
A VLSI Architecture For a Data Compression
Engine In a Communications Network

by

Brian Ta-Cheng Hou

Submitted to the Department of
Electrical Engineering and Computer Science

in Partial Fulfillment of the
Requirements for the Degrees of

BACHELOR OF SCIENCE

and

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1989

© Brian T. Hou, 1989
All rights reserved

The author hereby grants to M.I.T. permission to reproduce and to
distribute copies of this document in whole or in part.

Signature of Author: t / V V - I tL. .'- I - -

Department of lectrical Engineering and Computer Science
January 6, 1989

Certified by:
Professor Jon Allen

Thesis Supervisor

Approved by:

Approved by:

Accepted by:

OF TEO

: I -, ,
Mickey Gutman

Company Supervisor, Codex Corporation

'"~"f Jg4i - iyPasco-Anderson

k -- - - I - - - -- - - v y-C

PrOfessor Arthur C. Smith, Chairman
TS IrSiTUE Departmental Committee on Graduate Students
nOLOGY

MAY 10 1989 ARCHIVES

iMARIf;

A VLSI Architecture For a Data Compression
Engine In a Communications Network

by

Brian Ta-Cheng Hou

Submitted to the Department of Electrical Engineering and
Computer Science on January 6, 1989 in Partial Fulfillment of

the Requirements for the Degrees of Master of Science
and Bachelor of Science in

Electrical Engineering and Computer Science

ABSTRACT

In the past, data compression (DC) algorithms used in modems or statistical multiplexers have
been implemented in general purpose microprocessors which are already burdened with other
tasks such as operating systems or data i/O. With the advent of high bandwidth
communication media such as fiber optics, which demands high processing throughput, the
traditional von Neumann model approach clearly is insufficient. In order to apply data
compression to high speed communications networks, a VLSI data compression engine
incorporating a specialized architecture, state-of-the-art VLSI technology, and high
performance DC algorithms is needed to offload the microprocessor.

This thesis identifies an architecture which breaks the DC processing bottleneck. In order to
achieve this goal, a specialized architecture which supports a single compression algorithm was
favored over a general architecture which could be designed to support several algorithms.
Specifically, an adaptive, string-matching compression algorithm is chosen as the basis for
architectural design. A highly concurrent structure called content addressable memory is
exploited to drastically reduce the encoding time and increase the throughput.

Thesis Supervisor: Jon Allen

Title: Professor of Electrical Engineering and Computer Science

2

Acknowledgement

I ruly appreciate Mickey and Jay for always being supportive and patient arid for the
freedom they gave me to pursue whatever interests me. In particular, I wish to thank them for
letting me borrow their Macs whenever I needed them; otherwise the thesis writeup wouid not
have gone so smoothly.

I would also like to thank Prof. Allen for his encouragement and understanding, and for
his sharing his interesting trip to Sweden.

Many thanks go to Craig Holt and Lloyd Hasley, both invaluable mentors. Their
suggestions have contributed tremendously to the final design of the Data Compression Engine.

I wish to thank Craig Cohen for always being a great company; for the inspiring
discussion on the thesis; for the sharing of knowledge in general; for his putting up with me in
the last seven months and the past three summers; and for the professional attitude he has
transcended cn me.

Finally, I would like to dedicate this thesis to my family for their constant love and
support, even though they still don't know what I was doing in the last seven months.

3

Table of Contents

ABSTRACT2
ACKNOWLEDGEMEN' 3.................................... 3

TABLE OF CONTENT 4
LIST OF FIGUR ES .. 7
LIST OF TABLES ... 10

CHAPTER 1: INTRODUCTION 11
1.1 Problems 1............................1

1.2 Objectives ... 12

1.3 Approaches ... 13

1.4 Organization 13

CHAPTER 2: ZL77 DATA COMPRESSION ALGORITHM 14

2.1 Fundamental Concepts On Data Compression .. 14

2.1.1 Definitions 14

2.1.2 Applications of Data Compression 15

2.1.3 Focus On The Thesis ... 16

2.2 Ziv-Lempel '77 Algorithm 17

2.2.1 The Basic Algorithm ... 17

2.2.2 The Modified Algorithm .. 19

2.2.3 An Example .. 20

2.2.4 ZL77 Implementation Parameters 21

2.3 Data Structures ... 22

2.3.1 Binary Search Tree .. 22

2.3.2 Hashing ... 24

2.3.3 Systolic Arrays .. 26

2.3.4 ZL77 Data Structures Implementation Summary 29

2.4 Critical Operations ... 30

CHAPTER 3: SPECIAL VLSI STRUCTURES 32

3. 1 Variable Length String Matcher .. 32

3.1.1 Algorithm For The Longest String Search 32

3.1.2 Content Addressable Memory ... 34

3.1.3 Modified Content Addressable Memory ... 35

3.1.4 VLSM Functional Description ... 37
-o

4

3.1.5 Modified CAM Word Array .. 42

3.1.5.1 CAM Bit Cell 43

3.1.5.2 CAM Word Cell 44

3.1.6 Priority Address Encoder 46

3.1.6.1 Address Priority Encoding .. 46

3.1.6.2 Implementation 49
3.1.7 Tinming Analysis ... 52

3.1.8 Design Evaluation 55

3.1.8.1 Area Estimate ... 5

3.1.8.2 Throughput Estimate ... 56

3.2 Bit Packer 59
3.2. 1 Functional Description .. 59

3.2.2 Implementation 60

3.2.3 Design Evaluation 61

3.2.3.1 Area Estimate ... 61

3.2.3.2 Throughput Estimate 61

3.3 Bit Unpacker 3

3.3.1 Functional Description .. 3

3.3.2 Implementation ... 63

3.3.3 Design Evaluation 65

3.3.3.1 Area Estimate ... 65

3.3.3.2 Throughput Estimate ... 65

CHAPTER 4: CHIP ARCHITECTURE .. 67
4.1 System Environment 67

4.2 Interface Mechanism . .. 68

4.2.1 Shared Memory Data Structures .. 69

4.2.2 Internal Registers .. 72

4.2.3 Interface Scenario .. 73

4.2.4 Command Set .. 74

4.3 Finite State Machine Approach 75

4.3.1 The DC Engine Architecture .. 75

4.3.2 The Encoder 76........................
4.3.2.1 The Encoder Implementation .77

4.3.2.2 The Alternative Encoder Architectlre 80

4.3.2.3 Area Estimate ... 82

5

4.3.2.4 Throughput Estimate 82
4.3.3 The Decoder .. 83

4.3.3.1 The Decoder Implementation 83

4.3.3.2 The Alternative Decoder Architecture 85

4.3.3.3 Area Estimate .. 85
4.3.3.4 Throughput Estimate 85

4.3.4 The DMA Controller 8.......7

4.3.5 The Interface Manager .. 8

CHAPTER 5: SIMULATION .. 9

5.1 Verilog Behavioral Modelling90

5.2 Future Extension ... 92

CHAPTER 6: FUTURE WORK 93............. 93

6.1 Dynamic RAM VLSM Implementation ... 93

6.2 Context Switching 9..93 3
6.3 Testing .. 95

CHAPTER 7: CONCLUSIONS .. 96

APPENDIX A: HASHING INSTRUCTION CYCLE ESTIMATE 97
APPENDIX B: C CODE FOR BINARY SEARCH TREE 101
APPENDIX C: ALTERNATIVE ENCODER IMPLEMENTATION 105
APPENDIX D: VERILOG SIMULATION CODE 108

REFERENCE .. 26

6

List of Figures

1.1 Data Compression System Model .. 1

2.1 (a) Basic ZL77 Encoding Algorithm 17

2.1 (b) Encoder History Buffer After Encoding "SUPERB"............................ 18

2.2 (a) Basic ZL77 Decoding Algorithm .. 19

2.2 (b) Decoer History Buffer After Decoding . .. 19

2.3 (a) Modified ZL77 Encoding Algorithm .. 20

2.3 (b) Encoder History Buffer After Encoding "SUPER" 20

2.4 An Example of a Binary Search Tree 22

2.5 History Buffer and Input String 22

2.6 Binary Search Tree for the Given Hc-tory Buffer .. 23

., N Data Structures for Binary Search Tree 24

2.8 Hashing Data Structure 25

2.9 The Systolic Pipe 26

2.10 (a) Right Before a Pulse 227

2.10 (b) Right After a Pulse 2 27

2.10 (c) After the First Pulse 1 ... 27

2.10 (d) Aftern Pulse l's ... 28
2.11 Memory Requirement Comparison 29

3.1 An Example for the VLSM Algorithm ... 33

3.2 A Conceptual Model of a CAM Cell34

3.3 A CAM Structure 35

3.4 The Modified CAM Cell Model 36...

3.5 The Modified CAM Structure ... 37

3.6 VLSM Functional Block Diagram 38................

3.7 Encoding and Updating Process 39

3.8 VLSM Internal Block Diagram40

3.9 CAM Word Array ... 42
3.10 CAM Bit Cell 43

3.11 CAM M atch Cell 44

3.12 CAM Word Cell .. 44

3.13 Delay Structure 45

3.14 (a) Normal Binary Address Encoding Model .. 46

7

3.14 (b) Priority Address Encoding Model ... 46

3.15 Ripple Chain Prioritizer .. 47

3.16 Two-Dimensional Array ... 8

3.17 Priority Encoding Datapath in the VLSM 49

3.18 Priority Address Encoder .. 50

3.19 COMPARE Cycle Timing Diagram 53

3.20 Pipelining of Row and Address Encoding .. 54

3.21 VLSM Floor Plan and Area Estimate .. 55

3.22 (a) VLSM Throughput as a Function of Clock Period 57

3.22 (b) VLSM Throughput as a Function of Compression Ratio 58

3.23 Bit Packer Functional Block .. 59

3.24 Bit Packer Block Diagram 60

3.25 State Diagram for the Bit Packer Controller 61

3.26 Bit Unpacker Functional Block ... 63

3.27 Bit Unpacker Block Diagram 64

3.28 State Diagram for the Bit Unpacker Controller 65

4.1 Data Compression Engine System Interconnection .. 68

4.2 Proposed Shared Memory Datz Structures .. 69

4.3 Packet Queue Organization 69

4.4 Packet Description Table Data Structure for Option A ? 0

4.5 Packet Description Table Data Structure for Option B 7 1

4.6 Status Bit Assignment 71

4.7 Proposed Internal Register Set .. 72

4.8 DC Engine Functional Blocks ... 5

4.9 The Encoder Functional Block Diagram 7 6

4.10 The Encoder Architecture 7......... 77

4.11 Simplified Encoder FSM ... 80
4.12 (a) History Buffer Before the COMPARE and UPDATE Cycles 80

4.12 (b) History Buffer After the COMPARE and UPDATE Cycles 81

4.13 The Decoder Functional Block Diagram 83............ 83

4.14 The Decoder Architecture ... 8 4

4.15 (a) The Original CAM Word Cell86

4.15 (b) The Modified CAM Word Cell .. 86

4.16 The DMA Controller Architecture 87

8

5.1 A Subsection of a VLSM Word #n 91

5.2 An Example of VERTLOG Desciption 1

6.1 A Context Switching Example .. 94

6.2 General System Configuration With Context Switching 95

9

List of Tables

3.1 VLSM Functional Modes .. 38

3.2 VLSM Functional Block I/O States ... 40

4.1 Data Transfer Source-Destination Pairs ..

7.1 Area and Throughput Summary 6..........................96

10

CHAPTER 1

INTRODUCTION

1.1 PROBLEMS
Lossless data compression is a coding technique which minimizes data redundancy in order to

reduce the offerred load to the communications network. Losslessness means that the exact

original data can be recovered at some later time. By encoding data according to specific rules

which aim at reducing the average number of bits per message, more information can be

transmitted over channel in the same amount of Eme, thus the effective bandwidth of the

communication channels is increased, and the response time, network loading, and probability

of transmission errors may be reduced. Furthermore, the compressed codes can provide

limited security against illicit monitoring. Data compression has been incorporated into

statistical multiplexers and modems to attain improved throughput. Figure 1.1 shows a

conceptual data compression system model.

Enor-free
Communication
Channel

Original _ Compressed Compressed _ Original

Compression D Media Dta Decompression

Figure 1.1 Data Compression System Model

However, Several problems have prevented the widespread use of data compression in

communications networks, especially those of high bandwidth. First, the data compression

encoding and decoding algorithms implemented with software load down the microprocessor

which has to perform other tasks such as operating system, data routing, and flow control.

This constrains data compression to be applied only to low bandwidth communications

networks, such as dial modems. The loading on the microprocessor also prevents the use of

more sophisticated data compression algorithms which would produce better compression

11

better compression results. The second problem is that most data compression techniques

perform favorably with only certain types of data redundancy. For example, some algorithms

work better for numeric data while others are more suited for text files. Since most data traffic

is heterogeneous, either the algorithms need to adapt to different data types or several semantic-

dependent algorithms are used in order to achieve optimal compression result [2].

1.2 OBJECTIVES
The aforementioned problems suggest that insufficient computing resources and memories are

the major constraints for widespread data compression applications over high bandwidth

communication channels. One of tile solutions is to develop a VLSI (Very Large Scale

Integration) data compression engine to handle data compression processing and free the

microprocessor to concentrate on other duties. It is hoped that the use of such a dedicated

engine will allow more complicated algorithms to be devised and facilitate the implementation

of data compression algorithms in new network applications.

With the steady advance in VLSI technology, which allows thousands of transistors to

fit on a single chip, special purpose chips that function as peripheral devices to a

microprocessing unit are fast becoming an industry trend as a viable solution to enhance the

system throughput. The high logic density of a VLSI chip also permits multiple processing

elements to reside on the same chip, thus providing the opportunities to implement concurrent

operations. As a result, mapping algorithms into special VLSI architectures to improve

performance has been an active research area in recent years. The pattern matching chip

developed at Carnegie Melon University is a famous example [38]. First, a concurrent

algorithm for pattern matching was developed; then the systolic array which consisted of many

small processing elements capable of parallel computation was implemented to carry out the

algorithm. This approach is a radical departure from the traditional von Neumann model of

computation in which a single processor executes a single instruction at a time.

Similarly, the goal of this thesis is to explore the possibilities for mapping the

compression algorithms into specific VLSI structures. We would also like to investigate the

maximum throughput of a specific, high performance data compression engine. This will

determine if data compression can be applied to high-bandwidth communication networks such

as T1 backbone (1.54 Mbps in North America) or local area networks (10 Mbps for Ethemet).

In order to achieve this goal, a specialized architecture, which supports a single data

compression algorithm with reasonable compression ratio, is favored over the general

architecture which can be designed to support several types of algorithms. Based on the

architecture, an area estimate on the major blocks of the chip will be made to reflect the cost.

12

1.3 APPROACHES
The ZL77 algorithm chosen in this work was developed by Ziv and Lempel [7]. It is a string

matching algorithm which encodes variable-length input string to fixed-length codeword.

ZL77 is selected as the basis for the specialized architecture for two reasons. First, it has the

potential for VLSI implementation. Second, it is a proven high performance algorithm. The

following outlines the sequence of investigations and procedures to complete the thesis.

The first step is to study the ZL77 algorithm in detail and completely understand the

operations required. This will reveal the implementation bottlenecks which must be solved.

The second step is to research existing data structures being proposed to implement the

algorithm. These two steps constitute the first half of the thesis and will indicate the critical

sequences of operations, possibilities for concurrent processing, data memory requirements,

and instruction sequences.

The second half of the thesis consists of investigating and developing a VLSI

architecture suitable for ZL77 algorithm implementation. Functional blocks and interconnecting

buses will be proposed. Several hardware components will be designed to process frequent

data compression related operations or to replace traditional software operations which perform

housekeeping tasks. Finally, technological bottlenecks, throughput, silicon area, and interface

mechanism with an external central processing unit (CPU) will be identified.

1.4 ORGANIZATION
Chapter 2 describes the general concepts of data compression. The ZL77 algorithm and

several published data structures which support it are surveyed and their complexities are

summarized. In Chapter 3, special VLSI structures are developed to implement the critical

operations. Their throughputs and silicon areas are estimated. Chapter 4 proposes one data

compression engine chip architecture. A generic system environment in which the data

compression engine operates is described. (An interface mechanism with an external

microprocessor is assumed for concreteness.) A finite state machine controlled ZL77 encoder

and decoder are fully implemented and their throughputs and areas estimated. Chapter 5

concentrates on the VERILOG behavioral simulation of the proposed data compression engine.

Chapter 6 presents the future extensions to the current designs, and finally, Chapter 7

concludes by summarizing the highlights of the research.

13

CHAPTER 2

ZL77 DATA COMPRESSION
ALGORITHM

The first section of this chapter covers the basics of data compression and its practical

applications. Section 2.2 concentrates on the basic ZL77 encoding algorithm and its variations.

Then, the data structures that have been proposed to implement the algorithm are presented and

their merits and shortcoming are analyzed in Section 2.3. Finally, Section 2.4 identifies the

critical operations for Z77 implementations.

2.1 FUNDAMENTAL CONCEPTS ON DATA COMPRESSION
The primary objective of data compression is to minimize the amount of data to be transmitted

while preserving the information which the original data contains. Thus, data compression is

concerned with transforming the source messages in one representation (such as ASCII or

EBCDIC codes) into a new string of codewords that has shorter average length but carries the

same information.

This section provides the general background on data compression and briefly describes

relevant definitions and concepts. Next, the applications of data compression are discussed.

Finally, the focus on the specific type of data compression application and algorithm for the

thesis are presented.

2.1.1 Definitions
In information theory, a message usually consists of one or more binary symbols (0 or 1)

called bits. The bit pattern that represents a message is a codeword. For example, the

codeword for message 'a' in ASCII is binary 01100001. A Message ensemble, on the other

hand, is a sequence of messages [2]. For instance, the string "Hello, world" is a message

ensemble consisting of twelve messages (including the space that follows the comma). In the

14

thesis, character and symbol are synonomous with message while string and message

ensemble are used interchangeably.

The process of transforming source ensemble into a sequence of codewords is called

encoding; the process of reversing the above operation is called decoding. The entities that

carry out the encoding and decoding processes are the encoder and decoder, respectively.

From the information theory point of view [1], there is a probability distribution

associated with a message, since it is one realizationof a random variable. As a result, some

messages are more probable than others in a given message ensemble, such as the message 'I'

in "Hello, world". Therefore, one compression approach is to map the more probable

messages into the shorter codewords and the less likely ones into the longer codewords, thus

reducing the average codeword length. This encoding scheme is categorized as fixed-variable

(F-V) because the message length is fixed while the codeword length varies from character to

character. Huffman coding is representative of the F-V class of compression algorithms [4-6].

String matching, orvariable-fixed, is another class of encoding method which exploits

redundancy due to repeating string and other types of redundancy. Ziv-Lempel coding is an

example of string matching compression method, and there are many variations of this

algorithm [7-10]. In the ZL77 scheme, variable length strings are replaced with fixed length

codewords which point to earlier occurrences of the same strings. Therefore, both the encoder

and the decoder are required to keep and build a history buffer, a collection of all of the

character strings being processed up to the present. In essence, the encoder and decoder are

able to learn or adapt to the source characteristics.

Compression ratio (CR) is a measure of compression; It has two well-known definitions

[2]. CR may be defined as (average source message length)/(average codeword length) or as

(average codeword length)/(average source message length). For example, if the average

source message length is 8 bits and the average codeword length is 4 bits, then CR is 2 for the

first definition and 0.5 for the second definition. This thesis uses the first definition when

referring to compression ratio.

2.1.2 Applications of Data Compression
Data compression has two major areas of applications: data storage and data transmission. The

first area of application involves compressing the data before it is stored in the digital storage

media. As more offices are computerized, the volumes of data to be stored also become very

large. If the file size could be reduced, the effective capacity of the storage medium would be

increased. At the same time, the input/output traffic of a computer system could be decreased.

The second area of application concerns the real-time compression of data before it is

transmitted over the communication links, such as phone lines, satellite channels, or cables that

15

connect local/wide area networks. The proliferation of the communication networks has

resulted in massive data traffic over the communication links. If the data were compressed to

half its size, the effective bandwidth of the communication channels would be doubled.

In the past, there has been a tradeoff between the benifits of data compression and the

computational cost associated with the encoding and decoding processes. However, the prices

of microprocessors and custom VLSI chips have lowered steadily, so data compression is

more popular now as the needs to store and/or transmit large volumes of data grow at a rapid

pace and the savings achieved by data compression in storage or communication costs become

more significant. Application to data transmission is especially attractive because the

communication costs now dominate over the costs of memory and processing power.

2.1.3 Focus On The Thesis
Data storage and data transmission both require encoding and decoding of data. However, the

speed in data storage application is not as critical as that of data transmission. For example, it

is tolerable to wait for a few seconds before a program is loaded from a disk to a system's

random access memory. Furthermore, the connection between the storage media and the

computer system is usually local and free, unlike a telephone line which is charged by the

amount of time the line is active. As a result, the compression algorithms for this type of

application can afford to take the two-pass approach. In the first pass, the source data is

scanned and statistics are gathered to determine the character frequency which is used to map or

construct the codewords. In the second pass, the characters are encoded and stored. The

important concept for this application is that speed is not the primary concern, and the path

between the storage element and the host is free.

Data transmission has different requirements. For example, too much transmission

delay in most communication networks is undesirable. Secondly, sessions are indefinite; they

go on forever. This suggests that data compression and decompression have to be performed

in real time, or at least not much slower than the channel bandwidth; this makes the two-pass

approach unviable. Therefore, compression algorithms geared for this type of application

usually are one-pass only with continuous encoding and decoding at high speed as the data are

transmitted and received.

This thesis only considers the algorithms for data transmission application, which

requires high throughput, low delay, and continuous one-pass compression and

decompression.

16

2.2 ZIV-LEMPEL '77 ALGORITHM
Ziv-Lempel '77 is one of several variable-length input and fixed-length output (V-F) class of

data compression algorithms. It was proposed by Ziv and Lempel in 1977, and is widely

known as ZI.77 for short. Other V-F class algorithms are ZLSS, ZLW, ZL78, and so on [7-

10]. The following sections discuss the basic ZL77 algorithm and the modified algorithm.

2.2.1 The Basic Algorithm
ZL77 algorithm is based on the concept that in the continuous data stream, some string

patterns occur more than once. Therefore, if we keep a history of the data, we can find the

longest match of the incoming character string from the history buffer and then encode the

string with a pointer to an earlier occurrence of the string. The pointer, or codeword, consists

of Index, Length, and Innovation Character. Index shows how far back from the current input

string the match starts; Length shows the length of the match; and finally, Innovation Character

is the first input character not included in the match. Data compression is achieved if the

number of bits required to represent the codeword is less than the number of bits required to

represent the string. Figure 2.1(a) illustrates the basic ZL77 algorithm.

