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ABSTRACT

In the past, data compression (DC) algorithms used in modems or statistical multiplexers have
been implemented in general purpose microprocessors which are already burdened with other
tasks such as operating systems or datz I/O. With the advent of high bandwidth
communication media such as fiber optics, which demands high processing throughput, the
traditional von Neumann model approach clearly is insufficient. In order to apply data
compression to high speed communications networks, a VLSI data compression engine
incorporating a specialized architecture, state-of-the-art VLSI techneology, and high
performance DC algorithms is needed to offload the microprocessor.

This thesis identifies an architecture which breaks the DC processing bottleneck. In order to
achieve this goal, a specialized architecture which supports a single compression algorithm was
favored over a general architecture which could be designed to support several algorithms.
Specifically, an adaptive, string-matching compression algorithm is chosen as the basis for
architectural design. A highly concurrent structure called content addressable memory is
exploited to drastically reduce the encoding time and increase the throughput.

Thesis Supervisor: Jon Allen
Tite: Professor of Electrical Engineering and Computer Science
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CHAPTER 1
INTRODUCTION

1.1 PROBLEMS

Lossless data compression is a coding technique which minimizes data redundancy in order to
reduce the offerred load to the communications network. Lesslessness means that the exact
original data can be recovered at some later time. By encoding data according to specific rules
which aim at reducing the average number of bits per message, more information can be
transmitted over channel in the same amount of time, thus the effective bandwidth of the
communication channels is increased, and the response time, netwerk loading, and probability
of transmission errors may be reduced. Furthermore, the compressed codes can provide
limited security against illicit monitoring. Data compression has been incorporated into
statistical multiplexers and modems to attain improved throughput. Figure 1.1 shows a

conceptual data compression system model.

Ermror-free
Communication
Channel
Original Compressed Compressed Original

—— | Compression ——————p Media _E'a.i.a___;. Decompression _Dai__>

Figure 1.1 Data Compression System Model

However, <zveral problems have prevented the widespread use of data compression in
communications networks, especially those of high bandwidth. First, the data compression
encoding and decoding algorithms implemented with software load down the microprocessor
which has to perform other tasks such as operating system, data routing, and flow control.
This constrains data compression to be applied only to low bandwidth communications
networks, such as dial medems. The loading on the microprocessor also prevents the use of
more sophisticated data compression algorithms which would produce better compression
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better compression results. The second problem is that most data compression techniques
perform favorably with only certain types of data redundancy. For example, some algorithms
work better for numeric data while others are more suited for text files. Since most data traffic
is heterogenenus, either the algorithms need to adapt to different data types or several semantic-

dependent algorithms are used in order to achieve optimal compression result [2].

1.2 OBJECTIVES

The aforementioned problems suggest that insufficient computing resources and memories are
the major constraints for widespread data compression applications over high bandwidth
communication chiannels. One of the solutions is to develop a VLSI (Very Large Scale
Integration) data compression engine to handle data compression processing and free the
microprocessor to concentrate on other duties. It is hoped that the use of such a dedicated
engine will allow more complicated algorithms to be devised and facilitate the implementation
of data compression algorithms in new network applications.

With the steady advance in VLSI technology, which allows thousands of transistors to
fit on a single chip, special purpose chips that function as peripheral devices to a
microprocessing unit are fast becoming an industry trend as a viable solution to enhance the
system throughput. The high logic density of a VLSI chip also permits multiple processing
elements to reside on the same chip, thus providing the opportunities to implement concurrent
operations. As a result, mapping algorithms into special VLSI architectures to improve
performance has been an active research area in recent years. The pattern matching chip
developed at Carnegie Melon University is a famous example [38]. First, a concurrent
algorithm for pattern matching was developed; then the systolic array which consisted of many
small processing elements capable of parallel computation was implemented to carry out the
algorithm. This approach is a radical departure from the traditional von Neumann model of
computation in which a single processor executes a single instruction at a time.

Similarly, the goa! of this thesis is to explore the possibilities for mapping the
compression algorithms into specific VLSI structures. We would also like to investigate the
maximum throughput of a specific, high performance data compression engine. This will
determine if data compression can be applied to high-bandwidth communication networks such
as T1 backbone (1.54 Mbps in North America) or local area networks (10 Mbps for Ethernet).
In order to achieve this goal, a specialized architecture, which supports a single data
compression algorithm with reasonable compression ratio, is favored over the general
architecture which can be designed to support several types of algorithms. Based on the
architecture, an area estimate on the major blocks of the chip will be made to reflect the cost.
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1.3 APPROACHES

The ZL77 algorithm chosen in this work was developed by Ziv and Lempel [7]. Itis a string
matching algorithm which encodes variable-length input string to fixed-length codeword.
ZL77 is selected as the basis for the specialized architecture for two reasons. First, it has the
potential for VLSI implementation. Second, it is a proven high performance algorithm. The
following outlines the sequence of investigations and procedures to complete the thesis.

The first step is to study the Z1.77 algorithm in detail and completely understand the
operations required. This will reveal the implementation bottlenecks which must be solved.
The second step is to research existing data structures being proposed to implement the
algorithm. These two steps constitute the first half of the thesis and will indicate the critical
sequences of operations, possibilities for concurrent processing, data memory requirements,
and instruction sequences.

The second half of the thesis consists of investigating and developing a VILSI
architecture suitable for ZL77 algorithm implementation. Functional blocks and interconnecting
buses will be proposed. Several hardware components will be designed to process frequent
data compression related operations or to replace traditional software operations which perform
housekeeping tasks. Finally, technological bottlenecks, throughput, silicon area, and interface
mechanism with an externai central processing unit (CPU) will be identified.

1.4 ORGANIZATION

Chapter 2 describes the general concepts of data compression. The ZL77 algorithm and
several published data structures which support it are surveyed and their complexities are
summarized. In Chapter 3, special VLSI structures are developed to implement the critical
operations. Their throughputs and silicon areas are estimated. Chapter 4 proposes one data
compression engine chip architecture. A generic system environment in which the data
compression engine operates is described. (An interface mechanism with an external
microprocessor is assumed for concreteness.) A finite state machine controlled ZL77 encoder
and decoder are fully implemented and their throughputs and areas estimated. Chapter 5
concentrates on the VERILOG behavioral! simulation of the proposed data compression engine.
Chapter 6 presents the future extensions to the current designs, and finally, Chapter 7
concludes by summarizing the highlights of the research.
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CHAPTER 2

ZL77 DATA COMPRESSION
ALGORITHM

The first section of this chapter covers the basics of data compression and its practical
applications. Section 2.2 concentrates on the basic ZL77 encoding algorithm and its variations.
Then, the data structures that have been proposed to implement the algorithm are presented and
their merits and shortcoming are analyzed in Section 2.3. Finally, Section 2.4 identifies the
critical operations for Z1.77 implementations.

2.1 FUNDAMENTAL CONCEPTS ON DATA COMPRESSION

The primary objective of data compression is to minimize the amount of data to be transmitted
while preserving the information which the original data contains. Thus, data compression is
concerned with transforming the source messages in one representation (such as ASCII or
EBCDIC codes) into a new string of codewords that has shorter average length but carries the
same information.

This section provides the general background on data compression and briefly describes
relevant definitions and concepts. Next, the applications of data compression are discussed.
Finally, the focus on the specific type of data compression application and algorithm for the
thesis are presented.

2.1.1 Definitions

In information theory, a message usually consists of one or more binary symbols (O or 1)
cailed birs. The bit pattern that represents a message is a codeword. For example, the
codeword for message ‘a’ in ASCII is binary 01100001. A Message ensemble, on the other
hand, is a sequence of messages [2]. For instance, the string "Hello, world" is a message
ensemble consisting of twelve messages (including the space that follov's the comma). In the
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thesis, character and symbol are synonomous with message while string and message
ensemble are used interchangeably.

The process of transforming source ensemble into a sequence of codewords is called
encoding; the process of reversing the above operation is called decoding. The entities that
carry out the encoding and decoding processes are the encoder and decoder, respectively.

From the information theory point of view [1], there is a probability distribution
associated with a message, since it is one realizationof a random variable. As a result, some
messages are more probable than others in a given message ensemble, such as the message "'
in "Hello, world". Therefore, one compression approach is to map the more prcbable
messages into the shorter codewords and the less likely ones into the longer codewords, thus
reducing the average codeword length. This encoding scheme is categorized as fixed-variable
(F-V) because the message length is fixed while the codeword length varies from character to
character. Huffman coding is representative of the F-V class of compression algorithms [4-6].

String matching, orvariable-fixed, is another class of encoding method which exploits
redundancy due to repeating string and other types of redundancy. Ziv-Lempel coding is an
example of string matching compression method, and there are many variations of this
algorithm [7-10]. In the ZL77 scheme, variable length strings are replaced with fixed length
codewords which point to earlier occurrences of the same strings. Therefore, both the encoder
and the decoder are required to keep and build a history buffer, a collection of all of the
character strings being processed up to the present. In essence, the encoder and decoder are
able to learn or addpt to the source characteristics.

Compression ratio (CR) is a measure of compression; it has two well-known definitions
[2]. CR may be defined as (average source message length)/(average codeword length) or as
(average codeword length)/(average source message length). For example, if the average
source message length is 8 bits and the average codeword length is 4 bits, then CR is 2 for the
first definition and 0.5 for the second definition. This thesis uses the first definition when

referring to compression ratio.

2.1.2 Applications of Data Compression
Data compression has two major areas of applications: data storage and data transmission. The
first area of application involves compressing the data before it is stored in the digital storage
media. As more offices are computerized, the volumes of data to be stored also become very
large. If the file size could be reduced, the effective capacity of the storage medium would be
increased. At the same time, the input/output traffic of a computer system could be decreased.
The second area of application concerns the real-time compression of data before it is
transmitted over the communication links, such as phone lines, satellite channels, or cables that
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connect local/wide area networks. The proliferation of the communication networks has
resulted in massive data traffic over the communication links. If the data were compressed to
half its size, the effective bandwidth of the communication channels would be doubled.

In the past, there has been a tradeoff between the benifits of data compression and the
computational cost associated with the encoding and decoding processes. However, the prices
of microprocessors and custom VLSI ckips have lowered steadily, so data compression is
more popular now as the needs to store and/or transmit large volumes of data grow at a rapid
pace and the savings achieved by data compression in storage or communication costs become
more significant. Application to data transmission is especially attractive because the
communication costs now dominate over the costs of memory and processing power.

2.1.3 Focus On The Thesis

Data storage and data transmission both require encoding and decoding of data. However, the
speed in data storage application is not as critical as that of data transmission. For example, it
is tolerable to wait for a few seconds before a program is loaded from a disk to a system's
random access memory. Furthermore, the connection between the storage media and the
computer system is usually local and free, unlike a telephone line which is charged by the
amount of time the line is active. As a result, the compression algcrithms for this type of
application can afford to take the two-pass approach. In the first pass, the source data is
scanned and statistics are gathered to determine the character frequency which is used to map or
construct the codewords. In the second pass, the characters are encoded and stored. The
important concept for this application is that speed is not the primary concern, and the path
between the storage element and the host is free.

Data transmission has different requirements. For example, too much transmission
delay in 'most communication networks is undesirable. Secondly, sessions are indefinite; they
go on forever. This suggests that data compression and decompression have to be performed
in real time, or at least not much slower than the channel bandwidth; this makes the two-pass
approach unviable. Therefore, compression algorithms geared for this type of application
usually are one-pass only with continuous encoding and decoding at high speed as the data are
transmitted and received.

This thesis only considers the algorithms for data transmission application, which
requires high throughput, low delay, and continuous one-pass compression and

decompression.

16



2.2 ZIV-LEMPEL '77 ALGORITHM

Ziv-Lempel ‘77 is one of several variable-length input and fixed-length output (V-F) class of
data compression algorithms. It was proposed by Ziv and Lempel in 1977, and is widely
known as ZL'77 for short. Other V-F class algorithms are ZLSS, ZIL.W, Z1.78, and so on [7-
10]. The following sections discuss the basic ZL'77 algorithm and the modified algorithm.

2.2.1 The Basic Algorithm

Z1.77 algorithm is based on the concept that in the continuous data stream, some string
patterns occur more than once. Therefore, if we keep a history of the data, we can find the
longest match of the incoming character string from the history buffer and then encode the
string with a pointer to an earlier occurrence of the string. The pointer, or codeword, consists
of Index, Length, and Innovation Character. Index shows how far back from the current input
string the match starts; Length shows the length of the match; and finally, Innovation Character
is the first input character not included in the match. Data compression is achieved if the
number of bits required to represent the codeword is less than the number of bits required to
represent the string. Figure 2.1(a) illustrates the basic ZL77 algorithm.

History Buffer
161514131211109 8 7 6 5§ 4 3 1 Input String (to be encoded)
|

2
T]HE SUPERM]AN S ISUPERB...
— 1 | I |

Longest Match found at Index 1 2 b "SUPERB" is encoded as
Maitch Length = § < 12, 5, 'B' »

Figure 2.1 (a) The Basic ZL.77 Encoding Algorithm

Let us take a snapshot of the encoding process. Assume that at time t = 0, the history
buffer contains the characte: string "THE SUPERMAN IS " which has already been encoded
and just becaine history. The incoming data "SUPERB...." is to be encoded next. By
observation, the longest match is "SUPER", which can be found by counting 12 characters to
the left from the current input string. The match length is five and the character B’ is the
Innovation Character since it is the first input character not belonging to the longest match.
Therefore, the string "SUPERB" is encoded as shown in Figure 2.1(a).

In short, the characters which have been encoded before now become part of a history
buffer. The encoder examines the current incoming string and searches the history buffer to
find the longest match and replaces it with a codeword.
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It is impossible keep all of the messages because only finite memory is available.
Furthermore, when the history buffer gets really large, the codeword length required to identify
the history buffer also becomes too large to have any compression benefit. One feasible
alternative is to store only a fixed, reasonably large number of characters in the history buffer.
As new strings are encoded, they enter the history buffer and the oldest members have to leave
so that the buffer size remains constant. In essence, the history buffer acts as a sliding
window, moving from left to right as new strings are encoded. For example, in Figure 2.1(b),
the history buffer moves forward to cover the newly encoded "SUPERB" while the oldest
characters "THE SU" drop out and are no longer in the history buffer. If the character string
follows "SUPERB" starts with "THE..." then a match will not be found. This clearly
illustrates why the history buffer should be reasonably large. If it is too small, such as the one
in Figure 2.1, then the chance of finding a matching string is too small to have any

compression benefit.

161514131211109 878 5 4 3 2 1
THE suU [PlERIMAIN |1 ]s] [s|ulP|E[RIE] .....
i | L }
Dropped Out —b New History

History Buffer as
a sliding window

Figure 2.1 (b) Encoder History Buffer After Encoding "SUPERB"

In summary, ZL77 takes in a variable-length string and produces a fixed-length
codeword. If N is the size of the history buffer, then logoN bits are necessary to uniquely
specify every Index. If L is the number of bits for the Length field, then the maximum match
length is (2L - 1). Finally, assume that each Innovation Character is 8-bit wide, then the size
of the codeword will be (logaN + L + 8) bits. On average, if the bit length of the codeword is
less than the bit length of the string which it represents, then data compression is achieved.

Sometimes, Z1.77 encoding actually expands the data. This penalty occurs whenever the
string bit length is shorter than the codeword bit length. An extreme case is when there is no
match at all. The single 8-bit character is then encoded as (log2N + L + 8)-bit codeword, an
expansion of (log2N + L) bits. Depending on the values of N and L, expansion could happen
if the match length is only one or two. Nonetheless, ZL77 usually produces satisfactory
compression ratio of about 2 o 1.

ZL77 decoding is relatively straightforward. The decoder keeps the same history buffer
as the encoder and updates the history buffer the same way. To decode, the Index field is
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extracted from the codeword and used as a pointer into the history buffer. The Length field is
used to determine how many characters should be read off from the buffer. Finally, the
Innovation Character is taken as it is. Then the decoder inserts the decoded characters,
including the Innovation Character, into the history buffer and deletes the same number of the
oldest characters from the history buffer. Therefore, as long as the codewords arrive in order
and the encoder and decoder updates the history buffer appropriately, the compressed data will
be correctly decompressed.
Figure 2.2 (a) and (b) show the ZL77 decoding process.

History Buffer
161514131211109 8 7 6 54 3 2 1  Input (to be decoded)

TH|E[ Is|ulP[E[RIMAIN] i ]S < 12, 5, 'B' »

3

First character starts at Index 1 2 < 12, 5, 'B' > is decoded as -
Match Length = § ’ SUPERB

Figure 2.2 (a) The Basic ZL77 Decoding Algorithm

161514131211109 876 5 4 3 2 1
THE suU |PleRIMA|N [1]s] |s|ulp|ER|g] .....
l ] L ]
Dropped Out -~ New History

History Buffer as
a sliding window

Figure 2.2 (b) Decoder History Buffer After Decoding

2.2.2 The Modified Algorithm
The modified ZL77 scheme differs from the basic algorithm in two aspects. First, the
Innovation Character is dropped from the codeword. Second, the absolute index, rather than
relative index, is used. The basic ZL77 principle is not violated by these modifications.

The first modification is similar to the ZL.SS scheme proposed by Storer and Szymanki
[9]. In ZLSS, the codeword normally consists of Index and Length without the Innovation
Character; but in the case when the codeword is longer than the characters it encodes, the
characters are transmitted as a codeword instead. Clearly this scheme attempts to optimize
compression ratio; but in doing so, an extra bit is required to tell the decoder which one
(character or pointer) is transmitted. In the modified algorithm used in the thesis, the codeword
is always made up of Index and Length. In the case of no match (i.e. Length = 0), the encoder
puts the 8-bit raw character into the Index field and places a O in the Lengih field. The decoder,

19



upon detecting a Length of 0, will take the raw character from the Index field without going

into the history buffer.
The second modification is simply a different way the Index portion of the codeword is
interpreted. The following example should help clarify these modifications.

2.2.3 An Example

History Buffer

01 2345 6789101112131415 Input String (to be encoded)
TIH|E| |s]ulp|ERIMAIN |i|s| |sSUPERB...
} | I | R

Longest Match found at Index 4 B "SUPER" is encoded as
Match Length = § <4, 5>

Figure 2.3 (a) The Modified ZL77 Encoding Algorithm

Let us use the same encoding example for the basic ZL77 algorithm to illustrate the
differences as shown in Figure 2.3 (a). Notice how the history buffer is indexed. In the basic
algorithm, the Index portion of the codeword tells the decoder how many characters back from
the end of history buffer the longest match can be found. For example, in Figure 2.1 (b), the
string "SUPER" is recovered by counting back 12 characters from the newest character in the
decoder history buffer. This is called relative indexing. The decoder needs to keep a pointer
which points to the end of the history buffer. The decoder then subtracts the Index from the

pointer to uncover the string.

