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Abstract

Space based interferometry missions have the potential to revolutionize astrometry, pro-

viding observations of unprecedented accuracy. Realizing the full potential of these in-

terferometers poses several significant technological challenges. One of the most significant

challenges is regulating the light pathlength, from the collecting telescopes to the combining

instrument, with nanometer accuracy, despite the presence of vibration induced by internal

and external disturbance sources.
Due to the wide range of disturbances that act on the optical instruments, a single

actuator with simultaneously large control authority and high bandwidth would be necessary

to meet the stabilization requirements. Unfortunately no single actuator can meet these

requirements. Therefore, a suite of actuators with overlapping strokes and bandwidths is

employed; such a construction is termed a "staged actuation system." The objective in the

thesis is to develop "staging control" strategies that specify how to utilize the individual

actuators in a staged system to satisfy the stabilization requirements.

The first task in the staging control design process is to evaluate how actuator capabil-

ities and constraints affect the system performance. Two analytical techniques, based on

stochastic Lyapunov and stochastic linearization methods, are utilized to predict the steady-

state, closed-loop performance in the presence of actuator nonlinearities such as saturation

and quantization. These nonlinearities can severely restrict the achievable performance, and

careful consideration of their effects is vitally important for staged controller designs. Using

this performance prediction methodology, a control synthesis framework is developed which

extends '/ 2 -optimization techniques by incorporating the effects of actuator nonlinearities.

The newly developed framework is then proposed as a formal synthesis tool for staging

controller designs. The proposed technique estimates and can directly shape the probability

of saturation of each actuator, and determines optimal "hand-offs" of control authority be-

tween the actuators. Due to the H2 setting, the controller designs arise directly as solutions

of the corresponding necessary conditions, allowing system design studies to be performed

easily and quickly. The proposed staged controllers have been demonstrated to achieve the

nanometer level stabilization requirements under the expected disturbance environments

for space interferometers. The new synthesis technique is also used to analytically quantify

the achievable performance and the sensitivity of a particular staging configuration to the

individual actuator parameters (size and bandwidths).

Thesis committee chairman: David W. Miller
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

The existence of Earth-like planets outside of our solar system, and the possibility of ex-

traterrestrial life residing on them, have intrigued people for many years. Indeed, the

search for extra-solar, life-harboring planets has become a primary focus of NASA space

research [56]. In an attempt to detect candidate planetary systems, new technologies have

been developed to enhance the accuracy of astronomical observations [1, 5]. One promising

technology proposed by NASA's Origins Program is optical interferometry, whereby small

telescopes separated by large distances can act as a much larger telescope. Such an inter-

ferometric system can obtain a level of resolution similar to that provided by an equivalent

single, large telescope, without the extreme mass and concurrent expense of a large space

structure.

Ground-based interferometer facilities have been constructed and have demonstrated

the effectiveness of the proposed technology. However, the science capabilities of these in-

terferometers are limited by two factors: achievable baseline and atmospheric distortions.

For example, the separation distance required for imaging Earth-like planets may be on the

order of hundreds of meters [2]. In order to implement such a baseline on the ground, a

large piece of land, ideally flat, is needed to house the collecting apertures, beam trans-

port pipes, and other infrastructure [76]. Such space may not be readily or inexpensively

available. Even if the physical land is available, atmospheric conditions at the desired loca-

tion must also be favorable. Atmospheric turbulence can severely degrade the accuracy of

interferometric measurements [8].
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The limitations mentioned above can be avoided by sending interferometers into space,

where the observations made by the system would not be corrupted by atmospheric dis-

tortions and large baselines can be achieved. The interferometric combination of two or

more small Hubble-type telescopes could provide observations superior to those possible

with any existing astronomical apparatus. Two such missions are currently planned by the

NASA Jet Propulsion Laboratory (JPL). The Space Interferometry Mission (SIM), sched-

uled for launch in 2009, has a 10 m baseline with two 0.3 m diameter apertures located

on a common truss platform. The most recent architectural design of SIM is illustrated in

Figure 1-1(a). The mission aims to measure the position and distance of stars throughout

the galaxy several hundred times more accurately than any existing system [83]. However,

the SIM mission does not have sufficient baseline to detect and image Earth-like extra-solar

planets, and building a larger truss to hold two or more apertures at longer baselines may

be prohibitively complex and expensive.

A second NASA mission, the Terrestrial Planet Finder (TPF), plans to study planetary

systems outside of our solar system using either a large-baseline nulling interferometer or a

coronagraph. Under the nulling interferometer proposal, one architecture suggests placing

the apertures on individual spacecraft and flying the spacecraft in formation to provide

baselines from 75 m up to 1 km. The specific architecture configuration of the TPF mission

is not yet determined. A representative configuration consisting of a fleet of several free-

flying apertures together with a combiner spacecraft is illustrated in Figure 1-1(b).

Although space interferometers are not affected by atmospheric turbulence and base-

line constraints, there are many other technical challenges that need to be overcome before

their full potential can be realized. The light rays collected from each telescope in a multi-

aperture array must be relayed to the combiner instrument, where they interfere, creating

fringe patterns. However, the desired interference pattern is obtained only if the differential

light pathlength from the different telescopes is regulated to the nanometer level, despite

the presence of structural vibration and perturbations caused by other internal and ex-

ternal disturbances. Meeting such stringent performance requirements poses tremendous

technological challenges that stretch the current state-of-the-art.

In order to achieve the stabilization requirements posed by space interferometer mis-

sions, an active control system is required to continuously adjust the optical geometry so

as to maintain the required pathlength. The design of such a control system would be
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(a)

(b)

Figure 1-1: (a) Current Space Interferometry Mission architecture concept

(http://planetquest.jpl.nasa.gov/SIM/sim-index.html) (b) Terrestrial Planet Finder

free flyer design concept (http://ast.star.rl.ac.uk/darwin/talk)
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straightforward if a single actuator were available which simultaneously provided the au-

thority, bandwidth, and accuracy needed to suppress the complete range of disturbances

acting on the combining optics. Unfortunately such an actuator does not exist, and instead

a suite of actuators with overlapping strokes and bandwidths is used to approximate the

functionality of this ideal single actuator. For example, relatively large force, low band-

width actuators can slowly move the spacecraft, while smaller high bandwidth actuators

can rapidly adjust the position of optical mirrors in the interferometer.

If all the actuators can be made to collaborate appropriately, the complete feedback

control system will be capable of meeting the interferometer stabilization requirements.

However, coordinating such a suite of actuators to achieve the desired performance can be

a significant challenge. This thesis aims to address this challenge in order to realize the full

potential of space interferometer systems.

1.2 Research Objectives and Approach

The approach taken in this research is to first identify the range of perturbations to the

optical geometry that can be tolerated while still achieving the detection threshold for

extra-solar planet detection. Since these perturbations are unlikely to be deterministic,

they are modelled as Gaussian random variables. The allowable tolerance is expressed as

the maximum root-mean-square (RMS) perturbation to the optical pathlength which still

allows the detection criterion to be satisfied.

These geometric perturbations will have a physical manifestation as the relative motion

of the optical components on the interferometer, and hence the second task is to develop a

model of these motions and the effect of control inputs on each degree of freedom. Random

pathlength variations in the interferometer are then modelled as arising from stochastic

disturbance inputs into this physical model. Examples of such disturbances are solar pres-

sure acting on the spacecraft, thermal effects flexing the mirrors, and vibration transmitted

through the structure to the optical equipment from other spacecraft systems (such as a

spinning reaction wheel). The actuator constraints are modelled as a combination of lin-

ear and nonlinear elements. Bandwidth constraints are modelled with linear filters, while

saturation (maximum output), resolution (minimum output), and quantization effects are

modelled as algebraic input nonlinearities.
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The complete system model is thus represented by a set of nonlinear stochastic differen-

tial equations. Determining if the output of this system (pathlength variations) satisfies a

specified RMS constraint is a nontrivial problem, requiring the solution of the Fokker-Planck

equation to determine the steady-state probability density function of the closed-loop state

vector. Exact solutions of this equation are not possible in general, but approximate solu-

tions can be determined for the class of nonlinearities considered, under the assumption that

the closed-loop density can be well approximated as Gaussian. Two different approaches

are investigated to develop this approximation: one based on stochastic linearization, and

the other based on stochastic versions of the classical Lyapunov theorems. Each approach

generates a collection of coupled nonlinear algebraic equations that must be solved simulta-

neously to predict the output variance. It is shown that these equations are formally dual

to each other, and both sets produce the same predictions.

The predictions made by these techniques are typically within 10% of the values com-

puted by exact solution of the Fokker-Planck equation (where possible) or determined by

numerical simulation of the nonlinear differential equations. This approximation is in con-

trast to predictions of the output variance made by assuming the actuators are linear. The

error in linear predictions can become extremely large, and can even predict essentially no

pathlength variations, when in fact the variations are substantial. Indeed, the nonlinear

analysis shows that the disturbance suppression capabilities of the system are fundamen-

tally limited by the bandwidth and nonlinear characteristics of each actuator. These limits

must be taken into account in the design of a control law for each actuator.

The task of the controller for a space interferometer is thus to keep the RMS pathlength

variations below a specified level, taking into account the individual constraints on each

actuator. Additionally, the controller should attempt to minimize the mechanical wear,

or electrical power consumption, of each actuator, as quantified by the RMS magnitude

of the corresponding control input. Using the variance prediction techniques described

above, a modified 72 control design strategy is utilized to accomplish this tradeoff. Finally,

the new methodology is applied to the problem of controlling optical pathlength in a space

interferometer. Basing the controller design on a modified modern control framework allows

rapid and automatic computation of new controller designs as a function of the system or

actuator parameters. Such a control algorithm permits a family of trade studies to be

conducted in a timely fashion. Several such trade studies are presented to demonstrate the
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utility of the proposed approach.

Goals of the research

The main objectives of this thesis are summarized as follows:

e Develop a methodology that quantifies the effect of random perturbations to the in-

terferometer optics, and determine the maximum RMS level of perturbations that the

interferometer can tolerate while still satisfying extra-solar planet detection criteria.

" Characterize the linear and nonlinear actuator constraints in an interferometer path-

length control system, given that each actuator has drastically different authority and

frequency bandwidth. The nonlinear constraints considered are saturation, resolution,

and quantization effects.

" Develop an analytical approximation tool to predict the expected RMS output from a

dynamic system subjected to random disturbance inputs and actuator nonlinearities.

" Incorporate the actuator constraints, disturbance models, and optical geometry dy-

namics into the controller design and develop a systematic method for determining a

feedback control algorithm that optimally utilizes a given suite of actuators to achieve

the specified level of closed-loop RMS performance.

* Explore the design implications of the resulting control strategies in terms of the

specific physical properties of each actuator.

- Quantify the admissible disturbance levels as a function of actuator size and

bandwidth.

- Quantify the utilization of each actuator, in particular the amount of time it

spends in saturation, as a function of disturbance level, actuator size and band-

width.

" Analyze the optimal "hand-off" of control authority between actuators which is de-

termined by the proposed control algorithm as a function of actuator bandwidth and

nonlinearities.
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1.3 Summary of Previous Work

A review of previous work is presented in this section.

1.3.1 Optical requirements for nulling interferometers

The TPF mission uses nulling interferometry to eliminate the bright light coming from the

star and allow the dimmer, reflected light from the extra-solar planet to be observed. The

idea of using a nulling interferometer to search for extra-solar planets was first proposed by

Bracewell and McPhie [5]. They suggested the detection of such planets by destructively

interfering light from two telescopes to effectively null out the starlight emission. However,

a two-aperture configuration is only sufficient for detecting Jupiter-size planets, and thus,

Angel and Wolf later suggested a four-aperture array capable of detecting Earth-like planets

[1]. Recently many multi-aperture arrays have been proposed to provide deeper starlight

nulling and improve the resolving power of the interferometric system [40, 51, 88].

Most of the work to date on the TPF mission has focused on the static, architectural

concepts or mirror designs. Four industry teams including Ball Aerospace, Boeing, Lock-

heed Martin, and Northrop Grumman have conducted extensive reviews of various TPF

architectural designs, on topics ranging from array configurations and combiner instrumen-

tation to preliminary spacecraft model, launch, and deployment logistics. The reports that

summarize their reviews are available at the official JPL website [79]. This thesis also

studies a linear-array interferometer configuration by looking at variations in the number

of apertures, the baseline, and aperture diameters. A similar, but more comprehensive,

configuration analysis of a nulling interferometer is presented in [48].

These architectural reviews assume that the interferometer configuration can be main-

tained perfectly. However, this idealized assumption will likely be violated when apertures

are placed on multiple spacecraft or a long truss structure that is perturbed by external

and onboard disturbances. Even at this initial design phase, it is necessary to estimate

how much the actual interferometer configuration may deviate from the ideal one, while

still ensuring good interferometric measurements. Such estimates can provide an initial

measure on how well a dynamic stabilization system must perform. A general statistical

analysis that models the dynamic deviations as random variables provides a RMS bound on

the acceptable deviation levels. This type of analysis has been performed for ground-based
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interferometers to determine RMS wavefront errors as a function of telescope alignment

and atmospheric distortion [64]. More recently, Mennesson et al. [52] conducted a similar

analysis for a two-aperture nulling space interferometer; however, the extension from their

existing work to a multi-aperture system is not obvious. Since Earth-like planet detection

will require more than two apertures, this thesis develops a method that estimates the

allowable RMS deviations for a general two-dimensional interferometer array based on an

optical metric that measures the depth and width of the null created by the interferometer

[72].

1.3.2 Nonlinear performance prediction

As discussed above, the system model considered in the thesis is a set of nonlinear stochastic

differential equations (SDEs) which can be expressed as

dx = Axdt + Bldw + B 2 4(u)dt

y = Cix

where #(u) describes actuator nonlinearities, the additive disturbance w is a zero-mean,

Gaussian stochastic process, and y denotes the performance output. The formal definition

and general properties of SDEs are discussed extensively in [11, 58]. Explicit solutions to

the above equations usually do not exist. Numerical simulations can be used to approximate

the steady-state RMS performance &, for a given control u, but such a technique can be

inaccurate and very time consuming [7].

A Lyapunov criterion can be used to establish the existence of a stationary probability

distribution of the system states described above [89]. This criterion is based on results first

obtained by Has'minskI [25] with additional results provided by Wonham [87] and Mao [49].

In addition, Zakai [89] shows that the stationary statistics of the closed-loop system can be

estimated based on the Lyapunov analysis. Thygesen [77] extends Zakai's discussion in a

survey paper, and summarizes various Lyapunov methods addressing different properties of

solutions to stochastic differential equations.

Lyapunov methods that incorporate stochastic analysis techniques will be referred to as

stochastic Lyapunov theory in this thesis to differentiate it from the common determinis-

tic Lyapunov theory [34]. Although the stochastic Lyapunov theory can provide estimates

on the stationary properties of the closed-loop system, it is still non-trivial to apply such
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methods to predict the RMS output performance, &y for a given system. This thesis uti-

lizes results obtained from stochastic Lyapunov theory [77, 89] to extend Zakai's results to

develop an analytical prediction tool that estimates &Y.