History Buffer
16151413121110 9 8 7 6 5 4 3 2 1 Input String (to be encoded)

TTIHIEI ISUIPIEIRIMIAINI iIS I SUPERB
I ,I I I

Longest Match found at Index 1 2 "SUPERB" is encoded as
Match Length = 5 < 12, 5, 'B' >

Figure 2.1 (a) The Basic ZL77 Encoding Algorithm

Let us take a snapshot of the encoding process. Assume that at time t = 0, the history

buffer contains the character string "THE SUPERMAN IS " which has already been encoded

and just became history. The incoming data "SUPERB...." is to be encoded next. By

observation, the longest match is "SUPER", which can be found by counting 12 characters to

the left from the current input string. The match length is five and the character 'B' is the

Innovation Character since it is the first input character not belonging to the longest match.

Therefore, the string "SUPERB" is encoded as shown in Figure 2.1(a).

In short, the characters which have been encoded before now become part of a history

buffer. The encoder examines the current incoming string and searches the history buffer to

find the longest match and replaces it with a codeword.

17

It is impossible keep all of the messages because only finite memory is available.

Furthermore, when the history buffer gets really large, the codeword length required to identify

the history buffer also becomes too large to have any compression benefit. One feasible

alternative is to store only a fixed, reasonably large number of characters in the history buffer.

As new strings are encoded, they enter the history buffer and the oldest members have to leave

so that the buffer size remains constant. In essence, the history buffer acts as a sliding

window, moving from left to right as new strings are encoded. For example, in Figure 2. 1(b),

the history buffer moves forward to cover the newly encoded "SUPERB" while the oldest

characters "THE SU" drop out and are no longer in the history buffer. If the character string

follows "SUPERB" starts with "THE..." then a match will not be found. This clearly

illustrates why the history buffer should be reasonably large. If it is too small, such as the one

in Figure 2.1, then the chance of finding a matching string is too small to have any

compression benefit.

161514131211109 8 7 5 4 3 21
TH E S U IPIEIRIMIAINI IsSI ISIUIPIEIR I
I i I I

Dropped Out ' New History
History Buffer as
a sliding window

Figure 2.1 (b) Encoder History Buffer After Encoding "SUPERB"

In summary, ZL77 takes in a variable-length string and produces a fixed-length

codeword. If N is the size of the history buffer, then log2N bits are necessary to uniquely

specify every Index. If L is the number of bits for the Length field, then the maximum match

length is (2L - 1). Finally, assume that each Innovation Character is 8-bit wide, then the size

of the codeword will be (log2N + L + 8) bits. On average, if the bit length of the codeword is

less than the bit length of the string which it represents, then data compression is achieved.

Sometimes, ZL77 encoding actually expands the data. This penalty occurs whenever the

string bit length is shorter than the codeword bit length. An extreme case is when there is no

match at all. The single 8-bit character is then encoded as (log2N + L + 8)-bit codeword, an

expansion of (log2N + L) bits. Depending on the values of N and L, expansion could happen

if the match length is only one or two. Nonetheless, ZL77 usually produces satisfactory

compression ratio of about 2 to 1.

ZL77 decoding is relatively straightforward. The decoder keeps the same history buffer

as the encoder and updates the history buffer the same way. To decode, the Index field is

18

extracted from the codeword and used as a pointer into the history buffer. The Length field is

used to determine how many characters should be read off from the buffer. Finally, the

Innovation Character is taken as it is. Then the decoder inserts the decoded characters,

including the Innovation Character, into the history buffer and deletes the same number of the

oldest characters from the history buffer. Therefore, as long as the codewords arrive in order

and the encoder and decoder updates the history buffer appropriately, the compressed data will

be correctly decompressed.

Figure 2.2 (a) and (b) show the ZL77 decoding process.

History Buffer
161514131211109 8 7 6 5 4 3 2 1 Input (to be decoded)

ITIHIE ISIUPIEIRMAIN I ISI 12, 5, 'B'

First character starts at Index 1 2 < 12, 5, 'B' > is decoded as
Match Length = 5 S U P E R B

Figure 2.2 (a) The Basic ZL77 Decoding Algorithm

161514131211109 8 7 6 5 4 3 2 1

T H E S U IPIEIRIM|IAINI lISI ISIUIPIEIRIBI
I I I I

Dropped Out =* New History
History Buffer as
a sliding window

Figure 2.2 (b) Decoder History Buffer After Decoding

2.2.2 The Modified Algorithm
The modified ZL77 scheme differs from the basic algorithm in two aspects. First, the

Innovation Character is dropped from the codeword. Second, the absolute index, rather than

relative index, is used. The basic ZL77 principle is not violated by these modifications.

The first modification is similar to the ZLSS scheme proposed by Storer and Szymanki

[9]. In ZLSS, the codeword normally consists of Index and Length without the Innovation

Character; but in the case when the codeword is longer than the characters it encodes, the

characters are transmitted as a codeword instead. Clearly this scheme attempts to optimize

compression ratio; but in doing so, an extra bit is required to tell the decoder which one

(character or pointer) is transmitted. In the modified algorithm used in the thesis, the codeword

is always made up of Index and Length. In the case of no match (i.e. Length = 0), the encoder

puts the 8-bit raw character into the Index field and places a 0 in the Length field. The decoder,

19

upon detecting a Length of 0, will take the raw character from the Index field without going

into the history buffer.

The second modification is simply a different way the Index portion of the codeword is

interpreted. The following example should help clarify these modifications.

2.2.3 An Example

History Buffer

0 1 2 3 4 5 6 7 8 9 101 1 1 2131415 Input String (to be encoded)

ITIHIEI ISIUIPIEIRIMIAINI I ISI IS ERB.

Longest Match found at Index 4 "SUPER" is encoded as
Match Length = 5 c 4, 5

Figure 2.3 (a) The Modified 71L77 Encoding Algorithm

Let us use the same encoding example for the basic ZL77 algorithm to illustrate the

differences as shown in Figure 2.3 (a). Notice how the history buffer is indexed. In the basic

algorithm, the Index portion of the codeword tells the decoder how many characters back from

the end of history buffer the longest match can be found. For example, in Figure 2.1 (b), the

string "SUPER" is recovered by counting back 12 characters from the newest character in the

decoder history buffer. This is called relative indexing. The decoder needs to keep a pointer

which points to the end of the history buffer. The decoder then subtracts the Index from the

pointer to uncover the string.
History Buffer

0 1 2 3 4 5 6 7 8 9 101 112131415 Input String (to be encoded)

!SUP ERIUP|E|A 1 ISI I

New History I

Figure 2.3 (b) Encoder History Buffer After Encoding "SUPER"

In the modified encoding algorithm, the Index portion of the codeword specifies the

exact location in the history buffer where the match lies. In other words, the decoder simply

takes it as a pointer into history buffer without having to perform the subtraction. This is called

absolute indexing. The Data Compression Engine developed in the thesis encodes and decodes

with absolute indexing.

20

Another distinction is that the codeword no longer includes the Innovation Character.

The character 'B' is not encoded yet; it will be the first character of the next input string to be

encoded as shown in Figure 2.3 (b).

Both the encoder and the decoder have to keep a pointer that points to the end of the

history buffer for update purpose. The pointer is incremented modulo the size of the history

buffer, so that after the maximum index is reached, the pointer will point to location 0 the next

time. In Figure 2.3 (a), there is an arrow below position 0. This means that position 15

contains the most recently encoded character and that position 0 is where the new character

should be inserted. This is demonstrated in Figure 2.3 (b). After "SUPER" is encoded,

position 0 to 4 are overwritten with the newly encoded string, and the arrow now points to

position 5.

2.2.4 ZL77 Implementation Parameters
In the Data Compression Engine architecture, the size of the history buffer N is 1024

characters; L, the number of bits for the Length field, is 4, which implies that a maximum

match length of 15 is allowed (zero is reserved to indicate a no match).

Therefore, the codeword length is (log2 N + L) = (log2 1024 + 4) = 14 (bits).

21

2.3 DATA STRUCTURES
In ZL77 encoding, the most time-consuming operation is to find the longest match for the input

string from the history buffer, which contains the N most recently encoded characters. This is

a difficult process as a naive approach will easily take O(N 2) searches. Various data structures

have been proposed to reduce the search time, each with tradeoffs between memory

requirements and processor loading. Three of the data structures have been surveyed and

analyzed: binary search tree, hashing, and systolic arrays. They are summarized in the

following sections.

2.3.1 Binary Search Tree
Binary search tree data structure was proposed by Bell [8]. In a binary search tree, for any

node n, all node values on its left subtree are less than n, and all node values in its right subtree

are greater than n. Figure 2.4 shows an example of a binary search tree.

8

4/ 10

3 6 9 12

5 7

Figure 2.4 An Example of a Binary Search Tree

In the applications for ZL77 encoding, Bell suggested that all possible strings of fixed

length in the history buffer be organized lexicographically in a binary search tree to reduce the

number of searches for the longest match. For example, let the history buffer contain 7

characters and input string be "bacd" as shown in Figure 2.5.

0 1 2 3 4 5 6

b cb a c ba bacd
I I I !

Figure 2.5 History Buffer and Input String

Let the maximum match length to be four. Let S(i) denote the foaur-character string

whose first character starts at index i of the history buffer. Notice that it is a circular buffer, so

that the four-character string which starts at Index 6 would include characters from positions 6,

0, 1, and 2. We then have the following set of strings possible in the history buffer:

22

S() =- bcba S(1) = cbac S(2) = bacb S(3) = acba

S(4) = cbab S(5) = babc S(6) = abcb

Tie binary search tree is constructed as shown in Figure 2.6. For any given node i, all

the strings on its left subtree are lexicographically lower than S(i), and all the strings on its

right subtree are lexicographically higher than S(i). The input string, of course, is I = "bacd".

To find the longest match for the input string, it is necessary to traverse from the root. Bell

argued that in the process of updating the history buffer, the input string has to be inserted into

the binary search tree as well; it is a dynamic tree as some strings disappear when the characters

associated with them are deleted and new strings appear after they are encoded. In order to

maintain the binary search tree property, the input string has to traverse down the tree to find

out where it should be inserted. Bell recognized that the longest matching string will be ON the

traversing path of the input string; therefore, finding the longest match actually becomes a by-

product of updating the binary search tree!

Figure 2.6 Binary Search Tree for the Given History Buffer

Bell argued that the longest match has to be one of two nodes: the parent node onto

which the input string is inserted as a son, or the node where the traversal last turned the

direction different from the direction the input string is inserted. For example, if the input

string is inserted as a righthand child, then the other candidate for the longest match is the node

in which the most recent left turn is made. On the other hand, if the input string is inserted as a

left child, then the other candidate wold be the node where the most recent right turn is made.

Therefore, the match length can be found by just comparing the match lengths of those two

nodes.

In this particular example, the two candidate strings for the longest match are S(O) and

S(2). S(2) is the parent of the input string I, and S(0) is the node where the input string last

turns left (the new string is inserted as the right son of S(2)j. S(2) turns out to be the node that

contains the longest matching string.

23

For each L characters match, L insertions and deletions are required. Each insertion
needs an average of O(log2 N) string search, where N is the number of nodes, or strings.
Within each string search an average of two character comparisons are required. For deletion,
it is not necessary to search because we always know which node to delete next by keeping a
pointer to the array of N nodes. However, in order to maintain the binary search tree property,
the nodes around the deleted node must be adjusted, and this could be time-consuming.
Appendix A shows the C codes for binary search tree updates.

The memory requirement for the encoding operation consists of a history buffer of size
N and the data structures for an array of N nodes. Each node requires three pointers: two
pointers for sons and one pointer for a parent. The parent pointer is necessary because during
deletion, the parent of the node to be deleted must be identified so that a link for the new son
can be made. The character strings themselves need not be stored in the node data structures
because each node number i implicitly points to S(i). For example, the string associated with
node 1 is "abbc", or S(1). Finally, the son and parent pointers are actually indexes into the
array of N nodes. Figure 2.7 shows the node data structures which store the binary search

tree of Figure 2.6.

Node # Left Son Right Son Parent
0 1 2 0
1 4 Null 0
2 3 Null 0
3 6 5 2
4 Null Null 1
5 Null Null 3
6 Null Null 3

Figure 2.7 Node Data Structures for Binary Search Tree

If each character is represented with eight bits, then the total encoding memory required
will be [8N + 3N (log2 N)] bits for the binary search tree [2].

This data structure only needs O(log2N) search time if the tree is balanced. By

organizing all of the possible strings in the history buffer lexicographically in a binary search
tree, only a subset of strings need to be searched; this is a great improvement over brute force

search, in which O(N2) search time is required.

2.3.2 Hashing
Hashing is another technique to reduce the processing complexity of finding the longest match.

In a N-character history buffer, there are potentially N different strings from which to search in

24

a brute force implementation. Suppose we calculate the hash valuel for each possible string

and chain the strings that have the same hash values in a linked list. To search for the longest

match, the hash value of the input string is first calculated, then only the strings that have the

same hash value are compared to the input string. Since we only have to compare a subset of

all possible strings, the search time is greatly reduced. Figure 2.8 illustrates one approach to

hashing and its data structures.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HV(S) = Hash(S) b ic ba c a c I c a b b c b a da

Figure 2.8 The Hashing Data Structure

Figure 2.8 shows that strings that start with "ba" all have a hash value of 2, and those

that start with "cb" have hash value 0. Each link entry has a pointer into the history buffer

where the string starts and a pointer to the next link entry which has the same hash value. The

black dots denote the end of the linked lists. Hash(S) is the hash function that performs on the

first few characters of a string S, and HV(S) denote the hash value of a string S. Depending

on the hash function chosen and thus the number of distinct hash values possible, different

strings with different initial characters could result in the same hash values.

Clearly, the search time is directly proportional to the length of the linked list; it is

undesirable if the linked list gets too long. Therefore, the idea is to devise a hash function to

have a distribution of hash values that minimizes the expected number of searches, i.e., a hash
function that minimizes X(LHV * P[HV(S)]), where LHV denotes the length of a list with hash

value HV, and P[HV(S)] denotes the probability of a hash value HV. This is impossible,

however, because the input string characteristics are unpredictable. Another alternative is to set

an upper bound on the number of searches in a linked list, so that the worst case search time

can be deterministic. However, the penalty is that the longest matching string might be near the

bottom of the linked list and not found.

1 A hash value is produced by manipulating the input of a hash function in a certain way. For
example, a hash function for a string could be (4*C1+C2), which means a hash value is
obtained by shifting the first character two positions to the left, then adds the result to the
second character.

25

Updating the hash tables takes a constant amount of time. Before inserting the new

characters into the history buffer, the oldest characters must be deleted from the hash table.

Therefore, the hash values for the strings that start with those characters must be calculated to

locate the linked lists to which they belong. Then the pointers to those old characters are

removed from the linked lists. This accomplishes the delete operation. Next, the new

characters are inserted into the history buffer. For each input character, a hash value for the

string that starts with the character has to be calculated. The pointer that points to this character

in the history buffer is then inserted into the end of respective linked list.

2.3.3 Systolic Arrays
Parallel algorithms for data compression using the systolic arrays approach were proposed by

Storer [9]. While binary search tree and hashing implementations require sequential operations

and extensive memory accesses based on a von Neumann model of computations, a systolic

arrays is a VLSI structure with distributed and parallel computing capabilities.

In systolic arrays, the idea is to lay out a regular pattern of identical processing elements,

each capable of carrying out simple tasks. In addition, these processing elements are to have

simple interconnections. For example, each processing element only connects with adjacent

elements; a global communication line does not exist. This attribute minimizes signals

propagation delay so that a faster clock can be used to attain better performance. With many

processing elements available, parallel computation is possible.

Storer proposed two parallel algorithms for string substitution data compression

methods: static dictionary model and sliding dictionary model [9]. The first scheme uses a

static dictionary of strings; input characters are compressed by replacing the substrings with

pointers to matching strings in the dictionary. The decoder on the receiving end then

decompresses the data by using the pointers to read off the strings from the dictionary. In the

second scheme, the dictionary is constantly updated so that it only contains the N most recent

characters. The sliding dictionary model is more relevant to the thesis so it is discussed in a

greater detail below. * * AProcessors

Length

Figure 2.9 The Systolic Pipe

26

In the sliding dictionary model, an array of 2n processors is used to keep the 2n most

recently encoded characters to process a block of n input characters. The reason that 2n

processors are required is that each character has to be compared with each of the n characters

that precede it. In order for the comparisons to take place in parallel for every n input

characters, a window of 2n most recent characters must be kept. The following description

should clarify this requirement.

Let every processing element have a local memory and a comparator. Each input

character, along with its index and match length values, goes through the systolic pipe from the

right, as shown in Figure 2.9. In order to synchronize the processors, two clock pulses called

pulse 1 and pulse 2 are used. A pulse 2 occurs after n pulse l's. Assume that the characters

Xl,...,Xn have already been encoded, and while they were being processed, characters

Xn+l,...,X2n were shifted in from the right. Figure 2.10 (a) illustrates this situation. Since n

pulse l's have passed, a pulse 2 occurs. At this moment, every processor stores the character

below it ;nto its local memory. Figure 2.10 (b) shows the consequence of this action.2

2n 2n-1 n+2 n+l n n-1 2 1

Figure 2.10 (a) Right Before a Pulse 2

Figure 2.10 (b) Right After a Pulse 2

2n 2n-1 n+2 n+l n n-l 2 1

| Xi X 2 i . I X-1 X n X 1 x n+2 -* . I X .- 1 I .n

X2 X * Xn X I 3 I .X X2nX=+
Figure 2.10 (c) ter the fst Pulse 1
Figure 2. 0 (c) After the first Pulse 1

are similar to those of Storer's in [9].

27

2 These figures

n+2 n+1 n n-1

Ready to be trasmtted Ready to be compared

Figure 2.10 (d) After n Pulss l's

At each subsequent pulse 1, the characters Xn+l,...,X2n are shifted to the left and

examined by the processors above them. These comparisons take place simultaneously.

Within the next n pulse l's, character Xn+1 will be compared with Xn,..X1 by processors

Pn+l,..., P2n and character Xn+2 will be compared with Xn+l,..., X2 by processors Pn ,...,

P2n-1 as these characters are shifted to the left one slot at each pulse 1. Figure 2.10 (c) shows

the systolic pipe after the first pulse 1 since the last pulse 2.

If a processor has a match, it will look at its left-hand neighbor and right-hand neighbor.

If its left-hand neighbor does not have a match, it will generate a left bracket. If its right hand

neighbor does not have a match, it will generate a right bracket. Then it waits for the higher

level processing elements which will pair the brackets to determine the current match length. If

it is greater than the match length associated with the current character, the match length and

index will be updated to the new match length and current processor number. Otherwise,

nothing is changed, and the characters continue shifting to the left. After n pulse l's, character

Xn+1 would be under processor P2n, as shown in Figure 2.5 (d). This processor is

responsible for transmitting the codeword, or index and match length values. For example, if

the match length associated with character Xn+I is three, then processor P2n will transmit the

match length and the index associated with Xn+l and ignore the codewords associated with the

characters Xn+2 and Xn+3 since they are part of the three-character string being encoded.

As can be seen, the input characters enter the systolic arrays at a constant rate, i.e., a

new character enters the systolic pipe at every pulse 1. After 2n pulse l's, the codeword is

ready to be transmitted. Therefore, the major advantage of the systolic arrays approach is that

the throughput is independent of the array size. However, the latency for each character is

directly proportional to the array size. In this case, each character has to stay in the pipe for a

period of 2n pulse l's before leaving the pipe, and this could be undesirable for a data

communication network which is intolerable of too much delay.

28

2n 2n-1 2 1

l

2.3.4 ZL77 Data Structures Implementation Summary
The memory requirements and the average search time for the three data structures

implementing ZL77 encoding are summarized in the following table. N is the size of the

history buffer.

Data Structure Memory Requirement Avg Search Time

Binary Search Tree N + [3N * log2(N)]/8 O(log2N)
Hash Table N + [(N+42) * log2(N)]/8 O(N/# of hash values)
Systolic Array 2N*[21+2 * log2(2N)]/8 O(1)

Note: the memory requirement for Systolic Array is for regular RAM storage only and
does not include the processing elements

Figure 2.11 shows the memory requirements for each data structure as a function of

history buffer size.

1ZU

,,- 100

'P 80

40

20

0

* Binary Tree
S Hashing

M Systolic Array

512 1024 2048 8192
N (characters)

Figure 2.11 Memory Requirement Comparison (Encoder only)

The following summarizes each data structure.

Binary Search Tree

e The worst case search time is O(N) but it rarely happens.

* It guarantees finding the longest matching string.
* Critical operation is the tree update in which deletion and insertion take place for each input

character. Tree update complexity depends on the neighborhood of the node to be deleted.
* Might need to implement tree balancing algorithm to keep average search time at O(log2N).

This is an added complexity.

29

* The worst case search time can be preset, i.e. the search can be terminated after certain

number of searches in a linked list are reached. As a result, sometimes the matching length

found is not the maximum.

* The most critical operation is the character comparisons in the history buffer. The table

update process, in which deletion and insertion take place for each input character, takes only

0(1) time because the pointers to the first and last elements of the linked list can be kept in the

hash pointer table to facilitate the update process. Another critical operation is that hash

values have to be calculated twice for each incoming character: once for insertion, and once

for deletion.

* Overall a very efficient implementation because both memory requirement and processing

complexity are relatively low compared to binary search tree.

Svstolic Arrays

* There is a constant search time. A constant 0(2N) delay in encoding and decoding time is

one of the major drawbacks.

* Brute force comparisons are done in parallel. Essentially, each character is compared with its

N previous characters. In each clock cycle, a block of N characters are compared.

* Suitable for VLSI implementation. However, at least 2N processing elements in the Storer

implementation are required for encoding. Each processing element requires substantial logic

and therefore will take a lot of area. This is likely to limit the history window size.

e At least three different clocks must be used.

* 6N memory is required for the decoder in the Storer implementation.

* 3N processors are required for the decoder. However, each processing element is simpler

than its encoding counterpart

2.4 CRITICAL OPERATIONS
From the data structures surveyed in the previous sections, the single most frequent operation

is character comparison. In binary search tree and hashing implementations, each prospective

string from the history buffer is compared with the input string character by character to find

out which one has the longest match. In the systolic array implementation, multiple character

comparisons take place simultaneously, but each input character has to go through N

comparisons before leaving the systolic pipe. The former two data structures have the

tremendous advantage of only having to compare a subset of strings and ignore the majority

30

others, while the latter data structure allows character comparisons in parallel. It seems that in

order to dramatically reduce the processing time, we must somehow combine those two

attributes.

Other common operations for the two software data structures are numerous memory

accesses and indirect addressing. Since memory accesses are usually the processing

bottleneck, it would be nice to avoid them if possible. If any breakthrough in throughput is to

be made, we must think of other solutions to find the longest match.

Regardless of which data structures are used, there are always needs for bit packing and

unpacking. Bit packing refers to the bundling of normally non-byte size codewords into byte

or word quantities. Bit unpacking is the inverse operation of extracting the codewords from a

sequence of bytes. These operations are not as complex as finding the longest match, but they

are so common that any speed-up will improve the overall throughput.

In short, finding the longest match, bit packing, and bit unpacking are identified as the

operations critical to ZL77 encoding and decoding. Special VLSI structures will be developed

to support these operations in the next Chapter. Of these operations, finding the longest match

is the bottleneck in implementing the algorithm, and breaking this bottleneck will be a major

effort of the thesis.

