Reilly and Holmes [107]. As remarked by most of these
authors, chaotic motions in a string are not easy to observe. They exist only in a small parameter
range and occur not at the forcing frequency, but rather in the slow oscillations of the amplitude
enve ope. These amplitude modulations are usually only a fraction of the overall transverse displace-
ment, These facts may help to account for the rather late discovery of chaotic vibrations in such a
common system.

As recently advocated by several authors [114, 132], the quantitative topological characteriza-
tion of a low dimensional chaotic invariant set should proceed in two steps. First, the strange set
needs to be assigned a good symbolic encoding. We address this problem by identifying the template
organizing the stretching. twisting. and folding motion of the attractor in phase space [136]. Second,
rules need to be developed specifying the presence or absence of subsets of symbol sequences when
parameters are changed. The second problem is sometimes called pruning [36, 62]. We present
evidence that the "pruning problem" can be solved with predictions calculated by unimodal map
theory-at least in the parameter regime considered and to within the resolution of the experimental
measurements. Two types of evidence are used in support of these findings. The "symbol plane" is
reconstructed for an experimental chaotic trajectory and it reveals that the system is well approxi-
mated by a vertical pruning front with no steps. Additionally, periodic orbits are extracted by the
method of close recurrence [9, 134] and their spectrum is ordered by unimodal theory. Since the
data appears to be well described by unimodal theory, we also estimate the value of the kneading
sequence, the "topological parameter" which fixes the spectrum of periodic orbits.

In addition, we construct an empirical global model of the dynamics that produced the time
series by determining a vector which best fits the data [26, 24]. The method used to fit the vector
field is based on the minimum description length (MDL) criterion of Rissanen [118]. Two distinct
methods are used in an attempt to address the question of how closely the empirical model fits the
data. First, we show that we can synchronize the model to the data. Synchronizing these models
to the data set provides the first piece of evidence that the empirical model is "close" to the flow
observed experimentally [27]. Second, we show that the experimental data and a time series from
the model share the same template and are close in terms of topological parameters.

This paper is organized as follows. Subsection 2 describes the string experiment and examines
data sets taken from a parameter regime which leads to the onset of a crisis. Subsection 3 briefly
describes how to construct a global empirical model from a data set. The Lyapunov spectra of
the model and the data set are also calculated and it is suggested that calculating such system
characteristics indirectly from "synthetic data" is a desirable and sensible procedure. Subsection 4
describes how periodic orbit spectra are extracted by the method of close recurrence for data sets
at two distinct parameter values. It also describes how braid invariants are used to identify the
template organizing the periodic and chaotic orbits of the strange attractor. A topological analysis
of data generated from both the experiment and the empirical model is then presented. We call these
data processing techniques "topological time series analysis," since they seek to ascertain topological
form and topological parameter values directly from an experimental or simulated time series. Some
concluding remarks are offered in subsection 5.

Lastly, we would like to remark that our experimental results show good qualitative agree-
ment with the numerical simulations on nonlinear and chaotic vibrations in strings by Bajaj and
Johnson [11]. This correspondence is discussed more fully in Molteno's PhD thesis [97].

4.1.2 Experimental setup and data set description
A schematic of the experimental apparatus used to excite and detect forced vibrations in a thin wire
is shown in Figure 18. This apparatus is a considerably improved version of that described in the

37

Chapter 4. Data analysis

first reference by Molteno and Tufillaro [99]. A non-magnetic thoriated tungsten wire, 0.15 mm in
diameter, is fastened in a rigid mount. The wire sits in a permanent magnetic field created with
rare earth ceramic magnets. An alternating current is passed through the wire to excite vibrations.
Optoelectronic motion detectors are used to measure the transverse wire displacement simultaneously
in two orthogonal directions. The detectors consist of an infrared photodiode coupled to a matched
phototransistor positioned to detect the partial occlusion of the beam by the wire.

Square Wave

Generator

FDivide

\-1 kHz Square Wave

Switched Capacitor
Filter Elemen t

kHz Sinusoid

Power Anplifier I

\ Forcing Signal Dtectors_ _ A.] .::*

V /////////////
Figure 18. Schematic of experimental apparatus used to
wire.

excite and detect forced vibrations in a thin

Both the forcing current and detected signal are handled with a custom built controller/detector
system designed around an Analog Devices ADSP 2105 Digital Signal Processor (DSP). It is a 16-
bit device with a pipelined Harvard Architecture capable of performing 30 million operations per
second. Direct Digital Synthesis (DDS) is used to generate the signal for forcing the wire. This
technique is used because fine control over the forcing frequency is required to characterize the
constant amplitude response of the wire. This digital control and detection scheme also allows
the development of real-time nonlinear signal processing and identification tools such as variable
(in phase and amplitude) Poincar6 sections, Fast Fourier Transforms, and embedding plots with
variable delays. All these real-time nonlinear signal processing tools greatly aid in the detection,
identification, and optimization of the measurements reported here.

Typical parameter values for the wire and apparatus are: wire length, 0.07 m; mass per unit
length, 3.39 x 10- 4 kg/m; density 2.1 x 104 kg/m 3; Young's modulus, 197778 x 106 N/m; magnetic
field strength, 0.2 Tesla; and a free frequency of vibration in the neighborhood of 1350 Hz. The
damping of the system is measured from the decay rate of free vibrations and can be modified by
the application of a silicone coating to the wire [107].

38

SAMPLE SCSI

DSP computer

ADC

Ailifer IPrpife

! --

§4.1.3 A synchronized empirical model

The transverse amplitude displacement of the wire is usually sampled once each forcing cycle
at a fixed phase (fd : 1300 Hz). The response frequency of the amplitude modulation is about
10 Hz. Thus, we have about 130 samples per cycle-the system is over sampled. Such over sampling
is necessary, however, in order to calculate accurately some of the braid (extracted periodic orbit)
invariants described in subsection 4. Since the interesting dynamics occurs so slowly, it is possible
to save large data sets directly to disk; data sets of 105 measurements are easy to obtain. The
amplitude displacement measurements are usually low-noise (less than 1% of the RMS amplitude)
and make good use of the wide dynamic range available. However, two measurement problems are
present. First the system is subject to a parametric drift (typically manifested as a 1% variation
of the RMS amplitude over 200 seconds) which we believe is due to a temperature instability in
the drive system. Second, there are some systematic measurement errors due to phase jitter in the
digital detecting electronics. Overall, though, the measurements are of high quality: large, low noise,
data sets making good use of the wide dynamic range made available from the 16-bit digitizers.

After being recorded the raw data is "dynamically" cleaned by the nonlinear noise reduction
technique described in references [56, 69, 80, 122]. The scalar data is embedded using eleven di-
mensional delay coordinates. For each data point a small neighborhood is formed in which the two
dimensional submanifold spanned by the attractor is approximated by a linear subspace. Projections
onto this subspace yield an improved time series. The procedure is iterated six times and curvature
corrections are applied.

In addition, dynamical cleaning provides an estimate of the noise level. For the data we have
examined, the amplitude of the correction. which can be taken as an estimate for the amplitude
of the noise in the data. is 55 units (0.44%c). We also estimate the amount of noise in the data
independently by the method given in [123]. The functional form of the increase of the correlation
integral with embedding dimension is known for Gaussian measurement noise. so that the width of
the Gaussian distribution can be determined by a simple function fit. WVe found that indeed the
errors are compatible with a Gaussian distribution of width 65 units (0.5%). After nonlinear noise
reduction the errors are no longer expected to be Gaussian but the remaining noise level is found to
be at most 25 units (0.2Cc).

As the first step toward extracting a template from the time series. a three dimensional embed-
ding of a chaotic trajectory is created out of the scalar amplitude measurements made by a single
detector. This is accomplished via a time delayed embedding of the original scalar data set [3]. The
offset for the delay is determined by the mutual information criterion [49]. Values for the offset range
from 25 to 39 for the data sets examined. or, not unexpectedly. about one quarter of the samples
per chaotic cycle. A false nearest neighbor test also indicates that the time series is embeddable
in three dimensions [3]. Figure 19 shows three trajectories that are realized after a torus-doubling
route to chaos [99]. Figures 19(a) and 19(b) show chaotic attractors, and Figure 19(c) shows a
trajectory after the attractor has been extinguished by a crisis with a remote fixed point. These
experimental results are in good qualitative agreement with the numerical simulations of Bajaj and
Johnson [11]. Fractal dimension calculations of these chaotic time series indicate a dimension of
2.1 [98]. Perhaps the strongest evidence, though, of the low dimensionality of these data sets is
obtained by constructing a first return map of a two dimensional Poincar6 surface of section: these
are shown in the insets of Figures 19(a) and 19(b).

4.1.3 A synchronized empirical model
Our goal in this section is to create an empirical (global) model of the time series data. We do
this by generating a vector field for a three dimensional system of ordinary differential equations
whose dynamics "mimics" the dynamics of the experimental time series. The ability to "learn
the evolution rules" only from a priori information is a powerful technique which opens the door to
further applications such as short-term prediction and control. Also. as suggested here. the empirical
model can be used to generate large, low noise, "synthetic" data sets. Such a synthetic data set, or
the analytic knowledge supplied by the model, often permits a more refined calculation of a system's

39

Chapter 4. Data analysis

Fi're 19. Three dimensional embedded time series from the string experiment at three different

neter values: (a) chaotic data set (a); (b) chaotic data set (b); (c) crisis with a remote fixed point.

le insets show the low dimensional character of the next return maps constructed from a surface of

section of the embedded attractors.

characteristics, such as its Lyapunov spectrum. However, before putting too much trust in the

model, we must address the question of how faithfully the empirical model represents the dynamics
that generated the data. We approach this question by two distinct methods. In this section we
show that the model can be synchronized to the data [50, 113, 1121. In the next section we compare

topological properties extracted from the experimental time series to the properties extracted from

a time series generated by the model.
The method used to generate an empirical model directly from a data set is described in detail

in a series of papers by Brown and co-workers [26, 24J. The method assumes that the dynamics that

40

§4.1.3 A synchronized empirical model

produced the data vectors, y, can be written as a set of ordinary differential equations

dyTd = F(y).

The vector field, F, is written as a expansion in terms of polynomials that are orthonormal on the
attractor represented by the experimental data

Np

F(y) = Ep()(l)(y).
I=0

These polynomials, 7r(1) form a basis set in which to write a model. The expansion coefficients, p(I)
are trained by modeling the system's dynamics as an implicit Adams integration scheme

M

y(t + r) = y(t) + a(M)F[y(t- (j - 1)r)],
j=o

where the a(M)'s are the implicit Adams coefficients of order M.
In the traditional numerical integration scheme the coefficients, p(')'s, are viewed as being

fixed. In contrast, in the modeling context, we view these coefficients as being variable, their values
being chosen to ensure a good correspondence between the experimental data and the empirical
model. The model is trained by minimizing an MDL-type functional [118] which includes both a
least squares minimization term and terms associated with the size and order of the vector field used
to fit the data. The advantage of using an MDL-type functional is that an optimal model, from
the class of polynomial models, can be found. Heuristically, the parameterization chosen is optimal
in that it best fits the data with fewest number of terms. Higher order models may provide more
accuracy. but the cost of the additional terms in the MDL functional outweighs the profit gained by
the increase in accuracy.

To illustrate this modeling technique we consider the data set shown in Figure 19(b). It consists
of 128 x 103 scalar 16-bit measurements of the vertical transverse string displacement. The forcing
frequency in this particular example is 1.384 kHz and the characteristic response frequency of the
amplitude modulation is about 9 Hz. The average mutual information and false near neighbor
methods indicates that the optimal time delay and embedding dimension are T = 39 and d = 3 [3].
The model is trained by using a subsection of 104 points of the entire data set. More details about
the modeling of this particular data set can be found in reference [27].

As suggested in references [26, 24] after the model is constructed we then use the experimental
time series to drive the empirical model. We find that it the experimental time series is used to drive
the model via dissipative coupling then the model synchronizes to the experimental time series. A
detailed study of the quality of synchronization between the model and the data in the presence
of additive noise and drift in the dynamics of the driving signal is presented in reference [27].
Synchronization between model and data provides the first piece of evidence that the empirical
model and the experimental system are, in some respects, close.

We have also calculated the spectrum of Lyapunov exponents for the model as well as the
data. Since it is the easier of the two calculations we first calculate the Lyapunov spectrum of
the empirical model using a modified QR method [42, 111, 2, 1]. We only report the two nonzero
exponents of the three dimensional model. The results are shown in Figures 20(a) and 20(b) where
K represents the total number of Jacobians used for the calculations (the total evolution time is
Kr where r = 0.05 is the normalized time between the data points). The figures indicate that for
K > 5000 the values of A1 and A3 are essentially constant. We have used a small ensemble of ten
different initial conditions taken from disparate regions of the attractor for our calculations. The
error bars in the figures indicate the maximum and minimum values of the Lyapunov exponents

41

Chapter 4. Data analysis

calculated from this ensemble. The ensemble is small, however the error bars indicate that the
variance of the calculated values of the Lyapunov exponents over the initial conditions is also small.
Furthermore, if the initial conditions for our calculations are within the basin of attraction of the
attractor then the Lyapunov exponents are independent of the initial conditions in the Kr - Qo

limit [42, 2]. The relative independence of the calculated values of the Lyapunov exponents for
K > 5000 and different initial conditions provide circumstantial evidence that our calculations have
reached the asymptotic regime. We report the following values for the Lyapunov exponents of the
empirical model: A = 4.31 x 10-2, and A3 = -0.576. These values are obtained by averaging over
the ten initial conditions for K = 15 000.

Calculating the full spectrum of Lyapunov exponents from an experimental data set is a notori-
ously difficult procedure. This is particularly true with regard to the negative exponents. In general,
the best that one can hope for is to calculate a spectrum that is consistent with itself and whatever
additional facts are known about the dynamics. The method we use to calculate the Lyapunov
exponents from the experimental data is a minor variation of the one reported in reference [25].
This method uses polynomials to map local neighborhoods on the attractor into their time evolved
images.

The first variation we employ involves using the modified QR method reported in references [2, 1]
instead of the one reported in reference [25]. The second modification is more complex and involves
the data used to form the attractor. This second modification is required because the original data
set is highly over sampled and needs to be "thinned out" before a reliable estimate of the spectrum
can be obtained. The initial calculations use every other data vector to form the attractor. Next,
every third data vector is used to form the attractor. Finally, every fourth data vector is used to
form the attractor.

The second modification also results in a change in the evolution time (step) associated with
the polynomial maps from one local neighborhood to its image. We find that as the step increases
the influence of experimental noise is reduced and consistent values are obtained for the Lyapunov
exponents. In addition, the number of possible initial conditions increases. When we use every
second data vector we have two different initial conditions, y(1) and y(2). Similarly when we use
every third data vector we have three different initial conditions, etc. We use the different initial
conditions as another consistency check for our calculations. For each case the number of Jacobians
used in the calculation is K _ N.

In all cases the total number of vectors used to form the attractor is N _ 10 000. Therefore, the
size of the local neighborhoods used for the polynomial fitting is essentially the same for all tests.
This insures consistency over our various tests. The value of N _ 10 000 is chosen on the ad hoc
belief that larger values of N will result in local neighborhoods that are so small that their dynamics
will be unduly influenced by noise in the data [145, 23].

The results of these calculations are presented in Figures 21(a) and 21(b). When the order of
the fit is greater than two the calculated values of the Lyapunov exponents become independent of
the order of the fit. The only exception occurs for A3 and the attractor obtained by using every
other data vector, step = 2. Since these values are associated with the negative Lyapunov exponent,
and are well outside the range of the other results, we will ignore them. As one would expect,
there is some spread in the calculated values of the Lyapunov exponents depending on the initial
condition used and the different evolution times (step = 2, 3, or 4). In general however, the spread
is small for both the positive and the negative Lyapunov exponent. As a final matter we note that
the total evolution time for our calculation is 2Kr when we use every other data point, 3Kr when
we use every third data point, etc. The independence of our results over step = 2, 3, and 4 indicates
that K 10000 corresponds to the time asymptotic regime. The consistency of our results over
changes in initial conditions, order of the fitting, and the evolution time leads us to conclude that the
Lyapunov exponents calculated from the data set using this method are close to the true exponents.
To obtain numerical values of the Lyapunov exponents we first averaged the calculated values of A
over the different initial conditions and then averaged that value over the order of the fit for all fits

42

§4.1.3 A synchronized empirical model

U. I Z

0.100

0.075

xi

0.050

0.025

I nnn
1.0 2.0 3.0 4.0 5.0

Order of Fit
^ 609
U. I)

0.100

0.075

xi

0.050

0.025

n nnn

A

Ai X i I I

0 2500 5000 7500 10000 12500 15000
K

Figure 20. Lyapunov spectrum for empirical model.

43

A IAZ

I I i I I

I - - - -- I I I

L

g· _ i·i· g
-

Chapter 4. Data analysis

greater than 2. We find that A = 4.97 x 10-2 and A3 = -0.702. These values differ from those
reported for the model by approximately 15% for the positive exponent and 20% for the negative
exponent.

4.1.4 Template identification
As the first step in a "topological time series analysis," we attempt to identify a "template" [136, 96,
93, 94, 110] organizing the periodic orbit structure of the flow. A template is nothing more or less
than a cartoon of the stretching and folding structure of the flow written in a canonical form [88].

Before constructing the template, we note that the single-hump form of the first return map
shown in the insets of Figures 19(a) and 19(b) suggests that a "once-fold" or "horseshoe" like
map [36, 62] is organizing the global dynamics. Hence, one does not need the template to ascertain
this topological information. However, the template contains an additional piece of topological
information, namely, the global torsion, which can not be found by simply examining the first
return map.

To ascertain the form of the template we proceed in a straightforward way. First, we examine
the data in the three dimensional embedding by rotating it, and viewing it from several viewpoints
with the aid of a graphics program we have written. This graphical visualization suggests that
the sheeted structure shown in Figure 22(a) properly portrays the stretching, twisting, and folding
of phase space which is organizing the orbit structure. The (negative) half-twist at the top of
Figure 22 is followed by a small (positive) fold shown at the bottom (compare with Figure 22(b)).
This small fold is responsible for the stretching (causing sensitive dependence) and folding (causing
the periodic and aperiodic recurrence) that produces the chaos. Both of these features of the flow
are themselves organized by basic topological properties of the flow, namely, the flow's fixed points
and their homoclinic and heteroclinic connections.

To arrive at the canonical form of the template we separate the sheet shown in Figure 22(a) into
two branches by splitting along the trajectory of the fold point (in the language of references [36, 621,
we are creating a symbolic partition by considering the outermost "primary tangency"). Next we
pull the small fold all the way to the bottom (thus going from a pruned to an unpruned system).
The (negative) half twist in Figure 22(a) results in a half twist in each branch, with both branches
crossing as shown in the top of Figure 22(b). The bottom of Figure 22(b) shows how the small
fold results in a horseshoe template in standard form [88]. Now we push all the branch twists in
Figure 22(b) to the top of the diagram and note that the twists in the left branch cancel, -- t..jt
we arrive at the template shown in Figure 22(c). We note that this is itself a horseshoe template
with a global torsion of zero. Our construction thus shows that a standard horseshoe template with
a global negative half twist is again a horseshoe template.

In subsection 6 we will extract periodic orbits from chaotic time series and discuss how each orbit
is given a symbolic itinerary. Given these periodic orbits, we then attempt to verify (or falsify) the
conjecture that a horseshoe template with zero global torsion is organizing the dynamics. Specifically,
we check two types of invariants: linking numbers of periodic orbits (a knot invariant), and the
exponent sum (an invariant on positive braids) calculated from the "natural" braid associated to
each periodic orbit* [88, 134]. As noted by Hall [60, 581, the exponent sum is a complete braid
invariant for all horseshoe braids up to period eight-thus, this single invariant tells us the symbolic
name (up to saddle-node pairs) of the low period orbits in a horseshoe without the need for an
empirical symbolic partition. This is an effective procedure on orbits all of whose crossings are
clearly resolved. (These are all the orbits examined up to period eleven in the model, but only orbits
up to period six in the experimental data.) We have found no discrepancies between the invariants

* If a periodic orbit of period N is plotted in a Cartesian embedding space, then the "natural" braid
on N strands associated to this periodic orbit is a plot of the trajectory in cylindrical coordinates in
Cartesian space (z, y, z) = (mod 27r, r, z). Heuristically, this is the plot that results when the surface
of section Ee(t)-whose z axis is perpendicular to the center of mass of the trajectory---sweeps through
27r.

44

§4.1.4 Template identification

-0.6

-0.7

3
-0.8

-0.9

-1 n

-U.6

-0.6

-0.7

-0.8

-0.9

-1 n

1.0 2.0 3.0 4.0 5.0

Order or Fit

/ · I II I , , I "

IT I I"~~~~~~L

*l
L

0 2500 5000 7500 10000 12500 15000
K

Figure 21. Lyapunov spectrum from experimental data.

45

^ 9--

A
.

I I I I -

Chapter 4. Data analysis

a)

b) C)

Figure 22. Transformations on a horseshoe template: (a) Schematic of sheeted structure in the

experimental data; (b) The template obtained from (a); (c) Horseshoe template equivalent to (a).

46

§4.1.5 Symbol plane

predicted by a horseshoe template, those calculated from the data sets shown in Figure 19, and data
from the model constructed in subsection 3. Some of these periodic orbits are shown in Figure 23.
These results provide good evidence that-to within the resolution of the measurements and in the
parameter regime considered-the orbits of the string and the model are governed by a horseshoe
template with zero global torsion. It is encouraging that the model agrees in this first topological
check. Evidently, the analytic properties of the model class, along with the initial conditions provided
by the experimental data, are sufficient to determine (at least approximately) the fixed points which
are in the vicinity of the sampled flow.

4.1.5 Symbol plane
To get a topological "road map" of the data we use an empirical procedure to construct the symbol
plane generated by a single chaotic trajectory [36, 62]. We construct two symbol planes, one for
data from the experiment (Figure 19(b)), consisting of 725 points in the return map, and one for the
model, consisting of 4500 points in the return map. To construct the symbol plane we first convert
the chaotic trajectory to a symbolic string of O's and 1's, depending on whether the orbit passes to
the left or right of the maximum point of the first return map shown in the inset of Figure 19(b). As
shown in the next subsection, this empirical symbolic partition is fine enough to distinguish orbits at
least up to period eleven. Now, since we know the topological form (the template) of the chaotic set,
we can use kneading theory to determine the "well ordered" [36, 62, 92] symbol sequences needed
to construct the symbolic plane.

After conversion the scalar data set has become a symbol string of the form

S = ... S-_38-28--180182S3 ·. -

where symbols to the left and right of so are the past and future symbols respectively. The coordi-
nates of the symbol plane are calculated from the well ordered past (ci) and future (b,) symbols as
follows:

D b i

x(s) = 2 bi = s, mod 2
2=1]7=1

and
D-1 l+l

(s)= E 2i. c, = sj mod2.
1=0 3=0

If s is an infinite symbol string generated by a chaotic orbit, then D is infinity in the above sums.
However, since we are dealing with finite data sets, we approximate the symbol plane coordinates
of a point by taking D = 16. In this way we can use a finite symbol string from a chaotic trajectory
to generate a sequence of points on the symbol plane.

The resulting plots for both the experimental and model data are shown in Figure 24. These
plots suggest several nontrivial observations about the topological properties of the flows producing
these data sets. First, it appears that a good approximation to the "pruning front" [36, 62] is
a single vertical line (a schematic for this pruning front is illustrated in Figure 24), at least to
within the resolution of our experimental measurements and data processing procedures. This
indicates that, at the topological level, the symbolic dynamics of the system are well-described by
unimodal map theory, with the pruning determined by a single topological parameter, the kneading
invariant [36. 62. 92], which we can attempt to approximate.* Second, the close similarity between

* The one-dimensional nature of the data set came as a surprise to us. We were expecting, indeed hoping.
for a more two-dimensional data set-many stepped pruning front-in order to test the data processing
techniques described here. Using these techniques to approximate a many stepped pruning front is
discussed by N. Tufillaro in reference [133].

47

Chapter 4. Data analysis

Figure 23. Some periodic orbits extracted from a chaotic time series from the string experiment.

48

1 11

1I I

II

__

r -~~_

.,1

- - - . I,\

,. . ,

§4.1.6 Periodic orbit spectra

the plot generated by experimental data, and model data, again provides striking evidence that
the empirical model correctly captures the topological properties of the flow. Moreover, we can
estimate the closeness of this topological fit by comparing estimates of the kneading invariant from
the experimental data and model data. Third, the simple form of these plots, and the conjectured
(approximate) pruning front, provides yet another powerful self-consistency check that the template
(and hence the formula for well-ordering the symbol sequences) is identified correctly. In the next
section we extract periodic orbits from the chaotic time series and show how they can be used in
this example to systematically approximate the vertical pruning front suggested by Figure 24.

I

A

I

A

A i I
I I I I0 x 1 0 x 1

Figure 24. Symbol planes generated by chaotic time series from a string: (a) Experimental data;
(b) Model (synthetic data).

4.1.6 Periodic orbit spectra
To extract the (approximate) periodic orbits by the method of close recurrence we first convert the
next impact map from the coordinate values directly into a symbol sequence. In this particular
instance, we found that an adequate symbolic description (at least up to period eleven orbits, or
approximately one part in 21) is obtained by choosing the maximum value of the next impact shown
in the insets of in Figure 19. Orbits passing to the left of the maximum are labeled '0', and those to
the right are labeled '1'. Next we search this symbolic encoding for each and every periodic symbol
string. Every time a periodic symbol string is found we calculate its (normalized) recurrence and
then save the instance of the orbit with the best recurrence. The advantage of this procedure of
periodic orbit extraction is that it is exhaustive. We search for every possible orbit up to a given
period. In these studies we searched for all orbits of period one through eleven.

The resulting spectrum of periodic orbits for both experimental and model data sets is shown
in Table 4. The orbits which are present in (the full shift) complete hyperbolic system, and not
present in the Table 4 are said to be pruned. Two topological invariants (the linking number and
the exponent sum of positive braids) of the extracted orbits are calculated and compared with those
of a horseshoe (see Table 4. There are no discrepancies on the orbits in which the crossings can
be unambiguously resolved. This indicates that, at least to this level of resolution, the template is
correctly identified and the symbolic partition is adequate. Moreover, the template for the string
experiment remains unchanged for the two different experimental parameter settings examined,

49

(a)

I I I I I I I I X I I I I f I f I I I | I I I Xl * .

[. I . i i! i I i . l .! ! i . '

:(b)

:"~~~~I r: t :- :.X. ,, us q I,. ...

I I I I I , I I I !1 I I I I I I I I I I ! i ; :

Chapter 4. Data analysis

though the pruning is much more severe in data set (a) than it is in data set (c). The symbolic
label (up to braid type) can also be determined-and used as yet another self-consistency check-
by considering a simple and easily computable braid invariants. As pointed out by Hall [60, 58],
the exponent sum (simply the sum of braid crossings in our example) is a complete invariant for
horseshoe braids up to period eight. Also, an inspection of the exponent sums as a function of period
reveals that the exponent sum manages to distinguish most of the pseudo-Anosov horseshoe braids
of periods nine, ten, and eleven as well [133]. The symbolics determined by the braid type, and that
determined by the empirical partition are consistent for all the orbits listed in Table 4. Our goal
now is to predict as best as possible the pruned spectrum from the chaotic time series.

P cp es hi (a) (b) (c) (d)
si 1 0 0 - 0.02192 0.01383 0.01880

s1 10 1 0 0.01796 0.01459 0.01773 0.02929
Si 1011 5 0 0.00840 0.01287 0.00993 0.02386

si 10110 8 0.414 - - - 0.02678
s 10111 8 0.414 - - - 0.00863
s 101110 13 0.241 0.00780 0.00433 0.00849 0.01106
s I 101111 13 0.241 0.00675 0.00381 0.01350 0.01202

14 1011110 18 0.382 - 0.00634 0.00917 0.00994
Si 1011111 18 0.382 - - - 0.01260

s 10111010 23 0 0.00750 0.00299 0.00789 0.01903
s2 10111110 25 0.305 - 0.02241 0.01770 0.02087
52 10111111 25 0.305 - - - 0.01264
si 101111110 32 0.366 - 0.00893 0.01421 0.00662
s 101111111 32 0.366 - - - 0.02458
s2 101111010 30 0.397 - 0.01864 0.02638 0.02201
so 1101111011 30 0.397 - - - 0.02336
si 1011101010 37 0.207 0.00752 0.00225 0.00635 0.01260
s 1011101011 37 0.207 0.00511 0.01560 0.01826 0.02052
s20 1011111010 39 0.272 - 0.01694 0.00859 0.00452
sl1 1011111011 39 0.272 0.02766 0.01312 0.01875 0.01438
s30 1011111110 41 0.328 - 0.00622 0.02037 0.01512
53 1011111111 41 0.328 - - - 0.00772
sl 10111111110 50 0.357 - 0.02365 0.01339 0.02657
sl 10111111111 50 0.357 - - - 0.00974
s21 10111111010 48 0.374 - - - 0.00960
sl 10111111011 48 0.374 - - - 0.01491

sl 10111101010 46 0.390 - - 0.02305 0.01199
sl 10111101011 46 0.390 - - - 0.01811
s4l 10111101110 46 0.403 - - 0.01483 0.01780
s41 10111101111 46 0.403 - - - 0.01600

Table 4. Spectrum of low period orbits extracted from chaotic time series (all orbits with < 0.03
are shown). Extracted orbits, their exponent sum, one-dimensional topological entropy, and their (best)
normalized recurrence are recorded. Data set (a): experimental with 500 points in return map; Data
set (b): dynamically cleaned version of data set (c); Data set (c): experimental with 725 points in return

map; Data set (d): empirical model of data set (c)-the "synthetic data" (4500 points in return map).

Before we discuss pruning, though, it is useful to consider the number of distinct periodic orbits
extracted as a function of the number of points in the return map. This is shown for the model
data in Table 5. As expected, the number of orbits that can be extracted increases with the number
of points in the return map. More importantly, Table 5 strongly suggests that using the method

50

§4.1.6 Periodic orbit spectra

of close recurrence it is possible to obtain all the low period orbits embedded within the strange
attractor. For instance, after 105 points are examined, we see that no new periodic orbits are found
below period seven. Similarly, after examining 5 x 105 points we believe we have found all orbits
up to period nine. These results also caution us when working with smaller samples such as those
in data set (a) with 500 points in the return map, and data set (b) with 725 points in the return
map-the extracted orbit spectrum is expected to miss orbits either because the orbit is pruned (it
is not in the strange set) or because the sample of the strange set we are examining fails to provide
a close enough coverage over the whole attractor.

As suggested by the symbol plane diagram (Figure 24), unimodal map theory should be sufficient
to explain these periodic orbit spectra. To test this hypothesis, we first examine the periodic orbit
spectra from the model data set and locate the maximal (rightmost) periodic point in terms of
unimodal theory. It is a period five orbit with symbolic name 10110, and indicated by the label (up
to saddle-node pairs) of s1. In unimodal theory, the sl orbit forces [59] the orbits s4, s 2 , s ,to csddle-noe pairs) f 5.1, 1649, 2-d a,
s11 9, s9, s 1 0, ss , 0, s 0, s , s, s , and s. The notation identifies (up to saddle-node pairs)
the period of each orbit in the subscript, and the value in terms of unimodal ordering (within each
period) in the superscript. This theoretically determined spectrum agrees with that found in Table 4.
In fact, both partners of all the saddle-node pairs are present except for the period one orbit pair. In
this case, though, it is known that the period one orbit with symbolic label '0' is not present in the
strange attractor, though it is present in the flow. Moreover, we can now use the maximal periodic
orbit to estimate the itinerary of the kneading sequence in the model data set, ,,m 10110, or in

-o -
two dimensions by the (vertical) pruning front specified by 0,.10110. The horizontal coordinate of
the (maximal) point of this periodic orbit on the symbol plane is x(s) 0.8485. An estimate of the
kneading invariant also provides an estimate of the (one-dimensional) topological entropy [21, 95]:
hl(s) 0.4140.

P 5 10 50 100 500 816

1 0 0 1 1 1 1

2 0 0 0 0 1 1
3 0 0 0 0 0 0
4 0 1 1 1 1 1

5 1 1 1 2 2 2

6 0 0 2 2 2 2
7 0 1 2 2 2 2

8 0 1 1 2 3 3
9 0 0 1 3 4 4

10 0 1 2 4 6 6
11 2 2 2 4 8 8

Table 5. Number of distinct periodic orbits of a given period extracted as a function of the sample size
(x 103).

A similar analysis of the experimental data set (c) shows that the maximal periodic orbit in
the unimodal ordering is s1 which forces s 1 l4, 9 , , s, , , , 0, s, s, s, s, s
and sU. Up to period six, all the orbits forced by s41 are present. Nine orbits are missing between
periods seven through eleven. But we believe that these higher period orbits are missing due to the
small sample size. We use the maximal orbit to approximate the itinerary of the kneading sequence
in the experimental data set as Kb 10111101111, or in two dimensions by the (vertical) pruning
front specified by .10111101111. The horizontal coordinate of the maximal point of this periodic
orbit on the symbol plane is (s) x 0.8385. An estimate of the one-dimensional topological entropy
derived from the experimental data is: hl (s4) 0.4032.

Time series from the model and experiment are close in both their topological form and topo-
logical parameter value(s). The model, though, does appear to determine parameter values which

51

Chapter 4. Data analysis

over estimate the topological entropy. This difference in entropy could be due to several sources.
First, uncertainties due to noise and parametric drift in the experimental data set place inherent
limits on the modeling procedure's accuracy. Second, low-period orbits, perhaps of higher entropy
than those extracted, may be present, but are not found because of the limited sample size of the
experimental data. Third, the estimation in the entropy can not be any finer than that allowed by
the order of the periodic orbit approximation. As an examination of Table 4 indicates, the difference
in entropy between the two periodic orbits considered (up to period eleven), which are close in the
unimodal ordering, is roughly 0.01. This last point suggests that the estimated difference in entropy
between the experimental data and model data is an upper bound on the difference. The entropy
between the two process may, in fact, be closer than this estimate indicates.

4.1.7 Concluding remarks
In this paper we create an empirical global model of a data set from a string experiment and show
that the model captures the dynamics implicit within the data set in at least two significant respects:
the model and data can be made to synchronize [26, 24, 50, 113, 112], and they share quantifiable
common topological properties. We also suggest that it is a sensible and desirable procedure to
use synthetic data from the model to characterize the system in ways which may not be readily
accessible from the data set alone. In particular we discuss how to characterize the system at the
topological level by its periodic orbit spectrum. and at the metric level by its Lyapunov spectrum.
More generally, we illustrate how to characterize a chaotic invariant set both by its general form
(a template) and specific topological parameter values (kneading sequences) estimated from the
spectrum of periodic orbits of the chaotic attractor, or from an empirically constructed "pruning
front" [36, 62].

Global, empirically constructed, analytic models open the door to a host of practical applications
in systems analysis, identification, and control [26, 24]. In particular, we emphasize how synthetic
data sets permit the calculation of quantities requiring data with a larger sample size, or lower noise,
than may be directly available from the experimental data alone [23]. In addition, we would also
like to emphasize how a synchronized model of a system can be coupled directly to a data stream
permitting a kind of model-based real-time dynamic filter [30].

4.2 Further applications
The techniques discussed above for the particular case of a vibrating string have possibly wide
applicability. Standard time series analysis of arbitrary systems is fairly well known now, but efforts
to model these systems are thwarted by the fact that each type of nonlinearity has its own character
so general techniques applicable to all systems do not exist, as opposed to in the linear case. The
use of time series data in the modeling process has the obvious advantage of tailoring the model to
the specific problem, and the algorithm discussed above has the advantage of generating optimal
models in the sense that they are the simplest ones that capture all the information in the data.
Also the ability to synchronize the model with a running experiment is important as it opens up
the possibility of using the model as a feedback control system to adjust continually the physical
system. There are many applications which seem to be candidates for this type of analysis, two of
which are described here.

Fluid flows. Systems operating in the transitional Reynolds number regime between laminar
and turbulent flow exhibit highly nonlinear coherent structures, such as the shedding of vortices for
flow past a cylinder or near a surface. These systems can be described by only a few degrees of
freedom when considered in the appropriate space. That space can be found by analyzing images
of the experimental system using a Karhunen-Loeve transform, for instance, to extract out the
important structures, then applying the full mechanics described above on the coefficients of that
expansion.

52

§4.2 Further applications

System identification. Topological characteristics of a well-understood system (or at least a
given one) may be extracted from its time series output and used in analysis of novel systems. If
the unknown system will synchronize to the ordinary differential equations prescribed by a known
system, then the dynamics of both systems must be identical. Libraries of understood systems may
be amassed and new systems tested systematically against the collection. This procedure of system
identification is superior in its robust response in the face of process noise, as demonstrated above.

53

Representation

This chapter discusses the idea of choosing the proper language in which to formulate a given
problem. High school algebra teaches us the most rudimentary method of moving to a different
representation, in the form of a story problem whose words must be translated into the language of
algebra to permit the manipulations leading to the solution (e.g., yards of fence needed to enclose
Uncle Jacob's field). More advanced, but still mathematical, forms of this include all the convenient
transformations such as Fourier and Laplace. These transformations were motivated by particular
problems: in the case of Fourier, a bounded domain with periodic boundary conditions, and for
Laplace, functions of a positive variable like time in initial value problems.

Another class of representational transformations operates at a more linguistic or structural
level. One example is a group of multilingual speakers agreeing on one common language in which
to conduct their discussion. Languages include those with which we communicate with computers
as well, and the design of many of these was motivated by the expected application. Early modes
of interacting with the machines could hardly be called languages, as the programmer was reduced
to hand-coding instructions in hexadecimal. The first true languages were built around constraints
of the machines themselves, which led to some strange artifacts such as the difference in C between
pre- and post-increment. (VAX architecture made it fast and convenient to post-increment or pre-
decrement, but slower to do the opposite operations.) FORTRAN has complex number mathematics
built into the language, making it popular with the scientific applications community. COBOL [100]
was designed for business transactions and has constructs to make easy the printing of accounting
reports using fixed-width monetary notation.

The introduction of multiprocessor supercomputers has added another dimension to the design
of efficient data structures. Variations in languages to accommodate the need to choose explicit
data distribution and transport schemes are not widely accepted, as most programmers prefer to
handle scheduling and message passing using libraries of explicit calls, again sinking to the lowest
possible level of operation. FORTRAN 90 has been around for some time, and certain compilers will
implement full array operations in parallel, but data layout issues are only considered in the as yet
standardless HPF, high performance FORTRAN. Truly machine-independent multiprocessor languages
must by necessity of their compilation be somewhat cryptic to the standard programmer, and their
development suffers due to this small group of users [71.

The two sections presented here are at an ev -n higher level of abstraction, specific to very par-
ticular problems. The first section below considers the problem of mapping a set of reacting chemical
species across multiple processors attempting to minimize the total execution time. Transforming

.54

§5.1 Optimal functional mapping of reactive systems

the problem statement into a variation on the common set covering problem allows utilization of
previous research in combinatorics to achieve the optimal solution to this problem.

