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Abstract

An experimental study of lower-hybrid wave heating has been conducted on the Versator
II tokamak. Up to 100 kW of rf power at 800 MHz has been injected into the Versator plasma
(-i, = 1-3x 1013 cm,- 3 B = 12-15 kG, T = 350--450 eV, T,, = 100-160 eV) through a
four-waveguide grill. Experiments have been performed with a conventional antenna launching
waves from the outer major radius of the plasma column, and also with a launcher located at the
top of the torus.

A power density of 1.4 kW/cm2 transmitted rf power has been achieved in carbon-coated
waveguides without breakdown. Rf breakdown has also been successfully suppressed with the use
of an auxiliary magnetic field in the grill. Optimal coupling of the rf power to the plasma (R <
15%) for the side-launching grill is obtained when the density at the grill mouth is 5-10 times
overdense. The coupling results are in reasonable agreement with a modified Brambilla theory.

An energetic ion tail has been observed during rf injection into plasmas with densities
n > 1.3 X 103 cm. - 3 The tail has a decay time on the order of 100 tusec, and is oriented
perpendicularly to the magnetic field. A maximum bulk ion temperature increase of 50 eV for
50 kW net rf power has been recorded at ni = 2.6 x 103 cm,-

3 but the bulk heating is not
consistently observed. Suprathermal electron tails have also been detected during the rf pulse for
n, < 2.0 X 1013 cm,-

3 but significant heating of the bulk electron population did not occur.
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Title: Professor of Physics
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1. Introduction

Controlled thermonuclear fusion in a tokamak may be attained by heating the plasma with

radio frequency (rf) waves or neutral beams to temperatures above those achieved by ohmic heating.

Rf heating of the plasma in the lower-hybrid range of frequencies (0.5-5 GHz for present-day

tokamaks) is a possible candidate for a practical and efficient heating scheme.' Lower-hybrid waves

are predicted to damp on the ion population at a location near the lower-hybrid resonance in

the plasma.2 Direct heating of the ions is considered desirable because it is the ions that undergo

fusion, and in most present tokamaks the ion temperature is lower than the electron temperature

by a factor of 1.5 to 3. Furthermore, in present-day devices, the ion energy confinement time is

generally longer than that for electrons, suggesting that ion heating should be more efficient in

raising the plasma energy than electron heating if the absorption efficiencies on the two populations

are comparable. Electron heating via electron Landau damping of lower-hybrid waves is also

possible. 3 -5 Since high power sources in this frequency range are commercially available, and as

lower-hybrid waves can be efficiently coupled to the plasma via an all-metal antenna consisting

of a phased array of waveguides6 7 located at the plasma edge, the technology of lower-hybrid

heating is believed to present few, if any, major obstacles to applications on present and future

devices.

The goal of this thesis work is the experimental investigation of the physics of lower-hybrid

ion heating of a tokamak plasma. The emphasis of this study is on determining under what plasma

conditions rf heating occurs. An assessment of the efficiency of any such heating is of primary

interest. These studies are performed on the Versator II tokamak using an 800 MHz rf system to

generate the lower-hybrid waves.

1.1. Elementary Description of Lower-Hybrid Waves

The lower-hybrid wave is so named because of its association with the lower-hybrid resonance

of the plasma. In the cold plasma model of wave propagation, two waves of the same frequency but

different dispersion characteristics may be excited in the plasma. 8 In the limit of w, > w > wci,

the simple electrostatic dispersion relation of the lower hybrid wave is

1+ P 2 - c = ° 2(1.1)
ce I

where w denotes the angular frequency of the wave, wC = Z eB/m,c, and wp,, = /47rno Z} e2
/mo

for the particle species a. The quantity e is the electron charge, B the local magnetic field, c the

speed of light, Z, the particle charge state, n the particle number density, and m, the particle

mass. The angular frequencies Wp, and wo, are the electron and ion plasma frequencies, and Wc,

and w,i are the electron and ion cyclotron frequencies, respectively. The wave vectors parallel and

perpendicular to the magnetic field are kll and kl, respectively. The dispersion relation exhibits

a resonance (k = oo) for

7
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2 -H l+ 2 ± 2'
peLH/W (1.2)

where we have defined the lower-hybrid frequency WLI!. The resonant frequency is seen to depend

on the plasma density, magnetic field, and the ion mass and charge. Collisionless damping of the

wave due to finite plasma temperature effects is expected to occur in the vicinity of the resonance,

should it exist in the plasma. Close to the resonance the condition kpc, > 1 is valid, where

pct = Vthi//W, is the ion gyroradius, Vth, = (2T,/m,)'/ 2 is the ion thermal velocity, and T, the
local ion temperature. If the above inequality is satisfied, wave absorption may take place via ion

cyclotron damping if w nw,,, n being an integer, 8 -1 0 or by perpendicular ion andau damping

when the perpendicular phase velocity of the wave becomes close to the ion thermal velocity:

w/klvth, 0(1).9 ' 11

A resonance for the other cold plasma wave of frequency w (the fast wave) in this range

does not exist. Thus the coupling of the two waves should be detrimental to ion heating, and

is to be avoided in a heating experiment. For coupling not to occur, the following accessibility

condition must be satisfied:8

n > 1 - (1.3)

or if the resonance is present at the plasma center;12

2

nl> 1 + ;2IC WLH (1.4)
uce

where nil is the parallel wave number, ckll/w.

In practice, the frequency w is determined by the rf generator, and the launched nil spectrum

of the lower-hybrid waves is governed by the antenna properties. With these constraints, the

minimum required magnetic field in the plasma is determined by the accessibility condition Eq.

(1.3). The density is chosen such that the lower hybrid resonance given by Eq. (1.1) lies at or near

the center of the plasma. Thermal effects on the propagation of the wave modify this description,

and are discussed in detail in the next chapter along with the damping mechanisms.

1.2. Other Lower-Hybrid Heating Experiments

Lower-hybrid heating experiments have also been carried out or are presently being

performed on the following tokamaks: ATC'3-1 5 , Wega' G- 9, FT-1,20 Petula21- 23, Doublet

IIA24, Alcator2 5 26, JFT-22 7- 3 1, JIPP T-II32 33, Alcator C34 -3, and PLT38'3 9. Ion and/or electron

heating were reported to occur in all of the above experiments.

Historically, the Versator experiment is a direct continuation of the ATC lower-hybrid studies

in that the same rf source is employed in the present experiment as was used in the latter, and

the plasma parameters of the two tokamaks are somewhat similar. In the ATC experiment, ion

8



temperature increases of approximately 100 eV were measured during rf injection by perpendicular

charge-exchange analysis and Doppler broadening of the O VII impurity line at 1623A. However,

it was reportedly unclear from those experiments if the apparent temperature increases were

truly thermal effects.13 Above an injected power level of 120 kW. the apparent temperature

increase diminished with increasing rf power.'4 In general, a perpendicularly-oriented fast ion

population with a confinement time of < 100 ,sec was also created during the rf pulse for plasma

densities above n, -_ 1.0 x 1013 cm.- 3 Here, Fn refers to the measured line-averaged electron

density of the plasma. Little or no increase in the ion temperature was observed by parallel

charge-exchange measurements. 3 Parametric decay of the lower-hybrid wave was also observed

in these experiments. The threshold for the onset of the decay was found to depend on tie target

plasma density, and was suggested to be responsible for the creation of the fast ion tail and

posssibly the bulk heating.' 5

The short-lived perpendicular ion tail generated during the rf pulse is a common feature

of all lower-hybrid ion heating experiments to date. Generally, the central plasma density must

be above a threshold level on the order of one-half of the lower-hybrid resonant density for tail

formation to occur. The tail is usually detected in conjuction with observation of parametric decay.

In many of the experiments, heating of the bulk ion distribution was purportedly observed.

Heating efficiencies are often reported with the figure of merit neAT,/Pf (eV/kW-10- '3 cm.3 ),

where AT, is the measured increase of the central ion temperature and Prf is the transmitted

(incident minus reflected) rf power. The central heating is usually inferred from charge-exchange

measurements, but corroborating evidence of plasma heating is often provided by a rise in the

impurity ion temperatures as measured by Doppler-broadening of the VUV spectroscopic lines of

O VII and C V13,1 4 1 6 , 17 ,2 7- 3 3 In the case of deuterium plasmas, an increase in the neutron flux

is also used to indicate ion temperature changes during rf injection.13 2 52 6 3 4
,

3 8
,

3 9

On the JFT-2 experiment, heating rates of up to 3 eV/kW-10-1 3 cm.3 were obtained for

injection of 200 kw at 750 MHz.30,31 In addition to an ion tail in the perpendicular direction, a tail

was observed in the parallel ion energy spectrum, indicating that isotropization and thermalization

of the fast ion population occurred. The lifetime of the parallel tail was 1-2 ms., corresponding

to the calculated slowing down time of fast ions in the central plasma. The heating efficiency was

reported to vary significantly with the electron temperature at the plasma edge, with better heating

achieved with higher edge temperatures.3 03 1
,

4 0
,4

1 The reason cited for the variation is that the

threshold for parametric decay is generally higher for higher plasma temperatures, which is to be

expected on theoretical grounds.4 2 '4 3 The amplitude of the parametric decay waves is believed to

be high at the plasma edge in that experiment, and the decay process represents a loss mechanism

for the inward propagating lower-hybrid wave.

A similar heating efficiency is reported from the most recent experiments on the Petula

tokamak in which a central ion temperature rise of 280 eV is recorded for an injected power of

9



450 kW at 1.25 GHz for a line-averaged density of 4.9 x 1013 cm - 3 . A parallel ion tail was also

observed in these studies.2 3

Qualitatively similar results with lower efficiencies were obtained on the JIPP T-II132 33 and

Wega' 9 tokamaks. In both cases, a heating efficiency of approximately 1.2 eV/kW-10-1 3 cm.3

resulted from injection of 150 kW rf power at 800 MHz. Again, the temperatures in both cases

were inferred from parallel charge-exchange measurements. Earlier experiments at 500 MHz with

loop couplers on the Wega tokamakl 6 - 18 achieved a lower heating efficiency (0.8 eV/kW-10 - 13

cm.3 ), and no parallel ion tail was observed. The measured central density increased by a factor

of two during the rf pulse in that experiment. A heating efficiency of 1.3 eV/kW-10-13 cm.3 as

measured by perpendicular charge-exchange was reported from the early Petula experiments for a

net rf power of 540 kW at 1.25 GHz.21, 2 2

No bulk ion heating was measured in the Alcator A 2.45 GHz, 90 kW lower-hybrid heating

experiment, although a perpendicular ion tail was observed.2 52 6 Similarly, ion heating by wave

damping on the ion population has not been seen to date in the Alcator C 4.6 GHz lower-hybrid

studies.3 4 In recent experiments at 800 MHz on PLT, tails on the parallel and perpendicular ion

distributions were measured during the rf pulse, but the bulk heating was reportedly inefficient,3 8 ,3 9

of the order of 1 eV/kW-10-1 3cm.3 The observed parallel tail was not localized to the center of

the plasma.

Changes in the line-averaged density were often reported to occur during the rf pulse, but

with the exception of the early Wega experiments, 6 -18 the changes were limited to 10-20%. On

JFT-2, it was found that the sign of the density change depended on the cleanliness of the vacuum

vessel wall: with little or no titanium gettering of the chamber prior to the discharge, the density

increased during the rf pulse, while with strong gettering, the density was observed to decrease. 44

The explanation suggested for this phenomenon is that the flux of ions to the wall is increased

during the rf pulse due to the presence of the poorly confined perpendicular ion tail. The varying

density behavior during the pulse resulted from the suspected different recycling coefficient of the

wall under the comparatively dirty and clean chamber conditions.

Electron heating has also been observed in most of the experiments mentioned above. The

heating was usually obtained when the density was below that at which ion tail formation and

ion heating were noted. Electron heating is predicted to result from parallel Landau damping of

the lower-hybrid wave on suprathermal electrons which collisionally heat the bulk population. On

Wega,' 9 the measured electron heating efficiency was 4 eV/kW-10-1 3cm 3 ; on JFT-2,3 0 ,31 the

similar number was 1 eV/kW-10-1 3 cm. 3 An electron heating efficiency of 10-20 eV/kW-10 - 3 cm. 3

has been reported from the Alcator-C experiments. 3 5- 3 7 In addition, suprathermal tails on the

electron distribution have been measured by soft X-ray spectroscopy and synchotron emission.

At very low plasma densities, e.g., i, < 8 x 1012 cm.-3 for PLT or fn < 5 x 1013 cm.-3 for

10



Alcator C, current-drive on the fast electron population is observed in many tokamak experiments,

including Versator.23,3 1, 3 3 34- 3 9,4 5- 52

To summarize the ion heating results of other experiments, we reiterate that superathermal

ion tails oriented in the perpendicular direction are always generated during the rf pulse when

the plasma density is in a specific range: ion tails are generally observed when the central plasma

density is greater than one-half the density of the lower-hybrid resonance. The short. confinement

time of the perpendicular tail is commonly believed to indicate that the tail is present in the outer

layers of the plasma, and may result from damping of parametric decay waves created near the

edge of the plasma. However, in the JFT-2 2 7 28 and Alcator A2 5 26 experiments in which radial

scans of the charge-exchange neutral emission were performed, he observed ion tails were not

localized to the plasma periphery. The physical processes responsible for producing the ion tails

are still in question. Furthermore, bulk heating of the ion distribution has not been observed in all

of these experiments, and the heating results are reportedly variable on the same device for similar

gross plasma parameters.3 0 31, 40 4 ' At present, the reasons for the discrepancies between the results

of the different experiments are not fully understood, nor is the mechanism of lower hybrid heating

in these studies particularly clear. The experimental work of this thesis has been motivated in part

by the somewhat puzzling nature of these results, with the hope that an additional investigation

would help to clarify the physics behind the observed phenomena.

1.3. The Versator II Tokamak

The device on which our experiment is performed is the Versator II research tokamak,

associated with the Plasma Fusion Center and Research Laboratory of Electronics of M.I.T. The

tokamak itself has been described elsewhere,53- 5 7 and aspects of the tokamak and diagnostics

relevant to this work are presented in Chapter 4.

Lower-hybrid waves are coupled into the Versator plasma with a phased-array waveguide

antenna, or grill. Two grills have been used at different times in the course of this work: a

four-waveguide array which launches waves into the torus from the midplane at the outer major

radius, and another four-waveguide grill launching waves from the top of the plasma column. The

antennas and the rest of the rf system are also described further in Chapter 4. The basic plasma

and rf system parameters for the lower-hybrid ion heating experiment are listed in Table 1.

1.4. Outline of This Work

The thesis is organized as follows: in Chapter 2, the theory of lower-hybrid wave propagation

and damping is discussed with the purpose of qualitatively assessing the general effectiveness of

rf heating in Versator and determining the optimal conditions for its occurrence. The theory of

the coupling of the lower-hybrid wave to the plasma is described in detail in Chapter 3. The

experime.cntal set-up is described in Chapter 4, with emphasis placed on the diagnostics used in

this study and the rf system itself. In Chapter 5, the application of the rf coupling theory to our

11



work is compared with the experimental measurements of antenna reflectivity. Also treated in this

chapter is the preparation and conditioning of the lower-hybrid antenna for high-power operation.

The experimental heating results are presented and discussed in Chapter 6. In Chapter 7, the

experimental work is summarized, and the applicability of our findings to future lower-hybrid

heating projects is discussed.
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Table 1

Versator II Tokamak and Lower-Hybrid Rf System Parameters for Ion Heating Experiments.

Tokamak

Major radius Ro

Limiter radius a

Toroidal magnetic field Bo

Plasma Current Ip

Loop voltage V1

Line-averaged electron density ,

Central electron temperature T,o

Te profile width (Gaussian) Xte

Central ion temperature Tio

T, profile width (Gaussian) Xti

Effective ion charge Z f!

Safety factor q

40.5 cm.

13 cm.

<15 kG

40-55 kA

1.6-2.5 V

1-3.2x 1013 cm;-3

parabolic profile

350-450 eV

7.5 cm.

120-150 eV

10.5 cm.

2 (gettered discharges)

6 at limiter

Rf System

Frequency w/2r

Maximum power P,f

Antenna (2)

800 MHz

140-160 kW from klystron;

100-110 kW into plasma

4-waveguide phased arrays;

one with waveguide width 2.45 cm,

nll(typ.)-5.5 for AX =180o;

the other with waveguide width 1.0 cm,

nll(typ.)=15 for AO =1800

13



2. Theory of Lower-Hybrid Ion Heating

In this chapter, the theory related to the experimental rf heating work is presented. The

purpose is to provide a framework in which the results of the experiment may be analyzed. The

basic physics of the propagation of lower-hybrid waves in a cold plasma is outlined first, followed

by a discussion of thermal effects on lower-hybrid wave propagation with particular emphasis

placed on those aspects.which are relevant to the ion heating experiment; namely mode conversion

and absorption. Calculations of the propagation characteristics in the Versator plasma are made

in the approximation of cylindrical slab geometry with the spatial variation of the toroidal field

included. Next, the wave damping mechanism as it is presently understood is presented, and the

expected wave absorption regions of the Versator plasma are computed. The problems of energetic

particle confinement pertinent to this experiment are also discussed, and their effects on the plasma

heating efficiency are qualitatively considered. Lastly, the full effect of the toroidal geometry of the

tokamak on the wave propagation is described with the use of numerical computations performed

for Versator parameters by Dr. Paul Bonoli. Applications and discussions related specifically to

the experimental heating results are left to Chapter 6.

2.1. Lower-Hybrid Wave Propagation

Wave propagation in a cold plasma is described by the following wave equation s for the rf

electric field E:

w2

V X V X E- 2 - K E =O (2.1)

where K is the dielectric tensor:

Kzz iK,, O

0 0 K0Z

The magnetic field of the tokamak, B, is assumed to lie in the z-direction. For the lower-hybrid

range of frequencies, the inequality w < w << w, is valid. The components of the dielectric

tensor may be approximated as

w 2 w2

Kx=ZKy= = 1 + P
W2 W2

ce
2

KZ = 1 - (2.2)
w

2
pe

K:t = Kyz =

For a homogeneous plasma, the wave equation (2.1) may be written as

n(n .E) - n2E + K E (2.3)
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where n is the refractive index, ck/w. The condition that a solution to Eq. (2.3) exists gives the

dispersion relation for n(w). As the plasma parameters are nearly constant along the z-axis, the

equation is written in a standard form in which nil is an independent variable, fixed by the

launching structure, and nI is the dependent variable:

An +Bn + = 0 (2.4)

where

n2 = n2 + n2
A = K,,
B = (n~l -K,)(K,, 4- K -)+ K2y

C - K,, (n - K..)2 -- K v].

The dispersion relation has two solutions corresponding to the slow and fast waves:

n2 -B ± VB/ 2 -4AC (2.5)
24

which are de-coupled from one another if

B2 > 4AC. (2.6)

In the approximation wc, wp > w, the above inequality reduces to

Wpe
n2 > JKxz/KzzIKy zK - 0(1) (2.7)

if n2 > K,, - K y/K,,. In this limit, the approximate roots of the cold dispersion relation Eq.

(2.5) are n -B/A and n _ 2 -C/B, or'2

- [n 2- KZ -K 2 (2.8a)

K2n- - K )
n I K 2v (2.8b)-- K= + K2/K.

where the "f" and "s" subscripts refer to the fast and slow branches. From Eq. (2.2), K~, can

vanish if w2 < wccwci and the density is sufficiently high; hence a resonance (n = oo ) for the

slow wave of Eq. (2.8a) exists at the location where

I)w 21(2.9)

As will be discussed in Sections 2.2 and 2.3, the large n values of the slow wave near the

resonance are expected to give rise to ion heating.

The solutions corresponding to the fast and slow waves converge if B2 - 4A4C = 0 in Eq.

(2.5). Using this condition, we find that ifs
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n > (1 ) = nlri (2.10)

the juncture of the two roots is avoided, and the resonance is accessible to lower-hybrid waves

incident from lower densities. This is the so-called accessibility condition. If the relation (2.10) is

not satisfied, the inward propagating slow wave is converted to an outward propagating fast wave

at a density below the resonant density. If the lower-hybrid resonance indeed exists in the plasma,

the above inequality reduces to 12

2

n > 1 + pw (2.11)

For the Versator heating experiment with B, = 14 kG, only waves with nl > 2.1 are accessible

to the center.

2.2. Thermal Effects on Lowecr-Hybrid Wave Propagation: Mode Conversion

Though the lower-hybrid wave is well described by the cold plasma dispersion relation Eq.

(2.4) in the limit kpc,, kLpci < 1, the perpendicular wave vector kl can become large in the

vicinity of the lower-hybrid resonance, allowing kpc, to become larger than 1. Thermal effects

on the propagation of lower-hybrid waves near the resonance must be considered for an accurate

treatment of the problem. With the inclusion of thermal effects, mode conversion of the slow wave

to a shorter wavelength ion plasma wave is predicted to occur at a density below the resonant

density 2 . More importantly, heating of the plasma by collisionless damping of the lower-hybrid

waves is also expected. In this section, we discuss the thermal corrections to the cold plasma

dispersion relation and the phenomenon of mode conversion. The damping of the lower-hybrid

wave is described in the next section.

The effect of finite plasma temperature on the propagation of lower-hybrid waves is obtained

from the dispersion relation for electrostatic waves in a hot plasma:8

D = 1+ Xe + Xi = 0 (2.12)

where x,,i are the electron and ion susceptibilities, given by

Xa= 1 + E In(b)exP(-bc)oaZ( nci (2.13)

for a general species a. Here, I, is the modified Bessel function of the first kind of order n,

Z is the plasma dispersion function 58, XD, = VthaQ/V2Wpa is the Debye length, b = k p2,/2,

.no = (w - nw.)/kllVtho, Vt2ha = 2To/ma, and Pca = Vtha/Wc.

We expand the susceptiblities Eqs. (2.13) to lowest order in the and th, to obtain the

real part of the warm plasma dispersion relation. It is assumed that kLp2 k2 < 1 and

lnel, IEnil > 1. The expansion is performed in Appendix A. The results are:
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k wpef k V1
Re), I_ I I

_ Ik2 :;-3,2 2- 2 (2.14a)
W13 the

k2 2 1 2 w 2 w2
2 2 w 

ReXi w2( + 3 lth) (2.14b)
w2 2 w 2

In the opposite limit for the ions, kpc, > 1, the ion susceptibility Eq. (2.13) may be

rewritten with the use of a Hadamard expansion' 0 ,5 9 in powers of (k pc,)-':

Xt = 1 (1 + St Re Z() - St Im Z(S()ctw )+ 2 wd i) (2-15)
k2>,2 OWc 27r Ew - nwcz dC, 21

where f, = wl/kL,,, is the ratio of the perpendicular phase velocity of the wave to the ion thermal

velocity. Equation (2.15) may easily be expanded in the limit Si > 1 (also performed in Appendix

A) to obtain the same result for the real part of the ion susceptibility as Eq. (2.14b). Therefore

the warm plasma corrections to the dispersion relation are valid for all values of klp, subject to

the condition , > 1. Regarding the real part of the dispersion relation then, we find that unless

the perpendicular phase velocity of the wave becomes comparable to the ion thermal velocity,

the ions are effectively unmagnetized. The result may be generalized to include electromagnetic

effects such that the warm plasma dispersion relation is identical in form to Eq. (2.4) with the

most significant correction made to A, which, in the cold plasma approximation, goes to zero at

the lower-hybrid resonance. The new element A is2

A = Kz - K,,lnl (2.16)

where

KZ1 = 3 2 th2 1w + 42 2 T (2.17)
2f 4 w2 2

The warm plasma dispersion relatioon is third order in and has three roots. The new solution

corresponds to an ion plasma wave. As with the fast and slow waves discussed in Section 2.1,

the slow wave and hot wave branches are distinct except near the mode conversion point where

the modes couple to one another. Approximate dispersion relations can be written for the slow

and hot wave solutions in the electrostatic (high n) limit. If the electromagnetic terms in

the dispersion relation Eq. (2.4) are neglected and the thermal term of Eq. (2.16) is included

( =* -n2K,,zz, C 0), the following dispersion relation is obtained:

n4LKz - nK, -- nKzz = 0. (2.18)
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As before, the approximate dispersion relations for the two waves are obtained in the limit of the

inequality (2.6):

n 2 K n K(2.19a)

no - II 1 K l (2.19b)

where the "h" subscript refers to the hot ion plasma wave branch. The slow wave branch Eq.

(2.19b) is identical to hat of Eq. (2.8a), given the approximations made in the derivation of the

former and neglect of the electromagnetic and thermal terms in the latter. The mode conversion of

the lower-hybrid wave to the hot plasma wave occurs when the two roots of Eq. (2.18) converge,

which takes place for

wpe. rW__,,_W+, 1 [12n T ](2.20)2 4 2,

W2 ( c : + --
- 12n W4 m,c 2 4 W2 T](

For a toroidal field of 14 kG, central electron and ion temperatures of 400 and 150 eV, respectively,

and an nl of 6, the mode conversion density is 2.2 x 1013 cm.- 3

At mode conversion, the ratio of wave phase velocity to ion thermal velocity is found by

solving the dispersion relation Eq. (2.18) using Eq. (2.20):

w 3me 1 T (2.21)

kTLvthi klltrhi [ 2 mi 4 2 Ti

The term containing the electron temperature is comparable to or smaller than one. The ratio

of phase to thermal velocity at mode conversion is thus dependent only on the ion temperature

and the local parallel wavenumber. For nl = 5 and Ti = 150eV we find (/kl thi) - 3.8, or

(kIpi) = 10. This result is useful as it allows us to predict in a very simple manner the energy

of an ion resonant with the wave at mode conversion where wave damping is likely to occur.

If mode conversion takes place, the ion plasma wave propagates outward toward lower

densities and nL continues to increase. The inequality , > 1 is no longer valid in this situation,

and the full expression for the ion susceptibility Eq. (2.15) must be used. For propagation in a

homogeneous magnetic field, a further conversion to an inward-propagating ion Bernstein wave is

predicted. 2 This second mode conversion may not occur in a plasma in an inhomogeneous magnetic

field.60 It is possible, however, that the wave will damp before the second mode conversion is

reached. Because the perpendicular phase velocity of the lower-hybrid wave is so close to the ion

thermal velocity at the first mode conversion layer, wave damping is often considered to take place

at or near this mode conversion, as will be discussed in the next section.

Though the presentation of the wave theory thus far has been done under the assumption

of a single ion species plasma, the results may be generalized to a plasma with impurities. As
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the lower-hybrid resonance represents a balance between electron and ion motions in the wave

fields, the wave propagation is profoundly affected by the presence of impurity ions. The effects

of impurities are two-fold: the average ion charge and mass are increased, but the ion density is

decreased relative to the electron density so as to preserve charge neutrality. The effects counteract

one another with the latter being the larger of the two. The effective ion plasma frequency,

assuming for simplicity a single impurity species of density n, charge Z, and atomic weight AI,

is

p = WpcMe )1 n - Z/AI)] (2.22)

where m, is the proton mass. With the effect of impurities included, the accessibility condition

becomes 61

2 wCWC(l-C) ] (2.23)

where C: = Z1 (1 - ZI/A)(ni/n,). For an assumed impurity species of five-times ionized oxygen,

the fractional impurity density n/ne = .05 for a plausible Zeff of 2. Here, Zff is the effective

ionic charge of the plasma, and is defined as

aZlf son (ni Z,2) (2.24)Z f- .. (n/Zj)
epcie.

Then C1 = .14 and nllcit = 2.9 for Bo = 14 kG.

Similarily, the calculated mode conversion density is shifted upward by the inclusion of

impurities. The new turning point criterion is

cu = [( iC(1-)-1+ 2n mic ne 4 ¢ewci Ti~; [(Wcee2ci)( 12-'~'" 1 W(2.25)
-c-1+ w4 mc n, 4 W2,

For the same impurity density and plasma parameters used previously, the mode conversion

density is 3.2 X 1013 cm- 3 , a 45% increase from the case of the pure hydrogen plasma. Equation

(2.21) may be treated in the same manner, in which case w/klvth, is reduced to 3.6 for the

parameters chosen. The impurity level clearly influences the necessary parameters for ion heating.

2.2.1. Propagation in the Versator Plasma

In concluding this section, we consider some of the effects of tokamak geometry on wave

propagation, and plot the three solutions of Eqs. (2.4) including the thermal correction Eq. (2.16)

for the Versator plasma parameters. Implicit in the presentation thus far is the assumption of

slab, or cylindrical, geometry. The magnetic field is constant and the density and temperature

gradients are perpendicular to the magnetic field; thus the plasma parameters do not vary along

the field lines. In this case, the parallel wave number is a conserved quantity, and the mode
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conversion locations are determined knowing the density and temperature profiles, the magnetic

field, and the launched nil. However, the tokamak magnetic field is not constant. The toroidal field

varies inversely with the plasma major radius, while die poloidal field varies both with major and

minor radii. These departures from one-dimensional geometry result in the dispersion relation, as

expressed in the toroidal coordinates (r, 0, 0), being somewhat more complicated and nil no longer

being a conserved quantity throughout the wave propagation. The first modification-that of the

incorporation of an inhomogeneous magnetic field into the dispersion relation-is relatively simple

to analyze. The discussion of the more accurate treatment of lower-hybrid wave propagation in a

tokamak which takes into account the variation of nil is somewhat more involved and is continued

in Section 2.6.

In determining the roots of the dispersion relation Eq. (2.4) in toroidal coordinates, the

following assumptions are made: the toroidal field B, is much larger than the poloidal field

Bo; hence the latter is neglected. The impurity concentration is considered to be constant, with

five-times ionized oxygen the only impurity. The impurity concentration is set by specifying Zfsf,

which is a measured, global quantity. The flux surfaces are assumed to be concentric. The density

profile is parabolic, while the electron and ion temperature profiles are Gaussian with respective

widths of 7.5 and 10.5 cm, corresponding to reasonable fits to the measured data.

The three solutions of the dispersion relation are plotted in Fig. 2.1. Instead of the

approximations of the last section, the three roots of the full electromagnetic dispersion relation

Eq. (2.4) with thermal corrections are found simultaneously using a numerical routine. The values

of the real part of n2 for local values of nil = 2 and 5 are plotted versus minor radius in the

midplane in Fig. 2.1a for a line-averaged electron density of 2.6 x 10'3 cm, - 3 central electron and

ion temperatures of 400 and 150 eV, respectively, toroidal field on axis of 14 kG, and Zf of

2. As predicted in Section 2.1, waves with nil = 2 are inaccessible to the plasma center because

of conversion to the fast wave. However, for nil = 5, the slow wave undergoes conversion to the

hot plasma wave near the center of the plasma and approximately 7 cm. off axis on the high field

side. Though not shown on this graph, mode conversion also occurs off the midplane at radii

intermediate between these two values. The variation in the mode conversion radius with poloidal

angle is due to the inhomogeneous toroidal field. At the mode conversion layer in the center,

nl 530 and w/klthi 3.3, in reasonable agreement with the prediction of Eq. (2.21). Figure

2.lb is a plot of no for the same parameters except that Zff = 1. The effect of the change in

impurity level on the wave propagation is evident from the outward shift of the location of the

slow/hot mode conversion. Furthermore, the slow wave with nil = 2, which is unable to reach

the mode conversion point on the low field side because of inaccessibility, is seen to undergo

conversion to the hot wave on the high field side before the fast/slow coalescence.

2.3. Thermal Effects on Lower-Hybrid Wave Propagation: Damping

The theoretical damping rates of the lower-hybrid wave may be obtained from the imaginary
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r (cm)

Figure 21. The real part of n. versus minor radius in the midplane for the three solutions
of Eq. (2.4) with the thermal correction term of Eq. (2.16) included. The dashed lines indicate
the case of nil = 2: the solid lines the case of n = 5. The label "F" denotes the fast wave
branch. "S" denotes the slow wave branch. and "H" denotes the hot plasma wave branch. The
gradient of the magneuc field is to the left in this illustration. In (a). the plasma parameters
are: o, = 2.6 x 10T3 cm, -, Bo =14 kG, To =400 eV, T,, =150 eV, and Zt = 2, and in
(b); the same as for (a) except that Zef = 1.
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part of the hot plasma dispersion relation Eq. (2.12):

Im D
Inrk aD/ak 

a- a kL D (2.26)
-Re k 2D

where the imaginary part of D is given by the sum of the imaginary parts of the electron and ion

susceptibilities. The damping leads to a decrease of the net wave power P in the plasma:

P(r) = P(a) exp (-2 Im kdIdr) (2.27)

where we assume the perpendicular propagation to be entirely in the radial direction. In general,

the imaginary part of thie plasma dispersion function is

Im Z(C,) = vq exp(-_2). (2.28)

Using Eq. (2.13) for the electron susceptibility and Eq. (2.15) for the ion susceptibilty, we may

write

Im X = 2K -t pe a' exp(_ ) (2.29a)
k2 e -- e 

ImXi = 2 '~ T; exp(--, 2 ) (wc,/w)oi exp(-2)]- (2.29b)

Because k2 .p < 1, only Landau damping (n = 0) is considered for the electrons. In general,

however, several values of n must be considered in the ion damping term. The mechanism of

damping on ions is cyclotron damping at the high harmonics (n - 35).

To determine the region of wave absorption, the integral in Eq. (2.27) may be evaluated with

the appropriate density and temperature profiles. For the electron damping term Eq. (2.29a), the

procedure is straight-forward, and damping is generally found to be complete when W/kllVthe 3,

or5 nil = 6/v/T(keV), where =5-7. For Versator parameters, electron Landau damping is

predicted to occur in the plasma center if nil = 8-11.

Evaluation of the ion damping term Eq. (2.29b) is more difficult because of the summation

over cyclotron resonances. Furthermore, in the damping region, the inequality , > 1 is no longer

valid; hence the real part of the ion susceptibility must be obtained from Eq. (2.15) and not from

the approximation Eq. (2.14b). The exact propagation and damping behavior for fi -z 0(1) must be

computed numerically. 9'0 60 For plasmas with density and magnetic field gradients, the resulting

lower-hybrid wave propagation can be quite complicated. A simplification which is often invoked

is that of "unmagnetized" ion damping.9, 1 62 In the limit , > 1, the ion dynamics described

by the real part of the ion susceptibility arc unaffected by the magnetic field (see Eq. 2.14b).

Furthermore, the exp(-f2) term in Eq. (2.29b) suggests that the ion damping may be equivalent lo
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straight-line orbit damping, 9' 62 i.e. Landau absorption, in the perpendicular direction as the spatial

average of the term in brackets in Eq. (2.29b) is 1. However, numerical studies',6 0 have shown

that the assumption of unmagnetized ion orbits leads to significantly different damping behavior

than does use of the exact cyclotron damping treatment. Some simple differences are evident

from the above discussion. In particular, cyclotron damping requires the existence of a finite kll,

whereas unmagnetized damping does not. In addition, no heating by straight-line perpendicular

ion Landau damping can take place unless some phase decorrelation of the wave and particle

occurs on a time scale less than the ion cyclotron period and over a spatial scale smaller than the

perpendicular wavelength. 6 3 The modelling of cyclotron damping by unmagnetized ion damping

does not appear to be valid in this simple linear treatment of lower-hybrid wave propagation.

Several mechanisms have been proposed to account for a phase decorrelation so as to justify

the use of unmagnetized ion damping. With strong enough rf electric fields, ion motion in the

wave may beome stochastic. Karney has shown that if the electric field of the wave exceeds a

threshold value, the ion motion in a single perpendicularly-propagating wave becomes stochastic.6 4

The threshold electric field required for the onset of stochastic ion motion is calculated to be6 4

Eth/Bo. = 4--n (wC (2.30)

Other effects may lower this threshold. The broad nL spectrum of the launched rf power may

satisfy the requirements of quasi-linear diffusion. 65 The gradient of the magnetic field may also

reduce the threshold for stochasticity because the ion orbits will not be exact helices. 9,66 In short,

invoking unmagnetized ion damping of the lower-hybrid wave when the wave speed becomes

several times the ion thermal speed may be justified on a number of grounds, though the specific

conditions required for the applicability of this treatment are still subject to debate. Further

implications of unmagnetized ion damping will be discussed in the next section. For the calculations

in this thesis, we assume the wave damping mechanism on ions to be straight-line orbit damping

in the perpendicular direction. The overall damping rate is then

Ik R k Rw2 _[m k= 'eo + e (2.31)

where the first term in the brackets is the electron Landau damping term and the second is

responsible for unmagnetized ion damping. In this approximation for the ion damping, power

absorption by the ions should also be complete when i = w/klvthi 3. This value of i is

comparable to that required for mode conversion (see Eq. 2.21), indicating that wave absorption

on ions is expected to occur near the mode conversion layer, should it exist in the plasma.

The effect of collisional damping of the wave on electrons may be estimated with the use of

the cold electrostatic dispersion relation in which me is replaced with mn(l + ivy/w), where v, is
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the electron collision frequency.' The perpendicular wave vector from the cold dispersion relation

Eq. (1.1) is

k -k\t l v 1 (2.32)

The imaginary part of kl due to collisions is

Imk k ldl - -1) ] (2.33)
m2w -m [W 2 1 WCceCWc W2

and if we consider only the outer part of the plasma (w2 > w 2 ,,w ,), we obtain die lowest order

result

mk WLHI Ve
I nl me 2wc

(nt(10'3cm-3)\Tm3/' (2.34)/ 1(0 ni crn) ) 13CM cm.- 

For the analytic profile shapes described earlier (Gaussian electron temperature profile of width

Xte and parabolic density profile), the predicted collisional damping rate above is found to have a

maximum at r = /a 2- 2h or at r 11 cm, giving a maximum Im kl of 3.4 X 10- 3 cm-'

for nil = 5. The corresponding perpendicular damping length is 290 cm, which is much larger

than the plasma radius. Waves with purely radial perpendicular wave number in Versator should

thus experience less than 10% power loss to collisions in propagating to the core. However, this

may not be the case for a lower-hybrid wave with a significant no component. Collisional damping

of such a wave is discussed in further detail in Section 2.6.