31

CHAPTER 3

SPECIAL VLSI STRUCTURES

3.1 VARIABLE LENGTH STRING MATCHER
Variable Length String Matcher (VLSM) is a dedicated VLSI structure which performs the

longest string search, the most time intensive component of ZL77 algorithm. VLSM is an

example of how the concurrency inherent in VLSI structure gives rise to an algorithm which is

free of the traditional von Neuman bottleneck. In our case, the algorithm for finding the
longest match exploits the parallelism provided in VLSM and enables the search time to be

independent of the history buffer size. A discussion on the algorithm follows.

3.1.1 Algorithm For The Longest String Search
The algorithm is best explained through an example. Suppose eight simple processors,

numbered from 0 to 7, are used as a history buffer. Each processor, also called a cell, has a

comparator and a local memory that can hold a character. Furthermore, assume that each one is

able to see the data on a global bus simultaneously. Figure 3.1 shows the history buffer and its

contents. Let the input string be "abcd", and we would like to find the longest match for the

input string and replace it with a ZL77 codeword. By inspection, we are sure that the longest

match is "abc", so it should be encoded as <1, 3>. Let us see how the VLSM algorithm works

to determine the codeword, and hence the longest match.

Suppose we start by forcing each cell to have a match, or hit. This step is the INIT cycle

shown in Figure 3.1 as every cell has an arrow below it. Next, we present the first input

character 'a' to every cell, which we call the COMPARE 'a' cycle. In order for a cell to get a

hit, two criteria must be satisfied. First, the cell's content must match the input character;

second, the left neighbor of the cell must have a hit in the previous COMPARE cycle. The

second criterion is very important.

32

Input String: a b c d

0 1 2 3
HistoryBuffer a a b cI 4 5 6 7

CouLengtha d I c a Count

INIT -- -* -- -* - - -- -- _

COMPARE 'a' --_ - - b 1 0
COMPARE 'b' 2 2

COMPARE 'c' 3 3
COMPARE 'd'

Note: . indicates a HIT

Figure 3.1 An Example For VLSM Algorithm

As can be seen, cells 0, 1, 4, and 7 indicate hits because their contents match the

character 'a' and their left neighbors had hits in the previous cycle (i.e., the INIT cycle in

which every cell was forced to have a hit). We then increment a length counter which keeps

track of the match length. At the same time, the index of the cell which has a hit is recorded.

Since multiple cells have hits, we need some kind of arbitration scheme. In this case we decide

to record only the one that has the lowest index.

Next, 'b' is compared; only cell 2 has a hit. We again increment the length counter and

record the index. We proceed to compare 'c', and as shown in Figure 3.1, only cell 3 indicates

a hit even though cell 6's content is also 'c'. This is because cell 5, the left neighbor of cell 6,

did not have a hit in the previous COMPARE cycle, so the second criterion is not satisfied. At

any rate, we increment the counter and record the index. Finally, 'd' is compared; no more hit

is indicated. This signals that we have found the longest match! The following explains how.

We can know that the match length is 3 by looking at the length counter. The index

where the longest match begins can be found by subtracting the match length from the last

index we recorded and then add one to it. In this example, index = 3 - 3 + 1 = 1. Therefore,

the string "abc" can be encoded as <1, 3>, which is exactly what we expect.

Clearly, by enforcing the two criteria for a match, we can isolate the strings that have

potential to be the longest match. This algorithm has the significant property in that the search

time does not depend on history buffer size. Instead, it depends on the match length. For

example, if L is the match length, then we only need to compare (L + 1) characters to find the

longest match. This is a tremendous improvement from the search times for hashing or binary

search tree data structures. In contrast to the systolic array implementation which also has high

throughput, this algorithm has noticeably lower latency because all cells are comparing their

33

Index

contents with the same input character; the codeword can be produced as soon as the longest

match is found. In systolic array, the latency is always proportional to the size of the history

buffer, as was mentioned in Section 2.3.3.

In order to implement this searching algorithm, we must provide a structure capable of

parallel comparisons similar to the systolic arrays arrangement yet with a globally distributed

data bus. The prospective structure has been identified as content addressable memory. It is

discussed in the next section.

3.1.2 Content Addressable Memory
Content addressable memory (CAM), also known as associative memory, is defined to be a

device consisting of a number of cells which can store data and be accessed by their contents

[32]. As opposed to random access memory (RAM), which during the read cycle takes an

address as input and outputs the data stored in that memory location, CAM takes the data as

input and then outputs the address which contains the data.

Data Bus

Figure 3.2 A Conceptual Model For a CAM Cell

In the classical CAM structure, each CAM cell has both a memory element and a

comparator, as shown in Figure 3.2. As in RAM, each cell can be addressed for independent

access. A global data bus is connected to every CAM cell and there is no other interconnection

between adjacent cells. When a CAM cell contains the presented data, a HIT signal is asserted

to indicate a match. Thus, in this fully-parallel CAM configuration, it is possible to know

whether a particular datum is present in memory in just one clock cycle. Figure 3.3 illustrates

the CAM structure.

The basic principles of CAM have been in existence since the 1950's. Despite its

tremendous searching capability, CAM never flourished in the computer systems because its

hardware complexity limited its use only to special roles such as small buffer memories

34

Diata Bus

HIT HIT HIT

Figure 3.3 A CAM Structure

or control units [19]. However, with the development of VLSI semiconductor circuits, logic

density has increased so dramatically that it becomes practical to transfer some processing

capabilities to memories. Furthermore, VLSI technology makes the production of larger CAM

economically feasible, thus increasing its applications arena. For example, Advanced Micro

Device, Inc. has marketed a Content Addressable Data Manager which contains 1 Kbytes of

CAM and internal logic to perform sorting and searching operations with 100 ns cycle time.

Moreover, the chips are cascadable to 256 Kbytes RAM. The impact of CAM on computer

architectures is witnessed by the active research in content addressable processors, noticeably a

new content addressable parallel processor design for picture processing by Foster [33];

Titanic, a VLSI based content addressable parallel array processor by Weems et al [34]; and

vector associative processor by Berkovich and Pullen [35]. The performance of a highly

parallel system has been measured by Parkinson and Liddel [19, 36].

The fully parallel CAM configuration allows one character at a time to be placed on the

global data bus; each cell then compares its content with the character simultaneously. This is

essential to the implementation of the longest match searching algorithm discussed in the

previous section. However, a fixed-sized string or character search is insufficient; we are

interested in the consecutive matches from consecutive locations that form a variable-length

match. Therefore, we need to preserve the match result of the previous compare cycle, so that

each CAM cell can look back one cycle to see if its left neighbor had a match. This requirement

brings about the modification to the basic CAM cell.

3.1.3 Byte Associative Content Addressable Memory
In byte associative CAM, there are two distinctions from the basic CAM. The first is that each

CAM cell passes the delayed match result (via a flip flop) to its right-hand neighbor and

35

receives the delayed match result from the left-hand neighbor. The second difference is that the

HIT signal is the logical AND of the content match and the match result of the left neighbor in

the previous cycle. Figure 3.4 shows the change in the basic CAM cell model. As can be

seen, HITn-l,t-1 is the match result of the left neighbor in the previous compare cycle, and

HITn,t-l is the match result of the CAM cell in the previous compare cycle. The Delay is a

structure that takes an input signal and outputs the same signal a clock cycle later.

Data Bus

II.L

Figure 3.4 The Modified CAM Cell Model

Figure 3.5 shows the change in the CAM structure. Now there is interconnection

between two neighboring CAM cells. The cell-level HIT signals look the same; the logic that

generates them changes and is hidden inside. These modifications only implement the two

criteria for a match; more control logic is required to find the longest match.

The idea of byte associativity is similar to the general purpose CAM architecture

proposed by Adams [18]. In that design, an Address Selector feature allows only certain set of

the CAM cells to participate in the matching activities. For instance, it is possible to specify

that only the even-numbered cells be engaged in the search. The match results of the

participating CAM cells are then stored in the Match bit cells in each CAM cell. Next, all the

odd-numbered cells are allowed to compare. In the Linked Associative Mode in this example,

only if the Match bit of the even-numbered cell were set and the odd-numbered cell's content

matched the presented data would the Match bit for that odd-numbered cell be set. For address

priority encoding, the Match bits of the even-numbered cells must be explicitly turned off

before encoding can take place. This associative capability makes multiple-word pattern

matching possible. However, the word width needs to be fixed and known in advance so that

appropriate Address Selector can be set and the Match bits be cleared. For ZL77 encoding, we

36

L

do not and can not know the match length beforehand, nor do we know where the match starts,

so Adams' general purpose CAM architecture can not be used to find the longest match.

Data Bus

CAM CAM CAM . I CAM
Cell ell Cell -l - Cell

HIT HIT HIT HIT

Figure 3.5 The Modified CAM Structure

3.1.4 VLSM Functional Description
The VLSM, as mentioned in Section 3.1, is a structure that utilizes the modified CAM to

encode ZL77 codewords. It is helpful to treat the VLSM on a functional level before going into

the detail of implementation. In ZL77 encoding, we are interested in obtaining a sequence of

fixed-length codewords as we parse the input strings. This task can be accomplished

efficiently with the VLSM algorithm as shown in Section 3.1.1. In addition to sear:hing, we

would like to update the history buffer such that it always includes the N most recent characters

before a new string is encoded. Intuitively, four discrete operations are required for the

encoding and updating processes using the byte associative CAM, namely INIT, COMPARE,

OUTPUT, and UPDATE.

INIT is used only once for each string encoding. If one recalls the example from

Section 3.1.1, the INIT command is used to force a hit from every CAM cell to set up for the

first COMPARE cycle; it does not clear the cell contents. In a COMPARE cycle, a character of

the input string is put on the data bus for every CAM cell to check. If at least one match

occurs, the COMPARE cycle continues with the next character of the string. The codeword

which consists of Index and Length components is output during the OUTPUT cycle. Finally,

a character is inserted into the history buffer by an UPDATE comrand. Therefore, the VLSM

is conceived to have the set of inputs and outputs as shown in Figure 3.6.

The inputs to this functional block consist of an 8-bit data bus DATA[7:0], a 10-bit

address bus ADDRESS[9:0], an ENABLE line and two select lines S1, SO. DATA[7:0]

contains the character to be compared or updated. ADDRESS[9:0] specifies the history buffer

location into which the character is inserted. ADDRESS[9:0] is 10-bit wide because the thesis

uses a 1024-character history buffer as mentioned in Section 2.2.4. Therefore, 10 bits are

required to uniquely address any of the 1024 locations.

37

DATA 10 D

ENABLE
S1
so VLSM

ADDRESS 1

CAM_HIT

Figure 3.6 VLSM Functional Block Diagram

When ENABLE is asserted, the combination of the two function mode select signals S1

and SO will generate appropriate control signals inside the functional block to execute one of

four possible commands. Table 3.1 lists the VLSM functional mode control.

ENABLE S 1 SO Function

0 x x NOP
1 0 0 INIT
1 0 1 COMPARE
1 1 0 OUTPUT
1 1 1 UPDATE

Table 3.1 VLSM Functional Modes

The outputs consist of INDEX[9:0] and CAM_HIT. INDEX[9:0] is one of the

addresses of CAM words which have a match. It is normally latched inside the functional block

in Figure 3.6 and is output-enabled when OUTPUT mode is selected. CAM_HIT is asserted

by the VLSM when at least one CAM word has a match. This output signal is monitored by an

external controller to determine if the COMPARE cycle should be continued. From now on we

assume that the external controller is implemented with a finite state machine (FSM).

The control of the VLSM is straightforward. Let the 1024-character history buffer be

stored in the byte associative CAM inside the VLSM. To find the longest match, the FSM first

selects the INIT command. At the next cycle, the first character of the input string is driven

onto the data bus, and the COMPARE mode is selected. If CAM_HIT is asserted, the next

character will be driven onto the data bus and another COMPARE command is issued. The

FSM repeats this step until CAMHIT is not asserted after a COMPARE cycle. By then, the

index for the of the last character of the longest matching string in the CAM is ready, so the

FSM would issue OUTPUT to fetch the index. To update the history buffer, the FSM drives

38

the character onto DATA[7:0] and selects the UPDATE mode. Note that CAM_HIT also
clocks a small counter which keeps count of the match length. Figure 3.7 is an extension to

Figure 3.1 and should clarify the sequence of operations required to carry out the encoding and

updating procedures.

In this example, it is assume that the history buffer pointer points to location 5.
Therefore, the characters that were matched in the previous set of COMPARE cycles are

removed from an input FIFO and are inserted into the history buffer starting at this location

during the UPDATE cycles. The changes in history buffer are shown by the bold characters.

Input String: abcd

0 1 2 3 4 5

History Buffer

INIT

COMPARE 'a'

COMPARE 'b'

COMPARE 'c'

COMPARE 'd'

OUTPUT

UPDATE 'a'

UPDATE 'b'

UPDATE 'c'

6 7

a a b cal d c a I

-~ - -

< Index 3 is output >

aa b c I a b c a

a a b Ic I a Ia I b a I
a a I b c a a Ib Ic I

Length
Count Index

1 0

2 2

3 3

Note: -- indicates a HIT
Figure 3.7 Encoding and Updating Processes

Finally, Table 3.2 shows the states of the inputs and outputs of the VLSM functional

block corresponding to each cycle.

39

INSTRUCTION S1 SO DATA CAMHIT INDEX ADDRESS

INIT 0 0
COMPARE 'a' 0 1
COMPARE 'b' 0 1
COMPARE 'c' 0 1
COMPARE 'd' 0 1
OUTPUT 1 0
UPDATE 'a' 1 1
UPDATE 'b' 1 1
UPDATE 'c' 1 1

x means no valid value

Table 3.2 VLSM

x
'a'
'b'
'ct
'd'
x
'a'

x
1

1

1

0
X

X

X

X

Functional Block I/O States

Implementation of the VLSM
Figure 3.8 discloses the internal structures of the VLSM functional block. The byte associative

CAM array, called CAM Word Array for short, is the major component. It stores the history

buffer and performs parallel comparison. Other important blocks are the address encoder,

address decoder, data buffer, and supporting logic such as the flip flops, decoder, and

multiplexors.

CAM HIT

Figure 3.8 VLSM Internal Block Diagram

The Function Mode Decoder on the top-left corner, when enabled by ENABLE, takes

S1 and S2 as inputs and asserts one of four lines: INIT, COMPARE, WRITE, or

40

X X

X X

X X

x X
X X

3 x
x 5
x 6
x 7

READ_ADDR. INIT goes through every CAM word in the CAM Word Array. As its name

suggests, this mode is selected once per codeword generation.

COMP is asserted in the COMPARE cycle. It selects the ENCODE lines to take on the

outputs of row decoder to select a row for address encoding purpose. Section 3.1.7 will

explain address priority encoding in greater detail. COMP also multiplex the inputs to the Row

Decoder between ADDRESS[9:4] and the output of Row Encoder. WRITE is asserted in the

UPDATE cycle. It enables the SELECT lines and Column Decoder to address one CAM word

for a data write. Finally, READADDR serves as the output-enable for the tristate in the top

right corner of Figure 3.8 in the OUTPUT cycle.

Not shown in Figure 3.8 are two non-overlapping clock signals Phi 1 and Phi2 which go

through each CAM word.

ADDRESS[9:0] is broken down into 4-bit going into Column Decoder and 6-bit going

into Row Decoder. The Row Decoder, when enabled, asserts one of 64 lines. If WRITE is

asserted, these lines will be connected to 64 SELECT lines which act as row enable during the

write cycle. If COMP is asserted, the 64 ENCODE lines will assume the outputs of the Row

Decoder.

CAM Word Array produces 64 horizontal H_MATCH lines and 16 vertical V_MATCH

lines which go into Row Encoder and Column Encoder, respectively. The Encoders generate

six and four address lines which are eventually combined to form a 10-bit Index. The Row

Encoder is also responsible for generating the CAM_HIT signal.

41

3.1.5 Byte Associative CAM Word Array
Figure 3.9 shows an example of byte associative CAM word cells arrangement and

interconnection in the CAM Word Array. There are 64 x 16 (= 1024) word cells in the

proposed implementation, but only 3 x 3 (= 9) case is shown in Figure 3.9 due to space

constraint. This two-dimensional arrangement is desirable for a compact VLSI layout,

especially for a large number of word cells.

DATA [7:0]

SELECT
ENCODE

H MATC
HIT(8)
INIT

SELECT
ENCODE
H MATC
HIT(2)
NIT

SELECT
ENCODE
H MATC
HIT(5)
INIT

H.

H

'8

V MATCH

To COLUMN

V MATCH
V

ENCOD ER

'8

-I

-I

I

V

T
lO

R
0
W

E
N
C
0
D
E

-0 R

1

MATCH

Figure 3.9 CAM Word Array

As can be seen, DATA[7:0] reaches every word cell. The SELECT lines are used only

during the UPDATE cycle and are high impedance during other times. The SELECT lines are

connected to the outputs of the Row Address Decoder during UPDATE cycle to enable one

row for data write. The INIT is the output of Function Mode Decoder and is fed into every

word cell.

The H MATCH lines for each row and V MATCH lines for each column are wire-

ORed with each CAM word on the same row or column and are precharged high during phil.

Each H_MATCH line is pulled low if at least one CAM word in that row has a match during

42

0

I

3 4 5

I
7

II - r · II Ir,,~~~~~~~~~~1 r I~~~~~~~~~~~~~~~~~~~I I 'Al s

I I __

- : --- .

=I I Ill = A.-

l- r _I . . . _ _

- F_ l =
I

_
It

= =
I

= I

U
I---
_

IW I

lo

I
_ -- Dw

- --

_
l

_
w . I

__

I

__

I
= =--
= III

V
I

-k

_ . _ . _
- -

ii l _ I

_ . _ l _ - - - Il

l-
-

. II I - I

I 111

-- I-l !

d

."H

I
I

I

I

_

00--+

I
r

N I

phi2. Section 3.1.6 will explain exactly how H_MATCH, V_MATCH, and ENCODE lines

are used to perform priority address encoding.

The unusual interconnection is the HIT lines. As can be seen from Figure 3.9, the HIT

output from one CAM word is the input to its right-hand neighbor. In addition, the HIT from

the highest-numbered word cell is an input to the lowest-numbered word cell. For example,

the HIT output of word cell 8 is connected to the HIT input of word cell 0. In order to

maintain consistent addressing, the HIT from the last word in the row has to be routed to the

first word in the next row; for a large array, the wire could be very long, resulting in

undesirable propagation delay. However, the wire length can be minimized if the array can be

"folded" horizontally.

3.1.5.1 CAM Bit Cell

The most primitive CAM structure is the CAM Bit Cell shown in Figure 3.10. It has a

standard six-transistor static RAM cell topology in the upper portion, with three additional

transistors that carry out the equivalence logic function in the bottom half. If high density is

desired, the CAM Bit Cell can be implemented with a four-transistor dynamic RAM topology

patented by Mundy and improved by Wade [29-31].

M

Figure 3.10 CAM Bit Cell

In the proposed implementation, the wire M is precharged high during phil. During a

match cycle, if the data on the Bit line is the same as the bit value stored in the cell, M will

remain high; otherwise, M will be pulled low to indicate a mismatch. The SELECT line, when

asserted, will cause the value on the BIT and BIT* lines to be written into the storage element.

Next, eight of these Bit Cells are grouped to form a CAM Match Cell as shown in Figure

3.11. Notice that the line M is wire-ANDed in the 8-bit construct. Therefore, if at least one Bit

Cell detects a mismatch, the whole M line will be pulled low.

43

SELECT

phil -

Figure 3.11 CAM Match Cell

3.1.5.2 CAM Word Cell
The CAM Word Cell, which makes up the CAM Word Array, is the next higher level of

abstraction. Figure 3.12 shows the CAM Word Cell's internal structure. As expected, the

CAM Match Cell is the largest component of the Word Cell; the rest are random logic and

control lines.

SELECI
ENCODE

H MATCE

HIT
n-

Figure 3.12

V MATCH

CAM Word Cell

As the logic shows, HITn,t is the AND of phi2, M and HITn-l,t- which is the match

result of the left Word Cell in the previous COMPARE cycle. HITn,t, if positive, will pull the

44

SELECT SELECT SELECT

HMATCH line down, indicating a match for this Word Cell. HITn,t- is the one-cycle-

delayed HITn,t signal; in finding the longest matching string, a current match is allowed only if

a CAM Word Cell's left neighbor had a match in the previous COMPARE cycle and the Cell's

content is the same as the data. Remember that the input string is presented on the data bus

only one character at a time. Somehow we need to create byte associativity by using the flip

flop to save the previous match result.

However, the first character match of the input string does not have to obey the left-

neighbor-had-a-match rule because no COMPARE cycle has taken place yet. This is why the

INIT command has to be issued first whenever a new string search begins. Figure 3.13 shows

the inside of the Delay block. When INIT line is asserted high, the high value is fed into the

flip flop rather than the value of HITn,t in the Word Cell. In essence, this forces the HITn,t-1

lines of each Word Cell to be high by the time the COMPARE cycle takes place, so that all

words that have matches can indicate so.

INIT*

HITn,t

INIT

Figure 3.13 The Delay Structure

45

IH n,t-I

3.1.6 Address Priority Encoder
This section describes the problem of address priority encoding and surveys the methods in

which people have used in applications with different speed/cost requirements. A novel,

proposed implementation of the Address Priority Encoder will be presented in the end.

3.1.6.1 Address Priority Encoding
Address priority encoding is fundamental to VLSM and CAM in general because outputing a

single address where the same data is found is one of the CAM's attributes. In the digital

world, an address usually takes a binary representation. For example, an address of six in a

four-bit binary representation will be 0110. For N possible addresses, log2N bits are

necessary to specify each address. It is trivial to encode a binary address if only one out of N

inputs is active, as shown in Figure 3.14 (a). This example shows that Input 2 is active, so

binary 10 (= decimal 2) is encoded and output. The encoder can simply be implemented with

random logic. However, it becomes not so straightforward if more than one inputs are active

at a time, because conflicts need to be resolved first before binary encoding can occur. In other

words, a prioritizer is needed. Figure 3.14 (b) shows a model for a address priority encoder.

InputO -
Inputl -
Input2 -
Input3-*

MSB = 1

* LSB =

N INPUTS ==> (LOq(N) OUTPUTS

Figure 3.14 (a) Normal Binary Address Encoding Model

InputO

Inputl
Input2

Input3

MSB = 1

LSB =O

Figure 3.14 (b) Priority Address Encoding Model

One way to prioritize the inputs is by their locations. For example, the prioritizer can be

designed to allow the input that is the closest to the top or the bottom to pass the nrioritizer and

inhibit the others from going through. Thus, only one of the outputs of the prior. er is active,

and -a single address can then be encoded.

46

Binary
Encoder

One common and the most cost effective solution to implement the prioritizer is cascaded

ripple or daisy chain through N OR or AND gates, where N is the number of inputs, or

respondants, to the encoder. Figure 3.15 illustrates this method. The outputs of the higher

gates inhibit the lower gates. The advantage is that only N identical two-input gates plus N

inverters are required; since the interconnection pattern repeats, this arrangement is great for a

compact VLSI layout. However, the propagation delay is equal to the sum of N gate delays.

