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ABSTRACT

Load dependent rotor dynamic instabilities have caused
vibration in turbomachinery at a frequency corresponding to the
first flexural mode. A potential source of a destabilizing
force is the labyrinth seal. To evaluate the effect on rotor
stability, the stiffness and damping coefficients are derived
for arbitrary seal geometry and leakage flow conditions using a
one-dimensional flow model.

Displacement related forces are calculated for several con-
figurations and compared to actual test measurements. Excellent
agreement for the cross-coupling stiffness was obtained for both
half and full labyrinth seal designs.

In order to better understand the effect of various seal
parameters, closed form expressions approximating the stiffness
and damping coefficients are obtained for a single chamber seal
and a long, multichamber seal. Both the closed form expressions
and the complete theory are used to demonstrate how geometric
factors influence the magnitude and direction of the out-of-
phase force and are used to give physical insight to the
destabilizing mechanism. Seal forces can increase the stability
of a rotor system as well as decrease it.

Several examples are given to demonstrate how variation
in operation can affect the magnitude of destabilizing seal
forces. With changes to the seal geometry, the stable region
for operation can be increased.
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I. INTRODUCTION

Both turbines and compressors are judged on their ability to operate

efficiently and reliably. With today's trend toward higher power

density machines, internal leakage control is crucial for minimizing

losses and thereby maintaining overall efficiency. A common element

used to control leakage is the non-contacting labyrinth seal. This

element (Figure 1) is a series of throttling points or orifices

which control the leakage flow rate by the radial tooth clearance,

seal chamber geometry and the number of sealing strips present. The

selection of a particular type of labyrinth from those shown in

Figure 1 is made by considering the required axial thermal growth

capability and operating pressures as well as leakage control effec-

tiveness. H. Martin() described the governing equation predict-

ing the leakage flow rate in terms of the thermodynamic state of the

gas and the seal geometry. More recent studies were made by

G. Vermes (2) and C.A. Meyer(3) to determine how the seal strip

configuration influences the overall flow coefficient used in

Martin's formula. This combined theoretical and empirical effort

has resulted in an accurate prediction of leakage losses with laby-

rinth seals.

(4)
In 1965, J.S. Alford published the first paper on a negative

aspect of labyrith seals. He observed self-excited forward whirl in

aircraft engines and concluded that destabilizing forces were gener-

ated by circumferential pressure variations in the seal chambers.

He noted that the onset of the self-excited whirl occurred at high

1
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pressure and power levels and the mode excited was the fundamental

flexural frequency of the rotor system. His analysis to predict the

magnitude of the destabilizing seal forces required an axially vary-

ing seal strip clearance. A seal with uniform tooth clearance pro-

duced no destabilizing forces. A converging seal produced destabil-

izing forces in the positive whirl direction, while a diverging

clearance seal would induce negative whirl. This initial analysis

(5) (6)
influenced subsequent work by Ehrich ), Vance and Murphy .

Arguments were given to demonstrate the existence of axially varying

clearances in machines with self excited whirl either by design,

non-uniform thermal growth or uneven wearing of seal strips. The

effects of shaft rotation, surface friction and preswirl of the gas

entering the seal were neglected in the above papers.

Improvements on the Alford's theorectical model for predicting the

(7)
magnitude of the seal forces were published by A. Kostyuk in

(8)
1972 and T. Iwatsubo in 1980. Kostyuk added significant

refinements which included the effects of fluid preswirl, shaft

rotation and surface friction into the analysis. His work fell

short by predicting no destabilizing force for the uniform clearance

seal with parallel displacement of the rotor shaft. His erroneous

assumption of constant chamber area circumferentially around the

eccentric rotor was partially corrected by T. Iwatsubo. Iwatsubo

also allowed the shaft to whirl in the seal in an elliptical orbit.

With these refinements, destabilizing forces were now calculated for

the uniform clearance seal with parallel rotor displacement.

3



Concurrently in this period, actual force measurements were being

made on labyrinth seal models for various geometries and inlet con-

ditions. The most noteworthy investigations were those conducted by

D.V. Wright(2 1 ) and Benckert and Wachter (11 ) (12 ). Wright's

tests, published in 1978, were made on a single chamber seal in

which a rotor was rotating and whirling eccentrically. His investi-

gation included uniform, converging and diverging clearance seals.

The measurements indicated that negative whirl was induced by the

seal in all three cases. This result seemed to contradict actual

field observations of positive whirl induced by seal forces as well

as the test results of Benckert and Wachter.

A more extensive test program was undertaken by Benckert and

Wachter. While their published tests were restricted to constant

clearance seals and non-whirling shafts, the measurements made agree

with observed whirl in the field. From the measurements made on

different geometries, empirical factors were derived which enabled

the out-of-phase force to be predicted. In addition to seal geom-

etry, the out-of-phase force was found to be a function of the pre-

swirl velocity entering the seal, rotor speed, pressure and density

of the gas in the seal. These effects were predicted by the theor-

etical seal models.

While the work in the area has been extensive, a number of questions

remain. These questions are:

4



1. What are the required geometric, fluid mechanic, and thermo-

dynamic parameters for prediction of labyrinth forces?

2. How well do comprehensive, theoretical calculations agree with

test measurements?

3. How should seals be designed to minimize destabilizing forces

and also minimize any negative impact on efficiency?

4. How are the labyrinth forces related to the rotor spin and

whirl angular velocities?

5. How significant are the seal destabilizing forces relative to

other stabilizing forces present in turbomachinery?

Many of these areas have been addressed by different investigators

with the conclusions drawn by some in conflict with others. One

example would be the effect of radial clearance on the magnitude of

labyrinth forces. Theoretical results from R. Jenney(1 3 ) show a

weak relationship between clearance and the cross-coupling force,

while Iwatsubo predicts a strong inverse relationship between clear-

ance and force. Answers to these questions are key to efficient and

reliable operation of turbomachinery.

To resolve these discrepancies, the theoretical models used to cal-

culate seal forces will be re-examined. All currently known effects

will be included in the relationshps governing leakage flow and the

5



momentum change of leakage flow to arrive at a more accurate seal

force prediction method. The general relationships will then be

simplified into two types of seals: a single chamber seal with two

sealing strips and a very long multichambered seal. These expres-

sions will reveal the important parameters which govern the

cross-coupling force. The mechanism which generates the destabil-

izing characteristic of very long seals will be explained with

S. H. Crandall's( (10) heuristic rotating wave model. These

functional relationships will be compared to the more complete

theory to demonstrate their inadequacies. Force gradients predicted

by the complete theory will be compared to actual test measurements

for different types of seals to demonstrate the current state-of-art

for seal force prediction.

True assessment of the destabilizing forces from seals on rotor sta-

bility can only be accomplished by combining the seal forces for a

specific rotor system. This has been theoretically investigated on

(13)
an elementary basis by R. Jenny . In his analysis only the

cross-coupling stiffness coefficient was used and was applied at the

rotor midspan location. The change in the system's logarithmic dec-

rement for the rotor's first critical was plotted as a function of

seal cross-coupling stiffness. This analysis, which neglected the

influence of seal location, seal damping and direct stiffness, and

variable speed operation did demonstrate that seal forces can sig-

nificantly reduce turbomachinery stability. As will be shown, the

influence of both rotor speed and whirl related forces are also

critical in establishing how stably a machine will operate., A high

6



speed, high power density turbine will be examined to demonstrate

these effects. The results are presented in the form of stability

contour maps where the logarithmic decrement is plotted as a func-

tion of both speed and seal pressure. Since seal pressure is

directly related to machine output, the contour can be extended to

relate lcg decrement to speed and machine load. This new approach

to judging a rotor system's stability margin allows one to immedi-

ately know which combinations of speed and pressure should be

avoided. Changes in seal geometry are then made to reshape the

stability contour map to achieve a higher operating pressure condi-

tion. At the same time the overall efficiency will be improved by

changing the seal design to reduce seal leakage. This procedure is

easily extended to more complex designs. The design engineer can

more effectively evaluate the design of various components to

achieve both an efficient machine as well as one that operates

reliably.

7



II. DERIVATION OF SEAL FORCE EQUATIONS

2.1 Seal Model

Early investigators, such as Alford, regarded the steady-state

leakage flow through a seal as one-dimensional. As both exper-

imental and theoretical work continued in this area, it became

apparent that the flow was quite complex. In general, the flow

through the seal is both turbulent and three-dimensional. The

pressure distribution in a seal's chamber is non-uniform in

both the circumferential and radial directions. Regions of

high localized velocity exist adjacent to the shaft. Figure 2

depicts the velocity of distributions which dominate the flow

pattern in a typical straight labyrinth seal. In the axial

direction, there are two distinct velocity regions. One near

the rotor has a high velocity. This induces a vortex in the

low velocity region bracketed by the stationary seal teeth. In

the circumferential direction there is a turbulent, flat vel-

ocity distribution. The channel has three sides stationary and

the fourth moving at a velocity, u. With both velocity dis-

tributions coexisting, an infinitesimal fluid element might

take a three-dimensional spiral path while passing through a

chamber. This type of spiral flow pattern was observed experi-

(8)
mentally by Iwatsubo with water as the fluid passing

through a straight labyrinth.

8
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FIGURE 2 Schematic representation of velocity distributions and flow
patterns in a straight labyrinth seal.
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Around its steady state position, the rotor center precesses

with an arbitrary orbit. (See Figure 3). The general direc-

tion of the orbit may be either forward or backward whirl and

may be of any size. For very large orbits, the distribution of

both mean pressure and velocity will vary in a highly non-lin-

ear fashion. The net effect of shaft motion is to induce a

circumferential pressure variation which results in both an

in-phase and out-of-phase force on the rotor. Quite simply,

the in-phase force tends to change the natural frequency of the

system but the out-of-phase force influences the stability of

the rotor system.

To analytically determine the impact of seal forces on turbo-

machinery stability, this complex flow pattern must be simpli-

fied. Analysis of three-dimensional flow problems is generally

beyond the scope of practical analytical techniques. The fol-

lowing simplifying assumptions are made:

1. Only circumferential changes in pressure and velocity are

considered.

2. The pressure in each chamber is uniform radially and

axially and obeys Martin's flow formula.

3. The tangential velocity distribution is uniform across

each chamber.

10
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FIGURE 3 Dynamic orbit of the rotor center in a seal.
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4. The orbit of the shaft is small compared to the radial

tooth clearance. It is elliptical in shape with constant

angular velocity.

5. The rotor is perturbed from the seal's geometric center in

a parallel fashion. No skewing of the rotor is permitted.

6. The fluid obeys the perfect gas law.

These assumptions are applied to the principles of continuity

and momentum in each chamber to determine the spatial and tem-

poral variation of chamber pressure. The effects of each cham-

ber are combined to establish the total force generated by the

labyrinth seal.

2.2 Conservation of Mass

The principle of mass conservation is applied to a control vol-

ume shown in Figure 4 for the ith chamber. The dimensions of

the chamber are assumed to be small compared to the radius, R,

of the rotor. The equation for the conservation of mass can be

written as

Net mass into control vol. t [p d(Volume)] (1)

Expanding equation (1) in differential terms gives

qi dx - qi+l dx + (pi Ci fi)

12



- (Pi + Pi dx) ( i + Ci dx) (fi + fi dx)

= at (Pi fi dx) (2)

where

x - distance measured in circumferential direction

q - mass flow rate per unit length

p - fluid density

c - mean tangential velocity of fluid in chamber

f - chamber cross-sectional area

( )' - partial derivative with respect to x.