To summarize, we see that the perpendicular wave number increases with plasma density

up to the linear mode conversion point; ion damping is predicted to occur if the perpendicular

wave speed slows to the order of the ion thermal velocity, which will take place near the mode

conversion layer. Electron Landau damping is expected to occur if the parallel phase velocity of

the wave is comparable to the local electron thermal velocity. The wave damping rate on ions

and electrons is given by Eq. (2.31), though we note that an accurate treatment would require the

inclusion of quasi-linear effects.64,65

The most efficient heating of the plasma should occur if the waves damp at or near the axis

of the plasma column. In the remainder of this section, we estimate the maximum penetration of

the lower-hybrid wave into the plasma as determined by: (1) the location of the mode conversion

layer Eq. (2.25), and; (2) the wave absorption calculated from Eq. (2.27). In Fig. 2.2, the cold

lower-hybrid resonant density, the warm mode conversion densities and fast/slow mode conversion

densities for several values of nll are plotted versus minor radius in the midplane with the variation
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of dithe toroidal field included. The plasma parameters are the same as for the previous figure, with

Zef taken to be 2. Also plotted is the density profile for n, = 2.6 X 1013 cm,- 3 although the

calculated mode conversion densites are correct for any density profile for the given temperature

and magnetic field variation. The dashed line segments indicate the region where electron Landau

damping is expected to occur for the gixen electron temperature profile. In this estimate, we

assume the electron Landau damping to take place for (w/kllvthc) < 3.2.

The effect of the inhomogeneous magnetic field mode conversion and resonant densities is

clearly demonstrated in the figure, with the mode conversion densities shifting to higher values at

lower fields. The lowering of the mode conversion density with increasing temperature is evident

only for nil > 8. Except at low densities (n, < 2 X 1013 cm.- 3 ), waves of nli < 2 are inaccessible

to the plasma core from either side.

From the point of view of the ion heating experiment, several aspects of this figure are

instructive. If ion heating is to occur at the core of a plasma with a central density of 4 x 1013

cm, - 3 then the local value of the parallel wave number must be nil 4-8, assuming that wave

damping takes place at or near the mode conversion layer. For the same nil values, however,

damping should also occur between minor radii of 5 and 8 cm. on the high magnetic field side.

Because of the rotational transform of the field due to the plasma current, waves propagating to

the plasma core circulate in the poloidal direction. The inward radial distance traveled as the wave

propagates from the outer to inner side of the tokamak can be estimated using the cold plasma

dispersion relation Eq. (1.1) and assuming n to be a purely radial wave number:

PAr " rR0 q-VK 2 (2.35)
Wpe

where q = (rB/RoB) is the safety factoir. For Versator parameters, Ar < 2 cm, or a fraction of

the minor radius. Thus in the cylindrical slab model, the lower-hybrid waves may be significantly

damped before the innermost mode conversion location is reached. In Fig. 2.3 the minimum and

maximum minor radii of damping are plotted versus nil for two values of the central density.

Damping at the higher minor radii occurs on the inner side of the plasma, while damping at the

lower radii takes place on the outer side. Though heating at a more central location is predicted

for a lower plasma density, the required nil is higher, and if nil is increased above 8, electron

damping becomes predominant. The calculations of the absorption regions for different nil and

plasma densities are summarized in Fig. 2.4. The predicted damping loci are plotted for specified

nil and central plasma densities. The contour lines of equal values of r/a represent the maximum

minor radii at which damping is calculated to occur. Because of the simple criterion assumed for

electron heating, the electron damping location is independent of density. As discussed above, the

wave damping region for ions is relatively broad even for a single value of nil, and there is no

combination of density and nil for which the maximum damping radius can be unambiguously set

to the plasma axis at r/a = 0. However, a cautionary remark should be made regarding the validity
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Figure 2.2. The cold lower-hybrid resonance density (dot-dash line). the hot/slow mode
conversion densities (solid lines). and the slow/fast mode conversion densities (dotted lines)
versus minor radius in the midplane. The plasma parameters are: Bo(on axis)= 14 kG, T = 400
eV, T,a= 150 eV. and Z,ff =2. The temperature profiles are taken to be the same used in Fig.
2.1. Also shown is a representative density profile for f, = 2.6 x 0l'o cm. - 3 The gradient of
the maenetic field is to the left in the figure. The other plasma parameters are the same as
for Fig. 2.1a. The dashed portions of the lines indicate the region of electron damping for the
given nlU.
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of this relatively simple model. We note that wave propagation described by tile more accurate

toroidal ray tracing model discussed in Section 2.6 is considerably different from the picture

provided by this cylindrical slab model. Nonetheless, the major point of tle previous discussion,

that the predicted damping radius of the lower-hybrid wave in a tokamak is not well-localized,

is still generally true, although for somewhat different reasons in the toroidal propagation model.

We will return to this point in Section 2.6.

The penetration problem is not'improved if the tokamak is operated at a higher toroidal field

or lower impurity content, as indicated in Fig. 2.5. In Fig. 25a, the lower-hybrid resonant densities

and mode conversion densities are plotted in the same manner as in Fig. 2.2, except that the

toroidal field on axis is taken to be 15 kG. The resonant density and slow/hot mode conversion

densities are lower than in the previous case, and the fast/slow mode conversion densities are

higher. A similar effect is illustrated in Fig. 25b, in which the same quantities are plotted for

Z,ff = 1, and Bo on axis is again set to 14 kG. In these cases, the predicted minor radius of

mode conversion for a given nil still spans a significant fraction of the plasma radius. The low

aspect ratio of Versator is responsible for the strong increase in the mode conversion density with

major radius. Because of broad density profile, the derivative of the mode conversion density with

respect to the minor radius is larger than that of the electron density, as is evident from Figs. 2.2

and 2.5. Hence mode conversion for a given nil can span a region ranging fiom the plasma center

to a point well away from the axis, which may result in inefficient ion heating. This problem is

not necessarily endemic to low aspect ratio tokamaks, however. For instance, the PLT tokamak

has an aspect ratio similar to that of Versator, yet the higher temperature of the plasma in the

former leads to a significant lowering of the calculated mode conversion density at the plasma

center, thus allowing most of the power of a particular nil component to be damped near the axis.

For Versator, similar thermal effects are significant only for higher nil (> 10), which are predicted

to damp at the edge in high density plasmas or on electrons in low density plasmas. We note

from Fig. 2.2, however, that the damping locations obtained from these calculations are strongly

dependent on the shape of the density profile. If the true profile is narrower than the parabolic

one used in these estimates, the absorption region for a given nl would be more localized and the

heating efficiency might be quite different. Generally, though, we find that the application of this

cylindrical slab model to lower-hybrid wave propagation in the Versator plasma predicts the ion

damping region to be rather broad. Regarding accessibility, waves with nl > 2.5 will not convert

to the fast wave. Nonetheless, mode conversion to the hot plasma wave and wave damping on

ions cannot be unambiguously localized to the plasma center. The broad deposition profile of

the rf'power may have an adverse effect on the heating efficiency since the confinement of high

energy ions which are generated off-axis is expected to be poor. This point will be discussed in

more detail in Section 2.5.

In the present understanding of lower-hybrid wave propagation, the mode conversion point

is the location of maximum penetration into the plasma. The damping on ions is very strong
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Figure 2.3. Minimum and maximum minor radii of damping versus nill for'central densities
n,o = 3 and 4 x 10'3 cm. - 3 and the same plasma parameters as in Fig. 2.2. The dashed line
portions indicate where electron Landau damping is predominant
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Figure 2.4. Contour plot of the maximum damping radius (r/a) for different values of nil
and central density n,o with the same plasma parameters as Fig. 2.2. The dashed line separates
the regions of electron and ion heating. Heating is not predicted to occur for nil values in the
region to the left of the dot-dash line.
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Figure 2.5. Same quantities as Fig. 22, except: (a) B. =15 kG; and (b) Z, f = 1 and Bo=14
kG.
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near the mode conversion because the denominator of Eq. (2.31) becomes very small (zero in the

electrostatic limit) at dithe point of conversion. However, under some conditions ion dmping is

complete before the mode conversion point is reached as is shown by evaluation of Eq. (2.27) for

plasma conditions similar to those used above. In Fig. 2.6 we show a plot of P(r) (normalized to 1

at the edge), (0o, and , versus minor radius for the plasma conditions of Fig. 2.1a and nil = 8. As

in the last section, we consider propagation from both the inner and outer major radii to obtain

the minimum and maximum minor radii of damping with the understanding that the propagation

path of the wave, even in this cylindrical model of the tokamak plasma, is a spiral in the poloidal

plane. As with the mode conversion layer, the maximum damping radius is located on the high

field side, and is 8.8 cm. in this example, corresponding to , = 3.2. he damping length is seen

to be very short (< 1 cm.) due to the rapid increase of nL with decreasing radius near the mode

conversion layer.

The mode conversion layer is shown just to the inside of the damping region. Over a span

of plasma parameters and nil, ion Landau damping is always calculated to occur in the range

3.0 < , < 3.2. For nil < 8 mode conversion s reached before the wave is fully damped, and

vice versa for nil > 8. In Fig. 2.7, we show a contour plot of the maximum minor radius at

which damping occurs, similar to that of Fig. 2.4. 'he major difference between the evaluation

of the damping from Eq. (2.27) and the assumption of heating to be at the mode conversion

location is the reduction of the parameter space for which electron heating is likely. The reason

for this is that at the higher nl's, at which electron heating is normally thought to occur, the ion

damping region is displaced outward from the conversion point. The density must be lowered for

the electron heating to be recovered.

For electron Landau damping to occur within the core of the plasma (r/a < 0.5) with the

use of the four-waveguide side-launching'grill (nil (peak)- 5.5), we require n,, < 2 X 101 cm-3

and nll > 8. The latter requirement is not fulfilled by this launcher. Unless quasi-linear damping

of the lower-hybrid wave on the electron population is considered, 67' 68 we expect electron heating

to be inefficient based on these slab geometry calculations.

2.4. Ion Tail Formation

It has thus far been assumed that ion heating occurs at or near the mode conversion density,

at which point the perpendicular wave phase velocity is only several times the ion thermal speed.

Unmagnetized ion damping is responsible for wave energy loss when the wave reaches these low

phase speeds; consequently, wave damping is expected to be insensitive to the location of an

ion cyclotron harmonic. As discussed in the last section, the damping condition for ions in a

Maxwellian plasma is similar to that for electrons:

W 3. (2.36)
kl Vthi
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Figure 2.6. The local wave power P(r) from Eq. (2.27) versus minor radius in the midplane
for plasma conditions of Fig. 2.1a and nl = 8. Also plotted are the local values of Ci and o,..
The mode conversion locations for this nl are indicated.

32

__



r/a .8

.7

NO HEATIN

.2 .3 .4 .5
ELECTRON HEATING

I

2 4 6 8 10 12 14 16
n,,

Figure 2.7. Contour plot similar to Fig. 2.4
an evaluation of Eq. (2.27).
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In general, though, quasi-linear effects may play a role in the wave absorption. Implications of

unmagnetized quasi-lincar damping are often considered in the interpretation of the experimental

data.1' In particular, stochastic ion heating theory predicts the creation of a fast, perpendicularly-

oriented ion tail, a feature which is observed in most lower-hybrid ion heating experiments.

Suprathermal ions gain energy from the lower-hybrid wave and allow increased absorption of

energy from faster waves. Thus for a spectrum of waves, dithe absorption efficiency increases with

coupled rf power. According to recent treatments, quasi-linear ion heating is expected to distort

the ion distribution such that a perpendicular ion tail is created. The tail exhibits a mean energy or

effective temperature roughly proportional to the rf power in the plasma. 6 ' Flattening of the tail

distribution is prevented by: (1) collisions of the fast ions with slower ones, resulting in heating

of the bulk distribution, or by: (2) direct orbit losses of the energetic ions. In quasi-linear wave

damping calculations for typical tokamak parameters, wave absorption is generally complete before

the wave reaches the linear turning point of the warm lower-hybrid wave.6 5 This supports the

earlier use of the linear turning point as a limit of maximum wave penetration into the plasma.

The energy of the ion resonant with the wave at the point of damping (see Eq. 2.21) may

easily be calculated once the local values of , and T, are known. This energy is determined solely

by the local ion temperature,

6,. - 9T,(r), (2.37)

and represents the energy of the slowest ion that can absorb power from the wave. In principle,

the damping location can thus be determined indirectly if the ion temperature profile is known.

The calculated resonant ion energy at the damping location as a function of nil are plotted in

Fig. 2.8 for several values of the central densities. For nl = 5.5, the resonant energies are 1.3 to

1.8 keV. At higher nl, the resonant energy is lower because the damping occurs in regions of

lower ion temperature away from the plasma center. Experimentally, the minimum resonant ion

energy is inferred from the "knee" in the measured ion distribution which represents the apparent

juncture of the bulk and tail distributions. The energy corresponding to the knee location is thus

believed to be a measure of the slowest wave speed (highest nil) represented in the spectrum. 8 We

will return to this point with the presentation of the charge-exchange measurements in Chapter 6.

Results of a many-particle simulation in which the lower-hybrid wave fields are calculated

self-consistently 6 9 generally support Karney's model of lower-hybrid wave damping. In the

simulation, stochastic ion heating occurs when the perpendicular wave phase speed has decreased

to w/k l 4thi, and a bi-Maxwellian distribution is created. Linear mode conversion does not

occur, even for electric field thresholds of 1/10 the magnitude of Karney's criterion Eq. (2.30).

As ion Landau amping requires a minimum perpendicular ion speed relative to the

perpendicular component of the wave phase velocity before significant interaction can occur,

lower-hybrid waves propagating in an initially isotropic distribution preferentially damp on ions

with purely perpendicular speeds. Furthermore, the energy dissipated by the wave increases the
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perpendicular energy of the ion leading to the creation of the perpendicular tail containing ions

with energy E > Er,,,. The lower-hybrid wave does not gain a high enough value of n1 to interact

with the bulk ion distribution. The suprathermal ions should collisionally heat the bulk ions if

the former are confined sufficiently long. Consequently, we remark that though quasi-linear wave

absorption efficiency is predicted to be higher than the linear absorption efficiency,6 5 the ion bulk

heating may be less efficient for the former than the latter since a substantial fraction of the fast

ions may be lost before they are collisionally slowed.

The ion tail distribution obtained by Karney from the diffusion equation for unmagnetized

ions has a simple analytic form if a number of simplifying assumptions are incorporated. We begin

by writing the diffusion equation for ions in the presence of rf electric fields with a Fokker-Planck

collision term:6 4

af 1 a af_ vat I Dv , f 5I af v a +(2.38)

where f = f(vll, v) is the distribution function of the parallel and perpendicular components

of the velocity components, and D,/ is the rf diffusion coefficient for stochastic ion heating. The

diffusion coefficient is non-zero only for v > w/k 1 - 2vt,, where vt, is the trapping velocity

(eEl/mik 1)/ 2 and E_ is the rf electric field in the perpendicular direction. This lower limit

is plausible from a simple picture of quasi-linear diffusion in which the wave-particle interaction

region in the frame of reference of the wave is determined by the trapping width of the wave.

For v > w/kl, the diffusion coefficient is64

1 -2.,, W 2Df: m 2 ( (2.39)
87r M? k V1 (k2 ,- 1

As the waves interact only with tail ions, the distribution function is only altered significantly in

the velocity range vl > th,. The distribution function in the parallel direction is assumed to be

Maxwellian. This simplification allows the diffusion equation to be written in terms of F(vl), the

perpendicular distribution function:

aF 1 a8 [ aF F 2v-L 2 ] (2.40)ot I I _L aj - Diav C a I vthi

where C is the Fokker-Planck collision operator for fast protons on the bulk protons, impurity

ions, and electrons. Following Karney's notation, we write the collision operator as70

C = 3v2ivii V3t. (+ An ) vt3 h] (2.41)

where vo : 4.4vthi, and vi, is the ion-ion (proton-proton) collision frequency

41rn(e 4

Vii 2 3 InA. (2.42)
Mti th i
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The quantity In A is dithe Coulomb logarithm. Collisions of fast protons on electrons arc represented

in the term containing v,. llis term is only important when vl > v,, or

w > 4.4. (2.43)
kl Vthi

However, we recognize that this term theoretically determines the high energy limit of the tail.

The steady state solution to Eq. (2.40) is64

F(vl) = Foexp j L t/ C dvl (2.44)

which is obtained by setting the quantity in brackets in Eq. (2.40) equal to zero and integrating

over v 1. For w/kl < v < v, both Drf and C are roughly proportional to v 3 , and the

denominator in the above equation is independent of v. Over the velocity region specified, we

can write the distribution function as

F m exp - (tv/2Tt) (2.45)

where

T - (1 + D,/ C)T,
+ 1 YE2 46

8ir(3/2)niT, Mi,(VthinC) (2.46)

is the effective tail temperature of the fast ion distribution. The quantity y is a geometric factor

which accounts for the spatial variation of the lower-hybrid wave strength, and represents the

fraction of time an ion spends in the lower-hybrid field. From Eqs. (2.37) and (2.43), we estimate

the tail to extend from 1.5 keV to 3 keV in the Versator plasma with a typical central ion

temperature of 150 eV. In practice, the upper energy limit of the fast ion tail may be determined

by the finite width of the nI spectrum rather than the onset of collisional losses on electrons, but

we will not address that question.

With the distribution function known, in principle the rf absorption efficiency of the plasma

and the collisional transfer of power from the tail to the bulk could be estimated. To do so, the

theoretical tail temperature must be calculated from Eq. (2.46) if the electric field in the plasma is

known. The perpendicular electric field in the plasma may be calculated from the inward power

flux in the radial direction where we take the polarizations for the transverse electric and magnetic

fields to be the appropriate ones for the slow wave:8

-S, (EB[)-- I|E2 (2.47)
8ir 8r ak,'

where we neglect absorption. The first term on the right-hand side is the electromagnetic power

flow and the second term on the right is due to the coherent motion of the particles. The rf

magnetic field is
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Be = nllE, - nlE. (2.48)

The relationship of E,, to E, for the slow wave is obtained from the -component of Eq. (2.3):

E, = ~ E,r (2.48)
nll n

Since

aK = -2CKzzln, (2.49)
5'k w

the power flux is

S = L lJ - Kz:lij. (2.50)

Letting n2 - - n (which is valid if n2 > 1) and substituting for from Eq. (2.16), we can

write the inward power flux as71

cE2 (K,, - 2K.,ln 2
S = (2.51)

87r nL

where we have replaced Er with EL. However, to estimate the power flux in a tokamak plasma

is somewhat difficult. Lower-hybrid waves in the cold electrostatic approximation are predicted to

propagate in resonance cones; however, laser scattering measurements of the lower-hybrid wave

in the Alcator A tokamak have shown that the waves are not restricted to resonance cones.7 2

Accordingly, we estimate the power flux in two ways which may give two bounds on the electric

field. In the first method, we obtain the field by assuming that the waves propagate in resonance

cones such that the effective cross-sectional area for power flow is hLoz(r/a), where L,, is the

width of the grill in the z-direction and (r/a) is a cylindrical focusing factor. In the other extreme,

we assume the wavefront to extend over the entire flux surface of area 4r 2Ror. The calculated

electric field for the two conditions are plotted in Fig. 2.9 along with Karney's threshold field

for stochastic ion heating. We assume the same plasma conditions as in Fig. 2.1a and pick nil 

2 and 5, and Pf = 50 kW. The average electric field at the launcher for this power level is

E =0.5 kV/cm. In the plasma interior, the calculated electric field can exceed 5 kV/cm for

both propagation scenarios, while Karney's threshold field is about 1 kV/cm. Thus we expect the

stochastic heating mechanism to be important in wave absorption.

The calculated ion tail temperatures Eq. (2.46) are plotted versus nil in Fig. 2.10 for several

different densities. The geometrical factor y cancels the difference between the electric fields of

the two assumed propagation methods. What is not accounted for is the finite radial extent of

the lower-hybrid wave packet. If this width (Ax (w2 /w lH- 1)(me/mi)l/2L 2) is comparable

to an ion Larmor radius, then the ion will spend a fraction of its orbit outside the wave fields and
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Figure 2.9. Calculated electric field in the plasma versus minor radius in the midplane. The
field is calculated from Eq. (2.51) for the two cases considered in the text with an injected power
of 50 kW and the same plasma conditions as Fig. 2.1a. Also shown are the threshold fields
for the onset of stochasticity. The dashed lines denote the fields for nil = 2. the solid lines for
nil = 5. The curves labelled "A" denote the electric fields calculated using the resonance cone
model. and those labelled "B" are calculated in the diffuse, cylindrically symmetric propagation
scenario described in the text.
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the stochastic heating theory is not valid. In Vcrsator, Lo - 10 cm. and As <0.2 cm, and the

Larmor radius of a 1 kcV ion exceeds the typical width of the ;csonance cone. However, multiple

radial passes of the lower-hybrid wave because of weak damping, radial reflections, or drift wave

scattering may eliminate radial localization of the rf fields. Therefore, calculation of the electric

field strength under realistic experimental conditions is a difficult problem.

The predicted ion tail temperatures are on the order of 100 keV. ThI high values of the

tail temperature are due to the large electric field' near the mode conversion layer and the weak

collisional slowing of the fast ions. As noted earlier, such a tail in the Versator plasma should

only extend to an energy of about 3 keV. Thus the theoretical fast ion distribution should be

characterized by a rather flat plateau for 1.5 < , < 3 keV. In contrast, we will see in Chapter 6

that the experimental fast ion distribution for , > 1.2 keV has an effective temperature Tt < 1

keV, or roughly two orders of magnitude less than the typical calculated value. The discrepancy

between the theoretical and experimental tail temperatures has been noted in previous numerical

treatments of quasi-linear damping.6 5 Though quasi-linear theory is invoked to explain the ion tail

temperature measurements in the Wega experiment, 8 the assumed electric field at the damping

location is only 0.7 times that at the launcher, which is much smaller than that predicted by Eq.

(2.51). A number of arguments may be invoked to explain why the predicted ion tail temperature

may be an overestimate. Drift wave scattering, 73 74 collisional4 ,3 4 and parametric absorption3 0 3 1 41

at the plasma edge, and toroidal effects on propagation 62 7 4, 75 may prevent a significant fraction

of rf power from reaching the damping region; hence the electric field in the plasma may be

much lower than that given in Eq. (2.51). Equally importantly, the ions may be removed from

the tail at a greater rate than predicted by the Coulomb collision operator of Eq. (2.41). Because

of neoclassical effects, particles with primarily perpendicular velocity are not well confined, as

discussed in the next section.

Nonetheless, the rate of rf power absorption by the ion tail can be estimated from the

experimental measurements of the ion distribution function. To do so, we will employ the same

model of the perpendicular distribution function described above except that the tail temperature

is taken as a measured quantity rather than a calculated one. It is assumed that a Maxwellian tail

of effective temperature Tt intersects the thermal bulk distribution at the velocity value vl = v,

which represents the minimum perpendicular speed of the lower-hybrid wave at the damping

location. From linear theory, it has been shown (see Eq. 2.31) that vl thi. This value may be

lowered by quasi-linear effects in the same manner as for electron Landau damping, in which case

a numerical solution may be employed to determine the velocity coordinate of the intersection

of the ion tail with the bulk. For typical tokamak parameters, Kamey finds 6" vl 2.2 vthi.

Generally, the value of vl depends on the applied power. 6 5 Again, it is possible that v can be

experimentally determined. The velocity v, characterizes the theoretical upper limit of the tail, but

we take the tail temperature to be sufficiently low such that we may set vo = oo in the velocity

space integrals.
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Figure 2.10. Calculated tail temperature at the damping
of the plasma density and an injected power of 50 W.

location versus nit for several values
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With these simplifications, the distribution function Eq. (2.44) may be written as:

1 .fexp -(1UI/ Othr_ L _ vl;
F(v l exp-(v~/vthVI, (2.52)

rV) , {exp -[(v/v h,)(1 - T/Tt)] exp -[(v /v2h)T/Tt], v > v (2.52)

Because v > v 2,, the normalization term in front of the bracket is taken to be the same as for

the thermal Maxwellian distribution of temperature Ti.

The tail density is

nt =n, I F(vI) 27rv1dv (2.53)

= ni(Tt/T,) exp-(Vl/Vthi)

For the parameters T, = 150 eV, Tt = 1000 eV, and v = 2 .8 vtl,,, the fractional ion density of the

tail is 0.26%. We note that the number of ions in the tail is strongly dependent on the value of

v,; hence it is of primary importance to know this quantity in the experiment in order to evaluate

the absorption efficiency.

The energy density in the tail is

Et _ n ji, v2 F(vL)27rviLdU

-2 T(1 + V2hITj) (2.54)

= T,(1 + V2hiTt !

If the confinement time of the tail, t, is known, the rf power required to maintain the tail is

Pt = . (2.55)
rt

The collisional power delivered by the tail to the bulk ion distribution is64

Pc=nimij VIC + F F 2v1 v1du (2.56)

where the collision operator is obtained from Eq. (2.41). Inserting the value of C and performing

the integral gives

6Ve 4In A 2 V't Ti\
P, '/-M- n. Ti Tt .Lg\St/ j= 6.\g; Ani2 <( _(2.57)

X exp-[(/vh)(1- /TT] exp--2 2 d

where x(vl ) = / (v/Lvh,)TJTt. From Eqs. (2.54) and (2.56) the collisional heating time is

e = Fe' (2.58)
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In this manner, the rf absorption and collisional heating efficiencies can be estimated directly from

the experimental measurements of the ion distribution. Such estimates are presented in Chapter 6

with the use of ion energy spectra obtained from charge-exchange analysis.

In concluding this section, we reiterate that the ion Landau damping mechanism, as it is

presently understood, explicitly leads to the formation of a suprathermal ion tail. Wave energy

is transferred to particles with perpendicular speeds equal to that of the wave, irrespective of

the location in the plasma. However, significant wave damping occurs only if the phase speed is

approximately three times the ion thermal speed since the number density of ions in the tail is

strongly dependent on the ratio of the wave phase velocity to the thermal velocity (see Eq. 2.53).

In a self-consistent treatment of the quasi-linear absorption problem, the presence of the tail has

been shown to increase the overall absorption efficiency of the plasma.6 5

This point may be illustrated for the Versator plasma parameters in the following ad

hoc manner. We assume the plasma ions to be represented by the superposition of a hot

Maxwellian distribution of constant temperature Tt and density nt on a background plasma with

the previously-described temperature and density profiles. With Tt < 10 T,o and nt < 0.02 nio,

the addition of the hot Maxwellian component changes the thermal correction term K 1,, of Eq.

(2.16) by less than 20%. Thus the real part of the dispersion relation is largely unaffected by the

presence of a relatively small number of hot ions. However, the correction to the damping rate

Eq. (2.31) is significant because of its strong dependence on Wt/klvtht, where Vtht = V2Tt/ri.

Accordingly, we add the term (nt/n,)t3e - 4 to the quantity in brackets in Eq. (2.31) to account

for the wave absorption on the tail, and solve Eq. (2.27) in the same manner as before.

We consider the case of a hot Maxwellian distribution of temperature 1 keV and density

0.002 nio present in the plasma. The hot.ion distribution is assumed to exist only inside a minor

radius of 10 cm. The background plasma has a central density of n,, = 3 X 1013 cm;- 3 otherwise

the plasma parameters are the same as in Fig. 2.1a. The nil of the lower-hybrid wave is taken to

be 6. In Fig. 2.11, the local wave power of Eq. (2.27) is plotted as a function of minor radius

in the midplanc. For comparison, the damping for the case with no tail present is also shown.

Though the damping length on the fast ion distribution is larger than that on the bulk, absorption

of the wave is essentially complete before the linear damping region is reached. Absorption by

the ion tail takes place on the low field side where damping on a thermal plasma is not predicted

to occur at all. Also plotted in Fig. 2.11 is the energy of an ion which is locally resonant with

the wave. While damping takes place on 1.5-1.8 keV ions in the case with no tail, absorption on

the tail occurs in the 3-5 keV range. As we will see in the next section, the latter ions should be

more poorly confined than the former because of their higher energy and the fact that damping

on the tail occurs at larger radii.

Plotted in Fig. 2.12 is the maximum (high field side) damping radius of the lower-hybrid

wave versus tail density for two tail temperatures and the conditions assumed in the previous
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Figure 2.11. P(r) versus minor radius in the midplane for nil = 6. A Maxwellian distribution
of fractional density .002 n,, and temperature 1 keV is assumed to be present within a plasma
radius of 10 cm. The central density is 3 x 1013 cm.-3 and the other plasma parameters are
the same as in Fig. 2.1a. The solid lines indicate the local power with the tail present and the
dashed lines are f6r the situation with no tail present. For the case of the wave incident on the
plasma core from the low field side. no damping is calculated to take place before the wave
reaches the axis. Also shown is the ion energy resonant with the wave.
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figure. Only a small tail density relative to the bulk is needed to permit a significant outward shift

of the damping region, and as mentioned earlier, this effect should be more prominent at lower

values of n1l. Of course, the spatial extent and profiles of the tail distribution have been chosen

somewhat arbitrarily; hence these results should not be interpreted as a quantitative prediction

of the damping location. Nonetheless, it is clear from the above discussion that the presence of

a tail with a number density consistent with the theoretical prediction of Eq. (2.53) substantially

modifies the damping behavior of the lower-hybrid wave. Such an effect may be of importance

with respect to the confinement of fast ions, as treated in the next section, and possibly with

regard to toroidal effects on wave propagation, which is discussed in Section 2.6.

2.5. Energetic Ion Confinement

Regarding the ion tail energy, the only power loss explicitly considered thus far has been

collisional coupling to the bulk plasma. However, ions with primarily perpendicular components

of velocity such that

Ivit/vl < 2r//& (2.59)

are banana-trapped, and are subject to orbit losses. Due to the VB and centrifugal drifts, the

trapped ion suffers a displacement from its flux surface of roughly 6

Ar = (mic )V (2.60)

where Be is the poloidal magnetic field. The excursion from the flux surface corresponds to the

size of the ion Larmor radius evaluated for the poloidal magnetic field. As the suprathermal

ions are accelerated in the perpendicular, direction by the lower-hybrid wave, these particles are

certainly trapped, and are poorly confined relative to the circulating thermal ions. For sufficiently

fast ions, the poloidal gyroradius may become comparable to the plasma minor radius, and ions

are lost directly to the limiter or wall.

Though these neoclassical effects on the heating rate of ions are not quantitatively evaluated

in this thesis, we can show that trapped particle losses in Versator are likely to drastically limit the

ion heating efficiency; energetic ions created by lower-hybrid wave damping are expected to be lost

to the edge before thermalization can occur. The minimum energy required for loss to the limiter

may be estimated analytically7 6 by assuming that the most poorly confined trapped ion at a given

minor radius on the midplane has a banana trajectory which intersects the limiter. The tips of the

widest banana for a specific ion energy are located almost on the midplane on the inner side of

the torus. The flux surface on which the tips lie is approximately halfway between the minimum

and maximum minor radii of the orbit. The pitch angle m,, (defined by sin "PI = vl(min)/v)

of the ion at its minimum minor radius rb may be estimated using the conservation of magnetic

moment of the ion Larmor orbit. The minimum ion energy for loss to the limiter can then be
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obtained by invoking conservation of canonical angular momentum in the toroidal direction. This

value of O denotes the so-called vertex of the loss region for trapped particles. lhe derivation for

the loss energy is taken from Ref. 75, and is outlined in Appendix B.

In Fig. 2.13, the minimum ion energy for loss and the corresponding pitch angle of the

vertex are plotted versus minor radius for several values of the total plasma current. Most ion

heating experiments in this work were performed at Ip, 50 kA. It is evident from the figure

that only ions of energy less than several kiloelectron volts are well confined in Versator. Ions

undergoing mirror reflection near the midplane on the high field side of the axis are the most

poorly confined of all banana-trapped particles. In Fig. 2.14, the energy of an ion resonant with

the lower-hybrid wave is plotted versus the minor radius for several different values of nil. The

curves of resonant energy are terminated at the ion damping location for that particular value

of nil. The energetic ions are assumed to be created at or near these locations. Also plotted are

the neoclassical confinement regions for plasma currents of 1, =50 kA (inner shaded region) and

Ip = 100 kA (sum of inner and outer shaded regions). For the given current, ions with energies

within these regions are confined. The results show that much of the predicted region for ion

damping lies outside the neoclassical confinement zone for the typical Versator plasma current

of Ip =50 kA. After pitch-angle scattering into the loss region, fast ions will be lost to the edge

plasma and limiter. Though higher nil components damp on lower energy ions, the damping

region for these values occur at larger radii where confinement is poorer. We note, however, that

the confinement problem would be significantly reduced if the plasma current could be doubled

to 100 kA.

The maximum effective loss rate of banana trapped ions which are lost to the wall is the

bounce frequency of the ion in the magnetic well,

vi (a\
qnW . Rt (2.61)

3 X i10 3 (eV sec-1

For comparison, the ratio of this rate to collision frequency for thermalization of fast ions given

earlier is about 2 x 10- 4£?(eV)/n , (10l3 cm- 3 ). For 1.5 keV ions, the orbit loss rate may be up

to 2 orders of magnitude higher than the collisional heating rate. High energy ions which merely

traverse the edge region but do not intersect the limiter are also subject to charge-exchange losses

which are comparable to the above thermalization rate if the edge neutral density is as high as

10° cm-3. Furthermore, ripple losses of particles trapped in the local magnetic field well between

toroidal field coils are calculated to be significant for suprathermal ions in Versator. Ripple-trapped

ions of energy7 8
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Et > _ ..
21/2 6 (2.62)

> 2.3 kcV [n,(1013cm-3)] 2 /5

are expected to escape the plasma before isotropizing. Here, 6 is the toroidal field ripple, AB/BI,

which is calculated to be approximately 0.002 on axis for Versator. This mechanism is believed

to be possibly responsible7l for the inefficient Alcator A ion heating results and could also be

detrimental to fast ion confinement in Versator.

The quantitative effects of orbit losses on the tail temperature and bulk ion heating rate is

not assessed here because of the difficulty of the required calculations. However, we note that

for numerical computations in which stochastic ion heating theory is combined with neoclassical

confinement for the JFT-2 tokamak and lower-hybrid system parameters,7 9 the results expected

from the previous discussion are obtained. The plasma ions are predicted to be accelerated

stochastically and form a high energy tail within 100-200 Ojsec after rf is turned on, as in the

uniform plasma model of Karncy. More importantly, the fraction of ions lost from the tail is

significant, and is indeed strongly dependent on the plasma current and the radial location of the

damping region.

According to Eqs. (2.46) and (2.57), the tail temperature and bulk ion heating rate are

dependent on the ion collision frequency. Because of the high neoclassical loss rate of fast ions

and the fact that orbit losses of the tail ions are worse for higher energy ions in contrast to

collisional losses, the tail temperature should be much lower than that given by Eq. (2.46). Hence

we may expect the true bulk ion heating rate to be lower than that predicted by quasi-linear

theory. Clearly, the confinment of near-perpendicular high energy ions in Versator is poor, and

off-axis wave damping should give rise to inefficient bulk heating. The results of the previous

section show that off-axis heating is indeed likely. Though the toroidal effects discussed in the

next section are expected to have a profound effect on the wave propagation and damping, the

inclusion of these modifications in fact does not generally lead to improved transmission of wave

energy to the plasma core.

2.6. Toroidicity and Wave Propagation

As mentioned earlier, the inhomogeneous magnetic field of the tokamak and the presence of

the poloidal field significantly change the propagation of the lower-hybrid wave. The parallel wave

number is not a constant of the motion, and the poloidal wave number no, initially assumed to be

zero and heretofore also a constant of motion, can become large and even become comparable to

the radial component of n 1 . The inclusion of finite no must reduce the value of nr for a given nil

because nl = (n2 + n 2)1/ 2 is fixed by the dispersion relation. In the extreme case of ne = n

and n, = 0, the lower-hybrid wave propagates perpendicularly to the density gradient and cannot

penetrate to the core.
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Figre 2.13. Minimum ion energy for loss to the limiter versus minimum minor radius of ion
orbiL rb. for several values of the plasma current. The pitch angle 0m of the ion trajectory at
rb is also plottued.
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Figure 2.14. Energy of an ion resonant with the lower-hybrid wave versus minor radius in
the midplane for several values of ntl. The curves are terminated at the ion damping locations
predicted in Section 23. The inner shaded area represents the neoclassical ion confinement
region for Ip =50 kA; the sum of the inner and outer shaded areas represents the confinement
region for p,=100 kA.
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The evolution of the wave parameters may be calculated using ray tracing theory in which

the lower-hybrid wave fields are Fouricr-decomposed into a number of plane waves of specified

initial nl. Though the use of this model with regard to lower-hybrid waves in tokamaks is

still in some question,8 ° the method is widely used to estimate the wave behavior in tokamak

geometry.62 74 75 s. 8 The major tenet of the theory is that wave propagation is describable by WKB

theory8' 8 2 and hence the path of the wave in wave vector and configuration space evolves as

dk aD/ar (2.63a)
dt aD/law

dr aOD/ak (2.63b)
dt aD/aw'

which are known as tie ray equations. In general, the parallel wave number in tokamak geometry

can be written as

ni= [n9Be + nBj]/jBI (2.64)

where n = Mc/wr and n = Nc/w(R + r cos 9); M and N being the poloidal and toroidal

mode numbers of the wave. The trajectory of the wave in k space, given by Eq. (2.63a) is

dk, a)/ar
=dk D/r (2.65a)dt aD/aw'

dM aD/a
(2.65b)

dN D = 0. (2.65c)
dt aD/8w

The first equation describes the evolution of nI similarly to that presented in the last sections,

while the second equation indicates that M is variable because of the finite value of aD/la. The

third equation reflects the axial symmetry of the toroidal plasma. With the ordering Be < BO, the

parallel wave number can be approximated from Eq. (2.64):

nl "i (Ro + r cos 0) Nq (2.66)

The inhomogeneity of the toroidal field imposes a small variation of nl with major radius, but

the major effect on nil is due to the non-constancy of M. Using the cold electrostatic dispersion

relation, we find6 2 ,7 4' 7 5 from Eq. (2.65b) that dM/dt is proportional to -r sin@. Since the sign

of nil is the same as that of dO/dt, nll I decreases as the wave moves from larger to smaller major

radii. Thus any wave launched from the outer major radius (the conventional antenna position)

will suffer a drop in nll and an increase in Inel. If the launched nil is too low, the wave may

become inaccessible and convert to the fast wave. In a less severe case, the down-shifted nil may

be still be accessible but the nl from the dispersion relation is too low for ion damping to occur

(and the nil is too low for electron damping to occur). In addition, if IMI becomes large enough,

Inel can increase to the value of Inj l, whereupon n, goes to zero and reverses sign, causing the
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slow wave to propagate outward. 'The opposite effects occur for waves propagating from smaller

to larger major radii. Though it is inpractical to launch waves from the inner side of dithe torus,

waves launched from the top or bottom of the plasma column such that their trajectory carries

them to larger major radii will in general experience an upshift in nil leading to better penetration

and absorption. However, the lower-hybrid wave damping may take place well off-axis in this case

because of the overall tendency for nil, and hence n1I, to increase significantly.