If a system requires high throughput, this ripple inhibit chaining method will not be ideal.
Vcc

Inputl 1

Input2 12

Input3 13

InputN IN

Figure 3.15 Ripple Chain Prioritizer

The other extreme is the use of lookahead, whereby the top gates directly inhibits all the

lower gates. This means that the topmost gate uses no gate; the next one uses a two-input gate;

the gate below uses a three input gate; and the lowest gate will have N inputs! This scheme is

very fast because the latency is the only the gate delay of the N-input lowest gate. However, it

is very expensive and not ideal for VLSI layout.

Priority Encoding of Two-Dimensional Array

There is an additional complication for priority encoding of a two-dimensional array. Suppose

we have 16 CAM cells arranged in a 4x4 fashion shown in Figure 3.17. Those that are marked

with X' indicate that they have a match. Therefore, the match lines associated with those cells

are activated as indicated by the bold lines in the Figure. Let us encode the cell which has the

smallest address among the matching cells. By inspection, cell 2 should have been encoded.

47

n .1 o F

4

12

IX

1

, 3
FE.-IL

.t r.

14

I L
FI

·1 l

7

It
,1! !_IL

I
r

Figure 3.16 Two-Dimensional Array

In order to uniquely address a cell, we need to specify the row and column numbers. In

other words, we encode row and column addresses separately. In this case, cell 2 belongs to

row 0 and column 2. By looking at the row match lines, we find that rows 0, 1, and 3 have

matches. According to the priority rule, row 0 will be encoded. At the same time, we look at

the column match lines. We find that columns 0, 1, 2, and 3 have matches. Therefore,

column 0 is encoded. When we combine them, the result is wrong! Cell 0 does not have a hit,

yet the address for it is encoded. This unfortunately implies that the row and column address

can not be encoded simultaneously; some restrictions must be applied to ensure that the correct

address is encoded.

Let us change the procedure. Suppose we encode the row address first, so we get row

address of 0, as before. Now, suppose we allow only the column matches that occur in row 0

to enter the column encoder while inhibit the column matches in other rows. In row 0,

columns 2 and 3 have matches, and column encoder should generate an address 2. When we

combine row and column addresses, an address of 2 is formed, which is correct

The procedure described above explains the presence of the ENCODE lines found in

Figures 3.9 and 3.12. In Figure 3.12, the H_MATCH lines enter the Row Encoder during the

COMPARE cycle. The encoded row address is then routed to the Row Decoder. In the same

cycle, the outputs of Row Decoder are connected to the ENCODE lines, thereby only one

ENCODE line is asserted (i.e., one row is enabled). The V_MATCH in a Word Cell is pulled

low only if the ENCODE line for that row is asserted and HITn is also asserted. Without this

restriction, the correct lowest-numbered Word Cell address can not be encoded. Figure 3.17

summarizes the address encoding sequence.

48

WhPb

v . > .s

Address

Figure 3.17 Priority Encoding Datapath in the VLSM

Just a quick reminder: each horizontal H_MATCH line is precharged high during phil

and is wire-ORed with the word cells on the same row. It is the same for each vertical

V_MATCH line except that it is wire-ORed with the Word Cells on the same column.

3.1.6.2 The Implementation
In order to uniquely and accurately encode an address, row address encoding has to take place

first. The resulting row address is then routed to the Row Decoder, whose outputs are routed

to the ENCODE lines which enable a row to propagate its vertical V_MATCH lines down to

the Column Address Encoder to encode the vertical address. The Address Encoder is

responsible for resolving multiple matches in order to encode an unique address. There are

several ways to arbitrate simultaneous responses; the one implemented in the design is priority

encoding, i.e., the CAM word that has the lowest address is encoded.

The resulting encoder is constructed in a grid fashion as shown in Figure 3.18. Its

regularity is particularly suitable for VLSI implementation. In addition, it is a reasonably fast

circuit, although it takes more area than the ripple chain approach. The tradeoff is worthwhile

performance takes the higher priority than area cost. The design shown in Figure 3.18 is

innovative in that it combines prioritization and binary encoding in the same structure.

49

L;' va.

Tn- r-

AO

LT vdd
-1

-I
nr4r

T(3--

IJ 4

IAl

rU'

-r

pr

-r

_T

r

_

L_
W-0 1

C*9

pA2 I

MATCHO

MATCH1
T _

MATCH2

A

,4

A

'T~ MATCH3

MATCH5T A

MATCH6 ,

MATCH7T . 4

MATCH8

MATCH9

MATCH 10

MATCH11

MATCH12

MATCH134

MATCH1 4

MATCH15A

IA3

Figure 3.18 Priority Address Encoder

50

phil

I
L.r LvdI

1

L-r-4
r_

r

r.

-r

Li D

I_r-

r__!S-LT-

LT-

tr

rI
CAM_ HT

-r-#r

I-r-*

T-(In-

-L-

ro"I

1.4-1

1-r4 ---

.

t-r

L-r-*

LX-*a=

-r

-L.

I

I

i

L

71

I

. I -a I II

The ADDR lines are running vertically and arts precharged high during phil. In order to

exploit the idiosynchrocy of the binary representation, the most significant bit (MSB) of the

address (i.e., A3 in Figure 3.18) is encoded first. Then the random logic can be designed to

depend on the value of the more significant address lines. For example, the logic MATCH14

on AO depends on A3, A2, A1, and MATCH14. A more general case is that if any of the top

eight MATCH lines (encoding binary addresses ranged from 0 to 7, whose MSB's, i.e., A3,

in the four-bit address are 0) is asserted, the logic for the bottom eight MATCH lines will be

turned off since it is ANDed with A3. With the appropriate placement of logic, the construct is

indeed able to encode the lowest address in the case of multiple responses.

Note that the MATCH lines from the CAM Word Array are buffered by inverters before

they are evaluated. There are two reasons for doing so. First, the MATCH lines are wired-

ANDed, so they need buffers to sustain their logic levels. Second, for the encoding logic to

work, the MATCH lines are assumed positive logic. But in the CAM Array, MATCH lines are

pulled low if matches occur. The use of inverters will reverse them to the correct polarity.

The leftmost column in Figure 3.18 is responsible for generating the CAM_HIT signal.

It is again a wire-ORed structure precharged high during phil. If any one of the MATCH lines

is high, CAM_HIT will be pulled low. This structure is placed in the Row Address Encoder

ONLY.

51

3.1.7 Timing Analysis
Of the four operation modes: NIT, COMPARE, OUTPUT, and UPDATE, the COMPARE

cycle has the highest latency and thus it governs the clock frequency under which the VLSM

can run. This is not surprising at all since both the matching and address priority encoding, the

core processes of the VLSM, are accomplished in this cycle. Let us examine the events that

occur in this stage and see if the latency can be reduced.

First, there is a delay for each CAM Match Cell to generate a valid M signal (refer to

Figure 3.1 1) which is logic high if the cell content matches the presented data, and logic low

otherwise. Next, Hitn-l,t-11, M, and phi2 are ANDed to determine the signal X (refer to

Figure 3.12) which, when positive, will pull down the H_MATCH line2 that is wire-ANDed

with every cell in the same row. For a large array, the line capacitance is approximately the

sum of each pulldown gate capacitance, so it could take a relatively long time to discharge.

Next, the Row Address Encoder takes these H_MATCH lines as inputs and produces a

binary address corresponding to the lowest-numbered H_MATCH line that was pulled down.

The address then enters the Row Decoder. After certain delay, the ENCODE lines are

connected with the outputs of the Row Decoder. Note that only one ENCODE line is asserted.

The COMPARE cycle continues with the generation of V_MATCH lines. On the row enabled

by ENCODE, the match result is ANDed with ENCODE. If positive, the V_MATCH line for

that column will be pulled low. Finally, the column address is encoded after valid V_MATCH

lines enter the Column Address Encoder. Figure 3.17 shows the sequence of events described

in this paragraph, and Figure 3.19 summarizes the propagation delays for the COMPARE

cycle.

It is clear that address priority encoding consumes the most time. If we take a step back

and recall the VLSM algorithm, we realize that we don't really need to find out the address until

we are finished with the COMPARE cycles. We encode the address during each COMPARE

cycle just because we are not sure when the a MISS will occur. Therefore, we can take

advantage of this fact to reduce the latency by pipelining the address encoding process. For

example, we can encode the row and column addresses in two different clock cycles instead of

in the same cycle. We can start another COMPARE cycle (if necessary) as soon as the row

address has been encoded and CAMHIT asserted. The generation of ENCODE and

subsequent column address encoding can take place in the next COMPARE cycle, at the same

1 This is the match result of the left cell in the previous cycle.
2 Remember that H_MATCH lines are precharged high during phil. Evaluation occurs
during phi2.

52

time the new row address is being generated. The events can be broken in half as shown in the

bottom of Figure 3.19.

Note: M, H MATCH, ROW_ADR, CAMHIT, V_MATCH, and COL ADR lines are
precharged high during phil. ENCODE is normally low.

F

Output address is valid after this point

M line pull-down delay
AND gate delay
Horizontal MATCH line pull-down delay
Row Address Encoder delay

Row Address Decoder delay
AND gate + Vertical MATCH lines
Column Address Encoder delay

pull-down delay

Delays 4, 5, and 7 are believed to be more significant.

Figure 3.19 COMPARE Cycle Timing Diagram

53

phil [

First 2.
Half 3.

4.

Second 5
Half 6'

7.

_~~~~~~~~~~~~ I I

Ill I II

Figure 3.20 shows an example of the pipelining process. After COMPARE cycle 1, we

learn that CAM_HIT is asserted, so we continue with another COMPARE cycle. After Cycle

3, CAM HIT is not asserted. Therefore, we issue an OUTPUT command to read out the

address in Cycle 4. Note that the address we want is the address of the CAM cell that had a hit

in Cycle 2, not Cycle 3. As a result, we must buffer at least two most recent row addresses.

This explains why there are two layers of flip flops (FF's) for row address in the upper

righthand corner of Figure 3.8. Column address only has a single layer of FF because the row

address is always produced one clock cycle ahead of the column address.

Another requirement to make pipelining work is to buffer the match results. This is

reflected in Figure 3.12 in which HITn,t-1, the delayed match result, rather than HITn, is used

as an input to the AND gate that produces the signal to pull down V_MATCH. This does not

incur any extra hardware cost because the FF is there already.

COMPARE COMPARE COMPARE OUTPUT

CAM HIT CAM HIT CAMHT Fi

gure 3.20 Pipelining of Row and Column Address Encoding

In short, pipelining the address encoding process effectively cuts the latency of the

COMPARE cycle in half. As Figure 3.20 shows, the row address encoding and of a given

cycle and the column address encoding of the previous cycle can take place at the same time.

Surprisingly, no additional hardware is required except the extra set of FF's to buffer the row

address.

Other Blocks

The Row and Column Address Decoders, Data Buffers, and Function Mode Decoder are

standard logic so they will not be discussed here.

54

3.1.8 Design Evaluation
Since this thesis concentrates on the architectural and logic level designs only, we can only

estimate the area and throughput. While the numbers will not be exact, they at least give us

some insight on the cost and performance of the VLSM device. We will compare the area and

throughput against those of the hashing data strucZure because it takes the least amount of area

among the data structures surveyed in Chapter 2.

3.1.8.1 VLSM Area Estimate

In estimating the areas of the major blocks of the VLSM, a process is assumed. Figure 3.21

shows the floor plan and the dimension of the VLSM.

DATA ' 16 8 Co
CO

250

4 1

I I I

10
ADDRESS

6

COLUMN DECODER 0o

0oCOLUMN ENCODER

A

2250 pm _tT '6

Figure 3.21 VLSM Floor Plan and Area Estimate

The layout of the basic components is similar to that of a RAM, with Data Buffer, Row

Decoder and Column Decoder on the sides. However, sense amplifiers are not included since

55

DATA BUFFER o,,,

1 600

CAM ARRAY

64 ND
o

16 X 8

16 X 8

00

R
O
W

E
N

C
O
D

E

R

300

R

0
W

D

E

C
0
D

E

R

',4N0
0
0r-
3

.. ,1,0

-r DDRID~

.... II I I II Ill I

_ -

I I Ill~~~~~~~~~~~~

- --

A

bI

I1

I
r W · F

reading from the CAM cells is not necessary for the ZL77 encoding application. The CAM

Word Array is arranged in 64 by 16 fashion for a total of 1024 Word Cells; naturally it is the

largest component of the VLSM.

The non-bold numbers in Figure 3.21 are dimensions in gm. Note that 1 mil = 25.4

gm. All in all, the VLSM structure is estimated to take 276 mil x 88 mil = 24,482 mil2 - This

is a little more than a 4 Kbytes static RAM would takel! Recall from Chapter 2 that the

hashing method needs about 5.25 Kbytes RAM for the same 1 Kbytes history buffer.

Therefore, as long as the performance of the VLSM, which we will analyze in the next section,

is better than hashing, then the VLSM structure is feasible and more efficient on an area basis.

6.1.8.2 VLSM Throughput Estimate

Using the VLSM, the number of cycles required to produce a codeword for each string is

directly proportional to the match length. The following summarizes the cycles necessary per

string, where n is the match length of any given string:

1 INIT + (n+l) COMPARE + 1 OUTPUT + max(n,1) UPDATE= max{(2n+3), 4} cycles.

For example, to encode a string whose longest match in the history buffer is 3, only 9

cycles are required. Of these cycles, INIT, OUTPUT, and one COMPARE cycles are fixed

overhead; this is how the 3 comes about in the expression. We need the extra COMPARE

cycle to find out that there is a miss. The overhead becomes significant in the case of no

match, as 4 cycles are consumed to encode a character. An UPDATE is still necessary even

there is no match; this is why the expression max(n,1) is there. As the match length increases,

the encoding speed will approach two cycles per input character.

Some assumptions must be made before the throughput can be estimated. First, we

assume that the compression ratio is 2. Since the codeword length used in the implementation

is 14 bits, it is reasonable to say that the VLSM on average replaces every 28 bits of source

data with a 14-bit codeword. 28 bits are equivalent to 3.5 8-bit characters, so we assume that

the average match length is 3.5 characters. Putting this number for n in the above formula, 10

cycles are required to encode 3.5 input characters. We can extend this to any number of data

samples. In general, let N be the number of source characters. Then the number of cycles

needed to encode N input characters follows the formula: (N/3.5) * 10. For example, to

encode 100 input characters, it will need (100/3.5) * 10 = 285 cycles. Based on these

1 Assuming lgm, two-layer metal CMOS technology, 4 Kbytes SRAM will take about 1160
mil x 140 mil = 22,400 mil 2

56

assumptions, the plot in Figure 3.22 (a) is derived as a function of the VLSM cycle time, or

clock period:

lWO
1uu

a

0.,

_' 14U
'" 100

0.

14
10

Throughput = (2.8/Period) * 109

· · w , I

1 0 20 100 200 1000

Period (ns)

Figure 3.22 (a) VLSM input throughput vs. VLSM cycle time

The plot suggests that even if the cycle time is 200 ns, the VLSM can still sustain 14

megabits per second (Mbps) input rate!! Initial estimate based on the design reveals that the

VLSM cycle time is about 40 ns. This will provide a 70 Mbps input throughput. In other

words, the VLSM can sustain an input rate of 8.75 million characters per second. These

valuse are derived from the maximum possible performance available from the VLSM device

iteself. The actual throughput of the Data Compression Engine depends on applications and the

ability to keep the VLSM active.

On the other hand, the hashing method requires about 225 cycles per character. Using a

40 ns cycle time, this translates into 0.11 million input characters per second. Therefore, the

VLSM is about 81 times faster hashing. Appendix A lists the code from which the hashing

cycle time estimate is derived.

It is interesting to see how changes in compression ratio will affect the VLSM input

throughput. Figure 3.22 (b) shows a plot for cycle time fixed to 50ns and lOOns, respectively,

while the compression ratid varies from 1.5 to 2.3. Fortunately, the curves are relatively flat;

this demonstrates that even under low compression ratio, the input throughput is still very

high. However, the curves suggest that higher compression ratio results in higher throughput.

57

X X X X m 90~EP BI
* VLSM Period = 50ns
m VLSM Period = lOOns

20
1.6 1.8 2.0 2.2

Compression Ratio
2.4

Figure 3.22 (b) VLSM input throughput vs. compression ratio

By combining the VLSM with other elements of a DC Engine on the same chip, the

input throughput derived in this section may be achieved. These elements are discussed in the

following sections.

58

60

C,,

a.

0
M.0U
00

E-A

50

40

30

M

3.2 THE BIT PACKER
The goal of the Bit Packer is to pack an arbitrary number of bits into a byte or multi-byte

quantity. Bit packing normally is accomplished in software using the SHIFT and OR

instructions. Another alternative would be making the Bit Packer a hardware peripheral to

offload the central processing unit (CPU). In the more extreme case, if the CPU is entirely

absent, the Bit Packer would have to be a standalone device controlled by a finite state

machine. This is the framework under which the Bit Packer is designed.

There are parallel and serial approaches to implement this device with tradeoffs in

hardware complexity and speed. The major component in the parallel approach will be the

barrel shifter, which can shift parallel bits in one cycle. However, it takes a lot of area and has

a noticeable propagation delay relative to a regular shift register. Therefore, the serial approach

is favored in the thesis and is discussed in the following sections. It is believed that although

the serial approach needs time proportional to the number of input bits to be packed, the

simplicity of the logic required allows very high speed clocking, thus the overall performance

should be comparable to that of the parallel approach.

3.2.1 Functional Description
Figure 3.23 sketches the Bit Packer functional block. For the purpose of the thesis, the

number of input bits is the fixed codeword length, 14, and the output is in byte, or 8 bits. The

input control signals are shown in Figure 3.23. Bit Packer is normally in standby mode.

When BP is asserted, the bit packing process begins. BP_RESET will clear the internal states

of the Bit Packer and send it to the standby mode. FLUSH is a signal that when asserted will

force the Bit Packer to output a byte, whether it's packed or not. Finally, WRRDY is an

input signal from an external storage device that indicates if the packed data can be stored

away. The storage device is assumed to be a first-in-first-out (FIFO) memory.

BP

BP RESET

FLUSH

WR RDY

Packed Data

BP RDY

WR

Figure 3.23 Bit Packer Functional Block

59

The outputs consist of Packed Data[7:0], BP_RDY, and WR. BPRDY indicates that

the Bit Packer is ready to take in another codeword. WR handshakes with the external storage

device to which the packed data is output. Finally, two non-overlapping clock signals phil and

phi2 are used to clock the internal circuit.

3.2.2 Implementation
The Bit Packer is made up of counters, shift registers, tri-stated latch, and a simple finite state

machine (FSM). Figure 3.24 shows the architecture. Conceptually, the codeword is loaded

into a codeword shift register, which is connected with another 8-bit static shift register, also

known as the Byte Template. The arrow indicates the direction of shift. A Countdown

Counter preset to binary 14 is used to track the number of codeword bits that has been shifted

and is decremented by one with each shift. The Countdown Counter has its inputs hard-wired

to a tri-stated binary constant 1110 (14 decimal). When this counter eventually reaches zero,

all 14 bits have been shifted, so no more shifting will take place until a new codeword arrives.

A Count-to-8 Counter, on the other hand, is used to detect when 8 bits have been shifted into

the Byte Template. When it is full, WR is asserted as the 8-bit quantity latched into the tri-

stated latch is ready for output.
Codeword

I

Figure 3.24. Bit Packer Block Diagram

Figure 3.25 shows the state diagram for the Bit Packer Controller. It has six states, each

denoted by the state variables (S2 S1 SO). The Bit Packer is idle in (1 0 0) as BP RDY is

60

asserted. Note that BP_RDY is also used as the parallel-load-enable for the codeword shift

register, output-enable for the binary constant, and preset for the Countdown Counter.

The transition to state (O 0 1) from state (1 0 0) is caused by the assertion of BP which is

the output of some global FSM. In this new state, the codeword shift register has the

codeword and EN is asserted. EN is the signal that clocks the counters and shift-enables the

shift registers, as shown in Figure 3.24. This state repeats until either the Countdown or

Count-to-8 Counter reaches zero. If Count-to-8 Counter reaches zero (indicated by CONT*)

and WR_RDY is asserted, a transition from (O 0 1) to (O 1 1) will take place. However, if

WR_RDY is not asserted, then a (O 1 0) will be the new state, which is basically a wait state.

It will jump to (O 1 1) as soon as WR_RDY becomes active. If during (O 0 1) Countdown

Counter reaches zero (indicated by MORE*) and Count-to-8 Counter is non-zero, a transition

to state (1 0 O0) will occur.

WR RDY*

Figure 3.25 State Diagram for the Bit Packer Controller

In state (O 1 1), WR is asserted. It serves as the latch-enable of the tri-stated latch

which latches the content of the Byte Template. The 8-bit data by design is valid in this state

and ready to be stored away. WR also output-enables the tri-stated latch. Finally, it signals to

the external device that the data is ready. The next state transition depends on the value of

MORE, as can be seen in Figure 3.25.

Inputs to the FSM are CONT, MORE, BP, BP_RESET, FLUSH, WR_RDY, and three

state variables S2, S1 and SO. When BP_RESET is asserted, state (0 0 0) will be the next state

regardless of the current state. CLR is asserted during this state. In state (1 0 0), if FLUSH is

asserted, a transition to state (1 1 0) will take place. The assertion of WR will force the content

61

of the Byte Template to be written into the external FIFO. FLUSH is asserted by some global

FSM in response to the end of packet or any other special circumstances.

Current implementation of the Bit Packer is not flexible, i.e., it can only bit-pack 14-bit

codeword into 8-bit. However, it can easily be modified to accomodate variable-length

codewords by explicitly loading in the length of the codeword to the Countdown register

instead of hardwiring its inputs to 1110 (decimal 14). The state machine does not even have to

be changed. On the other hand, if the packed data width needs to go up to 16, hardware

modifications are necessary. Simply, a Count-to-16 counter is required, and the Byte Template

shift register, packed data bus, and tri-stated latch have to be expanded to 16 bits. The state

machine remains unchanged

3.2.3 Design Evaluation

3.2.3.1 Area Estimate

An area estimate based on the transistor counts, interconnections, and FSM logic reveals that

about 600 mil2 is required by the Bit Packer.

3.2.3.2 Throughput Estimate
It can be determined that the Bit Packer needs 15 cycles in this implementation to pack a 14-bit

codeword. This is assuming that the wait state is unnecessary, i.e., WR_RDY is always

asserted. One of the cycles is used to output the Byte Template so it can be stored away. The

VLSM will output a codeword as frequent as every four cycles1 ; therefore, the Bit Packer

requires a clock of four times the frequency of the VLSM clock in order to handle the

throughput of the VLSM without delay. However, the use of BP_RDY as handshake will

ensure proper flow control. The Bit Packer clocking requirement does not really have to be

met unless the full throughput of the VLSM is needed.