Paradigms have come about regarding the language of data structures internal to a computer
program, such as linked lists or binary trees, because of the ease with which certain operations
may be performed on certain structures. The second section below discusses particular uses of
these structures in transforming human-written lists of chemical reactions into machine-generated
FORTRAN instructions to perform time integration of the reactions, in an optimal way with respect
to subexpression reutilization.

5.1 Optimal functional mapping of reactive systems
The motivation for the work in this section was the need o parallelize an extensive atmospheric
chemistry model to decrease the total execution time of an optimization loop over the model. The
model does grid-based calculations and is split into several distinct steps inside the loop for each
hour. The framework for the algorithm is shown it Table 6. Execution time for a standard 24 hour
run on a single-processor Cray C-90 is about 80 minutes. Almost three quarters of the entire runtime
is devoted to calculating the reaction contribution to the changing concentrations at each grid cell,
and even though it is a trivial calculation, doing it once for each of the 12000 grid cells adds up.
What "reaction contribution" refers to is just the right-hand sides of the differential equations for
time integration of the species concentrations. For example, for the pair of reactions

A+B --- C

B+D - E

are derived the reaction contributions

A = -klAB
B = -klAB - k2BD
C = kAB
D = -k 2BD

E = k2BD,

just a simple set of multiplicated and
(the latter calculated elsewhere).

added expressions of the concentrations and reaction rates

Table 6. Skeleton of the AIRSHED algorithm with fractional execution times.

55

Initialize .43%
Loop over simulation time (24 hours)

Hour initialization 1.48%
Vertical advection .01%
Integration

Rate constants .16%
ODE solver 17.66%
Reaction contribution 71.87%
Sources, diffusive coupling, BCs 6.21%

Horizontal transport 2.17%
Output .01%

End

Chapter 5. Representation

A typical approach to parallelization would be to split the domain of integration across the
available processors, and each machine would do the same set of chemistry, only across a smaller
domain. Alternately, one could envision functional decomposition, where each processor works on
the entire domain, but implements a subset of the chemistry. Of course combinations of the two
are possible as well. For the AIRSHED problem in particular, data-domain decomposition was easy
enough to implement and produced an almost-linear speedup with each additional processor. At
some point however, the effects of granularity start to swamp out any potential gain by adding
another processor because the domain sizes are so small, or possibly there may be more machines
available than grid cells in the domain (in the not too distant future). Then the utility of functional
decomposition becomes apparent.

Choosing appropriate partitions of the chemistry is not simple. Due to the coupling of the
various chemical species through all the reactions, information about many species must be available
at each processor. Eventually each chemical species will be assigned to exactly one of the processors
to avoid doing extra work. The schematic in Figure 25 shows the coupling for this set of reactions:

NO2 + hv -- NO + O
0 03

k3NO + 03 -k NO2

The figure demonstrates that to calculate the change in concentration of NO2, the processor will
need the current concentration of NO2 as well as those of 03 and NO, to calculate the increase due
to the third reaction. The other species have similar requirements. Any scheme to partition the
chemistry across multiple processors will divide this graph, cutting across the arcs which represent
the reactions. Each such cut implies one piece of information which must be communicated between
the processors at each time step, and thus the cuts are to be minimized.

hv

Figure 25. Illustration of tight coupling of chemical species in a simple set of three reactions.

The complete system of AIRSHED chemistry is too large to permit the drawing of such a graph,
but its complexity may be represented in a different way, by the incidence matrix of the graph.
In Figure 26, a blackened square in a row of the matrix indicates that to calculate the species of
that row, current information about the species in the corresponding column is required. Methyl
tert-butyl ether, ethanol, methanol, and others are affected by few reactions so have quite empty
rows. Very reactive species, such as OH, are involved in many reactions, and information about them
must be known by many of the processors. Two species in this mechanism, TBF and SO3, never
react and are only produced, so their columns are empty. Note that the diagonal is full because

56

§5.1 Optimal functional mapping of reactive systems

dc
calculating c(t + bt) requires c(t) as well as dt. Another observation about this matrix is that it

is non-symmetric and relatively sparse: only about 20% of the entries are non-zero.u OYYYW OZ °.O. 'o.' _ _0
O-"-<~- t ,ONNnI- ' ~-.0d " Z W - OU. COOO o-Ygxzudzzitu cfrazfII XC7 a '

OSD
TBF
s50
so2

MTBE
ETOH
MEOH
AROM
TOLU
ALKE
ALKA
ALKN

PAN
CH4HNO4HONO

N205BZO
BZN2
CRES
DIAL

ETHE
H202NPHE
ISOP

RO2N
RO2P
H20

MGLY
0

HNO,
0,

MEK
R20 2HV

NO
CO

ALD2
"Jo3

MCO,
RO2R

RO2
NO2HCHO
OH

HO2

Figure 26. Graphical illustration of coupling between AIRSHED species.

A first attempt at dividing up this system of chemistry would be to rearrange the matrix in
Figure 26 into Jordan canonical blocks. However, since OH is implicated in the reactions of 37 species
(including itself), tere must be at least one block of that size, and the resulting decomposition is
guaranteed not to be very even. Placing the problem in a mathematical framework will allow an
advantageous comparison to be made. With the definitions

S set of species participating in the reactions
B set of all subsets of S
A incidence matrix of B, a,j = 1 if si E bj
P number of processors
X optimized variable, xj = 1 :- some processor will calculate block bj,

and constraints

x, E {0, 1 } blocks are either calculated or not
A X = 1 every species must be calculated exactly once
IB!

Exi = P each processor is allocated one block,
i=1

57

Chapter 5. Representation

the optimization is to find the vector X such that some function f(X) is minimized. This function
will depend on the arrangement of processors to address issues of intercommunication and program-
ming model, but reflects the total time to solve the entire set of chemistry. The length of X is
quite large; it is the size of B, or 21SI. For the 46 species considered in the AIRSHED mechanism,
this is 7.0 x 1013 which is a prohibitively large number of variables. With the representation above,
the problem is seen to be equivalent to the generalized set-partitioning problem, which is just the
set-covering problem with equality constraints, and with weights implemented in the function f(X).
Numerous references discuss various forms of the problem [102, 119, 53] and offer good solution
techniques for special cases [52], but the problem has been proven to be of the class NP-complete,
hence no polynomial time algorithm exists for its solution.

For the purpose of generating the functional form of f(X), the entire AIRSHED program may
be considered to be divided into a single controlling "front end" and P slave processors. The
master processor is responsible for reading inputs and writing output, doing vertical advection and
horizontal transport, and general housekeeping while each slave will implement only its portion of
the chemistry. Communication is restricted to sending initial concentrations to the slave processors
by the master, and returning the results, as illustrated in Figure 27.

pecies
ations

pecies
tions

Figure 27. Communication between front end processor and chemistry subtasks.

The main aspect of a parallel machine which will influence the form of f is its type of memory
access. There are two basic classes of this. Shared memory machines have essentially constant access
time to reference a chunk of memory as access is usually regulated by some piece of hardware which
sits between the processors and the memory bus. Common examples of this architecture are the
Cray Y-MP and C-90. Since all processors will see the same time delay (which is rather small, on
the order of a few hundred cycles perhaps), it can be subtracted out giving

f(X) = max T(b,)
{i X,=1}

where T(bi) is the time to calculate one block, or one specific subset of the chemical species. For
the purposes of the branch and bound algorithm to be discussed later, the obvious lower bound on
f will be reported here:

f(x) > T(b,) for each {i x, = 1}.

The second major class of memory access occurs when each processor has a chunk of memory
associated with it, and for another to access it requires some form of request and reply protocol to
have the owning processor send the information out. This is becoming a common architecture for
supercomputers, such as the CM-5, and is realized by the virtual machine when using a network
of workstations, perhaps under PVM [15]. The access time for any piece of memory depends on
the "distance" between the requesting processor and the one which owns the memory, and in the
general case may not be known ahead of time. Since this particular problem has restricted the types

58

§5.1 Optimal functional mapping of reactive systems

of memory access due to the communication protocol illustrated in Figure 27, the value of f(X) can
be worked out for each combination by determining the optimal schedule of sending and receiving.
An example of a schedule is shown in Figure 28 to illustrate these issues. At the beginning of an
iteration, the master processor prepares the initial concentration values and sends them off one set
at a time to the slaves, which are idle. As each slave receives the necessary concentrations it starts
calculating, independently of all the others, then sends back the results and waits for the next set.
Assumed in the figure and throughout this discussion is that the master is able to communicate
with only one slave at a time, otherwise the problem reduces to the case of the previous paragraph.
There are 2P different schedules for each partition of the species, and no easy way to decide which
is the fastest without testing all the alternatives. In fact, the scheduling problem described here is
another well-known optimization problem and is also of class NP-complete. However for the purpose
of the upper-level optimizer, there are the bounds

min T(bi) -Z S(bi) + R(b,) < f(X) < max T(bi) -Z S(b,) + R(b,),
{ I x=1} I x,=1} I .=1} - I x.=i}

where S and R give the times to send and receive a block of species. One example of the relative
widths of the bars in Figure 28 is given by timing obtained using PVM between DEC workstations
across a single 10baseT network at MIT, where the send time for one species is 0.204 seconds,
and the calculation time is 1.003, on average. For more well-connected processors, it may be that
the calculation times overwhelm the sending and receiving times in which case a shared-memory
approximation may be made. The rest of this section will not address the more complex situation,
and solve the problem only for shared memory architectures. On non-dedicated machines, exact
scheduling is further complicated by the runtime decisions of the operating system of which task
actually executes.

Slave 1

Slave 2

Slave 3

Slave 4

idle

fsending
J receiving

McalculatingMaster -//.///ii
Figure 28. Example communication schedule for four slave processors.

The time to calculate each species is the sum of the times to calculate the extent of each
reaction in which that species participates. The time to calculate a single block, T(bi), in general
would be calculated by performing the calculation for each species and summing over the species
in the block using the incidence matrix A, then subtracting out reactions common to the block.
The reactions in the AIRSHED chemical mechanism are all uni- or bi-molecular and first order in the
reacting species, so with the observation that array accesses to get current concentrations are much
slower than floating point calculations, all the reactions take about the same amount of time. This
constant factors out and makes the algorithm a bit simpler by removing the need to keep a table of
the reaction times.

Even with these simplifications, the problem as it stands has 46 species, so 7 x 1013 variables,
which leaves it essentially unsolvable. One reduction, which is common to both cases of memory
access, uses the tight coupling to reduce the effective number of species. The set of species S can be
split into two groups: S, the "essential" species, and S. the "covered" species, so that

S = {s, E S 1 3 s E S such that N(s) C N(sj)} .

N depends on the memory type. For the shared memory case. N(s,) is the set of reactions which
affects the species s,, while for exclusive memory machines it is necessary to add to N the set of

59

~#mm 11 IN\\\~i~aa·8~
HHHF.t- IN tt?\,1g;l

Chapter 5. Representation

species which participate in those reactions, as their concentrations must be present at the working
processor. This augmenting set can be read off the appropriate row of the matrix in Figure 26. An
example of one covered species is given in Table 7 where the 17 reactions involving lumped aldehydes
are listed, and are seen to include all four of the reactions involving 3-carbon and longer alkenes.
So for a processor which has already been assigned to calculate aldehydes (as some processor must),
it makes no sense to assign alkenes to any other processor as the work to calculate the update has
already been performed as part of calculating the update to aldehydes. Applying this simplification
reduces the number of essential species (those which are not covered in the calculation of any other)
down to 31, resulting in a problem of 2 x 109 variables, still a huge number.

ALD
ALD
ALD
MEK
MEK
ALKA
ALKN
ETHE

* ALKE
* ALKE

+ OH
+ HV
+ NO 3

+ HV
+ OH
+ OH
+ OH
+ OH
+ OH
+ 03

* ALKE + O

* ALKE
ISOP
ISOP

ISOP
ISOP
ETOH

+ NO 3

+ OH
+ 03

+O

+ NO 3

+ OH

MCO 3

- CO + HCHO + RO2R + HO2 + RO2

--- HN0 3 + MCO3
MCO 3 + ALD + RO2 R + RO2
1.2 R2 0 2 + 1.2 RO 2 + MCO 3 + .5 ALD + 0.5 HCHO
bl HCHO + b2 ALD + b3 MEK + b4 RO 2N + b6 R 2 0 2 + b7 RO2

-, NO 2 + 0.15 MEK + 1.53 ALD + 0.16 HCHO + 1.39 R 2 0 2 + 1.39 RO2

- RO 2 R + RO2 + 1.56 HCHO + 0.22 ALD
- RO 2 + RO2 + b8s HCHO + b9 ALD

-- bl 0 HCHO + bll ALD + b2 RO2R + b12 RO 2 + b13 HO 2 + bl 4 OH
+ b15 CO

- b16 CO + b17 MEK + b18 HCHO + b 9 ALD + b20 HO2 + b2l RO 2R
+ b21 R02

-- NO2 + b8 HCHO + bg9 ALD + R2 0 2 + RO2
- HCHO +- ALD + RO2 R + RO2

- 0.5 HCHO + 0.65 ALD + 0.21 MEK + 0.16 HO 2 + 0.29 CO + 0.06 OH
+ 0.14 RO 2R + 0.14 RO2

- 0.4 HO2 + 0.5 MEK + 0.5 ALD
- NO2 + HCHO + ALD + R2 02 + RO2

- ALD + HO2

Table 7. Reactions required to calculate changes in concentration of lumped aldehyde (ALD). Those
marked with an asterisk (*) are the full set of reactions needed to calculate 3-carbon and longer alkenes.

In an attempt to reduce the size of this optimization problem, heuristic initialization is used
to prune away some of the branches at the outset. A good low value for total time to execute was
found essentially by guessing, although in an algorithmic way, in a program that took two hours to
complete, which permits the exclusion of all but 6.5 x 106 blocks. The code to implement this integer
programming problem does a standard branch and bound search but with quite a few modifications.
Even with this great reduction in the number of variables, it was clear from running an initial version
that it would not complete for many years. Many purely computational improvements were brought
to bear, the main one using the fact that 31 species could be represented as bits in a standard memory
word (32 bits), which allows replacing array indexing and addition with bit shifts and masks. Also
arrays of times for words containing three or fewer '1' bits were pre-generated and stored on disk
to speed up timing calculations; the same was done for pair lists of manageable sizes. Counting
the number of '1' bits in a word, a frequently performed operation, was replaced with looking up
the word in a table, replacing a loop of length 32 over 3 operations with a single array reference.
Furthermore the most critical routine was hand-coded in assembly language, for about a factor of
four speedup.

It must be stressed that this whole procedure needs to be performed only one time once the
choice of chemistry is made, and is not part of the production system which will do the actual
calculations of changing concentrations. It is reasonable to spend a fair amount of time up front

60

§5.2 Subexpression superoptimizer

if it will be gained back by decreasing the runtime of a calculation to be executed thousands of
times later. The optimization for the AIRSHED system of chemistry took five assorted machines (one
DEC MIPS 5000/240, two DEC Alphas, an SGI, and an HP) about two weeks working full time to
solve the problem for the case of four processors. The execution times for partitioning the chemistry
across four and eight processors are given relative to the time to solve all the chemistry on a single
processor in Table 8. For four processors, the speedup is only a factor of two since the procedure
is limited by one large block. In the case of eight processors, the time to calculate the entire set of
chemistry is again limited by the largest chunk, which requires a third of the total single-processor
time. In spite of the apparent poor performance gain, the figures reported in the table are indeed
optimal for the chosen parallelization strategy and set of chemical reactions.

processors execution time

1 1.00

4 0.52 = max(0.52, 0.37, 0.30, 0.30)
8 0.33 = max(0.33,..., 0.07)

Table 8. Relative execution times of functional parallelization of chemistry, for different numbers of
processors.

The conclusion one may reach is that this type of parallelism should never be employed due
to the extremely sublinear scaling of calculation time as a function of number of processors. and
one would be correct. This problem is quite amenable to the more standard technique of data
parallelization, where a chunk of the total spatial domain is given to each processor, and each
processor implements the full set of chemistry (the full "function") on each grid cell in its assigned
chunk. For the case where the number of processors is much smaller than the number of grid cells,
data parallelization is the obvious choice. When, as may be seen in current trends, the number of
processors becomes comparable to or exceeds the number of grid cells in a problem, two possibilities
may happen. First, as is often relied on by parallel algorithm designers [142], programmers may
increase the resolution of their codes until the cell-to-processor ratio becomes large again. Failing
that, it becomes necessary to use functional parallelization if the full power of the machine is to be
exploited, and the method described here is the optimal way to do that.

One other advantage of this method of parallelization which is simply mentioned is in the re-
duction of per-processor algorithmic complexity. The extent of the more than 100 reactions involved
in the example described here is too large to allow use of the vectorization registers on the Cray
C-90, however the smaller sets of chemistry generated by this procedure may allow their utilization,
realizing an unexpected benefit of functional parallelization.

5.2 Subexpression superoptimizer
The second use of a representation tailored to fit the problem is also related to speeding up the
right-hand side calculations described in the previous section. This time there is no consideration
of parallelization, just a maximization of the raw scalar speed through optimal preservation of
subexpressions. As an example, consider (once again) the reaction

A+B - C.
The differential equations for the three species are, trivially,

dAA= -- kAB
dt

dB =-kAB
dt
dCd- = kAB.
dt

61

Chapter 5. Representation

Inside any time integration package, there will eventually be statements which compute the right-
hand sides of each of these equations, to be used in updating current concentration values according
to whatever time integration scheme is used. This code may have the following form:

Adot = -k * A * B;
Bdot = -k * A * B;
Cdot = k * A * B;

A naive code compiler might produce machine instructions which resemble the following:

load $fl, k
neg $fl
load $f2, A

mul $f3, $fl, $f2

load $f4, B

mul $f5, $f3, $f4
store $f5, Adot

load $fl, k

neg $fl
load $f2, A
mul $f3, $fl, $f2

load $f4, B

mul $f5, $f3, $f4

store $f5, Bdot

load $fl, k

load $f2, A

mul $f3, $fl, $f2
load $f4, B

mul $f5, $f3, $f4

store $f5, Cdot

where three nearly-identical sections are needed to produce the results. A more clever compiler
might notice that the expression k * A * B is used frequently, and preserve it for many calculations:

load $fl, k
load $f2, A

mul $f3, $fl, $f2

load $f4, B
mul $f5, $f3, $f4

store $f5, Cdot

neg $f5
store $f6, Adot
store $f6, Bdot

Since the number of loads and stores is absolutely fixed by the structure of the problem, it is clear
that the second code listing calculates the results with the minimum number of operations. The
goal of this section is to do the same analysis, only for much larger systems of chemistry.

There are many levels of optimization available to a code writer, be it a compiler or a person
hand-crafting the instructions. The analysis above stresses the "top" level, that of re-ordering oper-
ations to minimize redundant work. Optimizing at deeper levels requires specific knowledge about
operating characteristics of the machine. For instance the choice between storing a subexpression
in memory for later use then retrieving it when needed, or simply recalculating the subexpression
depends on many factors: number of times the subexpression is reused, speed of accessing memory,
time to calculate the subexpression, and presence of other stored subexpressions. The last item

62

§5.2 Subexpression superoptimizer

is complicated by the existence of different levels of memory in most machines: registers, on-chip
cache, off-chip cache, main memory, swap. And the optimal code under one operating condition
for the machine may not be optimal when other processes are competing for machine resources as
well. Thus the philosophy taken here is that it may be worth the effort to superoptimize this very
special structure of operations (namely that generated from mass-action chemistry rate equations),
but that there is no value in trying to complete the compiler's tasks of register allocation, instruction
reordering, and pipelining.

The code which does this analysis is based on a common reaction mechanism parsing framework,
which is discussed elsewhere in this thesis and fully described in the appendices. Taking the lists
of reactions, species, and constants produced by the parser, the optimization code performs the
following steps:

1. Build node trees. Construct reaction rate expressions from the left hand sides
of the reactions and express for each species its combined sum of reactions, with
pre-multiplying stoichiometric coefficients. This creates a forest of trees, one for
each species, which share links only at reaction rate nodes.

2. Combine multiplications. Further interlink the forest by sharing all multipli-
cation nodes at the highest level. This is done by first creating a linear list of all
multiplication nodes in any tree, sorting the list according to a canonical strict
ordering on nodes, and linking all identical nodes to a single reference. A further
sort places the shared multiplication nodes in most-used order.

3. Combine additions. Analogous to multiplication, addition nodes are sorted in
most-used order and shared.

4. Output. A FORTRAN subroutine is created by dumping all the rate expressions,
with temporary expressions declared only just before their use, hopefully to help
the compiler in making wise register allocations.

One complexity which need not be handled is that of additions inside multiplication expressions
because the special structure of reaction rates does not allow that situation to occur. Otherwise
the above four steps would be complicated by the choice of when to distribute multiplication across
addition and when not to do so.

The results for the AIRSHED chemistry of 44 species, 9 of which are taken to be in steady-state
conditions, and 106 reactions are presented in Table 9. The base for computing the fractions is the
number of operations in the original source code for calculating the species updates, from which the
number of times and plus signs were simply tallied up. The original author was clever enough to save
some operations over a "naive" code by first computing the extent of each reaction, then summing
up products of stoichiometric coefficients and those extents; the naive code simply recalculates the
extents of reaction at each point needed.

Naive code
Source code
MIPS compiler
CRAY compiler
Optimized

multiplication

721
544
423
415
335

1.325
1.000
0.778
0.763
0.616

addition

1061
869
752
757
621

total

fraction

340
325
329
342
286

1.046
1.000
1.012
1.052
0.880

1.221
1.000
0.865
0.871
0.714

Table 9. Operation counts for various compilation schemes.

The counts reported
fortran compiler, and by
available. The assembly
erations, to generate the

in the third and fourth rows of the table were produced by a DEC MIPS
CRAY's cf77 compiler, both set to use the highest level of optimization
code outputs were searched through. counting up the floating point op-
numbers in the table. The final row is the result of the super-optimizer

63

.----

count count fraction fractioncount

Chapter 5. Representation

described above. Both operation counts are clearly much lower, and since the two machines con-
sidered here both have constant operation time for addition and multiplication in this code, the
subroutine takes only about 82% of the time to execute compared to the default optimized versions.
One reassuring result is that the compiler is unable to optimize away any more instructions once
the superoptimizing compiler has done its work. That is, the operation counts reported in the last
row of Table 9 are computed by counting up *'s and +'s in FORTRAN source code, and are identical
to those that would be calculated by counting add and mul instructions in the object code produced
by the MIPS or CRAY compilers using full optimization.

Here again, then, is stressed the important theme of choosing the proper representation for a
given problem. The superoptimizer does its work not on raw source code or even on the reaction
equations themselves, but rather transforms the reactions into a forest of species-rooted trees which
are then intertwined using natural binary tree operations. Intermediate steps require sorting of
the expressions, for which the more natural linear list representation is derived, and the results of
sorts are returned to their proper locations in the binary tree. So five major representations were
employed on this single problem:

1. Reaction equations, the "natural" language for human chemists and engineers.
2. Reaction-rooted binary trees, straightforward structures into which to parse reac-

tion equations.
3. Species-rooted binary trees, necessary basis for sharing nodes, and the order in

which output must be generated.
4. Linear lists, for intermediate sorting steps.
5. FORTRAN source code, as required for machine translation.

All the operations performed on these structures are simple; the thought goes into deciding when to
change representations, and performing the transformations.

The concept of representation discussed in this chapter is the cornerstone of the development of
numerical differential equation solving algorithms by finite differences or finite elements. A functional
form is chosen to represent the dependent variables, and the problem is reformulated in that new
space. Later chapters discuss this in more detail, and in particular, for the case of non-analytic
functions.

64

Part II

Optimal Field

Representation

The following three chapters consider the search for the optimal representation for
a given problem. In particular, for the case of differential equation solving, it is
very simple now to take an off-the-shelf integration package, write a derivatives
(and perhaps Jacobian) subroutine, and let it produce the answer. This is a fine
approach for small problems or even big problems which will not need to be solved
more than a few times, as these schemes guarantee error control to a user-specified
tolerance and in general have been thoroughly tested and debugged. In using these
packaged solution modules, one accepts the representation prescribed by the author
and must tailor his problem to fit that representation which may not be the obvious
or best one for the particular problem.

Programmers of large complex codes with significant differential equation solving
costs spend a fair amount of time fine tuning the solution algorithm to the appli-
cation. Global weather prediction codes generally use spectral methods, the clear
choice when the domain is a sphere, and use many assumptions which are quite
valid for atmospheric conditions. Ocean flow models must use a very different set
of assumptions, given the different fluid properties and the presence of horizon-
tal boundaries. The regional scale chemical species reaction and transport model,
AIRSHED, uses a hybrid integration technique with seven numerical constants to
control stepsize selection, tailored specifically to the problem and the domain.

What is suggested in this thesis is that this degree of tuning the solution strategy
to the problem at hand should go one step further. By using all the information
available about the equations, including likely solutions, it will be shown that a
scheme can be developed which is the optimal method of solution. This scheme
depends explicitly on the assumption that the code is intended to be executed many
times under similar conditions to provide a good set of example fields from which
to create the basis. The scheme is based on a Galerkin method using empirically
derived basis functions, generated by a Karhunen-Lokve expansion.

Different approaches to differential equation solving are first presented, followed
by a general formulation of a solution technique from which can be derived finite
elements, finite differences, and spectral methods. The last chapter derives the
optimal basis for a given set of previous solutions.

Differential equation solving:
previous approaches

Departures from standard solution strategies based on finite differences or finite elements are un-
common in practical use. The following sections describe some of the more popular methods of
reducing differential equation solution time.

6.1 Parameterization
The preeminent strategy used to speed up the solution of a model is to reduce its complexity-
adjust the physics to ease the strain on the numerics. This is commonly done by an outright neglect
of certain effects, such as the neglect of non-Newtonian effects, entrance and exit conditions, and
compressibility in the use of the Hagen-Poiseuille law to relate volumetric fluid flow to pressure drop.
Weather prediction models frequently ignore the dynamics of the interaction of the atmosphere with
land and sea, such as heating and moisture changes, and assume that short-wave solar radiation is
not absorbed by clouds. Recent studies are suggesting both of these assumptions are not valid.

When the physics is too important to be omitted, yet too complex to model or solve, param-
eterized approximations can be substituted for the actual effects. The modeling of turbulent fluid
flow is a classic example of this, with the Blasius formula

0.0791

Rel/4

which gives decent estimates of the friction factor for flow in tubes for Reynolds number in the range
10 3 -105 . Different functional dependencies arise for flow past spheres or over flat plates, all derived
by fitting experimental data to plausible functional forms. In models of cloud formation used in
weather prediction, the microscale physics of particle coagulation and water vapor condensation is
commonly parameterized with values which give believable results. The effects of different aerosol
properties is ignored.

Models featuring reactive chemistry make approximations by omitting certain reactions, or
assuming some reactions are so fast as to be always at steady state (ignoring the kinetics), or lumping
many similar chemical species into one aggregate species. The concentration of this aggregate species
is adjusted based on fractional instead of mass action kinetics, with the fractions adjusted so that
the answer looks correct, or based on an experimental study.

67

Chapter 6. Differential equation solving: previous approaches

Molecular dynamics codes attempt to predict properties of single molecules or a small collection
by using force laws based on the individual atoms. One popular assumption is that since these forces
fall off with increasing interatomic distance, not all pairs of atoms require force calculation, just
those proximal to each other. Also the force laws are not explicitly known, but potentials such as
the Lennard-Jones provide good approximations, it seems.

In many cases these approximations or parameterizations are entirely appropriate, and it would
be senseless to include the calculation of a small effect which will have zero contribution to the final
result, or whose contribution falls within the uncertainty of the result. In other cases the physics
is clearly being held back by the inability to perform the calculations quickly enough, and the onus
falls upon the numerical algorithms.

The true goal of modeling is to find the best trade off between model complexity and solution
feasibility, bounded between a useless result when the model is too simple, and an uncalculable result
when it is too complex. The dream, however, is that solving the model is a trivial detail, providing
for complete freedom in prescribing the physics. (If this were the case, all models would probably
be atomic scale.)

6.2 Multigrid and adaptive grid methods
Often to generate sufficiently accurate solutions to differential equations over a spatial domain, it
is necessary to increase the resolution in a grid-based method to such an extent that the problem
becomes computationally intractable. One remedy to this problem is to use multiple grids at different
resolution levels, or a grid which changes dynamically during the course of an integration. Both
these techniques still rely on a grid-based solution method, just modify it such that fine resolution
is used only where necessary. In the case of multigrid methods, Bank [12] has implemented a
solution strategy for elliptic equations with good results. Berger [16, 17] uses adaptive grids to solve
hyperbolic problems occurring in shock hydrodynamics to solve previously intractable problems.

While this approach seems like the obvious thing to do, there are some associated problems.
Code complexity is increased due to the added overhead of checking some metric to decide if the
grid should be locally refined, in adaptive grid schemes. Multigrid algorithms usually prescribe
the locations of the extra grids before runtime, locking their use to specific conditions (e.g., a
non-moving shock front). Conceptually the worst problem is deciding how to transfer information
between the multiple grids or along the boundaries of refined adaptive grids. Linear interpolation
and extrapolation is commonly used but has no physical basis. Biswas et al. [20] discuss variatiors
on an adaptive finite element mesh which allow the conservation of various components which wouli
otherwise not be conserved across linear interpolation between grids.

Implementation of dynamic adaptive grid methods on parallel machines suffers in that the work
load for any given section of the grid changes during the simulation. Processor loads may initially be
balanced, but quickly change to the case where processors calculating a quiescent region become idle
while those working near shock fronts keep the rest of the system from advancing to the next time
step. Ideally load should be balanced dynamically, as Wheat et al. [141] attempt. Unfortunately
the overhead for this sort of load balancing often is too expensive.

6.3 Wavelet finite elements
Another promising multiresolution algorithm is presented by Bacry et al. [10] who use wavelets as
the orthonormal bases in a finite element scheme. Wavelets have the nice properties of scaling and
translation invariance, allowing for easy grid resolution, and locality. In their algorithm, multiple
sets of finite element grids are maintained, ranging from spatially large elements covering the whole
domain down to very small locally supported elements only where the error from the larger ones
is significant. All the layers are superimposed to give the actual value at a point. Adaption in
time works by checking the error at each point, and adding the next smaller (by a factor of two

68

§6.4 Faster machines

always, from the definition) layer of wavelets in the region of that point. Conversely when small-
scale wavelets are contributing little to the solution, they can be removed from the calculated set.
A similar approach is used by Engquist [43].

This approach seems quite promising for partial differential equations which generate solutions
with localized structures in space that evolve quickly in time, such as flows with moving shock
fronts or the nonlinear Schr6dinger equation. However the numerical complexity grows quicker than
would be expected as it is linear in the number of nonzero wavelet coefficients (not scaled down
by the extent of the wavelet), and the constants are not small [18, 84]. Another problem is that
the boundary conditions must be described on cubes in ~nl; arbitrary domains must somehow be
mapped into cubes, or approximated.

6.4 Faster machines
Finally, the method most relied upon for decreasing model execution time is to port the code to a
faster machine. In doing an optimization over the emission fields using AIRSHED as the model to
calculate pollutant concentrations, it was found that a runtime of 5 hours per function evaluation
would make the problem completely infeasible. Porting the code to the Cray C-90 reduced this time
by a factor of 60 which allowed the optimization to converge in only a few days.

The algorithmic changes involved in using a faster machine are often trivial, but in the op-
timization just described and many other models, some rudimentary data parallelization must be
performed. This technique of speeding up a code must certainly be considered for working models,
but provides no fundamental improvement in the field of numerical solution of differential equations.

69

Galerkin methods

Particular computational methods have assumed prominent positions in certain areas of applications,
such as finite element methods in structural problems, finite difference methods in flow around
aircraft wings, and spectral methods for global atmosphere modeling and weather prediction. These
apparently unrelated classes of algorithms are actually all specializations of one general method,
with the artificial division arising just due to the segregation into different modeling arenas.

Solution techniques in this general class are called Galerkin methods. Problems consisting of
ordinary or partial differential equations and integral equations have been simplified and solved
using Galrkin formulations for many years. The capstone paper was published by Galerkin [51]
in 1915 on the elastic equilibrium of rods, and gained attention in the western world in papers by
Duncan [40, 41]. The attractiveness of such methods at that time when calculations were done
by hand is that they could provide significant accuracy with minimal manual effort. Widespread
availability of computers led to more emphasis on Galerkin methods, as solutions of greater accuracy
with minimal execution time could be achieved.

A good introduction including connections to other numerical equation-solving methods through
appropriate choices of the expansion functions and the test functions can be found in a book by
Fletcher [48]. One special point to notice that is often used in developing a Galerkin method is that
the expansion fields are deliberately chosen to satisfy the boundary conditions. The work in this
thesis takes that observation one step further and also requires that the expansion fields be likely
candidates of the actual problem solution. The use of non-analytic functions does not alter the
Galrkin nature of this procedure and is consistent with the historical trend to use the advantage of
computational power to simplify total problem solution times, reducing the analytic component of
the solution process.

7.1 Background
A wide class of solution techniques, including finite differences, finite elements, and spectral methods,
are derivable using the Galerkin method framework. The key features of a Galerkin method are a
differential equation

Lu = 0

in a domain D with boundary conditions
Su =O

70

§ 7.2 Method of weighted residuals

on D. Now the Galirkin method assumes that the solution u can be well approximated by a series
of known functions {i }X =l:

N

u = uo(x) + Zaii(x).
i=l

Normally the Oi are taken to be analytic functions, but that need not be the case, as will be shown
by the empirical nature of the ones exploited in this thesis. Frequently the trial functions, Xi, are
deliberately chosen to satisfy the boundary conditions. Substituting the expansion for u into the
linear governing equation produces a nonzero residual given by

N

R = Lu = Luo + E aiL(Oi).
i=1

In the Galerkin formulation, one demands that the residual be orthogonal to the same functions
used in the expansion which allows the coefficients ai to be determined from a matrix equation.

The leading term uo is included to satisfy the boundary conditions and in general can be sub-
tracted off the dependent variable u to produce a problem with homogeneous boundary conditions.
Otherwise the boundary condition must be handled through the trial functions which effectively uses
up a basis member. Handling the boundary conditions in this way allows for local error reduction
(on AD) while the whole Galgrkin procedure is constructed to achieve global error reduction.

7.2 Method of weighted residuals
An extension to Galerkin methods, which encompasses them, is sometimes called the method of
weighted residuals [14]. In this general case, the residual is forced to be orthogonal to some other
class of functions, not necessarily those used in the expansion. The general formulation comes from
Collatz [34] in which one attempts to find a solution u which is close to the exact solution ue:

ue U(X, ... Xn,, al, ... , a)

by requiring one of the three conditions:

1. The differential equations are satisfied exactly ("boundary method").
2. The boundary conditions are satisfied exactly ("interior method").
3. Neither the differential equations nor the boundary conditions are satisfied exactly ("mixed

method").
Then parameters al,..., ap are chosen such that, respectively,

1. The error in satisfying the boundary conditions is minimized.
2. The error in satisfying the differential equations is minimized.
3. Errors in satisfying both the differential equations and the boundary conditions are simultane-

ously minimized.

Solution techniques of ordinary differential equations mostly use interior methods since if the solution
to the differential equations is not known exactly, it is still necessary to solve a nonlinear system
of equations to get the boundary conditions. Partial differential equation solution techniques use
both boundary and interior methods, but boundary methods are to be preferred since integration
along the boundary is computationally less expensive than integration across the entire domain.
Mixed methods are used when both the differential equations and boundary conditions are especially
complex.

Considering just interior methods, the method of weighted residuals starts in the same manner as
the Galerkin method, expressing an approximate solution in terms of known analytic trial functions,

N

u(x, t) = uo(x, t) + ai(t) (X),
2=1

71

Chapter 7. Galirkin methods

and again uO is chosen to satisfy the boundary conditions if possible. This formulation reduces partial
differential equations in x and t to ordinary differential equations in t. If instead the functions Oi(t)
and ai(x) are used, it reduces to a partial differential equation in x. For trial functions (x, t) of
both space and time, or for non-time varying problems, this expansion reduces the equations to
algebraic. Where the method of weighted residuals is more general than the Galerkin method is
that the test functions need not be the same as the trial functions, so the requirement

(R,w,(x)) =0, i= 1,...,N

is used to generate equations for the coefficients ai. In order to produce N independent equations,
the test functions wi must be independent (orthogonal), but that is the only constraint.

Some common choices for the weight functions have developed.

1. Subdomain. The domain D is divided into possibly overlapping chunks and the test functions
are the characteristic functions on the division:

w,(x)= {0 otherwise.

This method is similar to the finite volume concept in fluid mechanics and heat transfer, which
uses the concept of a control volume to calculate, for instance, accumulation of a passive scalar:

pu, ds 9 p dv

as the flux through the surface of the volume. By Green's theorem, this becomes

X daP + vP (, dv = 0.

Each control volume is, then, its own subdomain.
2. Collocation. The choice

wi(x) = 6(x - x,)

is made by most finite difference models, forcing agreement of the equations at a finite number of
points inside the domain. Extremal point collocation and orthogonal collocation sample values
at the zeroes of polynomials, as discussed at length in Finlayson [46], in which examples are
chosen from common chemical engineering problems. Using the collocation method, Schetz [120]
solved three different viscous flow problems using as trial functions the analytic solutions from
related problems. For instance, the momentum-only equation for flow across a semi-infinite flat
plate was approximated using solutions from the case for an infinite plate:

u1 erfYRe(Re/2) u e f Y (Rel/2),u~ erf 2l ' uoo erf 2a u. erf2

essentially parameterizing the solution using a polynomial expansion. The other two problems
considered were natural convection near a vertical flat plate and forced convection over a plate
with a step change in temperature. This work is relevant since it seems to be the first instance of
choosing the trial functions not only to fit the boundary conditions, but also to use information
about the expected solution, namely that it be close to the solution of a related problem.

3. Least squares. Writing
OR

wi(X) = aaaj

72

§ 7.3 Variational formulation

where ai are the coefficients in the expansion, is equivalent to requiring that

(R,R)

is minimized. This is perhaps the most popular method, especially for steady problems. For
unsteady problems, the inner product must be augmented to consider both the spatial and
temporal domains.

4. Method of moments. The test functions

Ui(x) = xi

have some appealing statistical properties.
5. Galerkin method. As already discussed, the test functions are exactly the trial functions

wi(x) = hi(x)

although in this case the need not be orthogonal.
6. Generalized Galirkin method. The test functions are approximately the trial functions, but

extra terms may be added to improve numerical conditioning and stability.

A variation on the method of weighted residuals, called the discrete method of weighted resid-
uals, uses an inner product such as

(f, g) = E figi

where all the variables are discrete and the underlying equations are finite difference equations, either
ordinary or partial. Neuman [103] gives an overview of the uses of this method, using a "modal"
expansion which is still based on underlying analytic functions, in spite of the inherent discrete
nature.

