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Abstract
The dielectric spectrum of pressboard is a function of its moisture content and temper-
ature. The real component of the complex permittivity gives the dielectric constant
while the imaginary component characterizes the power dissipation in the material.
In oil-impregnated pressboard of medium and low humidity the dielectric spectrum's
shape and amplitude do not change with variations in temperature and moisture con-
tent, but only shift in frequency. Thus it is possible to create a universal curve, with
appropriate temperature correction factors, which can be used to extract informa-
tion about the moisture dynamics of solid transformer insulation from dielectrometry
measurements.

Such measurements may be taken with the material placed in a parallel-plate
lossy capacitor structure whose complex impedance is measured. In this way one
obtains values for the complex permittivity of the material that are averaged across
its thickness. An alternative technique, known as imposed w-k dielectrometry, uses
a set of interdigitated electrodes on one surface of the material. The electric field
has only a limited depth of penetration, which is determined by the spacing of the
electrodes. Therefore, if measurements are taken at more than one spatial wavelength,
one obtains information about the one-dimensional spatial profile of the complex
permittivity.

Measurements using the parallel-plate methodology establish a mapping of the di-
electric spectrum of EHV-Weidmann HIVAL pressboard impregnated with Shell Di-
ala A transformer oil, as a function of temperature and water content. This mapping
is then used to determine spatial moisture profiles in pressboard in other experiments
which makL use of a three-wavelength interdigitated sensor.

Thesis Supervisor: Markus Zahn
Title: Professor of Electrical Engineering and Computer Science



Acknowledgements

The research presented in this thesis was carried out at the Laboratory of Electro-

magnetic and Electronic Systems at the Massachusetts Institute of Technology. It

was supported by the Electric Power Research Institute (RP-1289-5) under the man-

agement of Mr. S. R. Lindgren. The thesis was supervised by Professor Markus Zahn

at the Massachusetts Institute of Technology.

I would like to thank Prof. Zahn for everything that I have learned from him over

the past two years. In addition to giving me direct guidance with my work, without

which this thesis would not have been possible, Prof. Zahn taught me to strive for

perfection in everything I do. I would also like to thank him for all the advice and

support I have received from him, and for always finding time to talk to me.

Dr. Philip von Guggenberg has also helped me immeasurably with my research.

I have had the opportunity to take advantage of his vast knowledge in the field of

dielectrometry and to be able to discuss with him any problems with my research.

Many times he has volunteered to review my work and I always found his input of

great value. Much of the research presented in this thesis is based on previous work

done at MIT by Dr. M. Zaretsky and Dr. P. A. von Guggenberg. I was glad that I

could discuss some of my work directly with both.

Up to this day, whenever I have a question about any aspect of my work -

be it theoretical, mathematical, computer-related, or mechanical - I go to my lab

partner Andrew Washabaugh, who always manages to find the answer or direct me

to a resource. I thank him for his willingness to take time to discuss problems with

me. On several occasions he has dedicated hours of his time to work on theoretical

problems with which I needed help.

I would also like to thank the entire LEES staff, and in particular Mr. Paul

Warren, Ms. Kathy McCue, and Mr. Wayne Ryan, for their support with technical,

administrative, and personal issues.

Finally, I would like to thank my friends for helping me make it through a difficult

year and for being patient with me during these last several very busy months.



Contents

1 Introduction

1.1 Motivation. ........................

1.1.1 High Power Transformers .

1.1.2 Other Applications . . . . . . . . . . . . . . .

1.2 Dielectric Properties of Materials ............

1.2.1 Dielectric Spectra .................

1.2.2 Kramers-Kronig Relations ............

1.3 Moisture Dynamic Processes in Pressboard/Oil Systems

1.3.1 Diffusion. .....................

1.3.2 Equilibrium ....................

1.4 Imposed w-k Dielectrometry . . . . . . . . . . . . . .

1.5 Scope of Thesis . . . . . . . . . . . . . . . . . . . . .

2 Features of the Dielectric Spectrum

2.1 Parallel Plate Sensor ........

2.1.1 Circuit Model . . . . . . .

2.1.2 Testing . ...........

2.1.3 Measurement Sensitivities to

2.2 Experimental Procedures .

2.2.1 Impregnation ........

2.2.2 Moisture Measurements . .

2.2.3 Temperature Transients and 

2.2.4 Conditioning ........

of Pressboard

the Load Impedance ..

l...................

Control .. .... ....... ..
elleeeeleelleeeee·l

4

14

14

14

15

16

18

18

19

20

21

21

24

26

26

28

32

32

37

38

38

39

41

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .



2.3 Results. ..................................

2.3.1 Features of a Representative Dielectric Spectrum .......

2.3.2 Frequency Shift Algorithm .

2.3.3 Universal Spectrum ............. .

2.3.4 Correlation between the Frequency Shift and Temperature and

M oisture . . . . . . . . . . . . . . . . . . . . . . . .

2.4 Algorithm for Using the Universal Spectrum ..............

3 The

3.1

3.2

3.3

3.4

Flexible Three-Wavelength Interdigital

Structure.

Manufacturing .

Mathematical Model .............

Testing .

3.4.1 Testing in Air . . . . . . . . .

3.4.2 Testing in Transformer Oil ......

Sensor

. . . .

. . . .

. . . . .

. . . . .

. . . .

. . . . .

4 Parameter Estimation Algorithms

4.1 Dielectric Profiles and Degrees of Freedom ...............

4.1.1 Information Contained in Measurements with the Same Wave-

length at Different Frequencies. .................

4.1.2 Complex Numbers and Degrees of Freedom.

4.1.3 Analytic Functions of Complex Variables . .

4.2 One-Dimensional Parameter Estimation ......

4.3 Marching Approach . . . . . . . . . . . . . . . .

4.4 Multi-Dimensional Parameter Estimation ......

4.4.1 A Root-Finding Algorithm ..........

4.4.2 An Optimization Algorithm .........

4.5 Assumed Profile Function Estimation ........

4.5.1 Diffusion Equation ..............

4.5.2 Profile Functions ...............

4.5.3 Parameter Estimation . . . . . . . . . . . .

41

43

46

48

54

58

60

60

61

67

76

76

78

82

82

83

84

87

88

89

92

92

97

99

100

103

... . . . . . . . 107

5

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

.. . . . . . . .

.. . . . . . . .



5 Profile Measurements

5.1 Experimental Setup .........

5.2 Oil-Free Pressboard under Vacuum

5.3 Polymers. ..............

5.4 Oil-Impregnated Paper .......

6 Conclusions

6.1 Universal Spectrum . . . . .

6.2 Parameter Estimation . . . . . .

6.3 Moisture Profiles . . . . . .

A Corollaries of the Kramers-Kranig Relations

A.1 Parallel Shifts . . . . . . . . . . . . . . . . . .

A.2 Same Slopes ...............................

B Water Vaporizer Moisture Measurements

B.1 Effect of Sample Thickness on Moisture Measurement ........

B.2 Optimal Temperature. .........................

C Procedures for Oil-Impregnation of Pressboard and Paper

D Controller

E Interface Boxes

E.1 Parallel-Plate Sensor Interface Box ..................

E.2 Three-Wavelength Sensor Interface Box.

F Mathematical Examples

G Program Listings for Data Processing Software

G.1 Description ...............................

G.1.1 Data Acquisition ........................

G.1.2 Low-Level Data Processing . . . . . . . . . .

G.1.3 High-Level Data Processing . . . . . . . . . . . . .

6

109

109

109

112

116

126

126

127

129

130

133

134

137

139

139

143

147

151

151

152

155

158

158

158

160

161

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

..........................

.............

.............

.............

.............

. . . . . . . . . . . . .



G.2

G.3

G.4

G.5

G.6

G.1.4 Data Interpretation

G.1.5 Plotting . . . . . .

Data Acquisition ......

Low-Level Data Processing .

High-Level Data Processing

Data Interpretation .....

Plotting.

H Program Listings for the Parameter Estimation Algorithms

H.1 Description . . . . . . . . . . . . . . . .

H.2 Makefile ...............................

H.3 Header Files.

H.4 Main Parameter Estimation Routines ...............

H.5 Subsidiary Parameter Estimation Routines ............

H.6 Tools.................................
H.7 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . .

H.8 Sample Files .............................

H.8.1 Input to Estimation Routines ...............

H.8.2 Sensor Template Files ...................

7

162

163

165

171

185

195

221

233

233

236

238

242

288

304

311

315

315

318

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

......................
. .. . . . . . . I . . . . . . . . . .

. . .. . . . . . . . . . . . . . . . .

. . .

. . .

. . .

. . .



List of Figures

1-1 Terminal current of an electrode in contact with a conducting dielectric

medium .................................. 16

1-2 An illustration of the manner in which the real part of the complex

permittivity is made up of contributions from all loss processes [1, pp. 50] 20

1-3 Equilibrium relationship between the moisture content of transformer

oil and pressboard for temperatures ranging from 20°C to 90°C . . . 22

1-4 Imposed w-k dielectrometry ....................... 23

2-1 Structure of the parallel-plate sensor .................. 27

2-2 Equivalent circuit of the test structure ................. 28

2-3 Relative dielectric constant of Teflon measured with the parallel-plate

sensor ................................... 33

2-4 Complex permittivity of transformer oil measured with the parallel-

plate sensor ................................ 34

2-5 Sensitivity of the inversion formulas to noise .............. 36

2-6 Temperature transient .......................... 40

2-7 Pressboard conditioning transient ................... . 42

2-8 Raw gain-phase data for a frequency scan of a representative press-

board sample ............................... 44

2-9 Dielectric spectrum of a representative pressboard sample ....... 45

2-10 Dielectric spectra of a pressboard sample (MA) at five temperatures . 49

2-11 Universal curve for one sample (MA) at five temperatures ...... 50

2-12 Dielectric spectra of a high water content pressboard sample (NB) . . 51

8



2-13 Temperature-shifted families of curves for the seven samples, each of

the families being a universal spectrum for that sample ........ 52

2-14 Master Universal Spectrum, containing data from 35 frequency scans,

shifted with moisture and temperature ................. 53

2-15 Logarithmic frequency shift as a function of temperature ....... 56

2-16 Logarithmic frequency shift as a function of temperature: Arrhenius plot 57

2-17 Logarithmic frequency shift as a function of moisture ......... 57

3-1 Structure of the three-wavelength interdigitated sensor [2] ....... 61

3-2 Mask used for the copper back plane deposition ............. 62

3-3 Response of a three-wavelength sensor in air before chemical cleaning

and before Parylene coating ....................... 65

3-4 Response of a three-wavelength sensor in air before Parylene coating

and after recommended chemical cleaning procedure and heating . . . 66

3-5 Interdigitated electrode structure with a number of homogeneous layers

above it .................................. 67

3-6 Lumped circuit model for the interdigitated sensor structure ..... 69

3-7 A representative layer of homogeneous material ............ 71

3-8 Piecewise-smooth collocation-point approximation to the potential be-

tween the electrodes of an interdigitated structure ........... 74

3-9 A frequency scan of the Parylene coated three-wavelength sensor in air 77

3-10 Raw gain-phase data of the three-wavelength sensor in Shell Diala A

transformer oil .............................. 79

3-11 Dielectric spectrum of Shell Diala A transformer oil taken with the

three-wavelength sensor ................... ...... 80

4-1 Stair-step approximation of a dielectric profile with the marching ap-

proach ................................... 90

4-2 Solutions to the diffusion equation at different values of normalized timel04

4-3 Curve fitting of equation 4.44 to the data representing the frequency

shift as a function of moisture ...................... 105

9



5-1 Experimental setup for profile measurements taken with the 3-A sensor 110

5-2 Dielectric spectra of oil-free pressboard under vacuum ......... 111

5-3 Gain-phase data taken with the three-wavelength sensor on polymers 113

5-4 Permittivity of polymer structure as calculated from every wavelength

of the three-wavelength sensor . . . . . . . . . . . . . . . . . . . 114

5-5 Dielectric spectrum of oil-impregnated 0.25 mm Crocker paper at room

temperature . . . . . . . . . . . . . . . . . . . . . . . . ...... 117

5-6 Raw gain-phase data taken with the three-wavelength sensor on sixteen-

ply Crocker paper . . . . . . . . . . . . . . . . . .......... 119

5-7 Dielectric spectra taken with the three-wavelength sensor on Crocker

paper .................................... 120

5-8 Dielectric spectra of oil-impregnated Crocker paper drying under vac-

uum, taken with the 5.0 mm wavelength of the three-wavelength sensor 122

5-9 Dielectric spectra of oil-impregnated Crocker paper drying under vac-

uum, taken with the 2.5 mm wavelength of the three-wavelength sensor 123

5-10 Dielectric spectra of oil-impregnated Crocker paper drying under vac-

uum, taken with the 1.0 mm wavelength of the three-wavelength sensor 124

5-11 Permittivity and conductivity of Crocker paper adjacent to the three-

wavelength sensor, calculated by the multidimensional algorithm at

0.01 Hz, as a function of time ...................... 125

A-1 A Hilbert transform pair satisfying the Kramers-Kr6nig relations . . . 135

B-1 Reliability of water vaporizer measurements as a function of oven tem-

perature .................................. 138

B-2 Reliability of water vaporizer measurements as a function of sample

thickness .................................. 140

B-3 Reliability of water vaporizer measurements as a function of oven tem-

perature .................................. 142

C-1 Oil-Impregnation Facility ................... i...... 144

10



E-1 Interface box circuit diagram ...................... 152

E-2 Results from measurements of the load impedance of the parallel-plate

sensor's interface box ........................... 153

H-1 Interdependence of parameter estimation routines . . . . . . . . . . . 234

11



List of Tables

1.1 Diffusion coefficients of water in transformer oil and pressboard [2] . . 21

2.1 Impregnation process parameters for the pressboard samples used in

the universal spectrum .......................... 38

2.2 Moisture Measurements for the pressboard samples used in the univer-

sal spectrum ................................ 39

2.3 Relative logarithmic frequency shifts for data at different temperatures

and moisture contents .......................... 54

2.4 Logarithmic frequency shift due to temperature ............ 55

2.5 Logarithmic frequency shift due to moisture content .......... 55

3.1 Values of parameters describing the three-wavelength sensor [2] ... . 61

4.1 Computation time of program est.c as a function of initial guess and

solution using multidimensional estimation .............. 95

4.2 Effect of noise on the results from the multidimensional parameter

estimation ................................. 96

4.3 Computation time versus frequency of Jacobian updates for est.c . . 96

4.4 Computation time of program ests.c as a function of initial guess and

solution using the simplex method ................... . 99

5.1 Layer structure for polymer experiment ................. 112

5.2 Poor results of applying the root-finding multidimensional parameter

estimation algorithm to polymer data at 1 kHz ............. 115

12



5.3 Results from applying the root-finding multidimensional algorithm to

Crocker paper data at 0.01 Hz ...................... 118

5.4 Results of applying the multidimensional parameter estimation algo-

rithm to data at 0.01 Hz taken after the application of vacuum to

oil-impregnated Crocker Paper ...................... 121

D.1 Summary of Controller Commands ................... 149

E.1 Interface Box Load Impedances ................... .. 154

G.1 Summary of data processing software .................. 159

H.1 Summary of parameter estimation routines ............... 235

13



Chapter 1

Introduction

1.1 Motivation

In this thesis we discuss dielectrometry measurements of insulating materials, with

an emphasis on solid and liquid transformer insulation, and their application to the

measurement of the moisture content of these materials.

Monitoring the condition of the insulation is of particular importance to high-

power transformers, where the insulating materials are subjected to high levels of

electrical and thermal stress.

1.1.1 High Power Transformers

High-power transformers are an essential element in the distribution of electrical en-

ergy. The demand for energy is perpetually increasing, placing ever tougher require-

ments on the performance characteristics of these transformers. The transmission

of greater quantities of electrical energy affects the operation of the transformers by

requiring efficient transmission of more energy at higher voltages, which in turn sub-

jects transformer insulation to higher levels of electrical stress. In addition, the heat

dissipation due to losses in the transformer cores and windings requires higher coolant

speeds, which in turn increases the level of static electrification.

In the last decade it has become desirable to be able to monitor closely the condi-
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tion of high-power transformers, because they have been pushed to their limits, which

is reflected in the increase of transformer failures. The need for greater efficiency has

reduced the margin of safety in the operation of the transformers, making it very

important to identify and predict critical conditions that may lead to failures.

The presence of moisture in the solid and liquid transformer insulation, i.e. press-

boa d and oil, is a major factor that affects the operation of the transformers. Al-

though moisture does not seem to greatly affect the conductivity of the oil, it reduces

its dielectric strength. Moisture also affects the conductivity of the pressboard, which

in turn increases the dissipated power and the rate of static charge relaxation, which

is a crucial factor in static electrification phenomena.

Load transients which transformers undergo, especially upon power-up, cause

rapid changes in the insulation's temperature. Temperature affects the solubility

equilibrium of moisture between the solid and liquid insulation and also directly

influences the insulation's conductivity. Moisture in the oil may under decreasing

temperature transients result in free water that can lead to electrical breakdown. A

mass transfer process of water results from the equilibrium imbalance, in which at

higher temperatures moisture leaves the pressboard to enter the oil. The oil estab-

lishes moisture equilibrium with an interfacial zone at the surface of the pressboard.

The steady state is reached when moisture from deep inside the pressboard diffuses

to the surface to establish a uniform moisture distribution. The transient interfacial

dry zones are highly insulating, and as a consequence significant surface charge can

accumulate to cause surface spark discharges. Such critical conditions can lead to a

high level of static electrification and possibly catastrophic failure of the unit. It is

therefore important to be able to monitor the moisture dynamics in such systems, in

order to understand the failure mechanisms and to prevent critical conditions.

1.1.2 Other Applications

The dielectrometry methods developed specifically for pressboard have applications

in many other fields also: The dielectric properties of a material are greatly affected

by many of its other physical properties, such as temperature, pressure, mechanical

15



Figure 1-1: Terminal current of an electrode in contact with a conducting dielectric
medium

stress, etc. In polymers, the dielectric constant may be related to the degree of

polymerization. There are many applications in quality control, where deviations in

the dielectric properties of a material may correspond to flaws in its structure.

As materials age, their dielectric constant and conductivity may change too. In

general, whenever the condition of a dielectric material must be monitored, dielec-

trometry measurements provide a simple, non-destructive, real-time measurement,

which can be related to the property in question.

1.2 Dielectric Properties of Materials

There are two parameters of a medium that determine the quasi-static distribution

of electric fields: the dielectric permittivity and the conductivity . The former

determines the displacement current density from the electric field, while the latter

relates the conduction current density to the electric field. The permittivity governs

energy storage (reactive power) phenomena, while the conductivity determines the

power dissipation (active power).

Consider an electrode in contact with a medium as shown in Figure 1-1. Since

the total current density due to conduction and displacement is in the same direction

as the electric field, we will drop the vector signs in the following discussion. In the

16
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one-dimensional geometry of Figure 1-1, the current densities and the electric field

are perpendicular to the electrode. Let the electric field at the electrode surface be E.

We are interested in the total terminal current per unit electrode area J that flows

into the electrode. Integrated over the electrode area, this would yield the terminal

current:

i =j Jda (1.1)

The component of J due to conduction follows the ohmic constitutive law:

J,= aE (1.2)

The displacement current density arises from the buildup of surface charge as at the

electrode:

Jd_ d = (cE) (1.3)
dt dt

The total terminal current per unit electrode area is then:

d
J = J + Jd= aE + (E) (1.4)

If the system is under AC steady-state operation, every quantity F(t) may be

expressed as:

F(x,y, z,t) = {P((, y, z)e jwt} (1.5)

where w is the radian frequency of excitation. If e is constant with time, we may

rewrite equation 1.3 in terms of complex amplitudes as:

Jd = jweE (1.6)

For the total current density we may then write:

J = Jd + Jc = jeE + aE = jwE e+ . (1.7)

17



It is convenient to define the complex permittivity e of a medium as:

e = E- je" a-- (1.8)

which lets us rewrite equation 1.7 in a form similar to equation 1.6, thus combining

conduction phenomena with polarization phenomena:

J = jw*E (1.9)

We shall use this definition of the complex permittivity throughout this thesis.

1.2.1 Dielectric Spectra

The dielectric spectrum of a material is a representation of its complex permittivity,

f* = ' - j", as a function of frequency. The real component ' gives the dielectric

constant while the imaginary component d" determines the power dissipation (loss)

in the material.

Once it is known how the dielectric spectrum of oil-impregnated pressboard varies

with temperature and moisture, it is possible to measure the moisture content in a

sample by taking a frequency scan and comparing the results to the known calibration

mapping. This type of mapping is unique to every type of paper and may depend

on the amount of impurities in it. Such a mapping for pressboard is presented in

Chapter 2.

1.2.2 Kramers-Kronig Relations

The Kramers-Kr6nig relations link the real and imaginary components of the disper-

sive part of the complex permittivity, defined in equation 1.8. As a direct consequence

of causality, the following equations hold:

x 1 -~ PJ dx (1.10)
7r -00 X - W
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1 pf+0o X'(x) dx"(w) = p X()dz (1.11)
71 00-o X--W

where the real and imaginary parts of the dispersive part of the dielectric susceptibility

X* are defined as follows:

I = e= CoX'+ EC' (1.12)

I= -= OX"+ aO (1.13)

* = x' - ix (1.14)

Appendix A presents the derivation of these relations and some of their consequences.

In this section we discuss what the Kramers-Kr6nig relations can tell us about the

dielectric spectra of materials.

In an ohmic material, and a are independent of the frequency or amplitude of

the applied electric field and a plot of log('"/Eo) versus logw has a slope of -1. As

discussed in Appendix A, for such materials X* = 0.

In a dispersive material. when e" is plotted against frequency on a log-log scale,

it can be characterized by one or more loss peaks. The magnitude of the slope at

which these peaks are approached on either side is between 0 and 1 for most mate-

rials [1, pp. 163-200]. For every loss peak in the e" spectrum, there is an associated

elevation in the ' spectrum proportional to the area under the corresponding peak

in e" [1, pp. 47-52]. This is illustrated in Figure 1-2.

1.3 Moisture Dynamic Processes in

Pressboard/Oil Systems

Section 1.1.1 discussed the significance of the presence of moisture in solid and liquid

transformer insulation. During thermal transients complex dynamic processes oc-

cur as temperature gradients develop. Temperature transients disturb the moisture

19



Figure 1-2: An illustration of the manner in which the real part of the complex
permittivity is made up of contributions from all loss processes [1, pp. 50]

equilibrium of the system, causing the initiation of moisture mass transfer processes.

Transformer oil and pressboard are very dissimilar materials, in that the former is

hydrophobic and the latter is hydrophilic. Typical values for the water content of

pressboard are 0.5-5%, while in oil at room temperature the saturation moisture con-

tent is about 50 ppm (parts per million). As a consequence, almost all of the moisture

present in the system resides in the pressboard. As the temperature changes moisture

will move into or out of the pressboard via diffusion.

1.3.1 Diffusion

The rate of diffusion of moisture through the oil and the pressboard determines the

time rates of change of the moisture distribution, and thus how long it takes before

equilibrium is reached. Experiments have determined the diffusion constants of water

in these two media to have the values shown in Table 1.1 [2].

In order to appreciate the magnitude of these diffusion constants, we can calculate

that the diffusion times of water across A = 1 mm of pressboard, given by

A2
r= D (1.15)

20
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Diffusion coefficient Symboll Value at 15°C I Value at 700 C
in oil Do 1.3 x 10- l m2 /s 1.1 x 10- °10 m2/s
in pressboard Dp 6.7 x 10 -14 m 2 /s 6.0 x 10 -12 m 2 /s

Table 1.1: Diffusion coefficients of water in transformer oil and pressboard [2]

are half a year and two days at 15°C and 70°C respectively. What that means is that

equilibrium is generally never reached in an operating transformer, given how quickly

the oil temperature changes with the power load and the ambient air temperature.

Instead, oil equilibrates only with a thin layer of pressboard at its surface. This implies

that the surface of the pressboard may become extremely dry, which could lead to

static charge accumulation and partial discharges, ultimately leading to catastrophic

failure.

1.3.2 Equilibrium

The equilibrium of moisture between the oil and the pressboard is what determines the

direction of the mass transfer processes in the pressboard/oil system. This equilibrium

is extremely sensitive to temperature, as can be seen in Figure 1-3. This is how a

temperature transient drives the system our of equilibrium and initiates the mass

transfer processes. If, for example, the moisture concentration in the paper is 0.5%, at

20°G, the oil humidity in equilibrium with it is about 0.5 ppm. If the oil temperature

then changes to 800C, the new equilibrium value for the oil humidity becomes close

to 6.5 ppm, i.e. thirteen times higher, which would drive water out of the pressboard

surface and leave it very dry until moisture deep in the pressboard diffuses to the

surface on a time scale of order r in equation 1.15.

1.4 Imposed w-k Dielectrometry

The simplest way to measure the complex permittivity of a material is to place it

between parallel electrodes and then measure its complex impedance. This is the idea

behind the parallel-plate sensor described in Section 2.1. In that case the electric fields
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Norris Oil-Pressboard Equilibrium Curves

Figure 1-3: Equilibrium relationship between the moisture content of transformer oil
and pressboard for temperatures ranging from 200 C to 90°C

are uniform and independent of position in space. If instead the two electrodes are

placed side by side only on one surface of the material, the electric fields will decrease

away from the electrodes and the complex impedance between the two electrodes will

be most sensitive to the material adjacent to them. The disadvantage of this two-

dimensional method is that the problem of calculating the impedance as a function

of the material's complex permittivity is much more complicated.

The idea of placing both electrodes on the same surface is at the base of the

method of imposed w-k dielectrometry. The two electrodes are shaped as a multitude

of interdigitated fingers, as shown in Figure 1-4. The electric fields are uniform in the

z-direction and periodic in the y-direction with a spatial wavelength of A. Thus at

every surface of constant x the electric potential is periodic in y and can be expanded

as an infinite series of sinusoidal Fourier modes of spatial wavelengths A,, = A/n. This

is very convenient, because the solutions to Laplace's equation

V24 = (1.16)
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Figure 1-4: Imposed w-k dielectrometry

in Cartesian geometry are of the form

= o0 hyp(kx) trig(ky) (1.17)

where hyp(x) stands for any one of the hyperbolic exponential functions sinh(x),

cosh(x), eo, or e-m, and trig(x) stands for one of the trigonometric functions sin(x) or

cos(x;). For every Fourier mode n, the electric fields decrease with x as exp(-2irnx/A)

with the fundamental mode n = 1 penetrating farthest into the material.

By designing sensors with various spatial wavelengths A, it is possible to test the

dielectric properties of materials at different depths. Combining the results from

several such sensors makes it possible to determine the x-dependent spatial profiles

of the complex permittivity.

The three-wavelength sensor, described in detail in Chapter 3, uses the ideas

presented in this section. Section 3.3 in that chapter develops the mathematical
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model of the interdigitated sensors.

1.5 Scope of Thesis

In this thesis we present the several stages of research that lead to the ultimate goal

of studying the dynamics of mass transfer processes in pressboard/oil systems by

measuring moisture profiles.

First, we establish a relationship between the moisture content of pressboard and

its complex permittivity. In this way we can convert dielectric profiles into moisture

profiles. Chapter 2 presents the methods used in the establishment of this relationship.

The next step is to introduce spatially dependent dielectrometry measurements,

which provide information about the spatial variation of the complex permittivity.

Such sensors are the interdigital sensors. Chapter 3 presents the construction and

modeling of the interdigital sensors in general, with specific emphasis on the three-

wavelength sensor, which is a hybrid sensor capable of taking measurements at three

distinct spatial wavelengths simultaneously.

Chapter 4 discusses the various issues associated with the interpretation of data

from the interdigitated sensors. It also presents in detail several numerical algorithms

which are used for the interpretation of such data and the establishment of spatial

profiles.

Finally, in Chapter 5 we present the results from the application of the concepts

developed in the previous three chapters to actual measurements with the three-

wavelength sensor. Future work may include applying the entire methodology es-

tablished in this thesis to monitoring and studying of the mass transfer processes of

water in a simulated transformer environment.

In addition to presenting new concepts and results from experiments and theoret-

ical work in the subject of interdigital dielectrometry, this document is also meant

to serve as a reference for those who are interested in continuing the work presented

in it. Consequently, the experimental procedures and setups are presented with in

great detail. We are also including a complete listing of all programming code used
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in the implementation of the various numerical procedures and in the process of data

acquisition and interpretation. Familiarity with references [3] and [2] would prove to

be very helpful to the reader of this document.
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Chapter 2

Features of the Dielectric

Spectrum of Pressboard

2.1 Parallel Plate Sensor

The simplest way to measure the permittivity and the conductivity of a material

is to place it between a pair of parallel plates of known area and separation, thus

producing a lossy capacitor. This test cell can be modeled as a resistor in parallel

with a capacitor. The complex admittance of the structure can then be measured,

and from there its permittivity and conductivity can be calculated.

We have used this simple idea in the development of the parallel-plate sensor.

Its structure is shown in Figure 2-1. The figure shows more than just a pair of

conducting plates. The actual capacitive structure is comprised of the driven electrode

and the sensing electrode. Underneath the sensing electrode lies the guard electrode.

The guard electrode is driven by a buffer amplifier stage to be always at the same

potential as the sensing electrode. The buffer amplifier is situated in the interface

box, described in detail in Appendix E. The sensing electrode is also surrounded by a

ring electrode, which is connected to the guard electrode. In addition to shielding the

sensing electrode from external electric fields, the guard electrode serves to eliminate

all parallel parasitic capacitances and resistances, which the sensing electrode might

have with respect to the surrounding medium. Such parasitic impedances are in effect
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Parallel-Plate Sensor
Driven Electrode

Pressboard Sample

Teflon Spacer .

Sensing Electrode

Guard Electrodes 1

Ground Electrode

duminum

?ressboard

Teflon

Figure 2-1: Structure of the parallel-plate sensor

multiplied by the gain of the operational amplifier, making their effects negligible.

Although the guard electrode is driven by a much lower impedance source as com-

pared to the sensing electrode, namely the operational amplifier, it is still necessary

to shield it from outside fields, and that is the purpose of the ground electrode. A

triaxial cable is used to connect the sensor to the interface box. The center conductor

is connected to the sensing electrode, the middle - to the guard electrode, and the

outer - to ground. The ideas about shielding, as discussed above, are fully applica-

ble to the connecting triaxial cable too. The driving voltage is applied via a separate

coaxial cable.

Another advantage to having a guard ring around the sensing electrode is that the

electric field is highly uniform and there are essentially no fringing fields associated

with that electrode. The material sample is larger in area than the sensing electrode,

thus letting all field lines terminating on it pass through the material sample. Teflon

was chosen as the insulating material between the different electrodes because of its

excellent thermal properties in addition to being a very good insulator. The entire
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A

VOUT

RL

A

VI

Figure 2-2: Equivalent circuit of the test structure

'sandwich' structure is tightened together with insulating nylon bolts.

2.1.1 Circuit Model

As shown in Appendix E, the input admittance of the interface box, with which the

sensing electrode is loaded, is that of a known parallel RC-pair. Therefore the test

structure relevant to the measurement may be modeled as shown in Figure 2-2.

The following equations relate the test-cell lumped parameters RT and CT (see

Figure 2-2):

d
RT = A (2.1)EA

CT = d (2.2)

where d is the plate separation distance, A is the sensing electrode area, and l and e

are the material's conductivity and permittivity respectively. Equations 2.1 and 2.2

make it clear that the geometry of the test cell may be described by a single parameter,
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the capacitance of the structure in air (CAIR):

CAIR = d (2.3)
d

which is an easily measured parameter. In terms of equation 2.3, we have:

RT = Co (2.4)
OCAIR

CT = CAIR (2.5)
Co

For linear time-invariant (LTI) systems we take the standard form:

VIN = R{VINe °' (2.6)

VOUT = R{VOUTe"} (2.7)

with E'IN and VfOUT defined in Figure 2-2. The controller, described in Appendix D is

responsible for generating the driving voltage and measuring the output voltage. The

data that it produces is expressed in terms of a magnitude 20log(M) [dB] and phase

'np 180/7r [deg], which are related to the complex amplitudes defined in Figure 2-2 in

the following way:

IM I |U (2.8)
VIN

= L f j (2.9)
Y VIN /

Since the values of M and 'p are needed as defined above, as opposed to the way

they are presented by the controller (i.e. in dB and deg), they need to be transformed

to that form first. The symbol L used in equation 2.9 is defined as:

Lz = tan-1 2{z} (2.10)
RIZI)
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for a complex number z.

The next step in calculating a and e is to calculate RT and CT from measurements

of M and y, and the known values of RL and CL. We define the admittances of the

test and load branches as YT = 1/RT + sCT and YL = 1/RL + sCL respectively, where

s is the complex frequency. Then from the voltage divider relationship we obtain:

VOUT YT R + SCT CT s + RT (2.11)
VIN YT + YL R- + + (CT + CL) CT + CL +-Z

with the zero z and the pole p located at:

z= - 1 (2.12)
RTCT

- (1 1 1(C CL) (2.13)

Depending on the values of RT, CT, RL, and CL, either of z and p may be larger than

the other. In the limiting case of s -+ 0, the voltage ratio becomes real and equal to

RLI(RL + RT). In the other extreme, where s - oo, the voltage ratio is also real and

equal to CT/(CL + CL).

In our work we drove the system at the sinusoidal steady state, so that s = jw.

Then

Vo UT YTV Me _YT (2.14)
VIN Y + YL

YT Mej' M cos + jM sin p
YL 1-Mej'- 1-Mcos p-jMsin 

(M cos o + jM sin )(1 - M cos y + jM sin y) (215)
1 + M2 cos2 P - 2M cos + M 2 sin2 y

{ YT } M cos y(1 - M cos )- M 2 sin2 p M cos c-M 2

YL 1 + M2 - 2Mcosp 1 + M2 - 2Mcos (

4 {YT M sin (1 -M cos W) + M2 cos sin M sin (217)
YLJ1 + M2- 2M os 1+M2 -2Mcos 1M2M cs
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From the definitions of YT and YL we obtain

R + jWCT = YT + jWCL) (2.18)
RT YL /L

and from there

1 Mcosp-M (- Msin (wCL) (2.19)

RT 1 + M2- 2Mcos RL 1 + M22Mcos

WCT = Msin ( 1 + Mcos - M2 (wCL) (220)
1+M2 2Mcoso RL)+ + M2 - 2Mcos(CL) (

1 + M2 - 2M cos w RRT = M (2.21)
M cos - M 2 - CM sin p

CT cos p - M 2 + (1C)MsinC (
CT= CL (2.22)1 + M 2 -2Mcosio

where C -- RLCL. This concludes the final step of the process of calculating o and

e of a material from gain and phase data recorded by the controller.

If it is necessary to calculate RL and CL based on knowledge of RT and CT, which

occurs if we want to measure the load impedance of an interface box by replacing the

test cell with a known test impedance, then the formulas take up the following form:

RL = RT (2.23)
cos - M + sin p

C = os - M - (1/C) sin C (2.24)
M

which is particularly useful for diagnostics of interface boxes (see Appendix E). The

program testrc.c uses these formulas.

This inversion process is carried out by the program inv.c, listed in Section G.4,

which takes as an input the raw output file generated by the controller box, and

outputs values for e' = e and e" = a/w in files with extensions .el and .e2 respectively.

The program reads the setup file .invsetup, also listed in Section G.4, which contains

the default values for CAIR, CL, and RL. An alternative setup file may be given as
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an argument.

2.1.2 Testing

In order to test the performance of the parallel-plate sensor, we used it on known

materials, in particular Teflon and transformer oil. Figure 2-3 shows the gain and

phase of the measurement on Teflon. Only /e0 is shown, because a was too low

to measure. In the figure the average measured value of e, the relative dielectric

constant, is e/e0o = 2.1, which is exactly the value quoted in the literature [4]. There

is no variation with frequency over the range of 0.005-10,000 Hz, which is consistent

with the known non-dispersive properties of Teflon.

Shell Diala A transformer oil was used in the oil experiment. Figure 2-4 shows

the results. On a log-log scale, the plot of e" versus frequency is a straight line of

slope -1, which means that a is independent of the frequency. This is characteristic

of an ohmic material. For linear dielectric materials, ' should also be constant with

frequency. The observed rise of e' at the lower end of the frequency range can be

attributed to double layer formation at the aluminum-oil interface [2]. This plot

corresponds to o = 0.83 x 10-12 U/m and e/eo = 2.2, which are typical values for the

dielectric parameters of this kind of transformer oil.

The plot of e" is not shown for frequencies higher than 100.7 Hz. This is because at

that frequency range the response is fully dominated by the capacitive element, and

no meaningful information about the conductivity may be inferred. This insensitivity

of the response to the conductivity is discussed in more detail the next subsection.

2.1.3 Measurement Sensitivities to the Load Impedance

Looking at the circuit in Figure 2-2 it is immediately obvious that when w - oo

and w -, 0 the response will be fully dominated by the capacitors or the resistors

respectively. In those two extreme cases the complex amplitude ratio is purely real,

corresponding to a phase angle of zero. Looked at from another angle, if p = 0, then

one of the two equations 2.21 and 2.22 will yield incorrect results, depending on at
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Dielectric Constant of Teflon

Parallel-plate sensor

-2 -1 0 1
log(freq)

2 3 4

Figure 2-3:
sensor

Relative dielectric constant of Teflon measured with the parallel-plate
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Complex Permittivity of Transformer Oil

Parallel-Plate Sensor
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Figure 2-4: Complex permittivity of transformer oil measured with the parallel-plate
sensor
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which extreme the frequency is. There is a special case, namely RT/RL = CL/CT,

when V = 0 for every w. From a strictly mathematical point of view, this special case

is the only case when V is exactly zero. This is why these equations "assume" when

given = 0 that this special case holds.

In reality, of course, we are limited by the precision of the equipment, and therefore

it is impossible to measure resistances reliably above a certain frequency. It is similarly

impossible to obtain reliable estimates for the capacitances below a certain frequency.

Since we have some flexibility in choosing RL and CL, we should like to choose such

values that our measurements of RT and CT would be most reliable. This is the topic

of this section.

Equations 2.12 and 2.13 define the zero and the pole of the system, which roughly

delimit the interval of frequencies for which both RT and CT can be reliably estimated.

Somewhere between these two frequencies, t0 reaches an extremum, before returning

to zero again (see Figure 2-5). If the pole frequency is lower than the zero frequency,

p is always negative, and if the pole is at a higher frequency, than the zero to is always

positive. We would like to place the peak (or trough) of V close to the center of the

interval of frequencies in which we are most interested. This is how we came up with

the values of RL = 9.8 GfS and CL = 120 pF shown in Figure E-1.

So far the discussion of sensitivity has been qualitative. In order to quantify these

considerations, we go on to calculate the sensitivities of the estimated values for RT

and CT. We define the sensitivity of a quantity y with respect to a quantity as

follows:

SY = l'O-. (2.25)

The sensitivity describes what the relative change in y would be for a change in z.

If G and p are the magnitude and phase of the response expressed in dB and deg

respectively, related to M and p as follows,

G = 20 log M (2.26)

180
= -180 (2.27)

7r
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Inversion Process Sensitivities

RT = 160 Gi RL = 9.8 Gil CT = 35.2 pF CL=120 pF
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Figure 2-5: Sensitivity of the inversion formulas to noise. The bottom plot shows
the dependence of the logarithm of S and S with frequency. These sensitivities
show how much a and /i would change for a small change in p. These ratios are least
sensitive to noise for low values of S and SO
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and we make the additional definitions

RL Mcos cp - M - CMsin (2.28)
WR 1 + M2 - 2M cos (

CT M cos tp - M 2+ (1/C)M sin (2.29)
tCh - 1 + M2 - 2Mcos p

then we obtain the following equations for the sensitivities of a and P/ with respect

to G and p:

Oa dM (1 + M2)cos - 2M - C(1 - M2 )sinpV Mln 10S _ = (2.30)Sa AOM dG (1 + M'2 - 2M cosy) 2 20a

o8a dop M{(M 2 - 1)sinp - [(M 2 + 1)cos 0- 2M]} rS - .= (2.31)
SP i d8 p (1 + M2 - 2M cos p)2 180a .

S.3 _9O dM _ (1 + M 2)cos - 2M+(1/)(1 - M 2 )sinp Mln10 (2.32)
G-AM dG (1 + M 2- 2Mcosp)2 20/ (

8a:3 dp M{(M 2 - 1)sin + (1/C)[(M 2 + 1)cos p - 2M]} r (2.33)s = .' dp =
" ;I dp (1 + M2 - 2M cos) 2 180,8

Figure 2-5 shows gain G and phase p as a function of frequency. It also shows

log ISp I and log IS0I. One can see that a and /3, and consequently RT and CT, are

least sensitive to noise in the vicinity of the extremum of phase.

2.2 Experimental Procedures

The objective of this set of experiments is to study how the dielectric spectrum of oil-

impregnated pressboard changes with variations in temperature and moisture content.

The dielectric spectrum is to be measured with the parallel-plate sensor, described in

detail in Section 2.1.

We first prepared many samples of pressboard, each with a different content of

water. We then measured the moisture content of a sample, placed it in the sensor

structure, scanned its dielectric spectrum at five different temperatures and finally

measured its moisture content again. This section describes all of these stages.
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Vacuum Drying Oil Immersion
Sample Temperature Duration Vacuum Temperature Duration
Name [0C] [hours] [mTorr] [°C] [minutes]

NB 70 12 25 5 x 105

ND 70 24 70 60
MA 70 10 300 70 10
MB 70 2/3 400 60 10

MC 70 1/3 550 70 10
MD 70 2 200 70 10

MF 70 4 160 70 10
MG 70 15.5 100 70 10

Table 2.1: Impregnation process parameters for the pressboard samples used in the
universal spectrum

2.2.1 Impregnation

The equipment used to impregnate our samples of pressboard with transformer oil

is described in detail in Appendix C. Prior to impregnation we cut 50 mmx50 mm

pieces of 1 mm thick oil-free EHV-Weidmann HIVAL pressboard. Then we placed

them in the impregnation chamber, one at a time, for various lengths of time, in

order to obtain different moisture contents. Table 2.1 lists the parameters of the

oil-impregnation process that every sample underwent.