The throughput of the Bit Packer can be degraded if the i/o device becomes the

bottleneck. For example, the output FIFO might be full already while the packed data is

produced by the Bit Packer. It will have to wait until the FIFO has room. This is reflected by

the use of wait state, when WR RDY is not asserted. In short, the throughput of the Bit

Packer also depends on the design of the output storage device.

1 This is the minimum number of cycles each input string encoding will need, specifically in
the case of no match at all.

62

3.3 BIT UNPACKER
This section discusses the design detail of the Bit Unpacker, which, as the name suggests,

reverses the Bit Packer operations.

3.3.1 Functional Description
Figure 3.26 shows the Bit Unpacker Functional Block, which takes in 8-bit data and outputs a

14-bit codeword. Obviously, it needs to read two 8-bit data from the external storage device

before the 14-bit unpacked data can be produced. Bit Unpacker uses BUP and BUP RDY to

handshake with the outside world. When BUP_RDY is asserted, the external master is

allowed to assert BUP to obtain an unpacked data. RD and RD_RDY are the two interface

signals between the Bit Unpacker and external storage device. If the latter asserts RD_RDY,

then the former can assert RD to fetch a byte from the FIFO. Finally, DUP_RESET is used to

reset the Bit Unpacker.

From Decode Input FIFO

k
BUPRESET -E

BUP -*

RDRDY - ,

14
,- Unpacked Data

-* BlUPRDY
- RD

BUP phil tBUPphi2

Figure 3.26 -Bit Unpacker Functional Block

3.3.2 Implementation
Figure 3.27 illustrates the major blocks of the Bit Unpacker. Its components are remarkably

similar to those of the Bit Packer, but the operation is exactly the opposite. For example, the

Bit Packer takes in 14-bit codewords and bundles them into 8-bit quantities, while the Bit

Unpacker takes in bundles of 8-bit data and produces 14-bit codewords.

In order to provide the 14-bit codeword immediately upon the request from the external

master, the Bit Unpacker is designed such that it always has a 14-bit codeword ready for

output. This requires that the Bit Unpacker prefetches the bundles of 8-bit data from the FIFO

and serially shifts them into the static shift register, as shown in Figure 3.27.

63

Bit Unpacker

v

From Decode Input FIFO

'8

Bshift enable shift er

Count-to-8 Countdown8-bit Static Shift R -bit.Staic
Counter Counter ldenable (RD)E BUP RESETs

N L/BUP_RESET BUP r-
YMORE - I

ICONTBi npckr Unpac
Bit npacker

BUP RESET ... Controler
BUP - Combinational

RDRDY - Logic

E...
S2-SO S2S

nable

(.-)

14
ked Data

BUP RDY v
RD

Figure 3.27 Bit Unpacker Block Diagram

The Countdown Counter can be preset to 14, the length of the codeword, by either

BUP_RESET or BUP_RDY. As each bit is shifted into the 14-bit static shift register, the

Counter is decremented. When it reaches zero, MORE* is asserted. The Count-to-8 Counter,

on the other hand, is used to decide when a new 8-bit data should be fetched from the FIFO. It

is incremented every time a bit is shifted into the 14-bit static shift register. The counter

generates CONT* every eight shifts. Finally, the counters and shift registers are clocked and

shift-enabled, respectively, by the rising edge of the signal EN.

Figure 3.28 displays the Bit Unpacker Controller state diagram. There are six states, so three

state variables (S2, S1, SO) are required. In the default state (0 0 0), BUP_RDY is asserted to

indicate that a 14-bit codeword is ready for output upon the assertion of BUP. As soon as

BUP is true, a transition to state (0 1) takes place, as the codeword contained in the static

shift register is output to the data bus by the assertion of OE, which output-enables the tri-state.

The Bit Unpacker then enters state (0 1 1) and starts the process of refilling the 14-bit static

shift register by shifting in the remaining bits of the 8-bit static shift register. When the data is

exhausted, as indicated by CONT*, a new byte is read from the FIFO. The Bit Unpacker FSM

has to make sure that RD RDY is true before asserting RD to get a byte. RD also load-enables

the 8-bit static shift register. The Bit Unpacker returns to the default state when MORE* is

asserted, which implies that the 14-bit static shift register is filled.

64

_-

Er~

RD RDY*

Figure 3.28 State Diagram for the Bit Unpacker Controller

Finally, in the reset state (1 0 0), the Count-to-8 Counter is cleared and the Countdown

Counter is preset to 14. Then the Bit Unpacker prefetches the data to fill up the 14-bit static

shift register before returning to the default state to assert BUPRDY.

3.3.3 Design Evaluation

3.3.3.1 Area Estimate

Since the basic components and the size of FSM are similar to those of Bit Packer, Bit

Unpacker is also estimated to take 600 mil2 , assuming the 1 m, two-layer metal CMOS

technology.

3.3.3.2 Throughput Estimate
This design of Bit Unpacker allows bit unpacking to take place before the request for bit

unpacking is received; therefore, the external master can obtain the 14-bit codeword instantly as

long as BUP_RDY is true. In addition, the Bit Unpacker handshakes directly with the FIFO

so that the external master does not have to worry about buffer-management. On the other

hand, the disadvantage of this approach is that only fixed-length codewords can be extracted,

since the width of the static shift register is fixed. Microprogrammed approach seems to be the

solution to unpack variable-length codeword, but at the expense of more clock cycles.

Therefore, there is a tradeoff in flexibility and throughput between these two approaches.

65

Normally, a 14-bit codeword can be produced about every 16 cycles. However, like the

Bit Packer, the throughput depends on the data I/O devices. If the Bit Unpacker asks for an 8-

bit quantity from FIFO memory but it is empty, then the Bit Unpacker has to wait. This is

reflected by state (1 1 0), which is entered when RDRDY is not asserted.

66

CHAPTER 4

CHIP ARCHITECTURE

This chapter covers the Data Compression Engine chip level architecture. Section 4.1 sketches

a hypothetical system environment for the Data Compression Engine. This then leads to a

proposed chip interface mechanism described in Section 4.2. Finally, Section 4.3 outlines the

functional blocks of the Engine based on a finite state machine approach.

4.1 SYSTEM ENVIRONMENT
The Data Compression Engine (DC Engine) can be used under two different environments.

For example, it can be attached directly to the communication channel and process the data in

real time. For encoding, the host processor provides the user data; the DC Engine will

compress and transmit the data onto the channel. For decoding, the DC Engine receives the

compressed data from the communication channel and decompresses them; the host processor

then obtain the decoded data from the DC Engine. This arrangement appears to have low

memory overhead since the data enters and exits the DC Engine in real time. In addition, the

throughput of the VLSM can be fully utilized since the input data tends to follow a constant

rate.

However, if the communication channel is time-multiplexed or frequency-multiplexed,

which is often the case, then data reception and transmission will require additional processing.

Moreover, in a packet switched network, only the data field of a packet is compressed or

decompressed; the header and flag fields are normally left intact. This suggests that the DC

Engine must identify which portion of the input data should be processed. In order to avoid

these processing overheads, a generic system environment is assumed for the thesis as

sketched in Figure 4.1. For a more concrete description, the host processor is taken to be a

Motorola 68020, with 32-bit address and data buses.

In this arrangement, the data to be processed by the DC Engine is stored in the shared

memory, which can be accessed by both the CPU and the DC Engine. The DC Engine fetches

67

the source data from the memory, encodes or decodes them, then stores the result back to the

shared memory.

Figure 4.1 Data Compression Engine System Interconnection

One clear disadvantage of this scheme is the large memory transfer overhead, since both

the data input and output of the DC Engine require the use of the system data bus, which is

shared with the CPU. If very high system throughput is desired, the system i/o could become

the bottleneck. One solution is to use a dual port device for the shared memory, so that the

CPU and the DC Engine can access the memory independently. The penalty for this approach,

however, is the higher cost, particularly if the shared memory is huge. However, the system

performance issue is beyond the scope of the thesis; the hypothetical system environment is

presented in this section to shed some light on the interface mechanism in which the DC Engine

should support.

4.2 INTERFACE MECHANISM
This section attempts to formulate a communication scheme between the external processor

and the DC Engine based on the system environment presented in the last section. The major

criterion in devising the scheme is to minimize the overhead required by the external processor.

In other words, the DC Engine should be as self-contained as possible so that the interface with

the external processor will be minimum.

A shared memory approach is proposed and the data structures that support it are fully

described. Next, the internal register set that is required as a result of the data structures in the

shared memory is proposed. Section 4.2.3 explains the interface mechanism as well as the

sequences of events that are necessary to set up the interface. Finally, Section 4.2.4 suggests a

non-exhaustive set of commands that the external processor may issue to the DC Engine.

68

4.2.1 Shared Memory Data Structures
Shared memory is the communication vehicle between the DC Engine and the external

processor (EP). It not only contains the packets, but also the information about where the

packets are stored in memory. Figure 4.2 shows the proposed functional partition of the

shared memory:
'IO lllll

Figure 4.2 Proposed Shared Memory Data Structures

The Packet Queue consists of several Packet Description Tables (PDT), each contains

essential information such as the buffer size as well as the location and length of the packet to

be processed by the DC Engine. The Packet Queue is organized in a circular buffer fashion,

as shown in Figure 4.3. Both the EP and the DC Engine access the Queue in sequential order,

starting from PDT #1. After PDT #N is accessed, PDT #1 will be accessed next.

A- r 1. on1 : 'L1_1- -l
iracKet Lescnrpnon I aDie C1

Packet Description Table #2

Packet Derintinn Tahle IN

Figure 4.3 Packet Queue Organization

Two data structures are proposed for the PDT. In Option A, it is assumed that the EP

supplies not only the location of the source packet but also the storage location of the processed

packets. Figure 4.4 illustrates the data structure that supports this scheme. The Buffer Pointer

contains the starting address of the packet to be processed. The Packet Length indicates the

length of the packet in bytes. The Buffer Size reveals the size of the current buffer in bytes.

The Output Buffer Pointer is assigned by the EP. The DC Engine will store the processed

69

Packet Queue

Output Packet Buffer

Free Memory
I

packet starting at this location. The Output Packet Length is supplied by the DC Engine so that

the EP knows the length of the processed packet. Obviously some cautions must be taken to

ensure that the DC Engine won't overwrite any data. This arrangement alleviates the DC

Engine's task to locate storage area, but this also violates the principle of minimizing the EP's

overhead.

15 0

Packet
Description
Table Pointer

Status

Buffer Pointer (high word)

Buffer Pointer (low word)
Packet Length

Buffer Size

Output Buffer Pointer (high word) -

Output Buffer Pointer (low word) -

Output Packet Length

Packet
ft-ee memory

Packet
(Output Buf

Figure 4.4 Packet Description Table Data Structure For Option A

In Option B, the DC Engine determines where to store the processed packets. This

could be accomplished by allocating a restricted area in the shared memory called the Output

Packet Buffer, as shown in Figure 4.2. Within that memory area, there are several smaller

buffers of equal sizes, and each has its status information concerning whether it is free or not.

The DC Engine will have to check the buffer status before writing into the buffer. If the

processed packet is too large to fit in a buffer, more than one buffer can be used. At the same

time, the EP has to update the status portion to mark it free after it reads the buffer. It is

expected that the buffers will be filled or emptied in order, much like the way the Packet Queue

is accessed.

This scheme effectively alleviates the EP's loading on data compression related output

buffer management. The second advantage of the scheme is that the memory space for the the

PDT is reduced almost in half, as shown in Figure 4.5. The EP first supplies the packet source

address and length in the Buffer Pointer and Packet Length fields, respectively. Later, the DC

Engine will supply the encoded packet address and length in the same Buffer Pointer and

Packet Length fields by overwriting the source information. Obviously, it is assumed that the

EP does not need to know the location of the source packets anymore.

70

Packet Status

Description Buffer Pointer (high word)Table Pointer Packe
Buffer Pointer (low word)

Packet Length

Buffer Size

Figure 4.5 Packet Description Table Data Structure For Option B

The first word in the PDT is the Status, which carries information about the packet. The

status bit assignment is suggested in Figure 4.6. An explanation about each status bit then

follows.

15 // 9 8 7 6 5 4 3 2 1 0

Reseived #of Valid Bits Type E/D* End Sta New

Figure 4.6 Status Bit Assignment

* NEW indicates whether the packet is current or not. It is set by the EP and reset by the DC

Engine after this packet is processed.

* START tells if the packet starts at the current buffer. It is used for buffer chaining purpose,

which is required if the packet is too large to fit in a single buffer.

* END tells if the current buffer contains the end of a packet. If both START and END bits are

set in a given Status Word, then a whole packet is able to fit in a buffer.

* E/D* indicates whether the packet is to be encoded or decoded. A 0 indicates that it is to be

decoded. A 1 indicates that it is to be encoded.

* TYPE is presently set to be a 2-bit quantity which allows the specification of up to four data

compression algorithms that the packet is to be processed. In the current implementation,

TYPE has a default value of zero since only the ZL77 algorithm will be supported by the DC

Engine.

* # of VALID BITS shows the number of valid bits the last byte of the packet contains. When

the packets are encoded (compressed), it is likely that the last byte has been padded with

dummy bits. On the other hand, when the packets are decoded, the decoder needs to know

the number of useful bits the last byte contains. Therefore, the remote Encoder writes into

this field and the local Decoder reads from it.

71

15 O

It is fundamental to require that the EP fills the PDTs in the Packet Queue in sequential

order and wraps around when the end of the queue is reached. In addition, before the EP

writes the information for a packet, it must check the NEW bit field of the Status of the current

PDT. If NEW is still set, it means that the DC Engine has not finished processing that packet.

As a result, the EP can not overwrite the current PDT and must wait or try again later. This

scheme ensures the proper flow control of the Packet Queue.

Based on the requirement proposed above, the DC Engine can process the packets in

order by going down the Packet Queue. When the DC Engine detects that the packet is not

current, i.e., NEW is not set, it can be sure that no more packet is to be encoded for the

moment. Similarly, if later the EP has more packets, it will fill in the PDT where the DC

Engine most recently finds it not current. This is an important restriction that must be

followed Otherwise, the EP and the DC Engine will be out of synchronization.

4.2.2 Internal Registers
Based on the Shared Memory data structures, the following set of internal registers shown in

Figure 4.7 is necessary for efficient communication.

Command

Interrupt Vector

Semaphore

Base Packet Queue Pointer

Packet Queue Size

Status

Packet Length

Buffer Size

Base Output Buffer Pointer

Output Buffer Size

Number of Output Buffers

Status Register Pointer

Output Buffer Pointer

Packet Queue Pointer

Figure 4.7 Proposed Internal Register Set

72

Data

Of all these registers, only the first four are directly accessable to the EP. They are

selected by the Al and AO, the lowest two address inputs of the DC Engine. The Data Register

is used to load in values for the internal registers. The Command Register allows the EP to

issue different commands to the DC Engine, such as initialization, load Buffer Pointer, Stop,

Start, etc. The Semaphore Register is read by the EP and written by the DC Engine. Before

the EP issues a command, it will first check the Semaphore Register. If it contains a 0, then

the DC Engine is ready to accept a command. Otherwise, the EP has to wait. Each time the DC

Engine reads the command, it will write a 1 to the Semaphore Register. When the command is

finished, the DC Engine writes a 0 to it.1

As each data byte is read in, such as in a direct memory access (DMA) cycle, the Buffer

Pointer is auto-incremented while the Buffer Length is decremented. These activities are

coordinated by the DMA controller which will be explored in Section 4.3.4. The Base Packet

Queue Pointer and the Base Output Buffer Pointer contain the starting addresses of those two

data structures. The Packet Queue Size tells the number of PDTs in the Packet Queue.

The Status Register Pointer is reserved for future use. For example, if more information

needs to be communicated between the EP and the DC Engine, the pointer can be used to point

to a memory space where the information resides. The EP can issue a READ STATUS

command to tell the DC Engine where to dump its internal registers contents before the READ

INTERNAL REGISTER command is issued.

The Interrupt Vector Register can be read or written by both the EP and the DC Engine.

Its use will be described in the next Section. Note that this internal register set is not complete.

A more detailed look might reveal that more registers are necessary.

4.2.3 Interface Scenario
When the system is powered up, the EP is responsible for initializing the DC Engine.

The major tasks include loading the Engine with the Packet Queue Pointer, Packet Queue Size

(the number of PDTs in the Packet Queue), Output Packet Buffer Pointer (if Encode Table

Option B is chosen), and Output Packet Queue Size. The first pointer contains the starting

addresses of the Packet Queue. Each of the PDT in the Queue will be referenced by a constant

offset from this starting address.

In the normal operating mode, the DC Engine checks for the Status portion of the current

PDT. If the NEW bit is set, the DC Engine will fetch the Buffer Pointer, Buffer Size, and

Packet Length into appropriate internal registers and then DMA the data into its internal buffer.

Since the PDTs in the Queues are written by the EP sequentially, the DC Engine, when

1 This concept is similar to Motorola X.25 Protocol Controller Chip's interface with external processor.

73

finished with the current packet, resets the NEW bit. It will then fetch the next PDT Status

word and check to find out if there are more packets to be processed. On the other hand, the
EP also keeps track of whether the processed packets have been fetched. When the EP checks

the Status and detects that NEW is reset, it will fetch the processed packet and goes to the next

PDT.

When the DC Engine exhausts the packets, it will interrupt the EP. There are two
possibilities as to how the EP signals to the DC Engine for the arrival of new packets. The first

solution is to have the DC Engine poll the same PDT until its Status Word's NEW bit is set by

the EP. This requires the least amount of overhead for the EP, but the polling by the DC
Engine will consume the system bus bandwidth since the DC Engine needs to load the Status

word from the shared memory into its internal register for bit field checking. The other choice

is to have the EP interrupt the DC Engine when new packets become available for processing.

This can be accomplished by writing appropriate information into the Interrupt Vector Register.

The DC Engine will check the Interrupt Vector Register to decode the message. In this

scheme, external polling is unnecessary, but internal polling of the Interrupt Vector Register is
required.

4.2.4 Command Set
This section only gives a flavor of what commands might be necessary to establish the interface

mechanism or to control the activities of the DC Engine. At present, there is no way to come
up with a more complete set of commands because we don't have the exact data structures nor
system functional specification, which really depends on the environment the DC Engine is

situated. Some useful and generic commands are listed below:

Reset

Initialize

Dump Internal Registers

Read DC Engine Status

Stop

Read Status

Note: The EP issues command only when the Semaphore Register is 0. The 8-bit

command is loaded into the Command Register via the data lines D7-DO.

74

4.3 FINITE STATE MACHINE ARCHITECTURE
In order to discover the maximum throughput of the DC Engine utilizing the VLSM structure, a

totally dedicated hardware approach is taken to encode and decode data. This approach

requires exploiting the regularities and peculiarities of the data compression algorithm used,

which, in this case, is a ZL77 scheme with fixed-length codeword encoding and decoding and

without the innovation character as part of the codeword.

By clearly defining the operations required at the expense of generality, the finite state

machine controlled data compression encoder and decoder becomes the optimal solution. Since

the use of the VLSM for string matching tremendously speeds up the encoding process and yet

requires very little control, treating it as a peripheral controlled by a microprogrammed

environment seems inefficient. Furthermore, decoding needs to be at least as fast as encoding.

If encoding is facilitated by the VLSM, decoding should be made fast with appropriate
hardware support as well, such as the bit unpacker.

Although the resulting architecture will be inflexible, it has its own great value, because

it allows us to get a sense for the maximum possible throughput of the DC Engine. In

addition, it shows one of the data paths most suitable for full duplex data compression

processor, and it would not be too difficult to modify the architecture to provide more

flexibility in the future. In short, this Section examines the extreme case, and the result can be

used to compare against the performance of a more general DC Engine in the future.

4.3.1 The DC Engine Architecture
Figure 4.8 shows the functional blocks of the DC Engine.

75

DECODE

Figure 4.8 DC Engine Functional Blocks

There are four major functional blocks: the Encoder, the Decoder, the DMA Controller,

and the Interface Manager. The Encoder performs the ZL77 encoding operation as explained in

Section 3.1.1. The Decoder decodes the ZL77 codewords. Both the Encoder and the Decoder

receive source data from and output processed data to the DMA Controller block. The DMA

Controller is in charge of chip level data input/output operation, including shared memory

address generation. Finally, the Interface Manager is responsible for interfacing with the

external processor, maintaining the shared memory data structure, providing the source or

destination addresses to the DMA Controller, and coordinating the Encoder, Decoder, and

DMA Controller blocks. It also contains the internal register set. The following sections will

describe the Encoder and Decoder architectures in detail. The DMA Controller and the Interface

Manager are presented only in terms of their general functionalities, not their implementations.

4.3.2 The Encoder
The Encoder in the ZL77 context is an entity that receives the original data and compresses

them into fixed-length codewords. The codeword length is 14 bits as a result of the

implementation parameters described in Section 2.2.4. On the functional level, the Encoder

obtains a maximum of 256 data bytes at a time from the DMA Controller. If the data portion of

a packet is longer than 256 bytes, then more than one block transfer is necessary. The

Interface Manager is responsible for coordinating this activity. As for the output, a maximum

of 128 bytes can be transferred to the DMA Controller from the Encoder. Again, if the

resulting codewords for a packet take up more than 128 bytes, more than one block transfer

will take place. The Encoder is responsible for informing the Interface Manager when the

encoding for a packet is finished, so that the DMA Controller can perform necessary chip level

input/output operation.

DATA IN DATA OUT

ENCODE El EEMPTY
EN STOP EOFULL
WREI - ENCODER EI RDY
RDEO EPBORDY

EN RESET

Figure 4.9 The Encoder Functional Block Diagram

76

Figure 4.9 shows the Encoder functional block diagram. ENCODE is asserted by the

Interface Manager to activate the Encoder, while EN_STOP is used to stop the Encoder, such

as when the last byte of the packet is being encoded. WR_EI and RD_EO come from the DMA

Controller to indicate whether data are to be written into or read from the Encoder.

EI EMPTY, EO_FULL, EI_RDY, and EO_RDY are status signals to the Interface Manager so

that it can coordinate the DMA Controller to perform appropriate i/o functions. EN_RESET is

used to reset the Encoder. Finally, DATA_IN is the input data bus, and DATA_OUT is the

output data bus, both are 8-bit wide.

4.3.2.1 The Encoder Implementation

The data path and the major components of the Encoder are illustrated in Figure 4.10. Data to

be encoded originates from the DMA Controller, enters the Encode Input FIFO (First In First

Out), and travels through the VLSM, the Bit Packer, and finally the Encode Output FIFO. The

Encoder is controlled by a finite state machine, called the Encoder FSM.

BP RDY

-_l ENCODER

Outputs F S M Inputs

BPRESET EN SOP

Figure 4.10 The Encoder Architecture

The Encode Input FIFO is 256-word deep and 8-bit wide. It is written by the DMA

Controller and is read by the Encoder. The FIFO is designed to minimize the memory

77

management overhead required by the external devices [37]. Therefore, it contains internal

logic for updating the FIFO address pointer every time a FIFO read or a write occurs. In

addition, the internal logic responds to asynchronous handshake signals as well as the

condition of the FIFO. For example, a byte can be read by asserting the RD signal provided

the RD_RDY signal is asserted by the FIFO. Similarly, WR is asserted by the external device

to write a byte into the FIFO as long as WR_RDY is positive. When the FIFO is empty or

almost empty, a signal EI_EMPTY will be generated to warn the external devices which use the

FIFO. In short, this FIFO design is well-suited for FSM control.