2.6.1. Toroidal Ray Tracing in Versator: Side Launching

Though the above discussion of the initial evolution of the ray trajectory is useful in

visualizing the physics of wave propagation in this geometry, detailed calculations are required

for an accurate prediction of the path of the lower-hybrid waves. Such computations have been

done for Versator plasma parameters by Dr. Paul Bonoli. In his simulations, a wave with a

single nil value and localized to a specified initial poloidal angle is incident on the plasma at

the limiter radius. The wave propagation is governed by the ray equations (2.63) in which the

full electromagnetic dispersion relation with the warm plasma correction is used. Electron Landau

damping and ion damping rates calculated from the imaginary parts of the dispersion relation;

for the ions, unmagnetized damping is invoked. The presence of an ion tail is not included in

the model, and the wave power absorbed by the ions is used to calculate the increase in the bulk

ion temperature. Collisional damping of the wave along the trajectory is also tallied in a manner

similar to that described by Eq. (2.33). Results of the simulation are shown in Figs. 2.15-2.17 for

initial nil values of 4,6, and 8. As will be shown in the next chapter, these values are representative

of the nil power spectrum of the side-launching grill for a relative phase angle between adjacent

waveguides of Ad = 1800 (see Fig. 3.3). The plasma parameters are similar to those for Fig. 2.1a.

The launch point is taken to be the outer major radius on the midplane. The central density is

4 X 1013 cm.-3 In this set of figures, (a) is a projection of the ray trajectory in the poloidal plane;

(b) shows the evolution of nil, i, and o, for the same case. We first consider the case of nil = 4,

illustrated in Fig. 2.15: from the path of the ray, it is evident that n, reverses sign on the high

magnetic field side. Though nil drops to a minimum of 2 on the inner side, the wave does not

penetrate to a high enough density to convert to the fast wave, but is reflected as the slow wave.

Also note that the reduction of nil prevents the wave from damping at the lower mode conversion

densities on the inner side.

The outward propagating slow wave is assumed to reflect from the slow wave cut-off layer

near w = wp, (or perhaps from the chamber wall, since the cut-off layer is close to the wall),

.whereupon it travels inward again. The cycle usually repeats until the wave bounces off the bottom

of the plasma column. As outlined earlier, nil then increases as the wave travels to lower magnetic

fields, and resonant damping can occur. n this case, however, collisional damping on electrons

accounts for 88% of the total power loss because of the long path length, and the ray treacing is

terminated before collisionless absorption becomes effective.
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Figure 2.15. (a) Projection in the poloidal piane of the predicted path of the lower-hybrid
wave. The plasma parameters are the same as in Fig. 2.1a and the initial nil is 4. The wave is
launched from the outer major radius ( -= 00). The inner circle (dashed line) represents the
limiter radius. while the outer circle is the plasma boundary defined by the chamber size. The
centerline of the tokamak lies to the left in this diagram. (b) Evolution of nil (solid line), i
(dashed line). and o, (dotted line) along the poloidal trajectory of the ray.

53

_ __ _

__

I

[3
D



T.eh same quantities illustrated in Fig. 2.15 are plotted in Fig. 2.16 for an initial nil of 6,

and in Fig. 2.17 for an initial nl of 8 for the same plasma conditions as before. The final nil

values at the damping locations are about 24. Poor radial penetration is predicted for these cases

as well. For nil = 6, the collisional damping accounts for 80% of the power loss, and resonant

absorption on electrons for 19%. The value of oe at the damping location is about 3, while is

appoximately 4. For nil - 8, 88% of the rf power is lost to collisions and 9% to ion heating, and

the final values of f, and o, are both approximately 3.

Most other ray trajectories in the density range 2 x 1013 < n,, < 5 X 1013 cm-3 appear

similar to these. None penetrate the plasma without suffering bounces at the plasma edge. In a

plot similar to Fig. 2.7, the calculated damping locations are plotted in Fig. 2.18. The dotted line

separates the region of ion heating from collisionless electron heating. The line is drawn where

the resonant absorption on each species is approximately equivalent. ITle shaded region indicates

the parameters for which over 90% of the rf power is lost to collisions. Though several contour

lines of equal damping radius have been drawn to fit the computed results, there is no simple

relationship between the plasma parameters and the specific fate of the wave. As indicated in

Fig. 2.18, collisional damping in the outer plasma is the predominant power loss mechanism for

densities n,, > 3 x 1013 cm.- 3 and nil > 8. In fact, collisional losses account for over 50% of the

absorbed power in all cases except for nil < 2 or neo < 2 X 1013 cm.-3 An examination of the

ray trajectories shown in Figs. 2.15-2.17 indicates why collisional damping should bc. important for

the case of side-launching: because of the toroidal effects discussed above, the ray path traverses

the edge region many times. The collisional damping can be calculated in a manner similar to that

indicated by Eq. (2.27) with Im k given by the expression appropriate for collisional absorption

(e.g, Eq. 2.33). For these calculations, the electron temperature at the limiter radius was taken to

be 20 eV. As the typical value of Im kl due to collisions in the edge region is not insignificant,

the collisional damping integrated over the entire path length of the ray can be large.

Electron Landau damping, generally occuring farther than halfway out, is responsible for

power absorption at lower nll's while ion heating only occurs for n,, > 3 1013 cm.- 3 and

nil < 4 and a few other points. The effect of toroidicity on the damping behavior of the wave is

evident from a comparison of Fig. 2.18 to Fig. 2.7. The plasma conditions for ion heating are seen

to be even more restrictive when toroidal effects are considered. The scatter of damping points

for the toroidal propagation case shown in Fig. 2.18 is indicative that the trajectory of the wave

on its final pass is determined primarily by the poloidal location of its last bounce rather than

the initial conditions. Also, waves launched with slightly different nll's do not necessarily damp

close to one another or even on the same species. Moreover, we note that the interaction of the

outgoing wave with the edge plasma may not be a simple specular reflection as assumed by the

calculation. Collisions of the wave with the limiter are likely to scatter the wave unpredictably and,

in the case of Versator, the non-circular vacuum vessel may well complicate the reflection patterns.

Furthermore, WKB theory may not be valid in representing lower-hybrid wave propagation. Taken
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Figure 2.16. (a) Projection in the poloidal plane of the predicted path of the lower-hybrid
wave. The plasma parameters and antenna location are the sune as in Fig. 2.15, and the initial
nil is 6. (b) Evolution of nil (solid line), , (dashed line), and o, (dotted line) along the poloidal
trajectory of the ray.
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Figure 2.17. (a) Projection in the poloidal plane of the predicted path of the lower-hybrid
wave. The plasma parameters and antenna location are the same as in Fig. 2.15, and the initial
nil is 8. (b) Evolution of nil (solid line), g, (dashed line), and oe (dotted line) along the poloidal
trajectory of the ray.
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Figure 2.18. Contour plot of the damping radius (r/a) from toroidal ray-tracing analysis for
lower-hybrid waves launched from the outer major radius. The assumed plasma parameters are
the same as in Fig. 2.7.
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at face value, the results of the toroidal theory suggest that the heating efficiency may be extremely

sensitive to the plasma parameters and profiles, and could exhibit large variations.7 4

Though the predictions of ray tracing theory may not be entirely valid because of the

complex ray paths, it is clear that the initial evolution of the lower-hybrid waves as described

by the theory leads to poor rf penetration to the plasma center in Versator. Linear collisionless

damping of the lower-hybrid wave is generally weak because of the downshift in nil; consequently,

other damping mechanisms having relatively long damping lengths can be significant. We have

illustrated the importance of collisional damping in this model; for the same reasons, we note that

damping on an ion tail in the outer region of the plasma (which is not explicitly considered in this

numerical treatment of ray propagation and wave damping) may also be more significant in this

toroidal model than in the case of slab geometry described in Section 2.4. Non-linear effects, e.g.

parametric decay, may similarly play an important role in wave absorption at the edge. Given this

picture, neither ion nor electron heating on Versator can be expected to be particularly efficient

with lower-hybrid waves launched from the conventional side location.

Transport code simulations combined with the type of ray-tracing calculations presented

above have been performed for the parameters of the Versator ion heating experiment by Drs. Paul

Bonoli and Ronald Englade.3 4 ,8 3 The code models a one-dimensional plasma with the ion energy

transport given by the neoclassical value of Hazeltine and Hinton,8 4 scaled by an appropriate value

(3-7, typically) to make the initial parameters in the ohmic plasma self-consistent. The electron

transport is modelled by Coppi-Mazzucatto diffusion.84 85 The launched nl power spectrum used

in these simulations is provided by the Brambilla coupling code7 described in the next chapter.

Damping is assumed to take place on a thermal plasma distribution in the same manner as

described above for the ray-tracing calculations.

The predicted heating efficiency for rf injection with the side-launching antenna is found

to vary significantly with the edge electron temperature (T, at r = a), with larger temperature

increases noted for higher edge temperatures. The initial and final calculated ion and electron

temperature profiles are shown in Fig. 2.19 for the conditions n = 2.6 x 1013 cm, - 3 Bo =

13.5 kG, Ip = 55 kA, and Prf = 50 kW with the relative phase between adjacent waveguides

A = 1800. In this simulation the ion thermal conductivity is taken to be 3 times the neoclassical

value of Hazeltine and Hinton. The curves labeled T and T are the initial profiles, while T 2

and Ti2 are the profiles at the end of the 5 msec rf pulse. In Fig. 2.19a, the assumed edge electron

temperature is 30 eV, and in Fig. 2.19b, the edge temperature is 10 eV. The predicted central ion

temperature increase of 100 eV in the former case is about four times larger than that of the latter.

The difference in the calculated heating efficiency is due to the stronger collisional damping in the

colder edge plasma of the second case. These simulations clearly show the ion heating efficiency

to be very sensitive to subtle changes in the electron temperature profile.

The computed ion temperature profile is also broader in the rf-heated plasma than in the
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Figure 2.19. Transport code predictions of the electron and ion temperature profiles in Versator
during rf heating with the side-launching antenna T, and T, represent the initial electron and
ion temperature profiles before the rf is turned on: Te 2 and T 2 are the calculated profiles at
the end of the 5 msec rf pulse. The rf power is 50 kW: the plasma parameters are given in the
text In (a). the assumed electron temperature at the limiter radius is 30 eV; in (b), the edge
temperature is 10 eV.
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initial ohmically-hcated discharge. This is generally consistent with the predictions of off-axis wave

damping illustrated in Figs. 2.15-2.17.

2.6.2. Toroidal Ray Tracing on Versator: Top-Launching

For the same reason that lower-hybrid waves launched from the side of tile torus suffer a

downshift in nil, waves launched towards larger major radii are predicted to experience an upshift

in nil. Because of the better radial penetration of the latter waves, a top-launching rf antenna

has been designed and built for operation on Vcrsator. The primary experimental application of

this grill is the improvement of electron heating efficiency, but ion heating may also be facilitated

with the use of this grill in the appropriate density range. However, the nit spectrum of this

antenna is optimized at high values for electron damping. Furthermore, the narrow ports on the

top of the vacuum vessel can only accomodate a grill with narrow waveguides, also necessitating a

spectrum characterized by high nil; for a relative phase angle between waveguides of AO = 1800,

the representative nil is about 15 (see Table 1 and the calculated spectrum in Fig. 3.4 of the next

chapter). In light of the discussion of the previous sections, especially with the recognition that the

nil should initially upshift, the launched nil spectrum for A4 = 1800 is too high for ion heating

to occur on axis. In practice, the grill can of course be phased at a lower angle, but the high

antenna reflectivity for AO, < 900 limits the efficient coupling of rf power.

Graphs of the poloidal ray trajectories and evolution of nil, , and Oe for the case of

top-launching are shown in Figs. 2.20-2.22. The plasma parameters are the same as before. The

case of the initial nil =4 is illustrated in Fig. 2.20. The local parallel wave number varies from

3 to 7 along the trajectory, and upon damping, nil is only 4.8. A total of 78% of the rf power is

predicted to be lost to ions, with the remainder going to collisional heating. The damping radius

is predicted to be r/a = 0.3.

The similar plots for nil =6 and 8 are shown in Figs. 2.21 and 2.22. As expected, these waves

are predicted to damp at larger minor radii (r/a - 0.5 and 0.6, respectively) than that for the

previous case. For the initial nil of 6, 62% of the power is predicted to be lost to ions, while for

the initial nil of 8, only 40% of the power is absorbed by ions. In the latter case, resonant damping

on electrons accounts for 23% of the power loss, with collisional absorption being responsible for

the remainder. For the initial nil value of 6, the nil value at the damping location is about 12, but

is only 3 for the wave launched with an nil of 8. Even though the radial penetration rate is much

greater for the top-launched rays, the parallel wave number is still seen to vary significantly along

the ray trajectory.

We remark that rays launched with negative nil (toward smaller major radii in this example)

have trajectories similar to those launched from the side. In Fig. 2.23, the ray trajectory and

evolution of nil, ,, and 0 are plotted for the top-launched ray with initial nil of -6; i.e. for a

ray launched toward the high field side. For this ray, only 8% of the power is predicted to-damp

on ions,while 23% goes to resonant electron absorption and the remainder to collisional damping.
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Figure 2.20. (a) Projection in the poloidal plane of the predicted path of the lower-hybrid
wave. The plasma parameters are the same as in Fig. 2.1a and the initial nil is 4. The wave is
launched from the top of the plasma column ( = 900) toward the low field side. (b) Evolution
of nil (solid line), , (dashed line). and oe (dotted line) along the poloidal trajectory of the ray.
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Figure 2.21. (a) Projection in the poloidal plane of the predicted path of the lower-hybrid
wave. The plasma parameters and antenna location are the same as in Fig. 2.20, and the initial
nil is 6. (b) Evolution of nil (solid line), , (dashed line), and eoe (dotted line) along the poloidal
trajectory of the ray.
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Figure 2.22. (a) Projection in the poloidal plane of the predicted path of the lower-hybrid
wave. The plasma parameters and antenna location are the same as in Fig. 2.20. and the initial
nl is 8. (b) Evolution of nil (solid line), , (dashed line), and o, (dotted line) along the poloidal
trajectory of the ray.
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For a relative phase between waveguides of Ax = 90° , roughly 30% of the launched power is

represented by waves with negative nil (see Fig. 3.4 in the next chapter). Because of the predicted

difference in the heating behavior between positive and negative waveguide phasings, experiments

with the top launcher should provide a test of the toroidal ray tracing theory if the actual damping

mechanisms are similar to those used in these calculations.

A contour plot of the damping locations for top launching of positive nil rays is shown in

Fig. 2.24. The penetration of rf power to the center is better in this case than for side launching.

Because the waves usually damp on the first traverse of the plasma interior, the ray lengths

are shorter, and collisional damping is less than for the case of side-launching. Only for the

highest central density of 5 x 10'3 cm- 3 does the total collisional damping of a ray exceed 50%.

Nonetheless, the parameter space for ion heating near the plasma center is still relatively small

because of the calculated upshift in nll. For central ion heating to occur, the central density must

be approximately 3 x 1013 cm.- 3 and the launched nl spectrum should peak near 4. The latter

qualification is difficult to satisfy with the available grill. At higher densities, ion heating is possible

over a wider range of nil, but only at larger minor radii.

Preliminary transport code simulations of the top-launching ion heating experiments have

been performed with nearly the same plasma parameters used in the previously-described simulation

with the following differences: the ion thermal conductivity is taken to be 7 times the theoretical

neoclasssical value, and the electron transport is given by modified Coppi-Mazzucatto diffusion

which simulates increased electron energy transport in rf-heated plasmas.8 7 Consequently, the rf

heating efficiencies are lower in this simulation than in the previous one. The specific plasma

parameters in this case are taken to be n,, = 3.9 x 1013 cm, - 3 B, = 14 kG, Ip = 55 kA, To =

400 eV, Ti, = 160 eV, and Te(r = a) = 30 eV. The transmitted rf power is 100 kW.

The resulting ion and electron temperature profiles are shown in Fig. 2.25. In Fig. 2.25a, the

relative phase between adjacent waveguides is AO = +900 (most of the power launched toward

the high field side; nll(typ.) = 7), and in Fig. 2.25b, AO = -90 ° (most of the power launched

toward the low field side; nll(typ.) = -7). The heating is best for the case of AO = -90 ° . For

AO = +900, the upshift in nil caused by toroidal effects allows most of the rf power to be

resonantly absorbed on electrons between a minor radius of r = 6 and 11 cm. Only about 8%

of the power damps on ions, and the predicted central ion temperature rise is only 35 eV. For

A- = --90 ° , the ion temperature increase is about three times as great, and the ion temperature

profile is significantly broadened relative to the ohmic profile. In this case, the ions are predicted

to absorb 35-40% of the power, since the downshift in nil of most of the launched spectrum does

not favor electron Landau damping. The simulation for AO = 1800 (Fig. 25c) shows a heating

efficiency intermediate between the above two examples for the reason that half of the launched

power spectrum experiences an upshift in nil while the other half is downshifted.

In summary, the heating efficiency of the top-launching grill is expected to show a strong
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Figure 2.23. (a) Projection in the poloidal plane of the predicted path of the lower-hybrid
wave. The plasma parameters are the same as in Fig. 2.1a and the initial nl is -6. The wave is
launched from the top of the plasma column ( = 900) toward the high field side. (b) Evolution
of nil (solid line), Si (dashed line), and o, (dotted line) along the poloidal trajectory of the ray.
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Figure 224. Contour plot of the damping radius (r/a) from toroidal ray-tracing analysis for
waves with positive nil launched from the top of the torus, with the same plasma parameters
as in Fig. 220.
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Figure 2.25. Transport code Predictions of the electron and ion temperature profiles in Versator
during rf heating with the tlo-launching antenna. T1 and T,j represent the initial electron and
ion temperature profiles before the rf is turned on. T2 and T,2 are the calculated profiles at
the end of the 5 msec rf pulse. The rf power is 100 kW; the plasma parameters are given
in the text In (a). the relative phase between adjacent waveguides is AO = +900; in (b),
AO = -90°; and in (c), AO = 1800.
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asymmetry with the sign of the waveguide phasing, based on the transport simulations employing

the full spectrum of the grill. The most effective ion heating is predicted to occur when the grill

is phased in the "wrong" direction, i.e. when most of the ray trajectories look similar to those for

side-launching. The reason for this seemingly curious result is that the relatively high nl spectrum

of this grill should give rise to electron heating when the toroidal upshift of nil is taken into

account. Only when the spectrum is downshifted is electron Landau damping avoided, and the

possibility of ion heating recovered.

2.7. Other Effects on Wave Propagation and Damping

In the final section of this chapter, we consider some possible effects of other phenomena on

the lcwer-hybrid heating efficiency. Their relegation to the end is not indicative of their lack of

importance, but rather to the difficulty of assessing their relation to the damping rates. In addition

to toroidal effects, the evolution of the wave numbers may be influenced by the scattering of

the lower-hybrid wave from drift wave density fluctuations in the plasma. 73'7 4 In general, the

frequency and parallel wave number of the low frequency fluctuations are negligible with respect

to those of the lower-hybrid wave; hence w and nil of the incident wave are considered to be

conserved in the scattering process. Thus the perpendicular wave number n4- remains constant in

magnitude but its direction may be rotated during scattering.

Knowledge of the density fluctuation level and the nl-spectrum of the turbulence is needed

for quantitative estimates of the effect of drift wave scattering of the lower-hybrid wave. On

Versator, measurements of these quantities have been performed, albeit at plasma densities lower

than that required for ion heating,55 and the results are applied in the ray tracing code to determine

the possible effect of the turbulence. In the few cases considered, the drift-wave scattering allows

first-pass absorption of the side-launched lower-hybrid wave for all densities considered above

4 X 1012 cm.-3 Moreover, efficient ion heating is predicted at densities in cases for which only

electron heating is predicted without scattering being taken into account. The reason for the

improved damping efficiency due to drift wave scattering is the following: with the introduction

of random variations in the direction of n , the shift of ne to negative values is reduced, thereby

preventing the strong downshift of nil which is responsible for inefficient damping. However,

whether or not such scatteri' actually occurs in the experiment is unknown.

Non-linear effects, namely parametric decay, may also play a significant role in the heating

of the plasma. Heating due to parametric decay near the lower-hybrid frequency has been clearly

observed from the results of small experiments in linear machines,88 and is often inferred to

be the mechanism for the production of the fast ion tail and perhaps even bulk heating in

lower-hybrid experiments on tokamaks. 15 The difficulty in verifying the latter assertion arises from

the inability to measure the decay location in the interior of the tokamak plasma with probes.

Theoretical treatments42, 43 show that for WLH < w < 2 WLH and Te > 3T, non-resonant decay

(non-linear Landau damping) into low frequency ion quasi-modes and lower-hybrid waves should

68



occur. The quasi-modes couple to the electron motion, and the lower-hybrid waves may damp on

ions or electrons as described earlier. At the lower densities near the plasma edge (w > 2LH)

and T T., resonant dccay into ion cyclotron quasi-modes and ion cyclotron waves and cold

lower-hybrid waves is favored. The cyclotron waves are predicted to damp on the ion distribution

if T, - Ti. In general, parametric decay may have the effect of increasing the overall damping

rate if pump waves with local nil too low for linear damping can decay to highly damped waves,

but may also cause lower heating efficiencies if the non-linear absorption occurs near the plasma

edge. Both these aspects of damping of decay waves have been used to justify observations of

lower-hybrid ion heating on JFT-2.2 8 ,40 4 1 As mentioned in Chapter 1, the heating efficiency in

that experiment was correlated with the edge electron temperature, with higher ion temperature

increases reported for higher edge temperatures. In that study, the onset of parametric decay was

blamed for the variable efficiency: if parametric decay near the edge is responsible for absorbing

a significant fraction of the lower-hybrid wave power, then better wave penetration should occur

in plasmas with higher edge temperatures because of the increase in the power threshold for

parametric decay with increasing electron temperature. 4 3 However, assessments of this sort may

still be somewhat speculative because the decay location is unknown, and we will not attempt to

relate in a quantitative way the measured parametric decay spectra to theoretical heating rates.

Fortunately, such estimates may be possible in the near future on the Alcator C lower-hybrid

experiment in which the sideband of the lower-hybrid pump wave has recently been detected by

CO2 laser scattering.8 9 Further comments on parametric decay will be made with the presentation

of the results.

In general, the application of lower-hybrid wave theory to the Versator heating experiment

shows that the expected heating efficiency may not be high, as the plasma parameters cannot be

adjusted to ensure damping of the wave at the plasma center. Ion heating taking place well off-axis

(r/a > 0.5) is expected to be especially inefficient because of orbit losses of fast perpendicular

ions. Though launching from the top of the plasma column holds promise with regard to better

radial penetration, the possibility of achieving central ion heating may still be limited because of

strong absorption on electrons due to the available nl spectrum.
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3. Linear Theory of Lower-Hybrid Wave Coupling

In this chapter, we discuss the theory of lower-hybrid wave coupling to the edge plasma

using the cold plasma model of wave propagation introduced in Section 2.1 of te last chapter.

The calculated coupling efficiency of the phased waveguide array antenna, or grill, is reviewed.6 ,7

The theory of grill coupling with a simple edge plasma model has been formulated by Brambilla

and incorporated into a computer code' 9 0. In this chapter, the general method of calculating

the coupling efficiency of lower-hybrid waves to the plasma is discussed, and the principles of

the coupling code are outlined. Modifications of the coupling theory suggested by the difference

between the experimental conditions at the waveguide mouth and the plasma model used in

previous calculations are made and their effects arc assessed. The nil spectra of the two antennas

used in this experiment are computed with the use of this code. The coupling behavior of the

side-launching four-waveguide grill is also calculated, and will be compared with experimental

antenna reflectivity measurements in Chapter 5.

3.1. General Theory of Antenna-Plasma Wave Coupling

The coupling problem is one of matching the wave impedance of the launching structure to

that of the lower-hybrid wave in the edge plasma. The Cartesian coordinate systemn of Fig. 3.1 is

used to describe the geometry of the problem. The antenna face lies in the y-z plane with the

short sides of the waveguides parallel to the toroidal field of the tokamak. The plasma density

increases in the -direction. In the conventional (r, 9, 0) geometry of the tokamak, the x-direction

corresponds to the -r, or negative radial direction, the y-direction to the , or poloidal direction,

and the z-direction to the , or toroidal direction. The waveguide height is h, and the guide width

is b. The y and z components of the rf electric and magnetic fields, E and B, must be continuous

in the y-z plane which, for the purpose of analysis, separates the antenna from the plasma.

In the low density regime (O < wpe << wc) appropriate to the coupling problem, the

dispersion relation Eq. (2.4) can be simplified. Specifically, K:: = 1 in this regime, and if (nil - 1)

is of order 1 or greater, then B = -Kz,(nl - 1) and the dispersion relation Eq. (2.4) can be

written as

n nl Kzz(nl 1) + K[(nil )2 = . (3.1)

The inequality (2.6) is valid if (nl - 1)2 > IK2Y/KI, or if

Wpe

nili1 > , (3.2)

which is easily satisfied in the edge plasma unless InllI 1. Accordingly, the solutions of the

dispersion relation Eq. (3.1) are well separated in the limit (3.2), and are 2
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Figure 3.1. Coordinate system of the grill mouth located near the tokamak vessel wall.
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n2S - -K,,(n _ 1) (3.3a)

K 2

no2f ' -(n2- _1)-+ ( - 1). (3.3b)

Assuming that the launching structure excites a wave with a finite wavelength in the z-direction but

with no spatial variation in the y-direction (ny = 0), it can be shown from direct substitution into

Eq. (2.3) that the electric field polarization of the slow wave is predominantly in the z-direction

and that of the fast .wave is in the y-direction. Thus if the launcher excites only electric fields in

the z-direction, only the slow wave will be generated at the plasma edge and, if the accessibility

condition of Eq. (2.10) is valid, the wave will remain a slow wave in its propagation through the

plasma. As the slow wave branch is the one which experiences the resonance near w = WLJI, the

antenna is designed to couple to this mode. Regarding the antenna-plasma coupling problem then,

only the slow wave equation is considered in solving for the plasma fields E. and By. According

to Eq. (3.3a), slow waves with InllI < 1 are evanescent everywhere for w < wp,. On the other

hand, waves with Inl I > 1 are only cut off in the relatively thin region w > wp,. The width of

this evanescent layer in large part determines the coupling efficiency of slow waves to the plasma.

However, we note that if the inequality (3.2) is not satisfied, the solutions of Eqs. (3.3) are not

distinct from one another, and coupling to the fast wave can occur. If a substantial fraction of the

launched power spectrum is represented by nil values near 1, the coupling to the fast wave may

be significant. and the antenna reflectivity will not be well-predicted by the following slow wave

coupling model. 9'

The general wave equation (2.1) must be used to solve for the electric and magnetic fields

in the inhomogeneous edge plasma. The wave equation for the slow wave is obtained by setting

Ey and ny to zero:9 2

cn a(n - Kzz)Ez + i- l-- E= (3.4a)

-i- E 2 +Kz)E = 0. (3.4b)

Eliminating Ez gives

a2EZ _ nl aK E w2K, (- 2)
, (4 - K) = 0.82 + Kz(n2 - Kzz) a8z 8z c2Kz

Except for Kz, = 0, the second term is small compared to the third and is neglected.

As illustrated in Fig. 3.2, we postulate a density step and a linear density gradient in front

of the waveguides:

n(z) = n, + nc(z/L), (3.6)
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where no is the density at the waveguide mouth, n, is the cutoff density, mw 2/47reC = 8 x 109 cm-3

for a frequency of 800 MHz, L is the density scale length, and the location of the grill face

corresponds to = 0. Also shown in Fig. 3.2 is a density ramp with density gradient nc/d inside

the waveguide. At present, the effect of the waveguide plasma on the coupling is neglected, but

will be discussed later.

Incorporating Eq. (3.6) and the approximation K., = 1 into Eq. (3.5) gives

2 (n 2 _ -)

aE + - (L( - 1) + z)E, = 0 (3.7)
am2 ¢2L

where we define , to be the ratio of the density at the waveguide mouth to the cutoff density,

n,/nc. Making the substitution

u (W (n 1))*(L(A - 1) + ) (3.8)

allows Eq. (3.18) to be rewritten as

a 2E- -uE, = 0 (3.9)
au2

The solutions to Eq. (3.9) are the Airy functions. The particular linear combination of the

two solutions that we choose is dependent on the far-field radiation condition: from Eq. (3.3a), the

oscillatory solution is chosen for nll I > 1, and the evanescent one is chosen for Inl I < 1. Because

the lower-hybrid wave is a backward wave in the direction perpendicular to the magnetic field,

the outgoing asymptotic solution should be proportional to e-t' k l. For this discussion, we will

consider only the propagating solution, as the four-waveguide grill should preferentially launch

waves with nll I > 1. However, the coupling calculations performed by the computer code make

use of both the propagating and evanescent solutions to Eq. (3.9) over the full range of nll's

-oo < nl < oo.

The propagating solution to Eq. (3.9) is

Ez(u) = -iAi(u) + Bi(u), (3.10)

where Ai and Bi are the Airy functions of the first and second type. The rf magnetic field in the

plasma is obtained from Faraday's law:

.w wnll aE,i-By = i-Ez- - (3.11)
c c Oz

Substituting for E. from Eq. (3.4a) gives

By = -i C aE. (3.12)
w~n 2 CIZ
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Figure 3.2. Idealized density behavior near the grill mouth. L represents the plasma density
scale length in front of the waveguides. and L' is the density scale length inside the waveguides.
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or, switching variables from to u,

By(t4=i2C [2(n2) ] ( .aAi(u) +Bi())( ) =in _)c 2 - ](i au + a )(3.13)w(n - ) c L 9U au

The procedure for solving the coupling problem is the matching of the plasma wave fields of Eqs.

(3.10) and (3.13) to the waveguide antenna fields at the antenna face = 0:

E.(uo) = E.i(O) + E,z(O)
By(uo) = Byi(O) - Byr(O)

where from Eq. (3.8),

Uto = u(Z = 0)

and E,,(z) and By,(z) are the incident electric and magnetic fields imposed by the antenna,

and Ezr(x) and By,,() are the reflected fields of the antenna. The field reflection coefficient

[Ez.(O)/Ezi(O)] is

(Z/Zo) + 1

where

z = Es(u) (3.16)

is defined to be the wave impedance of the plasma and

Z- Ei(:) (3.17)

is the wave impedance of the antenna. Defining Zp/Zo = JZleci, we find that the power reflection

coefficient, Ir12, can be minimized for IZ = 1, -i < g < i.

3.2. The Brambilla Coupling Code

The numerical computations of the Brambilla rf coupling code perform the matching of the

transverse electric and magnetic fields, and provide calculated predictions of the antenna reflectivity

and the inward-propagating power spectrum of nil. The process by which this is accomplished

is described in detail in Ref. 7. The waveguide launcher is modeled by a set of infinitely high

parallel plate waveguides adjacent to one another. The antenna fields, both incident and reflected,

are superpositions of the normal modes of the waveguides. In general, both propagating and

evanescent modes of the guides are considered, with the number of evanescent modes limited to 3

or 4, depending on. the desired accuracy of the calculation. Following the notation of Brambilla, 7

we write the waveguide fields as
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N rc nir(z - p)
E (, z) = e'oP6p(Z)I [ (anpeiknx + ,e-tknz)Cos b

p=1 n=O

Bwg9(, z)= N e' rca 0 - e'kn-e-ik)z) l-1
By (z)= Ze z P(Z) [ -ik (tnpekn +npC k )COS B J (3.18)

c aB" g
E g(z, z) = --

o 8t

where p is the waveguide number, zp is the z-coordinate of the edge of the ph waveguide, and Up

is the phase factor associated with the pth waveguide. The function Op(z) is a "window" operator:

it is equal to 1 for zp < z < z + b and 0 elsewhere. The sum over the n modes includes both

propagating and evanescent ones. The coefficients a,p and P,lp are the amplitudes of the incident

and reflected nth mode fields in the pth waveguide, respectively. The waveguide wave vector of

the nth mode is

kn = - 2- o2* (3.19)w2 b2.

Because of the assumption of infinitely high waveguides, there is no spatial variation of the fields

in the y-direction; hence there are no m modes. Since coupling to the fast wave is neglected,

only modes with Ey = 0 are included in the analysis. These are the TEM mode (corresponding

to the TE1 0 fundamental mode in rectangular waveguide) and the evanescent TM modes. The

incident wave is assumed to be in the fundamental TE 1o mode (ap,, = 0 for n -7 0). The forward

and reflected waveguide fields at the grill mouth are Fourier-analyzed in nl-space and matched

to generalized vacuum fields

E2(x, z) = [(nl)ecikl2 + p(nll )etk]ei(w/c)nll (3.20a)

By(, z) = [o(nll)eik Z - p(nll)e-kjZ]ei(/c)nlz (3.20b)

in front of the grill. Here, a(nll) is the coefficient corresponding to the field incident on the plasma

and p(nll) the coefficient for the reflected field from the plasma. For a given nil, the field reflectivity

of the plasma is Y(nll) = p(nll)/a(nll). The vacuum region in front of the grill is employed as a

mathematical convenience, and is usually assumed to have zero width. The vacuum wave fields are

matched to the plasma fields of Eqs. (3.10) and (3.13). With the matching of the wave fields at the

plasma-vacuum and vacuum-grill interfaces, the solution of the coupling problem is complete and

the unknown quantities o(nll), p(nll), and finp are determined. The reflectivity of the pth waveguide

is IP2 l/lcopl. The nil spectrum of the f power launched into the plasma is obtained from the

Poynting flux in the z-direction at the plasma-vacuum boundary:

S(nll) = - Re (EzB;)

_ c I,() Im Y(n) (3.21)

4w 2-
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where the expressions Eqs. (3.20) for the vacuum fields have been used.

Several modifications to this program were made in the course of this work. Based on

Langmuir probe measurements presented in Chapter 4, the density at the waveguide mouth was

found to be variable, ranging from a fraction of the cutoff density to over 100 times that, depending

primarily on the radial location of the grill. As discussed previously, the plasma model incorporates

a linear density gradient perpendicular to the face of the antenna. In the original version of the

code,5 '7 the edge density was chosen such that w = wp, or .p = 1, at the waveguide mouth with

the density gradient being a variable parameter. The possibility of a finite density at the waveguide

mouth had been considered in early formulations of the problem, but not implemented because a

faulty analytic approach suggested that the coupling would be poor if pe, > w at the grill mouth.5

Subsequent formulations introduced an adjustable density step at the waveguide mouth,93 ' 94 and

we have added this feature to our code.

Since the actual grill is constructed of rectangular waveguides rather than parallel plates,

we have also considered some aspects of finite waveguide height in our calculations. The use of

rectangular guides in the model changes the coupling description in several ways. First, the electric

field of the fundamental mode of the waveguide exhibits a y-dependence: E is proportional

to cos (ry/h), where the antenna midplane is located at y = 0. Hence the antenna launches a

spectrum which is finite in n. However, the waveguide height must be at least one-half of a

free space wavelength if the fundamental mode is not to be cut off. The minimum wavelength

of the fundamental mode in the y-direction is the free space wavelength; thus the fundamental

mode preferentially couples to plasma waves with Inyl < 1. The qualitative effect of a small but

finite value of ny on the coupling efficiency may be estimated in the following way. The coupling

efficiency should be inversely related to the width of the evanescent region at the plasma edge.

The cutoff density for slow waves is obtained by setting n = 0 in Eq. (3.3a):

W2" 2

e 1 + _v. (3.22)
w nll-

Except for values of Inll near 1, the cutoff density is not much greater than if ny = 0. Hence the

inclusion of finite ny should have little effect on the antenna reflectivity.

Secondly, the electric fields for the evanescent modes have y-components, and if we

continue to neglect coupling to the fast wave, the TE,, modes must be included to ensure that

E = 0 everywhere at the guide mouth. However, because of the relative strengths of the and

z-components of the TMI, and TEn modes, the contribution of the evanescent TE modes to

the slow wave coupling is slight. The ratio of the y-component of the TM 1n mode to that of the

TEI, mode is

Ey(TM) _ Eo(TM) b\1-(cw/rh) 2 4C 1
Ey(TE) E(TE) nh J (cw/h)
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while the same ratio for the z-components is

E,(TM) E,,(TM)nh\
E(TE) E,(TE)( b )1 -(cw/7rh) 2 > 1

Thus only a small Eo(TE) field is needed to cancel the y-component of the corresponding TM

mode. The contribution of the TE 1 n mode to the z-component of the electric field is a factor of

(b/nh)2 smaller than that of the TM,, mode; hence the evanescent TE modes contribute little

to the matching of the Ez fields at the waveguide mouth. Consequently, only the evanescent TM

modes need to be considered in addition to the fundamental TE mode.

ILastly and most importantly, the wave impedance for finite height waveguides is different than

for parallel plates. The impedance of a TE mode in an evacuated waveguide is ZTE = -ckmn,/

while the impedance of a TM mode is ZTM = -/ckmn, where k,, is the wave vector of the

mnth rectangular waveguide mode:

kmn -/()2 (7T)2 ( )2323)

These changes are included in the code for both the fundamental TElo and evanescent TMn

modes. We will analytically show later that the value of the waveguide impedance significantly

affects the edge density and density gradients required for good coupling.