Another approach of approximating the steady-state output performance is to linearize

the nonlinear function #(u). If such an approximation can be accomplished, the RMS &y of

the resulting "linearized" system can be easily computed from linear system and stochastic

process theory [32, 60]. One common method of linearizing a nonlinear function #(u) is to

assume that u operates near a nominal point u, and approximate the nonlinear function as

#(u) = Nu, where N = d#/du evaluated at u, [34]. However, if the actual signal u deviates

greatly from the nominal value uo, this approximation is no longer accurate, and a better

approximation can be obtained by changing the linear gain N as a function of the input

u. This gain variation depending on the input is the basic idea behind quasi-linearization,

which is used extensively in the describing function work discussed in [20].

The resulting quasi-linearized system can be expressed as

dx = Ax dt + B1 dw + B 2N(u)u dt.

In the case where the system is subjected to random inputs, the term N is also called the

stochastic or statistical linearization gain [19, 20, 21, 69]. It is important to notice that the

system is not truly linear, since N(u) depends on the input u. If a feedback design is used,

i.e. u = Kx, then there exists a circulatory problem - the input u depends on the solution

x to the above stochastic different equation, which depends on N, which is a function of u.

As a result, a set of consistency constraints must be satisfied, leading to a set of coupled

equations that must be solved simultaneously.

This thesis aims at developing an analytical tool to estimate &Y from both stochastic

Lyapunov and stochastic linearization theories. Furthermore, it will show that the two

methods are dual and provide the same analytical prediction.

1.3.3 Control with saturating actuators

Saturation is one of the most commonly observed nonlinearities in actuators. In addition

to limitations on physical movements, the electrical input - voltage or current - that drives

the actuators is also limited. Since saturation is present for all control applications, it has

been an active controls research topic. For work on saturating actuators prior to 1995,
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Bernstein and Michel provide an extensive list of literature in this field indicating more

than 150 references [3].

More recently there has been a renewed interest in the study of linear systems subjected

to input saturations. The recent work can be divided into two categories - (1) deterministic

stabilization and (2) stochastic stabilization - where the system is perturbed by deterministic

and stochastic disturbances, respectively. Under the first category, the work can be further

divided into saturation avoidance and saturation allowance. It has been demonstrated

that an 7,o-framework can be used for saturation avoidance problems [66, 67]. However,

this type of strategy is generally considered too conservative and limits the achievable

performance of the system [3]. Hence saturation allowance techniques are usually preferred

and have been developed more extensively.

The work related to deterministic stabilization with saturation allowance mainly focuses

on the closed-loop stability issues of the system. Sussmann et al., Teel, and Tyan and

Bernstein have separately demonstrated techniques for achieving global stabilization for

classes of linear systems with saturating actuators [73, 74, 82]. In particular, Sussmann's

work requires that the linear part of the system has no eigenvalues with positive real part,

and that the pair (A, B) is stabilizable. Teel and Tyan have focused on global stabilization

of systems with multiple integrators.

Pare et al. have obtained semi-global stability results for linear systems that can be

open-loop unstable [61, 62]. Their control design framework is based on LMI/BMI opti-

mization techniques, and the resulting output feedback controller can either maximize the

region of attraction, maximize (deterministic) disturbance rejection, or optimize the L2-gain

performance. The semi-global stability results can also be derived from nonlinear control

techniques such as those presented in [29, 44, 70, 75]. Other related work on saturating

actuators, including anti-windup control designs, is discussed in [36, 55, 63].

For the class of problems considered in this thesis, the perturbations are stochastic

disturbances, so the above control techniques cannot be applied directly since they do not

account for the random aspect of the problem. Furthermore, deterministic stability analysis

typically requires an upper bound on the magnitude of the input disturbance. However, such

a bound may not exist for stochastic perturbations, especially for those with the Gaussian

density functions assumed in this thesis. As a result, the stochastic stabilization framework

is more appropriate for solving the problems at hand.
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Florchinger [15] has started a new wave of research interest in stochastic stabilization

problems for nonlinear systems. Pan and Bagar have demonstrated global asymptotic sta-

bility in probability [59] for the class of strict-feedback systems. Deng and Krstid [12] solved

the stochastic disturbance attenuation problems, even for nonlinear systems with paramet-

ric uncertainty. Unfortunately, these recent results all assume multiplicative disturbance

models, in which the entering stochastic disturbances are multiplied by functions of the

system state that approach zero as the state does. Such a model allows for powerful asymp-

totic stability results to be obtained, but it does not apply to the additive noise models

considered in this thesis. For these cases the best that can be done is to bound the variance

of the closed-loop state (and output) deviations from the origin.

As discussed above, estimating the performance output variance would require solving

the Fokker-Plank equation for the probability density function, but the explicit solution

to this equation generally does not exist. Liberzon and Brockett presented a framework

based on stochastic Lyapunov theory to obtain the exact closed-loop probability density

function for a linear system with saturating and quantized inputs [42]. Although they have

shown that the resulting density function is piecewise Gaussian, Liberzon does not suggest

a control synthesis technique in [42].

A different approach for stabilizing a single saturating actuator with stochastic distur-

bances is presented by G6kgek et al. [21]. Their framework combines LQR/LQG optimal

control design and stochastic linearization to approximate the saturation effects. This work

also provides an estimate of the closed-loop, steady-state RMS output from the resulting

"linearized" system. However, G6kgek et al. have only formally examined single-input sys-

tems with saturation. The extension to multi-input systems, and to other types of input

nonlinearity, is not straightforward. Moreover, the stability analysis presented in their work

relies on deterministic Lyapunov techniques, and hence does not accurately account for the

impact of the stochastic disturbances.

In this thesis, the exact density function computed in [42] is approximated by a single,

continuous Gaussian function, and stochastic Lyapunov and stochastic linearization theory

are used to develop a performance prediction tool for a large class of linear systems with

actuator nonlinearities. This tool is then used in a control synthesis framework, where

R 2 optimization is used to achieve the desired performance while minimizing mechani-

cal/electrical power usage. The control synthesis proposed here is a multi-input extension
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of the single saturating actuator work presented in [21].

1.3.4 Other actuator nonlinearities

Other common nonlinear actuator effects include resolution/deadzone and quantization of

input commands. The resolution/deadzone nonlinearity may arise from the minimum move-

ment of a mechanical drive, and quantization is a result of the digital to analog conversion.

Control designs and stability analysis of resolution/deadzone and quantization effects are

described in [10, 16] and [45, 39, 6, 41, 68], respectively. This work is mostly based on

deterministic systems with a focus on stability analysis.

As discussed in the previous section, Liberzon and Brockett [42] have characterized the

quantization plus saturation effects on the closed-loop density function. It is also important

to point out that quantization effects have often been modelled as added white noise with

uniform distribution [17]. The assumptions behind such a model will be reviewed in this

thesis, and the additive noise model can be used to characterize quantization effects when

appropriate.

Since most of the work that considers actuator nonlinearities does not take into ac-

count stochastic perturbations, the performance prediction analysis and control synthesis

framework described at the end Section 1.3.3 will be generalized to incorporate resolu-

tion/deadzone and quantization effects.

1.3.5 Interferometer Pathlength Control

Current pathlength control algorithms for testbed versions of space interferometers are based

on classical, single loop-shaping designs [23, 27, 46, 57]. These designs have been tested

on a staged optical delay line system that consists of a voice coil as the coarse stage and

a PZT actuator as the fine stage. The closed-loop performance obtained in the laboratory

environment is in the range of 3-30 nm. Additionally, a dynamic nonlinear compensator

has also been suggested in [27, 46], which is claimed to globally stabilize the system, albeit

without a formal proof. In this design, the voice coil loop is actually designed to be unstable

in isolation, requiring the action of the PZT to ensure closed-loop stability. This feature is

felt to be necessary to improve the low frequency rejection properties of the system.

There are several disadvantages associated with such designs. First, the loop shaping

processes can be difficult and time consuming, requiring substantial manual "tweaking" of
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the controller parameters to obtain the desired loop shapes while still ensuring nominal

stability. Additionally, the nonlinear design with the unstable voice coil loop may not be

sufficiently robust; in the event that the PZT fails, or its performance is degraded, the

entire system may be destabilized. Finally, in both techniques, it is difficult to predict the

performance of the closed-loop system in the event that the PZT or voice coil saturates.

Indeed estimates of the expected saturation states of the actuators is one of the key metrics

that JPL has identified as a desired design parameter [31].

The objective of the control design developed in this thesis is to formalize the construc-

tion of a control system for these devices within the modern control framework. Such a

technique would allow quick generation of control designs automatically, without the need

to manually tune the control parameters. It will be demonstrated that the control design

proposed here can achieve comparable performance to those cited above, within this sys-

tematic framework. This design also properly accounts for the saturation effects of the

actuators and directly provides accurate estimates of the amount of time each actuator

spends in saturation.

1.4 Thesis Outline

The thesis begins by providing a brief introduction to optical imaging and interferometry in

Chapter 2. Following the background material on optical systems, analyses of TPF array

configurations as a function of the number of apertures, baseline, and aperture diameters

are presented. Next, a statistical methodology for estimating the largest RMS configuration

perturbations that are tolerable for planet detection is developed and applied to a linear-

array TPF configuration.

The overall dynamic model of the interferometer system is then presented in Chapter 3.

This model includes the plant dynamics, disturbance models, and actuator constraints. Four

types of actuator constraints, including saturation, resolution, quantization, and bandwidth,

and their effects on the system performance are studied in this chapter. A brief review

of the actuators used in the interferometer pathlength control system is also included to

demonstrate that these actuators have drastically different properties, such as stroke range

and bandwidth. Such a suite of actuators is defined as a "staged actuation system", and the

strategy to control these actuators in order to achieve the desired performance is defined as
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a "staging control" methodology.

In Chapter 4, a set of nonlinear stochastic differential equations (SDEs) are used to

characterize the overall system model presented in Chapter 3. Some properties of SDEs

and possible solutions for this set of equations are discussed in the chapter. Since the exact

solution for these equations is rarely available, two approximate methods are presented to es-

timate the output variance of the system. These methods are based on stochastic Lyapunov

and stochastic linearization theories, and several examples are included to demonstrate the

utility of these analytical approximation tools.

With the tools from Chapter 4 to determine accurate estimates of the RMS output

performance, the attention turns to the design of controllers that can meet the RMS stabi-

lization requirements. A control synthesis framework is formally presented in Chapter 5; the

controller is designed to minimize an?712 cost function that penalizes output variance and

control variance simultaneously. The full-state feedback problem is first solved and applied

to both a single-actuator and two-actuator example problems. The control design technique

is then extended to incorporate probability of saturation penalties. This extension allows

the tuning of the actuator saturation state directly. The output feedback extension of the

full-state feedback design is discussed at the end of Chapter 5.

The analysis and design framework developed in this thesis is applied to the interfer-

ometer pathlength control problems in Chapter 6. Numerous examples and trade studies

including the effects of disturbance spectra, frequency "hand-off", and minimization of elec-

trical power are illustrated here to demonstrate the capabilities of the tools developed in

this thesis. Finally, Chapter 7 provides a summary of the important findings in each chap-

ter, lists the major contributions of the thesis, and recommends future work directions for

staged control system designs of space interferometers.
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Chapter 2

Aperture Physics and Optical

Stability Requirements

An important task in the initial design phase of space interferometry systems is to convert

observational requirements into dynamical stability requirements on the optical components.

"Dynamic stability", as discussed in this chapter, refers to the magnitude of the deviations

of the optical states of the system from their reference positions, typically quantified by

root-mean-square (RMS) deviations. Essentially, the analysis below seeks to quantify the

magnitude of the RMS "jitter" the optics can tolerate, while still providing acceptable

observations. "Stability" in this chapter is thus distinct from control-theoretic notions of

stability, such as non-divergence in the sense of Lyapunov [34]. This equally important

sense of stability will be examined in Chapter 4.

To develop the necessary analytical machinery, Sections 2.1 and 2.2 below review the

process by which an optical system transforms light into images. The duality between

Fraunhofer diffraction and Fourier analysis is exploited to develop a concise formalism for

describing the relationship between properties of the optics and corresponding properties

of the resulting image. Section 2.3 describes the application of this analysis method to the

technique of nulling interferometry, and describes the relationship between typical observa-

tional requirements and the corresponding optical performance requirements that must be

satisfied to meet the viewing objectives.

The idealized optical systems described in the first three sections can never be obtained

in practice; the individual components of the system are inevitably subjected to small
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distortions and disturbances. For terrestrial applications of interferometry, the dominant

distortion is due to the atmosphere. For a space interferometry mission, there will be

perturbations due to onboard vibrations, thermal expansion and contraction, etc. Since

the forms of these disturbances are not known precisely, they are assumed to be random

in nature and will hence provoke a corresponding random behavior in the optical metrics.

Section 2.4 quantifies the effects of these random perturbations on the optical performance

metrics and determines the bounds on the magnitude of the perturbations which will still

allow the viewing objectives to be met.

2.1 Single-Aperture Physics

The objective of this section is to review the relationship between the properties of the

aperture of an optical system and the corresponding image created as light passes through

this aperture. The discussion below is based on a synthesis of the material in [4, 22, 26, 86].

By describing the physics of interferometric phenomena in a more familiar mathematical

framework, this discussion may be particularly helpful for engineers without specific optics

backgrounds, but with the typical exposure to linear systems theory and Fourier/Laplace

analysis.

2.1.1 One-dimensional apertures

Light waves propagated from a distant point source can be considered to be planar when

they reach the collecting instrument. For simplicity these waves are treated as monochro-

matic with a single wavelength, A, and an angular spatial frequency k = 27r/A. Incident

planar waves parallel to a one-dimensional (1D) aperture are illustrated in Figure 2-1. The

first objective is to model flux density distribution (wave amplitude per area) of the image

of this light source at point P located at (X, Z) from the center of the aperture. Analysis

of this idealized example will provide the building blocks for determining the image created

by more complex light distributions in the sky.

According to the Huygens-Fresnel Principle, each differential length of the aperture dS

can be considered filled with secondary point sources, with emergent wave amplitude E dS,

where E is the source strength per unit length, assumed to be constant over the entire

aperture [26]. The plane wave is thus essentially broken into infinitesimal "wavelets" across

34



Incoming
................... -.-w avefront----

dS x

\ P(X,Z)

Figure 2-1: Geometric definitions for wave propagating through an one-dimensional single
slit aperture

the aperture, each of which is propagated forward to the point P. The wave amplitude

contribution from each wavelet at P is given by

dU(P) = ei(t-kr)dS, (2.1)
r

where r is the distance from the differential element dS to P, w is the angular temporal

frequency, and t is time.