2.2.2 Moisture Measurements

The moisture of each sample was measured before and after it was placed in the

parallel-plate sensor with the help of the Mitsubishi VA-05 water vaporizer and the

Mitsubishi CA-05 moisture meter. The use of this equipment is described in Ap-

pendix B. That appendix also discusses the need to split the pressboard samples into

many thin layers before depositing in the vaporizer oven, a procedure strictly followed

in this set of measurements.

We define the moisture content of pressboard as the weight of water liberated

from the sample during vaporization (a quantity provided by the moisture meter)

divided by the total weight of the oil-impregnated sample before it is placed in the
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. NB ND MAI MB IMCI MD MF MG

Moisture 3.1 1 1.1 1 2.3 1.8 2.2 0.42 0.83 1 1.8 1

Table 2.2: Moisture Measurements for the pressboard samples used in the universal
spectrum

oven. Since this kind of moisture measurement was destructive, in that the sample

cannot be used after it has been in the vaporizer, in order to measure the moisture

content of a pressboard sample, we cut off small pieces of it.

If the two moisture measurements were not close to each other, the data of the

sample was not used. This happened for samples NA, NC, aPr ME. Table 2.2 lists

the average results of the moisture measurements.

2.2.3 Temperature Transients and Control

Measurements with every sample were taken at five temperatures: 300 C, 40°C, 50°C,

60°C, and 70°C. The parallel-plate sensor, with the pressboard sample placed inside

it, is placed in an oven, whose temperature is controlled by a feedback temperature

controller. We could not go above 70°C because of the temperature limitations of the

connecting triaxial cable. A small fan inside the oven made sure that the air is well

stirred, so that there would be no temperature gradients inside the volume.

Following a change in the temperature setting, the oven temperature undergoes a

transient, whose characteristics are determined by the temperature controller param-

eters and the thermal inertia of the oven. The temperature of the sample itself lags a

bit behind the temperature of the oven. In order to determine when the sample has

reached the required temperature, we measured the complex impedance of a sample

at a single frequency (in order to make the measurement time short) about ten times

an hour for four hours after stepping the oven setting from 250C to 500C. We have

lost record of the frequency at which this measurement was performed, although it

lies in the range 0.01-0.1 Hz. This poses no problem, since the only significance of

the frequency is to ensure that e" can be reliably measured. The results from this

measurement are shown in Figure 2-6. The high measured values of E' and e" are due
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Temperature Transient

Moisture: 3.32%. Temperature Step 25-50°C

w
w

0o0

Time [hours]

Figure 2-6: Transient in complex permittivity of a pressboard sample in response to
a step in the temperature setting
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to low frequency dispersion. We concluded that we must wait for about four hours

after we change the temperature setting before taking a frequency scan. The high

values of ' are due to low-frequency dispersion in pressboard (see Section 2.3).

2.2.4 Conditioning

We have observed that in addition to the short (4 hours) temperature transient, the

complex permittivity of a sample experiences another, long transient. When we tested

a sample for 270 hours at a constant temperature (500°C) we observed the behavior

illustrated in Figure 2-7. The long time constant of this transient suggested that it

may be due to mass transfer processes of water in the pressboard. Since the sample in

the test cell is sealed from the outside air, and since diffusion of water through 6 mm of

pressboard before it reaches the active area would require months', we concluded that

this sample conditioning process is probably due to moisture redistribution within the

bulk of the pressboard, finally resulting in a uniform distribution.

We then established the rule that after a sample is impregnated and placed in

the test cell, we must let it stay there for at least five days (120 hours) before any

measurements are performed. This period of time for the sample to reach moisture

equilibrium is necessary only once. Once it expires, only the four hours discussed in

the previous section are required for the sample to reach thermal equilibrium after a

temperature setting change.

2.3 Results

We would like to establish a relationship between the temperature and moisture

content of pressboard, and its dielectric spectrum. This can be accomplished by

1Based on values for the diffusion constant taken from [2, Table 5.3], namely Dp = 5.8 x
10-12m2/s at 700C and 6.3 x 10-14m2/s at 150C.

d2

r = - = 36 days to 18 years
D,
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Conditioning Transient of Oil-Impregnated Pressboard

Temperature 50°C

100

Moisture 0.860%

200

Time [hours]

Figure 2-7: Pressboard conditioning transient
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summarizing the results from frequency scans taken at several different moisture

contents and temperatures.

2.3.1 Features of a Representative Dielectric Spectrum

Figure 2-8 shows the raw gain-phase data of a frequency scan of an oil-impregnated

pressboard sample taken with the parallel-plate sensor. The offset data serves to check

whether an unreasonably high voltage has built up at the input of the operational

amplifier due to leakage currents, which could cause amplifier saturation. The mea-

sured gain and phase curves show a lot of similarity with the computer-generated ones

in Figure 2-5. There are, however, some differences: One can see in Figure 2-8 that

the breakpoint of the voltage ratio magnitude is at approximately 10-0° 8 = 0.16 Hz.

This breakpoint occurs 3dB up from the pole defined in equation 2.13, which for our

experiment is to the right of the zero. Past the pole, as w - oo, the gain contin-

ues to change (it decays with a very slight negative slope), which is not the case in

Figure 2-5. This is because the permittivity and conductivity of pressboard change

with frequency, while the computer-generated data assumed constant RT and CT.

This difference is due to the dispersive nature of pressboard which alters the shape

of the curves somewhat. An ohmic material would manifest behavior similar to that

in Figure 2-5.

The dispersive nature of the pressboard does not affect the validity of Equa-

tions 2.21 and 2.22, since they are evaluated at a single frequency. If we process the

data shown in Figure 2-8 to produce values for the complex permittivity, we obtain

the results shown in Figure 2-9. This processing of data is done with the help of the

program inv.c, listed in Section G.4.

The first thing to note in Figure 2-9 is that all e" data for frequencies above about

10 Hz is noise. As explained in Section 2.1.3, this is due to the lack of sensitivity at

high frequencies of the measurement to the resistive component of the material. When

we disregard this data, the rest of the e" points lie approximately on a straight line.

This line does not have a slope of -1, characteristic of an ohmic material. Instead,

the slope is approximately -0.7. This comes to confirm the previous observation that
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Raw Gain-Phase-Offset Data

Sample MA at 500C
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Figure 2-8: Raw gain-phase data for a frequency scan of a representative pressboard
sample
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Dielectric Spectrum

Sample MA at 500C
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Figure 2-9: Dielectric spectrum of a representative pressboard sample
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the material is dispersive.

This decay of " is associated with a loss peak, as described in Section 1.2.2.

However, the actual peak is not visible in Figure 2-9, because it occurs at a frequency

which is below our bottom limit (0.005 Hz). The elevation in c', which accompanies

a loss peak in e" (see Section 1.2.2), is clearly shown at the top of the figure.

All but one of the pressboard samples studied displayed very similar behavior.

One sample, NB, which had the highest moisture content (3.1%) is a bit different. Its

dielectric spectrum is shown in Figure 2-12 and discussed in Subsection 2.3.2.

2.3.2 Frequency Shift Algorithm

Often the shape of the loss peaks in the dielectric spectrum of a material are indepen-

dent of moisture and temperature. They only shift position. It should therefore be

possible to create a single universal spectrum, to which all other spectra map, after

having been shifted (horizontally with frequency and/or vertically) by an amount

which is a function of the temperature and moisture content [5] [6].

In this case, if there is only one loss peak, the entire spectrum could be described

by the position of a single point, namely the peak itself, with coordinates (p, CE). If

there are two or more peaks, and their relative position does not change (which is

required if the shape is to remain constant), then a point of inflection could be chosen

as the reference point [6].

Appendix A proves that a shift in either c' or e", both horizontally and vertically,

must be accompanied by an identical shift in the other component of c*. This is

required by the Kramers-Kroinig Relations (Section 1.2.2). A linear scale for ' is

chosen in Figure 2-9 for reasons of clarity. If, however, c, (the permittivity at infinite

frequency) were to be subtracted from ', then plotted on a log-log scale ' would also

be a straight line with the same slope as e". See Appendix A for a discussion of this

corollary of the Kramers-Kr6nig Relations.

It is unfortunate that the loss peak occurs at such low frequencies, because a

degree of freedom is lost by having only a straight line to shift. In other words, wcp

and ep cannot be determined uniquely. We have therefore the freedom of choosing to
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shift the spectra either only horizontally, only vertically, or in some combination. We

have chosen to move only horizontally, as suggested by research done elsewhere [6].

Since these shifts are relative, any spectrum may be chosen as the reference. The

amount of shifting required to map a spectrum to the reference should be determined

by some "best-fit" rule, such as a least-squares fit. If we need to find a best fit of

a function f(pl 2, ... ,pn, ), where pi are the unknown parameters, to a reference

function g(x) over an interval E [a, b] by the least-squares method, we must first

find the error function:

e(Pl,P2,... ,n) =j [f(PlIP2, ... pn X ) g(X)]2d (2.34)

and then solve the system of n simultaneous equations:

de
-= 0, for i=1, 2,...,n (2.35)

api

However, fitting straight lines presents the difficulty that the slope is already

known and there is only one unknown parameter, the intercept. If the slopes are

slightly different, then the two lines will not overlap perfectly and there will be no

best fit on an interval of (-oo,oo), because the integral in equation 2.34 does not

exist. On a closed interval the method outlined above will place the line in a way that

it crosses the other line close to the midpoint of the interval, but we do not consider

this fit to be the "best fit" of a line to another line.

For these reasons we have chosen a numerical method, implemented in the program

fith.c (Appendix G). It attempts to fit the two spectra by trying shifts in increments

of 0.1 (on a logarithmic scale), because this is the frequency resolution of the controller

(see Appendix D). It numerically finds the shift that minimizes the sum of the squares

of the differences between the corresponding points. The results of the application

of this algorithm to the data collected with the parallel-plate sensor are discussed in

the next subsection.
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2.3.3 Universal Spectrum

First, let us look at the spectra of the same sample at different temperatures. Fig-

ure 2-10 is a plot of all five spectra of sample MA (see Table 2.1) on the same scale for

comparison. We have chosen sample MA at 500°C to be our reference spectrum. Now

if we shift the other four spectra in Figure 2-10 by the appropriate amount calculated

by fith.c, we obtain the universal curve for this sample shown in Figure 2-11.

Before we go on to integrating the results from all measurements, let us look at

one particular sample, which has been excluded from consideration in all subsequent

discussion. This is sample NB, whose spectra are shown in Figure 2-12. It is the

sample with the highest moisture content (3.1%). Its spectra are distinctly different

from those of the other seven samples. If we look at the plot of e", we can see that

there are two distinct slopes. This implies that we can see the effects of two loss peaks,

each with a different slope of decay. The one on the left is higher than the other and

sufficiently close to it that the actual peak lobe of the second peak is not visible. The

existence of two peaks is confirmed by the plot of ', where we see a rise due to the

second peak, a leveling out, corresponding to the region between peaks, and another

rise associated with the first peak (see Section 1.2.2). The presence of the second

peak implies either that over the extremely long process of impregnation of sample

NB (about 12 months) some kind of impurity has found its way into the pressboard,

or that at higher moisture levels water exists in the pressboard in a different band

state.

The next step we took was to collapse (temperature only) the five spectra of every

sample into universal curves, but not to try to overlap these into a single curve yet

to account for moisture differences. The results are shown in Figure 2-13. One can

see the seven distinct families of curves in this figure. The figure implies that these

universal spectra can now be shifted again to compensate for the moisture differences

and to yield the final master universal spectrum. It is shown in Figure 2-14, which

contains data from 35 different frequency scans.

At the high-frequency end, the e" plots in Figure 2-14 show some spread, which

is due to the high sensitivity of noise at these frequencies, already discussed in Sec-
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Complex e at Different Temperatures

Oil-Impregnated Pressboard, Moisture 2.3%
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Figure 2-10: Dielectric spectra of a pressboard sample (MA) at five temperatures
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Complex e Shifted to Match Temperatures

Oil-Impregnated Pressboard, Moisture 2.3%
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Figure 2-11: Universal curve for one sample (MA) at five temperatures
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Complex c at Different Temperatures

Oil-Impregnated Pressboard, Moisture 3.1%
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Figure 2-12: Dielectric spectra of a high water content pressboard sample (NB)
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Complex E Shifted to Match Temperature

A 300C 0400°C 0 500C *60°C X 700°C
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Figure 2-13: Temperature-shifted families of curves for the seven samples, each of the
families being a universal spectrum for that sample
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Universal Curves: a Superposition of All Data

A 300C 0400C 0500C * 60C X 700°C
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Figure 2-14: Master Universal Spectrum, containing data from 35 frequency scans,
shifted with moisture and temperature
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tion 2.1.3. Otherwise the thirty-five curves overlap quite closely. This universal map-

ping can now be used to estimate the moisture content of pressboard, if the dielectric

spectrum is measured.

Table 2.3 lists the amounts by which each spectrum had to be shifted in order to

form the master spectrum. These are logarithmic frequency shifts.

2.3.4 Correlation between the Frequency Shift and Tem-

perature and Moisture

In order to know how the dielectric spectrum of pressboard changes with temperature

and moisture content, we need to relate the logarithmic frequency shifts of Table 2.3

to the temperatures and moisture contents. Figure 2-13 implies that the effects of

either of these factors are independent of each other. In order to test this hypothesis,

we go on to perform some processing of the data in Table 2.3. What the independence

mentioned above implies is that one can assign a quantity of shift to every temperature

and to every moisture, and the shift that every spectrum is subjected to is the sum of

the shifts due to these two factors. Symbolically, this may be represented as follows:

log( ) = logw - [fT(T) + fM(m)]} (2.36)

Name Moist I 30°C 40 °C 50°C 600° 70C

MD 0.42% -1.6 -1.3 -1.0 -0.7 -0.4
MF 0.83% -1.8 -1.3 -1.0 -0.7 -0.3
ND 1.1% -1.2 -0.9 -0.6 -0.3 0.1
MB 1.8% -1.3 -1.0 -0.6 -0.3 0.2
MG 1.8% -1.1 -0.7 -0.4 -0.2 0.1
MC 2.2% -1.4 -0.9 -0.5 -0.2 0.2
MA 2.4% -0.7 -0.4 0.0 0.4 0.5

Table 2.3: Relative logarithmic frequency shifts for data at different temperatures
and moisture contents. Reference curves are at 50°C and 2.4% moisture (shown in
bold).
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300C 400C 500C 60C 70C

0.42% -0.6 -0.3 0.0 0.3 0.6
0.83% -0.8 -0.3 0.0 0.3 0.7
1.1% -0.6 -0.3 0.0 0.3 0.5
1.8% -0.7 -0.4 0.0 0.3 0.8
1.8% -0.7 -0.3 0.0 0.2 0.5
2.2% -0.9 -0.4 0.0 0.3 0.7
2.4% -0.7 -0.4 0.0 0.4 0.5
Average -0.71 -0.34 10.0 [0.30 0.61

Table 2.4: In this table the spectra for all moisture contents have been shifted so
that all of the 50°C curves overlap. In this way the effects due to moisture have been
eliminated and one can calculate the average shift due to temperature.

30C 400C 50C 60C [ 70C Average
0.42% -0.9 -0.9 -1.0 -1.1 -0.9 -0.96
0.83% -1.1 -0.9 -1.0 -1.1 -0.8 -0.98
1.1% -0.5 -0.5 -0.6 -0.7 -0.4 -0.54
1.8% -0.6 -0.6 -0.6 -0.7 -0.3 -0.56
1.8% -0.4 -0.3 -0.4 -0.6 -0.4 -0.42
2.2% -0.7 -0.3 -0.5 -0.6 -0.3 -0.48

2.4% 0.0 0.0 0.0 0.0 0.0 0.0

Table 2.5: In this table the spectra for all temperatures have been shifted so that
all of the 2.4% curves overlap. In this way the effects due to temperature have been
eliminated and one can calculate the average shift due to different moisture contents.

(2.37)log - = F"{log, - [fT(T) + fM(m)]}\o/
where fT(T) depends only on the absolute temperature and fM(m) depends only on

moisture. These formulas also incorporate the requirement that both components of

e* shift by the same amount (see Appendix A).

The strategy applied to test the validity of the assumption that the shifts due to

temperature and moisture are independent is to take every row in Table 2.3 and add

to (or subtract from) every number in it the same amount in a way that would make

the shift at 500°C be zero. This operation results in the numbers shown in Table 2.4.

We have normalized the data in such a way that the effect of moisture has been
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Figure 2-15: Logarithmic frequency shift as a function of temperature

eliminated. If the two effects are truly independent of each other, the numbers in

every column of Table 2.4 would be approximately the same, which would represent

the frequency shift due to temperature alone. We can see in Table 2.4 that this is

apparently true. We can now take the average of the numbers in every column to be

the logarithmic shift due to temperature, as plotted in Figures 2-15 and 2-16.

We can similarly eliminate the effects of temperature by making the entire row

in Table 2.3 for MA be all zeros, by adding or subtracting the appropriate amount

from each number in the same column. The results of this operation are shown in

Table 2.5. From this table we can now calculate the average logarithmic shift due to

moisture, as listed in Table 2.5 and plotted in Figure 2-17. In conclusion we can say

that indeed the two factors independently shift the dielectric spectrum of pressboard.

One can see in Figure 2-15 that the relationship between temperature and loga-

rithmic frequency shift is approximately linear. However, this is of dubious signifi-

cance in light of the fact that only a small interval of temperatures are spanned on

an absolute temperature scale; 700C is only 13.2% higher than 300°C. This means
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Figure 2-16: Logarithmic frequency shift as a function of temperature: Arrhenius
plot

Figure 2-17: Logarithmic frequency shift as a function of moisture
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that almost any functional dependence may appear linear over a small interval like

that. For example, if we assume the Arrhenius dependence e* oc e-E, /k T, where k is

Boltzmann's constant, ihen the plot of the logarithmic shift versus the inverse of the

absolute temperature should be a straight line. Figure 2-16 indeed shows that the fit

to this functional form is as good as the one in Figure 2-15. The slope in Figure 2-16

corresponds to an activation energy of E. = 0.69 eV. Either of these plots may be

used to obtain the frequency shift associated with a value for the temperature.

Figure 2-17 shows how the logarithmic frequency shift depends on the moisture

content. Since the moisture measurements have a relatively large margin of error (see

Appendix B), seven data points are certainly insufficient to establish a functional

dependence. Figure 2-17 may be used as an empirical relation, but many more data

points would be necessary if this curve is to be reliably evaluated.

2.4 Algorithm for Using the Universal Spectrum

Suppose that we perform a dielectrometry measurement on a sample of pressboard

at a known temperature. How can we use the results presented in Section 2.3 to find

its moisture content?

First of all, we need to determine what kind of a frequency shift would map this

spectrum onto the reference spectrum MA at 50°C. This is most easily accomplished

with the help of t'"e program fith.c, listed in Section G.4. If the dielectrometry is

performed only at a single frequency, then Figure 2-14 can be used to determine at

what frequency the corresponding value of e* is achieved, and the frequency shift will

be equal to the difference between these two frequencies.

The next step would be to find the frequency shift associated with the temperature

of the sample. This may be done graphically in Figures 2-15 or 2-16. The shift due

to temperature is then subtracted from the total shift and we are left with the shift

due to moisture. Finally, Figure 2-17 is used to see what moisture content would

correspond to this frequency shift.

Note that the logarithmic shifts due to moisture and temperature can be both
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positive or negative numbers, depending on the choice of a reference spectrum. At-

tention should be paid to the signs of these quantities when applying the algorithm

described above.
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Chapter 3

The Flexible Three-Wavelength

Interdigital Sensor

3.1 Structure

The flexible three-wavelength sensor uses the ideas presented in Section 1.4. Its

structure is shown in Figure 3-1. It consists of three sets of interdigitated electrodes,

deposited on a common flexible Kapton (a polyimide) substrate. Every set of elec-

trodes contains ten wavelengths. The area of the active surface is about 2 x 2".

In a way similar to the parallel-plate sensor (see Section 2.1), the sensing electrodes

of every wavelength are shielded by guard electrodes, driven by the buffer stage in

the interface box (see Appendix E), and the guard electrodes are shielded by ground

electrodes. All of the electrodes connect to the interface box via the flexible leads.

On the bottom surface of the substrate a copper ground plane is deposited, which is

electrically connected to the ground electrodes. The entire sensor is coated with Pary-

lene, a hydrophobic polymer, which serves to protect the sensor from contamination.

Table 3.1 lists the physical parameters of the three-wavelength sensor [2, sec. 6.3].
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Figure 3-1: Structure of the three-wavelength interdigitated sensor [2]

Parameter Symbol Values

Spatial wavelength A 1.0 mm 2.5 mm 5.0 mm
Interelectrode spacing a 0.24 A 0.24 A 0.24 A
Electrode meander length ML 0.15 m 0.15 m 0.30 m
Substrate thickness h 127 m 127 m 127 pm
Substrate permittivity Cox 3.0 0o 3.0 o 3.0 o
Parylene layer thickness dpx 5.0 m 5.0 m 5.0 pm
Permittivity of Parylene i Px 3.05 o 3.05 6o 3.05 o

Table 3.1: Values of parameters describing the three-wavelength sensor [2]

3.2 Manufacturing

The major issue in the manufacturing of the three-wavelength sensor is maintaining

a clean electrode surface. Since the materials being tested are highly insulating, the

sensor is extremely sensitive to surface conductivity at the plane of the electrodes.

The actual process involves three stages: At the first stage the electrode pattern is

formed on the Kapton substrate by depositing a conducting layer of copper and then

using a mask to selectively etch the pattern 1. At the second stage vapor deposition is

used to form the ground plane on the other side of the substrate. Finally, the sensor

1 MIT Part DOFLEX, Rev. 120390, Tech-Etch, Inc., 45 Aldrin Road, Plymouth, MA 02360, (617)
747-0300.
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Figure 3-2: Mask used for the copper back plane deposition.

is coated for protection with a layer of Parylene. See [2, sec. 6.2.2] for a more detailed

description of the manufacturing process than presented in this section.

The electrode pattern was formed by selectively etching copper from a copper/Kap-

ton composite. To prevent oxidation the electrodes were gold-plated. The copper

ground plane was deposited at the back of the sensor in an electron-beam vapor de-

position chamber2 , where a physical mask served to expose the surface where copper

was to be deposited. This mask allows for the processing of five sensors simultane-

ously. It is shown in Figure 3-2. The copper layer thickness is about 1 AIm.

At this point the sensors were ready for the cleaning process, which was the most

critical stage in ensuring that the sensors be operational. There are two stages to the

cleaning process: chemical cleaning, which involves rinsing with solvents, and plasma

2 Microelectronics Technologies Laboratory, Center for Materials Science and Engineering, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139
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etching. Plasma etching is accomplished by ionizing oxygen in a vacuum chamber,

which then reacts with the Kapton and with any contaminants on the surface. All

plasma etching stages described in this section were done at 300 W for a length of

two minutes.

The criterion for determining whether a sensor is "clean" is that in air its dielectric

response should have a constant gain and zero phase for the full range of frequencies

between 0.005 Hz and 10 kHz. This would mean that the sensor's impedance was

purely capacitive. Any phase angle visible at the lower range of frequencies would

imply conduction between the electrodes due to contaminants.

The procedure we followed at first involved rinsing with acetone and methanol

and plasma etching. Before we went on to the next stage, we tested the three sensors

in air and discovered that the cleaning had been quite ineffective, as can be seen

in Figure 3-3, which shows the gain and phase of the response of this sensor in air.

The conduction is very noticeable at frequencies below 1 Hz. The other two sensors

showed similar results. Although this short cleaning procedure had been sufficient in

the past [2], it did not produce the desired results with this set of sensors, apparently

because of a higher initial level of contaminants.

We then changed the chemical cleaning protocol to the following:

1. Rinse with trichloroethylene (C2HCe3 )

2. Rinse with acetone (CH3COCH3 )

3. Rinse with methanol (CH 30H)

4. Rinse with deionized water (H 20)

with the important requirement that the sensor not be let dry between the different

rinsing stages, in order that every subsequent solvent dissolve any residue left by the

preceding one. We also added a heating stage, during which the sensor is kept at a

high temperature in air (50-70°C) for a few hours, to evaporate any water left on the

surface after the last rinsing stage.
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The first sensor was chemically cleaned by the four-step procedure and then heated

at 50°C for 18 hours. The sensor appeared perfectly clean (flat dielectric response

with frequency) even before the plasma etching, as shown in Figure 3-4. In order

to investigate whether all of these stages are needed, we eliminated the four solvent

stages for the second sensor and only subjected it to heating: 20 hours at 600C. This

method was not satisfactory because the resulting dielectric spectrum was like that

in Figure 3-3. Then we applied the solvent cleaning as described above, but did

not subject the sensor to heating. This was equally ineffective in yielding a clean

sensor. Finally, we tested to see whether the entire 20-hour period of heating is really

necessary, by treating the third sensor with solvents and heat at 700C for one hour.

This procedure produced a clean sensor and further heating had no appreciable effect.

We therefore established the following protocol for the chemical cleaning of the

interdigital flexible sensors:

1. Rinse with trichloroethylene (C2HCe3)

2. Rinse with acetone (CH3COCH3)

3. Rinse with methanol (CH30H)

4. Rinse with deionized water (H20)

5. Heat in oven in air at 70°C for 1 hour

The Parylene coating process involved keeping the sensors under vacuum for 12

hours, which acted to remove moisture and any other volatile contaminants from

the bulk of the Kapton substrate. Without exposure to ambient conditions, the

sensors were coated with 5 um of Parylene (Poly(para-xylylene)). The coating process

resulted in a pin-point free water-resistant protective layer.

A final test of the ready sensors demonstrated that they were still clean because

their dielectric spectra were flat when tested in air.
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Three - Wavelength Sensor in Air

AX=5mm I:X=2.5mm O:X=1mm
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Figure 3-3: Response of a three-wavelength sensor in air before chemical cleaning
and before Parylene coating. It shows non-zero phase and increasing gain at low
frequencies, which indicates contamination.
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Three - Wavelength Sensor in Air

:X=5mm Ct.= 2.5mm O: = 1 mm

LCLLJJJ~W~O~ U i I i IIII

.. ~aa~a~~~a

I I I8_rrrrrr~r~rrr~r
lI-2 -1

I I I

0 1

log(freq)
2 3 4

o)

a.CD

f% J4II

14

7

0

-7

-14

-21

-2 -1 0 1 2 3 4
log(freq)

Figure 3-4: Response of a three-wavelength sensor in air before Parylene coating and
after recommended chemical cleaning procedure and heating. It shows zero phase
and constant gain over the entire frequency range, indicating a clean sensor.
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X1

Figure 3-5: Interdigitated electrode structure with a number of homogeneous layers
above it

3.3 Mathematical Model

Finding the admittance of the parallel-plate sensor as a function of the material

properties and the geometry of the test cell is trivial, since the electric fields are

highly uniform and one-dimensional (see Section 2.1).

The task of finding the complex impedance of an interdigitated structure as a

function of the properties of all materials and geometric considerations is much more

complicated, because the fields are two-dimensional and the potential distribution

on the surface between the electrodes is not known and must be calculated from

conservation of charge. In fact, these complications make it impossible to express the

impedance of the sensor in closed form, and in general numerical methods are needed

to calculate the impedance. In this section we present a summary of the procedures

applied in obtaining a mathematical model for the interdigitated sensor. For a more

detailed discussion see [3] [7].

Let us suppose that we have the interdigitated electrode structure shown in Fig-

ure 3-5. For the purposes of the discussion in this section, we idealize the structure

by assuming no z-dependence of the electric fields and by assuming electrodes of neg-

ligible thickness. We are also assuming that there is no surface conductivity at the
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interfaces between different material layers, although such effects are easy to incor-

porate in the model [3].

In this discussion we use the following convention: All quantities are complex

since only steady-state AC excitation is assumed. Such complex amplitudes that

are functions of space are denoted by a 'tilde' ( ). The time dependence of the

corresponding physical quantity is obtained from the following formula:

F(z, y, ) = R {(z, y)ejwt} (3.1)

where w is the steady-state radian frequency. If a quantity's spatial y-dependence is

also sinusoidal, then it can be represented by a complex phasor denoted by a 'hat'

(-):

F(t, y) = (z )e- jk y (3.2)

F(x,y,t) = R{F(z)e j(= t - k ) } (3.3)

where k is the wave number, related to the wavelength A as

2ir
k 2r (3.4)

Every interdigitated section of the three-wavelength sensor has three electrical

terminals: driven electrode, sensing electrode, and ground plane. The guard elec-

trode is always at the same potential as the sensing electrode, so that any coupling

between them is effectively eliminated. Any admittance between the guard electrode

and ground or the driven electrode has no influence on the measurement. We may

therefore leave the guard electrode out of the circuit model. Our goal is to be able to

calculate the admittances between these three terminals from the parameters of the

layer structure.

The circuit model of the structure is shown in Figure 3-6. The admittance YnL

of the driven electrode to ground is the same as the admittance of the sensing elec-

68



Figure 3-6: Lumped circuit model for the interdigitated sensor structure within
dashed box and shown with grounded sensing electrode.

trode to ground because the two electrodes have an identical geometry. Y12 represents

the coupling between the driven and the sensing electrodes. We may calculate the

admittances by applying test voltages at the terminals and calculating the resulting

terminal currents. The simplest form of this test drive is to ground the sensing elec-

trode and apply a voltage VD to the driven electrode. Then the unknown admittances

can be calculated in the following way:

Y = IS (3.5)

ID + Is

In order to calculate 71, we need to know the normal component of the total

(displacement plus conduction) current density jwe*E(y), which is integrated over

the area of the driven electrode to give the total terminal current. It is therefore

necessary to solve for the electric field distribution.

The entire interdigitated structure is periodic in the y-direction with a wavelength

A. This means that for every quantity that depends on y we may use Fourier series
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expansions to write:

oo

i(z, y) = E &.()e -j' v (3.7)
n=-oo

LE(z) = E E=n(X)eikt' (3.8)
n=-oo

where n is the Fourier mode number and

2irn
kn = A (3.9)

It is convenient to define the complez surface capacitance density Cn, which relates

e*En at a planar surface x = constant to the potential ,n at that surface for every

Fourier mode n in the following way:

On = en (3.10)

4an

Knowing Cn at the electrode surface will let us calculate the terminal currents from

the potential distribution at that surface.

We have assumed that every layer of material in Figure 3-5 is uniform, i.e. the

complex permittivity e* = - jo/w is independent of the spatial coordinates. This

means that Laplace's equation

V2. = (3.11)

is satisfied everywhere in space except at the interfaces between the layers. At these

interfaces, however, the boundary conditions require continuity of 4 (tangential com-

ponent of E is continuous) and e'*E (normal component of conduction plus displace-

ment current density is continuous). This means that at these interfaces C may be

uniquely defined. Let Cn be the complex surface capacitance density at the inter-

face between the mth layer and the one below it (see Figure 3-5), i.e. the surface at

x = ~fl di, with n referring to the Fourier mode. If we can express Cn in terms of

O+l, di, and e, then we could apply this relationship recursively, beginning at the
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Figure 3-7: A representative layer of homogeneous material

topmost layer N, to obtain CN, then CN- etc. and ultimately find £C, the complex

surface capacitance density at the electrode surface.

Consider the slab of uniform material in Figure 3-7. We would like to find Cn =

e*Eb/b as a function of kO, = e Ea/n, , k,, and d. Since equation 3.11 is satisfied,

and since the potential is periodic in the y-direction with a wave number of c, the

z-dependence of 4 must be exponential. We therefore guess the following form:

(z) = A sinh kZ + B cosh k (3.12)

We have the boundary conditions

(X = 0) = Lb (3.13)

(z = d) = ma (3.14)

which leads by inspection to the final solution for 1:

i(2) = i sinh knz - $b sinh k( - d) (3.15)
sinh kd

The x-directed electric field can be obtained from equation 3.15 by differentiation

as follows:

E = _ = [-*a cosh kz + ib coshk( - d) (3.16)
dc sinh kd
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from where we obtain

1
E = E,(x = d) - k,, coth k,d + k,Obsinh k d (3.17)sinhkcd (3.17)

1
2E = E(x = 0) = -kni sinh kd + k b coth k,,d (3.18)

C=a _ ( .Ohn cit n isik) (3.19)

b = C(kn (- ihk + cthknd) (3.20)

From equation 3.19 we obtain

= Lek + cothknd) sinhknd (3.21)

which we can then substitute into equation 3.20 to yield:

Cb = C*kn 1 + cothknd

;I ( +cothknd) sinh2knd +

= C*kn cothkfld- d gkd 8
. ( , ca + *ekn coth knd 

=ca coth kd + *kn, coth2knd -f -
inh2 k,,d

OC + e*kn coth kd

* k Ca coth knd + *kn \
+ e(,kn coth kd

*k, (CCa cosh knd + e*kn sinh kd (3.22)
Ca sinh knd + c*kn cosh kdJ

Let us test the validity of equation 3.22 in the limits d = 0 and d = oo. For a

layer of zero width this equation reduces to Ob = O, as required. For d -- oo both
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the hyperbolic sine and cosine approach the exponential function, i.e.

lim (Ca cosh ,,d + ek, sinh d (3.23)
d--oo C sinh kd + elk, cosh kd/

which reduces equation 3.22 to b = e*k,. This is a useful result, as it directly applies

to the semi-infinite topmost layer in Figure 3-5. If its index number is N, then

n = eNkn (3.24)

We now have the means of calculating Ct from equations 3.22 and 3.24 by recur-

sively descending down the layer structure. If on the bottom side of the electrode

plane we had a similar set of layers, we would obtain a value for the surface capaci-

tance density from that side too.

Instead of structure of layers similar to the one in Figure 3-5, the bottom side of the

three-wavelength sensor has a single substrate layer of thickness h and permittivity

Cox3, which is actually purely real because the Kapton substrate's conductivity is

negligible, as illustrated in the next section. On the other side of the substrate the

ground plane is deposited. We cannot use the equations developed so far to obtain

the surface capacitance density due to the bottom side of the electrodes, because the

potential at the ground plane is forced to zero. We may, however, use equation 3.19

with b = 0 to obtain

'n1 = -Eoxk coth kh (3.25)

where the negative superscript indicates layers below the surface.

Since the surface capacitance density is known, it could be integrated over the

areas of the driven and the sensing electrodes to obtain the currents ID and s if

the potential is known at the electrode plane. While the potential is indeed known

along the electrodes, where it is constrained by them to be VD (driven electrode) or

zero (grounded sensing electrode), in the space between the electrodes it is not known

3 The name ox is kept for historical reasons from a time when the substrate was manufactured
from an oxide material. Kapton is a polyimide, not an oxide.
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Figure 3-8: Piecewise-smooth collocation-point approximation to the potential be-
tween the electrodes of an interdigitated structure. Three collocation points at yl,
Y2, and y3 are shown

and must be determined by a different boundary condition, namely conservation of

charge.

The potential between the electrodes is approximated by a piecewise-linear func-

tion, which divides the space between the electrodes into k + 1 intervals, delimited

by k collocation points, as shown in Figure 3-8. In every interval the potential is

assumed to vary linearly between the potentials at the two end points. The potential

distribution is thus fully determined by the potential at the k collocation points. Now

that we have a form for i(y), we can use the Fourier integral to obtain an expression

for i, which is an algebraically linear function of the unknown potentials at the

collocation points. In order to find these potentials j, we need a set of k equations,

which can be obtained by applying conservation of charge to k intervals centered

around the collocation points. Reference [31 presents this process in detail, carrying

out all integrations, etc. What is important to us is that this numer'cal process yields
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the potential distribution at the electrode surface and ultimately makes it possible to

find Y1 and Y12.

Finally, if the admittances in Figure 3-6 are known and if the sensor is loaded by

an interface box of input admittance YL (see Appendix E), the magnitude and phase

of the voltage ratio are given by

_f~~s~ =- ~ Y1 2 (3.26)
VD Y12 + Y 1l + YL

M = YS Y12 (3.27)
VD Y12 + Y + YL

The subsidiary parameter estimation routines, listed in Section H.5, implement

the numerical calculations presented in this section. The function gp(), defined in

gp.c gives the gain and phase of the voltage ratio of an interdigitated sensor when

it is supplied with the parameters of the sensor and with the properties of the layers

above it. The code used in its implementation is an almost direct translation from

PASCAL of the code written by Dr. M. Zaretsky [3].

There are also some parasitic effects, due to the finite thickness of the electrodes,

which result in a parasitic admittance in parallel with Y12. See [2, sec. 6.2.3] for a

discussion of these effects.

In a number of our measurements an aluminum plate was used to squeeze the

materials against the surface of the interdigitated sensor. In those cases the topmost

layer had to be approximated as infinitely conducting. The presence of a conductor at

the top does not introduce anything new to the analysis, provided it is left floating,

as the model assumes. If the conductor is grounded, the admittance network of

Figure 3-6 would be altered and this change must be included in the mathematical

model. In our measurements we always left the plate floating, which let us use the

existing model. The conductor can only maintain a uniform potential, constant in

space.
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It is important to note that if the load admittance is purely capacitive, as is the

case with our interface circuitry for the three-wavelength sensor (see Appendix E),

then the voltage ratio response cannot have positive phase for any value of the ad-

mittances Y1 and Y12, as long as their imaginary part is non-negative, i.e. there is

no inductive element. This is important, as it would alert us to a problem if positive

phase greater than the noise margin was measured. If positive phase is measured,

that will indicate that a leakage path has been established between the sensing elec-

trode and ground. We witnessed this problem when the three-wavelength sensor was

placed on a conducting aluminum plate and dust particles penetrated through the

Kapton substrate and made contact with the sensing electrode. The problem can be

avoided by placing the sensor on an insulating plastic plate, as became our standard

practice.

3.4 Testing

3.4.1 Testing in Air

After the coating process, described in Section 3.2, the three-wavelength sensors were

tested by performing frequency scans in air. A representative scan is shown in Fig-

ure 3-9. The phase angle is near zero for the entire scan and the magnitude of the

response remains constant. As is clear from equation 3.28, this is only possible if

there is no conduction between the electrodes of the sensor due to contamination.

Another important observation that can be made from the results in Figure 3-9

is that the assumption of infinite input resistance of the interface box, as listed in

Table E.1, is indeed valid. More importantly, the test in air is a worst case situation,

because if the sensor is used on any kind of material, the input resistance of the

interface box would be even more negligible. This results from the following consider-

ations: Since throughout the entire range of frequencies the sensor itself looks purely
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Coated Three - Wavelength Sensor in Air

A = 5 mm C1 = 2.5mm O: =l mm

-10

-3

I I I I I I

-2 -1 0 1 2 3 4
log(freq)

-2 -1 0 1 2 3 4
log(freq)

Figure 3-9: A frequency scan of the Parylene coated three-wavelength sensor iin air

77

I'
u

-10

-20m

Cu

-30

-40

03

0

0)

a1

.:
a.

-5

B ~ ~~~ _ 0

o

I I I I I I

! I II II II I i

I 

II XI II I II I 

_

-

m

I
.m

.An -

-3

_

_-

_.=

-

dip
.],



capacitive, the equation for the voltage ratio becomes

Vs joCl 2~~V~~s=~ ~ jWC12_~ ~(3.29)
-VD jw(C12 + C11 + CZ) + (1/RL)

where we have used equations 3.27 and 3.28 and the following relationships: Y12 =

jwC12, Y11 = jwC11, and YL = jwCL + (1/RL). This voltage ratio has a zero at the

origin and a pole at s = -1/[(C 12 + C11 + CL)RL]. Zero phase can result only if

the pole occurs at a frequency significantly lower than 0.005 Hz, which is the bottom

limit of our frequency range. Since C12 is lowest for air, any material with a dielectric

constant greater than oe would only act to increase this capacitance and push the

pole further toward lower frequencies, making its effects more negligible.

In conclusion, the test in air serves to show that the sensor is clean, i.e. there is

no parasitic conduction due to contaminants on the electrode surface, and that the

input resistance of the interface box can safely be assumed to be infinite for use of

the sensor on all materials.

3.4.2 Testing in Transformer Oil

The next step in testing the proper operation of the three-wavelength sensor is to

immerse it in a well-known material, such as transformer oil, which is sufficiently con-

ducting to show an appreciable phase angle of the response. The test was performed

in Shell Diala A transformer oil. The raw gain-phase data is shown in Figure 3-10.

The appreciable phase angle shows that the conduction in oil is high enough

that the parameter estimation would be sensitive to it and could measure it (see

Section 2.1.3). An interesting observation can be made in Figure 3-10. It is clear

from that plot that all three wavelengths approach the phase peak simultaneously

as the excitation reaches lower frequencies. This means that the oil appears to be

uniform in the vicinity of the sensor, because the frequency at the phase peak is the

same in spite of the different depths of penetration of the three wavelengths.

It is interesting to see the dielectric spectrum that corresponds to the data in

Figure 3-10. We discuss the different methods of calculating e* from M and in
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Three - Wavelength Sensor in Transformer Oil

a:=5mm :tX=2.5mm O:A=1mm

ao

Ao

AO
O,

IAA.jAAAAAAA _AAA-,

I A

-2 -1 0 1
log(freq)

-2 -1 0 1
log(freq)

2 3 4

2 3 4

Figure 3-10: Raw gain-phase data of the three-wavelength sensor in Shell Diala A
transformer oil
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Complex £ in Transformer Oil

A: =5mm : x= 2.5mm O:. = 1 mm

-2 -1 0 1
log(freq)

-2 -1 0 1
log(freq)

2 3 4

2 3 4

Figure 3-11: Dielectric spectrum of Shell Diala A transformer oil taken with the
three-wavelength sensor. The results include all significant spatial Fourier modes.
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Chapter 4. If we use the one-dimensional estimation method (Section 4.2), which

assumes that the material next to the sensor is uniform to infinity, we obtain the

results in Figure 3-11. This figure shows that our conclusion of the uniformity of the

oil is not exactly true, because the values of " measured by the three wavelengths

are a little different. The values of e" measured by the shortest (1 mm) wavelength

are the highest, indicating that the oil was most conducting closer to the sensor. The

slope of e" on the log-log scale of Figure 3-11 is very close to -1, as expected for a

material which exhibits ohmic behavior, i.e. whose conductivity is independent of the

frequency, as already discussed in Section 2.1.2. At low frequencies e' deviates from

the constant value due to the presence of a double layer in a way similar to the results

in Figure 2-4, which were measured with the parallel-plate sensor.

