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Abstract

Contemporary collision avoidance systems such as the Traffic Alert and Collision Avoidance
System (TCAS) have proven their effectiveness in the Commercial Aviation (CA) industry
within the last decade. Yet, TCAS and many systems like it represent attempts at colli-
sion avoidance that do not fully recognize the uncertain nature of a conflict event. Most
systems circumvent probabilistic representation through simplifying approximations and
pre-compiled notions of hazard space, since probabilistic representation of collision in three
dimensions is considered to be an intractable problem.

Recent developments by Kuchar and Yang[70] and Paielli and Erzberger[50] have shown
that collision avoidance may be cast as a probabilistic state-space problem. Innovative so-
lution approaches may then allow systems of this nature to probe collision risk in real-time,
based on real-time state estimates. The research documented in this thesis further devel-
ops the probabilistic approach for the non-cooperative, two-vehicle problem as applied in
real-time to autonomous aircraft. The research is kept in a general form, thereby warrant-
ing application to a wide variety of multi-dimensional collision avoidance applications and
scenario geometries.

The work primarily improves the state of the art through the creation of order reductive
collision metrics in order to simplify the intractable problem of multi-dimensional collision
risk calculation. As a result, a tractable, real-time, probabilistic algorithm is developed for
the calculation of collision risk as a function of time.

The collision avoidance problem is contextualized not only within the realm of recent
research within the CA industry, but is also likened to such concepts as the first passage
time problem encountered in physics, and the field of reliability theory often encountered in
civil and mechanical engineering problems. Yang's method of solution, a piece-wise straight-
line Monte-Carlo approach to state propagation, is extended with a model-predictive, finite

horizon risk accumulation algorithm. Through this extension we are capable of modelling
collision risk for linear(-ized), time-variant, dynamic vehicle models and control strategies.
A strategy is developed whereby the advantage of delayed collision avoidance action is

calculated and it is framed as an extension of the notion of system operating characteris-

tics (SOCs). The complexity of the probabilistic representation is reduced by application

of quadratic conflict metrics. The numerical complexity can be reduced from O(N 2") to
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O(Nlog 2 (N)) at each time step within a finite horizon time interval.

Risk calculation errors due to numerical and stochastic approximations are quantified.
An applicability test is also devised whereby a vehicle's dynamic model and control charac-
teristics may be used to calculate risk error estimates before implementing the bulk of the
algorithmic solution. Various other applications of the work, outside the scope of collision
avoidance, are also identified.

Thesis Supervisor: John J. Deyst
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction and Background

1.1 Background

More than a century ago we saw the dawn of an era of crewed flight. We have now embarked

upon a new era, where the wonders of aviation technology have become commonplace and

technological advances, especially in electronics and software, have changed the face of the

aviation industry over the last twenty years[38].

The 1980's and 90's saw the introduction of so-called glass cockpits and later flight direc-

tors and traffic alert systems, increasingly pushing towards automation in the commercial

aviation (CA) cockpit. Even though the human flight crew does play a critical role, few

passengers know that autopilots and flight management computers (FMCs) are responsible

for flying them most of the way between airport destinations. Recently, various issues such

as loss of situational awareness have been under scrutiny and have been linked to human

pilots' automated cockpit systems[36]. This opens the door for automated collision avoid-

ance and air traffic management (ATM) systems that would be capable of playing the role

of not only an alerting system, but also would automatically solve inter-vehicle conflict.

Military aviation has also undergone a dramatic transformation during the end of the

20th century. More and more Un-crewed Aerial Vehicles (UAVs)[47] are being developed

and many of those such as Predator and Global Hawk have become household names. The

state of current technology and a political climate, where risk of the loss of human life

is of increasing concern, are fuelling the inevitable growth of the UAV industry. Some
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of the advances so far include un-crewed combat vehicles (UCAVs), un-crewed reconnais-

sance vehicles and multi-role UAVs like Predator[47] [7] [1] [13] [46]. Recent developments at

MIT, such as the Parent-Child Un-crewed Aerial Vehicle (PCUAV) [63] [51] [37] system have

shown that multi-tier co-operative UAV systems are prime candidates for the collection of

up-close reconnaissance information. This is especially true when dealing with cluttered

and inhospitable terrain such as caves and forests where high-altitude surveillance proves

to be of limited use. These missions were always considered to be too risky for piloted flight.

Many UAVs are still piloted by human operators, but the added separation between

the pilot and the vehicle and limited sensory perception (esp. visual) only increases the

frequency and severity of loss of situational awareness. Add to this the expense of having

highly skilled operators for each independent vehicle and large vehicle support teams and

we see that the opportunities for added autonomy abound. As vehicles become increasingly

self-sufficient, one such opportunity arises for the creation of automated collision avoidance

systems for autonomous vehicles.

Most collision avoidance systems are developed for the CA industry, in an attempt to

boost safety while relaxing the in-trail spacing currently observed to maintain adequate

traffic separation, usually during piloted flight[67] [56]. There is a need to create automated

collision avoidance systems, especially for autonomous vehicles, that are on par with the

most recent developments in alerting systems for the CA sector[43] [70][69].

At present, UAVs and especially autonomous UAVs are required to remain outside of

FAA controlled airspace. Except in very special circumstances, air traffic control authorities

do not allow autonomous, or even un-crewed, aircraft general access to such airspace, since

they are considered to pose a threat to civilian traffic. Vehicles would need not only trusted

control systems and trajectory scheduling capability, in order for this ban to be lifted, but

would also require the ability to adapt to unforseen hazardous situations. Automated col-

lision avoidance therefore brings us one step closer towards opening a door to commercial

airspace for autonomous UAVs. Until then, the UAV industry will be constrained to spe-

cialized missions, especially of a military nature.
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There are a number of reasons why UAVs provide a remarkable testing ground for

automated collision avoidance systems. Foremost is the lack of human presence aboard

a UAV, thereby allowing us to attempt a large number of solutions without putting life

in danger. The resulting development rate of systems that integrate onto UAVs and the

reduced certification requirements make this platform an excellent breeding ground for the

development of new avionics systems. Also, there is an increasing need for the interaction

between UAVs and crewed vehicles, a prospect that can naturally make any pilot nervous.

Automated collision avoidance systems may make such interaction feasible in the near

future. Finally, there is the issue of using UAVs as a proving ground for avoidance systems

that might eventually make their way into a crewed cockpit.

1.2 Uniqueness of the Autonomous UAV Problem

Inter-vehicle collision avoidance systems are naturally designed to be most useful under

conditions of increased air traffic density, where there is an associated increase in the risk

of conflict. The traditional school of thought dictates that avoidance systems be limited to

acting primarily as alerting systems, since pilots are especially vigilant or fully in control of

an aircraft under conditions of increased traffic. Pilot response then dictates the measure

of conflict resolution. This view still holds for the CA industry, and rightly so. Humans

can be skilled operators and may evaluate measures of safety and apply measures of evasion

and control that are far beyond the capabilities of traditional automated systems. A more

probabilistic view suggests that pilots also add a measure of decision-making capability

to the collision avoidance problem that is at least not fully correlated with the existing

alerting system. This may improve the avoidance system's performance. We have grown

accustomed to their proven safety record and thus airlines, passengers and authorities feel

more comfortable when a human supervises and/or controls a vehicle.

It is partly the complexity of the nature of a human operator that also hampers the

development of adequate collision avoidance systems. There is a very definite uncertainty

associated with the intent of a human operator. Collision avoidance by definition includes

the capability to project future vehicle state in order to be able to predict future inter-vehicle

conflict. It is the uncertainty of intent that hampers the accuracy of conflict detection and
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most alerting systems need to be designed around this problem [41] [42] [69] [70].

Autonomous UAVs provide a unique opportunity to create conflict detection systems

where more certainty exists about vehicle intent. Most auto-pilots are deterministic and

models of their operation may be created with an accuracy far exceeding that of human

operator models. There remains a measure of uncertainty though and its effects on the

avoidance system are discussed in Section 4.3.1. Figure 1-1 illustrates the typical concep-

tual difference in future state prediction uncertainty between manually and autonomously

piloted vehicles in the presence of a hazardous area. Such a hazardous area is referred to

as a domain of failure Df (t).

Future State

Uncertainty:

With Autopilot

Without
Autopilot

Vehicle State
Uncertainty at t =to

Figure 1-1: Future State Uncertainty as a Result of Uncertain Intent

Another troublesome aspect of alerting systems is that there is an interaction between

the performance of collision avoidance and an alerting system's tendency to issue false

alarms. Section 2.1 provides more detail about this concept which was also analyzed by

Kuchar[41]. In short, false alarms lead to mistrust of a system by human operators. It is

this mistrust of a system that reduces its effectiveness, in accordance with such principles as

risk homogenization and negative reinforcement[8]. Pilots tend to become less inclined to
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take action after false alerts have been issued, thereby increasing the risk of collision when

an alert turns out to be valid.

Autonomous UAVs do not suffer from the same adverse consequences of interaction

between false alarm rates and system performance. In a well-segmented system, one sub-

system, namely the conflict alerting software, would decide whether a collision is imminent

and alert when a threshold is exceeded. The vehicle's guidance and control sub-system

would then implement an avoidance trajectory suggested by the alerting system. Even

though false alarm rates may increase the number of trajectory changes and the associated

trajectory cost, the autonomous control system would not normally distrust the validity

of alerts, since it does not usually have this capability. After a flight we may analyze the

performance of an alerting system and adjust it as best possible, but in-flight alerts are

always heeded. The result is that we may design a system where the cost associated with

false alarms is much smaller than that for piloted platforms.

1.3 Research Objectives

This thesis details the development of a real-time, automated collision avoidance system

for autonomous vehicles. We focus on a non-cooperative two-vehicle conflict scenario. First

we will show how this problem is different from conflict resolution and alerting systems

usually developed for crewed flight. It will be shown that these differences may be exploited

at a basic level of system design and that a new breed of collision avoidance systems may

be developed that is based on the creation of collision risk estimates within a finite time

horizon interval.

The work is primarily developed from the probabilistic framework and principles laid

down by Kuchar and Yang [42] [70) [41] [69]. The initial development also draws on methods

described by Paielli and Erzberger[49][50]. An emphasis is placed on progressing from basic

probability theory and we show that the solution is computationally intractable. It is, after

all, this intractability that usually leads researchers to apply ad-hoc methods of approxima-

tion and probabilistic solutions such as the Monte-Carlo method. Instead, we show how the

complexity of the solution space may be reduced considerably through the application of
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order reductive collision metrics, such as describing collision hazards as multi-dimensional

quadratic forms. We then apply well-founded approximations to the remaining problem in

order to develop a tractable probabilistic solution to real-time collision avoidance.

It is also shown how the System Operating Characteristic (SOC) representation devel-

oped by Kuchar [42][41] may be expanded to evaluate the non-trivial probabilistic effects

of delaying collision avoidance action.

Two example applications are simulated, one for a small PCUAV vehicle and one for

large commercial transports. A number of future avenues of research are discussed, including

application to automated landing systems and other automated maneuvers where there is

a need to evaluate whether vehicles remain within safe bounds of state space, not just

position-space.

1.4 Thesis Overview

In Chapter 1 we focus on background aspects highlighting the need for collision avoidance

systems, especially as applied to autonomous vehicles. It is further illustrated how the

collision avoidance problem for autonomous vehicles differs from that of piloted vehicles. A

short overview of the thesis is then provided.

Chapter 2 elaborates on the basic concepts of collision avoidance as described and viewed

by contemporary researchers and focusses on the state space representation of these prob-

lems developed by Kuchar[41]. Different approaches to collision avoidance are discussed,

culminating in the probabilistic approach upon which the research detailed in this thesis is

founded. The collision avoidance problem is then compared to similar problems described

in the field of reliability theory and also to the so-called first passage time problem.

The next step is to start building on the probabilistic collision avoidance problem in

Chapter 3. It is shown how reduced uncertainty associated with autopilot intent may be

combined into a closed loop state space representation of the vehicle under autonomous

control. The state space representation may then be used to predict state distribution
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within a finite horizon interval through model-predictive mean and covariance propagation.

A conflict risk calculation algorithm is then designed using the predicted state distribution

and it is shown to be an intractable problem. The final section of the chapter describes how

the notion of system operating characteristics (SOCs) may be expanded upon in order to

handle the effects of time-delayed collision avoidance action.

Chapter 4 focusses on the development of a tractable algorithm for the determination

of collision risk as a function of time. The algorithm is empowered by a order reductive

collision metric and simple statistical approximations. An approximation analysis is com-

pleted and calculation errors are characterized and quantified. The chapter also addresses

a number of practical issues associated with, for example, the sizes of time horizon intervals

and simulation steps.

After development of the theory up to Chapter 4, Chapter 5 applies the research and

analyzes the performance of simulated collision probabilities as a function of time. The

research is applied to two application examples: A 2m wingspan autonomous UAV encoun-

tering a tree trunk-sized hazard; and two large commercial transports conflicting with each

other while under autopilot control.

Chapter 6 summarizes the contributions of the research and conclusions drawn, culmi-

nating in a discussion of future avenues of development and applications of the research.

1.5 Chapter Summary

It is illustrated that automatic collision avoidance systems for autonomous vehicles need to

be developed: In order to allow UAVs to operate in FAA controlled airspace; in order to

increase the effectiveness of commercial aircraft collision avoidance when under autopilot

control; and to ensure safety when piloted and autonomous vehicles are required to interact.

Differences between piloted and autonomous vehicles that influence conflict avoidance

design are discussed. The effectiveness of alerting systems for autonomous vehicles is shown

to be less sensitive to the occurrence of false alarms. Uncertainties usually associated with
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future pilot intent can be reduced dramatically by deterministic autopilots, thereby opening

the door to more precise probabilistic conflict detection. It is the hope of this author that the

research presented in this thesis will help facilitate the implementation of more autonomous

flight systems, while making the skies safer for all.

24



Chapter 2

Alerting System Concepts

2.1 General Concepts

Kuchar [41] showed that conflict alerting systems are but a part of several safety components

in complex vehicle systems. Yang[69] illustrated how conflict detection and resolution can

further be represented in a closed loop framework. An illustration of this concept, adapted

from Yang's work, is shown in Figure 2-1. The adaptation generalizes the concept to both

crewed and un-crewed vehicles.

Together, the environment, conflict detection and conflict resolution form a collision

avoidance system. For autonomous vehicles such a system monitors the environment, pre-

dicts vehicle-relative state, issues alerts and executes an avoidance trajectory (conflict res-

olution). This is slightly different from traditional conflict avoidance systems where alerts

are issued, but resolution is accomplished by a human. The major elements of collision

avoidance will be discussed briefly.

First, ownshipi and air-traffic state must be monitored. Various sensors may be used

to accomplish this, but measurements are all combined in estimator architectures to pro-

vide the best state estimate and a corresponding estimate of the state distribution at time

t = to. As with most alerting systems, we always assume that the estimated state variables

are of a multi-variate normal distribution[69] [19][71]. Measurements might result in full- or

1"ownship" is defined as the vehicle running the collision avoidance software
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Figure 2-1: Block Diagram of the Conflict Detection and Resolution Process

partial-state estimation.

Intent must next be established. This includes models of the auto-pilot and trajectory

scheduling systems of vehicles and also knowledge of flight plans and waypoints. We will

refer to the known flight path, before avoidance action is taken, as N, the nominal tra-

jectory. As discussed earlier, knowledge of intent is essential when attempting to increase

prediction accuracy. A closed loop dynamic model of the vehicle must be known and when

combined with intent information we may propagate current state estimates into the future.

We next define alerting parameter(s) in order to judge whether collisions are likely.

Such parameters are known as alerting metrics or collision metrics. Part of the focus of this

thesis is in defining a collision metric in such a way as to reduce the state order, and thus

complexity, of a specific collision avoidance problem.
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After describing a collision metric, we may test it against a number of pre-defined safety

thresholds or alert criteria. For probabilistic systems we usually test for the probability of

crossing a specific metric threshold and test this probability against a pre-defined accept-

able measure of collision risk. The latter is one way to ensure that the alerting system is

robust against uncertainties in the calculation of collision metrics. An example of a simple

singular alert criterium would be to alert if the minimum estimated vehicle separation will

be less than 100m some time within the next 30s (TCAS [67] [69] ).

Collision avoidance systems may decide to give an alert based on the degree of certainty

of a conflict event and also the predicted time of occurrence of the conflict. Yang assumes

that when a conflict is detected one time, it is both predicted to occur and deemed ap-

propriate to alert an operator [69]. We will soon show how the work may be extended to

predict not only the probability of collision within a finite time horizon, but to estimate the

last possible time when it is essential to alert (and automatically avoid). The system we

propose will also provide the avoidance maneuver of choice at the time of the alert, from

amongst a pre-defined set of avoidance maneuvers.

Once an alert is issued, we may enter the conflict resolution phase. Such alerts may also

be in the form of advisories, generating an advised resolution action or trajectory. We will

especially focus on creating such a system. More precisely, we will aim to create an advised

avoidance trajectory that can be implemented by an autopilot trajectory planner. This

means that we will not only issue advisories, such as "turn left", but we will also go as far as

mapping out the specific avoidance trajectory. An autopilot may then follow this avoidance

trajectory and for crewed flight a flight director may instruct a pilot how to proceed. On a

higher level, a suggested avoidance trajectory may become the first section (maneuver) of

a newly planned flight path in a system such as that developed by Frazzoli[27 at MIT.

The above discussion provides some insight into the multitude of estimates, metrics,

thresholds and conflict resolution factors, all dependent on one another, which are found in

the literature. It is this complicated dependence which makes the problem an interesting

one, resulting in various solutions being proposed by a number of different researchers (See

survey in [43]). Most of these methods are however ad-hoc approaches, with little proba-
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bilistic foundation. Varying levels of success are reported, usually under specific conditions

and for specific conflict scenarios. In this thesis we attempt to create a well-founded proba-

bilistic approach, partially based on the work of Kuchar[42] [41] and Yang[70] [69], for a more

general avoidance scenario.

2.2 Methodologies

This section is intended to ground the research within the realm of previous research on

the topic of collision avoidance. First we show how to represent the problem within an

established framework of the field of collision avoidance and then we illustrate a method of

approach which leads up to an efficient solution space.

2.2.1 State Space Representation

In [42] and [41] Kuchar developed a state space representation of collision avoidance prob-

lems. Figure 2-2 summarizes the state space representation.

First we define the time dependent state vector

x(t) = [x1(t)... X(t)]T, (2.1)

where n is the order of the system represented in state space and each state variable xi(t)

represents a parameter that may in some way be employed by the alerting logic. We specify

that that x(t) E R4. The state of the vehicle may change within a period of time, and the

history of x(t) within t = [ti, t 2] will be referred to as the state trajectory of the system

within [ti, t 2].

In general there are regions of, or subsets in, the state space R" that are hazardous

to the vehicle. These regions are usually defined as hazard space, sometimes denoted by

H(t). In this development we will refer to such a region as a domain of failure, denoted by

Df(t) c R", in accordance with the principles of reliability theory[5].

It is clearly undesirable to have x(t) E D1 (t) and if x(t) enters Df(t) we say that a

missed detection has occurred. A missed detection constitutes a failure of the collision
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Figure 2-2: A 2-Dimensional State Space Representation of the Avoidance Problem

avoidance system.

The dynamics, state and relevant avoidance trajectories of a vehicle require that an

alert be issued reasonably far outside of Df (t) so as to ensure that a missed detection

does not occur. We therefore define the alert space as Da(t), such that D1 (t) C Da-

The boundary between Da(t) and Dc(t) (the complement of Da(t)) represents the alert

threshold. When x(t) E Da(t) we issue an alert in an attempt to avoid a collision, i.e.,

avoid x(t) E Df(t). It is therefore prudent to alert well enough before entering D1 (t) in

order to resolve a predicted conflict. When vehicles are operated by humans, we have to

account for avoidance action delays, caused by the operator's reaction time. Autonomous

vehicles will react more predictably and probably also with less delay.
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2.2.2 Standard Definitions and Framework

At this point it is useful to specifically define a number of different outcomes to a conflict sce-

nario. These are illustrated in Figures 2-3 and 2-4. The outcomes are split among intuitive

boundaries, and have become a standard in the field of conflict avoidance[42] [68] [30] [20].