The location of the elementary wavelet dS is denoted by x in the aperture plane, and let r

and R be the distances to P from the element dS and the origin of the aperture coordinates,

respectively, as shown in Figure 2-1. The distances r and R can then be expressed as a

function of the geometric coordinates of P(X, Z),

r = ((X - X)2 + Z21/2

R = (X2+z2)1/2

Expressing r in terms of R and eliminating Z,

r = (X 2 + Z 2 - 2xX + x 2 ) 11 2

x2  2xX)1/2
= R(1+ 2- R 2

Using the Fraunhofer approximation, R > x, the second term x2 /R 2 is approximately 0 so

that,
2xX

r ~R(1 R2 _ 1/
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The binomial expansion (1 - 6)1/2 ~1 - 6/2 further simplifies this term as,

r r- R(1 - R2 ) (2.2)

The differential wave amplitude in a plane where R is approximately constant can be then

written as

dU(X) = -'ei(wt-kR)eikXx/R dS. (2.3)
R

Note that after this simplification dU no longer depends on Z, since the image plane is

assumed to be approximately a constant distance R away from the aperture plane. The

total light amplitude in the image plane is simply the sum of all the wavelet contributions

across the aperture -

U(X) = I dU = ei(wt-kR) we ikXx/Rdx (2.4)
Jap R Jap

The phase term e i(w-kR) is approximately uniform across the observation plane. Since the

interest is in the relative amplitude distribution, this term as well as 1/R can be grouped

into the constant E without loss of generality [26].

The above analysis assumes that all parts of the aperture pass the incident light wave

without distortion. More generally, the wave amplitude and phase may be changed by

different amounts at different points in the aperture. To model this situation, the uniform

amplitude flux of each wavelet E is replaced by the aperture function A(x), and the resulting

complex amplitude at P(X) is given by

U(X) = f A(x)eikXx/Rdx, (2.5)
J ap

which agrees with the above when A(x) = E for all x E ap.

If the amplitude is expressed in terms of angle of diffraction, 0, measured relative to the

z axis as shown in Figure 2-1, then

X/R = sin6 ~ 0.

Equation 2.5 becomes

U(6) = j A(x)eikoxdx. (2.6)

so that the amplitude U is seen to be the Fourier transform of the aperture function A(x).
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The wave amplitude U(9) is in general a complex number which cannot be measured

directly by a physical light detector. Instead such a detector measures the irradiance or

intensity I, defined as the squared magnitude of the amplitude U, with units of [Watts/m]:

1(0) = IU()|12.

As an example, the aperture in Figure 2-1 is a single slit with width a. The aperture

function is defined by

A(x) =
0 otherwise

and the corresponding amplitude computed from Equation 2.6 is,

U(0) = +a/2 eikoxdx
J -a/2

1 e ikOa/2 - ika/2] sin(k6a/2) a
ik6 . k~a/2

sin(alrO/A)a = a sinc(air/A),
aird/A

where the definition of angular spatial frequency k = 27r/A has been used. The measured

intensity is then

1(6) = IU(6)12 = sinc2(air9/A)a 2 ,

which is the familiar diffraction equation associated with the single-slit experiment,

Figure 2-2(a) shows the aperture function A(x) for this ID slit shape. The Fourier

transform of this "box-like" function is the sinc function as shown in Figure 2-2(b), which

is also the wave amplitude in the image plane. Figure 2-2(c) shows the normalized intensity

I(O)/Imax as a function of 6/(A/a). The zeros of intensity occur when

a67r/A = nr, n = [1, 2,...)

nA = aO

describing the locations of the minima of the diffraction pattern. Finally, the angular

resolution, or minimum resolving power, for the aperture is defined by the first minimum of

the intensity function, AO = A/a.

2.1.2 Two-dimensional apertures

The above discussion can easily be generalized to a two-dimensional (2D) aperture. The

(x, y, z) coordinates originate at the center of the aperture, with z pointing in the direction
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of wave propagation as shown in Figure 2-3. Assuming far-field observation, or Fraunhofer

diffraction, where R 2 > X2 +y 2, the complex wave amplitude at an arbitrary point P(X, Y)

is the 2D version of Equation 2.5,

U(X, Y) = J A(x, y)eik(xx+Yy)/Rdxdy. (2.7)

where dS changes from length dx in the 1D case to the differential area dx dy in the 2D case.

The wave amplitude is again the Fourier transform of the aperture function. The image

plane is thus equivalent to the Fourier plane where Fraunhofer diffraction approximation is

valid.

x Y

dS ~ ---------- ---- P(XYZ)
-- -- - -- -- ..... ------- ------- ---------- X

Figure 2-3: Geometry of the two-dimensional aperture and the observational plane

Now consider two popular 2D aperture shapes - rectangular and circular. The aperture

function of a rectangular aperture with length a and width b can be defined as,

A(x, y) =
1

0

if lxi < a and Iyl < b

otherwise

or equivalently A(x, y) = A(x)A(y), where

1

0

if lxI < a

otherwise

The wave amplitude is computed as

[[/2
U(X, Y) =

-a|2
A(x)eikxIdx] [2 A(yeiky dyl
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sin(akX/2R)' sin(bkY/2R)'
akX|2R _ bkY/2R _

= ab sinc akX ine (k)Y (2.8)
2R) 2R

(2.9)

The detected intensity I =|U2 is then

I(X, Y) = a2b2 sinc2 2R sinc 2 (Y (2.10)
(2R )/ 2R/

To illustrate these ideas, Figure 2-4(a) shows a rectangular aperture function, and Figure 2-

5(a) shows the corresponding intensity in the image plane. This intensity is also commonly

called the point spread function (PSF), because it describes how a point source gets spread

in the image plane into an intensity pattern similar to Figure 2-5.

For a circular aperture of diameter D, whose aperture function is shown in Figure 2-4(b),

the coordinate transformation,

x = a cos3 y = asin3

X =pcos(q) Y =psin(q)

allows the complex amplitude to be expressed as

U(p, q) = D/2 27r e(ikpa/R) cos(-q) (2.11)
Ja=0 J#=0

After performing the integration, the amplitude function is given by

- rD 2 J (kDp/2R)
2R 2  kDp/2R

where J1 is the Bessel function of order 1. Due to the assumed aperture symmetry, the

amplitude depends only on the radial coordinate p2 = X 2 + Y 2 . Since p/R = sin 9 ~ V as

shown in Figure 2-3, the amplitude can also be expressed as

irD2 2J1 (kDi9/2)
U(oJ) = 4R ~92(2.12)4R2 kDV12'

with corresponding intensity

I(V) = 1(0) 2J1 (kDV92) 2 (2.13)
1kD9/ 2

where 1(0) = (7rD 2 /(4R 2 )) 2 .

Figure 2-5(b) illustrates the intensity pattern of the Fraunhofer diffraction for this cir-

cular aperture. The intensity has "ripples" uniformly extending from the central peak in
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all directions, a shape known as the Airy pattern. By contrast, there are only two sets of

"ripples" in the rectangular case, one along each coordinate axis, corresponding to a single

dimension of the Fourier transform of the box (rectangle) function.

(a) (b)

Figure 2-4: Two-dimensional aperture function: (a) Rectangular aperture (b) Circular

aperture

(a) (b)

Figure 2-5: Detected intensity I: (a) Rectangular aperture (b) Circular aperture

In general, the far-field assumptions of Fraunhofer diffraction would require the detecting

instrument to be kilometers away from the aperture. If the observation plane is too close

to the aperture, phase contaminations will distort the Fourier transform of the aperture

function A(x, y). Fortunately a lens can be placed after the diffracting aperture to focus

the incoming waves to an image plane (or focal plane) located at the focal distance F from
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the aperture. As a result, the Fraunhofer diffraction can be observed on the focal plane of the

lens rather than at a large distance R away. Assuming that phase distortion and curvature

of the lens are small (so that A(x, y) is still close to constant across the aperture), all the

equations presented above hold when a lens is used to produce the Fraunhofer diffraction

pattern. It is only necessary is to replace the distance R with the lens focal length F in

Equation 2.7, i.e.

U(X, Y) = f A(x, y)eik(Xx+Y)/Fdxdy. (2.14)

With this formulation, it is clear that a lens creates a Fourier transform of the source image

in its own focal plane.

Finally, consider the case where the source has nonzero dimensions, as opposed to the

simple point source considered above. A distributed source can be modelled as a two-

dimensional shape filled with single point sources, and the intensity observed in the image

plane is then the integration of the individual point source contributions over the entire

distribution:

Ii(X, Y) = PSF(X - x,, Y - y,)I,(x,, y.)dx, dy8, (2.15)

where I, is the intensity distribution of the source, and (x,, ys) are the Cartesian coordinates

of the source as shown in Figure 2-6. This equation assumes that the point spread function

is shift-invariant, so that shifting the point source location in the object plane only causes

a corresponding shift of the intensity in the focal plane. While this shift invariance is not

strictly true when factors such as lens imperfections and coherence are taken into account,

the approximation is good enough for the discussion considered here.

2.1.3 Optics and linear system theory

As seen in Equation 2.15, the process of computing the image plane intensities for an arbi-

trary source distribution is equivalent to computing the response of a linear time-invariant

dynamical system. The input to the optical system is a 2D source (intensity distribution)

and the output is a 2D image. The point spread function is analogous to the impulse

response of a linear system, and the output image is the convolution of the point spread

function with the source input.

Linear systems theory extensively uses the concept of the transfer function, which is

the Laplace (or Fourier) transform of the impulse response. Convolution with the impulse
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Figure 2-6: Simple geometry of a two-dimensional optical imaging system

response is equivalent to multiplication by the transfer function in the Fourier domain.

Analogously, the optical transfer function (OTF) is the Fourier transform of the point

spread function, and multiplying the OTF by the Fourier transform of the source intensity

distribution 1 yields the Fourier transform of the image intensity Ii. Because of the way the

PSF is computed from the amplitude U, the OTF can also be expressed as the convolution

of the aperture function with its complex conjugate. Table 2.1 summarizes the Fourier

relationships developed in this section.

Table 2.1: Summary of Fraunhofer diffraction using Fourier transform F

A(x, y) A*(x, y) OTF(X, Y)
*

Aperture Convolution Complex conjugate = Optical

function aperture function transfer function

T I ITF-, F tI TF-1 T-1 I T F

U(X, Y) U*(X, Y) I(X, Y) = PSF(X, Y)
x

Fraunhofer Multiplication Complex conjugate = Point spread

amplitude amplitude function
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2.2 Multi-Aperture Physics

In the multi-aperture case, the shift and linearity properties of Fourier transform can be

used to derive the intensity functions. The spatial shift property states that if the Fourier

transform of A(x, y) is U(X, Y), and a and b are arbitrary constants, then the shift in

position of the function A(x t a, y t b) will result in the transform e±ik(aX+bY)/R - U(X, Y),

and hence a shift in spatial position is equivalent to a linear phase shift in frequency. For

example, suppose a rectangular aperture with sides a and b is shifted along the x-axis by a

distance s. The corresponding wave amplitude in the image plane is computed as

U(X, Y) = b/2 1a2+8 eik(xx+Yy)|Rdxdy

eikYy/ R a eikXx x

-b/2 -a2+s

sin(bkY/2R) eikX/R iakX/2R -iakX/2R

bkY|2R jikX/RII

= ab eiksX/R sinc akX sinc bkY) (2.16)k( 2R J 2RJ

Equation 2.16 is the shifted version of Equation 2.9.

The other important property of the Fourier transform is the linearity property, which

states that the Fourier transform of a linear combination of functions is equal to the linear

combination of Fourier transforms of each individual function. In particular, if functions

A(x, y) and B(x, y) have Fourier transforms U(X, Y) and V(X, Y), respectively, and a and

# are arbitrary constants, then

F{aA(x, y) + 3B(x, y)} = aU(X, Y) + fV(X, Y).

Consider two identical rectangular apertures with the side lengths a and b, where one

aperture is shifted in the x direction by +s and the other -s. From the shifting property,

the respective image amplitudes for a point source are

U+(X, Y) = ab eiksX/R sinc sinc
2R 2R

U-(X, Y) = ab e-ikX/R sinc akX sinc bkY)

Using the linearity property, the total amplitude is then

U(XY) = U++U-
(akX\ ( bkY\(.7= 2 ab cos(ksX/R) sinc 2R sinc 2R , (2.17)
(2R / 2
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and the detected intensity is given by

I(X, y) = U2(X, y) = 4a2 b2 [sinc2(akX/2R) sinc2 (bkY/2R)] cos2 (ksX/R),

= 2a 2 b2 [sinc2 (akX/2R)sinc2 (bkY/2R)] [1 + cos(2ksX/R)],

Using the diffraction angle substitutions, 0x ~ sin(Ox) = X/R and OY , sin(Oy) = Y/R as

shown in Figure 2-3, and normalizing the intensity by its maximum 4a 2 b2

In (O, 0y) = 1/2 [sinc2 (akOx/2) sinc2(bkOy/2)] [1 + cos(2ks9x)] (2.18)

The normalized intensity is thus a cosine term modulated by the Fraunhofer diffraction

of a single aperture, as illustrated in Figure 2-7 for intensity variations in the Ox direction.

The single slit diffraction pattern (dashed line) acts as a modulation on the higher frequency

oscillations arising from the new cosine term. The addition of a second aperture has created

a family of interference fringes oscillating under the single slit diffraction envelope.

The first zero of the normalized intensity In function defines the angular resolution of

the imaging system. In the single aperture case this zero occurs at A/a. In the two aperture

case, however the first zero is then located at A/2B, where B = 2s is the distance between

the centers of the two apertures. Therefore, the interference created by a second aperture

creates an optical system with significantly better angular resolution than a single aperture

system, provided the aperture separation B is much greater than the aperture width a.

With the above theory in place, the general expression for the point spread function of

an Na-aperture optical system can be derived. Using linearity, the total amplitude at point

P(X, Y) is the sum of the amplitude contributions from each aperture,

Na

U(X, Y) = Uj (X, Y).
j=1

Using the shift rule defined by Equation 2.16, each of the amplitudes is

U3 (X, Y) = eik(xjX+yiY)/R (i Aj (x, y)eik(Xx+Y)/R dxdy)

where (xj, yj) and Aj (x, y) are the jth aperture center location and aperture shape function,

respectively. Combining the above two equations,

Na

U(X, Y) = S eikxx+yjY)/R 7] Aj(x, y)eik(Xx+Yy)/Rdxdy , (2.19)
j=1
Na

= Gj (X, Y)eik(xixyYR (2.20)

j=1
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Figure 2-7: Normalized intensity along the 6 direction of two rectangular apertures

(2s/a) = 5

where G is the parenthesized term in Equation 2.19, and corresponds to the Fraunhofer

diffraction amplitude of the jth aperture (defined by Equation 2.7). The resulting intensity

detected at point P(X, Y) in the image plane is given by

I(XY) = IU(XY)1 2

2
Na

=- G (X,Y)eik(x+yjY)/R . (2.21)
j=1

Defining the diffraction angles 62 = X/R and , = Y/R, the point spread function is

equivalently
2

Na

PSF(O2, Oy) = I(O, y) = ( G(92,6yjeik(23Ox+yJOY) . (2.22)
j=1

and the image plane intensity is given by

Ii(O2, OsY) = J PSF(Ox - Osx, y - Oy) Is (02, Osy) dOsx d9Oy, (2.23)

where (062, 08y) are angular coordinates of the source as shown in Figure 2-6, and I, is the

intensity distribution of the source.
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2.3 Interferometry and Planet Finding

The multi-aperture physics described above provides the basic mathematics for the study of

interferometry. The interference patterns created by the additional apertures can provide

the optical system with increased resolving power, enabling more sensitive and accurate

observations. Recently, a novel use of interferometry has been proposed, with direct appli-

cation to the detection of extra-solar planets. This section describes this application, and

performs a trade analysis for the aperture sizes and relative placement as a function of the

planet finding objectives.