7.3 Variational formulation
The general problem Au - f = 0 can be considered in a variational framework by noticing that this
equation is the Euler equation of the minimization problem

Fu = J(Au - 2f)u dx.

The method of Rayleigh-Ritz seeks to minimize such an integral by choosing a family of functions

u(x) = O(x, al,... ,a,,)

which satisfy the given boundary conditions, then substituting them into the integral and finding
the values of ai for which

OF(u)dFiu= 0, i = 1,...,n.
Oai

In the cases most important practically [68], X is taken to be a polynomial which is linear in the
coefficients ai, so may be written

n

u(x) = aiti(x)
i=l

73

Chapter 7. Galerkin methods

which gives (using orthogonality of the i)

F(u)= E (aA (x)i(x) dx + 2aia(A, - 2f)Oi dx - 2aiqif dx)

and setting the derivatives with respect to ai equal to zero gives

jl~A~Ldx2J~*id., i=1,...,n0 = 2 / ajAqjqi dx - 2 x Oif dx, i n
$=1

or more succinctly

aj(Aj, i) = (i, f), i = 1, . .. , n
$=1

which is the same result as would have been obtained using a Galerkin formulation. This connection
to the Rayleigh-Ritz method allows the strong bounds on convergence given in Kantorovich [68] to
be applied to the Galerkin method as well. In general, convergence estimates must be written on a
per-problem basis as the structure of the exact solution is not known. The traditional error metric,

IIU - Ue ,

where ue is the exact solution, is not generally available. However the value of the residual is always
easily obtained, and can be related to the exact error.

7.4 Choice of basis
The trial functions used in a Galerkin expansion are critical in determining the success of the method,
in terms of rate of error reduction and calculation time required. Certain choices of trial functions
are popular enough to have developed their own names as "methods," specializing from the general
class of Galerkin methods, as in the finite difference method, finite element method, and spectral
method discussed below.

First, however, the use of orthogonal trial functions is seen in many cases since this property
allows for easy calculations. In particular, a derivation using an arbitrary set of trial functions leads
to a system of equations which must be solved simultaneously to obtain values for all the coefficients,
and increasing the number of trial functions requires another complete solution of the (now larger)
set of coefficients. For the case of orthogonal functions, the set of equations are independent and
can be solved one at a time. Adding another orthogonal element to the basis requires only a single
derivation and the solution of only one more equation since the values of previously solved coefficients
do not change. The magnitudes of higher-order coefficients give an indication of the current error
in the solution. Various uses of these orthogonality properties are given below.

7.4.1 Finite elements
The use of piecewise linear test functions of local support is the basis of the finite element method.
Here the coefficients of each finite element are calculated in an inherently local way, but the global
error is used to drive the values. Reduction of the system of equations by a Galirkin method
produces a linear system of the form

LA = MA

where A is the matrix of coefficient values, one for each test function, and L and M are in general
fully populated due to the non-zero inner products of the test functions. In the finite element case,
for example using the element shown in Figure 29, each element has only two neighbors, leading to

74

§ 7.4.3 Finite differences

L a CLU 1YJ JlUaLlla WII.LI tltL LUIJL'IlU UUIY UU ttI Uallar111 anU

elements adjacent to the diagonal. This sparse banded nature
allows for very fast solutions of the linear set of equations, but
the local nature of the test functions generally leads to less
accuracy than would functions of global support.

Most of the finite elements are orthogonal simply due to
the fact that they are compactly supported on different non-

;_. ' _ J '__ _!. -1 - I _ ._ _ J I .11 _.: _ , .
intersecung aomains, till leaalng to a Iull system oI equations, xi-1 xi Xi+l
but of a special structure which can be easily solved. Various Figure 29. Piecewise linear finite
choices of the finite elements will lead to different degrees of element basis function.
overlap, of course. Here a tradeoff is made between the ease of
solution that full orthogonality provides and global error control that complete non-orthogonality
gives.

7.4.2 Spectral methods
In contrast with finite elements which rely on the low-order, local nature of the trial functions,
spectral methods exploit global, orthogonal trial functions, trading off ease of computation for rapid
convergence. In spectral methods the choice of the functions is of utmost importance. Some of the
most popular sets of functions are now described.

1. An eigenfunction basis can be formed by calculating the eigenfunctions of a related evolution
operator, then the idea of small perturbations and relying on the fact that the structure of the
related problem is similar allows its use in solution of the problem at hand.

2. A Fourier transform expands an operator in terms of the trigonometric functions sine and cosine
and is well-suited for problems with periodic boundary conditions. This basis has the nice
property of infinite differentiability as well, and has been shown to exhibit the best convergence
rate for smooth functions, but performs very poorly near discontinuities (including at non-
periodic boundaries).

3. A Taylor series of the monomials x n for n increasing from zero does not see wide use in practice
due to the wild oscillations which occur when trying to fit functions using a large number of
basis elements.

4. Legendre polynomials fix this problem to some degree and offer good wavelength resolution as
well, and are non-periodic, but converge very slowly near discontinuity boundaries.

5. Chebyshev polynomials are perhaps the most robust available in terms of being able to fit most
functions, and exhibit good convergence rates near discontinuities, however they are not strictly
orthogonal which adds to the solution time. These polynomials satisfy the criterion of minimum
possible maximum error as well [61].

The list above is ordered by increasing robustness, but decreasing accuracy, the standard trade-off
faced when choosing global trial functions. One nice property of using global orthogonal functions
is that the evolution equations reduce to explicit uncoupled ordinary differential equations.

7.4.3 Finite differences
Finite difference schemes result from approximating derivatives with finite expansions based on
some underlying grid [128], but are strongly connected with finite element schemes. Low-order finite
element shape functions on a regular grid produce finite difference expressions. For example, the
general convection-diffusion equation in one spatial dimension,

Au du _9 2u
-t+ ++ D 2 = 0,at x Ox2

reduces on a regular grid with linear elements to

1 duk+l 2 duk 1 duk-1 Uk+l -- Uk-1 Uk+l - 2Uk + Uk-1 +6 dt +- +6 +D = 0.6 dt 3 dt 6 dt 2-z (ax)2

75

T .- Ar AS - +- - --- --- ____ -- I.. __ &L- _ ,3~~-r-~~ ,,

Chapter 7. Galerkin methods

The last two terms are immediately seen to be identical to those produced by a three-point centered
finite difference approach. The major difference in the two expressions above is that the finite
difference formula is explicit, while the finite element formula is implicit. The latter is more complex
to solve but tends to require fewer iterations due to the relaxation over three points instead of one.

cgu
For the term u, a quadratic finite element scheme on a regular grid produces

Uk--2 - 4 Uk-1 + 4 Uk+1 -- Uk+2

4Ax

while a five-point finite difference scheme generates

Uk-2 - 8 Uk-1 + 8 Uk+l - Uk+2

12Ax

092 u

For the second-order term 2 finite elements gives

-Uk-2 + 8Uk-1 - 14Uk + 8 Uk+l -- Uk+2

4 (AX) 2

and finite differences gives

-Uk-2 + 16uk-1 - 30Uk + 16Uk+l - Uk+2
2

The two schemes generate similar formulas which involve the same terms, but with different weights.
The different weights arise in the finite element scheme from the shape of the trial functions, which
can be adjusted to give any weights desired and hence any finite difference expression.

7.4.4 Wavelet bases
The use of a wavelet basis exhibits the highest degree of exploitation of orthogonality. Wavelets are
generated from a single function with two parameters, scaling and translation, and are constructed
so that every distinct choice of the two parameters yields a function which is orthogonal to all the
others. Wavelets are by necessity local in nature, but the scaling allows this degree of locality to
change. Use of a wavelet basis in a partial differential equation solution scheme is shown by Bacry
and Mallat [10].

7.4.5 Problem-specific basis functions
The use of analytical, as opposed to empirical, functions has a long history because the first appli-
cations of Galirkin methods occurred before the widespread acceptance of computers, when it was
necessary to perform all calculations by hand or pocket calculator. All the previous subsections ex-
plained various popular choices of trial functions, the choice of which is motivated by many different
factors. Clearly one desires to have the ultimate set of basis functions for each particular problem,
but it is rarely obvious what this set would be. Instead of restricting the choice to analytic functions
only, widening the possibilities to include all functions allows the derivation of the single optimal
basis for a given problem. This derivation is explained in the next chapter, and uses knowledge of
previous solutions of the problem and constraints on the physical system.

76

Basis computation

Central to the whole procedure of basis space integration is the idea that the set of states the
system will visit over the course of an integration is much smaller than the set of all possible states,
allowing a representation of the state of the system in terms of a basis of this smaller set. This
section describes how to generate that basis given information about the system: previous solutions
and physical constraints. Also to be discussed are suggestions about what to do when enough
information is not available. This chapter concludes with the related topic of determining how good
a selected basis is, based on different criteria.

8.1 Previous solutions
Given a set of previous simulations of a model, the problem is to generate a basis for future executions
which is somehow representative of the previous solutions so that an expression of any of the solutions
in the basis is as compact as possible. Standard bases are various polynomials or transcendental
functions, which are chosen depending on expectations of the form of the solution, such as periodicity.
Here instead of writing down a set of analytic basis functions, numerical fields are generated to
capture as much information of the input fields in the least number of basis fields. The term "basis"
usually implies orthogonality of its elements, and that will be the case studied here, although non-
orthogonal dictionaries may be advantageous in other applications [37, 38, 85]. It will be clear in
the next part of this thesis how orthogonality is required here.

The set of previous solutions and the basis set to be generated will both be taken to be subsets of
the same Hilbert space so that an inner product will be available, and that only one will be required.
Eventually it will be necessary to use discrete spaces, but for now a continuous representation will
be used to make the presentation more intuitive. The experimentally gathered previous solutions
are

u(X,t)

defined on X x T which can be thought of as the product of a physical spatial domain and a parameter
by which the fields change (e.g., time), or as a discrete index to count the fields. The basis to be
generated is

{i(X))}

where i must be a discrete index, and can be taken to be an integer (although the most general
case has i as a net). It is guaranteed that the Hilbert space X has an orthonormal basis [117], but

77

Chapter 8. Basis computation

the choice of such a basis is left open. What is desired is that the basis be aligned such that the
first element is "closest" to the data, the second element is as close as it can be while remaining
orthogonal to the first, and so on. This concept of closeness is made concrete with an inner product
on X,

(u, v)a f u(x)v(x) dx,

here chosen without any weight function, but applications in some coordinates would require a
weight. As long as the inner product remains well-defined* the addition of a weight function makes
no difference.

In trying to find basis elements, it is desired that the element being searched be as close as
possible to the example fields, or that

I(Oi(x) u(x, 0)1I

be as large as possible for each t. Now a norm on the parameter space must be chosen to expand
this maximization for a single example field into one over a collection of examples. For the obvious
case of L 1, the value which should be maximized becomes

fr I(Ot(x), u(x, t)) dt

and in general for L P,

fr [(i(x), u(x, t))lP dt.

Division by the total number of example fields and the taking of a 1/p root have been dropped,
as these lead to the same answer since the problem is one of maximization. The problem must be
constrained by requiring that the basis elements have unit norm, otherwise the solution would be to
pick a very large 0,, and that they are orthogonal to each other, otherwise all 0i would be the same.

Solving this problem, for each i one at a time, can be considered intuitively as in Figure 30
where in three dimensions with zero-mean data and a least-squares norm, the line 1 is chosen to
fit the data as closely as possible, then 2 is chosen to be perpendicular to 41 and capture as much
of the remaining variation. b3 is then the only remaining vector orthogonal to the first two, under
the constraint that all the axes have unit norm.

The choice of which norm to use in the maximization problem presented above may be dictated
by the structure of a problem or its physical foundations. For example, if the data is concentrations
of atmospheric pollutants, it may make sense to use the infinity (or max) norm, as regulations
regarding the pollutants are often concerned about the maximum concentration over a whole day,
not some average. Many applications prefer the 2-norm, perhaps because it is simple and intuitive,
and fortunately for that case the maximization problem reduces using calculus of variation to an
eigenvalue problem. For other norms, such a closed form solution may not exist.

8.1.1 L2 -optimal basis generation
For the case when the norm on the example field index parameter ("time") is a 2-norm, an equation
which must be satisfied by all the basis elements leads to an easy method of calculation. This is
the procedure of Karhunen-Lo/ve, although more generalized than what is presented by the original
developers [70, 82].

* An inner product will be taken to be a real-valued function from X x X to R, and must satisfy the four
conditions:

1. (u, u) > 0, and (u, u) = O if and only if u = O
2. (u, v + w) = (u, v) + (u, w)
3. (u, av) = a(u, v), a a real constant
4. (u,v) = (v,u)

78

§8.1.1 L2-optimal basis generation

- - . , I ..11 -f

t

fr

X IY

x
X

Figure 30. Optimal basis of a set of points, intuitively. The lengths of the axes are proportional to the
amount of variance captured.

Assign to A the value of the maximized function at the optimal ,

A = T((x), u(x, t)) dt
()(x),)(X))

where the constraint that be of unit norm is explicitly included in the equation as the dividing term
/), which is squared in calculating the two-norm. Calculus of variations permits maximization

by supposing that X maximizes A, then substituting any other function 5 + aoq', ' arbitrary, and
seeing what happens to A for small a.

Al /T /x /x u(x, t)u(y, t) ((x) + a'(x)) (y) + a'(y))dx dy dt

fx (5(x) + aq (x)) dx

IT/ X Ix u(x, t)u(y, t)(x)q(y) dx dy dt + 2a j J u(x, t)u((y, t) (y) dx dy dt

+2 J / U((x, t)u(y, t)'(x)'(y) dx dy dt

x 02(x) dx + 2ax (x)'(x) dx + a2 x ' 2(X) dx

79

.

Chapter 8. Basis computation

Taking the derivative of A' with respect to a, setting a and the derivative equal to zero gives

fi fX u(x, t)u(y, t)q(x)q (y) dx dy dt f f u(x, t)u(y, t)O(x)O'(y)x x dy dt

|)(x) dx | (x)X (x) dx

where the left hand side is just the equation for A, which permits the following:

fT f u(x, t)'(y) f u(y, t)b(y) dy dx dt = A fx (x)O'(x) dx

/T X u(x, t)O' (x)(u(y, t), O(y)) dx dt = A((,')

(fT (u(y, t). O(y))u(x, t) dt, 0(x)) - (A), 41) = O

(IT(u(Y t),{U(Y))u(x, (t)-AO(x), O'(x) =

Since ' is arbitrary, this gives an equation for t0 and A, which can be written in integral form:

/T X U(x, t)u(y, t)O(y) dy dt = AO(x)

or, if the definition of the spatial covariance matrix, K(x, y) = f u(x, t)u(y. t) dt, is used,

x K(x, y)O(y) dy = A(x).
X

Thus the problem of determining the optimal basis using an L2 norm on the input fields reduces to
a standard eigenvalue problem.

Similarly, it may be postulated that there is a set of functions {/3,(t)} such that for each point
x in the field, the value

(,(t), u(x, t))2 a/T (t)u(x, t) dt

is maximal. Requiring the same to hold for all points x in the field gives the maximization problem

I (Bx(t). u(x. t)) dx

(O(t). (t))T

This gives the solution, in analogy with that for o,

jC(s.t)3(s) ds = A3(t).

where the temporal (or parametric) covariance, C(s, t) = J u(x, t)u(x. s) dx, is used. This gives

the optimal fit in parameter space at a single point in the field:

u(x, t) = aii(t).

80

§8.1.2 General overview

Augmenting the above to cover the entire spatial domain,

u(x, t) = aii(t)O(x)
i

a procedure to calculate the 4 is obtained by taking the inner product of both sides with 3j(t) and
using orthonormality of {(i(t)}:

(j (t)U(X, t))T = aj (X),

or

j (x) = (t)u(x,t),

one for each j. Furthermore, the newly generated set {(j(x)} is orthogonal in X since

%) Qjll, ·X IT I i(t)j(s)u(x, t)u(x, s) ds dt dx

-i- I J 3(t)j(s)C(sLt) ds dt

_ l TjdBi(t)Ajj(t) dt

i

and can be normalized by setting, . -- X in the expansion.
The set {,(x)} generated by requii.g an L2 -optimal in parameter space set ({/i(t)} can be

seen to be identic.' to those gener.te(4flrely by substituting the procedure for deriving qi(x) into
the eigenvalue problem for calzuating it directly, using A for the temporal eigenvalues:

f K(x,y)i(y) dy =Aii(x)
Jx

| / u/x, t)u(y, t)Oi(y) dy dt = AiPi(x)

jCX(st)3i(s)u(x, t) dt ds = Ai 3i(t)u(x t) dt

Ai f i(t)u(x, t) dt = Ai / i3(t)u(x, t) dt

Ai = Ai

Hence the optimization criterion is satisfied, and it is seen that the eigenvalues agree. In the discrete
cases used in practice, the number of fields is often much smaller than the number of grid points,
making the calculation of C(s, t) much easier than that of K(x, y), so the procedure of generating
the temporal eigenfunctions first and from it deriving the spatial ones is favored.

8.1.2 General overview
Now that the details for the case of an L2 norm have been discussed, it is worth stepping back from
the problem and considering other ways it may be presented (in arbitrary norm). There are four
different viewpoints in which one can frame the Karhunen-Loeve expansion, which may add some
intuitive feel to this procedure.

81

Chapter 8. Basis computation

1. As an extension to Gram-Schmidt orthogonalization, Karhunen-Loeve can be seen as an iterative
procedure to generate a basis. First define 51 (x, t) to be the principal axis in the sense that

1= max (i ,u)X xT
11II11=1

Then successive fields are defined by

q1= max (q,u)xxT such that (i,j)xxT = 0 for j < i.
1111=1

This is the conceptual approach used in the field of statistics for deriving the principal components
of a data set [67], called "principal component analysis" there, and illustrated in Figure 30.

2. Supposing that the experimental fields can be approximated by a series expansion of separated
basis functions,

N

u(x, t) = i(),
i=l

where 3i(t) = J u(x, t)¢i(x) dx, require that the time-dependent coefficients be uncorrelated:

jfT i(t)Oj(t) dt = Agij.

This will ensure a unique representation and generate the constants Ai which can be considered
the energy of a particular state. The whole system has an energy approximated by:

1lul2 = E (t)ZOi,(x), Z/j(t).j(x) = E Ai.
i=l j=l XxT i=l

These coefficients are precisely the Ai mentioned above, after sorting into a decreasing sequence.
3. The spatial covariance matrix of the given fields can be constructed:

K(x, y) = fT u(x, t)u(y, t) dt,

a function of time, and it is symmetric and positive. Again, it will have a uniformly convergent
spectral decomposition

N

K(x,y) = ,3i(t)i(x) 1 (y)
1=1

which satisfies

x K(x, y)i (y) dy = i(t)Pi (x).

The resulting decomposition can be shown equivalent to the earlier ones when the coefficients are
averaged over the spatial domain. This point of view is preferable when members of the ensemble
are just snapshots of the system as it evolves in time, so that in the discrete case the operations
of ensemble average and time average are identical.

4. Equivalently the covariance in time, which may be a more tractable quantity if the space dimen-
sions are large in comparison,

C(t, s) = x u(x, t), u(x, s) dx

82

§8.1.2 General overview

can be spectrally decomposed as before to generate expansions of the form

N

U(x,t) = Eoi(t)i(x)
i=l

in which

IC(t, s)/i(s) ds = Oi(x)/i(t)

Requiring that j ai(t)aj(t) dt = bij provides a method to generate the spatial fields:

N

ju(x, t)i(t) dt = kj(x)ij = qi(x)f~T ~ j=1
The normalization constant for the spatial fields recovers the energy as defined in item two.

Incidentally, the Karhunen-Lo/ve expansion and its variations are called by many other names:
"proper orthogonal decomposition" in operator theory [8], "principal component analysis" in statis-
tics [115], and "empirical orthogonal functions" in meteorology [125]. The snapshot method of basis
generation is explained further in Sirovich [126]. Since the basis fields so generated are complete
(with respect to the space spanned by the original ensemble), any function can be expanded using
them:

00

u = DU, 00i
i=1

Also, the coefficients of such an expansion are uncorrelated.
Computationally the eigenvalue problems derived above are usually solved using singular value

decomposition since the number of significant modes in the input data (numerical rank of the
covariance matrix) is frequently small compared to the total number of inputs (dimension of the
covarianc, matrix), hence calculating just the significant fields, as determined by the size of the
eigenvalue, is a good scheme. It is possible, however, to use other eigenvalue solvers to extract
all or the first few eigenfunctions, or a range dependent on eigenvalue magnitude. Power methods
may allow for quicker eigenfunction extractions when needed, but the next part of this thesis will
show basis computation to be an "out of the loop" calculation so the time it takes to solve the
eigenvalue problem is irrelevant, as it need be done so infrequently. Also present is the choice of
using a correlation matrix instead of the covariance matrix discussed above. This has the advantage
of producing numerically well-scaled values, although a slightly different maximization criterion is
implicitly being used. More discussion on the numerical aspects can be found in the appendices, but
a general outline of the algorithm is given in Table 10.

Read input, gathering field dimensions ui(x)
N

Optionally subtract off the mean u(x) u(x), ui(x) = ui() -(X)

Compute the covariance matrix C(i,j) = , ()uj (x) dx

Call SVD to decompose C = T- W. ST
N

Generate spatial eigenfunctions Oi(x)= .E uj(x)Tij
Table 10. Algorithm used to generate a Karhunen-Lo1ve basis, with equations from the text.

Table 10. Algorithm used to generate a Karhunen-Love basis, with equations from the text.

83

Chapter 8. Basis computation

8.2 Coping with a lack of information

When there is simply not enough known about the model which is under study, and the construction
of a good basis for the problem is not possible, there are methods by which an artificial basis may be
used. One way is to choose a basis that is complete, run the simulations using it, then prune it down
by extracting another basis from the solutions thus generated. For instance, on a grid consisting of
points {xn}Nv=l, the basis fields defined as

on(X) = (x - Xn)

are orthonormal as required and span the space of all possible functions on th- grid. Of course the
number of basis elements is precisely the number of grid cells, which is considered huge when used
for an integration of this sort, but feasible for a few test runs. Solutions using this complete basis
can be superimposed and used as input fields to generate a smaller, more practical basis. From this
point, basis augmentation techniques to be described in later sections may be used.

Another possibility for generating a preliminary basis is to use knowledge about characteristics
of the problem. If it is suspected that the output will be generally smooth or periodic, for instance,
orthogonal sine fields can be generated. If a moving front is suspected, localized bumps may be
constructed. Any construction method of the suspected fields is acceptable, as they can be made
orthogonal by many different ways. The direct method is to create fields one at a time, forcing them
to be orthogonal to all previously created fields by direct subtraction of their projection components,
much like Gram-Schmidt orthogonalization. Indirectly, many candidate fields may be constructed,
multiply so according to their presupposed "importance" to force a stronger weighting during basis
generation. The basis generated from these inputs can be used directly for a few rough simulations,
and augmented as usual.

8.3 Static error determination
Information must by necessity be lost when expressing large-dimensional grid-based fields in terms
of a smaller dimension functional expansion. This section discusses some ways of computing and
reducing that error.

8.3.1 System-generated error
Before choosing and constructing a basis to be used in an integration, it is possible to analyze the
system under study to get upper bounds on the error at any point in time given the initial condition
errors and system evolution equations. The simplest chemical reaction will first be considered

A k - B

with expansions for the species to the indicated levels

NA NB

A=aiAi, B=biB
-=1 i=l

and a domain size of Nc grid cells. (Ai stands for the i-th orthonormal basis function in an
expansion of A(x,t), and ai(t) is the scalar coefficient at time t.) This value NG represents the
maximum possible expansion since exactly NG independent fields are needed to span the complete
space.

84

§8.3.1 System-generated error

It is straightforward to write down the L2 error of the initial expansions, as the difference
between the exact expansion i and the approximate one

errA(O) = IIA- All 2

NG NA 2

= -ai(O)Ai - ai(O)Ai

/ NG NG

= E a i(0)A,, E ai(O)A,
2*=NA+l =NA+l
NG

tj=NA +1

NG

= E a,(O)a,(O)iA
i,j=NA+l

NG

E a(O):= E 12(0)
t=NA+I

Similarly,
NG

errB(O)= E b (O)
t=No +1

where the coefficients are taken to be functions of time, reflecting the various values taken during the
integration. Error in the representation of A will propagate into B, but not the other way around,
as will be seen in the derivation of system equations in the next part of the thesis, accepted for now
on faith. Comparing the exact formula for A's coefficients changing through time and the truncated
one:

ai = -ka, i E 1..NG
hi = -a, i E 1..--VA

yields, in a manner similar to the calculation of errA(O).

errA(t) = + -ka,(t)A,
i= NA+ 1

NG

=k2 E at(t).
i=NA +1

The factor A, is included in determining the error, but it is understood that this basis element, for
i > NA, was never constructed. Every Hilbert space has a basis so Ai is known to exist, however.
The expression for B is complicated by the fact that it is affected through A; the first line below is
the evolution equation for B as determined by the next part.

NG

bi = k aj(B,, Aj) i E .. NG
3=1

bi- k aj(BiAj) iE 1..NB
j=l
0 otherwise

85

Chapter 8. Basis computation

where Nm = min(NA, NB). Hence it is correct to write

NC N,,. NG NG 2

errs(t)= k E aj(Bi,Aj)Bi+kZ E aj(BiAj)Bi
i=NB+1 j=1 i=1 j=N,.+l

which after much manipulation becomes

NG N NG

erB(t) = k2E Ez
i=NB+l j=l k=l

NB

ajak (Aj, Bi)(Ak,Bi) + k2 E
-=1

NG NG

E a
j=N,,, +1 k=N,,, +1

It is not hard to see (although messy to write) that expressions of this sort may be formed for
arbitrary systems of chemistry and basis functions.

The analytic solution to the chemical system may be written down directly

ai(t) = ai(O)e-kt
b,(t) = bi(O) + ai(O) (1 - e- kt)

and substituted into the equations for eirA(t) and eirB(t), which can
error at any point in the integration.

be integrated to find the total

NG t

errA(t)=k2 E a2(0)J e-2kt' dt'
i=NA+I

= NA+ NG

= k (_ -2kt) a 2(0)
i=NA+l

Similarly for B,

errB(t) = k (1 - e- 2kt)
2

NG NG

aj(O)ak(O)(A,,Bi)(Ak, B,)
3=1 k=l

NB NG NG

·+E E: :E aj(O)ak(O)(Aj,B,)(Ak,Bi)
1=1 j=N,,,+1 k=N,,,+1

The only knowledge which can be used to simplify this last expression is that all the basis fields are
normalized, so (A3, Bk) is always smaller than 1. Hence,

errB(t) < - (1 - e- 2kt) (NG - NB - 1) E aj(O)ak(O) + NB a(0)ak(0)
i,j=1 i,j= N,,. +1

regardless of the particular basis used in the expansions.
As an example of these last results, notice that the expression 1 - e - 2kt -- 1 as t gets large,

with larger values of k causing quicker approach to the asymptote. Requiring that the upper bound
of error stay below some value becomes quite simple. Consider a 10 x 10 grid with 7 fields needed
to expand the initial condition of A, and 4 for B, both so that the unused coefficients are no larger
than 10- 3. Then

errA(oo) < 4.7 x 10- 5 k

errB(oo) < 4.9 x 10- 1 k

86

'jak (A_,,Bj)(Ak,BBi)

§8.3.2 Basis-generated error

It is seen that the chemistry directly gives an upper bound on the error even before choosing the
basis fields, which can only decrease the upper bound due to the eigenvalue ordering chosen by the
solver (singular value decomposition, for example). Working backwards to find NA and NB given k
and the error tolerances is also possible, using the above formulas.

8.3.2 Basis-generated error
The obvious way to generate a basis for the participating species is to perform a simulation at the
specified conditions using a standard grid-based integration method, then extract from those fields
a complete basis. In this section the goal is to construct a basis which is complete, that is, such that
an integration in the space of the complete basis will accumulate no errors due to any projection
coefficients falling outside the span of the space. In this way. errors which may arise due to a poorly
computed basis may be removed.

In attempting to form as large a basis as possible, it is necessary to ensure that each successive
field in the basis is orthogonal to all the others as well as normalized itself. For any particular
basis ,. the matrix with elements (,, q.), the inner product of two of the basis members, can
be constructed. For a perfectly orthonormal set this inner product should be the discrete delta
function 6,, resulting in an identity matrix. The "diagonal deviation" is defined as the largest
absolute value difference of any diagonal element from one. and indicates normalization error. The
"body deviation" is the largest off-diagonal element, all of which should be zero, and indicates a
more fundamental problem in the construction of the fields: lack of orthogonality. These criteria are
useful in gauging how much accuracy is being lost due to an improper basis.

species size diagonal deviation body deviation

NO 10 8.42 x 10-6 2.23 x 10 - 4

NO2 11 7.32 x 10-8 1.86 x 10- 2

O 10 5.64 x 10 - 6 9.30 x 10 - 4

03 10 4.86 x 10- 6 9.08 x 10- 7

Table 11. Deviations obtained by one-pass SVD method.

It is instructive to compare two different methods for generating a basis. An example problem
involving four reacting chemical species with no transport will be considered for illustrative purposes.
First. the standard one-pass singular value decomposition eigenvalue problem solution method works
by reading in the input fields. computing the decomposition, and writing the output. Accumulated
errors in extracting all the eigenfunctions at once account for the magnitude of the errors reported
in Table 11. The example fields were generated by a grid-based simulator from each of eleven time
steps including the initial condition, but only one species started out at nonzero concentration. hence
the disparity in the sizes of the bases.

species size diagonal deviation body deviation

NO 10 2.44 x 10- 5 9.72 x 10-1
NO 2 11 1.89 x 10-'5 1.59 x 10 - 7

O 10 1.22 x 10- 1 5 9.70 x 10- °

03 10 8.88 x 10-16 4.80 x 10-1

Table 12. Deviations obtained by single-eigenvalue extraction method.

The results of a second way, a renormalizing single-eigenvalue extraction procedure, are reported
in Table 12. It works by taking only the largest eigenvalue from the covariance matrix as the first
basis element. then replacing the input fields with their orthogonal complements with respect to
that basis element. normalizing each input to one, then constructing a new covariance matrix and
repeating until the entire basis has been constructed. This method is considerably slower, but as

87

Chapter 8. Basis computation

can be seen, the deviations from a perfect basis are much smaller. The deviations reported here
seem quite acceptable for most applications.

It can be understood why the basis produced by singular value decomposition is so much worse
than that produced by the renormalizing single-eigenvalue extraction method by examining a plot
of the eigenvalues of one of the covariance matrices. Shown in Figure 31 are the logarithms of the
eigenvalues of the covariance matrix for species NO2 . The way that the magnitude of the eigenvalues
falls off quickly is indicative of an input set of small numerical rank. Considering the eigenvalues
as the squared lengths of the principal axes of the ellipse described by the covariance matrix, each
successive axis is an order of magnitude smaller than the previous one. This is what leads to
the inaccuracies in the generated basis, but only because it was demanded that a complete set be
produced. In situations when the data is not so one-dimensional and only the first few (important)
eigenvectors are required, singular value decomposition becomes the preferred technique due to its
increased speed.

2

-2

o

aM
bO

0to
0x

-4

-6

-8

-10

-12

-1A

Figure 31. Eigenvalue spectrum for species NO 2.

Further iterative improvements on any generated basis are possible through other means. One
utility program is orthbasis which attempts to make the basis orthonormal, that is, (, 0,) = 6,j is
satisfied as closely as numerically possible. This effectively always reduces the maximum deviations
reported above down to machine precision (about 10-16 on the particular workstation used in this
thesis), although it does not consider the original inputs in any way.

Another way to generate new basis members which might help in reducing integration error is to
examine just where the projection assumption is not satisfied. Expressing the system of differential
equations in terms of a basis presupposes that each projected field lies completely in the span of
the space on which it is to be projected, which is not necessarily the case for all points during the
integration. As a concrete example, the calculation of the concentration time derivatives for species

88

§8.3.2 Basis-generated error

O is:
NNO

co,i = -k 2 M 02 co,i + kl E cNO,j(NO2j, Oi).
j=l

The first term presents no problem, but the second one relies on the fact that for each basis field j
of NO2,

No

(NO2,,) = 1,
z=1

which is equivalent to saying that field NO 2j lies completely within the span of {Oi }No and that
the latter set is orthonormal. One way of testing this assumption is simply to project each NO
field onto the 0 basis and see how close the sum above is to one. This is implemented by a simple
shell script proj goodness, which actually prints the distance of the result from one to allow higher
accuracy. A plot of the common logarithm of the results shows which fields are poorly represented
in the respective basis. This and other utilities are described fully in the appendices. The simple fix
when projection errors arise is to include members of other bases in the input set of the failing one,
or in this case 0 input fields should include the basis for NO2. More examples of this appear in the
next part of the thesis.

When the evolution equations involve nonpolynomial nonlinearities, other higher products or
transcendental functions of basis elements must be considered, but this is an easy extension to the
basic technique described here.

89

90

Part III

Use of
Optimal Bases

in
Integration

Having considered general mathematical analysis and modeling techniques including
machine mapping, and having shown a method to construct an optimal basis for each
particular problem, it remains to show how all this can be used to perform actual
simulations. The following chapters cover conversion of the evolution operators
and dynamic error tracking during an integration, and conclude with some timing
results.

System conversion

Previous chapters have described the approach to be taken in solving differential equations using
an empirically derived basis, and have shown techniques and considerations of constructing an
appropriate basis. Transformation of the equations into the basis thus generated and implementation
of the transformed equations will be described in the current chapter, starting with the simplest
case, ordinary differential equations, then adding the framework for handling terms involving partial
derivatives. Special transformations when the system can be characterized by a global motion such
as a rotation or translation are considered also. Finally a short description of machine-generated
system conversion is presented.

9.1 Ordinary differential equations
First, the simplest sort of problem is considered. A linear homogenous ordinary differential equation
of one dependent variable is to be solved as an initial value problem. The number of independent
variables is arbitrary, but one is taken to be "time" to allow a forward integration. For simplicity of
presentation, A will be some scalar-valued field over two spatial dimensions and t the independent
variable. The general form is

dA(x, y))
dt

with a is an arbitrary function of t, but not of A. For now this equation indicates the simulation of
a field which changes only pointwise, that is, there are no interactions between neighboring points of
the spatial field such as diffusive or convective effects. While not arising directly from any physical
system, this type of equation is often encountered during the reduction of a more complex differential
equation using operator splitting methods. The full evolution operator is broken up into conceptually
separate chunks, and executed iteratively to obtain the result of the entire operation.

Using the Galerkin assumption that A can be well-approximated by a set of basis functions,
this equation becomes

dt (I aA) = a(t) aiAi(x, y),

where Ai is the i-th basis field, which has the same dimensionality of A, and ai is a scalar coefficient
scaling the contribution of that basis element. There is no loss in generality in choosing an orthogonal

93

Chapter 9. System conversion

basis and normalizing each element to one. Since the basis does not change during the integration,
the equation becomes

t Ai(, y) = a(t) aiAi(x, y).
i i

Now orthogonality will allow the separation of this equation into one for each basis coefficient, by
taking the inner product of both sides:

dt (Ai(x, y), Aj (x, y)) = a(t) E aj (Ai(x, y), Aj(x, y))
. j

and simplifying the inner product to a Kronecker delta function:

da ij = a(t) ajij

to give the evolution equation for each coefficient:

dai
dt = a(t)ai.

The result is trivial, but illustrates the basic principles behind differential equation conversion.
Extending to multiple dependent variables or adding nonlinearities both require the introduction

of a method to handle product species which arise due to polynomial terms. Consider a chemical
reaction where two species react to form a third:

A+B -k C

The differential equation for C is
dC = kAB.
dt

One way to think about handling this equation is to introduce another species to the set A and B
which represents the product of their values and changes in time during the integration, named AB
here. Initially the field AB is generated by pointwise multiplication of the fields of its components,
simply AB(x, y) = A(x, y)B(x, y) in scalar terms. A good basis is generated for AB just as for the
other two, using the products of the inputs to the basis generator used for A and B. Then the
equation for C reduces as in the single-component linear case above to

C = kEb(A., Ci)
3

(with '' representing time differentiation to save space). What is missing now is an equation to
change the values of {abj) over the course of the integration. The problem is, then, given {ai}, {bi},
{a,}, and {bi}, at a current point in time, compute {abi}. There are two ways to do this.

First consider the "exact" method, where the derivatives {ah,} will be used in the inner loop
of LSODE or whatever solver to update the corresponding values of ab, treating the latter as just
another reacting species. The Liebniz rule separates the product into its components

dAB dB dA
=dt A +dt dt

which can be expressed in terms of their basis elements

dt = (aiAi) (bjBj) + (bjBj) (iiAi)

94

§9.1 Ordinary differential equations

and combined
dAB
d = _(aibj + aibj)(A, * Bj)
dt it

where Ai * B is the field which is the pointwise product of Ai and Bj--the same operation that was
used to create the initial product field AB. These product fields can be computed ahead of time, but
will not need to be stored during the calculation, since their values will never be directly needed.
To extract a certain coefficient abk, the inner product of both sides is performed as usual, giving

bk = Z(aibj + aibj) (ABk,Ai * Bj).
ij

It is only this latter set of real-valued inner products which needs to be stored in memory at runtime,
adding N 3 more words of memory for each product species, where N is the number of fields required
in an expansion (assuming all species use the same expansion order, for convenience in presentation).

This exact method seems nice because it is exact, in the sense that there is no more error
involved in a product species calculation than there is for a true reacting species. However there are
many drawbacks, the worst being the addition of essentially another reactant to the system which
will be integrated by LSODE. Also if expansions of various length are employed, there is additional
overhead involved in figuring out the limits for the summations, and if dynamic expansion lengths
are iplemented, members of the inner product matrix may have to be recalculated, although one
may suspect that this condition may be shared by other update methods. Memory requirements go
up significantly only because of the lengthening of LSODE's list of variables, but not so much due to
the tensor of inner products.

If the exact method is deemed too time-consuming or overly accurate in the face of slowly
changing component fields for the product, one may consider moving the product species out of the
inner loop. As with any approximation, care will have to be given to bounding the error somehow.
TD- method is essentially the same as above except performed in a discrete way. Before an integration
step, the initial values of a,, b,. and abi are saved, then afterwards the primed values are computed
using

AB' = A' * B'
AB = A* B

since the goal is to keep AB reflective of the current values of its components. Subtracting and
expanding gives:

AB' - = A' * B' - A * B
6babk.Bk = E ab'A, * B, - abjA, * B,

k 13 2

6babk = E ab (ABk,A, *B,)- a,b, (ABk, A, *B)
tj Ij

= ,(a'b' - aib,) (Bk, Ai * B
i3

Again, the same extra coefficients are stored, with the same problems as before but without the
extra overhead of another active species.