History Buffer
01t 2345 67 89101112131415 Input String (to be encoded)

s|u|P|E|R[U|P|E[RIMAIN| i ]9] | B.....

l
New History *
Figure 2.3 (b) Encoder History Buffer After Encoding "SUPER"

In the modified encoding algorithm, the Index portion of the codeword specifies the
exact location in the history buffer where the match lies. In other words, the decoder simply
takes it as a pointer into history buffer without having to perform the subtraction. This is called
absolute indexing. The Data Compression Engine developed in the thesis encodes and decodes

with absolute indexing.
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Another distinction is that the codeword no longer includes the Innovation Character.
The character "B’ is not encoded yet; it will be the first character of the next input string to be
encoded as shown in Figure 2.3 (b).

Both the encoder and the decoder have to keep a pointer that points to the end of the
history buffer for update purpose. The pointer is incremented modulo the size of the history
buffer, so that after the maximum index is reached, the pointer will point to location O the next
time. In Figure 2.3 (a), therc is an arrow below position 0. This means that position 15
contains the most recently encoded characier and that position O is where the new character
should be inserted. This is demonstrated in Figure 2.3 (b). After "SUPER" is encoded,
position O to 4 are overwritten with the newly encoded string, and the arrow now points to

position 5.

2.2.4 ZL77 Implementation Parameters
In the Data Compression Engine architecture, the size of the history buffer N is 1024
characters; L, the number of bits for the Length field, is 4, which implies that a maximum

match length of 15 is allowed (zero is reserved to indicate a no match).
Therefore, the codeword length is (logoN + L) = (log»1024 + 4) = 14 (bits).
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2.3 DATA STRUCTURES

In ZL77 enccding, the most time-consuming operation is to find the longest match for the input
string from the history buffer, which contains the N most recently encoded characters. This is
a difficult process as a naive approach will easily take O(N 2) searches. Various data structures
have been proposed to reduce the search time, each with tradeoffs between memory
requirements and processor loading. Three of the data structures have been surveyed and
analyzed: binary search tree, hashing, and systolic arrays. They are summarized in the

following sections.

2.3.1 Binary Search Tree

Binary search tree data structure was proposed by Bell [8]. In a binary search tree, for any
node n, all node values on its left subtree are less than n, and all node values in its right subtree
are greater than n. Figure 2.4 shows an example of a binary search tree.

8
4 / \ 10
/N /'
3 6 9 12
N
5 7
Figure 2.4 An Example of a Binary Search Tree

In the applications for ZL.77 encoding, Bell suggested that all possible strings of fixed
length in the history buffer be organized lexicographically in a binary search tree to reduce the
number of searches for the longest match. For example, let the history buffer contain 7
characters and input string be "bacd" as shown in Figure 2.5.

0 1 2 3 4 5 6

blc|blajc|bla] bacd
L 1 —

Figure 2.5 History Buffer and Input String

Let the maximum match length to be four. Let S(i) denote the four-character string
whose first character starts at index i of the history buffer. Notice that it is a circular buffer, so
that the four-character string which starts at Index 6 would include characters from positions 6,
0, 1, and 2. We then have the following set of strings possible in the history buffer:
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5(0)=bcba S(1)=cbac S(2)=bacb S(3)=acba
S(@)=cbab S(5)=babc S(6) = abcb
The binary search tree is constructed as shown in Figure 2.6. For any given node i, all

the strings on its left subtree are lexicographically lower than S(i), and all the strings on its
right subtree are lexicographically higher than S(i). The input string, of course, is I = "bacd".
To find the longest match for the input string, it is necessary to traverse from the root. Bell
argued that in the process of updating the history buffer, the input string has to be inserted into
the binary search tree as well; it is a dynamic tree as some strings disappear when the characters
associated with them are deleted and new strings appear after they are encoded. In order to
maintain the binary search tree property, the input string nas to traverse down the tree to find
out where it should be inserted. Bell recognized that the longest matching string will be ON the
traversing path of the input string; therefore, finding the longest match actually becomes a by-
product of updating the binary search tree!

Figure 2.6 Binary Search Tree for the Given History Buffer

Bell argued that the longest match has to be one of two nodes: the parent node onto
which the input string is inserted as a son, or the node where the traversal last turned the
direction different from the direction the input string is inserted. For example, if the input
string is inserted as a righthand child, then the other candidate for the longest match is the node
in which the most recent left turn is made. On the other hand, if the input string is inserted as a
left child, then the other candidate wold be the node where the most recent right turn is made.
Therefore, the match length can be found by just comparing the match lengths of those two
nodes.

In this particular example, the two candidate strings for the longest match are S(0) and
S(2). S(2) is the parent of the input string I, and S(0) is the node where the input string last
turns left (the new string is inserted as the right son of S(2)). S(2) turns out to be the node that
contains the longest matching string.
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For each L characters match, L insertions and deletions are required. Each insertion
needs an average of O(logy N) string search, where N is the number of nodes, or strings.
Within each string search an average of two character comparisons are required. For deletion,
it is not necessary to search because we always know which node to delete next by keeping a
pointer to the array of N nodes. However, in order to maintain the binary search tree property,
the nodes around the deleted node must be adjusted, and this could be time-consuming.
Appendix A shows the C codes for binary search tree updates.

The memory requirement for the encoding operation consists of a history buffer of size
N and the data structures for an array of N nodes. Each node requires three pointers: two
pointers for sons and one pointer for a parent. The parent pointer is necessary because during
deletion, the parent of the node to be deleted must be identified so that a link for the new son
can be made. The character strings themselves need not be stored in the node data structures
because each node number i implicitly points to S(i). For example, the string associated with
node 1 is "abbc", or S(1). Finally, the son and parent pointers are actually indexes into the
array of N nodes. Figure 2.7 shows the node data structures which store the binary search

tree of Figure 2.6.

Node # Left Son Right Son Parent
0 1 2 0
1 4 Null 0
2 3 Null 0
3 6 5 2
4 Null Null 1
5 Nuli Null 3
6 Null Null 3

Figure 2.7 Node Data Structures for Binary Search Tree

If each character is represented with eight bits, then the total encoding memory required

will be [8N + 3N (logz N)] bits for the binary search tree [2].
This data structure only needs O(log,N) search time if the tree is balanced. By

organizing all of the possible strings in the history buffer lexicographically in a binary search
tree, only a subset of strings need to be searched; this is a great improvement over brute force
search, in which O(N2) search time is required.

2.3.2 Hashing

Hashing is another technique to reduce the processing complexity of finding the longest match.
In a N-character history buffer, there are potentially N different strings from which to search in
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a brute force implementation. Suppose we calculate the hash valuel for each possible string
and chain the strings that have the same hash values in a linked list. To search for the longest
match, the hash value of the input string is first calculated, then only the strings that have the
same hash value are compared to the input string. Since we only have to compare a subset of
all possible strings, the search time is greatly reduced. Figure 2.8 illustrates one approach to
hashing and its data structures.

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HV(S) = Hash(S) bc:ackaccabbcbad
l 7 H£3 >
g5 NUEN; = >

Figure 2.8 The Hashing Data Structure

Figure 2.8 shows that strings that start with "ba" all have a hash value of 2, and those
that start with "cb" have hash value 0. Each link entry has a pointer into the history buffer
where the string starts and a pointer to the next link entry which has the same hash value. The
black dots denote the end of the linked lists. Hash(S) is the hash function that performs on the
first few characters of a string S, and HV(S) denote the hash value of a string S. Depending
on the hash function chosen and thus the number of distinct hash values possible, different
strings with different initial characters could result in the same hash values.

Clearly, the search time is directly proportional to the length of the linked list; it is
undesirable if the linked list gets too long. Therefore, the idea is to devise a hash function to
have a distribution of hash values that minimizes the expected number of searches, i.e., a hash
function that minimizes Y(Lyy * P[HV(S)]), where Ly denotes the length of a list with hash
value HV, and P[HV(S)] denotes the probability of a hash value HV. This is impossible,
however, because the input string characteristics are unpredictable. Another alternative is to set
an upper bound on the number of searches in a linked list, so that the worst case search time
can be deterministic. However, the penalty is that the longest matching string might be near the
bottom of the linked list and not found.

1" A hash value is produced by manipulating the input of a hash function in a certain way. For
example, a hash function for a string could be (4*C1+C2), which means a hash value is
obtained by shifting the first character two positions to the left, then adds the result to the

second character.
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Updating the hash tables takes a constant amount of time. Before inserting the new
characters into the history buffer, the oldes: characters must be deleted from the hash table.
Therefore, the hash values for the strings that start with those characters must be calculated to
locate the linked lists to which they belong. Then the pointers to those old characters are
removed from the linked lists. This accomplishes the delete operation. Next, the new
characters are inserted into the history buffer. For each input character, a hasu value for the
string that starts with the character has to be calculated. The pointer that points to this character
in the histery buffer is then inserted into the end of respective linked list.

2.3.3 Systolic Arrays

Parallel algorithms for data compression using the systolic arrays approach were proposed by
Storer [9]. While binary search tree and hashing implementations require sequential operations
and extensive memory accesses based on a von Neumann model of computations, a systolic
arrays is a VLSI structure with distributed and parallel computing capabilities.

In systolic arrays, the idea is to lay out a regular pattern of identical processing elements,
each capable of carrying out simple tasks. In addition, these processing elements are to have
simple interconnections. For example, each processing element only connects with adjacent
elements; a global communication line does not exist. This attribute minimizes signals
propagation delay so that a faster clock can be used to attain better performance. With many
processing elements available, parallel computation is possible.

Storer proposed two parallel algorithms for string substitution data compression
methods: static dictionary model and sliding dictionary model [9]. The first scheme uses a
static dictionary of strings; input characters are compressed by replacing the substrings with
pointers to matching strings in the dictionary. The decoder on the receiving end then
decompresses the data by using the pointers to read off the strings from the dictionary. In the
second scheme, the dictionary is constantly updated so that it only contains the N most recent
characters. The sliding dictionary model is more relevant to the thesis so it is discussed in a

greater detail below.

e o o » Processors

Character
“—"" "— LI I ) ‘— ‘———— Q—Index
¢4— Length

Figure 2.9 The Systolic Pipe
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In the sliding dictionary model, an array of 2n processors is used to keep the 2n most
recently encoded characters to process a block of n input characters. The reason that 2n
processors are required is that each character has to be compared with each of the n characters
that precede it. In order for the comparisons to take place in parallel for every n input
characters, a window of 2n most recent characters must be kept. The following description
should clarify this requirement.

Let every processing element have a local memory and a comparator. Each input
character, along with its index and match length values, goes through the systolic pipe from the
right, as shown in Figure 2.9. In order to synchronize the processors, two clock pulses called
pulse 1 and pulse 2 are used. A pulse 2 occurs after n pulse 1's. Assume that the characters
X1,...,Xn have already been encoded, and while they were being processed, characters
Xn+1,...,X2n were shifted in from the right. Figure 2.10 (a) illustrates this situation. Since n
pulse 1's have passed, a pulse 2 occurs. At this moment, every processor stores the character
below it into its local memory. Figure 2.10 (b) shows the consequence of this action.2

2n 2n-1 n+2  n+l n n-1 2 1
x] x2 ¢ * xn—l xn xn+1 xn+2 MR x2n-1 X2n

Figure 2.10 (a) Right Before a Pulse 2

2n 2n-1 n+2 n+l n n-1 2 1

x] x2 p xn-l xn xn+1 xn+2 MR xzn-1 x2n
L l\\

x] x2 e xn-l xn xn+1 xn+2 M xzn-L x2n

Figure 2.10 (b) Right After a Pulse 2

2n 2n-1 n+2 n+l n n-1 2 1
xl x2 e xn-l xn xm-l xn+2 e szn-l xfn
X, X3 |o+-] Xu ol LWl B LR RITH AT

Figure 2.10 (c) After the first Pulse 1

2 These figures are similar to those of Storer's in [9].
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2n 2n-1 n+2 n+1 n n-1 2 1
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BEEEEEEEE

L] ® x x x L[ ] o L]
X n+l X n+2 1 ° 2n-1 2n 2n+1 x2:1-;-2 X 3n-1
L 1l ]
Ready to be transmutted Ready to be compared

Figure 2.10 (d) After n Pulss 1's

At each subsequent pulse 1, the characters Xa+1,...,X2n are shifted to the left and
examined by the processors above them. These comparisons take place simultaneously.
Within the next n pulse 1's, character Xn+1 will be compared with Xn,..X1 by processors
Pn+1,..., P2n and character Xn+2 will be compared with Xn+1,..., X2 by processors Pn ,...,
P2n-1 as these characters are shifted to the left one slot at each pulse 1. Figure 2.10 (c) shows
the systolic pipe after the first pulse 1 since the last pulse 2.

If a processor has a match, it will look at its left-hand neighbor and right-hand neighbor.
If its left-hand neighbor does not have a match, it will generate a left bracket. If its right hand
neighbor does not have a match, it will generate a right bracket. Then it waits for the higher
level processing elements which will pair the brackets to determine the current match length. If
it is greater than the match length associated with the current character, the match length and
index will be updated to the new match length and current processor number. Otherwise,
nothing is changed, and the characters continue shifting to the left. After n pulse 1's, character
Xn+1 would be under processor P2n, as shown in Figure 2.5 (d). This processor is
responsible for transmitting the codeword, or index and match length values. For example, if
the match length associated with character Xn+1 is three, then processor P2n will transmit the
match length and the index associated with Xn+1 and ignore the codewords associated with the
characters Xn+2 and Xn+3 since they are part of the three-character string being encoded.

As can be seen, the input characters enter the systolic arrays at a constant rate, i.e., a
new character enters the systolic pipe at every pulse 1. After 2n pulse 1's, the codeword is
ready to be transmitted. Therefore, the major advantage of the systolic arrays approach is that
the throughput is independent of the array size. However, the latency for each character is
directly proportional to the array size. In this case, each character has to stay in the pipe for a
period of 2n pulse 1's before leaving the pipe, and this could be undesirable for a data
communication network which is intolerable of too much delay.
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2.3.4 ZL77 Data Structures Implementation Summary
The memory requirements and the average search time for the three data structures
implementing ZL.77 encoding are summarized in the following table. N is the size of the

history buffer.

Binary Search Tree N + [3N *loga(N))/8 O(logsN)

Hash Table N + [(N+42) * logy(N)})/8 O(N/# of hash values)
Systolic Array 2N*[21+2 * loga(2N))/8 o)

Note: the memory requirement for Systolic Array is for regular RAM storage only and
does not include the processing elements

Figure 2.11 shows the memory requirements for each data structure as a function of

history buffer size.
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Hashing

B Systolic Array

Memory (Kbytes)

512 1024 2048 8192
N (characters)
Figure 2.11 Memory Requirement Comparison (Encoder only)

The following summarizes each data structure.
Binary Search Tree
» The worst case search time is O(N) but it rarely happens.

» It guarantees finding the longest matching string.
« Critical operation is the tree update in which deletion and insertion take place for each input

character. Tree update complexity depends on the neighborhood of the node to be deleted.
» Might need to implement tree balancing algorithm to keep average search time at O(logyN).

This is an added complexity.
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Hashing

» The worst case search time can be preset, i.e. the search can be terminated after certain
number of searches in a linked list are reached. As a result, sometimes the matching length
found is not the maximum.

» The most critical operation is the character comparisons in the history buffer. The table
update process, in which deletion and insertion take place for each input character, takes only
O(1) time because the pointers to the first and last elements of the linked list can be kept in the
hash pointer table to facilitate the update process. Another critical operation is that hash
values have to be calculated twice for each incoming character: once for insertion, and once
for deletion.

» Overall a very efficient implementation because both memory requirement and processing
complexity are relatively low compared to binary search tree.

Systolic Arrays

» There is a constant search time. A constant O(2N) delay in encoding and decoding time is
one of the major drawbacks.

* Brute force comparisons are done in parallel. Essentially, each character is compared with its
N previous characters. In each clock cycle, a block of N characters are compared.

+ Suitable for VLSI implementation. However, at least 2N processing elements in the Storer
implementation are required for encoding. Each processing element requires substantial logic
and therefore will take a lot of area. This is likely to limit the history window size.

o At least three different clocks must be used.

* 6N memory is required for the decoder in the Storer implementation.

3N processors are required for the decoder. However, each processing element is simpler

than its encoding counterpart.

2.4 CRITICAL OPERATIONS

From the data structures surveyed in the previous sections, the single most frequent operation
is character comparison. In binary search tree and hashing implementations, each prospective
string from the history buffer is compared with the input string character by character to find
out which one has the longest match. In the systolic array implementation, multiple character
comparisons take place simultaneously, but each input character has to go through N
comparisons before leaving the systolic pipe. The former two data structures have the
tremendous advantage of only having to compare a subset of strings and ignore the majority
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others, while the latter data structure allows character comparisons in parallel. It seems that in
order to dramatically reduce the processing time, we must somehow combine those two
attributes.

Other common operations for the two software data structures are numerous memory
accesses and indirect addressing. Since memory accesses are usually the processing
bottleneck, it would be nice to avoid them if possible. If any breakthrough in throughput is to
be made, we must think of other solutions to find the longest match.

Regardless of which data structures are used, there are always needs for bit packing and
unpacking. Bit packing refers to the bundling of normally non-byte size codewords into byte
or word quantities. Bit unpacking is the inverse operation of extracting the codewords from a
sequence of bytes. These operations are not as complex as finding the longest match, but they
are so common that any speed-up will improve the overall throughput.

In short, finding the longest match, bit packing, and bit unpacking are identified as the
operations critical to ZL.77 encoding and decoding. Special VLSI structures will be developed
to support these operations in the next Chapter. Of these operations, finding the longest match
is the bottleneck in implementing the algorithm, and breaking this bottleneck will be a major

effort of the thesis.
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CHAPTER 3
SPECIAL VLSI STRUCTURES

3.1 VARIABLE LENGTH STRING MATCHER

Variable Length String Matcher (VLSM) is a dedicated VLSI structure which performs the
longest string search, the most time intensive component of ZL77 algorithm. VLSM is an
example of how the concurrency inherent in VLSI structure gives rise to an algorithm which is
free of the traditional von Neuman bottleneck. In our case, the algorithm for finding the
longest match exploits the parallelism provided in VLSM and enables the search time to be
independent of the history buffer size. A discussion on the algorithm follows.