2.3.1 Beam combination

There are two general methods for combining light rays received from different collecting

telescopes. The multi-aperture physics presented in Section 2.2 describes a simple beam

combination technique, where a lens is placed after the apertures to focus the beams onto

a detector. Since the focused images are superposed in the detector plane, fringes will form

across the combined image and appear spatially on the detector. This technique is also

known as image plane interferometry. In practice mirrors and lenses are often used to scale

down the input beam size while preserving the relative wavefront geometry between different

beams before focusing them onto a detector. From the above discussion, when light passing

through different apertures combines onto a common image plane, the resulting pattern of

interference fringes is described by Equations 2.22 and 2.23 above.

More commonly, however, mirrors and beam-splitters are used to first combine the light

beams from different collector telescopes and then focus the superposed beams onto the

detector [80]. Since the combined beams are completely overlapped, the spatially modulated

fringes observed in the image plane interferometry no longer exist. Typically a spot detector

is used to measure the combined beam intensity, or equivalently, measure light intensity at

a single point in the image plane. This process, known as pupil plane interferometry, is

slightly different from the focal plane imaging process discussed above. Focal plane imaging

describes the intensity distribution across the entire focal plane by convolving the point

spread function (PSF) with the sky intensity distribution. The pupil plane description, on

the other hand, describes how a single point in the focal plane is coupled to the intensity

distribution in the sky.
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To develop the pupil plane idea mathematically, evaluate Equation 2.23 at a fixed point

in the image plane, typically (6x, y,) = (0, 0) for convenience. The intensity measured by a

detector at this location is then

Idet = 1(0, 0) = JPSF(-Osx, -Oy) Is(,, GOy) d982 d98 y (2.24)

Assuming the aperture shapes are symmetric and the aperture centers are symmetrically

placed, PSF(-Ox, -Oy) = PSF(O,,,,y), so that

Idet = I(0,0) = J IR(6sX,0 8 ) Is(Osx,Osy) d9sxdsy (2.25)

where IR(O6x, Oy) = PSF(Sx, OBy) is called the interferometer response function. Note that

the detected intensity for the pupil plane interferometer is only a function of the coordinates

on the sky. Moreover, this intensity is the integral of the product of the interferometer

response with the sky brightness distribution. The detected intensity for the pupil plane

interferometer can thus be visualized by projecting the interferometer response function

onto the sky. Light sources at sky coordinates where the response function is large will

contribute strongly to the detected intensity; sources at coordinates where the response

function is zero will not contribute at all to the detected intensity. For this reason the

interferometer response function IR is often called the "transmission map on the sky" [52].

2.3.2 Nulling interferometry

The transmission map perspective suggests another use for an array of apertures: nulling

interferometry. This technique uses the interference pattern from an array of apertures

to null out the bright light of an on-axis source, allowing fainter, nearby light sources

to be more strongly perceived [72]. To accomplish this, the apertures are configured so

that the transmission map has a destructive interference fringe centered on the array axis

Ox = 0, 6, = 0. This idea is illustrated in Figure 2-8. Note that the subscript s in (0,x, 0,y)

is eliminated from Equation 2.22 in this section for ease of notation.

To determine the necessary aperture configuration for implementing this idea, recall

that the transmission map for a collection of Na apertures is given by Equation 2.22:

2
Na

IR(O6, y) = [ Gj (Ox, y)eik(Oxx+OvY )aje'i , (2.26)
j=1
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Figure 2-8: Normalized interferometer response function for a family of apertures

where xz and yj are the coordinates of the center of the jth aperture and Gj is given by

Gj (0, 0y) = f a Aj (x, y)eik(x+OyY)dxdy. (2.27)
J ap3

Equation 2.26 has introduced the flexibility to assign different transmission efficiencies to

the different apertures, via the gains aj and the phases #j. The phase, in particular is what

allows the destructive interference bands to be moved to the desired location.

Consider for example an Na = 2 aperture interferometer with identical circular apertures

of diameter D. The transmission map is

IR(O6, 6,) oc 2J, §) 2 (1 + cos(k(6Ox12 + 9 yy12) + #12)). (2.28)
1kDo

where V = 62 + y, X12 = x1 - X2, Y12 = Y1 - Y2, and #12 = 41 - #2 (the efficiencies

ai = a 2 have been assumed here). If the relative phase #12 between the two apertures is

taken to be 7r, the normalized interferometer response in the 02 direction is as shown in

Figure 2-8, which demonstrates the desired central destructive interference. Note also in

this figure that the modulating diffraction pattern, shown by the dashed line, is essentially

constant over the first several interference fringes.

For an arbitrary number of apertures, the transmission map is

Na Na-1 Na

IR(9x,6 y) = ZG + ( ( 2GjGj cos (kx(xi - xi) + k9y(yi - yi) + #i - i)
j=1 i=1 i=i+1
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Na Na-1 Na

= ZG? + E E 2GiGl cos (k(9xxil + 9 y i) + il) ,(2.29)
j=1 i=1 I=i+1

where (-)il denotes the difference between the quantities (.)i and (-),. For a Na-aperture

system, there are Na -1 unique difference terms per variable. For example in a four-aperture

system, the unique x difference terms are x12, x 13 , and X14, whereas X23 may be written as

X13 - x 12 and similar expressions can be obtained for x 24 and X3 4. Specific choices of the

number of apertures Na, the phase shifts #il and the relative aperture placements xii, yii

will depend upon the nulling requirements of the particular application, such as the planet

finding scenario discussed in the next section.

2.3.3 Extrasolar planet detection

Bracewell and McPhie [5] were the first to suggest that nulling interferometry could be used

to search for extrasolar planets. Nulling the bright light of a distant star could allow the

much fainter reflected light of its companion planets to be detected. Angel and Woolf [1]

carefully analyzed the two-element interferometer suggested by Bracewell and determined

that, while it might be sufficient to detect Jupiter-class planets, it might not provide suffi-

cient sensitivity to detect planets as close to their parent star as the Earth is to the Sun. To

achieve this level of sensitivity, three or more apertures in 1-dimensional or 2-dimensional

array configurations have been proposed in [1, 40, 51, 88]. These apertures may either be

placed on separated spacecraft or on a single structurally connected spacecraft. Figures 2-

9(a) and 2-9(b) illustrate these two concepts for the TPF mission.

Since a star has finite dimension, the transmission map null has to be sufficiently wide

to adequately suppress the star's brightness. A natural choice of performance metric for a

proposed interferometer design is thus a measure of the combined depth and width of the

response null. The null depth (ND) is defined as the ratio between the intensity evaluated

at the extra-solar star limb (L) and at its first maximum or possible planet location (P)

(see Figure 2-8).

IR (,,Oy)=(OxLOL) _ IRILND-=(.0
IR (O,O)=(O.p,OYP) IRp (

where (0,p, Gyp) are the angular coordinates of the first interference maximum, and (6xL, CyL)

are the coordinates of a point on the star limb.
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(a) (b)

Figure 2-9: Terrestrial Planet Finder nulling interferometer configurations: (a) Separated
spacecraft (b) Structurally-connected spacecraft

To detect an Earth-class planet around a Solar-sized star at a distance of approximately

10 parsecs, which is the nominal TPF mission, the required null depth is at least 10-6

across a stellar disk which subtends a diameter of approximately 10-3 arcsecs [88]. This

requirement is illustrated in Figure 2-10. The base of the rectangular box shown in the plot

denotes the desired level of null depth 10-6; it extends from the center of the star 02 = 0

until the vertical side of the rectangle which indicates the estimated angular radius of the

star, which here is 5 x 10-4 arcsecs.

Equation 2.29 can be used to analyze the combinations of aperture numbers, sizes, and

locations that are capable of meeting this requirement. Since from Equation 2.30, null depth

uses the response function values only for a small range of angles on the sky, the diffraction

envelopes Gj are nearly constant, and the interferometer response simplifies to

Na 2

IR(OX,6y ) oc Z Djeik(xx+yy)eii (2.31)
j=1

Na Na-1

ocS D + 2DiDl cos(k(Oxxii + 0yyii) + #jz), (2.32)
k=1 i=1

where circular apertures have been assumed, each of diameter Dj.

Woolf and Angel [88] have suggested the use of a linear nulling interferometer with the

same separation distance between each adjacent aperture. With these assumptions, the
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Figure 2-10: Normalized interferometer response function (null depth) for a family of aper-

tures

aperture diameters needed to give the transmission map a central null can be determined

from the coefficients of the polynomial p(x) = (1 + x)Na; the corresponding phase shifts

follow a similar regular pattern. Table 2.2 gives the specific values for the first five values

of Na.

Table 2.2: Linear array nulling interferometer configuration

No. of Apertures Na p(x) = (1+ x)-a- Aperture Diameters Phase shifts

2 1+ x D = [1 1] =[0 7r]
3 1+2x+x 2  D = [12 1] #=[0 7r 0]

4 1+3x+3x2+x 3 D = [13 3 1] =[0 7r 0 r]

5 1 + 4x + 6X2 + 4X3 + D = [14 6 4 1] #= [07r07r0]

Figure 2-10 illustrates a family of interferometer response curves for various number

of apertures, derived by using the values in Table 2.2 and Equation 2.31. The distance

between adjacent apertures is set to 25 m for this example. Since the array is linear, yj can

be set to 0 without loss of generality.

In order to achieve the desired null depth (10-6), the normalized interferometer response

must be below the rectangular bounding box. As illustrated by the plot, at least three aper-

tures are needed to satisfy this requirement. It should be emphasized that the null depths

computed here are idealistic, since it does not take into account any optical imperfections
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or vibrational problems onboard the spacecraft. The effects of dynamic perturbations on

the null depth is examined in the next section.

In addition to the number of apertures used in the interferometer configuration, there

are other parameters that can alter the quality of the null. One such parameter is the total

baseline, or length, of the interferometric array. Consider for example the above linear array

with diameters ratios in the 1-3-3-1 configuration, and equally spaced apertures centered at

xi = -B/2, X2 = -B/6, X3 = B/6, and X4 = B/2, where B is the total baseline. Figure 2-

11 shows the normalized IR as a function of angle 62 on the sky for three different values

of B. For this example, the first constructive peak occurs at O2 = 3A/(2B). Therefore, as

the baseline length increases, the first peak appears closer to the line-of-sight (O2 = 0), and

the null depth margin is decreased and may not be sufficient to suppress the starlight.

The minimum baseline can be determined by the apparent width of the star and the null

depth requirement. If the baseline is variable, the interferometric system is then capable of

observing different size stars. Long baseline can be used to observe smaller stars or stars

that are further away, and short baseline can provide wider null in order to reduce the light

from bigger or closer stars. Recall that the baseline also controls the angular resolution of

the interferometric system; as the baseline length increases, the angular resolution improves.

There is thus a tradeoff between getting sharper images (better resolution) and nulling the

central star light.

010 -7' i\ /

-- B=50m
-B=75m
-- B=120m

0
C 'a

105

0

a)

10~ 01 0

0 :

C 104 10- 1021

Angle on the sky 0, (arcsec)

Figure 2-11: Normalized interferometer response of a 1-3-3-1 linear array with changing

baseline
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Wolf and Angel's formula for linear array designs is sufficient but not necessary. Men-

nesson et. al. [52] show that the general conditions required for a sufficiently wide and deep

null for TPF detection criteria are:

EN, ei'O = 0, og= pijs = 0, EN peiej = 0,

where pj = Djxy. While few exact solutions for these equations are known, and none at

all for Na > 5, the assumption of symmetry can be very helpful in finding special case

solutions. For a symmetric, four-aperture system, the above constraints simplify to

LiDi = LoDo, (2.33)

where Li is the inner aperture location, Di is the inner aperture diameter, and the subscript

o denotes the outer aperture properties. This simplification also assumes that 0 and 7r phase

shifts <j are added alternately to the apertures in the array.

The above conditions can be met in any symmetric linear array with the diameter

configuration

D = [Do Di Di Do] (2.34)

and the center locations

L = - _Li Li ], (2.35)
12 2

BDo
Li = -- D

2 Di

(2.36)

where B is the total length of the baseline. Thus, the outer and inner aperture diameters

can be chosen independently, subject only to the constraint Di > Do, so long as the aperture

spacing is adjusted by the diameter ratio.

Figure 2-12 shows the IR of a linear four-aperture system with two different inner

diameters; the total baseline B of each array has been adjusted so that the configuration

has the same null depth of Angel and Woolf's 1-4-4-1 configuration. The former has a

baseline of 76 m, while the new 1-2-2-1 and 1-3-3-1 configurations have baselines of 71.2 m

and 75 m respectively. The new nulling array proposed here may be advantageous if there

are size or weight constraints on the optics carried by each spacecraft. A factor of 2 or

larger reduction in required size and weight can translate to a tremendous cost savings for

space missions.
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Figure 2-12: Normalized interferometer response of a four-aperture system with varying
inner diameter

2.4 Derivation of Statistical Requirements for TPF

The discussion in the previous section has examined the tradeoffs between the design pa-

rameters of a nulling interferometry system in order to meet a particular planet finding

objective. The resulting aperture geometries, if perfectly maintained, will provide the re-

quired depth and breadth of nulling to permit the sensing of Earth-class extrasolar planets.

Unfortunately, it is unlikely that these geometric relationships can be perfectly maintained

during observations. The optics are mounted on movable platforms (spacecraft) whose po-

sitions may be perturbed by environmental disturbances, such as gravity fields and solar

pressure. Moreover, the optics themselves may be subject to mechanical vibration or ther-

mal expansion and contraction. As a result, the geometric relationships among the optical

components of the interferometer will tend to change slightly due to these unavoidable

physical effects.

Since in general a deterministic model for these disturbances does not exist, this section

models them as random, and attempts to characterize the variance in null depth as a func-

tion of the statistics of the random perturbations. The perturbations considered here are

aperture shear motion (6xj, 6yj) and the optical path difference (OPD) jitter 27r/A dj = kdj.

When the aperture shear is the only source of disturbances, the OPD is assumed to be con-
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trolled perfectly, i.e. OPD = 0. Similarly, OPD is the residual small jitter where any

nominal large pathlength difference has been compensated by servo mechanisms in the op-

tical mirrors. All perturbations are considered to be zero mean and mutually uncorrelated.