The use and control of the VLSM have been discussed extensively in Section 3.1.4, so

they will not be repeated here. The VLSM device is naturally the largest and the most

important component of the Encoder. The Encoder FSM generates a logical sequence of

control signals to the VLSM to implicitly find the longest match and produce the codeword.

The Bit Packer takes in 14-bit quantities and packs them into bytes. Its outputs are

connected directly to the Encode Output FIFO. The Bit Packer therefore is designed to

handshake with the FIFO as well. As can be seen, the 4-bit MATCH LENGTH and the 10-

bit Index are hard-wired as inputs to the Bit Packer. Note that the output of the Tri-state

Register could also be input to the Bit Packer. The Tri-state Register always latches the input

character presented to the VLSM. If there is no match at all, i.e., MATCH_LENGTH equals

to zero, then the character itself is stored in the Index portion of the codeword, as explained in

Section 2.2.2. In this case, the OUTPUT command of the VLSM is never issued by the

Encoder FSM; instead, the content of Tri-state Register is fed into the Bit Packer in addition to

MATCH_LENGTH, which is zero.

The Encode Output FIFO has the similar structure as the Encode Input FIFO, except that

it has only 128 bytes and is written by the Encoder (the Bit Packer, to be more specific) and

read by the DMA Controller. The Bit Packer generates WR signal to write into the FIFO. An

EO_FULL signal is generated when the FIFO is full or almost full.

The Length Counter is capable of counting up and down. CAM_HIT is the count-up

clock for the counter while DEC acts as the count-down clock. The four-bit output of the

Length Counter are inputs to the Bit Packer as well as an OR gate. When the outputs are all

zeroes, END* is asserted low. It is used as an input to the Encoder FSM and means different

things at different FSM states.

The Address Counter is essentially the history buffer pointer which always points to the

next position where a new input character is to be inserted into the VLSM. This 10-bit binary

counter is incremented by one whenever a UPDATE command for the VLSM is executed.

When it counts to 1023, it will return to zero and start again. The Address Counter is reset

when the CLR signal is asserted.

78

The Character Buffer can buffer up to 16 input characters. This is required because after

the codeword is generated, each encoded input character needs to be written into the VLSM.

The Buffer Counter is cleared before a new encoding cycle begins. As each input character is

read from the Encode Input FIFO, it is being presented to the VLSM as well as written into the

Character Buffer, and the Buffer Counter is incremented to point to the next position. When

the characters are about to be inserted into the VLSM, the Buffer Counter is reset to point to the

first character. During the UPDATE cycle, the Length Counter is decremented as each input

character is read from the Character Buffer and written into the VLSM location specified by the

Address Counter. The Encoder FSM will use the END* signal to determine when to conclude

the UPDATE activity.

In addition to controlling every component shown in Figure 4.10, the Encoder FSM

needs to worry about some special situations. For example, the COMPARE cycle stops when

a miss occurs, i.e., CAM_HIT is not asserted. At that point, the last character that is not part

of the longest match is still in the Tri-state Register. The FSM has to make sure that in the next

encoding cycle, the first character must come from the Tri-state Register, not from the FIFO.

Another important provision is that when the last character of the current packet has been

compared, a codeword must be generated even though the longest match has not been found.

In other words, the Encoder FSM must recognize the end of packet and break the normal

VLSM operating cycle by forcing a OUTPUT command to get the index. Together with the

content of the Length Counter, the codeword is fed to the Bit Packer. If one recalls from

Section 3.2.2, the Bit Packer FSM is able to respond to such condition, i.e., if the signal

EN_STOP, an input to the Bit Packer, is asserted, the Bit Packer will output the Byte Template

even though it is not filled with 8 bits yet.

Finally, the Encoder must be resetable, in which case all the counters will be cleared and

the FSM will be in standby mode. Figure 4.11 is a state diagram for the Encoder FSM. This

diagram illustrates the major activities of the Encoder.

79

Figure 4.11 Simplified Encoder FSM

4.3.2.2 The Alternative Encoder Architecture
If we closely examine the current Encoder design, we find it awkward having to buffer the

input characters in the Character Buffer and then read from it later to update the VLSM. It

would be cleaner and more elegant if the input character could be inserted into the VLSM right

after the COMPARE cycle, so that it does not have to be saved somewhere. Some silicon area

could be saved by eliminating the Character Counter and Character Buffer which is a static

RAM structure with address decoding and sense amplifier circuits.

The first question comes to mind before any modification: is it okay to modify the

history buffer before the current encoding cycle is finished? The example in Figures 4.12 will

help answer this question. In Figure 4.12 (a), the history buffer contains "abcdefg", and the

input string is "abcf'. The history buffer pointer points to position 1. Suppose we insert the

input character immediately after the COMPARE cycle. Figure 4.12 (b) shows the result of a

COMPARE and a UPDATE cycles. Note that 'b' under position 1 was overwritten with 'a',

the input character! Therefore, when we presented the character 'b' in the second COMPARE

cycle, we failed to get a match! Have we destroyed the chance to find the longest match by

modifying the history buffer before the longest match is found?

0 1 2 3 4 5 6

lalb cld le f (Ib c f

Figure 4.12 (a) History buffer before the COMPARE and UPDATE cycles

80

o 1 2 3 4 5 6

la la IcIde f g a)c f

Figure 4.12 (b) History buffer after the COMPARE and UPDATE cycles

Superficially, we see that the longest match is "abc" in the Figure 4.12 (a). However, if

we unfold the history buffer in time, we learn that the order in which the characters had arrived

is 'b', 'c', 'd', 'e', 'f, 'g', and 'a', with 'a' being the most recent character. Therefore, there

is no such string as "abc" in the history buffer. The fact that the history buffer wraps around

creates the illusion that the string "abc" is present. Furthermore, the history buffer

implemented in the thesis contains 1024 characters, so that the probability of such occurrence

shown in this example is very small. In short, we have concluded that it is fine to update the

history buffer immediately after a COMPARE cycle.

The next question is: how do we do it? Clearly, the sequence of commands issued to the

VLSM has to change. In the past, the commands required for a match length of two go as

follows:

INIT COMPARE COMPARE COMPARE OUTPUT UPDATE UPDATE.
With the modification, the new sequence becomes:

INIT COMPARE UPDATE COMPARE UPDATE COMPARE OUTPUT.
Since the next COMPARE cycle comes one cycle later instead of the immediate next

cycle, we need to have one more flip flop in each VLSM Word Cell to delay the match result

for one more clock cycle. Thus, overall, there will be 1024 more flip flops in the VLSM

device, or 8192 more transistors as each dynamic flip flop consists of 8 transistors.

Preliminary estimate reveals that the Character Buffer and the Buffer Counter will take up 630

mil2 , compared to 2450 mil2 consumed by 1024 flip flops. However, it is difficult to evaluate

the impact of this modification upon the total VLSM area cost, because it depends on the layout

of each VLSM Word Cell. It is possible that for the original Word Cell, compact layout can

not be achieved, so adding one more flip flop to each Cell does not significantly increase the

Cell area, thus the total area. As a result, the actual additional area is likely to be much smaller

than the estimate suggests. Furthermore, the Encoder FSM does not have to control those two

components anymore, so the PLA (programmable logic array) thatimplements the FSM will

become smaller. Therefore, the modification can still be justified, even though the original idea

of area saving does not seem to hold up.

The alternative Encoder architecture made possible- by the modified VLSM design is

cleaner, since the Character Buffer and the Buffer Counter are eliminated. Moreover, it

81

becomes easier to see that the OUTPUT cycle of the current encoding process and the INIT

cycle of the next encoding process can actually be combined! Therefore, the effective VLSM

cycle requirement per codeword produced can be reduced to (2n + 2) from (2n + 3), a saving

of one clock cycle! Appendix C shows the alternative Encoder architecture and its detailed

FSM implementation.

4.3.2.3 Area Estimate
The total area of the Encoder is estimated by counting the number of transistors from each

component other than the VLSM and the Bit Packer, whose areas have been presented in

Chapter 3. The regular structures such as the PLA, Character Buffer, and the FIFO's are

treated separately, using the RAM or ROM cells approximation. The total area is about 32,500

mil2 . Chapter 7 will show how this area is compared to a typical die size.

4.3.2.4 Throughput Estimate
In estimating the peak throughput of the Encoder, we assume that the source data are available

all the time. For example, whenever RD is asserted, the Encode Input FIFO will supply a

character. Furatbe.more, we assume that the encoded data can always be output. For example,

whenever the, Bit Packer asserts WR, the Encode Output FIFO can always accept the byte.

,inally, the. i. tacl is assumed to be funning a clock four times as fast as the Encoder

clock, so tIh:: , cTh pIts of the VLSM can be packed in time. All these restrictions can be

relaxed in real implementation; the state diagram for the Encoder FSM shown in Appendix B

takes care of possibla congestions in the Encode Input FIFO, Encode Output FIFO, and the Bit

Packer by inserting wait states.

Under these "ideal" condition, the throughput of the Encoder approaches that of the

VLSM, which can be found in Section 3.1.8.2. It is more difficult to predict the effective

throughput of the Encoder when the i/o traffic is congested or when the Bit Packer can not keep

up with the VLSM.1 However, the peak throughput should give us a good approximation.

1 This can happen when there are consecutive "no-matches"; the VLSM produces a codeword
every four cycles for a no-match, while the Bit Packer requires at least 14 cycles to pack the
codeword.

82

4.3.3 The Decoder
The Decoder is more straightforward because it mainly takes apart the codewords into Index

and Length, reads the characters off from its history buffer, updates the history buffer, and

outputs them to the DMA Controller. On the functional block level, the Decoder resembles the

Encoder, as shown in Figure 4.13. The interface signals work the same way as those of the

Encoder, so they will not be explained here.

DATA IN DATA OUT

DECODE ~ _ DI_EMPT Y
DE STOP DO FULL
WRDI = DECODER DIRDY
RD DO - - DORDY

DE RDY DE RESET

Figure 4.13 The Decoder Functional Block Diagram

4.3.3.1 The Decoder Implementation
The Decoder basically is concerned about three things. First, it has to unpack the byte

quantities into 14-bit codewords. Second, it has to subtract the Index from the Length plus one

to get the correct starting Index, because the Index produced by the VLSM is the index of the

last character, not the first character, of the longest match. Third, when the Length field is

zero, the character the codeword encodes is in the Index field, so there is no need to read from

the history buffer. The major blocks of the Decoder reflect these tasks, as shown in Figure

4.14. The Decoder is controlled by a Decoder FSM.

The DATA_IN of Figure 4.13 enters the Decode Input FIFO, which has the same

structure as the Encode Input FIFO except that the Decode Input FIFO is only 128-byte deep.

It is written by the DMA block and read by the Bit Unpacker. The proposed implementation

requires the Bit Unpacker to take in 8-bit quantity and output 14 bits. Obviously at least two 8

bit words are needed to provide the 14-bit codeword.

The 14-bit outputs of the Bit Unpacker are broken into a 10-bit Index field and a 4-bit

Length field. The Index and Length are operands to the Subtractor. The subtract operation can

be done in either the Encoder or the Decoder, but is chosen to be implemented in the Decoder to

balance the operating overheads between the two. The difference plus one is the correct index

which is latched into the Address Counter.

83

Figure 4.14 The Decoder Architecture

The 4-bit Length presets the Length Counter. The decoding procedure is to extract

characters from the history buffer (stored in RAM) based on the index and length specified in

the codeword, and output them to the Decode Output FIFO. Every time a character is read, the

Address Counter is incremented, the Length Counter is decremented, and the same character is

temporarily stored in the Character Buffer. When the Length Counter reaches zero, the history

update cycles begin. First, the Address Counter is loaded with the value in the History

Pointer. Next, the characters are recalled from the Character Buffer and written into the history

buffer RAM one by one. At the end of the update operations, the value in the Address

Counter is stored into History Pointer for future update use.

The Tri-state Register always latches the lower 8-bit of the Index field. In the special

case in which the Length field of the codeword is zero, the lower 8 bits of the Index field will

be the character itself. Therefore, the Decoder will just output-enable the Tri-state Register and

bypass the procedure of getting the raw character from the history buffer. Certainly, the

character has to be written into the history buffer.

The Decode Output FIFO is 256-byte deep, twice the size of the Input FIFO. This is in

anticipation of data expansion, assuming a 2 to 1 compression ratio.

84

4.3.3.2 The Alternative Decoder Architecture

There appears to be at least two modifications that can be made to optimize the Decoder in area

and performance. The first one is similar to the proposal discussed in Section 4.3.2.2, namely

the newly decoded character can be inserted into the history buffer before all characters

represented by the codeword are read off. This change of procedure will eliminate the

Character Buffer and the Buffer Counter and simplify the Decoder FSM. However, the

tradeoff is that now the History Pointer, originally a 10-bit latch, has to become a much larger

10-bit counter. Nonetheless, this 10-bit counter only takes 20% of the area occupied by the

Character Buffer, Buffer Counter, and the 10-bit Latch, so a net area saving is achieved. The

address input to the history buffer RAM now must be multiplexed bewteen the Address

Counter and the History Pointer, since both memory read and write require addressing.

The second modification concerns the (Index - Length + 1) operation. It would be nice

to avoid the "plus one" step since it takes up a cycle. One possibility is for the VLSM to

produce an Index that is one more than the actual index. This way, just (Index - Length) will

give the correct starting address of the longest match. In order for this scheme to work, the

VLSM address encoding has to be modified. Fortunately, it only involves the physical location

change for the logic circuits that pull down the H_MATCH and the V_MATCH lines of the

VLSM Word Cells. In other words, the logic circuits for a Word Cell N now is located inside

its righthand neighbor, or Word Cell (N+1), so that when a match occurs in Word Cell N, the

Index of (N+1) will be produced, assuming it is the lowest index. Figures 4.15 give a

graphical comparison between the original Word Cell and the rearrangement of the Word Cell.

4.3.3.3 Area Estimate
The total area of the Decoder without the Character Buffer and the Buffer Counter is 12,000

mil2, about 37% of the Encoder:

4.3.3.4 Throughput Estimate
The peak throughput of the decoder again assumes the ideal conditions described in Section

4.3.2.4, namely infinite data supply and output, and the Bit Unpacker running a clock four

times as fast as the Decoder clock. Furthermore, we assume that only (Index - Length)

operation is required, not (Index - Length + 1).

Then we can proceed to observe that for each character decoded, a memory read and a

memory write (history buffer update) are required. One or two cycles are required to fetch the

codeword and subtract the Length from the Index. Therefore, the number of cycles to process

a codeword is about (2N + 2), where N is the number of characters the codeword encodes.

85

Therefore, the throughput is similar to that of the Encoder or the VLSM. Again, please refer to

Section 3.1.8.2 for the throughput plot as a function of the clock period.

DATA

8-bit CAM
Match Cell

phil

zizzE 'Ii

I

--J-1
I

V MATCH

Figure 4.15 (a) The Original CAM Word Cell

V MATCH

Figure 4.15 (b) The Modified CAM Word Cell

86

phi2

SELECT
ENCODE

H MATCH

HIT-
n-1,t-1

INIT-

n,t-1

SELECT

ENCODE

H MATCH

M n-1
HIT

n-1

M n

H]Tn, t - 1

I - I r I L I I II

Tj
-

i40

W4o

VI r

w· 1

I -I I--- _ __

d 8

, .

V I PTs
--- w- IF

n,t

4.3.4 The DMA Controller
The DMA Controller handles the DC Engine's data input/output operations. It essentially

bridges the external shared memory and the internal FIFOs. The DMA Controller must

perform the following tasks:

· Get control of the system data bus, so that the DC Engine becomes the bus master
· Generate external addresses

· Handshake with the shared memory to perform memory read/write cycles

· Transfer data in blocks whose sizes are specified by the Interface Manager

· Read from Encode and Decode Output FIFO's and write into external memory

· Read from external memory and write into Encode and Decode Input FIFO's

* Interface the DC Engine data bus with the FIFOs which are only 8-bit wide

* Handshake asynchronously with the FIFOs

In the thesis, the DMA Controller is treated on the functional block level only, due to

time constraints and the fact that not too much novel design is possible. Figure 4.16 shows the

conceptual blocks that are necessary to implement the requirements specified above.

DATA

a From the
face Manager

Figure 4.16 The DMA Controller Architecture

The Interface Manager provides the Base External Address which is stored in the

Address Register. In addition, the Interface Manager specifies the data transfer block size.

Then the DMA Controller will activate the Bus Control and Memory Access Logic to read data

from or write data into the shared memory. The content of the Block Size Register is

decremented every time a byte is accessed, while the content of Address Register is

incremented. If the system data bus is 32-bit (= 4 bytes) wide, then the amount to be

87

decremnented or incremented will be four at a time. When the Block Size Register reaches

zero, the memory transfer activity will terminate.

The interface to the Encoder or Decoder FIFOs ensures proper byte alignment between

the Data Register and the FIFOs. The latter are only 8-bit wide while the former is either 16 or

32-bit wide. Finally, the DMA FSM basically coordinates each functional blocks. It also

performs asynchronous handshakes with the FIFOs. For example, to read from the Encoder

Output FIFO, RD_EO will be asserted to get a byte from the FIFO. Again, Figure 4.16 only

presents a conceptual model of the DMA Controller; therefore, many signals and

interconnections are omitted

4.3.5 The Interface Manager
The Interface Manager is the highest level controller of the DC Engine. Its responsibilities

include carrying out the interface mechanism with the external processor as described in

Section 4.1; providing the DMA Controller with information regarding the base address of

external memory, data transfer block size, and data transfer source port and destination port;

and finally, responding to the status signals from the Encoder and the Decoder.

The DC Engine communicates with the outside world mainly through the Data Register,

which can be accessed by both the DMA Controller and the Interface Manager. The latter is

responsible for routing the data structure parameters from the Data Register to the appropriate

internal registers described in Section 4.2.2, such as the Packet Queue Pointer, Packet Size,

Buffer Length, etc.

The Interface Manager is governed by a complicated FSM which might consist several

smaller FSMs. In addition, ramdom logic must be designed to perform Status Word bit field

testing to determine if the current Packet Description Table contains a new packet, if the packet

should be decoded or encoded, and so forth. Furthermore, the Status Word must be updated

when a packet is processed, and the processed packet length must be provided in the

appropriate field of the current Packet Description Table. Finally, the Interface Manager has to

respond to the command or interrupt issued by the external processor when the Command or

the Interrupt Register is written.

Possible data transfer source-destination pairs for the DC Engine are summarized in

Table 4.1. SM denotes shared memory, EI denotes Encoder Input, EO denotes Encoder

Output, and DI denotes Decoder Input, etc.

For example, when EO_FULL, signalling that the Encoder Output FIFO is full, is

asserted by the Encoder, the FSM will inform the DMA Controller to transfer the data from the

EO FIFO to the shared memory. The Encoder is in wait state until at least some data of the

88

FIFO is emptied. The Interface Manager can handle data transfer requests from each source-

destination pair on a round-robin, first-come-first-serve, or priority basis.

SM -> EI FIFO

SM -> Data Reg.

SM-> Semaphore

SM -> DI FIFO

Data Reg. -> SM

EO FIFO -> SM

SM -> Command

DO FIFO -> SM

SM -> Interrupt

Table 4.1 Data transfer source-destination pairs

89

CHAPTER 5

SIMULA TION

5.1 VERILOG BEHAVIORAL MODELLING
The Encoder block architectural design of the DC Engine was simulated with VERILOG, a

digital design language and interactive simulation system that encompasses the capabilities for

behavioral, register-transfer, gate, and switch levels modeling. A C-like programming

environment of VERILOG enables functional description of individual blocks as procedures

and interconnections as arguments, thus the control logic and interface among blocks can be

verified without the presence of actual transistor circuits.

The VLSM is modelled only as a 4x4 array, or 16-byte history buffer, in order to

simplify the address decoding and priority encoding logic descriptions. The verification

involves the internal logic of all VLSM Words as well as their interconnections, and is

independent of the array sizes. A two-phase (phil & phi2), non-overlapping clock at 10 MHz

is used. In phil, many signals are precharged high, such as H_MATCH, M, etc. In phi2,

everything is evaluated.

Each VLSM Word is characterized by its inputs and outputs together with its internal

states. These I/O signals and internal states are in turn manipulated as arrays whose sizes are

the same as the history buffer size. For example, in the simulation, the HIT signals are

declared as an array, HIT[15:0]; each element of the array is a bit.

Figure 5.1 shows the partial logic of a VLSM Word, whose index is n. In VERILOG,

the 8-bit CAM Match Cell for Word #n is then modelled as CAMMATCH_CELL[n], where

CAM_MATCH_CELL is defined as an 8-bit quanity. DATA is represented as DATA[7:0] to

indicate that it's a byte quantity. Figure 5.2 demonstrates how the logic in Figure 5.1 is

described in VERILOG. The block is executed only when phi2 is positive, as indicated by the

@ posedge phi2 statement. #AND_GATE_DELAY means that the second IF statement is not

executed until AND_GATE_DELAY clock cycles later. This is how delays can be modelled in

VERILOG.

90

DATA

phi2

8-bit CAM
Match Cell X

HTn- 1

Figure 5.1 A Subsection of a VLSM Word #n

(@ posedge phi2)

IF (CAM_MATCH_CELL[n] = DATA[7:0])

M[n] = TRUE;

#AND_GATE_DELAY

IF (M[n] && HITn-1[n])

X[n] = TRUE

Figure 5.2 An Example of VERILOG Description

The four possible VLSM cycles, INIT, COMPARE, OUTPUT, and UPDATE, are

described as different procedures, or states. In each state, the relevant signals are evaluated or

modified. For example, one of the evaluations that occurs in a COMPARE cycle is shown in

Figure 5.2. The Encoder FSM is implemented in a WHILE loop consisting of several IF-

ELSE, statements. Based on some key status signals such as CAM_HIT, different VLSM

states are entered. A Bit Packer is also constructed to convert the codewords into byte-oriented

outputs. Some rough delay estimates are included between each discrete events, such as the

generation of H_MATCH signals, to make it more realistic. The complete listing of the

VERILOG description is shown in APPENDIX C.

The simulation result proved to be positive, as the codewords were correctly generated

given a filled history buffer and an arbitrary input string. The number of cycles required to

produce the whole input string is as expected. The major issue raised in constructing the

Encoder behavioral model is how to best detect the end of packet. Since the Interface Manager

keeps the Packet Length information in its internal register, it naturally is a candidate to

generate the EN_STOP signal to stop the Encoder when every character in a packet has been

encoded. However, the problem is that the Interface Manager can only count the number of

91

bytes that have been transferred into the DC Engine, not necessarily the number of bytes that

has been processed by the Encoder.