3.3. Calculated nil Power Spectra

The computer-code predictions of the nil spectra of the Versator grills are plotted in Figs. 3.3

and 3.4. The calculated nil power spectra for the four-waveguide side-launching antenna is shown

in Fig. 3.3 for two different assumed edge density conditions: (a) / = 10, Vn = 5.3 X 101 cm.";

and (b) ,u_ 1, Vn = 5.3 X 101 0 cm. - 4 . The spectra are plotted for the relative phase angle

between waveguides A4 = 00, 900, and 1800. The individual waveguides of this antenna have

a width of 2.45 cm. Expectedly, the spectra for A\ = 00 and 1800 are symmetric in nil. The

spectrum for AO = 1800 exhibits a peak at nil = 5.5 corresponding to two parallel wavelengths

across the width of the grill. For this phase, 91% of the power is carried by waves with nil > 3;

hence in our experiment, the accessibility condition Eq. (2.10) is well satisfied for the bulk of the

launched power. A significant portion of the computed spectrum for ax - 0o is represented by nil

values close to 1. As discussed in the argument following Eqs. (3.3), we expect coupling to the fast

wave to be important for low phase angles such as this, and the actual slow wave spectrum and

antenna reflectivity may be different than that predicted by the above theory. However, heating

experiments are usually performed using higher phase angles because of the need to satisfy the

accessibility condition; hence the problem of fast wave coupling is not believed to have practical

implications in our experiment. For Ad = 900 in the high edge density case of Fig. 3.3a, the

spectrum is asymmetric with the fundamental peak at nil = 2.5. Approximately 70% of the power

is directed in the positive nil direction for this relative phase. The dominant or representative nil
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value of each power spectrum is largely dependent on the relative phase between waveguides,

whereas the sensitivity of the details of the spectra to the density at the grill mouth is relatively

weak. At the higher edge density, the spectral components with high nl values are somewhat

enhanced relative to those at the lower density. That this should be true is evident from Eq. (3.3a),

which indicates that high nil waves suffer stronger attenuation in the evanescent edge region than

waves of low nl.

In Fig. 3.4 the nil spectrum of the four-waveguide top-launching grill is plotted for the same

phase angles and edge density conditions as in Fig. 3.3a. The waveguide width of this grill is 1.0

cm. Consequently, the power spectrum of this grill is characterized by higher nil values than that

of the side-launcher.

3.4. Analytic Solutions of the Coupling Problem

To provide physical insight into the code predictions of the antenna reflectivity, the conditions

for optimum coupling can be estimated analytically for a number of limiting cases in which the

plasma fields are matched directly to generalized antenna fields of impedance Z,. For this analytic

treatment, only the fundamental TE 0o waveguide mode is considered; therefore from Eqs. (3.17)

and (3.23), the antenna impedance is simply

o = -[1- (r/wh)2] - f. (3.24)

By comparison, Z = 1 for parallel plate waveguides. The cases considered are: uo] 1 with

uo < 0; lUol < 1; and luosj 1 with to > 0, where u is given by Eq. (3.8).

The case of uoj > 1 and uo < 0, which is valid for nl > 1 and A > 1, corresponds to the

presence of an overdense plasma at the grill mouth. The appropriate asymptotic expansions for

the Airy function solutions are gs

-iAi(u0 ) + Bi(u0) = r-1(-u,)-* exp (-i[3(-u0) + 4])
.dAi(u 0o) d~i~uo) _+ X { 2 1 (3.25)

du + dB(u = ir-i(-u exp (-i[(-u 0 )2 + 4

This approximation embodies an assumption of WKB validity at the grill mouth as the above

solutions are propagating modes. In this limit, the plasma wave impedance obtained from Eqs.

(3.10), (3.13), and (3.16) is

ZP [(- -1 . (3.26)

In the high density approximation the quantity Zp/Zo is real and positive, and hence by the

argument following Eq. (3.17), optimal coupling is predicted for Zp/Zo = 1, or for
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Figure 3.3. Calculated nil spectra of the side-launching four-waveguide grill for AO = 00, 900,
and 1800 at (a) = 10, Vn = 5.3 X 1011 cm-4; and (b) M = 1, Vn = 5.3 X 101 °
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Figure 3.4. Calculated n1l spectra of the top-launching four-waveguide grill for the same edge
density conditions as Fig. 3.3a.
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, = 1 + [1- (cr/wh) 2 ](n - 1).

Clearly, the dependence of the minimum reflectivity condition on the launched nil spectrum is

strong. For the Versator antenna dimensions, Eq. (3.27) may be rewritten as ti = 0.6 + 0.4 n'. The

density at the grill mouth required for good coupling is significantly reduced by the finite height of

the waveguide. The reduction is a factor of roughly 2.5 in our case. The optimal density increases

with ni: thus we expect the grill position for best coupling at A = 180° to be at a higher density

than for lower phase angles between waveguides. For A -= 1800, the nil corresponding to the

peak of the spectrum is approximately 5.5; hence best coupling in this instance is predicted for a

13 times overdense plasma at the grill mouth.

The original Brambilla theory7 was performed in the limit of juol << 1 corresponding to

-- 1. In this limit, we use the series expansions for the Airy functions, keeping only the lowest

order terms: 95

-iAi(u,,) + Bi(u,) 2 e -i/6
r(2/3) (3.28)

.dAi(u,) dBi(u6) 23-
d-u + du - (4/3)

where r is the Gamma function. The plasma impedance is then

Z = -r()(9wL/c)(n - l) 1e-ir/6. (3.29)

Again, the reflection coefficient is minimized for IZp/ZoI = 1, or for

dn n= [r(4/3) (9wnc/c)[1 - (cir/wh)2 ](n l1) (3.30)

, 8.7 X 108 nl n- 4

The density gradient required for good coupling in this approximation is strongly dependent on

the value of nil.

For the final case of uo > 0; luol > 1 (grill density near zero and shallow density gradients),

the asymptotic expansions of the Bi and dBi/du functions are the dominant terms in the

expressions for the plasma fields:95

-iAi(uo) + Bi(uo) ' 'r-u exp (2u)

.dAi(uo) 2~,(uo) _ _ : {§,(3.31)
{ dB) 0dU4 edu + du - expt3 .

The plasma impedance is

Zp -i(n - i)*. (3.32)
"P -- ' ~~~II-"·1
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In this limit, the antenna is totally reflective because of the purely reactive impedance. In

consideration of all three limits, the best coupling should be achieved in the first for which the

grill mouth is situated in an overdense plasma.

3.5. Further Modifications of the Plasma Model

In addition to a variable density at the waveguide mouth, we have also considered the

ramifications of other differences between the idealized density profile of the Brambilla model and

the measured profiles. As described in Chapter 5, the experimental density profile at the plasma

edge is better represented by an exponential than a linear profile. Furthermore, measurements

indicate a tenuous but finite plasma to be present inside the waveguides, whereas the model

assumes the waveguides to be totally evacuated. We now address these two differences analytically,

and show that in most cases the predicted changes in the previously-described coupling calculations

are likely to be small.

3.5.1. Exponential Density Gradient

Regarding the exponential density gradient, an analytic solution for the electric field in the

plasma can be found for exponential profiles in the same manner as for linear profiles. We let the

density profile be represented by

n(z) = no exp (z/X) (3.33)

where X is the exponential density scale length. The wave equation analogous to Eq. (3.7) is

82E, + W (n2 - 1)('Cz/X- 1)E = 0.34)8z--2 + JZ
By transforming the variable z to g such that

wX 
g =2- g(n 1) ez/2X, (3.35)

Eq. (3.34) can be rewritten as Bcssel's equation:

2E +Ia(- v)E - (3.36)
g Og

where v = 2(wX/c)n - 1. The oscillatory solutions of Eq. (3.36) are the Hankel functions of

order v. The Hankel function of the second kind has the required asymptotic dependence e-g;

thus the solution of Eq. (3.36) corresponding to the solution for the linear density gradient, Eq.

(3.10) is

E(g) = H( 2)(g). (3.37)

A similar solution for the electrostatic wave in an exponential density profile has been obtained

by Bellan and Porkolab. 9 6 As before, the rf magnetic field is calculated with the use of Eq. (3.11):
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By =-i\ -[H(2)(9) _ v-e /-> H (2 g)].v (3.38)

The wave impedance at x = 0 is then

ZP = i - VH 1 (go)/Hi2)(go)J (3.39)

In the high density limit (g > 1), the asymptotic expansion for the quotient of Hankel functions

in the above equation is simply e'"/2, and the impedance becomes

Zp = + 1 ]exp(itan - - / : ) (3.40)

Consequently, optimal coupling should occur for

1 =-1 + [1 - (rc/wh)2 n2 - 1) (3.41)

or for a numerical value of only 2 less than that for the optimal coupling in a linear gradient

(see Eq. 3.27). In this limit, the coupling behavior for the two density profiles is similar. However,

we note that the difference may prove to be significant for low nl grills designed for coupling to

reactor-type plasmas.

At lower densities, the density gradient generally plays a stronger role in the coupling, as

evidenced by Eq. (3.29). The effect of the density gradient on the coupling is localized to the

narrow region in front of the grill in which WKB is invalid, i.e., for

dk
~I d ~ I~ > ~, ~(3.42)

or using the dispersion relation Eq. (3.3a) with an exponential density profile,

Ax < 2 1n (2wX/c[p(nj-i 1)1) (3.43)

where Ax is the thickness of the coupling region defined by Eq. (3.42). This coupling region for

our parameters is several millimeters thick. Given a measured exponential density scale length

of 0.2 cm. (see Chapter 5), the effective linear density gradient over this region can be several

times the linear gradient at the grill mouth. Consequently, for grill positions which are located

in an underdense plasma, we have increased the linear density gradient at the antenna mouth

supplied to the rf coupling code. The new value is the average linear gradient over the coupling

region specified in Eq. (3.43). For overdense plasmas, the thickness of the layer is small, and as

the coupling in this limit is strongly dependent on the value of the density at the grill mouth

rather than the density gradient, no correction to the linear gradient is made for these cases.

For completeness, Hankel function expansions could replace the Airy functions used in the code;

however, since the expected change in the coupling results is small, no such improvement has yet

been made.
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3.5.2. Finite Plasma Density Within the Waveguides

Plasma penetration into the waveguide is illustrated in Fig. 3.2. In general, the plasma

diffusing into the waveguide should lead to an increase in overall antenna reflectivity since

fundamental mode propagation in the waveguide is cut off at a density corresponding to

w2

wP' = 1 _(wh)2 (3.44)

or at n = 3.2 X 109 cn - 3 for the Versator grill. However, for a thin evanescent layer in the

waveguides, most of the power should tunnel through.

The method of calculating the additional reflectivity due to the plasma in the waveguide is

similar to that for the edge plasma-waveguide interface, except that the matching problem needs

only to be solved in a single waveguide. The solutions for the waveguide vacuum fields Eqs. (3.18)

are joined to the solutions for the thin plasma ramp in the waveguide. As before, the density

inside the waveguide is assumed to be a linear function of position. For the sake of simplicity,

we consider only the fundamental TE mode with waveguide wave vector ko (see Eq. 3.23). The

transverse vacuum waveguide fields at z = 0 are

EZ'g(x = 0) = ao0 ik l°o + Poe- ikoz

By (Z = 0) -- ck(oeik°o' (3.45)
w

and at z = -d;

Eg(z( < -d)- = -eik'lo + - e- ik l' z
B'(z < -d) = -_Ck1( cikO - Pe-iklo), (3.46)

where the "o" subscript denotes the coefficients for the waveguide fields at x = 0, and the "-"

subscript for those at negative z for < -d. The length of the finite density ramp inside the

waveguide is d. As before, the solutions for the fields in the density ramp inside the waveguide

are the Airy functions:

E; = CAi(u') + C2Bi(u')

y = k w ,ut + C2 a( )](3.47)BY' - i L)i [c1 8Ai(u') B/,(u')(3
wL L Ou' au' 

where u' = -(kloL)I[1 -- I- z/L], and C1 and C2 are coefficients determined by the boundary

conditions at z - 0 and -d = -,L. Matching the impedances at x = 0 and x = -d gives:

w o(a + 3 ) = - wL ( Ai(t') + (C2/C,)Bi(o)
cklo o - Po ac(kioL) aAi(u.)/au + (C2/Cl)aBi(u)/au' (3.4a)

W _ + P 2iklod = wL Ai(ua d) + (C2 /Cl)Bi(u' d) 
cklo( a - e2iklod) c(koL)i aAi(U'Ld)/au' + (C2/IC)aBi(Ul_d)/ua )
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We can solve the first equation for C2 /C 1 , and substitute into the second to find ,l_/a, the

field reflectivity of the waveguide. We can easily estimate the effect on the coupling for u'l1 1,

or for A < 5. In this case, we use the series approximations Eqs. (3.28) for the Airy functions,

keeping only the first order terms in u. Then Eq. (3.48a) is subtracted from Eq. (3.48b), giving

the simple result:

w 1 + Po/ao 1 + (p-/ct)e2iklod- wL
cklo - o/ao 1 -(_/a_)e2 ik od J c(kL) (3

.MowL

C

Denoting r = /3/ to be the field reflectivity and rearranging terms we obtain

- 1 - ik Io 1-= - e 2-kl ° d (3.50)

The inherent power reflectivity of the plasma layer, i.e. 1 = 0, is

,kioL 2 (3.51)

For typical parameters ( = 5, ko = .1 cm-',L = .2 cm) this value is less than 1%, and the

plasma in the waveguide should have little effect on the coupling when the grill mouth is located

in a mildly overdense plasma. For this reason, and because of the computer time and memory

space required for this additional inversion, the effect of plasma in the waveguides has not been

included in the numerical coupling calculations.

3.6. Conclusion

Regarding the predicted reflectivity of the Versator antenna, we see from the analytic

arguments made above that the existence of optimal coupling conditions, i.e. minimum reflectivity,

provides a relationship between the parallel wave number of the plasma wave to the density near

the waveguide mouth. In general, the coupling behavior is found to be dependent on both the

density gradient and the absolute density at the grill mouth. Consequently, we defer the specific

theoretical treatment of the coupling efficiency of the Versator grill to Chapter 4 following the

presentation of the edge density measurements. However, we note that the experimental coupling

is qualitatively expected to be best in the highly overdense edge plasma regime because the plasma

impedance is purely real in this limit
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4. Versator 11 Lower-lHybrid leating Experimental Set-Up

The Versator II tokamak and related power supplies and plasma diagnostics were designed

and assembled by the staff and students of this laboratory. D)ctailed descriptions of the device may

be found elsewhere, chiefly in the Ph.D. theses of former graduate students. 5 4 -5 7 The present

chapter is a review of the operating characteristics of this tokamak and a descriptive summary of

the diagnostics related to the ion heating experiment. T'he 800 MHz rf system is also described

with particular emphasis placed on the lower-hybrid antenna. For reference, the basic parameters

of the Versator plasma and rf system are summarized in Table 1 in Chapter 1.

4.1. The Tokamak

The tokamak vacuum vessel is constructed of type 304 clectropolished stainless steel. The

chamber, separable into two halves, is square (30 x 30 cm.) in cross-section with a 40.5 cm. major

radius of the chamber axis. The electrical break to prevent induction of toroidal currents in the

chamber wall is made by the clastomer O-rings scaling the joints between the two halves of the

vacuum vessel. The chamber is evacuated by a single turbo-molecular pump operating through a

LN2 cold trap. Discharge cleaning of the vacuum vessel with a 15 kW, 25 KHz oscillator is often

performed to reduce the gas load of the chamber walls, with water vapor and methane being the

gases predominantly released in this process. No baking of the vacuum chamber is performed,

with the exception of occasional heating of Langmuir probe drives or the lower-hybrid antenna to

a temperature of about 150 C with electrical heating tapes. Titanium sublimation on the vacuum

vessel wall has been employed during the last several years for the purpose of obtaining a plasma

more free of impurities. Up to 50% of the wall is accessible to Ti-coating from the getter ball.

The base pressure of the vacuum chamber is typically 2x 10- 7 Torr, and can drop to as low as

8 X 10-8 Torr following titanium gettering.

Limiters of various materials are used on Versator; radially movable, electrically floating

limiters of molybdenum are usually present in the vacuum vessel, and stainless steel limiters are

often directly mounted on the chamber walls. The purpose of the latter ones is either to protect

probe tips or other delicate apparatus situated near the outer edge of the plasma, or to reduce the

density in front of the lower-hybrid antenna for the purposee of improving rf coupling. The latter

point will be discussed in the next chapter. The positions and widths of the stainless steel limiters

were changed frequently over the duration of these experiments. Usually the limiters were placed

so as to define a plasma minor radius of 13 cm., giving the plasma an aspect ratio of 3.1.

The magnets of the toroidal (TF), ohmic heating (OH), and vertical (VF) field systems are

all capacitor bank-fed. The 700 kJ TF power supply provides a current pulse with a 15 msec rise

time and 90 msec L/R decay time. The maximum field is approximately 15.5 kG on axis, but the

temporal decay of the TF current limits the maximum field during the plasma discharge to about

14.5 kG. The OH banks store an energy of 120 kJ and provide a positive inductive voltage on
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the plasma loop for a duration of 30-35 mscc through an air-core transformer. The 5 kJ vertical

field system is programmed by trial-and-error to provide an adequate plasma equilibrium near the

center of the chamber over most of the duration of the discharge.

Hydrogen is the working gas of our experiments as the lower-hybrid accessibility criterion

(Eq. 2.10) is not satisfied for any other gas. The gas can be introduced into the chamber by

a bleed valve such that the chamber fill pressure is 0.8-1.2 x 10- 4 Torr, or as is usually the

case, by puffing gas into the chamber at a pre-programmable time-dependent rate through a fast

piezo-electric valve. A maximum line-averaged density of n = 1-1.5 x 1013 cm.-3 is usually

obtained with the constant fill pressure method: therefore, additional gas puffing is essential to

obtain the densities of i, = 2-3 x 1013 cm. - 3 required for the ion heating experiment.

Breakdown of the plasma is achieved with the use of the previously-mentioned oscillator

triggered 10 msec before the start of the OH pulse. Pre-ionization during the oscillator phase of

the breakdown is assisted by thermionic electron emission from heated filaments located near the

chamber wall. The plasma discharges for the ion heating experiments have a typical duration of

25-35 msec. The gross plasma parameters are usually reproducible from shot-to-shot over a series

of discharges on a given day. The plasma parameters evolve over a long run (< 150 shots) as the

temperature of the vacuum vessel rises. Without corrections by the operator, the average plasma

density of a discharge typically increases while the plasma current decreases, indicating that the

impurity content of the plasma increases over the course of a run. The spectroscopic line intensity

of the light impurity atoms (oxygen and carbon) and the bolometric signal also increase gradually

over a long run.

4.2. Plasma Diagnostics

The locations of the diagnostics and the lower-hybrid antennas are shown in the schematic

of the Versator vacuum vessel in Fig. 4.1. The direction of the plasma current and the toroidal

magnetic field are also indicated. The plasma current and magnet currents are measured with

Rogowski coils. The loop voltage is measured inductively with a four-turn toroidal coil, one coil

at each corner of the square vacuum chamber.

4.2.1. VUV Spectroscopy

The major diagnostic devices for the ion heating experiments are the vacuum ultraviolet

(VUV) spectrometer 97 and the charge-exchange (CX) neutral energy analyzer,9 8 both of which are

used to measure ion temperature. The VUV system resolves neutral and partially ionized atomic

line emissions over the wavelength range 1150-3200 A. In particular, emissions from 0 VII (1623

A), N VI (1897A), C V(2271A), O V(2781 A), and C III(2297 A) are usually monitored. The

wavelength resolution of the instrument (0.5 A) is such that the Doppler widths of the above

lines can be measured to infer temperatures for those impurity species. The collisional coupling

between protons and impurities is much higher than between protons and electrons:99
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Figure 4.1. Diagram of the Versator vacuum vessel viewed from the top. The locations of the
side and top ports used for lower-hybrid injection are indicated, as are the positions of the
diagnostic instruments.

89

A
W- LHRF

RI
S

T

__



VP! ( _,/MI)' _MP_ _ m 2 I
/p2 - z > 1 (4.1)

where vo' is the collision frequency for thermal equilibration between the species a and . In

ohmic discharges, both the impurities and protons are heated at comparable rates by collisions with

electrons. Likewise, in rf-heated discharges the impurities and bulk protons should also be heated

at similar rates by fast protons (see Fq. 2.41). Because the heating rates of the proton and impurity

populations are not very different and their equilibration times is short, the impurity temperature

is considered to be a good measure of the local proton temperature. hereafter referred to as simply

the ion temperature. Furthermore. the inferred temperature is assumed to be a reliable measure of

the bulk ion temperature since emission from the lowest velocity impurity ions in the distribution

contribute most to the measurement of the spectroscopic line width. Moreover, the phase velocity

of the lower-hybrid wave should never reach low enough values for resonant interaction between

the wave and the impurity ions: hence the impurity velocity distribution should not significantly

deviate from a Maxwellian distribution. The viewing chord of the VUV spectrometer is along a

major radius on the midplane. Spatial resolution is obtained by relating a particular ionization

state to the local electron temperature from profile measurements. For instance, the impurity states

O VII and N VT with respective ionization energies of 739 and 552 eV are assumed to exist only in

the plasma center. Consequently, the ion temperature obtained from these lines is a measurement

of the central ion temperature. The location of the C V species of ionization energy 392 eV is

assumed to be 5-8 cm. off the axis.

The entire width of a spectroscopic line may be scanned by the spectrometer several times in

one shot with the use of a vibrating MgF 2 plate. However, the ion temperature evolution during

rf heating takes place on a time scale of 1-2 msec, which is beyond the time resolution of the

above method. Therefore, the spectroscopic line shape is usually compiled over a sequence of

10-15 shots with the spectrometer wavelength changed beween shots.

4.2.2. Charge-Exchange Analysis

Use of the CX spectrometer provides a measure of the energy spectrum of escaping neutral

hydrogen atoms over the range 0.3-4.0 keV. Hydrogen atoms of these energies are produced by

the resonant charge-exchange process,

H+o + H - Hot + H, (4.2)

whereby a neutral atom donates an electron to a proton without a significant transfer of kinetic

energy. The neutral atom, which has an energy characteristic of the hot plasma, escapes the plasma.

Rcionization of the neutral before escaping is not likely to occur if

fnca < (O'V)j + (ne)(av)cx (4.3)
('"')i + (ni"l.)(vi)cx
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where (ve)i is dithe velocity-averaged electron impact ionization cross-section for atomic hydrogen

and (v,)cx is the corresponding cross-section for charge-exchange. Both have about the same

value of 3-4X 10- 8 cm3/sec for electron and ion temperatures typical of the Versator plasma, and

the above inequality is reasonably well satisfied for neutral energies above 500 cV. Hence most

charge-exchange neutrals with energies greater than this leave the plasma. Some of the escaping

atoms pass through the evacuated beam line of the charge-exchange analyzer into an N 2 gas cell in

which a small fraction of the incident atoms are stripped of their electrons by the transfer ionization

process. Energy separation of the protons is performed by an electrostatic parallel plate analyzer.

The ions are detected by electron multipliers: output pulses are height-discriminated to reduce

background noise, and converted to digital TTL-level pulses which are then averaged to obtain an

analog count-rate. Though designed for 8-channel operation, the analyzer was usually operated with

only a single channel because of electrical cross-talk between channels. Consequently, ion energy

spectra were compiled on a shot-by-shot basis with the plate voltage of the electrostatic analyzer

changed between shots. From the measured count-rates and knowledge of the energy dependence

of the charge-exchange cross-section and stripping cell efficiency, the energy distribution of the

ions in the plasma can be inferred. Charge-exchange cross-sections and stripping cell efficiencies

were obtained from published data,1 00 while the analyzer ballistics were determined using a local

ion source.1 0"'

Data analysis of the charge-exchange measurements is usually performed with the aid of a

computer program implemented on the Versator data acquisition system. The procedure of the

analysis is as follows. First, the analyzer noise is subtracted from the signal for a given energy. The

noise is determined by the analyzer output when no voltage is present on the plate, and is believed

to result from UV or secondary electron emission induced b,/ neutral bombardment within the

analyzer itself. Next, the signal is normalized by the application of the energy-dependent stripping

cell efficiency and charge-exchange cross-section factors to give the relative number of ions in the

plasma distribution at the given energy. With the compilation over many shots of ion count-rate

signals at different energies, the ion energy spectrum is obtained. In a Maxwellian distribution,

the number of ions in an energy range d is

dN = K l/2 exp(-E/Ti)de (4.4)

where Kis a constant. Consequently, a plot of in [v(dNd)] versus yields a straight line

with slope -T7' for a Maxwellian distribution of temperature Ti.

The interpretation of the charge-exchange measurements is complicated by the fact that the

detected neutral flux is a chord-averaged quantity. The Versator charge-exchange analyzer views

the plasma through a central chord. The neutral hydrogen density profile in the plasma is not

known, though on physical grounds it is likely to be several orders of magnitude higher at the

plasma edge than at the center. The local charge-exchange neutral production rate in the energy
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range dE is

a dE = nniacx(E)vi(E)f,(E)dE (4.5)
at

where no is the neutral hydrogen density, acx is the cross-section for the charge-exchange reaction,

vi = V27/m7 is the ion energy, and f,(&) is the ion energy distribution. Because the neutral

density is highest at the plasma periphery, the neutral flux at low energies should be dominated by

emission from the edge. Consequently, the ion temperature of the hottest plasma in the viewing

chord of the instrument must be inferred from the slope of the ion energy spectrum of the fastest

ions (v, > vt 1,,), or typically between 500 and 1000 cV for Versator ion temperatures. Because the

ion temperature is highest on axis for Maxwellian ion distributions. the charge-exchange analyzer

provides a measure of the central ion temperatures. The value obtained from this procedure is

in reasonable agreement (15%) with VUV temperature measurements of the central impurity

species.

An additional complication in the interpretation of the,charge-exchange data is that small-angle

scattering of the stripped ions from the beam line in the stripping cell of the analyzer is more

severe for the lower energy ions than the higher energy ones.'0 2 As our particular stripping cell is

uncalibrated for overall efficiency of the conversion of neutrals entering the cell to ions entering

the electrostatic analyzer, the true ion distribution at low energy ( < 500eV) is not believed to

be accurately measured by charge-exchange analysis.

In the lower-hybrid heating experiments, rf injection usually gives rise to an energetic tail in

the ion distribution, which is detected by charge-exchange. As discussed in Chapter 2, the radial

location of the tail cannot be unambiguously determined on theoretical grounds. The assumption

used in inferring the central temperature of the thermal plasma, namely that the most energetic

ions in the plasma are located in the center, is generally not valid for use in estimating the tail

density and energy because the location of the fast ion tail is not known. Because the Versator

charge-exchange analyzer is not capable of performing a radial scan of the plasma column, the

origin of the fast neutral flux during rf heating cannot be spatially resolved by this measurement.

More will be said on this subject in Chapter 6.

During this experiment, the charge-exchange analyzer was operated in two orientations with

respect to the toroidal magnetic field. One orientation was near-perpendicular, with the beam line

set at an angle of 60 away from the normal to the magnetic axis. Though the neutrals escaping at

this angle result from charge-exchange with ions which are banana-trapped (for a pitch-angle of

60, only those particles inside a minor radius of approximately 0.2 cm are circulating), the slight

angle off the normal to the axis ensures that the sampled ions are not those that are ripple-trapped

in the magnetic field minimum between TF coils. This small fraction of ions is expected to suffer

poor confinement relative to the remainder of the distribution. The pitch angle defining this region

is
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sine = Ivll/vl = V (4.6)

where 6 is the magnetic field ripple defined in Chapter 2. For 6 = 0.002, = 2.60; hence the

charge-exchange analyzer is set at a larger angle than this to avoid measuring the ripple-trapped

distribution.

The second orientation was at an angle of 450 with respect to the magnetic axis. As

lower-hybrid heating is known to create perpendicular ion tails which are often poorly confined,

measurement of the off-perpcndicular ion energy spectrum provides an unambiguous estimate of

the thermalization efficiency of the fast ion distribution. Accommodating this orientation required

moving the analyzer to an adjacent angled port on the tokamak (see Fig. 4.1). In the course of

these experiments, the instrument was moved from its usual near-perpendicular orientation to the

450 position for a period of several months.

4.2.3. Thomson Scattering, Soft X-ray Spectroscopy

Electron temperature measurements of the plasma were provided by two methods: Thomson

scattering of ruby laser light by electrons, 0 3 and soft X-ray spectroscopy by pulse-height

analysis from a Si(Li) detector. 10 4 Like Doppler-broadening of impurity lines for ion temperature

measurements, Thomson scattering provides a reliable local value of the bulk electron temperature.

Similarly, soft X-ray spectroscopy gives information on the non-Maxwellian nature of the electron

distribution function as charge-exchange analysis does for ions, but it is also subject to some of

the same difficulties of interpretation of bulk temperature from spectra with non-thermal features.

Electron temperature measurements were not routinely made during ion heating experiments, but

enough data was collected to provide a good characterization of the electron temperatures and

profiles for high density plasmas in Versator.

4.2.4. Microwave Interferometry

The electron density of the plasma was measured by single-pass microwave interferometry. A

75 GHz Zebra-stripe interferometer provided an unambiguous determination of the line-averaged

density along a vertical chord through the plasma.' 0 5 At densities , t 2 x 10'3 cm,- 3 the 139

GHz E1O source for the microwave scattering diagnostic was usually set up as an interferometer

to supplement the information obtained from the lower frequency one, as the signal from the

latter was often difficult to interpret at high density because of the large number of fringes. The

density profile was measured on a few occasions by moving the viewing chord of the 75 GHz

system to different radial locations, keeping the position of the 139 GHz interferometer horns

fixed for shot-to-shot reference. A profile could not be obtained above a density of nf = 2 X 1013

cm. 3 as the refraction of the 75 GHz wave for chord positions between the plasma center and

edge led to too much transmission loss. Therefore, the only density profile measurements obtained

from microwave interferometry were performed at densities lower than those at which most of the

ion heating work was done. However, relative measurements of electron density obtained during
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Thomson scattering temperature profile measurements at ~n = 3 x 1013 cm.- ' confirmed that the

density profile at high plasma densities is similar to that at lower densities.

4.2.5. Probes

'The properties of the edge plasma in the shadow of the limiter were measured with

electric probes. Langmuir probes provided measurements of the local plasma density and electron

temperature, while high frequency fluctuations were detected with rf probes. Both types of probes

are mounted on radially-movable probe drives originally constructed at Princeton Plasma Physics

Laboratory and were modified for use on Versator. The electrical feedthrough is standard 50

ohm semi-rigid copper coaxial cable in which the vacuum seal is made by the tightly fitting

tcflon insulation in the approximately 30 cm. length of coaxial line. Only one failure of such an

"unguaranteed" seal occurred during the course of this study.

Construction of probe tips varied according to their intended use. All are single-tipped. The

center conductor is either tungsten, molybdenum, or tantalum wire ranging from 0.010" to 0.025"

in diameter. The outer conductor is stainless steel, and is insulated from the wire by a thin tube of

alumina ceramic. The outer conductor is surrounded by another ceramic tube to electrically shield

the outer conductor from the plasma. The outer ceramic is protected by an electrically floating

stainless steel tube, as the ceramic was often found to shatter when directly exposed to the plasma.

The inner and outer coaxial conductors are soldered to a standard 0.085" female SMA

connector which attaches to its mate on the semi-rigid coaxial feedthrough described above. The

probe tips for rf fluctuation measurements were constructed to have a 50 ohm impedance so that

they were matched to the rest of the transmission line. The dimensions of these tips and the

method of measuring their impedance are given in Appendix C. The rf probe tips used in the

experiment have a measured VSWR of less than 1.3 over the frequency range 0-1 GHz. The

frequency spectrum of the high frequency signals were measured with a Tektronix 7L12 spectrum

analyzer.

Langmuir probe tips were constructed of less specific dimensions since high frequency

response was not required for the density and temperature measurements. The extension of the

exposed center conductor in the radial direction was typically 0.1-0.3 cm., which is of the same

order of magnitude as the density gradient scale length of 0.2-1.5 cm (see Chapter 5). The exposed

tips were either straight, L-, or T-shaped with the cross bar of the latter two configurations oriented

perpendicular to the magnetic field. The physical dimensions of the tip must be known for ion

density measurements, and were usually measured with the use of an optical comparator. Probe

measurements were only made in the region between the limiter radius and the wall, as exposure

to the runaway electron flux inside the limiter radius usually resulted in the destruction of the

probe tip.
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4.2.6. Bolometer

Knowledge of the the behavior of the total radiative and neutral emission of the Versator

plasma is obtained with the use of a fast-response pyroelectric bolometer. The bolometer views

the plasma from the outer major radius through a collimator such that the width of the viewing

area at the plasma major radius extends approximately 2 cm. in the radial direction and 4 cm.

in the toroidal direction. The line-of-sight of the bolometer may be rotated with respect to the

midplanc such that emission from the entire plasma cross-section may be collected. If the measured

line-averaged emission profiles in the upper and lower halves of the plasma are symmetric, and

the emisivity is assumed to be poloidally symmetric, then the profiles may be Abel-invcrted to

obtain the local power emissivity both with the without the presence of rf power.

A pyroelectric detector was selected as the bolometric transducer because of its fast response

time and the simplicity of the measurement technique.' 0 6 The lithium tantalate detector chip

mounted on a base with electrodes was supplied by Eltec Instruments, Inc. The face of the detector

exposed to the plasma was coated with an organic black paint to provide broad spectral response.

Though the spectral response of this device was not measured, the known performance of similar

black coatings suggests that the sensitivity of the bolometic to incident radiation is flat in the

spectral range from infrared to soft X-ray.

The pyroelectric detector produces a current which is proportional to the rate of change

of the temperature of the chip, or to the absorbed thermal power. For an incident power pulse

duration less than the thermal relaxation time of the detector (the time required for the chip to

thermally equilibrate with its surroundings), the output current is thus a direct measure of the

incident power. The measured thermal decay time of our detector is approximately 80-120 msec;

hence the above criterion is satisfied for Versator plasma durations. Because the detector is a high

impedance device (Z - 1010°f), a FET preamplifier is employed to convert the current signal

to a voltage, which is then amplified by conventional operational amplifiers. The FET preamp is

located just to the outside of the bolometric vacuum flange approximately 3 cm. from the detector

so as to minimize electrical pick-up on the weak detected signal. The detector itself is situated in

vacuum at the end of a collimating tube extending 50 cm. from the outer wall of the chamber.

The bolometer response was calibrated with a 2 mW He-Ne laser focused on the detector

through an optical chopping wheel. The radiant output of the laser was measured with a calibrated,

commercial pyroelectric detector and also with a radiant energy meter. The sensitivity of the

detector was determined 1.2 A/Watt, or with the FET preamplifier assembly, 1.5 kV/Watt. The

response time of the instrument was 0.2-0.3 msec.

As the output signal of the pyroelectric chip is a small current, the detector operation must

be kept free of charge collection effects, e.g. secondary electron emission induced by neutral or

UV bombardment. Consequently, the side of the chip facing the plasma was grounded so that any

charge loss or build-up caused by bombardment should contribute little to the measured current.
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However, the effectiveness of this scheme has not been checked. Furthermore, during bolometric

measurements of the plasma emission, the sensitivity of the bolometer was often observed to

change over a series of many shots, particularly in the presence of rf injection into high density

plasmas from which the charge-exchange neutral flux was enhanced. This curious problem is not

believed to be related to the amplifier electronics, as the calibration procedure was occasionally

repeated immediately following such a change in detector sensitivity, with the original calibration

result being obtained. Instead, the problem may be caused by charge build-up on the detector

itself, since pointing the bolometcr away from a strongly emissive region of the plasma, or even

electrically shorting the two electrodes of the detector iself, has been found to permit the return

of the bolometcr sensitivity to what is believed to be its bench-calibrated value. The upshot of this

discussion is the following: the absolute response of the bolometer is questionable because of the

slow variation in its sensitivity when exposed to emission from the plasma. By use of the methods

described above to reduce the degradation of the instrument sensitivity, and randomly varying

the angle of the bolometer with respect to the midplane, one can obtain the relative bolometric

emission profile. However, the quantitative value of the power emission is not reliable. We also

note that the ratio of the absorption coefficient of particulate energy to that for radiant energy is

unknown. We have assumed the two to be identical, but this may not be a valid assumption.

4.3. Density and Temperature Profiles; Zff

In concluding this chapter, we show typical plasma parameters of the discharges in which the

ion heating experiments were performed. The evolution of the plasma current, loop voltage and

line-averaged density are shown in Fig. 4.2. Radial profiles of the electron density and electra

and ion temperatures are shown in Figs. 4.3-4.6. The density profile of Fig. 4.3 was obtained

by Abel-inversion of the 75 GHz microwave interferometer data collected at 6 radial locationr.

The central line-averaged density was i, = 1.3 x 1013 cm.-3 The Thomson scattering electrwi

temperature and density profiles5 7 shown in Fig. 4.4 were measured for f, -= 3 x 0'3 cm. 3

The impurity ion temperature profile 07 obtained during the same run is depicted in Fig. 4.5 A

soft X-ray electron temperature profile08 has been performed at i = 1.5 x 1013 cm.-3 and is

shown in Fig. 4.6.