Yang[69] and Kuchar[41] describe the definitions and framework in a similar way.

CD MD FA CR

Figure 2-3: Flowchart of Different Alerting Outcomes

For conflict prediction we first need to establish if a vehicle would inevitably enter Df (t)

if no action is taken.

If no collision will occur, issuing an alert would constitute a false alarm (FA). In such a

case, taking avoidance action that induces collision also constitutes an FA. Refraining from

issuing an alert, the correct action to take, is referred to as correct rejection (CR).

When however XN(t) E D1 (t) will inevitably be true if no action is taken, then we should

issue an alert to avoid collision. Issuing an alert in time to avoid the collision constitutes

30



a correct detection (CD). Any other eventuality, such as failing to issue the necessary alert

or alerting too late, constitutes a missed detection (MD).

The only truly positive outcomes are correct detections and correct rejections. False

alarms may result in a loss of confidence in a system and, even worse, induced collision.

Missed detection always results in entrance onto Dj (t) , usually because of taking late avoid-

ance action, since Df (t) C Da (t). State uncertainty allows us to express these outcomes

only as probabilities. For example, P(CD) would be the probability of correct detection

and similarly for P(FA), P(MD) and P(CR).

The collision avoidance problem may now be stated as follows: Given a nominal trajec-

tory XN(t), a domain of failure Df(t) and J avoidance trajectories xA, (t), find an algorithm

that minimizes a balance of both P(MD) and P(FA).

In other words, the goal is to create an alert space which strikes the most effective balance

between P(FA) and P(MD). For example, if Da(t) is enlarged so that fewer missed detec-

tions occur and P(MD) is reduced, this results in an increased number of false alarms and

P(FA) will be increased. This is a conservative approach where alerts will be issued more

often. Conversely, reducing the size of Da(t) will decrease the number of false alarms and

decrease P(FA), while increasing the number of missed detections and increasing P(MD).

A fundamental and interesting trade-off thus results between P(FA) and P(MD) which

Kuchar showed is commonly encountered in signal detection theory[42][41]. In particular,

there will always be uncertainty in the outcome of alerting decisions, and a tradeoff between

P(FA) and P(MD).

2.2.3 Methods of Approach

Traditionally, collision avoidance is solved through prediction of conflict events by means of

single path and worst case approaches. Cited examples of these approaches are primarily

taken from a survey paper by Kuchar and Yang [43].

The single path approach assumes that a vehicle follows a fixed trajectory, often a

straight line, and that conflict occurs when a safety buffer around one vehicle is projected
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to intersect with D1 (t). This is a deterministic approach with a definite hit or miss result.

Some examples of this approach may be found in [40], [4] and [21].

The worst case approach propagates a vehicle's state trajectory according to its max-

imum dynamic capabilities. An alert is issued when it is predicted that x(t) E Dj(t) will

occur within a time frame of interest. This is still a deterministic approach with definite

hits and misses being predicted. The method was originally developed in an attempt to

model the probabilistic nature of heading estimates. It is most useful for short durations

of conflict prediction, since trajectory deviations may be severe when projected at maximal

rates. Examples of this approach may be found in [59] and [26], among others and also in-

cludes the application of viability or "reachability" theory as applied by Teo and Tomlin[62].

Most single path and worst case approaches may be implemented in real-time, since this

is partly the purpose of their creation. These are tractable, approximate, deterministic solu-

tions to a generally intractably probabilistic problem. Such methods do however suffer from

inaccuracies brought on by approximation. These inaccuracies often manifest themselves

as sub-optimal false alarm and missed detection rates and unpredictable behavior. Most of

these systems are applicable to very specialized collision avoidance problems [43] [69] and

are highly sensitive to a vehicle's control strategy and dynamic model.

The probabilistic approach forms a middle ground between single path and worst case

methods. In this case, we determine the likelihood of collision as the likelihood of x(t) E

Df(t) within a given time horizon. Yang [69] views it as weighing all possible trajectories

with their probability of occurrence and then adding up the contribution of those that cross

into Df (t). The probability of collision accumulated over the interval [to, t], as a function of

time, will be denoted by Pc(t). In this way the amount of collision risk accumulated from

the start to the end of the time horizon, i.e. within the interval t = [to, th], becomes Pc(th).

The reason why the probabilistic approach has been used very sparingly is because, in

general, the problem is intractable[26] [70]. The single path and worst case methods were

created as approximate solutions, in an attempt to avoid having to solve for probabilities

of collision. Yang and Kuchar [69][42][70] and Paielli and Erzberger[49][50] have been at
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the forefront of re-stating the problem in its probabilistic form and this thesis partly builds

upon, and expands the scope of, their work. Other probabilistic approaches include [66],

[54], [58] and [33].

2.3 A Probabilistic Approach

2.3.1 Concerning Alert Space

The probabilistic approach essentially redefines the notion of alert space. In this section,

we show how a probabilistic alert space results and that entry into this space is equivalent

to crossing the alerting threshold (see Figure 2-6).

In Section 2.2.1 we explained how the alert space Da(t) can be defined as a region of

state space where alerts are issued so as to avoid the domain of failure Df (t). Much of the

development effort of collision avoidance systems such as TCAS is expended in an attempt

to define Da(t) [56] [20]. In this process it soon becomes clear that Da(t) needs to be tailored

to specific scenarios and approach geometries in order to ensure that both false alarms and

missed detections are minimized. The shape of Da(t) is usually optimized across multitudes

of representative conflict scenarios, and for various vehicle applications. We will refer to

this operation as the creation of pre-compiled alert spaces.

A pre-compiled alert space ensures that relatively little processing is required to per-

form real-time alert calculations. Estimation of the most likely trajectory of a vehicle is

required and is then checked for intersection with Da (t). Pre-compilation needs to be a

robust solution, representing in some sense the global optimal Da(t) across a number of

different vehicle platforms and for different conflict scenarios. It is this robustness that also

curtails its performance, settling for sub-optimal instantaneous relative values of P(FA)

and P(MD). Such systems usually err on the side of false alarms, since these are usually

considered to be safer than missed detections.

Another way to view the problem is to define two trajectories: The nominal trajectory

without avoidance, denoted by N, and the avoidance trajectory, denoted by A. Then let

us also define the probabilities of collision along each of these trajectories as Pf and PA
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respectively. In this way we may define

P(UA) 1 - P

P (S A) 1 - PA

(2.2)

and

(2.3)

as the probabilities of unnecessary avoidance and successful avoidance respectively. Fig-

ure 2-5 illustrates the two concepts.

YES NO

Follow
Avoidance
Trajectoiy

Follow
Nominal
Trajectoiy

Successful Unnecessary
Avoidance Avoidance

(SA) (UA)

Figure 2-5: Flowchart Representation of Successful Avoidance and Unnecessary Alerts

It is useful to view a truly probabilistic approach from a different perspective. Instead

of defining Da(t) in state space, we may define it in terms of probability space, as illustrated

in Figure 2-6. The remainder of this section is devoted to illustrating this concept. Simply

put, an alert may be issued when it is deemed probable that a collision would occur along

the existing (nominal) trajectory, while there still remains a high probability of effecting

safe collision avoidance.
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Kuchar[41] [42] shows how decision theory may be used to define an optimal region within

the space P(SA) vs. P(UA) in an attempt to homogenize the performance of an alerting

system over all encounters. P(SA) vs. P(UA) maps out a system operating characteristic

curve[41] as a function of time. This concept is discussed in more detail in Section 3.3 and

is briefly illustrated in Figure 2-6.

We may thus decide on acceptable levels of false alarms and probabilities of safe avoid-

ance for a specific vehicle and then alert when such thresholds have been transgressed. Such

thresholds are represented by T 1 and T2 in Figure 2-6. Probabilities of collision are then

determined using Df (t), a current state estimate and knowledge of our vehicle's dynamic

model and tested against the aforementioned thresholds of P(SA) and P(UA). P(SA) and

P(UA) therefore plot out a curve over time. Even though Da(t) does still exist, we do not

attempt to create this ever changing space. We rather make use of the fact that the region

inside Da (t) represents a certain safety risk and then ascertain whether we are inside or

outside of this risk space.

We will soon show that the main objective of this work is to find Pc(t) through applica-

tion of a more rigorous probabilistic approach. Kuchar's work may then be applied in order

to determine the necessary alerting thresholds.

2.3.2 Similarity of Collision Avoidance to Alternative Problems

The probabilistic collision avoidance problem can be likened to a number of other research

interests in many different fields of study. We will briefly discuss two of these fields, since

some of the underlying concepts used to create the approach described in this thesis are

borrowed from them. The similarities of the problems are also uncanny and this realization

leads to a useful perspective.

Reliability Theory

Reliability theory is employed by a wide range of disciplines, not the least of which is the

field of civil engineering[5]. We will discuss how reliability theory may be likened to the

collision avoidance problem along the lines of a civil engineering problem.
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Figure 2-6: An Illustration of the Probabilistic Alert Space

Say that a building is constructed using a multitude of steel and concrete pillars and

beams and that these serve as its major load bearing elements. Even though these ele-

ments are constructed to exacting specifications, their compression and tensile strengths

are characterized in terms of probability distributions. Given that members of different

distributions are distributed randomly throughout the construction process, we wish to de-

termine the risk of catastrophic failure due to wind load within the next one-hundred years.

Wind speed is usually described as an "Extreme Type" I or II distribution [5].

This is by no means a simple problem and clearly very similar to that of determining

collision risk within a finite horizon time window. The problem is solved by creating a

state vector containing such information as the locations of load bearing members, the

force applied by the wind, soil density and many other relevant parameters. A safe region
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within the state space is then defined, called the domain of safety D, and the complement

is referred to as the domain of failure Df = D'. In this case it is the domain of safety that

is bounded, as illustrated in Figure 2-7.

X2

D

S

x 1

Figure 2-7: A 2-Dimensional Representation of Hazard Space in Reliability Theory

Given the state probability density function (PDF) fx(x), the probability of catas-

trophic failure is

Pf =1 - LED, fx(x)dx. (2.4)

It is from reliability theory that we borrow such concepts as the domain of failure and

some of our notation[5]. It is however no trivial exercise to find fx(x), as is the case with

collision avoidance. The collision avoidance problem is more complex though, since an

aircraft does not only possess a state distribution, but also a non-trivial state trajectory.

Part of our method of solution, but especially the point of view adopted in this thesis, stems

from dividing the collision avoidance problem into a multiple number of reliability theory

problems, one at each simulation time step.
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The First Passage Time Problem

The first passage time problem was first developed to describe Brownian motion[10] in

particle physics. Physicists are interested in understanding the motion of a molecule under

the influence of uncorrelated inter-particle collisions. The collisions are usually modelled as

transfer of momentum from a Wiener excitation process, and the major interest, as applied

to a single dimension of a homogeneous process, is to determine the probability of the

molecule remaining within an interval (a, b), or

a < x < b, (2.5)

where a and b are absorbing bounds, illustrated in Figure 2-8. An absorbing bound is simi-

lar to the boundary of Df, since entry into this domain negates the possibility of exit from

the domain. The developments in Chapter 3 further clarify this statement.

Here we are dealing with a system described by an Ito stochastic differential equation

of the form

dx(t) = A[x(t),t]dt + B[x(t),t]dW (t), (2.6)

where W(t) is a Wiener process. In Chapter 3 we show how the collision avoidance problem

can be described by a multi-dimensional form of Equation 2.6.

Solving for the probability of leaving the interval as a function of time is then similar

to solving for the probability of an aircraft entering into Df, denoted by Pc(t). This is es-

pecially evident when one bound, say b, is considered to be very far away and the particle's

initial position is much closer to a. Pc(t) can then be solved through application of the

backward Fokker-Planck (Kolmogorov) equation[28]. This solution, even in one dimension,

is of excessive complexity. Desilles[19] provides an example of how this process may be

applied to the two-vehicle collision avoidance problem.

The most interesting aspect of the first passage time representation is that it likens the

calculation of collision risk to the flow of probability space across a boundary, into a domain

of failure, Df. The risk calculation strategy in Chapters 3 and 4 is developed from the very
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Figure 2-8: An Illustration of the First Passage Time Problem for Two Absorbing Bounds

different standpoint of reliability theory, but also results in a solution which calculates the

amount of probability flow into Df over time.

2.4 Chapter Summary

The autonomous conflict detection and collision avoidance problem is cast into a state

space problem, similar to that developed by Kuchar[41]. As with most probabilistic ap-

proaches(e.g. [69][19][71]), we assume that the vehicle state may be described by a multi-

variate normal distribution. This representation culminates with the introduction of prob-

abilities of safe avoidance, P(SA), and unnecessary avoidance, P(UA), respectively.

The calculation of collision risk within a finite time horizon is shown to be equivalent

to problems encountered in a number of separate fields of research. Two such fields are:
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Reliability theory, especially as applied to civil engineering problems where catastrophic

failures are characterized as a function of time; and the first passage time problem described

by Kolmogorov equations, or as special cases thereof, such as the Fokker-Planck equation

often encountered in physical problems and stochastic control.
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Chapter 3

Expanding the Probabilistic State

Space Approach

We have shown how the collision avoidance problem may be solved in several ways, with

the probabilistic approach being the most accurate representation. In this chapter we show

how the probabilistic approaches of Yang and Kuchar [69][41] may be expanded upon in

a number of ways. At the same time, we show why the complete probabilistic approach

is considered to be intractable for real-time applications. Three major developments are

discussed, namely:

1. Real-time future conflict probing may be model-predictive instead of approximating

the trajectory as piecewise straight-line segments. We may also treat a vehicle's

control strategy and dynamic model as time-variant. These extensions stem from the

fact that autonomous vehicles do not suffer from the same extent of uncertainty in

future vehicle intent as encountered in piloted flight. The gain lies in propagating

conditional mean and variance, thereby reducing the state uncertainty envelope. This

aspect is described in Section 3.1.

2. The use of a repeated outcome approach such as Monte-Carlo simulation in the risk

probing process suggested by Yang[69] may be replaced by a calculation approach

such as propagation of state distribution through a combination of approximation and

convolution. Such direct approaches are usually avoided because of the associated high

calculation complexity. Paielli and Erzberger avoid this complexity by, for example,

assuming constant vehicle velocity and constant state distribution over the conflict
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interval. Section 3.1.2 instead deals with solving the problem through a more rigorous

calculation approach.

3. After detection of a potential collision, we may delay taking avoidance action until

it clearly becomes necessary. The probabilistic effect of such time-delayed avoidance

action may be incorporated to reduce the incidence of false alarms by establishing

avoidance trajectories that circumnavigate risk peaks in probability space, as de-

scribed in Section 3.3. This extension builds upon the concept of system operating

characteristics (SOCs).

The methods described in this chapter operate within a finite horizon time window from

an instantaneous realtime point of implementation, i.e. from the now, denoted by to to the

horizon denoted by th, with tw = th - to being the time window to the horizon.

3.1 Estimation

3.1.1 State-Space Formulation

Model-prediction allows us to narrow down risk probabilities based on a vehicle's dynam-

ics and control models. Truly effective model-predictive state propagation therefore begs

knowledge of a vehicle's closed loop dynamics model and also of the intended trajectory.

For these reasons, this extension should be made when a vehicle is under autonomous con-

trol along a pre-planned flight path. The research becomes especially applicable to most

commercial and military vehicles, especially UAVs, under autopilot control.

Assume that we are dealing either with time-variant linear dynamics or with non-linear

dynamics, as long as a linearized system model is available at any time step, and linearization

errors are quantifiably small1 . The following research focusses on describing statistics for a

vector valued, linear, time-variant system of the form

XOL = A(t)XOL + B(t)UFC(t) + B.(t)w(t)

y = C(t)XOL + D(t)UFC(t) + D,(t)v(t) (3.1)

'An extended non-linear estimation approach may also be used to describe state distribution for highly
non-linear systems.

44



with w(t) and v(t) denoting white process and measurement noise vectors respectively.

UFC(t) is the feedback control input to be employed during control loop closure and XOL is

the open loop state vector. We will need to estimate the vehicle's state distribution within

a finite horizon of interest. At first glance this seems like a standard state estimation prob-

lem. There are however some important issues to consider that are discussed in the next

few paragraphs.

The vehicle's autopilot, as part of the control system, needs to be included in our

representation. Assuming that optimal state estimation is achieved, we may write out the

estimator model as

XOL = A(t )oL + B(t)UFC (t) + L(t)(y -

= C(t)ioL + D(t)UFC(t) (3.2)

with L(t) denoting the optimal filter gain. The closed loop system takes on a different form

which we will exploit in the next subsection. This form is illustrated using the example of

a standard state feedback problem as follows:

Assume that the feedback controller may be modelled as

UFC(t) = K(t)OL. (3.3)

The complete general model of the closed-loop system may now be constructed from

algebraic manipulation and is expressed in terms of its full-state representation

50L A(t) B(t)K(t) xo Bw(t) 0 w(t)

XOL L(t)C(t) A(t) + B(t)K(t) - L(t)C(t) 2OL 0 L(t)Dv(t) v(t)

(3.4)

In the above representation, the closed loop system state is described by x = [XOL, XOL]T-

A more general representation might also include deterministic inputs such as trajectory

commands. Such deterministic inputs are by definition uncorrelated with the system states.

Dynamic feedback control strategies such as lead and lag networks would also add dimension

to the .closed loop state vector.
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3.1.2 Propagation of State Distributions

We have thus far shown that we are dealing with a describable closed loop system when

flying under autopilot control along a planned flight path. The remaining problem is of the

form

± = A(t)x + B(t)U(t) + Bw(t)w(t) (3.5)

where Qc(t)J(t - r) = E[w(t)wT (r)], E[w(t)] = 0, E[x(O)xT(0)] = Po, E[x(O)] = 0,

E[x(0)wT(t)] = 0 and w(t) is multi-variate white noise 2 . It is essential to note that, at

this stage, U(t) does not represent feedback control, since the control loop was closed in

Equation 3.4. Feedback control is denoted slightly differently, by UFC(t). U(t) is a deter-

ministic reference tracking input. According to Gelb[29], with U(t) = 0 Vt, the mean of x,

denoted by mx(t), is propagated by[29]

hXU=O(t) = A(t)mxU=0(t) (3.6)

and the covariance of x, denoted by Px(t) , is propagated by

Px p=0(t) = A(t)Pxu=o(t) + Pxu=o(t)A(t)T + Bw(t)Qc(t)B,(t). (3.7)

The above two propagation equations need to be expanded to account for non-zero reference

inputs, i.e., U(t) / 0 Vt. The propagation of the state mean is clearly similar to the solution

to x(t), since

mx(t) = mxu=o(t) + j eA(r)(tr)B(r)U(r)dr, (3.8)
to

therefore

rhx(t) = A(t)mx(t) + B(t)U(t). (3.9)

As before, covariance at each time step is expressed as

PxUo(t) = E[(x(t) - mx(t))(x(t) - mx(t))T] (3.10)
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and since subtracting Equation 3.9 from Equation 3.5 yields

±(t) -'rhx(t) = A(t)(x(t) - mx(t)) + Bw(t)w(t) (3.11)

(note the absence of U(t)), we may also write

Pxp+0 (t) = A(t)Pxu+o(t) + Pxuo(t)A(t)T + B,(t)Qc(t)B! (t). (3.12)

U(t) becomes the reference path xref(t), that the vehicle is commanded to follow at any

time t. The state will be expressed as a multi-variate normal distribution with mean vector

mx(t) and covariance matrix Px(t). For this application, true state estimation is not re-

quired during the horizon of propagation, since the best estimate of x is not of importance

after t = to, only the instantaneous distribution of x.

In this way, we can now predict the state distribution of the vehicle, based on models of

both the autonomous vehicle itself and its scheduled future flight path. This is, by defini-

tion, a model-predictive solution. Mean and covariance propagation is a conditional process.

Such propagation is not simply an ah-hoc approach to solving the problem of describing

the distribution of state over time, but is a natural and proven method in the field of esti-

mation and control. It has also been employed in research by Paielli and Erzberger[49][50]

and Prandini et al[54] for collision risk calculation between piloted aircraft. The following

deffinition now arises:

Definition: fx(t)(x) is the estimated, time-variant, probability density function of the

vehicle state x(t), with t denoting time.