The average value of the relative dielectric constant in Figure 3-11 is /e0o = 2.2,

which is the same value measured with the parallel-plate sensor in Figure 2-4 and

the value quoted in the literature. The average conductivity in Figure 3-11 is a =

1.4 x 10-12, which is typical of transformer oil. The self-consistency of these results

and their agreement with previously known parameters confirm the proper operation

of the three-wavelength sensor.
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Chapter 4

Parameter Estimation Algorithms

In Section 3.3 we showed how to solve the forward problem of calculating the mag-

nitude and the phase angle of the voltage ratio of an interdigitated sensor from the

parameters of the sensor and the properties of the materials above it. What is meant

by parameter estimation is the reverse problem of finding properties of the materi-

als from measured magnitude and phase data. Numerical techniques must be used

for this purpose, since it is impossible to express the solution of the forward prob-

lem in closed form. In this chapter we discuss the various techniques for parameter

estimation that we have developed and tested.

4.1 Dielectric Profiles and Degrees of Freedom

In Section 4.2 we discussed how some qualitative information about the spatial vari-

ations of the dielectric properties of a material can be obtained from the comparison

of data taken with interdigitated sensors of several different spatial wavelengths. The

next step would be to try to combine the results from all of these wavelengths in a

quantitative manner, in order to calculate this spatial variation.

There are many limitations to how much can be learned about the inhomogeneous

medium from measurements with the three-wavelength sensor. In this section we

investigate the fundamental mathematical limitations, such as the number of degrees

of freedom, etc.
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4.1.1 Information Contained in Measurements with the

Same Wavelength at Different Frequencies

The mechanism by which the frequency of excitation affects the distribution of the

electric fields in the material above the electrodes of an interdigitated sensor is that

a layer approaches an equipotential surface (i.e. can be approximated as a perfect

conductor) for radian frequencies below the relaxation frequency cr/e. The complex

admittance of the sensor is a function of the frequency of excitation w and the complex

permittivities ef of the N layers above it, f(w, e;, ... , e). If we define

,fj (f,* *E X f(j (; l', I *E) . = 1, W2, * (4.1)

then the functions fj are mathematically independent of each other, i.e. if set equal

to the measured values at these frequencies they would yield a set of equations with

a finite number of solutions:

fj(;X *,.V) = Yj j= 1,2,...,N (4.2)

where Yj are the measured values of the sensor's admittance at the frequencies

W1, 2, - - - W WN -

This means that, in principle, if the dielectric properties of all materials above

the sensor are independent of frequency, then a frequency scan contains all the in-

formation about the spatial distribution of the dielectric properties, and the latter

may be calculated from the former. Although this statement is true in a strictly

mathematical sense, physical considerations impose severe constraints on its validity.

As an example, after a layer approaches an equipotential, negligible electric fields

will penetrate through it, thereby making the measurement insensitive to the mate-

rial properties above this layer. The level of detectability of the properties of layers

above such a layer quickly decreases with further reduction of the frequency and soon

becomes overwhelmed by measurement noise.

Reference [3, pp. 88] summarizes these considerations in Theorem 3.2, which states
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that a unique determination of the complex permittivities of all layers is possible only

if the relaxation times of the materials are sufficiently distinct and they appear in

decreasing order as one moves away from the electrode surface. This constraint makes

this approach useful only in specific cases, where the material layers are in the required

order.

For the sake of completeness we should mention that the requirement that the

dielectric properties be independent of frequency may be relaxed if the dispersive

material possesses a universal reference spectrum, from which it deviates in a known

manner with changes in some physical parameter. Pressboard, for example, is a

dispersive material with such a universal spectrum, as shown earlier in Chapter 2.

4.1.2 Complex Numbers and Degrees of Freedom

For the rest of this section we shall assume that measurements are made at a single

frequency with one or more interdigitated sensors of different spatial wavelengths.

This means that for every wavelength one value of the complex amplitude of the

voltage ratio response Me j' is measured. This complex amplitude includes both gain

and phase information. Our goal is to use these different complex amplitudes to

calculate some unknown parameters of the medium.

From mathematics we know that in general n independent equations are needed

to determine n unknowns "uniquely", i.e. yield a finite number of solutions. This also

applies to complex functions of complex variables. We define the number of degrees

of freedom of a system to be the number of independent equations that relate its

unknown parameters.

Before we go on, we must answer the following question: Must we associate one

or two degrees of freedom with a complex function? As we shall see in Section 4.5,

this question is critical to the parameter estimation method with an assumed profile

function.

Any complex function f(zl, z 2 , . .. , r 2,...), whose arguments may in general be

complex (z 1,z 2,...) or real (r, r2,...), may be represented by two real functions of
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real arguments as follows:

f(Z,Z 2,...,r 1,r2,...) =

= u(I 1, Y1,z2,Y2 ,.. .,rlr 2,...) + jv(1, Y1, X2,Y 2,..., rlr 2 ,...) (4.3)

where xi and yi are the real and imaginary components of the complex numbers zi:

zi = xi + jyi (4.4)

The equation

f(ZI, Z2,... ,ri,r 2,...) = 0 (4.5)

is therefore equivalent to the two equations

U(Zl,y1, 2,y2,. . .r,r 2 ,...) = 0 (4.6)

v(z,y,z 2,y2,....,r 1,r2,...) = 0 (4.7)

Two degrees of freedom should be assigned to a complex equation, two degrees of

freedom are necessary for the determination of every complex unknown zi, and one

degree of freedom would be necessary for every real unknown ri.

There are, however, some special cases when these rules for determining the neces-

sary number of equations do not apply and a greater number of equations is required.

Let us suppose that two or more real unknowns can be "lumped" together in every

complex equation into "clusters", which are real functions of these unknowns. These

clusters need not be the same in every equation, but they should involve the same

set of unknowns. All clusters in any one given equation must be the same and none

of the cluster variables may appear outside of a cluster. Symbolically, this may be

expressed in the following way: The system of equations

fi(Zl, Z2, .* * ,rl,Tr2, . *) = 0 i = 1, 2,... (4.8)
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could in this case be written as

fJ [l,z 2,. .. ,gi(ri, .. ,rm), rm+,. ...] = i = 1, 2,... (4.9)

where the functions gi of the real variables rl,..., r,,, are real. In the solution of this

system of equations, after all of the other variables have been eliminated, we are left

with a set of equations of the following form

gi(rl,...,rm)= Ci i = 1,2,... (4.10)

where each of these equations is the result of one equation from the previous set (4.8).

This means that for the unique determination of the unknowns rl,..., r,m each of them

needs to be assigned two degrees of freedom, since one complex equation is needed per

variable. This need for extra information comes about because some information is

lost in the requirement that the constants ci, which are in general complex numbers,

must be real in order to match gi. In other words, some redundancy is present in the

original set of equations 4.8, which need to be such that the coefficients ci are real. If

they do not yield real ci, then the system of equations will have no solution. A simple

example that illustrates this principle is presented in Appendix F.

This special case, where more degrees of freedom than expected are necessary,

occurs in the use of an assumed profile function, discussed in Section 4.5.

In the documentation of the parameter estimation programs, listed in Appendix H,

a different nomenclature is used, which assigns only one degree of freedom to every

complex equation and variable. The mathematics implemented by this software uses

the correct number of degrees of freedom, as defined in this section.
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4.1.3 Analytic Functions of Complex Variables

A complex function f(z) = u(x,y) + jv(x,y), where z = x + jy, is analytic if its

derivative can be uniquely defined [8, sec. 10.4]. In other words, the expression

df(z) = lim f(z + Az)- f(z) (4.11)
dz Az-0 Az

should be independent of the direction in the complex plane from which Az ap-

proaches zero. Formally, we need:

d-(z) = lim f(z + Az)- f(z)
dz lazl--o Az

lim f(z + A)- f(z) lim f(z + jy)- f(z) (4.12)
AZ-~o x A &,-.O jay

If we then write

li (z + Ax)- f(z) u V (4.13)lim = i (4.13)
-- ,o zAx lax ox

1 lim f(z + jAy)- f(z) 1 u v (4.14)lim -. T + (4.14)j ay-,o Ay j y ay

and equate the real and imaginary parts of equation 4.12 after substituting equa-

tions 4.13 and 4.14 into it, we obtain the Cauchy-Riemann Equations [8]:

au = Ov (4.15)

Ov au (4.16)

We can conclude that an analytic function cannot have a purely real argument r,

because equations 4.15 and 4.16 would yield Of/Or = 0. Of course we are free to

assign only real values to a complex argument of an analytic function. The real

and imaginary parts u and v of an analytic function are related to each other via

equations 4.15 and 4.16.
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Most functions that can be expressed in closed form, such as polynomials, rational

functions, exponentials, trigonometric functions, etc., are analytic. Sums, products,

ratios, compound functions, etc. of analytic functions yield analytic functions, etc.

Examples of functions that are not analytic include R{z}, Za{z}, and complex conju-

gation. The complex gain expressed as a function of the e* of the materials above the

sensor, derived in Section 3.3, is an analytic function, because the operations in every

step of the process of finding the admittance as a function of the complex permit-

tivities are such that the analytic character of the function is preserved. This is an

important result for the multidimensional parameter estimation routine, presented in

Section 4.4.

4.2 One-Dimensional Parameter Estimation

This is the simplest kind of parameter estimation in which only one parameter is

unknown, namely the complex permittivity e* of one of the layers above the interdig-

itated sensor. The routine takes data from one wavelength and uses a root-finding

algorithm to find the unknown parameter. The gain and phase of the response are a

function of the unknown e*, implemented by the routine gp(), which is discussed in

detail in Section 3.3 and listed in Section G.4. The problem is that of finding a root

(zero) of the difference of this function and the measured results.

The Secant method [9] is used for this root-finding method. We do not include a

listing of the code that implements this function, because it has not been translated

into C. Instead, we have been using the already compiled version of this program,

written in FORTRAN by Dr. M. Zaretsky and listed in [3]. Its name is parestso and

it can be found on the computer LEES-OMEGA-K.

An arbitrary number of known layers may be included along with the unknown

layer, i.e. no unnecessary assumptions need to be made about the structure of lay-

ers, other than the assumption that the unknown layer's dielectric properties do not

change with variations in x (see Figure 3-5).

Since the interdigitated sensors have a limited depth of penetration, if the unknown
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layer extends to infinity (i.e. beyond the reach of the longest wavelength), the sensors

would be sensitive only to the properties of the material adjacent to the sensor. If the

material is indeed homogeneous, then sensors of any spatial wavelength would measure

the same value of c*. If, however, e* depends on x, then the value of e* measured by

an interdigitated sensor would be some sort of a weighted average, with the depth

of sampling proportional to the spatial wavelength A of the sensor. Consequently if

a material is not homogeneous, the three parts of the three-wavelength sensor would

measure different values of e*.

Although this method can show homogeneity, if the material is inhomogeneous

it can only provide a qualitative picture of how c* varies with z. It is nevertheless

a very useful tool and is probably the first step to take when interpreting dielectric

profile data. Chapter 5 shows many instances of the application of this method to

data from measurements.

4.3 Marching Approach

This is the first method which attempts to combine the results from more than one

wavelength into a quantitative description of the spatial dielectric profile of an inho-

mogeneous medium. Its iterative algorithm is based on a series of one-dimensional

estimations of the kind described in Section 4.2 and thus avoids the complications

associated with multidimensional searches [3].

This method approximates the dielectric profile of the structure above it by a stair-

step function, with the intervals of this function being determined by the program

itself. It is therefore only applicable to the problem of finding an approximation to

the dielectric profile of one single unknown layer extending to infinity, as no a priori

information may be specified about the widths of the different regions.

An assumption is made that every sensor of spatial wavelength A has a depth of

penetration into the material equal to aA, where a is a parameter which reflects the

assumed discreteness of the regions.

Let us suppose we have N sensors of distinct spatial wavelengths Ai, A1 < A2 <
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Figure 4-1: Stair-step approximation of a dielectric profile with the marching ap-
proach

... < AN. We discretize the medium of continuous dielectric properties above the

sensors with n homogeneous layers of thickness d = aA1, d2 = a 2 - dl, ... , dN =

a)N -- N-l di. This division is shown in Figure 4-1. Each of the N layers is

characterized by a complex permittivity e. The method finds the values of e that

would yield the measured gain and phase response.

We are assuming that we can use the algorithm of Section 4.2 to calculate the

complex permittivity of a single unknown layer from the measurement with a single

wavelength. At first we assume that the bottommost layer extends to infinity, i.e. only

one layer with a complex permittivity of e; exists. We then apply the one-dimensional

search to the data taken with the shortest spatial wavelength A, since according to

our initial assumption it is sensitive only to the first region. In the next step two

regions are assumed; the first is the bottommost layer of thickness dl, whose complex

permittivity is assumed to be known and equal to the previously calculated value

of 4;; and the second layer is assumed to extend to infinity and be uniform with a

permittivity of C2. Then we apply the one-dimensional parameter estimation method

to the measurement with the sensor of spatial wavelength A2, which results in a value

for 4*. After that we use the measurement with the sensor of wavelength A3 and
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apply it to an assumed structure with three layers, the top unknown layer extending

to infinity and characterized by a complex permittivity of c*, and so on until the data

from all wavelengths has been used. This way we end up with the first approximation

to the dielectric profile which concludes the first iteration step.

For the second iteration step we follow a similar procedure to the one outlined

above, but instead of assuming that the unknown layers extend to infinity we give

them the assumed thickness as specified in Figure 4-1 and apply the one-dimensional

search to the structure which includes all layers. If of layer number i is being

estimated from the data taken with the sensor of spatial wavelength Ai, then all

layers below the current one, i.e. with index numbers less than i, use the values for *

from the current iteration, while all layers above i use the values of E* calculated in

the previous iteration. The second iteration also begins with estimating e; and ends

with the topmost layer.

The third iteration is identical to the second one, etc. The iterations continue

until subsequent iterations stop changing the calculated values of e* for all layers.

The parameter a represents the assumed reach of a given wavelength. Its value

is chosen according to two criteria. In the first place, it should be influenced by the

actual dielectric profile so as to provide the best stair-step fit to it. For example, if the

complex permittivity of the inhomogeneous medium changes very quickly close to the

surface of the electrodes, a smaller value for a would result in a better fit, since all of

the assumed layer thicknesses would be smaller. Conversely, if the material is roughly

uniform, larger values of a would result in a better fit. In the second place, a needs

to be such that the method will converge: too large values of a may fail to provide a

close enough approximation to the profile function and lead to no convergence.

The parameter a usually takes up values between 0.1 and 0.5. Applying this

method to an exponential profile and plotting the least squares error of the resulting

stair-step fit versus a showed that best results are obtained for a = 0.251.

The greatest advantage of this method lies in its relative simplicity in that it avoids

1 Personal correspondence with Dr. P. A. von Guggenberg, Doble Engineering, Watertown, Mas-
sachusetts, USA.
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multidimensional searches by only solving for one unknown at a time. This also makes

it somewhat more robust in terms of convergence than the multidimensional searches.

However, this method does not allow for the specification of structures with layers of

arbitrary width or the inclusion of known layers. The marching approach is perfectly

fitted to situations where a single inhomogeneous material is in intimate contact with

the interdigitated electrodes and its thickness is greater than the reach of the longest

wavelength.

4.4 Multi-Dimensional Parameter Estimation

This is a process which searches for more than one unknown variable simultaneously.

It is useful in cases when there are more than one unknown layer in a material

structure and data from more than one spatial wavelength is available. There are no

limitations to the thicknesses or the position and order of the unknown layers.

An inhomogeneous layer may be approximated by a number of unknown homoge-

neous layers forming a stair-step function in a way similar to the marching approach

of Section 4.3. However, in this case these sublayers may be assigned arbitrary thick-

nesses in a way that would approximate the profile function more closely.

4.4.1 A Root-Finding Algorithm

In this method we are looking for exact solutions for the complex permittivity of the

unknown layers. As discussed in Section 4.1, two degrees of freedom are necessary

for every unknown layer and two degrees of freedom are assigned to every spatial

wavelength, which means that the number of unknown layers must be equal to the

number of spatial wavelengths. The three-wavelength sensor can therefore be used to

measure the complex permittivities of three unknown homogeneous layers above it.

Every measurement with a specific spatial wavelength li creates one complex

equation of the form c

fi(;, 4, .. ) = 9Pi(e;, , ..) )- Mi = 0 (4.17)
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where the function gp represents the forward process of evaluating the complex mag-

nitude of the voltage ratio described in Section 3.3 and M, is the measured value of

the complex gain. This is how one equation in the set of equations results from every

spatial wavelength.

The root-finding algorithm is based on a hybrid between the Newton-Raphson

and the Secant methods [9] as follows: After an initial guess is made, the new guesses

are calculated on the basis of the old ones via the following recursive formula:

X,+1 = X + AX = X,- J-'Y, (4.18)

where X = [e;, E2,... , ], is the vector of unknown variables, and Y = [fi, f2,. .. , fN]

is the result vector of applying the functions fi from equation 4.17 to the current values

in X for every wavelength. The index number n refers to the number of the iteration.

In equation 4.18 J- 1 is the inverse of the Jacobian matrix J, which is defined as

aOfi/ae; afi /2; ... afi/0&n

af2/a; af2/;2 ... af2/fn

afn/a8; afn/a8; ... a/a8n

(4.19)

The Jacobian matrix is defined because the complex functions fi of complex variables

A are analytic (see Section 4.1). In order to calculate any one complex partial deriva-

tive in equation 4.19, only two real partial derivatives are necessary, since the other

two are given by equations 4.15 and 4.16. If the functions had not been analytic,

it would have been necessary to split every unknown complex variable into two real

variables and every complex equation into two equations. In principle, this can be

done even if the functions are analytic, but this would double the amount of work in

calculating the Jacobian, since we would not be taking advantage of equations 4.15

and 4.16. Since all derivatives are calculated numerically, this would significantly

increase the amount of computation. In order to confirm that the functions fi are

indeed analytic, we performed numerical differentiation of all four partial derivatives
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that comprise a complex derivative and the results did indeed satisfy the Cauchy-

Riemann equations 4.15 and 4.16.

In the hybrid method the Jacobian matrix and its inverse are not calculated for

every iteration, but the old matrix is used for several iterations before a new one

is computed. A new Jacobian is calculated also if more than five damping steps

(described below) are taken in one iteration, since that would indicate that J is out

of date.

Since the Newton-Raphson and the Secant methods may become unstable and

severely deviate from a root, it is necessary to introduce damping to the algorithm.

After a new guess is computed, a test is performed to determine whether the new

guess is closer to the root than the old one. A vector X is considered closer to the

root of the system of equations if the absolute value of its corresponding result vector

Y is smaller. If the new guess is not closer, then a half step backward is taken, i.e.

instead of letting Xn+l = Xn + AX,, we let Xn+l = X + AX,. If this guess is still

worse than the old one, a quarter step back is taken, etc. If more than five such steps

are needed, we conclude that the correction vector AX,, needs to be updated. Also,

if this vector is already up to date, but still damping does not get a better guess, the

method fails and no solution is found.

Another kind of damping may be needed to avoid converging to non-physical

roots, e.g. complex permittivities that would correspond to negative conductivities or

to dielectric constants less than e0. If such a condition is detected, a similar strategy

as above is applied in which the algorithm goes back and halves the correction vector

recursively until the new set of values is valid.

Since in the process of finding new values for the unknown parameters the inverse

of the Jacobian matrix is calculated, this matrix must be non-singular, which is

similar to the requirement that the slope be non-zero in the one-dimensional Newton-

Raphson method. This means that at least one unknown layer must fall within the

reach of every sensor and every unknown layer must fall within the reach of at least

one sensor. Although this is a necessary requirement to find a solution, it might not

be a sufficient condition for a non-singular matrix. We have not, however, been able
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Initial guess True e Final result # Time

E1 al El1 al El 0 . [m:s]

8.85 x 10-12 0 8.85 x 10- 12 10-12 8.81 x 10- 12 9.99 x 10- 13 5 1:48
8.85 x 10-12 10-11 8.85 x 10- 12 10 -1 2 8.85 x 10- 12 1.00 x 10- 12 8 4:37

5 x 10 - ', 0 8.85 x 10- 1 2 10 - 12 8.85 x 10- 1 2 1.00 x 10- 1 2 7 3:08

8.85 x 10 -12 0 3 x 10 -11 0 3.00 x 10 -11 0.0 5 1:57

8.85 x 10- 12 10- 11 3 x 10- 11 0 3.00 x 10- 11 -2.35 x 10- 1 7 9 4:13
5 x 10 -11 0 3 x 10-11 0 3.00 x 10 -11 0.0 7 3:28

Table 4.1: Computation time of program est.c as a function of initial guess and
solution using multidimensional estimation. The computation was performed on a
XENIX 80486-based 33 MHz machine.

to find a situation when the method would fail due to such a problem.

The iterations stop either when the absolute value of the result vector is less than

a prespecified tolerance, or when the new iteration yields a new guess which is very

close to the old one.

Convergence case studies of this method indicated that convergence is always

reached if every unknown layer is well within the scope of at least one sensor. We

applied this method to computer-generated data, which simulated two layers with

various values of the conductivity and the permittivity and with various initial guesses.

Convergence was reached in all cases. Table 4.1 lists the parameters of these tests, as

well as the total number of iterations # that were necessary to find the root. We also

tested the behavior of this estimation process if noise was added to the computer-

generated data. The results of these tests are shown in Table 4.2. Noise at the input

naturally resulted in noise in the output, but did not seem to affect the ability of

the algorithm to find solutions. It is conceivable that instrumentation errors inherent

in every measurement might cause the problem to have no solution. This obstacle

could then be overcome by allowing for a larger tolerance in the convergence test.

The negative values for the conductivity in Table 4.2 are small variations about zero

due to noise.

As mentioned earlier, a new Jacobian matrix is calculated every several iterations.

The root-finding method is closer to the Newton-Raphson method if a new Jacobian is

computed more often, while if J is rarely updated the method is closer to the Secant
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Index Input Output
Gain dB] Phase [deg] ____

No 1 -38.30 -43.68 8.85 x 10-12 0.0
noise 2 -41.40 -57.98 8.85 x 10- 12 1.0 x 10-12

1 -36 -43.68 1.36 x 10 - 11 6.35 x 10-11
2 -41.40 -57.98 8.54 x 10- 12 9.76 x 10-13
1 -38.30 -45 8.72 x 10 -12 1.03 x 10-14
2 -41.40 -57.98 8.88 x 10-1 2 9.98 x 10 - 13

1 -38.30 -43.68 7.63 x 10-12 -9.64 x 10- 14

2 -40 -57.98 1.09 x 10-11 1.17 x 10-12
1 -38.30 -43.68 9.10 x 10-12 -2.66 x 1014
2 -41.40 -60 8.31 x 10- 12 1.02 x 10- 12

Table 4.2: Effect of noise on the results from the multidimensional parameter estima-
tion. The input values in bold are the ones that have been altered.

Frequency of updates 1 2 3 5
Computation time [min] 4 9 11 16

Table 4.3: Computation time versus frequency of Jacobian updates for est.c. A
frequency of N means that a new Jacobian is calculated every N iterations. The
computation was performed on a XENIX 80486-based 33 MHz machine.

method. The former converges much faster, but the calculation of the Jacobian

costs a lot of extra computation time. These are two competing factors in terms of

computation time cost. In order to test for the optimal frequency of Jacobian updates,

we applied this root-finding algorithm with the same input but with different values

for this frequency. The results, shown in Table 4.3, indicate that for this set of data,

convergence was reached fastest if a new Jacobian was calculated at every step, in spite

of all the extra computation associated with this. However, if there is a large number

of unknowns this may no longer be true, since the number of computations associated

with finding the Jacobian increases with the square of the number of unknowns.

The code for this algorithm is listed in Appendix H. The main program is called

est.c and it is listed in Section H.4. All of the subsidiary routines listed in Section H.5

are part of the program. It also uses all of the auxiliary routines, such as those listed

in Sections H.7 and H.6. A sample input file is listed in Section H.8.1.
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4.4.2 An Optimization Algorithm

If we have more sensors than unknown layers the problem becomes overspecified, i.e.

the set of equations will in general have no solution. However, the extra information

should in principle contribute to finding an even closer approximation to the profile

function. Therefore the problem is one of optimization, i.e. finding the set of values

for all of the unknown complex permittivities that would minimize the set of functions

fi defined in equation 4.17. The function that we are trying to minimize is given as

the sum of the squares of all of the individual functions:

M M

F = Z If(, ,.. .)12 = E Igp(e, ;,...)- Mi 2 (4.20)
i=1 i=1

In theory, if the data is error-free, such as computer-generated data, then the

problem would have a solution even if it is overspecified, because the extra measure-

ments would be redundant. However, unlike the case of equal number of degrees of

freedom, adding experimental noise to an overspecified problem will lead to no solu-

tion. This is when the optimization method becomes extremely useful. Adding more

wavelengths would act to reduce the effects of measurement noise.

Optimization techniques have the additional advantage that they tend to be much

more stable than root-finding methods. They do have one major drawback, though:

there may be many local minima, and so one can never be sure that the global

minimum has been found. It is therefore of a crucial importance to begin with a

guess very close to the true solution, as illustrated in Chapter 5.

Powell's Method

This numerical technique of multidimensional optimization is based on a series of

one-dimensional optimizations. It is described in great detail in [9]. An original set

of N directions in the N-dimensional variable space are chosen and one-dimensional

minimizations along these directions are performed sequentially. During this pro-

cess the set of directions are updated in a way that brings them closer to pointing

toward the minimum. A theorem [9] states that after at most N 2 one-dimensional
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minimizations, the minimum is reached.

The one-dimensional minimization used by Powell's method is Brent's method [9],

which uses several different algorithms depending on which of them is more appro-

priate, to yield a highly efficient minimization algorithm.

The code for our implementation of this minimization technique is listed in Sec-

tion H.4. Its name is estm.c and it is based on the same set of subsidiary and auxiliary

routines as the program est.c, described in the previous subsection. A sample input

file to this program is listed in Section H.8.1.

Simplex Method

A simplex is a body of n + 1 vertices in n-dimensional space, whose n-dimensional

volume is not zero. In one-dimensional space it is a line segment of non-zero length;

in two-dimensional space it is a triangle of non-zero area; in three-dimensional space

it is a tetrahedron of non-zero volume.

In this method an initial simplex undergoes a series of transformations, such as

reflection, shrinking, and expansion, based on the values of the function F at its ver-

tices. The algorithm is such that the simplex moves toward a minimum in an attempt

to surround it and then shrink around it until its volume falls below a prespecified

tolerance.

The code for this routine may be found in Section 11.4, together with all of the

other estimation routines, under the name of ests.c. A sample input file is included

in Section H.8.1.

Case studies showed that this program takes longer to arrive at the solution than

the root-finding program est.c, as shown in Table 4.4. The input to the optimization

routine for the cases shown in Table 4.4 is the same as in Table 4.1. The number

of iterations in Table 4.4 does not have to correspond to the number of iterations

in Table 4.1, because these are very different algorithms. The limitations of the

optimization algorithm are clearly visible in Table 4.4, where the third and fourth

instance give the wrong answer, because they arrive at a different local minimum

than the one corresponding to the true solution, and the fifth instance terminated
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Initial guess True Ec Final result # Time
E1 El__ _ __ 1 l. 1 [m:s]

8.85 x 10-12 0 8.85 x 10-12 10-12 8.43 x 10- 1 2 1.01 x 10- 12 72 10:31
8.85 x 10- 12 10- 11 8.85 x 10- 12 10- 12 8.67 x 10 - 12 1.01 x 10- 1 2 166 23:27

5 x 10- 11 0 8.85 x 10- 12 10-12 4.89 x 10- 11 2.01 x 10- 12 55 8:10

8.85 x 10- 12 0 3 x 10- 11 0 1.10 x 10- 1 1 -1.05 x 10- 13 117 16:42
8.85 x 10- 12 10- 11 3 x 10- 11 0 8.85 x 10- 1 2 1.0 x 10- 1 0 0:40

5 x 10-1l 0 3 x 10- 11 0 3.00 x 10 - l l -7.18 x 10- 1 4 74 10:51

Table 4.4: Computation time of program ests.c as a function of initial guess and
solution using the simplex method. The computation was performed on a XENIX
80486-based 33 MHz machine.

prematurely even before the first iteration, because the values of the optimization

function at the vertices of the simplex were too close together. Of course, there are

cases when the root-finding technique is not applicable, as discussed earlier for the

case of too many wavelengths.

Either optimization routine can be faster than the other under the right set of

circumstances. In general, which of the routines in this section should be used for

a particular problem depends on what is known about the problem. In some cases

both the root-finding technique and an optimization method could be used to gain

confidence in a result.

4.5 Assumed Profile Function Estimation

So far we have approximated a dielectric profile by stair-step functions. This is the

simplest and a very general kind of approximation. It makes it possible to use the

existing models, which assume that the medium above the interdigitated electrodes

consists of a set of homogeneous layers to approximate an inhomogeneous layer.

These methods provide no means of using a priori knowledge about the functional

form of the dielectric profile in the parameter estimation. If we know that a function

has a specific form, then we might be able to find this function exactly with only a

limited number of degrees of freedom. If we know nothing about a function, then we

would need an infinite number of degrees of freedom to determine it exactly, because
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only an infinite set of equations would let us decrease the width of the intervals in the

stair-step function to zero. A simple mathematical example illustrating this principle

is shown in Appendix F.

In this section we investigate the functional form of dielectric profiles in press-

board, which result from moisture mass transfer processes. We already know from

Chapter 2 how the complex permittivity of pressboard depends on its moisture con-

tent. What remains to be seen is what profiles the moisture content in pressboard

may assume.

4.5.1 Diffusion Equation

We are only considering diffusion in one dimension. This is justified by the fact

that we are interested in modeling processes that occur in high-power transformers,

where the pressboard appears in thin sheets, with one surface in contact with the oil.

The thickness of these sheets is very small compared to their other dimensions and

therefore we may assume that the moisture content shows no variations with y or z,

but depends only on x (see Figure 4-1 for axis definition). In this case the diffusion

of water in pressboard is governed by the following equation:

Om= a D (m)am (4.21)a t '9 d a l

where m is the moisture concentration and D(m) is the diffusion coefficient, which

is, in general, a function of the moisture. This fact introduces a non-linearity in

equation 4.21 which would make it very difficult to solve. Since our goal is to obtain

the general form of the functional dependence, we shall assume from now on that

D(m) is just a constant. Since there may be other layers, such as the Parylene coating,

between the pressboard sheet and the electrodes, it is convenient to define a spatially

shifted variable ~ such that = 0 at the exposed outer surface of the pressboard, and

= d at the sealed surface, where d is the thickness of the pressboard sample. If

the distance between the exposed surface and the sensor is x1, then = - x (see

Figure 5-1).
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The closed-form solutions to equation 4.21 are

m(, t) = e-Dkt sin k (4.22)

m(~,t) = e-Dk2 t cos k (4.23)

m(, t) = erf (2,r- .) (4.24)

m(~, t) = erf 22'~ ] (4.25)

where k is the diffusion equation separation constant and L is an arbitrary parameter.

These solutions are pairwise independent, i.e. either pair of equations may be used to

find the total solution of a diffusion problem. The error function erf (x) is defined as

follows [8]:

erf (x) = /I- e- d (4.26)

and it has the bell curve as its derivative. In most cases infinite sums of these

functions are needed to match boundary conditions and particular solutions. The

first two forms are more convenient at times longer than the characteristic diffusion

time

d2 (4.27)

while the last two forms are more convenient at times shorter than r, when a change

at one surface has not had the time to propagate to the other.

Let us assume that the exposed surface, i.e. the surface of the pressboard in contact

with the oil, is constrained by the equilibrium with oil (see Section 1.3) to be at a

certain constant concentration, and that this concentration experiences a step change

at time t = 0 such that

m( = O,t < O) = ma (4.28)

m( =O, t>0) = ml (4.29)
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We are also assuming that all previous transients in the moisture distribution have

had time to die away such that at t = 0- the moisture is uniformly distributed, i.e.

m(~,t = O-) = mO (4.30)

At the other surface there is no moisture flux, since it is sealed by the sensor. The

boundary condition that corresponds to this situation is

arm
( = d,t) = (4.31)

We recognize that out of the solutions to the diffusion equation, only equation 4.22

satisfies these boundary conditions, for values of k given as:

k, = 2d n = 1, 3, 5,... (4.32)
2d

A sum of terms in the form of equation 4.22 and with the above values for k constitute

the homogeneous part of the solution t this differential equation. The particular

solution is simply

mp(,t) = ml (4.33)

Since at time t = 0 the moisture distribution is

m(w,t = 0) = (4.34)

we must find an infinite series with terms in the form of equation 4.22, which would

converge to this function. At t = the exponential part of equation 4.22 is unity. We

may therefore use a Fourier sine series expansion to write

c 4
u(~) = -sin kn, (4.35)

n=l,odd
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with k defined as
7rn

kn = 2d (4.36)

Finally we may write the total solution to the differential equation:

00o
m(,t) = ml + ( - ml) E -e-Dk t sin knf (4.37)

n=l,odd 7

Figure 4-2 shows a family of functions in the form of equation 4.37, every curve

corresponding to a specific value of normalized time t', defined as:

ir2 Dt
t' = 7D (4.38)

4d2

As is clear from equation 4.37, higher modes die out with time at a considerably

higher rate as compared to lower modes due to the factor k2 in the exponential. At

large values of the normalized time one can see that only the fundamental spatial

mode of the transient is present, which is simply a one-quarter period of a sine in

space.

Based on equation 4.37 we may assume that the moisture concentration in the

pressboard sample at some instant of time is of the functional form

00oo 4 Dtk

m(() = A + B E e- tknsin k (4.39)
n=1,odd 7

4.5.2 Profile Functions

Equations 2.36 and 2.37 show how the dielectric spectrum of pressboard varies with

changes in its moisture content. We repeat these equations here for convenience:

log(E ° ) s= .7{logw - [fT(T) + fM(m)]} (4.40)

log -) = ."{log w - [fT(T) + fM(m)]} (4.41)

For the moisture contents of interest, i.e. for contents less than about 3%, the
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Figure 4-2: Solutions to the diffusion equation at different values of normalized time
i= (7r2Dt)/(4d2)

loss peak in pressboard occurs at frequencies below 0.005 Hz (see Section 2.3.1), and

the only part of the dielectric spectrum visible is the decrease to the right of the loss

peak, which on a log-log plot is a straight line of slope y -0.7 (see Figure 2-14).

We may therefore write

F'(x) = 1 + y: (4.42)

"'(X) = c2 +x (4.43)

where cl and c2 are constants. Before we are ready to write the general equation

relating e* to the moisture content m, we need to know the function fM(m), which

represents the logarithmic frequency shift as a function of the moisture content. As

can be seen in Figure 2-17, little can be said about this function. Therefore we choose
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Figure 4-3: Curve fitting of equation 4.44 to the data representing the frequency shift
as a function of moisture

a form that would yield the simplest algebra, namely

fM(m) = Cm + log m (4.44)

whose best fitted curve to the data in Figure 2-17 is shown in Figure 4-3. The curve

in this figure corresponds to cm = -0.684, if m is in percent and the frequency is in

Hertz.

Combining equations 4.40, 4.41, 4.42, 4.43, and 4.44 yields the final functional

form:

* = oo + e0c () (4.45)

in which c is a complex coefficient and the factor 0 is added to normalize this complex

coefficient. Now we are ready to substitute equation 4.39 into equation 4.45 to obtain
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the general form of the dielectric profile of pressboard:

~'(O) =eoo + eI WA+B e -Dk 2 in k (4.46)
[ ( n=l odd ) r 46

There is a problem with this formulation, because there are too many coefficients:

c, A, and B. We could factor out the coefficient A and introduce the two new

coefficients c* = cA and C = B/A, but this would cause a problem: It is conceivable

that the moisture distribution has no constant term, i.e. A = 0, which can result from

an initial condition of mo = 0. This condition would yield C = ±oo and c* = 0, a

very problematic situation for numerical computations. For this reason we use the

following relationship:

2 1+ 2A + B 2

to define the following new set of parameters:

c* = C(A+ (4.48)

2B
C= 2A+B (4.49)

The physical requirement of non-negative moisture content imposes the constraints

A > 0 and A - B > 0. Therefore (A + B/2) is non-negative and raising it to the

-7 power is possible. In addition to that the problem of infinite coefficients has been

solved. This revision results in the final form of the profile function:

e()E + [o ( -+C E e sin kt ] (4.50)

The range of physical values for C, i.e. values for which the moisture content is

non-negative, is C E [-2,2], which covers all allowed ratios of the coefficients A and

B in 4.46. For example, A = 0 corresponds to C = 2; B = 0 corresponds to C = 0;

and B = -A, which is the lowest bound for B, corresponds to C = -2.
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The dielectric profile is fully specified by the three coefficients: c*, C, and Dt.

If these coefficients are found by a parameter estimation method, then the dielectric

profile of the pressboard, and therefore its moisture profile, are fully specified. The

first of these coefficients is complex (c*), but the other two (C and Dt) are real, for

a total of four degrees of freedom. Data from two spatial wavelengths would not

be enough to determine these coefficients, though, because C and Dt form a real

"cluster", as defined in Section 4.1. Therefore two degrees of freedom are required

for each of them, for a total of six. Data from three spatial wavelengths is needed

to solve for the parameters of this profile function. The three-wavelength sensor is

therefore perfectly suited for this task.

4.5.3 Parameter Estimation

The model developed in Section 3.3 assumed several discrete layers of material with

sudden changes in e* at the interfaces. Laplace's equation (3.11) was satisfied every-

where except at these interfaces, because e* was constant. Now that we have a case

where e* is a function of space, we will have to develop a new model. We begin with

a direct consequence of conservation of charge:

V-e*E = 0 (4.51)

V E + *V .E = 0 (4.52)

Ve* .V + E'V2 = 0 (4.53)

where the tildes (-) represent complex amplitudes as defined in equation 3.1.

From Section 3.3, equation 3.7, we know that

(x,y) = E 8n(x)e- ikny (4.54)
n=-oo

which lets us convert equation 4.53 to a full differential equation for every Fourier
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mode n:

de d ( d2 k O) =0 (4.55)
dx d dX2 + n

Equation 4.55 has a closed-form solution if e' is an exponential function of x, but

for simplicity we will take e' to be piece-wise constant so that we can use the old

standard model, where d*l/dx = 0 and 4.55 reduces to Laplace's equation, but with

a much greater number of homogeneous layers, so that the profile function 4.50 can be

approximated as closely as we want. Unlike the root-finding technique of Section 4.4.1,

where the number of layers in the stair-step approximation was limited by the number

of degrees of freedom, in this case there is no limit (other than computation time) to

the number of layers in the stair-step approximation, because the number of unknowns

remains three: c*, C, and Dt. If we then define the unknown vector X to be X =

[c*, C, Dt], with Y still defined as Y = [fi, f2, f3], with fi defined in equation 4.17,

we may use the root-finding technique developed in Section 4.4.1 to find the three

unknown parameters using data taken with the three-wavelength sensor. It could also

be possible to develop the optimization counterpart of this method, in analogy to the

techniques presented in Section 4.4.2.

The code for this algorithm is listed in Appendix H. The main program is called

estp.c and it is listed in Section H.4. All of the subsidiary routines listed in Sec-

tion H.5 are part of the program. It also uses all of the auxiliary routines, such as

those listed in Sections H.7 and H.6. A sample input file is listed in Section H.8.1.
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Chapter 5

Profile Measurements

5.1 Experimental Setup

In order to measure moisture profiles in pressboard, the sample had to be placed in a

controlled environment, which allowed moisture to diffuse in and out of the pressboard

from one surface. The other surface of the sample was sealed by the sensor itself. For

this purpose the experimental setup shown in Figure 5-1 was created. The stainless

steel chamber can be filled with transformer oil, whose moisture content can be varied

by bubbling wet or dry nitrogen through it, or the chamber can remain full of air

with controlled pressure and humidity, as was done in the experiments presented in

this chapter. Since intimate contact between the pressboard and the sensor needs to

be maintained, the sample has to be tightly squeezed from both sides. The teflon and

aluminum layers serve this purpose, while at the same time allowing mass-transfer

processes to occur at that surface through a multitude of holes. They are attached

to the aluminum base with insulating nylon bolts.

5.2 Oil-Free Pressboard under Vacuum

In order to test the experimental setup shown in Figure 5-1, we placed a sample of oil-

free pressboard in it and took continuous full-range frequency scans while the air in the

chamber was being evacuated. The data was taken only with one spatial wavelength,
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Figure 5-1: Experimental setup for profile measurements taken with the 3-A sensor

namely 1 mm. The one-dimensional parameter estimation algorithm, described in

Section 4.2, was used to calculate the complex permittivity of the pressboard.

The results are shown Figure 5-2. The bold lines in this figure correspond to a

frequency scan taken before the vacuum was applied. When exposed to the ambient

air, oil-free pressboard acquires an equilibrium value of the moisture content of about

5%. At such water concentrations pressboard is relatively conducting, as can be seen

in the figure. Two loss peaks are clearly visible in Figure 5-2, the first one at about

50 Hz, and the second one below 0.005 Hz. The dielectric spectra exhibit the behavior

predicted by the Kramers-KrSnig relations (see Figure 1-2 in Section 1.2.2), with an

elevation of E' corresponding to the loss peak in ", and a relatively flat region of E'

between about 0.05 Hz and 1 Hz, corresponding to the interval between loss peaks.