Combining terms and neglecting higher order effects yields

a a

at (Pi c fi) + = 0. (3)

This is a more general form of the equation derived by T. Iwat-

(8)
subo( ) In his formulation, Iwatsubo assumed that the spa-

tial variation in area was negligible compared to variations in

density and velocity. While both clearance and area were

expressed in terms of x and t, partial derivatives with respect

to x were neglected.

2.3 Conservation of Momentum

Again the Iwatsubo approach will be taken in deriving the

momentum equation. Only the momentum change in the tangential

13
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direction is considered. The conservation of momentum equation

can be written as

d
I Flux dt (Momentum) (4)

dt

Figure 5 shows the ith chamber with the influencing forces and

momentum fluxes. The momentum equation in the x direction is

Pi fi - (Pi + Pi dx) (fi + fi dx) + Pi f. dx

- Si SSi dx + tRi SRi dx

+ qi Ci-1 dx - qi+i ci dx

2
+ (Pi Ci fi) i - (ci + i dx) (Pi + Pi dx)

'. a
(f + f. dx) at (Pi Ci f dx). (5)

By combining terms equation (5) becomes

a a 2 a
at (Pi i fi) + X (Pi i fi) + fi ax Pi

+ 'Si SSi - Ri Ri + qi+l C qi- i-l 0. (6)

2.4 Thermodynamic Considerations

The fluid in the seal is assumed to behave as an ideal gas. As

the fluid passes from sealing strip to sealing strip, the state

of pressure reduces by throttling. Figure 6 shows how the

pressure and axial velocity change as the fluid passes through

15
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the seal on an enthalpy-entropy chart. A more detailed des-

cription of how the thermodynamic state changes in a labyrinth

(2) (3)
seal is given by Vermes and Meyer . In the area of

the sealing strip the fluid has a high axial velocity. Within

the chamber the axial velocity is reduced and the impact pres-

sure is assumed to be zero. As both Meyer and Vermes indicate,

this is not entirely true. There is residual axial velocity in

the chamber which is referred to as carry-over. This reduces

the static pressure felt by the rotor. Stepped seal configura-

tions have less carry-over than straight tooth seals. This

difference will be neglected. It arises from the more homogen-

eous velocity distribution in a stepped seal design as a result

of its better mixing quality. The straight seal requires less

mixing of the leakage flow to get through the seal.

While in the chamber, the fluid is assumed to change isentrop-

(6) (7) (8) (14)
ically in the tangential direction . This means

that both pressure, P, and density, p, obey the following

relationship:

P
= const. (7)

MY

The specific heat ratio, y, is approximately equal to 1.3 for

superheated steam and 1.4 for a diatomic gas. Taking the time

and spatial derivatives of equation (7) gives

17
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FIGURE 6 Enthalpy-entropy chart for fluid passing through a labyrinth
seal.
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a P aP
at p = at

and

ap 1 aP
ax P ax

Since the fluid is assumed to be ideal, the perfect gas state

equation,

P = pRT, (10)

can be applied to equations (8) and (9) to give

ap 1 1 aP
at y RT at

and

ap 1 1 aP
ax y RT ax

2.5 Fluid Mechanic Considerations

(11)

(12)

Martin's formula relates the leakage flow to the state of the

gas at each end of the seal and seal geometry. The fluid is

assumed to remain at constant temperature as it passes through

the seal. One form of Martin's formula is

1
q CD 6RT

19

(13)

(8)

(9)



The leakage flow per inch of circumference, q, is related to

the uniform radial clearance, entrance and exit pressures, the

number of sealing strips and the overall flow coefficients,

CD. In general, the flow coefficient is a function of tooth

configuration, clearance and pressure ratio across the seal.

Strictly speaking, the above relationship can only be used for

seals with four or more teeth. For less teeth the overall flow

coefficient will vary for the same clearance and pressure ratio.

Since the equations for mass and momentum conservation are

written on a per chamber basis, equation (13) must be in a com-

patible form. Martin's equation has been written on a per seal

strip basis in references (7), (8), (13) and (14) as

2
2 2 2 qi RT

P. P = (14)
i-1 i 2 22 6.2

where . is the local flow coefficient replacing CD . The

limitations made on equation (13) are removed by specifying 

for each seal strip in the labyrinth. As with the overall flow

coefficient, is also a function of radial clearance and

pressure ratio across the seal strip. Equation (14) relates

the flow into and out of each chamber by local variables.

Equally important is the value for mean tangential velocity, c,

of the fluid in each chamber. Knowledge of the drag forces

from both rotating and stationary surfaces is key in establish-
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ing c. A friction factor approach will be taken since the

channels are non-circular with turbulent flow. As suggested in

references (7), (8), (13) and (14), the drag force per unit

circumferential length is

s = Fd /unit length
drag

where is the shear stress and s is the wetted perimeter of

the channel. For the stationary part of the seal chamber, the

force per unit length is

1 2
TSS - p c S (15)
Si Si 2 Si i i Si (15)

and for the rotating surface

'Ri SRi = 1/2 ARi Pi (u - ci) * iu - cil Ri- (16)

The friction factor*, A, shown in Figure 7 for turbulent flow

in rough non-circular channels with a fully developed velocity

distribution is given in Schlichting(15) as

1 - .87 - log ks + 374 (17)

A19(h Re A
o o

* The more commonly used expression for A in the turbulent
regime is the Blasius approximation:

-1/4
A = .0791 Re 1

This approximation starts to deviate from test data at Reynolds
numbers greater than 105. Typical applications of seals in
compressors have Reynolds numbers in excess of 107.
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and

X- = Re/16.

for laminar flow.

The Reynolds number, Re, is given by

2 ci Rhi
(Re) Si 

s i Vi

for the stationary surface and

2 lu-cI Rhi

(Re)Ri = V.
1

for the rotating surface.

defined as

The hydraulic radius, Rh, is

2f 2 * X - Area

Rh = S + S Wetted Perimeter
(21)

The equivalent roughness, k, for a channel can be shown to

be related to the RMS surface finish by

k = 2. (RMS surface roughness).
5

(22)

The effect of surface roughness has been neglected by many

investigators.

Equation (17) would apply with Reynolds numbers from 2300 to

8
10

23

(18)

(19)

(20)



The Reynolds number of the chamber flow relative to the rota-

ting surface may, under certain instances be laminar and turbu-

lent relative to the stationary surfaces. Therefore, accurate

friction factor representation in both regimes is required.

Other effects which can significantly modify the friction fac-

tor are channel curvature and entrance effects. The curvature

(15)
effect can be approximated for turbulent flow by

1 + .075 Rel/4 (h (23)

and for laminar flow by

A = .1064 Re Rh 1(24)
L R 

Strictly speaking, equations (23) and (24) apply only to a

channel where all sides are stationary. It will be assumed

that the effect on A is the same when rotating surfaces are

involved.

An increase in surface friction also occurs when the flow in

the tangential direction has not fully developed. For turbu-

lent flow in pipes, the local friction factor does not reach

its equilibrium value until after the fluid has traveled at

least 10 hydraulic diameters(1 7 (18)(23) . For laminar flow

at least 50 diameters are required. Figure 8 shows how the

average friction factor over a channel length, L, changes with

24



Reynolds number for turbulent flow. The ratio L/(2 Rh)

used in Figure 8 can be approximated by ratioing the mean tan-

gential velocity to the average axial velocity in the chamber,

L (25)
2 'Rh - (Vax). (25)
2'4R (Vax)i

where

qi
(Vax) = (26)

i 2 P 2i hi

The effective friction factor can be written in terms of multi-

pliers for the various effects as

= A 'curvature factor-entrance factor (27)
o

where A includes the effects of surface roughness ando

Reynolds number.

An accurate representation of the friction factor is required.

This will permit matching of calculated values with test

results at low Reynolds numbers and accurate prediction of seal

forces at design conditions with high Re values.

2.6 Steady-State Requirements

The method of solution as described by Iwatsubo will be to

first consider the rotating shaft centered in the labyrinth

with the fluid in each chamber at its steady-state value. The
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steady-state conditions are found by removing terms depending

on time and spatial variation from the mass and momentum equa-

tions. Equations (3) and (6) reduce to

qi+l - qi = 0 (28)

and

TSi SSi - TRi SRi + qi+l Ci - qi Ci+l = 0. (29)

Equation (28) says that the flow is circularly uniform and con-

stant through each seal strip. Equation (29) determines how

the tangential velocity, ci, of the fluid in each chamber

must change to remain in equilibrium with the surface drag

forces.

The procedure for establishing the steady-state values is

straightforward. First the leakage flow rate is obtained from

equation (13). Then the steady pressure, Pi, can be deter-

mined using equation (14) by starting with the first chamber

and proceeding to the last. Since the gas is ideal and at con-

stant temperature, the density distribution is also deter-

mined. The tangential velocity, ci, for each chamber is

found in a similar fashion. The inlet velocity, ci is either

known or estimated and used in equation (29) to calculate c2

in the first chamber. An iteration procedure is required to

satisfy (29) since A is also a function of c. Once c2 sat-
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isfies (29) for the first chamber, it is then used as the inlet

condition for the second chamber. The process continues until

the tangential velocity in each chamber is determined.

2.7 Dynamic Requirements

The rotor is now allowed to precess with an angular velocity,

w, in a small circular orbit of radius r . The magnitude
o

of r is small compared to the mean clearance, 6i, of the

seal strip. Because of the precession, the clearance between

the rotor and the ith seal strip will vary as

6 = - r os t ' (30)

The cross-sectional area also varies. For the ith chamber the

area can be described by

f. = f. - .r cos - tl (31)
1 1 10 IR

where is the distance between adjacent seal strips.

Since the disturbance is assumed to be small, variations in

pressure, velocity, leakage rate and density will also be small

and will be represented by perturbations superposed on the

steady-state value:
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Pi. Pi. + P.

C. = C. + C.
1 1 1 (32)

(32)

qi q + qi

Pi = Pi + Pi

Since both the clearance and chamber area variations can be

thought of as a traveling wave, the other parameters can also

be represented as a wave moving with the same velocity but with

a relative phase angle, , associated with each. The pres-

sure and tangential velocity can be described by

P. = P. + P. = P. + P . Cos , (33)
1 1 1 1 ml pi

= c. + = c + C . COS .ci (34)
1 1 1 1 ml ci

where

x
=-- Wt + i'=R + ' (35)

Since the fluid behaves as an ideal gas, the fluid density can

be written as

Pi RT i + i cos pi (36)
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Changes in density with respect to location and time must also

follow equations (11) and (12).

The equations for mass and momentum will be written in terms of

(33) and (34). To accomplish this, the leakage flow rate will

be written in terms of clearance and pressure variations.

Equation (14) is rewritten as

i i i2 2) 1/2
qi = - --i- - Pi

~RT

Expanding the flow equations in terms perturbation variables

gives

A

(,i+ji) (i + i. ) 
i

RT

Pi-I+ i_)2 - + (38)

Rearranging equation (38) and neglecting second order terms

gives

qi = q [1+1 a ) 1

--- (iPi i Pi-
1- Pi-
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! + ~ (i(39)
Pipi-l1pi Pil Pi]

!

au au 1 iThe terms - z and j- represent the percentage
The term 6- /P ~ P-,J ti i-ll 11 i-1

change in flow coefficient with percentage changes in clearance

and seal strip pressure ratio respectively.