Note also with this second method that other species may lose accuracy if they depend on
values of AB during their integration, since the product species is updated to reflect changes in
its components only outside LSODE's integration loop. Forcing the integrator to take smaller time
steps, i.e., not integrating over a wide domain and returning intermediate values as requested, could
alleviate this.

95

Chapter 9. System conversion

Clearl3 the tradeoff between these two methods is the classic one: speed versus accuracy. Since
they are so closely related, though, one may be switched for the other at any time during the calcula-
tion. Once accuracy is lost, however, the only way to get it back is to do a complete re-multiplication
of the two component fields plus another basis expansion. It is conceivable that the new product
field could be projected onto the original basis fields to extract a reasonable improvement to the
current coefficients, but as the rest of this entire procedure, deciding which technique to use and
when to use it amounts to most of the theoretical work.

The two methods described above can be considered as variations on one common, and as it
will be shown, preferred method for handling products of active species. First, notice again that
the second method is simply a discretization of the "exact" method. Remembering the problem as
stated,

A+ B k C

where bases have been generated for all three species as usual, to derive carefully this third way of
handling products it is useful to consider the effect on only one point in the field.

C(x, y) = kA(x, y) B(x, y)

= k a A, (x,y) Bk(, (y)
okk Abk (A, * Bk)(bk , y)

k

Zc CC-' = k Z abkA, * Bk
jk

t= k Z abk(A * Bk,C,)
jk

where the symbol '*' still indicates the pointwise product of two fields, i.e.,

(A * B)(x. y) = A(x, y) B(x. y),

and the last two lines come from generalizing from scalars to fields, then using orthogonality to
reduce to a simple expression for the derivative of each coefficient.

Now it will be shown that the first method is completely equivalent to the one just described.
given a certain common condition on the fields. To recall, the first scheme is a two-step one involving
an intermediate product species:

c = (A,, Q)

b= (a,b, + Lbk) (A, Bk,A,)
3k

Expressing the value of the coefficient ab, at a time t requires an integration:

ob,(t= I (a· bk= E (ak+ a,k) (A, * Bk. Mi) dt

- o (ajbk dt' + j abk dt' (A * Bk, AB)

96

§9.1 Ordinary differential equations

An integration by parts yields

t t t

ajbk dt' = aj(t')bk(t') -I jbk dt'

which cancels with the other term inside parentheses to give

abi(t) = Z (aj(t)bk(t) - aj(O)bk(O)) (Aj * Bk, ABi) + abi(0)
jk

Notice that the constant of integration above may be expressed in a simpler form by considering
how the initial condition of AB is related to those of A and B:

AB(0) = A(O) * B(O)

Z (O)ABi = a- (O)bk (O)Aj * Bk
i jk

abi(0) = Ea (O)bk(0)(A, * Bk, A,)
3k

This cancels with another term to yield

b(t) = E aj(t)bk(t)(A, * Bk, AB)
jk

Substituting this into the expression for Ci reduces the pair to the single equation

i(t) = k aj(t)bk(t)(Aj *Bk, ABt)(AB, Ci)
Jkl

The trick now will be to show that this expression is equivalent to the one given at the end of the
previous paragraph.

The task is easily done by expressing most fields in terms of their expansions in AB's fields. The
accuracy of the results to follow hinges on the degree to which those fields span the space occupied
by A, B, and C. This requirements arises often in the theoretical part of this work and is satisfied
by the majority of models to which the whole technique is to be applied. To begin, both Aj * Bk
and C, are written in terms of their expansions in AB fields:

Aj * Bk = '(Aj * Bk, ABm)ABm
m

Ci = (CAAB)AB,,

n

Notice that the limits to the sums are not given. This is meant to demonstrate the fact that higher
accuracy will usually be achieved with more terms in the expansion, with equality only in the case
that the expanded field lies completely within the space spanned by the expansion fields. Expansion
of the second method for product species given above will lead to an equivalence between the two.

i(t) = a,(t)bk(t)(Aj Bk, C,)
3 k

= aj(t)bk(t) (E(A * Bk,)ABm,E (Ci PBn)A3n)
jk m n

= E (t)bk(t)(Aj * Bk, AB)(-4BI, C,)
jkl

97

Chapter 9. System conversion

The new method just derived is to be preferred over the original one since it reduces the number
of active species in the inner integration loop, where most of the time and memory is required. The
only drawback is that more projections must be calculated prior to the start of a simulation, but
the original statement of the problem allows this added time to be disregarded when compared with
the time consumed by expected multiple executions. Further, the accuracy of the two methods is
identical as shown in the derivation.

Now that the proper method for handling quadratic nonlinearities has been presented, exten-
sions to higher-order polynomials are given. For the arbitrary polynomial equation consisting of
terms in the right-hand side of the form:

dA-= A"BPC? ,
dt

each term is expanded separately to give the equations for time evolution of the coefficients of field
A. The expansion proceeds as before, starting with substitution of the basis for each field.

&'A = AaBPC ·...

= (ZajiA) (bkBk * (blC) * -.
j k I

= I aj a.,,bkl ...bk, .Aj, * , A3,, Bkl *. Bkf,l ..
31 '"-,, k ... kf ...

a, = a .. a,,bkl " bkf, (Al *'" * Aj,, *Bk ** Bk, *',Ai)
21 ...3 ,, kl ... k ...

Clearly as the order of the polynomial term grows, this summation quickly becomes unmanageable.
The depth of the summation is the order of the polynomial, and the extent of each limit is

{NA,... ,NA,NB,..., NB,,,.}

for the example above, where NA is the number of fields used for species A in the integration, and
so on. However the number of scalar inner product terms that need t be stored is less than the
expected

NA NA V ...

due to symmetry of the inner product, and is only

N(NA+a 1) (NB + 1) *...

Presumably, though, there are not so many polynomial terms of such complexity in actual numerical
models. Regardless, such details as multiple species and complicated polynomial terms will be
handled automatically by the mechanism parser described in a future section.

* A nice way to see this is to view an entry of a d-dimensional square matrix of size N as a list of numbers
from 1 to N. An Sd equivalence class of entries is labeled by d non-decreasing numbers from 1 to N.
A specification of such an entry can be done using a finite state machine which has one element of
memory, one state, and two operations: "Increase the value" and "Output the value," with the initial
state of no output and a value of 1. For the case d = 3 and N > 8, some valid sequences of operation

98

§9.1.1 Non-polynomial nonlinearities

9.1.1 Non-polynomial nonlinearities
Arbitrary polynomials are easily handled by the product mechanism described above. Other, non-
polynomial functions present a further level of difficulty. For illustrative purposes, the equation

dA A

dt

is considered, which is again an abbreviation for the set of equations over a spatial domain with a
single scalar dependent variable. Certainly no real application would ever demand the integration
of this unstable problem, but the simple form will be useful in describing the general approach.
Attempting to expand out A in terms of its basis gives

it, A, = exp (ajAj)

At this point, previous derivations have relied on the inner product to separate the spatially varying
field terms away from the time-variant scalar coefficients to give evolution equations for the coef-
ficients, thus removing any full-field calculations from the temporal evolution procedure. Due to
the presence of the exponential, the inner product operation applies not only to the field term and
the equation does not separate. One approach, which will work for all types of non-linearities, is to
expand into polynomials via a Taylor series. For this example, the series gives

2 3

&,Ai = I +A, aA, + a2! (I ±(aA + 3.

which reduces after expanding out the summations to

Z iA, = I + a,A aaAA + 2!I ajakaAAkAi +
I 3 k

jkl

giving the coefficient evolution equations for {a,}:

t, = (I, +Ai) + aak(AAk, Ai)+ E aaAAA + ajakal(A,AkA,A) +
3 jk jkl

This final equation marks the introduction of the term (I, A,) which is the solution to the differential
equation d- = 1, the leading term in the exponential.

While satisfying in the presentation, the above may be completely useless in an actual calculation
due to the grand errors which may be introduced by such an expansion. The final equation assumes
implicitly that j ajA, is near zero for all time, or equivalently the {a,} are near zero. One small
improvement is to center the Taylor expansion about the actual values which will be encountered in

with the resulting matrix entries are:

000 {1,1,1}
III000 = {4, 4, 4}
IOIIIIOIIO : {2, 6, 8}

It can be seen that operation 0 is invoked d times, and operation I no more than N -1 times, leading to

(N-d+d) possible entries under the equivalence class. This is called a "stars and bars" [4] argument.

99

Chapter 9. System conversion

the integration. Suppose that these central values have been discovered, and written as {a° }. Then
the expansion becomes

1
aiAi = exp (aOA, + e(a A + a a°)A +

a, = exp ajA,j [(1, A,) + E(a.-a°)(A,Ai) + 2 .(ao-a°)(ak-a)(AjAk, Ai) +..
2!k

The first factor on the right hand side is a constant, as the central values of the coefficients are
chosen to be fixed over the time domain of the integration, and can be precalculated along with the
inner products. If the integration is characterized by a few distinct ranges in time, multiple sets of
{a0} can be used, choosing the appropriate set depending on the time. Of course wide changes of
parameter values across an integration are not uncommon and may render this variation as useless
as the first zero-centered expansion.

A more clever, but less generally applicable, method of handling such an equation is to transform
the variables so as to coerce the nonlinearity into a different form. For the example above, pick a
new field B to represent the term exp(A), then

dB deA A dA AB de = eA = eAeA = B2

dt dt dt

which reduces easily (and exactly) to

E = bjbk(B)Bk,B,).
3k

The whole problem is converted to work in this exponential space by first setting the initial condition
and example fields pointwise by B(x, y) = exp(A(x, y)), then printing out the results as A(x, y) =
log B(x, y). Unfortunately, for a problem such as

dA= eA + A,
dt

this transformation may introduce more inaccuracy than it removes as now some sort of expansion
for log B must be included. Section 9.4 discusses more examples of this sort of transformation.

Other types of nonlinearities face the same problems as the exponential discussed above. The
common trigonometric transcendentals may be reduced to functions of exponentials and treated that
way, or considered in their own right. One special functional form are the rational functions. For
example, the equation

dA 1

dt A
does not reduce without expansion of the right-hand side, but transformation by logarithms works,
as does sending A -, A2 in which case the equation reduces to

dA2 dA 1- =2Adt = 2A- = 2.
dt dt A

General rational functions will require an expansion into polynomials when no such trivial transfor-
mation of the problem exists.

100

§9.2 Partial differential equations

Considering the focus of this thesis on differential equations generated by mass-action chemistry
and the usual transport terms generated by convection and diffusion, the inability to handle these
non-polynomial functions is not too relevant. Hopefully most other models will have only limited
use of such functions as well.

In some cases, the evaluation of such nonlinearities in the coefficient space takes entirely too
long to allow for feasible execution times. It is possible in these circumstances to expand out the
coefficients and basis functions to obtain the values of the system in physical space, evaluate the
nonlinear terms there, then transform the results back into coefficient space using a projection, as
illustrated by:

{a,}

I basis superposition

A(x,y)

I physical space evaluation using original equations

A'(x, y)

I basis projection

{a' }

Then the coefficients are updated by summing the results of the above along with the coefficient
adjustments produced by evaluating any other terms in coefficient space. The major drawback to
this operation is that it too will be quite slow due to the superposition and projections required at
every function evaluation.

9.1.2 Inhomogeneities
The presence of scalar terms in the differential equations adds another small complication. First, a
modification of the differential equation which starts this chapter will illustrate the procedure:

dA(x, y)
d- I = a(t)A(x, Y) + 13(t).
dt

The equation converts as before with substitution of the field expansion for A into

Ed A, (x, y) = a(t) Z a,A,(x, y) + 3(t)

only applying the inner product of both sides with Ai gives

d (A(x y), A,(x , y)) = a(t) E a, (A,(x, y), Aj(xr, y)) + / (t)(I, A,(x, y))
3

and finally

da, = a(t)a, + /(t)(I,A,(x,y)).
dt

The new term includes just another scalar constant which can be generated before simulation time
along with the product field scalars, and execution of this equation with a non-homogenous term is
not too much more costly than that of the original.

9.2 Partial differential equations
To enable the solution of partial differential equations, it is necessary to generate a difference scheme
which is a good approximation to the continuous system. There are two ways to consider this

101

Chapter 9. System conversion

difference scheme. First, a particular finite difference scheme is constructed, then examined to
determine which new fields will be necessary. This discussion will be more concrete if a specific
problem is considered: one-dimensional diffusion. The governing equation is

Ou _ 02u= D
at 9X2

which can be discretized using the standard forward-time central-space scheme [128],

u+l Un un+ - 2U + ,_l

At (za) 2

This formula, used directly inside a field-based integration, would require pointwise adjustments of
the current concentration field itself, instead of just changes in the coefficients of the expansion, an
unacceptable result. However, there is an equivalent way to express this scheme which is as accurate
than the difference formula above. First, consider the individual concentration values as a vector
which is updated by applying a matrix to the current values. Thus,

-2
1 -2 1

uwe+ l e = n + -2a 1 -2 1 un (where a= DAt)
(A) 2

1 -2 1

-2

depending on the choice of boundary conditions. M is used to denote the matrix above. As usual,
writing the original and updated concentration fields in terms of their expansions yields a formula
for updating only the coefficients:

un+lU = E U (I + aM)US

3

:U = Yu' ((+ aM)U,,U,)
3

The last term in angle brackets is just another projection which can be calculated before the simula-
tion starts, by forming the matrix I + aM and doing a matrix-vector multiply for each basis element
(column vector) Uj to form (I + aM)U, then calculating the projection. Other methods are im-
plemented as easily as the explicit form. For instance, a fully implicit scheme reduces to Un+l =

(I - aM)-lu n, and Crank-Nicholson is just the two combined: u" +1 = (I - M)-'(I + 2M)un.
Alternatively, the coefficient evolution equation can be developed directly, before a choice of

discretization of the differential fields is performed. Falling back on more common notation, this can
be shown using the simplest partial differential equation:

OA aA

At ax

Writing A in terms of its basis as always and substituting into the equation gives

at (a(t)Aix)) = ax (a (t)A (x))

where the functional dependence of the variables has been included to emphasize the point. The
basis is fixed for all time across an integration while the coefficients do not change over the spatial

102

§9.4 Bulk motion transforms

domain since the basis functions have, as always, global support. Using this observation to move
the differentiation operators onto only the affected functions gives

da" (t)A, (x) a7 ,(t) d ()da d

and performing an inner product with A, produces the coefficient evolution equation:

E a 3 dA)

The only complication, then, is additional storage of inner product terms involving spatial dif-
ferentiation. Here also is where the choice of a differentiation scheme comes into play as in the
previous scheme. Conceptually these fields can be treated just like additional independent variables
for which no evolution equations need be generated, though. In practice a basis for A is generated,

then each field in that basis is numerically differentiated to generate the set d , which is used

in calculating the inner products.
Although this second view is algebraically cleaner, it has the possibly unfortunate side effect

of decoupling the temporal and spatial discretization schemes, making any combined convergence
or stability arguments impossible. As with any discretized scheme, all the standard considerations
about these issues carry over into basis space integration, and are widely discussed, for example in
[128]. In simple advection, for instance, care must be taken that the Courant limit, which relates
the time step and grid size through advection velocity, remain satisfied. Hence knowledge of the

differentiation scheme used to generate the fields [dAt must be available when deciding the time

step to use during an integration. It is not obvious now how the choice of a difference scheme will
affect the results of a basis space integration scheme in general, and if the choice dictated for the
grid-based simulation is also the correct one for a field-based simulation.

9.3 Boundary conditions
Up to this point, boundary conditions have not been explicitly considered. The major reason is
that for many problems of interest the boundaries remain fixed at some value so that all the basis
functions automatically satisfy the boundary conditions. For the case of either Neumann or mixed
conditions at the boundary, or where the boundary conditions vary as a function of simulation time,
it will be necessary to augment the solution procedure at least, and possibly the fields. The use of a
tau method in spectral methods is one likely candidate scheme for handling this situation, but will
not be considered in this thesis.

9.4 Bulk motion transforms
Frequently systems involving fluid flow can be characterized by a simple bulk motion. Simple flow
in a tube may feature a flat or parabolic velocity profile on top of which is diffusion and other
smaller scale transport effects. Combustion in a whirling reactor starts with a carrier gas rotating
around the central axis into which fuel is added. A common test case for the transport calculation
in atmospheric chemistry models is the rotating plume problem, as traditional solvers are usually
based in an x-y coordinate system in which motion in the direction leads to the introduction of
much numerically generated diffusion. A sharp plume will spread out as it is rotated by standard
solvers. This section describes this problem and the general case of how to handle systems which

103

Chapter 9. System conversion

are governed by large scale motion, through the transformation into a coordinate system in which
that motion does not exist.

The derivation of the transport of a passive scalar in a purely rotational flow field follows from
a shell balance in rectangular coordinates giving

Tc
at + V (cv) = 0.

In radial coordinates, V takes the form

V f = (rfr)+ +rar r-9 @z
In two dimensions the radial convection equation is then

Oc O(cvr) CV, 1 0(cve)ac + + + a at ar r r jO

Making the assumptions suitable for this problem, that v is not a function of 0 and that v, = 0 so
that there is no mixing between the different lanes (radial positions), leaves only a choice for the
form of vo(r). Letting that be Mr will keep initial conditions unchanged except for a global rotation
at rate M in time. Now the equation becomes

Oc Oc
+M- =o0

At ao

with initial condition
c(r, , 0) = co(r,).

A boundary condition will not be needed if is taken to be in S instead of [0, 27r) C I. The
solution (by inspection) to this partial differential equation is

c(r, , t) = co(r,9 - Mt).

A nice function to use for testing the various integrators of this system is the Gaussian bump

co(r,9) = hexp [- (r2 + r2 - 2rro cos(- 00)) /a 2],

centered at (ro, So) with spread controlled by a and maximum height h. Another possible function
to consider is the cosine bump, reported in the paper evaluating advection performance of the
CALGRID [87] model:

Co(X, y)= 2(1+cos R) for R < Rb
0 for R > Rb

where
R = /(x - XO)2 + (y - yo)2

and (x0 , yo) is the initial location of the peak. Note the puff has a radius at its base of Rb.
To transform the equation in preparation for a basis space integration, use of the structure of

this equation will be employed by first moving to a frame of reference in which there is no rotation.
Let

e(r, y, t) = c(r, 8 - Mt, t)

then
Oc CO 0Y aet - F: ta

dt =dr t + dt- t -Ma + -
ac a day acat te
a 0 ay To At a a

104

§9.4 Bulk motion transforms

giving the equation for

=0
at

which has trivial solution (satisfying the initial condition)

e(r, y, t) = co(r, - Mt, t).

Nevertheless, transformation of this system via substitution of an expansion of the concentration
field in terms of its eigenfunctions yields another integrable system which will give exactly the correct
result.

Since transformation of the simple rotating plume convection problem results in such a trivial
solution, another term is added to bring it closer to more practical integration problems. The
equation

Oc 9c dc
t + My = a/ cos(at) r

is transformed via y = 0 - Mt since it is suspected that the structure of the solution will again have
bulk properties of a rotating field (for proper ratios of a, A, and) giving

= a3 cos(at) -

The analytic solution is
c(r, t) = o(r + / sin(at), t).

A numerical solution by finite differences in cylindrical coordinates was implemented first to provide
timing information for an exact solution, using upwind differencing in both the radial and angular
coordinates. (Implementing this for the radial coordinate requires changing the integration scheme
depending on the sign of cos(at), and may not be worth the effort if the amplitude 3 is small.) The
scheme is

Cn+l _ 1cn Cn -Cn Cn

At. M M -C + aocos(at) Arm '-I

where , m and n index the r, 0 and t coordinates respectively. Finding the stepsize parameters
which give stability as detailed in Strikwerda [128] involves replacing cl m with gnetl1vem in the
difference formula, which rearranged gives:

MAt + 3 cos(at)At (1 e)g=1- (1-e +Ar

For the scheme to be stable, this amplification factor must have absolute value smaller than one,
which means

MAt > aOcos(at)At (1-)
AO (Ar'

Simplification by eliminating the exponential and cosine factors (which are absolutely bounded by
one) and noticing that all other parameters are strictly positive gives

Ar a13
Ad M

which must be satisfied for stability to be achievable. This condition says nothing about further
restrictions on the stepsize At.

In Cartesian coordinates, the pure rotational convection problem is

dc (cv) 8(cvy)
-+ + =0at dx dy

105

Chapter 9. System conversion

and the wind field v(r) = Mr becomes

v = - sin0 voe = -My, vy = cos O = Mx,

ac Oc c
t My + Ma = 0.At Ax ay

The generalized form requires transformation of the term as follows:

ac a ax aCay
_ -5 Tv _7 _+ ay _

=cos + sin 0

x + y c
r ax r ay

leading to the complete form

ac ac + c _ a/cos(at) (ac +a Y- -My- + Mx- = -+at ax ay vx 2 + y2 a y

(At the grid origin, of course, the right hand side must be taken as zero.)
Conversion of rotation in Cartesian coordinates into rotating space, that is, applying a rotation

of -Mt to the above equation involves finding

E(. , t) = c(x, y, t)

where

(i,) = Rot(-Mt) o (x, y) and (x, y) = Rot(Mt) o (i, y)T.

Generalized two-dimensional rotation of an angle a
positive as always) is

Rot(a) = (cos asin

about the origin (counterclockwise motion is

- sin a)
cos a

giving

Rot(-Mt) = (osinMt- sin Mt
sin Mt / cosMtcsinMt) and Rot(Mt) = sinMtCosMty \ sinMt

So the variables transform as

x= xcosMt+ysinMt
= - x sin Mt + ycosMt

x = cos Mt - sin Mt
y = sin Mt + y cos Mt

106

giving

- sin Mt A
cos Mt

§9.4 Bulk motion transforms

As before, transform each variable individually.

dc a_ Da
at at at

o a a a+ -7 + --
= - + -Mx sin Mt + My cos Mt) -at ai + (-MxcosMt- -MysinMt)

+ -M (cos Mt- sin Mt) sin Mt + M(sinMt cos Mt) cos Mt

+ (-M (cosMt - sin Mt)cosMt - M (sinMt + cos Mt) sin Mt) Ž-

= + -M sin Mt cos Mt + Msin 2 Mt + MisinMtcosMt + M cos 2 Mt) -

+ (-M COS2 Mt + MisinMtcosMt - M:sin2 Mt - MsinMtcosMt)

= + M sin2 Mt + M cos2 Mt)

ON Fx N~_M~

+ (-Mx cos2Mt - Mx sin2 Mt) 5

ac - a a a,
ax ai ax a ax

= cos Mt - sin Mt-
5x .9Y

Dyc D ay

Dy dO dy
+ __

Do oy

= sin Mt + cos Mt

ac ,,: ,,,,, O _ sin Mt2•
My M(xsinMt +cosMt) cosMt sin Mt

= Mi sin Mt cos Mt - Mx sin2 Mt + M Cos2 Mt - M sin Mt cos Mt

oc a6 6

TY(a a)Mxyy -s M(tcosMt- sinMt) (i Mt + cosMt a
= Mi sin Mt cos Mt + Mi cos2 Mt - - My sin2Mt - MD sin Mt cos Mt

-My ac + Mx y = -Mz sin Mt cosMt - M9 cos2 Mt + Mx sin Mt cosMt -My sin2 Mt)

+ (Mi sin2 Mt+ l. sin MtcosMt + Mi cos2 Mt - My sin Mt cos Mt

= (-Mcos2 Mt-M.sin 2 Mt) + M sin2 Mt +Micos2 Mt)

= -Mly + M+x
ax aY

107

Chapter 9. System conversion

It is obvious that the right-hand side, since it has essentially only r dependence, is invariant under
this transformation, but it may be worked out in a similar manner as above. Plugging all the above
into the original equation in Cartesian coordinates gives& & A ac3cos(at) / i .A+ mgt MiZ My + M. t-Mxi + y-
or at ca, cos(at) a + ̂ a

At /c- + 9i 9D

as it should.
The different schemes for integrating the convection equation were tried and compared under

changes of the value of parameter a. the frequency of oscillatory motion in the radial direction
expected in the solution. As has been done in the past [87], peak height retention after one full
rotation is used as the metric for evaluating the integrators, but other features are also reported
below. The five different schemes are listed in Table 13. The schemes quad and pdetwo differ in that
the former is a naive implementation, using a constant time-step Euler algorithm, while the latter
uses the full GEARB [64] package to solve the derived ODEs.

Name Coordinate system Space

rotate Cylindrical Grid
quad Cartesian Grid
pdetwo Cartesian Grid
brotate Cylindrical Empirical basis
bquad Cartesian Empirical basis

Table 13. Names and characteristics of the five different integration schemes used to study the rotating
plume convection problem.

In general for all cases, rotate can be made to produce the most accurate results with an
appropriately small grid and time step. The word "accurate" is used loosely here since the goal of
this section is not to analyze exactly the errors of any one of these methods, but just to show the
practicality of the transformation. quad suffers from the first common problem of convective solvers,
the introduction of artificial diffusion, which reduces a Gaussian to less than 10% of its initial height
after only one rotation, a problem which is exacerbated with decreasing step size. pdetwo accounts
for this diffusion and can maintain a peak quite well, but the GEAR solver within has no knowledge
of the Courant stability limit for this particular problem and loses information by taking steps in
time which allow parcels of air completely to cross grid cells, leading to the characteristic trailing
ripples. An example of the development of ripples after one rotation is shown in the top of Figure 32,
with the corresponding correct version as produced by rotate or either of the basis space methods
below it.

A straightforward basis space implementation was written, and works with as small an error
tolerance as desired, with the errors resulting from an incomplete basis as is usual, and as opposed to
from any approximations in the algorithm. One minor variation that was necessary for this section
is that for a cylindrical grid space a different definition of inner product must be used to account
for the variation of grid cell size with radial position. The definition

(fg) f(r.)g(r, 0) r dr dO

is required. The process for actually implementing a full basis space integration run involves sev-
eral non-trivial steps: generating previous runs, creating the basis in cylindrical coordinates, and
estimating final errors; a flowchart of the processes used is shown in Figure 33.

108

§9.4 Bulk motion transforms

Figure 32. Formation of trailing ripples after one counter-clockwise rotation by pdetwo, above, with
the ideal solution below.

The top central column creates the derivs() routine which evaluates the right-hand side of
the convection equation being solved by generating a basis, evaluating the spatial differences, and
constructing projection coefficients:

{ ar (C, 0), (90 (Ct.) }1,

Centered differences were used in the radial direction, as it seems to provide better accuracy, while
backward differences were used in the 8-direction to get the benefits of upwinding. The input fields
to the basis generator were not actually created from previous runs, as is the modus operandus of
basis space integration, but rather since the equation has an analytic solution, it was used. Probable

109

Chapter 9. System conversion

"previous runs"
list of ro, 90 pairs

rT(O), o(O)
= 6i3-6r, 9) - ci (r -

26r

9) - ci(r, 9 - 6)
60

C(r, , t)

Error plots

Figure 33. Flowchart of steps involved in performing and evaluating a basis space integration in
cylindrical coordinates for the rotating plume problem.

110

5r,)

§9.4 Bulk motion transforms

values for the location of the non-diffusing bump were listed and fed to a utility which creates (r, 0)
fields suitable for basis generation. This has the advantage of using the best solution available, and
is equivalent to writing a traditional integrator which solves the problem very well and using that
to provide inputs for basis generation.

The column on the left of Figure 33 is the main integration program, which is closely tied to the
derivs() routine as they pass current coefficient values and their time derivatives back and forth.
The integrator is initialized by a bump at (ro(0),0 0(0)) projected onto the basis. Output at the
requested time steps is superimposed with the basis to produce fields again. The equation parameters
enter only into the two convection equation solvers, analytic and basis space. The analytic solution
is used to determine the location of the bump as a function of time, which gives the true fields to
use in error calculation. Generally an L2 norm over the domain is used to evaluate the solutions.

0.05

0.045

0.04

0.035

0

a)

cJ
(U
&,

0.03

0.025

0.02

0.015

0.01

0.005

nv
0.0 0.5 1.0 1.5

time (seconds)
2.0

Figure 34. L2 error as a function of time over an integration of two seconds, for different basis sizes
used in the integration: 1-7, which monotonically decrease.

The first obvious error analysis to construct is an L2 error norm as a function of time and
number of basis fields. For an analytically constructed set of input fields of eleven even steps in o
from 0.25 to 0.75 (The radial domain is taken to be [0, 1] for convenience.), using the Gaussian bump
of unit height and spread 0.1, and integration parameters a = 27r (radial oscillation frequency) and
13 = 0.1 (radial oscillation amplitude), the error is shown plotted in Figure 34. The scaled L 2 norm
which is plotted is defined similarly as in Cartesian coordinates:

2 lfll2 a l (f f) 1 () r dr dO7 7rJJ

111

Chapter 9. System conversion

1where the factor - is used just to ensure that 11 2 = 1. This norm, when discretized, is independent

of the size of the radial grid and thus is well suited for comparisons among different schemes. The
first aspect of the error plot to notice is that the norm steadily decreases as the number of basis
fields used in the calculation is increased, but that the error is oscillatory in time, with a period that
is some small multiple of that prescribed by ac in the governing equation. Also, the troughs in the
error plot for a single basis just exactly touch the peaks of the plot when two basis fields are used,
and similarly for three and four. These characteristics can be understood by looking at the basis
generated by the example fields.

Figure 35. Example slice through a cylindrical basis field showing the source of data plotted in Figure 36.

Since the bases were generated using an analytic Gaussian bump creator, they show bilateral
symmetry in the cylindrical coordinate about = 0. Thus it suffices to plot only a single radial
slice instead of the whole data field, which greatly reduces the amount of data needed to examine
and compare the fields. The slice is illustrated using the third basis member in Figure 35, and the
radial slices of all the basis elements are plotted in Figure 36. In the error plot of Figure 34, the
error using only one field in the integration (the average of all the inputs essentially), is reduced by
adding a second field during most of the integration, but at times 0.0, 0.5, 1.0 1.5, and 2.0, the
presence of the second field has no effect whatsoever on the error. These times are precisely when
the analytic solution predicts the center of the bump to be at r = 0.5, in the middle of the field.
The second basis very much resembles an odd function about r = 0.5, while the initial condition
bump centered at r = 0.5 is an even function, so the inner product of the two is zero leading to no
contribution by the second basis field. The same argument applies to the error curves in Figure 34
corresponding to 3 and 4 fields, and 5 and 6 fields in the basis. Beyond that the comparison becomes
muddled due, perhaps, to the radial asymmetry in the inner product (the integration with respect

112

§9.4 Bulk motion transforms

I\J\ 777k!
Figure 36. First nine cylindrical basis functions (from
rotating plume problem with radial oscillations.

left to right and top to bottom) for transformed

to the measure r dr d). Another observation is that the error using a basis of four fields has an
apparent frequency of oscillations which is twice those of the previous three error plots, just as the
fourth basis field has twice as many maxima as does the second. The doubled frequency arises from
the reduced contributions made by the fourth field at r = 0.5 as well as at r = 0.25 and r = 0.75.

As has been emphasized before in using basis space integration, the parameters used during
integration should be close to those used in deriving the basis fields for the most accurate results. This
is illustrated in Figure 37 which shows the error increasing with larger radial oscillation amplitude.
In the case of /3 > 0.25, the error becomes unbounded since the input fields only account for cases
satisfying /3 < 0.25; part of the information in the solution is able to escape the space spanned by
the basis function fields, permanently degrading the solution. Repeating the integration for this 3,
but using a basis augmented with the orthogonal components of Gaussiaa bumps centered at r = 0.2

113

\I77

Chapter 9. System conversion

U.u.

0.045

0.04

0.035

0.03
0
a)

, 0.025

0.02

0.015

0.01

0.005

n
0.0 0.5 1.0 1.5 2.0

time (seconds)

Figure 37. L 2 error as a function of time for different values of the parameter /i: 0.3, 0.2, 0.1, and 0.01,
all using the full set of eleven basis fields.

and r = 0.8 brings the error back under control. Changing the radial oscillation frequency ac has no
effect on the quality of the solution, as long as the integration time has been chosen small enough
to capture the time scale of variation. The effect of the grid size used to generate the basis is also
minimal as long as the grid spacing is fine enough to resolve the bump at any location, since the
grid is completely irrelevant once integration begins.

A slight generalization of the above situation involves the same equation but without constraints
on the ratio of velocities in the radial and circular directions. There are two limiting conditions which
prescribe the transformation more likely to be effective in reducing the dimensionality of the resulting
system through basis space integration. The first, as considered above, is that when the ratio a/M
is small, corresponding to fast advection around the central point, with slow (or small) variations in
the radial direction. Transforming into a coordinate system which rotates at the same rate effectively
causes one whole dimension of the motion to drop out of the equations. The other extreme is the
case when the time scale of oscillations in the radial direction is much shorter than that of the global
rotation. For integration over short time scales it is more advantageous to make the transformation
into a constant-r space. When the problem is considered on a 2-torus (1 x S1) instead of on a disc
(S1 x [0, 1]), the bound on r is lifted, making the two directions equivalent. The ratio of average
r-velocity to 0-velocity directs which transformation should be made. Both extremes are illustrated
in Figure 38. Other problem considerations may dictate the appropriate transformation for more
complicated assemblies, naturally. An implementation of empirical basis space integration for this
particular example without using the 0 transform requires far more basis elements to capture the
motion faithfully, and is more prone to diffusive spreading than the transformed case.

114

A Ar

§9.5 Automatic conversion

Figure 38. Limits of oscillation frequency ratios: large corresponding to fast radial motion, and small
M for dominant cylindrical motion.

9.5 Automatic conversion
This chapter has described methods of transforming a set of differential equations to employ inte-
gration in the space of an empirically derived basis. For applications involving more than just a few
dependent variables, such as a system of chemical reactions, doing the transformation by hand is
tedious and error-prone. A system has been written to automate this process and the details of its
operation are described fully in the appendices.

Input to the automatic system consists of a chemical mechanism, in an unconstrained textual
format including species, constants, reactions, and a section for specifying extra differential fields
that may be needed to implement convection or other cross-grid motion. Another input file specifies
details of the calculation: where to find the input fields to generate the basis (including derivative
fields) for each species, the specific file formats of the inputs, and how many fields to use in the
integration, for each species. These two input files are parsed to create a FORTRAN subroutine
implementing the system plus two shell scripts for re-generating the basis fields and running the
integration. The subroutine may be linked together with a template integrator package, or used in
more complex codes.

115

Dynamic error tracking

Using information about static error in each of the basis fields used in an integration, as derived
in Section 8.3, it is possible to track dynamically the extent to which the solution is not correct.
This chapter considers the various sources of error during an integration and discusses means of
quantifying the error from each source as well as possible remedies.

10.1 Initial condition error
First, before any time derivatives are generated, the initial condition field for each dependent variable
must be projected onto its basis. The error for each component is simply

errA = A - aA, ai = (A, Ai)

and can be eliminated by adding the orthogonal component into the basis, as discussed in Section 8.3
and the appendices, that is, by computing the field inside double vertical bars of the above expression,
normalizing it to unity, and appending it to the original basis of size N to create a larger one which
will capture the initial condition with zero error. One detail to notice is that the initial coefficient
values chosen above assume that the basis is perfect, that is, that (Ai, Aj) = 6bi for all combinations
of i and j. If this is not the case, as is often seen, the coefficients may be calculated iteratively,
performing the two steps

ai = (A, A,)

A = A - aiAi

for each i, one at a time. This guarantees that each component in A which falls into the span of
two or more basis elements gets counted only once since the component is immediately subtracted
from the field when it is encountered. The problem with using this sort of projection scheme is that
numerical roundoff errors accumulate quickly with the repeated subtractions from A.

This initial error is particularly harmful to the total accuracy of a solution scheme as it accu-
mulates according to the dynamics of the physical system, as shown in Section 8.3. For example,
consider the set of differential equations

dA dB-= kAA, - = kBA
dt dt

116

§10.1 Initial condition error

for which the initial condition of field A is captured entirely by two basis elements. So that projection
errors are not a factor, B will need at least two basis elements, as will be shown in the next section.
The solution for A's coefficients is easily seen to be

al(t) = al(O)ekAt
a2(t) = (a2(0) - e)ekAt

except for the small positive parameter e representing an error in the projection of the initial condi-
tion of A onto its second basis element. This error propagates through into B, first by writing the
differential equation for the coefficients,

bj = kBal(O)(A1,Bj)ekAt + kB(a2(O)- E)(A2,Bj)ekAt

and solving to obtain

b,(t) = bj(O)+ (al(O)(A,Bj) +(a2(O)-)(A2,Bj))kB (ekt -).

Now the exact solution is just the above with e set to zero, and the difference between this and the
exact is

berr,j(t) e(A2, Bj) (ekAt -1).

And the total error in the whole field is

iIBerr(t)J = ((A 2 ,B1)B1 + (A 2 ,B 2)B 2)ekB (ekAt _ 1)

= J ((A2, B1)B1 + (A2, B2)B 2) Ek (ekAt -

< ((A 2,B1)B1I + I(A2 ,B2)B2II)EB I (ekAt)

< (I(A2, Bl)I + (A 2, B 2)l)kB(ekAt -1)

using orthogonality of B's basis, and the claim that there is no projection error from A's fields.
Thus a miniscule error in the initial projection of A leads to exponentially increasing error in B, for
the case of this unstable set of equations. Realistic systems are often characterized by some damping
which will tend to wash away any initial condition errors.

When this error can be written analytically, and using e as reported from the diagonal elements
of testbasis, a decision about when the integration must be halted can be made, based on the
given error tolerance. When no analytic derivation is available, this error can be tracked by the
addition of another coefficient in the integration scheme. The evolution equation is the sum of that
for all the other coefficients of B, with Ej substituted for aj wherever it appears. In this case the
equation is

berr = kB E (A_,Bi)
ij

with an initial condition of zero. In the example, el was taken to be zero. Of course, since this error
can be tracked, it can also be eliminated by improving the supposed orthonormality of the basis
of A so as to reduce all the Ej such that the integrated error in B is minimal over all time. And
the exponentially increasing dependence on time is not common in realistic systems of equations,
serving further to reduce the importance of this sort of error.

117

Chapter 10. Dynamic error tracking

10.2 Projection error
The largest source of error in integration schemes described in this thesis comes from projection
errors-the projection of elements of one basis upon those of another. Evolution equations for the
coefficients of a field expansion feature interaction terms with other fields of the form

(Bj,Ai)
(B * Ck, A,)

and so forth as discussed in Chapter 9. These terms represent, pointwise, contribution to A(x)
from the presence of B(x) and from the product B(x)C(x), respectively, but transformed into an
empirical basis become sums of coefficients and inner products of fields. It is precisely these inner
products which cause all the problems.