In order to understand the first spectrum taken after vacuum was applied, we

must be aware of the fact that the measurements at frequencies above 0.1 Hz happen

very quickly, in about five minutes, while the measurements below that frequency

take up the rest of the time of the one-hour-long scan. For example, twenty minutes

are needed to get the last three points of the sixty-four-point curve. Most of the data
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Oil-free pressboard drying under vacuum

15b

10

5

/

1

0.5

ro

p,

0

-0.5

-1

-1 

-2 -1 0 1 2 3 4

-2 -1 0 1 2 3 4
log(freq)

Figure 5-2: Dielectric spectra of oil-free pressboard under vacuum. The bold line is
the spectrum measured before vacuum was applied. The other three spectra shown
were taken at one-hour intervals after that.
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Layer Material Thickness [mm] Permittivity
0 Polymethyl Methacrylate 12.3 3.12 o
1 Low Density Polyethylene 0.066 2.26 o
2 High Density Polyethylene 0.028 2.26 e0
3 Parylene 0.005 2.70 o

Table 5.1: Layer structure for polymer experiment. Permittivity data is taken from
[4] at 1 kHz and room temperature.

points of the first frequency scan under vacuum were taken before water had had the

chance to leave the pressboard. However, the curve takes a plunge for frequencies

below 0.03 Hz, because at that time the moisture content and the conductivity of the

pressboard were already considerably lower.

The second and third spectra after vacuum was applied show the spectrum had

shifted to the left as moisture left the pressboard. Looking at the c" curve, we can

only see the right-side leg of the loss peak, which used to be at 50 Hz, but shifted

left by more than five units of logarithmic frequency for the second spectrum, and

six units for the third spectrum. The spectra for scans taken after the third hour of

vacuum are not shown, because the conductivity was so low that it was obscured by

noise.

The conductivity of dry oil-free pressboard is too small to measure (under about

5 x 10- 14 U/m), while the conductivity of dry oil-impregnated pressboard is still mea-

surable, as shown in Chapter 2. This indicates that the oil makes a major contribution

to the conduction of oil-impregnated pressboard.

5.3 Polymers

Before using the three-wavelength sensor to measure profiles in pressboard, we decided

to test it on polymers. We substituted the pressboard layer in Figure 5-1 with three

layers of polymers as listed in Table 5.1.

Figure 5-3 shows the gain and phase of the response of the three-wavelength sen-

sor. The phase angle remains close to zero for the entire frequency range, indicating
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Polymer Gain - Phase Data
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Figure 5-3: Gain-phase data taken with the three-wavelength sensor on polymers
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Figure 5-4: Permittivity of polymer structure as calculated from every wavelength of
the three-wavelength sensor

that the conductivities of these materials are too low to make a contribution. Us-

ing the one-dimensional parameter estimation routine (Section 4.2) we estimated the

properties of the polymer layer for every wavelength independently, in order to ob-

tain a qualitative picture of the permittivity distribution. The results are shown in

Figure 5-4. Only ' data is shown because the conductivity was too low to measure.

The longest wavelength in Figure 5-4 measured the highest value of the permit-

tivity, indicating that the topmost Plexiglas layer had a higher permittivity than

the other two materials, which is consistent with the permittivities of these plastics,

shown in Table 5.1 [4]. The effective depth of penetration of an interdigitated sensor

is typically one quarter of the spatial wavelength [3] [2]. The reach of the shortest

wavelength, A3 = 1 mm (Table 3.1), is therefore about 0.25 mm. The combined width

of layers 1 and 2 is less than 0.1 mm, which means that all three wavelengths reach

the Plexiglas layer. The thickness of the Plexiglas layer is about ten times larger

than the depth of penetration of the longest wavelength, and may be assumed to be
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Layer Assumed thickness Permittivity
0 oo 1.73 e0

1 0.066 mm 14.3 o
2 0.028 mm 0.48 o

Table 5.2: Poor results of applying the root-finding multidimensional parameter es-
timation algorithm to polymer data at 1 kHz

infinite.

The measurement in Figure 5-4 is consistent with the values of the permittivity

of the materials listed in Table 5.1. The Plexiglas layer shows some dispersion, since

the permittivities increase with lower frequencies. The shortest wavelength displays

the least pronounced dependence on w, because it is least sensitive to the properties

of the Plexiglas.

The data in Figure 5-4 seems to be more noisy than other dielectric spectra pre-

sented so far. This is due to the fact that the phase angle of the response is close to

zero and the noise compensating influence of having two pieces of data per measure-

ment is absent. The inversion algorithms can only rely on magnitude data, which has

a typical measurement tolerance of 0.5 dB, corresponding to 6% noise.

When we applied the root-finding multidimensional parameter estimation algo-

rithm (Section 4.4.1) to the data at 1 kHz, the results listed in Table 5.2 were ob-

tained. This set of values for the permittivities resulted in a better than 1% fit of the

calculated magnitudes to the measured magnitudes. Nevertheless the values yielded

by this method are not very realistic. Although the method worked correctly, the

results are poor, because the spatial dielectric profile seen by every wavelength is not

sufficiently distinct. All three wavelengths were primarily influenced by the Plexiglas

layer and as a result the signal-to-noise ratio of the method with respect to the other

two layers is quite low. For good results the unknown layers' thicknesses should be

of the same order of magnitude as the depths of penetration of the different wave-

lengths, so that the shortest wavelength is most sensitive to the closest layer, etc.

Some of these ideas were discussed in Section 4.3. Therefore the three-wavelength

sensor should work best on 0.5-2 mm thick layers.
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For the polymer experiment described in this section, the inversion algorithm that

yielded the most information was the one-dimensional parameter estimation.

5.4 Oil-Impregnated Paper

Preliminary measurements with the three-wavelength sensor on EHV-Weidmann

HIVAL pressboard exhibited inconsistency in the values of the permittivity between

the three wavelengths and the known properties of pressboard (from Chapter 2). We

realized that because of the textured surface of that kind of pressboard, an effective oil

layer was formed between the pressboard surface and the Parylene coating. Although

such a layer can easily be included in the model, it would introduce another unknown

and make the measurements less sensitive to the properties of the pressboard instead.

This is why we chose to conduct our profile measurements with Crocker paper,

which is a very similar cellulose insulating material with much the same applications as

pressboard. The Crocker paper samples had a very smooth surface, which eliminated

the problem of the extra oil layer. In addition to that, the smooth surface of the

paper makes it possible to stack many layers without worrying about empty space

left between the plies. The Crocker paper sample, with which we conducted the

experiments discussed in this section, was 0.25 mm thick. Sixteen plies of paper

added up to a total thickness of 4 mm, which is enough to warrant the approximation

of infinite thickness. The paper was impregnated with Shell Diala A transformer oil

by the regular oil-impregnation procedure described in Appendix C.

First we examined the oil-impregnated Crocker paper sample with the parallel-

plate sensor, described in detail in Section 2.1. The dielectric spectrum of the sample

was taken at room temperature. It is shown in Figure 5-5. This figure is included

mainly as a sanity check reference for all subsequent measurements with the three-

wavelength sensor on Crocker paper.

The dielectric spectrum of the Crocker paper sample in Figure 5-5 differs from the

spectrum of HIVAL pressboard (Figure 2-14) in that in addition to the dominant loss

peak, which occurs at frequencies below 0.005 Hz and is present in both materials,
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Dielectric Spectrum of Crocker Paper

Parallel-Plate Sensor
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Figure 5-5: Dielectric spectrum of oil-impregnated 0.25 mm Crocker paper at room
temperature
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Layer Thickness Permittivity | Conductivity
0 oo 1.55 o 7.49 x 10- 13
1 0.25 mm 3.29 o -1.50 x 10-12
2 0.25 mm 5.41 o 2.32 x 10- 12

Table 5.3: Results from applying the root-finding multidimensional algorithm to
Crocker paper data at 0.01 Hz

another loss peak is visible at about 0.2 Hz. This minor peak is responsible for the

curved shape of the e" plot and the point of inflection present in the ' curve between

0.01 and 0.1 Hz.

The first set of measurements with the three-wavelength sensor on the sixteen-ply

Crocker paper structure was conducted in air immediately after the oil-impregnated

samples had been dried under vacuum. The gain-phase data from this measurement

is shown in Figure 5-6. The results from the one-dimensional parameter estimation

algorithm, applied to the data from all three wavelengths with the assumption of a

single unknown homogeneous layer, are shown in Figure 5-7. The shortest wavelength

measured the highest value of e", suggesting that the layer closest to the sensor is

very highly conducting as compared to the bulk of the paper.

This high conductivity near the surface of the sensor may be attributed to the

absorption in the paper of moisture which had been adsorbed on the sensor surface.

We also applied the root-finding multidimensional search to the data at 0.01 Hz.

The results are shown in Table 5.3. The values of the permittivities are in the order

expected from looking at Figure 5-7, i.e. layer 2 had the highest value. It is disturbing

to see a negative value of the conductivity of layer 1. This phenomenon has a simple

explanation. The dielectric relaxation time of layer 2, which is closest to the sensor,

is
4.79 x 10- 11

= - = 12 -20.6 sec (5.1)
a 2.32 x 10- 12

corresponding to a relaxation frequency of

1
fe = 2- = 0.0077 Hz (5.2)
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3-X Raw Data on Crocker Paper
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Figure 5-6: Raw gain-phase data taken with the three-wavelength sensor on sixteen-
ply Crocker paper
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3-k Measurements on Crocker Paper
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Dielectric spectra taken with the three-wavelength sensor on Crocker
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Time[hours] e2 Oa2

1 10.2 o 1.41 x 10 -11

6 9.66 o0 1.29 x 10-11
12 9.57 co 1.23 x 10 "l

57 9.48 co 9.49 x 10- 12
86 8.45 co 6.24 x 10- 12

Table 5.4: Results of applying the multidimensional parameter estimation algorithm
to data at 0.01 Hz taken after the application of vacuum to oil-impregnated Crocker
Paper at time t = 0. The tabulated values are for the Crocker paper layer closest to
the three-wavelength sensor (layer 2).

This estimation was based on a layer 2 thickness of d2 = 0.25 mm. The highly

conducting interfacial zone may be much thinner and more highly conducting than

these estimates, corresponding to even higher values of the relaxation frequency. This

means that at 0.01 Hz the electric fields are shielded from the rest of the paper and

the parameter estimation for layers 0 and 1 becomes a victim to a low signal-to-noise

ratio.

After that, vacuum was applied to the chamber and continuous frequency scans

were taken every hour, in order to monitor the drying process. Figures 5-8, 5-9,

and 5-10 show the results from the application of one-dimensional parameter esti-

mation to the data from each individual wavelength. The figures show the dielectric

spectra measured by each wavelength independently at five specific times: 1, 6, 12,

57, and 86 hours after the application of vacuum. The dielectric spectra in these

figures shift to the left with time, indicating by the decrease in conductivity that

moisture is leaving the paper.

The application of the multidimensional search to the same data that yielded

the results in Figures 5-8, 5-9, and 5-10 at 0.01 Hz produced the results listed in

Table 5.4. The table lists the estimated dielectric properties of the layer closest to the

sensor (layer 2), showing the low frequency dispersion by its enhanced permittivity.

These results are in agreement with the trends seen in Figures 5-8, 5-9, and 5-10 and

provide a quantitative measure of the changes in conductivity associated with the

drying. As already discussed, this conducting layer greatly reduced the sensitivity of
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Drying Process of Pressboard

Large wavelength: X = 5.0 mm
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Figure 5-8: Dielectric spectra of oil-impregnated Crocker paper drying under vacuum,
taken with the 5.0 mm wavelength of the three-wavelength sensor. The five spectra,
in descending order, correspond to frequency scans taken at 1, 6, 12, 57, and 86 hours
after the application of the vacuum.
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Drying Process of Pressboard

Medium wavelength: X = 2.5 mm
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Figure 5-9: Dielectric spectra of oil-impregnated Crocker paper drying under vacuum,
taken with the 2.5 mm wavelength of the three-wavelength sensor. The five spectra,
in descending order, correspond to frequency scans taken at 1, 6, 12, 57, and 86 hours
after the application of the vacuum.
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Drying Process of Pressboard

Small wavelength: X = 1.0 mm
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Figure 5-10: Dielectric spectra of oil-impregnated Crocker paper drying under vac-
uum, taken with the 1.0 mm wavelength of the three-wavelength sensor. The five
spectra, in descending order, correspond to frequency scans taken at 1, 6, 12, 57, and
86 hours after the application of the vacuum.
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Figure 5-11: Permittivity and
wavelength sensor, calculated
function of time

conductivity of Crocker paper adjacent to the three-
by the multidimensional algorithm at 0.01 Hz, as a

this estimation to the properties of the other two layers. The results from Table 5.4

are plotted in Figure 5-11.
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Chapter 6

Conclusions

6.1 Universal Spectrum

The importance of the universal dielectric spectrum presented in Chapter 2 is that

a relationship may be developed between the dielectric properties and one or more

physical properties of a material. While Chapter 2 did present one such universal

spectrum, it also established a methodology of obtaining such spectra for a material.

The measurement method with the parallel-plate sensor can be used on any material.

While taking dielectrometry measurements with a parallel-plate sensor, it is im-

portant that the material is homogeneous. For example, our work showed that for

moisture to reach a uniform concentration in the pressboard sample, five days at 500°C

were needed.

A method of combining the data from all dielectric spectra was discussed in Sec-

tion 2.3.2, which allowed all thirty-five measurements to be merged into a single

universal curve. This process resulted in a relationship between the manner in which

the individual spectra are moved in order to form a single curve and the physical pa-

rameters being varied. This relationship could later be used in the opposite direction

to obtain moisture content or temperature information from a dielectric measurement.

For oil-impregnated pressboard the dielectric spectra were shifted horizontally

with frequency on a logarithmic scale, the shift being a function of the two physical

parameters under consideration, temperature and moisture content. An important
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conclusion of the analysis of this function was that the effects due to variations in each

of these two physical parameters were independent of each other (see equations 2.36

and 2.37).

The limited range of temperature variation, about 13% on an absolute temperature

scale, made it difficult to find the exact functional form of the relationship describing

the frequency shift due to temperature, although an Arrhenius dependence fit the

data quite well. Future work should include testing a wider temperature range.

The relationship describing the frequency shift due to moisture was difficult to

establish for a different reason. The calibration moisture measurement with the va-

porizer, described in detail in Appendix B, has a wide error margin. Therefore many

more data points in Figure 2-17 are necessary in order to establish the functional

form with confidence. When it is considered that performing measurements on one

pressboard sample takes a week to allow for the conditioning transient to die away,

it is clear why only seven data points are present in that figure. In order to find the

universal dielectric spectrum of a material together with its accompanying functions,

it is necessary to perform many more tests than we were able to do. However, we

did establish the procedure that must be followed in order to obtain such universal

spectra.

6.2 Parameter Estimation

Parameter estimation is the process of calculating the complex permittivities of the

materials above an interdigitated sensor from measured gain-phase data. It is the

reverse of finding the gain phase response of a sensor if the material above it is known,

often referred to as the forward problem. The forward problem is solved in Section 3.3

for the case of a number of homogeneous layers of constant complex permittivity. In

other words, the solution presented in that section is only applicable for cases where

the complex permittivity profile is a stair-step function of the spatial variable z.

Other spatial profiles can be found as solutions to equation 4.55 in Section 4.5.3.

Parameter estimation is performed numerically, because it is impossible to find
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closed-form solutions to the reverse problem. It can be implemented as iterative

root-finding techniques or optimization techniques. The simplest case is the one-

dimensional search, where the complex permittivity of only one parameter is un-

known.

Flexible sensors with different spatial wavelengths may be used to extract infor-

mation about the spatial profile of the dielectric properties of a material by combining

the results of several sensors of different spatial wavelengths.

We have developed three different methods of processing the data from measure-

ments with more than one wavelength: the marching approach, the multidimensional

search, and the multidimensional search with an assumed profile function. The first

method is simpler and more reliable and it is valid when there is one unknown inho-

mogeneous layer extending to infinity, but it is not applicable to arbitrary structures.

The marching approach and the multidimensional search approximate the profile

with a stair-step distribution. The multidimensional search may be done either as a

root-finding problem, in which case exact solutions are sought, or as an optimization

problem in which case the minimum of an error function is sought. The second option

allows for including data from more wavelengths than there are unknowns.

The multidimensional search with an assumed profile function attempts to include

in the estimation algorithm some knowledge of the physics of moisture diffusion, by

using a smooth function to represent the variation of the dielectric properties of the

pressboard across its thickness. It is a root-finding problem where the unknowns are

some parameters of this assumed function.

All of these methods need refinement, although we have successfully used them in

some applications. One of the major difficulties is that because the forward problem is

very non-linear, the multidimensional algorithms may become unstable or otherwise

fail to find a root if the initial guess is too far from the solution. This is why it is very

important to start with a good first guess to a multidimensional estimation problem,

perhaps from applying the one-dimensional algorithm to every individual wavelength

first.

Which of these parameter estimation routines is preferred depends on the charac-
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teristics of the particular problem.

6.3 Moisture Profiles

We have used the ideas about measuring dielectric profiles, developed in Chapters 3

and 4, on measurements with the three-wavelength sensor on polymers and oil-

impregnated paper. One of the obstacles in measuring spatial profiles by probing

the material from only one surface is that a highly conducting layer near the sur-

face will limit the electric fields from penetrating into the material and reduce the

measurement's sensitivity to the bulk dielectric properties.

Altogether the experiments confirm the feasibility of the method of calculating

dielectric profiles. Depending on the application a choice must be made about the

spatial wavelengths of the interdigitated sensors, the frequency range, and the most

appropriate parameter estimation algorithm, so that the greatest amount of informa-

tion about the material properties is extracted from the measurements.

Future work should include more diagnostic profile measurements with polymers

or other well known materials, selecting their thicknesses in a way that would make the

estimation methods sensitive to all layers. Slightly conducting polymers would be a

good choice, because this would test the methods under more general conditions than

very insulating materials could. More experiments on measuring moisture dynamic

processes in pressboard with the three-wavelength sensor are also needed. When

confidence is gained in the use of the simpler parameter estimation methods, the

method of using an assumed profile function, presented in Section 4.5, should be

further studied.
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Appendix A

Corollaries of the Kramers-Kronig

Relations

Several times in this thesis some properties of the dielectric spectra of materials were

used, which follow directly from the Kramers-Kr6nig relations. In this appendix we

present the derivation of these relations and some of their immediate consequences. In

the following discussion the following symbols are used: e is the dielectric permittivity;

em is its value for frequencies approaching infinity; is the conductivity; ao is the

DC conductivity; ie = e - je' is the complex permittivity; w is the radian frequency.

We also define:

' = = OX'+Coo (A.1)

E, = -=eoX+ -o (A.2)

X, = X'- i" (A.3)

The above definition of the complex dielectric susceptibility differs from the usual

convention in that it excludes the frequency-independent terms due to e, and go. In

our definition, X' represents only the dispersive part of the complex dielectric suscep-

tibility. This definition is made because, as we prove later, the real and imaginary

parts of X* are a Hilbert transform pair, and the Hilbert transform of a constant is
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zero.

For an ohmic material, whose e and a are independent of frequency, X = 0,

e = e, and a = 0. The Kramers-Krbnig relations are useful in describing dispersive,

i.e. non-ohmic, behavior.

The dispersive part of the Polarization Density P of a material depends on the

electric field intensity E in the following way:

P = oX*E (A.4)

Since we are assuming that P and E always point in the same direction, we'll drop the

vector symbols and treat them as scalar quantities. Let us suppose that the applied

electric field is an impulse of unity area:

E = 6(t) (A.5)

Then the time response of the dispersive polarization density will be described by the

impulse response function h(t):

P = oh(t) (A.6)

Since X' describes the polarization density in the sinusoidal steady state, we can see

that the dielectric susceptibility of a material as a function of frequency is the Fourier

transform of the time-domain impulse response h(t):

X*(w) = JF{h(t)} (A.7)

Causality places a rigid constraint on h(t). Since there can be no response before

a drive is applied, we know that h(t) = 0 for t < O0. We can therefore write:

h(t) = h(t)u(t) (A.8)
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where u(t) is the unit step function defined as:

u(t)= 0 t (A.9)

If we take the Fourier transform of both sides and let f = w/(27r), we obtain:

x'(f) = x'(f)* [2(f) + f] (A.10)

1
x*(f) = x'(f) * Jf (A.11)

,+oo 1
x'(f) - ix"(f) PJ [X'( ) - jx"(77)](f - 7 (A.12)

where the asterisk * indicates the operation of convolution. If we now equate the real

and imaginary parts of the left and right sides of equation A.12, we obtain:

1 p+0o X,O )dx'(f) = - P (A.13)

1 00 x'(rf)
x"(f) = - Pi X )d7 (A.14)" = -o f-,q

Equation A.14 is in the form of a Hilbert transform and X' and X" are said to be a

Hilbert transform pair [10, pp. 479]

The Kramers-Kr6nig relations simply rewrite these equations to obtain [1, sec. 2.8]:

1 _+00 OX) _
x'(w) = - + x"(z) (A.15)

7r -00 z-W

x "() = --!J X(z)dx (A.16)
' -oo X - W

The P in front of the integral symbol indicates that this is a Cauchy principal value

integral, i.e. the imaginary contributions to the integral, which come from passing

through the pole at z = w, and which cancel [8, sec. 10.15], are ignored. If we take

into account that X' is an even function and X" is odd, which is a direct consequence
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of h(t) being real [10, pp. 379], we may rewrite these relations in the following form:

x () 1 +00 X() 0 "() x= +00 X"() 1
x'(W) x= - d+ + p X dx

1-00 ox -( r x- o x -[ X"(x)dx + pJ X()-
r o x -w o x -

= r[p % ( )d + pJ X -- ( )dxV o - Wz o -w

= 2 p+00 x"(x) d (A.17)
7r x 2 - W2

%x"(,W) = I p+ X'()d rd I X'(Z) dz +0 '(dx
X"(w) da: = n [·i 0 a:--w fO x - I

r -o0 x-W r -00Z- o -w
= N_' X')d - 1 (+ x')d]

= __ 1r/pmXt z)d :+d '( z) d71 ' --.l -- W O -- 
1 o - ( o 

= _lpJ ,((_ 1 + 01 )d
ir Jo''\ +w x:-w

_ P % 2 dz (A.18)r o x -w

A.1 Parallel Shifts

The Kramers-Kr6nig relations require that when plotted on a log-log scale, a shift

in the plot of X' must correspond to a shift in the plot of X" by the same amount

both horizontally and vertically. From equations A.15 and A.16 it is clear that a

constant multiplying X' would change X" by the same amount, as the constant can

be pulled out of the integral. A vertical shift on a logarithmic scale corresponds to

multiplication by a constant.
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Now examine the horizontal shifts, which correspond to multiplying the frequency

variable by a constant. For example, what Xl corresponds to Xi(w) X"(kw)? If we

make the substitution x' = kx, we may write:

2 pf- 1x_(x) 2 pp xx" (k)
= o 2 _,2 =r Jo x 2 2 2

= 2 -P (x'lk)X"(x') d 2 x () dz' x'(kwXA.19)
o (X'/k)2 - w2 k r Jo 2 - (wk)2

Similarly

2w cof X (X) 2w 00 X'(kxx%'(w) = IA d =2 - %( )2 dx
?r X2 - W2 71 Z 2 - W2

2w /o ( (x') - 2W d' = (')2@- Pl°° (%'() dz' = 2@ plot k% () dz' = x"(ko~.20)
r (x'/k)2 - W 2 k: r o2 - (k)2

This proves that horizontal shifts in X' and X" must also be of the same magnitude.

A.2 Same Slopes

On a log-log plot, to the right of the rightmost peak of X", both X' and X" decrease

with the same slope. The slope of decrease to the right of a loss peak is negative

and ranges between -1 and 0 [1]. It can be proved that if for w - 0, X" wm",

-oo < m < 1, then as o - oo, X" oc wn and X' Oc on with the same slope n. In this

appendix an example of a typical dielectric spectrum is illustrated, which shows this

property.

Suppose X" of a dielectric consists of a single loss peak at wp and follows the power

law

x"K K (A.21)
W+Wp

i.e. the magnitude of the slope of decrease on either side of the peak is 1/2. Paper

has been observed to have a dielectric spectrum which can be expressed in a form

similar to equation A.21, and this is why we chose this formulation in this example
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Figure A-1: This is a plot of equations A.21 and A.22 for wp = 1 and K = 1. As
w -- o both curves decrease with a slope of -1/2.

[11, Fig. 5.14 and 5.15]. Let us then perform the integration using equation A.17:

x'(w)
t xd- KVx+V
z2 _ W2 X + p

(w -pw)
1V(W2 W2)

(2 - [2)

+ 2v(w + wp) tan ' - -
w 

+2wp ]dz
ax + 'w,,

- wp)In - - + 2
x - w

4wp V tan - 1

K(W2

-r(w,, w)
[2 ( ) 4w ]

-2vl-(w+ wp - r4,2 2 r_

(A.22)
a2 - W2P
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For w - oo both X" and X' are proportional to l1/i/. A log-log plot of these

functions is shown in Figure A-1.
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Appendix B

Water Vaporizer Moisture

Measurements

In order to measure the moisture content of pressboard sample, it is placed in the oven

of a Mitsubishi VA-05 Vaporizer, where it is subjected to an elevated temperature,

usually between 100°C and 200°C. Dry nitrogen gas is flowed through the oven and

bubbled through the titration cell of a Mitsubishi CA-05 Moisture Meter, where water

is trapped and its quantity is measured by Karl-Fisher titration.

In an attempt to determine the optimal temperature of the oven, we took a series of

measurements on pieces of the same oil-impregnated pressboard sample. The results

are displayed in Figures B-I, B-2, and B-3.

The moisture meter determines the total quantity of moisture introduced in the

titration cell by monitoring the speed of titration and integrating it over the duration

of the measurement. There is a background level of titration, due to small amounts

of moisture entering the system through leakages and within the nitrogen gas. The

measurement terminates when the speed of titration drops to a level slightly higher

than the background level.
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Vaporizer Measurements
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Figure B-l: These plots show how the measured pressboard moisture and the duration
of titration depend on the temperature of the oven. They were taken with 1mm thick
HIVAL pressboard. Two sets of data were taken on subsequent days. The increase in
the readings on the second day suggests that the samples, which were stored in air,
absorbed some moisture during the course of the day. In subsequent measurements
samples were stored under oil and no appreciable change in the moisture content was
observed.
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B.1 Effect of Sample Thickness on Moisture Mea-

surement

While testing for the optimal temperature, discussed in the next section, we performed

measurements on samples of the same moisture content, but different thicknesses. In

order to ensure that the samples did indeed have the same moisture content, we

impregnated a piece of 1 mm thick pressboard by subjecting it to vacuum at 70°C

(see Appendix C) for an unusually long period of time (more than 48 hours), thus

ensuring that equilibrium with the vacuum was reached. From this piece of pressboard

we then created samples of various thicknesses by peeling off a different number of

plies.

The results of this set of measurements are shown in Figure B-2. This figure

clearly shows that the thinner samples produced higher readings. One of the 1 mm

samples, shown with an asterisk in Figure B-2, was split in many thin layers before

being placed in the oven. Its measured moisture content was much higher than that

of the other 1 mm samples and comparable to the thinnest samples. This indicated

that the difference in the readings of the samples of different thicknesses was not due

to a difference in their moisture contents, but to the fact that the rate of diffusion of

water was so low for the thick samples, that it became comparable to the background

titration level and was not properly registered.

We concluded that as a standard procedure all pressboard samples should be split

into many plies before they are placed into the vaporizer oven. We have followed this

procedure in all measurements described in Chapter 2.

B.2 Optimal Temperature

We expected that at lower temperatures (100-140°C) the method would underesti-

mate the amount of moisture, as not all of the moisture would diffuse out of the

sample by the end of the measurement and the rate of water liberation might be

comparable to the background level. At high temperatures (>2000°C) cellulose be-
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Vaporizer Measurements
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Figure B-2: These plots show how the measured pressboard moisture and the duration
of titration depend on the temperature of the oven. Samples of different thickness of
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clear that the measurement is greatly affected by the thickness of the samples.
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gins to disintegrate, liberating bonded water, thus causing an overestimate in the

measurement. We therefore tried to determine the range of oven temperatures when

neither of these extreme phenomena occur.

Once we had established that for reliable moisture measurements of pressboard

the samples had to be thin, we conducted another set of experiments with 82 /m thick

Crocker paper, which is another similar insulating cellulose material. The results are

shown in Figure B-3. We concluded that if the oven temperature is between 100°C

and 200°C, it does not affect the value of the moisture measured. The duration of

titration decreased with temperature in that range. Therefore temperatures at the

higher end of the operating range (180-200°C) were the preferred choice, as they lead

to lower titration times. The uncertainty of the measurement, calculated from the

data in Figure B-3, was 17%.
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Vaporizer Measurements
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Appendix C

Procedures for Oil-Impregnation

of Pressboard and Paper

This appendix describes the procedures we have followed for impregnating our press-

board and paper samples with transformer oil. We have made an attempt to simulate

the impregnation procedure that is followed commercially for the manufacturing of

high-power transformers.

There are two stages to the process. The first stage involves drying of the oil-free

pressboard under vacuum. This is done at an elevated temperature to facilitate the

diffusion of moisture as it leaves the pressboard. The second stage entails immersing

the dry pressboard in transformer oil, which has been heated to speed up its absorp-

tion. The pressboard is kept under vacuum right up to the time it is immersed in the

oil.

Figure C-1 shows the structure of the oil-impregnation facility that we have used.

The two interconnected chambers are made out of stainless steel. All openings are

vacuum-sealed. Valves 3 and 4 are three-way valves that have three settings: closed;

center-left; and center-right. The chamber to the right of the figure is used to store

the transformer oil and may be filled/emptied via the two inlets at the top and the

bottom by appropriately setting valves 3 and 4.

Since only the oil-impregnation chamber itself is subjected to vacuum, only its

vacuum probe is connected to a meter. The temperature probe is used by a tem-
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Oil - Impregnation Facility

Figure C-1: This is the structure of the apparatus used in the process of impregnation
of pressboard and paper samples with transformer oil. Its operation is described in
the text.

144



perature controller, which has the dual function of displaying the temperature and

controlling the heating tape so as to maintain a constant pre-specified temperature.

Here is the sequence of events associated with impregnating a pressboard or a

paper sample: At first valves 1 and 2 are open, valve 3 connects the oil chamber with

the inlet to the air, and valve 4 is in the closed position. The samples are placed in

the empty impregnation chamber through the removable front flange, which is then

tightly closed. A vacuum pump is connected to the vacuum inlet. The heater is

turned on before the pump is, because heat transfer to the sample is much better

when the chamber is full of air rather than vacuum. After the desired temperature is

reached, typically 70°0, the vacuum pump is turned on. We let the pressure decrease

to the lowest possible value, which is about 100 mTorr, (20 mTorr on good days),

and keep the sample under vacuum for the desired length of time, typically overnight.

At this point valve 1 is closed and the pump is turned off and disconnected. It is

important to follow this sequence, because otherwise oil may enter the vacuum pump.

Now valve 4 is set to connect the oil storage chamber to the oil-impregnation chamber,

thereby letting the room air pressure push the oil in. The sample is kept under oil,

still at a high temperature, for about two hours. After that the oil is forced out of

the impregnation chamber by connecting a nitrogen gas source to the vacuum inlet

and opening valve 1. When the chamber has been emptied, valve 4 is closed, which

returns the unit to its original state. The pressboard samples may then be extracted

through the same flange in the front.

A concern has been expressed that since the oil is continuously exposed to the

ambient air, it will saturate with water and introduce a large amount of moisture

into the pressboard as the oil itself enters the pressboard. This is not a concern,

because the solubility of water in oil is so small compared to its solubility in cellulose,

that the amount of water present in the oil which enters the pressboard is truly

negligible compared to the amount of moisture still present in the cellulose at the end

of the drying stage.

The parameters of the impregnation process presented in this appendix are only

approximate. The exact conditions are appropriately listed in the text. The materi-
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als used were EHV-Weidmann HIVAL pressboard, 82 um Crocker paper, and Shell

Diala A transformer oil.
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Appendix D

Controller

In this appendix we present information about the operation of the controller, a

microprocessor-based data acquisition system. It was developed by Mr. David Otten

and full instructions for its operation may be obtained from the MIT LEES staff.

The controller is capable of two types of data acquisition: the Data Logger, which

we have not used, and Gain-Phase Measurements (GPM). The controller commu-

nicates to a computer via an RS-232 line, which is used both to send appropriate

commands and to receive data. Table D.1 presents a summary of commands recog-

nized by the controller. Both upper case and lower case letters are acceptable.

The controller has a total of four channels for its GPM operation, i.e. it is capable

of processing four independent inputs. It provides all four channels with a driven

AC voltage of complex amplitude Vd. It performs a frequency scan, i.e. measure-

ments at all frequencies in a specified range. The maximal range of frequencies at

which the controller is capable of performing GPM measurements is from 10-2.3 Hz

(; 0.005 Hz) to 104 Hz. Two consecutive measurements are at frequencies 0.1 apart

on a logarithmic scale, corresponding to a ratio of 1 0
° '1 - 1.259. At every frequency,

the controller waits for a certain number (3-7) of cycles to complete so as to ensure

that sinusoidal steady state is reached, at which point it records the magnitude and

phase angle of the ratio between the input voltage and the driven voltage, in decibels
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and degrees respectively:

(D.1)Gain = 201og D1

Phase = 180 (D.2)

The input impedance of the controller is not high enough for applications in which

very insulating materials are studied. Therefore buffering of the input signal is needed

and that is provided by the interface box, described in Appendix E. In addition to

gain and phase data, another piece of information recorded by the ccutroller is the

offset voltage, which is the DC component of the input voltage. This DC buildup

is due to charge accumulated on the input capacitance from the input current of

the operational amplifier. This phenomenon is further discussed in the appendix

describing the interface box. The controller may be offset adjusted.

Only one controller is at this time able to be connected to the interface box of

the three-wavelength sensor described in Chapter 3 and it is currently connected

to the computer "LEES-OMEGA-K" via the port name ttyaf. The controllers were

designed to accommodate two channels per interface box connector, but this controller

had some extra wiring added so that three channels could be connected via the same

cable.

As data is collected by the controller, it is stored in its internal memory until this

memory buffer is explicitly cleared. The controller may be set to begin new measure-

ments periodically, which is extremely useful if the experiment requires monitoring a

process as it evolves with time. However, in this mode the controller will quickly run

out of memory, after which it will stop recording data. If a single channel is enabled,

e.g. when the parallel-plate sensor of Section 2.1 is used, the controller will run out of

memory after thirteen full frequency scans. If, on the other hand, three channels are

enabled, e.g. for three-wavelength sensor measurements, the memory will be enough

to store data for only five full frequency scans.

To avoid this problem, a program was developed which automatically stores the
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All commands are made up of an opening bracket [, two letters, optional parameters for
some commands, and a closing bracket ]. For those commands which allow parameters, the
current status of the parameters will be displayed if they are omitted. If the parameters
are included, they will be updated. All the parameters or none of them must be used.

Fixed parameters - not supported, not supported, channel 1 delay, channel 2 delay, chan-
nel 3 delay, channel 4 delay

GPM parameters - starting frequency, ending frequency, excitation level, channel 1 en-
able, channel 2 enable, channel 3 enable, channel 4 enable, diagnostic enable, auto
trigger enable

Data Logger Parameters - channel 1 gain, channel 2 gain, channel 3 gain, channel 4
gain, channel 5 gain, channel 6 gain, channel 7 gin, auto zero enable, auto trigger
enable

Date and Time parameters - year, month, day, hour, minute, second

Communication parameters - RS-232 baud rate, telephone number, data storage in-
terval, data dump interval, call enable

GPM header - channel number, temperature, year, month, day, hour, minute, second

GPM data - frequency, magnitude, phase, offset, gain

Data Logger data - channel 1 data, channel 2 data, channel 3 data, channel 4 data,
channel 5 data, channel 6 data, channel 7 data, year, month, day, hour, minute,
second

Status - master auto-trigger flag, not supported, Data Logger measurement, not sup-
ported, GPM measurement, not supported, not supported

Table D.1: Summary of Controller Commands
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Command Description
[FP,parameters] read/set fixed parameters
[GP,parameters] read/set GPM parameters
[LP,parameters] read/set data logger parameters
[TG] trigger gain phase meter
[TL] trigger data logger
[GD] read GPM data
[LD] read logger data
[CS] check status
[AM] abort any data logger and GPM measurements in progress
[CM] clear memory buffer
[DT,parameters] read/set date and time
[CP,parameters] read/set communication parameters
[ME] master auto-trigger flag enable
[MD] master auto-trigger flag disable
[VE] software version number



data from every scan into a file and clears the memory. It is called tw.c and is

presented in Section G.2. The other way of communicating with the controller is the

program kermit, available at most UNIX systems. If the automatic program tw.c is

used, it is recommended that a low baud rate is set, e.g. 1200, so that transmission

errors are reduced to a minimum. It is usually all right to use a baud rate of 9600

when using kermit, because any communication problems would be easily detected

visually.

Since the gain measured by the controller may vary greatly in the range of fre-

quencies of interest, the controller may have to switch between different modes of

pre-amplification. It has been noted that such transitions between modes may re-

sult in erroneous data at a specific frequency, manifested as 'kinks' in the otherwise

smooth curves relating the gain and phase response of a system to the frequency.

These events are merely experimental artifacts and no physical significance should be

attributed to them.
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Appendix E

Interface Boxes

The interface boxes' main function is to buffer a voltage signal, before it is processed

by the controller and to raise its input impedance. The buffering is accomplished

in two ways: a unity-gain-connected operational amplifier provides a very high input

impedance at the sensitive node; and the buffered signal thus obtained is used to guard

the sensing electrode and wiring. The guarding of the electrode is accomplished via

special guard electrodes, present both in the parallel-plate and the three-wavelength

sensors. The connecting cable is triaxial, with the middle connected to the guard

potential. Since the sensing and the guard electrodes are always at the same potential

(for frequencies less than the dominant pole of the operational amplifier), any parallel

parasitic impedance is effectively multiplied by the gain of the amplifier, thus making

its effects negligible.

E.1 Parallel-Plate Sensor Interface Box

The schematic diagram of this box's circuit is shown in Figure E-1. The input of

the box is loaded with a parallel RC pair, whose values are precisely known. It is

crucial for the interpretation of data that this load impedance be known. Therefore

the values chosen for these elements are such that the parasitics associated with the

operational amplifier are negligible. The relay is used to discharge the load capacitor

every time a measurement is completed, in order to prevent saturation. The transistor
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Triax center

Figure E-1: Interface box circuit diagram

is used to drive the relay.

The value of the load impedance, as well as the overall performance of the interface

box, may be tested by connecting a known reference lumped-element parallel RC pair

between the driven potential and the sensing input and then processing the data with

the program testrc.c, described in Section G.4. The output of the program are values

for the estimated load impedance at a full range of frequencies. If the box is operating

properly, these values should be close to those in Figure E-1 and independent of the

frequency of excitation. Figure E-2 shows the output of the program testrc.c when

applied to a test frequency scan, where the load cell was replaced by a parallel RC-pair

of values of RT = 48.9 GQ and CT = 120 pF. The bottom plot shows the estimated

values of CL and RL, also listed in Table E.1.

E.2 Three-Wavelength Sensor Interface Box

The circuit of this interface box is essentially identical to that shown in Figure E-1,

but repeated three times, one circuit for each channel. Instead of BNC connectors
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Load Parallel-Plate Three-Wavelength Sensor
Impedance Sensor 5.0 mm 2.5 mm 1.0 mm

C [pF] 123 6.47 37.6 226
R [G0] 9.78 oo oo oo

Table E.1: Interface Box Load Impedances

this box features a special connector, which fits the leads of the three-wavelength

sensor (see Figure 3-1). It also differs in the load impedances, as listed in Table E.1.

As discussed in Section 2.1.3, no sensitivity is lost when no load resistance is present.

The value of 6.47 pF in Table E.1 is the parasitic input capacitance of the operational

amplifier. Capacitors were added at the input of the other two channels with values

that would make the gain of the three-wavelength sensor in air close to -40 dB. The

input resistance of these amplifiers is extremely high (1012 fQ or higher) and has no

influence on the measurements even under worst case conditions (see Section 3.4).
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Appendix F

Mathematical Examples

Sets of Equations with Real Unknowns That Require Extra Degrees of

Freedom

We present an example that would illustrate the principles discussed in Section 4.1.2.

The idea is that if a set of real unknowns always appear in real clusters in every

equation of the set of complex equations, then either there is no solution, or more

equations would be needed for a unique solution.

Consider the following set of equations:

rlr2z + (2 + j) = (F.1)

(r +r 2)z - (6+3j) = 0

According to the general rules from Section 4.1.2, a total of four degrees of freedom

are needed, two for the two real variables rl and r2 and two for the complex variable z.

The two complex equations should then suffice to determine the unknowns uniquely.

However, eliminating z from the second equation by substituting the first into it yields

rr 2z+(2+j) = (F.2)
r + r2 3 = 0

r1r2

which clearly shows that another equation is necessary to find unique solutions for r1

and r2. Information has been lost in the requirement that (6 + 3j)/(-2 - j) = -3 be
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a real number. If it had not been so, the set of equations would have had no solution.

For the set of equations F.1 the real clusters, are (rIr2) and (rl + r2 ).

As a counterexample, the set of equations

rl+r2z + (3+j) = 0(F.3)
(r, +r2)z - (6+3j) = 0

can easily be solved to yield r = -1, r2 = 0.25, and z = -8 - 4j.