3.1.1 Algorithm For The Longest String Search

The algorithm is best explained through an example. Suppose eight simple processors,
numbered from O to 7, are used as a history buffer. Each processor, also called a cell, has a
comparator and a local memory that can hold a character. Furthermore, assume that each one is
able to see the data on a global bus simultaneously. Figure 3.1 shows the history buffer and its
contents. Let the input string be "abcd", and we would like to find the longest match for the
input string and replace it with a ZL77 codeword. By inspection, we are sure that the longest
match is "abc”, so it should be encoded as <1, 3>. Let us see how the VLSM algorithm works
to determine the codeword, and hence the longest match.

Suppose we start by forcing each cell to have a match, or hit. This step is the INIT cycle
shown in Figure 3.1 as every cell has an arrow below it. Next, we present the first input
character 'a’ to every cell, which we call the COMPARE 'a' cycle. In order for a cell to get a
hit, two criteria must be satisfied. First, the cell's content must match the input character;
second, the left neighbor of the cell must have a hit in the previous COMPARE cycle. The

second criterion is very important.
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Input String: abcecd

0 1 2 3 4 5 6 7
History Buffer | a | a b | c a|ldj]jc ] a Iég’:,%tth Index
INIT —> > > > > > > >
COMPARE'a' —# —» - ~>
COMPARE 'b' —> >
COMPARE ¢! —»
COMPARE 'd'

Note: ~p indicates a HIT
Figure 3.1 An Example For VLSM Algorithm

As can be seen, cells 0, 1, 4, and 7 indicate hits because their contents match the
character 'a' and their left neighbors had hits in the previous cycle (i.e., the INIT cycle in
which every cell was forced to have a hit). We then increment a length counter which keeps
track of the match length. At the same time, the index of the cell which has a hit is recorded.
Since multiple cells have hits, we need some kind of arbitration scheme. In this case we decide
to record only the one that has the lowest index.

Next, 'b' is compared; only cell 2 has a hit. We again increment the length counter and
record the index. We proceed to compare 'c', and as shown in Figure 3.1, only cell 3 indicates
a hit even though cell 6's content is also ‘c’. This is because cell 5, the left neighbor of cell 6,
did not have a hit in the previous COMPARE cycle, so the second criterion is not satisfied. At
any rate, we increment the counter and record the index. Finally, 'd'is compared; no more hit
is indicated. This signals that we have found the longest match! The following explains how.

We can know that the match length is 3 by looking at the length counter. The index
where the longest match begins can be found by subtracting the match length from the last
index we recorded and then add one to it. In this example, index =3 - 3 + 1 = 1. Therefore,
the string "abc"” can be encoded as <1, 3>, which is exactly what we expect.

Clearly, by enforcing the two criteria for a match, we can isolate the strings that have
potential to be the longest match. This algorithm has the significant property in that the search
time does not depend on history buffer size. Instead, it depends on the match length. For
example, if L is the match length, then we only need to compare (L + 1) characters to find the
longest match. This is a tremendous improvement from the search times for hashing or binary
search tree data structures. In contrast to the systolic array implementation which also has high
throughput, this algorithm has noticeably lower latency because all cells are comparing their
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contents with the same input character; the codeword can be produced as soon as the longest
match is found. In systolic array, the latency is always proportional to the size of the history
buffer, as was mentioned in Section 2.3.3.

In order to implement this searching algorithm, we must provide a structure capable of
parallel comparisons similar to the systolic arrays arrangement yet with a globally distributed
data bus. The prospective structure has been identified as content addressable memory. It is

discussed in the next section.

3.1.2 Content Addressable Memory

Content addressable memory (CAM), also known as associative memory, is defined to be a
device consisting of a number of cells which can store data and be accessed by their contents
[32]. As opposed to random access memory (RAM), which during the read cycle takes an
address as input and outputs the data stored in that memory location, CAM takes the datz as
input and then outputs the address which contains the data.

Data Bus

Stored Target Data
Data (From Bus)

v

Comparator

L HIT
Figure 3.2 A Conceptual Model For a CAM Cell

In the classical CAM structure, each CAM cell has both a memory element and a
comparator, as shown in Figure 3.2. Asin RAM, each cell can be addressed for independent
access. A global data bus is connected to every CAM cell and there is no other interconnection
between adjacent cells. When a CAM cell contains the presented data, a HIT signal is asserted
to indicate a match. Thus, in this fully-parallel CAM configuration, it is possible to know
whether a particular datum is present in memory in just one clock cycle. Figure 3.3 illustrates
the CAM structure.

. The basic principles of CAM have been in existence since the 1950's. Despite its
tremendous searching capability, CAM never flourished in the computer systems because its
hardware complexity limited its use only to special roles such as small buffer memories
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Data Bus

T T I

CAM CAM . . . CAM
Cell Cell Cell
v v v

HIT HIT HIT

Figure 3.3 A CAM Structure

or control units [19]. However, with the development of VLSI semiconductor circuits, logic
density has increased so dramatically that it becomes practical to transfer some processing
capabilities to memories. Furthermore, VLSI technology makes the production of larger CAM
economically feasible, thus increasing its applications arena. For example, Advanced Micro
Device, Inc. has marketed a Content Addressable Data Manager which contains 1 Kbytes of
CAM and internal logic to perform sorting and searching operations with 100 ns cycle time.
Moreover, the chips are cascadable to 256 Kbytes RAM. The impact of CAM on computer
architectures is witnessed by the active research in content addressable processors, noticeably a
new content addressable parallel processor design for picture processing by Foster [33];
Titanic, a VLSI based content addressable parallel array processor by Weems et al [34]; and
vector associative processor by Berkovich and Pullen [35]. The performance of a highly
parallel system has been measured by Parkinson and Liddel [19, 36].

The fully paralle]l CAM configuration allows one characier at a time to be placed on the
global data bus; each cell then compares its content with the character simultaneously. This is
essential to the implementation of the longest match searching algorithm discussed in the
previous section. However, a fixed-sized string or character search is insufficient; we are
interested in the consecutive matches from consecutive locations that form a variable-length
match. Therefore, we need to preserve the match result of the previous compare cycle, so that
each CAM cell can look back one cycle to see if its left neighbor had a match. This requirement
brings about the modification to the basic CAM cell.

3.1.3 Byte Associative Content Addressable Memory

In byte associative CAM, there are two distinctions from the basic CAM. The first is that each
CAM cell passes the delayed match result (via a flip flop) to its right-hand neighbor and
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receives the delayed match result from the left-hand neighbor. The second difference is that the
HIT signal is the logical AND of the content match and the marich result of the left neighbor in
the previous cycle. Figure 3.4 shows the change in the basic CAM cell model. As can be
seen, HI'Tn-1,1-1 is the match result of the left neighbor in the previous compare cycle, and
HITnt1 is the match result of the CAM cell in the previous compare cycle. The Delay is a
structure that takes an input signal and outputs the same signal a clock cycle later.

Data Bus

Target Data

SIt)g::d (From Bus)
HIT
HITn-l,t-l Comparator n,t-1
—
Delay
HITn,t

Figure 3.4 The Modified CAM Cell Model

Figure 3.5 shows the change in the CAM structure. Now there is interconnection
between two neighboring CAM cells. The cell-level HIT signals look the same; the logic that
generates them changes and is hidden inside. These modifications only implement the two
criteria for a match; more control logic is required to find the longest match.

The idea of byte associativity is similar to the general purpose CAM architecture
proposed by Adams [18]. In that design, an Address Selector feature allows only certain set of
the CAM cells to participate in the matching activities. For instance, it is possible to specify
that only the even-numbered cells be engaged in the search. The match results of the
participating CAM cells are then stored in the Match bit cells in each CAM cell. Next, all the
odd-numbered cells are allowed to compare. In the Linked Associative Mode in this example,
only if the Match bit of the even-numbered cell were set and the odd-numbered cell's content
matched the presented data would the Match bit for that odd-numbered cell be set. For address
priority encoding, the Match bits of the even-numbered cells must be explicitly turned off
before encoding can take place. This associative capability makes multiple-word pattern
matching possible. However, the word width needs to be fixed and known in advance so that
appropriate Address Selector can be set and the Match bits be cleared. For ZL77 encoding, we
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do not and can not know the match length beforehand, nor do we know where the match starts,
so Adams' general purpose CAM architecture can not be used to find the longest match.

Data Bus
CAM CAM CAM ¢ o o CAM

Cell |—d Cell (—p Cell |-p | Cel |—p

L HIT $HIT l’ HIT ‘ HIT

Figure 3.5 The Modified CAM Structure

3.1.4 VLSM Functional Description

The VLSM, as mentioned in Section 3.1, is a structure that utilizes the modified CAM to
encode Z1.77 codewords. It is helpful to treat the VLSM on a functional level before going into
the detail of implementation. In ZL77 encoding, we are interested in obtaining a sequence of
fixed-length codewords as we parse the input strings. This task can be accomplished
efficiently with the VLSM algorithm as shown in Section 3.1.1. In addition to sear:hing, we
would like to update the history buffer such that it always includes the N most recent characters
before a new string is encoded. Intuitively, four discrete operations are required for the
encoding and updating processes using the byte associative CAM, namely INIT, COMPARE,
OUTPUT, and UPDATE.

INIT is used only once for each string encoding. If one recalls the example from
Section 3.1.1, the INIT command is used to force a hit from every CAM cell to set up for the
first COMPARE cycle; it does not clear the cell contents. In a COMPARE cycle, a character of
the input string is put on the data bus for every CAM cell to check. If at least one match
occurs, the COMPARE cycle continues with the next character of the string. The codeword
which consists of Index and Length components is output during the OUTPUT cycle. Finally,
a character is inserted into the history buffer by an UPDATE command. Therefore, the YLSM
is conceived to have the set of inputs and outputs as shown in Figure 3.6.

The inputs to this functional block consist of an 8-bit data bus DATA[7:0], a 10-bit
address bus ADDRESS[9:0], an ENABLE line and two select lines S1, SO. DATA[7:0]
contains the character to be compared or updated. ADDRESS[9:0] specifies the history buffer
location into which the character is inserted. ADDRESS[9:0] is 10-bit wide because the thesis
uses a 1024-character history buffer as mentioned in Section 2.2.4. Therefore, 10 bits are
required to uniquely address any of the 1024 locations.
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DATA is 10 ?INDEX

ENABLE —
s1 ——»

S0 — VLSM

ADDREss—ﬁ-P

!

CAM_HIT
Figure 3.6 VLSM Functional Block Diagram

When ENABLE is asserted, the combination of the two function mode select signals S1
and SO will generate appropriate control signals inside the functional block to execute one of
four possible commands. Table 3.1 lists the VLSM functional mode control.

ENABLE S1 SO Function

0 X X NOP

1 0 0 INIT

1 0 1 COMPARE
1 1 0 OUTPUT

1 1 1 UPDATE

Table 3.1 VLSM Functional Modes

The outputs consist of INDEX[9:0] and CAM_HIT. INDEX][9:0] is one of the
addresses of CAM words which have a match. It is normally latched inside the functional block
in Figure 3.6 and is output-enabled when OUTPUT mode is selected. CAM_HIT is asserted
by the VLSM when at least one CAM word has a match. This output signal is monitored by an
external controller to determine if the COMPARE cycle should be continued. From now on we
assume that the external controller is implemented with a finite state machine (FSM).

The control of the VLSM is straightforward. Let the 1024-character history buffer be
stored in the byte associative CAM inside the VLSM. To find the longest match, the FSM first
selects the INIT command. At the next cycle, the first character of the input string is driven
onto the data bus, and the COMPARE mode is selected. If CAM_HIT is asserted, the next
character will be driven onto the data bus and another COMPARE command is issued. The
FSM repeats this step until CAM_HIT is not asserted after a COMPARE cycle. By then, the
index for the of the last character of the longest matching string in the CAM is ready, so the
FSM would issue OUTPUT to fetch the index. To update the history buffer, the FSM drives
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the character onto DATA[7:0] and selects the UPDATE mode. Note that CAM_HIT also
clocks a small counter which keeps count of the match length. Figure 3.7 is an extension to
Figure 3.1 and should clarify the sequence of operations required to carry out the encoding and
updating procedures.

In this example, it is assume that the history buffer pointer points to location 5.
Therefore, the characters that were matched in the previous set of COMPARE cycles are
removed from an input FIFO and are inserted into the history buffer starting at this location
during the UPDATE cycles. The changes in history buffer are shown by the bold characters.

Input String: abced

0 1 2 3 4 5 6 7 Length
History Buffer | a | a b c ald]ec a Coiit Index
INIT > > > > > > > >
COMPARE 'a' - —» —> -
COMPARE 'b' —> >
COMPARE 'c¢' —>
COMPARE 'd'
OUTPUT < Index 3 is output >
UPDATE ‘a' a | a b c a| a C a
UPDATE 'b a a b c a a b a
UPDATE ‘¢

a | a b | ¢ alalb|c

Note: —p indicates a HIT
Figure 37 Encoding and Updating Processes

Finally, Table 3.2 shows the states of the inputs and outputs of the VLSM functional
block corresponding to each cycle.
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INSTRUCTION S1 SO DATA CAM_HIT INDEX ADDRESS

INIT
COMPARE ‘a’
COMPARE b’
COMPARE 'c'
COMPARE 'd'
OUTPUT
UPDATE 'a’
UPDATE b’
UPDATE ¢’

x means no valid value

=em=-—_—00000
et et OO e b et ek O

Table 3.2 VLSM Functional Block I/O States

Implementation of the VLSM

- -
- - -

CoNXEAao oM
P N Ot et e ¢
Lol B BTV I I I

NN M M M

Figure 3.8 discloses the internal structures of the VLSM functional block. The byte associative
CAM array, called CAM Word Array for short, is the major component. It stores the history
buffer and performs parallel comparison. Other important blocks are the address encoder,
address decoder, data buffer, and supporting logic such as the flip flops, decoder, and

multiplexors.

DATA f mnsxfﬂo
ENABLE READ_ADDR | Tri-State
COMP
s, & e DATA BUFFER
>
SO g NIT $|  COLUMN DECODER
&
. % % e HMATCH| 2| |5
ADDRESS § [63;0] CAM WORD ARRAY  [1630) % 6|2
‘10 o 64 X 16 WORDS 64 o2
= ARE
o) 2l |8
from row & &
encoder V_MATCH {4} ¢ to row
comp iy COL ADR([3:0] “
COLUMN ENCODER s
A P A,
\ 4
CAM_HIT

Figure 3.8 VLSM Internal Block Diagram

" The Function Mode Decoder on the top-left corner, when enabled by ENABLE, takes
S1 and S2 as inputs and asserts one of four lines: INIT, COMPARE, WRITE, or
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READ_ADDR. INIT goes through every CAM word in the CAM Word Array. As its name
suggests, this mode is selected once per codeword generation.

COMP is asserted in the COMPARE cycle. It selects the ENCODE lines to take on the
outputs of row decoder to select a row for address encoding purpose. Section 3.1.7 will
explain address priority encoding in greater detail. COMP also multiplex the inputs to the Row
Decoder between ADDRESS[9:4] and the output of Row Encoder. WRITE is asserted in the
UPDATE cycle. It enables the SELECT lines and Column Decoder to address one CAM word
for a data write. Finally, READ_ADDR serves as the output-enable for the tristate in the top
right corner of Figure 3.8 in the OUTPUT cycle.

Not shown in Figure 3.8 are two non-overlapping clock signals Phil and Phi2 which go
through each CAM word.

ADDRESS[9:0] is broken down into 4-bit going into Column Decoder and 6-bit going
into Row Decoder. The Row Decoder, when enabled, asserts one of 64 lines. If WRITE is
asserted, these lines will be connected to 64 SELECT lines which act as row enable during the
write cycle. If COMP is asserted, the 64 ENCODE lines will assume the outputs of the Row
Decoder.

CAM Word Array produces 64 horizontal H_MATCH lines and 16 vertical V_MATCH
lines which go into Row Encoder and Column Encoder, respectively. The Encoders generate
six and four address lines which are eventually combined to form a 10-bit Index. The Row
Encoder is also responsible for generating the CAM_HIT signal.
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3.1.5 Byte Associative CAM Word Array

Figure 3.9 shows an example of byte associative CAM word cells arrangement and
interconnection in the CAM Word Array. There are 64 x 16 (= 1024) word cells in the
proposed implementation, but only 3 x 3 (= 9) case is shown in Figure 3.9 due to space
constraint. This two-dimensional arrangement is desirable for a compact VLSI layout,
especially for a large number of word cells.

DATA [7:0]
;8 ) T rs
SELECT >
ENCODE >
H_MATCH -
HIT()  —# ol—» 11— 2 T
INIT 4_] o
R
SELECT » )
ENCODE »> W
H_MATCH >
HIT(2) - 3 |—» 4 f—p 5 E
INIT >_| N
C
(o]
SELECT > D
ENCODE > E
H_MATCH » R
HIT(5) L » 6 |— 7 —» 8
INIT 2 . - i |
#V~MATCH V_MATCH V_MATCH
v \ 4

To COLUMN ENCODER
Figure 3.9 CAM Word Array

As can be seen, DATA[7:0] reaches every word cell. The SELECT lines are used only
during the UPDATE cycle and are high impedance during other times. The SELECT lines are
connected to the outputs of the Row Address Decoder during UPDATE cycle to enable one
row for data write. The INIT is the output of Function Mode Decoder and is fed into every
word cell.

The H_MATCH lines for each row and V_MATCH Iines for each column are wire-
ORed with each CAM word on the same row or column and are precharged high during phil.
Each H MATCH line is pulled low if at least one CAM word in that row has a match during
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phi2. Section 3.1.6 will explain exactly how H_ MATCH, V_MATCH, and ENCODE lines
are used to perform priority address encoding.

The unusual interconnection is the HIT lines. As can be seen from Figure 3.9, the HIT
output from one CAM word is the input to its right-hand neighbor. In addition, the HIT from
the highest-numbered word cell is an input to the lowest-numbered word cell. For example,
the HIT output of word cell 8 is connected to the HIT input of word cell 0. In order to
maintain consistent addressing, the HIT from the last word in the row has to be routed to the
first word in the next row; for a large array, the wire could be very long, resulting in
undesirable propagation delay. However, the wire length can be minimized if the array can be
"folded" horizontally.

3.1.5.1 CAM Bit Cell

The most primitive CAM structure is the CAM Bit Cell shown in Figure 3.10. It has a
standard six-transistor static RAM cell topology in the upper portion, with three additional
transistors that carry out the equivalence logic function in the bottom half. If high density is
desired, the CAM Bit Cell can be implemented with a four-transistor dynamic RAM topology
patented by Mundy and improved by Wade [29-31].