There is also a variation in the drag force because of varia-

tions in the tangential velocity and density. Although the

friction factor is affected by these variations, it will be

assumed to be constant. Allowing Pi and c. to vary in
i 1

equation (15) gives

TSi SSi = 1/2 ASi SSi P + P 2. (40)

Using the ideal gas law, equation (40) can be rewritten as

Si Si 1/2 i i RT + i Pi

u u+ 2- u ' (41)

The corresponding drag force on the rotating surface is

TRi SRi -1/2 Ri SRi ( i i) [u | +i i] (42)
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or

2

2 _
i P i R

+ P. u u+I #l~ ) pi 2 (2 Al % }) ] (43)

Each term in the mass and momentum equations can now be repre-

sented by constants and variations in pressure and tangential

velocity. First, the conservation of mass equation, (3), is

expanded as

Pi fi P fi + P Ci fi + Pi Ci f + i c f i i

+ i+l -i 0. (44)

In dimensionless form (44) becomes

ii I 1 1 ii
RTi i +_ i

q i i

P. C. C. c.
+ Pi fi u i + 

RT - u u u f
q P

qi+l i+ - =0. (45)
q q

Substituting equations (33) through (36) and (39) into equation

(45) gives
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-1

1-1_i 
i-l

+ al 1
2 +

Pi fi Q
RT -

q

+ 2~~

Pi+l

1

P i-ialPi
P 

1

+
1

2
Pi-i
F.I

1

piiI P .1 1

4i Pi-l 

1 Pi+l

i+l Pi

i+l

Pi+l

i

P .
ml

P.
1

cos 9p.
Pi

2
-1

1

a ( i+,l/Pi 

Pifi 
+ RT -

q
I~~~~~~~~.

= Pi fi 
RT -

q

C .ml
u

r _ C1
I w u | sin

1

1 Pi+l
i i

R

3a6 P ii,
+[1 j1

6i+1
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Pmi-1

Pi-1

cos 0P.
i-1

C P .
1 Ml

u Pi1
sin .

1

1

P
P1

Pmi +1

P.i+1

cos P
i+l

sin .Cl

- t)

1 w

Y- ~ 

6 P i+l
6 
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cos Wt) * (46)

A similar procedure is used for the momentum equation. Expand-

ing equation (6) gives

. . ' 2
Pic f + p.c.f. + p. i c.fi + Pi c. f.1 1 1 1 1 1 1 1 + i 1 1

2
+ 2 i Ci C fi + P Ci f + P i fi + i SSi

TRi SRi + qi+l Ci qi Ci- = 0. (47)

Using equations (11) and (12), equation (47) can be written in

dimensionless form as

Pi fi a 1

RT -
q

1 P

p.

0

c. c.
1 1 i 1- + i + 

u u

' 2

1 u Pi Ci 
T p.

1

Pi. f
1 1

- u
q

qi+l

q

Pi

Pi

u

c.
+2u u

TSi SSi
- u
q

c.

u
Ci+ u

IRi SRi

U- 

q

qi ci-1
u- 

q

34

c. f.
1 1

u -
f.1

I

(48)

I



Substituting equations (33) - (36), (39) (41) and (43) into

(48) gives

Ci Pi i 2
-q R 2

P.i fi 

RT -
q

P.
Pmi

Pi

sin P
Pi

xSi SSi Pi

2 q RT
q 

2

ui

2

1

Ri SRi

2-q

a I +

a | Pi+l/Pi)

2

P iu Ci.
RT u

1 Pi+l

P Pi
u

i+1 

\ Pi I

ci-l
u

1

Pi-l -1
P.11

P .
mi

P.
1

a P 1 Pi-

| (pi/Pi-il P Pi-l 
1

cos p
1

1

-

i-l

2 + ( (Pi/Pi-l)

1 Pi1 __
- p
P i-i i

Ci-l
u

Pmi-i
Pi- P i-ii-i 1-1

+ Pi fi 
- RT S}q

C .
ml
m sin s .U C1
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+ {-1) Cmi-l
COs

U

Asi SSi PiU Ci
+ q T |u +q(

Ri 5 Ri Piu Ci
- RT 1-u)
q

m Cli Cos Ci

l0

Pi if ia
RT

q g

i ro c c .
Ci i i i U " " U af.~~~ci 

sin - t)

1

6i+l

1 + "I I Ci
i+l

CO - - wt. (49)-1 - 1 a " U ]r Co R

The dynamic equations, (46) and (49), are in the form of for-

ward traveling waves for pressure and velocity. These results

are easily extended to the backward rotor whirl case for the

same inlet swirl velocity and rotor spin. The time and spatial

description for clearance, area, pressure and velocity for the

ith chamber are
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6iB = 6. - r cos + t

f iB . - . r cos + t
B 3 1 1 0

P P. + P.
iB 1 miB

C.i
1B

cos R + wt + $i B

= i +C . os + wt + 1 31 B Rli B

When the above equations are used, the resulting

momentum equations are identical to equations (46)

except for a sign change on all terms with w.

(50)

mass and

and (49)
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III. AERO-ELASTIC FORCES

3.1 Stiffness and Damping Coefficients

To evaluate the impact of seal forces on turbomachinery stabil-

ity, the seal will be modeled with eight stiffness and damping

coefficients. The logarithmic decrement will be calculated for

each flexural mode of the rotor system. The rotor system

includes all journal bearings, rotor shaft, bearing supports

and labyrinth seals. Other sources of aerodynamic forces

include circumferential variation in blade or impeller effi-

ciency, annular seals, and fluid forces on wheel surfaces.

These will be neglected in this analysis. The lumped mass,

transfer matrix approach as described by Lund (16) will be

used to establish the damped natural frequencies and mode

shapes of the system.

The coefficients required to represent a labyrinth seal are

obtained by determining how the pressure in each chamber varies

with shaft motion. Two methods are described in the Appendix

for determining the circular variation in pressure in each

chamber.

With the pressure variation in each chamber determined, the

resulting force on the rotor can be found by integrating the

pressure in each seal chamber and summing all chambers. For

the forward whirl case, the force in the X direction is
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n 2w P .
F- O I . P.

F i

Cos (e - t + i)F

cos () R d 

and in the Y direction

n 2; P .
ml

F- = I i Pi -
-F o PiF

cos ( - Wt + Pi)F

sin () R d 

Equations (51) and (52) are integrated to give

a. P. miF cos (- wt + pi

i

. P. miF cos I- wt + p

k i

The reaction forces for the backward whirl case are of similar

form and are

F- = - R X Q- P-

B

miB cos (wt + *PiB)

P.
1

F- -R a .P. MiB sin (wt + )
B p. B

1
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(51)

(52)

-

F

F-

F

=-R I

= - R 

(53)

(54)

and

(55)

(56)
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The two force components acting on the rotor can also be

written in the form

- = KllX + K12 Y + Cll + C Y (57)

* 1

- - = KX + K Y + C X + C Y (58)Y 21- 22- 21- 22

These two equations relate the displacement and velocity of the

rotor center to horizontal and vertical forces with eight

coefficients. If motion in only one direction is permitted

then only four are required. With the rotor moving only in the

X direction, the two force components become

- P- = K X + C X (59)
X 11 11

-F- = K X + C X (60)
Y 11 11

Unidirectional motion in the X direction can be obtained by

combining the circular orbits of both forward and backward

whirls. If for the forward whirl the displacement of the shaft

is written as

r = r e (61)
F o

and the backward whirl condition
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rB r e Wt
B 0

X- rF + r r
X = rF B = o Cos t

2

X = F =r - r sin wt
2 - o
2

By combining the horizontal and vertical force components for

both whirl directions, the stiffness and damping coefficients

can be written as

n

L i111 2 ro

R r
21 2 r

R r
11 2wr r

o

Pi os $Pi

I Ii Pmi sin Pi

I i - Pmi sin

F+ Pmi cos *Pi B(65)

F + Pmi sin Pi B)(66)

'Pi F+ Pmi sin Pi B) (67)
Fm iP

21 2 r0 i mi cos

Since the rotor is disturbed from a

seal, from symmetry the remaining four

*Pi F Pmi cos Pi B) (68)Fm iP

central position

coefficients are

K = K
22 K21

K = -K
12= 21

C22= C11

in the

(69)
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C -C c
12 -C21 

With the linearized stiffness and damping coefficients, some

general statements can be made on the impact of seals on sta-

bility. If the rotor is precessing in a circular orbit and for

simplicity, the rotor center at t = 0 is at X = r and Y = 0,

the out-of-phase (destabilizing) force acting on the rotor is

F-

t = 

- K21 r - C22 r0 (70)

From the symmetry of the system, the out-of-phase force is

always equal to (70). Three possibilities exist. They are:

destabilization in the forward whirl direction, destabilization

in the backward whirl direction or stabilization for both. If

I 211 > c22

and

K21 <

then the out of phase force tends to destabilize in the forward

whirl direction. If

K 11 > C W
1 21 1 22

and

K21 > 
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then the seal tends to destabilize the rotor in the backward

whirl direction. When

IK I < C22
1 211 22

then the seal will remove energy from the rotor and stabilize

in both whirl directions.

Because the rotor support system is generally asymmetrical with

respect to stiffness and damping characteristics, a circular

orbit may not exist in a seal. System asymmetry may change the

energy absorption/dissipation nature of seals. The simple

rules proposed for stabilizing/destabilizing cross-over point

may not apply. This effect from asymmetry is discussed by

(19)
D. Smith . An example of this will be discussed in

Section 4.

3.2 Comparison with Test Results

A valid calculation system must ultimately be compared to and

agree with test data. Many times the data are difficult to

obtain at actual design conditions because of either high tem-

peratures and pressures or high leakage flow rates. Investiga-

(21) (20)
tors such as Wright , Spurk and Keiper , Kuro-

(14) (11) (12)
bashi , Benckert and Wachter , all resorted to

modeling the problem at modest leakage flow rates with smooth

surfaces. Pressure drops across seals were on the order of
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several atmospheres. Not all parameters are matched while

testing under scaled conditions. One such parameter is the

Reynolds number of the chamber swirl flow. Laboratory tests

are generally conducted at Reynolds numbers in the neighborhood

4 5
of 10 to 10 . At these low values, the chamber surfaces

can be considered hydraulically smooth even though the flow is

turbulent. For actual operating conditions the same location

7
would have a Re value of 10 . For such values, surface

roughness of the seal is critical in establishing the effective

friction factor experienced by the leakage flow. Testing at

low Reynolds numbers may tend to distort the role of friction

in seal forces. This would lead to a less than adequate extra-

polation to actual field conditions.

Despite this drawback and the fact that all measurements were

taken on a non-whirling rotor, the Benckert and Wachter data do

provide experimental results with which the proposed method can

be compared. Such detailed chamber pressure for a four tooth,

straight seal are found in Figure 2 of reference 11. The test

conditions and configuration are shown in Figure 9. Each of

the three chambers is instrumented with twelve static pressure

taps to measure circumferential pressure variation. Data were

recorded for preswirl velocities of 0 and 367 ft/sec with the

rotor .014 inches eccentric from the seal center. The data are

shown in Figures 10 and 12.
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The criteria used to evaluate the predicted results with test

data are the following:

1. Agreement on the mean pressure in each chamber.

2. Agreement on circumferential zero to peak pressure varia-

tion in each chamber.

3. Agreement on the phase of the pressure variation in each

chamber.

Two sets of calculations were made to compare with the data.

In the first calculation it was assumed that the flow coeffi-

cient for each seal strip was equal to the overall flow coeffi-

cient as described in Martin's formula. Also, it was assumed

that each seal strip experiences the same percentage change in

flow coefficient for changes in clearance and pressure ratio.

These values were derived from test data published by

Meyer(3). The predicted pressure variation is compared with

test data in Figure 10 and summarized in Table 1 for the 367

ft/sec preswirl case.