Recall that null depth is defined by Equation 2.30,

IRL = IR(OxL,OyL)
N =-- =R9p9p (2.37)IMp IR(OxpGyp)

where IRL is the interferometer response evaluated at the star limb, IRp is the response

evaluated at the first maximum. When geometric perturbations are present, the response

function can be written as

Na Na-1 Na

IR(x,Oy,6p) oc 1 D2 DiDix
k=1 i=1 I=i+1

cos (k(xil + 6xi) 0x + k(yil + 6yil) Oy + pil + k6di). (2.38)

where the vector of perturbations 6p contains the Na - 1 unique combinations of each of

the terms 6xi1, byai, and 3dil, and hence bp has length 3(Na - 1).

The fact that the interferometer response changes as a function of the perturbations

means that the null depth will also change. The objective is to quantify the expected value

E{ND(6p)} as a function of the statistics of 6p. To this end, expand ND to the second

order as a function of 6p about the nominal condition 6p = 0:

3(Na-1) OND 1 3(Na-1) 3(Na-1) a 2 ND
ND (6p) = NDo + 6Pm + - (_ ( P Pm 3Pn

aopM 2 86pm86n

= NDo + Jbp + 16pT H6p, (2.39)

where ND, is the nominal null depth. The vector J and matrix H are respectively the

gradient and Hessian of ND with respect to 6p, evaluated at 6, = 0. Note in particular that

J and H are thus constants in the above second order expansion of ND.

Taking expected values of Equation 2.39, and recalling that 6p is assumed to be zero-

mean, a second-order estimate of the mean null depth is

1 3(Na-1) 3(Nal-1) a 2 ND 2

m=1 n=11

= NDo + E{6pT H 6p}
2
1

= NDo + tr(HE,). (2.40)
2
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where tr(-) denotes the trace operator, and E, is the 3 (Na - 1) x 3 (Na - 1) covariance

matrix of 6p, E -, = E{3popT}. The term 2 is the cross variance of the mth and nth

perturbation variables in 6p, and hence corresponds to the element in the mth row and nth

column of Esp.

Now the null depth Hessian H must be evaluated in terms of the perturbed interferom-

eter response IR:

p1 ( 2 IRL 1 DIRp aIRL 2- ND Ia21R) (2.41)
IR p 86p2 IRp aop 06p 06p2

The first order IR partial derivatives can be computed directly from Equation 2.38 as

aIR
DIR - 2kDiDi9, sin(3il)
Dxi'
DIR

YIR - - 2kDiD, sin(/3i)oyi
IR -2 kDiDi sin(oiil),

odii

where fii= kxilO2 + kyrily + #il, and the second order partials are

da2 2k 2DiD0 cos(3i,) =R -2k 2DiD cos(oili)

-2
1R 2k 2 DiD 02 cos(13i,) a 2aR -2k2DiDl6x cos(oil)

ay = -2k 2D Di9x0y cos(,3ii) a2 = -2k 2 DiDO cos(3i,)

To illustrate this methodology, a linear four-aperture, nulling interferometer array is

used to estimate the mean ND distortion E{ND} - NDo as a function of the covariance

of the perturbations 6p. The configuration parameters used for this example are listed in

Figure 2-13(a), and its geometry is illustrated in Figure 2-13(b) The interferometer has a

total baseline of 75 m and the incident light wavelength is assumed to be 10 pam. Some

simplifying assumptions are used for this set of analyses: (1) All perturbations are zero-mean

and uncorrelated; the latter assumption implies that the covariance matrix is diagonal; (2)

the aperture shear terms have the same variances (ag. = o and OPD perturbations also

have the same variances (od - rd2). Since a linear array is considered here, i.e. yj = 0,

the interferometer response depends on a single dimension (I,(0x, 0y) = I,(Ox)), and the

deviations of yj do not affect the null depth in this formulation.

As discussed in the previous section, the 1 - 3 - 3 - 1 configuration has a nominal null

depth of about 3 x 10-11 as shown in Figure 2-10. The perturbed null depth as a function

of standard deviation (RMS) of Jor6 and 0 7d are shown in Figures 2-14(a) and 2-14(b),
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(a) (b)

Figure 2-13: (a)Parameters for a 75 m, four-aperture linear nulling interferometer configu-

ration (b)Geometric configuration for the four-aperture linear array

respectively. To maintain the desired 10-6 null depth, the aperture shear in the x axis must

be kept below 1.3 m RMS, if there are no OPD perturbations. The null depth is much more

sensitive to OPD variations; RMS OPD must be maintained below 3nm in order to satisfy

the sensing requirement.

The above example assumes that the nominal wavelength is at 10 pm. The TPF mission

is currently expecting the observation wavelength to be in a range of 7 and 20 pm. In

order to understand the effects of wavelength on the dynamical requirements, four nominal

wavelengths (A = 7, 10, 15, 20 pm) are chosen to repeat the perturbation analysis above.

Figure 2-15(a) and 2-15(b) show that as the wavelength decreases, the RMS requirements

on aperture shear and OPD become tighter in order to achieve 10-6 null depth. RMS

aperture shear motion must be held below 0.9 and 2.5 m depending on the wavelength,

while the required RMS OPD is in the range of 2-5 nm.

The RMS requirements are expected to get more stringent if both perturbations are

present simultaneously. Figure 2-16(a) shows the equal null depth contour as a function

of both RMS requirements. Following the desired null depth (10-6) contour line, as the

RMS requirement on 6x increases (loosens), the corresponding RMS requirements on OPD

decreases (tightens). The contour plot illustrating the wavelength effect is shown in Figure 2-

16(b). The subscript on A in this plot indicates the wavelength in Am. As wavelength

decreases, the RMS requirements also become more stringent.

These analyses assume that the perturbations are uncorrelated. If the apertures are

located on different spacecraft, this assumption is fairly reasonable. If the apertures are part

of a single large structure, the uncorrelated assumptions would not be as accurate. However,

58



1U
.. .. ... . ... . a .

100

10

-9 -9

101 10 .0 .

RMS position error (in) RMS OPD error (nm)

(a) (b)

Figure 2-14: (a) Mean null depth as a function of RMS aperture shear 6x disturbances (b)
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this methodology can be used for both scenarios if the cross-correlation between different

perturbation parameters can be estimated. If the covariance matrix Eg can be estimated

from a dynamical analysis of the structure containing the apertures, the methodology above

can be directly employed to estimate the mean null depth degradation.

OPD stability requirements in the 3nm range have been subsequently confirmed by [52]

using a different analysis technique. The RMS requirement on aperture shear 3x or baseline

sensitivity is much looser; although, it assumes that OPD is controlled perfectly during

baseline shifts, which may be unrealistic. As a result the nanometer level OPD requirement

will likely drive the design of the system. Stabilizing the OPD on the nanometer level poses

difficult technical challenges and pushes the limits of the sensor and actuator technologies.

The following chapters discuss the development of a staging control strategy that can assure

this level of stabilization with a typical suite of actuators on the spacecraft and optics.

2.5 Summary

The first part of this chapter introduces basic ideas of Fourier optics and interferometry.

Special attention is given to nulling interferometry, since it has been identified as a key

technology for extra-solar planet detection. Several configuration studies are performed on
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Figure 2-16: (a) Mean null depth contours as a function of RMS aperture shear and RMS

OPD for a nominal wavelength of 10pim (b) Mean null depth contour for various level of

wavelengths
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linear-array, nulling interferometers. These studies focus on how the interferometer response

changes as a function of the number of apertures, the baseline, or the aperture diameter. A

desirable interferometer response can be determined by choosing the appropriate aperture

location, size, and phase.

The ideal response derived from configuration studies can only be achieved if the inter-

ferometer geometry is maintained perfectly. Unfortunately, the optical instruments will be

perturbed by external and onboard disturbances during the mission, so it is important to

estimate the amount of dynamic perturbations that the nulling interferometer can tolerate

and still meet the planet detection criterion. A statistical analysis is developed to quantify

the maximum random disturbances allowed in order to achieve a 10-6 null depth. This

analysis is applied to a four-aperture linear interferometer array, and dynamic disturbances

on aperture shear and OPD are considered. Other disturbance types may also be incor-

porated as long as the perturbed null depth can be approximated accurately using second

order approximations.

In reality it is unlikely that the magnitude of the perturbations will be below the specified

level identified in this chapter. Therefore, closed-loop control must be used to maintain the

optical geometric perturbations within the specified tolerances. Before designing appropri-

ate control algorithms to achieved the desired performance, the next chapter describes the

overall system model and actuator nonlinearities that may affect the system performance.
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Chapter 3

Dynamical Models and Actuator

Constraints

When the idealized aperture and detector geometry described in the previous chapter are

implemented on physical devices, the perturbations discussed above will arise from relative

motion between these devices. In order to maintain the desired geometry for observational

requirements, active control of each of the dynamic degrees of freedom is required. This

chapter will examine the dynamical equations that relate the motions of the optical degrees

of freedom to the physical disturbance sources and control inputs acting on the system. It

will also discuss the characteristics of the actuators used to generate these control inputs

for typical space interferometry systems.

To make the initial discussion more concrete, consider a separated space interferometer

such as the JPL Starlight mission, utilizing two spacecraft. Both the collector (spacecraft

#1) and the combiner (spacecraft #2) carry a light-collecting aperture as illustrated in

Figure 3-1(a). Spacecraft #2 also carries a combining instrument, photo detector, and

optical delay lines. The baseline displacement between the centers of the two spacecraft is

X12 , and relative motion of the spacecraft will change this baseline. This baseline motion will

alter the interferometer response in a manner described in the previous chapter. Chemical

or electrical thrusters on each satellite are usually employed to maintain a desired baseline.

The optical path difference (OPD) of this configuration is a significant parameter in the

interferometer response. In this configuration, the OPD is defined by the difference between

the left light pathlength (from aperture 1 to combiner) and the right light pathlength (from
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aperture 2 to combiner). The left pathlength is approximately the baseline X 1 2, and the right

pathlength is the distance travelled in a fixed delay line, df, plus the distance travelled in an

active delay line, da, so the total OPD is X12+df +da. The fixed delay line is designed to take

out most of the pathlength difference caused by the nominal baseline length, X12 + df ~ 0,

and the active delay line is then responsible for any small residual OPDs caused by baseline

perturbations from the nominal, or internal distortions in the optical pathlength.

Figure 3-1(b) shows a more detailed model of a typical active optical delay line (ODL).

The optical assembly is mounted on a movable cart, providing a dynamic degree of freedom

Xcart. This degree of freedom can be controlled by an attached DC motor, which moves

the cart assembly along a short track. The assembly itself has both a primary mirror and

a secondary mirror which reflect the light that enters the delay line. Small changes of the

pathlength can be made by changing the relative position of these mirrors, contributing two

new degrees of freedom: x, for the location of the primary mirror, and x, for the location

of the secondary mirror. Typically, control of the primary mirror location is accomplished

by a linear voice coil actuator, while control of the secondary mirror is accomplished by a

linear piezoelectric stack.

The total OPD is thus determined by the relative displacements of the spacecraft, cart,

primary, and secondary mirrors, controlled respectively by thrusters, motor, voice coil and

piezo actuators. Even for this relatively simple interferometer, there are a large number

of degrees-of-freedom that can influence the desired optical geometry. Each degree of free-

dom may be affected by unwanted disturbances from either the environment, or from the

actions of other electromechanical systems that interact with, or support, operation of the

interferometer. For example, there may be solar pressure or gravity gradients acting on

the spacecraft, and onboard mechanisms such as reaction wheels or cryogenic coolers may

introduce unwanted vibrations to the apertures and mirrors. The role of the individual

actuators is to suppress the effects of these disturbances to a specified level.

Section 3.1 begins by discussing the generalized plant and disturbance models which are

used in the subsequent analyses in this thesis. The characteristics of the individual actuators

defined above will be presented in Section 3.2, including a discussion of the linear and

nonlinear constraints governing each actuator. Understanding the effects of these nonlinear

constraints, and designing control strategies which accommodate them, will form the bulk

of the analysis in later chapters of this thesis. Finally, Section 3.3 looks at the complete
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suite of typical actuators for an interferometry problem, and discusses the staged nature

of this system, employing actuators with overlapping frequency responses and maximum

output ranges. The challenges of designing an active control strategy for such a system

using conventional design methods are identified.

Aperture 1

Spacecraft 1

xI

Delay Aperture 2
Lines

Spacecraft 2

Combiner-
Detector

(a)

PZT
reactuated
stack

Cart driven by motor

--7
(b)

Figure 3-1: (a) Diagram of a two-aperture space interferometer setup (b) Typical optical

delay line schematic
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3.1 Plant and Disturbance Model

3.1.1 Nominal model

The situation under consideration may be represented by a schematic of the form

Disturbance d
Input

V ' Plant '
Actuation Controlled

Input Output

In this diagram, the "plant" corresponds to the dynamic behavior of the spacecraft and

its attached optical components. For relatively small deviations from their nominal equilib-

ria, linear models can be developed for the motions of each degree of freedom in the system,

using Newton's laws, finite element methods, measurement models, or a combination of all

of the above. The resulting dynamics can be written in the linear state-space form,

x = Ax + Bld + B 2v,

where the state vector x contains the physical variables describing the motion of the system,

e.g. the position and velocity of each degree of freedom, and the matrices (A, B 1 , B 2 ) are

assumed to be constant. The vector d represents the physical disturbances that act to move

each degree of freedom away from its nominal value, and the vector v represents the control

inputs to the system that attempt to maintain each component at its desired position.

The controlled output y measures how close the overall optical geometry coincides with the

desired geometry. As shown above, this output can be expressed as a linear combination of

the relative positions in the state vector x

y = C1x.

Based on the results of the previous chapter, the output of interest will nominally be OPD,

and the goal will be to maintain this quantity as close to zero as possible. However, the

discussions below are relevant for any optical metric which can be written in the form above.

The performance of the optical system thus depends on the natural dynamics of the

system, the disturbance inputs, and the control inputs. Unfortunately, the natural dynamics

of the plant are not likely to react to the disturbances in a manner that will allow the optical
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performance constraints identified above to be satisfied at all times. In order to meet

the tight tolerances posed by interferometry missions, feedback control is often employed,

specifying how the inputs v must be selected as a function of the dynamic perturbations in

x.

Before designing such a control law, however, additional structure must be placed on

the class of disturbances assumed to be acting on the optical system. Although distur-

bance modelling is not a focus of this thesis, a brief discussion on the development and

incorporation of a disturbance model in the overall system is presented in the next section.

3.1.2 Stochastic disturbance model

In space, disturbances may come from atmospheric drag, solar radiation pressure, thermal

flux, and magnetic field effects, among others. In addition, spacecraft mechanisms can

also be sources of perturbations. For example, fans, pumps, cryogenic coolers, reaction

wheels, and thrusters can induce significant vibrations onboard the spacecraft. References

[14] and [24] provide a more comprehensive description of spacecraft disturbances - the

general trend is that external/environmental disturbances typically act in the low frequency

region, whereas many of the internal mechanisms may induce mid- to high frequency range

disturbances. The low frequency, external disturbances tend to act on the spacecraft itself,

pushing it away from its nominal position, while the high frequency disturbances excite

vibrations in the spacecraft structure and optical instruments.