It is very important to realize that the PDF, fx(t)(x), as described in this section, is

not dependent on the occurrence (or not) of collisions within the horizon of interest. This

is because the described mean and variance propagation processes inherently ignore the

occurrence of collisions. We do however employ this propagation method in the reduction

process described in Chapter 4. The next order of business is to describe how collision risk

may be determined from the knowledge of state distribution (and visa-versa) and the shape

of a so-called domain of failure Df.
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3.2 Propagating and Accumulating Risk

3.2.1 The Single-Vehicle-Single-Obstacle Problem

Yang employs a Monte-Carlo approach using piecewise straight-line segments for trajec-

tory models when probing the vehicle state space for possible future conflict. This was

necessitated by the calculation complexity involved when attempting to solve for all the

complicated probability distributions that arise from the trajectory model, and the compu-

tational speed required for real-time application[69] [70].

Part of this section describes how complexity arises from the dimensionality of the prob-

lem, state-time correlation and especially the conditionality of state distribution on collision

events. We recognize that the problem is closely related to the well-known first passage time

problem of Brownian motion of particles encountered in Physics, as shown in Section 2.3.2.

We will show how to perform the required calculations, but Chapter 4 describes how to

make the calculations tractable, thereby avoiding the need for Monte-Carlo probes of the

probability space. We are constrained to dealing with a two-vehicle problem. Multiple

vehicles may for example be dealt with by resolving the problem into two-vehicle pairs, but

this concept and the complexities associated with it are considered to be outside the scope

of this research.

It is clear that a two-vehicle collision avoidance problem can always be transformed into a

single-vehicle-single-obstacle problem. In addition, this obstacle can always be transformed

to exist at the state-origin. This can be shown by defining Dfa (t) C R" and Dfb (t) c
R" as vehicle-centered domains of failure for two vehicles respectively, and the normally

distributed corresponding vehicle states with marginal density functions given by fxa (Xa)

and fxb (Xb). Defining the relative state difference as x = Xa - Xb, the marginal density

function for the relative state becomes

fx(x) ~ N(mx - mX, EX + Exb), (3.13)

where mxa and E. denote the vector mean and covariance matrices of the vector Xa re-

spectively. Paielli and Erzberger[49][50] and Sanders[58] also illustrate this combination of
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mean and covariance for the two-vehicle problem. At the same time the domain of failure

becomes

Df (t) = Df.(t) U Dfb(t) c R". (3.14)

Df (t) may be transformed or translated to exist at the state origin. Let us therefore now

only solve the problem of having an obstacle of finite size, located at the state origin, called

a domain of failure Df (t) and that an equivalent single vehicle model's marginal state PDF

fx(t) (x) can be determined within a time interval of interest, using Equations 3.9 and 3.12.

3.2.2 Accumulation of Risk

The accumulation of risk over time will be explained with the help of the discrete repre-

sentations in Figures 3-1, 3-2 and 3-3. Figure 3-1 is provided as an illustration of the basic

concepts of risk accumulation, and should be kept in mind when later, more mathematical,

representations are provided. The state distribution is propagated forward at discrete time

intervals, since, as we will soon see, analytical solutions to this procedure do not exist. After

every time step, the intersection between the distribution and the hazard is integrated to

provide the added risk accumulated over that time step. The section intersecting with the

hazard is cut from the distribution, and the remaining distribution is propagated to the

next time step, and so forth.

A number of interesting aspects of the risk accumulation procedure should be noted:

1. We are dealing with flow of probability space into a hazard, over a short time interval.

It is this flow into the hazard that undergoes volumetric integration at each time step

and is them added together as time progresses, to provide the total accumulated

collision risk up to that time.

2. The hazard absorbs the probability space, since such space that has already collided

with the hazard should not be propagated any further. One way to understand the

absorbtion (absorbing bound in the First Passage Time problem), is to view the state

probability density as a cloud of vehicles and to recognize that once a vehicle within the

cloud enters the hazard, it should be removed from the process of counting further

collisions. This means that we are dealing with a conditional state distribution at
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V Trajectory of

Initial State PDF state mean

Figure 3-1: A Basic 2-Dimensional Representation of the Risk Accumulation Process, Illus-
trated With 1-Dimensional Triangular State Distributions, for Simplicty

every time interval and the implications are that: Calculation of the conditional state

PDF at every time step becomes a complex task; the probability space diminishes as

time progresses; and collision risk increases with exposure time to the hazard

We describe collision risk within the discretized interval t = [to, tK-1], where tK-1 = th

is the horizon time and t = to is considered to be the present, i.e., the point in time when

we need to determine collision risk within the next t, = th - to seconds. We now describe

the collision probability similarly to the first passage time probability, i.e., the probability

of entering the domain of failure by the time t = tk, as

Pc(k) = P[x(t) E Df(t), exactly once in [to, tk]]

= P[xto E Df(to)] + P[xt, E Df(t1)|1xto Df(to)]P[xto ( Df (to)] +

P[xt2 E Df(t2)|(Xto V Df (to)) n (xt, ( D (ti))]P[(xt V Df (to)) n (x(to) V Df (to))] +

(3.15)

where xt = x(t) to shorten notation. For the continuous time case, K -+ oo and therefore

At -- 0. The continuous case is the multidimensional statement of the first passage time

problem discussed in Chapter 2. In Equation 3.15 we assume that the vehicle has not col-
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lided before t = to and at every time step we need to account for the probability of collision,

given that no collision has taken place up to that time.

X1

Ds
s U(t) = Xr, (t )

Dffx
11 (x) I B00

fX(tI )x |B00

Figure 3-2: Progression of fx, (x) IB[o,k_1 Over One Time Step from t = to, in 2 Dimensions

Solving Equation 3.15 in its given form is a complicated task, both intuitively and in

terms of calculation complexity. We will write the equation in a different form, by recog-

nizing that we may propagate the probability density function (PDF) describing the state

space that remained outside of DI(tk) within [to, tk], denoted by fxk(x)IB[o,k_1]. This is

the conditional form of fxk (x), given that no collision has taken place before or on t = tk.

Definition: fX(tk)(x)B[o,k_1] is the time-variant PDF of the state x(t) at the discrete

time t = tk, conditioned on the fact that no collision has occurred while t E [to, tk-1). The

conditional statement is expressed as B[0,k_1].

At time t = to, the start of the horizon of propagation, the conditional PDF is equivalent

to the marginal PDF given by

fX(to)(X) = 9Ao (X) + gBo(x), (3.16)
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where gAo (x) and gBo (x) are the segments of the PDF inside and outside of the domain of

Df (to) respectively. At time t = to +k.At, k discrete time steps later, the equation becomes

(3.17)

When we write Equation 3.15 in terms of Equations 3.16 and 3.17 we can express the

probability of collision at the discrete time t = tk as

P(k + 1) = jxED$(to) 9AoL(xdx + xED5(t1) gA1(x)dx[1 - Pc(O) +-

LxEDf(tk) gAk()[dx(1 - Pc(k - 1)] + xDf(tk+1) 9Ak+1(X)dX1 - Pc(k)]

= Pc(k) + xD(tk+) Ak+ 1(x)dx[1 - Pc(k)]. (3.18)

In this way we have shown that Pe(k) may be determined through an incremental update

at each time step from t = tk_1 to t = tk, with Pc(k < 0) = 0, provided that gA" (x) can be

found for 0 < k < (K - 1).

Finding gAk (x) entails expressing fX(tk)(x)|B[o,k_1] and salvaging the segment of

fx(tk)(x)IB[o,k_1] inside Df(tk), according to Equations 3.16 and 3.17. We therefore focus

on calculating fx(tk) (x)|B[o,k-1].

At time t = to we start with the marginal PDF fx(to)(x) and then need to find

fx(ti)(x)|B[o,o and so forth. In general we are calculating fx(t,+1)(x)|B[o,kI when

fx(tk)(x)|B[o,k_1] is known and fx(to)(x)|B[o,_1] = fx(to)(x). To do this we need to under-

stand how Xk+1 can be realized from Xk. Assuming Euler integration, we can write

Xk+1 = Xk + Attk

= [I + AtA(k)]Xk + [LAtB(k)u(k) + AtB(k)w(k)]

= Mk(xk) +Rk[u(k),w(k)] (3.19)

where Mk(Xk) and Rk[u(k), w(k)] are independent quantities. This independence allows us
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to apply n-dimensional convolution to find

fxk+1(x) = fMik (m) * fR, (r). (3.20)

In the same way, we may propagate fx(t,)(x)|B[o,k_1 by setting

fX(tk+1)(x)BO = 9B(X) * fR
fxxtD((tk) 9Bo W

f 9Bk () ftk (r)
1f gx

1 XD(tk) gA (X) * fRtk (r)(.1

where

By _ 9B W(.2
Lk) 1- f(tk) A(x (3.9A22)

and with Pc(-1) = 0. In Equation 3.21 gBk(x) represents the segment of fX(t)(x)|B[_,k1]

outside of DI(tk) and fxgDf(tk) 9Bk(x) normalizes gBk(x) to become a true PDF, in accor-

dance with Bayes' rule. It is essential to realize that only that part of fX(tk)(x) |B[o,k_1

outside of D1 (tk) must be propagated, since fx(tk+1) (x) IB[o,kI is by definition conditioned

on B[o,k). No closed-form representation of the convolution in Equation 3.21 is however

known and the computational complexity of a numerical solution is O(N 2n), with N being

the number of quantizations of each dimension of the space and n = dim(x).

3.2.3 Propagation Procedure

So far we have made assumptions about the nature of the system under consideration, such

as it being linear, time-varying. We are also dealing with a one-vehicle-one-obstacle problem

with normally distributed states. We have shown that this is equivalent to a two-vehicle

problem, and have described the relative state and domain of failure in a way showing sim-

ilarity to that found in the work of Paielli and Erzberger[49] and Sanders[58]. Given these

assumptions and accepting that the vehicle has either undergone no collision before t = to

or that we can cast probability of collision as the probability of collision within [to, th], then

the derivations so far from Equations 3.13 to 3.21 are accurate discrete time representations.

Figure 3-3 illustrates how the exact discrete time probability of collision accumulated
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Figure 3-3: 5-Step fx(tk+1)(x)IB[ok] Propagation and Calculation of Pe(k) (1-Dimensional)
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within [to, tk], denoted by Pe(k), may be found through a 5-step propagation process. The

illustration is provided for a one-dimensional problem in order to reinforce understanding

of the process. Notice that the propagation process requires knowledge of Pe(k - 1) in

order to find Pc(k). This implies that the 5-step process needs to be applied incremen-

tally for each time step in [to, tic], starting at to and in increasing order of k. Recall that

fX(to)(x)|B[o,-1] = fx(to)(x) and Pc(-1) = 0. At every time step t = tk,

Step 1: Segment gA,,(x) from fX(t)(x)B[o,k_1] by setting

fX(t)(x)IB[,k-1] = 0 V x $ D5(tk).

Step 2: Use Pc(k) = Pc(k - 1) + fxEDf(tk) 9A,(x)dx[1 - Pc(k - 1)] to accumulate

the probability of collision.

Step 3: Segment gB from fx(tk)(x)IB[o,k11 by setting fX(tk)(x)|B[o,k_1] = 0

V x E DI(tk).

Step 4: Normalize gB, to create the PDF ft (W x _ oED1 (t) gAk(X)

Step 5: Propagate ftk) (x) to the next time step through the n-dimensional

convolution fx(tk+1)(x)IB[okI = fxk)(x) * f (r).

Now continue the process by utilizing fX(tk+1) (x)IB[o,k] at time t = tk+1 to obtain

9A, (x) as in Step 1, and so forth.

The numerical complexity of the propagation phase is dominated by the O(N 2 ,) con-

volution process indicated in Step 5 and described by Equation 3.21, and is therefore an

intractable problem for meaningful values of n and N. Chapter 4 deals with order reduction

metrics and approximation techniques that make this calculation tractable.

3.3 Time-delayed Avoidance

3.3.1 System Operating Characteristic

The performance of a collision avoidance system may be characterized as a trade-off between

unnecessary alerts and successful alerts. This method of performance evaluation is based on

the use of the System Operating Characteristic (SOC) curve, developed by Kuchar[41][42].

The curve facilitates a visual exchange between P(SA) and P(UA) as the time of imple-

mentation of a single avoidance maneuver is varied. It is assumed that no collision has
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taken place before the time corresponding to any point on the SOC. The SOC curve is al-

ways specific to the avoidance maneuver and the geometry of the encounter, see Figure 3-4.

The top left corner of the SOC figure represents perfect, safe avoidance strategies with zero

probability of false alarm. Curves that approach this corner therefore allow for improved

alerting thresholds. The opposite is true for the bottom right corner of the SOC figure.

1.0

P(SA)

(0,0) P(UA) 1.0

Figure 3-4: Different Shapes of SOC Curves

SOCs are not created for t > to when attempting real-time conflict alerting, because of

the uncertainty in the future intent of most vehicles and the method of creating estimates

of P(SA) and P(UA). This means that an SOC curve is mapped out as time passes, but

the most futuristic point on the curve is at t = to, the present. This point, by defini-

tion, evaluates the performance of immediately employing a collision avoidance maneuver.

Real-time collision avoidance strategies such as [70] and [69] make use of this most recent

point on the SOC curve to decide on an alert eventuality. Earlier in this thesis, we have
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shown that vehicles under deterministic and stable autopilot control allow us to propagate

their state PDF into the future, without the severe increase in state uncertainty usually

associated with unknown pilot intent. Section 4.3.1 describes how the finite horizon time

window cannot however exceed td, a bound based on our knowledge of intent, since intent

is never known exactly within an un-bounded period of time. Therefore, for this discus-

sion, we will predict the shape of the SOC curve for to t < to+ t, where t, = th -to ! td.

3.3.2 Condensed SOC

Unfortunately the shape of SOC curves do not always follow a simple path to the origin, as

usually depicted for vehicles on an inevitable collision course, seen in Figure 3-4. Various

examples of collision avoidance exist that result in more complex SOC curve representa-

tions. One such example is illustrated in Figure 3-5. In this case, a vehicle is flying directly

towards a domain of failure, and employs an avoidance maneuver that only temporarily

ventures off the nominal trajectory. The avoidance maneuvers are investigated tAD seconds

apart.

A more complex SOC curve results from the example in Figure 3-5, illustrated in Fig-

ure 3-6. Typical alerting thresholds such as (P(SA) < Ti) n (P(FA) < T2 ) would alert at

time t = to when the curve is only known up to t < to. Without certainty of the curve at

t > to, an alert would be issued. This is the standard approach to application of the SOC

curve [41],[70]. A more complicated scenario, such as the given example, can however be

envisaged where the curve later exits the alert-space demarcated in Figure 3-6. A finite

horizon simulation is able to draw the curve up to t = th, therefore predicting whether such

an exit will occur within the finite time window.

A number of interesting questions now arise. First, should the alert be issued upon

entering the alert-space even if an exit is foretold? Second, how long and how far in-

side the alert-space may a vehicle remain with a degree of safety? It is ventured that an

SOC curve alone cannot answer these questions, since future probabilities of collision are

time-correlated, as described in the previous section and should therefore be conditional on

previous collision risk.
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Figure 3-5: An Example Showing the Benefit of Delayed Avoidance Action

Let us assume that a vehicle may either continue along a nominal trajectory N or employ

a single avoidance strategy A at any time t. Continuous time delayed avoidance may then be

viewed as the creation of an infinite set of compound trajectories where a vehicle continues

along, for example, trajectory N for 0 < tN < td seconds and then branches onto A for the

next 0 < tA td - tN seconds. We now discretize the number of opportunities to transition

from N to A, and prevent the vehicle from transitioning back to N. Each transition time

is designated as illustrated in Figure 3-7. In this way, any one of the discrete compound

trajectories may be defined as

DCT = [N(, ti), A(ti, td)]. (3.23)

58



1.0

to+ 2tAD

to
P(SA)

< I

Cd I

o | Probabilistic Safe Space

(0,0) T P(UA) 1.0

Figure 3-6: The Unpredictable Nature of the SOC Curve for t > to

The avoidance discretization step size will be denoted by tAD = t 1 - to and the number of

steps are denoted by I = td/tAD + 1. In this way we may describe (I - 1) SOCs, where

P(UA) is derived from the probability of collision of the nominal path N = DCTI, and each

other DCT within i = [0, I - 2]. The issue of the size of tAD is considered in Section 4.3.2.

Now we may create a new kind of SOC, the Condensed SOC (CSOC), which corre-

sponds to that single one of the (I - 1) SOC curves with the highest P(SA) at t = to.

Notice that the P(UA) of each SOC is exactly equal at t = to. In this way, the CSOC

provides the avoidance option with the highest P(SA) while condensing the outcome of the

next td seconds into a single point at t = to. We no longer have to deal with the issues of

an SOC possibly entering and exiting the alert-space within a window of time, but simply

need to ask if the CSOC is inside or outside of the alert-space when deciding to alert or

not. Recall that the "alert" referred to here really is the decision to let the autopilot of
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Figure 3-7: Creation of Compound Avoidance Maneuvers

our vehicle implement an avoidance maneuver. Notice also that the avoidance maneuver is

delayed by ti seconds, where i* corresponds to the designation of the selected SOC that

became the CSOC. The avoidance maneuver associated with the CSOC now becomes the

suggested avoidance maneuver if an alarm is issued.

It is worth reminding the reader that the collision avoidance problem solved in this

thesis is a conservative one where only very small amounts of collision probability are tol-

erated. In this sense the alert-space bounded on the CSOC curve would be described by

(P(SA) < T1 )n (P(FA) < T2), where TI, T2 > (1- Pc.) and where Pm,. is the maximum

allowable collision risk that a vehicle may be exposed to within any finite horizon interval.

The alerting aspect of the decision making process does not need to know exactly where

a point on the SOC curve is, only which side of the alert-space boundary it is on. We

therefore only calculate Pc(k) until Pc(k) Pcmax becomes true.
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The CSOC reflects a change in philosophy from the original SOC in terms of what the

metrics for decision making should be. An SOC essentially employs the metric of "needing

to alert" vs. the "success of alerting now". In the case of the CSOC we employ the metrics

"need to alert" vs. "safety", where "safety" accounts for the possible benefit of delaying

avoidance action now, while acting later. The CSOC concept can therefore be viewed as an

extension of Yang's work on selecting the most beneficial avoidance maneuver from within

a set of avoidance maneuvers, at t = to [69].

The concept of a CSOC is created to link this dissertation with the works of Kuchar and

Yang and to be able to apply existing methods of analysis and alerting threshold design to

the time-delayed avoidance problem. The rest of the thesis, including application examples,

will however focus mainly on the calculation of Pc(t) (in the form of either P (t) or PcA(t))

so that SOCs may be created according to Equations 2.2 and 2.3. For trade-off between

P(SA) and P(UA) in alerting threshold design we refer the reader to [42],[41] and [69].

It is also worth pointing out that we do not really need to create I number of SOC

solutions before being able to find the CSOC. The principles of dynamic programming can

be employed to find the SOC with the highest P(SA).

3.4 Chapter Summary

The development in this chapter rests on three major assumptions, namely that: A vehicle

may be modelled using time-variant, linear dynamics; collision risk only extends from the

present into the future, that is, collision risk only makes sense when calculated after t = to,

the start of the model-predictive, finite horizon simulation window; and Euler integration

is used in order to time-discretize the intractable, continuous-time collision risk calculation

problem.

The autonomous vehicle problem is extended to a closed loop representation where it

is shown that mean and covariance propagation may be used to estimate future vehicle

state uncertainty through finite horizon model predictive simulation. This development is

a direct consequence of the reduction of uncertainty of pilot intent because of autonomous
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control. Paielli and Erzberger[50] and Prandini et al[54], among others, also illustrate a

similar development, but for straight line vehicle trajectories.

The calculation of collision risk within a finite and discretized time horizon is cast as

a reliability theory problem and developed from first principles. The solution is developed

as a set of discrete propagation equations illustrated in Figure 3-3 and it is shown that the

calculations are numerically intractable when real-time solutions are required.