SELECT SELECT

BIT BIT*
1§ g
A oak

—I14

[= ]

4

Y

Figure 3.10 CAM Bit Cell

In the proposed implementation, the wire M is precharged high during phil. During a
match cycle, if the data on the Bit line is the same as the bit value stored in the cell, M will
remain high; otherwise, M will be pulled low to indicate a mismatch. The SELECT line, when
asserted, will cause the value on the BIT and BIT* lines to be written into the storage element.

Next, eight of these Bit Cells are grouped to form a CAM Match Cell as shown in Figure
3.11. Notice that the line M is wire-ANDed in the 8-bit construct. Therefore, if at least one Bit
Cell detects a mismatch, the whole M line will be pulied low.
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Figure 3.11 CAM Match Cell

3.1.5.2 CAM Word Cell

The CAM Word Cell, which makes up the CAM Word Array, is the next higher level of
abstraction. Figure 3.12 shows the CAM Word Cell's internal structure. As expected, the
CAM Match Cell is the largest component of the Word Cell; the rest are random logic and

control lines.
DATA phil phi2

v, '8
SELECT >
ENCODE >
H MATCH : >

\ 4 Y : li
8-bit CAM
Match Cell
MEDmn : DELAY [T, |
n-1,t-1 ’
._F'I._D
INIT - —>
v
V_MATCH

Figure3.12 CAM Word Cell

As the logic shows, HITn,t is the AND of phi2, M and HITn-1,+-1 which is the match
result of the left Word Cell in the previous COMPARE cycle. HITn, if positive, will pull the



H_MATCH line down, indicating a match for this Word Cell. HITn,t-1 is the one-cycle-
delayed HITn,t signal; in finding the longest matching string, a current match is allowed only if
a CAM Word Cell's left neighbor had a match in the previous COMPARE cycle and the Cell's
content is the same as the data. Remember that the input string is presented on the data bus
only one character at a time. Somehow we need to create byte associativity by using the flip
flop to save the previous match result.

However, the first character match of the input string does not have to obey the left-
neighbor-had-a-match rule because no COMPARE cycle has taken place yet. This is why the
INIT command has to be issued first whenever a new string search begins. Figure 3.13 shows
the inside of the Delay block. When INIT line is asserted high, the high value is fed into the
flip flop rather than the value of HITn,t in the Word Cell. In essence, this forces the HITn,t-1
lines of each Word Cell to be high by the time the COMPARE cycle takes place, so that all
words that have matches can indicate so.

INIT*
phil phi2

HIT
n,t
{>c {>c > HIT, ,

phil* phi2*

Figure 3.13 The Delay Structure
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3.1.6 Address Priority Encoder

This section describes the problem of address priority encoding and surveys the methods in
which people have used in applications with different speed/cost requirements. A novel,
proposed implementation of the Address Priority Encoder will be presented in the end.

3.1.6.1 Address Priority Encoding

Address priority encoding is fundamental to VLSM and CAM in general because outputing a
single address where the same data is found is one of the CAM's attributes. In the digital
world, an address usually takes a binary representation. For example, an address of six in a
four-bit binary representation will be 0110. For N possible addresses, logoN bits are
necessary to specify each address. It is trivial to encode a binary address if only one out of N
inputs is active, as shown in Figure 3.14 (a). This example shows that Input 2 is active, so
binary 10 (= decimal 2) is encoded and output. The encoder can simply be implemented with
random logic. However, it becomes not so straightforward if more than one inputs are active
at a time, because conflicts need to be resolved first before binary encoding can occur. In other
words, a prioritizer is needed. Figure 3.14 (b) shows a model for a address priority encoder.

InputQ =——»
Inputl —  Binary —— MSB =1
Inpu2 = Encoder |— LsB-0
Input3 ~—

N INPUTS ==> (Loq N) OUTPUTS

Figure 3.14 (a) Normal Binary Address Encoding Model

Input0 —— —
Input] ——» Prioritizer —»| Binary —— MSB=1
Input2 === | Encoder |— 1SB-0

Input3 =i —

Figure 3.14 (b) Priority Address Encoding Model

One way to prioritize the inputs is by their locations. For example, the prioritizer can be
designed to allow the input that is the closest to the top or the bottom to pass the nrioritizer and
inhibit the others from going through. Thus, only one of the outputs of the priori -er is active,
and a single address can then be encoded.
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One common and the most cost effective solution to implement the prioritizer is cascaded
ripple or daisy chain through N OR or AND gates, where N is the number of inputs, or
respondants, to the encoder. Figure 3.15 illustrates this method. The outputs of the higher
gates inhibit the lower gates. The advantage is that only N identical two-input gates plus N
inverters are required; since the interconnection pattern repeats, this arrangement is great for a
compact VLSI layout. However, the propagation delay is equal to the sum of N gate delays.
If a system requires high throughput, this ripple inhibit chaining method will not be ideal.

Vee
Inputl @-’ I1
Input2 &Dj" I,
Input3

=<
InputN D_—’ IN

Figure 3.15 Ripple Chain Prioritizer

The other extreme is the use of lookahead, whereby the top gates directly inhibits all the
lower gates. This means that the topmost gate uses no gate; the next one uses a two-input gate;
the gate below uses a three input gate; and the lowest gate will have N inputs! This scheme is
very fast because the latency is the only the gate delay of the N-input lowest gate. However, it
is very expensive and not ideal for VLSI layout.

Priority Encoding of Two-Dimensional Array

There is an additional complication for priority encoding of a two-dimensional array. Suppose
we have 16 CAM cells arranged in a 4x4 fashion shown in Figure 3.17. Those that are marked
with X' indicate that they have a match. Therefore, the match lines associated with those cells
are activated as indicated by the bold lines in the Figure. Let us encode the cell which has the
smallest address among the matching cells. By inspection, cell 2 should have been encoded.
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Figure 3.16 Two-Dimensional Array
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In order to uniquely address a cell, we need to specify the row and column numbers. In
other words, we encode row and column addresses separately. In this case, cell 2 belongs to
row O and column 2. By looking at the row match lines, we find that rows 0, 1, and 3 have
matches. According to the priority rule, row O will be encoded. At the same time, we look at
the column match lines. We find that columns O, 1, 2, and 3 have matches. Therefore,
column 0 is encoded. When we combine them, the result is wrong! Cell 0 does not have a hit,
yet the address for it is encoded. This unfortunately implies that the row and column address
can not be encoded simultaneously; some restrictions must be applied to ensure that the correct
address is encoded.

Let us change the procedure. Suppose we encode the row address first, so we get row
address of 0, as before. Now, suppose we allow only the column matches that occur in row O
to enter the column encoder while inhibit the column matches in other rows. In row O,
columns 2 and 3 have matches, and column encoder should generate an address 2. When we
combine row and column addresses, an address of 2 is formed, which is correct.

The procedure described above explains the presence of the ENCODE lines found in
Figures 3.9 and 3.12. In Figure 3.12, the H_MATCH lines enter the Row Encoder during the
COMPARE cycle. The encoded row address is then routed to the Row Decoder. In the same
cycle, the outputs of Row Decoder are connected to the ENCODE lines, thereby only one
ENCODE line is asserted (i.e., one row is enabled). The V_.MATCH in a Word Cell is pulled
low only if the ENCODE line for that row is asserted and HITn is also asserted. Without this
restriction, the correct lowest-numbered Word Cell address can not be encoded. Figure 3.17

summarizes the address encoding sequence.
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CAM Word
Array

Figure 3.17 Priority Encoding Datapath in the VLSM

Just a quick reminder: each horizontal H_ MATCH line is precharged high during phil
and is wire-ORed with the word cells on the same row. It is the same for each vertical
V_MATCH line except that it is wire-ORed with the Word Cells on the same column.

3.1.6.2 The Implementation

In order to uniquely and accurately encode an address, row address encoding has to take place
first. The resulting row address is then routed to the Row Decoder, whose outputs are routed
to the ENCODE lines which enable a row to propagate its vertical V_MATCH lines down to
the Column Address Encoder to encode the vertical address. The Address Encoder is
responsible for resolving multiple matches in order to encode an unique address. There are
several ways to arbitrate simultaneous responses; the one implemented in the design is priority
encoding, i.e., the CAM word that has the lowest address is encoded.

The resulting encoder is constructed in a grid fashion as shown in Figure 3.18. Its
regularity is particularly suitable for VLSI implementation. In addition, it is a reasonably fast
circuit, although it takes more area than the ripple chain approach. The tradeoff is worthwhile
performance takes the higher priority than area cost. The design shown in Figure 3.18 is
innovative in that it combines prioritization and binary encoding in the same structure.
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Figure 3.18 Priority Address Encoder
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The ADDR lines are running vertically and are precharged high during phil. In order to
exploit the idiosynchrocy of the binary representation, the most significant bit (MSB) of the
address (i.e., A3 in Figure 3.18) is encoded first. Then the random logic can be designed to
depend on the value of the more significant address lines. For example, the logic MATCH14
on A0 depends on A3, A2, Al, and MATCH14. A more general case is that if any of the top
eight MATCH lines (encoding binary addresses ranged from O to 7, whose MSB's, i.e., A3,
in the four-bit address are 0) is asserted, the logic for the bottom eight MATCH lines will be
turned off since it is ANDed with A3. With the appropriate placement of logic, the construct is
indeed able to encode the lowest address in the case of multiple responses.

Note that the MATCH lines from the CAM Word Array are buffered by inverters before
they are evaluated. There are two reasons for doing so. First, the MATCH lines are wired-
ANDed, so they need buffers to sustain their logic levels. Second, for the encoding logic to
work, the MATCH lines are assumed positive logic. But in the CAM Array, MATCH lines are
pulled low if matches occur. The use of inverters will reverse them to the correct polarity.

The leftmost column in Figure 3.18 is responsible for generating the CAM_HIT signal.
It is again a wire-ORed structure precharged high during phil. If any one of the MATCH lines
is high, CAM_HIT will be pulled low. This structure is placed in the Row Address Encoder

ONLY.
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3.1.7 Timing Analysis

Of the four operation modes: INIT, COMPARE, OUTPUT, and UPDATE, the COMPARE
cycle has the highest latency and thus it governs the clock frequency under which the VLSM
can run. This is not surprising at all since both the matching and address priority encoding, the
core processes of the VLSM, are accomplished in this cycle. Let us examine the events that
occur in this stage and see if the latency can be reduced.

First, there is a delay for each CAM Match Cell to generate a valid M signal (refer to
Figure 3.11) which is logic high if the cell content matches the presented data, and logic low
otherwise. Next, Hito-1,t-11, M, and phi2 are ANDed to determine the signal X (refer to
Figure 3.12) which, when positive, will pull down the H MATCH line? that is wire-ANDed
with every cell in the same row. For a large array, the line capacitance is approximately the
sumn of each pulldown gate capacitance, so it could take a relatively long time to discharge.

Next, the Row Address Encoder takes these H MATCH lines as inputs and produces a
binary address corresponding to the lowest-numbered H MATCH line that was pulled down.
The address then enters the Row Decoder. After certain delay, the ENCODE lines are
connected with the outputs of the Row Decoder. Note that only one ENCODE line is asserted.
The COMPARE cycle continues with the generation of V_.MATCH lines. On the row enabled
by ENCODE, the match result is ANDed with ENCODE. If positive, the V_.MATCH line for
that column will be pulled low. Finally, the column address is encoded after valid V_MATCH
lines enter the Column Address Encoder. Figure 3.17 shows the sequence of events described
in this paragraph, and Figure 3.19 summarizes the propagation delays for the COMPARE
cycle.

It is clear that address priority encoding consumes the most time. 1f we take a step back
and recall the VLSM algorithrn, we realize that we don't really need to find out the address until
we are finished with the COMPARE cycles. We encode the address during each COMPARE
cycle just because we are not sure when the a MISS will occur. Therefore, we can take
advantage of this fact to reduce the latency by pipelining the address encoding process. For
example, we can encode the row and column addresses in two different clock cycles instead of
in the same cycle. We can start another COMPARE cycle (if necessary) as soon as the row
address has been encoded and CAM_HIT asserted. The generation of ENCODE and
subsequent column address encoding can take place in the next COMPARE cycle, at the same

1 This is the match result of the left cell in the previous cycle.
2 Remember that H MATCH lines are precharged high during phil. Evaluation occurs
during phi2.
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time the new row address is being generated. The events can be broken in half as shown in the
bottom of Figure 3.19.

Note: M, H MATCH, ROW_ADR, CAM_HIT, V_MATCH, and COL_ADR lines are
prcchargcd high during phil. “ENCODE is norma]ly low.

phil [‘

H MATCH 4

ROW_ADR
CAM_HIT
ENCODE 6

V_MATCH 7

,
£

Output address is valid after this point

COL_ADR

™ 1. M line pull-down delay
First | 2. AND gate delay
Half | 3. Horizontal MATCH line pull-down delay
| 4. Row Address Encoder delay
Second [~ 3- Row Address Decoder delay
Half | 6. AND gate + Vertical MATCH lines pull-down delay
| 7. Column Address Encoder delay

Delays 4, 5, and 7 are believed to be more significant.

Figure 3.19 COMPARE Cycle Timing Diagram
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Figure 3.20 shows an example of the pipelining process. After COMPARE cycle 1, we
learn that CAM_HIT is asserted, so we continue with another COMPARE cycle. After Cycle
3, CAM_HIT is not asserted. Therefore, we issue an OUTPUT command to read out the
address in Cycle 4. Note that the address we want is the address of the CAM cell that had a hit
in Cycle 2, not Cycle 3. As a result, we must buffer at least two most recent row addresses.
This explains why there are two layers of flip flops (FF's) for row address in the upper
righthand corner of Figure 3.8. Column address only has a single layer of FF because the row
address is always produced one clock cycle ahead of the column address.

Another requirement to make pipelining work is to buffer the match results. This is
reflected in Figure 3.12 in which HITn,t-1, the delayed match result, rather than HITh, is used
as an input to the AND gate that produces the signal to pull down V_MATCH. This does not
incur any extra hardware cost because the FF is there already.

CYCLE 1 CYCLE?2 CYCLE 3 CYCLE 4

CLOCK

K RrOwl >KC COLUMNI

< ROW2 COLUMN?2
ROW3 COLUMN3>|
COMPARE COMPARE COMi’ARE OUTPUT
CAM_HIT CAM_HIT CAM_HIT Fi

gure 3.20 Pipelining of Row and Column Address Encoding

In short, pipelining the address encoding process effectively cuts the latency of the
COMPARE cycle in half. As Figure 3.20 shows, the row address encoding and of a given
cycle and the column address encoding of the previous cycle can take place at the same time.
Surprisingly, no additional hardware is required except the extra set of FF's to buffer the row

address.
Other Blocks

The Row and Column Address Decoders, Data Buffers, and Function Mode Decoder are
standard logic so they will not be discussed here.
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3.1.8 Design Evaluation

Since this thesis concentrates on the architectural and logic level designs only, we can onl’,
estimate the area and throughput. While the numbers will not be exact, they at least give us
some insight on the cost and performance of the VLSM device. We will compare the area and
throughput against those of the hashing data structure because it takes the least amount of area
among the data structures surveyed in Chapter 2.

3.1.8.1 VLSM Area Estimate
In estimating the areas of the major blocks of the VLSM, a process is assumed. Figure 3.21
shows the floor plan and the dimension of the VLSM.

DATA 16 8 S 7y
DATA BUFFER 4 '
COLUMN DECODER 8
250 300 1600 20
4 R R
TSI v
10 (6| W CAM ARRAY
ADDRESS 0 E 3
c o|C €
0 O 3
D
0 E
R R
16 X 8
H
COLUMN ENCODER SH?
10y
¥ 78 ADDR
. 2250 um HIT o

Figure 3.21 VLSM Floor Plan and Area Estimate

The layout of the basic components is similar to that of a RAM, with Data Buffer, Row
Decoder and Column Decoder on the sides. However, sense amplifiers are not included since
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reading from the CAM cells is not necessary for the ZL77 encoding application. The CAM
Word Array is arranged in 64 by 16 fashion for a total of 1024 Word Cells; naturally it is the
largest component of the VLSM.

The non-bold numbers in Figure 3.21 are dimensions in um. Note that 1 mil = 25.4
pm. All in all, the VLSM structure is estimated to take 276 mil x 88 mil = 24,482 mil2- This
is a little more than a 4 Kbytes static RAM would takel! Recall from Chapter 2 that the
hashing method needs about 5.25 Kbytes RAM for the same 1 Kbytes history buffer.
Therefore, as long as the performance of the VLSM, which we will analyze in the next section,
is better than hashing, then the VLSM structure is feasible and more efficient on an area basis.

6.1.8.2 VLSM Throughput Estimate

Using the VLSM, the number of cycles required to produce a codeword for each string is
directly proportional to the match length. The following summarizes the cycles necessary per
string, where n is the match length of any given string:

1 INIT + (n+1) COMPARE + 1 OUTPUT + max(n,1) UPDATE= max{(2n+3), 4} cycles.

For example, to encode a string whose longest match in the history buffer is 3, only 9
cycles are required. Of these cycles, INIT, OUTPUT, and one COMPARE cycles are fixed
overhead; this is how the 3 comes about in the expression. We need the extra COMPARE
cycle to find out that there is a miss. The overhead beccmes significant in the case of no
match, as 4 cycles are consumed to encode a character. An UPDATE is still necessary even
there is no match; this is why the expression max(n,1) is there. As the match length increases,
the encoding speed will approach two cycles per input character.

Some assumptions must be made before the throughput can be estimated. First, we
assume that the compression ratio is 2. Since the codeword length used in the implementation
is 14 bits, it is reasonable to say that the VLSM on average replaces every 28 bits of source
data with a 14-bit codeword. 28 bits are equivalent to 3.5 8-bit characters, so we assume that
the average match length is 3.5 characters. Putting this number for n in the above formula, 10
cycles are required to encode 3.5 input characters. We can extend this to any number of data
samples. In general, let N be the number of source characters. Then the number of cycles
needed to encode N input characters follows the formula: (N/3.5) * 10. For example, to
encode 100 input characters, it will need (100/3.5) * 10 = 285 cycles. Based on these

1 Assuming 1um, two-layer metal CMOS technology, 4 Kbytes SRAM will take about 1160
mil x 140 mil = 22,400 mil2
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assumptions, the plot in Figure 3.22 (a) is derived as a function of the VLSM cycle time, or

clock period:
10003

;‘g. 1  Throughput = (2.8/Period) * 1(?
€ 140 )
s 100
. 3
2 :
M -
g -
bt o
= .