From the results shown, several discrepancies exist. The aver-

age pressure calculated is higher than that measured. The lar-

gest error occurred in the first chamber with the calculation

predicting 1.89 PSIA higher than actually measured. The pre-

dicted values for the second and third chambers were high by
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I. MECH. ENG C258/80

Benckert & Wachter

Pin

_ .
Press

Taps

Pex

Fluid - Air

Rotor RPM - 0

Pin - 20.68 PSIA

Pe - 13.83 PSIA

T - 750 OF

p - .104 lb/ft3

Cin - 367 ft/sec

- 0. ft/sec

R - 5.907 in

6 - .020 in

N - 4 teeth

Avg. Flow Coeff - 1.01

L- .316 in

h - .236 in

e - .014 in

L - pitch

h - chamber hgt

e - eccentricity

FIGURE 9 Geometry and flow conditions for Benckert and Wachter three
chamber test seal.
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.92 and .72 PSIA respectively. Measured zero-to-peak pressure

variation in the first chamber was 3 times higher than pre-

dicted. Agreement on the second and third chambers was better

but the calculation was still low by 17% and 24% for the two

respective chambers. Measured phase relationships differ from

the predicted value by -22.4°, 8.70 and -6.5° in each chamber

respectively. These differences combine to give a predicted

cross-coupling stiffness 53% of the measured value and a pre-

dicted direct stiffness 17% of the measured value.

When the predicted values are compared to measured data for the

zero preswirl case, the discrepancies are more apparent. No

pressure variation was predicted for this condition. Measured

data showed a significant direct force in each of the chambers

with the force decreasing chamber to chamber. The same trend

in the direct force can be seen in the data taken with a pre-

swirled 367 ft/sec.

The differences between the calculated and measured chamber

pressures, both mean and zero-to-peak, can be reduced by exam-

ining the assumptions initially made. It was assumed that each

seal strip had the same flow coefficient. In his testing,

Meyer found a variation in flow coefficient from tooth to tooth

for uniform clearance configurations. The value used in Mar-

tin's equation represents an average value for all seal

strips. For a comparable configuration Meyer found the flow

coefficient for the first strip to be between .6 and .8. This
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FIGURE 10 Comparison of predicted and calculated pressure distributions
in each chamber for Figure 9. Predicted values are based on
identical flow coefficients for each seal strip. Preswirl
value - 367 ft/sec.
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TABLE 1

COMPARISON OF CALCULATED AND

MEASURED FORCES FOR FIGURE 9

Measured Data

Preswirl
ft/sec

0.

Gradient
lbf/in

Kll = 106.

K = 0.

Cham.
No.

1

2

3

lbf

-1.80

.45

-.11

lbf

0.

0.

0.

Po-p
PSI

.308

.077

.019

K1 = 212.

K = -758.
21

1 -2.47

2 .13

3 -.58

Calculated Data

Preswirl
ft/sec

0.

Gradient
lbf/in

K = 0.11

K = 0.
21

K = 37.

K12 = 403.

1 -.15

2 -.25

3 -.22

367.

deg.

0.

180.

0.

P
PSIA

17.02

16.84

15.16

4.92

3.02

2.45

.943

.516

.431

63.

93.

77.

17.31

16.67

15.10

Cham.
No.

1

2

F-

lbf

0

0

0

367.

3

F-

lbf

0

0

0

1.85

2.50

1.91

Po-p
PSI

0

0

0

.318

.430

.329

deg.

0

0

0

85.

84.

84.

P
PSIA

19.20

17.59

15.82

19.20

17.59

15.82
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low value compared to the seal average value of 1.01 would pro-

duce a greater pressure drop across the first tooth. Based on

Meyer's results, a flow coefficient distribution as shown in

Table 2 was assumed next.

Since the flow coefficients are not identical in the seal, it

is reasonable to assume that the percentage change in for a

given change in clearance will also be different for each

strip. Data in this area are very limited. The results pub-

lished by Meyer show how the overall flow coefficient changes

with clearance. Kurohashi represents the effect in terms of an

equivalent clearance change.

!16 i = (1 + {i) 6 i (71)

The constant {i is inversely related to a/a6. Data by

Meyer suggest that as clearance decreases, the flow coefficient

also decreases. In terms of Kurohashi's equivalent clearance,

the flow coefficient would increase with decreasing clearance.

In light of the apparently conflicting data, the approach taken

was to use a trial and error procedure to determine what dis-

tribution best fits the test results. The values obtained are

then judged on their reasonability. The same set of values

were used for both preswirl cases. The values arrived at are

shown in Table 2.

50



TABLE 2

DISTRIBUTION OF FLOW COEFFICIENTS FOR

FIGURES 10, 11 AND 12

Figures 12 and 13

a6/6

.70

1.01

.20

.50

1.01 .30

1.20 .40

.92

Tooth No.

1

2

3

4

Effective
Value

p"

1.01

1.01

1.01

1.01

Figure 11

a6/6

.15

.15

.15

.15

1.01
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Figures 11 and 12 show the agreement between predicted and

measured chamber pressures. Since the values were optimized,

agreement is obviously improved. This is particularly true in

predicting the pressure distributions for the zero preswirl

case. The greatest error still exists in predicting the

cross-coupling force in the first chamber. This optimization

does show that agreement was obtained by assigning individual

values for flow coefficient characteristics to each sealing

strip. The values shown in Table 2 are within the range of

expected variation based on test measurements(3)

The circumferential velocity distribution is shown in Figure 13

for the 367 ft/sec preswirl case. This predicted distribution

corresponds to the pressure distribution shown in Figure 11.

Actual measurements to verify the velocity distribution would

be difficult to obtain because of the highly complex flow pat-

tern in the chamber. If possible, however, such measurements

would indicate the apparent friction factor for the flow in

each of the channels. Also shown is the average axial velocity

of the flow across the chamber. The ratios of circumferential

to axial velocity are 7.4, 5.2 and 3.7 for each consecutive

chamber. For the above ratios, the flow is clearly still

developing. This requires the average friction factors to be

higher than the corresponding fully developed values.

While agreement was obtainable on direct stiffness values when

detailed flow coefficient characteristics were assumed for each

52



2

3

90 180 270 ;360
0 - DEGRE ES

FIGURE 11 Comparison of predicted and calculated pressure distributions
for Figure 9 with optimized seal strip flow coefficients.
Preswirl value - 367 ft/sec.
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FIGURE 12 Comparison of predicted and calculated pressure distributions
with optimized flow coefficients and zero preswirl.
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TABLE 3

COMPARISON OF CALCULATED AND MEASURED FORCES FOR
FIGURES 11 AND 12

Calculated Data

Preswirl Gradient
ft/sec lbf/in

0

Kll = 98.

K21 =0.

Cham.
No.

x-
lbf

1 -1.51

2 .32

3 -.19

F-
y
lbf

0 .258

0

0

.055

.032

1 -2.12

Kll = 225.

K21 = -477.

2 -.38

3 -.66

2.45 .554

2.61 .452

1.61 .298
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P
PSIA

367

0

180.

0

17.85

16.53

15.01

49.

82.

68.
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16.53

15.01

- ---



tooth, the predicted cross-coupling stiffness was only improved

by 10 percentage points to 63% of the measured value. In both

Figures 10 and 11, the greatest discrepancies occurred in the

first chamber. Since the seal had only three chambers, a large

error in the first chamber would severely impact the overall

agreement on stiffness values. The overall agreement might be

improved for seals with more chambers. Figure 14 gives four

additional cross-coupling stiffness comparisons of Benckert and

Wachter data with calculated values. Straight seals with 8 and

17 chambers were compared for different tooth pitchings and

inlet pressures. For these four cases, the error between test

data and calculated values was at most 11%. This occurred for

the 8 chamber case with the calculated value lower than the

measured value. For the 17 chamber cases, the calculated val-

ues were within 3% of the measured values. The disagreement

decreases as the number of chambers increases.

The test data so far compared to predicted values have only

been for straight labyrinth seals. Figure 15 gives a compari-

son of test to predicted cross-coupling stiffnesses for a full

labyrinth with 23 chambers. For the two cases shown, good

agreement was obtained with the same prediction method. The

calculated value was 13% higher than found from measurement at

the higher speed. At the lower speed the two values agree

within 1%.
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Based on the last six cases, the suggested calculation method

predicts the out-of-phase force level within 13% for a range of

speeds from 0 to 9549 RPM and for both half and full labyrinth

seal designs. These cases represent designs more commonly used

in turbomachinery and would give a better indication of how

predicted values agree with test data.

3.3 Influence of Seal Geometry, Preswirl and Rotor Angular Velocity

Section 3.2 demonstrated that reasonable agreement between the

proposed calculation method and actual test data occurred when

detailed flow coefficient characteristics were known. Agree-

ment on the cross-coupling force is still good without this

detailed data. From a stability point of view, it is desirable

to understand how geometric parameter changes influence the

magnitude and direction of the cross-coupling force. The

direct force, while comparable in magnitude to the out-of-phase

force, primarily influences the rotor's damped natural frequen-

(13)
cies. Based on the results of Jenny and measurements

made by Benckert and Wachter, changes in rotor criticals would

be on the order of three percent for typical turbomachinery

designs.

Two seals, one with 30 chambers and another with 3 chambers

will be used to demonstrate the effect of parameter changes.

Figure 16 gives the geometry and pressure drop across both

seals. The two examples were taken from a sample calculation
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Lb I--

I
I

Geometry

R = 5.906 in

6 = .023 in

= 1.20

h .236 in

u= 0

Pex = 13.83 PSIA

T - 75°F

Case Pin
PSIA

1 28.2

2 35.5

3 28.2

4 35.5

Cin
ft/sec

200

200

200

200

M

17

17

8

8

L Calc. K1 2

in lbf/in

.194

.194

.394

.394

162

231

150

214

Meas. K1 2
lbf/in

166

234

166

234

FIGURE 14 Comparison of calculated cross-coupling force gradients with

Benckert and Wachter measurements on straight labyrinths.
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Geometry

R = 5.906 in

6 .020 in

p = .64

h = .236 in

l .157 in

M = 23

Pin. = 20.68
in

Pex = 13.83

T = 75°F

Calc. K1 2

lbf/in

285

138

Meas. K12

lbf/in

251

137

FIGURE 15 Comparison of calculated cross-coupling force gradients with
Benckert and Wachter measurements on full labyrinths.
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found in reference 12 by Benckert and Wachter. In addition to

demonstrating how geometric changes to a seal alter the desta-

bilizing force, two examples will also serve as additional

checks on the proposed calculation method. Predicted values

for both seals are given in Figure 16. Agreement between the

Benckert and Wachter system and the comprehensive, theoretical

method is very good. The 30 chamber seal force differs from

the predicted value by 4% and the value for the 3 chamber seal

differs by 8%. These values correspond to non-whirling

shafts. Therefore, no whirl related forces are present. For

illustration purposes, it will be assumed that the rotor has a

natural frequency at 2500 RPM. The out-of-phase force will

now include whirl related terms and will permit comparisons of

calculated damping terms with cross-coupling stiffness terms.

Table 4 gives the values of the stiffness and damping coeffi-

cients for the base case of the 30 chamber seal and those for

each geometric parameter change. Also shown are the corres-

ponding values for three different preswirl speed fractions.