The notion of the system operating characteristic (SOC) [42] [41] employed as a trade-off

between P(SA) and P(UA) when making alerting decisions is extended. The SOC at any

point in time is based on the outcome of making an avoidance decision at that time. It is

shown that the effects of time-delayed avoidance action may be incorporated into the SOC

representation, resulting in a best-case or time condensed SOC (CSOC), for a specific time

horizon and a given set avoidance trajectories. This allows us to make use of signal detection

theory in order to optimize alerting thresholds, while at the same time investigating the

pay-off of delayed avoidance action. As a direct consequence, the work of Kuchar may be

employed when optimizing alerting thresholds[41].
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Chapter 4

Tractable Risk Propagation

Through Quadratic Collision

Metrics

4.1 Order Reduction of Convolution

The intractability of the n-dimensional numerical convolution required to propagate a ve-

hicle's state PDF arises mostly from the O(N 2") computational complexity involved in

solving Equation 3.21, where N represents the number of samples along one dimension of

the discrete numerical solution grid. At first it also seems that the n-dimensional integra-

tion of Equation 3.18 could potentially add additional O(N") complexity to the solution.

Fortunately this integral may be solved through a gradient search approach of O(nN)[5].

In the event of no collision risk within [to, th], no convolution would be required and the

mean and covariance propagators described in Equations 3.9 and 3.12 would provide an

optimal estimate of the vehicle's state PDF at any time within the horizon. Unfortunately,

resolving fx(t,)(x)|B[o,k_1] into gAk(x) and Bk (), segments within and without of Df (tk)

respectively, adds complexity. This is because only ftk) (x) derived from g, (x) (see Equa-

tion 3.21) must be propagated forward in time and it is no longer a normal distribution

for which special properties might be exploited to negate the need for the application of

n-dimensional convolution. Hence, analytical solutions to Equation 3.18 and 3.20 are un-
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known. This chapter focusses on the application of intuitively natural collision metrics in

order to reduce the O(N 2,) complexity of risk calculation to O(Nlog 2 (N)) through system

order reduction to n = 1 and the application of efficient numerical convolution techniques.

4.1.1 Simplifying Assumptions

Existing collision avoidance systems such as TCAS define a so-called Distance Modification

(DMOD), a collision safety bound (distance) [67] [48] around an aircraft which corresponds

to a radius of conflict. TCAS then predicts the amount of time it would take any vehicle to

close to within DMOD. It then issues a Traffic Advisory (TA) when it is predicted that an

aircraft will close to within DMOD, within r1 seconds. A second level of alert, a Resolution

Advisory (RA) is issued when 72 <Ti1 becomes the predicted time to conflict. The DMOD

distance essentially defines a equivalent domain of failure around a vehicle.

It is in the spirit of TCAS, its well-established track record and its wide acceptance as

a standard for comparison[67] [41] [69] [48] [24] [25] [56] that we choose a similar safety bound

or DMOD surrounding a vehicle. Many other systems with this approach are cited in [43].

It will be shown that this tried and tested bound may in fact be shaped into a useful order

reductive metric. We also generalize the metric to shapes with varying radius around the

vehicle, by defining it as a quadratic function of the vehicle's state described by

R = x-TBx, (4.1)

where B is constrained to be a real, symmetric positive definite matrix.

The square of the R metric is more useful, since the square root operator in Equation 4.1

spawns considerable numerical and analytical complexity when dealing with the calculation

of PDFs. The metric therefore becomes:

- = R2 = XT Bx. (4.2)

For typical spherical buffers around vehicles where position is a simple state, B only retains

some unitary diagonal entries. The focus of the next section lies in reducing the required
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convolution order of the n-dimensional state distribution by applying this one-dimensional

metric. Soon we will need to find the probability distribution of y and the lack of a square

root operator in Equation 4.2 makes this feasible. The collision safety bound (the boundary

of Df(t)) of an aircraft must be expressed in the form of Equation 4.2 in order to apply the

algorithms developed in this dissertation.

4.1.2 Mathematical Reduction

A Simplified Propagation Equation

Define -yo as the safety buffer threshold (the square of the DMOD) or the boundary of Df,

i.e., if

7- ^ 7o, (4.3)

then collision has occurred. Equation 4.3 now becomes the reductive collision metric of

interest, since we are dealing only with a one-vehicle-one-obstacle problem as described

in Section 3.2. We aim to determine the probability of satisfying this inequality within

[to, tk], which is equivalent to evaluating the probability of collision, Pe(k). The full-state

representation of Equation 3.19 may be replaced by the single-state equivalent

Yk+1 = k +Atik

= Yk + Ak, (4.4)

where Atyk will be referred to as Ayk, simply to avoid unnecessarily complicated future

notation issues. In addition, it will be shown at a later stage that Aik can also be conve-

niently expressed as a quadratic form of x (see Subsection 4.1.3).

The simple summation of random variables in Equation 4.4 leads us to also express -yk+

as a random variable. In order to do this we recognize from Figure 4-1 that the cumulative

distribution function (CDF) of 7k+1 is described by Fr (+ ) Pk+1 < k] B~osk).

In this way, the marginal PDF of yk+1 may be described exactly by[52]

d +o - B
frk+(y)|B[,k = d- f1i q,$(,#)dqdV), (4.5)d-i 1i -o
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Atk

A

0

k

=k+ Yk +Atk

Yk+1 ~ J.k+ t

rk

Figure 4-1: Region in the 7yk-Ati Plane where yk+1 Yk+At$k, Used to Describe Fr+l C-)

where

fBk (,A FBk (
rk)ALk d-ydA rPk,Ark (4.6)

is the joint PDF of -/ and A4 at t = tk, given that no collision has occurred within [tO, tk].

Also, 0 and # are simply variables of integration.

4.1.3 Simplifying Approximations

The reductive metric results in Equations 4.4 and 4.5, which are simpler to deal with than

their full-state n-dimensional counterparts. There are however two issues that cannot be

circumvented without approximation:

1. The double-integral of Equation 4.5 needs to be approximated numerically with com-

plexity of O(N 4 ), unless y and A4 are independent, in which case complexity of

O(N 2) results.
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2. No solution is known to the joint PDF in Equation 4.6. Numerical approximation

would be of O(N 2n+ 2) complexity, since we would need to revert back to the full-

state representation and employ e.g. a Monte-Carlo method to solve.

Approximation will need to fulfill at least two primary requirements:

1. The calculation order complexity of Equations 4.5 and 4.6 needs to be reduced sig-

nificantly. Most digital signal processors (DSPs) are optimized for O(N 2) or less

complexity, since this is widely considered to be the feasible extent of tractability

and applicability for image processing applications. We will show how such DSP

techniques may be used to solve our risk calculation problem and therefore aim at

reducing our complexity to O(N 2 ) or less.

2. Approximation errors need to be characterized to a sensible extent. This would imply

that we need to estimate or exactly determine the sizes of all sign-indefinitel errors.

Sign-definite 2 errors at least need to be clamped between upper and lower bounds, with

an emphasis on the calculation of the upper bound. Upper bounds on, for example,

Pc estimates translate into reduced estimates of P(SA) and P(UA) and therefore lead

to a more conservative and usually safer alerting approach for autonomous vehicles.

It is clear that the major issue of complexity is the calculation of Equation 4.6. Recall

that Equation 3.15 in the previous chapter provides the discrete representation of Pc(k) =

Pc(tk). The aim is to find an upper bound to the calculation performed there-in that would

provide an equivalent expression to Equation 4.6, but of considerably reduced complexity.

To this effect we approximate

Pc(k) = P[x(t) E Df (t), exactly once in [to, tk]]

= P[x(to) E Df (to)] + P[xt1 E Di(ti)Ixto ( Df(to)]P[x(to) ( Df(to)] +

P[Xt2 E Di(t 2 )|(xto ( Df(to)) n (xti ( D1 (ti))]P[(x(to) ( Df(to)) n (x(to) V Df(to))] +

e P[x(to) E D1 (to)] + P[xt1 E Df(ti)Ixto V Df(to)]P[x(to) ( Df(to)] +

P[xt 2 E Df (t2)|xti V D1 (ti)]P[x(ti) V Dje(ti)] +

= P[x(t) E D1 (t), at least once in [to, tk]] (4.7)

'Neither positive or negative definite, i.e., the sign is unknown
2Either positive or negative definite, i.e., the sign is known
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in accordance with such texts as [65],[61],[60],[15],[16] and [64]. This provides an upper

bound approximation to Pc(k), since

P[x(t) E Df(t), at least once in [tO,tk]] > P[x(t) E D1 (t), exactly once in [to, tk]. (4.8)

The approximation of Equation 4.7 allows us to employ unconditional means to calculate

Equation 4.6, such that

(, = U y - 7o)frAI (7, Ai) (4.9)rkAt f_+ -to frAN (7 , A)dydAd

where u(y - 70) is a unit step function and frkAfk (y, A) is the joint PDF of 7 and Ay at

t = tk, regardless of any collision activity having taken place within [to, tk].

1- f+00 fo'0 
frkAk (Y, A)d-ydAS is simply a scalar normalization according to Bayes' rule.

One more approximation is made, this time to reduce the complexity of Equation 4.5:

Assume that -y and At are independent within any one time step [tk, tk+1]. It is essential to

note that this is very different from assuming than -y and are independent within [tO, th],

as will be shown shortly.

Our independence assumption and assumption on the calculation of Pc(k), combined

with the application of Leibniz's rule [52] allows us to re-write Equation 4.5 as

frk+1(7)IB[o,k] fr+1 (7r)|B[kk]

= fj_() * fAN(M,' (4.10)

where
p Bk(_ u( Y 7o)frk(7)

1 -f0 frk(7)d-y

and frk(7) and fAt (Ai) are the marginal PDFs of 7 and Ay respectively, without con-

ditioning on any collision event. The usual normalization factor is again present in the

denominator.
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It is Equation 4.10, a one-dimensional convolution, combined with the ability to operate

on the unconditional marginal PDFs of y and At to find Pe(k), that makes the solution to

this problem tractable. It is shown in Section 4.1.3 that the required marginal PDFs may

be calculated for a quadratic form of normally distributed state variables.

Figure 4-2 shows how to go about solving for Pc(k) at each time step t = tk. This figure

may be contrasted to the exact full-state calculation illustrated in Figure 3-3.

Assuming that the unconditional marginal PDFs of -y and A- are known, the process

of finding Pc(k) and propagating fr(t,1) (-)|B[k,k] may be divided into the following steps:

Step 1: Find gAk (7), the segment of frk(y)|B[k_1,k_1 for which y :5 yo.

Step 2: Make use of Pc(k) = Pc(k - 1) + fO" gAk(y)dx[1 - Pc(k - 1)] to accumulate

the probability of collision.

Step 3: Apply Equation 4.11 to find frk (-y). Note that this step does not rely

on steps 1 and 2.
Step 4: Apply Equation 4.10 to propagate Bk (7)|B[kk].

fir, (-Y) into fr. 1 l ) Bk J

Now continue by returning to Step 1 for calculation of Pc(k + 1) and so forth.

A clear segmentation between the above outlined steps is evident. This is because Equa-

tion 4.7 allows us to express Equations 4.8 and 4.11 as functions of unconditional marginal

PDFs that are independent of the conditional operations at the previous time t = tk_1. The

conditional PDF, frk+1(y) IB[k,k], in Step 4 is created by assuming independence between y

and Ay within only one time step. This segmentation leads to a very useful result: Even

though errors resulting from the independence assumption do accumulate in the calculation

of Pc(k), these errors are not propagated into the creation of frk+1 (Y)|B[k,k] at any next

time step t = tk, thereby resulting in a convergent rather than divergent approximation of

Pc(k) as t -+ th.

An alternate view of the apparent segmentation is that the independence assumption is

only employed over the course of one time step and only to determine the amount of flow of

probability into D1 (tk). The seemingly simpler route of assuming independence within the

entire interval [to, th] and using it to propagate frk+1 ('i)IB[o,k) through the resulting simple
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frI)(Y) B k I Bk

1 Df(tk D (tk

gA(y)

2
P,(k)= P, (k -1)+ fg, (,vdy[1 -P, (k- 1)*

0

.0

-~ U(7~r(t)()'

3

2'

fr(k)| B[k k

Df(tk ) Ds (tk)

= frA) 4f
fr(") (7)|Bf't(k

Assume fr(tk (Y) and frrtk)(A)

known over [to , th]
IV'

Df(tk+ ) (tk,1

Figure 4-2: 4-Step fr(tk+l)(y)IB[k,k] Propagation and Calculation of Pc(k)
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one-dimensional convolution, is folly, since convolution always leads to an increase in the

variance of the PDF. In reality, the variance of a quadratic metric should reduce drastically

when its mean approaches yo, because the chi-square distribution narrows when it nears

the origin.

Errors resulting from the two approximations made in this section are investigated in

Section 4.2.

Methods of Solution

The focus now becomes finding a solution to frk (7) and fAt, (A) within [to, th]. We will

only show how to solve for frk (y) and eventually prove that fA, (Ay) may be solved in

the same way.

Other than the useful special cases discussed in Subsection 4.3.3, the PDF of a general

quadratic form of normally distributed random variables needs to be approximated. Meth-

ods of approximation include series expansion, numerical Fourier inversion, Monte-Carlo

and particle-based filtering simulations and approximations based on moment matching

techniques. Moment matching through processes such as Cornish-Fisher, Gram-Charlier

and Edgeworth Expansion[35] [45] [6] do not provide accurate results when tails of PDFs are

of value and provide little or no guarantee on rates of convergence relative to the number of

cumulants matched[35]. In this case Monte-Carlo techniques are computationally expensive

when exploring high-dimensional probability spaces, again because of the high accuracy

required when representing the tails of estimated PDFs, as with most problems in risk and

reliability theory. It is partly for this reason that Yang [69] also performs a dimensional

reduction to vehicle heading, before attempting Monte-Carlo simulation.

Fourier Inversion emerges as the salient choice, since it turns out that the inversion

process can be greatly simplified for the quadratic collision metric. When applying Fourier

Inversion we would first need to solve for the marginal characteristic function of y given by

. +0 r0o .
Ork (r) = E[ei"] = 0 e"1fr (7)d-y (4.12)
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and then solve for the Fourier Inversion Integral (FII)

fr (Y) = - 00 #rr(r)eiw'ydr. (4.13)
2r _ oo

Characteristic Function

Solving for a characteristic function can in itself be a daunting task. The next few para-

graphs however show that a closed form solution to #(r) does exist in an analytical form,

when dealing with the proposed quadratic metric.

First we transform y into an appropriate form using the substitution y = (x - mx)

where mx is the vector mean representation of x. In this way we find that

y = xTBx

= m TBmx + 2mTxBy + YTBy

= E + ATy + 1TMy. (4.14)

When we solve the generalized eigenvalue problem such that

CCT = X

CTMC = A (4.15)

where A = diag(A, ... , An), then we can substitute y = Cz and 6 = CTA into Equation 4.14

such that

n 1
-y = e+sTz+!zTAz

= ) + E(iz; + 2Azf) (4.16)
i=1

where z = (Z1, ... , zn)T is a standard normal vector and 6 = (61, ... , on)T E Rn. Now we

reshape #r,(r) into

#r,(T) = E[eT -]

1 +00e' 
fr u(h d

-oo
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= e-reE[ejr(-E)]

and recognize that E[ei'r(7-)] = X2 (r) where #2(r) is the characteristic function of a

non-central Chi-square (x 2) variate in z, where z is in standard normal form. #X2 (r) is

known analytically[34] and when substituted into Equation 4.17 #rk (-) becomes

#r (r) = e.rE JJ 1 e_ 5?2 2 /(1-3Ajr) (4.18)
i=1 v1 - j3Te r.8

an analytical form to be substituted into Equation 4.13, requiring no numerical approxi-

mation. The computational complexity of function evaluations in Equation 4.18 is 0(nN)

and that of the eigenvalue decomposition (Equation 4.15) is in general O(n3). The latter

may be reduced to O(n), as described in [18].

Fourier Inversion Integral

Various options exist when attempting to solve the inverse Fourier integral (Equation 4.13)

using the characteristic function in Equation 4.18. The first is to perform brute force nu-

merical integration and to reduce the discrete step size of t and w until the error on the

calculated distribution of -y is negligible. This is not difficult but requires computational

cost O(N 2 ). Care must however be taken to reduce the error of this calculation to be negli-

gible when compared with the small amount of allowable maximum probability of collision

defined in the previous chapter. In this case, the key to error analysis of Equation 4.13

because of discrete integration is the Poisson summation formula[34].

The second numerical method of calculation is more powerful and less intensive and

amounts to the use of FFT algorithms in order to reduce computational cost from O(N 2)

to O(Nlog 2 (N)). As is the usual practice in engineering, we define the Fourier Transform

(FT) as [55]

F: f(x) F-+ F(u) = e- 22uf(x)dx. (4.19)

Substituting u = in Equation 4.19 we can show that

F(u) = #rk(-21ru). (4.20)
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We now attempt to find f(x) = fr, (7) by Inverse Fourier Transform (IFT), which is clearly

equivalent to applying Equation 4.13, the FII. All numerical solutions to IFT are approxi-

mate, unless f(x) is continuous in x, periodic with period T and band limited to frequencies

Jul < N/2T where the integer N represents the number of discrete samples. We do not

expect f(x) to be periodic, since, by definition, f_. f(x)dx = 1.

Hughett [32] shows that FFT approximation of f(x) can now be accomplished by first

splitting it into f(x) = fc(x) + C, where fc(x) is absolutely integrable and C is a constant.

This split is done to avoid singularity problems when applying the FT. We now focus our

attention on

fc(x) = 00 (U)ej2nxdu (4.21)
J-00

which can be approximated as a sum of rectangles with width 1/T to obtain

00

fc(x) = 1 F9[k]ej2 ,rkx/T, (4.22)
k=-oo

the Fourier Series (FS) representation of fc(x), with

Fs[k] = Fe(k/T) (4.23)
T

Both Proakis [55] and Hughett [32] show how the solution of FS through

N/2

f(x) g(x) = ( G[k]ei2,rkx/T, (4.24)
k=-N/2

where G[k] is defined by

F(O)/T +C for k = 0,

G[k] = F(k/T)/T for 0 < Ikl < N/2, (4.25)

0 for |k| = N/2,

provides the most accurate known numerical approximation of f(x). Notice that Equa-

tion 4.24 is usually defined [55] as the Inverse Discrete Fourier Transform (IDFT) and that

it may be solved using the Radix-2 Inverse Fast Fourier Transform (IFFT) algorithm, as

long as N can be written in the form N = 2E where E is a positive integer. IFFTs are
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accomplished with at most N/21og2 (N) multiplications and Nlog 2(N) additions, thereby

reducing computational complexity to O(Nlog 2 (N)).

Concerning A

In previous sections we have shown that frk (7) can be calculated within [to, th], since - can

be converted into the required quadratic form. It turns out that ALk can also be expressed

in this quadratic form as shown in the following derivation, where B is symmetric:

= XTBx

A = AtjTBx + AtXTBc

= 2At&TBx

= 2At[Ax + Buu(k) + Bew(k)]TBx

= 2AtxTATBx + 2AtuT(k)BujBx + 2AtwT(k)BT Bx

X TNx+Sx, (4.26)

with N = 2AtATB and S = 2At(uT(k)BTB + wT(k)BTB), and where At is the time step,

such that At = tk+1 - tk-

Equation 4.26 would be in a quadratic form similar to Equations 4.2 and 4.16, but for

the term 2AtwT(k)BlBx which contains the random variable w(k), white noise. This single

term would make the dimensional and computational reduction discussed so far intractable

again, unless we impose the constraint that

B B = [0]. (4.27)

At first glance this constraint seems excessive, but it simply means that no states that form

part of the calculation of -y may be directly excited by white noise. In other words, B

may not contain non-zero terms which operate directly on states excited by white noise.

Collision bounds on position (as is usually the case) would require that position and veloc-

ity be part of the state vector. Even the simplest Newtonian models would include white

noise excitation at acceleration or jerk level, not velocity and position. This means that

the constraint usually holds for typical vehicle models. If, for some reason, the constraint
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does not hold naturally, white noise can be shaped with a high bandwidth low pass filter in

order to add another state buffer between any state required in the calculation of Ay and

the noise excitation.