Disturbances may be modelled deterministically or stochastically. For example, deter-

ministic models of solar pressure and magnetic field effects may be derived directly from

physical principles [37] or from empirical data [81]. On the other hand, electrical noise

generated by electromechanical systems is essentially random, and similarly an unbalanced

reaction wheel may impart unpredictable forces to the spacecraft structure. Since deter-

ministic models of disturbances are rarely available, a stochastic model may be the more

realistic option at the design phase.

If a disturbance is random in nature, methods based on stochastic processes can be

applied to characterize its behavior [60]. A wide-sense stationary (WSS) stochastic process

x(t) has constant mean,

E{x(t)} = r/, (3.1)
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and an autocorrelation function depending only on the elapsed interval r = ti - t2:

R22(r) = E{x(t + r)x*(r)}. (3.2)

The power spectral density (PSD) is defined as the Fourier transform of the autocorrelation

function,

S22(w) = Rxx(r)e-jwd, (3.3)

and the covariance, or average-power of x can be computed by

E{IX(t)12} = R22(0) = 2 S()do,

which is proportional to the area under the PSD curve.

A special case of these stochastic processes is stationary white noise w(t), where its

autocorrelation and PSD are given by

Rww(-r) = q6(7-),

Sww(r) = q.

The number q is called the "intensity" of the noise. The PSD for white noise is a constant

over all frequencies and thus w(t) has infinite average power. Clearly this signal is only

a mathematical abstraction, since no physical signal can have infinite energy. However

such a process has tremendous mathematical utility, and one example of its functionality is

illustrated here.

Under appropriate assumptions [60], a WSS process x(t) can be modelled as the response

of a linear, minimum-phase system driven by a zero-mean, unit-intensity white noise, w(t),

x(t) = j w(t - a)g(a)da,

where g(t) is the impulse response of the minimum-phase system. If x can be modelled by

such a system, the PSD of x can be computed by

S22(w) = G(w)G*(W)Sww(w),

where G is the Fourier transform of the impulse response g(t). Since w(t) is a unit-intensity

white noise, its PSD, Se,, is simply 1, and the above expression simplifies to

S22(w) = G(w)G*(w). (3.4)
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Figure 3-2: Power spectral density of a broad-band reaction wheel disturbance. [57] (wheel
speed range:[0, 3000] rpm)

Thus, given a specific PSD of process x(t), a minimum-phase filter G can be found that

corresponds to the model of a system with transfer function G driven by white noise. This

filter is also known as the innovations filter [60].

In practice, the PSD of the disturbance can either be obtained mathematically or es-

timated from experimental data. For example, a representative PSD plot of a broad-band

reaction wheel disturbance model [57, 24] is shown in Figure 3-2. This figure shows that

the reaction wheel generates mid- to high frequency range disturbances. Reaction wheel

disturbances are anticipated to be the largest disturbance source onboard the spacecraft

in interferometry missions [13, 24, 38, 50, 57], and the PSD shown in Figure 3-2 will of-

ten be used as a representative disturbance in the control designs of later chapters. Other

representative disturbance PSDs for the spacecraft environment can be found in [24].

Given a PSD for the disturbance, the corresponding innovations filter can be found

from Equation 3.4. This filter can then be absorbed into the overall dynamical model of

the system using state augmentation as shown in Figure 3-3. Expressing the innovations

filter in state-space form

xd = Adxd + BdW

d = CdXd.
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Figure 3-3: Integrate disturbance model into system model

and combining with the plant model

ip = APxp+Bud+Bau

y = CPxp.

the integrated model is given by

E 1 Ap BCd X + 0 Bu
ka 0 Aa x BdX d 1 [ Ad IL J0[~ w±Bl
y = C XP

xd

The above expression models the case that the disturbance acts as an input to the plant

dynamics. Alternately, the disturbance can be modelled as acting directly on the output y,

using

= APxp+Bau

y = Cpxp + d,

so that the corresponding integrated model becomes

[ip A, 0 x] 0 B

had 0 As xd Bd 0

y= L C, Cdla
[xd J

Regardless of how the disturbance enters the plant, the integrated model has the general

form

& = Ax + Bjw + B2u
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y = CiX

Once the plant and disturbances have been integrated into a linear model of this form, the

effects of the disturbances on the system performance can be formally analyzed.

3.1.3 Stochastic performance analysis

The dynamical model of the uncontrolled system is given by

x = Ax + B 1 w,

where w is a stationary Gaussian process (or white noise), i.e. at each time t the probability

density function of w(t) is Gaussian. The mean of the process x can be computed from

taking the expectation of the dynamical equation:

2(t) = At(t) + B1 iD(t). (3.5)

The covariance matrix is defined by Exx(t) = E{[x(t) - z][x(t) - z]T} with its dynamics

described by [32],

txx = AExx + ExxAT + B 1Bi. (3.6)

The initial conditions on (3.5) and (3.6) are zo and Exx respectively, and 20 is assumed to

be uncorrelated from the random noise w(t).

Since A and B 1 are constant, independent of time, it is possible that the time-varying

statistical properties may asymptotically become constant. If A is Hurwitz (all eigenvalues

in the open left half of the complex plane), the mean t converges to 2 = -A-1B1z, and

the covariance converges to a constant matrix Exx given by

AExx + ExxA + B 1Bi =0. (3.7)

Using computing software such as MATLAB, the solution Exx of this equation can be

obtained easily, and the covariance matrix of the system outputs can then be calculated as

EYY = C1EXX C. (3.8)

and the mean value of the output is y = -C 1 A~ 1Bjii. Note in particular that if w is

zero mean, the state and output will also be zero mean, and this assumption will be made

throughout this thesis. The RMS deviation of each individual output from its mean value
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of zero is then simply the square root of the ith diagonal element of EYY. If there is only

one controlled output, then its RMS deviation from zero is given by oYY = TC1 EZxCT.

If the interferometric system were ideally linear over an arbitrarily large range of inputs

and outputs, techniques such as those above would be sufficient to accurately predict the

performance of the system for a specified feedback control law. However, in reality the

actuators have constraints and limitations, such as maximum stroke or force output and

minimum resolution. These are nonlinear characteristics, whose effects cannot be accurately

modelled using the formulas above. While the usual practice is to simply ignore these effects

and to design a control algorithm that tries to keep the actuators operating in their linear

range, the extremely tight tolerances on a space interferometry system require that the

effects of these nonlinearities be addressed directly.

If the nonlinear actuator characteristics are taken into account, an appropriate state-

space model could be written as

i = Ax + Biw + B 2 #(u) (3.9)

y = Cix (3.10)

with actuator constraints and nonlinearities described by the function #(.). However, accu-

rately predicting the RMS performance of this system is nontrivial, not to mention the task

of designing a control law capable of maintaining the required tolerances. New methods

for analytically predicting the steady-state performance of the above model is the focus of

Chapter 4, and controller design is examined in Chapter 5. Before exploring how to modify

the above stochastic analysis for the nonlinear input problem, however, the remainder of

the current chapter defines the specific class of actuator nonlinearities considered in this

thesis.

3.2 Actuator Characteristics

For the actuators described above - thrusters, motors, voice coils, piezos - the input to the

actuator is electrical (voltage or current) and the output is mechanical (displacement or

force). The input to the mechanical degrees of freedom in the optical system is given by

v = #(u), where # is a possibly nonlinear function describing how the mechanical inputs v

depend on the actuating electrical signal u. The purpose of this section is to examine the

common kinds of nonlinearities # which are present in the above set of actuators.
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3.2.1 Saturation

One of the most common actuator constraints is saturation, defined as the maximum pos-

sible output that can be obtained from the actuation system. For example, there is an

upper limit to the amount of force that a given thruster or motor can apply, regardless

of the magnitude of the actuating electrical signal. Saturation effects can be modelled as

a limiter with input-output relationships shown in Figure 3-4(a). Of course, the driving

electrical signal to the actuator is itself limited, and in practice it is common to match the

electrical limits to the mechanical stroke constraints at DC. For example, the typical voltage

input to a PZT actuator is limited to t10 V, which in turn generates the maximum stroke

(extension) of il0ptm at DC.

To illustrate the effects that saturation can have on performance, consider the following

simple, first-order system

x = -+#(u) + w (3.11)

u = kx

where the function #(-) describes the saturation function, w is the unit-intensity white noise,

and k = -10 for this example. Since it is nontrivial to analytically predict the steady-state

performance of a nonlinear system, the performance is analyzed numerically.

With no feedback control (k = 0), the dynamics are linear and Equation 3.7 predicts

the steady-state variance of o- = 0.5. With the feedback control above, if the actuator were

ideally linear, Equation 3.7 can again be used to compute that o2 = 1/(2(1 + k)) = 0.0455,

or an order of magnitude reduction from the open-loop variance. In the following discussion,

the ideal linear output variance is denoted by o,.

In order to obtain the steady-state performance of the actual nonlinear system, the

saturation function in Figure 3-4(a) is used and the dynamics are simulated with a fixed-

step, fourth order Runge-Kutta algorithm with a time step of 6t = 10~4 s and a total

simulation time of T = 200 s. To numerically compute the steady-state performance, the

first 20 s of data are ignored, and the remaining data are used to provide the unbiased

estimate of the variance,
N

or2 X 21 N312

whe=eN - 1 Z(i - z)2, (3.12)

where z = 1/N(ZE1 zi), and N is the number of time steps (T/6t).
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Figure 3-4(b) shows the degradation of performance caused by actuator nonlinearities.

On the vertical scale is the closed-loop performance normalized by the performance obtained

using a linear actuator. This performance ratio is plotted against the saturation level of the

actuator normalized by the standard deviation of the input u. For saturation levels greater

than 3ou, the performance is the same as in the linear control case, since the actuator is

rarely saturating. The performance gets worse as the saturation level decreases relative to

eu, which indicates that the actuator becomes less effective due to saturation limitations.

As the maximum actuator output shrinks towards zero, the closed-loop variance approaches

the open-loop variance (10 x o2), since little effective control is being applied to the system

in this limit. This simple example demonstrates that the saturation level can greatly affect

system performance, and the degree of its effects on the performance depends on the size

of the control signal (ou).

6 --

3

1

10 10 az=3a
Saturation level a a u

(a) (b)

Figure 3-4: (a) Saturation model of actuator constraint (b)Ratio between nonlinear per-

formance variance and linear performance variance as a function of normalized saturation

level (a/ou)

3.2.2 Resolution

In addition to saturation effects, resolution is another common nonlinear constraint. Res-

olution is defined as the minimum physical output of the actuator, usually modelled as a

small dead band around the zero input level, with a "jump" in the output to a nonzero
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level once the actuating signal exceeds the dead band. A model of resolution effects is

shown in Figure 3-5(a). This kind of effect is typical in mechanical systems with friction,

or electrical systems with thresholding. It can also be used to characterize the behavior of

the minimum on-time of electrical or chemical thrusters. In electrical systems, a voltage or

current threshold is usually present to eliminate electrical noise, so no electrical signal is

generated if the voltage or current is below the noise threshold. Note that the size of the

deadzone and the level of jump do not have to be the same in Figure 3-5(a); they are shown

to be the same in the plot for simplicity.

In order to qualitatively understand the effects of resolution, the steady-state perfor-

mance is computed for the same 1 DOF example above, where the nonlinear function #

is now a resolution function as shown in Figure 3-5(a). The same numerical algorithm is

used for this analysis, and the result is illustrated in Figure 3-5(b). At "fine" levels of res-

olution (r < 1.5o-, ), the system performance is unaltered from the linear control case. As

the resolution becomes "coarser", with the deadband size 2r increasing, a larger portion of

the signal into the actuator becomes ineffective in producing an output from the actuator.

When most of the control signal is within the deadzone or 2r > 3U-, the system perfor-

mance starts to deviate greatly from the linear performance and degrades monotonically as

a function of the resolution level r.

The effect of resolution on system performance again depends on the size of the control

signal o-, relative to the resolution deadband. Realistic values of actuator resolution r for

actuators used on space interferometer missions are discussed in Section 3.3.

3.2.3 Quantization

Quantization is a nonlinear actuator phenomenon that may cause effects similar to those of

resolution. Quantization effects are roundoff errors introduced by digital to analog (D/A)

conversion, and a sample input-output characterization of a quantizer is shown in Figure 3-

6(a). These effects have been studied extensively in the digital control community, since

most modern computer controlled systems are subject to these effects.

One common method of predicting the effects of quantization on system performance

replaces the quantizer with an additive noise model as shown in Figure 3-6(b). In this

model the input noise is a sequence of random variables u with a uniform probability density

function ranges from -q/2 to q/2 and a variance of q2 /12, where q is the quantization level
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Figure 3-5: (a) Resolution model of actuator constraint (b)Ratio between nonlinear perfor-

mance variance and linear performance variance as a function of normalized resolution level

(r/o-u)

[17]. The validity of this equivalent additive noise model is examined here. Denote the

output from the quantizer as v and let the output from the additive noise model be '5.

The characteristic function, <Du(x), of the input is defined as the Fourier transform of its

probability density function, pu(u),

<DU(x) = Pu(u)exudu = E{eiU"}. (3.13)

If the characteristic function is bandlimited,

<Du(x) = 0 for Jul > 2, (3.14)

then the output of the quantizer v has the same probability moments E{v"} as the output

from the additive noise model E{0} [85], justifying use of the additive noise model in these

circumstances.

However, physical signals are rarely ideally bandlimited. For example, the Gaussian

density function is not perfectly bandlimited since its characteristic function approaches

zero only asymptotically. Fortunately most signals are approximately bandlimited, and with

sufficiently small quantization levels the stochastic assumptions for the additive noise model

are satisfied closely enough that negligible error is introduced into the analysis. Indeed, if
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the input is Gaussian with variance oU, the additive noise model is a good approximation

to the effects of resolution provided that o,, > q [85].

3q #(u) U V

2q

q 3q 5q 7q
2 2 2 2

q - quantization
level n

(a) (b)

Figure 3-6: (a) Output of a quantizer as a function of the input signal (b) Stochastic model
of quantization effects is an additive noise with uniform density function

The numerical simulation above is again used to examine the steady-state, closed-loop

performance o-2. For this example, there are no saturation or resolution effects; the nonlinear

function # only describes the quantizer. The solid line in Figure 3-7 shows the steady-state

variance ratio (o-/,,,) as a function of normalized quantization level (q/ou). Recall that U2

is the closed-loop performance obtained with an ideal linear actuator. At low quantization

levels where q < 3ou, the nonlinear performance is similar to the linear control case. The

performance degrades quickly as the quantization level increases above this threshold. It

should be emphasized that both resolution and quantization have an effective deadband size

of 2r and q, respectively. Therefore, the two effects are seen to have essentially identical

behavior, causing the system performance to deviate from the linear performance when the

induced deadzone size is greater than 3 om. This result is expected since 99.7% of control

signal becomes zero after passing the deadband and would be ineffective on the plant.