14

10 ey S

10 20 100 200 1000

Period (ns)
Figure 3.22 (a) VLSM input throughput vs. VLSM cycle time

The plot suggests that even if the cycle time is 200 ns, the VLSM can still sustain 14
megabits per second (Mbps) input rate!! Initial estimate based on the design reveals that the
VLSM cycle time is about 40 ns. This will provide a 70 Mbps input throughput. In other
words, the VLLSM can sustain an input rate of 8.75 million characters per second. These
valuse are derived from the maximum possible performance available from the VLSM device
iteself. The actual throughput of the Data Compression Engine depends on applications and the
ability to keep the VLSM active.

On the other hand, the hashing method requires about 225 cycles per character. Using a
40 ns cycle time, this translates into 0.11 million input characters per second. Therefore, the
VLSM is about 81 times faster hashing. Appendix A lists the code from which the hashing
cycle time estimate is derived.

It is interesting to see how changes in compression ratio will affect the VLSM input
throughput. Figure 3.22 (b) shows a plot for cycle time fixed to 50ns and 100ns, respectively,
while the compression ratid varies from 1.5 to 2.3. Fortunately, the curves are relatively flat;
this demonstrates that even under low compression ratio, the input throughput is still very
high. However, the curves suggest that higher compression ratio results in higher throughput.
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Figure 3.22 (b) VLSM input throughput vs. compression ratio

By combining the VLSM with other elements of a DC Engine on the same chip, the
input throughput derived in this section may be achieved. These elements are discussed in the

following sections.
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3.2 THE BIT PACKER

The goal of the Bit Packer is to pack an arbitrary number of bits into a byte or multi-byte
quantity. Bit packing normally is accomplished in software using the SHIFT and OR
instructions. Another alternative would be making the Bit Packer a hardware peripheral to
offload the central processing unit (CPU). In the more extreme case, if the CPU is entirely
absent, the Bit Packer would have to be a standalone device controlled by a finite state
machine. This is the framework under which the Bit Packer is designed.

There are parallel and serial approaches to implement this device with tradeoffs in
hardware complexity and speed. The major component in the parallel approach will be the
barrel shifter, which can shift parallel bits in one cycle. However, it takes a lot of area and has
a noticeable propagation delay relative to a regular shift register. Therefore, the serial approach
is favored in the thesis and is discussed in the following sections. It is believed that although
the serial approach needs time proportional to the number of input bits to be packed, the
simplicity of the logic required allows very high speed clocking, thus the overall performance
should be comparable to that of the parallel approach.

3.2.1 Functional Description

Figure 3.23 sketches the Bit Packer functional block. For the purpose of the thesis, the
number of input bits is the fixed codeword length, 14, and the output is in byte, or 8 bits. The
input control signals are shown in Figure 3.23. Bit Packer is normally in standby mode.
When BP is asserted, the bit packing process begins. BP_RESET will clear the internal states
of the Bit Packer and send it to the standby mode. FLUSH is a signal that when asserted will
force the Bit Packer to output a byte, whether it's packed or not. Finally, WR_RDY is an
input signal from an external storage device that indicates if the packed data can be stored
away. The storage device is assumed to be a first-in-first-out (FIFO) memory.

T

BP ——& 8
BP_RESET = ; —_ ~#—® Packed Data
FLUSH ; BIT PACKER }——p BP RDY
WR_RDY ——p> —— WR

Phi 1T TPhiz

Figure 3.23 Bit Packer Functional Block
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The outputs consist of Packed Data[7:0], BP_RDY, and WR. BP_RDY indicates that
the Bit Packer is ready to take in another codeword. WR handshakes with the external storage
device to which the packed data is output. Finally, two non-overlapping clock signals phil and
phi2 are used to clock the internal circuit.

3.2.2 Implementation

The Bit Packer is made up of counters, shift registers, tri-stated latch, and a simple finite state
machine (FSM). Figure 3.24 shows the architecture. Conceptually, the codeword is loaded
into a codeword shift register, which is connected with another 8-bit static shift register, also
known as the Byte Template. The arrow indicates the direction of shift. A Countdown
Counter preset to binary 14 is used to track the number of codeword bits that has been shifted
and is decremented by one with each shift. The Countdown Counter has its inputs hard-wired
to a tri-stated binary constant 1110 (14 decimal). When this counter eventually reaches zero,
all 14 bits have been shifted, so no more shifting will take place until a new codeword arrives.
A Count-to-8 Counter, on the other hand, is used to detect when 8 bits have been shifted into
the Byte Template. When it is full, WR is asserted as the 8-bit quantity latched into the tri-
stated latch is ready for output.

Codeword
he
'CITIU  [shift_enable W (code) W shift enable
Count-to-8 Countdown Static Shift Reg [H» Byte Template
Counter Counter enable(BP_RDY) +
* PRESET latch_enabli Tri-stated Latch
EN
CLR 8
> Packed Data
CONT . WR
> Bit Packer
>
BP Controller |53 CLR & PRESET
BP_RESET L # BP_RDY
“FLUSH Combinational |S1
WR_RDY LOglC S ’ EN

Figure 3.24. Bit Packer Block Diagram

Figure 3.25 shows the state diagram for the Bit Packer Controller. It has six states, each
-denoted by the state variables (S2 S1 S0). The Bit Packer is idle in (1 0 0) as BP_RDY is



asserted. Note that BP_RDY is also used as the parallel-load-enable for the codeword shift
register, output-enable for the binary constant, and preset for the Countdown Counter.

The transition to state (0 0 1) from state (1 0 0) is caused by the assertion of BP which is
the output of some global FSM. In this new state, the codeword shift register has the
codeword and EN is asserted. EN is the signal that clocks the counters and shift-enables the
shift registers, as shown in Figure 3.24. This state repeats until either the Countdown or
Count-to-8 Counter reaches zero. If Count-to-8 Counter reaches zero (indicated by CONT*)
and WR_RDY is asserted, a transition from (0 0 1) to (0 1 1) will take place. However, if
WR_RDY is not asserted, then a (0 1 0) will be the new state, which is basically a wait state.
It will jump to (0 1 1) as soon as WR_RDY becomes active. If during (0 0 1) Countdown
Counter reaches zero (indicated by MORE*) and Count-to-8 Counter is non-zero, a transition

to state (1 0 0) will occur.

Figure 3.25 State Diagram for the Bit Packer Controller

In state (0 1 1), WR is asserted. It serves as the latch-enable of the tri-stated latch
which latches the content of the Byte Template. The 8-bit data by design is valid in this state
and ready to be stored away. WR also output-enables the tri-stated latch. Finally, it signals to
the external device that the data is ready. The next state transition depends on the value of
MORE, as can be seen in Figure 3.25.

Inputs to the FSM are CONT, MORE, BP, BP_RESET, FLUSH, WR_RDY, and three
state variables S2, S1 and SO. When BP_RESET is asserted, state (0 0 0) will be the next state
regardless of the current state. CLR is asserted during this state. In state (1 0 0), if FLUSH is
assened, a transition to state (1 1 0) will take place. The assertion of WR will force the content
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of the Byte Template to be written into the external FIFO. FLUSH is asserted by some global
FSM in response to the end of packet or any other special circumstances.

Current implementation of the Bit Packer is not flexible, i.e., it can only bit-pack 14-bit
codeword into 8-bit. However, it can easily be modified to accomodate variable-length
codewords by explicitly loading in the length of the codeword to the Countdown register
instead of hardwiring its inputs to 1110 (decimal 14). The state machine does not even have to
be changed. On the other hand, if the packed data width needs to go up to 16, hardware
modifications are necessary. Simply, a Count-to-16 counter is required, and the Byte Template
shift register, packed data bus, and tri-stated latch have to be expanded to 16 bits. The state
machine remains unchanged.

3.2.3 Design Evaluation

3.2.3.1 Area Estimate
An area estimate based on the transistor counts, interconnections, and FSM logic reveals that

about 600 mil2 is required by the Bit Packer.

3.2.3.2 Throughput Estimate

It can be determined that the Bit Packer needs 15 cycles in this implementation to pack a 14-bit
codeword. This is assuming that the wait state is unnecessary, i.e., WR_RDY is always
asserted. One of the cycles is used to output the Byte Template so it can be stored away. The
VLSM will output a codeword as frequent as every four cycles!; therefore, the Bit Packer
requires a clock of four times the frequency of the VLSM clock in order to handle the
throughput of the VLSM without delay. However, the use of BP_RDY as handshake will
ensure proper flow control. The Bit Packer clocking requirement does not really have to be
met unless the full throughput of the VLLSM is needed. '

The throughput of the Bit Packer can be degraded if the i/o device becomes the
bottleneck. For example, the output FIFO might be full already while the packed data is
produced by the Bit Packer. It will have to wait until the FIFO has room. This is reflected by
the use of wait state, when WR_RDY is not asserted. In short, the throughput of the Bit

Packer also depends on the design of the output storage device.

1 This is the minimum number of cycles each input string enceding will need, specifically in
the case of no match at all.
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3.3 BIT UNPACKER
This section discusses the design detail of the Bit Unpacker, which, as the name suggests,

reverses the Bit Packer operations.

3.3.1 Functional Description

Figure 3.26 shows the Bit Unpacker Functional Block, which takes in 8-bit data and outputs a
14-bit codeword. Obviously, it needs to read two 8-bit data from the external storage device
before the 14-bit unpacked data can be produced. Bit Unpacker uses BUP and BUP_RDY to
handshake with the outside world. When BUP_RDY is asserted, the external master is
allowed to assert BUP to obtain an unpacked data. RD and RD_RDY are the two interface
signals between the Bit Unpacker and external storage device. If the latter asserts RD_RDY,
then the former can assert RD to fetch a byte from the FIFO. Finally, DUP_RESET is used to

reset the Bit Unpacker.

From Decode Input FIFO
8
BUP_RESET —— |15 Unpacked Data
BUP —P Bit Unpacker —&& BUP_RDY
RD RDY —» ——= RD

BUP _philT TBUP ' phi2

Figure 3.26 - Bit Unpacker Functional Block

3.3.2 Implementation

Figure 3.27 illustrates the major blocks of the Bit Unpacker. Its components are remarkably
similar to those of the Bit Packer, but the operation is exactly the opposite. For example, the
Bit Packer takes in 14-bit codewords and bundles them into 8-bit quantities, while the Bit
Unpacker takes in bundles of 8-bit data and produces 14-bit codewords.

In order to provide the 14-bit codeword immediately upon the request from the external
master, the Bit Unpacker is designed such that it always has a 14-bit codeword ready for
output. This requires that the Bit Unpacker prefetches the bundles of 8-bit data from the FIFO
and serially shifts them into the static shift register, as shown in Figure 3.27.
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Figure 3.27 Bit Unpacker Bleck Diagram

The Countdown Counter can be preset to 14, the length of the codeword, by either

BUP_RESET or BUP_RDY. As each bit is shifted into the 14-bit static shift register, the
Counter is decremented. When it reaches zero, MORE* is asserted. The Count-to-8 Counter,
on the other hand, is used to decide when a new 8-bit data should be fetched from the FIFO. It
is incremented every time a bit is shifted into the 14-bit static shift register. The counter
generates CONT* every eight shifts. Finally, the counters and shift registers are clocked and
shift-enabled, respectively, by the rising edge of the signal EN.
Figure 3.28 displays the Bit Unpacker Controller state diagram. There are six states, so three
state variables (S2, S1, SO) are required. In the default state (0 0 0), BUP_RDY is asserted to
indicate that a 14-bit codeword is ready for output upon the assertion of BUP. As soon as
BUP is true, a transition to state (0 0 1) takes place, as the codeword contained in the static
shift register is output to the data bus by the assertion of OE, which output-enables the tri-state.
The Bit Unpacker then enters state (O 1 1) and starts the process of refilling the 14-bit static
shift register by shifting in the remaining bits of the 8-bit static shift register. When the data is
exhausted, as indicated by CONT*, a new byte is read from the FIFO. The Bit Unpacker FSM
has to make sure that RD_RDY is true before asserting RD to get a byte. RD also load-enables
the 8-bit static shift register. The Bit Unpacker returns to the default state when MORE* is
asserted, which implies that the 14-bit static shift register is filled.



MORE* & CONT » 0’ RD_RDY*

Figure 3.28 State Diagram for the Bit Unpacker Controller

Finally, in the reset state (1 0 0), the Count-to-8 Counter is cleared and the Countdown
Counter is preset to 14. Then the Bit Unpacker prefetches the data to fill up the 14-bit static
shift register before returning to the default state to assert BUP_RDY.

3.3.3 Design Evaluation

3.3.3.1 Area Estimate
Since the basic components and the size of FSM are similar to those of Bit Packer, Bit
Unpacker is also estimated to take 600 milZ, assuming the 1 um, two-layer metal CMOS

technology.

3.3.3.2 Throughput Estimate

This design of Bit Unpacker allows bit unpacking to take place before the request for bit
unpacking is received; therefore, the external master can obtain the 14-bit codeword instantly as
long as BUP_RDY is true. In addition, the Bit Unpacker handshakes directly with the FIFO
so that the external master does not have to worry about buffer management. On the other
hand, the disadvantage of this approach is that only fixed-length codewords can be extracted,
since the width of the static shift register is fixed. Microprogrammed approach seems to be the
solution to unpack variable-length codeword, but at the expense of more clock cycles.
Therefore, there is a tradeoff in flexibility and throughput between these two approaches.
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Normally, a 14-bit codeword can be produced about every 16 cycles. However, like the
Bit Packer, the throughput depends on the data I/O devices. If the Bit Unpacker asks for an 8-
bit quantity from FIFO memory but it is empty, then the Bit Unpacker has to wait. This is
reflected by state (1 1 0), which is entered when RD_RDY is not asserted.



CHAPTER 4
CHIP ARCHITECTURE

This chapter covers the Data Compression Engine chip level architecture. Section 4.1 sketches
a hypothetical system environment for the Data Compression Engine. This then leads to a
proposed chip interface mechanism described in Section 4.2. Finally, Section 4.3 outlines the
functional blocks of the Engine based on a finite state machine approach.

4.1 SYSTEM ENVIRONMENT

The Data Compression Engihe (DC Engine) can be used under ‘two different environments.
For example, it can be attached directly to the communication channel and process the data in
real time. For encoding, the host processor provides the user data; the DC Engine will
compress and transmit the data onto the channel. For decoding, the DC Engine receives the
compressed data from the communication channel and decompresses them; the host processor
then obtain the decoded data from the DC Engine. This arrangement appears to have low
memory overhead since the data enters and exits the DC Engine in real time. In addition, the
throughput of the VLSM can be fully utilized since the input data tends to follow a constant
rate. '

However, if the communication channel is time-multiplexed or frequency-multiplexed,
which is often the case, then data reception and transmission will require additional processing.
Moreover, in a packet switched network, only the data field of a packet is compressed or
decompressed; the header and flag fields are normally left intact. This suggests that the DC
Engine must identify which portion of the input data should be processed. In order to avoid .
these processing overheads, a generic system environment is assumed for the thesis as
sketched in Figure 4.1. For a more concrete description, the host processor is taken tobea
Motorola 68020 with 32-bit address and data buses. -

In this arrangement, the data to be processed by the DC Engine is stored in the shared
memory, which ¢an be accessed by both the CPU and the DC Engine. The DC Engine fetches
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the source data from the memory, encodes or decodes them, then stores the result back to the
shared memory.

Shared
Memory

68020 Data Compression
CPU Engine

System Data Bus

Figure 4.1 Data Compression Engine System Interconnection

" One clear disadvantage of this scheme is the large memory transfer overhead, since both
the data input and output of the DC Engine require the use of the system data bus, which is
shared with the CPU. If very high system throughput is desired, the system i/o could become
the bottleneck. One solution is to use a dual port device for the shared memory, so that the
CPU and the DC Engine can access the memory independently. The penalty for this approach,
however, is the higher cost, particularly if the shared memory is huge. However, the system
performance issue is beyond the scope of the thesis; the hypothetical system environment is
presented in this section to shed some light on the interface mechanism in which the DC Engine

should support.

4.2 INTERFACE MECHANISM

This section attempts to formulate a communication scheme between the external processor
and the DC Engine based on the system environment presented in the last section. The major
criterion in devising the scheme is to minimize the overhead required by the external processor.
In other words, the DC Engine should be as self-contained as possible so that the interface with
the external processor will be minimum.

A shared memory approach is proposed and the data structures that support it are fully
described. Next, the internal register set that is required as a result of the data structures in the
shared memory is proposed. Section 4.2.3 explains the interface mechanism as well as the
sequences of events that are necessary to set up the interface. Finally, Section 4.2.4 suggests a
non-exhaustive set of commands that the external processor may issue to the DC Engine.
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4.2.1 Shared Memory Data Structures

Shared memory is the communication vehicle between the DC Engine and the external
processor (EP). It not only contains the packets, but also the information about where the
packets are stored in memory. Figure 4.2 shows the proposed functional partition of the
shared memory:

( Packet Queue )
Output Packet Buffer
Free Memory
\_ _J

Figure 4.2 Proposed Shared Memory Data Structures

The Packet Queue consists of several Packet Description Tables (PDT), each contains
essential information such as the buffer size as well as the location and length of the packet to
be processed by the DC Engine. The Packet Queue is organized in a circular buffer fashion,
as shown in Figure 4.3. Both the EP and the DC Engine access the Queue in sequential order,
starting from PDT #1. After PDT #N is accessed, PDT #1 will be accessed next.

-DCPacket Description Table #1 )—
@acket Description Table #2 s ‘

g pa
—-(Packet Description Table #N s

Figure 4.3 Packet Queue Organization

Two data structures are proposed for the PDT. In Option A, it is assumed that the EP
supplies not only the location of the source packet but also the storage location of the processed
packets. Figure 4.4 illustrates the data structure that supports this scheme. The Buffer Pointer
contains the starting address of the packet to be processed. The Packet Length indicates the
length of the packet in bytes. The Buffer Size reveals the size of the current buffer in bytes.
The Output Buffer Pointer is assigned by the EP.” The DC Engine will store the processed
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packet starting at this location. The Output Packet Length is supplied by the DC Engine so that
the EP knows the length of the processed packet. Obviously some cautions must be taken to
ensure that the DC Engine won't overwrite any data. This arrangement alleviates the DC
Engine's task to locate storage area, but this also violates the principle of minimizing the EP's

overhead.
Packe't . Status
%gﬁgﬁ&r Buffer Pointer (high word)
Buffer Pointer (low word) (in free memory)
Packet Length
Buffer Size
Output Buffer Pointer (high word) essed Packet
Output Buffer Pointer (low word) (in Output Buffer
Output Packet Length

Figure 4.4 Packet Description Table Data Structure For Option A

In Option B, the DC Engine determines where to store the processed packets. This
could be accomplished by allocating a restricted area in the shared memory called the Output
Packet Buffer, as shown in Figure 4.2. Within that memory area, there are several smaller
buffers of equal sizes, and each has its status information concerning whether it is free or not.
The DC Engine will have to check the buffer status before writing into the buffer. If the
processed packet is too large to fit in a buffer, more than one buffer can be used. At the same
time, the EP has to update the status portion to mark it free after it reads the buffer. It is
expected that the buffers will be filled or emptied in order, much like the way the Packet Queue
is accessed.