We may therefore calculate fAr k (A) within [to, th] from the PDF of x described by

propagation of Equations 3.9 and 3.12. This is done in the same way as outlined for fr(y)

in the preceding sections. Also, recall that Equation 4.2 was created for B belonging to the

class of real, symmetric, positive definite matrices. A is clearly not sign-definite, since -y

may increase and decrease in value. The only constraint on B employed in the calculation

of fr(y) is that it must be a real matrix. Symmetry and positive definiteness were only

exploited while finding Pe(k) and proving that At is a quadratic form.

Lastly, in Section 4.2 we require that A be written exactly in the complete square form

described by Equation 4.2 when calculating the covariance between y and Ay in Equa-

tion 4.39. The covariance calculation affects the estimate of calculation error because of

the independence assumption. It is not immediately obvious that we may always write Ad

in the required form and this will not be proven true or false. It will however be stated

that Ad can be written in the complete square quadratic form whenever the only non-zero

elements in B are on its diagonal and all the derivatives of states operated upon by non-zero

entries in B are themselves inside the state vector.

This will be illustrated with a simple example: Say we have four states

x = [ Y y y (4.28)

and -y = ax 2 + by 2 , a complete square quadratic form

a 0 0 0

y = xT 0 0 0 0 x, (4.29)
0 0 b 0

0 0 0 0

where only diagonal elements of B are non-zero. This leads us to write i = 2axi + 2byy,
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which is also a complete square quadratic form

0 a 0 0

T aO0O0O-Y = x a. (4.30)
0 0 0 b

0 0 b 0

This example also illustrates how the BTB = [0] constraint holds. If the vehicle undergoes

noise excitation in each dimension at the acceleration level then

0 0

1 0
B= , (4.31)

0 0

0 1

and therefore

BB= [0 0 0 01 (4.32)
0 0 0 0

Concerning Convolution

Even though Equation 4.10 only requires one-dimensional convolution, this still results in

O(N 2 ) computational complexity. Convolution can however be accomplished by computing

the characteristic functions of each of -yk and Atk and multiplying these (not convolving)

before applying the FII [52]. 4At,.(r) is determined analytically by Equation 4.18 already

and would require no additional computation. fB (y) however needs to be calculated within

[tO, tK-1] by applying Equation 4.11 at each time step. It can be shown that #Pk(r) (the

characteristic function of fB (y)) can be determined in a similar way to that described when

computing frk(y), but with an FFT algorithm [32]. The numerical complexity thus again

reduces to 0(Nlog 2 (N)).

4.2 Induced Error on Probability Calculations

We may differentiate among two different types of errors when calculating Pe(k). The

first is approximation error, discussed in Section 4.2.1, where simplifying assumptions lead
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us to calculate an approximate solution. The second induced error is that of numerical

calculation, discussed in Section 4.2.2, where we solve for the approximate solution to a

specific accuracy. Both these types of errors have very different origins and therefore require

very different methods of characterization.

4.2.1 Approximation Error

Approximation error may be further sub-divided into two major attributing factors. First

we find an upper bound approximation to Pc(k) (Equation 4.8) and second we assume a

measure of independence between -y and A-yk when performing this calculation (Equa-

tion 4.10), so our upper bound is itself calculated with an amount of error. We calculate a

signed calculation error because of the independence assumption, in order to narrow down

the envelope of error and more closely approximate the true value of Pc(k). Figure 4-3

illustrates the relationships between various collision probability calculations and their as-

sociated errors.

Two additional, and comparatively minor, sources of error that also require discussion

are those induced by quadratic approximation of the collision bound and also that of time

discretization. These issues are treated at the end of this section.

Upper bound Probability Error

Section 4.1.3 describes why the calculated Pc(k) = Peb(k) is an upper bound to the true

value denoted by P.r"e(k), with "ub" signifying "upper bound". It is infeasible to attempt

to solve directly for the amount of error between the calculation and the true value, since

the true value would need to be derived from an intractable calculation. We define the error

as

pube(k) = Peub(k) - PiT""(k) = Pc(k) - PCt**(k) (4.33)

with "ube" signifying the "upper bound error".

Instead of venturing along the path of intractability, we rather create a lower bound

to PCrue(k) which we shall call Pib(k) <; Prue(k). Now use the lower bound to re-write
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Equation 4.33 as

pube (k) <; P(k) - pib(k). (4.34)

A feasible lower bound would allow us to clamp the true probability of collision between

two calculable limits. One such intuitive and simple lower bound often used in estimation

theory and also employed as a measure of probability of collision by texts such as that by

Prandini et al[54] can be mathematically described as

pcb (k) = max[o,k] 1o fr (7)dy. (4.35)

This is simply a matter of finding the largest probability of state space intersecting with

Df(t) within a period of time, as illustrated in Figure 4-4. Various texts exist where Equa-

tion 4.35 is used[12] [11] [2][44] [3] to approximate Pjrue(k). This is however a dangerous

course of action, since there is no guarantee on the lower bound's error, potentially com-

promising on P(SA) instead of on P(UA). Equation 4.35 is so simple however, that it only

adds complexity of O(nN) to the calculations performed at each time step. All being said,

the equation makes for a useful, empirically accurate and much-used lower bound, rather

than an estimate of Ptrue(k).
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Figure 4-4: Calculating Pjb(t) Over a Finite Time Horizon Interval

Figure 4-3 illustrates the relationships between the different bounded approximations

and their errors and also includes P'r(t) to be discussed presently.

Calculation Error

Even calculation error because of an independence assumption is a complex problem. In-

dependence between -y and A4 is equivalent to a combination of two assumptions:

1. f (Ay) = fA (A ), thereby implying that the segmentation of probability space

inside and outside of Dj(t) and the subsequent creation of frk (y) has no effect on

the conditional distribution of Ay.

2. Convolution may be employed so that we may express

fr1(y)IB[k,kI = frk(7) * fA (A') IB[o,k-i], (4.36)

where Equation 4.5 is the combination of items 1 and 2.

The two above enumerations will be referred to as Assumptions 1 and 2 respectively.

Before continuing, we acquire a number of mathematical tools describing the relation-

ship between y and Ay in order to characterize error.

80



First we need to be able to describe expected values, variance and covariance of quadratic

forms. According to Jaschke [35][34], we may describe the expected value of a quadratic

form xTBx of the multi-variate normally distributed random vector x as

E(xTBx) = tr(BEx ) + pTBpx (4.37)

where Ex and px are the covariance matrix and mean vector of x respectively. The variance

becomes

aTBx = Var(xT Bx) = 2tr(BExBEx ) + 4IBExBpx (4.38)

and the covariance between two quadratic forms yi = xTBx and Y2 = xTPx can be de-

scribed by

PUxTBxoYxTPx = Cov(xT Bx, xTPx) = 2tr(B ExPEx) + ApTB EPIpx. (4.39)

From these equations we may now construct the mean vector of the joint density for h =

[Yi, y2]T as

E[h] = [my1, my1]T (4.40)

and the covariance matrix

Eih = ~ PO[ OY2 (4.41)
[PO'Y1 OrY2 0Y 2 J

where y1 = xTBx and Y2 = xTPX.

The next step is to be able to describe the orthogonal principal axes of the symmetric

matrix Eh. This is done through eigenvector decomposition and after some algebra the

slope of the principal axis with the same sign as p is given by

m -[a2 + O2+ (o4 - 20r2 O2  + 4 + 4p2o~,.2 ) (442
M 2  

Y1  (4.42)

such that the correlation line yi = my2 + c is created. If we let y = y1 and Ai = Y2

then Figure 4-5 provides additional clarity with a contour plot of the joint density func-

tion fr,(, A-i'). We will now describe the First-Order-Second-Moment (FOSM) change
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in fAM (A) because of an FOSM change in frk (y). This is the characterization of error

because of Assumption 1.

frk (y) and fAtk (Ay) are comprised of well-behaved summed and scaled versions of non-

central chi-square distributions. The maximum allowable Pe(k) within [to, th], denoted by

Pc., is a very small number (typically Pma_ < 0.05). Furthermore we make the reasonable

assumption that we take action along our flight path such that Pc(k) < Pc,. always holds

(or equivalently we don't calculate Pe(k) > Pc,_. as described in Section 3.3.2). Using

these assumptions, we will calculate the expected influence on the mean and variance of

f) (A0) because of adjustments to frk(7), such as the removal of APcs probability space
Ark

to form frBk (y). When we define

APck = frk (Y)d7, (4.43)
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then, as before, we split the PDF of -y into

frk(,) = 9Ak (,) + 9B(7)

f= A B (4.44)
=k Akr (7) +(1 - APck frB

Here the mean and variance of, for example, frk (-y) is denoted by mAk and 2 A respec-
k.

tively. Now focus on the expected value of -y after the removal of probability space within

DI(tk), i.e., given that 7 > yo. This is expressed as

E[-y]|(7 > -yo) = E[-yk] = E[yk] + AE[yk], (4.45)

where AE[7k] is the change in the mean of y after the cut. Notice that E[{y7] E[-yk] and

therefore AE[yk] 0.

Equation 4.45 can be re-written as

AE[yk] = E[-ykJ - E[7k]

1- k (E[yk] - E[ Ak))

-APek7
_ AR~ (mrk - MA) = Amrk , (4.46)1 - APC;

with E[ Aky] = E[7]|(0 ; -y < yo). So if the mean of -y changes by AE[-yk], then according

to our assumptions we may employ Equation 4.42 to show that the mean of A- changes by

- AE[-yk]. With E[A -Bk] = E[AkJ + AE[Aik] we may then express

AmAP AE[Atk]

2pporo22 
ARC,, (mr -mA,).

-At. (~~ 2aor2 + orr + 4p2 orC~ ~1-P,

(4.47)

We describe the change in variance Aa, in a similar way such that

2 2, 2

1 [Up,- 2 APc (r,)mr,+(m -APcmA )2 - m2
1 -APck [Or 1-2APe rk + -APck rk
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APc 2 mrk - MAk M - APckMAk 2 2 2
Ck 10 A 2 rk MkmAk + (m-APCkk) - MAk] - ark1-APck r^ 1 - APck -~

(4.48)

and can express the change in the variance of j as

Atk - )(ik)2Aa2 (4.49)

Equations 4.47 and 4.49 are representations of the changes in mean and variance of Ay,

given the first order approximation that the mapping of the first two moments from Y to

At may be accomplished through the correlation line with slope m. This approximation is

only feasible for small values of APck associated with small time steps of calculation At.

Notice that Equations 4.47 and 4.49 contain no reference to mBk or ars, but are ex-

pressed in terms of mAk and a. This is the cause of much of the complexity of these

equations, but is crucial in order to determine upper bounds to errors at a later stage, since

frA k (y) is strictly domain bounded within 0 < 17 < yo.

We now return to Assumption 2 and form the combined FOSM error estimates because

of Assumptions 1 and 2. Recall that the Assumption 2 error is induced by determining the

probability density of

'Yk+1 = Yk + Ak (4.50)

through convolution of the conditional marginal PDF of -yk and the unconditional marginal

PDF Ak instead of operating on the joint density. Elementary statistics dictate that the

true mean and variance of 7k+1 be described by

mtrue = m " mt * (4.51)mrk+l +k Ark(N1

and
2true 2true + 2true - 2pka true (4.52)ark+l ark ANrk OArk

respectively. The convolution process maintains Equation 4.51, so the only error in the

mean results from Assumption 1. Therefore, the error on mrk+1 accumulated within the
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single time step [tk, tk+1] can be written as

Omrk+1 - "AmaN, (4.53)

which is the direct application of Equation 4.46 such that

M ub N FOSM
rk+1 mrk+1

= calculated +mrk (4.54)

The induced variance error over the same time step is described in a similar way, becoming

012 AO 2  - 2Pkark 7Atk + cAfNl), (4.55)

with the first term originating from Equation 4.49. The second term, in keeping with our

FOSM approximation, is provided by Equation 4.39, because of Assumption 2. In this case

2-ub 2.FOSM
ok+1 rk+1

2.calculated + . (4.56)-(4.5)k+1

In the spirit of FOSM analysis we can now perform an FOSM matching between

fu+1 (1)|B ::: fFOSM()|B[k k] and falculated( y)IB[k,] by creating a new random vari-

able through the transformation

o2-calculated + 2 2

rk+1 = calculated f7 + Ork+1 (4.57)
orfk+1

such that the FOSM approximation of fub (-y)| becomes

calculated
frOSM(rk+1)|Bikk = +calculated(g(rk+1))|B[k,kI. (4.58)

f 2.calculated + 02 +1
Vol k~l rk+1

The FOSM estimate of pub then becomesCk+1

pFOSM(k ± 1) = pFOSM(k) + j0 F'OSM( )B[kkd1- pFOSM(k)] (4.59)
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so that the FOSM estimate probability error Perr then becomes

perr(k + 1) = pFOSM(k + 1) - Pc(k + 1), (4.60)

where Pe(k + 1) is also equivalent to Pcalculated(k + 1).

Note that PFOSM(k) may always be utilized as an FOSM corrected measure of Pc(k)

but then higher order moments need to be determined if we are interested in characterizing

the remaining error. A very simple way of applying this FOSM correction, with minimal

impact on the solution algorithm for Pc(k), is to adjust Yo at each time step to become

F,.calculated + 2

'Yo 0calculated To - Qmrk+l (4.61)
rk+1

Vehicle Applicability Tests

The preceding discussion focussed on finding PF"r(k), the accumulated FOSM error in the

calculation of an upper bound to collision risk by time t = tk. Such a real-time measure of

error is very useful when evaluating confidence in the upper bound calculation of Pc(k). It

would however be helpful to be able to determine a measure of a priori applicability of the

research described so far on a vehicle-obstacle problem, before implementing the bulk of the

propagation algorithm described so far. We now deal with the creation of a vehicle appli-

cability test, whereby vehicle parameters, dynamics and process noise may be employed to

create a measure of the maximum expected Per" (k) within [to, th], i.e. maxvh<oo(Pe7). It

is then up to the developer to decide whether this measure of Pce"(k) is sufficiently small

when compared to Pmax and the alerting performance required for the application.

It should be made clear that we will not attempt to find the true max(Pc,") without

the calculation of Per"(k) described earlier in this chapter. In the interest of simplicity and

the creation of a basic heuristic test, we will quantify an upper bound to the dominant por-

tion of Prr(k). Eventually, this approach boils down to calculating the number of standard

deviations between E[y] and the -yo boundary, calculating the maximum change in the num-

ber of standard deviations and then translating this into an amount of change in probability.
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Inspection of Equations 4.47 to 4.49 and comparison with Equations 4.53 and 4.55 indi-

cate that the so-called Assumption 2 in the previous Subsection is the dominant contributor

towards Prr(k). The dominance is asserted by the relatively small value of APc(k) 5 Pc.

and the amount of error is largely moderated by the covariance between -y and y, given by

Equation 4.39. Assumption 2 only contributes to the second term of Q,2 (Equation 4.55)
rk+1

so this is where we will focus our attention. As such, and only for this test, we assume that

Qmrk+1 a(4.62)

and

2 --2Pkr UAfk. (4.63)rk+1

From Equation 4.2, the quadratic relationship between x and -y and also x and y, we

know that or and oAN are functions of the vehicle's closed loop dynamics and process

noise. We will refer to the combination of these three aspects as the system model. For the

time being it is best to fix the system model to a representative form, to promote clarity

during the course of this explanation. For any one such system model, p is always maximized

at a point where the vehicle's velocity vector is aimed directly at the state origin, since y

and i are then perfectly aligned, i.e.

grad(-y) = C -grad(y), (4.64)

where C is scalar and real-valued.

Next we perform a straight-forward state-propagation simulation (propagating closed

loop dynamics with a reference path and process noise in Simulink). The simulation is

performed in the vicinity of the state origin, where the vehicle is made to fly directly at the

origin at a representative speed. This is the encounter where p is maximized. During the

simulation we also compute a2 , and pkUrkospk using Equations 4.38 and 4.39. Now

express Q.2 as a ratio of o2 such that
rk gr

Ra2 -= rk
k 2
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= -2p-rk
0 rk

-> R, = P k
F rk

(4.65)

where R, is the ratio of the standard deviation of the calculation error of Y with respect to

the (unconditional) standard deviation of y.

Furthermore, as a worst-case (maximum calculation error), find the maximum value of

Rak and associated k = km where ykm > yo, and assume that all of Pc(km) = P,. is

accumulated at k = kmn, meaning that Pc(km - 1) = 0 and Pc(K) = Pc(km). R,, will

peak as the vehicle approaches the origin and will then change sign as the vehicle passes

through the origin. The shape of Rgk is dominated by the behavior of Pk and we denote the

maximum value of Rk as RUMAX. See Figure 4-6 for a typical illustration of the progression

of Ruk vs. .

R( .0 + S Fk

:;- R

(yM UMAX

7 i

Fiue -: S frth imuaino eil FlyigToadsth rii
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It is R, that allows us to express max( r ). Let's look at an example: Say that

Pm. a= 0.06, then Pc(km) = Pc, would be true when E[-y] is S standard deviations away

from yo, or mathematically

E[yk] = 7to + Sork, (4.66)

where S is a positive real number that is dependent on the system model and derived

from fr m(7). For example, for the New Generation Mini II (NGM-II) UAV, described

in Section 5.1, S - 3 when Pcma. = 0.02 and a bound on the standard deviation can be

expressed as

(3 - Rek~ur < rue** < (3 + ROak)cOrk (4.67)

Since Rk = 0.15 for the NGM-II we can use frkm (7) to calculate that

maxvt<oo (Pc)| < 0.013 (4.68)

or max(Prr(k) ~ 0.22.
Pcmax

We may now iterate across various vehicle models in order to determine a worst-case

scenario. Also notice that the outcome of Equation 4.66 and the value Ykm in Figure 4-6

are seldom equal, but the worst case error results, as described in this section, when they

are equal.

At this point, it is worth pointing out that the vehicle applicability test is based on a

concept often encountered in reliability theory. The ratio RUMA is the induced deviation

of the so-called maximum safe Mahalanobis Distance [5]. The deviation is caused purely by

calculation error.

4.2.2 Numerical Approximation

This subsection focusses on quantifying the induced calculation error when determining f(x)

through the FFT method described in Equations 4.19 to 4.25. Numerical approximation

of errors can be divided into three main contributing factors, namely round-off, sampling

and truncation error. Round-off error is usually negligible as long as sufficient numerical

precision is used to represent discrete values. Sampling error is a function of discretization
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step size and is induced when sampled signals are integrated (or differentiated). Truncation

error is a function of the FFT method and is caused by the need to truncate the bounds

of the indefinite integral representing the FI integral. We will treat numerical error as a

sum of the latter two types of errors. (Aliasing error is negligible as long as we hold to the

frequency and sampling constraints described in Section 4.1.3).

Sampling and truncation errors are both functions of the interval between samples and

the number of samples taken. Therefore, as a practical matter, it is useful and important

to be able to express the sampling interval and number of samples required for a given

error in terms of the characteristic function. These errors are usually described in terms

of a probability density function [32] [17], but such a function is not available to us before

starting our calculation. Other approaches, like that of Bohman[9], are to experiment with

numerical parameters in order to obtain good convergence, clearly not a feasible approach

when calculation time and complexity and calculable risk error bounds are of importance. It

is however noteworthy that numerical approximation error may be reduced to an arbitrary

value at the cost of computational complexity.

Hughett [32] proved that the minimax (e = eT + EN = Loo > 0) error of a two-sided

random variable x can be related to the minimum sampling period T and minimum number

of samples N of the density function fx (x) by bounding fx (x) and Ox (x) with exponential

functions. In this way we find that

T > 2(2A(2a - 1))1/a (4.69)
- ET(a -1)

and
2BT,3- 1  

1
N > 2 + 2( )1/(#-i) (4.70)

EN V -

if

Ifx(x)| Ajxj- VjxI > T/2 (4.71)

with a > 1 and

|Fx(u)| Blu|-# Viu\ > N/2T (4.72)

and if # > 1. For a given maximum allowable error E, Equations 4.69 and 4.70 may be
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iterated for different values of E = ET + EN to find the minimum values of T and N. It is also

useful to note that if |fx(x)| = 0 Vxj T/2 and |Fx(u)| = 0 Vjul N/2T, then ET = 0.