The speed fraction corresponding to .36 has the fluid entering

the seal at the equilibrium tangential velocity. As the pre-

swirl velocity is increased to 80% of the surface velocity, u,

there is a contribution to the destabilizing stiffness coeffi-

cient as a result of the reduction in tangential momentum of

the fluid from frictional drag. The momentum reduction does

not significantly affect the damping coefficient. When there

is no preswirl in the fluid entering the seal, the tangential
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BENCKERT & WACHTER EXAMPLE

NASA CP 2133 Pg 205

Geometry

R - 5.906 in

6 .010 in

- .98

h .236

£ = .197

RPM - 12000

Cin = 492 ft/sec

Pin. 2900 PSIA

(N=4) Pex = 2320 PSIA

(N=31) P ex- 290 PSIA
ex

Benckert & Wachter System

N = 4 K = 5.14 x 104 lb/in
12

N = 31 K = 1.43 x 105 lb/in
12

Predicted Cross-Coupling Stiffness

N = 4 K12 4.95 x 104 lb/in

N 31 K12 1.56 x 105 lb/in
12

FIGURE 16 Comparison of calculated cross-coupling stiffness using the
Benckert and Wachter method and using equations (46) and (49).
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momentum of the fluid must increase through the seal. The

impact is to reduce the value of K12 for the base configura-

tion. Again the damping coefficient is not significantly

affected.

The same geometric changes and preswirl speed fractions are

applied to the seal with only 3 chambers. Table 5 gives the

corresponding stiffness and damping coefficients for the dif-

ferent configurations. The same trend for changes in preswirl

velocity can be seen in all cases. As the preswirl velocity is

reduced, the cross-coupling stiffness, K1 2, decreases. For

the same conditions, K1 2, can have a large negative value for

zero preswirl.

Figures 17 through 22 show how the stiffness and damping coef-

ficients change as a function of rotor speed. The whirl fre-

quency was held constant at 2500 RPM. The damping coefficients

are multiplied by the whirl frequency to allow direct compari-

son with the stiffness coefficients. The results are summa-

rized in Table 6. For the case of the preswirl velocity equal

to the equilibrium tangential velocity, the speed where the

out-of-phase force goes to zero occurs at 7000 RPM. This cor-

responds to the ratio of / = 2.8 and is true for both

long and short seals. For speeds greater than 7000 RPM, the

out-of-phase force is destabilizing. For lower speeds the

force is stabilizing. As the incoming preswirl velocity is

increased, the cross-over point occurs at a lower speed for the

63



TABLE 4

INFLUENCE OF GEOMETRIC CHANGES ON

K12 AND Cll FOR A THIRTY

CHAMBER HALF LABYRINTH

Parameters
Changed

Base

Clearance

Chamber Hgt

Pitch

No. of Chambei

Radius

Finish

C = .8u
IN

K12 C11 K12

13400 193 78200

152000 197 78900

56900 60 25100

156000 173 72200

:s 127000 134 53100

88100 94 44900

115000 111 45200

w = 261.8 rad/sec

Parameter Original

Clearance .010 in

Height .236 in

Pitch .197 in
No. of Chambers 30
Radius 5.906 in
Finish 63 x 10 - 6

64

C

K1 2

28800

10400

-2600

-8900

-13000

5920

-17700

C -0IN
C1 1

200

198

64

181

135

97

111

= 36u

Cl1

194

196

61

173

132

94

112

RMS in

Modified

.020 in

.334 in

.139 in
20

4.967 in
0



long seal. With no preswirl, the long seal generally has a

stabilizing effect over most of the speed range. Between 1300

and 3250 RPM, there is a slight destabilizing force in a nega-

tive whirl direction.

The short seal follows the same trend for preswirl velocities

equal to .8u and .36u. With no preswirl, the out-of-phase

force is destabilizing for negative whirl for speeds greater

than 1300 RPM.

Another effect which was originally addressed by Alford was the

influence of converging/diverging clearance on stability. From

his initial analysis, he concluded that converging seals would

destabilize the rotor system in a forward whirl direction.

Diverging seals would destabilize in a negative whirl direc-

tion. To confirm this theory, clearance for both long and

short seal configurations were varied along the seal in a lin-

ear fashion from .0073 to .0145 inches radially. For this

change, both seals would pass the same leakage flow as passed

for the constant clearance configurations. The results for

both the 30 chamber case and 3 chamber case are shown in Tables

7 and 8 respectively. The trends predicted by Alford are con-

firmed in both tables but not the absolute direction. As men-

tioned earlier, Alford predicted no out-of-phase force for con-

stant clearance seals. Since this configuration does have an

out-of-phase force, the effect of converging/diverging clear-

ance can be thought of as being superposed on the constant

65



TABLE 5

INFLUENCE OF GEOMETRIC CHANGES ON

K12 AND C11 FOR A THREE

CHAMBER HALF LABYRINTH

Each parameter changed to same value as shown in Table 4 except for num-

ber of chambers. For this case the number of chambers was reduced from 3

to 2.

Parameters
Changed

Base

Clearance

Chamber Hgt

Pitch

No. of Chambers

Radius

Finish

C = .8u
in

K12 C11

55100 5.9

24200 6.6

49400 4.5

31900 2.7

31500 2.4

51300 4.1 1

48000 2.9

w = 261.8 rad/sec

K12

7400

4560

6360

5030

4040

0500

7560

C. .36uin
C1 1

17.8

10.4

10.2

7.7

9.5

11.7

16.6

66

K1 2

-34200

-11900

-29300

-18300

-19600

-24000

-26000

C. = 0in
C1 1

27.4

11.8

14.8

10.6

13.5

16.2

19.6

-
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FIGURE 18 Displacement and whirl force gradients as a function of speed

for Figure 16. Thirty chamber seal with preswirl equal to
36% of the rotor surface velocity.
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FIGURE 19 Displacement and whirl force gradients as a function of speed
for Figure 16. Thirty chamber seal with no preswirl.
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FIGURE 20 Displacement and whirl force gradients as a function of speed

for Figure 16. Three chamber seal with preswirl equal to 80%

of the rotor surface velocity.
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FIGURE 21 Displacement and whirl force gradients as a function of speed

for Figure 16. Three chamber seal with preswirl equal to 36%

of the rotor surface velocity.
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FIGURE 22 Displacement and whirl force gradients as a function of speed

for Figure 16. Three chamber seal with no preswirl.
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TABLE 6

EFFECT OF ROTOR SPEED AND

INLET SWIRL VELOCITY ON

HALF LABYRINTHS

Thirty Chamber Seal
Preswirl

Cin = .8u

Cin = .36u

Cin = 0

Cross-Couple Force

Always destabilizing
(+) whirl

Above /w = 2.80
destabilizing

(+) whirl

Above /w = 1.5
stabilizing

Three Chamber Seal
Preswirl

Cin = .8u

Cin = .36u

Cross-Couple Force

Above /w = .6

destabilizing
(+) whirl

Above /w = 2.8

destabilizing
(+) whirl

Cin = 0 Above / = 1.0
stabilizing
(-) whirl
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clearance cross-coupling force. By subtracting the constant

clearance values from the non-uniform clearance values, the

change in out-of-phase force follows that predicted by Alford.

The change in out-of-phase force levels for different preswirl

velocities still follow the trend outlined for constant clear-

ance configurations.

3.4 Closed Form Expressions

The effect of various parameters can be understood through

closed form expressions. To obtain expressions for the

cross-coupling force, two seal types will be examined. The

first seal will be a very long, multichamber seal and the sec-

ond a single chamber seal. These expressions will further be

restricted to seals where each seal strip is identical with

respect to flow characteristics and radial clearance.

To obtain a closed form expression for the out-of-phase force

in long seals, the equations governing continuity and momentum

given in Section 2 must be simplified. This can be accom-

plished by assuming the following:

1. 9Pi " Pi+l'

2. 9ci c i+l'

l ci - pi: 90.
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TABLE 7

CONVERGING AND DIVERGING SEAL
COEFFICIENTS FOR A THIRTY CHAMBER SEAL

Out-of-Phase
Kll

Converging 6

c = .8u

c = .36u

c = 0

-11800

-13800

-19800

K1 2

161000

124000

918000

Cll

299

302

310

C 12

219

229

233

Force Gradient-lbf/in

82722 (D)
(+)

44937 (D)

(+)

10642 (D)
(+)

Constant 6

c = .8u

c = .36

c=O

-63100

-68400

-76200

134000

782000

288000

193

194

200

214

230

242

83473 (D)
(+)

27411 (D)

(+)

-23560 (S)

(+)

-107000 113000

-115000 29700

-123000 -43800

83 199

79 221

81 240

6 = .0073 in
min

6cons t . = .010 in

6 = .0145 inmax

(D) - Destabilizing

(S) - Stabilizing

(+) - Forward Whirl

(-) - Negative Whirl
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6Diverging
c = .8u

c = .36u

c= 0O

91271 (D)
(+)

90186 (D)

(+)

22594 (D)
(-)



TABLE 8

CONVERGING AND DIVERGING SEAL
COEFFICIENTS FOR A THREE CHAMBER SEAL

Out-of-Phase

K1 2 Cll C12
Force Force-lbs/in

Converging
c = .8u

c = .36u

6

77500

62200

59000

13800

15 -38

30 - 9

c-= 0

Constant 6
c = .8u

c = .36u

c = O

48500

12900

-1240

-9930

-25900

55300

7400

-34200

47 15

6 -22

18 4

27 28

-13595 (D)

(-)

53729 (D)
(+)

2688 (D)

(+)

-27131 (S)

(-)

Diverging 6

c = .8u

c = .36u

c=0

-54500

-65400

-67700

46000

- 1520

-41800

- 7 - 5

0 18

1 39

47833 (D)
(+)

-1520 (D)
(-)

-41538 (D)
(-)

min
6
const.

= .0073

= .010

in

in

6 = .0145 in
max
(D) - Destabilizing

(S) - Stabilizing

(+) - Forward Whirl

(-) - Negative Whirl
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Kll

55473 (D)
(+)

5946 (D)
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4. c -c =c
i i+l eq

5. Incompressible flow.

The flow is assumed to have reached its equilibrium circumfer-

ential velocity. One would also expect very little phase shift

between adjacent chambers for either pressure or tangential

velocity. Intuitively, the point of maximum velocity should

occur at the point of minimum chamber area. (See Figure 23.)

This is different from what was shown in Figure 10 for the 3

chamber seal. This will be discussed for the single chamber

seal. For the force to influence stability, it must either

lead or lag the eccentricity of the rotor by 900.

The continuity equation in its original form is

a a
at (Pi f C fi) + qi+l -qi = 0. (72)

Since it was assumed that no phase shift in pressure exists

between adjacent chambers,

qi+l = qi = 0. (73)

at all points around the seal. Using the other simplifica-

tions, equation (85) becomes

f C

f. f. C.

+ -+ -0. (74)
Ci. f. f Ci.
11 1

77



.I

8

c

2 T 0

•/
27T

Schematic of pressure and velocity distribution for a very

long, multichamber seal.

78

P

0

FIGURE 23

_mm - _--

9

oX

II

h�-,-$



The momentum equation in its complete form is

a a 2 a
at (Pi Ci fi) + ax (Pi Ci f ) + fi i

+ Si SSi - Ri SRi + i+l Ci - qi i-l 0. (75)

This can be simplified to the following:

a P.
+ TSi S - 'C S.-O . (76)

i ax Si Si Ri Ri

The terms which contribute to forces in-phase with the rotor

eccentricity were neglected. The simplifications will be just-

ified by comparing the percentage change in the out-of-phase

force as calculated by the complete theory with those from the

simplified expressions.

The simplified expressions for pressure and tangential velocity

are

Pi = Pi - Pi sin -R w t (77)

and

C = Ci + Ci cos {- tR (78)

By combining equations (15), (16), (30), (31), (74) and (76)

with (77) and (78), the following relationships for pressure

and tangential velocity result:
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P. - P - R x S (

| r " } to sin | - t) (79)

and

C.i Ci f ro cos R t · (80)

Integrating the pressure distribution around the ith chamber

and summing all chambers gives the following stiffness and

damping expressions:

12 R 2 ASi + R R (81)

and

2 4
M 2 Pi R c. u-c.