Essentially what is required for every term of the form given above is that each of the fields Bj,
be fully realizable in terms of the basis of A, or that the product of two basis elements Bj * Ck be.
Each basis element or product must lie fully in the span of A if all its energy is to be captured in
such an inner product. Mathematically, the error in such a projection is easily quantifiable:

Ilerr(Bj,A)112 = B - 7r(Bj,A)112

= Bj - (Bj, Ai)Ai

- IIBj 112 i()2

= 1-(Bs, Ai)2

using the Pythagorean theorem and orthonormality of {Ai } and {Bj). This value is easily calculated
for each set of projection fields required, and clearly the criterion for no projection error is that the
last sum be equal to one, which is equivalent to saying that the individual field B, lies completely
in the span of the (Ai).

One obvious method of eliminating this source of error is to use the same basis for every
dependent variable (chemical species) in the system. Then it is guaranteed that every single-field
projection error is by definition zero. However terms of the form B, * Ck still introduce errors

Jerr(Bj * Ck, A) 2 = 1 - Bj * Ck, Ai)2,
i

suggesting the addition of the orthogonal components of the product fields Bj * Ck into the common
basis. This method of reducing projection error is certainly not to be favored, as it introduces many
more seemingly unnecessary basis elements into the expansions, and does not mesh with the dogma
of choosing the basis using only information about the problem and its constraints. These projection
correction basis members seem artificial, but in practice it is often necessary to include them if the
interacting species have significantly different spatial structures.

The amount of error introduced by projection losses can be determined statically, using the script
proj goodness which essentially calculates the formulas given above for each projection needed by
an integration scheme, directly from the user-generated input files. However, large projection losses
will not occur if the involved coefficients turn out sr be small. Continuing with the example, the
evolution equation for the coefficients of component A may include a term

dai + bjck(Bj * Ck, Ai -..
Ik

118

§10.3 Integrator error

and for a particular choice of j and k will introduce an error of magnitude

I|b3ck err(B, * Ck, A)I

into the values of field A. It could result that values of j and k where the error term is large will
only occur for small (in relation to the other coefficients) bj or ck or both for all time. Thus the
results of static error determination alone do not necessarily warrant the introduction of augmenting
fields. The use of dynamic error tracking possibly requires a few more design iterations, but may
save overall execution time in the long run.

10.3 Integrator error
The final source of error is introduced during the actual process of integration-stepping the coef-
ficient values through time. An off-the-shelf ordinary differential equation solver such as LSODE [63]
is sufficient for performing the simple forward time integration, as this type of code has been in
existence for some time and the algorithms are in general stable and efficient. Furthermore, provi-
sions for controlling the absolute and relative error tolerances are given, and the codes guarantee
robust operation and satisfaction of these bounds.* Hence for the intents of this thesis, possible
errors which may be introduced by the low-level integration scheme are considered to be completely
controlled and will not be considered.

Choosing the values for the error tolerances which are specified to the integrator requires some
care, however. Most integrators will supply a method of setting relative and absolute error tolerances
(R and A) such that

I1lEl < Rll11I + A

where e is the difference between the true solution and the current value of X, as estimated by the
integration package. The expression above is written for the case of error of a whole field, which will
be expanded in terms of a basis (c}). The question is, what should be the values Ri and Ai of error
control on the coefficients of the expansion such that a certain integrator error given by R and A is
satisfied:

N

ei Rilcil +Ai in = E chi.

The equation for the full field error reduces through definitions:

11611 = 11 - * 11I

= (C -- C)i i

where {(c } are the coefficients of expansion if the integration is performed exactly. This expansion is
assumed to exist, since the determination of projection errors as discussed above would quantify the
deviations in this expansion. Specializing now to the case where the norm is a possibly weighted L2

norm, which encompasses many of the practical applications of this error determination, the term

This claim by the writers of the differential equation solving algorithms is disputed, however, by Russell(x)

* This claim by the writers of the differential equation solving algorithms is disputed, however, by Russell
Allgor and Paul Barton.

119

Chapter 10. Dynamic error tracking

becomes

(I w(x) (ai O.,(x)) dx)

which reduces using the generalized binomial series to

(j w(x) (a~l(x) + + aNjqN(x) + 2all(x)a2 2(x) + other cross terms))

The "other cross terms" in the last expression will be seen to vanish and need not be considered in
detail. Pushing the integration onto each term in the sum gives

(I w(x)a(x) dx + w(x)a~N2(x) dx + 2 w(x)ala2kl(x)q2(x) dx + cross terms)

which reduces, using the definitions of norm and inner product, to

(I [aici112 + 2(al1,a202) + cross terms)

All the "cross terms" involve inner products of the form (i, Oj) where i A j, and vanish due to
orthogonality of the basis. This leaves

N 2

= E ai2)

using normality of the basis elements. The original expansion of the full field error becomes, using
using normality of the basis elements. The original expansion of the full field error becomes, using
this result,

{El|| = ((i - C)2

Defining the per-coefficient error ei = Ici - c shows this gives a restriction on the 12 norm of the
coefficients:

N

E 2 < R211P[12 2+ 2RAI2 OI

i 2=R N ci +A + 2RA c

but what is desired is a restriction on each of the Ei individually,

Iil < Rilcl + Ai.

120

§10.4 Conclusion

Inserting this into the 12 norm on the set ei gives

N N

2 < E (Bncil * A,) 2

i i
N

(R 2C2 + A + 2Aicil)
i

NV N N

- ER2C2 + 2+ 2E RAilci

By comparison with the expression involving the desired error criteria parameters R and A suggests
choosing the values

Ri =R

Ai = A

for all i, which gives
NN N

2 R2 Ec2+A 2 +2RA Ici .
i i i

Comparing this expression with the restriction derived directly from the full field error criterion
shows that this bound will be at least as good as the desired one if

N N N N 2

R2 Zc + A2 +2RAZciI • R2>c 2+A2 +2RA 2
2 2

i i i i

or, subtracting and dividing out common elements,

N N 1

Y]Icil<

The term on the left side of the inequality is the 11 norm of the coefficients, while the one on the
right is the 12 norm. Using the Holder inequality* shows this is indeed satisfied, and the assignments
to R, and Ai will satisfy the original error requirements.

10.4 Conclusion
Three distinct sources of error have been analyzed in this chapter: initial condition error, projection
error, and integrator error. The first type has the ability to cause discrepancies of an unbounded
nature, but is easy to detect and correct. The third source of error is that which is common to
all integration schemes due to discretization in time, and the only result specific to basis space

* Let p, q, and r be positive numbers satisfying p, q, r > 1 and p- +q-1 = r-l. Suppose f E LP(X, dl),
g E Lq(X, d). Then fg E L"(X,dp) and

lfJll _< Ilf lp llg19lq.
Here the p spaces used are just LP(R, dp) where p is the measure with mass one at each positive integer
and zero elsewhere, p = q = 2, r = 1, and g(x) = 1 everywhere, using f = c.

121

Chapter 10. Dynamic error tracking

integration is the conversion of error tolerances on the fields into tolerances on the coefficients of
field expansions. Projection errors, caused by the inability of a basis to capture contributions from
products of other basis elements, is common to all implementations of a Galirkin method, but
in cases where analytic bases are used it sometimes is easy to write analytic expressions for the
projection error as a function of time. Here, however, the best that can be offered is a method
for tracking that error during an actual simulation. While not an a priori way to discover the
magnitudes of projection errors, dynamic tracking can be used iteratively to improve a simulation.
Examples of this are given in the next chapter.

122

Numerical results

A theoretical discussion of an integration algorithm is crucial for determining the important prop-
erties of convergence, expected memory requirements and so on, but the true test comes from real
applications. This chapter discusses some specific problems in detail, reporting execution times and
errors.

11.1 Three-reaction ozone
This example is not interesting for the numerical results obtained, as the system approaches steady
state quickly and uniformly, rendering plots of convergence as a function of simulation time as
straight lines. The ozone chemistry is used here as a framework for explaining some of the choices
that go into choosing a good basis for simulation and different ways to evaluate the worthiness of
such a basis numerically. Properties of various eigenvalue solver schemes are detailed as well.

The basic photochemical cycle of the oxides of nitrogen and ozone is [124]:

NO2 +hv ,NO + 0
2O+02+M -2 03+M

03 +NO 3-N0 2 + O 2

where M represents any third body which absorbs excess vibrational energy to stabilize the forming
ozone. In the atmosphere, M can be treated as a constant with concentration 106 ppm, and oxygen
will have the constant value 2.1 x 105 ppm. As a convenience in writing the mechanism file, the
term hv is retained in the equation but set as a constant equal to one so that it is effectively ignored
in the construction of rate equations. Actual variations in light intensity would be recorded in the
rate constant for that reaction. This small set of equations is quite stiff due to the wide range in
the reaction rates:

kl = 0.555 min- 1

k2 = 2.183 x 10- 5 ppm - 2 min - 1

k3 = 26.59 ppm - 1 min - 1

leading to different time scales for the reactions.

123

Chapter 11. Numerical results

Effects of the integrator used to do the time stepping have a non-negligible influence on the
structure of errors in the results. For this example the common and robust integrator LSODE [63]
was used. It offers two basic methods, implicit Adams and backward differentiation, each with six
variations to the corrector iteration method, as shown in Table 14. From analyzing the Jacobian
it is clear that this problem will not realize any advantage by using a banded structure, hence the
last two possibilities above will be ignored. To illustrate the effects of the other LSODE parameter
settings, the results for a basis of 30 fields, the same one for all four species, are given in Table 15,
where mf = 10+miter for implicit Adams, and mf = 20+miter for backward differentiation (Gear's
convention). In Table 15, "f-" and "j-eval" record the number of function and Jacobian evaluations,
respectively; the internal number of iterations is listed under "steps;" values for "time" are given as
a sum of user and system CPU seconds. As this simulation starts from an initial condition which is
quite far from the steady-state values, it is infeasible to use no Jacobian at all during the region of
stiffness, and LSODE succumbs after trying for some time. The quickest runs by far are those using a
user-supplied Jacobian with which, due to its analyticity, there is no need to generate a table using
repeated function evaluations at small steps away from the state of interest. Also it is clear that
the problem becomes diagonally dominant as LSODE is able to integrate using a diagonal Jacobian
in about half the time as a full internally generated Jacobian, and the backward differentiation
method is consistently faster than implicit Adams. It should be mentioned that for all the cases the
comparison of the output against a grid-based run under the same conditions was nearly identical
(within one part in a million), with the odd exception that mf = 13 was about one percent better
than all the others, perhaps only since the relative error tolerance was spread over a smaller number
of coefficients, forcing them to better convergence.

Table 14. LSODE integration methods.

mf time f-eval] j-eval I steps

10 393.34+0.24 (too much work)
11 28.53+0.08 310 26 267
12 247.70+0.16 3437 26 275
13 157.72+0.11 2207 472 876
20 395.71+3.77 (too much work)
21 11.93+0.08 108 9 85
22 170.91+0.13 2388 19 85
23 94.75+0.10 1321 291 551

Table 15. Statistics for the various LSODE integration methods.

Now that the timing and convergence errors of using different integrator setups has been con-
sidered, the actual path of the integration is examined more closely. For this, debugging lines are
inserted into the basis space integration code to output the input coefficients at each call to the
derivs routine (function evaluation), as well as the output time derivatives of the coefficients. An
auxiliary program reads these coefficients, calculating error norms in various ways. The natural

124

Jacobian structure I Jacobian source

(no Jacobian is involved)
full user-supplied
full internally generated

diagonal internally generated
banded user-supplied
banded internally generated

§ 11.1 Three-reaction ozone

choice of this norm, given that the Karhunen-Lo/ve procedure is being used to generate optimal
bases, is the mean-square norm, which is calculated in the following steps:

1. Read the input coefficients and expand into fields.
2. Perform the zero-di-nensional chemistry in grid space.
3. Read the output coefficients and expand into fields.
4. Compute the L2 difference between the results of steps (2) and (3).

This produces a value for each time the derivs () routine is called, then, and makes a plot similar
to that given in Figure 39.

-6

-8

-10

o -12
qJ

0 -140

-16

-18

-20
0 200 400 600 800

derivs() call number
Figure 39. Integration error at each function call.

1000 1200

The horizontal axis in Figure 39 is integral, corresponding to the number of the call being
made to derivs (), and says nothing about the simulation time (although they both grow starting
from zero). Initially the error is on the order of machine precision and small fluctuations arise from
roundoff problems as the integrator develops its numerical Jacobian matrix. Since the coefficients
were exact (within basis errors) at the initial condition, they remain exact during the initial Jacobian
derivation. However, as forward steps are made in time the error rises, although the final value in
the plot was small enough given the accuracy desired for the integration. The stepwise nature in
the plot happens when the integrator makes some function calls to gather derivative information,
which requires many function calls at nearby coefficient values. Large jumps between these plateaus
represent the integrator making a decision to apply the iteration matrix.

Replacing step four above with an Lo calculation produces a similar picture, but this time
showing the maximum absolute value deviation, which may be useful if that criterion is important.
One further metric on these coefficients is to find the projection error. This procedure ignores step

125

Chapter 11. Numerical results

(3) above and asks instead, "Just how well can the results of the grid-based chemistry be projected
onto the given bases?" and may guide understanding of what part of the space is missing from the
provided bases. This information can be used to guide the process of adding more elements to the
basis, as will be discussed in detail in the next section.

One other conclusion which may be reached is that instead of increasing the size of a given
basis until error bounds are satisfied, it may be advantageous to have the simulation switch to a
partially or entirely new basis. In models governed by a small number of very distinct operating
stages this seems like the best solution. The problem is started using the first basis, as always, but
either when the dynamic error has grown too large or at a preset transition point, the current values
of the coefficients are transformed using projections of each basis element in the first set onto the
second, a fairly cheap operation for all but the simplest models. Any internal state of the integrator
regarding step sizes and numerically-derived Jacobian information should probably be destroyed at
the transition however. Then the simulation resumes and continues to the next transition point or
to termination.

11.2 AIRSHED chemistry
The atmospheric chemistry solver AIRSHED, as discussed in many different contexts throughout
this thesis, will serve as the ultimate test of the proposed method. As a first approach, only
the chemistry integration is considered, which requires the bulk of the work of a traditional grid-
based solver (around 75%). For completeness, all details of the mechanism will be listed. First,
the species participating in the mechanism are shown in Table 16. It includes 33 normal reactive
species, and 9 other species which are usually taken to be at steady state due to the short time
scales governing the reactions in which they participate. In this integration the "steady state"
species are considered to be fully reactive just like all the other species. The final section in the
table lists the six "species" which are actually constant, so they always have the same value and
no differential equations are generated for them. It is convenient to include such artificial species
in writing reactions instead of including the constant in the rate equation as would otherwise be
necessary.

There are 106 reactions involving the 48 species given in Table 16, which are listed in Table 17.
The mechanism is an adaptation of that constructed by Carter [31], and uses many lumped reactions
to approximate the true system of chemistry. Stoichiometric coefficients for lumped reactions are
calculated using carbon splitting factors, which approximate the contribution of the reactions to the
various categories of carbon-containing compounds. The three fractions considered in the formulas
below are:

xc = 0.4286 Fraction of C4 and C5 alkanes of all 3-carbon or longer alkanes
yc = 0.6000 Fraction of terminal alkenes of all 3-carbon or longer alkenes
zc = 0.6000 Fraction of dialkyl benzenes in all di- and tri-alkyl benzenes

To convert from carbon fractions to mole fractions, the following equations are used:

(xc/4.5)
xc/4.5 + (- xc)/7.0

(yc/3.0)
Y yc/3.0 + (1 - yc)/4.0

_ (zc/8.0)
zc/8.0 + (1 - zc)/9.0

The stoichiometric coefficients are given using the splitting factors just derived, from formulas in [31],
for alkanes at 3000 C:

126

'NO
NO 2

03
HONO
HN03
HNO 4
N20 5
NO 3

HO2
CO
HCHO
ALD2
MEK
MGLY
PAN
R02
MCO 3
ALKN
ALKA
ETHE
ALKE
TOLU
AROM
DIAL
CRES
NPHE
H202
MEOH
ISOP
ETOH
MTBE
SO 2

S03

Nitric oxide
Nitrogen dioxide
Ozone
Nitrous acid
Nitric acid
Pernitric acid
Nitrogen pentoxide
Nitrate radical
Hydroperoxy radical
Carbon monoxide
Formaldehyde
Lumped aldehydes
Methyl ethyl ketone
Methyl glyoxal
Peroxyl acyl nitrate
Total RO2 radicals
CH3C03 radical
Alkyl nitrate
Alkanes, 4-carbon or longer
Ethene
Alkenes, 3-carbon or longer
Toluene
Lumped aromatics
Other dicarbonyls
Cresol
Nitrophenols
Hydrogen peroxide
Methanol
Isoprene
Ethanol
Methyl tert-butyl ether
Sulfur dioxide
Sulfur trioxide

"Steady state" species
BZO Phenoxy radical
BZN2 Benzaldehyde n-RO2
RO 2 P Phenol RO2
RO 2 N Alkyl nitrate RO2
RO 2 R Lumped R0 2 number 1
R2 02 Lumped R0 2 number 2
OH Hydroxyl radical
O 0 atom, 0(3P)
OSD O atom, O(1D)

"Constant" species

HV Light, 1.0 for full sunlight
H20 Water vapor, 17500 ppm
CH4 Methane, 2.2 ppm
M Third body, 106 ppm
02 Oxygen, 210 000 ppm
TBF Tertiary butyl formate, unreactive

Table 16. Species involved in the AIRSHED mechanism.

127

§ 11.2 AIRSHED chemistry

Chapter 11. Numerical results

1 NO2 + hv NO + O 11 N2 0 5 + H20 - 2HNO3
2 0 03 12 NO2 + NO3 - NO + NO2
3 0 + NO2 - NO 13 NO3 + hv -_ NO
4 0 + NO2 -NO 3 14 NO3 + hv - NO 2 + O
5 NO + 03 _ NO2 15 03 + hv , O
6 NO2 + 03 . NO3 16 03 + hv -- OSD
7 NO + NO3 -. 2N0 2 17 OSD + H2 0 - 20H
8 NO + NO -- 2NO 2 18 OSD - O0
9 NO2 + NOs3 -, N2 0 5 19 NO + OH - HONO

10 N20 5 NO2 + N0 3 20 HONO + hv NO + OH

21 NO2 + H2 0 - HONO + -1N0 2 + HNO3

22 NO2 + OH ,HNO 3 32 H02 + HO2 - H202
23 HN0 3 + OH NO3 33 NO3 + HO2 : HNO3
24 CO + OH HO2 34 NO3 + HO2 - HNO3
25 03 + OH HO2 35 RO 2 + NO -NO
26 NO + HO2 - NO2 + OH 36 RO02 + HO2 , HO2
27 NO 2 + HO 2 - HNO 4 37 RO 2 + RO2 .
28 HNO 4 -NO 2 HO 2 38 RO2 + MCO 3
29 HN04 + OH - NO2 39 HCHO + hv - 2H02 + CO
30 03 + HO2 , OH 40 HCHO + hv - CO
31 HO2 + HO2 - H202 41 HCHO + OH -, HO 2 + CO

42 HCHO
43 HCHO
44 ALD2
45 ALD2
46 ALD2
47 MCO 3

48 MCO 3

49 MCO 3

50 MCO 3
51 PAN
52 MEK
53 MEK
54 MGLY
55 MGLY
56 MGLY
57 ALKA

+ NOs3

+ HO2
+ OH
+ hv
+ N03
+ NO
+ NO2
+ H02
+ MCO3

+ hv
+ OH
+ hv
+ OH
+ N03
+ OH

58 ALKN + OH

59 RO 2 N + NO
60 RO 2 N + HO2
61 RO 2 N + RO2
62 RO 2 N + MCO 3
63 R2 02 + NO
64 R 202 + HO2
65 R2 0 2 + RO2
66 R2 0 2 + MCO3
67 RO 2 R + NO
68 R' 2 R + HO2

-, HNO3 + HO2 + CO
- RO 2R + RO2
_ MCO3

-- CO + HCHO + RO2R + HO2 + RO2
- HNO3 + MCO3
- NO2 + HCHO + RO2R + RO2

-PAN
-HCHO

, 2H0 2 + 2HCHO
, MCO 3 + NO2
, MCO 3 + ALD2 + RO 2R + RO2

- 1.2R202 + 1.2R0 2 + MCO3 + 0.5ALD2 + 0.5HCHO
, MCO 3 + HO2 + CO
, MCO3 + CO

H NO3 + MCO3 + CO
- bl HCHO + b2 ALD2 + b3 MEK + b4 RO 2N + b5 RO 2 R

+ b6 R 2O 2 + b7 RO2
, NO2 + 0.15MEK + 1.53ALD2 + 0.16HCHO + 1.39R20 2

+ 1.39 R0 2
- ALKN
,MEK
, RO 2 + HO2 + MEK

. HCHO + HO2 + MEK
-_. NO2

"_, RO2
HCHO + HO2

_ NO 2 + HO 2

128

§ 11.2 AIRSHED chemistry

69 RO2 R
70 RO 2 R
71 ETHE
72 ETHE
73 ETHE
74 ETHE
75 ALKE
76 ALKE

+ RO2
+ MCO3
+ OH
+ 03
+O

+ NO3
+ OH
+ 03

77 ALKE + O

78 ALKE + NO3
79 TOLU + OH

80 AROM + OH

81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101

102
103
104
105

DIAL
DIAL
CRES
CRES
RO 2P
RO2 P
RO2 P
RO02 P

BZO
BZO
BZO
NPHE
BZN2
BZN2
BZN2
H202
H202
MEOH
CH4
ISOP
ISOP

ISOP
ISOP
ETOH
MTBE

106 SO 2

+ OH
+ hv
+ OH
+ NO3
+ NO
+ HO2
+ R02
+ MCO3
+ NO2
+ H02

+ NO 3
+ NO2

-- 0.5HO2 + R02
--- HO2 + HCHO
-- RO2R + RO2 + 1.56HCHO + 0.22ALD2
- HCHO + 0.121102 + 0.42CO

- RO2R + RO2 + CO + HCHO + HO2
- RO2 + NO2 + 2HCHO + R202
-- RO2R + R0 2 + b8HCHO + b ALD2
- blo HCHO + bll ALD2 + bl2 R02R + b12 RO2 + b3 HO2

+ b14 OH + b15 CO
b16 CO + b17 MEK + b 8 HCHO + b9 ALD2 + b2 o H02

+ b2 i RO 2R + b2z R0 2

- NO2 + b8 HCHO + bg9 ALD2 + R20 2 + R0 2
- 0.16CRES + 0.16HO2 + 0.84RO2R + 0.4DIAL

+ 0.84RO2 + 0.144MGLY + .11HCHO + .114CO
-0.17CRES + 0.17HO02 + 0.83R02R11 + 0.83R02

+ b22 DIAL + b23 MGLY + b24 CO
-- MCO 3

- HO2 + CO + MCO 3
- 0.2MGLY + 0.15RO2P + 0.85RO2R + RO2
- HNO3 + BZO

---* NPHE

-* 0.5H02 + RO2
- HCHO + HO2
- NPHE

- HNO3 + BZN2

+ HO2 - NPHE
- NPHE

+ hv - 2 OH
+ OH - HO2
+ OH - HCHO + HO2
+ OH -, HCHO + RO2 + RO2R
+ OH - HCHO + ALD2 + RO2R + RO2
+ 03 ,- 0.5HCHO + 0.65ALD2 + 0.21MEK + 0.16HO2

+ 0.29CO + 0.06011H + 0.14RO2R + 0.14R02
+ O 0.41102 + 0.5MEK + 0.5ALD2
+ NO3 - NO2 + HCHO + ALD2 + R202 + RO2
+ OH - ALD2 + HO2
+ 1.4011 OH 0.6TBF + 0.4HCHO + 0.4MEK + 1.4RO2R + 0.4R202

+ 1.8RO02
+ OH ~ SO3 + H02

Table 17. Chemical reactions simulated in the AIRSHED mechanism.

bl = 0.189x + 0.023 (1 -)
b2 = 0.481 x + 0.281 (1 -)

b3 = 0.442 x + 0.882 (1 - x)

b4 = 0.073 x + 0.190(1 -)

129

Chapter 11. Numerical results

b5 = 0.927x + 0.810 (1 - x)

b6 = 0.599x + 0.837 (1 - x)
b7 = b5 + b6

alkenes:

b8 =y

b9 = y + 2.00(1- y)

blo = 0.64 y

b 1 = 0.5 0 y + 1.00(1 - y)

b12 = 0.13y + 0.27(1 - y)

b13 = 0.1 7 y + 0.21 (1 - y)

b14 = 0.06y + 0.12(1 - y)

b,5 = 0.28 y

bl6 = 0.40y
b 17 = (1 - y)

bls = 0.40 y

bl9 = 0.20y

b2 = 0.20 y + 0.40 (1 - y)

b21 = 0.60 y

and higher aromatics:

b22 = 0.650 z + 0.490 (1 - z)

b23 = 0.316 z + 0.860 (1 - z)

b2 4 = 0.095 z

Photolytic reaction rates are taken from [86] at their maximum daily values:

01 = 4.974 x 10 - 1

q2 = 1.122 x 10o

03 = 1.022 x 10+1

.4 = 2.742 x 10 -2

05 = 2.268 x 10 - 3

06 = 9.780 x 10-2

07 = 1.812 x 10-3

08 = 2.778 x 10 - 3

09 = 4.410 x 10- 4

,lo = 9.480 x 10- 5

O11 = 8.520 x 10-3

(12 = 3.174 x 10-2

t13 = 4.518 x 10- 4

130

§11.2 AIRSHED chemistry

For ease in writing down the rate constants, the following three functions are used:

a b
a(a,b) = exp

a b
a 2(a, b) = 2 exp

b
(a, b) = a exp

along with the six variables

yl = 4.40 x 10' 7/T (1.053 x 10- "l exp(-354/T)x + 1.62 x 10- 1 exp(-289/T)(1 - x))

72 = 4.40 x 10l 7 /T (4.85 x 10-1 2 exp(504/T)y + 1.01 x 10 - l exp(549/T)(1 - y))

y3 = 4.40 x 10 7/T (1.32 x 10- 14 exp(-2105/T)y + 9.08 x 10- 15 exp(-1137/T)(1 - y))

4 = 4.40 x 1017/T (1.18 x 10- l l exp(-324/T)y + 2.26 x 10 - 1 exp(10/T)(1 - y))

y.s = 4.40 x 10 7 /T (5.00 x 10- 12 exp(-1935/T)y + 1.00 x 10- 11 exp(-975/T)(1 - y))

Y6 = 4.40 x 1017 /T (1.66 x 10-11 exp(116/T)z + 6.20 x 10-l(1 - z))

Using these definitions, the actual reaction rate constants used are shown in Table 18. All the reac-
tion rates are derived using the standard mass-action formulation, by multiplying the concentrations
of the species appearing on the left-hand side raised to the power specified by any stoichiometric
coefficient, except for reaction 104, which ignores the factor 1.4 on OH. Reaction 21 is odd in that
NO2 is involved in determining the rate of the reaction, but is not actually consumed. Both reac-
tions 32 and 34 are catalyzed by the presence of water, and their rates are multiplied by the constant
concentration of H20.

Initial conditions were constructed from the input files used by the original grid-based solver,
and example fields for basis construction were taken from previous runs of the AIRSHED model. The
first requirement in choosing the appropriate number of fields in an expansion of each species is that
the initial conditions are all well-satisfied. Any initial errors will grow unchecked over the course
of the solution, except for special cases such as when the concentration will head toward zero. The
initial expansion lengths were chosen using the plots in Figure 40, which show the logarithm base
ten of the error generated by using a certain number of fields in the expansion, from one to 24 in
this case. As is expected, the error drops to zero monotonically as the number of fields is increased,
except for a few small glitches due to machine precision losses.

The magnitude of error is a product of the initial magnitude of the field and the errors plotted
in the figures. Hence, it is necessary to consider the L2 norms of the initial condition fields. These
are shown in Table 19, along with the number of fields that would be required to satisfy a 1% error
tolerance. This is only an estimate, as the future behavior of the fields (large or small growth or
disappearance) will vary the amount of impact each initial condition error will have.

Before attempting to run the automatically generated code to implement the AIRSHED system of
chemical reactions it is worth doing a small check that the fields selected using the initial conditions
are sufficient to capture most of the required projections. For a smaller example, the reaction

A+B k1 C,

where each species has a value over a spatial domain, gives the equation

dC(x)d = kl A(x)B(x)
dt

131

Chapter 11. Numerical results

a(6.30 x 104, 1282)
4.083 x 106 /T
a(48890, 894)
a(7.93 x 105, -1370)
a(5.285 x 104, -2450)
a(3.52 x 106, 252)
a(7.22 x 10-3, 529)
a(2.035 x 105, 273)

/3(7.98 x 1016, -11379)
4.41 x 10- 4 /T
a(1.10 x 104, -1229)

103

9.69 x
4.32 x
a(1.78

107 /T
1010

x 105, 833)

1.76 x 10-6/T
a(4.22 x 105, 737)
ac(4.14 x 10

3 , 778)
9.60 x 104 /T
ca(7.05 x 105, -942)
a(1.63 x 106, 240)
a(4.493 x 104, 773)
3(2.61 x 1015, -10103)
1.76 x 10 6 /T
a(6.17 x 103, -579)
c(1.00 x 105 , 771)
a 2(1.054, 2971)
a(1.00 x 105, 771)
ac2(1.054, 2971)
a(1.85 x 106, 180)
1.32 x 106 /T

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

441.0/T
1.32 x 106 /T
07

3.93 x 106 /T
a(2.64 x 105, -2060)
4.41 x 103/T
a(3.039 x 106, 250)

a(1.32 x 105,
a(1.85 x 106,
a(1.23 x 106,
1.32 x 106 /T
1.1 x 106 /T
/3(1.2 x 10 s ,

-1427)
180)
180)

-13542)
010
ca(5.285 x 106, -745)

O11
7.48 x 106 /T
c(1.321 x 105, -1427)
Y1
c,(9.65 x 106, -709)
c,(1.85 x 106, 180)
1.32 x 106 /T
441.0/T
1.32 x 106 /T
a(1.85 x 106, 180)
1.32 x 106/T
441.0/T
1.32 x 106 /T
a(1.85 x 106, 180)
1.32 x 106 /T
441.0/T
1.32 x 106 /T
a(9.47 x 105, 411)

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106

a(5.28 x 103,
a(4.58 x 106,
a(8.81 x 105 ,
Y2
73

-2634)
-792)
-2925)

74

a(9.25 x 105, 322)

1.32 x 10 7 /T

012
1.76 x 107/T
9.66 x 106 /T
a(1.85 x 106 , 180)
1.32 x 10 6 /T
441.0/T
1.32 x 10 6 /T
6.62 x 106 /T
1.32 x 106/T
0.06
1.68 x 106 /T
6.62 x 106 /T
1.32 x 10 6 /T
0.06
013
a(1.36 x 106, -187)
2.81 Texp(148/T)
3.06 Texp(-1282/T)
a(1.12 x 107, 410)
5.41 x 103, -2013)
2.64 x 10 7 /T
a(1.12 x 107, -1121)
2.72 Texp(532/T)
3.00 Texp(460/T)
4.0 x 105 /T

Table 18. Reaction rate constants corresponding to the reactions in Table 17.

which, when expanding each species in terms of basis functions over the domain and scalar coeffi-
cients, becomes

dci kil ajbk(Aj(x)Bk(x) Ci(x))
jk

There are two ways in which this equation may produce inaccurate results. First, it may just be
wrong, through some error in derivation or a misalignment in a data structure or other problem.
Due to the high degree of complexity required in deriving an integration scheme using a basis space
expansion, this problem may arise more frequently than expected. The more insidious source of
error comes from projection losses. The term

E ajbkAj(x)Bk(x)
jk

132

1

2

3
4
5

6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

_
. . _

NO

1

10-4

10-8

10o-12

10-16

HONO

Initial condition errors as a function of the number of terms used in the expansion.

133

§11.2 AIRSHED chemistry

03

1

10-4

10-8

10-12

o10-16

1

10-8

10o-12

10o-16

1

10-4

10-8

10o-12

1n- 16

1

10-8

10o-12

in-16
LU -

Figure 40a.

TV

HO2

10-12

CO

ALD2

MEK MGLY

Initial condition errors as a function of

I

10-4

10-8

o10-12

in-16

1

10-8

10o-12

in-16
Il --

the number of terms used in the expansion.

134

Chapter 11. Numerical results

HCHO

10-4

10-8

10-12

in-16
'U

I

10-4

10-8

10-12

'n- 16

I

10-4

10-8

10-12

in-16
UL

I
1

10-4

10-8

10-12

in-16
1U --

Figure 40b.

PAN

l

L '

1

o10-4

10-8

/U

1

10-4

10-8

10-12

in-16

1

10-4

10-8

10-12

in-16
IU I-V

ALKA ETHE
I

10-4

10-8

10-12

in-1 6

I

10-4

10-8

10-12

In-16K TOU
Al KF TOLU

I

10-4

10-8

10-12

1n-16

10-4

10-8

10o-12

ln-16

AROM DIAL

Figure 40c. Initial condition errors as a function of the number of terms used in the expansion.

135

§ 11.2 AIRSHED chemistry

ql ~ ~ " "

TVU

l

JV

Chapter 11. Numerical results

3
6
3
3
2
1

1

3
2
2

1

1

2

1

1

1

1

1

1

1

1

1

1

1

Table 19. L 2 norms of the initial condition fields for the nonzero species, sorted by magnitude, with
initial expansion length.

may not be completely representable in terms of the basis functions for C, that is, the term

Z aCi(x)

will not be the same as that in terms of A and B fields, where the {(c, } are the optimally chosen
Fourier coefficients:

C, = (a bkAj(x)Bk(x) C,(x)).
3k

The numerical implementation of these two tests is illustrated in Figure 41.
Starting from an initial set of coefficients {a,}, and given the basis which is used in calcu-

lating the value of y(x) at any point, the left vertical branch in the figure illustrates the indirect
method of calculating the update pointwise using the underlying grid, while the right branch applies
the direct method which is under test. The two routines grid-ydot and bsi-ydot are generated
automatically given the mechanism file (by calling parse with the -d option). The former uses

dy
the evolution operator at each point x in turn to calculate dy, while the latte, has no concept of

dt
ydot is calculated by expanding the initial coefficients using the basis, and the output is reduced
to coefficients by projecting the resulting time derivative field back onto the basis. The two sets
of coefficients thus calculated can be compared to yield "coefficient errors," which will be within
machine precision tolerance of zero if there are no structural errors in the equations. This test is

136

1.6 x 103
1.0 x 101
2.2 x 100
8.9 x 10-'
2.5 x 10- l'
2.3 x 10- l

2.2 x 10- l

1.4 x 10 - l

6.2 x 10-2
6.0 x 10-2
5.5 x 10- 2

5.0 x 10-2
1.6 x 10- 2

9.8 x 10-3

2.8 x 10-3
1.1 X 10 - 3

3.4 x 10- 4

6.6 x 10- 5

7. x 10- 6

2.2 x 10-6
1.6 x 10-6
1.7 x 10- 7

7.3 x 10-8
5.1 x 10-l °

CO
03
ALKA
N02
ALD2
HCHO
MEK
NO
ETHE
PAN
HN03
TOLU
AROM
ALKE
MGLY
DIAL
ALKN
HONO
HNO4
HO2
RO2
MCO3

N03

§11.2 AIRSHED chemistry

Initial condition
coefficients

ai

basis

subtract

field coefficient
residuals errors

Figure 41. Schematic diagram of steps performed by the debug code in quantifying projection errors.

the first source of error described above, and fixes to problems discovered by this test are not incre-
mental in nature, but will involve various checks to discover the gross algorithmic or data handling
mismatch.

The second source of error is caused by projection disagreements and does not stem from a
major problem in selecting the fields, but is inherent in the basis space integration procedure itself.
Projection errors are calculated by

field-residual(x) = d(x) - E O d--b(x),
i

dai
where the coefficients - could have been used to produce the same result once the first source

of error has been eliminated. The energy norm of this residual field gives an indication as to the
magnitude of error.

The figure shows the procedure for testing the errors for one particular species and one reaction
which contributes to that species, but in reality output must be produced for each species, and for
each reaction which affects the contribution of that species. The program debug, combined from a
controlling file for initialization and output, and the two automatically generated evolution operator
functions from parse -d, performs a loop over all the species and all the reactions which affect tile
species one at a time. For the AIRSHED model it produced 115 lines indicating projection errors on a
per-component, per-reaction basis. Errors below a certain cutoff magnitude (10-10 in this example)
were ignored. As an illustration, after sorting over the error field, the first few lines of the output
are as follows:

137

\ I,,

b

·1I

Chapter 11. Numerical results

0 0 9.032015e-05
NO 0 6.140088e-05
NO 2 4.607575e-05
03 1 3.776725e-05
N02 3 2.886396e-05

H02 2 2.063415e-05

The first line indicates that the result for the contribution of the first reaction (of those which affect
0) to species O is low by the amount 9.0 x 10- 5 , an L2 norm over the residual field. No output was
generated due to the coefficient errors test, once the algorithmic bugs were eliminated.

Choosing which of the reported field errors to eliminate and the choice of initial condition
coefficients requires a physical understanding of the problem, but the numerical work is simple once
a source of error is chosen. In this case, the error to species O from its zeroth reaction was initially
picked for elimination. The fiedd (not just its residual) of this error was dumped to a file, scaled to
have unit norm, and appended to the list of basis elements for 0, which is allowable since the residual
field is orthogonal to the original basis of 0 by definition. Re-running the debug code shows that
the first line has vanished from the list of output errors confirming that particular source had been
eliminated. Since NO and 03 are important observed variables as well as for illustrative purposes,
the errors in NO due to its zeroth reaction and in 03 due to its first were also eliminated using the
same procedure.

The stopping criterion for this error elimination procedure is not easily written down. Adding
basis elements ad infinitum is guaranteed to reduce the error, only at a sacrifice of execution speed.
The resolution to this classic tradeoff relies on one's initial error tolerance, and the errors actually
generated during a simulation, which correlate with the field residuals but cannot be determined
exactly from them. Thus it is necessary to sample coefficient values representative of the entire
simulation. One good way to do this is to generate the coefficients of the original fields in terms
of the chosen bases and to run debug on each set, looking for patterns and unusually large values.
Alternatively, a brute force method of simply running the simulation in both a grid-based and field-
based domain and comparing will give a larger amount of information. That is the approach chosen
for this example, where the scaled L2 norms of the field differences between the "exact" (grid-based)
and "approximate" (field-based) simulations are plotted at each time step for all the species. The
norm of each error field is scaled by the average value of the fields so that it can be interpreted as a
percentage mismatch. Figure 42 shows the plot for only those species which violate a 5% absolute
error tolerance at any time step.