Hughett specifically derived Equations 4.69 to 4.72 since Equations 4.71 and 4.72 hold for

x expressed as a quadratic form of standard normal random variables. These bounds are

therefore directly applicable to our problem.

There is a subtle point to be observed when computing N and T for a given e: Unless x

is strongly skewed, it pays to perform the calculation of the IFFT to result in fx(x - xo),

where fx (x - xo) has approximately zero mean or median. This shift decreases the required

value of A to make Equation 4.71 hold. The shift is done by exploiting a property of the

FT, which is to multiply F(u) by e. 2 zo , where xo is the amount of shift required to center

fx (x). After the calculation, fx (x) can be regained from fx (x - xo).

A difficulty does however arise in that A and a need to be determined from the shape

of the density function fx(x), not the characteristic function F(u), as promised. Recall

that we are attempting to calculate fx(x), so it is not yet available to substitute into

Equation 4.71. Hughett also shows that if we fix a = 2,q, with 7 being any non-negative

integer, then we may take

A = (-1)n2,(0), (4.73)

where #2, is the 2q 'th derivative of the characteristic function, and Equation 4.71 will

always hold, as long as #2,7(0) actually exists. It pays to be able to increase a, since it

lowers the approximation error bound, as is clear from Equation 4.69.

4.2.3 Quadratic Approximation of Collision Bounds

A collision bound may be as simple as a spherical shell surrounding an aircraft, but may

also be any general quadratic shape described by Equation 4.2. The contents of D1 (t)

inside the collision bound is usually viewed as an unsafe domain around a vehicle. This

implies that the boundary is not "skin-tight", i.e. Df(t) includes space that is not taken

up by the vehicle itself (and possibly even vice versa). Such a representation is inevitable

when describing ^Yo in a quadratic fashion, since no relevant vehicles are truly ellipsoids

(airships probably come closest). Collision avoidance systems like TCAS are based on the
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premise that vehicles are not to be allowed within a minimum distance of one-another, the

DMOD [67] [56]. For such systems, prediction of future transgression of this minimum miss

distance constitutes an unacceptably high risk of collision and warrants resolution action.

The quadratic collision metric presented in this thesis may be used to provide just such

a prediction of transgressing a minimum miss distance If5o. V7-o is however only a true

DMOD distance when Equation 4.2 is a purely spherical form. In this way, both TCAS

and the research documented in this dissertation really define collision risk as the risk of

entering domain of failure bubble around a vehicle.

It is worth pointing out that truer collision risk may be obtained (even though this is a

higher risk venture) by shaping the quadratic bound such that it more closely approximates

the shape of a vehicle. One such optimization may be suggested as

B*(t) = argminB(t)[j VXE(D(t)nDf(t)C dx such that Dv(t) c D1 (t)], (4.74)

where D, (t) describes the volume contained within the vehicle and Df (t) describes the

usual y < yo. The time dependence is usually dropped, but it may sometimes be useful

to account for vehicles changing shape, such as the PCUAV system after docking [63] or

vehicles with variable wing sweep. This is left to the reader to implement if it is deemed

necessary for a specific problem.

4.2.4 Time Discretization Error

The numerical solution approach to finding Pc(t) described in this thesis requires time dis-

cretization in order to propagate vehicle state, state PDFs and the resulting accumulation

of Pc(t) within a finite time horizon window t = [to, th]. In discrete time the window is ex-

pressed at t = [to, tK-1], such that K discrete time samples exist between to and tK-1 = th-

The time step is defined as At = tk+1 - tk and for this discussion is assumed to be constant

V k = [0, K - 1], where k is an integer.

When At -+ 0, the discretization most accurately represents the continuous time realm,

but at the cost of immense computational complexity. As with most discrete problems, we

need to design At in order to guarantee a measure of discrete representational accuracy. In
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the next few paragraphs we will discuss two aspects that drive the size of At.

State and Collision Metric Propagation Accuracy

The solution algorithm to Pc(t) proposed in Figure 4-2 requires propagation of f (-y) in

order to find frk+1 (7y) IB[k,k]. The propagation process employs convolution, an approximate

solution to the problem, to which the approximation error is discussed in Section 4.2.1.

During the propagation procedure however, we propagate the collision metric using

Yk+1 = 7k+ AYk

= + -AtYk. (4.75)

This is a first order, or Euler, integration approach described in [53] and [72]. The dominant

second order error induced at each time step resulting from application of Euler integration

can be found from Taylor series expansion[22] to be

- = 1(At)2 k. (4.76)

For the purposes of this discussion, we assume that the error in Equation 4.76 is represen-

tative of the total integration error. In addition, we assume that the vehicle in question is

commanded to fly a straight-line nominal trajectory at constant velocity V, at a unit circle

domain of failure and that the state covariance matrix Ex(t) is steady. In this case y = x2

therefore ik = 2xdz + 2xt2 . As a result, the integration error becomes

It = (At) 2V2. (4.77)

The integration error is an absolute figure that needs to be compared with a relevant measure

of accuracy. As in previous sections, we employ the standard deviation ork as a reference.

In short, we need to ask how large e7 may be when compared to Ork, i.e., find

Rmax = max[oK - (4.78)
ark

RYa occurs when ark is minimized, since et is constant. For every individual application,

we need to find an acceptable Rm2,, a process described in detail in Section 4.2.1's discus-
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sion on vehicle applicability.

For the NGM-II vehicle example application in Chapter 5, when At = 0.002, then

RGnax = 0.002. The maximum resulting error in the calculation of Pc(th) because of discrete

time collision metric propagation therefore becomes about 0.8 percent. This is considered

to be negligible when compared to Pen(th), especially since the propagation error is an

upper bound.

Finally, recall that -y and y are calculated from propagation of the vehicle state x within

the finite horizon simulation time window. For the constant velocity case described above,

the state error is negligible for At = 0.002, in fact, it can be shown that there is always an

order of difference between the error incurred when propagating y and x respectively, with

pe"(th) being dominant. Therefore, if a given value of At provides a satisfactory value of

pe"(th), then there is no need to be concerned with state propagation error.

Risk Probability Accumulation Accuracy

The accumulation of Pc as a function of time is in itself an integration process. At every

discrete discretization time we calculate the added collision risk APe(k) f70 gA ()dx[ -

Pc(k - 1)] and Pc(k) = Pc(k - 1) + APc(k) (Refer to Section 4.1.3). As is the practice with

such Euler integration processes, this integration error is approximated by the second order

term

pacc-err(t) = (At)2p(t)

2

The value of pacc-err(k) relative to Pc(k), needs to be sufficiently small in order to ensure

accurate discrete risk accumulation, or

pacc-err(k)
max[0,.K-1]J c Pck (k 480)

where ( < 1. The maximum relative error in Equation 4.80 accumulates when the time rate

of change of APc(k) is maximized. This worst-case scenario again occurs when a vehicle is
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on a straight-line heading towards the center of Df, at the maximum possible speed relative

to Df, and when Pe(k) is maximized. Since Pc(k) Pcm., we should choose simulation

time step size such that

[APc(k) - APe(k - 1)] < 2c,. (4.81)

This process requires selecting a value of At, using this At to complete a simulation of a

vehicle approaching perpendicular collision with Df, and iterating until Equation 4.81 holds

true. Note that the simulation does at least need to start with a small enough At to allow

a number of non-zero values of APc(k) to be calculated.

For the NGM-II for example, if we require ( = 0.01 and Pema. = 0.05, then At = 0.001

results. Notice that for this example the value of At is very close to that calculated for

metric propagation accuracy. The smaller of the two values should be chosen.

The values of At suggested here are lower bounds in order to strictly ensure required

representational accuracy for all possible conflict scenarios. It is worth choosing At ac-

cording to the measures described, but At should always be perturbed through the course

of a number of simulations in order to determine whether larger discretization steps yield

sufficiently accurate results. In this way we might considerably reduce computational effort.

It should also be realized that the head-on collision scenarios often used to characterize

worst-case discrete time performance seldom require the same amount of accuracy when

calculating Pc(t). In most head-on collision examples Pc(t) accumulates so quickly, and

collision is so clearly apparent, that accuracy under this special condition may be sacrificed.

The result would be an increase in At and therefore reduced computational complexity dur-

ing most other conflict scenarios, without any visible loss of avoidance system performance.

4.3 Time and Resolution Issues

4.3.1 Finite Horizons

This research focusses on solving for collision risk within a finite horizon interval. Simu-

lations of this nature within infinite horizons are folly because of the obvious infinite cal-
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culation resources required. Such calculations might still be intractable for very large, yet

finite horizons. The intent is to create a method of solution that would be tractable within

a required simulation interval, and we therefore need to characterize both the tractability

or complexity of a solution and the size of the required time horizon, t,. = th - to. A re-

quired time horizon could be characterized in terms of a minimum, maximum or an optimal

duration.

Let us denote the upper and lower bounds on t, as t"b and t respectively. The lower

bound is driven upwards only by the minimum amount of useful forward simulation time,

for example, the shortest amount of warning time required to avoid a hazard. tb is however

clamped down by both the maximum computationally tractable simulation time window,

denoted by te, and knowledge of vehicle intent.

Intent is possibly the most interesting of the influences on tw. It has been pointed out

(See Chapter 1) that collision avoidance systems for piloted vehicles suffer from an inability

to model pilot intent, and that this intent causes divergence in the extrapolation of state

estimation/prediction into the future. (See Figure 1-1). The intent of vehicles under au-

topilot control may be characterized more exactly, since such systems are usually guided

by known control laws and deterministic decision making processes. Even though this is

true, automated vehicles are still subject to events for which future intent is uncertain and

highly complex. Some of the processes might include unexpected human intervention, re-

quired rescheduling of flight paths because of mission changes, complex interactions between

numerous automated vehicles and/or system failure. These events make it impossible to

predict even the behavior of automated vehicles for an indeterminate period of time, thereby

capping tn,. We may however divide such events into two groups, those for which the onset

may be delayed by a known time td and those that cannot be delayed. td may, for example,

be the amount of time elapsing between input of a new navigation waypoint and the vehicle

acting on the waypoint change. The designer of a UAV may ideally be able to control this

time delay. As long as tw < td we are able to make use of finite horizon methods for collision

prediction, as stated in this thesis, without loss of generality, since no event of this nature

will occur within a given finite horizon simulation window. Additionally, the event is both

controlled and expected. Chief amongst the events that we will not attempt to compensate
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for are immediate human intervention and unexpected systems failures.

It is up to the designer of a system to determine whether t, is upper bounded by td

or by te, given the specifics of the system under development. The general tractability of

the algorithms developed here allows us to pose this problem as one of expense vs. re-

quirements, where expense drives processing power and requirements drive the nature of a

vehicle's guidance and control solution. Figure 4-7 illustrates both the bounds of t,, and the

factors driving the bounds. On this figure, "Benefit" describes how useful a simulation time

window is, while "Complexity" describes the degree of computational complexity required

to solve for collision risk.

0 LID t tCw d c

C
Q

tw

t <tubwj - w min(td, t)

Figure 4-7: Factors Influencing the Size of te,

Furthermore, it is worth pointing out that the size of t.. has little effect on Pg"'(k), the
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accumulated FOSM collision risk calculation error, discussed in Section 4.2. The calculation

errors are driven by the size of Pm,., the maximum allowable collision risk for a vehicle,

and since we assume that action is always taken to ensure that Pc(k) < Pc. within any

tw, the error is both calculable and bounded within such an interval.

Interestingly enough, the upper bound of tw, given that it is either constrained by td

or processing power, is also in a sense the optimum value of t,. The preceding discussion

shows that we always benefit by extending t,,, as long as we can afford the expense and

ensure that tw < td. A larger value of t. does provide more lead-time to collision event

prediction and more closely approximates an infinite horizon problem. The benefit does

however approach an asymptotic constant as t., increases.

The only remaining question is whether the upper bound of t" is useful, i.e., that the

time interval is long enough to provide adequate warning of a collision risk event. This is

an issue of adequate control authority and the ability to investigate risk along alternate

trajectories capable of avoiding typical collision scenarios. The lower bound of t,,, denoted

by tb, is captured from an avoidance scenario that requires immediate evasive action (at

t = to) where the vehicle avoids collision risk of Pc(th) = Pc(K - 1) > Pm. This is

again dependent on the specific system under consideration. To clarify, a two-dimensional

example is provided:

Let Rsm(t) be the semi-major axis of an ellipsoid Df (t), and Rtr(t) be the minimum

turning radius of a vehicle, at maximum ground speed Vmax, where this turning radius is

employed as an avoidance trajectory (see Section 3.3). From simple geometry in Figure 4-8

we can show that

lb KM mI/(Rsm(t) + Rtr(t))2 - Rtr (t)2
tw - M ~ a (4.82)

Vmax

where M is a real scalar multiplier with M > 1. M simply provides a safety margin, so

that Pc(h) < Pma.x
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Figure 4-8: 2D Example for Finding the Minimum Safe Propagation Time Window

4.3.2 Avoidance Trajectory Discretization Step Size

In Section 3.3 we describe how an infinite set of avoidance trajectories would need to be

created in order to form a continuous CSOC curve. We then discretized the time interval at

which avoidance trajectories are investigated, so as to create a finite number of compound

avoidance trajectories to examine. The relevant trajectory discretization step size was des-

ignated tAD. In this section we investigate the size of tAD and its influence on the avoidance

system. We do not attempt to create a general solution to the size of tAD, but rather discuss

the issues that should be considered during implementation on a specific platform.

The consideration is one of avoidance resolution vs. computational complexity. A high

"avoidance resolution" implies that we may investigate the delayed implementation of avoid-

ance trajectories along very small increments of time. The maximum resolution is reached

when tAD = At, the simulation time step size and the minimum resolution results when

tAD = t,,, the time horizon window size. The latter is equivalent to the traditional method
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of solving for an SOC at t = to, and results in only one SOC, which is automatically the

trivial CSOC. On the other hand, having tAD = At would result in unnecessary compu-

tational complexity. This smallest possible tAD may result in the ability to exploit the

smallest possible window of avoidance opportunity, and also allows us to wait until the

last possible opportunity before taking avoidance action, since the peak of P(SA) is more

precisely defined. In this way we reduce P(FA).

There is however little gain in decreasing tAD past the point where the resolution of the

resulting value of P(SA) is smaller than our ability to accurately calculate P(SA). Also,

intuitively there is very little gain in waiting until the last possible moment to apply an

avoidance maneuver when a collision is inevitable along the existing nominal trajectory N.

We will focus on the former as being in some sense the optimal value of tAD-

We recall that P(SA) = 1 - Pc(K - 1), where Pc(K - 1) is the probability of collision

accumulated within the duration of t. for a specific avoidance maneuver. We also recall

that the vehicle applicability test in Section 4.2.1 developed a heuristic measure of the

maximum calculation error incurred when finding Pc(K - 1). A developer may therefore

keep reducing tAD until

P(SA)ItAD+stAD + max(Prr(K - 1)) < P(SA)ItAD (4.83)

for the CSOC across a large number of representative simulation runs.

Experience with simulation examples and general implementation of the collision avoid-

ance strategy described in this thesis indicate that it is seldom worth reducing tAD to less

than

tAD AAD, (4.84)

where AAD is the vehicle's largest closed-loop position tracking time constant when com-

manded to follow a specific avoidance trajectory and . is a positive real number such that

usually 2 < , < 5, depending on the damping ration of AAD. For the NGM-II K a 3 with

a damping ratio ( a 0.6. A decrease in C would result in an increase in K. Equation 4.84

provides a good initial guess for tAD, which may then be optimized through iteration of
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Equation 4.83, if desired.

4.3.3 Special forms

A number of special mathematical conditions exist which trivialize the calculation of the

PDF of a quadratic form of normally distributed random variables.

Special relationships between B and Ex

frk (7) will always be a chi-square distribution, more generally a non-centric chi-square

distribution, when any one of two equivalent sets of conditions hold [31]:

1. tr(B~xBEx) = tr(BEx), and mXBYxBmx = m3xBmx

2. BEx is idempotent, i.e. BEx = BExBEx

where Ex and mx are the covariance matrix and mean of x respectively. In such a case, the

non-centrality parameter of the distribution is A = 0.5mxBExBmx, degrees of freedom

2f = tr(BEx), mean mr = f + 2A and variance of = 2f + 8A.

This special case allows us to create frk (-y) numerically from pre-compiled distribution

tables when the only non-zero entries in B are unit entries along its diagonal. At the same

time Ex would need to be an identity matrix. The advantages of this special property is two-

fold: Firstly we may somewhat reduce real-time computational complexity by transforming

B and Ex into the above-mentioned desired format, off-line; and Secondly this format is

useful for verifying and testing the implementation of the FI algorithm.

Special relationships between random variables

Another special case arises when all state variables are Independent Identically Distributed

(IID) normal random variables. The work of Fisher [23] and Cochran [14] show that when

sampling normal universes, the distribution and independence of quadratic forms are related

to their degrees of freedom. This result is usually referred to as Cochran's Theorem.

In more mathematical terms [39], if

x = X1 ... xn (4.85)
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is a random sample from a random universe, with mean and variance denoted by yL and a 2

respectively and y = xTBx. Denote a noncentral chi-square distribution with f degrees of

freedom and non-centrality parameter 62 by Xf(J2). Let A(1) > A2 > ... > A, be all the

distinct eigenvalues of B with multiplicities rl, r2, ..., rl respectively such that i ri =n,

then

fr (y = Aix 2,( ), (4.86)
i=1

where

A= 2(1rE,1n)/02 (4.87)

and

Ei = ( (I - AjB), i = 1, ... l. (4.88)

In this case ln denotes a nxl column vector of 1's.

This very useful form may be exploited if the state vector can be transformed into an

IID format. Such a transformation is not possible in general, but it is well worth exploring

this property for a specific application. Real-time computational savings would result at

the cost of calculating xf(o) tables off-line.

4.4 Chapter Summary

This chapter is developed from the following major assumptions:

P[x(t) E Df(t), exactly once in [tO,tk]] ~ P[x(t) E Df(t), at least once in [to, tk]]; the

boundary of a domain of failure may be expressed or approximated as a quadratic function

of state space; the quadratic collision metric, y, and are assumed to be independent over

one discrete time step when calculating the amount of collision probability flow into Df (t)

(the error resulting from this assumption is characterized and can be corrected for); and,

when the collision avoidance system performs properly, there always exists a flight path

along which the probability of collision is less than some pre-defined maximum Pma., such

that Pcma < 1.

An intuitive collision metric is introduced that is defined as a positive definite quadratic

measure of state space. In three-dimensional position space the metric manifests itself as a
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spheroid domain of failure or hazard space surrounding vehicles and hazards. The quadratic

form is shown to act as a order reductive metric, compressing n-dimensional state space

into a one dimensional metric.

It is shown how the quadratic collision metric lends itself to solving the collision risk

algorithm illustrated in Figure 3-3 through simple and proven approximations, resulting in

the tractable algorithm described in Figure 4-2. The intractable O(N 2n) numerical com-

plexity required by the solution in Figure 3-3 at each time step in a finite horizon window

of solution is thereby replaced by significantly reduced O(N 2 ) complexity.

We also illustrate how research lead by Jaschke[35] and Hughett[32] in the field of econo-

metrics may be employed to efficiently solve for the quadratic PDFs required by the risk

solution algorithm in Figure 4-2. The calculations are shown to be solvable through Fourier

inversion of known probabilistic characteristic functions, and we show how to employ In-

verse Fast Fourier Transforms (IFFT) in order to find the PDFs according to predefined

bounds of representation accuracy (error). The bounds are linked to the characteristic func-

tion, which is known exactly before inversion takes place. In this way, we may guarantee

and control calculation error bounds even before attempting IFFTs. The efficient IFFT

solutions of guaranteed accuracy allow further reduction of computational complexity at

each time step in the finite horizon to O(Nlog 2 (N)) for the algorithm in Figure 4-2.