2 (AC S .- SR11 |Si Rs R R

Since the tangential velocity is at its equilibrium value and

if each chamber has identical geometry, then only the density

changes significantly in the summation. The equilibrium

velocity is found from equation (76) by letting ci = ci 1
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and equating the surface drag forces on both stationary and

rotating surfaces. The resulting tangential velocity is

u
c = (83)eq

/ Ss s1+
;R SR

To understand how the seal forces act on the rotor, the shaft

will be displaced and whirled in a circular orbit. (See Figure

17.) At the initial point, t = 0, the out-of-phase force on

the rotor is

=- (k21 + Cl) r (84)
Y 211 o

Substituting equation (81) and (82) into the above expression

gives

_4- S +eqR u- )
f2Y f2 s s R R R R

M c

Pi l- a r (85)
R o

From the symmetry of the system, equation (85) is the

out-of-phase force at all circumferential locations. The

stabilizing or destabilizing effect of the out-of-phase force

on the rotor is determined by the relative magnitudes of the

damped natural frequency and the angular velocity of the cham-

ber fluid, ceq/R. When the rotor is orbiting in the same

sense and faster than the fluid is moving tangentially, the net
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out-of-phase force opposes the motion of the shaft. It acts to

stabilize the system. When Ceq/R is greater than w, the

shaft is dragged by the fluid. This tends to push the rotor in

a forward whirl direction and reduces the overall stability.

When the two angular velocities are equal, no out-of-phase

force is experienced by the rotor. Since the value of ceq is

a function of the rotor speed, the cross-over point occurs when

2 cross-over , + + (86)
w AR SRRR

For typical labyrinth seal designs, this ratio is between 2.0

for full labyrinths and 2.8 for half labyrinth designs. This

ratio provides a rough rule of thumb to determine the speed

above which seal related instabilities may be experienced. For

this to apply, there must not be an appreciable difference

between the inlet preswirl velocity and the equilibrium tangen-

tial velocity.

S. H. Crandall presented, in references 9 and 10, a clear,

physical explanation on the destabilizating force from damping

in rotating parts. His model, shown in Figure 24, consisted of

a point mass surrounded by a circularly uniform rotating dash-

pot system in a circular orbit. He demonstrated that for a

system rotating subcritically, < w, the damping force

opposes the motion of the mass for both forward and backward

whirls. For supercritical rotation, > w, the damping force
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pushes the point mass in the direction of forward whirl. This

has a destabilizing effect. The rotating dashpots do work on

the rotor because for counterclockwise whirl, the relative

motion of the mass is backward at a rate 9-w. The force

acting in the direction of motion is cro (9-w) and tends

to drag the rotor in forward whirl.

Crandall extended the argument to the case of oil whip in

lightly loaded, cylindrical bearings. Here, the dashpots are

replaced by a traveling oil film pressure wave generated by the

rotor moving in a small orbit. The fluid is pumped by the

rotating shaft and produces frictional drag forces on the con-

tacting surfaces. Since a linear velocity distribution was

assumed, the mean velocity of the film is one-half the rotation

speed. The traveling pressure wave argument was applied giving

a stabilizing/destabilizing cross-over point to be

I cross-over 2.

oil whip

This is the same value predicted by equation (86) for a full

labyrinth seal. In this regard, the concept of a traveling

pressure wave provides the physical insight to the destabiliz-

ing force and its relative strength as a function of rotational

speed. By simply knowing the mean angular velocity of a fluid

and comparing it to the natural frequency of the system, a

judgment can be made on its effect on system stability.
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FIGURE 24 Demonstration of destabilizing force with rotating damping
model.
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As the number of chambers in the seal model is reduced, the

role of friction changes. As will be shown, the out-of-phase

force is no longer dominated by frictional drag, but by the

change in tangential velocity from friction as the gas passes

through the seal.

To demonstrate this, consider a seal with only one chamber as

shown in Figure 25. The chamber flow is again allowed to have

a variation in pressure and tangential velocity similar in form

to that used in long seals. Again, based on the 3 chamber seal

example, the point of maximum tangential velocity is assumed to

be 90° away from the maximum pressure location. Unlike the

seal strips in very long, multichamber seals, both teeth in the

single chamber seal see a pressure variation in the chamber and

constant, uniform pressure on the outside. This variation in

pressure has the effect of locally passing flow either into or

out of the chamber. This is shown in Figure 26. Qualita-

tively, where the pressure is locally high relative to the

mean, more leakage flow will pass out of the chamber than will

enter. At the minimum chamber pressure, the opposite is true.

This variation in net flow acts as a gradient on the tangential

chamber velocity. The tangential velocity will tend to

increase in the half where the local pressure is below the mean

chamber value. The velocity will reach a maximum at a point

900 from the maximum pressure point and on the side of increa-

sing chamber pressure. The tangential velocity is also influ-
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FIGURE 25 Configuration for single chamber seal with shaft whirl.
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FIGURE 26 Pressure and leakage flow variation for a single chamber seal.
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enced by the change in chamber area. If the maximum pressure

occurs at a point lagging the rotor center by 90°, then the two

effects on velocity oppose each other. (See Figure 27). For

the initial comparison made with the Benckert and Wachter data,

Figure 11, the influence of leakage flow dominates the factors

in establishing the velocity distribution. The cross-coupling

force is dependent on the momentum change in the swirl velocity

through the seal. This part of the momentum change comes from

local variation in tangential velocity. Since the local velo-

city is now dependent on local leakage flow, it would be

expected that clearance has a major influence on the

out-of-phase force. This was not a factor in long seals

because the phase relationships for pressure on either side of

a seal strip are very close to each other. Therefore, very

little variation of local net flow into each chamber existed.

To arrive at closed form expressions for chamber pressure in

the single chamber seal, both equations for continuity and

momentum must again be simplified. The same assumptions are

used again except that locally net flow into or out of the

chamber is permitted. The differential equation for continuity

becomes

f c f q3 - q2
+ +- + = 0. (87)

c f c f pcf

88



0

0

C

O277

p I

&

C

27

C

2WI
+

0 27r

270 o

FIGURE 27 Tangential velocity distribution in a single chamber seal.

89

- ! i -9 I

i'



Since the tangential velocity is expected to change as the flow

passes through the seal, the momentum and flux terms must be

retained. Assuming the maximum pressure occurs 900 away from

the rotor center, the momentum equation can be simplified to

6

P2 + Bqf C2 q (c1 - c 2) (88)

where

-qf q + S SS C2 + P R SR (u-c2)

Using the same simplified expressions for pressure, (77), and

tangential velocity, (78), the zero to peak pressure variation

can be expressed as

r Q(la-WR + c ( -c ) r
f C2 2 6

P = (89)m2 q R P f

P2 C2 f2 P2 c 2 qf

where

1 1

P I P1 1

By integrating the chamber pressure around the seal, the net

force experienced by the rotor for a circular orbit is
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F y -(K21 + C22) ro

IRirP F -. q | -1 1

qR P 2 qf c2
r +

P2 C2 f qf c2

+ |1 -- · (90)

The direction of the out-of-phase force on the rotor is influ-

enced by the change in tangential velocity of the leakage flow

and, as with long seals, by the ratio of tangential angular

velocity to precession angular velocity. If the incoming tan-

gential velocity is very large, the change in tangential momen-

tum dominates the forces created by chamber area variations.

For this condition, the destabilizing force can be in a direc-

tion to excite either the forward whirl, c1 >>C2, or the

backward whirl, cl<<c2. If the leakage flow enters at

the equilibrium value c , then the crossover point between a

stabilizing force and a destabilizing one follows equation

(86). For other values of cl, the crossover point occurs

when the numerator of (90) goes to zero. It is a functon of

clearance, pressure, friction factors and seal geometry as well

as precession angular velocity.

Actual labyrinth designs must fall somewhere between the

extreme case of a very long, multichamber seal and that of a

single chamber seal. The trends for both cases must be present
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to a greater or lesser degree in all designs. By studying the

closed form approximations of the two limiting cases, a

designer can determine what parameters are of importance and

qualitatively how much they must be changed to achieve a

desired seal force level. For example, from equation (85), the

cross-coupling force for long, multichamber seals is propor-

tional to the following parameters:

1. Inversely proportional to the square of the average cham-

ber height, (f/) )2

2. Number of seal chambers.

3. Fluid density.

4. Friction factor of the chamber surface.

5. Seal radius to the fourth power.

6. The difference between the angular velocity of the chamber

fluid and the natural frequency of the rotor system

excited.

The expression for the single chamber seal, (90), is still suf-

ficiently complicated to prevent describing simple relation-

ships between force and the parameters. If it is assumed that

92



the force is dominated by the contribution from the change in

tangential velocity,

(c - c2) > c2 - R

then depending on the geometry and flow conditions the follow-

ing can be said:

1. As the clearance decreases, cross-coupling force increases.

2. The out-of-phase force will generally increase as the

shaft radius increases.

3. Large increases in the average chamber height, f/£, will

decrease the cross-coupling force. Small changes can

either increase or decrease the force depending on other

parameters.

4. The greater the incoming swirl velocity, the greater the

destabilizing force will be in the direction of positive

whirl. If the tangential velocity increases substantially

while passing through the seal, the force is destabilizing

in a negative whirl direction.

How the out-of-phase force changes with parameter changes is

dependent on the actual seal geometry and flow conditions.

This might explain why many investigators arrive at different
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conclusions on the importance of seal geometry and leakage flow

conditions. Most experimental investigations were made with

seal geometries that combine the effects of both long and short

seals. The results from scaled tests are then extrapolated to

actual turbomachinery conditions. The predicted results may

not always be achieved. This is particularly true in the case

of Wright who attempted to extrapolate tests on a single cham-

ber seal to all turbomachinery seals. The same is true of

closed form expressions that have been published and are used

for all geometries and flow conditions encountered in actual

designs. For the conditions assumed, the expression may ade-

quately predict the seal force but may fail miserably at other

conditions. The two closed form expressions do identify how

changes in seal geometry will change the magnitude of the

out-of-phase force for specific conditions. The accuracy of

the predicted change will vary depending on how well a particu-

lar design matches the two extreme cases. This can easily be

seen by comparing the expected changes in coefficients as pre-

dicted by equations (85) and (90) with the values given in

Tables 4 and 5.
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IV. IMPACT ON TURBOMACHINERY DESIGN AND OPERATION ON STABILITY

So far, the discussion has centered on the prediction of forces gen-

erated by an eccentric rotor in a labyrinth seal. The goal of this

analysis is to incorporate the seal effect into the total rotor sys-

tem and more accurately predict changes in rotor stability at all

anticipated speeds and loads on the machine. The incentive for this

is quite high. For example, many turbomachines are used in the pro-

duction of petrochemicals and fertilizers. These machines are typi-

cally high speed, high pressure steam turbines which drive compres-

sors. The first cost of these units is approximately 1 to 2 million

dollars. In relation to the total cost of the plant the cost of the

turbines and compressors is only a small fraction. Reliable opera-

tion of the turbomachinery is key to the plant supplying product as

required. When these machines shut down from high, asynchronous

vibration under load, no product is produced. Petrochemical plants

may lose up to $250,000 per day when this occurs. The cost of open-

ing a machine, once the problem has been identified, can cost

between $35,000 and $50,000. This does not include the cost for

time lost in production. The total time lost can be from 6 to 14

days. If no alternative methods are available to make product, the

losses can be as high as $3.5 million dollars. There is no guaran-

tee that the problem was correctly diagnosed. Typical fixes involve

some change with respect to the journal bearings to get more damping

into the system. An implemented fix may only partially work if the

destabilizing forces are very high. The machinery may still not

achieve the desired load condition. In such an event, plant
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operators are faced with the dilemma of continued operation at a

reduced output rate or attempting another solution and incurring

more lost time. The manufacturer of the equipment also suffers

loses in both prestige and possible future orders on similar types

of equipment.