The solid line in the figure shows the performance when a quantizer is implemented,

and the dashed line illustrates the performance when the equivalent additive noise model is

used. Note that the two predictions deviate greatly when q > au or q/ou > 1. As discussed

above, if ou is greater than the quantization level q, the additive noise model is expected

to provide a good statistical description of the quantizer. However, when the assumption
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is no longer true, the performance of the additive model deviates from the quantizer as

shown in Figure 3-7. It is also interesting to note that the additive noise model tends to

over predict the output variance, and hence, this model is overly conservative for large

quantization levels. The results shown in this section demonstrate that quantization may

or may not significantly affect the steady-state variance of x, depending on the relative size

of the quantization level and the control signal os. Typical values of the quantization level

are a function of the bit resolution used in the D/A converter.

6-

5-

3

10~ 100 q= 3 a
Quantization level q / a

Figure 3-7: Steady-state performance variance as a function of quantization level: Solid line

- actual quantizer. Dashed line - modelling quantizer as additive noise

3.2.4 Bandwidth

In addition to the nonlinear effects described above, most actuators also have bandwidth

limitations. The bandwidth is defined as the frequency range where the actuator can follow

the input without much error, or where the actuator output is essentially the same as its

input (classically, within 3 dB). The actuator bandwidth can be limited by the rise time of

the amplifier current or the stiffness of the mechanical system. For the electromechanical

devices considered in this thesis, both the electrical and mechanical time constants may

be useful for characterizing actuator bandwidth. The electrical time constants are usu-

ally at least an order of magnitude smaller than the mechanical time constants in typical

applications. The bandwidth limitation of the actuator is modelled as a low pass filter,

and a representative first order low pass filter with corner frequency at 1 Hz is shown in
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Figure 3-8(a).

In order to study the effect of actuator bandwidth on the system performance, the

scalar example above is used again, and the actuator is assumed to have no nonlinearities

#(u) = u. The dynamics of the system are modified slightly to incorporate the bandwidth

limitations on the actuator,

+x = w+v

u = kx.

The following transfer function from commanded input u to actual input v is used to model

actuator bandwidth:

V(s) = Ga(s)U(s), (3.15)

where Ga(s) is a first order, low pass filter with corner frequency or bandwidth Wa. The

steady-state performance ox is plotted as a function of wa as illustrated in Figure 3-8(b). The

controller gain k is again set at -10 for this example. Note that as the bandwidth decreases,

the actuator is not as effective in rejecting the full spectrum of the disturbances, and the

corresponding closed-loop performance deteriorates as the actuator bandwidth decreases.

It is worth noting that the above analysis is conducted at a fixed controller gain. For a

linear system, the effective bandwidth of the actuation system can be increased by increasing

the controller gain. However, if saturation is taken into account, the bandwidth will be

ultimately limited since the controller gain cannot increase without bound due to saturation

effects. This limitation will be analyzed in greater detail in Chapter 4.

3.2.5 Composite model

Pulling together the above observations, the principal parameters governing the operation of

the actuators examined in this thesis are: saturation limits a, resolution level r, quantization

level q, and bandwidth of operation wa. The first three of these characteristics are modelled

as nonlinear, time-domain phenomena, whereas the bandwidth of the actuators may be

modelled as a roll-off in the frequency response implemented by a linear transfer function.

A plot of a typical function # incorporating the nonlinear effects (saturation, resolution,

and quantization) is shown in Figure 3-9.

These effects may be incorporated into the generalized system models from Section 3.1

in the following fashion. The integration of the bandwidth model into the system model
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Figure 3-8: (a) Representative frequency model for characterizing actuator bandwidth lim-

itations (b) Steady-state performance variance as a function of the bandwidth (wa)

O(u)
a-saturation a--

level
r - resolution

level

-r
q - quantization

level

Figure 3-9: Representative input-output relationship of actuator with constraints including

saturation level a, quantization level q, and resolution r
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is discussed first, and the nonlinear constraints are then added to characterize other actu-

ator limitations. Let GAj be the ith actuator frequency response with state-space model

(Aaj, Baj, Cag, Daj), with Daj = 0 since there is assumed to be no direct feed-through in these

filters. The system model presented in Section 3.1.2 with plant dynamics (Ay, [Bw Ba], Cp)

and disturbance innovations model (Ad, Bd, Cd) can be further augmented to include actu-

ator dynamics:

AP BwCd Bu1 Cal - Bl Ca Xp

d 0 Ad 0 --- 0 Xd

Xai = 0 0 Aai 0 Xai

_a _0 0 0 Aan Xan

0

Bd 0

+ 0 + 0 f (3.16)

. BA

0

xp

Xd

y = C, 0 0 ... 0 Xai

Xanu

where

Bai 0

BA='-

.0 Banl

Bui is the ith column of the Bu matrix, and nu is the number of actuators. The above

model assumes an input disturbance. An output disturbance model can be obtained easily

by setting B in the above equal to zero, and replacing the first zero submatrix in the

equation defining y with Cd.

The overall dynamical model above is shown schematically in Figure 3-10. This block

diagram incorporates the linear dynamics of the plant (optics and spacecraft), disturbances
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(Gm), and actuator frequency response (GAs). The full state-space description of the inte-

grated model shown in Equation 3.16 can be written in the compact form

i = Ax + Biw + B2#(u) (3.17)

y = Cix. (3.18)

where # is now a vector of nonlinear functions, whose ith component #i represents the

saturation, resolution, and quantization of characteristics of the ith actuator. This is the

basic framework for the system analysis undertaken in this thesis.

......................................
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Figure 3-10: Overall system model of the plant, disturbance, and actuators

3.3 Actuators for Space Interferometers

This section examines in greater detail the electromechanical properties of the four basic

types of actuators used in space interferometry missions to control the optical pathlength:

piezoelectric actuators, voice coils, DC motors, and spacecraft thrusters. In addition to

characterizing the bandwidth and nonlinear parameters of each of the actuators, the fol-

lowing sections also attempt to characterize the efficiency of each actuator in terms of the

mechanical output it provides for a given electrical power input. Since power resources are

limited onboard the spacecraft, it is important to quantify the power consumed by these ac-

tuators; subsequent analysis will attempt to design controllers that minimize consumption

of total electrical power.
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3.3.1 PZT actuator

The PZT (Plumbum Zirconate Titanate) translator or actuator uses piezoelectric materials

to convert electrical energy into mechanical energy and vice versa. When an electric field is

applied to piezoelectric material, it is capable of very fine, sub-nanometer, position changes

when unloaded, and can move at very high frequencies (20-50 kHz). The typical stroke of a

PZT actuator is on the order of tens or hundreds of pm [30] depending on the design. For

ODL applications, these actuators usually have a stroke between 5-30 pm and a bandwidth

of 2-4 kHz while carrying light loads, although the specific combination of parameters used

may be a design tradeoff. The equivalent force limitations will depend on the load mass

acted on by the PZT actuator.

Since the displacement of a PZT actuator is not influenced by mechanical friction or

stiction, its theoretical resolution is unlimited. However, in reality the performance of the

actuator can be affected by electronic noise in the amplifier that provides the actuating

voltage, the precision of the mechanical mounting, and a number of other factors, so the

achievable PZT resolution is usually considered to be on the order of one tenth of a nanome-

ter (r 1 0.1nm). More detailed descriptions of PZTs can be found on the tutorial website

provided by Physik Instrumente [30] or other principal suppliers.

A circuit model describing the electromechanical properties of a PZT is shown in Fig-

ure 3-11(a). The blocked force generated by the PZT is directly proportional to the voltage

across the capacitor; equivalently the unblocked position or length of the PZT is propor-

tional to the charge Q contained in the capacitor C. A small voltage drop occurs at the

series resistance Rs, and a much bigger resistor Rd is used in parallel to model the PZT

self-discharge. The PZT discharge is usually very small and can often be neglected, in a first

approximation. During the charging process, only the RC circuit needs to be considered

and its dynamical model is a simple first order system:

dQ 1
Vext = Rs d -

di C

where Q is the charge on the capacitor. The response of this RC-circuit from Vext to Q with

a time constant of RsC = 50 ps is shown in Figure 3-11(b). For a wide range of frequencies,

the voltage across the capacitor is essentially equal to the voltage applied, and therefore,

the blocked force generated from the PZT, Fpzt, is proportional to the voltage applied

Fpzt , K Vext,
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Figure 3-11: (a) Equivalent circuit model of the PZT actuator (b) Electrical circuit response
of the PZT actuator (c) Transfer function from input voltage to current output

where Kf = Kpztd 33L 0/t, and Kpzt is the stiffness of the actuator, d3 3 is the PZT strain

coefficient, Lo is the nominal length, and t is the thickness of the PZT. The 3 kHz bandwidth

of this response shown in Figure 3-11(b) is typical for a PZT.

In order to estimate the power drawn by the PZT actuator, the equivalent impedance

of the complete circuit is computed,

V(s) RRdCs + (Rs + Rd)

I(s) RdCS + 1

The transfer function from the external voltage to the current is then the inverse of the

impedance,

I(s) RdCs + 1
V(s) RsRdCs + (Rs + Rd)

1 (ris+1
R,+Rd ( -r2s+1
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where T1 = RdC and T2 = C(RSRd)/(RS + Rd). Since R, < Rd, the transfer function looks

similar to a high pass filter as shown in Figure 3-11(c).

At low frequencies, I(s) ~ V(s)/(Rs + Rd) and the power drawn is approximately

P = Vle/(Rs + Rd) ~Vtl/Rd, which is typically quite small. The PZT actuator is unique

in that it requires very little power to maintain a constant force or displacement at DC.

At high frequencies, I(s) ~ V(s)/R, and the power drawn is approximately P = Ve/Rs

which can be appreciable, on the order of Vt/25 for a typical PZT. Using representative

values R. = 25Q, Rd = 500MQ, and C = 2puF, and Kf = 0.18 N/V, the force-to-power

ratio for a PZT at low frequencies is on the order of 10 7 N/W and at high frequencies on

the order of 1 N/W.

In the mid-range of frequencies, the power consumed by a PZT actuator is frequency de-

pendent, with the magnitude of the current rising steadily from its low to its high frequency

limit. Some care must be taken to correctly quantify the power usage in this frequency range,

given the phase differences between voltage and current in this transition region. A more

detailed discussion of PZT power usage will be provided in Chapter 6.

3.3.2 Voice coil

The voice coil is a direct drive linear actuator, which consists of a moving component and a

fixed component. The moving component is a tube with wires wound around it. The fixed

component is composed of a permanent magnet, surrounding the outer layer of the tubular

coils, and a ferromagnetic magnet that fits inside the moving tube [84]. When a voltage

is applied across the leads of the coil, the magnetic field generates a force on the moving

component, creating linear motion. The force generated is directly proportional to the

current in the coil. Voice coil strokes may range from microns to centimeters, and for space

interferometer applications, the stroke range is typically on the order of 1-5 mm (0.02-0.2

in) for the current delay line designs, although again this may be a design parameter. The

resolution of the voice coil is in the sub-micron level (r < 0.1 pm), and more information

on voice coil properties is available in the application manual provided by BEI technologies

[84] and other suppliers.

An equivalent circuit model for the voice coil actuator is shown in Figure 3-12(a). When

an external voltage Vext is applied to the circuit, the current I flows through the coil windings

or the circuit resistor R. The actuator creates a back electromotive force (EMF) voltage
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Vemf that is proportional to the speed of the moving coil. The EMF is often quite small,

and neglecting it reduces the circuit model to

dI
Vext = L + RI.

dt

This is a first order system with an electric time constant of LIR. Assuming typical voice

coil electrical properties L = 350 pH and R = 3Q, the response of the electrical circuit

from the external voltage input to current output is plotted in Figure 3-12(b). Note that

the electrical bandwidth is approximately 1 kHz. For electromechanical devices such as the

voice coil, the electrical bandwidth is usually much larger than the mechanical bandwidth.

Therefore, the bandwidth of the voice coil will be limited by the mechanical system setup.

The instantaneous power drawn by this circuit is the product of the source voltage and

the loop current. Since the inductance loss is typically much smaller than the resistive loss,

the power usage can be approximated by P = I 2 R over most frequencies of interest. In

addition, the current is directly proportional to the force generated, so P = (F/(Kf))2 R,

where Kf is the force constant which converts amperes to Newtons. The force constant is

typically in the range of 1-5 N/A, and the power ratio is on the order of 1 N/W.
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Figure 3-12: (a)Voice coil equivalent circuit (b) Voice coil electric circuit response
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3.3.3 DC motor

The direct current (DC) motor is another electromechanical system that converts electrical

power into mechanical power. This is accomplished via the interactions of two magnetic

fields - one field is produced by a permanent magnet assembly, and the other produced

by an electrical current flowing through the motor windings. The interaction of these two

fields will generate a torque that rotates the rotor, and as the rotor turns, the current in the

winding is commutated to produce a continuous torque output [71]. If the rotor is attached

to wheels and cables, it can provide transitional motion. The force generated in the cable

is proportional to the current flowing in the armature conductor.

There is no physical limit on the DC motor stroke, but the range of translational motion

is usually limited by the translating component. For example, the DC motor used for the

JPL optical delay line has a stroke of 14 cm due to track length limitations. DC motors do

have maximum torque limits, and these can vary greatly depending on motor design and

size. The motors used in JPL prototype delay lines typically have a torque limit on the

order of 1 Nm (a 1 Nm).

The minimum translational movement created by a motor drive depends on the drive

screw pitch, gear ratio, and motor angular resolution. In reality the actual resolution is

likely to be worse than the estimated value due to stiction, backlash, play, etc. Due to these

practical limitations, the achievable resolution is typically about a micron (r ~ lym) [54].

A typical circuit model of a DC motor is very similar to the voice coil as shown in

Figure 3-12(a). When the external voltage Vext is applied to the circuit, the current I

flows through the resistor R representing the armature winding resistance. A back EMF is

generated from the motor that is proportional to the speed of operation. The inductance

L denoting the armature winding inductance also causes a small voltage drop. The time

constant for the DC motor is approximately 10-15 ms, so the frequency bandwidth is around

60-100 Hz. Similar to the voice coil, a mechanical system driven by a DC motor will likely

have a bandwidth much smaller than the electrical bandwidth.

Similar to the voice coil, the power usage for the DC motor can also be estimated as

P = I 2 R, since the inductance L is typically much smaller than R. The torque-to-power

ratio is approximately 1 Nm/W.
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3.3.4 Thrusters

There are many types of space propulsion systems, but only a few of them are suitable for

space interferometry missions. Chemical or cold gas thrusters usually have too coarse a

resolution for this application, and the impulsive opening and closing of valves to regulate

the force applied to the spacecraft can excite unacceptably high vibrations on the optics,

beyond the ability of the ODL to suppress.