This scheme effectively alleviates the EP's loading on data compression related output
buffer management. The second advantage of the scheme is that the memory space for the the
PDT is reduced almost in half, as shown in Figure 4.5. The EP first supplies the packet source
address and length in the Buffer Pointer and Packet Length fields, respectively. Later, the DC
Engine will supply the encoded packet address and length in the same Buffer Pointer and
Packet Length fields by overwriting the source information. Obviously, it is assumed that the
EP does not need to know the location of the source packets anymore.
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Packet Status ‘
Description : -
Table Pointer Buffer Pointer (high word) o
. Buffer Pointer (low word)
Packet Length
Buffer Size

Figure 4.5 Packet Description Table Data Structure For Option B

The first word in the PDT is the Status, which carries information about the packet. The
status bit assignment is suggested in Figure 4.6. An explanation about each status bit then

follows.

5 A/ 9 8 7 6 s 4 3 2 1 0
| Reserved | #ofvaldBits | Type | ED* | End | Start | New |

Figure 4.6 Status Bit Assignment

* NEW indicates whether the packet is current or not. It is set by the EP and reset by the DC
Engine after this packet is processed.

« START tells if the packet starts at the current buffer. It is used for buffer chaining purpose,
which is required if the packet is too large to fit in a single buffer.

» END tells if the current buffer contains the end of a packet. If both START and END bits are
set in a given Status Word, then a whole packet is able to fit in a buffer.

» E/D* indicates whether the packet is to be encoded or decoded. A 0 indicates that it is to be
decoded. A 1 indicates that it is to be encoded. y

» TYPE is presently set to be a 2-bit quantity which allows the specification of up to four data

‘compression algorithms that the packet is to be processed. In the current implementation,
TYPE has a default value of zero since only the Z1.77 algorithm will be supported by the DC
Engine.

« # of VALID BITS shows the number of valid bits the last byte of the packet contains. When
the packets are encoded (compressed), it is likely that the last byte has been padded with
dummy bits. On the other hand, when the packets are decoded, the decoder needs to know
the number of useful bits the last byte contains. Therefore, the remote Encoder writes into

this field and the local Decoder reads from it.
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- It is fundamental to require that the EP fills the PDTs in the Packet Queue in sequential
order and wraps around when the end of the queue is reached. In addition, before the EP
writes the information for a packet, it must check the NEW bit field of the Status of the current
PDT. If NEW is still set, it means that the DC Engine has not finished processing that packet.
As a result, the EP can not overwrite the current PDT and must wait or try again later. This
scheme ensures the proper flow control of the Packet Queue.

Based on the requirement proposed above, the DC Engine can process the packets in
order by going down the Packet Queue. When the DC Engine detects that the packet is not
current, i.e., NEW is not set, it can be sure that no more packet is to be encoded for the
moment. Similarly, if later the EP has more packets, it will fill in the PDT where the DC
Engine most recently finds it not current. This is an important restriction that must be
followed. Otherwise, the EP and the DC Engine will be out of synchronization.

4.2.2 Internal Registers
Based on the Shared Memory data structures, the following set of internal registers shown in

Figure 4.7 is necessary for efficient communication.

Data
Command
Interrupt Vector
Semaphore
Base Packet Queue Pointer
Packet Queue Size
Status
Packet Length
Buffer Size
Base Output Buffer Pointer
Output Buffer Size
Number of Output Buffers
Status Register Pointer
Output Buffer Pointer
Packet Queue Pointer

Figure 4.7 Proposed Internal Register Set
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Of all these registers, only the first four are directly accessable to the EP. They are
selected by the Al and A0, the lowest two address inputs of the DC Engine. The Data Register
is used to load in values for the internal registers. The Command Register allows the EP to
issue different commands to the DC Engine, such as initialization, load Buffer Pointer, Stop,
Start, etc. The Semaphore Register is read by the EP and written by the DC Engine. Before
the EP issues a command, it will first check the Semaphore Register. If it contains a 0, then
the DC Engine is ready to accept a command. Otherwise, the EP has to wait. Each time the DC
Engine reads the command, it will write a 1 to the Semaphore Register. When the command is
finished, the DC Engine writes a 0 to it.!

As each data byte is read in, such as in a direct memory access (DMA) cycle, the Buffer
Pointer is auto-incremented while the Buffer Length is decremented. These activities are
coordinated by the DMA controller which will be explored in Section 4.3.4. The Base Packet
Queue Pointer and the Base Output Buffer Pointer contain the starting addresses of those two
data structures. The Packet Queue Size tells the number of PDTs in the Packet Queue.

The Status Register Pointer is reserved for future use. For example, if more information
needs to be communicated between the EP and the DC Engine, the pointer can be used to point
to a memory space where the information resides. The EP can issue a READ STATUS
command to tell the DC Engine where to dump its internal registers contents before the READ
INTERNAL REGISTER command is issued.

The Interrupt Vector Register can be read or written by both the EP and the DC Engine.
Its use will be described in the next Section. Note that this internal register set is not complete.
A more detailed look might reveal that more registers are necessary.

4.2.3 Interface Scenario
When the system is powered up, the EP is responsible for initializing the DC Engine.

The major tasks include loading the Engine with the Packet Queue Pointer, Packet Queue Size
(the number of PDTs in the Packet Queue), Output Packet Buffer Pointer (if Encode Table
Option B is chosen), and Output Packet Queue Size. The first pointer contains the starting A
addresses of the Packet Queue. Each of the PDT in the Queue will be referenced by a constant
offset from this starting address. ,

In the normal operating mode, the DC Engine checks for the Status portion of the current
PDT. If the NEW bit is set, the DC Engine will fetch the Buffer Pointer, Buffer Size, and
Packet Length into appropriate internal registers and then DMA the data into its internal buffer.
Since the PDTs in the Queues are written by the EP sequentially, the DC Engine, when

1 This concept is similar to Motorola X.25 Protocol Controller Chip's interface with external processor.
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finished with the current packet, resets the NEW bit. It will then fetch the next PDT Status
word and check to find out if there are more packets to be processed. On the other hand, the
EP also keeps track of whether the processed packets have been fetched. When the EP checks
the Status and detects that NEW is reset, it will fetch the processed packet and goes to the next
PDT.

When the DC Engine exhausts the packets, it will interrupt the EP. There are two
possibilities as to how the EP signals to the DC Engine for the arrival of new packets. The first
solution is to have the DC Engine poll the same PDT until its Status Word's NEW bit is set by
the EP. This requires the least amount of overhead for the EP, but the polling by the DC
Engine will consume the system bus bandwidth since the DC Engine needs to load the Status
word from the shared memory into its internal register for bit field checking. The other choice
is to have the EP interrupt the DC Engine when new packets become available for processing.
This can be accomplished by writing appropriate information into the Interrupt Vector Register.
The DC Engine will check the Interrupt Vector Register to decode the message. In this
scheme, external polling is unnecessary, but internal polling of the Interrupt Vector Register is
required.

4.2.4 Command Set
This section only gives a flavor of what commands might be necessary to establish the interface
mechanism or to control the activities of the DC Engine. At present, there is no way to come
up with a more complete set of commands because we don't have the exact data structures nor
system functional specification, which really depends on the environment the DC Engine is
situated. Some useful and generic commands are listed below:

Reset

Dump Internal Registers

Read DC Engine Status

Stop

Read Status

Note : The EP issues command only when the Semaphore Register is 0. The 8-bit
command is loaded into the Command Register via the data lines D7-DO0.
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4.3 FINITE STATE MACHINE ARCHITECTURE

In order to discover the maximum throughput of the DC Engine utilizing the VLSM structure, a
totally dedicated hardware approach is taken to encode and decode data. This approach
requires exploiting the regularities and peculiarities of the data compression algorithm used,
which, in this case, is a ZL77 scheme with fixed-length codeword encoding and decoding and
without the innovation character as part of the codeword.

By clearly defining the operations required at the expense of generality, the finite state
machine controlled data compression encoder and decoder becomes the optimal solution. Since
the use of the VLSM for string matching tremendously speeds up the encoding process and yet
requires very little control, treating it as a peripheral controlled by a microprogrammed
environment seems inefficient. Furthermore, decoding needs to be at least as fast as encoding.
If encoding is facilitated by the VLSM, decoding should be made fast with appropriate
hardware support as well, such as the bit unpacker.

Although the resulting architecture will be inflexible, it has its own great value, because
it allows us to get a sense for the maximum possible throughput of the DC Engine. In
addition, it shows one of the data paths most suitable for full duplex data compression
processor, and it would not be too difficult to modify the architecture to provide more
flexibility in the future. In short, this Section examines the extreme case, and the result can be
used to compare against the performance of a more general DC Engine in the future.

4.3.1 The DC Engine Architecture
Figure 4.8 shows the functional blocks of the DC Engine.

N
s
Interface
Manager
' EN_RDY
Decoder Encoder
D p——
ENCODE
f DE_RDY 4

DECODE
Figure 4.8 DC Engine Functional Blocks
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There are four major functional blocks: the Encoder, the Decoder, the DMA Controller,
and the Interface Manager. The Encoder performs the Z1.77 encoding operation as explained in
Section 3.1.1. The Decoder decodes the Z1.77 codewords. Both the Encoder and the Decoder
receive source data from and output processed data to the DMA Controller block. The DMA
Controller is in charge of chip level data input/output operation, including shared memory
address generation. Finally, the Interface Manager is responsible for interfacing with the
external processor, maintaining the shared memory data structure, providing the source or
destination addresses to the DMA Controller, and coordinating the Encoder, Decoder, and
DMA Controller blocks. It also contains the internal register set. The following sections will
describe the Encoder and Decoder architectures in detail. The DMA Controller and the Interface
Manager are presented only in terms of their general functionalities, not their implementations.

4.3.2 The Encoder

The Encoder in the ZL77 context is an entity that receives the original data and compresses
them into fixed-length codewords. The codeword length is 14 bits as a result of the
implementation parameters described in Section 2.2.4. On the functional level, the Encoder
obtains a maximum of 256 data bytes at a time from the DMA Controller. If the data portion of
a packet is longer than 256 bytes, then more than one block transfer is necessary. The
Interface Manager is responsible for coordinating this activity. As for the output, a maximum
of 128 bytes can be transferred to the DMA Controller from the Encoder. Again, if the
resulting codewords for a packet take up more than 128 bytes, more than one block transfer
will take place. The Encoder is responsible for informing the Interface Manager when the
encoding for a packet is finished, so that the DMA Controller can perform necessary chip level

input/output operation.

DATA IN DATA_OUT

G

EN STOP—P —>  FULL

WR“ EI » ENCODER & EI RDY

RD EO —b —& EO_RDY
EN_RESET

" Figure 4.9 The Encoder Functional Block Diagram
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Figure 4.9 shows the Encoder functional block diagram. ENCODE is asserted by the
Interface Manager to activate the Encoder, while EN_STOP is used to stop the Encoder, such
as when the last byte of the packet is being encoded. WR_EI and RD_EO come from the DMA
Controller to indicate whether data are to be written into or read from the Encoder.
EI EMPTY, EO_FULL, EI RDY, and EO_RDY are status signals to the Interface Manager so
that it can coordinate the DMA Controller to perform appropriate i/o functions. EN_RESET is
used to reset the Encoder. Finally, DATA_IN is the input data bus, and DATA_OUT is the
output data bus, both are 8-bit wide.

4.3.2.1 The Encoder Implementation

The data path and the major components of the Encoder are illustrated in Figure 4.10. Data to
be encoded originates from the DMA Controller, enters the Encode Input FIFO (First In First
Out), and travels through the VLSM, the Bit Packer, and finally the Encode Output FIFO. The
Encoder is controlled by a finite state machine, called the Encoder FSM.
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Encode A
Input 3 8 %g
FIFO 8

TR Epl6d | b
—»1 Tri-state pur. Char Sl-SO.
2 OE g1 Register VLSM
) RESET f ADDRESS
Encode INC. Buffer o I
Output —| Counter can ] Length
FIFO AD+| A -B—EC—N Counter
CL-R—> Counter
~ INDEX g
. 14 |4 ~5
WRI 18 |VRROY o 7 TCH LENGTH
4 MATCH | END*
Bit Packer [~ BP_RDY
E} < —r ENCODER €
t 1 Outpus| FSM Inputs

BP_RESET EN_STOP
Figure 4.10 The Encoder Architecture

The Encode Input FIFO is 256-word deep and 8-bit wide. It is written by the DMA
Controller and is read by the Encoder. The FIFO is designed to minimize the memory
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management overhead required by the external devices [37]. Therefore, it contains internal
logic for updating the FIFO address pointer every time a FIFO read or a write occurs. In
addition, the internal logic responds to asynchronous handshake signals as well as the
condition of the FIFO. For example, a byte can be read by asserting the RD signal provided
the RD_RDY signal is asserted by the FIFO. Similarly, WR is asserted by the external device
to write a byte into the FIFO as long as WR_RDY is positive. When the FIFO is empty or
almost empty, a signal EI EMPTY will be generated to warn the external devices which use the
FIFO. In short, this FIFO design is well-suited for FSM control. ‘

The use and control of the VLSM have been discussed extensively in Section 3.1.4, so
they will not be repeated here. The VLSM device is naturally the largest and the most
important component of the Encoder. The Encoder FSM generates a logical sequence of
control signals to the VLSM to implicitly find the longest match and produce the codeword.

The Bit Packer takes in 14-bit quantities and packs them into bytes. Its outputs are
connected directly to the Encode Output FIFO. The Bit Packer therefore is designed to
handshake with the FIFO as well. As can be seen, the 4-bit MATCH_LENGTH and the 10-
bit Index are hard-wired as inputs to the Bit Packer. Note that the output of the Tri-state
Register could also be input to the Bit Packer. The Tri-state Register always latches the input
character presented to the VLSM. If there is no match at all, i.e., MATCH_LENGTH equals
to zero, then the character itself is stored in the Index portion of the codeword, as explained in
Section 2.2.2. In this case, the OUTPUT command of the VLSM is never issued by the
Encoder FSM,; instead, the content of Tri-state Register is fed into the Bit Packer in addition to
MATCH_LENGTH, which is zero. '

The Encode Output FIFO has the similar structure as the Encode Input FIFO, except that
it has only 128 bytes and is written by the Encoder (the Bit Packer, to be more specific) and
read by the DMA Controller. The Bit Packer generates WR signal to write into the FIFO. An
EO_FULL signal is generated when the FIFO is full or almost full.

" The Length Counter is capable of counting up and down. CAM_HIT is the count-up
- clock for the counter while DEC acts as the count-down clock. The four-bit output of the
Length Counter are inputs to the Bit Packer as well as an OR gate. When the outputs are all
zeroes, END* is asserted low. It is used as an input to the Encoder FSM and means different
things at different FSM states. '

The Address Counter is essentially the history buffer pointer which always points to the
next position where a new input character is to be inserted into the VLSM. This 10-bit binary
counter is incremented by one whenever a UPDATE command for the VLSM is executed.
When it counts to 1023, it will return to zero and start again. The Address Counter is reset

when the CLR signal is asserted.
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The Character Buffer can buffer up to 16 input characters. This is required because after
the codeword is generated, each encoded input character needs to be written into the VLSM.
The Buffer Counter is cleared before a new encoding cycle begins. As each input character is
read from the Encode Input FIFO, it is being presented to the VLSM as well as written into the
Character Buffer, and the Buffer Counter is incremented to point to the next position. When
the characters are about to be inserted into the VLSM, the Buffer Counter is reset to point to the
first character. During the UPDATE cycle, the Length Counter is decremented as each input
character is read from the Character Buffer and written into the VLSM location specified by the
Address Counter. The Encoder FSM will use the END* signal to determine when to conclude
the UPDATE activity.

In addition to controlling every component shown in Figure 4.10, the Encoder FSM
needs to worry about some special situations. For example, the COMPARE cycle stops when
a miss occurs, i.e., CAM_HIT is not asserted. At that point, the last character that is not part
of the longest match is still in the Tri-state Register. The FSM has to make sure that in the next
encoding cycle, the first character must come from the Tri-state Register, not from the FIFO.

Another important provision is that when the last character of the current packet has been
compared, a codeword must be generated even though the longest match has not been found.
In other words, the Encoder FSM must recognize the end of packet and break the normal
VLSM operating cycle by forcing a OUTPUT command to get the index. Together with the
content of the Length Counter, the codeword is fed to the Bit Packer. If one recalls from
Section 3.2.2, the Bit Packer FSM is able to respond to such condition, i.e., if the signal
EN_STOP, an input to the Bit Packer, is asserted, the Bit Packer will output the Byte Template
even though it is not filled with 8 bits yet.

Finally, the Encoder must be resetable, in which case all the counters will be cleared and
the FSM will be in standby mode. Figure 4.11 is a state diagram for the Encoder FSM. This
diagram illustrates the major activities of the Encoder.
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Figure 4.11 Simplified Encoder FSM

4.3.2.2 The Alternative Encoder Architecture

If we closely examine the current Encoder design, we find it awVward having to buffer the
input characters in the Character Buffer and then read from it later to update the VLSM. It
would be cleaner and more elegant if the input character could be inserted into the VLSM right
after the COMPARE cycle, so that it does not have to be saved somewhere. Some silicon area
could be saved by eliminating the Character Counter and Character Buffer which is a static
RAM structure with address decoding and sense amplifier circuits.