The density profile is represented reasonably well by a parabola, or by a Gaussian profile

with a half-width of about 9.7 cm. The former representation is used in the theoretical modelling

in Chapter 2 and in the power balance calculations of Chapter 5. The ion temperature can be fitted

to a Gaussian profile of half-width 10.5 cm. The electron temperature profile may be represented

by the function

Tr) = Teo[1 + (75 cm.] (4.7)

which will be employed in the power balance calculations of Chapter 6. Near the plasma axis, the

electron temperature profile may be fitted to a Gaussian with a half-width of )Xtc = 7.5 cm.
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The importance of the relative impurity content of the plasma with regard to the ion heating

experiment has been pointed out in Chapter 2. The effective ionic charge, Zelff can be estimated

from the electrical resistance of the plasma and the temperature profile. The input power is

equated with the ohmic losses:

fa

PoH = 4r2R 71IJ2ll r dr (4.8)

where vll is the resistivity in the direction parallel to the magnetic field, and Jll is the current

density. Neglecting neoclassical effects, the resistivity is'0 9

r711(r) = 1.1 X 10- 2 In A G(Z,ff)T,(r)- 3/ 2 (n-cm) (4.9)

where T, is in eV and

G(Z ff) = Zff(2.67 + Zf)(4.10)
3.4(1.13 + Zff) (4.10)

Assuming Zff and the ohmic electric field to be constant with minor radius, and taking a Gaussian

electron temperature profile, we obtain

G(Z ff) Ip 3(1.1 x 10- 2 )Ro In (4.11)

where Ip is the peak "steady-state" plasma current, and V is the loop voltage at the current

peak. The central electron temperature measured by Thomson scattering at high plasma densities

(n, =2.5-3.2 x 1013 cm.- 3 ) has been observed to vary from 350 to 440 eV for Ip =55-60 kA and

V =1.8-2.2 V. Substituting the extreme values of V and To into Eq. (4.11) and taking Xt, = 7.5

cm. and lnA = 15, we calculate Zff to be 1.3-2.6. The effect of banana-trapping of a fraction of

the electron population may reduce this estimate of Zff somewhat. For most of our calculations,

we take Zff = 2.

4.4. The 800 MHz Rf System

The rf system for the lower-hybrid experiments consists of a high-voltage power supply, an

rf source and high power amplifier, a transmission and power splitting network, a phased-array

waveguide antenna, and an rf power and phase measurement detection system. A schematic of

the entire system is shown in Fig. 4.7 With the exception of the power splitting network and the

antenna, the system was designed and built at PPPL, and is on loan from that laboratory. The

system is outlined here, with details relevant to this particular experiment being highlighted.

At the heart of the rf system is a single Varian type VA-955B klystron driven at 800 MHz

by a TTL pulse-modulated source of controllable power level. The klystron itself is powered by a

60 kV, 10 ,uF capacitor bank charged by a 100 kV, 18 mA DC power supply. The voltage on the

klystron is regulated by a type 4CX35000 high-voltage tetrode switch tube. The klystron voltage
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is controlled by the amplitude of the grid voltage on the switch tube. The size of grid voltage

pulse is also user-controllable and is feedback-regulated by the measured beam current of the

klystron. Thus the rf output power may be regulated by either the level of the rf drive pwer

to the tube or by the voltage on the klystron. The maximum measured output power of this

klystron is approximately 160 kW. At this power, the maximum pulse length at constant power is

approximately 10 msec, limited by the present capacitor bank energy.

The rf output power of the klystron is directed through 50 ohm, 3.125" diameter copper

coaxial line to a high power ferrite core circulator and thence to a set of waveguide-T power

splitters which divide the power into four approximately equal parts. Each fraction is returned to

1.875" diameter coaxial conductor and routed through a calibrated phase shifter, a bi-directional

couple for monitoring forward and reflected power, a coaxial ceramic window assembly, and then

coupled into a waveguide of the antenna with an E-type coupler.

The rf vacuum window section is comprised of a commercial coaxial window structure which

is electron-beam welded to a transitional coaxial piece with a copper inner conductor and stainless

steel outer conductor. To the other end of this coaxial section is welded a standard Varian-type

2.75" diameter vacuum flange. The vacuum flange is bolted to the waveguide antenna feed, and

the copper gasket vacuum seal provides electrical continuity of the outer conductor. The welds on

the interior of the coaxial transition are polished to a smooth finish and the inside of the copper

gasket is rounded to reduce the chance of rf breakdown in this section. Arcing in this transition

piece was a frequent occurrence before attenion was directed to the interior finish.

Several different waveguide antennas have been used in the lower-hybrid experiments on

Versator. A waveguide array with interchangeable four and six-waveguide nosepieces centered

on the midplane launches lower-hybrid waves from the outer major radius. The nosepiece is

the section of the antenna closest to the plasma. In separate and more recent experiments, a

four-waveguide grill has been used to inject lower-hybrid waves from the top of the torus." 0

The dimensions of the four-waveguide side-launching antenna are a guide width of 2.45 cm.,

guide septum width of 0.6 cm., and a height of 24.2 cm. The antenna system extends approximately

2 meters radially from the outer wall of the tokamak vacuum vessel. The nil spectrum of this grill

for several different phasings has been shown previously in Fig. 3.3. The waveguide width of the

six-guide nosepeice is 0.8 cm. and the septum width is 0.15 cm. The higher nil spectrum launched

by this grill is believed to be suitable for electron heating.

The entire side-launching antenna is constructed of type 304 stainless steel. Additional

pumping of the grill volume is possible via a vacuum manifold on the antenna, though it was

found in practice that the extra pumping had no effect on breakdown behavior at high power.

The ends of the waveguide walls at the grill mouth have been rounded to reduce the likelihood

of arcing at that location. The side-launching grill is movable in the radial direction with respect
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to the chamber wall. The grill position is chosen for optimal coupling of rf power to the plasma,

as discussed in the next chapter.

The dimensions of the four-waveguide top-la;aching grill are a waveguide width of 1.0 can.,

septum width of 0.16 cm., and guide height of 20.8 cm. The calculated nl spectrum of this grill

has been shown in Fig. 3.4. The present version of this antenna is also constructed of type 304

stainless steel, though a titanium nosepiece was employed in the initial experiments with this grill.

The position of the top-launching grill mouth relative to the tokanak vessel wall is determined by

the width of spacer flanges between the antenna flange and the tokamak vessel port. The spacers

may be changed during vacuum breaks.

For monitoring the antenna operation and coupling behavior. the rf signals from the

reflcctometers in each of the four or six channels are directed to a detection assembly inside an

rf-shielded box. The detector for each channel has the capability of measuring absolute power and

absolute phase (relative to a local oscillator which is provided by the same source as that for the

drive signal to the klystron). Thus the forward power and reflectivity in each waveguide may be

measured along with forward and reflected phase. Knowledge of the forward phase is required to

set the relative phase between waveguides to the desired value. In practice, the phase angle between

waveguides is adjusted once to a common angle, e.g. 00, using the phase detection network, and

the settings of the motor-driven mechanical phase shifters needed to achieve this phase angle are

noted. The phase delay of the shifters versus setting is known. During heating experiments, the

relative phase angle can be set by remotely adjusting the phase-shifters to previously calibrated

positions. As discussed in the next chapter, monitoring the reflected phase is useful in detecting

the onset of rf breakdown in the waveguides.

After detection, the forward and reflected power signals are directed through a chain of

amplifiers to the Versator data acquisition system. The DC output voltage versus input power

for each rf detector has been calibrated a number of times during the course of this experiment.

The overall gain of the series of amplifiers is calibrated by a square voltage pulse of known

amplitude fed into the amplifier chain immediately following the rf detector output. During heating

experiments, the calibration pulse for each channel is triggered approximately 10 msec before the

rf pulse and is stored with the rest of the data. A data analysis program has been written in

which the voltages of the rectified and amplified rf pulses are normalized by the calibration pulse

voltages, and the input rf powers to the detectors are calculated using analytic representations

of the individual detector calibration curves stored in the computer memory. Application of the

known reflectometer coupling coefficients completes the measurement of the forward and reflected

power measurement in each waveguide.

The klystron is protected from high power faults by a standard set of fault detection circuits.

To protect the antenna system against internal arcs in the waveguides or near the surface of the

windows, an electronic arc detector was built and installed. This instrument shuts off the klystron
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in the event of a high reflection coefficient in any waveguide of the antenna, which is often

indicative of a fault. The final version of this device on our system was based on the design of

the Alcator C arc detector,"' and has proven to be successful in minimizing damage from rf

breakdown in the grill.

For the ion heating experiments, both the four-waveguide side-launching and top-launching

antennas were used. The majority of the experiments have been performed with the former.
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5. Experimental Results: Rf Coupling and Antenna Conditioning

The importance of the nil spectrum of the lower-hybrid waves to the expected heating

bchaior has been discussed in Chapter 2. Because of the accessibility criterion (2.10) and. in the

case of ion heating. the necessity of avoiding electron .andau damping, the preferred range of

nil for the Versator experiment was determined to be 3 < nli < 8. roughly. As in most other

lower-hybrid heating experiments, the grill-type of antenna is used because it efficiently couples

rf power to lower-hybrid waves with Inill > 1 and by virtue of its all-metal constniction, it

has the additional benefit of reducing possible contamnination of the plasma. The computational

method developed by Bralmbilla for predicting the coupling Cfficicnc, (antClenna transmissivity) and

n,l power spectrum of the grill has also been described in Chapter 3. In general. the calculated

Nalues of antenna reflectiity and nil spectrum are interrelated (sec. c.g. F:qs. 3.27 and 3.30).

Ideally. both quantities should experimentally be determined and compared with the predictions

of the Brambilla thicory: unfortunately, measurement of the n spectrum is diificult. Nonetheless.

if reasonable agreement between the theoretical and experimental coupling efficiencies can be

demonstrated, we may be justified in assuming that the launched n spectrum is adequately

described by the Brambilla theory. Consequently, we compare in the first part of this chapter the

antenna reflectivity measurements of our experimental work to the predictions of the modified

Brambilla code described in Chapter 3. As knowledge of the edge density and density gradient

is required for application of the coupling theory, the experimental density measurements at the

plasma edge are presented first.

Though in theory the grill represents an efficient means of coupling rf power into the plasma,

considerable attention to preparation of the waveguide surfaces and in vacuo conditioning are

usually needed to permit reliable transmission of power through the evacuated waveguides to

occur. In the latter part of this chapter, the problems of high-power operation (Pf > 10 kW) of

the grill and our methods of solving them are discussed.

5.1. Edge Density Measurements

The plasma density near the waveguide mouth was measured with Langmuir probes inserted

through the nosepiece of the four-waveguide grill (see Fig. 5.1). These probes. one in an inner

guide and the other in an outer one, were movable with respect to the grill mouth; thus the

density gradient as well as the absolute value of the density at the grill mouth could be measured

in the absence of rf injection. The advantage of this technique is that the density is measured

in the precise location required for the comparison between experimental and computed results,

rather than at an adjacent port. Unfortunately, because this arrangement necessitated the removal

of the rest of rf antenna system, the local density and the rf coupling could not be recorded

simultaneously. However, with another Langmuir probe located 220 toroidally from the grill port,

the edge density was monitored during both the rf coupling and the grill density measurement

runs to confirm that the edge density was similar for both cases.
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The probe current-voltage characteristic yielded values of ion density n, and electron

temperature T using two means of analysis: the numerical calculations of l.aframboise for a

cylindrical probe in an uinmagneti/ed plasma.' 1 2 and a simple plane probe theory.' ' The latter

may be justified in that p,, << rp and p,, r,, where r is the probe radilus. In general,

the densities obtained using plane probe theory are about 5 times higher than those obtained

using the Laframboise method. We will return to this point later. Unless otherwise noted, the

Langmuir probe data presented in this section were reduced using an iterative procedure based

on I.aframboise's calculations.

I)ensity gradient measurements are presented for the two limiter configurations shown in

Fig. 5.1. Initial rf coupling experiments into a plasma with no radial limiters showed the antenna

reflectivity to be high when the grill mouth was located at the major radius of the outer wall of

the tokamak. The reflectivity was measured to decrease continuously as the grill was retracted up

to 3.5 cm. outward from this position. indicating that the edge plaslma density was too high to

achieve a minimum in reflectivity near the tokamak vessel wall. Consequently, a pair of radial

limiters was placed near to the waveguide port to reduce the local density. These vertical limiters

were first placed 2 cm. toroidally to each side of the waveguide port on the outboard wall. Because

the calculated lower-hybrid ray trajectories from the grill were later found to intercept the limiters

in this position, the limiters were later moved to a circumferential position of approximately 55

cm. to each side of the grill port. The density measurements in front of the waveguides for both

limiter positions are shown in Fig. 5.2. The density profiles are seen to be roughly exponential.

For the case of the limiters placed near the waveguide port, the exponential fit is good from the

inner edge of the limiter to the waveguide mouth. The density scale length X, defined by

n,(z) = n(O)ez/X (5.1)

is 0.3-0.5 cm. For the latter case, the profile exhibits a change in slope near the radius of the

wall-grill port junction. Between the inner edge of the limiter and the wall radius, the density scale

length is X 1.2 cm; inside the waveguide port, with the grill retracted, we find X 0.2 cm. The

electron temperature profiles for both cases are shown in Fig. 5.3. The temperature is 20-30 eV

just outside the limiter radius and 4-5 eV inside the grill port. A break in the temperature profile

for the second limiter position is also evident from the data.

The measured density profiles are consistent with a model of the edge plasma in which

the density gradient is determined in part by the flux of particles along the field lines. This

assertion is justified by arguments presented in Appendix D. The point to be made is that the

estimated edge diffusion coefficients based on the measured density and temperature profiles are

reasonably consistent with 3Bohm diffusion values, which also corroborates similar findings on other

tokamaks.1"4 ",5 With this justification, we can estimate with some confidence the edge density

profile in regions where the density is not measured (e.g., well inside the waveguides or at other

toroidal locations). Moreover, the coupling results, at least in their relation to the density profile,
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are general in that dithe edge density profiles near the waveguide grill are understood and are in

agreemcnt with similar measurements from other tokamaks.

The validity of the unmagnetized plasma approximation in the meaurement of the plasma

density may be assessed from the electron temperature profile. Referring to Fig. 5.3, we note

that because of the low electron temperature near the waveguide mouth, the ion armor radius,

assuming T, < Te, is comparable to the probe radius at this location:

ct= -(m,)i = 1.3 x 10-2 /(e (cm) (5.2)
eB (5.2)
rp > 0.03 cm.

Tlherefore, for probe measurements performed well outside thie limiter radius, magneti/ed plasma

effects may become important in interpreting tlhe probe data. Consequently, in this region, we

employ a simple plane probe theory in which the effective probe area is taken to be the

cross-sectional area perpendicular to tie magnetic field. This is the highly magnetized plasma limit.

The collected ion current is then

Isat = 2n, Trpl /m (5.3)

where Ip is the probe length.

The plasma density values given by this approximation are about a factor of five higher than

those obtained using the Laframboise method. The comparison is shown in Fig. 5.4 for a typical

density profile. The density at the limiter given by the plane probe method is about 10'3 cm,-3

which would appear to be too high as the line-averaged density for these discharges is probably

1.5 ± 0.5 X 10'3 cm.- 3 Since the temperature is high (T, = 30 eV) at this location, according

to Eq. (5.2) plane probe theory is no longer valid, and the true density should be intermediate

between the two limits. An attempt to measure the density unambiguously using the resonance

cone method" 6 was made in which one probe was used as a launching antenna and another as a

receiver, but the strong plasma noise, steep density gradients, and temporal variation of the edge

density during the disharge prevented reliable measurements. Lacking corroborating data, we have

assumed a more accurate density measurement is given by plane probe thlleory when the probe

is located in the low-temperature plasma of the grill port. The Laframboise method is used to

provide a density measurement for the probe located near the limiter radius.

Other observations regarding the measured density profiles are the following: first, the density

is not constant in the z-direction, but is constant along the toroidal field. As shown in Fig. 5.5, the

density in front of the inner guide is 1.5 to 4 times that in front of the outer guide, depending on

the local density scale length. The effect of this variation in density across the grill mouth on the

coupling efficiency has not been calcualted in detail. However, based on the toroidal curvature and

the value of kL from the local dispersion relation, Eq. (3.3a), the phase retardation of the outer

guides relative to the inner ones is less than 30 as long as the density at the grill mouth is low
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Figure 5.4. Comparison of edge densities obtained with different techniques of reducing the
Langmuir probe data. The lower curve results from use of the Laframboise method, the upper
from plane probe theory.

113

_ _

_'I I
I V I



(wP2 /w 2 < 10). 'ThuS ile spectrum should not be significantly affected by the plasma curvature.

Since the measured reflectivity is not a strong function of the density gradient. as we shall see

in next section, the coupling efficiency is likely to be determined by merely an average value of

the density gradient across the grill mouth. Secondly, as also indicated in Fig. 5.5, the measured

density within the waveguides themselves is finite. The density scale length inside the guides is

0.1-0.2 cm. in the first several millimeters inside the guides; farther inside, the plasma is too

tenuous for accurate probe measurements, and the narrow waveguides may allow the flux tubes

sampled by the probes to be depleted (though in principle the density could be estirnmated from

Eq. 1).4). As discussed in Chapter 3, the effect of plasma in the waveguide can be estimated, and

for mildly overdense plasmas is found to be negligible.

5.2. Cominparison of Calculated and Exnerinmental f Coupling Results

To compare the experimental coupling efficiency to the alues predicted b the calculations

described in Chapter 3. measurements of the grill reflectivity, along with those of the density

profile in front of the grill mouth, were carried out early in the course of this work. During most

of these tests, the incident rf power was deliberately limited to less than two kilowatts to avoid the

problem of rf breakdown in the waveguides and the possible effect of pondermotive modulation

of the density gradient in front of the grill. The reflectivity measurements were performed using

the calibrated rf detection system described in Chapter 4. Sufficient rf shielding was provided to

ensure that rf leakage into the detector box was negligible. With adequate shielding, the unwanted

rf pickup on the detectors was reduced to 20-25 dB below the signal level.

Coupling measurements were performed with the four-waveguide side-launching grill for

both limiter positions described earlier. Figure 5.6 shows the measured grill reflectivity for the

relative phase angles AO = 0°, 90°, and 1800 for the two limiter positions. For AO = 90° and

1800, the grill mouth location for the best coupling for the second limiter position is approximately

one cm. radially outward from the optimally coupled grill position for the first limiter location.

Given that the density decreases from the limiter edge with a steeper gradient for the case of the

first limiter than for the second, the difference in the coupling between the two cases supports

the general premise of the theory that the coupling is determined by the plasma density at the

waveguide mouth. We note that the reflectivity minimum for AO = 90° occurs at a lower density

than for A/4 = 1800; this is explained well by Eq. (3.27), given that the power spectrum for the

900 phasing is characterized by lower values of nil (roughly a factor of 1/2) than that for the

1800 phasing. According to Eq. (3.33), the optimal coupling locations for the two phases should

be separated by a distance Ax X ln(4) 0.3 - 0.7 cm, which is not inconsistent with results

shown in Fig. 5.6. The reflectivity for /4 = 0° (low nil) is high, as expected.

Using the modified Brambilla code described in Chapter 3, we obtain reasonably good

agreement between the coupling data and the calculated results for the grill locations closest to

the plasma surface. The measured and calculated coupling results for the second limiter position
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Figure 5.5. Density profiles in front of an inner and outer waveguide of the four-waveguide
grill. The horizontal axis is in units measured relative to the face of the grill. The inset shows
the measured density inside one of the waveguides. The vertical axis for the insert is the same
as for the larger figure.

115

l^12

I ) /1", I~~~~~ I



i- I

I

- I

o 0 A4O00

E A i = 90°
o En 180°

- .4p,.- -0
- 0.-- WC

-.WV.-W.WV

T
PORT EDGE

56 57
GRILL POSITION (cm)

Figure 5.6. Measured total grill reflectivity as a function of grill position (in major radius)
for the two limiter positions and relative phase between waveguides AO = 00 (circles). 900
(triangles), and 180 ° (squares). Open symbols represent the data for the first limiter position,
solid symbols tor the second. The plasma density increases to the left in the illustration. The
juncture of tile antenna port wall and the outer wall of the tokamak vessel is indicated.
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are compared in Fig. 5.7. The densities and density gradients u:;ed in the model are obtained from

the measured probe data which have been reduced using plane probe theory for the reasons given

earlier. The location of the measured reflectivity minima for AX = 900 and 1800 correspond well

to those obtained from the code. oth the actual and calculated coupling coefficients increase as

the grill is moved further toward the plasma from this location, with the theoretical values being

somewhat lower than the experimlental ones over this range. For the grill retracted more than one

centimeter inside the port, the correspondence between the experimental and theoretical values

is poor, with the experimental reflectivitics being lower for AO = 900 and 1800 and higher for

A = -0 ° than the predicted values.

The calculated and experimental reflectivities for the individual guides for the three phases

are plotted in Figs. 5.8-5.11. For AO = 1800 (see Fig. 5.8). the measured reflectixitics are roughly

symmetric as expected, with the outer guides generally exhibiting higher reflectivities than the

inner ones over most of the grill position range. Again, there is qualitative agreement between this

finding and the experimental results for the grill located one centimeter or less inside the port:

we see the outer guides are predicted to be more reflective than the inner ones when the grill is

located in an overdense plasma.

The measured individual reflectivities for aO = 900 (see Figs. 5.9 and 5.10) are more difficult

to generalize, but the notable feature of the coupling is the high reflectivity of the "downstream"

waveguide (the outer waveguide on the side of the grill in the direction of the traveling wave

spectrum generated by the asymmetric phasing). As the grill is pushed into the plasma, the

reflectivity of the other outer waveguide increases from 2.5% , the lowest of all four guides, to a

value just under that of the opposite outer waveguide. As in the case of A = 1800, the individual

guide reflectivities for AO = 90 ° also show qualitative similarities with the measured values for

the grill situated close to the port edge, with the correlation becoming worse for antenna locations

farther into the port. The experimental minimum for this phasing extends over larger span of grill

positions than does the calculated minimnum.

For a relative phasing of 0° between waveguides, there is little correspondence between the

code predictions and the experimental results (see Fig. 5.11). The average calculated reflectivity

decreases monotonically from 90% to 35% as the grill is retracted into the port, whereas the

measured reflectivity remains high for all grill locations tried. Also, the inner guides arc calculated

to be typically 10-30% more reflective than the outer guides while the measurements indicate the

outer guides to be 1.5-3 times as reflective as the inner ones.

The symmetry of the measured inner and outer guide reflectivitics is not as pronounced for

this phase as for AO = 1800. The poorer symmetry of the 00 case cannot be explained by errors

in setting the relative phase between guides; a numerical test using the Brambilla code shows that

a small change in several of the waveguide phasings reduces the symmetry of the reflectivity for

A = 1800 to a greater extent than for AO = 00. However, because the spectrum for the latter
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Figure 5.7. Comparison of the calculated and experimental antenna reflectivity versus rill
position for the second limiter location. The theoretical values are indicated by dashed lines
and closed symbols, the measured ones by solid lines and open symbols. Circles denote the
case of A¢ = 0o . triangles the case of AO = 900, and squares the case of A- = 1800. For
aO = 180° , the theoretical reflectivity minimum occurs at s = 10. The limiter is located at a

major radius of 535 cm.
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Figure 5.8. Comparison of experimental and theoretical relectivities for individual waveguides
for the case A = 180 °. Dashed lines are the calculated values: solid lines experimental. The
numbers referring to the data points are guide numbers: 1 and 4 are the outer guides; 2 and
3 the inner ones. Open circles denote the measured overall grill reflectivity, closed circles the
theoretical total grill reflectivity. The calculated reflectivity of the inner waveguides is indicated
by closed squares. and that of the outer guides by closed triangles.
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Figure 5.9. Experimental reflectivities for individual waveguides: A -= 9 0o
. The reflectivities

of the inner guides (2 and 3) are shown witll dashed lines and open symbols. The reflectivites
of the outer guides (1 and 4) are shown with dot-dash lines and closed symbols. The total
reflectivity is denoted by x's and a solid line.
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Figure 5.11. Comparison of experimental and individual guide reflectivities for Ax = o .

The calculated values are shown with dashed lines and solid symbols and the measured ones
are shown with solid lines. Circles denote the total reflectivity. The cllculated reflectivities of
the inner waveguides are represented by squares. while those of the outer waveguides are
represented by triangles. The measured reflectivities of individual guides are denoted by their
guide number.
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case consists largely of inaccessible surface wavcs, the coupling may be more affected by local

port geometry than for the former phasing. possibly giving rise to more asyinmmetric coupling

behavior.

The measured overall reflectivity as a function of phase angle for several different grill

positions is plotted in Fig. 5.12. The results show the expected symmetry about AX = 00, and

indicate that good coupling (R < 0.15) can be achieved for 900 < AO < 1800°.

The most likely reason for the observed differences between the calculations and the

experimental values is the proximity of the port walls to the waveguide grill. Recall that the

Bramnbilla theory assumes the waveguides to be imbedded in a conducting wall. l'he worst

correspondence is seen for grill locations inside the port. It is expected that reflections from the

port wall could modify the coupling behavior. In particular, the presence of a reflecting wall close

to the outer guides is likely to enhance the reflectivity of the outer guides over the inner ones.

Hlowever. it is unclear from this simple explanation why the overall reflectivity of the grill for

AO-- 90° and 180° would be lower than calculated, as is the case of the experimental values.

The lack of agreement is most severe for A = 0, which suggests that dthe lower nil values

are more affected by considerations of local geometry and fast wave coupling than the higher ones.

It is conceivable that the poorer correspondence between theory and experiment for this phasing

as opposed to A/ = 1800 and 900 is indicative of the problem of fast wave coupling to waves

of low nil discussed in Chapter 3. We recall that the Brambilla theory for slow wave coupling

is not strictly applicable to waves with values of nil near 1; hence it is not surprising that the

coupling predictions for this phase do not agree with the experimental results. Moreover, waves

with nil < 1 are evanescent in the plasma for wpe > w; however, near the edge where wpe = w,

the coupling of such waves to the surface plasma may be strongly influenced by the details of the

launching structure and its environs.

The calculated nil power spectra of the side-launching four-waveguide grill has been shown

in Fig. 3.3 for A = 00, 900, and 1800. An experiment was considered in which the nil spectrum

would be measured interferometrically with the use of a pair of movable rf probes in front of the

grill mouth; however, the dominant n- contribution to the wave number (nI j - (wpe/w)nll > nil

near the plasma edge) makes a reliable determination of nil very difficult, and the idea was

dropped. Consequently, no direct measurement of the launched nil spectrum has been made to

compare with the above predictions. As the nil spectrum is largely determined by the relative

phasing of the grill and only to a lesser extent by the coupling efficiency, we conclude nonetheless

that the launched spectrum must be similar to the calculated one, especially for the higher phase

angles for which qualitative agreement between the experimental and theoretical reflectivities is

relatively good.

In summary, it is evident that the coupling model developed by Brambilla and modified

by the inclusion of more realistic edge plasma conditions, provides an adequate description of
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Figure 5.12. Measured grill reflectivity versus phase angle between waveguides for several different
grill positions. Also displayed is the calculated grill reflectivity for = 10, Vn = 5.3 X 1011
cm-4
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the actual coupling results in which the liunchecd power spectrum is characterized by nl > 1.

There is little agreement, however, between thie predicted coupling and the cxperimcntal results

when the grill is retracted well into the port where indeed the theory is not expected to be valid.

In addition, we note that measurements of the edge density, which are critical to quantitative

comparisons between theory and experiment, were not unambiguous because of the choice of the

model for reducing the Langmuir probe data. Nonetheless, the experimental data reproduce the

basic features of the theory in that an optimal coupling position was found to exist and that the

optimal coupling location varied in the expected manner with A. Within uncertainties imposed

by the density measurements, the location and magnitude of the measured reflectivity minima are

well predicted by the model.

BIecause the coupling for different phase angles is explicable by the model, we h;ave confidence

that the calculated power spectrum also represents the launched spectnrum fairly. The achiexenent

of efficient coupling (R < 0.15) in these initial experiments at low power levels is a prerequisite

to high power heating studies. The other requirement for this end is the reliable peration of the

antenna at high levels of incident power, which is the subject of the remainder of this chapter.

5.3. High Po wer Operation of the Grill

Although good rf coupling was obtained at low incident rf power, the coupling efficiency,

in general, was not maintained as the rf power was raised into the multi-kilowatt range. Rf

breakdown in the evacuated portion of the grill, occuring in several different forms, was found

to be responsible for the high power coupling results. The breakdown is detrimental to the

transmissivity of the grill and sometimes damages the antenna itself. Such problems appear to

be endemic to waveguide couplers in which all or part of the antenna is open to the vacuum

chamber, which must be the case unless the vacuum window seals are made near the mouth of the

waveguides. Other experiments have reported similar difficulties with their antennas,31 ' 3 8,1 1 7", 18

and the elimination of these breakdown problems is a major concern for most experimental

projects in this field.

In the Versator antenna systems, two types of breakdown are distinguished. The first is

characterized by sudden (At < 10 bsec) changes, usually increases, in individual waveguide

reflectivities. This breakdown is associated with arcing in the waveguides: either a series arc

between two sections of a waveguide wall which have a poor electrical contact between them, as

in the joint between the nosepiece and transition coupler; or more commonly an arc across the

waveguide or coaxial transition pieces. On the first grill with the teflon window, the arcing occurred

across the window itself at a power level of 15-20 kW per guide, coating the window with metal.

In the later antenna systems, arcing often took place between the inner and outer conductors

of the coaxial transitions in which the average power density is approximately six times that in

the waveguide. The initial fabrication of these pieces in which a commercial window assembly is

welded to a standard vacuum flange left a groove approximately 1. 5 mm. wide and several mm.
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deep in tile inner surface of the outer conductor. xamination of subsequlently-formcd arc tracks

showed that arcing was initiated at these grooves. Blackening of the ceramic windows, presumably

due to metallic deposits, was often noted after substantial arcing had occurred: however, gentle

sandblasting of the window surface could remove these deposits with no apparent degradation of

the high power performance of the windows. NMlidway through tile heating experiments, the outer

conductors of the transition pieces were rebuilt to eliminate the grooves. Furthermore, a more

reliable arc detector was constructed to better protect the antenna system in the event of a fault.

With these improvements, arcing was eliminated.

The more common occurences of breakdown are related to plasma formation within the

evacuated waveguides. both during operation into vacuum and the tokamak plasina. Unlike

arcs, the plasma generated during the rf pulse does not damage the antenna: howce\r. power

transmission of the grill is reduced by the presence of this wavleguide plasma. Furthermore, the

formation of this plasma is difficult to eliminate. As a result, it constituted one of the major

obstacles of the experiment. The rest of this chapter discusses this problem and its solution.

11ec formation of plasma in the waveguides is inferred from the variation in the reflected

power and phase during the rf pulse." 9 he grill is processed in vacuum (P < 5 x 10- 7 Torr)

with short rf pulses: pulse durations of 0.5 ms. and repetition rates of one per second are typically

used. For a newly-installed grill, conditioning effects become apparent at a total incident power

level of about 10 kW (E,(peak) = 300 V/cm). The reflected power pulses are observed to change

over a several hundred microsecond time scale; shifts in the reflected phase on the order of 1800

also take place. Gas is evolved during these pulses. These effects usually disappear after sufficient

conditioning, and the power may be incrementally raised until the problem recurs, whereupon the

process is repeated until the maximum available incident power of about 110 kW is reached. The

conditioning time required is considerably reduced by vacuum-baking the grill for 8 hours at 4000

C (higher temperatures may stress fabricated antenna components). After such heat treating and

installation of the baked grill on the tokamak, processing to the 100 kW level necessitates only

10-15 hours, while previous conditioning of the unbaked waveguides for well over 40 hours had

not sufficiently prepared the surfaces to permit operation at this power level. The vacuum baking

releases gases absorbed in the surface of the stainless steel waveguides which must otherwise

outgas in the tokamak at lower temperatures. The baking temperature must be sufficiently high

to significantly reduce the gas load. Heating the emplaced grill on the tokamak to 1500 C with

heater tapes has little effect on the conditioning behavior.

The performance of the antenna when operating into vacuum, as measured by the power

level at which reflected phase shifts are noted, is altered with the ambient neutral gas pressure and

applied magnetic fields. Figure 5.13 shows the incident rf power that can be attained without phase

shift as a function of neutral hydrogen fill pressure. At a fill pressure of 10- 4 Torr, the rf power is

reduced by 30% relative to that achieved at 3.6 X 10-6 Torr. As shown in Fig. 5.14, the presence
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of small magnetic fields in the grill is also leads to plasma formation at power thresholds below the

unmnagnetized case. A magnetic field with a strength near or below the cyclotron resonant value of

286 gauss is generated by passing a small current through the toroidal field coils. The orientation

of this field is parallel to the rf electric field in the guide. The threshold for rf breakdown decreases

with increasing field: for a field of 300 gauss at the waveguide mouth, the allowable power level

is 25% below that obtained with no field.

Nonetheless with sufficient conditioning in vacuum, tle antenna may be processed up to the

available power limit of approximately 110 kW (E:(peak) =1.1 kV/cm). However, when rf power

is applied to the magnetically-confined tokamak plasma. rf breakdown recurs at power levels much

lower than that reached in vacuum conditioning. Above a typical total incident power level of 30

kW. reflected phase shifts occur in all four waveguides. Shown in Fig. 5.15 is the rellected phase

shift and the total reflected power versus incident power in one of the waveguides. ' he phase

shifts in the negative direction during the first sceeral hundred microseconds of dithe rf pulse and

reaches a steady state for ile remainder of the pulse. The amount of phase shift increases with

increasing power above the threshold level. Concurrently. the overall antenna reflectivity decreases

during the rf pulse. At an incident power level of 57 kW, the grill reflcctivity is reduced to 55%

of its low power value. and the net reflected phase shift is -230 ° . Above this power level. the

reflected power pulses become very irregular and phase shifts can no longer be measured.

As mentioned carlier. the phase shift and reflectivity changes are attributed to plasma formed

in the waveguides. If the entire measured phase shift is due to the dielectric effect of the plasma

created in the waveguide, and if the plasma forms along the entire length of the waveguide,

then the plasma density inferred from the phase shift measurement is 1 x 109 cm.- 3 for an

incident power level of 57 kW. This density is close to the waveguide cutoff density of 3 x 109

cm.-3 Though the antenna reflectivity typically decreases with the onset of plasma formation,

the transmissivity of the grill apparently decreases as well. The power detected by rf probes

in the edge plasma show decreases of 1-3 dB over the pulse duration at power levels above

the threshold for plasma formation. In an experiment in which rf power was fed into a single

waveguide, the fraction of incident power coupled to an adjacent waveguide was observed to

decrease with increasing power above the threshold level as depicted in Fig. 5.16. Typically,

measured transmissivity reductions of 50-60% were obtained for an rf power of 20 kW/guide,

in rough agreement with the probe measurements (the coupling and probe measurements were

performed with different grills, however). Moreover, the effect of the rf on the tokamak plasma, as

determined by the temperature for the fast ion tail generated by the rf, diminishes with increasing

rf power above the threshold for plasma formation. Apparently, rf power is absorbed in the

waveguide plasma, making this breakdown phenomenon deleterious to the rf heating efficiency.

5.4. Interpretation of the Rf Breakdown Problem

The plasma formation during the rf pulse is believed to arise from electron-stimulated

127



- -

POWER OVER 12C
NOT ATTEMPTED

I I I I III I I I I III 

PRESSURE (TORR) (H2 FILL)

Maximum rf power achievable without breakdown versus neutral hydrogen fill

128

120

100

80

.

CLO

60

40

20

Figure 5.13.
pressure.

_ __

__ __

_

_

_

X I 0-6



150
B (gauss) AT WAVEGUIDE MOUTH
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mouth.

129

1.0

nR

o.6
0 -Ur.

cr0 0

0.2

C0 300

_ __ _ _

r l c-

I _ __ __

_

_

_

I I
kr



C

-20C

O.4

0.1

R

0.<

0.1

0

Pinc(kW)
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desorption (ESI)) of contaminants on the waveguide walls. Contributing effects are electron

multiplication via secondary electron emission (SEE) and ionization of the residual neutral gas in

the waveguides. )uring rf injection into the tokamak plasma, the presence of electron cyclotron

resonance in the guides enhances the plasma formation because electrons gain energy above their

maximum rf oscillatory energy, increasing the magnitude of both SEE and ESI).

The source of electrons to initiate the breakdown is the waveguide wall. If the secondary

electron emission (6) coefficient of tile wall is greater than one, as is usually the case for mrs;

metals without extensive surface cleaning, electron multiplication will occur as electrons accelerated

in the electric field strike the wall with a maximum energy

2 E 2

e Erf
-, = 2mw2

' (5.4)

or about 1.4 eV/kW-guide tfor the Versator four-waeguide sidc-launching grill. This does not

include the effect of the magnetic field. which will be discussed shortly. As the secondary electron

emission coefficient is an increasing function of electron impact energy up to 400-500 eV for all

impact angles relative to the waveguide surface.' ° SEE increases with incident power for the

entire range of rf power available in this experiment. i'he electric field threshold at which electron

loading effects begin may be determined by the multipactor phenomenon.' 21 The multipactor

process requires the existence a secondary electron emission coefficient greater than one and

resonant electron trajectories: that is, secondary electrons that are emitted with the proper phase

relationship to the rf field such that they strike the opposite wall with their maximum oscillatory

velocity. Multipacting modes are characterized by the number of half-cycles completed by an

electron in the rf field before impact. The fundamental 1/2 cycle mode has been experimentally

identified in early multipactor work,' 2 2 while higher order modes are not clearly delineated as

such. The breakdown field in these experiments was dependent on wall cleanliness, and higher

mode structure was not always identifiable. For the Versator four-waveguide grill, the onset of

resonant multipactor is predicted to occur at an electric field of 300 V/cm, or about 2 kW/guide 21 ,

and should represent a high order (> 11/2) mode. Indeed, reflected phase shifts are observed at

or near this power level when a new grill is conditioned in vacuum; however, the phase shifts

disappear with continued processing, and the rf power may be raised. The phase shift does not

exhibit apparent mode structure as a function of power. In general, above the threshold for plasma

formation, the phase shift increases monotonically with power. For our frequency and grill width,

however, the theoretical multipactor modes overlap, and one would not expect mode structure in

the data even if high order resonant multipactor is present. Nonetheless, since the rf power level

may be safely raised above the low threshold for breakdown predicted by multipactor theory, either

the multipacting limit is raised by the reduction of the SEE coefficient because of rf conditioning

or multipacting alone is not responsible for the observed plasma formation. Though the former is

likely to be true, as will be argued shortly, the latter is also plausible since the measured electron
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densities in the wavegLlides arc higher than what one would expect if the density is limited by

space-charge effects, i.e., if the clectron plasma created by electron multiplication is not neutralized

by the presence of ions. If an electrostatic field in the guide is calculated under the assumption

of constant electron density.) 8 then resonant multipactor is inhibited for an electron density of

E2f
n, rm 2 X (5.5)

7rmw2b2'

or n - 1 X 106 cm.-3 X Pf(kW/guidc).