A number of properties of the time derivative of the collision metric are derived. The

risk solution algorithm in Figure 4-2, for example, requires that the PDF of the time deriva-

tive of the quadratic collision metric be calculable. It is therefore shown that this derivative

is itself a quadratic form for most dynamic models of second order or more. It is also shown

that we may always convert the representation of the rate of change into a quadratic form

of second order or more. Jaschke and Hughett's methods may thus also be used to solve

for the required PDF of .

The calculation errors induced by the assumptions made to convert the intractable al-

gorithm in Figure 3-3 to the tractable version displayed in Figure 4-2 are identified. Each

type of error is either quantified exactly, upper bounded or approximated through FOSM
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methods, depending on the nature and severity of the error. These calculations may be per-

formed during real-time simulation, in order to provide error estimates on each estimation

of collision risk.

A vehicle applicability test was devised which can be run off-line, before implementing

the bulk of the solution strategy. The test gauges the worst-case error of the solution strat-

egy based on the bulk of the calculation error.

Practical aspects such as simulation step size, the time resolution of investigating avoid-

ance trajectories and the horizon time length are investigated. The major contributing

factors influencing these aspects are identified and a number of metrics are suggested in

order to constrain and optimize these quantities.
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Chapter 5

Application Examples

This chapter focusses on application and analysis of the algorithm presented in Section 4.1,

for the determination of collision risk along a given vehicle trajectory. Yang and Kuchar[41] [42] [70] [69]

have shown how to employ instantaneous values and thresholds of P(SA) and P(UA) in an

alerting system. We will not attempt to redo these algorithms and applications provided in

their publications, but will rather focus on finding Pc(t) and analyzing its calculation error,

as described throughout Chapter 4. The reader is reminded of the relationships between

Pc(t) and P(SA) and P(UA) described by Equations 2.2 and 2.3.

Two simulated application examples are provided in the next two sections, with each

further sub-divided into two conflict scenarios. The first example is that of the PCUAV

NGM-II vehicle needing to avoid hazards such as tree trunks, while the second example

focusses on the calculation of collision risk between two large commercial transports. Both

applications are implemented in two dimensions, for the sake of simplicity and in order to

be able to distill meaningful conclusions from the simulation results. Results are analyzed

relative to the true probability of collision, Ptrue(th), at the end of each simulation horizon,

and percentage changes are described as Amount*f* Mnge X 100.

In each simulation example, results are plotted only for part of the true finite horizon

time window t.,,. This is done in an effort to illustrate the phase of the simulation where risk

is accumulated. No significant change in Pc(t) is visible outside of t = [ti, t 2] in Figures 5-

2, 5-3, 5-5 and 5-6, e.g., Pc(th) = Pc(t2 ).
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5.1 PCUAV NGM-I and a Stationary Hazard

5.1.1 Vehicle and Scenarios

Vehicle Description

The PCUAV NGM-II is an autonomous UAV developed within the MIT/Draper Technol-

ogy Development Partnership Program (MDPP) at MIT[51][63]. The vehicle is part of

a cooperative group of UAVs known collectively as the PCUAV system and is operated

at medium and low altitudes. At these altitudes, surface obstacles such as trees (or tree

trunks), buildings, communication towers and the like are abundant.

The NGM-II is an 8kg, fixed-wing, single-engine aircraft in a pusher configuration, with

a wing-span of approximately 2m. It has two tail booms with a vertical stabilizer on each

boom and a horizontal stabilizer extending between the booms. The vehicle's length from

the tip of its nose to the trailing edge of its rudder is 1.5m. These dimensions and the

vehicle's handling capabilities combined with a cruising airspeed of around 20m/s, imply

that the NGM-II may be likened to a large sport or aerobatic model remote control (R/C)

aircraft.

The vehicle is known for its exceptionally accurate autonomous control system, able to

control its vertical and horizontal position to within 2m circular error probability (CEP)

(3-D) of a desired tracking input. Onboard sensors include a 5Hz Global Positioning System

(GPS), an Inertial Measurement Unit (IMU), pressure transducers for altitude and wind

speed measurement and differential GPS capability. The vehicle's control system is most

accurate when it locks onto a larger UAV within the PCUAV fleet, the Outboard Horizontal

Stabilizer (OHS) Parent vehicle, using an optical tracking system.

A simplified 2-dimensional, linear time-invariant (LTI), closed-loop dynamic model of

the aircraft, under free flight conditions, was created with the help of the architect of its

control system, Sanghyuk Park[51]. The closed loop vehicle dynamics are represented by
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the fourth-order state space model
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The states are illustrated in Figure 5-1.

Conflict Scenarios

Two conflict scenarios where chosen. These scenarios represent typical, simple conflicts

where both the expected and worst-case accuracy of the proposed calculation algorithms

are probed, as illustrated in Figure 5-1.

The first scenario, on the right in Figure 5-1, is that of the NGM-II flying past a

stationary, tree trunk-sized hazard in close proximity, while commanded to hold a straight-

line trajectory with a forward airspeed of 20m/s, in a wind free environment. The simulation

starts with a mean state distribution of

mx = {2,0, -21.8,20]T (5.3)

and state covariance matrix

3255 0

0 0.3125

0 0

0 0

0

0

0.4167

0

0

0

0

0.25

(5.4)

at t = to. We will refer to this as the "fly-by" scenario. This is considered to be a typ-

ical scenario for the NGM-II, flying straight line trajectories between waypoints at cruise

speed. The proximity with which it passes the obstacle is representative of the maximum
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Figure 5-1: The Two PCUAV NGM-II Application Example Approach Scenarios

acceptable collision risk allowed for this vehicle, chosen to be Paa. = 0.05. The resulting

Pc(th) will therefore be representative of a level of risk when collision avoidance action will

typically be taken.

A mean hazard passage time (MPT) is provided for all fly-by scenarios, and is denoted

by fMPT. The MPT indicates when a vehicle passed the center of the domain of failure.

More, precisely, for the straight-line flight paths and circular shapes of Df in this chapter,

tMPT is the only time when the mean of f is zero, i.e., it is changing sign. In this instance,

fMPT = 1.09 seconds.

The second scenario, on the left in Figure 5-1, has the NGM-II approach a stationary,

tree trunk-sized hazard on a direct collision course for the center of the hazard. The
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simulation starts with a mean state distribution of

mx = [0, 0, -24, 2 01T (5.5)

and state covariance matrix

0.3255 0 0 0

EX = P = 0 0.3125 0 0 (5.6)
0 0 0.4167 0

0 0 0 0.25

at t = to. This will be referred to as the "head-on" scenario. Such a conflict represents the

worst-case (most calculation error, see Section 4.2.1) performance of the proposed collision

probability calculation algorithm. This scenario also represents a clear case where collision

is inevitable and where the probability of collision accumulates most rapidly over time. We

will make use of the "head-on" simulation in order to validate the vehicle applicability test

described in Section 4.2.1, and therefore terminate the simulation when Pc(t) ~ P..

Notice that no distinction is made between nominal and avoidance trajectories, since the

algorithm itself makes no real distinction. It can however be proposed that the first scenario

may be the result of either a nominal trajectory, or for example, an avoidance trajectory

from a nominal "head-on" trajectory. In both cases, the domain of failure (hazard) Df

is described as a circular space around the vehicle, with unit radius (in meters). This is

considered to correspond to an appropriate value of -yo, given the vehicle's dimensions and

a tree trunk of approximately 15cm radius.

5.1.2 Results

Fly-by Simulation

Figure 5-2 illustrates the results of accumulation of risk within a time window t = [ti, t 2],

where to < ti < t 2 < th, within a certain finite horizon time window. In each instance

throughout this chapter, ti = to + 1. The four distinct plots on this figure are related to

each other as follows.
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Figure 5-2: Risk Accumulation for PCUAV NGM-II Hazard Fly-by

The solid line represents a close approximation of the true probability of collision at time

t = th. This is denoted by Ptrue(t), or the "True" probability of collision, introduced in

Section 4.1.3. This close approximate is calculated from an exhaustive and time-consuming,

model-predictive Monte-Carlo simulation and is considered to be the benchmark for com-

paring the performance of the algorithm developed in Chapter 4.

The algorithms for calculation of collision risk, developed in this dissertation, are repre-

sented by two plots in Figure 5-2. One is denoted by Pc(t), the calculated upper bound to

collision risk, and another is denoted by Pfosm(t). The latter is an FOSM error corrected

value of Pc(t), accounting for calculation error induced by the independence assumption

discussed in Section 4.2.1.

A lower bound probability of collision, Pb(t) is determined, as described by Equa-

tion 4.35. This representation of probability of collision is suggested by Prandini et al[54]

and also by number of other publications on collision avoidance[12] [11] [2] [44] [3]. Adding
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this plot to the figure allows us to clamp Pj'"(t) between upper and lower bounds. In

addition, it allows us to compare our work with comparable recent research on probabilistic

collision avoidance.

Figure 5-2 illustrates how Pc(t) and PfOSM (t) are accumulated over time, as the vehicle

passes the hazard, again emphasizing the similarities between collision probability and the

first passage time problem discussed in Section 2.3.2. The figure shows the upper-bounded

nature of Pc(th) = Pc(t 2), since it is larger than PcrUe(t) and also shows the lower bounded

nature of Pib(t), which is clearly smaller than Pcr"e(t)

PfSM(th) = Pc'OSM(t2 ) is within eight percent of Pc""(t) and Pc(th) is within six per-

cent of Pcr"e(th). The seemingly more accurate Pc(t) is not evidence of failure of the FOSM

error correction method. Pc(t) is an approximation of the upper bound of the probability

of collision, denoted by Pcb(t), and PFOSM(th) is a more exact approximate of Pcb(t). It is

circumstantial that Pe(th) < PFOSM(th), and it can be shown that the opposite inequality

holds under different simulation conditions. Specifically, when the finite horizon accumu-

lates more probability of collision while -y and A are negatively correlated (p < 0), then

Pc(th) < PFOSM(th), Pc(th) > PcOSM(th) when more risk is accumulated while p > 0.

This is obvious when assessing Equation 4.55.

The independence assumption labelled "Assumption 1" in Section 4.2.1 accounts for the

approximately two percent difference between P!OSM(th) and Pc(th). The figure is well

below the worst-case upper bound error of twenty-two percent derived during the vehicle

applicability test example in Section 4.2.1. This can be expected, since the simulation is not

a worst-case scenario, such as the head-on approach. It is under this worst-case assumption

that the bound was derived.

pib(t) is of special interest in Figure 5-2, since it is approximately fifteen percent smaller

than Pjrue(th). Using the lower bound alone in order to obtain an estimate of PrueTh)

would be much simpler to accomplish than the algorithm used to find Pe(th). The danger

involved in trusting in a lower bound of collision risk, combined with the associated esti-

mation error, would however make this a risky venture. The difference between Plb(t) and
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Pc(th) may however serve as an insightful method of bounding Ptrue(th).

It is interesting to note that Pjb(t) quickly becomes a progressively worse measure of

Pjrue(th), the more time is spent in the vicinity of D 1. One such example is when orbiting

a circular Df at a constant radius. Pib(t) will not grow as time progresses, while both

Ptr"e(th) and Pc(th) would increase.

Head-on Simulation

The head-on approach shown in Figure 5-1 incites the worst-case difference between pFOSM(th)

and Pc(th) because of the maximal correlation between y and j when these vectors have co-

linear gradients (see Equation 4.64 and the surrounding discussion). Figure 5-3 illustrates

the results of the simulation.

Note the exponential increase in Pc(th) and PFOSM(th) over time, as the vehicle in-

evitably enters Df. The increase in risk is sudden and evolves from almost zero risk to

pFOSM(th) = 0.053 over the course of only about 0.06 seconds. It is this sudden increase in

risk that accounts for the minimal difference between Pcj(th) and ptrue(th). There is very

little probability flow out of Df, with the commanded cruise speed of 20m/s dominating

the flow into Df. This is therefore a scenario where the vehicle will spend very little time

in close vicinity to Df, resulting in an accurate Pcb(th), approximately four percent smaller

than Ptrue(th)

At the same time, pFOSM(th) is also accurate, being approximately eight percent larger

than Prue(th). PEOSM (th) is therefore of similar accuracy for both the "fly-by" and "head-

on" simulations. Pc(th) undershoots Prue(th) by about 10 percent.

PfOSM (th) is roughly eighteen percent larger than Pc(th), which is close to the 22

percent approximate worst case "Assumption 1" calculation error predicted in Section 4.2.1.

This simulation (and many similar simulations) therefore validates the approximate vehicle

applicability test described in Section 4.2.1.
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Figure 5-3: Risk Accumulation for PCUAV NGM-II Head-on Hazard Approach

5.2 Two Large Commercial Transports

5.2.1 Vehicle and Scenarios

Vehicle Description

This application example aims to represent conflict scenarios between two large commercial

transports such as the Boeing 747-400, or vehicles of equivalent size and dynamics, under

autopilot control.

The simplified two-dimensional LTI, closed-loop model of the vehicle, under autopilot

control, was developed with the aid of Tom Reynolds at the International Center for Air

Transportation (ICAT) at MIT and according to dynamics provided by Roskam[57]. A
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fourth order representation can be summarized as

X1 0 1 0 0 X1 0 0 0 0

21 -0.2 -1 0 0 ±1 0.2 0 1 0
+ U(t)+ w(t); (5.7)

X2 0 0 0 1 X2 0 0 0 0

-2 0 0 -0.2 -1 ±2 0 0.2 0 1

with

E[w(t)w(t)T ] = 0.5 0. (5.8)
0 0.5

The model is further transformed to vehicle-relative space as to adhere to the single-

vehicle-single-obstacle problem definition described in Section 3.2. The transformation re-

sults in a single vehicle model in conflict with a stationary Df. Df is described by a circular

region with 40m radius, roughly accounting for the dimensions of two large transports.

Conflict Scenarios

Conflict scenarios similar to that described for the PCUAV NGM-II vehicle are investigated.

In the case of the two-vehicle transport collision problem however, the fly-by scenario, on

the right in Figure. 5-4, corresponds roughly to two vehicles crossing each other's flight

trajectories at the same altitude. The fly-by simulation starts with a mean state distribution

of

mx = [43, 0, -248, 2 0 0 ]T (5.9)

and state covariance matrix

2.5 0 0 0

0 0.5 0 0
Ex = Px = (5.10)

0 0 2.5 0

0 0 0 0.5

at t = to. For this scenario, the MPT is calculated as fMPT = 1.24 seconds.

The head-on conflict scenario, on the left in Figure 5-4, corresponds directly to two vehi-

cles artificially commanded along trajectories that would result in direct head-on collision.
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The simulation starts with a mean state distribution of

mx = [0, 0, -246.5, 2 0 01T (5.11)

and state covariance matrix

2.5 0 0 0

Ex = Px= 0 0.5 0 0 (5.12)
0 0 2.5 0

0 0 0 0.5

at t = to.

Both scenarios are typical of situations that might be encountered under straight-line au-

topilot control between navigation waypoints. In this case however, the head-on simulation

is prolonged in order to accumulate very large risk, about five times that of Pm_. = 0.05

chosen for these aircraft. Recall that we usually avoid calculating Pc(t) > Pc., since a

number of analyses in Chapter 4 depend on Pc(t) being small, including the vehicle appli-

cability test and the FOSM calculation error corrections. The increased risk is therefore

intended to expose inclement influences on the calculation of PFOSM(t) and the vehicle

application test, if any.

5.2.2 Results

Fly-by Simulation

The fly-by simulation results in Figure 5-5 again attest to the accuracy of Pc(th) and

PfOSM (th) when compared to Ptrue(th). P0 (th) is approximately 8 percent larger than

Pjrue(th) and PfOSM(th) is about ten percent larger.

The difference between Pe(th) and PFOSM(th) is only about 2 percent, much smaller

than the predicted 18 percent approximate maximum from a vehicle applicability test. We

again expected the improved calculation error performance, since the maximal error (as

usual) was derived from a worst-case head-on approach.
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Figure 5-5: Risk Accumulation for Transport Fly-by

Pcb(th) is approximately 18 percent smaller than Pct"e(th). Approximating Ptrue(th)

with pib (th) would grow progressively worse with increased durations of exposure to Df.

Further simulations have illustrated this decreased accuracy when the vehicles' relative ve-

locities are reduced.

Typical risk accumulation is evident as a function of exposure time and proximity to

Df, similar to the results from other simulations, including the one resulting in Figure 5-2.

Head-on Simulation

The head-on conflict scenario for two large commercial transports was simulated and the

collision probability results, for part of one finite time horizon, are shown in Figure 5-6.

This scenario was specifically tailored to again induce the worst case performance of the

algorithm for Pc(th).

The typical exponential increase in risk probability is evident as the two vehicles in-
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evitably head towards a collision. Relative vehicle velocities are approximately 200m/s for

this simulation, resulting in a rapid rise in collision risk over time. As a consequence, Pb(th)

and Pjrue(th) are separated by about a percentage point. PfoSM(th) is approximately 4

percent larger than Ptrue(th). Although the lower bound is therefore more accurate during

this scenario, PFOSM(th) is very accurate.

Pc(th) is 28 percent smaller than PFOSM(th), only 4 percent larger than the 24 percent

value calculated with the approximate vehicle applicability test for this worst case scenario.

When PFOSM(t) = 0.05, Pc(th) is only 22 percent smaller. As PFOSM(th) increases, the

vehicle applicability test does understandably become slightly less accurate, since the test

hinges on the assumption that pFOSM(th) < Pc. is small. At the same time, and for the

same reason, when PFOSM(t) = 0.05, it is only 2 percent larger than Ptrue(t), implying

that PEOSM (t) is itself more accurate at lower collision risk. In all though, this simulation

again validates the vehicle applicability test developed in Chapter 4 and PfOSM (t) again

provides an accurate estimate of collision risk, with higher performance when pFOSM (th)
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is small.

5.3 Chapter Summary

The risk calculation algorithm in Figure 4-2 is implemented in a Matlab and Simulink

environment. Two application examples are considered: A small UAV, the PCUAV NGM-

II, encountering a tree trunk sized hazard; and two large commercial transports in hazardous

proximity to each other. Two conflict scenarios are tested, illustrated and discussed for each

application. It is shown that both the risk calculation and the error approximations perform

expectedly well, thereby validating the developed approach.
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Chapter 6

Conclusions and Future Work

This thesis further develops the field of probabilistic collision avoidance systems, specifically

for autonomous aircraft, and builds primarily upon the works of Yang and Kuchar[70] [69] [42] [41],

but also on approaches by Paielli and Erzberger [49] [50] and Prandini et al[54]. The problem

is treated in the form of a multi-dimensional, non-cooperative game between two vehicles,

or equivalently, one vehicle and an obstacle.

6.1 Primary Contributions

The following is a list of the primary contributions of this research:

1. Order reductive collision metrics are applied in order to provide a tractable algorithmic

solution to the normally intractable first passage time problem of multi-dimensional

collision risk calculation within a finite time horizon.

2. A tractable real-time algorithm is developed for the calculation of collision risk as a

function of time along any deterministic flight trajectory.

3. Calculation and approximation errors resulting from application of the algorithm are

characterized and quantified.

4. Simulations are employed to verify the accuracy of the collision risk algorithm and

major calculation error components and to probe the applicability of the research to

various application examples and conflict scenarios.
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5. The concept of a system operating characteristic (SOC), developed by Kuchar[41], in

aid of calculating alerting thresholds, is expanded to account for the safety benefits

of delaying collision avoidance action. A condensed SOC (CSOC) results.

The remainder of this chapter describes the applicability of the research to various

collision avoidance problems, further summarizes the conclusions and contributions made

during the course of the research and lists future research opportunities stemming from this

work.

6.2 Applicability and Comparisons

Section 2.2.3 describes how most conflict alerting systems may be divided into three cate-

gories, namely: Single path, worst case and probabilistic methods of approach. Single path

and worst case approaches are typically attempts at simplifying the generally intractable

probabilistic approach, in order to provide a tractable solution. Such approaches are there-

fore usually applicable to specialized collision avoidance problems and many are of an ad

hoc nature. The method developed in this thesis, follows the probabilistic approach. This

approach typically gains generality of application and accuracy, at the cost of calculation

complexity. We show how calculation complexity may be reduced, while still retaining most

of the advantages of the probabilistic approach.