One solution is to keep a separate counter in the Encoder. The counter is incremented

every time a character is read from the Encoder Input FIFO; the counter value will be compared

with the Packet Length register in hardware. When they match, the EN_STOP signal will be

asserted to terminate the encoding process and force a codeword to be produced. Notice that a

packet can be terminated under two different encoding scenarios: the last character of the packet

has a match or does not have a match. In either case, a codeword has to be output.

Another solution is when the FIFO is empty, the Interface Manager will be notified by

the EI_EMPTY signal. If there is no more data to be transferred into the DC Engine, i.e., end

of packet, then EN_STOP can be asserted by the Interface Manager. In the period between the

FIFO runs out of data and the time EN_STOP is asserted, the Encoder has to be put in a wait

state.

The second solution is better because the Encoder could not encode the next packet right

away without the FIFO being written with new data, which is coordinated by the Interface

Manager. Therefore, the first solution does not really improve the throughput, since it has to

be idle after the last codeword is output; yet, an extra counter and a comparator are needed.

5.2 FUTURE EXTENSION
The VER.ILOG program created for this thesis can be further extended to perform a more

complete simulation. For example, the history buffer can be expanded to 1024 characters; the

input strings can be. read from a file that contains real data; compression ratio can be computed;

and finally, the number of cycles required to encode an input file can be logged. Ideally, the

program can also be written to encode with an initially empty history buffer, which is gradually

built up as more input strings are encoded. The extended simulation program will be a useful

tool to study problems such as the effect of history buffer size on compression ratio, the

effective DC Engine throughput under different data source characteristics, etc.

92

CHAPTER 6

FUTURE WORK

6.1 DYNAMIC RAM VLSM IMPLEMENTATION
Throughout this thesis, high throughput has been a consistent priority when making a design

tradeoff, particularly in the design of the VLSM. Therefore, the fast but low density static

RAM (SRAM) structure is most suited to form the basis of a CAM bit cell. However, some

applications might not need such high throughput provided by the VLSM, which accounts for

nearly 40% of the chip area. For a better cost/performance ratio, reducing the silicon area

becomes the major concern. In this situation, the slow but high density dynamic RAM

(DRAM) structure is a good alternative to implement the CAM cell. Undoubtedly, DRAM

requires more control, since it is a charge array. Periodically, the memory cells must be

recharged, or refreshed, to retain their integrity. Moreover, every memory read is destructive,

so it is necessary to "write back" the data that has been read. Nonetheless, its high density, as

briefly mentioned in Section 3.1.5.1, makes DRAM implementation worth investigating.

6.2 CONTEXT SWITCHING
In a communications network, where there are multiple switching nodes, the history buffer

used by the Encoder and the Decoder must be changed according to the context of the data

being processed; otherwise, data can not be correctly decoded. This argument is best

supported by an example. As shown in Figure 6.1, there is a wide area network that

interconnects New York City (NY), Los Angeles (LA), Chicago, and Boston. The circles

denote the switching nodes in each city. Suppose the data is compressed by the source node

before being transmitted over the communication channel (represented by the straight lines),

and is decompressed by the destination node. The following scenario will illustrate why

context switching is necessary.

93

Chicago

Los Ange
ork

Figure 6.1 A Context Switching Example

Assuming no context switching takes place, i.e., the Encoder and Decoder in each node

do not change their history buffers, regardless of the source of the data. In the beginning,

when the network is first set up, everyone has empty history buffers. Let LA be the first node

send a file, in the form of ZL77 codewords, to NY. NY builds up the history buffer as the

codewords are decoded. After successful decompression, the his:ory buffer in the NY Decoder

now contains the data, whose "context" is LA. Next, Boston sends a file to NY. However,

the file will never be correctly decoded, because NY uses the codewords from Boston to pull

out the data from the LA file! It would be fine if NY recognizes that the file is from Boston,

and before decoding, switches to the Decoder history buffer which has the context of Boston.

In this particular example, the history buffer associated with Boston context is still empty, so

NY should build it up from scratch, just like the LA file. It is clear that both the Encoder and

Decoder need context switching to maintain data integrity.

Even in single link (point-to-point) topologies, multiple virtual circuits (VCs) must be

treated separately to optimally compress their diverse source characteristics.

The architecture of the DC Engine has to be modified to accommodate the new

requirement. Figure 6.2 shows the new general system configuration, in which an interface to

a local memory, which stores the history buffers from different VCs, must be incorporated into

the DC Engine. It is important to study how context switching will affect the overall Engine

throughput, as each context switch will demand saving the changes in the current history buffer

and then loading an entire new history buffer into the VLSM. A varieties of implementation

are possible with different cost/performance tradeoffs. For example, the choice between

SRAM or DRAM as local memory depends on the cost, memory size and speed requirements

of the system. SRAM is faster but more expensive, while DRAM slower but cheaper and

denser.. If context switching overhead adversely affects the throughput, maybe multiple

VLSMs should be employed, each dedicated to a particular VC. Or maybe the history buffer

size should be. reduced to minimize the context switching overhead but at the expense of

94

Boston

degraded compression ratio. In short, context switching is an essential and interesting topic

and should be further investigated.

Local Mory

Figure 6.2 General System Configuration With Context Switching

6.3 Testing
Due to the architectural nature of this thesis, a testing circuit has not been included in the area

estimates for the VLSM and other components. However, chip testing is vital in practice. As

the chip complexity is increasing more rapidly than the number of I/O pins available to access

the internal nodes, incorporating testing circuits on chip to enhance testability is not an' option

anymore. Today, VLSI circuit desigers are willing to sacrifice precious silicon area or

performance for testing purpose in exchange for easier chip debugging after it is fabricated.

Therefore, the actual transistor level.design of the DC Engine must consider design for

testability.

95

CHAPTER 7

CONCL USION

A VLSI architecture suitable for ZL77 data compression algorithm encoding implementation,

known as the VLSM, has been developed in this thesis. This structure utilizes the parallel

searching capabilities of content addressable memory to tremendously facilitate the string

matching process. It thus provides the potential for data compression in high bandwidth data

communications networks.

Table 7.1 summarizes the area and throughput estimates of the special VLSI structures.

The area is based on the 1 gm, two-layer metal CMOS technology and is expressed as a

percentage of a 300 mil x 300 mil silicon area. The throughput is defined as the input rate

which each structure can sustain. The estimates assume a 10 MHz system clock and are in

units of Mbps. In the Encoder and Decoder, the Bit Packer and Unpacker are assumed to be

clocked at 40 MHz.

Structure Area (mil2) Percentage Throughput

VLSM 26,950 30 28

Bit Packer 600 .67 10

Bit Unpacker 600 .67 10

Encoder 32,500 36 28

Decoder 12,000 13 28

Table 7.1 Area and Throughput Summary

As can be seen, the Encoder (whichincludes the VLSM and Bit Packer) and the Decoder

(which includes' the Bit Unpacker) takes up about half of the given silicon area. There is plenty

of room to implement the DMA Controller and Interface Manager.

96

APPENDIX A: Hashing Instruction Cycles Estimate

. Instruction FIormat

A. ALU operations

opcode dest <- opl op2
opcode dest <- opl literal

B. Memory Access

Id dest <- < opl + op2 >
st < reg > -> op + op2

U[1. IRegister Names

88000 instruction set is chosen to implement the hash table data structures because it has

excellent instruction set for bit manipulations. Furthermore, there are 32 32-bit general registers

in 88000. To enhance readability of the code, registers used in the program are given names as

listed below:

A. The following registers contain the starting addresses for the hashing table structures:

HPT Hash Pointer Table
HLT Hash Link Table
HB History Buffer
lB Input Buffer

B. The following registers contain the offset into the tables:

HBEP History Buffer End Pointer
IBP Input Buffer Pointer

C. The following registers hold variables:

LMC Longest Match Count
TMC Temporary Match Count
LMA Longest Match Address
TMA Temporary Match Address
HV Hash Value

D. The following registers are temporary variables:

TMP
RA
RB

E. This register ia a hardwired zero:

ZERO

There are 15 registers used in this program.

97

1IL 88000 Code

/* THIS LOOP SEARCHES FOR THE LONGEST MATCH */

/* calculate hash value for a given input substring */

begin add
jsr

TMP IB
hash

IBP

/* initialize TMP, LMA & LMC */
Id TMP HPT V

add LMA TMP ZERO
sub LMC LMC LMC

/* search loop
the input */

loopO add
cmp
bbl
sub
add

TIBP
RA
2
TMC
TMA

; TMP has the effective address of IBP

; TMP contains the First entry (from the hash
pointer table), which is both a offset pointer
(ranging from 0 to 1023) to into history buffer
and hash link table

; initialize the longest match start address
; initialize the longest match count to 0

for the next substring in the history buffer with the same hash value as

IBP
TMP
RA
TMC
TMP

ZERO
ZERO
update
TMC
ZERO

; initialize TIBP with IBP
; check for the end of linked list
; if TMP = 0, then the end of the linked list
; clear temp. match count
; initialize the temp. longest match start address

/* search loop within one substring with the same hash value as the input substring */

loopl ld.b
ld.b
cmp
bbl
add
add
add
jmp

RA
RB
RA
3
TIBP
TMP
TMC
loopl

HB
TIBP
RA
RA
TIBP
TMP
TMC

TMP
ZERO
RB
check
1

1

1

; RA contains the char from hist. buffer
; RB contains the char from input buffer

; branch if RA != RB (i.e., a miss occurs)
; increment TIBP (temp input buffer pointer)
; increment TMP (offset to hist. buffer)
; increment TMC (temp. match count)

/* check whether LMC & LMA should be updated */

check cmp RA TMC LMC
bbl 7 RA pass

/* update LMC & LMA */

add LMC TMC ZERO
add LMA TMA ZERO

add TMP HLT TMP

jmp loopO

; compare TMC & LMC, result in RA
; pass update if TMC < LMC

; update LMC
; update LMA

; obtain the offset pointer fo: the next substring from
the hash link table

; go to search the next substring (if any)

98

pass

/* THE FOLLOWING BIG LOOP UPDATES TIE HASH TABLES */

update add RB
cmp RA
bbl 2

LMC ZERO
RB ZERO
RA done

; assign RB with the longest match count
; check if RB is zero
; if yes, then done

/* delete the oldest char from the hash tables */

add TMP HB HBEP
jsr hash
ld TMP HPT HV

Id TMIP HLP TMP
st TMP HPT HV

; get effective address for end buffer pointer

; TMP contains the offset into history buffer,
from First

; TMP contains the 2nd link entry
; update the First entry

/* insert the new char into history buffer */

Id TMP IB IBP
st TMP HB HBEP

; TMP has the input char
; insert the input char into hist. buffer

/* insert the link info for the new char hash tables */

sub HBEP HBEP 1
add TMP HB TMP

hash
HV
RA
TMP
HBEP
HBEP
HBEP

HV HV
HV 1
HPT RA
HBEP 1
HLT TMP
RA ZERO

; subtract HBEP by 1
; obtain effective address for the char before
oldest char

; calculate effective address

; TMP has the Last entry

; extend the linked list
; update the Last entry of hash pointer table

/* update counter and pointers */

add HBEP
add IBP
sub RB
jmp update

HBEP
IBP
RB

1

1

1

; increment hist. buffer end pointer
; increment input buffer pointer
; decrement the count for # of char to be updated

/* THE FOLLOWING SUBROUTINE CALCULATES HASH VALUE */

hash ld.b RA
add TMP
ld.b RB

shl
add
and
add
rte

RA
HV
HV
HV

TMP
TMP
TMP

2
RA
HV
HV

ZERO
1

ZERO

RA
RB
$3f
HV

; load the first char into RA
; increment the pointer
; load the second char into RB

; multiply the 1st char by 4

: extract the lowest 6 bits
; get the effective address (mul. HV by 2)
; return from subroutine

99

jsr
add
add
ld
add
st
st

iT. Throughput

In calculating the number of instruction cycles required to find the longest match and update the

history buffer, the following assumption is made:

* Average Longest Match Length = 3.5 (X)
· The search through each substring with the same hash value as the source is 2 (Y)
* Average linked list length is 16 (i.e., 16 substrings are searched per hash value) (Z)
· Load and Store intructions take two instruction cycles
* The 88000 can operate at 17 MIPs

Then, number of instructions per character =

{ 8 + Z*[5+ (X*10) + 6 + Y*49 } / X

With the above parameter values, it comes out to be 225 cycles / character

100

APPENDIX B: C Code For Binary Search Tree

maino

tree_init();

while(NOT_END_OF_INPUT_STRING)

/* initialize the global variables */
match_length[LEFT] = 0;
matchlength[RIGHT] = 0;
current_node = root;

read_char(); /* read in a new character, update window[N], look[F], lookahead */

length = search(); /* return the longest matching string length & update the window */
/* index where the match starts */

delete(); /* delete the oldest character in the window and update the tree */
}

search() /* return the length of the longest string match */

int i, j;

current_length = 0;
for (i = currentnode, j=O; i < (current_node+F), j < F; i++, j++)
{

if (look[lookahead+j] == window[i])
{

current_length++;
I
else if (look[lookahead+j] < window[i])

if (tree[current node].left_son == NIL)

tree[current node].left_son - lookahead;
if (current_length > match_length[RIGHT])

match_index = current_node;
return(current_length);

}
else

match_index = index[RIGHT];
retum(match_length[RIGIHTf);

)

else

current_node = tree[currentnode].left_son;
match_length[LEFT] = current_length;

101

match_index[LEFT] = current_node;

else
{

if (tree[current node].right_son == NIL)

tree[currentnode].right_son = lookahead;
if (currentlength > match_length[LEF])

match_index = current_node;
return(current_length);

}
else
{

match_index = index[LEFT];
return (match_lengh [LEF]);

else
{

current_node = tree[currentnode].right_son;
match_length[RIGHT] = current_length;
matchindex[RIGHT] = current_node;

}
search();

}

deleteQ
{

int node_index, sonnode;

if (oldestchar == root)
{

if (tree[oldestchar].leftson == NIL)
/* the node to be deleted has no left child --> the right child becomes the new

root */
{

root = tree[oldestchar].rightson;
tree[root].parent = NIL;
/* delete the oldest character */
tree[oldestchar].parent = oldest_char;
oldest_char++;

}
else if (tree[oldest_char].rightson - NIL)
/* the node to be deleted has no right child --> the left child becomes the new

root */
{

root = tree[oldest_char].leftson;
tree[root].parent = NIL;
/* delete the oldest character */
tree[oldestchar].parent = oldest_char;

102

oldestchar++;
}
else
/* the node to be deleted has both left and right children --> the smallest element

in the right subtree becomes the new root */
{

root = find_min(tree[oldest_char].rightson);
tree[root].parent = NIL;
tree[root].left_son = tree(oldestchar].left_son;
tree[root].rightson = tree[oldest char].rightt_son;
/* delete the oldest character */
tree[oldestchar].parent = oldest_char;
oldest_char++;

else
/* the node to be deleted is not the root */

/* the node to be deleted is a terminal node */
if ((tree[oldest_char].leftson == NIL) && (tree[oldestchar].right_son == NI-))
{

node_index = tree[oldestchar].parent;
if (tree[node_index].left_son - oldest_char)

tree[node_index].left_son == NIL;
else

tree[node_index].rightson == NIL;
/* delete the node */
tree[oldest_char].parent = oldest_char;
oldest_char++;

}
else if (tree[oldestchar].left_son == NIL)
/* the node to be deleted has no left child --> the right child replaces the node */

sonnode = tree[oldesttchar].rightson;
node_index = tree[oldestchar].parent;
if (tree[node_index].leftson = oldestchar)

tree[node_index].left_son = son_node;
else

tree[node_index].right_son == son_node;
tree[son_node].parent = node_index;
/* delete the oldest character */
tree[oldestchar].parent = oldest_char;
oldest_char++;

}
else if (tree[oldest_char].rightson == NIL)
/* the node to be deleted has no right child --> the left child replaces the node */
I

son_node = tree[oldest_char].left_son;
node_index = tree[oldest_char].parent;
if (tree[node_index].rightson == oldest_char)

tree[node_index].rightson = son_node;
else

tree[node_index].left_son == son_node;
tree[son_node].parent = node_index;

103

/* delete the oldest character */
tree[oldest char].parent = oldest_char;
oldest_char++;

}
else
/* the node to be deleted has both left and right children --> the smallest element

in the right subtree replaces this node */
{

/* find the node to replace the node to be deleted */
son_node = find_min(tree[oldest_char]l.right_son);

nodeindex = tree[oldestchar].parent;
if (tree[node_index].rightson == oldest_char)

tree[node_index].right_son = son_node;
else

tree[node_index].left_son == son_node;
tree[son_node].parent = node_index;
tree[sonnode].left_son = tree[oldest_char].left_son;
tree[sonnode].right_son = tree[oldest_char].right_son;
/* delete the oldest character */
tree[oldestchar].parent = oldest_char;
oldest_char++;

/* this functiii returns the index of the smallest element in a given binary
search trer */

find_min(nodeindex)
int node_index;
{

if (tree[nodeindex].left_son == NIL)
return(node_index);

else
find_min(tree[node_index].left_son);

)

104

APPENDIX C: Alternative Encoder Implementation

I. Introduction

In Section 4.3.2.2, a different VLSM control sequence was discussed. By adding an extra flip

flop in each VLSM Word, the Character Buffer and Buffer Counter are no longer necessary.

The consequence is a smaller Encoder FSM due to fewer number of inputs and outputs

required. The next section shows the resulting Encoder architecture.

IE. Encoder Architecture

BPRESET EN STOP

EN RESET - p
ENCODE -
EN STOP -

BP RDY -
RD DY - p

CAM HIT

* BP
* RD

OE

* Si
v-* SO

__-_ ENABLE

- *0 EN RDY

I

Note: AD+ is always asserted in the UPDATE cycle; CLR is the same as EN_RESET

105

ENCODER

FSM

ENABLE S1 SO INSTRUCTION

0 x x NOP
1 0 0 INIT
1 0 1 CONMPARE

1 1 0 OUTPUT

1 1 1 UPDATE

IlI. State Diagram

IV. Activities in Each Encoder FSM State

State 0: Encoder idle/reset state; EN RDY is asserted

State 1: Read a char from Encode Input FIFO; Latch the char into Tri-state Register

State 2: Initialize the VLSM to set up for comparison

State 3: Output-enable Tri-state Register; COMPARE cycle

State 4: Output-enable Tri-state Register; UPDATE cycle

State 5: Read a char from Encode Input FIFO; COMPARE cycle

State 6: Output-enable Tri-state Register; UPDATE cycle

State 7: OUTPUT cycle; bit pack the codeword

State 8: Output-enable Tri-state Register; UPDATE cycle

State 9: Output-enable Tri-state Register; bit pack the codeword

State 10: Waiting for Bit Packer to be ready

State 11: Waiting for Bit Packer to be ready

State 12: Waiting for Encode Input Buffer to be ready

State 13: OUTPUT cycle; bit pack the codeword

State 14: Waiting for Encode Input Buffer to be ready

106

When a no match occurs, states 8, 9, and 1 are traversed. The next string search starts

at 1 because a new character needs to be fetched from the FIFO.

When it's the end of the packet, as indicated by the assertion of EN_STOP, the

codeword will be generated under all circumstances. The Bit Packer will also be forced to

output the last byte which might contain useless bits. States 12 and 14 are entered when the

FIFO is not ready. ENSTOP is checked in these two states.

107

APPENDIX D: VERILOG Simulation Code

108

o-I

co

CD ,: x

c a

0 aaC) N

U)4-'

U)o '

Oi ') -

C '-Ha
= 0 Q) UV
a, *H r1

- X X
, a

U c I
' 'K 0

O N B

c4 'K
a

H H
H U'

P:

0~ 0: N~-4S.~ =~ \uO rC ra r

II N N
, r-a, 4-4-'

O .~' O .aH4-' 4Ja

U) ao

a, a, Ul -

:m a)u 3

S4JN a,-H

U)
ap

a) I

a II
I II II

a, NH b
N H H
N U) I

4 N 1>4 1
U) 1a S 1
kJ
N :3< p~c~s~4c (C

'-, 0

",. II
W

II a :
H E-

HI n e LI l
3 ; 8

109

>

o
u 0

0

H -

C
0 "O

0H ,

0 a
4J a,O 3> .1 a,

a, *H

O N

O H

m a

cn a,
C C

U XH

e a

C c)
a)~

1-

o00
U)

-t

U)a,

a,

0

oE
0

.o

0U

.C

a

0o
a,
U)

.,

I

a.QU)

n4,-
C)4-a,,ta,

.aI.Ne)
a

',

0o

E4r

O '0

4J

HO

a a

0
0 0

4J 4J

'K 00

. ,U) Ua,

N

0),-I II I

oa,a har

0$J II I

W
P4NCw

"CaNe a.

0'

- 4

0 0 0aU) aaa,

I _

M W W 4 000a,

U) HH

m ,a)
N P-

z
a)

m

.o_4

.0
rd-a,
a,U)

MC)laN

-I-r,
w-'r.
0

C

* 4 -
Ef VH U

E a:D O)

CO -d3 aa, -

a,E4 0)

a 0r. 4-

N

'K

U)*,

c,

-U)

aj illI>

I-I4 U U) UN >ir'ie. ' iIH
a, 1 1 C

a I

a)aO e ,

U0 I I} 1fi
N

'Ka

C
4u

1
0 0

I '-4)
4 - 4 .~

. . r rl ,r-4 4

- 000o

H HI I HN NNIN V N 0 -I

3: O - 0

.)c3
-4t2

rD

"O
Ou0
Nr

0

O

or.,0

0

U,Ha)H

4)

04Jl
0l
L)

1-

N
En

r.
0

.4 -H

0
a)HHIX C. 0
UH
0EnH I

4ClQ P:U) 1:M_.

II II

1>
a) a

lna

o

rO'O

C)

ar0

C H
Z Nt U

H

¢)
0

o 0

.W

I U4N IN
H .-

Sl tn

e,)
r) -H
pn I
k

0J r

t4 h00

a d

, r.-U)

I tpN 0H
a- R

00U
1 .'

N
H

H

1

) "O
II- a>o= IaO

010r

= N

N

U,x

t4

4)4)h I

'-'
* --S a)k H) rd

4-) -SrhU IW:3
04C

r.

z g)

'- k

I; Ii 1 1).1
wr r� w X -.H
tNN N
H H HH I

4 09 W 4n
W _4 IW

0

O

0
I

4)-

CN

\ a)

04)4 a)
U 4J

*H 02

0 I
p o

4)

03
a)

r n

kNIC

N

D4

-H

H

4

'3hH
O N

U H

\ ..i

110

I

I

ic

02

rf
4t

II o Ii
W 11 C: O °

O E E :

Z U H IV
H Q I I ZZOOH1 H
H a wz

111

H V)(-10

H 4

, 4

4

-4 020)

4 J=¥.

Q)

0)

4-4,4

z
zt

C°
_ U

I-i
O Z

H

-4

a) Z >4 z

H

V)t

0 00)

- rtn

0

J 4J

w, Q 0C
44 434.J

EO

Im -m

'4" (2

H OI t =
Q to

xl

o

II --

.. 4i

0
H

C:>
II

N44

4 0
H C) I
0 IIIH .. -

\ 4J - t

4.