This estimate is derived by calculating the energy a secondary electron requires to reach

thie center of the waveguid assuming its maximum energy is its oscillatory energy in the rf

electric field. For typical powers of 10-20 kW per guide. the spacc-charge limited density is much

lower than thdie measured density. either during vacuum conditioning or injection into the tokamak

plasma. Multipactor effects. or more generally electron multiplication via the secondary electron

emission process. are most likely responsible for initiating this discharge. but the magnitude of

the observed plasma formation is higher than can be explained by resonant multipactor alone.

Ionization of neutral gas, either on the guide wall or in the guides themselves, must be invoked

to explain the measured plasma densities in dithe waveguides. We recall that the breakdown electric

field is lowered by increasing the neutral gas fill pressure. suggesting thdiat ionization of neutrals

is the dominant source of the plasma. At the highest fill pressure, tie electron-neutral collision

length (> 100 cm.) is much larger than the guide width, making direct ionization of the gas

unlikely. However, earlier studies have produced evidence of similar rf discharges. or plasmnoids,

in which the electron-neutral collision length is much larger than the dimension of the cavity.' 2 1

Plasmoids in cavities have been shown to attenuate rf power levels by 10-20 dB,' 21 and may be

responsible for the similar phcalomcna observed in our waveguides.

With regard to the noted effectiveness of baking the grill prior to its installation on the

tokamak, it is well known that vacuum-baking of metals generally reduces the source of the

gas which is believed to give rise to plasma formation. As a result, the ESD efficiency of such

heat-treated metals is decreased. In particular, the drop in ESD efficiency is strongly dependent

on the bakeout temperature: the ESD coefficient for hydrogen is reduced more than an order

of magnitude by a 4000 C bakeout compared to a 1500 C bake or no heat treatment at all.123

Qualitatively, our conditioning results following vacuum-baking are in agreement with this data.

We turn now to a discussion of the source of this gas and the beneficial effect of rf

conditioning. According to surface physics studies, the improvement in high power operation with

rf processing is believed to result from polymerization of a hydrocarbon layer on the metallic

surface of the waveguides. 2 4-12 6 he hydrocarbons may come from pump oil residue and gases

desorbed from the tokamak wall by discharge cleaning. We note that the partial pressures of water

vapor and methane are observed to increase to several times their initial value during discharge

cleaning. Electron impact during rf conditioning is known to desorb hydrogen gas and hydrogen
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ions from this hydrocarbon layer to leave a several monolaycr thick carbon polymer residue with

unsaturated bonds. At impact energies near 100 cV, typical for rf conditioning, electrons are

inefficient in desorbing contaminants other than hydrogen; 12 7 thus rf processing is not believed to

cleanse the waveguide surface of all contaminants (metallic oxides, water vapor, and hydrocarbons)

so as to leave a relatively pure metal surface. Rather, the carbon polymer surface produced by

rf conditioning provides a high cross-section for absorption of the kinetic energy of secondary

electrons emitted from dthe metal and contaminant gases underneath the layer. Up to 50% of the

secondary electrons from the metal are possibly absorbed in the polymer.' 2 6 At temperatures of

300° K. however, the polymer is known to be unstable. xposure to air or other contaminants

can destroy the polymer structure of the layer, necessitating reconditioning.

Our observations are also consistent with this pictIre. I)uring rf conditioning of the Versator

grill, hydrogen gas is evolved.'' as measured by residual gas analysis. Mlorcover. we also note that

extensive conditioning must be repeated following vacuum breaks. In addition, the "clean" grill

must be processed for approximately one hour prior to high power experimental runs indicating

that some of the effect of earlier conditioning is lost after many hours. We remark that whatever

additional procedures are used, rf conditioning remains a necccsssary prerequisite to reliable high

power antenna operation, suggesting that polymerization of the waveguide surface is the most

important requirement for reduction of rf breakdown in the waveguides.

The lower breakdown threshold observed when injecting rf into the tokamak plasma is largely

attributed to the cffcct of the tokamak magnetic field in the waveguide. In particular, the cyclotron

resonance region is present in the evacuated portion of the waveguide, located approximately 45

cm. from the outboard wall of the tokamak. The magnetic field, calculated from the currents in

the magnets and from the plasma current, is oriented mostly parallel to the rf electric field in the

40 cm. length of guide closest to the plasma and is mostly perpendicular (in the vertical direction)

to the rf field at larger major radii within the antenna. At cyclotron resonance, the angle between

the magnetic and electric fields is approximately 10° .

Cyclotron resonance may be expected to have a detrimental effect on rf power transmission.

At or near the resonance, electrons will gain energy at the expense of the rf electric field. The

power absorbed per unit volume is

2 2
V Wpe E 2 W

1 2 2 2

2 w (W - 2 + 2 (, + + +2 (5.6)

where Ez and El are the components of the rf electric field parallel and perpendicular to the

local magnetic field, and v is the electron-wall collision frequency (this being the largest collision

frequency). The average energy with which an electron strikes the wall is
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e 2E 2 cos2 a
2mw 2 (1 + V2/W 2 )

sin ( WC/W)2 + L2 /W2 (1 + w,/IW)2 + 2/W2)] (5.7)

where a is the angle between the electric and magnetic fields. In Fig. 5.17 is plotted the calculated

impact energy versus w,,/w for our grill parameters assuming an incident power of 10 kW/guide.

The impact energies for two angles (100 and 90°) are plotted for a plausible electron-wall collision

firequency of 5 x 107 sec.- which represents a 4 eV drift energy (typical energy for SE) for an

electron traversing the waveguide width. The calculated impact energy is increased by orders of

magnitude due to cyclotron resonance, though of course this value is strongly dependent on the

assumed collision frequency. lo confirmn that larger electron impact energies shllold give rise to

increases in the amount of SEE and SI), the processes believed responsible for plasma formation,

we reproduce from the literature the measured SFI- coefficient and SI) efficiency as a function

of electron impact energy. Shown in Fig. 5.18, both quantities are increasing functions of energy

over the range in which we are interested for this experiment, indicating that rf breakdown should

indeed be more pronounced for the higher electron impact energies near cyclotron resonance.

We can estimate the power absorbed in the waveguide by evaluating Eq. (5.6) with the

above collision frequency and assuming the plasma density in the waveguides to be a constant

and equal to n, = 1 X 109 cm, - 3 as given by the phase shift measurement described earlier. For

Pf. = 57 kW, we have E, = 540 V/cm, and we calculate an absorbed power of approximately 2

kW, where we have taken the resonance layer to extend 4 cm. in the radial, or z-direction. This

estimate is an order of magnitude lower than the power needed to explain the observed drop in

the transmissivity of the grill. The discrepancy may result from the assumed value of the collision

frequency , which has been chosen somewhat arbitrarily. We have also assumed the plasma

density to be uniform inside the waveguides: in fact, it is likely to be highest near the resonant

layer, where the local power absorption rate is a maximum. In short, it appears plausible that

a significant fraction of the incident power could be absorbed in the waveguide plasma, though

because of the uncertainties involved in the the estimate, this claim cannot be conclusively verified.

Off-resonance magnetic fields may also affect the high power operation of the waveguides.

As shown earlier, a small (we < w) magnetic field oriented parallel to the electric field reduces

the threshold electric field for breakdown in vacuum. In this case, the magnetic field serves to

confine the electron along its parallel trajectory, enhancing the usual resonant multipactor effect

by reducing the electron loss rate (the rate at which electrons drift up or down out of the region

of maximum electric field). Perpendicular magnetic fields could also lead to enhanced plasma

formation. The component of the field perpendicular to the rf electric field will cause the electrons

to strike the wall at an angle off the normal, which also significantly increases the secondary

electron yield (see Fig. 5.18). On the other hand, perpendicular magnetic fields may serve to

reduce plasma formation by altering the electron trajectories to make the requirements for resonant
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multipactor more severe,'2 9 and by preventing charged particle drift across the waveguide. 'he

size of the annrmor orbit in the direction parallel to the electric field is

,P' = eEL ( (5.8)P1 m(w2 - W2 ) W,,

Above a field of 15 gauss for an rf power of 10 kW/guide, the average electron orbit will not

span the waveguide unless the field is near cyclotron resonance. For magnetic fields higher than

the above threshold, the plasma will be restricted to the region near the waveguide walls. In the

Versator grill, the cyclotron resonant layer is in a region in which ithe electric and magnetic fields

are nearly parallel, hence this postulated confinement effect is not applicable at that location where

breakdown should be most severe.

We conclude that electron multiplication by SEE provides a source of electrons which

generates free hydrogen gas and ions from the surface hydrocarbon layer by ESD. This layer

becomes polymerized by this desorption process and is absorbent to secondary electrons escaping

from the metal, lowering the overall secondary electron emission coefficient below one and halting

plasma formation. Breakdown occurs at lower incident power levels when rf is launched into

plasma because cyclotron resonance has the effect of increasing the energy with which an electron

strikes the wall. Also, electron trajectories in the magnetic field can intersect the wall at a grazing

angle for which the secondary emission coefficient is higher than for normnnal incidence.

5.5. Improvements in Antenna Performance

Attempts to reduce rf breakdown in the guides during the more severe electron loading

conditions of tokamak operation proceeded along two lines: reducing the secondary electron

emission coefficient of the wall surface to below unity; and eliminating cyclotron resonance within

the evacuated portion of the waveguide to reduce electron impact energies.

Reduction of the secondary electron emission coefficient was first tried by sublimating

titanium on the waveguide mouth prior to tokamak shots. Pure titanium metal is known to have

a secondary electron emission coefficient of less than one, and its application was hoped to be

beneficial in reducing electron multiplication. However, the power threshold for plasma formation

was only increased by 30% at most with the use of this method. Because the improvement was

slight (possibly because titanium could not be deposited on the interior of the guides in situ)

and the method was cumbersome, the procedure was discontinued. A solid titanium nosepiece

was constructed for use on the four-waveguide top-launching antenna. Successful conditioning in

vacuum was never achieved with this grill, and operation into plasma was also poor. We believe

the titanium, well known as an efficient pump for many gases, was saturated with gas. This had the

effect of raising the coefficient above one,' 3 0 eliminating its potential benefits for our application.

Recently, the inner surfaces of the top-launching antenna (all stainless steel) were coated

with carbon, again with the object of reducing the SEE coefficient. The method used was identical
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to the one for the PIT' grill,' 3 ' with the exception that the waveguide walls of the Versator

antenna were not mechanically polished or electropolishcd prior to carbon coating. The procedure

in our case consisted of the following: the waveguides were degreased using standard solvents,

then filled with a 50/50 mixture of Glyptal and xylene. The xylene serves as a thinner for the

Glyptal, a carbon-rich, electrically insulating varnish. The mixture was drained out, leaving a

smooth coat of the varnish which was allowed to air-dry overnight. The coated antenna pieces

were then vacuum-baked for one hour at 4000 C to pyrolize the coating. Measurements at PPPL

of similar heat-treated coatings on stainless steel show the composition to be 96% carbon and

its thickness to be approximately 300 A. The measured values of the maximum SEE coefficient

following argon sputter cleaning are 6
maz = .88 at an impact energy of 250 eV for normal

incidence and 6,m, = 1.4 for 300 eV incident electrons for an impact angle of 600 from the

normal 2 0 . The corresponding values for stainless steel are, from the same reference. 6,,, = 1.2

at 375 eV for normal incidence and 6,,,n = 1.45 at 460 eV for a 60° incidence angle. For most of

the impact angles tested. the carbon surface exhibits lower SEE coefficients than the bare stainless

steel, although the extensive sputter cleaning of the' samples just prior to the measurements is not

representative of the preparation the waveguide surfaces recieve.

Following the carbon treatment, the Versator antenna was rf conditioned after emplacement

on the tokamak. With approximately 20 hours of processing, incident rf power levels of up to

120 kW in vacuum were attained with no reflected phase shifts other than sudden, small (< 150)

shifts occuring at intermediate power for which we have no conclusive explanation as yet. After

firing the rf into many tokamak discharges, during which breakdown was often observed, the

incident rf power level could be raised to 120 kW, representing a peak electric field strength of

2.8 kV/cm. and an average power density of 1.4 kW/cm.2 Due to the unusual location of the

antenna atop the plasma column, the calculated ambient magnetic field is above the cyclotron

resonant value almost everywhere in the evacuated portion of the waveguides. Curiously, the

antenna operation was adversely affected by discharge cleaning of the tokamak. Following as little

as 15 minutes of discharge cleaning, the threshold for rf breakdown is lowered to 5-8 kW. Up

to 20 hours of reconditioning are required to regain the previously-obtained performance. Neither

filling the chamber with hydrogen gas nor titanium gettering the tokamak was observed to have

such a drastic effect on the grill operation. As with the case of the stainless steel side-launching

antenna, recovery of high power ?erformance following a vacuum break requires substantial rf

processing; however, the dramatic negative effect of discharge cleaning appears to be peculiar

to the carbonized grill. Nonetheless, when sufficiently conditioned, the carbon coating permits rf

injection at the maximum power level presently available to this experiment.

The second general method, that of eliminating cyclotron resonance within the waveguides,

was tested on the side-launching grill with the use of an auxiliary magnetic field generated by

copper coils wrapped around the antenna structure so as to produce a predominantly vertical field

in the region of the guides (see Fig. 5.19). This particular orientation was chosen so as to add
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to the ambient verical field due to the OH and VF magnets, and to provide possible magnetic

insulation between the waveguide.s walls as discussed earlier. This auxiliary field coil was placed

in series with the TF magnets, and the current varied either by changing the toroidal field current

or by placing a water-cooled stainless steel shunt in parallel with the waveguide magnet.

The coupling results as a function of incident power are shown in Figs. 5.20 and 5.21 for

several different values of the coil current. For a current of 14.6 kA, the calculated magnetic field

(shown in Fig. 5.22) is 450 Gauss on the axis of the axis of the waveguide grill and is at least 25%

above tile cyclotron resonace value everywhere in the evacuated volume of the waveguide. The

field is primarily toroidal (parallel to tile rf electric field) near the waveguide mouth regardless

of whether or not the auxiliary field is applied, and primarily vertical (perpendicular to the rf

field) at larger major radii. For this current setting., the reflected phase exhibits no shift during

the rf pulse and the reflectivity remains constant from 30 to 100 kW incident power. For lower

waveguide coil currents, dithe magnetic field is less than or roughly equal to the cyclotron resonant

value somewhere in the waveguide volume. In these cases, the reflected phase exhibits shifts above

an incident power level of 30 kW, although the maximum phase shift is only 500 at an incident

power of 75 kW. The phase shift is independent of magnetic field strength over the 35% variation

of the magnetic field for these lower coil current experiments. The overall antenna reflectivity

drops by 25% above the 30 kW threshold. In these four-waveguide tests, the maximum output of

the rf source limits the incident power density to 0.42 kW/cm.2 Consequently the rf system was

modified to feed all the available rf power to one waveguide to determine at what power level,

if any, the magnetic suppression of plasma formation fails. The results of the single-waveguide

experiment are depicted in Fig. 5.23. For no current in the coil, breakdown occured at an incident

power level of 10 kW/guide. The higher power threshold for the onset of phase shifts in the

single-waveguide experiments is explained by the higher reflection coefficient in that experiment.

For a coil current of 25 kA (600 Gauss on the waveguide axis) up to 56 kW incident power

(0.94 kW/cm. 2 ) was injected with no significant change in the reflected phase or power. Above

this level, arcing in the coaxial window section took place. As this problem is unrelated to plasma

formation (it has since been corrected, as mentioned earlier), magnetic suppression of breakdown

is likely to prove effective above a power density of 1 kW/cm. 2

5.6. Discussion of Antenna Improvements

The presence of the auxiliary magnetic field clearly improves the power handling capability of

the antenna. This improvement is accomplished by the reduction of cyclotron-enhanced ESD and

SEE in the waveguides. We have shown in Eq. (5.7) that electron impact energies are increased by

cyclotron effects. Without the auxiliary field, the electrons can gain approximately 2 keV before

striking the wall, while with the breakdown suppression field applied such that c,,/w =1.25-1.5

and E,fIB, the electrons have an energy of only 30-70 eV for an incident power level of 10

kW/guide. Nonetheless, this latter range of impact energies is 2-5 times higher than that. possible
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Figure 5.21. Grill reflectivity versus incident power for several values of the coil current
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during rf conditioning at the same incident power, explaining why the grill must be conditioned

with a number of rf pulses into the tokamak plasma even with the auxiliary field in use.

These typical impact energies are dependent on the assumed collision frequency, especially

for w,,/w 1. For ErfIB, one might expect the effective collision frequency to be much higher

than the one postulated earlier since electrons emitted from the wall cannot drift away from it.

The collision frequency would then be on the order of the rf frequency. The impact energy for

this case is also plotted in Fig. 5.17, showing that the electron energy, even at cyclotron resonance,

can be an order of magnitude lower than for the case of E nearly parallel to B in which the power

absorbed by the electron is less, but its estimated collision time is longer.

Confinement of energetic electrons is also invoked to explain the beneficial effect of the

auxiliary field. Since in the absence of the auxiliary magnetic field, the tokamak residual field B

is nearly parallel to E near cyclotron resonance, electrons are free to drift across the waveguide.

With the auxiliary field applied, electrons are restricted to the volume near the wall (pc < 0.2 cm.

for &E = 500 eV) and drift in the vertical direction. Since the electric field decreases as cos (ry/h)

away from the guide axis, the average electron impact energy is thus reduced. Moreover, as the

effective electron-wall collision frequency is conceivably higher for electrons near the wall, electron

impact energies for perpendicular magnetic fields are below that for no applied auxiliary field.

The confinement of electrons explains the reduction of rf breakdown for supplemental fields of

intermediate strength for which cyclotron resonance still exists in the waveguides. Plasma formation

still takes place, but not to the extent as in the no-field case. We note, however, that confinement

is probably not the major reason for the elimination of breakdown. In the section of waveguide

nearest to the antenna, the magnetic field remains parallel to the electric field even with the

application of the auxiliary field; therefore electrons in this region are free to drift across the

waveguide. That rf breakdown does not occur indicates that these electrons are not energetic

enough to cause electron multiplication.

The effect of surface coatings on the rf breakdown threshold is less well understood, though

the lowering of the SEE coefficient of the waveguide surface is the most likely explanation. The

clean carbon-coated surface indeed exhibits a lower SEE coefficient than does stainless steel, based

on the measurements cited earlier. This is distinct from the properties of the carbon polymer

formed by rf conditioning which acts as an absorber of secondary electrons. Graphite surfaces

are also known to have low sorption coefficients for CO and H2;'3 2 therefore ESD may be

reduced in the carbonized waveguides. It is not known, however, if the pyrolized varnish forms

a graphite surface. Nor is it known if the carbon polymerization is as effective or stable on the

carbon surface as it is on stainless steel. The effect of contamination by discharge cleaning is much

more severe with the carbon-coated waveguides than for stainless steel, suggesting that the carbon

polymerization is not as stable for the former as for the latter. Nonetheless, the carbon coating is

predicted to have a lower SEE coefficient than stainless steel, which is probably responsible for
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the improved performance.
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6. Experimental Results: RF Heating

In this chapter, the major xperimnental results of this study are presented and discussed.

First, the measurements of ion heating obtained with the use of the four-waveguidc side-launching

grill are described. The results of electron heating experiments are also presented. Next, similar

though less extensive measurements are presented for the ion heating experiments in which the

four-waveguide top-launching antenna was employed. Finally, an empirical power balance of the

plasma is performed fr the purpose of obtaining an estimate of the overall rf heating efficiency.

The relationship of ile experimental results to one another, and to the qualitative theoretical

predictions of chapter 2 are discussed, and the possible interpretations of the mcasurements in

this study arc stated.

6.1. I,oicr-Hybrid H;eating isith the Side-l,aunching Antenna

The heating experiments described in this section were performed with the use of the four

waveguide grill located on the midplane of the tokamak. Described in detail in Chapters 3 and

4, the grill is calculated to launch an nil spectrum peaked at nl = 5.5 with a FWHM Anll Z

3 for A = 1800. With some run-to-run variation, effects of rf injection on the ion distribution

are noted for the density range , = 1.1- 3.2 x 10'3 cm.-3 and for a magnetic field of 12-15

kG. The upper density value is the operational density limit of Versator, and is not necessarily a

physical bound for the interaction of lower-hybrid waves with the ion population.

6.1.1. Perpendicular Charge-Exchange Measurements

In the above density band, a high energy ion tail is formed during the rf pulse, as measured by

near-perpendicular charge-exchange analysis. As mentioned in Chapter 1, this tail is a ubiquitous

feature of all lower-hybrid ion heating experiments. A typical energy spectrum is shown in Fig.

6.1. For this case, the transmitted rf power was 75 kW and the relative phase between adjacent

waveguides was AO = 1800. The plasma density was n, = 2.2 x 10'3 cm.-3

The experimental ion distribution is seen to be characterized by three parameters: the

Maxwellian temperature of the bulk distribution, the effective Maxwellian temperature of the

tail, and the intercept energy of the bulk and tail distributions. For the case illustrated in Fig.

6.1, the tail temperature is 1.4 keV and the intercept energy is approximately 1.2 keV. The bulk

temperature is 105 eV without rf, and is indicated to be 25 eV higher during rf injection. As

discussed later, this small decrease in the slope of the low energy spectrum is also consistent with

the tail extending to lower energies than 1.2 keV, and may not represent a true temperature rise.

The measured tail temperature varies linearly with the applied rf power, as shown in Fig.

6.2. This power scan was performed in conjunction with rf breakdown tests (described in Chapter

5); the curve of reflectivity versus power shows that plasma formation in the waveguides occurs at

a threshold power of 40- 60 kW. The onset of plasma formation is believed to be responsible for
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Figure 6.1. Perpendicular charge-exchange neutral energy spectrum for Pf = 75 kW,
AO = 1800, nir = 2.2 X 10' cm,- 3 B = 14 kG.

149



the apparent saturation of the tail temperature, rather than a process occurring within the plasma

itself. If breakdown is neglected, the tail temperature is measured to be a linear function of rf

power, with an apparent intercept energy of 120-135 eV if we extrapolate to Prf =0. The central

ion temperature in this experiment was approximately 100 eV.

The amplitude of the parametric sideband decay wave is also shown in Fig. 6.2. Described

more fully in Section 6.1.5, the parametric decay spectrum is always observed in conjunction with

an enhancement of the fast neutral flux. Plotted in Fig. 6.2 is the amplitude of the first lower

sideband of the incident lower-hybrid pump wave which is separated from the pump by 17 MHz,

corresponding to the ion cyclotron frequency near the outer major radius. The onset of parametric

decay appears to exhibit a threshold near Prf .~ 14 kW; the decay wave strength also increases

with rf power.

The lifetime of the perpendicular tail is found to be short compared to an energy confinement

time. In all experiments in which the high-energy charge-exchange counts were digitally tallied or

displayed directly on a fast oscilloscope, the maximum fast ion lifetime was estimated to be 100-150

ysec following the end of the rf pulse.'This observation is in agreement with measurements from

the other lower-hybrid experiments discussed in Chapter 1.

In Fig. 6.3 is plotted the variation in ion tail temperature versus line-averaged density for

A = 1800 and constant toroidal field. Despite some scatter in the data, the results indicate a

generally decreasing trend of tail temperature with density. Because the neutral flux measurement

is a chord-averaged one, it is possible that the value of the tail temperature obtained from these

measurements may not represent a local tail temperature, i.e. one that can be compared to the

theoretical prediction of Karney (see Eq. 2.46). Nonetheless, it is clear from the data that the

count-rate of higher energy ions in the tail is enhanced relative to the lower ones at the lower

plasma densities. This result is consistent with the fact that the phase velocity of the wave, and

hence the resonant energy of the ion, is typically higher in lower density plasmas. This is explicitly

illustrated in Fig. 2.8, in which the predicted resonant ion energy at the damping location is a

decreasing function of density for a given nl. Furthermore, we note from Fig. 2.10 that the tail

temperature is also expected to decrease with increasing plasma density. Thus the behavior of the

measured tail temperature with variation in density is in general agreement with the theoretical

predictions.

The increase in the fast neutral flux during injection of rf power appears to be relatively

insensitive to the waveguide phasing. In Fig. 6.4, the count-rate of 900 eV ions during rf injection,

again normalized to transmitted power, is plotted versus Ad. The toroidal field is 12.5 kG. The

relative ion count rate for AO = 00 is as high or perhaps greater than that for Ai = 900 and

1800. Within experimental error, the normalized tail temperatures are identical for AO = 00,

900, and 1800. This phase independence suggests that parametric decay at the surface may be

responsible for the ion tail. Alternatively, the launched nil spectrum may be sufficiently scrambled
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by toroidal effects and/or drift wave scattering such that the final spectrum is unrelated to the

initial one. The damping behavior of the lower-hybrid wave in ile toroidal model has been shown

previously in Fig. 2.18; for nl K 6, the damping location is not well-defined and does not exhibit

a clear variation with the launched nil, i.e. AO.

The increase in the fast ion count-rate during rf heating exhibits a threshold with the strength

of the toroidal magnetic field, as depicted in Fig. 6.5. The threshold field of 10.9 kG for the given

density of n = 1.8 x 10' cm.-3 (w/WLr(O) - 1.6, where WLH(O) is the central lower-hybrid

frequency) corresponds to a minimum nil of 10 for a mode conversion layer to exist in the plasma.

Most of the power launched by the side-launching grill is calculated to lie in the range InlJ < 8

(see Fig. 3.3); hence dithe threshold may be explicable in terms of the available nil spectrum of the

grill. However, tile predicted variation of nll induced by toroidal effects make this interpretation

less clear. Furthermore, if the ion tail results from the damping of parametric decay waves near

the plasma edge, the condition of having a mode conversion layer in the plasma is irrelevant.

However, we note that parametric decay of the pump wave is observed both above and below the

threshold field for fast ion production therefore its relationship to the magnetic field threshold

for the onset of the ion tail in this case is somewhat uncertain.

In principle, changes in the central bulk temperature of the ion distribution during rf heating

can be inferred from that portion of the charge-exchange spectrum below the bulk/tail intercept

energy. However, this approach is subject to error for the following reason. Because the charge

exchange analyzer views a chord of the plasma, the neutral flux from the high energy tail, which

may be located anywhere along the minor radius, adds to the flux from the thermal ion distribution

in the core to give a measured spectrum like that illustrated in Fig. 6.6. If the tail is generated

off-axis and joins to an ion distribution of lower temperature, the true bulk/tail intercept energy

is lower than the apparent value from Fig. 6.6. For example, if the wave damping takes place

about 10 cm. off-axis such that the absorption occurs where the ion temperature is only 50 eV,

then by the criterion of Eq. (2.37) the bulk/tail intercept energy should be approximately 450 eV

or greater. Consequently, the measured charge-exchange spectrum above the energy of 450 eV

would be sum of the thermal contribution from the center and the fast tail. The average slope of

the spectrum between 450 eV and the apparent junction of the bulk and tail distributions would

give a temperature larger than the true central ion temperature.

The problem may be resolved in two ways, neither one being totally satisfactory. In the first,

the tail is assumed to extend to lower energies than the apparent intercept energy, and is subtracted

from the total chargc-exchange flux. Alternatively, the bulk temperature can be measured over

an energy span well below the apparent intercept energy. The weakness in the first technique is

that one does not know the true low energy boundary of the tail. The second method is also

subject to error, since the energy range over which the measurement is made is small and the

apparent temperature measurement may be confused by emission of neutrals from colder regions
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of the plasma. For the charge-exchange spectrum illustrated in Fig. 6.6 , the transmitted power

is 50 kW, the density is i, = 2.6 x 10'3 cm, - 3 and AO = 90 °. The central temperature is

approximately 150 eV prior to rf injection. Depending on the energy range selected for the analysis,

the measured-bulk temperature can range from 140 to 185 eV during rf injection. In short, it

is difficult to obtain a reliable measurement of the bulk ion temperature from charge-cxchange

analysis with the presence of the perpendicular tail in the spectrum.

With an assumption made regarding the location of the detected ion tail, the maximum

collisional absorption rate of the tail on the bulk can be estimated from Eq. (2.57). First, let us

assume that for the case illustrated in Fig. 6.6, the observed ion tail is located near the center of

the plasma. With the central temperature of 150 eV and a bulk/tail intercept energy of 1.2 keV,

the damping criterion Eq. (2.37) is approximately satisfied. Taking Tt = 700 eV and n, = 3.9 X

10'3 cm. - 3 along with the above values for the central ion temperature and intercept energy, we

find that the central collisional heating rate is only about 9 mW/cm. 3 For comparison, the central

heating rate of the ions due to collisions with electrons is given by

Pe = neovci(Teo - Tio) (6.1)

where v,, is the collisional frequency for thermal equilibration between electrons and ions,99

c,' = 3.6 X 10- 37-ITnLA-- - - -I _ 1- (6.2)

where all symbols are in CGS units. For the central parameters To = 400 eV, To = 150 eV, n,,

= 4 X 1013 cm,- 3 and assumed impurity values ni/n, = 0.04, ZI = 5, and Ai = 16 (oxygen),

the local value of P,, is 3.4 x 102 mW/cm, 3 or almost 40 times the maximum heating rate due to

the fast ions, assuming they exist in the center. Thus the bulk heating effect of this tail should be

small. The collisional slowing-down time of this tail evaluated from Eq. (2.58) is 2.0 msec, which

is about an order of magnitude larger than the observed loss time of the tail. For comparison, we

also calculate the charge-exchange time and the perpendicular scattering time of fast ions at the

center. The average time for an ion to undergo charge-exchange,

,cz - (tnocz2vi)rl 7(6.3)

can only be as low as 0.1 to 1 msec for a 1.5 keV ion if no is the range 101-101 cm,- 3 which

is unlikely to be true at the plasma center, but may be a plausible value for the edge region. The

perpendicular scattering time of fast ions is calculated from the collision frequency for transverse

diffusion:

_1 _ 1.2 X 10-3[(keV)]3/ 2

n,(10 13 cMn.-3)Zf, (6.4)

which is about 270 sec for 1.5 keV ions. Consequently, isotropization of the tail should occur

at a greater rate than collisional absorption if the tail is indeed confined, and the bulk heating
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rate may be somewhat larger than the value calculated above. if significant isotropization occurs,

however, a tail with off-perpendicular orientations should also be present. Experiments which have

been performed in this study to detect such a tail are described later. Without invoking such a

mechanism, we reiterate that the amount of power deposited by the tail in the central bulk ion

distribution should have an insignificant effect on the ion temperature.

The rate of absorption of rf energy, or the power flow to the tail, may be calculated from

Eqs. (2.54) and (2.55) where we again assume the tail to be present in the center of the discharge,

and take the confinement time of the tail to be 100-200 pssec, based on the observed decay rate.

We find for the above parameters that

Pt > 190-380 mW/cm, 3 (6.5)

or if the power deposition is uniform, then the rf power absorbed inside a radius of 5 cm. is 4-8

kW, or 8-16% of the injected power.

For the reasons described above, the power absorption cannot be so readily calculated from

the charge-exchange spectrum if the wave damping and ion tail formation takes place off the axis.

A tail temperature and intercept energy at low ion energies would have to be assumed. If we

postulate the existence of a fast ion tail with a density of nt = 10" cm. - 3 (nt - 0.0025nio)

and temperature of Tt =1 keV to exist in the outer half of the plasma (6 cm.< r/a <13 cm.),

then the absorbed power for the same empirical confinement times is 25-50 kW. Therefore it is

possible that a large fraction of the total transmitted power could be deposited in the fast ion tail

if it is present over the entire cross-section of the plasma. However, based on the above estimate

of the maximum power absorption in the plasma center, less than 16% of the power is absorbed

in the inner core (r/a <5 cm.).

6.1.2. VUV Doppler Broadening Measurements

For the reasons discussed in Chapter 3, VUV Doppler broadening provides a more reliable

measure of ATi for the bulk ion distribution during rf injection than does charge-exchange analysis.

On Versator, we have observed increases in the bulk ion temperature over a range of densities

which is narrow compared to that for ion tail formation. The evolution of the ion temperature is

depicted in Fig. 6.7 for a net injected power of 50 kW at a line averaged density of ni = 2.6

X 1013 cm.- 3 Broadening of the 0 VII line indicates a temperature increase of 50 eV during rf

injection, and the CV line, located approximately 7 cm. off-axis, also shows a rise in temperature.

The charge-exchange spectra for this series of shots has been shown previously in Fig. 6.6. There

is no decrease in the loop voltage. The density range over which bulk ion heating is measured

is shown in Fig. 6.8, and extends from 2.4 to 2.8 x 103 cm. - 3 The value of w/wL L(0) in this

density range is about 1.2 with the effect of impurities is included (we take Zeff = 2).

The variation in the normalized temperature increase for the three waveguide phasings AO

= 00, 900, and 1800 is shown in Fig. 6.9. The apparent heating efficiency for AX4 = 00 is lower
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than for the other two phases, suggesting that the nil spectrum may be important in determining

the heating effect. However, if the observed fast ion tail is responsible for the bulk heating, this

finding is in apparent conflict with the phase independence of the fast ion tail strength illustrated

in Fig. 6.5 The phase scan depicted here represents data collected in only one run, however, and

later we have not been able to reproduce these results.

The overall brightness of the O VII line increases during the rf pulse as well as the line

width. The VUV emission near the O VII central wavelength is plotted in Fig. 6.10 versus (AX)2,

where AX is the number of Angstroms away from the peak of the line at X,. The ratio of the

line intensity with rf to that without rf is denoted to be a, where

12(Xo) (T2 /T )1/2 (6.6)
a = i 1(X,) (6.6)

where we have integrated over the line width. For the case illustrated in Fig. 6.10, a = 1.4. In

general, the line intensity of an impurity species I is proportional to tile electron and the impurity

species density and a factor g which depends on the electron temperature:

II J| nenl g(T) dr (6.7)

The integral across the plasma diameter reflects the fact that the measurement is a chordal

line-average. Thus, the increase in impurity emission suggests that one or all of the following

occurred during rf injection: the central electron temperature or density increased, the electron

temperature profile broadened, or the concentration of oxygen impurity atoms increased. It is

not likely that the electron or impurity density is the cause of the increased emission, for the

line-averaged electron density drops during rf injection, as will be discussed in the next section.

The increase in electron temperature required to change the emission by the measured value of

40% can be estimated from the excitation rate of the transition responsible for the 1623 A emission

of O VII. If the ion density and radial distribution is assumed to be constant or both cases, the

above criterion is satisfied if the central electron temperature is increased from 400 to 480 eV and

the profile shape remains the same, or if the central temperature is raised to 440 eV and the new

temperature profile is flat inside a 5 cm. radius. Unless Zf f increases, such a temperature increase

may be unlikely in light of the fact that no loop voltage change is observed during rf injection.

This point will be discussed further when the power balance calculations are presented at the end

of this chapter.

The most puzzling result regarding the VUV Doppler broadening measurements of ion

heating is that the increases in the temperature of the bulk ion distribution during rf injection

are not consistently observed for the same plasma conditions. In fact, occasions on which ion

heating is detected are fewer than those for which it is not when the plasma parameters are in

the range over which the heating results shown in Fig. 6.8 were obtained. It could be argued

that due to the low transmitted power (PI < 50 kW) of the experiments described thus far, the
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temperature increase is so small (50 eV maximum) that accurate assessments of AT, are difficult

to make. However, tie observed heating extends beyond the error bars of the measurement itself.

Furthermore, as a result of antenna improvements (see Chapter 5), the available net rf power

was doubled to approximately 100 kW during the course of these studies and the higher input

power should have provided a larger, more definitive temperature rise to compare with the case

withouth rf injection. However, even in these high power experiments, no increase in the bulk ion

temperature above AT, = 30 eV was ever recorded. This irreproducibility of the heating results

will be further discussed in Section 6.1.6.

6.1.3. Density Variations During Rf Hleating

In most cases, the line-averaged density was observed to change during rf injection. The

sign of the density shifts appears to be related to the plasma cleanliness. In lower-hybrid heating

experiments performed early in this study, tile line-averaged density was observed to increase by

up to 20% during rf injection; similar increases in the ion saturation current to a probe at the

plasma edge were also noted. Titanium gettering was not employed in these runs. For discharges

in which a portion of the wall was gettered prior to a set of shots, the density was noted to

drop by up to 15% during the rf pulse (see Fig. 6.11). A significant density drop at the edge

as measured by Langmuir probes was not routinely observed these cases. Density decreases have

been observed in plasmas of densities n, 1.3 X 103 cm;- 3 below these densities, the density

does not change, or may increase during rf injection. In a case where a high impurity level was

known to exist (due to a small leak in the vessel), a density increase of 30% was observed during

the rf pulse, in spite of gettering prior to the run. These measurements are similar to previous ones

made during lower-hybrid ion heating experiments on the JFf-2 tokamak.3 0 ,52 The measurements

suggest that the rf may increase the flux of particles to the wall, and the recycling rate, which

is regulated by the cleanliness of the wall, determines whether the density increases or decreases

during the rf pulse. The density range over which drops in the line-averaged density are observed

during rf injection corresponds to that for fast ion production, and it is conceivable that the

density changes arc related to the poor high energy ion confinement discussed in Chapter 2. For

heating experiments, any density decrease during rf was usually eliminated deliberately with an

extra pre-programmed gas puff 1-2 msec. prior to rf injection.

6.1.4. Bolometry

The total radiated power from the plasma is detected by the pyroelectric bolometer described

in Chapter 4. The bolometrically-measured power typically increases during rf injection concurrently

with the fast neutral emission (see Fig. 6.12). Similar increases have also been measured by

pyroclectric bolomctry in other lower hybrid ion heating experiments. 2 7 , 3 3 The line-averaged

bolometric power is plotted versus chord height in Fig. 6.13 for two values of the plasma density.