From looking at the figure, the error in lumped aromatics appears to grow unboundedly, but
intimate knowledge of the underlying model shows this to be irrelevant. The only reaction in which
AROM participates is number 80, in which it reacts with OH to form a variety of products: CRES,
H02, RO2 R, R02, DIAL, MGLY, and CO; however, the maximum concentration of AROM over
the entire course of integration is less than .01 ppm and that of OH is less than 10-6 ppm, so the
contribution of that reaction under the chosen conditions is negligible. Furthermore, it is understood
that AROM is not an interesting observed variable. The constant 10% error in ALKE also holds no
significance. That species is never created, just reacts away from an initial average concentration
of 10- 3 ppm down to 10- 12 at the end. Ten percent of nothing is still nothing, as the old saying
goes. Both these discrepancies could be eliminated by the addition of another one or more basis
elements to each species, but the result is not worth the cost in calculation time in light of the
previous discussion. The species to be worried about is NO, which shows a large rise and a strange
abrupt drop in error at hour 18. Running debug using the conditions at hour 17 reveals NO to be
at the top of the list, as a result of inaccuracies from its second reaction, number 5. Adding the
residual field to the basis reduces the error in NO to below the tolerance level, although the errors
in nitrophenol and benzaldehydes shoot up due to their close coupling with NO. These errors are
dismissed for the same reasons presented earlier in the paragraph.

The resulting basis-space implementation of the AIRSHED chemistry produces results that are

138

§11.2 AIRSHED chemistry

U.JS

0.3

0.25

0.2

0.15

0.1

0.05

0
0 4 8 12 16 20 24

Figure 42. Selected scaled L2 field differences between grid- and field-based simulations.

within the prescribed tolerances, and solves the 106 reactions of 42 variables at 2400 grid points
using only 65 coefficients. The vital statistics are shown in Table 20. The solution strategies in
the first two columns of the table both used LSODE as the underlying integrator, with a numerically
derived Jacobian, and identical error tolerances. The third column shows statistics for the stripped-
down high-performance solver in the actual AIRSHED code itself, for which there are no robust error
tolerances. One interesting ratio to compute is the approximate time required for one function
call. For the grid-based method, this is 8.3 x 10- 5 second, but the field-based method requires
1.5 x 10-3 second, so much more work is being done per call in the field-based simulation, but many
fewer calls need to be made. The ratio for the optimized AIRSHED solver is about a third that of
the LSODE solver, but more function calls are required, perhaps since no Jacobian is calculated.. An
interesting extension to this comparison would be to write down symbolic Jacobian matrices for the
grid- and field-based integration schemes to use. This usually has the effect of reducing the number
of function calls required to solve the problem, and would yield more improvement to the simulation
scheme which has the more expensive function calls.

Field-based Grid-based AIRSHED grid-based

Dimension 65 100 800 79 200
Function evaluations 8 835 5 026 671 12 867 590
Memory (kbytes) 38.1 41 156.3 1 237.5
CPU time (seconds) 13.1 418.8 392.7

Table 20. Comparison of three different solution methodologies applied to the AIRSHED chemistry.

139

¢

A AC

Chapter 11. Numerical results

11.3 Burgers' equation
The canonical example of nonlinear convection-diffusion is Burgers' quation, which challenges nu-
merical solvers due to the formation of steep fronts leading to large nonphysical oscillations. Origi-
nally the equation was posed as a model for statistical theory of turbulent fluid motion, but Burgers
noted that, "phenomena pictured by the solutions of this equation are far removed from hydrody-
namic turbulence." [28] Cole [33] saw that Burgers' equation modeled flow through a shock wave
in a compressible viscous fluid since it exhibits a non-linear term tending to steepen the wave fronts
and produce complete dissipation as well as a viscous term of higher order which prevents formation
of actual discontinuities and which tends to diffuse any differences in velocity. Fletcher [47] reports
extensive solutions to Burgers' equation using many different techniques, while the initial credit for
an analytic solution goes to both Cole [33] and Hopf [65].

The equation is
Au Au 02u

+ = 2 (x (0, 1), t > 0)

with initial condition
u(x, O) = uo(x)

and homogenous boundary conditions

u(0, t) = (1, t) = 0 (t > 0)

where e serves the role of an inverse Reynolds number, modulating the flow from purely convective
(E \ O) to purely diffusive (E / co). The parameter E also changes the character of the differential
equation from officially parabolic when the diffusive term is fairly large to practically hyperbolic
when its effect is small.

To transform this differential equation into the space of basis functions generated above, the
independent variable u is first written in terms of the expansion,

ti (ZIU) I i () (ZIUiu) + E (9X Ut)

Now, noticing that the coefficients ui are functions only of time, and the fields Ui do not change
during the time integration, differentiation can be moved inside the summations,

d Ek ~ d2 U3ZtUi = - UUkU, * dk + ELu d 2

z jk 2

where '*' represents pointwise multiplication of two spatial fields. Taking the inner product of both
sides with U, and using orthonormality gives the expression for the time derivative of each coefficient,

(k) EZUJ< d2Uj' U)it E UjUk U * dX U, + EUj (d2
jk j

The expressions inside angle brackets are scalars which are calculated offline, before the start of an
actual simulation, using discrete formulas for the spatial derivatives of the fields.

A finite difference integrator was developed for this system to be used for comparisons with the
results of field-based integration using the formula above. Ames [6] provides a method for generating
bounds on the temporal and spatial step sizes for explicit difference equations to ensure convergence
and stability, but in practice these bounds are too severe, and appropriate step sizes were discovered
experimentally so that the finite difference integrator would not appear to be impossibly slow. The
step sizes in the field-based integration could be taken much larger as the fundamental nature of

140

§11.3 Burgers' equation

function memory time
e dx method evaluations (kbytes) (seconds)

1. .1 grid 838 34.8 1.8
field 144 .5 0.1

.1 .1 grid 497 34.8 0.9
field 122 .5 0.1

1. .01 grid 7001 3128.0 1075.0
field 54 .5 0.5

.1 .01 grid 5723 3128.0 799.8
field 84 .5 0.5

.01 .01 grid 6405 3128.0 1051.4
field 60 .5 0.5

Table 21. Burgers' equation execution statistics.

the system of differential equations has changed, in a computationally advantageous way. As an
example of the different execution times, Table 21 was calculated using LSODE as the time integrator
in both techniques to provide the same basis for comparison.

The statistics for the field method presented in Table 21 were generated by using the outputs
from the corresponding grid-based integration, guaranteeing that the generated basis used for calcu-
lation contained all the information necessary for that particular value of e. Only three basis fields
(of the 62 or 628 available, depending on dx) were needed in all the field-based integration runs to
achieve accuracy within 0.1%, suggesting that the basic spatial structure of the independent variable
is not shifting much over time. This is indeed the case, as can be seen in Figure 45, which show u(x)
as a function of time for two different parameter values.

.02

.015

0

.01

.005

0
time

Figure 43. Multiple simulations of Burgers' equation with = .01 using fields generated at = .1, at
different expansion lengths.

An obvious question to ask is: how does the choice of basis fields affect the accuracy of an
integration? What is seen in practice for this equation is that basis fields produced using a given value
of e work quite well when simulating equal or higher values of e. This can be explained by noticing
that large values of e correspond to a high degree of diffusion and a correspondingly smaller amount of

141

Chapter 11. Numerical results

"information" in the solution. Small E implies almost pure convection, with solutions featuring sharp
gradients. The basis fields generated by these sharp gradients are quite sufficient in approximating
the smoother solutions generated under conditions of high dissipation. Not unexpectedly, the other
way around-using smooth basis fields to integrate low-diffusion equations-results in a large loss
of accuracy, as shown in Figure 43. The different curves in the figure represent simulations using a
different number of fields, from two through ten, with higher numbers producing lower errors. It is
clear that the actual solution is significantly outside the space spanned by the first few basis fields,
but adding more decreases the overall error since each new member of the basis is orthogonal to all
the others. To illustrate the differences, Figure 44 shows the first three basis fields generated for the
two values of E under discussion, showing how the sharp front present at = .01 is not captured in
the E = .1 fields.

Figure 44. Comparison of the first three basis fields generated at E = .01 (sharp) and = .1 (smooth).

Incidentally, one may wonder if the formulation presented above is the only possible on by which
to integrate Burgers' equation in a field-based system. The answer, of course, is no since there are
any number of equivalent ways to write the differential equation, leading to different integration
techniques. For instance, many theorists are fond of writing Burgers' equation in the form

au 1 u2 02u
- + -- = S ax 2

to emphasize the first derivative of an "energy" term. This transforms into basis space as

u, = Uj, k d U +E E uuKd2.U)
3 k 3

which is completely equivalent to the earlier form only in the limit of an infinite number of basis
fields. In practice, using finite differences as approximations to the first derivatives necessarily
introduces some error into the calculation. Referring to the simulations run for Table 21, this
alternate formulation is less accurate for the cases where dx = .1 (only 62 grid points) perhaps
because multiplying the fields together before differentiating tends to soften the peaks unlike doing
the multiplication afterwards. For the cases where dx = .01 (628 grid points), the two methods are
indistinguishable in their results.

Another detail to notice is that no mention has been made as to the procedure used to generate
the numerical first derivatives. The whole host of standard possibilities may be applied: forward-,
backward-, centered-space explicit, implicit, Crank-Nicholson, and so on. The numbers presented
above were generated using a centered-space explicit method, in fact, but others gave similar results.
The usual considerations which govern the choice of a finite difference scheme still apply here and
the interested reader is heartily referred to Strikwerda's little book [128] for a complete survey.

142

-

l

r

§11.3 Burgers' equation

Figure 45. Plots of u(x. t) for two different parameter values. The initial condition is identical in both
cases, and is the curve closest to the viewer. As time progresses, diffusion reduces the height in both
plots, but the lower shows a sharper front.

143

Chapter 11. Numerical results

11.4 Bootstrap Burgers' equation
Considered in this section is the same Burgers' equation as in the previous section, only with different
initial and boundary conditions, the presentation of which would amount to a fairly trivial extension
would it not be for the fact that no previous simulations will be used in generating the initial basis.
All the other examples start with the execution of a similar, grid-based model from which example
fields are collected and presented to the Karhunen-Lo/ve basis generator to produce the initial basis
for simulation. That initial basis was then refined by locating imprecise regions of operation. Here,
however, only engineering knowledge and intuition will be used to judge the validity of the results
and instead of augmenting an initial basis, it will be pruned to speed the execution time while still
providing reasonable results.

The equation, again for reference, is

au +Ux = 2 ', (x (0,1), t>0)

with the new initial condition
u(x, O)= X 05

and constant boundary conditions
u(O, t) = 1
u(1, t) = 0

which transforms as before into

dxr th p t n e , w

The value = 0.05 will represent the parameter range of interest, at which the equation will be
expected to be largely convective, but still exhibiting some amount of diffusive character. If it were
purely convective, in the limit E -- 0, the initial vertical shock front would propagate to higher x
values without losing its sharpness. With this mild amount of diffusion, it will still move to the
right, only the shape should soften as time progresses. Also, since the front is fed by the non-zero
boundary condition on the left, the maximum value must remain constant at one, and the process
of diffusion will never entirely be able to consume the initial bump. Instead at long times a balance
between the translating front and the constant effect of diffusion will be reached which still satisifies
the boundary conditions.

With no previous runs of this planned simulation. a basis must be generated from scratch.
Given the above discussion, a few possible plots of u(x) can be hand-drawn to help drive the process
of basis selection, as shown in Figure 46. The steep initial condition must be satisfied, of course.
and the other three curves resemble what is expected at intermediate times during the simulation:
diffusion may cause some decrease in values to the left of x = 0.5. and the distance to which the
diffusion invades depends on the exact value of E. Also the front will be moving to the right and can
be expected to occupy every position between the initial halfway starting position and the posited
final equilibrium curve.

At this point considerations from the previous discussions could be used to guide basis gener-
ation, by adding the proposed fields one at a time while maintaining orthonormality of the basis.
Instead, a basis which is complete in some underlying grid space will be chosen, and results from
simulation in that basis will be used to generate a working basis which is more appropriate, that is,
smaller. The discrete basis is defined as

{6~(x)}i--l , 6,(x) = 0 otherwise,

144

§11.4 Bootstrap Burgers' equation

1.0

0.5

0.0

0.0 0.5 1.0
Figure 46. Some plausible profiles which may be reached by the simulation of Burgers' equation at the
given conditions.

one function for each point in the grid. As in the previous example using Burgers' equation, finite
differences will be used to construct the derivative bases given this discrete one. As a first attempt,
centered finite differences will be used for the first and second spatial derivatives, defined by

d6'i (x) - i-, (x)
dxr 2Ax

d26(X) bi+i(- 26i(x) + bi-,(x)
dx 2 ()=(Ax)2

where derivatives which are undefined due to being near the edges of the grid are set to zero, enforcing
the boundary conditions. These are actually calculated automatically, by performing the numerical
differences, as are the needed projection coefficients.

Basis space simulation using this first-cut complete discrete basis gives a surprising result how-
ever, which is shown in Figure 47. All runs used a grid consisting of 50 evenly spaced points in
the single dimension, an e of 0.05, and a time step of 10- 4 over a temporal domain of 2 seconds.
While it may initially appear that the shapes of these curves are as expected-smoothing out and
moving to the right-they are actually the result of simulating a rather different equation. This
can be seen by noticing that the integration of Burgers' equation using a complete set of discrete
fields is in fact equivalent to the integration of a related equation on a grid, by substituting the
equations for the discrete fields into the basis space integration update formula for i. Using, for
now, a centered-space finite difference approximation for the first spatial derivative, and considering
only points away from the edges of the domain, the basis fields are (from above)

145

Chapter 11. Numerical results

0.0
Figure 47.
different tim

0.5 1.0
Initial (incorrect) attempt at basis space simulation using a discrete basis: u(x, t) at seven
es.

Ui() = bi(z)

dUi 1d (x)= 1- (6,+(, -:-I(x))
dxx 2Ax

d2 Ui
dX2 (x)

1I (6i+l (x) - 26i(x) + i-1(x))
(a)2

Deriving the required inner product terms involves integrating over the above functions, and uses
the reduction from Dirac to Kronecker 6 defined by

6 bi(x)6j(x) dx = bij

in the following:

d U, -1
dx *U 2Ax (6,+1(X)6k(X) - bj-1(X)bk(x))

* Uk, Ui)

d 2 j Ui

= 12 (6ik6 i,j+l - 6ik6 i,j--1)

1 j +
(AX)2 '(6 i,j+l - 2 6ij + 6 ij-1).

146

1.0

0.5

0.0

dU7
dx

§ 11.4 Bootstrap Burgers' equation

Substituting these into the evolution equation for a single coefficient ui gives

d 2dt =2_ U jUk(6iki,,+1 - 6ikbi,j-1)+E ()2 Zuj(6ij+ - 26ij +6 ij-.1)du, 1I -26ij bj1 1

= -T ZEUjui(ij+ - (A,,-') + (x)2 Euj(6i,j+l - 26,j + 6,j-1)

2Ax E i(jbi-lj - ujbi+l,j) + E (- 2 (Uji-,j - 2ujbij + u,6i+1,,)
3 J

I 1

-2/ -- ui(ui_ - ui+i) + () 2 (ui- - 2uj + ui+1)2Ax (A)2

which is the centered-space finite difference equation for the grid-based simulation of the equation

au 8u 82u
at - U = sa2'

just Burgers' equation but with the opposite sign on the convection term. This explains the shapes of
the curves in Figure 47. The convective term of this related equation causes a negative contribution
everywhere and attempts to reduce the value of the dependent variable, but it is balanced by the
diffusion and the boundary conditions. Simulations of the true equation would also not be expected
to show much reduction of the values near the zero boundary.

A similar derivation can be performed using a "downwind" first derivative,

dui ui - u,-1
dx Ax '

in the discrete basis space integration, which results in an "upwind" first derivative,

dui _ i+l - i
dx Ax

simulation in grid space. The reverse is also true. The result of the downwind simulation is shown
in Figure 48, and is exactly the result wb^h would be obtained by using upwind differentiation in a
gridded domain. These results are then used as a starting point for generating a smaller, but just as
accurate, basis for calculation, by presenting the curves generated by simulation using the discrete
basis to the Karhunen-Loeve expansion generator.

The basis functions have the standard intuitive look to them, with higher numbered basis mem-
bers exhibiting an increasing number of zero crossings, as shown in Figure 49. They also reflect
the simulation results by maintaining a plateau in the left part of the domain. Simulations using
various numbers of these new basis functions give increasingly better results, with six elements being
sufficient to eliminate any obvious visual differences with the initial input fields. Methods of improv-
ing the basis which were discussed in previous sections may now be applied to expand it slightly if
necessary to reduce any inaccuracies. Also, as was encountered in the previous section on Burgers'
equation, different parameter values in neighborhood of the original one can also be simulated to
produce satisfactory results. For large changes in parameter value it may be necessary to return to
the use of discrete basis functions, the results of which may be used to augment or replace the basis
generated here at = 0.05.

147

0.5 1.0
Downwind derivative solution of Burgers' equation in discrete basis space at seven points in

V I
Figure 49. First six
and top to bottom.

basis functions generated from discrete basis simulation, in order from left to right

148

Chapter 11. Numerical results

1.0

0.5

0.0

0.0
Figure 48.
time.

an

yvu

§11.5 Iterative matrix solutions

11.5 Iterative matrix solutions
This section presents some possible applications for empirical eigenfunction expansions in solving
the standard problem

Ax = b

using iterative methods, although the conclusion about the use of such methods may be surprising.
Direct methods, such as Gaussian elimanition, are frequently used in practice with iterative methods
which converge to the solution being the usual choice. Two common iterative methods are based on
splitting A into parts, one of which is easily invertible. The Jacobi method writes

A=L+D+U,

decomposing A into a diagonal part, and lower and upper triangular matrices with zeros on the
diagonal, then advancing the solution using

Dxm+l = -(L + U)xm + b.

The Gauss-Seidel method is a variation on this which does updating in place instead of determining
an entire new x at each step. The matrix equation is

(L + D)xm+l = -Ux m + b.

Both these methods have been proven to converge to the correct answer, but the number of steps
required is prohibitively large. One way to reduce the number of iterations is to predict future
corrections by overcorrecting by some amount at each step. Writing the Gauss-Seidel method as

xm+l - xm = -(L + D)- 1 (Uxm + b) - xm

or equivalently,
xm+l = xm _ w(L + D)- ((L + U + D)xM + b),

where a scalar parameter w has been introduced to represent the overcorrection. This method is
called simultaneous overrelaxation. The search for an optimal w per problem and per iteration
number is a widely studied probelm, but it has been proven that the method is convergent only for
0 <w < 2 [138].

These sorts of relaxation methods can be generalized to operate on fields which are expressed
as basis function expansions, as will be demonstrated here using the Poisson equation as a model.*
The Poisson equation

V2u = f

or when f = 0, the Laplace eqation, arises in a wide variety of physical models such as compressible
fluid flow and static electric charge calculations. Here it will be assumed that the equation must
be solved many times but for possibly different source terms f, in analogy to the assumption of
many invocations with similar initial conditions and parameters which has been made throughout
this thesis. A five-point discretization of the Laplacian on a square grid gives the update formula
for u:

um+ (x, y) = um (x, y) - - R(x y)
-4

* Actually for equations such as this one which reduce to symmetric, tridiagonal matrix problems, there
are optimal methods, Fourier analysis or cyclic reduction or a combination, FACR(1) [1291, which have
been shown to operate in O(log2 log2 MN) time, instead of O(MN) or worse for the relaxation methods,
where the matrix is of size M x N.

149

Chapter 11. Numerical results

where the residual is calculated as

R(x, y) = um (x - 1, y) + u m (x + 1, y) + u m(x, y - 1) + um (x, y + 1) - 4um (x, y) - f(x, y).

The spacing between grid points is taken to be unity as it does not affect the result. This can
be implemented using in-place updates by replacing values of u on the grid as soon as they are
calculated. Expanding u in terms of unchanging basis elements starts with the definition

u(, y) = E iUi(Xy)

and the discretization of the Laplacian

(V2Ui)(x, y) = Ui(x - 1, y) + Ui(x + 1, y) + Ui(x, y - 1) + Ui(x, y + 1)- 4Ui(x, y)

so that the update formula for the coefficients is

m+1 W
ui = u -4 R-

with a residual term for each coefficient

Ri= Zuj(V2 Uj,U) - (f, Ui).

The projection terms in the summation are constants and are calculated once only, after the basis for
u has been chosen. The term (f, Ui) is calculated at the start of each simulation when f is initially
provided. When using an eigenfunction expansion, there is no concept similar to that of in-place
updates, and all the residuals must be calculated before changes to the coefficients are made. The
algorithms implementing these equations are shown in Table 22.

Loop over iterations Loop over iterations
Loop over grid points Loop over coefficients

calculate R(x, y) calculate Ri
update u(x, y) Exit if , Ril within tolerance

Exit if E, IR(x, Y)l within tolerance Loop over coefficients
update ui

Table 22. Grid-based (left) and field-based (right) simultaneous overrelaxation algorithms.

There are some very different problems in this situation related to choosing a basis for the
dependent variable u. Given an idea about the class of source terms f for which the Poisson
equation is to be solved, the basis for u must be representive of their solutions. It is not necessary,
or even desirable, that the basis also be representative of the path (in the space of fields u"(x, y))
which a grid-based solver would take, since there is no valid comparison of intermediate states as
there has been for the forward-time integration case. As always, the best way to create a basis will
be to solve the problem traditionally to generate a good set of possible solutions; for the case of the
linear Laplacian, small changes in the input will effect only small changes in the output allowing
the accurate solution of a source f which can be interpolated between others which were used to
generate the basis.

Considering the problem from a different angle will show that it never makes good sense to
implement this scheme. Given a set of {f,} and the corresponding set of {oi }, each of which satisfies

V21 = f,

150

§11.6 Conclusion

what is the best solution to a new source field f? And the solution may only be a linear combination
of the given {(i}. Since the problem is linear, though, it suffices to express f as a linear combination
of the given fi}, then use those coeffcients to generate the solution using the {(i}. The projection
of f onto the space spanned by {fi) is unique, however the choice of coefficients in the expansion

f = aifi

is not since the {fi} were not required to be orthogonal, but the same solution will be obtained. This
new algorithm for solving an arbitrary Poisson problem using a dictionary of previous solutions is
not iterative, and produces exactly the same solution that the suggested iterative method outlined
above does. Hence, for this particular operator, it is not worth generating any results.

For linear operators such as the Poisson equation, the solution method through eigenfunction
expansions reduces to projecting the source term on a dictionary of previous solutions and super-
imposing them to obtain the result. There is no need for iterations in this method as there is when
using a gridded domain. Applications for this sort of lookup may include pre-conditioning the initial
choice of u for use in a traditional algorithm, performing the work of the bulk of the iterations in a
much smaller space, and fine tuning that result using traditional grid-based iterative methods.

11.6 Conclusion
Five examples have been presented for five different reasons. First a small set of reactions to illustrate
the method and some of the choices in basis selection and underlying integration schemes. Second a
large system of chemistry to show the practical steps involved in generating a basis space integration
method, including how to augment insufficient bases. Third a standard partial differential equation
was solved for comparison with many previous solution techniques and to validate the extension
to equations involving partial derivative terms. Fourth, the same partial differential equation was
resolved using a different set of boundary conditions, and without the aid of previous solutions to
guide the choice of basis. Finally an example of an inappropriate use of the raw application of basis
space techniques was given. The computational advantages of basis space integration are clearly
shown in the second two sections, and the procedures necessary to adapt a new system are described
throughout.

151

Summary

This thesis has considered some common chemical engineering problems in a broad framework which
allows for the importation of knowledge from other fields. The general theme has been to work
to reduce the total time to solution, defined in terms of initial model development and analysis
through actual simulation and verification of the results. This is a broader message than that
usually considered, which is just to speed up a given computational piece. There are three large
stages in a design which were considered in the three parts of this thesis: initial mathematical
analysis and modeling, choice of a representation, and numerical implementation.

Often before embarking on a full simulation of a complex model it is worth investigating to
see if it has any special mathematical properties, such as symmetries or conserved quantities. Part
one of this thesis presented four different examples of this: a topological study where qualitative
restrictions were developed directly from the model equations, a numerical search over parameter
space to find an improved operating strategy of a catalytic process, the system identification of
an unknown model using experimental data, and two novel ways of implementing standard models
numerically on high-performance machines.

It is frequently seen that chemical engineering models are developed and used on a time scale
which is much longer than the lifetime of any particular computational architecture. For this reason
it is important to develop the representation of any particular model without consideration of the
actual processor on which it might be executed. The choice of representation will hopefully be ideal
for the particular problem at hand and include any knowledge from initial analyses and previous
simulations or results. An approach to constructing the optimal basis in the spatial domain for
a given simulation using such knowledge was presented in the chapters of part two. Criteria for
determining the error inherent in a basis and a field to be expanded were presented as well.

Finally, the necessary implementation and results were presented. This included the automatic
conversion of a natural language representation of the system into computer language codes, and
a system for maintenance of large data sets produced in the process. A system for dynamically
tracking the error during an integration has been generated also. The speed and space advantages
of the method were made clear through numerical examples. Perhaps most importantly, during
development of the entire system the need of making the results accessible to other users was
understood.

152

Appendices

13.1 All the tools
The following 33 subsections verbosely explain the plethora of utilities developed in the course of
this project, and their use. Inner workings of the tools is deferred to the next section, keeping the
approach in this one more like that of a user's guide instead of a programmer's reference. The first
four topics are crucial for an understanding of the structure of the package, while the remaining
tools are certainly useful, but not directly connected to the method of basis space integration.

13.1.1 Preparing for a basis space integration
An executable integrator in empirical basis space is conceptually divided into many individual com-
ponents. The decision to produce something in this modular form instead of one single unit was
motivated by the widely varying projected uses of such an integration package. First is the relatively
simple case where a user wants only to simulate some zero-dimensional set of reactions, in which
there is no added complexity of having to deal with spatial interactions. At the other extreme is
the person who would like to incorporate this method of solving differential equations into some
extensive, venerated model. Then, the whole process must by necessity be completely visible so
that it can be meshed with the existing sinulator. The partitioned scheme is designed to make that
joining as easy as possible by keeping conceptually separate components physically separated.

13.1.2 Mechanism parser: parse
Resting at the highest level of this process and collection of pieces is the mechanism file. This lists
participating species, specifies rate (and other) constants, and reactions, in that order. The example
mechanism file below should help elucidate the forthcoming discussion of its complete structure.

#
Test input file to mechanism analyzer

Option

Language: C

Species

153

Chapter 13. Appendices

NO # Nitric Oxide

N02 # N02

O # O-dot
03 # ozone

Constants
02 = 2.1e5 # oxygen
M = 1.O0e6 # inert third body

hv = 1 # ignore in rate expressions

kO = 0.555 # /min

kl = 2.183e-5 # all in ppm-min units at 298 K
k2 = 26.59

Reactions

N02 + hv -- > NO + O # a reaction
0 + 02 + M ---> 03 + M

rate = k 02 M # this rate is for the reaction on the line above

NO + 03 --> N02 + 02

This is a simple ozone chemistry mechanism, with the species 02 and M being treated as constant.
The complete structure of a mechanism file is given below. Comments may appear anywhere in the
file, delimited by a hash (#) and extending to the end of the line. Keywords may be in either case
but user-defined names are case-sensitive.

mechanism-file:
option-sectionopt species-section constant-sectionopt

reaction-section derivative-sectionopt

The subscript opt indicates that an item is optional so that each possible construction need not be
listed. Only one option is provided now, but other useful switches and commands would later be
added here.

option-section:
Options option-list

option-list:
option
option option-list

option:
Language language

language:
C

FORTRAN

Species are listed one on each line, hopefully with some appropriate comment with each. Optionally
the species may be numbered with non-negative integers to indicate their positions in the concen-
tration array. These numbers need not be contiguous or even fill the whole array, but all the species
must be numbered if at least one is. This facility is provided to allow basis space integration for
only some of the species in the reactions, but allow them to exist in the same data structure as the
rest of the species. The template integrator package respects the user-specified numbering scheme,
and access methods for the concentration arrays are indexed as specified. The default numbering,
when no explicit ordering is given, will start at zero and continue down the list of species.

species-section:
Species species-list

154

§13.1.2 Mechanism parser: parse

species-list:
species
species species-list

species:
species-name array-position
species-name

Similar to the list of species is the optional list of constants, in which identifiers can explicitly be
given a value to be used in substitution when generating output files, or passed through in symbolic
form, to be defined elsewhere in the integrator package. There is a set of special constants of the
form k(number) where (number) is between zero and the number of reactions in the mechanism.
This constant then provides the reaction rate coefficient for that reaction.

constant-section:
Constants constant-list

constant-list:
constant
constant constant-list

constant:
constant-name = value
constant-name

Arbitrary reactions are allowed and stoichiometry is not verified to allow species lumping and the
omission of near-constant reactants. If no reaction rate is specified by placing a rate expression
immediately following the reaction, the default mass-action rate will be constructed, with k(number)
used as the coefficient. If a rate is explicitly specified and contains the constant k, it will be changed
to k(number) for that reaction's number. If the user-given rate contains k(number) the (number)
must match the reaction's number. No user-defined numbering of reactions is permitted, as the
output is based on species, and the order in which participating reactions are performed does not
affect the results. This automatic promotion of the term k is intended to provide the convenience of
being able to change the order of the reactions without having to rewrite the rates. Note, however,
that the values of k(number), if specified in the constants section, correspond to the current ordering
of reactions. In practice it is convenient to write each reaction followed by its reaction rate coefficient,
but allow for automatic generation of the full rate expression, such as:

0 + NO2 -- > NO
k = 4.083e+06/T

NO + 03 -- > N02
k = 7.93e+05/T * exp(-1370/T)

The parser uses the given expression in generating the reaction rate, and there is no need to specify
a reaction number when assigning the k value using this convention.

reaction-section:
Reactions reaction-list

reaction-list:
reaction
reaction reaction-list

reaction:
reactants -- > products rateopt k-expressionopt
reactants -- > rateopt k-expressionopt

-- > products rateopt k-expressionopt

155

Chapter 13. Appendices

Reactants and products are really the same thing, just on different sides of the arrow. The three pos-
sible forms for a rectant are a single species name, or a numeric or constant stoichometric coefficient
before a species name.

reactants:
reactant-list

products:
reactant-list

reactant-list:
reactant
reactant + reactant-list

reactant:
species-name
constant-name species-name
float species-name

rate:
rate = expression

k-expression:
k = expression

Rate expressions can be arbitrary mathematical expressions using standard infix notation, the full
structure of which is shown below. Only one built-in function, exp, is understood, but the extension
to incorporate other built-in functions is straightforward. Implicit multiplication is not provided;
explicit * signs must be included. The basic numerical element in expressions is the floating point
constant, an optionally-signed string of digits with perhaps one decimal point and an optional
exponent using e notation as in the examples above.

expression:
term
expression + term
expression - term

term:
power
term * power
term / power

power:
factor
non-unitary-factor^ power

non-unitary-factor:
parenthesized- expression
exp-function
species-name
constant-name
float

factor:
non-unitary-factor
+ factor
- power

parenthesized- expression:
(expression)

exp-function:
exp parenthesized-expression

The optional derivatives section is used for specifying spatial derivative fields which although not
part of the chemical mechanism, may be necessary for other parts of the algorithm and are generated

156

§13.1.2 Mechanism parser: parse

and maintained with the other fields. The y notation below is to allow strings such as "A x" to
aA _A5

specify T, or "B xxyyy" for The spatial dimension is limited to two, but extensions ofsx' o 2 yesp
this would again be easy to implement.

derivative-section:
Derivatives derivative-list

derivative-list:
derivative
derivative derivative-list

derivative:
species-name xy

xy:
X

Y

X xy

Y y

The output derivs. c file from the mechanism parser can be constructed in one of two major
ways. First, in the species-based method the time derivatives of the coefficients of expansion for each
species are generated as a function of the coefficients of all the reactions in which it participates,
one at a time. This is the obvious way to think about the problem, and is how examples have
been presented all along in this thesis. However certain values which might be reusable must be
recalculated. The mechanism

A+B --1 C+D
will generate, for all four species, evolution equations which contain the term

kl ajbk

in the right hand side, inside a loop over the coefficients of A and B. The default output will look
like the following:

/* species A */
for (i=O; i<N_A; i++) (

adot[i] = 0.;
for (j=O; j<NA; j++)

for (k=O; k<N_B; k++)
adot[i] -= k * a[j] * b[k] * PROJ(P_A_A_B,i,j,k);

}
/* species B */
for (i=O; i<NB; i++) {

bdot £[i = O.;

for (j=O; j<NA; j++)
for (k=O; k<N_B; k++)

bdot[i] -= k * a[j] * b[k] * PROJ(P_B_A_B,i,j,k);
}
/* species C */
for (i=O; i<NC; i++) (

cdot[i] = 0.;
for (j=O; j<NA; j++)

for (k=O; k<NB; k++)
cdot[i] += k * a[j] * b[k] * PROJ(P_C_A_B,i,j,k);

}
/* species D */

157

Chapter 13. Appendices

for (i=O; i<N_D; i++)

ddot[i] = 0.;
for (j=O; j<NA; j++)

for (k=O; k<N_B; k++)

ddot[i] += kl * a[j] * bk] * PROJ(P_D_A_B,i,j,k);

where the value kl * a[j] * b[k] is being calculated NA + NB + NC + ND times.
The alternate representation takes into consideration this replication of the same value and is

reaction-based instead of species-based. So for each reaction in the mechanism, a block to calculate
its effect on the time derivatives of the participating coefficients is generated. The output of a
mechanism containing the example reaction would look like:

/* zero all time derivatives */
for (i=O; i<NA; i++) adot[i] = 0.;

for (i=O; i<NB; i++) bdot[i] = 0.;

for (i=O; i<NC; i++) cdot[i] = 0.;

for (i=O; i<ND; i++) ddot[i] = 0.;

/* reaction 1 */
for (j=O; j<NA; j++)

for (k=O; k<N_B; k++) {

t = kl * aj] * b[k];

for (i=O; i<N_A; i++)

adot[i] -= t * PROJ(P_A_A_B,i,j,k);

for (i=O; i<N_B; i++)

bdoti]' -= t * PROJ(P_B_A_B,i,j,k);

for (i=O; iNC; i++)

cdot[i] += t * PROJ(P_C_A_B,i,j,k);

for (i=O; i<ND; i++)

ddot(i] += t * PROJ(P_D_AB,i,j,k);

}

/* reaction 2 */

Now a temporary variable is used to store the reused constant value during each of the j and k
loops. The effect is that this alternate way of writing the equations is numerically faster due to the
common expression reuse, but not by much because the bulk of the time seems to come from memory
accesses and array offset calculations. The numerical results of the two methods are identical, within
machine roundoff tolerance.

For future reference, a graphical description of the mechanism parser is shown in Figure 50.
The mechanism name is just a sample for the ozone chemistry given above. One output is a shell
script-both a file and an executable-and is used to calculate the projection coefficients necessary
to simulate the reactions. The other two output files are computer source code defining the species
and implementing the reactions.

13.1.3 Fields control file: fields
A mechanism specification is a generic description of a set of chemical reactions; there is no inherent
link to basis space integration, except perhaps for the listing of derivative species. Information about
where to find the data to generate a basis for each species, the number of fields to use during the
integration, and initial conditions is all specified in a file which will be used to control generation of
fields and execution of the integration itself. The structure of a fields control file is much like that

158

§13.1.3 Fields control file: fields

o zone. - ... pa>-

Figure 50. Input and outputs of parse.

of the mechanism file, with separate sections marked by header lines and the same conventions on
case sensitivity and comments.

An example fields control file is presented to aid the more detailed description below.

Fields control file, three-reaction ozone test case

Mechanism ozone.mech # specify the mechanism file

Variables

ozone = /net/immoral/gig3/pw/thesis/Code/parser/ozone
xsize = 10 # these two are required
ysize = $xsize #

NU = 12

Fields NO

$ozone/NO/NO.all

$ozone/NO/NO.all skip=5 num=1 ic

Fields N02

/dev/null cat="discrete $xsize $ysize"

$ozone/NO2/NO2.ic ic

Fields 0

$ozone/O/O.all.Z

num = $NUM skip = 5

ascii # binary double is the default data format

cat = "zcat I awk '(print $2}"' # uncompress this file

no IC specified --> zero IC

Fields 03

/dev/null cat="discrete $xsize $ysize"

Numfields

NO 7

N02 3
03 3

0 5

This example first specifies which mechanism it supports, and the named mechanism file will be
used to extract the species declaration section. Next some variables are defined just for convenience,
except for xsize and ysize which are necessary for generating the bases. (Note that ysize=1 would
specify a one-dimensional model.) The next four sections each describe the fields which will be used
to generate a basis for the named species, with each entry consisting of a filename and optional

159

Chapter 13. Appendices

key/value pairs. For instance, all the example fields for NO are in a single binary file of blocks of
xsize * ysize doubles, with an unspecified number of fields which will be discovered during basis
generation. The initial condition is taken to be the sixth field in that file. Twelve fields for 0 are
kept as the second column of a compressed file, with the first five field entries in that file ignored
before the twelve are read off. The final section in a fields control file is the number of basis fields
to generate for each species. Every species must be mentioned and the specified number must be no
bigger than the number of input fields provided.

The full description of a fields control file follows.

fields-control-file:
mechanism-section option-sectionopt variable-sectionopt

field-section-list numfield-section
mechanism-section:

Mechanism mechanism-name

The mechanism-name could be a full pathname to the mechanism file.

option-section:
Options option-list

option-list:
option
option option-list

option:
Language language

language:
C

FORTRAN

variable-section:
Variables variable-list

variable-list:
variable-name = substitution

Variables can be used as in shell programming to hold more complex strings which are specified
once at the start of the file. The variable name is a proper identifier string, but the substitution
can contain other special characters and may include previously defined variable names, of the form
$(name), which will be replaced with their substitutions as the new variable is defined. One special
variable $$ is predefined to expand into $, permitting dollar signs to make their way into the output,
which is useful especially for lines in the Special section.

field-section-list:
field-section
field-section field-section-list

field-section:
Fields field-name field-specification-list

field-specification-list:
field-specification
field-specification field-specificatzon-list

field-specification:
filename key-listopt

key-list:
key
key key-list

160

§13.1.3 Fields control file: fields

key:
num variable-or-integer
skip = variable-or-integer
type-specification
cat-specification

variable-or-integer:
$variable-name
integer

type-specification:
ascii
binary
binary double
binary float

cat-specification:
cat = string
cat = "string"

The default type is binary double and a specification of binary is equivalent to the default. The
first form of cat-specification will be subject to variable substitution and can contain no embedded
spaces while the quoted form will not be checked for variable substitutions and may contain anything
except a newline. The next section simply declares the length of the field expansion to use for each
species, and the final, optional, Special section is intended for use by those who know exactly what
is happening inside the outputs. The special lines will be copied with variable substitution into a
section of the basis. sh output file and interpreted by the shell.

numfield-section:
Numfields numfield-list

numfield-list:
species-name integer
species-name integer numfield-list

special-section:
Special special-line-list

special-line-list
special-line
special-line special-line-list

Again for reference, a graphical description of the fields control parser is shown in Figure 51.
It calls on parse with a special flag to have it generate the list of species instead of reparsing the
mechanism file directly. The two output shell scripts are used to generate the basis fields, and to
provide input to the integrator executable.

parse'- Y

run.sh nbasis.sh
rn.sh basis.sh

Figure 51. Inputs and outputs of fields.