A thorough understanding of changes in machinery stability under

load is clearly required. To accomplish this, knowledge of several

things are necessary. The first requirement is being able to pre-

dict the response of the rotor system under no load. This can be

accomplished by comparing the response of the machinery to unbalance

as a function of speed. The once-per-revolution response of the

rotor is generally measured with two eddy current probes spaced 900

apart near each bearing. A known unbalance is placed either at the

rotor midspan location or at the coupling end depending on the shape

of the mode to be excited. Such testing locates the critical speeds

of the rotor and provides an indication of the amount of damping

present in each response peak. The test information is then com-

pared to calculated forced response vibration of the probe loca-

tions. Differences between the two sets of values are then resolved

by improving the model of the system. These improvements are gen-

erally in the area of bearing stiffness and damping coefficients and

bearing support stiffness, mass and damping values. Good agreement

on the location of criticals and their amplification factors are

required if the corresponding stability analysis is to be accurate.
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The aero-elastic force gradients are then added to the analysis to

predict changes in stability at various speeds and loads. Gener-

ally, manufacturers of turbomachinery rely on calculations to pre-

dict these changes. Full load factory testing, generally, is not

feasible because of facility limitations and expense. Section 3

demonstrated that aero-elastic forces in test seals could be accu-

rately predicted. The test conditions were precisely known for

these cases. While temperatures and pressures can be predicted for

different operating points, the preswirl velocity entering the seal

is in doubt. As previously shown, the preswirl velocity has a sig-

nificant effect on the destabilizing force generated. The common

assumption of the preswirl value equal to one-half the rotor surface

velocity is not always a good one. As will be seen, the preswirl

entering a seal is affected by the performance of the machine at

various design conditions, gas path geometry and surface friction.

With each of the components of the rotor system analytically

defined, the stability of the rotor system can be evaluated. For

the conditions of interest, the logarithmic decrement is calculated

for each mode of concern. The minimum log decrement value can be

plotted in the form of a contour map. The two ordinates can be

speed and shaft output. By displaying the log decrement values in

this form, the design engineer quickly gets a feel of how the sta-

bility of the system will change for different operating condi-

tions. This approach will be demonstrated on a simple high speea

rotor. It will also be shown how to enlarge the stable operating
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region and reduce the leakage losses with relatively minor changes

in the seal design.

4.1 Operation at Variable Design Conditions

To demonstrate how the performance of a machine can influence

the destabilizing forces from seals, a specific steam turbine

design will be used. This two stage turbine, shown in Fig-

ure 29, is designed to operate between 8000 and 12,000 RPM and

generates 8500 horsepower. It is used to drive a compressor at

the design point of 10,500 RPM. The inlet temperature is 950°F

and the inlet and exhaust pressures are 1450 and 560 PSIG

respectively.

For improved part load efficiency, each of the five valves

feeds a separate section of the total -first stage nozzle

plate. As shown in Figure 28, the first valve feeds the lower

left quadrant of the nozzle plate. With the second valve

sequentially opened, the entire lower half is fed. With all

valves opened, the entire nozzle plate is fed with steam. A 3

chamber straight labyrinth seal controls the leakage between

the first and second stages. The seal configuration is that

shown in Figure 22 except for the radial tooth clearance. For

this case a clearance of .020 inches will be used. The stiff-

ness and damping coefficients for this seal will be calculated

to demonstrate the influence of different operating conditions

on the destabilizing force gradient.
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From thermodynamic calculations the state of the steam and flow

conditions are known for each valve point. For discussion pur-

poses, the turbine will operate at a reduced efficiency

off-design speed point of 12,000 RPM. The load of machine will

be varied at this constant speed. This requires different

valve settings to pass the required flow. Figure 29 shows how

both upstream seal pressure and steam flow increase as the

inlet valves are opened sequentially. The downstream seal

pressure is held constant at 575 PSIA.

The effect of variable speed off-design operation is the swirl

induced in the steam leaving the blades. This can be seen from

the velocity diagram shown in Figure 30. The steam leaves the

nozzle with a velocity V1 at an angle aN. The blade is

traveling with a tangential velocity WB. Therefore, the blade

sees the steam entering with a relative velocity of V1R. For

this impulse type design, the relative leaving velocity, V2R,

is slightly lower in magnitude than V1R. By adding in the

blade speed, the absolute velocity of the steam leaving the

blade is V2. For maximum efficiency, V2 should have no tangen-

tial component. Figure 31 shows the velocity diagrams for the

3rd and 5th valve points. As the number of valves open

increases, the blade becomes less efficient and more swirl is

given to the steam leaving the blade.
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NOZZLE

N

VIR

BLADE

V2

-- ±CB
aN - Nozzle Exit Angle

aB - Blade Exit Angle

V1 - Absolute Velocity Leaving Nozzle

V1R - Steam Velocity Relative to Blade

WB - Blade Tangential Velocity

V2R - Relative Steam Velocity Leaving Blade

V2 - Absolute Steam Velocity Leaving Blade

CB - Swirl Velocity of Steam Leaving Blade

FIGURE 30 Schematic diagram of steam velocities entering and leaving
turbine blade.
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Part of this flow is leaked through the seal between first and

second stages. If the leakage flow followed purely potential

principles, then at the seal entrance the preswirl velocity

would be

c1 =CB r Blade (91)

R

The preswirl would increase by the ratio of the radii and would

be in the same direction induced from the upstream blades.

If frictional effects are included then a more accurate pre-

swirl value for the seal is obtained. The technique to arrive

at the preswirl value is to divide the space between the sta-

tionary and rotating surfaces into increments. (See Figure

33.) The principle of conservation of angular momentum is

applied to each increment. The resulting equation predicts the

tangential velocity at the adjacent station and can be written

as

2w 2
ci_1 r i -ci ri+1 Q P ri

/2 R (c i r) SRi + 1/2 S ci2 SSi , (92)

where Sli and S2i are the wetted perimeters of the rotating

and stationary surfaces. The friction factor, , can be cal-

culated using equations from Section 2. Equation (92) pre-

dicts nearly potential flow for high leakage flow rates. For
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3rd Valve

V1 = 1806 ft/sec

V1R = 917

V2 = 349

V2R = 845

WB = 931

CB = 137

5th Valve

V1 =

V1R =

V2 =

V2R =

WB =

CB =

1488 ft/sec

606

463

559

931

403

Velocity diagrams of steam flow for 3rd and 5th valve points.
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very low leakage rates, the frictional forces dominate and the

preswirl velocity nearly one-half the rotor surface velocity.

The distributions of tangential velocities are shown in Table 9

as each valve is opened. Also shown are the preswirl values as

predicted by potential flow principles. The values at the last

station are the preswirl velocities of the seal and are very

much different from either of the two simpler approaches.

The more accurate preswirl values are used to predict the

out-of-phase force generated by the seal. The destabilizing

force gradient is shown in Figure 33 for each valve point.

Also plotted are the destabilizing force gradients for a pre-

swirl value equal to one-half the surface velocity. The force

gradients differ by more than 2 to 1 for the 4th and 5th valve

points. This clearly demonstrates the significance of includ-

ing blade induced swirl and steam path geometry when establish-

ing the preswirl values for a seal force analysis.

4.2 Stability Contour Mapping

The stiffness and damping characteristics of a labyrinth seal

must be applied to a specific rotor system to determine the

actual impact on stability. Labyrinth seals are not always

destabilizing. In Section 3, it was shown that depending on

the design of the seal, the conditions at which it operates and

the proximity of the system's natural frequency, the force in

the seal can increase the stability of the rotor system. The
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TABLE 9

TANGENTIAL VELOCITY DISTRIBUTIONS

FOR DIFFERENT VALVE POINTS

Tangential Velocities - ft/sec

Station
No.

1

2

3

4

5

6

7

8

9

10

Total Leakage

lb/hr

1st
Valve

-52

108

211

277

320

348

375

381

384

385

4893

2nd

Valve

93

176

236

281

313

337

365

375

383

388

8724

3rd

Valve

142

206

255

291

319

340

367

378

386

393

11262

4th
Valve

300

333

358

377

392

404

427

432

437

442

15545

1/2 Surface Velocity - 308 ft/sec

Preswirl Velocity

by Eq (104)

(Potential Flow)

-74 132 201

107

5th

Valve

416

431

433

451

458

463

482

484

485

488

18086

425 589
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magnitude of the out-of-phase force is influenced by the state

of pressure in the seal. The previous example demonstrated

that as machine output increased, so did internal pressures.

In general, the destabilizing force from the seals will also

increase. The designer must be concerned with both speed and

load in a stability evaluation.

In addition to the system's stability, the efficiency of the

machine, in some cases, may be just as important. Concerns

over leakage rate can take the form of either minimizing the

loss of energy associated with leakage or preventing the leak-

age rate from getting larger than what a leakage control system

can handle. Many times the gas being compressed is toxic and

must be contained. If during the operation of a machine, load

related instabilities arise from labyrinth seals, then design

changes must also consider the effect on overall efficiency and

flow limitations on existing leakage control systems.

To demonstrate how the various operational aspects mentioned

can be reconciled to achieve satisfactory operation, the fol-

lowing case will be analyzed. A variable speed steam turbine

with cylindrical journal bearings is shown in Figure 34. This

simple model which consists of a 60" long shaft with a diameter

of 5 has three point masses. The middle one represents the

turbine stages and the outer two are areas of increased diam-

eter where the labyrinth seals are applied. The cylindrical

journal bearings are loaded to 350 PSI based on projected bear-
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ing area. This level is required to suppress oil whip. The

bearing support is assumed to be rigid in both horizontal and

vertical directions. For this configuration, the rotor system

has damped natural frequencies shown in Figure 35. Of the

modes shown, the fundamental vertical mode is the least

stable. As shown in Figure 36 this mode will theoretically go

unstable at 9000 RPM based on journal bearing properties at no

load. The stiffness and damping coefficients shown in Fig-

ure 37 are obtained from a linearized analysis. At 9000 RPM

the amplitude of the vertical mode does not become infinitely

large but reaches a finite value due to nonlinear effects of

the oil film. Generally, some asynchronous vibration can be

tolerated with no harm to the machinery. Much above 9000 RPM,

considerable subsynchronous vibration exists. The machine

would run rough and possibly damage the bearings and seals from

excessive vibration.

Load on the machine is now simulated by prescribing pressure

levels on each side to the two seals. The geometry of the

seals is given in Figure 16 for the 31 tooth case. The radial

clearance is a uniform .020 inches. One side of each seal will

be maintained at 290 PSIA. The other side increases with load

up to 2500 PSIA. The operating speed range is from 5000 to

9000 RPM. The procedure will be to calculate the stiffness and

damping coefficients of the seals at each speed and pressure

point and combine them with the rotor-bearing system. The log-

arithmic decrement for the fundamental mode will be calculated
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EXAMPLE

SEAL

BRG

Rotor

Span 60"

Dia 5'"

Wgt 1500#

STAGE

Brg

Plain Cyl

D - 2"

L - 1"

Clearance Ratio - .002

Loading - 350 PSI

Seals

31 Teeth

Straight

Pin 500 to 2500 PSIA

Pex 290 PSIA

FIGURE 34 Single stage rotor model with two labyrinth seals.
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Damped Critical Speed

Horizontal

Vertical

Horizontal

2389 RPM

2647 RPM

5253 RPM

FIGURE 35 Damped critical speeds and mode shapes below 12,000 RPM for
Figure 34. Rotor speed 9000 RPM.
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Log decrement for single stage rotors model without seal
forces.
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at each point using Lund's (16) transfer matrix technique.