The first question comes to mind before any modification: is it okay to modify the
history buffer before the current encoding cycle is finished? The example in Figures 4.12 will
help answer this question. In Figure 4.12 (a), the history buffer contains "abcdefg", and the
input string is "abcf'. The history buffer pointer points to position 1. Suppose we insert the
input character immediately after the COMPARE cycle. Figure 4.12 (b) shows the result of a
COMPARE and a UPDATE cycles. Note that 'b’ under position 1 was overwritten with 'a’,
the input character! Therefore, when we presented the character 'b' in the second COMPARE
cycle, we failed to get a match! Have we destroyed the chance to find the longest match by
modifying the history buffer before the longest match is found?
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Figure 4.12 (a) History buffer before the COMPARE and UPDATE cycles
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Figure 4.12 (b) History buffer after the COMPARE and UPDATE cycles
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Superficially, we see that the longest match is "abc" in the Figure 4.12 (a). However, if
we unfold the history buffer in time, we learn that the order in which the characters had arrived
is 'b', ‘¢!, 'd’, ‘¢!, 'f, 'g', and 'a’, with 'a' being the most recent character. Therefore, there
" is no such string as "abc" in the history buffer. The fact that the history buffer wraps around
creates the illusion that the string "abc” is present. Furthermore, the history buffer
implemented in the thesis contains 1024 characters, so that the probability of such occurrence
shown in this example is very small. In short, we have concluded that it is fine to update the
history buffer immediately after a COMPARE cycle. )

The next question is: how do we do it? Clearly, the sequence of commands issued to the
VLSM has to change. In the past, the commands required for a match length of two go as
follows:

INIT COMPARE COMPARE COMPARE OUTPUT UPDATE UPDATE.

With the modification, the new sequence becomes:

INIT COMPARE UPDATE COMPARE UPDATE COMPARE OUTPUT.

Since the next COMPARE cycle comes one cycle later instead of the immediate next
cycle, we need to have one more flip flop in each VLSM Word Cell to delay the match result
for one more clock cycle. Thus, overall, there will be 1024 more flip flops in the VLSM
device, or 8192 more transistors as each dynamic flip flop consists of 8 transistors.
Preliminary estimate reveals that the Character Buffer and the Buffer Counter will take up 630
mil2, compared to 2450 mil2 consumed by 1024 flip flops. However, it is difficult to evaluate
the impact of this modification upon the total VLSM area cost, because it depends on the layout
of each VLSM Word Cell. It is possible that for the original Word Cell, compact layout can
not be achieved, so adding one more flip flop to each Cell does not siéniﬁcantly increase the
Cell area, thus the total area. As a result, the actual additional area is likely to be much smaller
than the estimate suggests. Furthermore, the Encoder FSM does not have to control those two
components anymore, so the PLA (programmable logic array) that-implements the FSM will
become smaller. Therefore, the modification can still be justified, even though the original idea
of area saving does not seem to hold up.

The alternative Encoder architecture made possible by the modified VLSM design is
cleaner, since the Character Buffer and the Buffer Counter are eliminated. Moreover, it

81



becomes easier to see that the OUTPUT cycle of the current encoding process and the INIT
cycle of the next encoding process can actually be combined! Therefore, the effective VLSM
cycle requirement per codeword produced can be reduced to (2n + 2) from (2n + 3), a saving
of one clock cycle! Appendix C shows the alternative Encoder architecture and its detailed

FSM implementation.

4.3.2.3 Area Estimate
The total area of the Encoder is estimated by counting the number of transistors from each

component other than the VLSM and the Bit Packer, whose areas have been presented in
Chapter 3. The regular structures such as the PLA, Character Buffer, and the FIFO's are
treated separately, using the RAM or ROM cells approximation. The total area is about 32,500
mil2, Chapter 7 will show how this area is compared to a typical die size.

4.3.2.4 Throughput Estimate
In estimating the peak throughput of the Encoder, we assume that the source data are available
all the time. For example, whenever RD is asserted, the Encode Input FIFO will supply a
character. Furthermore, we assume that the encoded data can always be output. For example,
whenever the Fiit Packer asserts WR, the Encode Output FIFO can always accept the byte.
. inally, the R:t Fackes is assumed to be running a clock four times as fast as the Encoder
clock, so th:zi the cutpuis of the VLSM can be packed in time. All these restrictions can be
relaxed in real irnplementation; the state diagram for the Encoder FSM shown in Appendix B
takes care of possiblz congestions in the Encede Input FIFO, Encode Output FIFO, and the Bit
Packer by inserting wait states. '

~ Under these "ideal” condition, the throughput of the Encoder approaches that of the
VLSM, which can be found in Section 3.1.8.2. It is more difficult to predict the effective
throughpt of the Encoder when the i/o traffic is congested or when the Bit Packer can not keep
up with the VLSM.! However, the peak throughput should give us a good approximation.

1 This can happen when there are consecutive "no-matches"; the VLSM produces a codeword
-every four cycles for a no-match, while the Bit Packer requires at least 14 cycles to pack the

codeword.
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4.3.3 The Decoder

The Decoder is more straightforward because it mainly takes apart the codewords into Index
and Length, reads the characters off from its history buffer, updates the history buffer, and
outputs them to the DMA Controller. On the functional block level, the Decoder resembles the
Encoder, as shown in Figure 4.13. The interface signals work the same way as those of the
Encoder, so they will not be explained here.

DATA IN DATA_OUT

vk

DECODE — —:g%EMPTY
DE_STOP —¥ _FULL
WR DI —| DECODER L pj RDY
RD DO —» |—#& DO RDY

DE RDY DE_RESET
Figure 4.13 The Decoder Functional Block Diagram

4.3.3.1 The Decoder Implementation

The Decoder basically is concerned about three things. First, it has to unpack the byte
quantities into 14-bit codewords. Second, it has to subtract the Index from the Length plus one
to get the correct starting Index, because the Index produced by the VLSM is the index of the
last character, not the first character, of the longest match. Third, when the Length field is
zero, the character the codeword encodes is in the Index field, so there is no need to read from
the history buffer. The major blocks of the Decoder reflect these tasks, as shown in Figure
4.14. The Decoder is controlled by a Decoder FSM.

The DATA_IN of Figure 4.13 enters the Decode Input FIFO, which has the same
structure as the Encode Input FIFO except that the Decode Input FIFO is only 128-byte deep.
1t is written by the DMA block and read by the Bit Unpacker. The proposed implementation
requires the Bit Unpacker to take in 8-bit quantity and output 14 bits. Obviously at least two 8-
bit words are needed to provide the 14-bit codeword.

The 14-bit outputs of the Bit Unpacker are broken into a 10-bit Index field and a 4-bit
Length field. The Index and Length are operands to the Subtractor. The subtract operation can
be done in either the Encoder or the Decoder, but is chosen to be implemented in the Decoder to
balance the operating overheads between the two. The difference plus one is the correct index
which is latched into the Address Counter.
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Figure 4.14 The Decoder Architecture

The 4-bit Length presets the Length Counter. The decoding procedure is to extract
characters from the history buffer (stored in RAM) based on the index and length specified in
the codeword, and output them to the Decode Output FIFO. Every time a character is read, the
Address Counter is incremented, the Length Counter is decremented, and the same character is
temporarily stored in the Character Buffer. When the Length Counter reaches zero, the history
update cycles begin. First, the Address Counter is loaded with the value in the History
Pointer. Next, the characters are recalled from the Character Buffer and written into the history
buffer RAM one by one. At the end of the update operations, the value in the Address
Counter is stored into History Pointer for future update use. ‘

The Tri-state Register always latches the lower 8-bit of the Index field. In the special
case in which the Length field of the codeword is zero, the lower 8 bits of the Index field will
be the character itself. Therefore, the Decoder will just output-enable the Tri-state Register and
bypass the procedure of getting the raw character from the history buffer. Certainly, the
character has to be written into the history buffer.

The Decode Output FIFO is 256-byte deep, twice the size of the Input FIFO. This is in
anﬁéipation of data expansion, assuming a 2 to 1 compression ratio.
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4.3.3.2 The Alternative Decoder Architecture

There appears to be at least two modifications that can be made to optimize the Decoder in area
and performance. The first one is similar to the proposal discussed in Secidon 4.3.2.2, namely
the newly decoded character can be inserted into the history buffer before all characters
represented by the codeword are read off. This change of procedure will eliminate the
Character Buffer and the Buffer Counter and simplify the Decoder FSM. However, the
tradeoff is that now the History Pointer, originally a 10-bit latch, has to become a much larger
10-bit counter. Nonetheless, this 10-bit counter only takes 20% of the area occupied by the
Character Buffer, Buffer Counter, and the 10-bit Latch, so a net area saving is achieved. The
address input to the history buffer RAM now must be multiplexed bewteen the Address
Counter and the History Pointer, since both memory read and write require addressing.

The second modification concerns the (Index - Length + 1) operation. It would be nice
to avoid the "plus one" step since it takes up a cycle. One possibility is for the VLSM to
produce an Index that is one more than the actual index. This way, just (Index - Length) will
give the correct starting address of the longest match. In order for this scheme to work, the
VL.SM address encoding has to be modified. Fortunately, it only involves the physical location
change for the logic circuits that pull down the H_MATCH and the V_MATCH lines of the
VLSM Word Cells. In other words, the logic circuits for a Word Cell N now is located inside
its righthand neighbor, or Word Cell (N+1), so that when a match occurs in Word Cell N, the
Index of (N+1) will be produced, assuming it is the lowest index. Figures 4.15 give a
graphical comparison between the original Word Cell and the rearrangement of the Word Cell.

4.3.3.3 Area Estimate
The total area of the Decoder without the Character Buffer and the Buffer Counter is 12,000

mjlz, about 37% of the Encoder:

4.3.3.4 Throughput Estimate 4
The peak throughput of the decoder again assumes the ideal conditions described in Section

4.3.2.4, namely infinite data supply and output, and the Bit Unpacker running a clock four
times as fast as the Decoder clock. Furthermore, we assume that only (Index - Length)
‘operation is required, not (Index - Length + 1). : ,
Then we can proceed to observe that for each character decoded, a memory read and a
memory write (history buffer update) are required. One or two.cycles are required to fetch the
* codeword and subtract the Length from the Index. Therefore, the number of cycles to process
a codeword is about (2N + 2), where N is the number of characters the codeword encodes.
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Therefore, the throughput is similar to that of the Encoder or the VLSM. Again, please refer to
Section 3.1.8.2 for the throughput plot as a function of the clock period.
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" Figure 4.15 (b) The Modified CAM Word Cell
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4.3.4 The DMA Controller
The DMA Controller handles the DC Engine's data input/output opefations. It essentially
bridges the external shared memory and the internal FIFOs. The DMA Controller must
perform the following tasks:
" Get control of the system data bus, so that the DC Engine becomes the bus master

* Generate external addresses ,

* Handshake with the shared memory to perform memory read/write cycles

» Transfer data in blocks whose sizes are specified by the Interface Manager

* Read from Encode and Decode Output FIFO's and write into external memory

* Read from external memory and write into Encode and Decode Input FIFO's

* Interface the DC Engine data bus with the FIFOs which are only 8-bit wide

» Handshake asynchronously with the FIFOs

In the thesis, the DMA Controller is treated on the functional block level only, due to

time constraints and the fact that not too much novel design is possible. Figure 4.16 shows the
conceptual blocks that are necessary to implement the requirements specified above.

BR BG BGACK  ADDRESS

€l

DATA 55 AT R/

!

Sus Control And Address Reg.la—
Data Reg. Memory Access Logi [ ? Gy
Control ' Incrementor Data From the
Interface Manager
DMA FSM

Block Size Reg,. |4

B el
2 2 § Decrementor

Figure 4.16 The DMA Controller Architecture

The Interface Manager provides the Base External Address which is stored in the
Address Register. In addition, the Interface Manager specifies the data transfer block size.
Then the DMA Controller will activate the Bus Control and Memory Access Logic to read data
from or write data into the shared memory. The content of the Block Size Register is
decremented every time a byte is accessed, while the content of Address Register is
incremented. If the system data bus is 32-bit (= 4 bytes) wide, then the amount to be
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decremnented or incremented will be four at a time. When the Block Size Register reaches
zero, the memory transfer activity will terminate.

The interface to the Encoder or Decoder FIFOs ensures proper byte alignment between
the Data Register and the FIFOs. The latter are only 8-bit wide while the former is either 16 or
32-bit wide. Finally, the DMA FSM basically coordinates each functional blocks. It also
performs asynchrenous handshakes with the FIFOs. For example, to read from the Encoder
Output FIFO, RD_EO will be asserted to get a byte from the FIFO. Again, Figure 4.16 only
presents a conceptual model of the DMA Controller; therefore, many signals and

interconnections are omitted.

4.3.5 The Interface Manager

The Interface Manager is the highest level controller of the DC Engine. Its responsibilities
include carrying out the interface mechanism with the external processor as described in
Section 4.1; providing the DMA Controller with information regarding the base address of
external memory, data transfer block size, and data transfer source port and destination port;
and finally, responding to the status signals from the Encoder and the Decoder.

The DC Engine communicates with the outside world mainly through the Data Register,
which can be accessed by both the DMA Controller and the Interface Manager. The latter is
responsible for routing the data structure parameters from the Data Register to the appropriate
internal registers described in Section 4.2.2, such as the Packet Queue Pointer, Packet Size,
Buffer Length, etc.

The Interface Manager is governed by a complicated FSM which might consist several
smaller FSMs. In addition, ramdom logic must be designed to perform Status Word bit field
testing to determine if the current Packet Description Table contains a new packet, if the packet
should be decoded or encoded, and so forth. Furthermore, the Status Word must be updated
when a packet is processed, and the processed packet length must be provided in the
appropriate ficld of the current Packet Description Table. Finally, the Interface Manager has to
respond to the command or interrupt issued by the external processor when the Command or
the Interrupt Register is written.

Possible data transfer source-destination pairs for the DC Engine are summarized in
Table 4.1. SM denotes shared memory, EI denotes Encoder Input, EO denotes Encoder
' Output, and DI denotes Decoder Input, etc.

For example, when EO_FULL, signalling that the Encoder Output FIFO is full, is
asserted by the Encoder, the FSM will inform the DMA Controller to transfer the data from the
EO FIFO to-the shared memory. The Encoder is in wait state until at least some data of the
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FIFO is emptied. The Interface Manager can handle data transfer requests from each source-
destination pair on a round-robin, first-come-first-serve, or priority basis.

SM -> EI FIFO SM -> DI FIFO EOFIFO -> SM DO FIFO -> SM
SM -> Data Reg. Data Reg. -> SM SM -> Command SM -> Interrupt

SM -> Semaphore
Table 4.1 Data transfer source-destination pairs
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CHAPTER 5
SIMULATION

5.1 VERILOG BEHAVIORAL MODELLING

The Encoder block architectural design of the DC Engine was simulated with VERILOG, a
digital design language and interactive simulation system that encompasses the capabilities for
behavioral, register-transfer, gate, and switch levels modeling. A C-like programming
environment of VERILOG enables functional description of individual blocks as procedures
and interconnections as arguments, thus the control logic and interface among blocks can be
verified without the presence of actual transistor circuits.

The VLSM is modelled only as a 4x4 array, or 16-byte history buffer, in order to
simplify the address decoding and priority encoding logic descriptions. The verification
involves the internal logic of all VLSM Words as well as their interconnections, and is
independent of the array sizes. A two-phase (phil & phi2), non-overlapping clock at 10 MHz
is used. In phil, many signals are precharged high, such as H_ MATCH, M, etc. In phi2,
everything is evaluated. ‘

Each VLSM Word is characterized by its inputs and outputs together with its internal
states. These I/O signals and internal states are in turn manipulated as arrays whose sizes are
the same as the history buffer size. For example, in the simulation, the HIT signals are
declared as an array, HIT[15:0]; each element of the array is a bit.

Figure 5.1 shows the partial logic of a VLSM Word, whose index is n. In VERILOG,
the 8-bit CAM Match Cell for Word #n is then modelled as CAM_MATCH_CELL[n], where
CAM_MATCH_CELL is defined as an 8-bit quanity. DATA is represented as DATA[7:0] to
indicate that it's a byte quantity. Figure 5.2 demonstrates how the logic in Figure 5.1 is
described in VERILOG. The block is executed only when phi2 is positive, as indicated by the
@ posedge phi2 statement. #AND _GATE_DELAY means that the second IF statement is not
executed until AND_GATE_DELAY clock cycles later. This is how delays can be modelled in

VERILOG.
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Figure 5.1 A Subsection of a VLSM Word #n

(@ posedge phi2)
IF (CAM_MATCH_CELL[n] == DATA[7:0])
M|n] = TRUE;
#AND_GATE_DELAY
IF (M[n] && HITn-1[n])
X[n] = TRUE

Figure 5.2 An Example of VERILOG Description

The four possible VLSM cycles, INIT, COMPARE, OUTPUT, and UPDATE, are
described as different procedures, or states. In each state, the relevant signals are evaluated or
modified. For example, one of the evaluations that occurs in a COMPARE cycle is shown in
Figure 5.2. The Encoder FSM is implemented in a WHILE loop consisting of several IF-
ELSE statements. Based on some key status signals such as CAM_HIT, different VLSM
states are entered. A Bit Packer is also constructed to convert the codewords into byte-oriented
outputs. Some rough delay estimates are included between each discrete events, such as the
generation of H_MATCH signals, to make it more realistic. The complete listing of the
VERILOG description is shown in APPENDIX C.

The simulation result proved to be positive, as the codewords were correctly generated
given a filled history buffer and an arbitrary input string. The number of cycles required to
produce the whole input sm’xig is as expected. The major issue raised in constructing the
Encoder behavioral model is how to best detect the end of packet. Since the Interface Manager
keeps the Packet Length information in its internal register, it naturally is a candidate to
~ generate the EN_STOP signal to stop the Encoder when every character in a packet has been

encoded. However, the problem is that the Interface Manager can only count the number of
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bytes that have been transferred into the DC Engine, not necessarily the number of bytes that
has been processed by the Encoder.

One solution is to keep a separate counter in the Encoder. The counter is incremented
every time a character is read from the Encoder Input FIFO; the counter value will be compared
with the Packet Length register in hardware. When they match, the EN_STOP signal will be
asserted to terminate the encoding process and force a codeword to be produced. Noticé that a
packet can be terminated under two different encoding scenarios: the last character of the packet
has a match or does not have a match. In either case, a codeword has to be output.

Another solution is when the FIFO is empty, the Interface Manager will be notified by
the EI_EMPTY signal. If there is no more data to be transferred into the DC Engine, i.e., end
of packet, then EN_STOP can be asserted by the Interface Manager. In the period between the
FIFO runs out of data and the time EN_STOP is asserted, the Encoder has tc be put in a wait
state.

The second solution is better because the Encoder could not encode the next packet right
away without the FIFO being written with new data, which is coordinated by the Interface
Manager. Therefore, the first solution does not really improve the throughput, since it has to
be idle after the last codeword is output; yet, an extra counter and a comparator are needed.