161

Chapter 13. Appendices

13.1.4 Integrator executable
The main integration program works as a stand-alone integrator, or can be used as an example of
how to implement the pieces in a different integrator. It requires as input a list of the expansion
length used for each species, initial conditions, and a matrix of projection coefficients needed for the
integration. It has no knowledge whatsoever as to the spatial structure of the bases chosen for each
species, and is designed to be very fast at what it does. Needless to say, there is a large amount of
external support required to facilitate this. Figure .52 shows the relationships among the pieces of the
integrator. The solid horizontal arrows denote that the item on the left cals the item on the right.
The program starts with general initialization: reading the required input, which is usually provided
via the run. sh script generated by the fields control file parser, then loops over time. integrating
and printing out results. The time integrator used in this example application is LSODE [631, and
it is decoupled from the main routines by using a set of interface routines to do initialization and
time stepping. Replacing the integrator should not require changes to the main program, just to
this interface layer. The derivs() routine generated by the mechanism parser is called as needed
by LSODE to generate temporal derivatives. Output coefficients can be transformed back to physical
space using the expand utility described below, or further processed for other purposes.

field dimensions

initial conditions

i basis projection coefficients

main.c call.c liblsode derivs.c

initialization LSODE initialization Isode_O(derivs(

loop: one_deriv_step()

integrate(
print()

Figure 52. Example integrator pieces.

The main program is kept up to date using a Makefile which checks the modification times of
all the involved files to see if the executable must be rebuilt. Other dependencies among the input
files are catalogued in this way as well. such that changes in the fields control file or mechanism file
will trigger invocation of the appropriate parser.

The remaining subsections are alphabetically ordered. and document the lower-level utilities. Most
of the utilities operate on the standard basis file format. in binary, but some may still support
ASCII mode through a user-selectable switch. The following tools are each designed to implement
only a small piece of functionality, but when combined together they can provide every desired
maniupulation of data files. The descriptions are all complete in the sense that every available
feature is described; there should be no surprises. Also the design of each code is similar so that
all warning and error messages are printed using a consistent interface, and any messages emitted
are always identified with the program's name to distinguish it from the other codes which may be
working together in a long pipeline.

A certain simple file format convention exists for storing basis elements in binary. The elements
are in order from 1 to N in the file. each element stored with the first spatial dimension varying
fastest, so that o,(x. y) is stored starting in the order:

,(. o). o,(1.) o, (xsize - 1, 0). o,(0. 1). o, (1. 1)...

162

§13.1.7 basisproj

Code which is structured in the same way can thus read a whole basis element (or list of elements)
using a single read system call. A file which contains basis elements will have a header of four 32-bit
integers which specify, in order, the number of fields in the file, the number of input example fields
used to generate this basis, and two spatial dimensions: xsize and ysize. This header structure is
minimal and not very portable or intuitive, but it is fast and easy to implement and if every utility
which deals with bases checks the header bytes against what it expects, many bugs will be avoided.

13.1.5 appendbasis
Two or more basis files are appended using this simple program. The headers of each file are checked
to verify that the spatial dimensions all agree, and the output number of fields is set to the sum
of the lengths of the inputs, then the contents of the files (without their headers) are copied to the
output preceded by the new header. The example,

unix% appendbasis al.basis a2.basis a3.basis > all.basis
concatenates the three inputs together, with header checking.

13.1.6 basismul
The fields of two or more basis files are multiplied together under all the permutations and written
to output. This is useful for verifying that calculations involving product fields are well represented
by a given basis. As an example,

unix, basismul -d a.basis b.basis c.basis
where each of the three bases is big enough for this example, would produce on standard output in
this order,

A * Bo * Co, Ao * Bo * C 1, A *B 1 * Co, Al * Bo * Co, Ao * B 1 * C 1,
Al*B 0 *C1, Al*B 1 *C0 , Al*Bi*C 1 , A *B*C 2, A o* B2 *C, etc.

The option -d indicates "diagonal" order as illustrated above which causes it to produce the fields
with the lowest total field number first, which is usually what is desired when lower numbered fields
correspond to larger eigenvalues in an expansion. Non-diagonal order is the sequence

AO * B * Co, AO Bo * C1, .. , AO * Bo * CN, AO * B * Co,..., AO * B * CN

The option -v makes the program more talkative which is reassuring when working on large domains.
The final option -m instructs the code to cache the fields in memory instead of seeking them off the
disk every time, allowing the code to run much quicker when there is enough memory to hold all the
fields at once. The algorithm without -m is clever enough not to reload fields it is currently using,
as it is based on a recursion over total field number.

13.1.7 basis_proj
To generate the projection fields specified by the mechanism parser, the constructed script proj. sh
uses this program. It is similar to basismul in that all permutations are computed, although only
a scalar projection coefficient is output for each combination. The ordering is non-diagonal. The
command

unix% basisproj a.basis b.basis c.basis
produces

(Ao* Bo, Co), (Ao *BoC 1), ... , (Ao * Bo,CN), (Ao*B1,Co), ... , (Ao*B1,CNc), ..

in binary to standard output. There are no other options, and projections of any length can be
generated as in basismul.

163

Chapter 13. Appendices

13.1.8 compare
Two blocks of data are compared by calculating the L 2 norm and maximum deviation, both raw
and weighted by the average value. No field structure is assumed so the grid dimensions must be
specified on the command line,

unix% compare -x 30 -y 18 calc.field obs.field
with the two specified files each having 30 18 = 540 binary floating point values. The option -a
causes the code to print the location of the maximum deviation as well as its value.

13.1.9 constant
This utility simply generates the field of specified size with the given value at each point, and is
useful for generating extra basis elements.

unix% constant 30 18 1.3

generates a 30 x 18 grid with 1.3 at each point. The second dimension defaults to 1 if omitted.

13.1.10 deriv
Spatial derivative fields of a basis file are generated using this utility. One of three supported
schemes: explicit (the default), implicit, or Crank, can be selected using the switches -e, -i, or -c,
respectively. The derivative term to generate is specified using -x and -y so that

unix% deriv -x 1 -y 2 -i a.basis

generates the implicit discrete fields aary 2 , for example.

13.1.11 discrete
This code produces all the Kronecker delta fields of specified size, and is also useful for enlarging a
basis, as the entire output from discrete could be taken as a basis which spans the space completely.
It requires one or two arguments specifying the grid size, but no value to put in the fields as this is
fixed at 1.0.

unix% discrete 30 18
generates 540 fields of dimension 30 x 18 in order 6(0, 0), 6(1, 0),... .6(29, 0), 6(0, 1),... where 6(x, y)
is the field consisting of all zeros except for the point (, y) which has value 1.0.

13.1.12 dropbytes
The input is copied to the output, except for the first (num) bytes. The value of (num) is specified
through the -n option, and defaults to zero in which case this is exactly UNIX cat. Alternatively,
the -d option may be used instead to specify a number of binary floating point values (doubles) to
drop. The example

unix% dropbytes -n 16 a.basis I dropbytes -d 540
strips the header off the basis for A and removes the first field (if the grid size is 30 x 18). An input
file may be specified on the command line as above, otherwise standard input is used.

13.1.13 expand
Sets of coefficients are read from standard input and used to generate fields using the specified basis.
one field for each set of coefficients; this is the primary implementation of superposition. The line

unix% expand -n 5 a.basis < integrationresults > fullfields

where integrationresults is a binary file of 5. n floating point values, produces 5- n output fields,
each of the size specified by the header on the basis file. If the -n option is omitted, expand uses
all the elements available in the basis and expects the appropriate size of coefficients sets. Since the
number of sets is unspecified, the only way expand can detect an error is if the size of the input
is not a multiple of the number of fields it has been told to use, 5 here. Erroneous results will be
generated in the unlucky case of coefficient set size mismatch by a multiple of 5 (in this case).

164

§13.1.19 makebasis

13.1.14 fcat
This implements cat with many other useful options. Without any options specified, fcat copies
standard input (or the specified file) to standard output. As usual, -x and -y can be used to specify
the dimensions of the set of input fields. The option -n instructs it to output only the first (num)
fields, while -s can be used to skip over the first (skip) fields. Together these options can be used
to specify a range. The options -m and -d can be used to restrict output to those fields whose
sequence numbers when divided by (divisor) have the specified remainder ((modulo)). The most
useful, perhaps, option is type conversion: -t double is the default and specifies that the input
consists of binary double floating point values, -t float indicates half-size floating point values,
and -t ascii denotes values in ASCII format. Output always consists of binary doubles. The words
given to the -t option can be abbreviated to a single character to reduce readability but speed
typing. The complex command

unix% fcat -x 30 -y 18 -s 2 -n 5 -m 2 -d 3 -t ascii

copies the five fields numbered 8, 11, 14, 17, and 20 (starting from zero) to standard out.?:t,
converting them from ASCII to binary in the process. The fields have dimension 30 x 18. The "skip"
and "num" options are always applied after the modulo filtering.

13.1.15 fieldascii
This handy little script takes as argument a basis file name,

unix% fieldascii a.basis

and prints the field header to standard error, while converting the contents to ASCII on standard
output. Except for the one informational line, it is completely equivalent to a two-step operation
using dropbytes and toascii.

13.1.16 headbasis

To extract some number of basis elements from a basis file, this code takes the name of the file and
the requested number,

unix% headbasis a.basis 3

and calculates the appropriate number of bytes to output, creates a new header, and calls on drop-
bytes and headbytes to do the work.

13.1.17 headbytes

The standard utility head works on text files only. This code does the same task for arbitrary files
and is the companion to dropbytes. One common use is

unix% headbytes -n 16 a.basis I od -I
which shows the contents of the header of a basis file, while

unix% dropbytes -n 16 a.basis I headbytes -d 540 toascii
converts to ASCII the first basis element in the file.

13.1.18 loglO
This trivial utility calculates the base ten logarithms of a binary stream of double floating point
values, printing the output in ASCII. It is useful for plotting error values. The only option -c causes
replacement of the result of logarithms of non-positive numbers with -99.

13.1.19 makebasis
This shell script writes four binary integers (using writeints), then copies its input to the output,
creating a basis file from a set of fields. The actual implementation of this code, however, requires

165

Chapter 13. Appendices

121 lines to perform robust error checking of the input argument flags since a general invocation
may be rather complex:

makebasis -xsize 30 -ysize 18 -tsize 10 a.fields > a.basis

Perhaps the code is most useful as an example of robust shell programming.

13.1.20 makeorthtog
When augmenting a basis with other fields, it is essential to ensure that the new basis still satisfies
the orthonormality conditions. The command

unix% makeorthog a.basis < a.extra > a.orthog

subtracts from the input file all components which fall in the span of the named basis. The output
is not normalized or converted into a basis. One option -n (num), specifies that a smaller number
of basis elements should be considered, instead of all those in the file as is the default.

13.1.21 normalize
Output from makeorthog, for example, may need to be normalized before appending it to another
basis. The command

unix% normalize -x 30 -y 18 a.orthog > a.orthog.normal

scales the input field(s) by the appropriate amount such that they are each of unit norm.

13.1.22 orthbasis
In attempting to design perfectly complete basis sets, codes which implement Karhunen-Lo/ve ex-
pansions through singular value decomposition are pushed to their limits, namely those of numerical
precision. Output from such dangerous attempts may not be a truly orthogonal set of basis elements.
The command

unix% orthbasis -s 3 a.basis > aorth.basis
orthogonalizes the input basis using one of three different r' hods as specified by the "style" option.
This utility is not expected to see much use, hence the styles are only numbered, and explained
through comments in the source code. All three methods are inherently iterative, adjusting the
basis element in question such that it is orthogonal to the previously considered ones, with various
normalization steps as well. The three different options are most easily explained by the source code
itself.
Style one:

normalize(0);

for (i=l; i<numfields; i++) {

for (j=O; j<i; j++) {

orthogonalize(i, j);

normalize(i);

}

Style two:

for (i=O; i<numfields; i++) (

for (j=0; j<i; j++)

orthogonalize(i, j);

normalize(i);

}

166

§13.1.25 project

Style three:

for (i=1; i<numfields; i++)
for (j=O; j<i; j++)

orthogonalize(i, j);

for (i=O; i<numfields; i++)
normalize (i);

Decreasing amounts of normalization are performed by the three styles, attempting to reduce error
caused by non-O(1) calculations.

13.1.23 power
This code is a rational implementation of a basis generator. Given a set of input fields, the largest
eigenvectors are extracted one at a time, between which the non-orthogonal components of the
input are subtracted off, then the input is renormalized. The options are full words instead of
single characters, but only the minimal disambiguous string need be supplied, and are described
in Table 23. The code is a robust and clean implementation, based on the code dsyevx, part of
the LAPACK group of FORTRAN numerical subroutines, which does the single eigenvalue extraction.
Input and output is all in binary, but the conversion codes fcat and toascii may be used in
pipelines to support the use of ASCII.

xsize (num) x-dimension extent
ysize (num) y-dimension extent
tsize (num) number of input fields (default, read until EOF)
numfields (num) number of output basis elements (default tsize)
mean normalize input to zero time-average, and output that average
normalize scale each input field to one
dumpcov output covariance (or correlation) matrix
full output eigenvalues and time eigenfunctions

Table 23. Option keywords available in the pover utility.

13.1.24 projgoodness
Interactions between the bases of multiple species are quantified by this shell script, which is to be
invoked with no arguments. It reads the file proj. sh, which was constructed using the mechanism
parser, and for each line which generates a set of basis projections, such as

basisproj basis/NO.field basis/NO.field basis/03.field >> basis/ozone.proj

all but the first of the bases given on the line are iteratively pointwise multiplied using basismul
with the result projected onto the first basis. The logarithms (base ten) of these projections are
reported to intuitively named files, such as good. NO_03_onNO. A plot of the values in these files may
show peaks indicating poor projections at that point, indicating which bases should be augmented,
and with which projections.

13.1.25 project
This implements the mathematically inverse function of expand, reducing a set of fields into a set
of coefficients for the given basis. The option -n restricts the projection to the first (num) fields in
the basis. Input field dimension is specified by the header on the basis file, and the code checks to
make sure the size of the input is a multiple of the field size. Option -s keeps it from printing the
amount of information not captured in the projection, while -g (for "goodness") selects only this
information, and no coefficients are output. The projection method is by default Cartesian inner
product, but a radial weighting suitable for cylindrical coordinates with a radial domain of [0, 1] can
be selected using the -r flag. Again, input fields and output coefficients are binary. The series

167

Chapter 13. Appendices

unix% project -n 5 a.basis < field I expand -n 5 a.basis

can be used to restrict a field to the space spanned by the first five (for example) elements of a
basis. One variation on the standard algorithm is given through the -a (for "alternate") flag. In
that case the projection coefficients are generated without intermediate subtraction of the projected
component from the input fields. Without this flag, the algorithm reduces the size of the input fields
as it generates each coefficient. These two methods produce different results only due to numerical
round-off tolerances, or if the basis is not strictly orthogonal.

13.1.26 select
This utility picks out ranges of grid cells from from a file of fields. The grid size must be specified
using the -x and -y options, although (ysize) defaults to the same values as (size) if omitted.
Range specification is extremely versatile. The basic form is (xspec)x(yspec), range specifications for
each of the two dimensions separated by x where each specification is a list of subranges, optionally
separated by commas. A subrange can be a single number to extract just that row or column,
or a range (lo)-(hi) to extract a set of rows or columns. Leaving either (lo) or (hi) off a range
specification anchors the range to the low or high boundary, respectively. A single - specifies the
entire set. The example

unix% select -x 30 -y 40 3, 5-12 x 17-34,37 38 a.field

creates a field of size 9 x 20 consisting of the specified ranges from the (optionally provided) input file,
and illustrates the freedom given in the ranges: no quotes necessary, optional commas and spaces.

13.1.27 snap
This inappropriately-named code generates an orthonormal basis from a set of input fields using
singular value decomposition. It is larger and more complicated than most of the other utilities, and
has many options. The standard mode of operation reads the example fields from standard input
and writes the basis, with its 4-integer header, on standard output, all in binary. Field dimensions
must be specified using -x and -y, but the extent of the input will be determined automatically
if not fixed using -t. The option -n limits the output to a smaller number of basis fields from its
default, the entire set. There are further options for debugging which will not be discussed here.
The implementation of SVD follows the prescription in Golub [55], modified by Ronen Barzel to
eliminate that book's error, then further cleaned. A possible invocation is

unix% snap -by -x 30 -y 18 -n 10 a.input > a.basis
which specifies binary mode (not necessary), and verbose printing of statistics related to the con-
version. An alternate version of this code, snaprad, uses the same algorithms but adds a radial
weighting to the inner product.

13.1.28 stretch
To increase the size of fields without adding any more information, stretch scales either axis by an
integral factor using linear interpolation. The line

unix% stretch -x 30 -y 18 y 3 < asmall.field > abig.field

generates the same number of fields as given in the input, but scaled to have the dimensions 30 x 54.
Input dimensions are given as usual, with a character x or y specifying on which axis to operate,
and the scale factor, and all transactions are done in binary. Used along with select, features in
example fields may be picked out and magnified to cover a larger number of grid cells.

13.1.29 subtract
The second named input file is subtracted from the first and written to the output, all in binary
unless the -a flag is used to specify ASCII mode. This utility is rarely useful, as places where it
would be, such as in projection, already do the subtraction themselves.

168

§13.2 Behind the scenes

13.1.30 testbasis
It is nice to ensure the property of orthonormality. The check

unixY. testbasis a.basis
prints out an ASCII matrix indicating the extent to which this assumption fails. Entry (i,j) in
the matrix is the absolute value of (A,, Aj), but the diagonal is just zeros. A plot of this matrix
should be completely flat, but regions of non-zero values indicate parts of the basis which should be
modified. To test only the diagonal values, checking for normality, the option -d creates a list of
the absolute values of (Ai, Ai) - 1, which again should be all zeros. The flag -s generates only a
summary listing of the locations and extents of the maximum diagonal and non-diagonal deviations
from unity and zero, respectively.

13.1.31 toascii
This script implemements a one-line series of pipes to convert floating point values to ASCII using
the system utility od, and puts only one output value per line. The exact command is:

exec od -An -v -F $1 I tr -d '\011' sed 's/^[]*//; s/ /' I tr ' ' '\012'
where the second space in the last sed command is actually a tab.

13.1.32 writeints
Often it is necessary to put some integers in binary form into an input stream to set up an integration.
This utility scans ASCII integers from its input and writes them as binary on its output. A common
use is in a script like

!/bin/sh
writeints << EOF
17
17
23

EOF

cat NO.ic

which is run to specify the number of basis elements to use for each of three species, then the initial
condition coefficient values, then projection coefficients.

13.1.33 zeros
This is quantitatively, by lines, and qualitatively, by function, the most trivial code which is still
useful in designing basis space integrations. It writes the binary floating point value 0.0 to standard
output some number of times (default zero) as specified using the -n option. The following two lines
produce equivalent results:

zeros -n 10
yes 0 I fcat -n 10 -t ascii

13.2 Behind the scenes
This section consists of in-depth descriptions of all the computer source codes which make up the
integrator package and all its support tools. Readers who are happy to use the methods without
understanding the details are encouraged to skip this chapter, but hard core algorithmicians are
welcome to follow along. It must be remembered in reading the following, that most of the routines
fall in the category of sparse invocation, that is, they have been designed to be called only a few
times during the process of designing and running an integrator. In this set, more attention has

169

Chapter 13. Appendices

been given to good error reporting and sometimes-redundant input validation to ensure robustness,
sacrificing a few extra cycles of execution time and bytes of disk space. Sections where speed is of the
essence will be duly noted at the points of their discussions. Another important design consideration
was that of modularity. As seen in the discussions of the plethora of tools above, many small chunks
are easier to design, debug, understand, and use, than would be one gigantic do-everything code.
The sacrifices required by this design methodology are again speed and space, and heavily used
sequences of these operators can be rewritten as single units.

13.2.1 Mechanism parser
The program parse takes a mechanism file as input and produces three output files which will be
used in developing and running the integrator. The mechanism file contains up to five sections
with different information about the reaction and planned integration, which were described in
detail in the previous section. The design of this code is driven by the structures which hold all the
information about the reaction; the forms of the structures determine the necessary manipulations to
convert a mechanism into the three output files. Corresponding to the first three input file sections,
Sections, Constants, and Reactions, there is a separate structure for each entry in such a section,
and all entries are placed on the singly-linked list for that section. The first phase of the code is to
parse the input file, building up the lists.

A yacc parser is used to do this straightforward conversion. An input file consists of a list of
species, then an optional list of constants which may be either substitutes for numerical values or
species whose concentrations do not vary (like oxygen in an atmospheric simulator), then a list of
reactions. There may also be, at the bottom of the input, a list of partial derivatives for some species
which will be converted slightly and placed in the script which generates the necessary field files.
Also at the top is a section for options governing the action of the parser, for instance, whether the
target code will be C or FORTRAN. Species and constant declarations are trivially handled by yacc
support routines which add to the linked list, with a bit of consistency checking. Constants consist
of a name, with an optional value assignment using an equals sign. This approach serves to decouple
the mechanics of parsing from the more complicated, variable-dependent special attributions. A
reaction is two lists of species joined by plus signs, separated into reactants and products by an
arrow of any length (e.g., --- >), with an optional extra line specifying the complete reaction rate
or just the reaction rate constant if the rate is simply the mass-action one specified by the reaction
itself. A reaction is not necessarily stoichometrically balanced to allow the use of lumped reaction
mechanisms, and also one side of a reaction may be empty. The form of rate expressions and
constants is quite arbitrary, and corresponds to standard infix mathematical notation.

The lexical analyzer which processes tokens for the compiler grammar is divided by the use of
start states into distinct sections for each of the corresponding sections in the input file, plus some
globally active features to provide shell-script style comments and the arbitrary use of whitespace.

The second stage of the mechanism parser is input consistency checking. As mentioned in the
introduction, pains are taken to make the code robust and debuggable since it is not part of the
execution core. In this regard, there is only one routine per structure to allocate storage for a
new entry on the list, and it takes care of setting all fields to good default values even though the
condition of checking an uninitialized variable is never supposed to happen. One bit of consistency
is to ensure that the user either provided array location numbers for all the species, or for none, and
that no two species end up using the same entry in the array. Also, rate specifications commonly
use the symbol 'k' as a rate constant, but each reaction needs to have its own distinct constant. To
this end, all occurrences of that symbol get promoted to the form 'k<number>' where <number>
is the same as the reaction number, its linear position in the input stream.

For each reaction which is added to the list, the reaction rate is generated assuming mass-
action kinetics from the left-hand side of the reaction, if no rate is explicitly given. Then it is
safe to balance the reactants and products such that each species is mentioned only on one side of
the reaction. In fact, since the reactions are no longer needed in their explicit form (once the rate

170

§13.2.2 Basis generator

has been calculated), a simple list of species and stoichiometric coefficient pairs is all that need be
maintained.

The final section in the code is output generation. First the information about which species
participate in each reaction is converted to state in which reactions does each species participate,
essentially a transpose operation to store the information on a per-species basis instead of per-
reaction. Also, the species are sorted such that the converted rate equations will be printed out in
numerical order to make the output files more readable. Finally, the subroutine which is needed by
the time integrator is generated, along with a header file with handy #defines for manipulating the
coefficients. This output will compile in with the template programs directly.

13.2.2 Basis generator
The mathematical explanation of basis generation was discussed in Chapter 8. The actual imple-
mentation is straightforward given that discussion except for a few details which must be worked
out. Input fields are read in, subject to dimensional constraints given on the command line, and
stored in a single gigantic array, which is referenced using the macro

#define INPUTPOS(x,y,t) (inputC(t)*xsize*ysize+(y)*xsize+(x)])
without bounds checking. Since the expected input sizes could be radically different for different
problems, and are in general quite large, allocation of the input structure is done by chunks which
double in size with each allocation. The actual sizes of the input array (in units of xsize * ysize
doubles) are

10,20,40,80, 160,....

There may be more efficient ways of doing this, but this compromise is fast and not too greedy.
After the extent of the input is known, space is allocated for the covariance matrix and its

decomposed parts, as well as for some temporary fields used in the calculation. The covariance
matrix calculated here should not rigorously be called that as the temporal average field is not
subtracted from each input before integrating. What is actually being computed is

C(s, t) = f u(x, t)u(x, s) dx

while a true covariance would be

C(s, t) = (u(x, t)- uO(x)) (u(x, s) - uo(x)) dx

where

uo(x) = r u(x, i).
i=l

This difference in interpretation makes system conversion into basis space simpler, as no mean values
need to be handled along with the straight summations over field number. Effectively the highest
eigenvalue field in the basis becomes this mean field, and all the real basis elements are moved
down one. Routines which implement the decomposition of this covariance matrix usually assume
the input is of order one, so the maximum absolute element is determined and the entire matrix is
scaled by its inverse to avoid some of the possible over- and under-flow problems.

Integration over a spatial domain presented some conceptual difficulties. Canned packages
perform various discrete integrals based on different assumptions about the weighting of each point
to the entire field. The tack that was taken here is to assume the values at grid points are exactly the
values of the continuous field at that point. An alternative view would be to say that the grid points
represent some sort of average over an area of the size of one grid cell. Given this first approach,

171

Chapter 13. Appendices

the assumption that values between grid points can be generated by bilinear interpolation between
points gives a very trivial result:

N. N,

|f(x) dx = (, y) dx dy E f(X, y)
x=1 y=l

(for the case of two dimensions). In cylindrical coordinates a radial weighting is imposed during
the summation, which is perfect since the weighting is just r, linear in the radial coordinate. Other
weighting factors may complicate this summation expression.

A few different eigenvalue solvers were considered before settling on the version in the code
today. First, the Numerical Recipes in C [116] implementation was naively linked with the rest
of the code. Although its performance usually seemed correct, it suffers from an unfortunate bug
carried over from algorithm 8.3-2 in Golub [55] on which it was based. Next the EISPACK routine
in FORTRAN was adopted, which is also based on an algorithm (in Algol) reported by Golub [541
though seems free of the particular bug encountered before. The main problem with this use was in
data handling issues in linking the codes together, and its results were somewhat inaccurate, namely
that the matrices U and V in C = UWVT were not quite equal as they should be for a square C.
Also cases frequently arose where the columns of U were not orthogonal. The full eigenvalue solver
Eigensystem in Mathematica uas used to test the SVD solvers, as it can be coerced into doing
multiple word precision calculations. The final algorithm is a C code written by Ronen Barzel which
is a translation of a reimplementation of the Golub algorithm in LISP, with the bug removed. It is
fast, accurate, and hopefully, correct.

After the SVD solver has completed its work, the debugging checks on U and V described above
are optionally performed. Then an output basis header is written, the eigenvalues are scaled back
up, and a loop over the fields generates the spatial eigenfunctions. The columns of U are temporal
eigenfunctions, which yield the spatial ones by

,i(x) = f u(x, t)i (t) dt

where ,i is the i-th column of the matrix U. This integration is discretized using the same approach
described earlier. Each (x) is further scaled such that (,, 0j) = 1. A report on whether the
condition (, A) = 0 for i / j is satisfied may be printed, but a better check is to look at the relative
magnitudes of the singular values.

In reality, however, larger orthogonal sets may be extracted using a power method, by finding
exactly one eigenvalue and eigenvector pair at a time, then forcing the input data to be orthogonal
to the newly extracted vector, and iterating up to the dimension of the set. This procedure requires
more computation for a full decomposition, but is faster than SVD when only a few eigenvectors are
needed.

13.3 Compiler technology
Many aspects of the work in this thesis have been greatly aided by the use of modern compiler-
writing technology. Input files are coded in a natural, English-based language suited to the task,
instead of being structured to make the machine code easier to write. What allows this easy bridging
between internal code structures and human-based language is the ability to generate a parser from
a specification of the language.

Being able to form a special language for each application allowed for support of the rela-
tively nice input specification files in parse and fields described above, where the grammars were
completely spelled out.

172

§13.3.1 xmap

Reaction specifications-a list of species, constants, and reactions and their rates-are the
fundamental starting point for utilities involved in basis space integration as well as allowing the
development of two other related standalone packages.

13.3.1 xmap
The first of the two was designed during the first year of graduate study leading to this thesis as a
tool to provide the ability to interactively study the properties of differential equations and iterative
maps. The equations or mappings are typed directly into a text widget in a graphical display then
parsed by the code and plotted. For example, typing the following lines into the text field sets up a
simulation of chaotic atmospheric motion:

Lorenz equations
dx/dt = pr (y - x)

dy/dt = - x z + r x - y

dz/dt = x y - b z

pr = 10; b = 8/3; r = 24.5 This is the chaotic regime.

The input language is quite free-form: semicolons can be used to put multiple statements on a line,
any valid C identifier can be used as a variable name, and text after # on a line is a comment. An
example iterated map (called Henon's map) is

x -> 1 + y - a x2
y -> b x

a = 1.4; b = 0.3
An iterated map, such as this one, calculates the values of its variables at time n + 1 using the values
at time n, so in this case

Xn+1 = 1 + yn - axn
Yn+l = bxn

Mappings are calculated directly, while differential equations are solved using the robust LSODE [63]
solver.

The basic building block of the language in xmap is the expression, which resembles the math-
ematical concept of expression as being some string of added and subtracted terms. The following
are all expressions:

5. 743e-02
a

a+ b

exp(-a) + a / b3
-(12 + max(sin(pi*a), 0))^2

Standard precedence rules provide appropriate grouping of binary operators. Common functions
including exp, log, min, and the trigonometrics are built-in. There are four types of statements
understood by the parser.

1. Simple assignment: (var) = (expr)
The value of the variable on the left hand side is calculated using the expression on
the right, at each time step.

2. Derivative assignment: d(var)/dt = (expr)
The time derivative of the variable is given by the expression. Note that there is only
one independent variable, called "time" and given in the variable time (shortened to
the d/dt notation for derivatives); assignments to time are overridden.

3. Mapping assignment: (var) -> (expr)
The discrete time iteration for the variable is given by the expression. The use of both
discrete and continuous time operators is forbidden, as it makes no sense.

173

Chapter 13. Appendices

Pare 3S3tatpo l3 File ILnes orF el [I
Itopped .tar o 1.1 s l ,. I I, I I IIl

i Lorenz equations for Boussinesq fluid convection in a two-dimensional
layer heated from below
dx/dt = pr (y - x)
dy/dt = - x z + r x - y
dz/dt = x y - b z
pr 10 # Prandtl number
b = 8/3 # aspect ratio of tank

r 24.5 Raleih number
cm~~~~~~~~~~~II

:y 25.0

X

25.0-25.0

I

I

I

I

I

1-25.0
-I-

Figure 53. The xmap window. Image generated by a simple screen dump.

4. Initial condition assignment: IC (var) = (expr)
If not specified otherwise by the user, the initial condition for the variable is set using
the given expression. evaluated at the initial time. The variable must be a variable for
which a time derivative has been given.

174

I - -- -- I--I-- -

§13.4.1 Introduction

There are two ways to start a simulation. The first is to click with the mouse in the plot window,
where the position of the click gives the starting time and the initial condition of one distinguished
variable, chosen through another option window. More complete control is given by a button in
the header which prompts for values of all the derivative variables. Other functionality to control
plotting parameters and the integrator are included, as well as some obscure functions. A sample
snapshot of the entire window is given in Figure 53.

13.3.2 chemap
An extension to the code described above, chemap combines the interactive display properties of
xmap along with the reaction mechanism parser used by parse. This allows the system of ordinary
differential equations being simulated by chemap to be specified as a list of chemical reactions instead
of having to generate the equations by hand.

Of the four basic expressions understood by xmap, only simple assignment and initial condition
assignment are retained. These are augmented by reaction specifications of the form

(reactant) + (reactant) + ... ---> (product) + (product) + ... -

with an optional rate specification immediately following the reaction (though possibly on a separate
line), and an optional reaction rate constant specification. Reactions do not necessarily have any
reactants, and some may have no products, but the reaction "--->" is unacceptable. Reaction rates
are calculated using standard mass-action kinetics unless a rate is explicitly given, such as

rate = 1.5e-16 * N02 * 03

or using the keyword k instead of rate and just specifying a term to be used as the constant in
the mass-action specification. The concept of a variable is mostly replaced by the concept of the
concentration of a chemical species, but variables are still used in calculating other constants or rate
expressions.

Computationally it was found that very large mechanisms would take an unbearably long time
to compute. thus an option was added to write the mechanism in the form of a FORTRAN subroutine,
then fork a subprocess to make an integrator core executable which would communicate with the
main program through shared memory using semaphores to interlock. The execution speed is greatly
increased in this external mode, as the default internal calculation method computed the time
derivatives by recursively descending a binary tree representing the differential equations.

13.4 Documentation
This section describes work done to improve the state of affairs of documentation, especially in
environmental models. When environmental models are used for regulatory applications it is vital
that the underlying computer codes are well documented and readily accessible to the widest possible
audience. This section presents a series of tools, based on standard Unix utilities like lex, awk, and
grep, and the word processing system IFX, which facilitate inclusion of the documentation directly
into the computer code.

13.4.1 Introduction
One of the important trends in the debate about environmental issues is the use of models as an
integrating framework to establish a concrete relationship between sources of pollution, like electric
power plants and automobiles, and their receptors, especially human beings. For example, in the 1990
amendments to the Clean Air Act there is a specific requirement for the use of air quality modeling
to develop the emissions control strategies needed to meet ambient air quality standards. This trend
is also apparent in many other critically important areas including groundwater modeling, health
risk evaluation, compliance assessment, and indoor air quality studies. In addition to the trend

175

Chapter 13. Appendices

toward the use of more models there is also a growth in the level of sophistication of the underlying
mathematical formulations. One of the consequences of adding more physical and chemical detail
into the models is that the underlying computer codes, even with the use of structured design
techniques, become more complex. One of the most pressing problems that must be tackled by
the environmental modeling community is how to document the underlying formulation and the
numerical techniques embedded in their models. Quite apart from the issue of scientific validity of
the codes themselves, it is also important to recognize that the models are used to develop regulatory
processes that may involve extremely costly control measures. There is a clear need to pass from
the "black box" approach to one that might be characterized as a "glass box" where all interested
parties can see the design basis, any simplifying assumptions, and the numerical algorithms used in
the code.

In most models two different types of documentation are usually employed. One is a conventional
manual format that describes the purpose, algorithms, structure, and other aspsects of the code.
The primary function of the documentation manual is to enable independent verification, operation,
and maintenance of the software. Before the writing of the manuals, hopefully, another technique
has been used to make the code itself a useful piece of documentation: comments, as provided for by
structures of the language. In this paper we present examples of protocols that are being used for
the latter purpose, and explore different formats for presenting code fragments with an eye toward
improving the readability and simplifying the task of documenting complex computer codes.

Another attempt to producing self-documenting code is to redesign the language itself, as was
done in Knuth's implementation of WEB [77, 75]. The main problem with this approach is that it
requires programmers to learn a new language. Even if the variations are not too significant, the
code is no longer portable to machines which do not speak this new language. WEB comes with a pair
of translators, to C and FORTRAN, which yield compilable results (in an extremely unreadable format),
and of course WEB text can be sent through TIjX to create well-formatted code. The aim of this paper
is not to convince programmers to switch to another language which lends itself well to self-contained
documentation, but instead to augment proven languages to improve their documentability. This
way there is no impairment to any optimized statements one wishes to write in FORTRAN, for example,
and no incompatibility with sites which do not choose to employ our system. The term "automatic"
is used to refer to the ease with which a programmer can add meaningful comments, making the
dream of self-documentation a reality.

13.4.2 Uncommented code
As an illustration of the problem consider Figure 54, a simple function whose purpose is to compute
the convective velocity scale w,. This parameter is used as a part of the much larger calculation
of vertical diffusivity in the atmosphere under unstable conditions. For the purposes of illustration
it is not necessary to understand the details of atmospheric transport. The calculation is a typical
representative of routines that might be found in any environmental model.

Several points are worth noting about the code. One good feature is the use of the FORTRAN
if-then-else construct for logical branching. Apart from that attempt at structured coding in such an
uncompromising language there is little else to recommend the code as a positive example. The most
glaring omission is the lack of any descriptive comments whatsoever to explain what the statements
are doing.

13.4.3 Code documentation using internal comments
A slightly better version of the code can be constructed if we make use of the FORTRAN comment
statement. In addition to detailed header descriptions of each module, a major effort has been made
to ensure that the software itself is self-documenting. Following the guidelines of Kernigan and
Plauger [721, coding comments are structured identically for each section, as follows:

Description: At the beginning of the program there is a description of its
purpose and relationship to the rest of the model code.

176

§13.4.4 Documented code using 7TX

FUNCTION WS(ZR, ZO, UBAR, RMOLEN, ZI)

DATA VK/ 0.40 /
PZR = (1.0-15.O*ZR*RMOLEN)**(0.25)
PZO = (1.0-15.0*ZO*RMOLEN)**(0.25)

PHI = ALOG(ZR/ZO) + ALOG((PZO**2+1.0)*(PZO+1.0)**2/
& ((PZR**2+1.0)*(PZR+1.0)**2)) + 2.0*(ATAN(PZR) - ATAN(PZO))
IF (UBAR .GT. 0.4) THEN

US = VK*UBAR/PHI
ELSE

US = VK*0.4/PHI
ENDIF

WS = ((-ZI*RMOLEN/VK)**0.333333)*US

RETURN

END

Figure 54. Example of undocumented code.

Authentication: This section of the comment header gives the author's name,
program creation date and current version number. This information may
alternately be inserted automatically by a source code control system like RCS.
Call sequence: Variables that must be supplied by the calling program and
those that are returned are described here.
Variables: A list of the key variables used inside the module is given here.
Secondary variables may be described in the body of the code itself, or ignored
in the case of trivial loop control integers.
Literature references: Books and journal articles are listed to explain rea-
soning behind the algorithms, assumptions, and data structures used inside the
module.
Warnings: Any cautions regarding the use of the code outside its original
environment are given to the user here.
Test cases: When appropriate, example inputs are given along with the cor-
rect results. These test cases are particularly useful when differences in machine
precision is a cause for concern.

While including the information listed above is sufficient for fully documenting the code, com-
plex formulas are still quite difficult to interpret since the format FORTRAN uses for mathematical
expressions is a very meager subset of the constructs available to humans when writing mathematics.
A first step towards making the code a little easier to read is to provide a clearer separation between
the comments and the FORTRAN source language itself. Consider the listing in Figure 55. Comments
are set flush left in a variable width font while the FORTRAN statements themselves remain fixed.