The radiated power is observed to increase with density. For both densities, the emission during rf

injection is a factor of 2.5 larger than that without rf. At the lower density, the emission appears to
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be symmetric about the axis while at tlhe higher density, the emission level is clearly larger in the

bottom half of the plasma, both with and without rf. The direction of the asymmetry-whether

the emission is greater in the appear or lower half of the torus-is not always the same in different

runs (see Fig. 6.29). Up-down asymmetries in tile bolometric emission and/or impurity radiation

have been observed previously in other tokamaks. 13 4 "'3 5 In-out poloidal asymmetries in the visible

radiation from neutral hydrogen and O II have also been directly measured on Versator,l 3 6 and

a similar asymmetry in the bolometric emission on PLT has been inferred.' 37 Neoclassical effects

on impurity transport have been invoked to explain some of these effects,13'1'38 but asymmetric

emission profiles are generally not well understood, and could conceivably be related to poloidally

localized sources of hydrogen or impurities. On Versator, the gas puffer is located slightly aove

the midplane on the opposite side of the vacuum chamber from the bolometer, and is probably

not responsible for the asymmetry. There is no obvious relationship between the asymmetry of

the bolometric emission and the effect of the rf on the plasma.

The enhanced emission during rf, i.e. the total emission from which the emission in a shot

without rf has been subtracted, is plotted versus chord height in Fig. 6.14a. At the higher density,

the enhanced emission profile is broader than at the low density.

Abel inversions of the chord-averaged data can be used to deduce the relative value of the

volume emissivity under the assumption of poloidal symmetry. This may be a valid assumption

for the low density symmetric profile, but is not applicable to the high density profile shown

in Fig. 6.13b. The inversions have been performed on both profiles, and the volume emissivities

are plotted in Fig. 6.14b. For the case of the high density profile, we have inverted the top and

bottom halves separately. This is unphysical, as the resultant emissivities do not match in the

center; however, we can at least obtain a qualitative picture of the radial profile of the volume

emissivity in the high density case to compare with that at the lower density. Because of the

problems discussed earlier regarding the calibration and performance of the bolometer, we do

not quote absolute emissivity results. However, the profiles themselves show that the enhanced

emission during rf injection is not localized to the center of the discharge, and that the enhanced

emissivity profile is broader in the high density plasma than in the lower density one.

Though the bolometric measurements do not provide knowledge of the constituents of the

emission, i.e., the relative power in neutral particle emission compared to that in radiation, the

coincidence and relative strengths of the bolometric and charge-exchange signals over a range of

densities suggest that the increased energy flux results from neutral particle emission from the

plasma. From bolometric measurements on other tokamaks, the major part of the power flux to the

wall during ohmic discharges is believed to be impurity radiation in the ultraviolet. 0 6, 3 7 However,

during rf injection in our experiments, the increase in bolometric emission is uncorrelated with any

change in the spectroscopically-measured impurity line radiation from carbon or oxygen (though

small increases in the latter have been observed on occasion, as discussed earlier). Although the
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Figure 6.12. From top to bottom: bolometric emission (inverted). charge-exchange neutral flux
(1100 eV, inverted). loop voltage (1 V/div.), plasma current (27 kA/div.), and rf power (60 kW)
for We = 2.7 x 10o3 cm. - 3
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neutral hydrogen light was not monitored during the side-launching experiments because of rf

pick-up in the visible monochrometcr electronics, it is unlikely that there was an increase in the

radiation from neutral hydrogen, since the density was usually noted to drop with rf injection in

these experiments.

The emission of heavy impurities (Fe, Mo, or Ti) was also not monitored, and radiation from

such ions is known to contribute significantly to the plasma power balance. However, the heavy

impurity emission in the soft X-ray range of the spectrum did not increase during rf injection at

densities above i, 2 x 1013 cm.- 3 Furthermore, we note that the rise and decay times of the

bolometric emission are several hundred microseconds or less, which is considerably shorter than

an expected impurity confinement time.1' 1 Therefore, though the enhanced emission appears to

be from the center of the discharge, it is not ascribed to an influx of heavy impurities from the

chamber wall.

If the increase in emission during rf is due to a rise in the charge-exchange neutral flux, the

emission profile does not necessarily represent the lower-hybrid wave damping location because

of the large banana orbits of the fast ions and the variation in the neutral hydrogen density.

Rather, the profile shape indicates the extent of the volume in which the ions themselves are

confined. The width of the high density profile enhancement during rf injection being greater

than that at the lower density is consistent with the predicted outward shift of the wave damping

location with increasing density. The Abel-inverted profiles for both densities are relatively broad,

with characteristic half-widths on the order of half the plasma radius or greater. The profile of

the net power emitted as a function of radius is even broader because of the increase in plasma

volume per unit radius with minor radius. Consequently, the bolometric emission indicates that

the ion tail is localized neither on axis nor at the edge. However, this conclusion is based on

the assumption of symmetry of emission in the in-out orientation. The neutral hydrogen radiation

from the Versator plasma has been shown to be highest from the region near the outer major

radius on the midplane.' 3 6 The reason for this anomaly is unknown, but may be related to the

fact that two limiters were located on the outboard wall of the chamber during the side-launching

experiments. Both the bolometer and the visible monochrometer were located near these limiters,

and any local asymmetry in the neutral source introduced by the interaction of the plasma with

the limiters may have affected the poloidal distribution of the visible and bolometric emission. If

such was the case, then the region of the enhanced bolometric emission during rf would be farther

off-axis than indicated by the profiles of Fig. 6.14. However, we have not experimentally checked

the validity of this conjecture. If the fast ion location is indeed well represented by the profiles of

Fig. 6.14 then it is plausible from the qualitative arguments of Chapter 2 that the ions would not

exhibit good confinement. For this reason, and from a consideration of ion energy transport for

off-axis heating, we might expect the heating efficiency to be low.
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6.1.5. Paralmetric Decay

Measurements with rf probes at the plasma edge have revealed a broadening of the frequency

spectrum near the 800 MHz pump frequency, and indicate other features in the spectrum below

800 MHz which are believed to be associated with parametric decay of the incident lower-hybrid

wave. Significant frequency broadening of the spectrum is typically observed over the density band

for ion tail formation, fe > 1.3 X 1013 cm. - 3 With electrostatic rf probes in the edge plasma,

we have observed two types of spectra near the pump frequency during rf injection. In the first,

the spectrum at 800 MHz is approximately 2 MHz wide at a power level 10 dB down from the

peak of the pump, and exhibits lower sidebands at frequencies separated from the pump wave by

multiples of 17 MHz, which corresponds to the ion cyclotron frequency near the antenna mouth.

Similarly spaced peaks are also observed in the low firequency spectrum. Frequency matching

of the decay and sideband waves is satisfied. An example is shown in Fig. 6.15. As noted in

Chapter 1, this type of parametric decay has been observed in other lower-hybrid ion heating

experiments on tokamaks. The pronounced peaks at the harmonics of the ion cyclotron frequency

corresponding to the magnetic field at the outer edge of the plasma suggest that we have observed

the decay of the incident lower-hybrid wave into cold lower-hybrid waves and either ion cyclotron

quasi-modes or backward ion cyclotron waves. The general requirements for these decay process

are that 5wLH(local)> wo > 2wLH(local) and T K 3Tt, where we denote the pump frequency

to be wo.43 This type of parametric decay was usually observed in early lower-hybrid heating

experiments on Versator for which Ip<40 kA, VI = 2.5V, Zff(est.) = 4-5, T,,o< 100 eV. In these

experiments, ion tail production was always observed concurrently with the appearance of the

parametric decay spectrum. Near the low density threshold for these effects, both were observed

to disappear simultaneously if the plasma was moved slightly inward or the density changed by a

small fraction.

The parametric decay strength, as measured by the difference in power between the peak level

of the first lower side band and the peak level of the pump wave, is plotted versus line-averaged

density in Fig. 6.16 for these plasmas. Also plotted for reference is the charge-exchange tail

temperature. Both exhibit the same density threshold for enhancement. The parametric decay

strength versus incident rf power has been shown previously in Fig. 6.2; the apparent threshold

power for the onset of decay was found to be Po < 14 kW. Similar findings were previously

obtained in experiments on the ATC tokamak, in which a low density threshold for both parametric

decay and ion tail formation was observed. l5 We can estimate the convective threshold power

for the decay of the pump wave into cold lower-hybrid waves and either ion cyclotron waves

or quasi-modes. The ratio of the threshold power for resonant decay into the waves to that for

non-resonant decay into the quasi-modes is obtained from Eqs. (43c) and (43d) of Ref. 43:

P,(res) -67rw3Rvth ( 2 1- (6.8)
P,(non-res) - LHWOWCi WLH
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where L,, = 10 cm. is the length of the grill in the z-dircction and R is a numerical factor of

order 0.5. The subscripts "o" and "2" refer to the pump and sideband. respectively. For plasma

parameters typical of the outer layers (r/a so 2/3), we take T = 100 eV, B = 11 kG, and

2/W H 2.5 to obtain

P(res)
P,(non-res)

Therefore, we expect the decay into ion cyclotron quasi-modes to be predominant. The convective

power threshold for this type of decay is given by Eq. (45) of Ref. 43:

(3.8 X lO4)ko,llL,,ycB2 r W, ( 2 )3/2
P,(Watts)= w

2 I rRn 0CW2Zo a w 2 WLI- (6.9)

2 - 2 2

where Loy is the length of the grill in the poloidal, or y-direction, Cs = v//, is the ion sound

speed, and (/vt2) = (w2/kll2vte,,) > 3. Substituting in values representative of the outer region

of the Versator plasma (r/a) = 2/3, T = 100 eV, W2/WLH - W 2 /W =2.5, w2/w2 = 1.4,

B = 11 kG, nil = 5), we obtain a threshold of about 15 kW. For decay occuring near the limiter

radius (T, z 30 eV), the threshold is calculated to be only several kW. These low values are not

inconsistent with the experimental value shown in Fig. 6.2.

As in other lower-hybrid heating experiments, it appears that the parametric decay may be

responsible for the formation of the fast ion tail, either by ion cyclotron damping of the low

frequency mode or by quasi-linear damping of the lower-hybrid sideband. The ion tail may be

produced by damping of the parametric decay waves alone, or its strength may also be enhanced

by damping of the pump wave itself oh a "seed" ion tail in the manner illustrated in Figs.

2.11 and 2.12, in which the the presence of an ion tail of modest density (nt , 0.01 ni) was

shown to significantly increase the absorption of the lower-hybrid wave. Unfortunately, the radial

location of the decay waves is not known in our experiment. The rf probe location for this set of

measurements was on the midplane of the tokamak, 22.50 toroidally from the grill. The detected

pump wave peak power was found to depend strongly on the relative phase between waveguides:

the difference in amplitude of the pump wave was 13 dB between the cases of AX = +900 and

-900. This asymmetric behavior is expected because of the travelling wave spectrum launched at

this phasing (see Fig. 3.3) and has been confirmed by microwave scattering from the lower-hybrid

wave in the edge plasma at a lower plasma density.55 By contrast, the amplitudes of the lower

sidebands are independent of the direction of the waveguide phasing, suggesting that the decay

might not be occurring in the lower-hybrid field region near the plasma surface. On the other

hand, the measured poor confinement of the ion tail in this experiment and others is consistent

with the anomalous generation of an ion tail in the outer region of the plasma (r/a 2 2/3) where

this type of parametric decay is expected to occur.
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In more recent experiments in which most of the data presented in this chapter was taken,

including the apparent ion heating inferred from VUV Doppler broadening mcasurements, a second

type of parametric decay has also been observed. The decay is characterized by a broad spectrum

extending from the pump frequency down to about 400 MHz (see Fig. 6.17a). The sideband

plateau is approximately 30 to 40 d below the pump in power, and the low frequency spectrum

is comparable in power level to the sideband. Ion cyclotron harmonics are rarely observed, and

if present at all, extend only a few dB above the broadband signal. In these experiments, the

electromagnetic spectrum near the pump frequency was also measured with a loop antenna located

directly outside a Pyrex window of the vacuum chamber (see Fig. 6.17b). The electromagnetic

spectrum near the pump frequency is narrower than the electrostatic spectrum, and ion cyclotron

peaks are more prominent. Furthermore, the spectrum is often characterized by a broad peak

near 600 MHz. This feature is occasionally observed with the electrostatic probe, and in that case

becomes more prominent relative to the background when the electrostatic probe is moved back

from the plasma edge into a port. These facts indicate that the feature probably represents a

long-wavelength elecromagnetic mode. This electromagnetic peak has been observed previously

in the JFT-2 lower-hybrid experiments, and is suggested to result from the non-linear decay of

the electrostatic sidebands into electromagnetic whistler waves.40 This type of decay is expected

to occur only when further decay into lower-hybrid waves is impossible, i.e., where the sideband

frequency is equal to the local lower hybrid frequency. For our plasma conditions, a lower hybrid

frequency of 600 MHz corresponds to n =2.1 10x3 cm,- 3 which is present in the plasma

during the ion heating experiments.

In the cases where the power dependence of the parametric decay has been measured, no

clear power threshold (above 5 kW, at least) for the onset of the decay has been noted, and the

features of the spectrum (low frequency and sideband plateau powers) are proportional to the

transmitted rf power, as shown in Fig. 6.18.

No consistent variation in the decay spectrum is seen as the density is varied from fif = 1.4

to 3.2 x 1013 cm.- 3 In Fig. 6.19, we show the electrostatic and electromagnetic spectra measured

in the same experimental run for the above two limits. Little difference between the two spectra

is evident. (We remark that below a density of about nf = 1.2 X 1013 cm, - 3 the spectrum near

the pump frequency narrows dramatically with decreasing density). The lack of any change in

the spectra is not surprising since the lower-hybrid frequency on axis in this density range only

varies between 1.15 and 1.3 due to the low magnetic field. This fact suggests that the decay may

be of the nonresonant type, i.e., decay into lower-hybrid waves (or ion plasma waves near the

mode conversion layer) and ion quasi-modes.4 3 The sideband frequency in this decay process is

determined primarily by the local lower-hybrid frequency. The broad frequency spectrum of the

decay wave suggests that the decay may be occuring near the mode conversion layer. If this is

indeed the case, this type of parametric decay could lead to improved central heating efficiencies,4 0

as opposed to parametric decay taking place at the edge which is believed to be a loss mechanism
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for the incoming pump wave. As before, parametric decay was always present when an ion tail

was observed, but we did not carry out a quantitative comparison between the density thresholds

of the two phenomena.

As before, we may compare the experimental threshold to the theoretical value for non-

resonant decay near the mode conversion layer. 'The convective threshold for this decay is given

by Eq. (46) of Rcf. 43:

P(Watts)-- (3.8 X 104jgB2C'2 Lo r ( mi A l /2 w 2i Oo 1
X(Ias L0 aIme1 W3 k2LH (6.10)

X 2 1 thi )
WLH 2

where g = ko=Lo,/27r 1. Following Rcf. 43, we take

2 3 k2 v2
_2 1 - 2tht (6.11)

2 2_ 2 '

and choose T = 300 eV, Ti = 120 eV, r/a = 0.3, w2/w 2, Bo = 14 kG, and w2,/w2 _ 4.

The estimated threshold power is only 3 kW, which is not in disagreement with the measured

value of <5 kW, though we note that the uncertainties inherent in performing this calculation are

large. In particular, we note that for the above estimate, the pump wave is asssumed to propagate

within a esonance cont, A:, di:s<sed earlier, this may not be a valid model of wave propagation

in a tokamak.

Spectral components at the second harmonic of the pump frequency are also present in the

spectrum (see Fig. 6.20). These are not related to the weak harmonic generation of the klystron

but apparently to a non-linear process in the plasma, such as the pump wave beating with itself.

This behavior has been observed for ion acoustic waves in a linear device, 4 2 and it has also been

noted in a particle simulation of lower-hybrid wave propagation. 6 9 The relationship of the second

harmonic generation to the heating process is unclear.

In conclusion, the decay of the pump wave generally appears to be correlated with the

appearance of the fast neutral flux, and is very likely to be responsible for many of the effects

described in the previous sections. For example, the lack of strong phase dependence of the fast

ion count-rate during rf injection (see Fig. 6.4) may be explicable if the radius of wave damping

is determined by the location of parametric decay rather than the linear processes described in

Chapter 2. Unfortunately, neither the position of the parametric decay in the plasma nor the

radial distribution of the fast ion tail are known. Such measurements should be made in future

experiments to resolve the physical mechanism of lower-hybrid heating.
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Figure 6.20. Electromagnetic and electrostatic decay spectra showing features at the second
harmonic of the pump frequency. Pf, = 100 kW, and n, = 2.2 X 10 cm.-3
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6.1.6. Off-Perpendicular Charge-Exchange Measurements

As discussed in Chapter 2, the energetic ions must be confined for a sufficient duration if

thermalization of the tail is to occur. The time scale for thermalization is somewhat greater than

for 900 scattering for collisions of fast protons on the background plasma,

____ z Z, (6.12)
Vtherm

Thus, if a significant ion tail oriented in the parallel direction is present during rf injection, one can

conclude that thermalization of the fast ions is also taking place. As discussed in Chapter 1, parallel

ion tails have been observed in a number of lower-hybrid heating experiments in which bulk

heating is also reported. We have perfonned similar measurements for which the charge-exchange

analyzer was moved from its near-perpendicular orientation to an adjacent port which allowed the

sight-line of the analyzer to intersect the magnetic axis at an angle of 450° . In these experiments,

no evidence of a parallel tail was obtained from the charge-exchange spectrum (see Fig. 6.21). On

Several runs, parallel charge-exchange analysis indicated a slighlt rise (T,11< 20 eV) in the apparent

bulk temperature (with no tail on the spectrum) but VUV measurements showed no increase in the

central impurity species temperature. Given that the charge-exchange measurements are typically

recorded for ion energies in the range from 500 to 1500 eV, the apparent temperature increase

probably represents a weak tail in the off-perpendicular ion distribution.

The charge-exchange analyzer in this off-perpendicular configuration detects ions moving

counter to the plasma current direction. As the plasma current and toroidal field are in opposite

direction on Versator, it is these particles which are most poorly confined. The pitch angle for the

least well-confined ions has been calculated in Appendix B, and is plotted versus minimum orbit

radius in Fig. 2.13. The value of the pitch angle is approximately 600. Perpendicular ions accelerated

by the rf must scatter through this region before being sampled by the off-perpendicular neutral

analyzer. Consequently, this orientation of the analyzer provides a stringent test for isotropization

of the tail ions. Observation of a tail would clearly indicate that good confinement of fast ions is

possible and thermalization likely. The fact that such a tail is not observed does not necessarily

preclude some isotropization of the tail in the co-moving direction, but certainly suggests that a

loss region for fast particles is effective and that efficient heating is indeed unlikley, as predicted

in Chapter 2. The lack of a parallel tail suggests that the rapid decay time of the perpendicular

fast ion represents a "true" loss of ions in a time period shorter than the 900 scattering time.

In the series of runs performed following the switch to the off-perpendicular neutral analyzer

position, little (ATi, < 30 eV) or no bulk heating was ever detected by VUV spectroscopy; this

is in agreement with the charge-exchange results described above.

6.1.7. Variability of the Ion Heating Results

It was mentioned in Section 6.1.2 that the increases in the bulk ion temperature measured by

Doppler broadening were found to be irreproducible and, in fact, were achieved only rarely. The

181



6

-
.E

D 5

Z'o- 4

.11%

2

1

I I, _ . I

0.5 1.0 1.5

E(keV)

Figure 6.21. Charge-exchange tail at an orientation of 450 to the magnetic axis for the cases
of Pf = 100 kW and no rf at w, = 2.5 X -,~3 cm. 3

182

A - N-, I · N Kn R!:
( -A

0 

I



attempt to achieve consistent results, or to understand the reason for ithe variability, has proven to

be difficult and we have not obtained evidence for a conclusive explanation of the phenomenon.

Our investigation of this problem has centered on the edge properties of the plasma,

specifically the electron temperature in the limiter shadow. Variations in the bulk heating efficiency

by roughly a factor of 3 have been reported in lower-hybrid ion heating experiments on the JFT-2

tokamak.3 0 In those studies, the heating efficiency depended on the electron temperature in the

shadow of the limiter, with higher efficiencies being associated with larger edge temperatures. The

level of parametric decay was also correlated with the edge temperature in those experiments, with

the explanation that higher thresholds for parametric decay result from by higher local electron

temperatures. 43 Tlie decrease in heating efficiency is blamed upon loss of rf energy from dithe pump

wave to the decay waves. As discussed in Section 2.6 of Chapter 2, the total collisional damping of

the lower-hybrid wave can also be expected to vary significantly with the edge temperature since

the wave trajectory traverses the edge region many times if toroidal effects on wave propagation

are considered (see Figs. 2.15-2.19). Consequently, we have monitored the electron temperature

with a Langmuir probe situated 0.5-1 cm. behind the edge of the limiter. 1'he temperature at this

location generally has been found to be 12-26 eV with no variation that can be correlated to the

heating behavior of the plasma. For the heating data presented in Section 6.1.2, the edge electron

temperature was measured to be 15 eV, near the lower end of the above range. No variation in

the parametric decay spectrum is ascribed to the measured difference in the electron temperature,

although the lack of strong features in our spectra make a comparison between different spectra

somewhat qualitative.

At high plasma densities (w,>3 x 1013 cm.- 3 ), the plasma edge density and temperature

have occasionally been observed to drop suddenly by a factor of 2-3 during the discharge,

suggesting that the plasma column is unstable at these high densities and that the profiles have

a tendency to contract Little difference is noted between the parametric spectra obtained in the

cases with and without contraction. In summary, we have not been able to relate the occurrence

of an apparent ion temperature increase from Doppler broadening to specific ranges of edge

temperature or strength of parametric decay.

Regarding collisional damping, we recall from Chapter 2 that the collisional damping should

be strongest several centimeters inside the limiter radius. Electron temperatures are not routinely

measured at this location; therefore, we cannot state with certainty that important temperature

variations in this region did not occur over the course of these studies. An experiment was

performed in which the NRL gyrotron (90 kW at 35 Ghz)5 6 was used in an attempt to heat

the edge plasma by electron cyclotron resonance absorption. The toroidal field was set such that

the cyclotron resonance (12.5 kG) lay approximately 7 cm. to the outside of the plasma axis.

However, neither central nor edge electron heating was observed: according to Thomson scattering

measurements, T, at r = 0 remained at 450 ± 50 eV while T, at r = .88a remained at 80 13
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eV whether or not electron cyclotron or lower-hybrid waves were injected. Not surprisingly, no

improvement in the ion heating efficiency was observed in this experiment.

In principle, variations in the impurity level of the plasma could give rise to different heating

results. As discussed in Chapter 2, the impurity level can alter the propgation of the lower-hybrid

wave, particularly with regard to the mode conversion density. The distribution of impurities in

the plasma should also affect the electron temperature profile. It was mentioned earlier that the

density often increases or decreases during rf injection, with the polarity of the shift determined

by thdie suspected relative cleanliness of the vacuum vessel wall and/or the impurity content of the

fill gas. We note that the apparent ion temperature increases have occurred only in cases in which

the density is observed to drop during the rf pulse (without a correcting gas puff). However,

on other occasions, we have obtained no measurable heating in plasmas of similar densities in

which the density was also observed to decrease during rf injection: hence these observations may

not be relevant to the issue of irreproducibility of heating. A deliberate attempt to change the

plasma impurity level was made in which a set of heating experiments in gettered discharges was

performed immediately following a set in ungettered discharges. The experiment did not prove

to be fruitful as no heating was observed in either case. As expected, the plasma temperatures

were lower in the gettered case, indicating that the gettered plasma was probably cleaner than the

ungettered one. Therefore, we cannot conclude that the impurity content of the plasma has had a

definite relationship to the observed heating behavior, although it is possible that rf injection may

influence the influx of impurities in a variable manner.

Finally, we remark that moving the position of the grill with respect to the plasma, or

changing the in-out equilibrium position of the plasma by a centimeter or two did not appear to

have any beneficial effect on the heating efficiency. In conclusion, the question of the variation

in the observed bulk heating has not been answered by the experimental data of this study. It

is possible that subtle changes in the toroidal wave propagation path may be responsible for the

irreproducibilty of the ion heating. Further conjectures and suggestions for future work along this

line will be put forth in the next chapter.

6.2. Electron Heating Experiments with the Side-Launching Antenna

A search for bulk electron heating has also been performed over the density range in = 1-3

X 1013 cm. - 3 Measurements of electron temperature were made with both Thomson scattering

and soft X-ray spectroscopy. For nf =< 2.0 x 10-3 cm,- 3 rf injection was observed to produce

an energetic tail on the electron distribution, which was inferred from soft X-ray spectra. An

example is shown in Fig. 6.22 for the case of wn = 2.0 x 10' 3 cm,- 3 P,f = 100 kW and

AO = 1800. Before rf injection, there is only a small suprathermal electron tail present in the

plasma. In the 5 msec period following the rf pulse, a relatively large electron tail is still present.

However, no bulk heating of the electron distribution has been recorded at any plasma density

in the above range. For discharges in the density span nf = 1.0-2.6 x 1013 cm.- 3 into which
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60-100 kW net rf power is injected, no significant change in the slope of the thermal part of the

soft X-ray spectrum is observed. Thomson scattering experiments in plasmas with n = 2.5-3.0

x 1013 cm.- 3 show that neither the central electron temperature nor the temperature profile is

altered by rf injection. No increase in the overall hard X-ray flux was noted, and except at the

lowest density of n, = 1.0 x 101' cm, - 3 no change in the loop voltage took place during rf

injection. In tile low density experiment just mentioned, the loop voltage was sometimes observed

to drop by a maximum of 10% during the rf pulse. The criterion for whether or not a loop voltage

change occurred in this particular experiment was related to tile plasma position: if the equilibrium

position of the plasma on a particular shot lay to the inside of the normal equilibrium position

on the chamber axis (Ar -2 cm., typically), a loop voltage drop of the above magnitude was

noted during the rf pulse. and an increase in the intensity of the metallic impurity lines of the

soft x-ray spectra was also observed. The meaning of this last observation is not entirely clear,

but the lack of any bulk heating suggests that the change in loop voltage is probably related to a

current-drive or superthermal electron effect rather than plasma heating.4 6

The density range for rf effects on the electron population and the lack of electron heating

with rf injection are generally consistent with the cylindrical slab model predictions of Chapter

2. As shown in Fig. 2.7 and 3.3, the characteristic nil values of the four-waveguide grill are too

low for significant electron Landau damping to occur. Absorption that does take place will be on

high energy electrons (,(res) x 20 keV for nil = 5). The slowing time of such electrons for n,

= 3 X 1013 cm.-3 and Zff f 2 is about 0.4 msec. The fact that an electron tail persists for

a length of time longer than the collision time suggests that the electron tail created by the rf is

maintained by the ohmic heating electric field. The critical electron energy for runaway is found

by setting the force due to the OH field equal to that of the collisional drag:

mvv,e = eEoH (6.13)

where v, is the collision frequency for the slowing down of fast electrons,9 9

v,s - 3.9 X 10-6 nclnA(2 + Zf/f)[E, (eV) - a3 / 2 (6.14)

For the parameters used just previously and EOH = 8 X 10-3 V/cm. (VI 1 - 2 V) we find the

electron runaway energy to be approximately 30 keV, or not much higher than the expected

wave-particle resonant energy. Consequently, electron heating with the side-launching grill can be

expected to be inefficient, since a significant fraction of the wave energy may be transferred to

nearly collisionless electrons.

If toroidal ray tracing is taken into account, electron Landau damping can also occur, as

illustrated in Fig. 2.18, but only at large minor radii. Electron heating in this case should also

be inefficient. In conclusion, it is perhaps not surprising that our experiments have evidenced no

significant electron heating.
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6.3. Ion Heating Experiments using the Top-launching Antenna

The possibility of ion heating by lower-hybrid waves launched from the top of the torus

has been investigated in a short set of experiments using the four-waveguide top-launching grill

described in Chapters 2 and 3. The nil spectrum of this grill has been shown previously in Fig.

3.4, and is characterized by values of nil < 25. The plasma conditions for these experiments were

set to be similar to those for the side launching experiments described earlier in this chapter. The

maximum transmitted rf power in these experiments was approximately 100 kW.

Over the density range of this study ( = 1.2-32 X 10'3 cm,- 3 ) VUV Doppler broadening

measurements showed no evidence of ion bulk heating at any density or at any radial location.

The intensity of the O V line (located at r z 10 cm.) was often observed to increase by up to

30% during rf injection over a wide density range, but the temperature of the species remained

constant. The emission of other impurity species (O VII, C V, and C III) did not measurably

change during the rf pulse.

On the other hand, the near-perpendicular neutral flux measured by charge-exchange showed

a strong increase with rf injection. A comparison between the cases of rf on and rf off is shown

in Fig. 6.23 for P, = 100 kW, A = 900, Bo = 14 kG, and œ, = 2.6 X10lo cm.- 3 In

contrast to the results for the side-launching antenna, the spectrum in the energy range 500-1000

eV exhibits a clear decrease in slope, suggesting that an apparent increase of 50 eV.in the central

ion temperature takes place during rf injection. This enhancement of the neutral flux at the lower

energies is evident for all densities in the range w, = 1.8-3.2 X 1013 cm.-3 Below this density, an

increase in neutral flux with rf injection was also observed, but charge-exchange spectra were not

taken. The apparent increase in bulk temperature from perpendicular charge-exchange analysis is

plotted versus line-averaged density in Fig. 6.24. The temperature rise above the initial central ion

temperature is not a strong function of density. A fast ion tail is observed at high densities. At a

density of n, = 3.2 X 1019 cm, - 3 the tail temperature is approximately 400 eV, as illustrated in

Fig. 6.25.

The apparent temperature increase is dependent on the relative phase between waveguides,

with the maximum increase occurring at the lowest phase angles. The time evolution of the ion

temperature inferred from perpendicular charge-exchange is shown in Fig. 6.26a for AO = ±:90 °

and 1800 at P, = 100 kW and i, = 2.6 X 1013 cm-3 For comparison, the central ion temperature

::";:'. ;?'I' measured byDoppler broadening f the 0 VII line during the same n is shown in Fig. 6.26b.

Though no bulk heating is observed, the decrease i the slope of the charge-exchange spectrum

varies with A, but is the same for A -= +900 and A = --90° . The value of ATil from

charge-exchange measurements is plotted in Fig. 6.27 versus AO. Plotted in Fig. 6.28 is a more

detailed phase scan of the enhancement during rf of the 800 eV ion count-rate (total count-rate

minus the count-rate during ohmic discharges). Both figures show a strong peaking of the neutral

flux at the low phase angles. The relative flux is also symmetric with respect to the sign of ther . -.. *.. . -... .I .. I, r I .. " I -.. - .. . .. 187 -........... ..
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waveguide phase. This result is unexpected in light of the arguments made in Section 2.6 of

Chapter 2, in which lower-hybrid wave propagation was found to be very different for waves

launched from the top with identical values of nill but different sign.

The apparent ion temperature increase indicated by charge-exchange analysis is not believed

to represent an actual increase in bulk temperature, but most likely results from a tail created in

the ion distribution near the edge of the plasma. As in the case of heating with the side-launching

antenna, the estimated decay time of the neutral flux enhancement was no more than 200 sec,

based on direct observation of the detected pulses on a fast time scale following the termination

of the rf pulse. Furthermore, the lack of any increase in the ion temperatures inferred from VUV

Doppler broadening indeed suggests that ion heating did not occur in this set of experiments.

The line-averaged bolometric emission is plotted versus chord height in Fig. 6.29 for the

conditions n = 2.4 x10 3 cm,-3 Pf - 85 kW, and AO = 45° . The profile is strongly

asymmetric with the larger amount of radiation being emitted from the upper half of the plasma

column, which is opposite from the case of the earlier side-launching experiments in which the

radiation was stronger from the lower half of the plasma. The emission during rf is enhanced by

only a factor of 1.2 in these top launching experiments. As shown in Fig. 6.30, the increase in

bolometric emission during rf injection is only weakly dependent on the relative phase between

waveguides.

As with the bolometric measurements described in Section 6.1.4, the emission profile is more

symmetric at lower plasma densities. At line-averaged densities f < 1 x 10- 3 cm, - 3 the profile

of bolometric emission was measured to be symmetric about the axis of the plasma.' 43 At these

low densities, there is no increase in emission with rf injection.

For this set of experiments, the density remained constant or increased slightly (A /ffiC < 10%)

during the rf pulse relative to shots with no rf injection. The H,, and Ha light detected by a visible

monochrometer viewing the bottom limiter from the top of the plasma column was observed to

increase during the rf pulse by 5-10%, independent of the waveguide phasing. The rise in the light

level indicates an increase in ionization at the plasma edge, possibility by an increase in recycling

due to energetic ion or neutral bombardment of the wall, and is consistent with the observation

of a small density increase during the rf pulse.

No attempt has been made to investigate the possibility of electron heating in high power

experiments with the top launching antenna. In the studies described above, however, no change

in loop voltage with rf injection was ever observed in the given density range in = 1.2-3.2X 1013

cm. - 3 Therefore, it is unlikely that significant bulk electron heating took place in these experiments.

6.3.1. Interpretation of tie Top Launching Experiments

Though no measurable ion heating was observed in these top-launching experiments, the

results are of interest because of their differences from the side-launching observations, particularly

191



(a)
x

o A4: 80O

a A4 -: +90oo rf

A -90o

x rf off
RF

0 4 12 16 20

t(msec)

0Qax 
A

a
A x

RFFi
L_ -A I I I I I I

8 12 16 20

t (msec)

I . I I

24 28

Figure 6.26. Temporal evolution of the central ion temperature during rf injection with
the top-launcher as measured by: (a) Perpendicular charge-exchange: and (b) VUV Doppler
broadening of the 0 VII 1623A line for the cases of AO = +900 (open squares). AO = -90 °

(open triangles), and AO = 1800 (open circles) at P = 100 kW. and no rf injection (x's). The
plasma density is i, = 2.6 x 101 cm.-3

192

" r% U

150
F

-

--
100

o

on

8 24

50

0

d%

150

a) 100

50
F-

28

K
(b)

K

0
0 4

_I_ L- · ·I . I I I

I I I 

X

,n

I I I II

uuVV

_



U' 1.0Cuci

_n

O

Icc
N"

-I

/

4

p

I

I
/

I

I

I I I

0 -90 180 +90 0

Figure 6.27. Apparent temperature increase during rf injection from perpendicular charge
exchange, normalized to the transmitted power. versus Ad at = 2.6 X 10 3 cm. 3

193

_

/ -

r

-

-

l A

P

.

lm !

iL: _ I

:1 U.
"11



0

00

I 0 I I I 

1 I I I I

-180° -90 0

I I I [ I

+900 +1800

Figure 6.28. 800 eV charge-exchange neutral flux. normalized to the transmitted power, versus
AO for Pf = 30 kW and N, = 2.5 x 10' 3 cm - 3

194

U,

-

a

W
N

0

0

0
0



0'
Rn

4
a
z0Co
U)
Cn

5
W

Q

W

~i

zt

z r

J TOP MINOR RADIUS (cm) BC

Figure 6.29. Line-averaged bolometric emission profile versus chord height both before and
during the rf pulse. Also shown is the difference of the two. P, = 85 kW, A = 450,
n-"= 2.6 X 101' cm. - 3

)TTOM

195

5

_ _____

_ __ __



.,ms,4-~ ~ ~ ~
., . ·
C

.di.
0
z0
cn
C')

I-
w

0

LJ

-180 ° -90 00 +90 +1800

Figure 6.30. Line-averazed bolometric emission at a chord height of +9 cm. versus A for
the same conditions as 'ig. 628.

196

_ _ _



with regard to the charge-exchange measurements. As in the previous case of the side-launching

studies, the origin of the additional neutral flux cannot be determined from the measurement.

However, it is unlikely to be coming from the plasma center. If we assume the central ion

distribution to be correctly represented by the charge-exchange spectrum of Fig. 6.23 then the

collisional heating power of the observed tail, calculated from Eq. (2.57), is between 200 and 700

mW/cm 3 for bulk/tail intercept energies between 300 and 500 eV and a target plasma with T,

= 150 eV and n,o = 4 X 1013 cm. - 3 . These values are comparable to the central electron-ion

collisional power density calculated in Section 6.1.1; hence the presence of a tail distribution

of such high density, albeit low temperature, should result in measurable ion heating if it was

generated at the plasma center. The lack of ion heating as determined by Doppler broadening

measurements of the impurity lines is evidence that the fast ions arc not localized in the core of

the plasma. The qualitative information provided by the enhancement of the bolometric emission

during rf injection indicates that the emission also does not originate in the core, although in light

of the significant asymmetry in the profile, the interpretation of the bolometric signal is not at all

clear.

We believe that the results of the top launching experiment are consistent with the injected

lower-hybrid wave being absorbed in the outer layers of the plasma, both for the reasons given

above and from comparisons with the qualitative theoretical models of quasi-linear damping

presented in Chapter 2. We see from the charge-exchange spectra that the bulk/tail intercept

energy of the low-energy ion tail must be 500 eV or less. By the criterion of Eq. (2.37), the

ion temperature at the damping location must be less than 56 eV; hence the damping location

itself must be outside a radius of approximately 10 cm. From Figs. 2.7 and 2.24, it is evident

that damping well off-axis is plausible from consideration of both slab and toroidal propagation

models. We note from Fig. 3.4 that the pectrum of the top launching grill extends over a range

< < [n I < 30 for Ad = 900 with an nil value of about seven at the peak power level of the

spectrum. For this spectrum, the damping region extends from the center to the edge in the

slab model and from r/a 0.2 to the edge in the toroidal propagation scenario for the density

range of the experiment. Observation of a high temperature ion tail created by the damping

of relatively low nl waves in the center of the plasma may be masked by the increase in the

neutral flux in the 500-1500 eV range, though a relatively high energy tail is indeed apparent

in some of the charge-exchange spectra (see Fig. 6.25). In addition, the waves of lower nil may

be significantly damped on the non-thermal tail generated by the higher n$l components, as has

been considered in the simple example in Section 2.5 and calculated in Ref. 65. We have not

explicitly considered this effect in a self-consistent manner for the Versator plasma, and hence

we cannot state to what extent it may be important. The limiting value of the bulk/tail intercept

energy observed in the experiment is in rough agreement with the calculated value in Fig. 2.8

if we assume a significant portion of the spectrum is represented by values of nil> 14, which

is reasonable from a consideration of the calculated antenna spectrum. At the low phase angles,
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the spectral components at high nil launched in the negative direction and the broadening of the

fundamental spectral peak may provide enough power in the above range of nil to give roughly

the same bulk/tail intercept energy for all phase settings of the grill, as is observed experimentally.