Within the range of operating speeds and seal pressures a suf-

ficient number of points are calculated to establish a stabil-

ity surface. For the model described, the values are given in

Table 10 and plotted in Figure 38.

There are several aspects of the stability contour that should

be noted. First is that for modest increases in seal pressure

the speed at which instability occurs is increased. For this

example a maximum of 12,000 RPM can be reached with a seal

inlet pressure of 500 PSIA. As the inlet pressure is

increased, the speed where instability occurs decreases. The

increase in the instability threshold speed at low pressure is

due to the asymmetric journal bearing properties. This effect

(19)
from asymmetry is more thoroughly discussed by Smith . At

5000 RPM and below, increases in seal pressure increases the

stability of the system. This cross-over point can be deter-

mined by taking the ratio of 12/Cll of seal coefficients.

When the value is less than the natural frequency of the first

critical, the seal tends to destabilize the system. For this

case the speed at which the ratio equals the first critical

speed is 4800 RPM.

Once the region of stable operation has been defined by the

contour map, an evaluation can be made as to how the turbine

can be operated. It is a simple matter to access which speeds

and pressures are safe from instability. The design engineer
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TABLE 10

FIRST CRITICAL LOG DECREMENTS
FOR ROTOR WITH ORIGINAL AND DEEP CHAMBER SEALS

Original Seal
Speed

Press.

0

500

1000

1500

2000

0

500

1000

1500

2000

5000

.059

2674

.089
2658

.111
2643

.128

2626

.139
2607

5000

.059
2674

.074

2664

.0855
2655

.096
2645

.105

2635

7000

.037
2362

.105

2632

.128
2599

.108

2556

.030
2534

7000

.037
2362

.083
2363

.099
2627

.107

2587

.106

2587

9000

.0001
2389

.096
2422

.007
2514

-.109

2519

-.182
2522

Deep Seal

9000

.0001
2389

.061
2399

.113
2585

.070
2537

-.029
2525

11000

-.005
2410

.056
2487

-.155
2512

-.260
2519

-.342
2625

11000

-.005
2410

.072
2420

.031

2515

-.101
2516

-.175
2519

116

13000

-.041
2431

-.161

2510

-.305
2524

-.417
2535

-.521
2549

13000

-.041
2431

-.041
2494

-.253
2522

-.324

2528

-.386
2534
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has a feel for how sensitive the machine will be to changes in

speed and internal pressure or load. In the steep portions of

the contour, small changes in speed or pressure can make dra-

matic changes in the level of subsynchronous vibration exper-

ienced. Prudent design practice and operation would be to

avoid such areas.

From the base contour, parameters can be varied to determine

the effect on rotor stability. The design engineer can effec-

tively compromise between various aspects to reach an accept-

able design. To demonstrate how the stability contour can be

reshaped, consider the following example. It is desired to

operate the turbine just analyzed at 9000 RPM and at a load

which corresponds to a seal inlet pressure of 1700 PSIA. Pres-

ently, the turbine is limited to 1200 PSIA at that speed. (See

Figure 38.) At the higher pressure there is also a concern of

overloading an existing leakage control system. The operation

would also like to decrease leakage by installing reduce clear-

ance seals.

For this example, both goals are achieveable by relatively

minor changes to the seal design. Extension of the stable

region from its present position can be accomplished by redu-

cing the force generated by the seal. One of the stronger par-

ameters influencing the seal forces is the average chamber

height. From equation (85) by doubling the tooth height, the

destabilizing force is reduced by a factor of four. Also from
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this equation it was shown that the force in long seals is not

significantly affected by changes in seal clearances. Two

changes are made to the design of the seal. First, the average

chamber height will be increased by 50 percent from .236 to

.334 inches. Also, the radial clearance will be reduced from

.020 to .010 inches. The resulting stability contour is shown

in Figure 39. At 9000 RPM the turbine can now operate up to a

pressure of 1750 PSIA before starting to become unstable. A

comparison of the leakage flow rates for both designs is shown

in Figure 40. The total leakage rate is 30% lower at 1750 PSIA

than it was at 1200 PSIA. A similar procedure would be fol-

lowed to investigate stability contour reshaping from varying

other parameters. For this case all the goals were achieved;

however, this may not always be the case when the effects of

partial arc forces and blade induced swirl are considered.
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FIGURE 40 Comparison of leakage flow rates for original and reduced
clearance seal designs.
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V. CONCLUSIONS

1. The amplitude and phase of the pressure variation in each cham-

ber of a labyrinth seal are determined for a rotor shaft orbit-

ing in a parallel fashion. The distributions are based on a

one-dimensional analysis for arbitrary seal geometry and are

used to predict stiffness and damping coefficients for stabil-

ity analysis.

2. The stiffness and damping coefficients predict both stabilizing

and destabilizing forces for constant clearance labyrinth

seals. The magnitude and the direction of the out-of-phase

force change as rotor speed, rotor natural frequency and leak-

age flow preswirl are changed.

3. Converging clearance and diverging clearance seals can be

either stabilizing or destabilizing. As the clearance is made

more converging, the out-of-phase force tends to increase in

the direction of forward whirl. Increasing the divergence of a

seal's clearance tends to increase the out-of-phase force in

the negative whirl direction.

4. Excellent agreement is obtained when the cross-coupling stiff-

nesses measured by Benckert and Wachter are compared to pre-

dicted values. This comparison includes both straight and full

labyrinth seals. More error exists between the calculated and
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measured direct stiffness. The differences can be resolved by

accounting for flow coefficient differences in the seal strips.

5. The fluid preswirl has a significant effect on the magnitude

and direction of the out-of-phase seal force. A procedure is

developed to calculate the preswirl velocity entering the seal

for turbines. The method estimates the preswirl induced by

turbine blades and predicts how the leakage tangential velocity

changes in moving towards the seal from friction and gas path

geometry. Substantial errors can result if the preswirl is

assumed to be one-half the rotor surface velocity.

6. The influence of labyrinth seals can most accurately be judged

when combined with an actual rotor system. Plotting the log

decrement of the least stable mode as a function of load and

speed graphically displays unstable areas of operation. For

each speed and load combination, the effects of changes in

bearing characteristics, blade efficiency and internal temper-

ature and pressure must be accounted for. The stability con-

tour maps can be used to evaluate changes in seal geometry with

respect to stability and improve the stable range of operation

in marginally stable machines.

7. Asymmetrical rotor support systems can have increased stability

for seal forces that would be destabilizing in symmetrical

rotor systems. As the magnitude of the seal force is increased

the asymmetrical rotor system will become less stable.
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VII. APPENDIX

Determination of Chamber Pressure Variation

Two different methods can be used to determine the pressure varia-

tion in equation (46) and (49) for either direction of whirl. The

first method involves solving for the magnitude and phase of the

pressure and velocity perturbations simultaneously in all chambers

of the seal. This can be done by noting that equations (46) and

(49) must be true for all time and spatial positions.

For convenience, equation (46) and (49) can be written as

Pmi-1
D1 cos P

i-i 1-1

Pmi
+ D2 . sin p

i 1

P.
mi

+ D3 ml cos $
P. 1

1

P

mi + 1+ D4 m
Pi+l

cos P
i+l

Cmi
+ D5 - sin =

u Ci.
1

El sin - wt + E2 cos wt
R R

P
mi -1

D6 - cos P
P. Pl-11 1 - 1i-i

P .
+ D7- sin 9

P. Pi
1
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P P
+ D8 cos + D9 - cos 

Pi P P. i+l1 i+l

Cmi i+ 1
+ D10 - sin tc + Dll u cos 

U C. U C.
1 1

Cmi-
+ D12 cos t =

U Cl-l

x x
E3 sin wt + E4 cos t (A.2)R R

Each set of values for D1 to D12 and El to E4 are dependent on the

steady state conditions and geometry for each chamber. By letting

wt equal 0 and - /2, four linearly independent equations result

for each chamber. These describe the magnitude and phase of both

pressure and velocity variations. For this equilibrium problem the

following boundary conditions are imposed:

1. Uniform pressure and tangential velocity entering the seal.

2. The pressure at the exit of the seal is circularly uniform.

Sufficient information now exists to solve the 4(N-1) set of equa-

tions for a seal with N seal strips. The general form of the simul-

taneous equations can be written as

P m i sin 
mln

Cmi Cos (A.3)
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To demonstrate how both D and E matrices are constructed, a specific

example is shown in Figure A.1 for a four tooth seal. For this

example a 12 x 12 matrix results. The values for magnitude and

phase are found by standard matrix operation.

The above method is an acceptable approach when the number of cham-

bers is small. The size of the D matrix grows rapidly as more teeth

are added. For certain applications, the total number of sealing

strips may be as many as 50. The size of the matrix now prohibits

use of the above method. Large, high speed computers are practi-

cally limited to solving seals with at most 25 teeth with this

method before becoming cost prohibitive.

An alternate approach can be found by examining the mass and momen-

tum equations. By starting in the first chamber and assuming values

for Pm2 sing and Pm2 coso, four equations can be written to

evaluate Pm3 s in, Pm3 cosO, Cm2 sino and cm2 cost.

The procedure now continues to each succeeding chamber. The four

equations take the general form

PMi+ sin i+l f (Pmi, 'P Pmi-l P Cmi-l' c )

Pmi+l pos P f2 Pmi' 2 ci 1)i+l 1 i-1mi+l os i+l = f2 Pmi' P.' Pmi-l' Pi' Ci-l' ci1)

M+s i+l 3 Pmi P i i 1' i- ci-1 

Cmi+l cos c = f3 Pmi ' P i-P I Cmi-l' ci-1)(A4)
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If the proper values for pressure amplitude and phase were initially

chosen, then after the last seal strip the values for Pmn+l sing

and Pmn+l coso are both zero. This satisfies the end boundary

condition. The exit boundary condition can be stated as

Pm +1 sinp n+ln+l Pn+l

Pmn+l cos Pn+l

where

1 = P2 sinp2
*1 2 i P2

and

= F (*lt *2) = 

= G (*1' *2) = 

(A.5)

(A. 6)

*2 = Pm2 cos p2'

To find the proper initial values for the pressure variation, a

trial and error technique is required. One iteration method that

converges quickly is the Newton-Raphson technique. An initial guess

is made for (l1)o and (*2)o. Next, an attempt is made

to find values for h and k such that

F [(*1)o + h, (2)o + k] = 010 20 (A.7)

and

G [(I1)o + h, ( 2) + k] = 0.10 20 (A.8)

By expanding equations (A.7) and (A.8) in a Taylor series about the

initial guess and retaining the linear terms, the equations become
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To determine the partial derivatives of F and G, an approximation is

made by separately changing (*1)o and (*2)o a small

amount. That is

a F
a *1

F (1 + 11 2) - F { 1 , 2)

c1
(A.13)

where c1 is a small increment compared to *1. The other

three partial derivatives are evaluated in a similar fashion. Once

a set of values has been either assumed or calculated for Pm2
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sinfp2 and Pm2 cosp2, three calculations are required to

establish F and G and the partial derivative approximationso o

before a new set of Pm2 sin$p2 and Pm2 cosp2 are deter-

mined. The iteration procedure continues until the exit boundary

conditions are satisfied. The total number of calculations is

greatly reduced from the previous method for seals with many teeth.
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