13.4.4 Documented code using TEX
While the use of another font and removal of the C at the beginning of each line has improved
the appearance of comments in the code, it has not really made the statements themselves easier
to understand. Until the advent of efficient programming languages which accept natural human
languages as input, we are forced to translate our thoughts into and out of FORTRAN. The main
limitation of FORTRAN is that the arithmetic notation is visually linear. With the current syntax it
is not possible to have sub- and super-scripts or to use common non-arabic mathematical symbols.
One way around the problem is to intersperse text processing commands within the code itself. In
particular by employing a formatting tool such as ThX it is a straightforward task to merge text
with mathematical notation and even graphics. Moreover if the text processing commands have a C

177

Chapter 13. Appendices

FUNCTION WS(ZR, ZO, UBAR, RMOLEN, ZI)

Description

This program has been designed to calculate the surface level convective velocity
scale w* for use in determining mixing times. The calculations are based on the
integral form of the Businger phi function for unstable conditions.

Author
Gregory J. McRae (March 3, 1993)
Massachusetts Institute of Technology
Cambridge, MA 02139
(617) 253-6564

Variables
ZR - Reference height for the wind measurements
ZO - Surface roughness
UBAR - Absolute value of the velocity at the reference height
WS - Convective velocity scale
US - Friction velocity
RMOLEN - Reciprocal of the Monin-Obukhov length
VK - von Karman constant
ZI - Mixed layer height

Notes

1. The program is restricted, by definition, to unstable conditions.
2. The units for the input data must be consistent. In particular note that ZR and ZO

must be the same.

Beginning

Set the von Karman constant k

DATA VK/ 0.40 /

Compute the phi functions for zr and zO
PZR = (1.0-15.0*ZR*RMOLEN)**(0.25)

PZO = (1.0-15.0*ZO*RMOLEN)**(0.25)

Calculate the friction velocity using a form that is non divergent, in a numerical sense, when 1/L=O
PHI = ALOG(ZR/ZO) + ALOG((PZO**2+1.0)*(PZO+1.0)**2/

& ((PZR**2+1.0)*(PZR+1.0)**2)) + 2.0*(ATAN(PZR) - ATAN(PZO))

Use a minimum wind speed of 0.4 m/s to calculate u*
IF (UBAR .GT. 0.4) THEN

US = VK*UBAR/PHI
ELSE

US = VK*O0.4/PHI

ENDIF

Calculate the convective velocity scale w*
WS = ((-ZI*RMOLEN/VK)**0. 333333) *US

End of the program
RETURN

END

Figure 55. Same example code, this time with comments.

178

§13.4.4 Documented code using T1X

in the first column, they will be ignored by the compiler and the code will act exactly as before their
insertion. This approach of providing auxiliary information within FORTRAN source code is often
used to generate special behavior on certain architectures such as parallelization on a multiprocessor
machine.

As an example of attractive comments, consider the line of code from our example that deter-
mines the convective velocity, with a few comment lines added:

CTEXC Calculate the convective velocity scale w_*
CTEXE v_* = \left(-{Z_i\over kL}\right)^(l\over3} u_*

C

WS = ((-ZI*RMOLEN/VK)**O.333333)*US

C

The CTEXC directive to T1EX indicates that the following characters are to be treated as text comments
while CTEXE indicates a displayed equation. In accordance with FORTRAN convention and to maintain
compatibility with older compilers, the text associated with the directives starts in the seventh
column. Given these directives and a simple Unix shell script applied to the source file, the resulting
output is:

Calculate the convective velocity scale w,

* Zi 3

WS = ((-ZI*RMOLEN/VK)**O. 333333) *US

'There are two other T1EX directives in the system developed for this project. CTEXP is used to
inchide a PostScript file from some drawing program or maybe a graph of input/output relationships
or execution times. A pictorial description is sometimes invaluable in explaining the operation of a
section of code and is no harder to include in the source code than are a thousand words, by this
syntax:

CTEXP /usr/users/pw/ws/ws_descrip.i

CTEXF instructs the 1TJX processor to include the contents of somne other file of commands and is
exactly equivalent to TEX's "\input" statement except that the comment line containing CTEXF is
not included in the output. We use this directive to add a standard statement about where the
authors can be reached and whatever copyright information the university requires. This avoids
having to change each source file every time the telephones get new numbers. The CTEXF directive
is also handy for including specialized lists of fonts, or each person's personal macro package, or the
school's logo.

Incidentally, the text processing directives could be removed by a simple sed script or replaced
with conventional-looking comments by stripping the TEX-specific parts. In practice there is no need,
however, because all the directives and descriptive text have been treated as FORTRAN comments, but
a conventional listing may be preferred by some programmers. The script dectex is included with
the distribution to accomplish this and also as an illustration of just how useful the standard Unix
utilities are for routine processing of this sort: five lines of commands to the interpreted language
sed instead of however many pages of C or FORTRAN which would require compilation and debugging.

The result of processing our complete example function through 'TEX is now shown in Figure 56.
It is an example that shows how the FORTRAN code can be documented in a way that is closer to
the presentations likely to be encountered in conventional background manuals or research papers.
The key advantage of embedding the text into the code is that the code and its documentation are
always together. Also, it is much less of a hassle to modify the documentation at the same time as
the code if they both reside in the same file, and future programmers are more likely to remember
to do so.

179

Chapter 13. Appendices

FUNCTION WS(ZR, ZO, UBAR, RMOLEN, ZI)

|Description
This program has been designed to calculate the surface level convective velocity scale
w. (also known as the free convection scaling velocity). The calculations are based on
a similarity theory and in particular the integral form of the Businger functions for
unstable meteorological conditions. For deep mixing layers, with vigorous heating at
the ground w. can be of the order of 1-2 m/s with associated mixing times, defined by
r = Zi/w. of 0(10 minutes). The figure below illustrates the boundary layer model.

mixed layer
height

reference
Zr height

I hh
A&119k"\.

surface
Z roughness

Author
Gregory J. McRae (March 3, 1993)
Department of Chemical Engineering 66-466
Massachusetts Institute of Technology
Cambridge, MA 02139
(617) 253-6564

Call variables]
WS - Function returns convective velocity scale (w.)
ZR - Reference height for the wind measurements (zr)
ZO - Surface roughness height (zo)
UBAR - Absolute value of the wind velocity at the reference height (ii)
RMOLEN - Reciprocal of the Monin-Obukhov length I /L
ZI - Mixed layer height (Zi)

Other variables
US - Friction velocity (u)
VK - Von Karman constant (k)

Warnings
1. The program is restricted, by definition, to unstable conditions, and so the Monin-Obukhov

length must be negative.

2. The units upon input must be consistent. In particular note that ZR, ZO, and RMOLEN must all
agree.

3. The wind velocity is the magnitude of the flow field.

Z,. Z, f 1/L

-1.000
-0.100
-0.010
-0.010

1.926
1.716
2.140
4.488

180

I Test cases I
zo

0.001
0.010
0.100
1.000

10.0
10.0
10.0
10.0

500.0
500.0
500.0
500.0

3.0
5.0
10.0
10.0

--' U --

- _ M

mx 011WEINS INN\0\00\

§13.4.4 Documented code using X

[References

1. Businger, J. A. et al. (1971), "Flux-profile relationships in the atmospheric surface layer," J.
Atmospheric Science, 28, 181-189.

2. Stull, R.B., (1988), An Introduction to Boundary Layer Meteorology, Kluwer Academic Pub-
lishers, Dordrecht.

|Beginning
Set the von Karman constant k

DATA VK/ 0.40 /
In order to evaluate the momentum scaling we need to calculate integrals of the form

amn |Z (L) dz

where the two "phi" functions relevant to the determination of w. are

,(Tr) = (1o- 15 0 T) (0) .0= 1-1 5.0l°LrL , = _ L
PZR = (1.0-15.0*ZR*RMOLEN)**(0.25)

PZO = (1.0-15.0*ZO*RMOLEN)**(0.25)

The resulting integral bm,s in a form that is numerically non-dive! gent when L - O, is

m=n z +In - -l)((il + 2 arctanO -) 2 arctan ()
PHI = ALOG(ZR/ZO) + ALOG((PZO**2+1.0)*(PZO+1.0)**2/

& ((PZR**2+1.0)*(PZR+1.0)**2)) + 2.0*(ATAN(PZR) - ATAN(PZO))
The friction velocity, used as a measure of the surface momentum flux, is defined by

2 TO = -UW

P
where 0 is the shear stress per unit area of the boundary and p is the density of the fluid. In
this module the friction velocity is based on the wind speed ur at the reference elevation z,. The
minimum acceptable wind speed is 0.4m/s to calculate the friction velocity u,. Similarity theory is
also used in this case.

k~Z) Aiif i > 0.4

U* = 0.4 k
otherwise

IF (UBAR .GT. 0.4) THEN

US = VK*UBAR/PHI

ELSE
US = VK*0.4/PHI

ENDIF

Calculate the convective velocity scale w*

-Zi 3\3
W* - U*

WS = ((-ZI*RMOLEN/VK)**0.333333)*US

[End of the program
RETURN

END

Figure 56. Completely formatted example code.

181

Chapter 13. Appendices

13.4.5 Simple UNIX Documentation

In developing the format for the comments, keywords have been used to separate the different
sections. One of the advantages of this approach is that standard UNIX facilities such as grep
and awk (see Aho [5] and Kernigan and Pike [71]) can be used to get minimal documentation of the
module. By using some awk commands it is possible to retrieve, from the source files, all the internal
documentation of the code. The particular implementation is simple and has a syntax of the form

% about -hdrvw <programname>

where in the above example <programname> is WS. The switches hdrvw indicate help, description,
references, variable names, and warnings. For example in the current implementation of the system
the command

% about -d WS

would produce

This program has been designed to calculate the surface level convective ve-
locity scale w* for use in determining mixing times. The calculations are based

on the integral form of the Businger phi function for unstable meteorological

conditions.

13.4.6 Automatic retrieval of internal documentation
One of the unfortunate facts of life is that the program manuals that describe the computer codes are
often not available when software maintenance or modification must be carried out. Or worse yet,
information about the code was never produced in the first place. One way to avoid this problem
is to make sure that the code itself contains the needed information. This can be accomplished by
including in the code some directives that identify the form of the documentation. And placing
these directives right alongside program statements, it becomes a trivial matter for the programmer
to add documentation. In the present system these directives are implemented by using a special
code word as the only word on a CTEXC directive line.

Insertion of these key phrases enables a simple mechanism for self-documentation of each in-
dividual module. The filter can also be used to extract the functionality of the program using
a variety of command-line switches. Without any flags, about produces a listing of the pro-
gram. The

-a
-c

available option flag
Author
Call Sequence

-s Subroutines
-d Description
-v Variables
-w Warnings
-r References
-t Test Data

Beginning
End

Note that no code words are ever

s correspond to the recognized code words. Together, they are:
Author(s), version information, date
Invocation statement of the subroutine
Required subroutines
Purpose of the program
Important internally used variables
Any limitations or warnings
Literature references
Example inputs and outputs for verification
Start of the program statements
End of the program statements

required by the utilities, but it is recommended that all applicable
codes by used for each routine. For example about -r WS would produce

Literature references relevant to the routine WS:
1. Businger, J. A. et al. (1971), "Flux-profile relationships in the
atmospheric surface layer," J. Atmospheric Science, 28, 181--189.
2. Stull, R.B., (1988), An Introduction to Boundary Layer
Meteorology, Kluwer Academic Publishers, Dordrecht.

and about -cv WS would return

182

§13.4.8 Conclusion

Call sequence for routine WS:
FUNCTION WS(ZR, ZO, UBAR, RMOLEN, ZI)

ZR - Reference height for the wind measurements

ZO - Surface roughness
UBAR - Absolute value of the velocity at the reference height

RMOLEN - Reciprocal of the Monin-Obukhov length

ZI - Mixed layer height
Variable list for routine WS:

WS - Convective velocity scale

US - Friction velocity
VK - von Karman constant

and about -w WS would return the limitations and warning messages:

Limitations and warning messages for routine WS:
1. The program is restricted, by definition, to unstable conditions.

2. The units upon input must be consistent. In particular note

that ZR, ZO, and RMOLEN must all agree.
3. The wind velocity is the magnitude of the flow field.

13.4.7 Source control
In a system the size of an AIRSHED model it is often a major task to keep track of software updates
and modifications. Several difficulties have arisen in the past because the code has been changed
by inexperienced users or by more than one user on the same working file system. In order to
simplify the task of tracking down errors and making sure that all the programs are consistent, each
source file is maintained by a source control system. The purpose of such a system is to maintain
consistency of a set of files. To this end, only one user is allowed to lock a given file for editing.
When he is finished with his changes, the file is readmitted to the system which prompts him for a
description of changes. All past versions are stored in a space-efficient way by preserving only the
amount of information necessary to reproduce the edit history. Each time the environmental model
is recompiled, the current version numbers are included in the executable as string data and can be
checked at any time using the UNIX utility what. Scripts which are used to run the model can be
written to verify that the proper version is being used in this way. The particular source control
package we prefer is RCS [76], which resides in the public domain, but similar software is available
from most operating system vendors.

13.4.8 Conclusion
The system of structured comments inside source code and UNIX utilities for extraction and pro-
cessing will encourage programmers to write meaningful notes about their code sections at the time
when the code is being created. The advantage to having the documentation be an integral part
of software development is clear. Properly documented code will ensure its reusability and con-
tinued support even after the modeling project has been deemed complete, and make it easier for
researchers to share their models since all the-knowledge that was involved in writing the code is
explained therein.

183

References

The page numbers of citations are given in brackets after each reference.

[1] Abarbanel, H. D. I., Brown, R., and Kennel, M. B., "Local Lyapunov exponents computed
from observed data," Journal of Nonlinear Science, 2, n. 3, pp. 343-366, 1992. [41, 421

[2] Abarbanel, H. D. I., Brown, R., and Kennel, M. B., "Lyapunov exponents in chaotic systems:
their importance and their evaluation using observed data," International Journal of Modern
Physics B, 5, n. 9, pp. 1347-75, 1991. [41, 421

[3] Abarbanel, H. D. I., Brown, R., Sidorowich, J. J., and Tsimring, L. S., "The analysis of
observed chaotic data in physical systems," Reviews of Modern Physics, 65, n. 4, pp. 1331-
92, 1993. [39, 41]

[4] Abu-Mostafa, Yaser, via personal communication with Allen Knutson. [991
[5] Aho. A. V., Kernigan, B. W., and Weinberger, P. J., The AWK Programming Language.

Addison-Wesley Publishing Company, Reading, MA, 1988. [182]
[61 Ames, William F., Numerical methods for partial differential equations, Academic Press,

New York, 1977. [140]

[71 Arvind and Iannucci, R. A., "Two fundamental issues in multiprocessing," in Proceedings of
the DFVLR-1987 conference on parallel processing in science and engineering, Bonn-Bad
Godesberg, W. Germany, Springer-Verlag LNCS 295, June 1987. [54]

[81 Aubry, N., Holmes, P., Lumley, J. L., and Stone, E., "The dynamics of coherent structures
in the wall region of a turbulent boundary layer," Journal of Fluid Mechanics, 192, 11.5-173,
1988. [83]

[9] Auerbach, D., Cvitanovi6, P., Eckmann, J.-P., Gunaratne, G., and Procaccia, I., "Exploring
chaotic motion through periodic orbits," Physical Review Letters, 58, n. 23, pp. 2387-9,
1987. [37]

[101 Bacry, E., Mallat, S., and Papanicolaou, G., "A wavelet based space-time adaptive numerical
method for partial differential equations," Courant Institute preprint. [68, 76]

[11] Bajaj, A. K. and Johnson, J. M., "On the amplitude dynamics and crisis in resonant motion
of stretched strings," Philosophical Transactions of the Royal Society of London A, 338, n.
1649, pp. 1-41, 1992. [37, 39]

[121 Bank, R., "A multilevel iterative method for nonlinear elliptic equations," in Schultz, M.,
ed., Elliptic Problem Solvers, Academic Press, New York, 1981. p. 1. [68]

[13] Batarseh, K. I., and Stiller, A. H., "Modeling the role of bacteria in leaching of low-grade
ores," AIChE Journal, 40, n. 10, 1741-1768, 1994. [12]

184

Chapter 14. References

[14] Becker, M., The Principles and Applications of Variational Methods, MIT Press, Cambridge,
MA, 1964. [71]

[151 Beguelin, A., Dongarra, J. J., Geist, G. A., Manchek, R., and Sunderam, V. S., A User's
Guide to PVM Parallel Virtual Machine, Technical report ORNL/TM-11826, Oak Ridge
National Laboratory, 1991. [58]

[16] Berger, M. and Colella, P., "Local adaptive mesh refinement for shock hydrodynamics,"
Journal of Computational Physics, 82, pp. 64-84, 1989. [68]

[17] Berger, M. and Oliger, J., "Adaptive mesh refinement for hyperbolic partial differential
equations," Journal of Computational Physics, 53, n.3, pp. 484-512, 1984. [68]

[18] Beylkin, G., Coifman, R., and Rokhlin, V., "Fast wavelet transform and numerical
algorithms," Yale University Technical Report YALE/DCS/RR-696, August 1989. [69]

[19] Bird. R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, John Wiley and
Sons, New York, 1960. [11]

[20] Biswas, R., Devine, K. D., and Flaherty, J. E., "Parallel, adaptive finite element methods
for conservation laws," to appear in Applied Numerical Mathematics, 1994. [68]

[21] Block, L., Guckenheimer, J., Misiurewics, M., and Young, L.-S. in Global Theory of dynamical
Systems, Nitecki, Z. and Robinson. C., eds., Lecture Notes in Mathematics v. 819. Springer-
Verlag, Berlin, 1980, p. 18. [51]

[22] Bozeman, J. and Dalton. C.. Journal of Computational Physics, 12. pp. 348-363. 1973.
[18,19]

[23] Brown, R., "Calculating Lyapunov exponents for short and/or noisy data sets," Physical
Review E 47, n. 6, pp. 3962-9, 1993. [42,52]

[24] Brown. R., "Orthonormal polynomials as prediction functions in arbitrary phase space
dimensions," preprint. 1993. [37,40, 41, 52]

[25] Brown, R., Bryant, P., and Abarbanel, H. D. I., "Computing the Lyapunov spectrum of a
dynamical system from an observed time series," Physical Review A. 43, n. 6, pp. 2787-806.
1991. [42]

[26] Brown. R., Rulkov. N. F., and Tracy, E. R., "Modeling and synchronizing chaotic systems
from time-series data." Physical Review E, 49, n. 5A, pp. 3784-3800, 1994. [37,40,41, 52]

[27] Brown, R.. Rulkov. N.. and Tufillaro, N. B., "Synchronization of chaotic systems: the effects
of additive noise and drift in the dynamics and driving,' Physical Review E, submitted June
1994). [37,41]

[28] Burgers, J. M., The nonlinear diffusion equation: asymptotic solutions and statistical
problems, D. Reidel Pub. Co., Boston, 1974. [140]

[29] Burggraf, O., Journal of Fluid Mechanics, 24, pp. 113-151, 1966. [18]
[30] Candy, J. C., Signal processing: The modern approach, McGraw-Hill, New York, 1988. [52]
[31] Carter, W., "A detailed mechanism for the gas-phase atmospheric reactions of organic

compounds," Atmospheric Environment, 24A, n. 3, 481-518, 1990. [126]
[32] Ciric, A. R.. and Gu, D., "Synthesis of nonequilibrium reactive distillation processes by

MINLP optimization," AIChE Journal, 40, n. 9, 1479-87, 1994. [12]
[33] Cole, Julian D., "On a quasi-linear parabolic equation occuring in aerodynamics," Quarterly

of Applied Mathematics, 9, pp. 225-236 (1951). [140]
[34] Collatz, L.. The Numerical Treatment of Differential Equations. Springer-Verlag, New York,

1966. [71]

[35] Constantinou, L., and Gani, R., "New group contribution method for estimating properties
of pure compounds," AIChE Journal, 40, n. 10, 1697-710, 1994. [12]

[36] Cvitanovi6, P., Gunaratne, G. H., and Procaccia, I., "Topological and metric properties of
Hnon-type strange attractors," Physical Review A, 38, n. 3. pp. 1503-20, 1988. [37,44,47,
52]

[37] Davis, G., Mallat, S., and Avellaneda, M., "Adaptive nonlinear approximations," Courant
Institute preprint, New York University. [771

185

Chapter 14. References

[38] Davis, G., Mallat, S., and Zhang, Z., "Adaptive time-frequency approximations with
matching pursuits," Courant Institute preprint, New York University. [77]

[39] Doherty, M. F. and Perkins, J. D., "On the dynamics of distillation process. III: the
topological structure of ternary residue curve maps," Chemical Engineering Science, 34,
n. 12, pp. 1401-14. [27]

[40] Duncan, W. J., ARC RUM, p. 1798, 1937. [701

[41] Duncan, W. J., ARC R&M, p. 1848, 1938. [70]

[42] Eckmann, J.-P. and Ruelle, D., "Ergodic theory of chaos and strange attractors," Reviews
of Modern Physics, 57, n. 3, pp. 617-56, 1985. [41,42]

[43] Engquist, B., Osher, S., and Zhong, S., "Fast wavelet based algorithms for linear evolution
equations," SIAM Journal of Scientific Computing, 15, n. 4, pp. 755-775, 1994. [69]

[44] Fick, Th., Dath, J.-P., Imbihl, R., and Ertl, G., "The mechanism of kinetic oscillations in
the NO + CO reaction on Pt(100)," Surface Science, 251/252, pp. 985-989, 1991. [28]

[45] Field, R., and Noyes, R., "Oscillations in Chemical Systems. IV. Limit cycle behavior in a
model of a real chemical reaction," Journal of Chemical Physics, 60, pp. 1877-1884, 1974.
[28]

[46] Finlayson, B. A., The Method of Weighted Residuals and Variational Principles, Academic
Press, New York, 1972. [72]

[47] Fletcher, C. A. J., "Burgers' equation: a model for all reasons," in Noye, J., ed. Numerical
Solutions of Partial Differential Equations, North-Holland, New York, pp. 139-225, 1982.
[140]

[48] Fletcher, C. A. J., Computational Galerkin methods, Springer-Verlag, New York, 1984. [70]

[49] Fraser, A. M., "Information and entropy in strange attractors," IEEE Transactions on
Information Theory, 35, n. 2, pp. 245-62, 1989. [39]

[50] Fujisaka, H. and Yamada, T., "Stability theory of synchronized motion in coupled-oscillator
systems," Progress of Theoretical Physics, 69, n. 1, pp. 32-47, 1983. [40, 52]

[51] Galerkin, B. G., Vestnik Inzhenerov i Tekhnikov, 19, pp. 897-908, 1915. [70]

[52] Garfinkel, R. S., and Nemrhauser, G. L., "The set-partitioning problem: set covering with
equality constraints," Operations Reseach, 17, n. 5, 848-856, 1969. [58]

[53] Garfinkel, Robert S., and Nemhauser, George L., Integer Programming, John Wiley & Sons,
New York, 1972. [58]

[54] Golub, G. and Reinsch, C., Numerische Mathematik, 14, 403-420, 1970. [172]

[55] Golub, Gene H., and Van Loan, Charles F., Matrix Computations, Johns Hopkins University
Press, Baltimore, 1983. [168,172]

[56] Grassberger, P., Hegger, R., Kantz, H., "On noise reduction methods for chaotic data,"
Chaos 3, n. 2, pp. 127-42, 1993. [39]

[57] Guida, V., Ocone, R., and Astarita, G., "Diffusion-convention-reaction in multicomponent
mixtures," AIChE Journal, 40, n. 10, 1665-68, 1994. [12]

[58] Hall, T., "The creation of horseshoes," Nonlinearity, 7, n. 3, pp. 861-924, 1994. [44,50]

[59] Hall, T., "Weak universality in two-dimensional transitions to chaos," Physical Review
Letters, 71, n. 1, pp. 58-61, 1993. [51]

[60] Hall, T., "Fat one-dimensional representatives of pseudo-Anosov isotopy classes with minimal
periodic orbit structure," Nonlinearity, 7, n. 2, pp. 367-84, 1994. [44,50]

[61] Hamming, R. W., Numerical Methods for Scientists and Engineers, McGraw-Hill, New York,
1973. [75]

[62] Hansen, K. T., Symbolic dynamics in chaotic systems, PhD Thesis, University of Oslo, 1993.
[37,44,47,52]

[63] Hindmarsh, A. C., "ODEPACK, a systematized collection of ODE solvers," in Stepleman,
R. S., et al., eds., Scientific Computing, (IMACS Transactions on Scientific Computation, v.
1), North-Holland, Amsterdam, 1983, pp. 55-64. [119, 124,162,173]

186

Chapter 14. References

[64] Hindmarsh, A. C., GEARB-Solution of ordinary differential equations having banded
Jacobian, UCID-30059 rev. 2, Lawrence Livermore Laboratory, Livermore, CA, June 1977.
[108]

[65] Hopf, E., "The partial differential equation Ut +uu, = tuXr," Communications on Pure and
Applied Mathematics, 3, n. 3, 201-230, 1950. [140]

[66] Johnson, J. M. and Bajaj, A. K., "Amplitude modulated and chaotic dynamics in resonant
motion of strings," Journal of Sound and Vibration, 128, n. 1, pp. 87-107, 1989. [36]

[67] Jolliffe, I. T., Principal Component Analysis, Springer-Verlag, New York, 1986. [82]
[68] Kantorovich, L. V. and Krylov, V. I., Approximate Methods of Higher Analysis, Interscience

Publishers, Inc., New York, 1964. [73, 74]
[69] Kantz, H., Schreiber, T., Hoffmann, I., "Nonlinear noise reduction: A case study on

experimental data," Physical Review E, 48, n. 2, pp. 1529-38, 1993. [39]
[70] Karhunen, K., "Zur spektraltheorie stochastischer prozesse," Annales Academiae Scien-

tiarum Fennicae, Series A, 1, p. 34, 1946. [78]

[71] Kernigan, B. W., and Pike, R., The UNIX Programming Environment, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1984. [182]

[72] Kernigan, B. W., and Plauger, P. J., The Elements of Programming Style, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1974. [176]

[73] Kernighan, B. W., "Little languages," talk at Harvard University, November 3, 1994,
4:15 P.M. [12]

[74] Kirchhoff, G. R., Vorlesungen iiber Mathematische Physik, B. G. Teubner, Leipzig, 1883.
[36]

[75] Knuth, D. E., "Literate programming," The Computer Journal, 27, pp. 97-111, 1984. [176]
[76] Tichy, W. F., "RCS-a system for version control," Software-Practice & Experience, 15,

7, pp. 636-654, July 1985. [183]
[77] Knuth, D. E., "The WEB system of structured documentation," Stanford Computer Science

Report 980, Stanford, CA, September 1983. [176]
[78] Kontogeorgis, G. M., Fredenslud, A., and Tassios, D. P., "Equations of state and activity

coefficient models for vapor-liquid equilibria of polymer solutions," AIChE Journal, 40, n.
10. 1711-27, 1994. [12]

[79] Kosniowski, C., A First Course in Algebraic Topology, Cambridge University Press.
Cambridge, 1980. [19]

[80] Kostelich, E. J. and Schreiber, T., "Noise reduction in chaotic time-series data: A survey of
common methods." Physical Review E, 48, n. 3, pp. 1752-63, 1993. [39]

[81] Lefschetz, S., Topology, American Mathematical Society, New York. pp. 274-278 and 374-
377, 1930. [23]

[82] Loeve, M., "Fonctions aleatoire de second ordre," Comptes Rendus des Seances de l'Academie
des Sciences, 220, 1945. [78]

[83] Lorenz, E., "Deterministic nonperiodic flow," Journal of the Atmospheric Sciences, 20, pp.
130-141, 1963. [28]

[84] Madday, Y. and Ravel, J. C., "Adaptivite par ondelettes: conditions aux limites et
dimensions superieures," Universit Pierre et Marie Curie, Laboratoire d'Analyse Numerique
Technical Report, January 1992. [69]

[85] Mallat, S., and Zhang, Z., "Matching pursuit with time-frequency dictionaries," Courant
Institute technical report 619, New York University, 1992. [77]

[86] McRae, G. J., Mathematical modeling of photochemical air pollution, §8.6, photolytic rate
constants, PhD thesis, California Institute of Technology, Pasadena, CA, 1981. [130]

[87] McRae, G. J., Consulting Report to the California Air Resources Board (CALGRID). [104,
108]

[88] Melvin P. and Tufillaro, N. B., "Templates and framed braids," Physical Review A, 44, n.
6, pp. 3419-22, 1991. [44]

187

Chapter 14. References

[89] Mielke, A., Holmes, P.. and O'Reilly, O., "Cascades of homoclinic orbits to, and chaos near,
a Hamiltonian saddle-center," Journal of Dynamics and Differential Equations, 4, n. 1, pp.
95-126, 1992. [37]

[90] Miles, J., "Resonant, nonplanar motion of a stretched string," Journal of the Acoustical
Society of America, 75, n. 5, pp. 1505-10, 1984. [36, 37]

[91] Milnor. J. W., Topology from the Differentiable Viewpoint. University Press of Virginia,
Charlottesville, 1965. [23]

[92] Milnor, J. and Thurston, W. in Dynamical Systems, Alexander, J. C., ed., Lecture Notes in
Mathematics v. 1342, Springer-Verlag, Berlin, 1988, p. 465. [47]

[93] Mindlin, G. B. and Gilmore, R., Topological analysis and synthesis of chaotic time series,"
Physica D, 58. n. 3. pp. 229-42, 1992. [44]

[94] Mindlin, G. B.. Hou, X.-J., Solari, H. G., "Classification of strange attractors by integers,
Physical Review Letters, 64, n. 20, pp. 2350-3, 1990. [441

[95] Mindlin, G. B.. L6pez-Ruiz. R., Solari, H. G., and Gilmore. R., "Horseshoe implications."
Physical Review E. 48. n. 6, pp. 4297-4304. 1993. [51]

[96] Mindlin, G. B., Solari. H. G., Natiello, M. A.. Gilmore, R., and Hou, X.-J., "Topological
analysis of chaotic time series data from the Belousov-Zhabotinskii reaction." Journal of
Nonlinear Science. 1. n. 2, pp. 147-74, 1991. [44]

[97] Molteno. T.. Chaos and crisis in strings, PhD Thesis. Otago University, 1994. [37]

[98] Molteno. T. C. A.. 'Fast O(N) box-counting algorithm for estimating dimensions," Physical
Review E. 48. n. 5. pp. 3263-6, 1993. [39]

[99] Molteno. T. C. A. and Tufillaro. N. B.. "Torus doubling and chaotic string vibrations:
experimental results." Journal of Sound and Vibration. 137. n. 2, pp. 327-30, 1990. [37. 38.
39]

[100] .MNullish. H.. Structured COBOL. Harper & Row. New York. 1983. [54]

[101] Narasimha. R.. "Non-linear vibration of an elastic string." Journal of Sound and Vibration.
8. n. 1. pp. 134-146. 1968. [36]

[102] Nemhauser. George L. and Wolsey. Laurence A.. Integer and Combinatorial Optimization.
John Wiley & Sons. New York, 1988. [58]

[103] Neuman. C. P.. "Recent development in discrete weighted residual methods.'" in Oden. J. T..
ed.. Computational Methods in Nonlinear Mechanics. The Texas Institute for Computational
Mechanics. Austin. pp. 361-70, 1974. [73]

[104] O'Neill. B.. Elementary Differential Geometry. Academic Press. New York. pp. 377--380.
1966. [21]

[105] O'Reilly. O.. "Global bifurcations in the forced vibration of a damped string," International
Journal of Non-Linear Mechanics. 28. n. 3. pp. 337-51. 1993. [37]

[106] O'Reilly. O., The chaotic vibratzon of a string. PhD Thesis. Cornell University. 1990. [37]

[107] O'Reilly. 0. and Holmes, P. J., "Non-linear, non-planar and non-periodic vibrations of a
string," Journal of Sound and Vibration, 153, n. 3 pp. 413-35., 1992. [37, 38]

[108] Palis, Jr.. J. and de Melo, Welington. Geometric Theory of Dynamical Systems. Springer-
Verlag, New York, 1982. [17]

[109] Pan, F. and Acrivos, A., Journal of Fluid Mechanics, 28, n. 4, pp. 643-655, 1967. [18.19, 26]

[110] Papoff. F., Fioretti, F., Arimondo. E., Mindlin. G. B., Solari. H., and R. Gilmore. "Structure
of chaos in the laser with saturable absorber," Physical Review Letters, 68. n. 8, pp. 1128-31.
1992. [44]

[111] Parker, T. S. and Chua, L. ., Practical Numerical Algorithms for Chaotic Systems.
Springer-Verlag, New York, 1989. [41]

[1121 Pecora. L. M. and Carroll. T. L., "Driving systems with chaotic signals," Physical Review
A, 44, n. 4. pp. 2374-83, 1991. [40, 52]

[1131 Pecora, L. M. and Carroll, T. L., "Synchronization in chaotic systems," Physical Review
Letters, 64. n. 8, pp. 821-4, 1990. [40, 52]

188

Chapter 14. References

[114] Politi, A. in From Statistical Physics to Statistical Inference and Back, Grassberger, P. and
Nadal, J.-P., eds., Kluwer Academic, Boston, 1994. [37]

[115] Preisendorfer, R. W., Principal Component Analysis in Meteorology and Oceanography,
Elsevier, 1988. [83]

[116] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical Recipes
in C, Cambridge University Press, New York, 1988. [172]

[117] Reed, M. and Simon, B., Functional Analysis, Academic Press, Inc., Boston, 1980. [77]

[118] Rissanen, J. in From Statistical Physics to Statistical Inference and Back, Grassberger, P.
and Nadal, J.-P., eds., Kluwer Academic, Boston, 1994. [37,41]

[119] Roy, B., "An algorithm for a general constrained set covering problem," in Read, Ronald
C., ed., Graph Theory and Computing, Academic Press, New York, 1972, pp. 267-283. [58]

[120] Schetz, J. A., "On the aproximate solution of viscous-flow problems," Journal of Applied
Mechanics, 30E, n. 2, 263-8, 1963. [72]

[121] Schmidt, S., and Ortoleva. P.. "Electrical field effects on propagating BZ waves: predictions
of an Oregonator and new pulse supporting models," Journal of Chemical Physics, 74, pp.
4488-4500, 1981. [281

[122] Schreiber, T., "Extremely simple nonlinear noise-reduction method," Physical Review E. 47,
n. 4, pp. 2401-4, 1993. [39]

[123] Schreiber, T.. "Determination of the noise level of chaotic time series," Physical Review E,
48, n. 1. pp. 13-6, 1993. [39]

[124] Seinfeld, John H., Atmospheric chemistry and physics of air pollution, John Wiley & Sons,
Inc., New York, 1986. [123]

[125] Selten, F. M., "Toward an optimal description of atmospheric flow," Journal of the
Atmospheric Sciences, 50, 861--877 (1993). [83]

[126] Sirovich, L.. and Everson, R.. "Management and analysis of large scientific datasets," The
International Journal of Supercomputer Applications. 6, n. 1. 50-68, 1992. [83]

[127] Stoker. J. J., Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience
Publishers, New York, pp. 36-48, 1950. [23]

[128] Strikwerda, John C., Finite Difference Schemes and Partial Differential Equations,
Wadsworth & Brooks/Cole Advanced Books and Software, Pacific Grove, CA, 1989.
[75,102,103,105,142]

[129] Temperton, C., "On the FAICR(I) algorithm for the discrete Poisson equation," Journal of
Computational Physics. 34, n. 3. pp. 314-329, 1980. [149]

[130] Tufillaro, N. B., "Nonlinear and chaotic string vibrations," American Journal of Physics,
57, n. 5, pp. 408-14, 1989. [37]

[131] Tufillaro, N. B., Chaotic themes from strings, PhD Thesis, Bryn Mawr College, 1990. [37]
[132] Tufillaro, N. B. in From Statistical Physics to Statistical Inference and Back, Grassberger,

P. and Nadal, J.-P., eds., Kluwer Academic, Boston, 1994. [37]
[133] Tufillaro, N. B., "Braid analysis of a bouncing ball," Physical Review E, 50, n. 6, pp. 4509-22,

1994. [47,50]

[134] Tufillaro, N. B., "Braid analysis of (low-dimensional) chaos," preprint, 1993. [37, 44]
[135] Tufillaro, N. B., Wyckoff, P., Brown, R., Schreiber, T., and Molteno, T., "Topological time

series analysis of a string experiment and its synchronized model," Physical Review E, 51,
n. 1, pp. 164-174, 1995. [36]

[136] Tufillaro, N., Abbott, T., and Reilly, J., An Experimental Approach to Nonlinear Dynamics
and Chaos, Addison-Wesley, Redwood City, CA, 1992. [37,44]

[137] Tyson, J., The Belousov-Zhabotinskii Reaction, Springer-Verlag, New York, 1976. [28]

[138] Varga, R. S., Matrix Iterative Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
1962. [149]

[139] Venimadhavan, G., Buzad, G., and Malone, M. F., "Effects of kinetics on residue curve maps
for reactive distillation," AIChE Journal, 40, n. 11, 1814-24, 1994. [12]

189

Chapter 14. References

[1401 Weiss. R. and Florsheim. B., Physics of Fluids, 8. pp. 1631-1635, 1965. 1181
[141] Wheat. S. R.. Devine. K. D., and Maccabe. A. B.. "Experience with automatic. dynamic

load balancing and adaptive finite element computation." in Proceedings of the 27th Hawaii
International Conference on System Sciences, 1994. [68]

[142] Wheat. S. R.. Devine, K. D.. and Maccabe, A., B., "Experience with automatic. dynamic load
balancing and adaptive finite element computation." Sandia National Laboratories Technical
Report SAND93-2172A. in Proceedings of the 27th Hawaii International Conference on
System Sciences. January 1994. [61]

[1431 Wiggins. S.. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-
Verlag. New York. 1990. [30]

[1441 Xu. X.. and Antal Jr.. M. J.. Kinetics and mechanism of isobutene formation from T-
butanol in hot liquid water." AIChE Journal. 40. n. 9. 1524-.34. 1994. [12]

[145] Zeng. X.. Eykholt, R., and Pielke, R. A., "Estimating the Lyapunov-exponent spectrum
from short time series of low precision." Physical Review Letters 66. n. 25. pp. 3229-32.
1991. [42]

[146] Zhabotinsk. A.. Zaikin. A.. Korzukhin. M.. and Kreitser. G.. "Mathematical model of
autovibrational chemical reaction (oxidation of bromomalonic acid with bromate. catalyzed
with cerium ions).' Kinetics and Catalysis. 12. pp. 584-590. 1971. [28]

190

THESI

FIXED FIELD: 1ll.

Ind

* COPIES: Archives

Llndgren

TITLE VARIES *I

S PROCESSING SLIP

name

ex biblio

) Aero Dewey Eng Hum

Music Rotch (Scin)

]

INAME VARIES NAME VARIES: 'IZ i 2d 7f

IMPRINT

ICOLLATION:

(COPYRIGHT)

R P,
o r

1ADD DEGREE: * DEPT.:

SUPERVISORS:

NOTES:

cat'r: date:

KDEPT: hem r n Ipaqr$L

*YEAR: 9 qq *_ _ "DEGREE: P P

b-NAME:) 8oFF : Pi

- - -

__

-

- -~~~

--

-

-