Exact Determination of a Function of a Known Form with a Limited Num-

ber of Degrees of Freedom

This is the idea that motivates the method of parameter estimation with an assumed

profile function, discussed in Section 4.5. Suppose that we know that a function f(z)

has a parabolic dependence on z of the form

f(z,p) = apz2 + bz + cdVi (F.4)

and that we are able to measure the result of some operation on f for any value of

the parameter p, e.g. a simple integration

F(p) = f(x,p)dx (F.5)

where xl and z 2 are constants. The results of the measurements give us three values

for F(p), say F1, F2, and F3, for p = P1,p2,P3 respectively. This results in the set of

equations:

F(pl)= F1

F(p2) = F2 (F.6)

F(p3) = F3

which would let us solve for a, b, and c, resulting in an exact determination of the

function f. Only three degrees of freedom were necessary in this case to yield an

error-free solution. A stair-step approximation seems clearly an inadequate option, if
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the exact form can be obtained. This is what has been gained by introducing a priori

knowledge about the functional form of the solution in the problem.

To make the process even clearer, let us give the parameters numerical values.

So, here is the problem from the beginning: We have a function of x, which when

integrated between zl = 0 and z2 = 1 for three different values of some parameter

p = 0, 1,4 yield the values -1, 4/3, and 13/3 respectively. If we assume the functional

form of equation F.4, we may integrate it to obtain the following set of equations:

b = -2

2a+3b+6c = 8 (F.7)

8a + 3b +12c = 26

which can be solved to give a = 1, b = -2, and c = 2.
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Appendix G

Program Listings for Data

Processing Software

G.1 Description

All programs listed in this appendix are summarized in Table G.1. The rest of this

section provides somewhat more information.

G.1.1 Data Acquisition

testrc.c This program reads a file generated by the controller box and outputs to

stdout plotting commands to plot the estimated load resistance and load capacitance,

when the corresponding test values are known. Used for interface box diagnostics.

tw.c This program takes data at regular intervals and stores it in files with a name

given as an argument with subsequent numbers appended to it. It directly accesses

the controller via the port ttyaf.
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Name Description

testrc.c Calculates load impedances
tw.c Records data for the controller
clean.c "Cleans controller data
divide.c Splits data file according to channel number
do.c Manipulates data files
domerge.c Merges data files
nothing.c Sinks data
only.c Eliminates noise from data files
rev.c Reverses a file
separate.c Separates data files according to scan
inv.c Calculates E' and e" from controller data
lstsq.c Performs least-squares fit
out2e.c Interprets output of parestsx
rcinv.c Calculates RT and CT from controller data
extrapolate.c Extrapolates data by power law
fit.c Fits data to power law
fith.c Calculates logarithmic frequency shifts
fitm.c Fits data to power law
kkl2.c e - e"' via Kramers-Kr6nig
kk2l.c f" -- via Kramers-Kr5nig
maximum.c Finds maximum in an array of data
powerfit.c Fits data to power law
reverse.c Reverses an array of data
senl2.c Sensitivities of ZT - ZL process
sen2l.c Sensitivities of ZL - ZT process
ecomp.c Plots and compares e* data
eplot.c Plots e* data
eplotx.c Plots e* data
eplot3.c Plots e* data for three-wavelength sensor
eplot3x.c Plots e* data for three-wavelength sensor

Table G.1: Summary of data processing software
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G.1.2 Low-Level Data Processing

clean.c This program reads a file generated by the controller box and outputs to

stdout the frequency, gain, and phase data, suitable for input files to the parameter

estimation routines. If the phase is positive it is set to zero.

divide.c It is used on files produced by the controller box if more than one channel

is active. The file must be separated first. The output files have names with an

extension according to the number of the channel. If an option '-b' is specified, a

special file naming convention is used: channel 1 starts with 'p', channel 3 starts with

'f'. Source file in this case must start with 'b'.

do.c This is a useful little program which manipulates pairs of data. It takes its

input from stdin and writes its output to stdout. The command line should indicate

what to do with the numbers. Key letters are:

a (add) followed by a number, add the number

s (scale) followed by a number, scale the number

I (loglO) take its loglO

p (powlO) take its antiloglO

n (nothing) leave number as is.

Some examples:

do 1 a -1.0 < infile > outfile

do n 1 < infile > outfile

do a 3.14 s 2.75 < infile > outfile

extrapolate < infile I kk I do 1 n > outfile

domerge.c This program takes as an argument a template data file which consists

of pairs of numbers on individual lines. It outputs to stdout in the same format, but

with the first number replaced by a number read from stdin.
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nothing.c This program serves as a data sink for useless output. If the standard

output of a program is not needed and it is a waste to send it to a file or to a screen,

it can be piped into this program.

only.c It cuts off parts of a data file. lb data points from the end are discarded. On

the front side, all data points with x-coordinate greater than rb are also discarded.

In this sense lb and rb are not equivalent: one is an integer and the other is a float.

It is assumed that the x-coordinates are in descending order. Usage: only <file>

<lb> <rb>

rev.c This program reverses the lines in a file.

separate.c It takes a file which contains output of the controller box and separates

it into individual files which contain one set of measurements each. The original file

name must end on 'x' and the new files have the 'x' substituted with consecutive

letters of the alphabet. In order for this to work, the original [gd] command must

be on a new line. An optional argument specifies the maximum number of files to be

written. Usage: separate <file> [max]

G.1.3 High-Level Data Processing

inv.c It takes a file produced by the controller box and outputs two files containing

data for ' and " with extensions .el and .e2 respectively. An optional second

argument specifies a setup file which contains information about the interface box.

The default is /u/yanko/. invsetup.

Istsq.c This is a function which does a least-squares fit of a line to a set of data

points. It is used by other routines.

out2e.c It takes as an input an output file of parestsxl and produces two output

data files containing the data for e' and e" with extensions .el and .e2 respectively,
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replacing the .out extension of the input file.

rcinv.c It takes a file produced by the controller box and outputs two files containing

data for R and C with extensions .rr and .cc respectively. A file .invsetup with

information on the interface box must exist in the home directory /u/yanko.

G.1.4 Data Interpretation

extrapolate.c This program takes a set of data representing the dependence of e"

on frequency and extrapolates the data assuming values for the slope on either side

of the peak to be of equal magnitude and opposite sign. The data should then be

easy to integrate using the Kramers-Kronig relations to obtain values for I'. The data

is read from stdin and output to stdout. The value of the slope is printed out to

stderr.

fit.c This program fits a power-law curve to a set of data supplied from stdin. It

has an optional argument specifying the value of m. The program outputs the values

of k and fp to stderr and pairs of data points along the fitted curve to stdout. The

function of the curve being fitted is:

k

fith.c This program takes a reference file and a test file and computes by how much

the latter would have to be shifted in frequency to produce a least squares sum. The

input files have extensions .r2 and are the reversed versions of .e2 files. They need

to be reversed with the program rev.c.

fitm.c A version of fit.c which also attempts to fit a value for m.

kkl2.c This program uses the Kramers-Kranig relations to calculate e" from e'.

Data is read from stdin and output to stdout. The integration contains a singularity

about the point of frequency being calculated. Therefore the integration is done in
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three parts: a small interval df on either side of f is neglected, because the area

around the singularity cancels out. For this cancellation to be valid, the integrand

must stay constant. Therefore df is taken to be one step of frequency to the left.

The integration is then carried out independently to the left and to the right of this

interval. Since df would be greater on the right side of the singularity, due to the

logarithmic step in frequency, there is a need to add on the thin sliver equal to the

difference between the two df's on either side. The numerical calculation uses the

trapezoidal rule.

kk2l.c Exactly the same as kkl2.c, but it calculates e' from e".

maximum.c This function is used by other routines to find the largest number in

an array of numbers.

powerfit.c This function is used by other routines to perform a non-linear least-

squares-fit to a data set according to the following formula:

k
Y - ()n (fp)m

reverse.c This function reverses the order of elements in an array.

senl2.c This is a program which plots the relative sensitivity of the inversion pro-

cess from ZT to ZL (see Section 2.1.3 to variations in the phase data. Its output is

the file out, which is ready to be plopped.

sen2l.c Same as sen2l.c, except the inversion process of ZL to ZT is considered.

This program was used to generate the data in Figure 2-5.

G.1.5 Plotting

ecomp.c This program when piped into plop plots the .el and .e2 files of the given

argument. It compares two sets of files by plotting them together.
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eplot.c, eplotx.c These programs plot the .el and .e2 files of the given argument.

The second program has predetermined axis scales.

eplot3.c, eplot3x.c These programs when piped into plop plot the .el and .e2

files of the three wavelengths of the three wavelength sensor. The files

name.l.el name.2.el name.3.el

name.l.e2 name.2.e2 name.3.e2

must exist in that directory. The second program has predetermined axis scales.

raw.c, raw3.c These programs plot the raw gain-phase-offset data produced by the

controller for the parallel-plate and the three-wavelength sensors respectively.
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G.2 Data Acquisition

test; .c

# include <stdio.h>

# include <math.h>

# define PI 3.14159265 /* PI */
# define EOL '\n' /* end of line definition */

# define MAXPTS 500

/ * This program reads a file generated by the controller boz and outputs

to stdout plotting commands to plot the estimated load resistance and

load capacitance, when the corresponding test values are known.

Yanko Sheiretov 9/11/92

main(argc, argv)

int argc;

char *argv0;

char

FILE

double

int n, i;

junk;

*fpses;

ch, rl, cl, 4MAXPTS], g[MAXPTS], p[MAXPTS], o, dt, dg, dp, dx;

20

if (argc != 2) {

fprintf(stderr, "Usage: \ttestrc <file> I plop\n");

exit(); }

if ((fpses = fopen(argv[1],"r")) == NULL) {
fprintf(stderr, "Error: cannot open %s\n",argv[1]);

exit(l);

}

fprintf(stderr, "Enter Test Resistance [GOhm: ");
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scanf("%lf", &rl);

fprintf(stderr, "Enter Test Capacitance pFj: ");

scanf("%lf", &cl);

while((junk=fgetc(fpses))!=EOL);

for(n=0;(unk=fgetc(fpses))!=EOF;++n) {

junk=fgetc(fpses);

while((junk!=, '') && (junk!=' ')) { 40

junk=fgetc(fpses);

if (junk==' ,') {

fscanf(fpses,"%fl, %lf , %1, %lf ,%lf ",&ch,f+n,g+n,p+n,&o);}

while((junk=fgetc(fpses))!=EOL);

fclose(fpses);

n--;
printf("window top\nlabel left \"\\cross Gain [dB] \"\n");
printf("title top \"Load Impedance Estimation\"\n"); so

printf("label top \"R_1 = %8.2f G\\Omega; C1 = %8.2fpF\"\n",rl,cl);

printf("text over 0.1 right 0.3 size 0.07 \"file: %s\"\n", argv[1]);

printf("label right \"\\circle Phase [degV'\"\n");

printf("label bottom \"log(freq) \"\n");

printf("plot cross green marker 0.08\n");

for(i=0;i<n;i++) printf("%f\t%f\n" ,f[i],g[i]);

printf("plot circles green marker 0.08 use right\n");

for(i=O;i<n;i++) printf("%f \t%f \n",fi],p[i]);

printf("vindov bottom\nlabel left \"\\cross R_2 G\\Omega]\"\n");

printf("label right \"\\circle C_2 [pF]\"\nlabel bottom \"log(freq)\"\n"); 60

printf("plot cross green marker 0.08\n");

for(i=O;i<n;i++) {

dt = 2.*PI*pow(1O.,4i])*r1*cl*1.e-3;

dg = pow(10., g[i]/20.);

dp = p[i]*PI/180.;

dx = cos(dp)-dg+dt*sin(dp);

if (dx != 0.) printf("%f\t%f \n", f[i], rl*dg/dx);

}
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printf("plot circles green marker 0.08 use right\n");

for(i=O;in;i++) { 70

dt = 2.*PI*pow(lO.,fi])*rl*cl*l.e-3;

dg = pow(10., g[i]/20.);

dp = p[i]*PI/180.;

printf("%f\t%f\n", f[i], cl*(cos(dp)-dg-sin(dp)/dt)/dg); }

fprintf(stderr,"Done ... %d data points.\n",n);

fflush(stdout);

}
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tw.c
I~~~~~ --

/ ***********************************************
1* *1

tw.c

11/12/90

Modified by Yanko Sheiretov 6/1 7/9, 9/31/94

This program takes data at regular intervals and stores

it in files with a name given as an argument with

subsequent numbers appended to it.

Usage: tw <nameroot>

*1/

*1

1

*1

*1

*1

*1

I$ * *

/ ****************************************************

<stdio.h>

<sgtty.h>

<fcntl.h>

/ * define standard I/O routines

/ * define stty and gtty calls

/$ define access modes

*/

*/

*/

# define

# define

# define

# define

char

FILE

main(argc,argv)

int argc;

char *argvo;

{

int
struct

BAUD

LINE

BUSY

MAXSCANS

B1200

"/dev/ttyalE"

-1

99

ss[80];

*fpi,*fpo,*fopen();

30

port, ext;

sgttyb tty;

168

/·S

/$

/$

/f

/s
/$

/$

/$

/$
I/$

10

# include

# include
# include
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char fllename[80];

if (argc != 2) {
fprintf(stderr, "usage: \ttvw nameroot>\n");

exit(); }

40

Jet port baud rate, no echo, and raw mode

,/

if ((port = open(LINE,O RDWR)) == BUSY) {

printf("Error: line busy\n");

exit(l);

gtty (port,&tty);

tty.sg flags &= (-ECHO);

tty.sgflags = (RAW);

tty.sgispeed = tty.sgospeed = BAUD; so

stty(port,&tty);

fpo = fdopen(port,"r");

fpi = fdopen(port,"w");

command(" CD] ");

command(" [AN] ");

command(" [CN] ");

command(" [GP,4.0,-2.3,1.0,E,E,E,D,D,D]");

for(ext=l;ext<=MAXSCANS;ext++) { 60

sprintf(filename, "%s%d%d", argv[1], ext/10, ext%10);

printf("Acquiring %s ... ", filename);

acquire(filename);

printf("done. \n"); }

fclose(fpi);

fclose(fpo);

close(port);

70
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acquire(datafile)

char datafile0;

{

char status;

FILE *fpd;

command(" [TG] ");

do {

system("sleep 60"); so

command(" [CS] ");

sscanf(ss, " CS, %*c,%*c,%*c %*c c, %*c,%*c] ",&status);

printf("status = %c\n",status);

while (status != 'D');

fpd = fopen(datafile,"w");

fprintf(fpi," [GD] ");

do {

fgets(ss,80,fpo);

fprintf(fpd,ss); so

}

while (ss[3] != ' ');

command(" (CH] ");

fclose(fpd);

}

command(s)

char so;

printf("%s", s); 100

fprintf(fpi,s);

fgets(ss,80,fpo);

printf("\t%s", ss);
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G.3 Low-Level Data Processing

clean.c

# include <stdio.h>

# define EOL '\n' /* end of line definition */

# define MAXPTS 500

/ * This program reads a file generated by the controller boz and outputs

to stdout the frequency, gain, and phase data. If the phase is positive

it is set to zero.

Yanko Sheiretov 12/1/92 12/16/9S */

main(argc, argv) 10

int argc;

char *argv0;

char junk;

FILE *fpses;

double ch, f[MAXPTS], g[MAXPTS], p[MAXPTS], o;

int n, i;

if (argc != 2) { 20

fprintf(stderr, "Usage: \tclean <file> > <outfile>\n");

exit(); }

if ((fpses = fopen(argv[1],"r")) == NULL) {

fprintf(stderr, "Error: cannot open %s\n",argv[1]);

exit(1);

while((junk=fgetc(fpses)!= ',')); so

while(Ounk=fgetc(fpses))!=EOL);

for(n=0;(junk=fgetc(fpses))!=EOF;++n) 
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junk=fgetc(fpses);

while((junkl=',') && Ounk!='] ')) {
junk=fgetc(fpses);

}

if (junk== ',') {
fscanf(fpses,"%l ,%li ,%li ,%lf ,%lf",&ch,f+n,g+n,p+n,&o);}

while((junk=fgetc(fpses)) !=EOL);

if (p[n] > 0.0) p[n] = 0.0; /* et positive phase to zero */40

fclose(fpses);

printf("%d\n',n);

for(i=0;i<n;i++) printf("%'/,g,%g\n",fli],g[i],p[i]);

fflush(stdout);
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divide.c

#include <stdio.h>

#include <string.h>

#define MAXLINE 500

#define MAXNAME 11

#define MAXCHAN 8

/ * Mazimum line length */

/ Maimum file name length */

/ * Mazimum Number of channels */

/* "divide" is used on files produced by the controller boz if more than

one channel is active. The file must be "separate"d first. The output

files have names with an eztension according to the number of the

channel. If an option "-b" is specified, a special file naming

convention is used: channel 1 starts with p', channel S starts with

'f '. Source file in this case must start with 'b'.

usage: divide [-b] <file>

Yanko Sheiretov 12/8/92 Revised: 8/20/95

masin(argc, argv)

int argc;

char *argvo;

char line[MAXLINE], name[MAXNAME], flag=0, fline[MAXLINE];

char fname[MAXNAME], ext[5];

static char stat[MAXCHAN] = {0,0,0,0,0,0,0,0,0;

FILE *fin, *fout[MAXCHAN];

int i, ch;

if (argc != 2 && argc != 3) {

fprintf(stderr, "Usage: \tdivide

exit(); }

if (argc == 3){

if (strcmp(argv[1], "-b")!=O

fprintf(stderr, "Usage: \tdivide

exit(); }

<iile>\n\tdivide -b <bfile>\n");

30

II *argv[2] != 'b'){

<iile>\n\tdivide -b <bfile>\n");

173

10

*/

20



else flag = 1;)

strcpy(name, argv[l+flag]);

if ((fin = fopen(name, "r")) == NULL) 

fprintf(stderr, "divide: \tcan't open file %s\n", name);

exit(); 40

fgets(fline, MAXLINE, fin);

while(l) {

fgets(line, MAXLINE, fin);

sscanf(line+4, "%d", &ch);

if (stat[ch]==l) break;

stat[ch]=1;

if (flag) {

if (ch!=1 && ch!=3)

fprintf (stderr, "-b option allows only channels 1 3\n"); 50

else {

*fame=ch==1? 'p': 'f ;
*(fname+l) = '\0';

strcat(fname,name+l); }}

else {

strcpy(fname,name);

sprintf(ext, ".%d",ch);

strcat(fname,ext);}

if ((fout[ch]=fopen(fname, "w")) == NULL) {

fprintf(stderr, "divide: \tcan't open file /,s\n", fname); 60

exit(); 

fputs(fline, fout[ch]);

fputs(line, fout[ch]); }

do {

if (sscanf(line+4,"'d",&ch) != 1) continue;

/ * ignore bad lines $/

fputs(line, fout[ch]);}

while (fgets(line, MAXLINE, fin) != NULL);

70
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for(i=O;i<MAXCHAN;i++) if (stat[i]==l) fclose(fout[i]);

fclose (fin);
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do.c

/* This is a useful little program which manipulates pairs of data.

It takes its input from stdin and writes its output to stdout.

The command line should indicate what to do with the numbers.

Key letters are: a (add) followed by a number, add the number;

. (cale) scale the number; I (logO) take its logO1;

p (pow10) take its antilog10; n (nothing) leave number as is.

Some ezamples:

do I a -1.0 < infile > outfile

do n I < infile > outfile

do a 3S.14 2.75 < infile > outfile 10

eztrapolate < infile I kk I do I n > outfile

Yanko Sheiretov, 7/28/92 1/25/9 $94

#include <stdio.h>

#include <math.h>

main(argc, argv)

int argc;

char *argvO; 20

double x, y;

char funa, funb, flag=O;

double numa, numb;

if (argc<3) goto usage;

funa = *argv[1];

if(funa!='a' && funa!='s' && funa!='l' && funa!='p' && funa!='n')

goto usage; 30

if (funa==' a' II funa==' s')

{

if (sscanf(argv[2], "%1f", &numa) != EOF) flag = 1;

else goto usage;
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if (flag && arge < 4) goto usage;

funb = *argv[2+flag];

if (funb!='a' && funb!='s' && funb='l' && funb!='p' && funb!='n')
goto usage;

if (funb=='a' funb==' s')

{

if(argc!=4+flag II sscanf(argv[3+flag], "lf"1, &numb)==EOF)

goto usage;

}

else if (argc!=3+flag) goto usage;

while (scanf("%lf %l", &x,

printf("/%g\tg\n",

funa== ' a '

funa== ' s '
funa== ' 1 '

funa== 'p '

funb== ' a'

funb== ' s '

funb== ' l '
funb== 'p '

exit(O);

usage:

fprintf(stderr,

fprintf(stderr,

fprintf(stderr,

&y) != EOF)

? x+numa:

? x*numa:

? loglO(x):

? pow(10.0, x) :x,

? y+numb:

? y*numb:

? loglO(y):

? pow(10.0, y): y);

so

"usage: do fl num] fr numl\n");

"\tfl and fr can be:\n\t a (add), s (scale), 1 (loglO), p (pore10, x)), and n

"\tInput is from stdin and output is to stdout\n");

}
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domerge.c

/* This program takes as an argument a template data file which consists of

pairs of numbers on individual lines. It outputs to tdout in the same

format, but with the first number replaced by a number read from stdin.

Yanko Sheiretov, 6/9/93 

#include <stdio.h>

main(argc, argv)

int argc; o0

char *argvO;

double x, y, z;

FILE *fp;

if (argc != 2) {

fprintf(stderr, "usage: \tdomerge tmplfile < infile > outfile\n");

exit(; }

20

if ((fp = fopen(argv[1], "r")) == NULL) {

fprintf(stderr, "domerge: \tcannot open file %s\n", argv[1]);

exit(); }

while (scanf("%lf", &x)==1 && fscanf(fp, "%1lf %lf", &y, &z)==2)

printf("%g\t%g\n", x, z);

fclose(fp);
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nothing.c

#include <stdio.h>

/$* This program takes input from stdin and does nothing with it

Yanko Sheiretov 5/4/94

main()

I
while (getchar() != EOF);

}

10
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only.c

include <stdio.h>

#define MAXNUM 100

/* 'Only' cuts off parts of a data file. <lb> data points from the end

are discarded. On the front ide, all data points with z-coordinate

greater than <rb> are also discarded. In this sense <lb> and <rb>

ARE NOT equivalent - one is an integer and the other is a float.

It is assumed that the z-coordinates are in DESCENDING order.

Usage: only <file> <lb> <rb> 10

Yanko Sheiretov 8/12/92 1/25/94 */

main(argc, argv)

int argc;

char *argvo;

double x[MAXNUM], y[MAXNUM];

int lb, i=0, j; 20

double rb;

FILE *fp;

if (argc != 411

sscanf(argv[2], "%d", &lb) == o10

sscanf(argv[3], "%lif", &rb) == 0) {

fprintf(stderr, "Usage: \tonly <file> <lb> <rb>\n");

exit (; }

if ((fp = fopen(argv[1], "r")) == NULL) {

fprintf(stderr, "only: \tcan't open ile %s\n", argv[1]); so30

exit(); 

while (fscanf(fp, "%li %lf",x+i,y+i) != EOF) i++;

fclose(fp);

if ((fp = fopen(argv[l], "")) == NULL) {
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fprintf(stderr, "only: \tcan't open file %s\n", argv[1]);

exit(); }

for (j=Oj<i-lb;j++)

if(xUj]<=rb)

fprintf(fp, "%g\t%g\n", xUj], y[i]);

fclose(fp); 40
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rev.c

/* ThiJ program reverses a file */

main ()

{

double x[100], y[100];

int i=O;

while (scanf("%l1f %lf", x+i, y+i) == 2) i++;

i--;
for(; i>=O; i--) printf("%g\t%g\n", [i], y[i]);

}

182

10



separate.c

#include <stdio.h>

#include <string.h>

#define MAXLINE 500 /* Mazimum line length */

#define MAXNAME 11 /* Mazimum file name length */

/ * "separate" takes a file which contains output of the controller boz and

separates it into individual files which contain one et of measurements

each. The original file must end on '' and the new files have the 'z'

substituted with consecutive letters of the alphabet. In order for this

to work, the original [gd] command must be on a new line. An optional o10

argument specifies the mazimum number of files to be written.

usage: separate <file> [maz]

Yanko Sheiretov 10/8/92 6/17/993 /

main(argc, argv)

int argc;

char *argvf0;

~~~~~~~~~~~~~~~~~{ ~~~~~20

char line[MAXLINE], name[MAXNAME], flag=1, *ind;

FILE *fin, *fout;

int max;

if (argc != 2 && argc != 3) {

fprintf(stderr, "Usage: \tseparate <file> [ma] \n");

exit(); 

strcpy(name, argv[l]);

ind = name; 30

while(*ind++ != '\0'); /* Find the end of the string */

ind -= 2;

if (*ind != 'x') /*File must end on '' */

fprintf(stderr, "separate: \tfile must end on 'x'\n");
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exit(); 

if ((fin = fopen(name, "r")) == NULL) 

fprintf(stderr, "separate: \tcan' t open file %s\n", name);

exit(); 

if (argc == 2) max = 23; 40

else 

sscanf(argv[2], "d", &max);

if (max > 23) {

fprintf(stderr, "Number of files set to a maximum of 23\n");

max = 23; } }

*line '\0';

for (*ind= '' a;flag && *ind-'a' <max;(*ind)++) {

if ((fout = fopen(name, "w")) == NULL) {

fprintf(stderr, "separate: \tcan' t open file %s\n", name);

exit(); } 50

fprintf(stderr, "Writing %s ... ", name);

if (*line != '\0') fputs(line, fout);

while (1) {

if (fgets(line, MAXLINE, fin) == NULL) {

flag = 0;

break; }

if (*line !=' [') continue;
if ((ine[1]==' G' line[1]=='g') &&

(line[2]=='D' ine[2]=='d'))

fputs(line, fout); 60o

if (line[1]=='G' && ine[2]=='n') breal; }
fclose (fout);

fprintf(stderr, "done\n"); }

fclose (fin);
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G.4 High-Level Data Processing

inv.c

# include <stdio.h>

# include <math.h>

# define PI 3.14159265 /* PI */
# define EOL '\n' /* end of line definition */

/$ "inv" takes a file produced by the controller boz and outputs

two files containing data for epsilon' and epsilon" with

eztensions .el and .e2 respectively. An optional second argument

specifies a file which contains information about the interface

boz. The default is /u/yanko/.invsetup 10

Yanko Sheiretov Documented: 12/09/92 Revised: 1/25/94 */

main(argc, argv)

int argc;

char *argvO;

char foutl[11], fout2[11];

char junk; 20

FILE *fpol,*fpo2, *fpses, *fpset;

double r2, c2, cair, ch, rl, cl, f, g, p, o, dt, dg, dp;

int n;

if (argc != 2 && argc != 3) {

fprintf(stderr, "Usage: \tinv <file> [setfile] \n");
exit(); }

if ((fpses = fopen(argv[1],"r")) == NULL) { 30

fprintf(stderr, "Error: cannot open %s\n",argv[1]);

exit(l);
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}

if ((fpset = fopen(argc==2?"/u/yanko/ .invsetup":argv[2], "r"))==NULL) {

fprintf(stderr, "Error: cannot open %s\n", argc==2?"/u/yanko/ . invsetup":argv[2]);

exit(); }

strcpy(foutl, argv[l]);

strcat(foutl, ". el"); 40o

strcpy(fout2, argv[l]);

strcat(fout2, ".e2");

fscanf(fpset,"%lf",&r2);

while((junk = fgetc(fpset))!= EOL);

fscanf(fpset,"%lf",&c2);

while((junk = fgetc(fpset))!= EOL);

fscanf(fpset,"%lf",&cair);

fclose(fpset);

so50

fpol = fopen(foutl, "w");

fpo2 = fopen(fout2, "w");

while((junk=fgetc(fpses)) != EOL && junk != EOF); /* skip header $/

n = 0;

while(l) {

do junk=fgetc(fpses);

while (junk != EOF && junk != EOL && junk != ']' &&junk != ',');

if (junk == EOF) break;

if (junk == EOL II junk == '] ') continue; 60

fscanf(fpses,"%lf, %lif ,%lf ,%1f ,%l ",&ch,&f,&g,&p,&o);

n++;

dt = 2.*PI*pow(10.,f)*r2*c2*1.e-3;

dg = pow(l0., g/20.);

dp = p*PI/180.;

cl = c2*dg*(cos(dp)-dg+sin(dp)/dt)/(l+dg*dg-2.*dg*cos(dp));

rl = r2*(1.+dg*dg-2.*dg*cos(dp))/(dg*(cos(dp)-dg-dt*sin(dp)));

if (cl > 0.) fprintf(fpol, "%g\t%g\n", f, cl/cair);
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if (rl > 0.) fprintf(fpo2, "%g\t%g\n", f, logO(1.e3/(rl1*cair*2.*PI))-f);

while(fgetc(fpses) = ' ]'); 70

}

fclose(fpses);

fclose(fpol);

fclose(fpo2);

printf("Dlone ... %d data point.\n",n);

fflush(stdout);

I
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.invsetup

This is the setup file required by inv.c and rcinv.c

9.78 Load resistance in GOhm

123 Load capacitance in pF

14.6 Air capacitance in pF (for d = 0.86 mm)
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lstsq.c

/$ This function does a least-squares fit of a line to a set

of data points. 6 y are arrays of data, n is the number of

points and slope and yint are pointers to locations where the

results are to be written */

void lstsq(x,y,n,slope,yint)

double *x, *y;

int n;

double *slope,*yint;

{ 10
double sx = 0.0, sy = 0.0, sxy = 0.0, sx2= 0.0, xx, yy;

int i;

for(i=O;i<n;i++)

xx=*(x+i);

yy=*(y+i);

sx+=xx;

sy+=yy;

sxy+=xx*yy;

sx2+=xx*xx; 20

*slope = (n*sxy-sx*sy)/(n*sx2-sx*sx);

*yint = sy/n - *slope*sx/n;
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out2e.c

#include <stdio.h>

#include <string.h>

#deflne MAXLINE 500

#define MAXNAME 11

/$* Mazimum line length */

/ * Mazimum file name length */

/* "out2e" takes as an input an output file of "parestsz" and produces

two output data files containing the data for epsilon' and epsilonN

with eztensions .el and .e2 respectively, replacing the .out eztension

of the input file.

10

usage: out2e <file.out>

Yanko Sheiretov 12/9/92 R. 1/25/94 $/

/* Revised so that commas between numbers are allowed in input file.

Some Fortran compilers will cause these commas to appear in the

output of parest.

Yanko Sheiretov ,/5/7/94
20

main(argc, argv)

int argc;

char *argv0;

char line[MAXLINE];

char name[MAXNAME];

FILE *fin, *foutl, *fout2;

double f, el, e2;

if (argc != 2) {

fprintf(stderr, "Usage: \tout2e <file. out>\n");

ezit(); }

strcpy(name, argv[l]);

if (strcmp(name+strlen(name)-4,". out")!=O){
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fprintf(stderr, "out2e: \tInput

exit(); 

file must end with out\n");

if ((fin = fopen(name, "r")) == NULL) {

fprintf(stderr, "out2e: \tcan't o]

exit(); )

strcpy(name+strlen(name)-4, ".ei");

if ((foutl = fopen(name, "w")) == NULL) {

fprintf(stderr, "out2e: \tcan't o]

exit(); 

strcpy(name+strlen(name) -1, "2");

if ((fout2 = fopen(name, "")) == NULL) {

fprintf(stderr, "out2e: \tcan't o]

exit(); 

pen file %s\n", name);

40

pen file %s\n", name);

pen file %s\n", name);

while (getc(fin) != '');

getc(fin);

while ((fgets(line, MAXLINE, fin) != NULL) && *line != '') {

sscanf(line, "%lf%*c%lf%*c%lf", &f, &el, &e2);

fprintf(foutl, "%g\t%g\n", f, el);

fprintf(fout2, "%g\t%g\n", f, e2); 

fclose (fout2);

fclose (foutl);

fclose (fin);

}
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rcinv.c

# include <stdio.h>

# include <math.h>

# define PI 3.14159265 /*PI */

# define EOL ,\n' / * end of line definition r/

/ "rcinv" takes a file produced by the controller boz and outputs

two file. containing data for R and C with

eztensions .rr and .cc respectively. A file .invsetup with

information on the interface boz must eist in the home

directory ,/4/yanko. 10

Yanko Sheiretov 6/22/93 1/25/9l 4

main(argc, argv)

int argc;

char *argvo;

char foutl[l11],fout2[11];

char junk;

FILE *fpol,*fpo2, *fpses, *fpset; 20

double r2, c2, cair, ch, rl, cl, f, g, p, o, dt, dg, dp;

int n;

if (argc = 2) (

fprintf(stderr, "Usage: \trcinv <file>\n");

exit(); 

if ((fpses = fopen(argv[1],"r")) == NULL) {
fprintf(stderr, "Error: cannot open %s\n",argv[1]); 30

exit(l);

if ((fpset = fopen("/u/yanko/.invsetup", "r")) == NULL) {
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fprintf(stderr, "Error: cannot open .invsetup\n");

exit(); }

strcpy(foutl, argv[l]);

strcat(foutl, ".cc");

strcpy(fout2, argv[l]); 40o

strcat(fout2, ".rr");

fscanf(fpset,"%lf",&r2);

while((junk = fgetc(fpset))!= EOL);

fscanf(fpset,"%lf",&c2);

while((junk = fgetc(fpset))!= EOL);

fscanf(fpset,"'%l ",&cair);

fclose(fpset);

fpol = fopen(foutl, "v'); 50

fpo2 = fopen(fout2, "u");

while((junk=fgetc(fpses))!=EOL);

for(n=0;(junk=fgetc(fpses))!=EOF;++n) {

junk=fgetc(fpses);

while((junk!=',') && O(unk!=' ')) {

junk=fgetc(fpses);

}

if junk==',') {

fscanf(fpses,"%lf ,%lf ,%lf ,%lf ,%lf",&ch,&f,&g,&p,&o);

dt = 2.*PI*pow(10.,f)*r2*c2*1.e-3; 60

dg = pow(l0., g/20.);

dp = p*PI/180.;

cl = c2*dg*(cos(dp)-dg+sin(dp)/dt)/(l+dg*dg-2.*dg*cos(dp));

rl = r2*(1.+dg*dg-2.*dg*cos(dp))/(dg*(cos(dp)-dg-dt*sin(dp)));

fprintf(fpol, "%g\t%g\n", f, cl);

!printf(fpo2, "%g\t%g\n", f, rl); }

while(¢junk=fgetc(fpses))!=EOL);

}

fclose(fpses);

fclose(fpol); 70

193



fclose(fpo2);

printf("Done ... %d data points.\n",n-1);

ffush(stdout);
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G.5 Data Interpretation

extrapolate.c

/$ * Yanko Sheiretov 7/28/92

#include <stdio.h>

#include <math.h>

#define MAX 100

#include "Lib/lstsq. c"

#include "Lib/reverse. c"

#include "Lib/maximum.c"

10

/* This program takes a set of data representing the dependence of

epsilon" on frequency and extrapolates the data assuming values

the slope on either side of the peak to be of equal magnitude and

opposite sign. The data should then be easy to integrate using

Kramers-Kronig relations to obtain values for epsilon'. The data

is read from stdin and output to stdout, The value of the slope

is printed out to stderr. $/

main()

{ 20

double fin[MAX], ein[MAX]; / * both in logl0 form $/

int i=0, maxi, shift, j;

double slope, yint, peak, f;

while(scanf("%lf %.lf ", fin+i, ein+i) != EOF) i++;

reverse(fin,i);

reverse(ein,i);

maxi = maximum(ein, i);

30

lstsq(fin+maxi+5, ein+maxi+5, i>maxi+25?20:i-maxi-5, &slope, &yint);

peak = yint+slope*fin[maxi];
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fprintf(stderr, "m = %f\n", -slope);

shift=30-maxi;

for(j=O,f=fin[maxi]-0. 1*shift;j<shift-5;j++,f+=0. 1)

printf("%f\t%f\n",pow(10.0,f),pow(10.0,peak-slope*(f-fin[maxi])));

for(j=Oj<(i>maxi+30?maxi+30:i);j++) 40

printf("%f \t%f \n",pow(10.0,fin[j]),pow(1O.O,einj]));

if (j<31+maxi)

for(f=finlj-1]+0.1;j<31+maxi;j++,f+=0.1)

printf("%f \tf \n",pow(10.0,f),pow(10.0,yint+slope*f));

I
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fit .c

/* This program fits a power-law curve to a set of data supplied

from stdin. It has an optional argument specifying the value of

m. The program outputs the values of k and fp to stderr and pairs

of data points along the fitted curve to stdout. The function

of the curve being fitted is:

y = k/(pow(/fp, m)+pow(fp/z,m)) i.e.

k

y ------------------ 10

m fpm

fm p m

Yanko Sheiretov 7/29/92

Last updated 8/13/92 */

#include <stdio.h>

#include <math.h>

#define MAX 100

20

#include "Lib/powerfit. c"

main(argc,argv)

int argc;

char *argvD ;

double fin[MAX], ein[MAX]; /* both in log10O form */

int i=0;

double f, e, k, fp, m=0.5, j, ee;

30

if(argc>l) sscanf(argv[1], "%lf", &m);

while(scanf("%li %1f", &f, &e) != EOF)

{
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fin[i]=pow(lO0.0,f);

ein[i]=pow(l0.0,e);

i++;

power fit(fin,ein,i,m,&k,&fp); 40

fprintf(stderr,"K = %.f\tfp = %f \n",k,fp);

ee = ((int)(lO.O*loglO(fp)))/10.0 - 3.0;

e = ee >= -5.0 ? ee: -5.0;

f = pow(10.0, e);

for(j=e;j<=e+6.0;j+=0.1,f=pow(O.0j))

printf("%f \t%f \n", f, k/(pow(f/fp,m)+pow(fp/f,m)));
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fith.c

/$* This program takes a reference .r2 file and a test .r2 file and

computes by how much the latter would have to be shifted in frequency

to produce a least squares sum. The input files will have to have been

reversed with the program rev.

Yanko Sheiretov 10/15/93 R. /188/93 */

#include <stdio.h>

main(argc, argv)

int argc;

char *argvo;

FILE *fl, *f2;

int i, n, max, maxref, shift, step, flag=0;

double sum = 1.e6, oldsum = 1.e6, f, ff, ref[65], test[65];

if (argc != 3) {

fprintf(stderr, "usage: \tfith <fref> <fin>\n");

exit(); }

if ((fl = fopen(argv[l], "r")) == NULL) {

fprintf(stderr, "Error: \tCan't open %s \n", argv[1]);

exit(); }

if ((f2 = fopen(argv[2], "r")) == NULL) {

fprintf(stderr, "Error: \tCan't open 'hs \n", argv[2]);

exit(); }

for (maxref=0,f=-2.3; maxref < 64; maxref++, f+=0.1) {

if (fscanf(fl, "%lf %lf", &ff, ref+maxref) !=2) break;

if ((ff-f)*(ff-f) >= 0.0004) {

fprintf(stderr, "Problems with input file %s \n", argv[1]);

exit(); } }

for (max=O,f=-2.3; max < 64; max++, f+=0.1) {

if (fscanf(f2, "%lf %lf", &ff, test+max) !=2) break;
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if ((ff-f)*(ff-f) >= 0.0004) {

fprintf(stderr, "Problems with input file %s \n", argv[2]);

exit(); } }

for(shift=O,step=l,flag=O; 1; shift += step) { 40

oldsum = sum;

for(sum = 0.0, n=O, i=O; i < maxref &' i+shift < max; i++) {

if (i+shift >= 0) {

sum += (ref[i]-test[i+shift] )*(ref[i] -test[i+shift]);

n++; } }

sum /= (double)n;

if (sum > oldsum) {

if (flag) break;

else {

step *= -1; 50

flag = 1; }}}

shift -= step;

printf("frequency shift is %f\n", (double)shift/10.0);
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fitm.c

/ * Aversion of 'fit' which also attempts to fit a value for m.

This program fits a power-law curve to a set of data supplied

from stdin. The program outputs the values of K, fp, and m to

stderr and pairs of data points along the fitted curve to

stdout. The function of the curve being fitted is:

y = k/(pow(z/fp,m)+pow(fpz, m)) i.e.

k

10

m fp m

fp z

Yanko Sheiretov

Last updated

7/29/92

8/13/92

#include <stdio.h>

#include <math.h>

#define MAX 100

#include "Lib/powerfit. c"

main()

double fin[MAX], ein[MAX]; /* both in loglO form */

int i=0;

double f, e, k, fp, m=0.5, j, oldlsq, newlsq, ee;

while(scanf("%lf %lf ", &f, &e) != EOF)

{

fin[i]=pow(10.0,f);

ein[i]++pow(10.,e);

i++;
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}

newlsq = power fit(fin,ein,i,m,&k,&fp);

do {

m -= 0.005;

oldlsq = newlsq; 40

newlsq=power fit(fin,ein,i,m,&k,&fp); }

while (newlsq < oldlsq);

m += 0.005;

if (m == 0.5) {

newlsq = oldlsq;

do {

m += 0.005;

oldlsq = newlsq;

newlsq=power fit(fin,ein,i,m,&k,&fp); }

while (newlsq < oldlsq); 50

m -= 0.005; }

fprintf(stderr,"K = %f\tfp = %f \tm = %f \n",k,fp,m);

ee = ((int)(lO.O*loglO(fp)))/10.0 - 3.0;

e = ee >= -5.0 ? ee: -5.0;

f = pow(10.0, e);

for(j=e;j<=e+6.0;j +=0.1,f=pow(10.0j))

printf("%f\t%f\n", f, k/(pow(f/fp,m)+pow(fp/f,m)));

60
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kkl2.c

/ $ This program uses the Kramers-Kronig Relations to calculate e" from

e'. Data is read from stdin and output to stdout. The integration

contains a singularity about the point of frequency being calculated.

Therefore the integration is done in three parts: a small interval df

on either side off is neglected, because the area around the singularity

cancels out. For this cancellation to be valid, the integrand must stay

constant. Therefore df is taken to be one step of frequency to the left.

The integration is then carried out independently to the left and to the

right of this interval. Since df would be greater on the right side of the

singularity, due to the logarithmic step in frequency, there is a need 10

to add on the thin sliver equal to the difference between the two df's on

either side. The numerical calculation uses the trapezoidal rule.

Yanko Sheiretov 12/16/92 12/16/92 $/

#include <stdio.h>

#define MAX 100

#define PI 3.14159265

main() 20

{

double fin[MAX], ein[MAX];

iat n=0, i, j;

double f, x, xh, xl, sl, sr, sm;

while(scanf("%l %l1f", fin+n, ein+n) != EOF) n++;

for(i=2;i<n-2;i++) /* Main cycle in f */

{

f = *(fin+i); 30

sl = 0.0;

sm = 0.0;

sr = 0.0;

for(j=i-l1ij>Oj--) / Left side of integral $/
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xh = fin[j];

xl = finj-1];

sl += (ein[]/(xh*xh-f*f) +

eini-1]/(xl*xl-f*f )*(xh-xl);

~~~~~~~~~~~~~~} ~~~~40

/ * Now find the position of the singularity sliver $/

xh = fin[i+l];

xl = 2.0*f- fin[i-1];

sm = (ein[i+l]/(xh*xh-f*f) +

(((xl-f)*ein[i+l]+(xh-xl)*ein[i] )/(xh-f))/
(xl*xl-f*f))*(xh-xl);

for(j=i+l;j<n-lj++) /* Right side of integral */
{ 50

xh = finj+1];

xl = finU];

sr += (einlj+1]/(xh*xh-f*f) +

einlj]/(xl*xl-f*f))*(xh-xl);

printf("%f\t%f,\n", f, -f*(sl+sm+sr)/PI);

204



kk2l.c

/* This program uses the Kramers-Kronig Relations to calculate e' from

e". Data is read from stdin and output to stdout. The integration

contains a singularity about the point of frequency being calculated.