The work expands upon the probabilistic approaches followed by Kuchar, Yang, Paielli

and Erzberger and Prandini et al. It is closest in comparison to that of Paielli and

Erzberger's approach, since their work is also only applicable to the two-vehicle problem

and follows a similar stochastic development. Kuchar and Yang's work is applicable to mul-

tiple domains of failure, but their Monte Carlo approach sets it apart, and their solution to

collision risk can be more approximate, in order to facilitate real-time tractability.

Our work primarily differs from that of Paiell and Erzberger in the following ways:

1. We calculate an upper bound to collision risk, which closely approximates the true

collision risk, while Paielli and Erzberger's results may return upper or lower bound

estimates, depending on the amount of time spent in proximity to a hazard. A feasible
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upper bound provides added robustness to collision avoidance, while a lower bound

may compromise on safety.

2. We developed an approach which is of more general application to collision avoidance

problems. This fact stems from the fact that they assume constant vehicle velocities

and constant state distributions over the conflict interval, while also not recognizing

that additional conflict risk arises from exposure to a hazard over time. These as-

sumptions may become problematic when considering, for example, a UAV loitering

in the vicinity of a hazard, accumulating risk over time. In general, our approach is

therefore also more accurate.

3. Our approach, even though it is tractable in real-time, is of much higher computational

complexity than that of Paielli and Erzberger. Increased complexity might prohibit

use on small, uncomplicated and inexpensive vehicles with limited processing power.

The work developed in this dissertation is aimed at application to autonomous vehicles.

In cases where human intent may be modelled stochastically, it may also be applied to

human piloted vehicles, with an associated increase in false alarm rates and a reduction in

correct detection rates. The reduction in performance would result from a typical increase

in uncertainty of intent, not algorithmic error.

Furthermore, the work is applicable to two-vehicle fixed and rotary wing aircraft prob-

lems, during glancing and loitering encounters with hazards, making it of very general use.

The work is however not applicable to scenarios where the precise and complex shapes of

hazards need to be maintained during risk calculation, such as the PCUAV autonomous

mid-air docking system[51}.

6.3 Summary and Conclusions

The following is a more detailed list of the approach and contributions of this research:

1. It is illustrated that automatic collision avoidance systems for autonomous vehicles

need to be developed in order to: Allow UAVs to operate in FAA controlled airspace;

increase the effectiveness of commercial aircraft collision avoidance when under au-
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topilot control; and ensure safety when piloted and autonomous vehicles are required

to interact.

2. Differences between piloted and autonomous vehicles that influence conflict avoidance

design are discussed. The effectiveness of alerting systems for autonomous vehicles

is shown to be less sensitive to the occurrence of false alarms. Uncertainties usu-

ally associated with future pilot intent can be reduced dramatically by deterministic

autopilots, thereby opening the door to more precise probabilistic conflict detection.

3. The autonomous conflict detection and collision avoidance problem is cast into a state

space problem, similar to that developed by Kuchar[41]. The autonomous vehicle

problem is then extended into a closed loop representation where it is shown that

mean and covariance propagation may be used to estimate future state uncertainty

through finite horizon model predictive simulation. This development is a direct

consequence of the reduction of uncertainty of pilot intent because of autonomous

control. Pailli and Erzberger[50] also illustrate a similar initial development, but for

vehicles with constant velocity.

4. The calculation of collision risk within a finite time horizon is shown to be equiva-

lent to problems encountered in a number of separate fields of research. Two such

fields are: Reliability theory, especially as applied to civil engineering problems where

catastrophic failures are characterized as a function of time; and the first passage

time problem described by Kolmogorov equations, or as special cases thereof, such

as the Fokker-Planck equation often encountered in physical problems and stochastic

control.

5. The calculation of collision risk within a finite and discretized time horizon is cast

as a reliability theory problem and developed from first principles. The solution is

developed as a set of discrete propagation equations illustrated in Figure 3-3 and it is

shown that the calculations are numerically intractable when real-time solutions are

required.

6. The notion of the system operating characteristic (SOC) [42] [41] employed as a trade-

off between P(SA) and P(UA) when making alerting decisions is extended. The SOC

at any point in time is based on the outcome of making an avoidance decision at that
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time. It is shown that the effects of time-delayed avoidance action may be incorpo-

rated into the SOC representation, resulting in a best-case or time condensed SOC

(CSOC), for a specific time horizon and a given set avoidance trajectories. This al-

lows us to make use of signal detection theory in order to optimize alerting thresholds,

while at the same time investigating the pay-off of delayed avoidance action. As a

direct consequence, the work of Kuchar may be employed when optimizing alerting

thresholds[411.

7. An intuitive collision metric is introduced that is defined as a positive definite quadratic

measure of state space. In three-dimensional position space the metric manifests itself

as a spheroid domain of failure or hazard space surrounding vehicles and hazards. The

quadratic form is shown to act as a order reductive metric, compressing n-dimensional

state space into a one dimensional metric.

8. It is shown how the quadratic collision metric lends itself to solving the collision

risk algorithm illustrated in Figure 3-3 through simple and proven approximations,

resulting in the tractable algorithm described in Figure 4-2. The intractable O(N 2n)

numerical complexity required by the solution in Figure 3-3 at each time step in a

finite horizon window of solution is thereby replaced by significantly reduced O(N 2)

complexity.

9. We also illustrate how research lead by Jaschke[35] and Hughett[32] in the field of

econometrics may be employed to efficiently solve for the quadratic PDFs required by

the risk solution algorithm in Figure 4-2. The calculations are shown to be solvable

through Fourier inversion of known probabilistic characteristic functions, and we show

how to employ Inverse Fast Fourier Transforms (IFFT) in order to find the PDFs

according to predefined bounds of representation accuracy (error). The bounds are

linked to the characteristic function, which is known exactly before inversion takes

place. In this way, we may guarantee and control calculation error bounds even

before attempting IFFTs. The efficient IFFT solutions of guaranteed accuracy allow

further reduction of computational complexity at each time step in the finite horizon

to O(Nlog 2 (N)) for the algorithm in Figure 4-2.

10. A number of properties of the time derivative of the collision metric are derived. The
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risk solution algorithm in Figure 4-2, for example, requires that the PDF of the time

derivative of the quadratic collision metric be calculable. It is therefore shown that

this derivative is itself a quadratic form for most dynamic models of second order or

more. It is also shown that we may always convert the representation of the rate of

change into a quadratic form of second order or more. Jaschke and Hughett's methods

may thus also be used to solve for the required PDF of y.

11. The calculation errors induced by the assumptions made to convert the intractable

algorithm in Figure 3-3 to the tractable version displayed in Figure 4-2 are identi-

fied. Each type of error is either quantified exactly, upper bounded or approximated

through FOSM methods, depending on the nature and severity of the error. These

calculations may be performed during real-time simulation, in order to provide error

estimates on each estimation of collision risk.

12. A vehicle applicability test was devised which can be run off-line, before implementing

the bulk of the solution strategy. The test gauges the worst-case error of the solution

strategy based on the bulk of the calculation error.

13. Practical aspects such as simulation step size, the time resolution of investigating

avoidance trajectories and the horizon time length are investigated. The major con-

tributing factors influencing these aspects are identified and a number of metrics are

suggested in order to constrain and optimize these quantities.

14. The risk calculation algorithm in Figure 4-2 is implemented in a Matlab and Simulink

environment. Two application examples are considered: A small UAV, the PCUAV

NGM-II, encountering a tree trunk sized hazard; and two large commercial transports

in hazardous proximity to each other. Two conflict scenarios are tested, illustrated

and discussed for each application. It is shown that both the risk calculation and

the error approximations perform expectedly well, thereby validating the developed

approach. At the same time, results are compared to that of a lower bound estimate

of collision risk suggested by Prandini et al and a host of other publications.
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6.4 Future Work

Various avenues of future work result from the research detailed in this thesis, many of which

fall outside of the classical realm of probabilistic collision avoidance. A select number of

avenues are briefly discussed in this section.

6.4.1 General State Avoidance

The problem of collision avoidance is generally treated as one of avoiding a time variant

positional state space, i.e., Df(t) C R' where m < 3. That is, the problem is a subset of

the larger problem of general state avoidance, where m < n.

General state avoidance may be employed in a wide variety of situations, including:

Avoiding hazardous domains of position and velocity during autonomous landing; Avoiding

hazardous domains position, velocity and acceleration for agile maneuvering autonomous

vehicles; and Avoiding hazardous domains of orientation outside of, for example, GPS an-

tenna beam width and tilt sensor range.

The research detailed in this document may be adapted for use as a general state avoid-

ance system, or at least for determining the risk of transgression into a general hazardous

state domain. In order to do this, either the D1 (t) of Dc (t) needs to be quadratically

bounded or approximated as such. Most of the derivations in Chapter 4 may be extended

to general quadratic metrics of state, not only operating on position space. The metric

must however always be positive definite, and the FOSM error correction of Pc(t) would

need to be extended to be able to deal with quadratic forms that are not complete squares.

6.4.2 Control and Trajectory Scheduling for Minimal Risk

The probabilistic methods discussed here are aimed at the evaluation of conflict risk along a

pre-defined set of flight trajectories. The size and variety of this set and the time-resolution

at which avoidance trajectories are investigated can be traded off against effectiveness of

collision avoidance P(SA) and computational complexity. At least three schools of thought

exist that allow us to revise the notion of employing pre-defined sets of trajectories:
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Firstly, the set of trajectories may be very large, but a selection algorithm may be de-

veloped to rank or prune the set, in real-time, given the current state estimation and the

nominal trajectory. In this way, only a selected subset of the original set, and of tractable

size, may be entertained during each finite horizon.

Secondly, the concept of pre-defined trajectories may be replaced entirely by alternative

forms of collision avoidance control. The model-predictive nature and step-wise propagation

embedded in the approach detailed in this thesis, allow for the application of optimization

methods employing, for example, scaled control input primitives along the course of a finite

horizon in order to optimize the collision risk outcome. In this way, collision avoidance is a

matter of tweaking nominal trajectories to bend around hazards, without radical changes

in trajectory. Similar research is being undertaken at the Charles Stark Draper Laboratory.

Thirdly, pre-defined sets of avoidance trajectories may be replaced by a single nominal

path, with control around this path being altered by non-linear control laws. Such control

laws may be dormant when collision risk is minimal, but may become effective in close

proximity to hazards. These laws may either be gain scheduled according to collision risk,

or may be more directly reliant on geometrical properties of conflict scenarios such as laws of

inverse proportional navigation. Methods of adjoint analysis may, for example, be applied

in order to efficiently calculate miss distances and trajectory changes.

6.4.3 n-Multiple and Compound Vehicles

The work may be extended from non-cooperative two vehicle or one-vehicle-one-obstacle ap-

plications. Direct application of the research would imply that n-multiple vehicle problems

be divided into (n -1) separate conflict analyses running on each one of n different vehicles.

This might result in extreme computational burden. Complicated scenarios may also be

envisioned around airports or within fleets of cooperative UAVs, where non-cooperation

might lead to acutely sub-optimal avoidance capability. Various methods of cooperative

data analysis should be researched if this work is to be adapted to such scenarios.

Finally, each vehicle might also be divided into compound sets of intersecting, or non-

intersecting domains of failure. This is linked to the computational complexity we see when
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dealing with n-multiple vehicles, and intersecting domains would pose yet another proba-

bilistic challenge.

Dividing the multi-vehicle collision risk problem into 2-vehicle pairs, however also begs

recognition of the fact that the risk of collision between two vehicles is conditional on the

risk between all other pairs. This issue would have to be resolved before the research can

be applied to n-multiple and compound vehicles.
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Appendix A

Matlab Simulation Code

A.1 Sample Code for Calculation of Probability of Collision

Within One Finite Horizon

% Collision Risk Calculation Algorithm Main File

% Thomas Jones

% Units:

% All times in seconds

% All translations in m

% All velocities in m/s

% INCLUDING FOSM ERROR CORRECTION

X This example calculates collision risk for a short, specific

% PCUAV NGM-II fly-by encounter, longer intervals

% require discretization step size scheduling not shown here

close all;

clear all;

Xfigure;

% SETUP
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% Starttime in seconds

t0=0;

% Total simulation time in seconds

totalsimtime=0.11;

% Lateral control time constant in rad/s

vehicletimeconstant=1.5;

% Collision zone radius in meters

RO=1;

GamO=RO^2;

% Deffinition of collision zone

Gam=[1 0 0 0;0 0 0 0;0 0 1 0;0 0 0 0];

% Simplified collision zone rate for error calculation

GamD=[O 1 0 0;1 0 0 0;0 0 0 1;0 0 1 0];

% Characteristic function frequency range +-

wmax=800;

% Number of discretizsation points

N=2^17; % Keep 2^k to use FFT i.s.o. DFT

% Average forward velocity in m/s

Vavg=20;

% Dimensions/System order

n=4;

% Number of Reference inputs

nu=2;

% Vehicle reference inputs (Required flight path)

Urefl=2*ones(1,22);

Uref2=linspace(2.2,4.4,22);

Uref=[Uref1;Uref2);

% Vehicle initial states

XO=[Uref(1,1) 0 -1.8 Vavg];

% Find simulation parameters based on above data (rule of thumb)
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horizontime=0.11;

simtimestep=0.005;

manuvtimestep=horizontime/5;

X Get Vehicle Model

pcuavmodelextractl;

for t=[tO:simtimestep:totalsimtime-horizontime] % Main simulation loop

% Next Horizon interval time vector

th=[t:simtimestep:t+horizontime-simtimestep];

Lt=length(th);

X Create Px and Mx time history over this horizon

Px=Pss; % Make this more complicated later, if required

SYS = SS(A,Bu,C,D); % From pcuavmodelextractl function call

U=Uref(:,t/simtimestep+1:Lt+t/simtimestep);

Mx=LSIM(SYS,U,th-t,XO);

% Propagate and accum. Pc and Pcerr over horizon

X Initialise prob of collision vector for this horizon

PcH=zeros(l,Lt);

X Initialize covariance vector for this horizon

Rho=zeros(1,Lt); %Cor. Coef

Merr=zeros(1,Lt); XMean error

Verr=zeros(1,Lt); XVariance error

deltaPerr=zeros(1,Lt); % Change in Prob Col error

k=0;

for th=[t:simtimestep:t+horizontime-simtimestep] % Begin Horizon Loop

k=k+1;

% Find density function of Gamma

[GamDist,GamVec,GamCharac]=finddist(Mx(k,:)',...
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Px,Gam,wmax,N,0,0,zeros(1,n),1);

% Get GamDot into correct form for finddist

X No need when remnants used and added to tfm in finddist

% Find density function of GammaDot

EdeltaGamDotDist,deltaGamDotVec,deltaGamDotCharac] =f inddist (Mx (k,:)',...

Px,2*simtimestep*A.'*Gam,wmax,N,0,0,2*simtimestep*U(:,k).'*Bu.'*Gam,0);

X Calculation error estimates

% findrho finds quadratic form statistics

[Rho (k) , stdA, stdB,meanA,meanB]=f indrho (Gam, simtimestep*GamD, Mx(k, :) 'Px)

varA=(stdA)^2;

varB=(stdB)^2;

mslope=(-varB+varA+sqrt(varB^2-2*varA*varB+varA^2+...

4*Rho(k)^2*varA*varB))/2/Rho(k)/stdA/stdB;

if(k>1)

dP=PcH(k)-PcH(k-1);

ma=GamO; X A close approx, worst case is =0

Y.ma=0; X Worst-case (these options exist to simplify)

deltam=1/mslope*dP/(1-dP)*(meanA-ma);

deltav=0; % Negligible effect ignored

else

deltam=0;

deltav=0;

end;

Merr(k)=deltam;

Verr(k)=deltav-2*Rho(k)*stdA*stdB;

% Accumulate Probability of Collision

if k>1 % Start Risk Accumulation
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X NB: May REDUCE Calculations if Gam<O is not carried around!!

X Cut density function of Gamma into Df and Ds parts f=gl+g2

leq=( sqrt(varA+Verr(k)) )/stdA*GamO-Merr(k)

I=find(GamVecPrev>leq);

GamDistPrev=abs(GamDistPrev);

GamDistPrev=GamDistPrev/sum(GamDistPrev)*2*wmax;

gl=[GamDistPrev(:I(1)-1) zeros(1,I(1))];

g2=[zeros(1,I(1)-1) GamDistPrev(I(1):N)];

PosMinPc=sum(gl)/(2*wmax);

% Find Characteristic function of new Gamma

PropGamDistCut=g2/(1-PosMinPc);

PropGamVecNext=GamVec;

PropGamDistCut=[PropGamDistCut(N/2+1:N) PropGamDistCut(1:N/2)];

PropGamCharacCut=fft(PropGamDistCut);

X Plots for debugging

%figure;

%plot(GamVec,deltaGamDotDist);

% Convolve

PropGamCharacNext=PropGamCharacCut.*deltaGamDotCharacPrev;

PropGamDistNext=ifft(PropGamCharacNext);

X Flip, normalize and remove numerical IFFT imaginary errors

PropGamDistNext=[PropGamDistNext(N/2+1:N) PropGamDistNext(1:N/2)];

PropGamDistNext=abs(PropGamDistNext);

PropGamDistNext=PropGamDistNext/sum(PropGamDistNext)*2*wmax;

X Plots for debugging

Xfigure;

%plot(PropGamVec,PropGamDistNext);
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gi=[PropGamDistNext(i:I(1)-1) zeros(1,I(1))];

g2=[zeros(1,I(1)-1) PropGamDistNext(I(1):N)];

deltaPc=sum(g1)/(2*wmax);

PcH(k)=PcH(k-1)+deltaPc*(i-PcH(k-1));

X Pause for stepping and debugging

%pause;

else

leq=( sqrt(varA+Verr(k)) )/stdA*GamO-Merr(k)

I=find(GamVec>leq);

gI=[GamDist(i:I(1)-1) zeros(i,I(i))];

g2=[zeros(1,I(I)-i) GamDist(I(1):N)];

deltaPc=sum(gi) /(2*wmax);

PcH(k)=deltaPc;

MinPc=deltaPc; % find risk for Prandini's lower bound

PosMinPc=O; XJust initialize for subsequent if loop

PropGamDistNext=GamDist;

end; % End Risk Accumulation

% Update Variables for next loop

GamVecPrev=GamVec;

GamDistPrev=GamDist;

deltaGamDotCharacPrev=deltaGamDotCharac;

% Find the Prandini's lower bound so far

if PosMinPc>MinPc

MinPc=PosMinPc;

end;
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if mod(k,1)==O

Xfigure;

disp(k);

%plot(GamVecPropGamDistNext,'b');

%hold on;

%plot(GamVec,GamDist,'r');

Xhold off;

Xpause;

end;

end; % End Horizon loop

if mod(t,0.5)==O

disp(t);

end;

end; X End Main simulation loop

figure;

title{'Accumulated Prob. of Col. vs. sample'};

plot(PcH);

hold on;

plot(PcH-deltaPerr,'r');

plot(MinPc*ones(1,Lt),'k');

grid on;

zoom on;

legend('Upper Bound Pc','FOSM corrected Pc','Lower Bound Pc');

%title('Pc');

%figure;
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%plot(Rho);

%title('Rho');

%figure;

%plot (Merr);

%title('Merr');

%figure;

%plot (Verr);

%title('Verr');

A.2 Sample Code for Calculation of Statistics of Two De-

pendent Quadratic Forms, "findrho.m":

% Thomas Jones

% Feb 2003

% Finding Covariance between symmetric

% quadratic forms: y=x'Ax and z=x'Bx

function [rho, stdA, stdB,meanA,meanB] =findrho(A,B,mx,sigx)

% Means

meanA=trace (A*sigx)+mx. '*A*mx;

meanB=trace (B*sigx)+mx. '*B*mx;

% Standard Deviations

stdA=sqrt (2*trace (A*sigx*A*sigx)+4*mx. '*A*sigx*A*mx);

stdB=sqrt (2*trace (B*sigx*B*sigx) +4*mx. '*B*sigx*B*mx);

X Correlation Coefficient

rho=(2*trace (A*sigx*B*sigx)+4*mx. '*A*sigx*B*mx)/stdA/stdB;
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