5.2 FUTURE EXTENSION

The VERILOG program created for this thesis can be further extended to perform a more
complete simulation. For example, the history buffer can be expanded to 1024 characters; the
input strings can be read from a file that contains real data; compression ratio can be computed;
and finally, the number of cycles required to encode an input file can be logged. Ideally, the
program can also be written to encode with an initially empty history buffer, which is gradually
built up as more input strings are encoded. The extended simulation program will be a useful
tool to study problems such as the effect of history buffer size on compression ratio, the
effective DC Engine throughput under different data source characteristics, etc.
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CHAPTER 6
FUTURE WORK

6.1 DYNAMIC RAM VLSM IMPLEMENTATION ‘
Throughout this thesis, high throughput has been a consistent priority when making a design
tradeoff, particularly in the design of the VLSM. Therefore, the fast but low density static
RAM (SRAM) structure is most suited to form the basis of a CAM bit cell. However, some
applications might not need such high throughput provided by the VLSM, which accounts for
nearly 40% of the chip area. For a better cost/performance ratio, reducing the silicon area
becémes the major concern. In this situation, the slow but high density dynamic RAM
(DRAM) structure is a good alternative to implement the CAM cell. Undoubtedly, DRAM
requires more control, since it is a charge array. Periodically, the memory cells must be
recharged, or refreshed, to retain their integrity. Moreover, every memory read is destructive,
so it is necessary to "write back" the data that has been read. Nonetheless, its high density, as
briefly mentioned in Section 3.1.5.1, makes DRAM implementation worth investigating.

6.2 CONTEXT SWITCHING

In a communications network, where there are multiple switching nodes, the history buffer
used by the Encoder and the Decoder must be changed according to the context of the data
being prdccssed; otherwise, data can not be correctly decoded. This argument is best
supported by an example. As shown in Figure 6.1, there is a wide area network that
" interconnects New York City (NY), Los Angeles (LA), Chicago, and Boston. The circles
di;noie the switching nodes in each city. Suppose the data is compressed by the source node
before being"transmitted over the communication channel (represented by the straight lines),
and is decompressed by the destination node. The following scenario will illustrate why

e context sw1tchm gis necessary
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Figure 6.1 A Context Switching Example

Assuming no context switching takes place, i.e., the Encoder and Decoder in each node
do not change their history buffers, regardless of the source of the data. In the beginning,
when the network is first set up, everyone has empty history buffers. Let LA be the first node
send a file, in the form of ZL77 codewords, to NY. NY builds up the history buffer as the
codewords are decoded. After successful decompression, the his:ory buffer in the NY Decoder
now contains the data, whose "context" is LA. Next, Boston sends a file to NY. However,
the file will never be correctly decoded, because NY uses the codewords from Boston to pull
out the data from the LA file! It would be fine if NY recognizes that the file is from Boston,
and before decoding, switches to the Decoder history buffer which has the context of Boston.
In this particular example, the history buffer associated with Boston context is still empty, so
NY should build it up from scratch, just like the LA file. Itis clear that both the Encoder and
Decoder need context switching to maintain data integrity.

Even in single link (point-to-point) topologies, multiple virtual circuits (VCs) must be
treated separately to optimally compress their diverse source characteristics.

The architecture of the DC Engine has to be modified to accommodate the new
requirement. Figure 6.2 shows the new general system configuration, in which an interface to
a local memory, which stores the history buffers from different VCs, must be incorporated into
the DC Engine. It is important to study how context switching will affect the overall Engine
throughput, as each context switch will demand saving the changes in the current history buffer -
~ and then loading an entire new history buffer into the VLSM. A varieties of implementation

are possible with different cost/performance tradeoffs. For example, the choice between
SRAM or DRAM as local memory depends on the cost, memory size and speed requirements
of the system. SRAM is faster but more expensive, while DRAM slower but cheaper and
denser. If context switching overhead adversely affects the throughput, maybe multiple
VLSMs should be employed, each dedicated to a particular VC. Or maybe the history buffer
size should be reduced to minimize the context switching overhead but at the expense of .
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degraded compression ratio. In short, context switching is an essential and mtercstmg topic
and should be further investigated.

Shared
Memory
68020 | Data Compression
CPU 4— > Engine <¢—p>|Local MemoryI
System Data Bus

Figure 6.2 General System Configuration With Context Switching

6.3 Testing

Due to the architectural nature of this thesis, a testing circuit has not been included in the area
estimates for the VLSM and other components. However, chip testing is vital in practice. As
the chip complexity is increasing more rapidly than the number of 1/O pins available to access
the internal nodes, incorporating testing circuits on chip to enhance téstability is not an option

anymore. Today, VLSI circuit desigers are willing to sacrifice precious silicon area or |
performance for testing purpose in exchange for easier chip debugging after it is fabricated.
Therefore, the actual transistor level.design of the DC Engine must cons1der design for

testability.
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CHAPTER 7
CONCLUSION

A VLSI architecture suitable for ZL'77 data compression algorithm encoding implementation,
known as the VLSM, has been developed in this thesis. This structure utilizes the parallel
searching capabilities of content addressable memory to tremendously facilitate the string
matching process. It thus provides the potential for data compression in high bandwidth data

communications networks.

Table 7.1 summarizes the area and throughput estimates of the special VLSI structures.
The area is based on the 1 pum, two-layer metal CMOS technology and is expressed as a
percentage of a 300 mil x 300 mil silicon area. The throughput is defined as the input rate
which each structure can sustain. The estimates assume a 10 MHz system clock and are in
units of Mbps. In the Encoder and Decoder, the Bit Packer and Unpacker are assumed to be

clocked at 40 MHz.

Structure Area (mil2)  Percentage Throughput

VLSM 26,950 30 28
Bit Packer 600 .67 10
Bit Unpacker 600 .67 10
Encoder - 32,500 36 28
Decoder 12,000 13 28

Table 7.1 Area and Throughput Summary

As car; be seen, the Encoder (which’includes the VLSM and Bit Packer) and the Decoder
~(which includes the Bit Unpacker) takes up about half of the given silicon area. There is plenty
of room to implement the DMA Controller and Interface Manager.
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APPENDIX A: Hashing Instruction Cycles Estimate

I. Instruction Format

A. ALU operations
opcode dest <- opl op2
~opcode dest <- opl literal
B. Memory Access

Id dest <- <opl +op2 >
st <reg> -> opl +op2

II. Register Names

88000 instruction set is chosen to implement the hash table data structures because it has
excellent instruction set for bit manipulations. Furthermore, there are 32 32-bit general registers
in 88000. To enhance readability of the code, registers used in the program are givén names as
listed below:

A. The following registers contain the starting addresses for the hashing table structures:

HPT Hash Pointer Table
HLT Hash Link Table
HB  History Buffer

1B Input Buffer

B. The following registers contain the offset into the tables:

HBEP History Buffer End Pointer
IBP  Input Buffer Pointer

C. The following registers hold variables:

IMC Longest Match Count
TMC Temporary Match Count
IMA Longest Match Address
TMA Temporary Match Address
HV  Hash Value

D. The following registers are temporary variables:

TMP
RA
RB

E. This register ia a hardwired zero:
ZERO ‘
There are 15 registers used in this program.
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ImI. 88000 Code
/* THIS LOOP SEARCHES FOR THE LONGEST MATCH */

/* calculate hash value for a given input substring */

begin add TMP IB iBP ; TMP has the effective address of IBP
jst hash

f* initialize TMP, LMA & LMC */

1d T™P HPT HV ; TMP contains the First entry (from the hash
pointer table), which is both a offset pointer
(ranging from 0 to 1023) to into hisiory buffer

and hash link table
add ILMA TMP ZERO ; initialize the longest match start address
sub IMC IMC IMC ; initialize the longest match count to 0
/* search loop for the next substring in the history buffer with the same hash value as
the input */
loop0 add TIBP IBP ZERO ; initialize TIBP with IBP
cmp RA T™P ZERO : check for the end of linked list
bbl 2 RA  update ; if TMP = 0, then the end of the linked list
sub TMC TMC TMC ; clear temp. match count
add T™A TMP ZERO 1n1t1ahze the temp. longest match start address
/* search loop within one substring with the same hash value as the input substring */
loopl 1db RA HB TMP ; RA contains the char from hist. buffer
ldb RB TIBP ZERO ; RB contains the char from input buffer
cmp RA RA RB
bbl 3 RA  check ; branch if RA !=RB (i.e., a miss occurs)
add TIBP TIBP 1 ; increment TIBP (temp input buffer pointer)
add TMP TMP 1 ; increment TMP (offset to hist. buffer)
add TMC TMC 1 ; increment TMC (temp. match count)
jmp  loopl
/* check whether LMC & LMA should be updated */
check cmp RA TMC IMC ; compare TMC & LMC, result in RA
bbl 7 RA  pass ; pass update if TMC < LMC
/* update LMC & LMA */
add IMC TMC ZERO ; update LMC
add IMA TMA ZERO ; update LMA
pass add TMP HLT TMP ; obtain the offset pointer fo- the next substring from
the hash link table
jop  loop0 ; go to search the next substring (if any)
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/* THE FOLLOWING BIG LOOP UPDATES THE HASH TABLES */

update add RB LMC ZERO ; assign RB with the Jongest match count
cmp RA RB ZERO ; check if RB is zero
bbl 2 RA  done ; if yes, then done
/* delete the oldest char from the hash tables */
add TMP HB HBEP ; get effective address for end buffer pointer
jst hash
1d T™™P HPT HV ; TMP contains the offset into history buffer,
from First
1d TP HLP TMP ; TMP contains the 2nd link entry
st TP HPT HV ; update the First entry
/* insert the new char into history buffer */
id T™P 1B IBP ; TMP has the input char
st T™MIP HB HBEP ; insert the input char into hist. buffer
/* insert the link info for the new char hash tables */
sub HBEP HBEP 1 ; subtract HBEP by 1
add TMP HB TMP ; obtain effective address for the char before
oldest char
isr hash
add HVY HV HV ; calculate effective address
add RA HV 1
1d TMP HPT RA ; TMP has the Last entry
add HBEP HBEP 1
st HBEP HLT TMP ; extend the linked list
st HBEP RA  ZERO ; update the Last entry of hash pointer table
/¥ update counter and pointers */
add HBEP HBEP 1 ; increment hist. buffer end pointer
add IBP IBP 1 ; increment input buffer pointer
sub RB RB 1 ; decrement the count for # of char to be updated
jmp  update
/* THE FOLLOWING SUBROUTINE CALCULATES HASH VALUE */
hash 1db RA TMP ZERO ; load the first charinto RA
add TMP TMP 1 ; increment the pointer
ldb RB TMP ZERO ; load the second char into RB
shh RA 2 RA ; multiply the 1st char by 4
add HV RA RB
and HV HV §$3f : extract the lowest 6 bits
add HV HV HV ; get the effective address (mul. HV by 2)
te ; return from subroutine
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IV. Throughput

In calculating the number of instruction cycles required to find the longest match and update the
history buffer, the following assumption is made:

» Average Longest Match Length=3.5 (X)

» The search through each substring with the same hash value as the source is 2 (Y)
Average linked list length is 16 (i.e., 16 substrings are searched per hash value) (Z)
* Load and Store intructions take two instruction cycles

» The 88000 can operate at 17 MIPs

[ ]

Then, number of instructions per character =
{8 + Z*[ 5+ X*10) + 6 1 + Y¥49 } / X

With the above parameter values, it comes out to be 225 cycles / character
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APPENDIX B: C Code For Binary Search Tree
main()
tree_init();
while( NOT_END_CF_INPUT_STRING )

{
/* initialize the global variables */

match_length[LEFT] = 0;

match_length[RIGHT] = (;

current_node = root;

read_char(); /*read in a new character, update window[N], look[F], lookahead */

length = search(); /* return the longest matching string length & update the window */
/* index where the match starts */

delete(); /* delete the oldest character in the window and update the tree */
}
search() /* return the length of the longest string match */

inti, j;

current_length =0;
for (i = current_node, j=0; i < (current_node+F), j <F; i++, j++)

if (look[lookahead+j] == window[i] )
{ current_length++;
(}ﬂse if (look[lookahead+j] < window(i] )
if ( tree[current_node].left_son == NIL )

tree[current_node].left_son = lookahead;
if ( current_length > maich_length[RIGHT] )
{

match_index = current_node;
return(current_length);

else

match_index = index[RIGHT];
return(match_length{RIGHT]);

else

current_node = tree[current_node].left_son;
match_length[LEFT] = current_length;
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match_index[LEFT] = current_node;

else

if ( tree[current_node].right_son == NIL )

{
tree[current_node].right_son = lookahead;
if ( current_length > match_length[LEFT] )
{

match_index = current_node;
return(current_length);

else

match_index = index[LEFT];
return(match_length[LEFT]);

current_node = tree[current_node].right_son;
match_length{RIGHT] = current_length;
match_index[RIGHT] = current_node;

search();

delete()
{

int node_index, son_node;

if (oldest_char == root)
{ .
if ( tree[oldest_char].left_son == NIL )
/* the node to be deleted has no left child --> the right child becomes the new
root */
{
root = tree[oldest_char].right_son;
tree[root].parent = NIL;
/* delete the oldest character */
tree[oldest_char].parent = oldest_char;
oldest_char++;

else if (tree[oldest_char].right_son == NIL )
/* the node to be deleted has no right child --> the left child becomes the new
root */
{
root = tree[oldest_charl.left_son;
tree[root].parent = NIL;
/* delete the oldest character */
tree[oldest_char].parent = oldest_char;
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oldest_char++;

}

else

/* the node to be deleted has both left and right children --> the smallest element

in the right subtree becomes the new root */

root = find_min(tree{oldest_char].right_son);
tree[root].parent = NIL;
tree[root].left_son = tree[oldest_char].left_son;
tree[root].right_son = tree[oldest_char].rightt_son;
/* delete the oldest character */
tree[oldest_char].parent = oldest_char;
oldest_char++;
]
}

else
/¥ the node to be deleted is not the root */

{
/* the node to be deleted is a terminal node */

if ((tree[oldest_char].left_son == NIL) && (tree[oldest_char].right_son ==

node_index = tree[oldest_char].parent;
if (tree[node_index].left_son == oldest_char)
tree[node_index].left_son == NIL;
else
tree[node_index].right_son == NIL;
/* delete the node */
tree[oldest_char].parent = oldest_char;
oldest_char++;

}
else if ( tree[cldest_char].left_son == NIL )

NIL))

/* the node to be deleted has no left child --> the right child replaces the node */

{
L
scn_node = tree[oldest_char].right_son;
node_index = tree[oldest_char].parent;
if (tree[node_index].lefi_son = oldest_char)
tree[node_index].left_son = son_node ;
else
tree[node_index].right_son == son_node;
tree[son_node].parent = node_index;
[* delete the oldest character */
tree[oldest_char].parent = oldest_char;
oldest_char++;

}
else if (tree[oldest_char].right_son == NIL )

/* the node to be deleted has no right child --> the left child replaces the node */

{

son_node = tree[oldest_char].left_son;
node_index = tree[oldest_char].parent;
if (tree[node_index].right_son == oldest_char)
tree[node_index].right_son = son_node ;
else
tree[node_index].left_son == son_node;
tree[son_node].parent = node_index;
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}

/* delete the oldest character */
treef{oldest_char].parent = oldest_char;
oldest_char++; v

else
/* the node to be deleted has both left and right children --> the smaliest element

{

in the right subtree replaces this node */

/* find the node to replace the node to be deleted */
son_node = {ind_min(tree[oldest_char].right_son);

node_index = tree[oldest_char].parent;
if (tree[node_index].right_son == oldest_char)
tree[node_index].right_son = son_node ;
else
tree[node_index].left_son == son_node;
tree[son_node].parent = node_index;
tree[son_node].left_son = tree[oldest_char].left_son;
tree[son_node].right_son = tree[oldest_char].right_son;
/* delete the oldest character */
tree[oldest_char].parent = oldest_char;
oldest_char++;

/* this functi.ii returns the index of the smallest element in a given binary
search trec */

find_min(node_index)

int node_index;

if (tree[node_index].left_son == NIL)

return(node_index);

else

find_min(tree[node_index].left_son);
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APPENDIX C: Alternative Encoder Implementation

I. Imtroduction

In Section 4.3.2.2, a different VLSM control sequence was discussed. By adding an extra flip
flop in each VLSM Word, the Character Buffer and Buffer Counter are no longer necessary.
The consequence is a smaller Encoder FSM due to fewer number of inputs and outputs
required. The next section shows the resulting Encoder architecture.

II. Encoder Architecture

4 # RD_RDY

RD
Encode [%— >
Input £8 8 &8
FIFO
)3 OB T stote ENABLE |
Register S1-S0
2
ADDRESS | VLSM
Encode 8 -~
Output
FIFO o2t Address
£_g{ Counter Y CAM_HIT
WR_RDY < “3 DEX Length
WR| 18 4&4 > Counter
4 MATCH LENGTH
Bit Packer [SF:0
BP —> =
f . p| ENCODER | .
f Inputs FSM Outputs

BP_RESET EN STOP

—————§» BP
EN RESET ————~pp —
ENCODE ———» > gED
EN STOpP ——P»
sp Roy ———p ENCODER ——: S
RD_RDY ———P
cavnr——sy  FSM O
— B
7 REG [€—7fF—

Note: AD+ is always asserted in the UPDATE cycle; CLR is the same as EN_RESET
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ENABLE S1 SO INSTRUCTION

0 X X NOP

1 0 O INIT

1 0 1 COMPARE
1 1 0 OUTPUT

1 1 1 UPDATE

III. State Diagram

1V, Activities in Each Encoder FSM State

State O0: Encoder idle/reset state; EN_RDY is asserted

State 1: Read a char from Encode Input FIFO; Latch the char into Tri-state Register
State 2: Initialize the VLSM to set up for comparison

State 3: Qutput-enable Tri-state Register; COMPARE cycle
State 4: Output-enable Tri-state Regisier; UPDATE cycle

State 5: Read a char from Encode Input FIFO; COMPARE cycle
State 6: Output-enable Tri-state Register; UPDATE cycle

State 7. OUTPUT cycle; bit pack the codeword

State 8: Output-enable Tri-state Register; UPDATE cycle

State 9: Output-enable Tri-state Register; bit pack the codeword
State 10: Waiting for Bit Packer to be ready

State 11: Waiting for Bit Packer to be ready

State 12: Waiting for Encode Input Buffer to be ready

State 13: OUTPUT cycle; bit pack the codeword

State 14: Waiting for Encode Input Buffer to be ready
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When a no match occurs, states 8, 9, and 1 are traversed. The next string search starts
at 1 because a new character needs to be fetched from the FIFO.

When it's the end of the packet, as indicated by the assertion of EN_STOP, the
codeword will be generated under all circumstances. The Bit Packer will also be forced to
output the last byte which might contain useless bits. States 12 and 14 are entered when the
FIFO is not ready. EN_STOP is checked in these two states.
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APPENDIX D: VERILOG Simulation Code
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