Therefore the integration is done in three parts: a small interval df

on either side off is neglected, because the area around the singularity

cancels out. For this cancellation to be valid, the integrand must stay

constant. Therefore df is taken to be one step of frequency to the left.

The integration is then carried out independently to the left and to the

right of this interval. Since df would be greater on the right side of the

singularity, due to the logarithmic step in frequency, there is a need o10

to add on the thin sliver equal to the difference between the two df's on

either side. The numerical calculation uses the trapezoidal rule. $/

#include <stdio.h>

#define MAX 100

#define PI 3.14159265

main()

double fin[MAX], ein[MAX]; 20

int n=0, i, j;

double f, x, xh, xl, sl, sr, sm;

while(scanf("%lf %lf", fin+n, ein+n) != EOF) n++;

for(i=2;i<n-2;i++) / Main cycle in f */
{

f = *(fin+i);

sl = 0.0;

sm = 0.0; 30

sr = 0.0;

for(j=i-lj>0;j--) /* Left side of integral $/

{

xh = finU];
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xl = finLj-1];

sl += (xh*einl]/(xh*xh-f*f) +

xl*einj-1]/(xl*xl-f*f))*(xh-xl);

/ * Now find the position of the singularity sliver */ 40

xh = fin[i+l];

xl = 2.0*f- fin[i-1];

sm = (xh*ein[i+l]/(xh*xh-f*f) +

xl*(((xl-f)*ein[i+l]+(xh-xl)*ein[i])/(xh-f))/

(xl*xl-f*f))* (xh-xl);

for(j=i+1;j<n-1;j++) /* Right side of integral /

xh = finj+1];

xl = finlj]; 5so

sr += (xh*einlj+1]/(xh*xh-f*f) +

xl*einLi]/(xl*xl-f*f))*(xh-xl);

printf("%f\t%f\n", f, (sl+sm+sr)/PI);
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maximum.c

/* This function takes an array of doubles (z) and the size of the

array (n) and returns the indez number for the largest number in

the array. */

int maximum(x,n)

double *x;

int n;

double max;

int i, r=O; 10

max = *x;

for(i=1;i<n;i++)

if (*(x+i)>max)

{

max = *(x+i);

r =i;

return r;

r} 20
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powerfit.c

#include <math.h>

/$ This function performs a non-linear least-squares-fit to a data set

according to the following formula:

k

m fp m

fp z 10

The results are written into the locations k and fp. The function

returns the sum of the squared errors

Yanko Sheiretov 8/6/ 92 /

double powerfit(x,y,n,m,k,fp)

double *x, *y;

int n;

double m, *k, *fp; 20

double spq=O.O, spoq=O.O, sq2=0.0, soq2=0.0, sp2=0.0;

double p, q, r, s;

int i;

for(i=O;i<n;i++)

q=pow(*(x+i), m);

P=l.O/(*(y+i));

sp2 += pp;

spq += p*q; 30

spoq += p/q;

sq2 += q*q;

soq2 += 1.O/(q*q);

}
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s = sqrt((spq*soq2-n*spoq)*(spoq*sq2-n*spq))/(sq2*soq2-n*n);

r = sqrt(((spoq*sq2-n*spq)/(spq*soq2-n*spoq)));

*k = 1.0/s;

*fp = pow(r, 1.0/m);

return (sp2 + s*s/(r*r)*sq2 + s*s*r*r*soq2 + 2.0*s*s*n -
2*s*spq/r - 2*s*r*spoq); 40

}
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reverse.c

/* This function reverses the order of elenemts in an array of doubles.

z is a pointer to the array and n is the number of elements. */

void reverse(x,n)

double *x;

int n;

double temp;

int i;

10

for(i=O;i<n/2.0;i++)

temp = *(x+i);

*(x+i) = *(x+n-i-1);

*(x+n-i-1) = temp;

}
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senl2.c

/ * senl2 is a program which plots the relative sensitivity of the

inversion process (from zl to z2) to variations in the phase

data. Its output is the file "out", which is ready to be "plop"ped.

Yanko Sheiretov 9/18/92 $/

#include <stdio.h>

#include <math.h>

#define MAXPTS 500 l0

#define PI 3.14159265

#define UPPER 1.3

#define LOWER -1.3

#define CENTER -1.

#deflne LOWER2 -3.
#define SMALL 1.e-6

#define DO(x,ref) ((x)>UPPER+(ref)?UPPER+(ref):(x)<LOWER+(ref)?LOWER+(ref):(x))

#define D02(x) ((x)>0?0:(x)<LOWER2?LOWER2:(x))

#define RND(x) ((x)-floor(x)<0.5?floor(x):ceil(x))

20

main()

{

double f[MAXPTS], m[MAXPTS], p[MAXPTS], w[MAXPTS];

double x, refa, refb;

FILE *fout;

int n, i;

double cl, c2, gl, g2, fl, fh, ww;

fout = fopen("out", "w");

30

printf("Enter the value for C [pF]: \t\t");

scanf("%lf", &cl);

printf("Enter the value for C2 pF]: \t\t");

scanf("%lf", &c2);
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printf("Enter the value for Ri CGOhm: \t\t");

scanf("%lf", &gl);

printf("Enter the value for R2 GOhm]: \t\t");

scanf("%lf", &g2);

printf("Enter the low frequency end [log]: \t");

scanf("'%llf", &fl); 40

printf("Enter the high frequency end [log]: \t");

scanf("%lf", &fh);

fprintf(fout, "window vertical 1/3\n");

fprintf(fout,"plot cross green marker 0.08\n");

fprintf(fout,"title top \"Inversion Process\"\n");

fprintf(fout, "label top \"R_1=%8.2fG\\Omega R2=%8.2fG\\Omega CI=%8.2fpF C2=%8.2fpF\"\n

gl, g2, cl, c2);

cl *= l.e-12; 50

c2 *= l.e-12;

gl = l.e-9 / gl;

g2 = l.e-9 / g2;

fl = floor(10.*fl)/10.;

fh = ceil(1O.*fh)/10.;

for(n = O; fl <= fh; fl += 0.1, n++) {

f[n] = f;

w[n] = ww = 2.*PI*pow(10.,fl);

m[n] = sqrt((gl*gl+cl*cl*ww*ww) / 60

((gl+g2)*(gl+g2)+(cl+c2)*(cl+c2)*ww*ww));

p[n] = atan(cl*ww/gl) - atan((cl+c2)*ww/(gl+g2)); }

fprintf(fout, "label left \"\\cross Gain [dB]\"\n");

fprintf(fout, "label right \"\\circle Phase [deg]\"\n");
fprintf(fout, "plot cross green marker 0.08\n");

for(i=O;i<n;i++) fprintf(fout, "%f\t% f\n", f[i], 20.*loglO(m[i]));

fprintf(fout, "plot circles green marker 0.08 use right\n");

for(i=O;i<n;i++) fprintf(fout, "%f \tf\n", f[i], p[i]*180./PI); 70
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fprintf(fout, "window vertical 1/3\n");

fprintf(fout, "label top \"Estimate with M and P rounded to 2 significant digits\"\n");

fprintf(fout, "label left \"\\cross log(\\alpha = R_/R_2)\"\n");
fprintf(fout, "label right \"\\circle log(\\beta = C2/C)\"\n");
fprintf(fout, "plot cross green marker 0.08\n");

refa = loglO(g2/gl);

refb = loglO(c2/cl);

for(i=O;i<n;i++) {

p[i] = RND(100.*p[i])/100.; 80

m[i] = RND(100.*m[i])/100.;

x = (cos(p[i])+cl/gl*w[i]*sin(p[i]))/m[i]- 1.;

x = x<=O.?refa-loglO(SMALL):loglO(x);

fprintf(fout, "%f\t%i\n", f[i], DO(x,refa)); }

fprintf(fout, "plot circles green marker 0.08\n");

for(i=0;i<n;i++) {

x = (cos(p[i])-gl/cl/w[i]*sin(p[i]))/m[i] - 1.;

x = x<=O.?refb-loglO(SMALL):loglO(x);

fprintf(fout, "%if\t%i\n", f[i], DO(x,refb)); }

fprintf(fout, "plot line green\n"); 90

fprintf(fout, "%if\t%f\n%f\t%if\n", 40], refa, fn-1], refa);

fprintf(fout, "plot line green\n");

fprintf(fout, "%f\t%if\n%f\t%if\n", 40], refb, f[n-1], refb);

fprintf(fout,"window vertical 1/3\n");

fprintf(fout,"label top \"Relative Phase Sensitivity [log(deg{-1)]\"\n");
fprintf(fout,"label left \"\\cross \\alpha; \\circle \\beta\"\n");
fprintf(fout,"label bottom \"log(freq)\"\nlabel right \"Percent\"\n");
fprintf(fout, "y axis scale %if Y/,\n", LOWER2, 0.); 100

fprintf(fout, "z axis log scale %if f\n", pow(10.,2+LOWER2), 100.);

fprintf(fout,"plot cross green marker 0.08\n");

for(i=0;i<n;i++) {

x = fabs(((cl+c2)/gl*w[i]-l.)*PI/180.*gl/g2);

x = loglO(x==O.?SMALL:x);

fprintf(fout,"%f\tf\n", f[i], D02(x)); }
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fprintf(fout,"plot circles green marker 0.08\n");

for(i=O;i<n;i++) {

x = fabs(((gl+g2)/cl/w[i]+l.)*PI/180.*cl/c2);

x = loglO(x==O.?SMALL:x); 110

fprintf(fout,"/f%\tf\n", fi], D2(x)); 

fprintf(fout,"plot line green\n");

fprintf(fout,"%f \t%f \n%f\t%,\n",f[O], CENTER, f[n- 1], CENTER);

printf("Done .\n");

fclose(fout);
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sen2l.c

/* sen21 is a program which plots the relative sensitivity of the

inversion process (from z2 to z1) to variations in the phase and

magnitude data. Its output is the file "out", which is ready to be

"plop"ped.

Yanko Sheiretov 9/22/ 92 *

#include <stdio.h>

#include <math.h>
10

#define MAXPTS 500

#define PI 3.14159265

#define UPPER 1.3

#define LOWER -1.3

#define CENTER -1.

#define LOWER2 -3.

#define SMALL 1.e-6

#define DO(x,ref) ((x)>UPPER+(ref)?UPPER+(ref):(x)<LOWER+(ref)?LOWER+(ref):(x))

#define DO2(x) ((x)>0?O:(x)<LOWER2?LOWER2:(x))

#define RND(x) ((x)-floor(x)<0.5?floor(x):ceil(x)) 20

main()

double f[MAXPTS], m[MAXPTS], p[MAXPTS], w[MAXPTS];

double x, refa, refb;

FILE *fout;

int n, i;

double cl, c2, gl, g2, fl, fh, ww, mm, pp;

static long idum = 700302;

float ran2O; 30

fout = fopen("out", "w");

printf("Enter the value for C1 pF]: \t\t");
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scanf("%,lf", &cl);

printf("Enter the value for C2 [pF]: \t\t");

scanf("%lf ", &c2);

printf("Enter the value for R1 [GOhm]: \t\t");

scanf("%l,1", &gl);

printf("Enter the value for R2 GOhm]: \t\t"); 40

scanf("%,lf ", &g2);

printf("Enter the low frequency end [log]: \t");

scanf("%lf", &fl);

printf("Enter the high frequency end [log]: \t");

scanf("%l", &fh);

fprintf(fout, "window vertical 1/4\n");

fprintf(fout,"plot cross green marker 0.08\n");

fprintf(fout,"title top \"Reverse Inversion Process\"\n");

fprintf(fout, "label top \"R_1=%8.2fG\\Omega R_2=%8.2fG\\Omega C_1=%8.2fpF sC_2=%8.2fpF\"\n

gl, g2, cl, c2);

cl "= l.e-12;

c2 *= l.e-12;

gl = l.e-9 / gl;

g2 = l.e-9 / g2;

fl = floor(lO.*fl)/10.;

fh = ceil(10.*fh)/10.;

for(n = O; fi <= fh; fl += 0.1, n++) { so

f[n] = fl;

w[n] = ww = 2.*PI*pow(10.,fl);

m[n] = sqrt((gl*gl+cl*cl*ww*ww) /

((gl+g2)*(gl+g2)+(cl+c2)*(cl+c2)*ww*ww));

p[n] = atan(cl*ww/gl) - atan((cl+c2)*ww/(gl+g2)); }

fprintf(fout, "label left \"\\cross Gain [dB]V'\"\n");

fprintf(fout, "label right \"\\circle Phase degV\"\n");

fprintf(fout, "plot cross green marker 0.08\n");

for(i=O;i<n;i++) fprintf(fout, "%fi\tf W\n", 4i], 20.*1oglO(m[i])); 70
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fprintf(fout, "plot circles green marker 0.08 use right\n");

for(i=O;i<n;i++) fprintf(fout, "%f\t%f\n", 4fi], p[i]*180./PI);

fprintf(fout, "window vertical 1/4\n");

fprintf(fout, "label top \"Estimate with 5%% noise in M and P\"\n");

fprintf(fout, "label left \"\\cross log(\\alpha R2/Rl)\"\n");
fprintf(fout, "label right \"\\circle log(\\beta = CI/C_2)\'\n");

fprintf(fout, "plot cross green marker 0.08\n");

refa = loglO(gl/g2); 80

refb = loglO(cl/c2);

for(i=O;i<n;i++) {

pp = ((ran2(&idum)-0.5)*0.2+1.)*p[i];

mm = ((ran2(&idum)-0.5)*0.2+1.)*m[i];

x = (cos(pp)-mm-c2/g2*w[i]*sin(pp))/(l ./mm+mm-2*cos(pp));

x = x<=O.?refa-loglO(SMALL):loglO(x);

fprintf(fout, "/f\t'/.f\n", f[i], DO(x,refa)); }

fprintf(fout, "plot circles green marker 0.08\n");

for(i=O;i<n;i++) {

pp = ((ran2(&idum)-0.5)*0.2+1.)*p[i]; 90

mm = ((ran2(&idum)-0.5)*0.2+1.)*m[i];

x = (cos(pp)-mm+g2/c2/w[i]*sin(pp))/(./mm+mm-2*cos(pp));

x = x<=0.?refb-loglO(SMALL):loglO(x);

fprintf(fout, "/.f\t%f\n", f[i], DO(x,refb)); }

fprintf(fout, "plot line green\n");

fprintf(fout, "%f\t%f\nf\t%f\n", 40], refa, fn-1], refa);

fprintf(fout, "plot line green\n");

fprintf(fout, "%f\t%f\n%f\t%f\n", f[O], refb, f[n-1], refb);

fprintf(fout,"window vertical 1/4\n"); 100

fprintf(fout,"label top \"Relative Magnitude Sensitivity [log(dB'{-})]V\"\n");

fprintf(fout,"label left \"\\cross \\alpha; \\circle \\betaV'\"\n");
fprintf(fout,"label right \"Percent\"\n");
fprintf(fout, "y axis scale %f %f\n", LOWER2, 0.);

fprintf(fout, "z axis log scale %f %f\n", pow(10.,2+LOWER2), 100.);

fprintf(fout,"plot cross green marker 0.08\n");
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for(i=O;i<n;i++) {

mm = m[i];

pp = p[i];

x = fabs(((mm*mm+l.)*cos(pp)-2.*mm-(l.-mm*mm) 110

*c2/g2*w[i]*sin(pp))/(1.+mm*mm-2.*mm*cos(pp))

/(l.+mm*mm-2.*mm*cos(pp))*mm*log(10.)/20.*g2/gl);

x = loglO(x==O.?SMALL:x);

fprintf(fout,"%1f\t%f\n", f[i], D02(x)); }

fprintf(fout,"plot circles green marker 0.08\n");

for(i=0;i<n;i++) {

mm = m[i];

pp = p[i];

x = fabs(((mm*mm+l.)*cos(pp)-2.*mm+(1.-mm*mm)

*g2/c2/w[i]*sin(pp))/(l.+mm*mm-2.*mm*cos(pp)) 120

/(1.+mm*mm-2.*mm*cos(pp))*mm*log(10.)/20.*c2/cl);

x = loglO(x==O.?SMALL:x);

fprintf(fout,"%f\t%f\n", fi], D02(x)); }

fprintf(fout,"plot line green\n");

fprintf(fout,"%f \tYf \n%,\t%f \n",f[O], CENTER, f[n-1], CENTER);

fprintf(fout,"window vertical 1/4\n");

fprintf(fout,"label top \"Relative Phase Sensitivity [log(deg^{-1})]\"\n");

fprintf(fout,"label left \"\\cross \\alpha; \\circle \\beta\"\n");
fprintf(fout,"label bottom \"log(freq) \"\nlabel right \"Percent\"\n"); 130

fprintf(fout, "y axis scale %f %f\n", LOWER2, 0.);

fprintf(fout, "z axis log scale %f %f\n", pow(10.,2+LOWER2), 100.);

fprintf(fout,"plot cross green marker 0.08\n");

for(i=O;i<n;i++) {

mm = m[i];

pp = p[i];

x=fabs(((mm*mm*mm-mm)*sin(pp)+(-(mm*mm*mm+mm)*cos(pp)+2.*mm*mm)

*c2/g2*w[i])/(l.+mm*mm-2.*mm*cos(pp))/(l.+mm*mm-2.*mm*cos(pp))

*PI/180.*g2/gl);

x = loglO(x==0.?SMALL:x); 140

fprintf(fout,"%f\tYf\n", f[i], D02(x)); }

fprintf(fout,"plot circles green marker 0.08\n');
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for(i=O;i<n;i++) {

mm = m[i];

pp = p[i];

x=fabs(((mm*mm*mm-mm)*sin(pp)+((mm*mm*mm+mm)*cos(pp)-2.*mm*mm)

*g2/c2/w[i])/(1 .+mm*mm-2.*mm*cos(pp))/(1 .+mm*mm-2.*mm*cos(pp))

*PI/180.*c2/cl);

x = loglO(x==O.?SMALL:x);

fprintf(fout,"%f\t%f\n", f[i], D02(x)); } 150

fprintf(fout,"plot line green\n");

fprintf(fout, "%f \t%f\n%f\t%f\n" ,f[O], CENTER, n-1j, CENTER);

printf("Done. \n");

fclose(fout);

#define M 714025

#define IA 1366

#define IC 150889

160

float ran2(idum)

long *idum;

{

static long iy,ir[98];

static int iff=0;

int j;

if (*idum < 0 II iff == 0) {

iff=1;

if ((*idum=(IC-(*idum)) % M) < O0) *idum = -(*idum); 170

for (j=l;j<=97;j++) {

*idum=(IA*(*idum)+IC) % M;

irlj]=(*idum);

*idum=(IA*(*idum)+IC) % M;

iy=(*idum);

}

j=l + 97.0*iy/M;
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if (j > 97 1 j < 1) fprintf(stdout,"RAN2: This cannot happen.");

iy=irlj]; 180

*idum=(IA*(*idum)+IC) % M;

irj]=(*idum);

return (float) iy/M;

#undef M

#undef IA

#undef IC
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G.6 Plotting

ecomp.c

/ * This program when piped into plop plots the .el and .e2 files */

/ It compares two sets of .e files by plotting them together. $/

/ * Revised 6/22/93 Yanko Sheiretov */

#include <stdio.h>

main(argc, argv)

int argc;

char *argvf;

if (argc !- 3) { 

fprintf(stderr, "Usage: \tcomp <filel> <file2> I plop\n");

exit();}

printf("vindow top\n");

printf("title top \"Calculated Complex \\epsilon: Comparison\"\n");

printf("label top \"Files: %s and s\"\n", argv[1], argv[2]);

printf("label left \"\\epsilon': \\cross %s \\circle %s\"\n", argv[1], argv[2]);

printf("plot cross green marker 0.08\n");

printf("input \"Vs.el\"\n", argv[1]);

printf("plot circles green marker 0.08\n");

printf("input \"%s.el\"\n", argv[2]); 20

printf("window bottom\n");

printf("label left \"log(\\epsilon"): \\cross %s \\circle %s\"\n",argv[l],argv[2]);
printf("label bottom \"log(freq) \"\n");

printf("plot cross green marker .08\n");

printf("input \"%s.e2\"\n", argv[1]);

printf("plot circles green marker 0.08\n");

printf("input \"%s. e2\"\n", argv[2]);

}
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eplot.c

/ * This program when piped into plop plots the .el and .e2 files

Yanko Sheiretov ????? 10/7/93

#include <stdio.h>

main(argc, argv)

int argc;

char *argv0;

{

if (argc != 2) {

fprintf(stderr, "Usage: \teplot <file> I plop\n");

exit();}

printf("windov top\n");

printf("title top \"Calculated Complex \\epsilon\"\n");

printf("label top \"File: %s\"\n", argv[1]);

printf("label left \"\\epsilon'/\\epsilonO\"\n");
printf("label bottom \"log(freq) \"\n");

printf("plot line cross green marker 0.08\n");

printf("input \"%s.el\"\n", argv[l]);

printf("window bottom\n");

printf("label left \"log(\\epsilon' /\\epsilonO)\"\n");
printf("label bottom \"log(freq) \"\n");

printf("plot line cross green marker 0.08\n");

printf("input \"%s. e2\"\n", argv[ll]);

}
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eplot3.c

/ This program when piped into plop plots the .el and .e2 files

of the three wavelengths of the 9-i sensor. The files

name.l.el name.2.el name.S.el

name.l.e2 name.2.e2 name.S.e2

must ezist in that directory.

Yanko Sheiretov 10/1/99 */

#include <stdio.h>
main(argc, argv) 10

int argc;

char *argvo;

if (argc != 2) {

fprintf(stderr, "Usage: \teplot3 <name>\n");

exit);
printf("window top\n");

printf("title top \"Complex \\epsilon with 3-\\lambda. File: %s\"\n",
argv[l]);

printf("label top \"\\triangle: \\lambda = 6 mm \\square:"); 20

printf(" \\lambda = 2.5 mm \\circle: \\lambda = 1 mm\"\n");

printf("label left \"\\epsilon' /\\epsilonO\"\n");
printf("label bottom \"log(freq) \"\n);
printf("plot triangles green marker 0.08\n");

printf("input \"%s..ei\"\n", argv[1]);

printf("plot squares green marker 0.08\n");

printf("input \"%s.2. el\"\n", argv[ll]);

printf("plot circles green marker 0.08\n");

printf("input \"%s.3. el\"\n", argv[l]);

30

printf( "window bottom\n");

printf("label left \"log(\\epsilon' '/\\epsilonO) \"\n");
printf("label bottom \"log(freq) \"\n");

printf("plot triangles green marker 0.08\n");
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printf("input \"%.s 1 .e2\"\n", argv[1]);

printf("plot squares green marker 0.08\n");

printf("input \"%s .2. e2\"\n", argv[l]);

printf("plot circles green marker 0.08\n");

printf("input \"s .3 .e2\"\n", argv[l]);

} 40
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eplotx.c

/ * This program when piped into plop plots the .el and .e2 files.

It differs from eplot in that it adds azis scale information.

Yanko Sheiretov 10/7/99 */

#include <stdio.h>

main(argc, argv)

int argc;

char *argvo;

if(argc != 2) ( lo

fprintf(stderr, "Usage: \teplotx <file> I plop\n");

exit();}

printf("window top\n");

printf("title top \"Calculated Complex \\epsilon\"\n");

printf("label top \"File: %s\"\n", argv[1]);

printf("label left \"\\epsilon'/\\epsilonO\"\n");
printf("label bottom \"log(freq)\"\n");

printf("x axis scale -3 4\nw axis scale -3 4 suppress\n");

printf("y axis scale 0 1S\nz axis scale 0 16 suppress\n");

printf("plot line cross green marker 0.08\n"); Jo

printf("input \"%s.el\"\n", argv[l]);

printf("window bottom\n");

printf("label left \"log(\\epsilon' '/\\epsilonO)\"\n");
printf("label bottom \"log(freq)\"\n");

printf("x axis scale -3 4\nw axis scale -3 4 suppress\n");

printf("y axis scale -3 3\nz axis scale -3 3 suppress\n");

printf("plot line cross green marker 0.08\n");

printf("input \"%s.e2\"\n", argv[1]);

} 30
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eplot3x.c

/ This program when piped into plop plots the .el and .e2 files

of the three wavelength. of the 3-1 ensor. The files

name.l.el name.2.el name,.el

name.l.e2 name.2.e2 name.S.e2

must ezist in that directory. It differs from eplotS in that it adds

azis scale information and makes output uniform.

Yanko Sheiretov 11/17/93

#include <stdio.h>

main(argc, argv)

int argc;

char *argvo;

{

if (argc != 2) {

fprintf(stderr, "Usage: \teplot3x <name>\n");

exit();}

printf("window top\n");

printf("title top \"Complex \\epsilon with 3-\\lambda. File: %s\"\n",

argv[1]);

printf("label top \"\\triangle: \\lambda = mm \\square:");

printf(" \\lambda = 2.5 mm \\circle: \\lambda = mm\"\n");

printf("label left \"\\epsilon' /\\epsilonO\"\n");
printf("label bottom \"log(freq) \"\n");
printf("x axis scale -3 4\nw axis scale -3 4 suppress\n");

printf("y axis scale 0 7.5\nz axis scale 0 7.5 suppress\n");

printf("plot triangles green marker 0.08\n");

printf("input \"%s. 1 .el\"\n", argv[1]);

printf("plot squares green marker 0.08\n");

printf("input \"%s.2. el\"\n", argv[l]);

printf("plot circles green marker 0.08\n");

printf("input \"%s .3. el\"\n", argv[1]);

printf("vindow bottom\n");
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printf('"label left \"log(\\epsilon '/\\epsilonO)\"\n);
printf("label bottom \"log(freq)\"\n");

printf("x axis scale -3 4\nv axis scale -3 4 suppress\n");

printf("y axis scale -3 3\nz axis scale -3 3 suppress\n");

printf("plot triangles green marker 0.08\n");

printf("input \"%s.1 .e2\"\n", argv[l]); 40o

printf("plot squares green marker 0.08\n");

printf("input \"%s .2.e2\\n", argv[l]);

printf("plot circles green marker 0.08\n");

printf("input \"%s.3.e2\"\n", argv[l]);
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raw.c

# include <stdio.h>

# define EOL '\n' /* end of line definition */

# define MAXPTS 500

/ This program reads a file generated by the controller boz and outputs

to stdout plotting commands to plot the rawu data.

Yanko Sheiretov 9/11/92 Revised: 8/20/93 */

main(argc, argv)

int argc; 10o

char *argv;

char junk;

FILE *fpses;

double ch, fMAXPTS], g[MAXPTS], p[MAXPTS], o[MAXPTS];

int year, month, day, hour, minute;

int n, i;

if (argc != 2) { 20

fprintf(stderr, "Usage: \traw <file> I plop\n");

eit(); }

if ((fpses = fopen(argv[1],"r")) == NULL) {

fprintf(stderr, "Error: cannot open %s\n",argv[1]);

exit(l);

}

while((junk=fgetc(fpses)!= ', )); o30

fscanf(fpses,"%if ,%d,%d,%d,%d,%d",&ch,&year,&month,&day,&hour,&minute);

while((junk=fgetc(fpses)) != EOL && junk != EOF);

n = 0;

while(l) {

228



do junk=fgetc(fpses);

while (junk = EOF && junk != EOL && junk != ']' && junk != ',');

if (junk == EOF) break;

if (junk == EOL II junk == ' ') continue;

fscanf(fpses,"%lif, %lf ,%lif, %lif ,%lf ",&ch,f+n,g+n,p+n,o+n);

n++; 40

while(fgetc(fpses) != ' ');

}

fclose(fpses);

printf("window vertical 1/3\ntitle top \"Raw Data\"\n");

printf("label top \"date: %d/%d/%d \"\n", month, day, year);

printf("text over 0.1 right 0.3 size 0.12 \"f ile: %s\"\n", argv[l]);

printf("label bottom \"log(freq)\"\n");

printf("label left \"Gain [dB]\"\nplot green cross marker 0.08\n");

for(i=O;i<n;i++) printf("%i\t%f\n",fi],g[i]); 50

printf("window vertical 1/3\n");

printf("label bottom \"log(freq) \"\n");

printf("label left \"Phase deg]\"\nplot green cross marker 0.08\n");

for(i=0;i<n;i++) printf("%f\t%fi\n",fi],p[i]);

printf("wvindow vertical 1/3\n");

printf("label bottom \"log(freq) \"\n");

printf("label left \'Offset [mV]\"\nplot green cross marker 0.08\n");

for(i=0;i<n;i++) printf("%f\t%f\n",fli],1000 .*o[i]); 60

fprintf(stderr,"Done ... %d data points.\n",n);

fflush(stdout);

}
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raw3.c

# include <stdio.h>

# define EOL '\n' /$ end of line definition */

# define MAXPTS 500

/* This program reads a file generated by the controller box and outputs

to tdout plotting commands to plot the raw data for three- wavelength

sensors.

Yanko Sheiretov 8/31/92 R. 12/17/93 */

10

main(argc, argv)

int argc;

char *argvo;

char junk;

FILE *fpses;

double temp, f[MAXPTS][3], g[MAXPTS][3], p[MAXPTS][3], o[MAXPTS][3];

int year, month, day, hour, minute, channel;

double ffgg, pp, oo; 20

int n, i;

if (argc != 2) {
fprintf(stderr, "Usage: \trav3 <file> I plop\n");

eit(); }

if ((fpses = fopen(argv[1],"r")) == NULL) {

fprintf(stderr, "Error: cannot open %s\n",argv[1]);

exit(l); 30

}

while((junk=fgetc(fpses)!= ','));

fscanf(fpses,"Y,%lf ,%d,%d,d, %d,%d'",
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&temp, &year, &month, &day, &hour, &minute);

while((unk=fgetc(fpses)) = EOL && junk != EOF);

n = -1;

while(1) (

do junk-fgetc(fpses);

while Uunk != EOF && junk != EOL && junk != '' && junk != ','); 40

if (junk == EOF) break;

if (junk == EOL II junk == ' ') continue;

fscanf(fpses,"%d,%lf ,%lf, lf , ,%lf",

&channel, &ff, &gg, &pp, &oo);

if (channel == 1) n++;

if (channel > 0 && channel < 4) {

fin][channel-l] = ff;

g[n][channel-1] = gg;

p[n][channel-1] = pp;

o[n][channel-1] = oo; } so

else {

fprintf(stderr, "Bad channel number: %d\n", channel);

exit(); 

while(fgetc(fpses) != 'J');

fclose(fpses);

printf("vindow vertical 1/3\ntitle top \"3-\\lambda Raw Data:");

printf(" %d/%d/%d \"\n", month, day, year);

printf("label top \"\\triangle: \\lambda = mm \\square:"); 60

printf(" \\lambda = 2.5 mm \\circle: \\lambda = I mm\"\n");

printf("text over 0.1 right 0.3 size 0.12 \"file: %s\"\n", argv[l]);

printf("label bottom \"log(freq) \"\n");

printf("label left \"Gain [dB\"\nplot green triangles marker 0.08\n");

for(i=O;i<=n;i++) printf("%f \t%i\n", f[i][O], g[i] [0]);

printf("plot green squares marker 0.08\n");

for(i=O;i<=n;i++) printf("%f\t%f\n", fi][1], g[i][1]);

printf("plot green circles marker 0.08\n");

for(i=O;i<=n;i++) printf("%f \t%f \n", i][2], g[i] [2]);

70
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printf("'vindov vertical 1/3\n");

printf("label bottom \log(freq)V\\n");

printf("label left \"'Phase degV\"'\n");

printf("plot green triangles marker 0.08\n");

for(i=O;i<=n;i++) printf("yf,\t%f\n", fi] [O], p[i][O]);

printf("plot green squares marker 0.08\n");

for(i=O;i<=n;i++) printf(", \t%f \n", fii][1], p[i][1]);

printf("plot green circles marker O.08\n");

for(i=O;i<=n;i++) printf("%f \tf \n", f[i][2], p[i][2]);

80

printf("windov vertical 1/3\n");

printf("label bottom \"log(freq) \"\n");

printf("label left \"Oiffet mV]\"\n");
printf("plot green triangles marker 0.08\n");

for(i=O;i<=n;i++) printf("%fX\t%f\n", fti][O], 1000.*o[i][0]);

printf("plot green squares marker 0.08\n");

for(i=O;i<=n;i++) printf("%f\t%f\n", f[i][1], 1000.*o[i][1]);

printf("plot green circles marker 0.08\n");

for(i=O;i<=n;i++) printf("%fi\t%fi\n", fli][2], 1000.*o[i] [2]);

o90

fprintf(stderr,"Done ... %d distinct frequencies. \n", n+l);

flush(stdout);

}
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Appendix H

Program Listings for the

Parameter Estimation Algorithms

H.1 Description

This appendix contains the code for all of the parameter estimation routines described

in Chapter 4. Table H.1 lists the function of the code in every file. The rest of this

section contains the description of the different programs and function. An attempt

is made to organize this list by level of abstraction, beginning at the lowest level.

Figure H-1 shows a diagram of the interdependence of the different files.

The routine gp.c gives the solution of the forward problem, i.e. given the properties

of the sensor and the layer structure above it, it computes the gain and the phase

of the response. This routine calls the functions in scap.c, coef.c, solve.c, and

admit.c. All of the subsidiary routines mentioned in this paragraph were written in

almost direct translation from Dr. M. Zaretsky's FORTRAN code [3].

The multidimensional parameter estimation routines use gp.c in some sort of an

iterative fashion in order to solve the inverse problem, i.e. finding out something

about the materials above the sensors, given the measured gain and phase data. For

a full description of all programs in this appendix, read Chapter 4.
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Figure H-i: Interdependence of parameter estimation routines
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Name Description

Multidimensional Parameter Estimation
est.c Root finding
estm.c Minimization based on Powell's method [9]
ests.c Minimization based on the downhill simplex method [9]
estp.c Root finding with assumed profile function
getgp.c Finds the gain and phase given a layer structure

Subsidiary Parameter Estimation Routines
scap.c Calculates surface capacitance density
coef.c Calculates the coefficients of the collocation point matrix
solve.c Solves the collocation point matrix
admit.c Calculates the impedances in the sensor model
gp.c Uses all of the above to calculate gain and phase
testgpoc tests gp.p

Tools
complex.c Defines functions operating on complex numbers
matrix.c Functions on matrices of complex numbers

Input/Output
chipinfo.c Sensor information
layinfo.c Layer information

Table H.1: Summary of parameter estimation routines
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H.2 Makefile

makefile

# makefile for estimation routines

# Yanko Sheiretov 1/24/94

.SUFFIXES: .c .h

CC = cc -c

CFLAGS =

LINK = cc -o 10

.C.O:

$(CC) $(CFLAGS) $<

est: est.o matrix.o chipinfo.o layinfo.o gp.o admit.o \

coef.o complex.o solve.o scap.o

$(LINK) est est.o matrix.o chipinfo.o layinfo.o \

gp.o admit.o coef.o complex.o solve.o scap.o -lm

estp: estp.o matrix.o chipinfo.o layinfo.o gp.o admit.o \ 20

coef.o complex.o solve.o scap.o slope.o

$(LINK) estp estp.o matrix.o chipinfo.o layinfo.o \

gp.o admit.o coef.o complex.o solve.o scap.o slope.o -Im

estm: estm.o chipinfo.o layinfo.o gp.o admit.o \

coef.o complex.o solve.o scap.o

$(LINK) estm estm.o chipinfo.o layinfo.o \

gp.o admit.o coef.o complex.o solve.o scap.o -lm

ests: ests.o chipinfo.o layinfo.o gp.o admit.o \ 30

coef.o complex.o solve.o scap.o

$(LINK) ests ests.o chipinfo.o layinfo.o \
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gp.o admit.o coef.o complex.o solve.o scap.o -Im

getgp: getgp.o chipinfo.o layinfo.o gp.o admit.o \

coef.o complex.o solve.o scap.o

$(LINK) getgp getgp.o chipinfo.o layinfo.o gp.o \

admit.o coef.o complex.o solve.o scap.o -Im

test: test.o gp.o admit.o coef.o complex.o solve.o scap.o 40

$(LINK) test test.o \

gp.o admit.o coef.o complex.o solve.o scap.o -Im

admit.o coef.o complex.o solve.o scap.o: est.h complex.h

gp.o: est.h complex.h objects.h

est.o estp.o: matrix.h objects.h complex.h

layinfo.o chipinfo.o estm.o ests.o: objects.h complex.h 50

getgp.o test.o: objects.h complex.h
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H.3 Header Files

complex.h

/ * Header file for operations with complex number.

Yanko Sheiretov 1/20/94 1/25/9 */

typedef struct {
double x,y;

} complex;

#define re(z) ((s).x)

#define im(s) ((s).y)

10

complex cmplx(), recip(, plus(), times(), scale(), minus(), over(), csq();

double ccabs();

238



est.h

/ * Header file for files used in the estimation routines.

Yanko Sheiretov 1/12/94 1/25/94

#include <math.h>

#include <stdio.h>

#include "complex.h"

#include "objects .h"
#define PI

#define N2

#define N1

#define MF

#define grid(x)

3.141592654

200

50

N2+1

(gr[(x)])

/ * mazimum number of fourier summation terms */

/ * mazimum number of collocation points $/

/ * array dimension: indezing begins at 1 */

lambda;

eox; /* subst

h; /* thicki

g; /* inter

yload; /* load i

ckmin;

rea, rsea;

k, N, nmax, num;

enO;

wl; /$ frequ4

ap, bp;

yll, y12, yp;

gr[Nl+2];

rate permittivity */

nefs */

electrode thickness */

impedance */

20

ency *$/

/* grid points */

void coef(, scap(), admit(),

complex fhsum();

double fl(), fsum(, fact();

solve(), gridinit();
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extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern
extern

double

double

double

double

double

complex

complex

int
double

double

double

complex

double



matrix.h

void ysolve(), invert(), mul(), mulv();
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objects.h

/ * This header file defines structures, etc. which are useful for the

communications between an estimation algorithm and the forward function.

Yanko Sheiretov 1/20/94

/* describes a homogeneous layer above the electrodes */

struct layer {

complex bulk;

complex surface;

double thickness;

#define ML

#define sq(x)

struct sensor {

int
int
double

double

double

double

double

double

double

double

double

complex

complex

};

20

((x)*(x))

k;

N;

lambda;

eox;

h;

9;

yload;

enO;

wl;

ap;

bp;

ea;

sea;

/$ number of collocation points */

/ $ number of Fourier terms $/

/* spatial wavelength */

/* substrate permittivity */

/ *$ substrate thickness $//$* interelectrode thickness $/

/ load impedance *$/

/ * imposed electric field */

/* AC frequency */

/ *$ parasitic coefficient ap $/

/ parasitic coefficient bp */

/* complez bulk permittivity above electrodes */

/* complex surface permittivity above electrodes */

complex gp();
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/ * a useful macro */
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H.4 Main Parameter Estimation Routines

est.c

/$* This is the main file which contains the control function for the

multidimensional parameter estimation routine. It used a form of

the Secant method to find out the bulk properties of a

set of unknown layers. Data is taken from several sensors with

different spatial wavelengths.

Yanko Sheiretov 2/5/94 /9/914 */

/ * Major revision: the analytical properties of the complez gain as a

function of the complex permittivities is taken into account.