C)

*to

4

p.4a)4I

-uIAZtn4)
r.i

4t

I

I

C4.-
E
C

4-
I>.
0
4

o3

Q0a,
4i1 _q

-I
r-I44ic

1-1

a)

0

tD
-Ho
H

H

N

·*H 0

4

H I
H4cH

-t-

II

H

I

:/

V.

o
I=

II .,H

-

a)

-r

a)
N

.,4

H
4t
01-

tNC,

44(a

U)
44

l)
N

(t

H

4J

.a

ta
0

4

s

a)

A*ri

I n0).0

- -0

I -
I :

tD

co-'-44-I

-p

0
-it 0

+
r4

- l4
,r,

II

H O
U)

II
- V

- .- -l

o 0o
4.'

II t II

· -I. ,
-. C

+
.9

II
.H

W

H

I

-I

.3

II
IHV O

_J

HI .
II

a .,
4 44 44 0o o

U

H

4)

"0

4--H

0 l
O 09 II4.3 11

E- I E

O 1 ,a H 4)9- 4U

0) .. -
, .eH A4JZ 4-' 94rI) H)

4r.

0

ou
9-
0

vUu

H
.N

11

II
EqH

IUO V)

to
4)

II

o-4 4
N 4.3

U)U)

0 o0 a a)

,- -- I
tov ·

H rlE-4 0H H.P -
0 4)

4))O 3A
a Y-rr) U4)-H .4)

413

a) N

,H 4-4
U) -Hi

-
U)

44 -4
.9. a)

0a

4)?.7

4.
N1-

4-)
4-4 4).,-I

4) 4) -1U) U .0
4) 4) 4

910'
to4) 4)
U)
0

(U)ra
4) >-tN lag1 H

11-
r-

112

1.,

41

C'-4

,iH.9-4

ia
M.

U

.9-4tn10

.M.4

4

laa)4-vI

En

0
.9-4

r.
0

'4.4

a)
A

41

N

,

u
4.3

Paa wr ~ 4)ic 04 r. to

4)>..

tow >a
HIc

x

,-.I
I-.
O
U

a

O)

+ + +
· . .--H -H
II II II +)

.- -H .- .H
*v *v *s r I 11 1

H H H 4)1 H

> Sr O>-4

H; 1-- J X- I--O
I t I o > " 1

-, C OH-- ~

-HO11 'O-H -H O - Hv Nv v . 4 p.H --
_·S ~ 01- . I 0_4

:1 II II ·- II

H n = . i4J -.H O O S-/- -- ' -- ' 4
U-l ~ ~ r# rc m

a,

U).0·,1
*,Ĉ)(Clu
a,

-

cCrX4
HE)a,

rr.

tnU ')
I-

I-IU W

,-

~a,a)A tn

U)
m I

.H *H

4 -H

4-)
0 0d C O
4J Mn

0) 0

-4-4

U)0 1

, IC4
OJ

' Oj

U) _ -I

a, o
). i I: I H

.- 0 lz

H aO I
E- H C t) W

1 a,

z0
E-4
Hz
H

--HIa,
-H 4

H

.) ,4
I tT

O Q)a R

44*

.0

113

).H r

-H 0 4

O .
H 3-4 0)J

4-4 o -P

U) o)
c I

r H

a, . .

U) H

H 4-

O0I 0

oz 0 1U)

*c4 O

oCrdCH 4-4

*H 4- 0

)
OW -e -

E-H 0 0
rC a,

N4

Nk

O4

ro

U)
a,
u)
a,

o1-qa,r-

rd

0

0
HCrr
H

:3

H
a

0.)

0k

k1-4

-4

rd

-4C)
U,

a)

a,

E4 a
.0r3

U)

-H

4-) U)
H

! 4i

ft

H a,F ·44' 4 -'
_ I

h, C
19 k

H I H

H U)

, H14-
_

f3:

4J, C

tt U)
a *H,

4

: 0

) 0)

n II E e

za v=)H sH z)

44E O .,4
.Hq

\ -H)

A

o

o
LO OW

dl

).W 3

O H
.1~') >,

\ i U

E-H
Zz
H
0
4-,

0

U4-

El

E0-
H
0:3

Ht ox u
J c

u 2

C) c) ~

r-. C)

H P -

0 04 4 I -

.-I 0 .- .to4 H 4
n ~1H

114

r-

H

4-

dP

H

4-,

HI

H

II

4 HC)
a,()

-I- N

4-

fl~

0
4-,

HJ

U)

H

C)

H

Iu0
H

II
IIII11

IHH

l 0)

.-
C.0-Ma)

Ho-4J

II

H

s-I

4 ,

a I

.-I

-K +

_ 1

e -H·H a 1--

H C)
Z I

t· H -- I

'-o . o o_ IH

i. 0 -Z(Qa OvN ~ * 4 f . 4

aU) 00

-I- ,1

J) V).rW

14

O> +
4-4 -W H

U E

-v : H
O 4J rj.

0I

.I-J 4 0H A
to Do ·

c .
N, , NN.r4-4

\ cCVX

II

.tH

4J U)

II
11

4 -

_ O
44 Io

t.4 ,-

4J

-H

+ v,

0 11 .0

4 U4O'I,

0 II1 4 -

H
O-4

4J
4U)

.4O

I4 a0

4-

·H I .

*H- 0_ 0

UI-r e O

N.-rd

115

4'

o

b: I0)-

.~. Xo

tC H

4-)
4J I H

+
O D

4J v I1 .*1
0* 0

m II *
> ,-~~~~~" N

H

0) 11 4
H *Hi rlKL· 0 -.

3 9· = *s O'

4r

CO II ·C~~~~~~~C

a I- -+
II 01~ ,'" .,

H O O

0 0
4-4 4-4

o

4-40

0 +
4-) I)

I N

(4.) H
0 4 c

3 4

rJ *HN.-40) H

, t I.,4 UH ' 1 O*H
H .

#.i i -

. i0))

116

+

l~
H

0

O-4

0
4

II

0

0-P

s 0)
U)

·~]:O],
L).:

I
I

"O
a)

10a)

000
II II II

*H -H ,H
0r -r ·-''-

II 4.) .,U .,4
. v r

'H I IU V V11} 4J....-. ~-4

+++ i

I+ - +-

,;- *e =r .
_ · Wlv W 4

,'0)H.0

U)

I .

+
0H O

II .~*- H

-4H I *H

-4 a

4J

4.J

0
4-4

HC

U
ird

0)

40)O R
a H

00
II IIC, O

>1 1

+ O ,
U

· H I-I I4

0 4:N d1 ->
l+ +

I >-H H

0 1- W

- U U

· 1 ~)I-40 rl~
4-4 l a

4-

- 1

*rl
-H)

-H -Hr

a) a)
U) L II

0) 0) -r

* N '
ic k .c ,ic

o 0 0 0
o o o o

~J ' ' 5o ' ~o~
X -Q R a Q

g: dP dP dP dp

11I .,{ H rS 0 rl t r0 0XU 0 0 O O O GO

·: - o N o ., .- ,Q 5:5 C o ' o l r C -- I! II : : : II ar v v v

H , - - - , - O 0 O " -- "O ' 0-- " N+ o o 1 0 o o 0 0 o 0 H O +> i 0 H 0H *H H * H H4 _1 - I! Q--- II .*4 1I1

H 0 0 - 0 0 A 0X 5 - 1 t- Hn - H -' _ H0 0- LO U U) U O C Ht *-') ,- 4 a - a) -: - H -P ¢-44 , 1 10'0 rt I H'00n 5t H '5 0' 1

o·oa) - o o

tn QC - - = "U I U I U U01 * - >i U O *OC 'c O O UO Ht-Q 0 d '04N O1N 0 a R a) a)1H4-J a) a) r a) S) a 4 H

'O t o 4O . H H HC VS ~ N a ¢H 0 0) N

o0 4-, o * t

117

N

o
X
a,

-

O 0 H a,oQ Q H 'rl r ,1

-N -C-
O

o i ii i1

dH*011 H H .H

_7 X X X
O V a Qo-
, a a a, O

,-4 -. *,4 H
X
aocoa,
HII II I 1

IU UU -H

o _ ,U rv

a P I -= I I I:

V 4-4-444 UIH -H -H-H

3rl a, a, a\

0

o-I-

:w

.C4-CO "

>a,
0) t i ka4 U
44 tH

N
.-- U)H 1

a, 4 *,H 4)
4w H I+

d e O

o It 11
4 11

- '0 4 '

4J -r -r

t U)

118

oNH

0::

4-a

4 U

4 a

0

C o

--0-,I O

a ra)

) :C

ao a

c 44:
a, C

ox
x

-H~T11 II

-,4. 11o
I-u
11 U

4J -
U) r

.4J

)
'o

a,

a,t>14J.-H0

a,

I H

Ura)

0

a,
.0

a,
-- H

4J4J

u a
X a
a,)
'3 C

-H H

Z r.

U)4-H

0 1 I

l a)

11 5--W if 11
z 11d

a)to
H1
a,

U

a,
a,

)C

II
We
0. 1-H

,' U
O3 I

0
·-

'0 b
0 a,
a, .0

a)
to

H
a

4,

4-)

Ur
4-

a)
4,

h

x
04
(J2

4J4-3: 0)
H

o,-I-
4 a

· ,-4 .4 X --

N I-;-
4-I--'

Fe~ ~ G)O~~02 *HIc
W(x - *H~

a)
.,
4-4

x
a)

a
4-H

4,

.1i

4-q
a)

4-
O
It

0
(a)
CU 4-

C)
4-

to

a) a)

zw rq

II-

.H

t-4H

C]03

=1 ,

. 1,-v

X
II

v or
44 0r.l

P14

a) .0
a)

a)

,-

4.

:
03H
CII

t) +-4o

rl-
--

\ .0-

-'

- + DI
4 4
H -- 4

0 3

1 a)

- FI 4
0 0-O m"X
3 'v-' 1 4-4

O O0

\4 a 4., -H *H C UN-H N.

C

a)

FOIo

"o

N -

O 0
0 II .4 v

0
U C) 0

H U F

H Ot O

2 C)C) rodP O

·02- 02

119

N,

II
N 4P

H C)

i a II

4' 00)04

a-)U2

lrw

0
H

0~~~~~~

a) C~~~) - HPc)VH -14 4 eq cqar o~~~~~~~~~a

H 4 H C 124 a~~~~~ HH C· 4
Z ~~ V *r4 0 u4 .H H4 P

D2aC tf
44 H4J fnvLn qr*i- a)la, · ~ CX aaw C 0. a) I V

4J C H

0) N') 0~la) ed Q) ~~~~~~P a) ~ a)

120

4U)

.,1-

U)

40

0

*O O

4 -)

O E-I

E- -E

a! -I Ez

4J r4 H HI-IaDH

54
4c X E-4v

o U)-4

ol0H0H

C a w El

04 04 P %oP P

PO
II

N 5-i

-l
4-i

r

0

0-a)

4i.J.
a

*,

0

.Ha"

E-I

tn

O N
p

. a4a)

la

O N

tD ·r

U0 10)'0 ,
Or~l I0 I -I-I- 04 0)4.1R4 4JIs

. m em

\ P4

II II
II W1 CO -

H H N Cl
U]U H I

I 1

j O

0
-

H

N, O30

H
a UEH

H r l

NI-I s-I

WQ)

00O 0
.Q-

11

II

E-.
ECI]

H oI-0

03o

r 0O

01U

00
t 0

N J X
U~ P4

a
4J U t

.,{ _
m >>

k

a)
4i

a)
54

0 0
Pk H
H
d4 If

4J N
ZN

4 H
4J U
o I

O O0 1

rawa 0
\ P4

r-t
-,

0
a)

W

u I

0 2

m
ima)mN\k

121

I

0
.u
o h

O · '

0 O4 a)

C. a) >1 ,

4 4J O 4 0
r O I4J 0 -) :

O e o o ao uo >0 U U
H O *rl k$ UT LOo -J 0 . ~ I
o a) C O O 04
H$4- VH -i -P-AU

H V ha U 4-3o H 4 Ow 0o7 11
o o > xm X 4-'
O H c) a O 0)s

o H a a4 t t:: o
o o # I U I

I - .~H0

O N 00 D m , 0,O Q- 4 m a))r -) O Q -H 0 - , 04 4 OH _

0 H 0 t.c < t I U)

. -- 0 0 u 0 - 0- -o H i, * - = .N H - I I ' W O 0 Cl H Q 0) : 4 4 o 1 0 r c U.4 bJ . I I H a) 44 °0) H to a) H 1 0 11 0 ia)

I4r~~~ 4 4J O 4 ' O * Iu : < cn E a -II m m to)0 I0 o I I00~ : C) Ci 11 ^0 I 1 40t II

*S1 Y Cs 11 ° Z a0 C) -d IoIc Il AI * 3; O ·O O

tp M M In I V 0 H 1 0 Ci) 4
N4 C S1 o U 1 s- O = .,I H HI N 1 -1o

-H E-04 0 42 EO 0 11 ':- 4 s1

>~~~ ->,

122

0
i

Z o

o H
H H.. U Uit

b} O

M

Ua

C -
U °

I Z

0 ---
U 0H dPdP IIII H _

oII * 11 0
H O

Ut 0 ,) oS C4 to
Eql > =X
Z e U
0H ·r 0H

N
>1
t
a)
U)k-

ml

00 oHo

I I

0 0

0H 0

a-.o O00GO)

0 r

Ud -_a
Qr

t _

0 a.

.,
o

.,Ia)
.-

0"J

0

C).,*,

4-i

v

,-a
U)
U)

U)0rlH

a)U)

H E

Fra
Ha

a a

N
00
-HC

rd F.C':4'4<
-HU)

4-

(ZHUP F-U2H
CL$4 U)

0
4 11

a)-
p 0
rS4 NSa) -

E -4
Nf EJ

* En

O

I

H
0)

I3z
0

o

o O
0
0U 00
=O H

o
01

O

O

C4H0

E-

HU

I

0

Frj0z

a I

0-,I '

0

+

II

Ja[) -H

440) H
*H 14

04 -4 4I1

-_
0 0

O H

4 4

,a

.- -

0- E0 E-4a Ih Ok -
ao i-iUo0 -

a t'-'

- 4-
r-4

Ir.
E-

E-

L

0

a
E:409

H

E
4-i4

toII>
I 0

0 4

o C)

i0 4

0H N

H 0 +I O o' 4 1-

4-Iw

N
H
02

HE-

II
II

o

I

H

vwlw,
Er

EH

IU

II

Erl

10 4411 I

0) .
a)
Uto

F _

123

-

I

4I
I

II

0
W0

4-)

· I O1
+t@~~~ z 1t Ha,~~~~~4 43

4 :) a--)

Id 01 ,:0

o~ .H 3: ,
.O 4. 14N

0 W N E- 4-) 0
n~ E <u~ 4J

O < ow
a) L4-)4-
1-4 o ta)

· 0. -. E E0 - H
0-E-0 0 EH E

H E--. H E-4 E-
E-f: 1: o rI - I o3

I- 4J N dp E-C) - H

I Eo 3 = U 1 7 - E-1 E-I | X (H 0- q E L H CDH 02: 14 > 4- H - o E 4-4 H - < W U00CH I w - H U _ H

: ~ 1 (I o ,~ : 0 <)0 I 0 * H. E I o -
,U IH l H HHEU4 H 1 H t UI H H E ~...c I~ .. ' t O I E" 01 c : Z I . I H -2 ~35= - 3 H EU02 U vH H EH 5H U) H :H2 O H 4 U H :) 2 v <:.14J'I C ' II u) _ I 0- }) --. I II W I I)'0 *H L ~ 4-J---H~ --00 to
- P E o O II H- o W o E I1 o II H E" z *- z II .. 0 , - - Z- II H 11 z II -,H
04 U 4- U - ' - 02 0 U °. ^ U °

Hi - HO H H W - U -O S C o U.2- O 2 -E U -- EH > 4.P 44 < PQ 44< CN Ord W 4-4 4 94 C h < t N p C 04 h . ,- --E-i E- a) I E-H -H aH II H . 11 -H
W 0Q ,O C U) H PJ O .V : JJ Q : Z &3 U) u -

tu,.o - -H -- z - - -H* -I E 0 ,- 0 0 E 0 E"
\ N \ N 4A s .-H Q U U r H V) U U o vm-

sZ H a)s H H s *

0· 0 ·)a, cu~~~~~~~~~~~~~~~~~E

124

0

'4-

0I

4-I

0

dP;,1

Cd
"0I

C 0

-P dP

0) 0

- o o>o 114V 4) C04 1U

W W 0 '-

E- 4 4 0

·-- H , t I 0 * . I
~ r./ H '-- - o 0I 0 H C O h O a

E H 4 ,4J -i
Oq E n- Id I I V- o
F z W - I.H H H N Nc

q 11 4 0 0 0 H r -I 4 *'--

p F I i I t 0 r 0

W4 --'4 N0 ' 0'

c2JH1 , .4 *i ,-E- W 0 to a)
c o V)

Cd 4-) 0 6 0

125

References

[1]. R. Gallager, Information Theory and Reliable Communication, John Wiley and Sons,
Inc., New York, 1968.

[2]. D. A. Lelewer and D. S. Hirschberg, "Data Compression," ACM Computing Surveys,
Vol. 19, No. 3, September 1987, pp. 261-295.

[3]. J. A. Storer, Data Compression: Methods and Theory, Computer Science Press, Inc.,
1988.

[4]. D. A. Huffman, "A Method for the Construction of Minimum Redundancy Codes,"
Proc. IRE, 40, 1962, pp. 1098-1101.

[5]. G. V. Cormak and R. N. Horspool, "Algorithm for Adaptive Huffman Codes,"
Information Processing Letter, Vol. 18, No. 3, 1984, pp. 159-165.

[6]. R. Gallager, "Variations On a Theme by Huffman," IEEE Trans. Information Theory,
Vol. IT-24, No. 6, 1978, pp. 668-674.

[7]. J. Ziv and A. Lempel, "A Universal Algorithm for Sequential Data Compression," IEEE
Trans. Information Theory, Vol. IT-23, No.3, May 1977, pp. 337-343.

[8]. T. C. Bell, "Better OPM/L Text Compression," IEEE Trans. on Communications, Vol.
COM-34, No. 12, December 1986, pp. 1176-1182.

[9]. J. A. Storer and T. G. Szymanki, "Data Compression via Textual Substitution," Journal
of the Asso. for Computing Machinery, Vol. 29, No. 4, October 1982, pp. 928-951.

[10]. T. A. Welch, "A Technique for High-Performance Data Compression," IEEE
Computer, June 1984, pp. 8-19.

[11]. M. Snyderman and B. Hunt, "The Myriad Virtues of Text Compaction," Datamation,
December 1, 1970, pp. 36-40.

[12]. M. E. Gonzalez Smith and J. A. Storer, "Parallel Algorithms For Data Compression,"
Journal of the Asso. for Computing Machinery, Vol. 32, No. 2, April 1985, pp. 344-
373.

[13]. M. Rodeh, V. R. Pratt, and S. Even, "Linear Algorithm for Data Compression via
String Matching," Journal of the Asso. for Computing Machinery, Vol. 28, No. 1,
January 1981, pp. 16-24.

[14]. D. G. Serverance, " A Practioner's Guide to Database Compression," Information
Systems, Vol. 8, No. 1, 1983, pp. 51-62.

[15]. F. Rubin, "Experiment in Text File Compression," Comm. ACM, Vol. 19, No. 11,
November 1976, pp. 617-623.

[161. D. Gottlieb, S. A. Hagerth, P. G. H. Lehot, and H. S. Rabinowitz, "A Classification of
Compression Methods and Their Usefulness for a Large Data Processing Center," Proc.
Nat. Comput. Conf., Vol. 44, 1975, pp. 453-458.

126

[17]. G. Held, "Data Compression Devices," Auerback Publishers Inc., 1986.

[18]. S. J. Adams, M.J. Irwin, R. M. Orwens, "A Parallel General Purpose CAM
Architecture," Leiserson, editor, Advanced Research in VLSI, Proceedings of the
Fourth MIT Conference, 1986, pp. 51-72.

[19]. T. Kohonen, Content Addressable Memories, Springer-Verlag, 1980.

[20]. P. J. Osler, "A Prototype Content Addressable Memory System," Master Thesis, Dept.
of Electrical Engineering and Computer Science, MIT, 1987.

[21]. R. M. Karp et al., "Rapid Identification of Repeated Patterns n Strings, Trees, and
Arrays," Proc. of the Fourth ACM Symposium on Theory of Computing, 1972, pp.
125-136.

[22]. N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1985.

[23]. C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1980.

[24]. C. G. Bell, J. C. Mudge, and J. E. McNamara, Computer Engineering, Digital Press,
1978.

[25]. D. A. Patterson, "Reduced Instruction Set Computers," Comm. ACM, Vol. 28, No. 1,
January 1985, pp. 8-21.

[26]. M. G. H. Katevenis, Reduced Instruction Set Computer Architectures For VLSI, The
MIT Press, Cambridge, MA, 1985.

[27]. J. Mick and J. Brick, Bit-Slice Microprocessor Design, McGraw-Hill Book Company,
New York, 1980.

[28]. J. F. Korsh, Data Structures, Algorithms, and Program Styles, PWS Computer
Science, 1986.

[29]. C. Sodini et al, "The MIT Database Accelerator: A Novel Content Addressable
Memory," Dept. of Electrical Engineering and Computer Science, MIT, Cambridge.

[30]. J. L. Mundy, "High Density Four-Transistor MOS Content Addressable Memory,"
U.S. Patent No. 3,701,980, October 31, 1982.

[31],. J. L. Mundy, J. F. Burgess, R. E. Joynston, C. Neugebauer, "Low Cost Associative
Memory," IEEE Journal of Solid State Circuits, Vol. SC-7, October 1972, pp. 364-369.

[32]. J. P. Wade, "An Integrated Content Addressable Memory System," Ph. D.
Dissertation, Dept. of Electrical Engineering and Computer Science, MIT, 1988.

[33]. C. C. Foster, Content Addressable Parallel Processor, Van Nostrand Reinhold, 1976.

[34]. C. Weems, S. Levitan, C. Foster, "Titanic: A VLSI Based Content Addressable Array
Processor," Proc. IEEE Int. Conf. on Circuits and Computers ICCC '82, p. 236.

127

[35]. S. Berkovich, J. M. Pullen, Proc. of the IEEE Int. Conf. on Computer Design: VLSI in
Computers ICCD'84, p. 382.

[36]. D. Parkinson, H. M. Liddell, "The Measurement of Performance On a Highly Parallel
System," IEEE Trans. On Computers, Vol. C-32, No. 1, January, 1983, pp. 32-37.

[37]. B. Adair, "A FIFO Building Block", Internal Memo, Codex Corporation, 1988.

[38]. M. J. Foster, H. T. Kung, "The Design of Special-Purpose VLSI Chips", IEEE
Computer, January, 1980, pp. 26-40.

128