On the other hand, the noticeable variation in the tail temperature with AO (see Figs. 6.26

and 6.27) is explicable by the difference in the representative nil value of the maximum power for

different phasings. We expect from consideration of Fig. 2.10 that the tail temperature for A =

1800 (nil (typ.) 15) would be less than for = 900 (nil (typ.) 7), which is indeed evident

from the experimental results. Alternatively, waves of lower nil are calculated to be absorbed on

higher energy ions, as indicated in Fig. 2.8. This could also give rise to the variation in the tail

temperature illustrated in Fig. 6.27.

The question of whether or not the lower-hybrid wave propagation is influenced by the

toroidal effects discussed in Section 2.7 cannot be answered conclusively by an examination of

our results. A difficulty with the interpretation of this initial top-launching study is that we have

performed the experiment both with a higher average nil antenna and at a different launch position

than in the previous experiments. Consequently, we cannot unambiguously separate the changes

in the plasma heating behavior effected by each alteration. In general, the absorption of rf power

on lower energy ions in these experiments as opposed to the earlier side-launching studies suggests

that the characteristic value of nil at the damping location is higher in this experiment than in the

earlier one. This may be explained by the higher average nil content of the top launcher spectrum

as compared to that of the side launcher, and not necessarily by the predicted upshift in nil due to

toroidal effects. For example, in the Wega experiment' 9 , the measured bulk/tail intercept energy

decreased from 1600 eV to 1100 eV when a side-launching grill of nil (typ.) = 3 was switched

for one with nil (typ.) = 6.

Furthermore, the results obtained in this experiment are at variance with the predictions of

ray tracing theory discussed in Chapter 2. As shown in Fig. 2.24, lower-hybrid waves launched

from the top of the plasma column should be predominantly lost to electron Landau damping

rather than to the ions, except at high plasma densities. Moreover, the transport simulations of

the top-launching experiments predict a definite asymmetry with respect to AO in the ion heating

results, while in the experiment, no bulk heating and no such asymmetry in the fast ion tail was

observed. The most likely explanation of this discrepancy is that the ion tail is not produced by

linear damping of the lower-hybrid wave but by damping of parametric decay waves, as suggested

in the explanation of the side-launching results. The relationship of the observed ion tail to the

occurrence of parametric decay has not been investigated in detail in the top-launching experiments.

When measured, however, the parametric decay spectrum was similar to that observed in the

side-launching experiments. For the latter, it was conjectured that the lack of variation in the fast

neutral flux with AO could indicate that the tail was produced by the damping of parametric decay

waves, possibly because the linear mechanism was too weak for efficient damping of waves with
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trajectories such as that illustrated in Figs. 2.15-2.17. It is not known if tie significantly different,

and phase-dependent, charge-exchange spectra obtained in the top-launching experiment can be

explained by the same mechanism. We note that chargc-exchange results similar to these were

also observed in the Doublet-IIA lower-hybrid experiment 2' in which waves of nil = 16-22 were

launched from the top and bottom of the plasma column. The toroidal magnetic field and plasma

density in that experiment were sufficiently low such that mode conversion in the plasma center

was only possible for nl near 20, yet low energy ion tails with fast decay rates were detected.

Parametric decay was also observed to occur during rf injection in that experiment as well, and

was invoked as the probable mechanism of the ion tail production.

In conclusion, we can state that no evidence of bulk ion heating was obtained with the

use of the top launching grill. The differences between the ion energy spectra obtained in the

top-launching and side-launching experiments are believed to be related to the difference in the

nil at the damping locations. There is a strong suggestion that the enhancement of the low energy

charge-exchange spectrum is due to parametric processes; consequently, the influence of toroidal

effects on the wave propagation has not been proven or disproven in this experiment. Some

suggestions of further studies to clarify this problem are discussed in the next chapter.

6.4. Plasma Power Balance During Rf Injection

In this section, the power balance of the plasma is evaluated for the purpose of deducing

the rf heating efficiency for the case discussed in Section 6.1.2 in which the apparent ion heating

was reported. Knowledge of the density and temperature profiles for all species arc required for

accurate and self-consistent calculations of the heating efficiency and power flows. However, such

quantities are not routinely measured in these experiments. Therefore, the following calculations

only provide estimates of the actual quantities in question. Nonetheless, such estimates are useful

in determining the possible heating scenarios which are consistent with the data obtained in this

work.

The global power balance equations of the electrons, protons. and impurity ions are written

as follows:

= Pep - P"l + pRF + pOH (6.15a)

W 
P - PP + pRF (6.15b)7 p

WI

where W, is the total energy of the population of species ac, -, is the species global energy

confinement time, F is the total rf power deposited in the species, pH is the ohmic power

deposited in the electrons, and P~p is the collisional power from species a to species . The
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subscripts "e", "p", and "I" refer to the electrons, protons, and impurity species, respectively. The

quantity Wit has thie explicit form

W. 2 n TldV

2 a (6.16)
6r2Ro n n(r)T,,(r)rdr

under the assumption of poloidal and toroidal symmetry of the density and temperature profiles.

For simplicity, the proton and impurity ion equations are added together, and the effective

ion energy confinement time is d iAoted T. Equations (6.15) can then be written

W -p, + pOH + pRF (6.17a)

, Pt + pRF (6.17b)
7t

where we have used ile equality Pc, = Pep +- P = -P,. The collisional power term is

Pet = 4r 2Roj n.vc,,(Te - Ti)r dr. (6.18)

The power balance equations may be written in detail as

6r2Ra 0 n,(r)T(r)r dr -4r 2Ro(9.9 X 10- 27) a n(r) 2 (T(r)- T(r)) " 0 -T()T,(r)
3/2

[1 Z1)]d+Iv±PRF (6.19a)

x 1- nZI 1-2t dr + Iplv + pRF

67r2R I47r 2R 0 (9.9 X 10-27)Jo T( 2(r))
n. 2R ,1- ZI- I)]rt - nr~n.[sp x loll)$ T,(r)3/2 (T(r)- T(r))

-- 1 dr+
., /J

(6.19b)

where Eq. (6.2) has been used, and all symbols, including the temperatures, are in CGS units.

We have taken n A = 15. The ohmic power is written as the product of plasma current and loop

voltage, which is reasonable for the portion of the discharge in which the plasma current is

constant. To perform the above integrals, we choose analytic plasma profiles to match the profile

data of Figs. 4.3-4.5. Specifically, we take

n,(r) = reo(l- 

T(r) = ( X ) ; Xt, = 7.5 cm. (6.20)

T(r) Tio exp - r ; Xti = 10.5 cm.
X,
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The radial dependence of the impurity density is unknown. For simplicity, the impurity terms in

the square brackets are assumed to be independent of radius and are taken outside the integral

signs. As in Chapter 2. the ratio of the effective impurity density to the electron density is chosen

on the basis of the measured Zlff and the average charge state ZI:

nlj =_ Zefaf -1 (6.21)
n, Z(ZI- 1)

Unless otherwise specified, the value of Zff for these calculations is taken to be 2, based on the

spread of values obtained in Chapter 4.

The power balance equations are first solved for the ohmic case T = 400 eV, T, = 150

eV, n,o = 4 x 10'3 cm, - 3 Ip = 55 kA, and V = 2 V. With the previously specified profiles,

Eqs. (6.19) may be solved for the energy confinement times:

re, 1.2 msec (6.22)

T, ~ 3.4 msec.

The so-called energy confinement time,

= 3/2 f (n,T, +- neTe) dV (6.23)

is 1.5 msec, which is intermediate between the "old" Alcator scaling law'4 4 prediction of 2.2 msec

and the neo-Alcator confinement time'4 5 of 0.8 msec.

Now let us consider the case of rf ion heating in which the lower-hybrid wave is assumed to

damp on ions only, i.e., pRF = 0 in Eq. (6.19a). We take T,, = 200 eV and also assume Zfef,

T,, and r to be unchanged. For the scaling of r, with T,, we distinguish two cases: (1) r, remains

constant, and; (2) ri is given by neoclassical scaling. The first has no physical justification, but

is simple and provides a lower bound for the absorption efficiency. To calculate the neoclassical

scaling, we first solve for v.,, the neoclassical collision parameter representing the ratio of the ion

de-trapping frequency to the banana orbit bounce frequency:

v, I'= v/t(q t (6.24)··= · V~''Jz lithi

which is about 3 for Versator parameters in the ion heating regime. Since vi > 1 > v.i(r/Ro) 3 / 2,

the ion transport corresponds to diffusion in the plateau regime.8 4

The experimental thermal conductivity can be compared to the theoretical value in this

regime as follows: the local power balance equation for the ions can be written as

(niTi) = n,v,i(T- T 1i)+ rNc i + pRF (6.25)at 2 j) + r 19; . x, o + I
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where XIC is the ion thermnal conductivity and we have assumed thermal conduction to be the

dominant power loss for ions, which should be true in the plasma core. The quantity pF is the

local heating power density to the ions due to rf absorption. We solve for x;T ' in the inner region

of the plasma for the ohmic case (pRF = 0) by assuming steady-state conditions and integrating

over the volume inside r = a/2 to obtain

a/2 r 2

nlv(T- T1)rdr = 2 xIcT lo/2 (6.26)

As defined previously, X,, is the Gaussian width of the ion temperature profile. Using the same

profiles as before, we obtain X;VC(a/2) = 4.5 x 10'7(cm-sec). - l

We compare this value to the theoretical one for plateau diffusion: 84

Xc 2(Tn, T 3/ 2 q (6.27)

which is about 1.7 x 10'7(cm-sec)-1 at r = a/2. Thus the measured ion thermal conductivity is

only several times the neoclassical value. If plateau diffusion represents the major energy loss for

ions, then from Eqs. (6.25) and (6.27) the ion energy confinement time should scale as T,. -3 /2

In calculating the heating efficiency, we first assume the temperature profiles to be unchanged

during rf heating. For neoclassical confinement and AT, = 50 eV, we solve Eq. (6.19b) and find

that r, is 2.2 msec and the absorbed auxiliary power on the ions must be 23 kW, or 47% of

the transmitted rf power. For the case of constant ri, the required absorbed power is 15 kW,

giving a heating efficiency of 30%. For comparison, the collisional power coupled to the ions is

only 8.5 kW, or almost half of the collisional power to the ions in the ohmic case. If the ion

temperature profile in the rf-heated case is narrower than for the ohmic case, the total power

needed to cause the observed central temperature increase may be less than the above estimates.

A simple calculation of the central auxiliary power density required to produce the 50 eV rise on

axis can be made with the use of Eq. (6.25) in which we let the ion thermal conductivity have the

functional form of the neoclassical value Eq. (6.27). With the derivative of the thermal diffusion

term in Eq. (6.27) evaluated under the assumption of a flat q-profile near the axis, the equation

for the central ion power balance becomes

fneoiei(To - Tio) - 4 T + RF 0 (6.28)
Xti

We note from the above equation that the effective ion energy confinement time on axis is

proportional to T-,o 3 /2. For the ohmic case (T, = 150 eV, Xt, = 10.5 cm.), the collisional

power to the ions is 350 mW/cm 3 and the calculated ion thermal conductivity is 4.0 x 1017

(cm-sec). - l For the case of the ion temperature increase (Tio = 200 eV) the auxiliary power

required is 180 mW/cm 3 if the thermal conductivity remains at its previous value or 430 mW/cm 3
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if the central thermal conductivity scales neoclassically. For both of these possibilities, the ion

temperature profile is considered to have the same width as the ohmic one: if the rf-heated

profile is in fact narrower, tile required central auxiliary power densities are greater. For any

of these cases, the local power absorption rates are at least 20 times greater than the maximum

experimentally-estimated rate obtained in Section 6.1.1.

Alternatively, it is conceivable that the ion temperature profile during rf heating is broader

than the ohmic profile, i.e., the rf absorption on ions occurs mainly off-axis, as suggested by the

results of Chapter 2. Based on an evaluation of Eq. (6.25) with pF(on axis) = 0, the 50 eV central

ion temperature rise can be modelled by an increase of the central X,, to 13.6 cm from 10.5 cm

for constant ion thermal conductivity, or by an increase of Xt, to 16.8 cm for neoclassical scaling.

The global power balance for ions can be recalculated with a wider ion temperature profile; we

pick X,, = 16 cm. and r, = 2.2 msec (neoclassical scaling). The total auxiliary power absorbed

by the ions required to maintain such a profile is 42 kW, or 84% of the transmitted rf power.

The reduction of the collisional coupling between electrons and ions allows the central electron

temperature to rise by 50 eV for no loop voltage change if the electron temperature profile does

not broaden.

Because of the ambiguity in interpreting the charge-exchange data for off-axis energy

deposition, this model of the heating results cannot be directly substantiated without experimental

evidence of the wave damping location. However, this scenario is perhaps more plausible than

the previous one in that the charge-exchange data provides a limit on the central damping rate

which is far less than that needed to explain the observed heating. The small increase in electron

temperature predicted by the decoupling of the ions from the electrons is consistent with the

observed behavior of the O VII intensity during the apparent ion heating. However, we have

no evidence to suggest that a broad ion temperature profile was indeed present in the rf-heated

plasma. In fact, the relative measurements of the 0 VII and C V temperature increases during

rf heating shown in Fig. 6.5 would suggest that the ion temperature profile does not broaden

in the cases in which ion temperature increases are observed. Unless the central auxiliary power

deposition rate is much higher than that estimated from the charge-exchange data, the observed

ion heating is difficult to explain if only rf absorption by ions is considered.

We also consider the possibility of electron heating being responsible for the observed

increase in the ion temperature. Electron heating may arise from electron Landau damping of

the lower-hybrid wave or by a rise in the plasma impurity content, or a combination of both.

Unfortunately, the electron temperature was not directly measured during any of the runs in

which the bulk ion heating was observed. The increase in the central impurity emission concurrent

with the ion temperature rise suggests that the electron temperature may have indeed increased

during rf injection. However, the lack of a loop voltage change may indicate that no temperature

increase occurred, unless the impurity content of the plasma simultaneously rose to keep the
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electrical resistivity constant. Regardless of whether or not electron heating actually occured, no

value of the electron temperature in Eq. (6.19b) can cause a 50 eV rise in the ion temperature,

as the effectiveness of collisional heating is diminished with increasing electron temperature.

Considering tie global ion power balance under the assumption of electron heating, we find that

by differentiating Eq. (6.19a) with respect to T, the maximum collisional power flow to the ions

occurs for To = 4.65 T,, assuming the profiles of Eqs. (6.20) to be valid. Solving Eq. (6.19b) for

Tto under this condition gives

T / -= 1.6 X 10- 8(n,oTi) (6.29)

i.e., T = 165 eV and Te = 770 eV for the case of ion confinement remaining constant or Tto

= 160 eV and T = 740 eV for ion confinement being neoclassical. We have assumed that the

density does not increase, which is valid for the experiment in which the ion heating was observed.

Such a large increase in electron temperature is inconsistent with the experimental observations;

furthermore, it cannot account for the 50 eV rise in the central ion temperature.

Again, we can consider the local'power balance at the center, with the possible justification

that the ion temperature profile may not be the same as in the ohmic discharge. From Eq. (6.25),

the maximum collisional power flow to the ions is seen to take place for T,o = 3 Tto. Solving Eq.

(6.25) under this condition (and pRF = 0) gives

T3/ 2
- 4.7 x 10 ( co ) (6.30)

to NC

or Tio = 160 eV for n,, Xt,, and xlNC remaining the same as in the ohmic case. As in the

previous example, only if the ion temperature profile is substantially broadened can the central

ion temperature rise to 200 eV, i.e., for Xt, = 12.3 cm with XNC constant or for Xti = 15.2

cm with xNc given by neoclassical scaling. To account for the 50 eV central ion temperature

rise in such a case, we find that the central electron temperature must increase to 600 eV. With

the loop voltage and plasma current remaining constant during this heating, the value of Zeff

must approximately double; if the electron temperature profile broadens as well, the impurity

content must be even higher. Using the global electron power balance equation (6.19a) with the

ohmic profiles and assuming rT to be unchanged, we find that approximately 50 kW of rf power

(100%) must be absorbed on the electron population to account for a 600 eV central electron

temperature. However, the electron energy confinement time is generally believed to deteriorate

with auxiliary heating,87 and we reiterate that the profiles must be broader than the ohmic profiles

if the observed ion heating is to be considered plausible; hence the required power flow to the

electrons is greater than the available rf power. Moreover, the experimental data does not support

a claim of such a large increase in electron temperature or impurity content. If the central density

of a light impurity, e.g. carbon (Z=6, A= 12), increases simultaneously with rf injection, then the

observed ion heating may result from an increased collisional power flow from electrons to ions.
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However, because the enission levels of the edge spectroscopic lines of carbon and oxygen do not

increase significantly during rf injection, such an increase in light impurity concentration cannot

be explained by an influx of impurities from the edge. In the future, efforts to obtain a direct

measurement of the central impurity content should be made to assess the validity of this possible

heating mechanism.

In summary, the observed ion heating results are consistent with absorption of the lower-hybrid

wave on the ion population, rather than electron heating and collisional transfer of power to

the ions. Furthernmore, we suggest that if the maximum central heating rate obtained from the

charge-exchange data is correct, the ion temperature profile in the rf-heated plasma must be

broader than the profile in the ohmic plasma to explain the observed ion temperature increase. As

mentioned earlier, however, the small amount of ion temperature profile data we have obtained

does not support the suggestion that the profile broadens during rf injection or that a significant

amount of rf power is indeed deposited off-axis. If the ion heating takes place because of rf

power deposition near the center, then the power required to cause a 50 eV rise in the central ion

temperature is only 30-50% of the transmitted power. However, it does not appear that the local

absorption rate at the center can be explained by collisional damping of the observed ion tail.
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7. Summary and Conclusion

In this chapter, the major experimental results of this work are summarized, and some

suggestions are offered regarding the direction of future research in lower-hybrid ion heating.

Most of the suggestions are specifically related to the continuation of the study of rf heating on

Versator, but some have general applicability.

7.1. Rf Coupling

The maximum coupling efficiency of the lower-hybrid antenna to the plasma was measured

to be approximately 85%. The experimental coupling behavior has been found to be in reasonable

agreement with predictions of the Brambilla coupling model in which corrections have been

made for finite waveguide height and finite plasma density at tile grill mouth. The major source

of uncertainty in the comparison of the experimental data to the theory is the interpretation

of the Langmuir probe measurement of the absolute density. If a more accurate comparison is

desired, the density obtained by Langmuir probe measurements could be carefully checked against

those from microwave interferometry at the edge. Regarding improvements to the theory, the

replacement of the linear density gradient with an exponential one should be made for the sake of

consistency, as the experimental edge density profiles in tokamaks are exponential. The difference

in the calculated coupling behavior for the two cases may well be significant for antenna spectra

not characterized by n > 1 (compare Eqs. 3.27 and 3.41). Such antennas are likley to be used in

future lower-hybrid heating experiments on hotter plasmas.

7.2. Grill Behavior at High Power

With vacuum bake-out and rf conditioning of the side-launching grill, the full available

incident power of 110 kW can be coupled into vacuum with no evidence of plasma formation.

Under these conditions, the coupling coefficient is relatively constant over the entire range of

incident power. Breakdown in the conditioned grill during tokamak operation is suppressed by

an auxiliary magnetic field which raises the residual field above the cyclotron resonant value

everywhere in the waveguide. A maximum power density of 0.94 kW/cm 2 was achieved, and

higher power densities are believed to be attainable. With a carbon-coated grill launching from the

top of the plasma column, a power density of 1.4 kW/cm 2 was reached, again with no evidence

of this being a limit.

In light of our experience and from the knowledge we have gained from others, some

general recommendations on lower-hybrid grill preparation can be made. These suggestions apply

in particular to designs in which the vacuum seals cannot be made in the waveguides themselves

but outside the cyclotron resonance layer, i.e. for antennas in which electron loading is severe.

Degassing and mechanical preparation of the surface is important. To reduce electron-stimulated

desorption, baking of the metal before assembly should prove useful. The baking of the material
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should be performed before the assembly of the grill rather than after because higher temperatures

can be employed in the former. Roughening the surface of the guides has been shown to reduce

secondary electron emission;' 20 simple sanding and electropolishing has beneficial effects and

should be implemented.

A supplemental magnetic field to raise the total field above cyclotron resonance is a convenient

external solution to the breakdown problem. Fields perpendicular to the waveguide width appear

to be preferable to those parallel; however, we have not made conclusive experimental tests to

verify this point.

Though carbon coating is shown to increase the power handling ability of the antenna,

its apparent susceptibility to contamnination in our usage warrants more study before being

recommended for further application. Clearly, howecr, the promise of carbon-coating or similar

surface treatments is great and should continue to be developed.

7.3. Heating Results

The major goal of this present work has been to demonstrate bulk ion heating with the

injection of sufficient rf power and to determine under what conditions heating is most efficient.

In the ion heating experiments, a maximum bulk central ion temperature increase of 50 eV

at An = 2.6 x 10'3 cm.- 3 and B = 14 kG was recorded for 50 kW transmitted power. The

mode conversion layer for these parameters is calculated to be in the plasma center. By the

efficiency criterion defined in Chapter 1, this temperature rise corresponds to a heating efficiency

of 2.6 eV/kW-10-1 3 cm.3 However, such heating was observed only rarely, and the reasons for

the variability in the heating efficiency have not been uncovered in this study. A short-lived

perpendicular ion tail was routinely observed in these experiments, but the radial location of the tail

could not be explicitly measured. As a result, the wave damping location is unknown. The energy

density of the ion tail is also uncertain, although a maximum estimate calculated in Chapter 6

suggests that a few percent of the transmitted rf power can account for the magnitude of the central

ion tail. No electron heating was measured to occur. Heating experiments performed with a novel

top-launching antenna evidenced no bulk ion heating, although the observed charge-exchange

spectra were significantly different than those obtained during side-launching experiments. In

general, the results of the Versator lower-hybrid studies are similar to those on other tokamaks

with regard to the variability of the ion temperature increase and the observation of a fast ion tail

which appears to be poorly confined.

Though the central ion temperature increase occasionally observed during rf injection

is consistent with wave damping occurring primarily off-axis and the ion temperature profile

becoming broader, no such broadening was actually observed. Ion temperature profile broadening

has not been observed in other lower-hybrid experiments. In the JFT-22 '31 and recent Petula23

experiments in which relatively cfficient ion heating was reported, the ion temperature profile in the
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rf-heated plasma was observed to be narrower than in the ohmic plasma, indicating that the wave

damping was likely to be occurring at the center. In those experiments, however, the corresponding

perpendicular charge-exchange spectra were not inconsistent with strong central damping: the

apparent bulk/tail intercept energy was only about 5 times the central ion temperature, indicating

that the fractional central tail density may be over 50 times that estimated for our experiment.

Thus the achievement of efficient heating as a result of wave absorption in the plasma core in

those experiments is not surprising.

The scenario of the ion heating behavior in Versator is in reasonable agreement with the

models put forth in Chapter 2. Consideration of the cylindrical slab model, and especially the

toroidal propagation model, suggests that wave damping outside the plasma core (r/a > 0.4) is

likely in Versator. Transport code simulations of the ion heating experiment on Versator show the

ion temperature profiles of the rf-heated plasma to be broader than the ohmic profiles. If off-axis

absorption accurately describes the actual heating behavior, the observed variability of the heating

efficiency is easier to understand, as small density or temperature. profile changes can shift the

wave damping location such that collisional and orbit losses may be greatly different from run to

run.

The first recommendation regarding future lower-hybrid heating studies on Versator is purely

technical. The Versator tokamak is not an ideal device for lower-hybrid ion heating experiments,

and further studies would benefit from a few improvements in the operating characteristics. The

relatively high plasma densities required for mode conversion are difficult to achieve for a period

greater than 5-8 msec within the 25-30 msec discharge duration. Strong gas puffing in the initial

evolutionary stage of the plasma current buildup is required to attain these densities within

the available period. Variations in the puffing rate might lead to significant differences in the

temperature profiles;' 3 7 we have noted qualitatively that the evolution of the ion temperature in

high density discharges is not always the same in different runs. If the discharge duration of the

Versator plasma could be lengthened (and the temporal decay of the TF current reduced with the

use of an upgraded power supply), the quality of the experiments is likely to be improved. In

addition, the plasma current should be increased to improve the fast ion confinement. As illustrated

in Fig. 2.14, the energetic ions created at the wave damping location should be adequately confined

if the plasma current could be raised to 100 kA. These changes should be satisifed by the general

machine upgrade presently being carried out for the purpose of rf current drive studies.

As the attainment of consistent ion heating was not a success, and the underlying causes of

the variability are not understood, we suggest that in future experiments more attention be paid

to such plasm_,a parameters such as temperature and density profile widths and evolution, edge

temperature, and impurity content. The empirical relationship of these quantities to the observed

neutral flux, parametric decay spectrum, and bulk heating behavior is not well-known, and should

be clarified. Of primary importance in this regard is the improvement of the relevant diagnostics.
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A near-perpendicular charge-exchange analyzer capable of a radial scan would prove to be of great

value in localizing the neutral particle emission. In other lower-hybrid experiments, the location

of the tail is rarely known; in instances in which the neutral flux profile has been measured,

the results have not been well understood in light of the measured tail lifetime.2 7 Direct profile

measurements of the various impurity species location would be useful as well.

Though we have monitored edge temperatures during heating experiments in an attempt to

note any distinction between "good" and "bad" discharges, controlled experiments in the spirit

of the JFT-2 profile modification studies by neutral beam injection3 1 are more desirable. The

effect of a controlled impurity influx on the fast neutral flux, either by injection with a fast puff

valve or laser blow-off, could be helpful in understanding the relationship of the impurity content

to heating behavior, particularly if the impurity injection is noted to change the temperature

profiles. Continued work in the comparison of top-launching and side-launchillg antennas is

recommended because of the observed differences in the charge-exchange spectra in the two

experiments. Specifically, the top-launching antenna should be installed in a side port to compare

top and side-launching results with use of the same antenna. In this manner, the importance of

toroidal effects on lower-hybrid wave propagation may be clarified. Profile information on the fast

neutral flux would be particularly useful in this comparison.

Experimental knowledge of the wave trajectory would be of help in determining whether

or not a significant fraction of the injected rf power indeed reaches the core of the plasma. It

is hoped that the planned microwave scattering measurements on Versator and ongoing laser

scattering studies on Alcator C will provide an answer to this question. Finally, we recall from the

results of this experiment and the others that the observed fast ion tail appears to be related to the

occurrence of parametric decay of the pump wave. Accordingly, the parametric decay phenomenon

may be fundamental to the lower-hybrid heating process, and further studies should be aimed at

determining its location in the plasma, its relation to fast ion production, and the extent to which

it can be controlled.
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Appendix A: Derivation of the Warm Plasma Dispersion Relation

In this appendix, the warm plasma dispersion relation for electrostatic lower-hybrid waves is derived

from the hot plasma dispersion relation Eq. (2.12). We first consider the limits klpcc, klpcl 1,

and IEn,l, Ient > 1. The Bessel functions and exponentials of Eq. (2.13) are expanded for small

b, (b, = kvh 2 a/2w2c) and the asymptotic expression for the plasma dispersion function is used.

Terms to order v4h, are kept. The terms of separate n are:

Io(bj)e-b oa.Z(Ooa) -1 + b- + b

3b2 3 1
4 4 4 ;

I1(b,)e-b oaZ(l.) + Il(b)e-b (oaZ((-1 ) - (o 2 2

x + _ +
-a C-1. 2c,,

b21o 1 1 
12(b,)e-bo Co.Z(E2) + _-2(ba)e- bo EOaZ(_-2a) --- + -2 (A.)

(A.1)

For the case of the electrons (w < w,,), we can write

/°(2+ e=2 2{: 2
· oe =1 - 2 2w 2 2 W4

or_ ttII V he t kpe Wi
Coe,(+ + 2 ) 2 - w 3 - 6 (A.2)

ce cc( 1 k"l["( w2" w".\

( + ) 24: - 2 + )For the case of the ions ( >> wci), the denominator of each expression is expanded because thelowest order term is found to cancel in the summation:
Co + 2 =2 + 4i

1 l Vthi Ec2 4
e0i 1 q 2 3li _- 6w:e~ (A.3)

Solving for the real parts of the electron and ion susceptibilities with the above approximations

gives
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I 2 2'(I-+- 3 k h'l-t ____) (A.4)
k2 w2 2 w2 2 w2

_ the W ___the W6

2 2 W We W2 W2WJ

and

2 3 k 2v 2 (A.)
Re X, "- 1 +- (A.5)

Keeping the lowest order thermal corrections, we find that the electrostatic dispersion relation can

be written

+L2L w,2 ( 3 kV2h _2 3 k2V2h,)ReD= 1*jt - 2p 8 ) t 3 hk2 w2 - w2 W2 2 

(A.6) as k: w, 1 3 2'2 , 2 2h

2 the J 27 + 2 w 2 ,2 

terms in the sutermin of Bess el functions in Eq. (2.63) contribute significantying k to . As shown byEq.

For sufficiently high plasma densitiesowever, the ion susceptibiequality kPci th 1 is limit can be written ind, an aslternative form which

is an expansion in powers of (kpc,) - . The lowest order term in this expansion for the real part

of the ion susceptibility is

1 Xi(1 + z(

- iimh(eui )to 2(qr co + frR V (A.8)

where i = /klvtai. We expand this expression for the ion susceptibility in the asymptotic limit

i > 1. Since Im Z(o)- v/iexp(-_ , the contribution of the last term in brackets in Eq. (A.8)

is negligible in this limit. The ion susceptibility is then
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k2w 2
1 f 3 k ,2h

Re Xi = ---- 1 + (A.9)

or the same as obtained for the opposite limit. Thus the dispersion of the lower-hybrid wave is

adequately described by Eq. (A.7) for all values of k pci in the limit , > 1.

The second term on the right-hand side of Eq. (A.7) is significant if K,, becomes small or if

n2 becomes large, both of which occur as the wave nears the lower-hybrid resonance. The other

thermal corrections are less important, and are ignored in this thesis. Generalizing to the full

electromagnetic dispersion relation Eq. (2.4), we see that the only significant thermal correction is

to A:

= K,,.,-3n 2 w 2 (1 + W:4 2 : T1 w (A.10)
The rest of the cold plasma dispersion relation remains e same

The rest of the cold plasma dispersion relation remains the same.
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Appendix B: Derivation of the Minimum Ion Loss Energy

The analytic calculation of the energy of a banana-trapped ion required for direct orbit loss

to the limiter has been performed by Rome, McAlees, Callen, and Fowler.7 7 The procedure is

outlined in this appendix. The calculation is similar to numerical computations of banana orbits in

that the orbit trajectories are determined with the use of conservation of the ion magnetic moment,

conservation of energy, and conservation of canonical angular momentum in the toroidal direction.

The simplifications which permit this problem to be treated analytically are the following. The

plasma current density J is written as a polynomial expression

° = t i (a ] (B.1)

with n and p integers such that the toroidal vector potential Ao(r) can be written in closed form,

assuming the flux surfaces to be concentric. The analytic representation for AO(r) is given in

Eq. (3.1) of Ref. 77, and is proportional to the plasma current. The Versator current profile is

estimated from the electron temperature profile measured by Thomson scattering, which has a

Gaussian half-width of approximately 7.5 cm. The choice of n = 2 and p = 4 in Eq. (B.1) is

adequate in representing the experimental profile.

Also, the tips of the widest banana orbit for a given minimum minor radius rb are assumed

to lie in the midplane on a flux surface halfway between the minimum and maximum minor radii

of the orbit.

From the conservation of the ion angular momentum in the toroidal direction, we have

eRoA, + miRvo = constant (B.2)

where R is the major radius of the ion location, and v, is the ion velocity in the toroidal direction.

The velocity v, is calculated using the conservation of energy and conservation of magnetic

moment. The velocity parallel to the magnetic field is

fll = Uvtl 2 J (B.3)

= v(l - RbP 8in2

where 0 is the pitch angle of the ion orbit at major radius Rb corresponding to the minimum

minor radius rb. Since the poloidal magnetic field Be is much less that the toroidal field BO, we

can approximate vo ~ vlI, and Eq. (B.1) may be written as

eRoAo, ± m,v[R(R - Rb sin2 0)] = constant. (B.4)

The above equation is solved under the condition that the ion orbit with minimum radius rb

intersects the limiter at r = a:
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A(a) - A(rb) = ml (Rbl Co +4. ((Ro + a)[(Ro + a) - Rb in ) (B.5)

The value of 0k is obtained with the approximation of the orbit shape described earlier. The

magnetic moment of the ion at R = Rb is equated to that at the banana tip (vii z 0 at

R = R, - a/2 + rb/2):

sin2 im Ro + a/2 + rb/2 (B.6)
R. + rb

This value of k,m is substituted into Eq. (B.5) and the velocity v is obtained, from which the

minimum ion energy for loss to the limiter is calculated. This ion energy and the corresponding

pitch angle km are plotted in Fig. 17 versus minimum minor radius rb for several different values

of the plasma current.
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Appendix C: Rf Probe Tip Construction

The dimensions of the materials of the probe tips used to make rf fluctuation measurements

at the plasma edge have been selected with some care so as to provide an electrical match

between the coaxial probe tip and the rest of the transmission line. The insulating material

used is commercially-available alumina ceramic tubing with a dielectric constant of about 9. The

impedance of a coaxial line is

Zc= 60 In b (n) (C.1)

where is the dielectric constant of the insulator, a is the radius of the inner conductor, and

b is the inner radius of the outer conductor. The outer diameter of the outer conductor was

selected such that it would fit snugly into a standard .085" 50 ohm SMA connector. Several

pieces of transmission line were constructed with the above criterion and Eq. (C.1) in mind for

which various sizes of inner conductors and ceramic tubes were tried. Each piece was tested by

terminating it at 50 ohms at one end and measuring the reflectivity of power fed in from the other

end. Measurements were performed over the frequency range 0.5-1.0 GHz. The most satisfactory

line consisted of an inner conductor 0.014" in diameter surrounded by two concentric ceramic

tubes of inner and outer diameters 0.016" and 0.032", and 0.043" and 0.067", respectively. The

outer conductor was 14 gauge, 0.005" wall thickness stainless steel needle of outer diameter 0.081".

The maximum measured reflectivity over the range 0.5-1.0 GHz was -17 dB, corresponding to a

VSWR of 1.3.
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Appendix D: Measurement of the Diffusion Coefficient in the Edge Plasma

In this appendix, the measured edge density profiles are used to calculate the particle diffusion

coefficient in that region. Because X > a, the plasma minor radius, the diffusion at the edge may

be analyzed in slab geometry. The equation of continuity for ions is

ant + V (rI + r_) - nn, < O2' > -nn,fa (D.1)
at

where n,,n,, and n, are the local ion, electron, and neutral hydrogen densities, rll,rl are the

parallel and perpendicular ion fluxes relative to the magnetic field, and < av > and a, are the

ionization and recombination rates, respectively. Integrating over z and assuming all quantities

except rll to be independent of z, we obtain

8n, a 2
at+ rl - rll = nnn < av > -n,niar (D.2)at +x '

where tw is the length between obstructions along the field, e.g. limiters or port walls, and ril 0 is

the particle flux to such obstructions. This flux may be estimated to be Frio = nC,/4, where C,

is the ion sound speed. This is the ideal flux to a floating plane probe. The diffusion equation

may be written

a (DI a)- ni(C,/2 - n, < v > -1/- + nia,) 0 (D.3)

where is a phenomenological density decay time and we have replaced n with n,. The last

two terms in the parentheses are much smaller than the first two and are dropped. Though the

edge neutral density is not known, it is probably on the order of 1012 cm - 3 , which is close to

the neutral gas fill density. For the measured electron temperatures, the ionization term is less

than the parallel diffusion term inside the port, but the two are possibly comparable between the

limiter and the wall, assuming the neutral density is not much lower than its assumed edge value.

For the purposes of this discussion, however, the ionization tcrm is dropped, and the assumption

is made that D 1 and C, are independent of position in the edge region (which is not strictly

valid since the electron temperature is not constant in the scrape-off layer,but is acceptable as

the temperature gradient is smaller than the density gradient). The solution of Eq. (D.3) for the

theoretical density profile then has an exponential form:

ni (z) = ni(O)eIch/2-D.L 2 (D.4)

Using the measured exponential density scale lengths and electron temperatures, we can

calculate the perpendicular ion diffusion coefficient, though in light of the foregoing assumptions,

the result is not expected to be more than an estimate. Table 2 shows the calculated diffusion

coefficient, as well as the Bohm diffusion coefficient (DBohm = (cTe,/eBo)) for the five cases:

with the limiters 2 cm. to either side of the grill port; 1.) probe toroidally outside limiters, 2.)
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probe toroidally between limiters, radially between limiter edge and chamber wall, 3.) as in case

(2) with probe radially inside grill port in front of grill; and with the limiters located 55 cm to

either side of the grill port; 4.) same as (2), and 5.) same as (3).

Table 2

Comparison of Particle Diffusion Coefficients
Under Different Edge Conditions

Case T, (eV) X (cm) D± (cm 2 /sec) DBohm (cm 2 /sec)

1 20 1.5 5 X 104 1.6 X 10 4

2 16 0.5 2.6 X 104 1.3 X 10 4

3 4 0.25 4.1 X 103 3.1 X 103

4 22 1.0 2.1 X 104 1.7 X 104

5 5 0.2 2.9 X 103 3.9 X 103

The experimental diffusion coefficient in Case 1 is uncertain because the width w between

limiters is not well-defined for the probe situated 220 from the grill. In consideration of the

roughness of the model, the measured edge diffusion coefficients are in reasonable agreement with

Bohm diffusion values.
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