Yanko Sheiretov 3/241/94

10

5/3/94

#include "complex.h"

#include "objects .h"

#include "matrix.h"
#include <stdio.h>

#include <math.h>

void chipinfo(), layinfo(), chipinfoout(, layinfoout(); 20

#define PI

#define TOLR

#define TOLV

#define INCA

#define INCM

#define EMIN

#define SMIN

3.141592654

0.1

0.5e-12

1.0e-13

0.01

8.854e-12

-le-12

#define MAXK 25

#define MAXN 100

#define MAXITER 25

/ * result tolerance factor */

/ * independent vector tolerance */

/ * additive increment for derivatives */

/ * multiplicative increment for derivatives */

/ * minimal permittivity */

/ * minimal conductivity */

/ * number of collocation points */

/ * number of Fourier terms */

/ * mazimum number of iterations *$/
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#define MAXDAMP 6

#deflne NEWJAC 1

/ mazimum number of damping steps */

/ * how often a new jacobian is calculated */

main()

{
double wl;

complex ea;

complex sea;

char

FILE

int

int

int

int

complex

complex

complex

complex

complex

complex

complex

struct
struct
int

double

complex

int
char

char

int

/* AC frequency */

/ * complez bulk permittivity above electrodes */

/* complez surface permittivity above electrodes */

/ * The above two quantities are assumes to be

name[20];

*fp;

n;

dfr;

u[ML];

iter;

jac[ML][L

ijac[ML][J

old[ML];

new[ML];

res[ML];

meas[ML]

r;

sensor s[M

layer l[ML

i, m;

sum=O.0,

dx;

damp=O;

newjac=l;

isbad();

last=--l;

the same for all sensors ./

/* output file name */

/* output file pointer */

/ number of layers */

/ * number of degrees of freedom, i.e.

the number of sensors and unknown layers */
/* indez numbers for unknown layers */

/* number of iterations */
IL]; / jacobian */

ML]; / inverse jacobian */

/* old guess vector */

/ new guess vector /

/* result vector $/
]; / * measured values vector */

/ result register */

IL]; / array of sensors */

L,]; /* array of layers */
/ * counters */

newsum, oldsum=0.0, suml, sum2;

/* derivative increment */

/* number of damping steps */

/* flags whether a new jacobian is needed */

/* tests the validity of the new point */

/ * iteration number for the last time a new

jacobian was calculated */

complex to_e_anal(), to_e_stan(, tog anal();

char val[5]; /* whether parameter validity is done */
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/ ************* Get information from user ******** ************* 70

fputs("Please enter output file name: ", stdout);

scanf("%s", name);

if((fp = fopen(name, "w")) == NULL) (

fprintf(stderr, "est error: can't open %s\n", name);

exit(); )

fputs("Please enter the AC frequency tz: ", stdout);

scanf("%lf", &wl);

wl *= 2.0*PI; /* convert to rad/s */

fputs("Please enter the bulk permittivity above the ", stdout); so

puts("electrodes F/m, [S/m :");

scanf("%lf ,%lf", &re(ea), &im(ea));

fputs("Please enter the surface permittivity above the ", stdout);
puts("electrodes F], [S] :");

scanf("%lf ,%lf", &re(sea), &im(sea));

fputs("\nPlease enter the number of layers: ", stdout);

scanf("%d", &n);

fputs("Please enter the number of sensors (unknown layers): ", stdout);

scanf("%d", &df);

puts("Please enter the index numbers of the unknown layers,");

puts("separated with commas, starting from the infinite half");

puts("space (number 0), e.g. 2,3,6");

for(i=O; i<df; i++) {

scanf("%d", u+i);

if(i < df-1) while (getchar()!= ','); 

putchar('\n');

for(i=O; i<df; i++) {

printf("Please enter information about ;ansor number %d:\n",i);

chipinfo(s+i); } 100oo

puts("\nlow enter information about the layers. The values entered");

puts("for the bulk properties of the unknown layers will be used as");

puts("the initial guess. Layer number 0 is the topmost layer,");

puts("i.e the infinite half space.");
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for(i=O; i<n; i++) 

printf("Please enter information about layer number %d:\n", i);

layinfo(l+i); }

puts("\nPlease enter the measured gain and phase for : ([dB], [dog])");

for(i=O; i<df; i++) { 110

printf("\tsensor number %d : ", i);

scanf("%lf ,%l1f", &re(meas[i]), &im(meas[i])); }

fputs("\nWould you like to perform parameter range damping? ", stdout);

scanf("%3'%*s", val);

*val = *val=='Y' I *va== ' ? 1: 0;

puts("\nThe process now begins ... ");

/ ""'* '""*'***** Print out input data ***************************/

fprintf(fp, "Output file name: %s\n", name); 120

fprintf(fp, "Number of collocation points: %d\n", MAXK);

fprintf(fp, "umber of Fourier terms: d\n", MAXN);

fprintf(fp, "aximum number of iterations: %d\n", MAXITER);

fprintf(fp, "axinum number of damping cycles: Yd\n", MAXDAMP);

fprintf(fp, "C frequency [Hz]: %g\n", wl/PI/2.0);

fprintf(fp,

"Bulk permittivity above the electrodes F/m], [S/m]: %g,%g\n",

re(ea), im(ea));

fprintf(fp,

"Surface permittivity above the electrodes [F], [S]: %g,%g\n", 130o

re(sea), im(sea));

fprintf(fp, "Number of layers: Yd\n", n);

fprintf(fp, "Number of sensors: %d\n", df);

fputs("Index numbers of the unknown layers: ", fp);

for(i=O;i<df;i++) {

if (i<df-1) fprintf(fp, "d, ", u[i]);

else fprintf(fp, "%d\n", u[i]); }

for(i=0; i<df; i i++) {

fprintf(fp, "Information about sensor number %d:\n", i);

chipinfoout(s+i, fp); } 140
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for(i=O; i<n; i++) {
fprintf(fp, "Information about layer number %d:\n", i);

layinfoout(l+i, fp); 

fputs("'easured gain and phase for : ([dB],[degJ )\n", fp);

for(i=O; i<df; i++) fprintf(fp, "\tsensor number d : %g,%g\n", i,

re(meas[i]), im(meas[i]));

fprintf(fp, "\nParameter range damping %s.\n", *val ? "ON": "OFF");

fflush(fp);

150

/ ***************** Fill in remaining sensor data $*** ****** **$****
for(i=0; i<df; i++) {

(s[i]).k = MAXK;

(s[i]).N = MAXN;

(s[i]).enO = 0.0;

(s[i]).wl = wl;

(s[i]).ea = ea;

(s[i]).sea = sea; }

/ * No superimposed field assumed */

160

/ ******** Convert meas to analytical form ************************/

for(i=O; i<df; i++) meas[i] = toganal(meas[i]);

/ $************** Iteration process ******************************

i* initialize first guess */

for(i=O; i<df; i++) new[i] = toeanal((l[u[i]]).bulk, wl);

/ * iteration control loop */

for(iter=l; iter <= MAXITER; iter++) {

printf("Iteration number %d\n", iter);

for (i=0;i<df;i++) printf("ne %dl = (g, %g)\n", i,

re(new[i]), im(new[i]));

if (newjac && last == iter-1) {

246

170



printf("Convergence failure: Badness %g > %g\n",

oldsum, TOLR);

fprintf(fp, "Convergence failure: Badness %g > %g\n",

oldsum, TOLR); 180

exit(O);

I

/* calculate res /

for(m=O; m<df; m++) {

/* place guess into layer structures */

if (iter > 1)

for(i=0; i<df; i++)

(l[u[i]]).bulk = toe stan(new[i], wl);

res[m] = to-g-anal(gp(n, 1, s+m)); 19o

printf("res [%d] = (g, %g)\n", m,

re(res[m]), im(res[m]));

I

/* test to see whether res is close to meas $/

for(suml=0.0, sum2=0.0, i=O; i<df; i++) {

newsum = ccabs(minus(res[i], meas[i]));

suml += sq(newsum);

newsum = ccabs(plus(res[i], meas[i]));

sum2 += sq(newsum); 200

}

newsum = sqrt(suml/sum2);

printf("newsum = %g\n", newsum);

if(newsum < TOLR) {

puts("res is close enough to meas:");

printf("\tnewsum = %g < %g\n", newsum, TOLR);

break; }

/* test to see if damping is needed */ 210

if (newsum > oldsum && !newjac) {

printf ("Damping needed: step #%d\n", damp+l);
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printf ("because %g > %g\n", newsum, oldsum);

iter--; /* doesn't count as an iteration */

if (damp >= MAXDAMP) { /* new jacobian is needed */

puts("Even worse -- new acobian!");

newjac = 1;

for (i=O; i<df; i++) new[i] = old[i];

continue;

220

else {

damp++;

for (i=O; i<df; i++)

new[i] = scale(plus(new[i], old[i]), 0.5);

continue;

else {

oldsum = newsum;

damp = O; 230

/ * calculate jacobian partial derivatives $/

if (iter-last >= NEWJAC) newjac = 1;

if (newjac) puts("\nJacobian calculation !");

if (newjac) for(m=O; m<df; m++) {

if (ccabs(new[m]) != 0.0) dx = scale(new[m], INCM);

else dx = cmplx(INCA, 0.0);

(l[u[m]]).bulk = to_estan(plus(new[m], dx), wl);

printf("new[/%d is now (%g, %g)\n", m, re(new[m]) + 240

re(dx), im(new[m]) + im(dx));

for(i=0; i<df; i++) {

r = tog anal(gp(n, 1, s+i));

jac[i][m] = over(minus(r, res[i]), dx);

printf("'rE%d = (%g, %g)\n", i, re(r), im(r));

printf("jac%/dJ [%al = (%g, %g)\n", i, m,

reojac[i][m]), imCiac[i][m]));
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(l[u[m]]).bulk = toestan(new[m], wl);

} 250

/ * new becomes old */

/ * subtract meas from res */

for(i=O; i<df; i++) {

old[i] = new[i];

res[i] = minus(res[i], meas[i]);

}

/ * calculate correction vector */

if (newjac) invert(jac, ijac, df); 260

mulv(ijac, res, new, df);

if (newjac) last = iter;

newjac = 0;

/ * find new values for new */

for(i=O; i<df; i++) new[i] = minus(old[i], new[i]);

/ * damping caused by parameters out of range $/

if (*val) {

for (m=O; m < MAXDAMP && isbad(new, df); m++) { 270

for(i=O; i<df; i++)

new[i] = scale(plus(new[i], old[i]), 0.5);

printf("Parameter range damping: #%d\n", m+1);

for(i=O; i<df; i++) printf("%g, %g, ", re(new[i]),

im(new[i]));

putchar('\n' );

if (m == MAXDAMP) {

if (last == iter) {

puts("Failure due to parameters being out of range"); 280

fputs("Failure due to parameters being out of range\n",

fp);

exit(O);

}

249
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newjac = 1;

iter--;
for (i=O; i<df; i++) new[i] = old[i];

puts("New acobian due to parameters out of range.");

continue;

290

/ * test to see if new is close to old */

for(sum=0.0,i=0; i<df; i++)

sum += ccabs(minus(new[i], old[i]));

iftsum < TOLV) {

puts("new is close enough to old:");

printf("\tsum = %g < %g\n", sum, TOLV);

break; }

300

/ End of iteration cycle $/

fflush(stdout);

/ ******************* Print Out Results *********************************/

if (iter > MAXITER) {

puts("Problems with convergence.");

fputs("Problems with convergence. \n", fp);

310

else {

/$ place results into layer structures $/

for(i=O; i<df; i++) ([u[i]]).bulk = to e stan(new[i], wl);

puts("Done -- see output file for results.");
fprintf(fp, "\n%/lSs%1Ss%iSs\n", "Layer number",

"Permittivity", "Conductivity");

for(i=0; i<46; i++) putc('-', fp);

fputs("\n$\n", fp);

for (i=O; i<df; i++) 820
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fprintf(fp, %l16d%16e%16e\n", u[i], re((l[u[i]]).bulk),

im((l[u[i]]).bulk));

fputs("$\n", fp); }

fclose(fp);

fflush(stdout);

}

/ * The following function tests whether the values in the array new[u are

valid. Return a boolean value */

char isbad(new, n)

complex *new;

int n;

char r=O;

int i;

for(i=O; i<n; i++) {

r = r II re(new[i]) < EMIN II -im(new[i]) < SMIN;

if (r) break;

return (r);

/ * The following functions convert numbers for the complez permittivity

and the complez gain between analytical and standard representation.:

(g', g") <--> (M, phi)

M = sqrt(g'*g' + g9"*g")

phi = arctan (g"/g')

(e, ) <--> (e', -e ")

e' = e

-e" = -/WlI
*/

complex to_e_anal(z, w)
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complex s;

double w;

return (cmplx(re(s), -im(s)/w));

complex to.e_stan(s, w)

complex s;

double w;

return (cmplx(re(s), -w*im()));

I

complex to.g.anal(s)

complex s;

{

double r, theta;

r = pow(10.0, re(s)/20.0);

theta = im(s)*PI/180.0;

return(cmplx(r*cos(theta), r*sin(theta)));

I
380
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estm.c

/* This version of the parameter estimation program "est.c" uses a different

approach: instead of searching for a root, we search for a minimum of an

error function (func()). This has the advantage that the numerical method

is more stable. Also, it allows for having more sensors than unknown layers

and does not fail if due to ezperimental errors no roots ezist. Preliminary

tests seem to indicate that it takes more computation time than "est.c".

Yanko Sheiretov 9/28/9 */

#include "complex.h" o10

#include "objects.h"

#include <stdio.h>

#include <math.h>

void chipinfo(), layinfo(), chipinfoout(), layinfoout();

double pcom[ML],xicom[ML];

double sqrarg;

int df,sen;

#define FTOL 0.001 /* Fractional tolerance for the error function */ 20

#define ATOL 0.01 /* Absolute tolerance for the error function */

#define UV le-13 /* Magnitude of search unit vectors */

#define TOL 0.05 /* Tolerance for the one-dimensional minimization */
#define CGOLD 0.3819660 / 1 - phi (Golden ratio) */

#define GOLD 1.618034 /* 1 + phi (Golden ratio) */

#define GLIMIT 100.0 /* limit for parabolic eztrapolation $/

#define TINY 1.0e-20 /* a tiny number used to prevent division by zero */

#define MAX(a,b) ((a) > (b) ? (a): (b))

#define SQR(a) (sqrarg=(a),sqrarg*sqrarg) 30

#define SIGN(a,b) ((b) > 0.0 ? fabs(a): -fabs(a))

#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);

#define PI 3.141592654

253



#define MAXK 25

#define MAXN 100

#define MAXITER 50

double wl;

complex ea;

complex sea;

char name[20];

FILE *fpout;

uint n;

int u[ML];

complex meas[ML];

double res[2*ML];

struct sensor s[ML];

struct layer I[ML];

/ * number of collocation points /

/ * number of Fourier terms */

/* mazimum number of iterations J/

/ * AC frequency */

/ * complez bulk permittivity above electrodes */

/* complez surface permittivity above electrodes */

/* The above two quantities are assumes to be

the same for all sensors /

/ * output file name $/

/* output file pointer */
/* number of layers $/

/ * indez numbers for unknown layers */

/ * measured values vector */
/ $ result register */

/ $ array of sensors $/

/ $ array of layers */

50

main()

{

int i;

double min, powell();

/ ********** Get information from user *************************

60

fputs("Please enter output file name: ", stdout);

scanf("%s", name);

if((fpout = fopen(name, "w")) == NULL) {

fprintf(stderr, "est error: can't open %s\n", name);

exit(); 

fputs("Please enter the AC frequency [Hz]: ", stdout);

scanf("%lf", &wl);

wl *= 2.0*PI; /* convert to rad/s */
fputs("Please enter the bulk permittivity above the ", stdout);
puts("electrodes [F/ml, CS/ml :");
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scanf("%lf ,%lf", kre(ea), tim(ea));

fputs("Please enter the urface permittivity above the ", stdout);

puts("electrodes F], S]:");

scanf("%lf ,%lf", &re(sea), kim(sea));

fputs("\nPlease enter the number of layers: ", stdout);

scanf("%d", &n);

fputs("Please enter the number of sensors: ", stdout);

scanf("%d", &sen);

puts("Please enter the number of unknown layers. Should be less than");

fputs("or equal to the number of sensors: ", stdout); so

scanf("%d", &df);

df *= 2;

puts("Please enter the index numbers of the unknown layers,");

puts("separated with commas, starting from the infinite half");

puts("space (number 0), e.g. 2,3,6");

for(i=O; i<df/2; i++) {

scanf("%d", u+i);

if (i < df/2-1) while (getchar()!= ',');}

putchar('\n');
90

for(i=O; i<sen; i++) {

printf("Please enter information about sensor number %d:\n",i);

chipinfo(s+i); 

puts("\nNow enter information about the layers. The values entered");

puts("for the bulk properties of the unknown layers will be used as");

puts("the initial guess. Layer number 0 is the topmost layer,");

puts("i.e the infinite half space.");
for(i=O; i<n; i++) {

printf("Please enter information about layer number %d:\n", i);

layinfo(l+i); } 100

puts("\nPlease enter the measured gain and phase for : ([dB], [deg])");

for(i=O; i<sen; i++) {

printf("\tsensor number d: ", i);

scanf("%lf ,%lf", &re(meas[i]), &im(meas[i])); }

puts("\nThe process now begins ... ");
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/ ****************** Print out input data ****t************************/

fprintf(fpout, "Output file name: Ys\n", name); 110o

fprintf(fpout, "Nluber of collocation points: %d\n", MAXK);

fprintf(fpout, "umber of Fourier terms: %d\n", MAXN);

fprintf(fpout, "aximum number of iterations: %d\n", MAXITER);

fprintf(fpout, "AC frequency tHz]: %g\n", wl/PI/2.0);

fprintf(fpout,

"Bulk permittivity above the electrodes [F/m]3,S/m]: %g,%g\n",

re(ea), im(ea));

fprintf(fpout,

"Surface permittivity above the electrodes F],[S]: %g,%g\n",
re(sea), im(sea)); 120

fprintf(fpout, "umber of layers: %d\n", n);

fprintf(fpout, "umber of sensors: %d\n", sen);

fprintf(fpout, "number of unknown layers: %d\n", df/2);

fputs("Index numbers of the unknown layers: ", fpout);

for(i=0;i<df/2;i++) {

if (i<df/2-1) fprintf(fpout, "%d, ", u[i]);

else fprintf(fpout, "%d\n", u[i]); }

for(i=O; i<sen; i++) {

fprintf(fpout, "Information about sensor number %d: \n", i);

chipinfoout(s+i, fpout); } 130

for(i=O; in; i++) {

fprintf(fpout, "Information about layer number %d:\n", i);

layinfoout(l+i, fpout); }

fputs("Measured gain and phase for : ([dB], deg] )\n", fpout);

for(i=O; i<sen; i++) fprintf(fpout, "\tsensor number %d : %g,%g\n", i,

re(meas[i]), im(meas[i]));

fflush(fpout);

/ ****************** Fill in remaining sensor data *********************/ 140

for(i=O; i<sen; i++) {
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(s[i]).k = MAXK;

(s[i]).N = MAXN;

(s[i]).enO = 0.0; / o superimposedfield assumed */

(s[i]).l1 = wl;

(s[i]).ea = ea;

(s[i]).sea = sea; }

/* initialize first guess */ 150

for(i=0; i<df; i++) res[i] = i%2==0 ? re((l[u[i/2]]).bulk):

im((l[u[i/2]]).bulk);

min = powell(res);

/ ******************* Print Out Results ***************4*****4**** */

/ * place results into layer structures */

for(i=O; i<df/2; i++) ([u[i]l).bulk = cmplx(res[2*i], res[2*i+1]);

puts("Done -- see output file for results."); e10

printf("Ninimum achieved: %g\n\n", min);

fprintf(fpout, "inimum achieved: %g\n\n", min);

fprintf(fpout, "\n%1is%1s%15s\n", "Layer number",

"Permittivity", "Conductivity");

for(i=O; i<46; i++) putc('-', fpout);

fputs("\n$\n", fpout);

for (i=O; i<df/2; i++)

fprintf(fpout, "%1iSd%1Se%lSe\n", u[i], re((l[u[i]]).bulk),

im((1[u[i]]).buk));

fputs("$\n", fpout); 170

fclose(fpout);

fflush(stdout);

double powell(p)

double pO;

{
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int i,ibigj,iter;

double t,fptt,fp,del,fret; iso

double pt[MLI,ptt[ML],xittML],xi[ML][ML];

void linmin();

double func();

fret=func(p);

for (j=O;j<df;j++) ptU]=pUj];

for (iter=l;;iter++) {

printt("\tPowell Iteration #Yd\n", iter);

fp=fret;

ibig=O; 190

del=O.O;

for (i=O;i<df;i++) {

for (j=Oj<dfj++) xitj]=xi[j][i]=j==i?UV:0.0;

fptt=fret;

linmin(p,xit,&fret);

if (fabs(fptt-fret) > del) {

del=fabs(fptt-fret);

ibig=i;

} 200

if (2.0*fabs(fp-fret) <= FTOL*(fabs(fp)+fabs(fret))II

fabs(fret) < ATOL) return (fret);

if (iter == MAXITER) {

puts("Powell - Problems with convergence.");

exit(0);

for (j=Oj<df;j++) {

pttU]=2.0*pU]-ptj];

xitj]=pj]-ptU];

pt]=p[j]; 210

fptt=func(ptt);

if (fptt < fp) {
t=2.0*(fp-2.0*fret+fptt)*SQR(fp-fret-del)-
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del*SQR(fp-fptt);

if (t < 0.0) {
linmin(p,xit,&fret);

for (j=Oj<dfj++) xi][ibig]=iti];

} 220

void linmin(p,xi,fret)

double pD,xiD,*fret;

int j;
double xx,xmin,fx,fb,fa,bx,ax;

double brent(,fldim();

void mnbrak(); 280

for (j=Oij<df;j++) {

pcomUj]=p[j];

xicomU]=ili];

ax=O.0;

xx=1.0;

bx=2.0;

mnbrak(&ax,&xx,&bx,&fa,&fx,&fb);

*fret=brent(ax,xx,bx,&xmin); 240

for (j=O;j<df;j++) {

-iD] *= min;

pu] += xi];

I

double fldim(x)

double x;

{

int j; 250
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double xt[ML], func();

for (j=O0j<dfj++) xtU]=pcom[i]+x*xicom];

return (func(xt));

double brent(ax,bx,cx,xmin)

double ax,bx,cx,*xmin;

int iter; 260

double a,b,d=O.O,etemp,fu,fv,fw,fx,p,q,r,toll,tol2,u,v,w,x,xm;

double e=O.O;

double fidim();

a=((ax < cx) ? ax: cx);

b=((ax > cx) ? ax: cx);

x=w=v=bx;

fw=fv=fx=fldim(x);

for (iter=l;iter<=MAXITER;iter++) {

printf("\t\tBrent iteration #%d\n", iter); 270

xm=0.5*(a+b);

tol2=2.0*(toll=TOL*fabs(x));

if (fabs(x-xm) <= (tol2-0.5*(b-a))) {

*xSmin=X;

return fx;

if (fabs(e) > toll) {

r=(x-w)*(fx-fv);

q=(x-v)*(fx-fw);

p=(x-v)*q-(x-w)*r; 280

q=2.0*(q-r);

if (q > 0.0) p = -p;

q=fabs(q);

etemp=e;

e=d;

if (fabs(p) >= fabs(0.5*q*etemp)
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p <= q*(a-x) 11 p >= q*(b-x))

d=CGOLD*(e=(x >= xm ? a-x: b-x));

else {

d=p/q; 290

u=x+d;

if (u-a < tol2 11 b-u < tol2)

d=SIGN(toll,xm-x);

} else {

d=CGOLD*(e=(x >= xm ? a-x: b-x));

u=(fabs(d) >= toll ? x+d: x+SIGN(toll,d));

fu=fldim(u);

if (fu <= fx) { 300

if (u >= x) a=x; else b=x;

SHFT(v,w,x,u)

SHFT(fv,fw,fx,fu)

} else {

if (u < x) a=u; else b=u;

if (fu <= fw 11 w == x) {

V=w;

w=U;

fv=fw;

fw=fu; 310

} else if (fu <= fv = v == x v == w) {

V=U;

fv=fu;

puts(}"oo many itorations in BRENT");

exit(O);

return 0.0;

320

void mnbrak(ax,bx,cx,fa,fb,fc)
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double *ax,*bx,*cx,*f,*fb,*fc;

double ulim,u,r,q,fu,dum,fldim();

*fa=fldim(*ax);

*fb=fldim(*bx);

if (*fb > *fa) {

SHFT(dum,*ax,*bx,dum) 80o

SHFT(dum,*fb,*fa,dum)

}

*cx=(*bx)+GOLD*(*bx-*ax);

*fc=fldim(*cx);

while (*fb > *fc) {

r=(*bx-*ax)*(*fb-*fc);

q=(*bx-*cx)*(*fb-*fa);

u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/

(2.0*SIGN(MAX(fabs(q-r),TINY),q-r));

ulim=(*bx)+GLIMIT*(*cx-*bx); 840

if ((*bx-u)*(u-*cx) > 0.0) {

fu=fldim(u);

if (fu < *fc) {

*ax=(*bx);

*bx=u;

*fa(*fb);
*fb=fu;

return;
} else if (fu > *fb) {

*CX=U; 850

*fc=fu;

return;

u=(*cx)+GOLD*(*cx-*bx);

fu=fldim(u);

} else if ((*cx-u)*(u-ulim) > 0.0) {

fu=fldim(u);

if (fu < *fc) {
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SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))

SHFT(*fb,*fc,fu,fldim(u)) ao0

} else if ((u-ulim)*(ulim-*cx) >= 0.0) {
u=ulim;

fu=fldim(u);

}else {

u=(*cx)+GOLD*(*cx-*bx);

fu=fldim(u);

SHFT(*ax,*bx,*cx,u)

SHFT(*fa,*fb,*fc,fu) 870

double func(p)

double p0;

{

int i;

double suml, sum2, sum;

complex r[ML], to-g-anal();

380

for (i=0; i<df/2; i++) (l[u[i]]).bulk = cmplx(p[2*i], p[2*i+1]);

for (i=0; i<sen; i++) r[i] = gp(n, 1, s+i);

for(suml=0.0, sum2=0.0, i=O; i<sen; i++) {

suml += SQR(ccabs(minus(to_g_anal(r[i]), to-g.anal(meas[i]))));

sum2 += SQR(ccabs(plus(tog.janal(r[i]), to.g anal(meas[i]))));

sum = sqrt(suml/sum2);

printf("func({"); 390

for (i=O; i<df-1; i++) printf("%g, ", p[i]);

printf("%g}) = %g\n", p[df-1], sum);

return (sum);

263



I

complex toganal(s)

complex s;

double r, theta; 4oo

r = pow(10.0, re(z)/20.0);

theta = im(z)*PI/180.0;

return(cmplx(r*cos(theta), r*sin(theta)));

I
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estp.c

/* This is a version of the multivariable parameter estimation program,

est.c, which allows one unknown layer, but the layer is

assumed to be INHOMOGENEOUS. A certain profile function m(z) is

specified and it is assumed that the permittivity and the conductivity

of this layer follow the prescribed profile function in the

following manner:

e* = e' - je" = e - js/w

e*(z) = einf + A((1/w)*m(z))^-gamma
10

where e is permittivity, is conductivity, w is frequency, einf is

the normalized permittivity for w->inf'ty, gamma is the dispersive

slope (-I < gamma < 0), and m(z) is the profile function, which is:

m(z) = 1 + - PI*atan(B)*[sol(DO*10 D, z)- 0.5]

where sol is the solution to the diffusion equation. There are three

unknown quantities: A, B, D; (A is complez).

Yanko Sheiretov 2/7/94 3/30S/9 */ 20

/ For a variety of mathematical reasons, instead of searching for the

three unknown parameters A, B, and D, we now search for the complez

epsilon at the two ends of the sample and at a point inside. The rest

of the sample's epsilon is interpolated with the function given above.

The diffusion constant D is estimated from the initial slope of the

profile function.

Yanko Sheiretov 411/94 $/

30

#include "complex.h"

#include "objects .h"
#include "matrix.h"
#include <stdio.h>
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#include (math.h>

void chipinfo(), layinfo(), chipinfoout(), layinfoout(, trans();

#deflne DF 3

#define MLSUB 50

#deflne MF 200

#define PI 3.141592654

#deflne EO 8.854e-12

#define LIM 1.0e-6

#define MAXK 25

#define MAXN 100

#define MAXITER 25

#define DO 1.0e-8

#define TOLR 0.01

#define TOLP 0.01

#define MAXDAMP 5

#define NEWJAC 5

#define INCM 0.01

#define INCA 0.1

/* degrees of freedom */

/* mazimum number of sublayers */

/ * mazimum number of Fourier modes */

/* permittivity of vacuum */

/* limit for the convergence test */

/* number of collocation points */

/* number of Fourier terms */

/* mazimum number of iterations */

/* normalizing factor for D */

/* result tolerance */

/* parameter tolerance $/
/* mazimum number of damping steps */

/* how often a new jacobian is calculated */

/* multiplicative increment for derivatives */

/* additive increment for derivatives */

man()

wl;

ea;

sea;

name[20]

*fp;

n;

nsub;

u;

iter;

jac[DF][I

ijac[DF][]

/* AC frequency */

/* complez bulk permittivity above electrodes */

/* complez surface permittivity above electrodes */

/* The above two quantities are assumes to be

the same for all sensors /

]; /* output file name */

/* output file pointer */

/* number of layers */

/ number of sublayers $/

/* indez number of unknown sublayer */

/* number of iterations */

)F]; /*jacobian */

DF]; /* inverse jacobian */
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complex old[DF]; /* old guess vector */

complex new[DF]; /* new guess vector */

complex res[DF]; /* result vector */

complex meas[DF]; /* measured values vector */

struct sensor s[DF]; /* array of sensors *

struct layer I[ML+MLSUB]; / * array of layers */

int i, m; /$* counters */

complex r; / * result register */

double sum, newsum, oldsum=O.O, suml, sum2; /* sums */

double d; /* unknown layer thickness */ so

double gamma; /* dispersive log-log slope */

double einf; /* epsilon infinity */

double grsub[MLSUB+1]; /* sublayer grid points */

void grsubinit(; /* initializes the sublayer grid */

double sol(); / * an infinite sum of decaying sinusoids */

char newjac=l; /* whether a new jacobian is needed $/

int damp=O; /* damping counter $/

int last = -1; / * iteration number for the last time a new

jacobian was calculated $/

complex dx, to g_anal(); oo

/************* Get information from user ************************

fputs("Please enter output ile name: ", stdout);

scanf("%s", name);

if((fp = fopen(name, "w")) == NULL) {

fprintf(stderr, "est error: can't open %s\n", name);

exit(); }

fputs("Please enter the AC frequency [Hz]: ",stdout);

scanf("'/.li", &wl); 100

wl *= 2.0*PI; /* convert to rad/s */

fputs("Please enter the bulk permittivity above the ", stdout);

puts("electrodes F/m], [S/m] :");

scanf("'/lf, l1", &re(ea), &im(ea));

fputs("Please enter the surface permittivity above the ", stdout);

puts("electrodes F], ES]: ");
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scanf("%lf ,lf", &re(sea), &im(sea));
fputs("\nPlease enter the number of layers: ", stdout);

scanf("%d", &n);

fputs("Please enter the index number of the unknown layer: ", stdout); 11o

scanf("%d", &u);

fputs("Please enter the number of sublayers, into which the ", stdout);

fputs("unknown layer\nis to be divided: ", stdout);

scanf("%d", &nsub);

for(i=O; i<DF; i++) {

printf("Please enter information about sensor number %d: \n",i);

chipinfo(s+i); )

puts("\nNow enter information about the layers.");

fputs("Layer number 0 is the topmost layer, ", stdout);

puts("i.e the infinite half space."); 120

for(i=O; i<n+nsub-l; i++) {

printf("Please enter information about layer number %d:\n",

i <= u ? i: i - nsub + 1);

if (i != u) layinfo(l+i);

else {

i += nsub-1;

puts("This is the unknown layer.");

fputs("\tdispersive log-log slope: ", stdout);
scanf("%li", &gamma);

fputs("\tepsilon infinity: ", stdout); 130

scanf("%lf", &einf);

fputs("\tlayer thickness m]: ", stdout);
scanf("%lf", &d);

fputs("\tsuriface permittivity and cond", stdout);

fputs("uctivity [F], S]: ", stdout);

scanf("%li, %lif", &re((l+i)- >surface),

&im((l+i)->surface));

fputs("Please input initial guesses for ", stdout);

puts("the normalized parameters:");

fputs("\tA = ", stdout); 140

scanf("/lf ,%lf", &re(new[O]), &im(new[O]));

fputs("\tB = ", stdout);
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scanf("%lf", &re(new[1])); im(new[l) = 0.0;

printf("\tD - %gxlO^", DO);

scanf("%lf ", kre(new[2])); im(new[2]) = 0.0;

}

}

puts("\nPlease enter the measured gain and phase

for(i=0; i<DF; i++) {
printf("\tsensor number ,d : ", i);

scanf("%lf ,lf", &re(meas[i]), &im(meas[i])); }

puts("\nThe process now begins ... ");

for : ([dB], [deg])");

IS0

/ ******************* Print out input data *******************************

fprintf(fp, "Output file name: %s\n", name);

fprintf(fp, "Number of collocation points: %d\n", MAXK);

fprintf(fp, "Number of Fourier terms: Zd\n", MAXN);

fprintf(fp, "aximum number of iterations: %d\n", MAXITER);

fprintf(fp, "AC frequency [Hz]: 'hg\n", wl/PI/2.0);

fprintf(fp,

"Bulk permittivity above the electrodes F/m], [S/m]:

re(ea), im(ea));

fprintf(fp,

"Surface permittivity above the electrodes F], [S]: %g,%g\n",

re(sea), im(sea));

fprintf(fp, "Number of layers: %d\n", n);

fprintf(fp, "Number of sublayers: %d\n", nsub);

fprintf(fp, "Index numbers of the unknown layer: %d\n", u);

for(i=0; i<DF; i++) {

fprintf(fp, "Information about sensor number %d:\n",i);

chipinfoout(s+i, fp); }

for(i=O; i<n+nsub-1; i++) {

fprintf(fp, "Information about

i<=u ? i: i -

if (i != u) layinfoout(li, fp);

else {

i += nsub-1;

layer number %d:\n",

nsub + 1);
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fprintf(fp, "This is the unknown layer.\n");

fprintf(fp, "\tdispersive log-log slope: %g\n", gamma);

fprintf(fp, "\tepsilon infinity: %g\n", einf);

fprintf(fp, "\tlayer thickness m]: %g\n", d);

fprintf(fp,

"\tsurface permittivity and conductivity [F],S]: %g,%g\n",

re((l+i)->surface), im((l+i)->surface));

fputs("\tinitial guesses: \n", fp);

fprintf(fp, "\t\tA = (%g,%g)\n", re(new[O]), im(new[0]));

fprintf(fp, "\t\tB = (%g,%g)\n", re(new[1]), im(new[1]));

fprintf(fp, "\t\tD = %gxlO (%g,%g)\n", DO, re(new[2]),

im(new[2]));

fputs("Neasured gain and phase for : (EdB], [deg] )\n", fp);

for(i=O; i<DF; i++)

fprintf(fp, "\tsensor number %d : %g,%g\n", i,

re(meas[i]), im(meas[i]));

ffiush(fp);

/ ****$*$*** Fill in remaining sensor and layer data ***********"/

for(i=0; i<DF; i++) {

(s[i]).k = MAXK;

(s[i]).N = MAXN;

(s[i]).enO = 0.0;

(s[i]).wl = wl;

(s[i]).ea = ea;

(s[i]).sea = sea; }

grsubinit(grsub, nsub, d);

/ * fill in sublayer thicknesses

for (i=0; i<nsub-1; i++)

(l+i+u)->thickness

and surface parameters $/

=
= (grsub[i+1] - grsub[i]);

270

180

190

200

/ * No superimposed field assumed $/

/ * Initialize sublayer grid $/ 210



re((l+u+i)->surface) = im((l+u+i)->surfsce) = 0.0;

} /* within sublayers there are no surface par. */

(l+u+nsub- 1)->thickness = (grsub[nsub] - grsub[nsub-1]);

/ * convert measured data to analytical form */

for (i-0; i<DF; i++) meas[i] = tojg.anal(meas[i]); 220

/ ***************** Iteration process *********$*****************/

/* iteration control loop */

for(iter=l; iter <= MAXITER; iter++) {

printf("Ilteration number %d\n", iter);

for (i=0; i<DF; i++)

printf("new [%d] = (%g,%g) \n',i,re(new[i]), im(new[i]));

if (newjac && last == iter-1) { 230ao

printf("Convergence failure: Badness %g > %g\n",

oldsum, TOLR);

fprintf(fp, "Convergence failure: Badness %g > %g\n",

oldsum, TOLR);

exit(O);

/$ calculate res $/

trans(new, nsub, grsub, 1, u, d, wl, einf, gamma);

for(m=0; m<DF; m++) { 240

res[m] = to_g_anal(gp(n+nsub-1, 1, s+m));

printf("res[%dJ = (%g,%g)\n", m, re(res[m]), im(res[m]));

}

/$ test to see whether res is close to meas */

for(suml=0.0,sum2=0.0,i=O; i<DF; i++) {

newsum = ccabs(minus(res[i], meas[i]));

suml += sq(newsum);

newsum = ccabs(plus(res[i], meas[i]));

sum2 += sq(newsum); 260
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newsum = sqrt(suml/sum2);

if(newsum < TOLR) {

printf("res is close enough to meas: \n");

printf("\tnewsun = %g < %g\n", newsum, TOLR);

break; }

/ * test to see whether damping is needed $/

if (newsum > oldsum && !newjac) { 260

iter--; / * does not count as an iteration */

printf ("Damping needed: step #%d\n", damp+1);

printf ("because '/g > %g\n", newsum, oldsum);

if (damp >= MAXDAMP) { / * new jacobian is needed /

printf("Even worse -- nev jacobian! \n");

newjac = 1;

for (i=0; i<DF; i++) new[i] = old[i];

continue;

else { 270

damp++;

for (i=O; i<DF; i++)

new[i] = scale(plus(new[i], old[i]), 0.5);

continue;

else {

oldsum = newsum;

damp = 0;

280

/* calculate jacobian partial derivatives */
if (iter-last >= NEWJAC) newjac = 1;

if (newjac) puts("\lnJacobian calculation !");

if (newjac) for(m=0; m<DF; m++) {

if (ccabs(new[m]) != 0.0) dx = scale(new[m], INCM);
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else dx = cmplx(INCA, 0.0);

new[m] = plus(new[m], dx);

printf("Jac: new[%d] is now (%g,%g)\n", m,

re(new[m]), im(new[m])); 290

/ * place new values in layers */

trans(new, nsub, grsub, 1, u, d, wl, einf, gamma);

/* evaluate the derivatives */

for(i=O; i<DF; i++) {

r = to g anal(gp(n+nsub-1, 1, s+i));

jac[i][m] = over(minus(r, res[i]), dx);

printf("r[%d = (%g,%g)\n", i, re(r), im(r));

printf("jac [%d %dl = (%g,%g)\n",

i, m, retjac[i][m]), imU(ac[i][m]));

300

new[m] = minus(new[m], dx); /* restore the value */

}

/ $ new becomes old $/

/ $ subtract meas from res $/

for(i=O; i<DF; i++) {

old[i] = new[i];

res[i] = mninus(res[i], meas[i]);

310

/$ calculate correction vector $/

if (newjac) invert(jac, ijac, DF);

mulv(ijac, res, new, DF);

if (newjac) last = iter;

newjac = 0;

/ * find new values for new $/

for(i=O; i<DF; i++) new[i] = minus(old[i], new[i]);

/* test to see if new is close to old $/ 320

for(i=0, sum=0.0; i<DF; i++)

sum += ccabs(minus(new[i], old[i]));
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if(sum < TOLP) {

printf("new is close enough to old: \n");

printf("\tsum = %g < .g\n", sum, TOLP);

break; }

/ * End of iteration cycle $/

fflush(stdout);

} 880

/ ******************* Print Out Results *********************************/

if (iter > MAXITER) {

puts("Problems with convergence.");

fputs("Problems with convergence. \n", fp);

}

else {

fputs("\nResults\n", fp);

fprintf(fp, "\t\tA = (g,%g)\n", re(new[O]), im(new[0])); 340

fprintf(fp, "\t\tB = (%g,%g)\n", re(new[l]), im(new[l]));

fprintf(fp, "\t\tD = %YgzlO'('/g,%g)\n", DO, re(new[2]),

im(new[2]));

puts("\nResults: ");

printf("\t\t = (%g,%g)\n", re(new[O]), im(new[0]));

printf("\t\tB = (g,%g)\n", re(new[l]), im(new[1]));

printf("\t\tD = %gx10 ('/.g,%g)\n", DO, re(new[2]),im(new[2]));

350

fclose(fp);

fflush(stdout);

/* The following function is a solution to the diffusion equation:

dn ddn
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-- = D .... with the boundary conditions n(z=O, t) = nO

dt dzdz

dn

and -- (z=d, t) = 0

dz

The solutions are decaying sines.

double sol (x, d, D)

double x;

double d;

double D;

double sum

int m;

/ * z - position $/

/ * layer width */

/* normalized diffusion constant /

= 0.0, inc;

d *= 2.0;

for(m=1; m<2*MF; m+=2) {

inc = PI*(double)m;

inc = 4.0*exp(-D*inc*inc/d/d)*sin(inc*x/d)/inc;

if (fabs(inc) < LIM) breal; / * if a limit is approached /

sum += inc;

if(inc >= LIM) {

printf("sol() warning! - %d Fourier terms were ", 2*MF);

printf("calculated and still %g > %g\n", inc, LIM);

}

return sum;

}

/ * The following function initializes the sublayer grid */

void grsubinit(grsub, nsub, d)

double *grsub; / $* array of grid points */

int nsub; / * number of sublayers */
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double d; / * layer thickneJs */

int i;

for(i=O; i<=nsub; i++) grsub[i] = d*sin(PI/2.0*(double)i/(double)nsub);

/* a jinusoidal distribution is assumed, making the points closer to 4oo0

the sensor more densely spaced. See gridinit() in coef.c */

/ * place values for the parameters of all sublayers */

void trans(new, nsub, grsub, , u, d, wl, einf, gamma)

complex *new;

int nsub, u;

double grsub0, d, wl, einf, gamma;

struct layer *1;

{ 410

int i;

double x, temp;

complex to_e_stan();

for (i=0; i<nsub; i++) {
x = grsub[i] + 0.5*((l1u+i)->thickness);

temp = sol(x, d, DO*pow(10.0, re(new[2]))) - 0.5;

temp = 1.0 + temp*4.0/PI*atan(re(new[1]));

temp = pow(temp/wl, -gamma);

(l+u+i)->bulk = to e_stan(scale(plus(cmplx(einf, 0.0), 420

scale(new[0], temp)), EO), wl);

complex to g_anal(z)

complex z;

double r, theta;

r = pow(10.0, re(z)/20.0); 430
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theta = im(s)*PI/180.0;

return(cmplx(r*cos(theta), r*sin(theta)));

}

complex to_estan(s, w)

complex ;

double w;

return (cmplx(re(s), -w*im(z))); 440

}
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ests.c

/* This version of the parameter estimation program "est.c" uses a different

approach: instead of searching for a root, we search for a minimum of an

error function (func)). This has the advantage that the numerical method

is more stable. Also, it allows for having more sensors than unknown layers

and does not fail if due to eperimental errors no roots ezist. Preliminary

tests seem to indicate that it takes more computation time than "est.c".

It is different from "estm.c" in that it uses the amoeba method.

Yanko Sheiretov 3/ 28/94 / 10

#include "complex.h"

#include "objects .h"

#include <stdio.h>

#include <math.h>

#define FTOL 0.001 / * Fractional tolerance for the error function */

#define ATOL 0.01 / $ Absolute tolerance for the error function $/

#define UV 2e-12 / $ Unit vector for creating initial simplez $/

#define SQR(a) (sqrarg=(a),sqrarg*sqrarg) 20

#define PI 3.141592654

#define MAXK 25 / * number of collocation points $/

#define MAXN 100 / number of Fourier terms *$/

#define MAXITER 500 /* mazimum number of iterations */

#define ALPHA 1.0

#define BETA 0.5

#define GAMMA 2.0

int n; / number of layers */
int u[ML]; /* indez numbers for unknown layers */ 30

complex meas[ML]; / measured values vector */

struct sensor s[ML]; / * array of sensors $/

struct layer I[ML]; / $ array of layers #/

int df,sen;

278



double sqrarg;

void chipinfo(), layinfo(), chipinfoout(), layinfoout();

main()

I
int i, j;

double min,func(

double wl;

complex ea;

complex sea;

char

FILE

int
double

name[20]

*fpout;

/* counters */

/ * AC frequencv */

/ * complez bulk permittivity above electrodes */

/* complez surface permittivity above electrodes */

/ * The above two quantities are assumes to be

the same for all sensors */

/ * output file name */

/ * output file pointer */

ilo, amoeba();

p[ML+I][ML], y[ML+1];

/************* Get information from user ****************************

fputs("Please enter output file name: ", stdout);

scanf("%s", name);

if((fpout = fopen(name, "w")) == NULL) {

fprintf(stderr, "est error: can't open %s\n", name);

e it(); }

fputs("Please enter the C frequency [Hz]: ", stdout);

scanf("%lf", &wl);

wl *= 2.0*PI; /* convert to rad/s */

fputs("Please enter the bulk permittivity above the ", stdout);

puts("electrodes F/m], ES/ml :");

scanf("%lf ,%lf", &re(ea), &im(ea));

fputs("Please enter the surface permittivity above the ", stdout);

puts("electrodes [F], [S] :");

scanf("%lf ,%lf", &re(sea), &im(sea));

fputs("\nPlease enter the number of layers: ", stdout);

scanf("%d", &n);

fputs("Please enter the number of sensors: ", stdout);
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scanf(",d", &sen);

puts("Please enter the number of unknown layers. Should be less than");

fputs("or equal to the number of sensors: ", stdout);
scanf("%,d", &df);

df *= 2;

puts("Please enter the index numbers of the unknown layers,");

puts("separated with commas, starting from the infinite half");

puts("space (number 0), e.g. 2,3,6");

for(i=O; i<df/2; i++) {

scanf("%d", u+i); so

if (i < df/2-1) while (getchar() != ',' ); }

putchar( ' \n');

for(i=O; i<sen; i++) {

printf("Please enter information about sensor number %d: \n",i);

chipinfo(s+i); }

puts("\nNlow enter information about the layers. The values entered");

puts("for the bulk properties of the unknown layers will be used as");

puts("the initial guess. Layer number 0 is the topmost layer,");

puts("i.e the infinite half space."); o
for(i=O; i<n; i++) {

printf("Please enter information about layer number Xd:\n", i);

layinfo(l+i); }

puts("\nPlease enter the measured gain and phase for : ([dB], [deg])");

for(i=O; i<sen; i++) {

printf("\tsensor number %d : ", i);

scanf("%lf ,%lf", &re(meas[i]), &im(meas[i])); }
puts("\nThe process now begins ...");

100

/ ******************* Print out input data ******************************

fprintf(fpout, "Output file name: %s\n", name);

fprintf(fpout, "Number of collocation points: Xd\n", MAXK);

fprintf(fpout, "Number of Fourier terms: %d\n", MAXN);

fprintf(fpout, "Maximum number of iterations: %d\n", MAXITER);
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fprintf(fpout, "AC frequency [Hz]: %g\n", wl/PI/2.0);

fprintf(fpout,

"Bulk permittivity above the electrodes F/m], S/m]: %g,,g\n",

re(ea), im(ea)); 110

fprintf(fpout,

"Surface permittivity above the electrodes [F], IS: %g,%g\n",

re(sea), im(sea));

fprintf(fpout, "umber of layers: %d\n", n);

fprintf(fpout, "lumber of sensors: %d\n", sen);

fprintf(fpout, "number of unknown layers: %d\n", df/2);

fputs("Index numbers of the unknown layers: ", fpout);

for(i=O;i<df/2;i++) {

if (i<df/2-1) fprintf(fpout, "%d, ", u[i]);

else fprintf(fpout, "%d\n", u[i]); } 120

for(i=O; i<sen; i++) {
fprintf(fpout, "Information about sensor number %d:\n", i);

chipinfoout(s+i, fpout); }

for(i=O; i<n; i++) 

fprintf(fpout, "Information about layer number %d: \n", i);

layinfoout(l+i, fpout); }

fputs("lNeasured gain and phase for : (dB], [deg] )\n", fpout);

for(i=O; i<sen; i++) fprintf(fpout, "\tsensor number %d : %g,%g\n", i,

re(meas[i]), im(meas[i])); 130

fflush(fpout);

/ *******$$********** Fill in remaining sensor data $*$******************

for(i=O; i<sen; i++) {

(s[i]).k = MAXK;

(s[i]).N = MAXN;

(s[i]).enO = 0.0; /* No superimposed field assumed */

(s[i]).wl = wl;

(s[i]).ea = ea; 140

(s[i]).sea = sea; }
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/ ******************* Initialize p and y *****************************

for(i=O; i<df; i++)

p[O][i] = i%2==0 ? re((l[u[i/2]]).bulk): im((l[u[i/2]]).bullk);

for (i=O; i<df; i++)

for (j=O; j<df; j++) p[i+l][j] = i!=j ? p[Oj]: p[O][j]+UV;

for (i=O; i<df+l; i++) y[i] = func(p[i]);

150

/ ******************* DO THE THING ***********************************/

ilo = amoeba(p, y); /* That's IT, folks! $/

min = y[ilo];

/ ******************* Print Out Results ******************************

/* place results into layer structures $/

for(i=O; i<df/2; i++)

(l[u[i]]).bulk = cmplx(p[ilo][2*i], p[ilo][2*i+1]); 60o

puts("Done -- see output file for results.");
printf("'inimum achieved: %g\n\n", min);

fprintf(fpout, "Minimum achieved: %g\n\n", min);

fprintf(fpout, "\n%16s%S1s%1s\n", "Layer number",

"Permittivity", "Conductivity");

for(i=O; i<46; i++) putc('-', fpout);

fputs("\n$\n", fpout);

for (i=O; i<df/2; i++)

fprintf(fpout, "%15d'/,1e%15e\n", u[i], re((l[u[i]]).bullk), 170

im((l[u[i]]).bulk));

fputs("$\n", fpout);

fclose(fpout);

fflush(stdout);

double func(p)
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double p0;

int i;

double suml, sum2, sum;

complex r[ML], toganal();

for (i=0; i<df/2; i++) (l[u[i]]).bulk = cmplx(p[2*i], p[2*i+1]);

for (i=0; i<sen; i++) r[i] = gp(n, 1, s+i);

for(suml=0.0, sum2=0.0, i=0; i<sen; i++) {

suml += SQR(ccabs(minus(to g anal(r[i]), to g anal(meas[i]))));

sum2 += SQR(ccabs(plus(to.ganal(r[i]), to.g anal(meas[i])))); 90o

}

sum = sqrt(suml/sum2);

printf(func ((");

for (i=O; i<df-1; i++) printf("%g, ", p[i]);

printf("%g}) = %g\n", p[df-1], sum);

return (sum);

200

complex tog_anal(z)

complex ;

double r, theta;

r = pow(10.0, re(s)/20.0);

theta = im(z)*PI/180.0;

return(cmplx(r*cos(theta), r*sin(theta)));

210

#define GETPSUM for j=O;j<df;j++) { for (i=O,sum=O.O;i<mpts;i++)\

sum += p[i]j]; psum[]=sum;}

int amoeba(p,y)
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double po[ML],yl;

int ij,ilo,ihi,inhi,nfunk,mpts=df+l;

double ytry,ysave,sum,rtol,amotry(),psum[ML];

nfunk=O; 220

GET PSUM

for (;;) {

ilo=O;

ihi = y[O]>y[l] ? (inhi=l,O): (inhi=0,1);

for (i=O;i<mpts;i++) {

if (y[i] < y[ilo]) ilo=i;

if (y[i] > y[ihi]) {

inhi=ihi;

ihi=i;

} else if (y[i] > y[inhi]) 230

if (i != ihi) inhi=i;

rtol=2.0*fabs(y[ihi]-y[ilo])/(fabs(y[ihi])+fabs(y[ilo]));

if (rtol < FTOL 11 0.5*(y[ihi]+y[ilo]) < ATOL) return ilo;

if (nfunk >= MAXITER) {

puts("Too many iterations in AMOEBA");

exit(O);

ytry=amotry(p,y,psum,ihi,&nfunkl,-ALPHA);

if (ytry <= y[ilo]) 240

ytry=amotry(p,y,psum,ihi,&nfunk,GAMMA);

else if (ytry >= y[inhi]) {

ysave=y[ihi];

ytry=amotry(p,y,psum,ihi,&nfunk,BETA);

if (ytry >= ysave) {

for (i=O;i<mpts;i++) {

if (i != ilo) {

for j=Oj;<df;j++) {

psumU]=O.5*(p[i]U+p[ilo]U);

p[i]ij]=psumU]; 250
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y[i]=func(psum);

nfunk += df;

printf("Iteration counter: %d\n", nfunk);

GET PSUM

}1~~~~~~~~~~~~~~~~~ ~~~~~260

double amotry(p,y,psum,ihi,nfunk,fac)

double pD[ML],yD,psumf,fac;

mit ihi,*nfunk;

int j;

double facl,fac2,ytry,ptry[ML];

facl=(i.O-fac)/df; 270

fac2=facl-fac;

for (j=Oj<df;j++) ptryU]=psum[j]*facl-p[ihi][j]*fac2;

ytry=func(ptry);

++(*nfunk);

printf("Iteration counter: %d\n", *nfunk);

if (ytry < y[ihi]) {

y[il]=ytry;

for (j=O;j<df;j++) {

psumlj] += ptryj]-p[ihi][j];

p[ihi][jl=ptrylj]; 280

return ytry;

}
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getgp.c

/ * This program dvives gp by providing user input. Analogous to mzlz

Yanko Sheiretov 1/24/9 */

#include "complex.h"

#include "objects .h"

#define PI 3.141592654

main()

sensor s; 10

layer I[MAXLAYERS];

complex result;

void chipinfo(), layinfo();

int n, i;

fputs("Please enter the number of collocation points: ", stdout);

scanf("%d", &s.k);

fputs("Please enter the number of Fourier terms: ", stdout);

scanf("%d", &s.N);

fputs("Please enter the AC frequency Hz]: ", stdout); 20

scanf("%li", &s.wl);

s.wl *= 2.0*PI; /* convert to rad/s */

fputs("Please enter the bulk permittivity above the ", stdout);

puts("electrodes F/m], S/m] :");

scanf("%lf,%li", &re(s.ea), &im(s.ea));

fputs("Please enter the surface permittivity above the ", stdout);
puts("electrodes F] , S] :");

scanf("%lf ,%lf", &re(s.sea), &im(s.sea));

s.enO = 0.0;

fputs("\nPlease enter the number of layers: ", stdout); so

scanf("%d", &n);

puts("Please enter information about the sensor:");

chipinfo(&s);

fputs("\now enter information about the layers. ", stdout);
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puts("Layer number is the topmost layer.");

for(i=l; i<=n; i++) {
printf('Please enter information about layer number %d:\n", i);

layinfo(l+i); )

result = gp(n, 1, &s); 40

printf("gain = g \tphase = %g\n", re(result), im(result));

}
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H.5 Subsidiary Parameter Estimation Routines

admit.c

/ * Thi function calculates yll and y12 .

Yanko Sheiretov 1/19/94 1/2594 */

#include "est.h"

void admit(v, c)

complex v[N1];

complex c[MF];

complex temp, templ, temp2; to

int m, j;

double f, da, db, dc;

temp = y12 = yll = cmplx(0.0, 0.0);

templ = temp2 = cmplx(1.0, 0.0);

for (m=l;m<=N;m++) {
templ = cmplx(0.0, 0.0);

ff = 1.0/sq(PI)/m;

for (j=0; j<k; j++) {

da = 1.0/(grid(j+2) - grid(j+l)); 20

db = 1.0/(grid(j+l) - grid(j));

dc = (da+db)*cos(2.0*PI*m*grid(j+l));

dc -= da*cos(2.0*PI*m*grid0(+2));

dc -= db*cos(2.0*PI*m*grid));

dc *= ff/m;

templ = plus(templ, scale(vU], dc));

dc = ff*(cos(2.0*PI*m*grid(0))-cos(2.0*PI*m*grid(1)))/

((grid(l) - grid(O))*m);

re(templ) += dc; 80

templ = times(templ, c[m]);

dc = sin(2.0*PI*m*grid(k+1));
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temp2 = scale(templ, dc);

dc = sin(2.0*PI*m*grid(O)) - sin(2.0*PI*m*grid(k+l));

yll = plus(yll, scale(templ, dc));

y12 = plus(yl2, temp2);

templ = cmplx(O.0, 0.0);

for(j=O; j<k; j++) templ = plus(templ, scale(vii],

grid(j+2)-grid(j))); 40

re(templ) += grid(O) + grid(l);

templ = scale(templ, 1.0/h);

if (enO != 0.0) templ = plus(templ, scale(rea, enO));

yll = plus(yll, scale(templ, grid(O) - grid(k+1) + 0.5));

temp = scale(templ, 0.5 - grid(k+l));

y12 = minus(y12, temp);

temp = scale(v[k-1], 1.0/(grid(k+l)-grid(k)));

templ = scale(minus(cmplx(l.0, 0.0), v[O]), 1.O/(grid(l) - grid(O)));

templ = times(minus(templ, temp), rsea);

yll = scale(plus(yll, templ), 2.0); so50

temp = times(temp, rsea);

y12 = scale(plus(yl2, temp), 2.0);

printf("yll = (%g, %g)\n", re(yll), im(yl1)); */
/ * printf("yl2 = (%g, %g)\n", re(yl2), im(yl2)); */
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coef.c

/ * This function computes the matriz elements

Yanko Sheiretov 1/19/94 1/25/s94 

#include "est .h"

void coef(a, x, c)

complex a[N1][N1]; /* matriz coefficients */

complex x[N1]; /* right-hand vector */

complex c[MF]; / * total capacitance density */

{ 10
int flag=O, r, cc;

double dpi, yO, yl, sl, s2, da, db, de;

complex temp;

dpi = 2.0*PI;

yO = grid(O);

yl = grid(l);

for(r=O; r<k; r++) {

sl = r+l==k ? grid(k+l1): (grid(r+2) + grid(r+l))/2.0; 20

s2 = r==0 ? yO: (grid(r+1)+grid(r))/2.0;

if (k%2 == 0 && r == k/2) flag=1;

for(cc=O;cc<k;cc++) {

if (k%2==1 && r==(k+1)/2-1 && cc==(k+3)/2-1) flag=l;

if (flag==l) a[r][cc] = a[k-1-r][k-1-cc];

else {

da = 1.0/(grid(cc+2) - grid(cc+l));

db = 1.0/(grid(cc+l) - grid(cc));
temp = fhsum(dpi*(sl + grid(cc+l)), c);

temp=plus(temp, fhsum(dpi*(sl-grid(cc+1)),c)); so

temp=minus(temp, fhsum(dpi*(s2+grid(cc+1)),c));

temp=minus(temp, fhsum(dpi*(s2-grid(cc+1)),c));

a[r][cc] = scale(temp, da+db);

temp = fsum(dpi*(s2 + grid(cc+2)), c);
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temp =plus(temp,fhsum(dpi*(s2-grid(cc+2)),c));

temp =minus(temp,fhsum(dpi*(sl +grid(cc+2)),c) );

temp =minus(temp,fhsum(dpi*(sl-grid(cc+2)),c));

a[r][cc] = plus(a[r][cc], scale(temp, da));

temp = fhsum(dpi*(s2 + grid(cc)), c);

temp =plus(temp,fhsum(dpi*(s2-grid(cc)),c)); 40

temp =minus(temp,fhsum(dpi*(sl +grid(cc) ),c));

temp =minus(temp,fhsum(dpi*(sl-grid(cc)),c));

a[r][cc] = plus(ar][cc], scale(temp, db));

a[r][cc] = scale(a[r][cc], 0.5/sq(PI));

/ * pprintf("a[%d][d/d] = (%g, %g)\n", r, cc, re(a[r][cc]), im(a[rl[cc])); */

temp = fhsum(dpi*(sl+yO), c);

temp = plus(temp, fhsum(dpi*(sl-yO), c));

temp = plus(temp, fhsum(dpi*(s2+yl), c));

temp = plus(temp, fhsum(dpi*(s2-yl), c)); so

temp = minus(temp, fhsum(dpi*(s2+yO), c));

temp = minus(temp, fhsum(dpi*(s2-yO), c));

temp = minus(temp, fhsum(dpi*(sl+yl), c));

temp = minus(temp, fhsum(dpi*(sl-yl), c));

x[r] = scale(temp, -0.5/sq(PI)/(yl-yO));

/* printf("z[%d] = (%g, g)\n", r, re(z[r]), im(z[r])); */

/* The following section computes a2, a, z2 and z3 /

for (r=O; r<k; r++) { so

dc = r==O ? (grid(2)+y)/2.0 - yO:

r==k-1 ? grid(k+l) - (grid(k) + grid(k-1))/2.0:

(grid(r+2) - grid(r))/2.0;

re(x[r]) -= dc*(yO+yl)/h;

if (enO != 0.0) x[r] = minus(x[r], scale(rea, dc*enO));

for(cc=O; cc<k; cc++) {

da = grid(cc+2) - grid(cc);

re(a[r][ccj) += dc*da/h;

a[r]cc] = plus(a[r][cc], scale(rsea, fl(r, cc)));

} 70
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if (r==O) x[r] = plus(x[r], scale(rsea, 1.O/(yl-yO)));

}

double fl(r, cc)

int r, cc;

double da, db, dc;

da = 1.0/(grid(r+2) - grid(r+l)); 80

db = 1.0/(grid(r-tl) - grid(r));

dc = grid(r+2) - grid(r);

return (r==cc ? dc*db*da: r-cc==l ? -1.O*db: cc-r==l ? -1.O*da :0.0);

complex fhsum(fx, c)

double fx;

complex c[MF];

complex sum; 90

int i;

sum = cmplx(0.0, 0.0);

for (i=l; i<=nmax; i++)

sum = plus(sum, scale(minus(c[i], ckmin), sin(i*fx)/sq(i)));

return (plus(sum, scale(ckmin, fsum(fx))));

double fsum(fsx) 100

double fsx;

int sign, i;

double z, a, b, c, d;

static double bern[21] = {0.0, .166667, .033333, .023809, .033333,

.075757, .253113, 1.166666, 7.092156, 54.971177, 529.124242,
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6192.123188, 8.658025311e4, 1.425517167e6, 2.729823107e7,

6.015808739e8, 1.511631577e10, 4.296146431e11, 1.371165521e13,

4.883323190e14, 1.929657934e16};

110

sign = fsx<0.0 ? -1: 1;

z = fabs(fsx);

if (fsx == 0.0) a = 0.0;

else {

b = a = z*(log(z) - 1.0);

(fabs(b/a) > 0.0001) {

c = bern[i] * pow(z, (2.0*i + 1.0));

d = 2.0*i*(2.0*i + 1.0)*fact(2*i);

b = c/d;

a -= b;

}

}

return (-a*sign);

}

double fact(x)

int x;

{

int i;

double r = 1.0;

for(i=x;i>l;i--) r *= (double)i;

return r;

I

void gridinit()

{

int r; / * counter */

/ * this function initializes the grid */

140

293

i= 1;

while
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for(r=O; r<=k+2; r++) gr[r] = 0.25 - 0.5*g*cos(PI*r/(double)(k+l));

}
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gp.c

/ * This is the control function for the forward gain/phase calculation.

Yanko Sheiretov 1/20/94 1/25/94

#include "est.h"

/ * Define global parameters */

lambda;

eox; /* subst

h; /* thickl

g; /* inter,

yload; /* load

ckmin;

rea, rsea;

k, N, nmax, num;

enO;

wl; / * frequo

yll, y12;

yp; / paras

ap, bp;

gr[N1+2];

rate permittivity */

ness */

electrode thickness */

impedance */

ency */

/ * complex lumped admittances $/

itic admittance */

20

/$ grid values */

10

complex gp(n, 1, s)

int n;

struct layer

struct sensor

I
complex c[MF];

complex v[N1];

complex a[N1][N1];

complex x[N1];

complex temp;

double gain, phase;

/ * number of layers */

10; / * array of layers *$/

*s; /* sensor information *$/

/ * surface capacitance density */

/ * voltage distribution */

/ * matrix coefficients *$/

/ * result vector */
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$/

double

double

double

double

double

complex

complex

int
double

double

complex

complex

double

double
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/ * Transfer sensor information to global variables $/

N = s->N;

k = s->k;

lambda = s->lambda;

eox = s->eox;

h = s->h; 40

g = s->g;

yload = s->yload;

enO = s->enO;

wl = s->wl;
ap = s->ap;
bp = s->bp;
num = n;

re(rea) = re(s->ea)/eox;

im(rea) = -im(s->ea)/eox/wl;

re(rsea)= re(s->sea)/eox/lambda; 50

im(rsea)= -im(s->sea)/eox/lambda/wl;

gridinit(); / * initialize grid */

/ * ezecute actual algorithm */
scap(l, c);

coef(a, x, c);

solve(a, x, v);

admit(v, c);

60

temp = plus(yp, cmplx(yload, 0.0));

temp = plus(temp, y12);

temp = plus(temp, yll);

temp = over(plus(yl2, yp), temp);

gain = 20.0*loglO(ccabs(temp));

phase = 180.0*(atan2(im(temp), re(temp)))/PI;

return (cmplx(gain, phase));
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scap.c

/ * This function computes

of homogeneous media.

Yanko Sheiretov

#include "est.h"

#define A12(j,m)

#define A22(j,m)

the surface capacitance density for layers

1/19/94 1/25/94 */

(scale(ne[(j)],2.0*PI*(m)/sinh(2*PI*(m)*d[(j)])))

(scale(ne[(j)],2.0*PI*(m)/tanh(2*PI*(m)*d[(j)])))

void scap(l, c)

struct layer 10;

complex c;

c

complex ne[ML];

complex nse[ML];

double d[ML];

int j, m;

complex tmp, temp,

10

/ * array of layer structures */

/ * surface capacitance density $/

/ * normalized bulk properties */

/ * normalized surface properties */

/ * normalized thicknesses */

/ * counters */

templ;

/ * normalize quantities $/

for (j=O; j<num; j++) {

nelj] = cmplx(re((l+j)->bulk)/eox,

-im((l+j)->bulk)/eox/wl);

nselj] = cmplx(re((l+j)->surface)/eox/lambda,

-im((l+j)->surface)/eox/lambda/wl);

dj] = (l+j)->thickness/lambda;

/ *$ Implement algorithm */

for(m=l; m<=N2; m++) {

tmp = cmplx(1.0, 0.0);

c[m] = A22(0,m);

if (num>l) for (j=1; j<num; j++)

/ $ check to prevent overflow w'en evaluating sinh */
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if (2*PI*m*dj] < 44.0) {

temp = plus(A22(j,m),

scale(nselj], sq(2.0*PI*m)));

ckmin = plus(c[m], temp);

temp = A12(j,m);

temp = over(csq(temp), ckmin); 40

templ = A22(j,m);

c[m] = minus(templ, temp);

}

else c[m] = A22(j,m);

/* printf("C[%d]=(%g, %g)\n", m, re(c[m]), im(c[m])); */

/* find out when cn/kn approaches a limit /

if (m>l) {
tmp = minus(scale(c[m-1], 0.5/PI/(m-1)),

scale(c[m], 0.5/PI/m));

if (fabs(im(tmp)) < le-20) im(tmp) = 0.0; 50

}

if (ccabs(tmp) < le-5) break; /* limit approached */

if (m == N2) {

puts("scap warning: \t c.m] did not reach a limit.");

puts("Recompile with a larger N2.");

nmax = m--l;

ckmin = scale(c[nmax], 0.5/PI/nmax);

/ * fill up the rest with Ckmin / 60

for(;m<=N2;m++) c[m] = scale(ckmin, 2.0*PI*m);

/* Compute the parallel addition of surface capacitance densities

above and below the electrodes */

for(m=l;m<=N2;m++) {

c[m] = scale(c[m], 0.5/PI/m);

re(c[m]) += 1.0/tanh(2*PI*m*h);

if (m > 1 && ccabs(minus(c[m-1], c[m])) < le-5) break;

/* printf("L[%d] = (g,%g)\n", m, re(c[m]), im(c[m])); */

} 70
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if (m == N2) {

puts("scap warning: \t c[m] did not reach a limit.");

puts("Recompile with a larger N2.");

}

nmax = m-l;

ckmin = c[nmax];

for(;m<=N2;m++) c[m] = ckmin;

/* Compute parasitic admittance (as in bodez.for) */

re(yp) = ap*re(ne[num-2]) + bp; 80

im(yp) = ap*im(ne[num-2]);

#undef A12

#undef A22
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solve.c

/$ This function solves k equations with k unknowns using gaussian

elimination. Format av=z

Yanko Sheiretov 1/19/94 1/25/94 $/

#include "est .h"

void solve(a,x,v)

complex a[N1][Ni], x[N1], v[Ni];

complex temp[N1]; 1o

complex tempx, tempr;

int r, c, i, s;

for(i=O;i<k-1;i++) {

/ * handles the case with zero leading coefficient $/

S = O;

while (ccabs(a[i][i]) == 0.0 && s+i < k-1) {

tempx = x[i];

for(c=i;c<k;c++) temp[c] = a[i[c];

for(r=i;r<k-l;r++) { 20

x[r] = x[r+l];

for(c=i;c<k;c++) a[r][c] = a[r+l][c];

}

x[k-l] = tempx;

for (c=i;c<k;c++) a[k-1][c] = temp[c];

s++;

if (s+i == k-1) {
fputs("solve error: \tSingular matrix. Column of zeros.\n",

stderr); 30

exit(l);

}

/ * generates the new set of equations */
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for (r=i+l;r<k;r++) {

tempr = over(a[r][i], a[i][i]);

x[r] = minus(x[r], times(x[i], tempt));

for (c=i+l;c<k;c++) a[r][c] = minus(a[r][c],

times(a[i][c], tempr));

40

if (ccabs(a[k-1][k-1]) == 0.0) {

fputs("solve error: \tSingular matrix. Last pivot is zero.\n",

stderr);

exit(l);

/ * back substitution $/

for (r=k-l; r>=O; r--) {

v[r] = over(x[r], a[r][r]); 50

for (c=r+l;c<k;c++) {

tempr = over(v[c], a[r][r]);

v[r] = minus(v[r], times(a[r][c], tempr));

/* printf("v[%d] = (%g,%g)\n", r, re(v[r]), im(v[r])); */
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test.c

/ * test program for function gp.

Yanko Sheiretov 1/20/94 1/25/94 */

#include "complex. h"

#include "objects .h"

main()

static struct sensor s = {25, 100, 1.Oe-3, 2.66e-11, 0.127, 0.24,

56.72, 0.0, 6.2832e-2, 0.0, 0.0, {2.70e-11, 0.0}, {0.0, 0.0, 0.0}}; 10

static struct layer 1[2] = {{{8.854e-12, 0.0}, {0.0, 0.0}, 1000.0},

{{8.854e-12, 0.0}, {0.0, 0.0}, le-3}};

complex result;

result = gp(2, , &s);

printf("gain = g \tphase = %g\n", re(result), im(result));

}
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testgp.c

#include "complex. h"

#include "objects.h"

complex gp(n, 1, s)

int n;

struct layer *1;

struct sensor *s;

double a, b;

a = re(l->bulk); 10

b = im(l->bulk);

return (cmplx(a*a+b*b, a'b));

I
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H.6 Tools

complex.c

/ * Functions operating on complez variables.

Yanko Sheiretov 1/ 2/94 1/25/94 /

#include "complex.h"

#include <math.h>

#define MAXFLOATX 1.844674352e19

complex cmplx(real, imaginary) / * makes a complez number */

double real, imaginary;

{ 10

complex r;

re(r) = real;

im(r) = imaginary;

return r;

double ccabs(z)

complex z;

20

double x, y, r;

x = re(z);

y = im(z);

if(x < MAXFLOATX && y < MAXFLOATX) return sqrt(x*x + y*y);

else {

if (x > Y) {

y /= x;

r = x*sqrt(1.0+y*y); }

else { 30

x /= y;

r = y*sqrt(1.0+x*x); }
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return r; }

}

complex recip(x)

complex x;

{

double y;

/ * calculates the reciprocal of a */

/ * complex number */

40

y = ccabs(x);

return (cmplx(re(x)/y/y, -im(x)/y/y));

}

complex plus(x, y)

complex x, y;

{

return (cmplx(re(x)+re(y),im(x)+im(y)));

}
so

complex times(x, y)

complex x, y;

{

return (cmplx(re(x)*re(y)-im(x)*im(y),re(x)*im(y)+im(x)*re(y)));

complex scale(x, y)

complex x;

double y;

{ 60

return (cmplx(re(x)*y,im(x)*y));

complex minus(x, y)

complex x, y;

{

return (cmplx(re(x)-re(y),im(x)-im(y)));
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complex over(x, y)

complex x, y;

{

return (times(x,recip(y)));

complex csq(x)

complex x;

{

return (times(x,x));

I

70

80
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matrix.c

/* This function solves k equations with k unknowns and m result vectors

using gaussian elimination. Format av=z; a[klc][k]; z[k][m; where z is

used as both the source and target matrices.

Yanko Sheiretov 1/21/ 9 */

/ * Modified to work with complez numbers S/24/94 */

#include "complex.h"

#include "objects.h"
#include "matrix.h" 10

#include <stdio.h>

void ysolve(a, x, k, m)

complex a[ML][ML], x[ML][ML];

int k, m;

complex tempx[ML], tempa[ML], temp;

int r, c, i, j, s;

if(k > MLII m > ML){ 20

fputs("ysolve error: \tMaximum matrix dimension exceeded.\n",

stderr);

exit(); }

for(i=O;i<k-I;i++) (
/ * handles the case with zero leading coefficient */

s = 0;

while (ccabs(a[i][i]) == 0.0 && s+i < k-1) {

for(=Oj<m;j++) tempxli] = x[i]];

for(c=i;c<k;c++) tempa[c] = a[i][c]; 30

for(r=i;r<k-1;r++) {

for(j=Oj;<mj++) x[r]l] = x[r+l]];

for(c=i;c<k;c++) a[r][c] = a[r+l][c];

}
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for(j-0;<m;j++) x[k-l]U] = tempxU];

for(c=i;c<k;c++) a[k-l1][c] = tempa[c];

s++;

if (s+i == k-1) {
fputs("ysolve error: \tMatrix singular - column of zeroes.\n", 40

stderr);

exit(l);

}

/* generates the new set of equations $/

for (r=i+l;r<k;r++) {

temp = over(a[r][i], a[i][i]);

forj=0;j<mj++) x[r][j] = minus(x[r]bi],

times(x[i]Lj], temp));

for (c=i+l;c<k;c++) a[r][c] = minus(a[r][c],

times(a[i][c], temp)); 50

}

if (ccabs(a[k-1][k-1]) == 0.0) {

fputs("ysolve error: \tNatrix singular - last pivot is zero.\n",
stderr);

exit(l);

}

/ $ back substitution /

for (r=k-1; r>=0; r--) 60

for (j=O; j<m; j++) {

x[r][j] = over(x[r]Li], a[r][r]);

temp = over(x[c] [], a[r] [r]);

for (c=r+l;c<k;c++) x[r][i] = minus(x[r]lj],

times(a[r][c], temp));

/* The following function inverts a matriz /

/* The source matriz is destroyed / 70
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void invert(a, x, k)

complex a[ML][ML];

complex x[ML][ML];

int k;

int i, j;

if (k > ML) {

fputs("invert

exit(); }

/ * source matriz */

/ * target matriz */

error: \tMatrix dimension exceeded\n", stderr);

/ * Set up unity matriz $/

for(i=O;i<k;i++)

for=O;ij<k;j++) {

re(x[i]U]) = i==j ? 1.0: 0.0;

im(x[i]l]) = 0.0;

}

ysolve (a, x, k, k);

/$* This multiplies matrices: c = ab;

void mul(a, b, c, k, m, n)

complex a[ML][ML], b[ML][ML];

complex c[ML][ML];

int k, m, n;

int h, i, j;

al/][m]; b[m][n]; ck][n] *$/

/ * source matrices *$/

/ * target matriz */

100

for (h=O; h<k; h++)

for (j=O; j<n; j++) {

re(c[h][j]) = im(c[h][j]) = 0.0;

for (i=O; i<m; i++)

c[h][j] = plus(c[h]j], times(a[h][i], b[i]j]));

}
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}

/ * This multiplies a vector by a matriz: c = ab; a[k][k]; bkJ; c[k] */

void mulv(a, b, c, k)

complex a[ML][ML], b[ML]; /* source matriz and vector */

complex c[ML]; /* target vector */

int k;

{

int i, j;

for (j=O; j<k; j++) {

re(cj]) = im(c[j]) = 0.0;

for (i=O; i<k; i++)

c[j] = plus(clj], times(alj][i], b[i]));

I
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H.7 Input/Output

chipinfo.c

/* Used to get user input for the properties of the different sensors.

Yanko Sheiretov 1/21/94 2/17/94 */

#include "complex.h"

#include "objects.h"

#include <stdio.h>

#include <string.h>

void chipinfo(s)

struct sensor *s; 10

static char f[5] = "%lf", name[40] = "/u/yanko/Tmp/";

FILE *fp;

char flag=O;

int len;

len = strlen(name);

do (
fputs("Please enter the sensor name. A \"-\" means stdin\n",

stdout); 20

scanf("/.s", name+len);

if (namepen] == '-') {
flag = 1;

fp = stdin;

}

else if((fp = fopen(name, "r")) == NULL)

printf("Can't read the sensor file s, please try again...\n",
name);

while (fp == NULL); 30

if (flag) fputs("\tspatial wavelength [m]: lambda = ", stdout);
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fscanf(fp, f, &s->lambda);

if (flag) fputs("\tsubstrate permittivity F/m]: eox = ", stdout);

fscanf(fp, f, &s->eox);

if (flag)

fputs("\tnormalized substrate thickness ]: lambda/4h = ", stdout);

fscanf(fp, f, &s->h);

s->h = 0.25/s->h;

if (flag)

fputs("\tnormalized interelectrode spacing ]: a/lambda = ", stdout);

fscanf(fp, f, &s->g);

if (flag)

fputs("\tnormalized load capacitance C]: CL/(eox*ML) = ", stdout);

fscanf(fp, f, &s->yload);

if (flag) fputs("\tparasitic slope [1: ap = ", stdout);

fscanf(fp, f, &s->ap);

if (flag) fputs("\tparasitic intercept 1: bp = ", stdout);

fscanf(fp, f, &s->bp);

putc( ' \n', stdout);

if (!flag) fclose(fp);

name[len] = '\0';

void chipinfoout(s, fp)

struct sensor *s;

FILE *fp;

{

fprintf(fp,

fprintf(fp,

fprintf(fp,

fprintf(fp,

fprintf(fp,

fprintf(fp,

fprintf(fp,

"\tspatial wavelength m]: lambda = %g\n", s->lambda);

"\tsubstrate permittivity F/m]: eox = %g\n", s->eox);

"\tnormalized substrate thickness C]: lambda/4h = %g\n",

0.25/s->h);

"\tnormalized interelectrode spacing C]: a/lambda = %g\n",

s->g);

"\tnormalized load capacitance C]: CL/(eox*ML) = %g\n",

s->yload);

"\tparasitic slope []: ap = %g\n", s->ap);

"\tparasitic intercept C]: bp = %g\n", s->bp);
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}
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layinfo.c

/ * Used to get user input for the properties of the different layers.

Yanko Sheiretov 1/21/94 1/25/94 */

#include "complex. h"

#include "objects.h"

#include <stdio.h>

void layinfo(l)

struct layer '*1;

{ 10

fputs("\tlayer thickness m]: ", stdout);

scanf("%lf", &l->thickness);

fputs("\tbulk permittivity and conductivity F/m], ES/m]: ", stdout);

scanf("%lf, ,%lf", &re(l->bulk), &im(l->bulk));

fputs("\tsurface permittivity and conductivity [F], ES]: ", stdout);

scanf("%l/f,% lf", &re(l->surface), &im(l->surface));

putc('\n', stdout);

void layinfoout(l, fp) 20

struct layer *1;

FILE *fp;

fprintf(fp, "\tlayer thickness [m]: %g\n", I->thickness);

fprintf(fp,"\tbulk permittivity and conductivity [F/m], S/m]: %g,%g\n",

re(l->bulk), im(l->bulk));

fprintf(fp, "\tsurface permittivity and conductivity [F] ,S]: %g,%g\n",

re(l->surface), im(l->surface));
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H.8 Sample Files

H.8.1 Input to Estimation Routines

Sample Input File for est.c

out 11 Output file name

0.01 Frequency in Hz

2.70e-11,0.0 Bulk permittivity and conductivity below the electrodes

0.0,0.0 Surface permittivity and conductivity below the electrodes

2 Total number of layers

2 Number of unknown layers

0,1 Index numbers of the unknown layers

mu125 Name of template file for the zeroth sensor

mullO Name of template file for the first sensor

1000.0 Thickness in meters of the zeroth layer

8.854e-12,0.0 Guesses for e and o, for this layer

0.0,0.0 Surface permittivity and conductivity for this layer

0.25e-3 Thickness in meters of the first layer

8.854e-12,0.0 Guesses for c and a for this layer

0.0,0.0 Surface permittivity and conductivity for this layer

-38.30,-43.68 Gain in dB and phase in deg for the

-41.40,-57.98 two sensors.
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Sample Input File for estm.c and ests.c

out 1 Output file name

0.01 Frequency in Hz

2.70e-11,0.0 Bulk permittivity and conductivity below the electrodes

0.0,0.0 Surface permittivity and conductivity below the electrodes

2 Total number of layers

2 Number of sensors

2 Number of unknown layers

0,1 Indez numbers of the unknown layers

mu125 Name of template file for the zeroth sensor

mullO Name of template file for the first sensor

1000.0 Thickness in meters of the zeroth layer

8.854e-12,0.0 Guesses for e and a for this layer

0.0,0.0 Surface permittivity and conductivity for this layer

0.25e-3 Thickness in meters of the first layer

8.854e-12,0.0 Guesses for c and a for this layer

0.0,0.0 Surface permittivity and conductivity for this layer

-38.30,-43.68 Gain in dB and phase in deg for the

-41.40,-57.98 two sensors.
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Sample Input File for estp.c

outll Output file name

0.01 Frequency in Hz

2.70e-11,0.0 Bulk permittivity and conductivity below the electrodes

0.0,0.0 Surface permittivity and conductivity below the electrodes

2 Number of layers

1 Indez number of the unknown layer

10 Number of sublayers

mu150 Name of template file for the zeroth sensor

mu125 Name of template file for the first sensor

mullO Name of template file for the second sensor

1000.0 Thickness in meters of the zeroth layer

8.854e-12,0.0 Guesses for and o for this layer

0.0,0.0 Surface permittivity and conductivity for this layer

-0.7 Logarithmic slope of decay for pressboard

3.3 Normalized c,, i.e. c /eo

0.25e-3 Thickness in meters of the first layer

0.0,0.0 Surface permittivity and conductivity for this layer

1.0,-2.0 Initial guess for the unknown complex parameter A

2.0 Initial guess for the unknown parameter B

0.0 Initial guess for the unknown parameter D

-25.68,-72.72 Gain in dB and phase in deg for the

-16.78,-56.17 three sensors.

-20.63,-52.55
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H.8.2 Sensor Template Files

mul50

Template file for the longest wavelength

5.0e-3 Sensor wavelength in meters

2.66e-11 Substrate permittivity

9.84 Normalized substrate thickness A/4h

0.24 Normalized interelectrode spacing a/A

0.81 Normalized load capacitance CL/Eo, ML

0.0 Parasitic Slope

-0.074 Parasitic Intercept
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mul25

Template file for the medium wavelength

2.5e-3 Sensor wavelength in meters

2.66e-11 Substrate permittivity

4.92 Normalized substrate thickness A/4h

0.24 Normalized interelectrode spacing a/A

9.42 Normalized load capacitance CL/Eo3ML

0.0 Parasitic Slope

-0.01 Parasitic Intercept
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mullO

Template file for the small wavelength

1.0e-3 Sensor wavelength in meters

2.66e-11 Substrate permittivity

1.97 Normalized substrate thickness A/4h

0.24 Normalized interelectrode spacing a/A

56.72 Normalized load capacitance CLIe/ML

0.0 Parasitic Slope

0.02 Parasitic Intercept
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