Recent studies have shown that Colloid and Field Emission Electric Propulsion (FEEP)

thrusters are promising candidates that may meet the gentle thrusting requirements [18,

28, 53, 65]. The primary advantages of these two types of systems over other types of

thrusters such as cold gas and pulsed plasma thrusters (PPT) are their capabilities of low

thrust resolution (r ~ 0.1 IN), continuous throttleability, high efficiency (>60%), and high

specific impulse (>500 s) [28]. PPTs have smaller specific impulse and discrete thrust

levels. Typical cold gas thrusters have much lower specific impulse, and it would be a

tremendous challenge to manufacture nozzles and valves reliable enough to produce micro-

Newton levels of thrust [65]. At higher thrust levels, the pulsed operation of the traditional

cold gas thrusters may induce significant disturbances to the optical instrument onboard

the space interferometer.

The maximum thrust levels for FEEP and Colloids may range from 0.5 pN to 100

pN depending on the configuration of the propulsive device. The electrical bandwidth of

these actuators is approximately 10 Hz [53]. These thrusters are complex devices, and

summarizing their operation concisely is difficult; detailed descriptions of their operation

can be found in [65]. For both FEEP and Colloidal thrusters, the thrust-to-power ratio is

on the order of 10 pN/W [53].

Table 3.1 summarizes the approximate stroke range, resolution, and bandwidth of the

actuators considered above. The information is obtained from sources cited above and

respective manufacturer websites. Notice that the operational range and resolution of the

thruster are described in terms of force. Since the thrusters can push the spacecraft around

with no theoretical position limitations, there is no stroke limit for this actuator type, only

a force limit. Similarly the DC motor itself does not have a stroke limitation, but it does

have a maximum torque limit. The bandwidth of the voice coil and DC motor are estimated

from their electrical time constants. Their actual bandwidths are expected to be much lower
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and will depend on the corresponding mechanical system setup.

Table 3.1: Interferometer actuator properties

Actuator Type PZT Actuator Voice Coil DC motor Thruster

Stroke/ 5-30 pm 1-5 mm 0.5-1.32 Nm 0.5 - 100 pN
Force Limits (a)

Resolution (r) ~ 0.1 nm < 0.1pm 1 Im 0.1 pN

Bandwidth (wa) 2-4 kHz < 1 kHz < 100 Hz ~ 10 Hz

Low Freq. ~ 107 N/W 1-10 N/W 1.5 Nm/W 10-17 1 N/WPower Ratio 11 / . mW 1-7p/
High Freq. ~ 1 N/W

3.4 Staging Control

Suppose a single actuator were available to control the spacecraft position with nanometer

accuracy, and maintain this accuracy in the face of high frequency perturbations. Then there

would be no need to employ the array of actuators studied above. This single idealized

actuator by itself could make the minute, rapid position corrections needed to keep the

optical geometry in the required alignment. Unfortunately, no such actuator exists. Instead

the collection of actuators in a space interferometer attempt to approximate the response

of this hypothetical ideal using separate input stages of complementary stroke, resolution,

and bandwidth characteristics. We will call such an approach a "staged actuation system".

Actuators with larger maximum output tend to be lower bandwidth and coarser resolu-

tion, while the high bandwidth actuators tend to have smaller maximum output and finer

resolution. Given a staged actuation system, the challenge is to determine how to use the

individual actuators appropriately in order to satisfy the system requirements. "Staging

control" is defined as a control strategy that specifies how to piece together the individual

actuators into the best possible approximation to the idealized actuator above. A staging

control law has to answer a number of important questions: Where should the "hand-off"

frequencies be? What is the correct tradeoff between the stroke of one actuator and the

bandwidth of another? What is the most power efficient use of the available actuators?

The first task in attempting to answer some of these questions is to understand how

actuator capabilities and constraints affect the system performance. An analytical technique

for predicting system performance that takes into account actuator nonlinearities is vitally

necessary to be able to design a staging control law. This is the topic of the next chapter.
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3.5 Summary

In this chapter, the optical geometry introduced in the previous chapter is embedded in

dynamical models subject to environmental disturbances and actuator inputs. The models

considered are linear and time invariant, with input nonlinearities describing the effects

of actuator saturation, resolution, and quantization. Space interferometers utilize several

actuators with overlapping bandwidth and stroke, a configuration known as a staged actu-

ation system. The open challenge, examined in subsequent chapters, is to determine the

most efficient way to use these actuators cooperatively so as to obtain the best possible

closed-loop performance.
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Chapter 4

Stochastic Performance Prediction

As discussed in the previous chapter, obtaining maximum performance from a space inter-

ferometer may require utilizing actuators in regions where their nonlinear aspects cannot

be ignored. These nonlinear effects complicate the task of predicting the closed-loop per-

formance which can be obtained from a specified feedback control law. The purpose of this

chapter is to develop methods which can accurately predict the closed-loop performance,

while taking into account the nonlinear characteristics of the actuators.

The performance of interest in this thesis is the steady-state, root-mean-square (RMS)

deviation of the actual optical geometry from the idealized geometry as discussed in Chap-

ter 2. In particular, methods must be determined to keep these deviations below the levels

identified in Chapter 3, for example, RMS deviations of the optical path length less than 3

nm for a typical extrasolar planet detection mission. Since many of the disturbances acting

on the interferometers are random in nature, the performance analysis must directly address

the stochastic aspect of the problem, in the context of the dynamical model constructed in

Chapter 3.

Numerical simulation to determine the steady-state performance of a nonlinear system

is one possible approach, however these simulations typically require intensive computation

to achieve statistical reliability, and are too time consuming to be useful at a system design

level. Moreover, the actual task of accurately simulating a stochastic nonlinear differential

equation is itself a topic of active research [7]. Simply adding a stochastic input to a

standard Runge-Kutta solver is known to have very weak accuracy (i.e. O(At) even for a

4th order algorithm which provides a deterministic solution accuracy of O((At)5 ) [71).

91



Ideally a quick analytical approximation of the expected variance would be much more

desirable, allowing system level design trades to be conducted in a more timely fashion.

This chapter attempts to formally develop the required prediction methodology for non-

linear stochastic differential equations as discussed in Section 4.1. Two useful theoretical

frameworks, stochastic Lyapunov methods and stochastic linearization techniques, are sum-

marized in Section 4.2, and a simple scalar example problem is used to demonstrate the ap-

plication of these methods. Then the full development of a performance prediction method

for multi-state and multi-input systems is described in Section 4.3. Following a discussion

of the numerical aspects of computing these predictions in Section 4.4, a number of more

complex examples are analyzed to demonstrate the accuracy and utility of the proposed

performance prediction method. The final section then formally analyzes the closed-loop

stability (in the sense of Lyapunov) of stochastic systems with input nonlinearities.

4.1 Stochastic Differential Equations

From Chapter 3, the stabilization problem to be addressed in this thesis can be summarized

as a set of nonlinear stochastic differential equations.

dx = Ax dt + B1 dw + B 24(u) dt (4.1)

y = CiX

u = Kx

where x is a n x 1 vector containing the states of the system, w is a n x 1 vector of

disturbance inputs, u is a nu x 1 vector of control inputs, y is a ny x 1 vector of output

deviations, and the matrices (A, B 1 , B 2 , C1, K) are assumed to have appropriate dimensions.

The disturbance w is a standard Wiener process, which is a Gaussian process with zero mean

and independent increments [11]. Although the Wiener process is sample-path continuous,

it is almost surely not differentiable at any time t > 0. Therefore, instead of writing

Equation 4.1 as a deterministic ordinary differential equation as shown in Equation 3.17,

it is expressed symbolically in terms of the differentials or a stochastic differential equation

(SDE).

The general system model (A, B 1 , B 2 , C1) incorporates the plant, disturbance, and actu-

ator dynamics. Due to the nonlinearity 4(u), the closed-loop dynamics (4.1) are nonlinear,
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stochastic differential equations. To exactly determine the RMS output deviations for these

dynamics, it is necessary to find the resulting probability density function (PDF) of x(t).

This requires solving the Fokker-Planck equation [11, 43], which is a partial differential

equation that describes the time evolution of the PDF, px(x, t), [78]:

p a [ z 1 Aijxj + E "" B 2jj~j(kix)] n n g2B1 _)_j 82p,-- = - (BiB) (4.2)at .= axi xi 2= . = xioxj &xiax&

The subscript ij or il denotes the (i, j) or (i, 1) element of the corresponding matrix. Note

that the density px (x, t) is not necessarily stationary. A stationary solution, assuming one

exists, can be obtained by setting 2 = 0, and solving the resulting partial differential

equation in x.

Unfortunately, closed-form solutions usually do not exist for Equation 4.2, even in the

steady-state limit, and there are very few general results available. For nonlinear systems,

the density function may not even be zero mean, or Gaussian, despite the fact that the

driving Wiener process has these features. One of the few cases for which an exact solution

is known is when the system is completely linear, with #(u) = u. Then, if the matrix

A + B 2 K is Hurwitz, the PDF of the state vector x converges to a stationary Gaussian

distribution with zero mean and covariance Exx given by

(A + B 2 K)Exx + Exx(A + B 2K)T + B1 BT =0. (4.3)

as described in Section 3.1.2 above. The asymptotic RMS output deviations are then given

by the standard deviation

0vi = C1, EX xCT . (4.4)

where Ci is the ith row of the matrix C1.

In the case that # is the quantization and saturation nonlinearity considered in the

previous chapter, Liberzon and Brockett [42] have found a steady-state solution for the

Fokker-Planck equation, assuming that the feedback stabilizes the closed-loop system. Un-

der these conditions, they show that the closed-loop density function will converge to a

piecewise Gaussian function, of the form,

Px(X) = YexTQ'f-Clo(v2"v (4.5)

where y and ( are scalar normalization constants, and matrix Q satisfies the Lyapunov

equation AQ+QAT = -B 1 BI. Representative plots of PDFs corresponding to Equation 4.5

93



LL U~i .. ..

0.5 0.5

0.4 - 0.4

C 0.3 - -0.3 -

0.2 0.2

0.1 0.1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
X X

(a) (b)

Figure 4-1: (a) Representative plots of piecewise Gaussian PDF (b) PDF curves of a piece-

wise Gaussian function (solid) and a single Gaussian function (dashed)

are shown in Figure 4-1(a). Three different curves corresponding to different quantization

levels are shown in this figure, and they illustrate that as the quantization level decreases,

the piecewise Gaussian approaches a smooth Gaussian-like distribution.

Analytic computations with the density function given by Equation 4.5 are burdensome

for anything other than a scalar system. However, even for relatively large quantization

levels, densities of this form can be closely approximated by a single ideal Gaussian distri-

bution, as illustrated in Figure 4-1(b). The use of a single Gaussian distribution to model

the closed-loop density has been extensively studied in previous work [20, 33, 69, 78]. The

objective is to find one covariance matrix, t2, for a single, continuous Gaussian density

that best approximates the true state covariance of Equation 4.1. Numerical simulations

have shown that such an approximation strategy typically provides prediction within 5%-

15% of the numerically computed values. The accuracy tends to improve for plants with

sharper high frequency roll-offs, as they attenuate the high frequency components of the

input caused by quantization jumps and saturation effects [20].

The central question, addressed below, is whether it is possible to analytically determine

the best Gaussian approximation directly from the system dynamics and nonlinear charac-

teristics of the actuators. In the following sections, the necessary equations describing this

approximation will be developed, and numerical methods for their solution discussed.
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4.2 Performance Prediction - Two Useful Theorems

This section introduces two important theorems which will be useful in determining a closed-

loop Gaussian density function which closely approximates the steady-state solutions of the

Fokker-Planck equation. The first of these is a stochastic version of the classical Lyapunov

theorem, and the second describes the technique of stochastic linearization. The two ap-

proaches are described in detail below and a comparison of predictions made by the two

methods will be discussed in the following section for a simple example problem.

4.2.1 Stochastic Lyapunov method

Stochastic stabilization of nonlinear systems has been the subject of considerable recent

interest in the nonlinear controls community [12, 15, 42, 59]. Most of this work assumes

multiplicative noise models, where stochastic disturbances multiply functions of one or more

of the state variables. Under these conditions it is possible to develop nonlinear control

laws which actually force the closed-loop state to zero, even in the presence of nonzero

disturbances. The noise model considered in this thesis, however, is additive: the impact

of the disturbance on the state evolution is directly proportional to dw (4.1). Hence, these

new control strategies cannot be directly applied to the problem at hand. However, recent

work using Lyapunov-like theorems can be adapted to the additive noise model, providing

conditions which ensure the existence of a steady-state density, as well as providing methods

for predicting the statistics of the resulting stationary solution [77].

The study of stochastic Lyapunov extensions trace back to the work of Has'minski in

1980 [25], and a concise summary of some of this work can be found in a survey conduced by

Thygesen [77]. In this section, important definitions and theorems of stochastic Lyapunov

techniques are described. Readers are assumed to be familiar with the standard Lyapunov

analysis for deterministic systems as described in [34], for example.

A general nonlinear stochastic process can be defined by the following stochastic differ-

ential equation (SDE),

dx = f (x) dt + g(x)dw, (4.6)

where x is in Euclidean space R', and w is the nm-dimensional Wiener process. The

differential generator L maps C2 functions (V :R --+ R) to C0 functions (LV : R" -> R),

12V(x) = V(x) f(x) + tr {gc(x) V2 g(x)} , (4.7)
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where V and V2 are the first and second partial derivative of V with respect to x, respec-

tively. The stochastic differential operator LV is similar to the deterministic differentiator

#, except for the additional term tr {gT(x) V2 g(x) } which incorporates the effects of the

stochastic input.

A function V : R' -+ R is proper if it satisfies

a(\xI) V(x) b(IxI)

for some strictly increasing functions a and b, with a(O) = b(O) = 0, and a(IxI) -+ oo as

|xI -- oo. For this study, a Lyapunov function is a proper function which is C2 on R" \ 0.

Theorem 4.1 [Zakai,69] Assume there exist positive numbers Ro > 0 such that

LV(x) < 0 (4.8)

for all x satisfying |xi > Ro. Then the process described by Equation 4.6 admits a stationary

probability distribution.

This theorem essentially extends the uniform ultimate boundedness property [34] for the

deterministic behavior of a nonlinear system, to provide similar boundedness guarantees for

the statistical properties of a stochastic nonlinear system. Versions of Theorem 4.1 can be

found in [89, 25, 77] and proofs are also in these references.

Furthermore, the following proposition can be very helpful in making more constructive

arguments about numerical bounds on the distribution of x, assuming it has been shown to

be asymptotically stationary.

Proposition 4.1 [Zakai,69] With the same assumptions as Theorem 4.1, let h : R' - R

be such that

LV(x)+h(x) < 0

for all x E X. Then

p(h) = E{h(x(t))} 0,

provided t > 0 and x is distributed according to the stationary measure pL. In addition, if

12V(x) + h(x) = 0, then E{h(x(t))} = 0 [89].

Lyapunov functions can thus be used to both guarantee the existence of an invariant

distribution and to provide a performance bound. Note that the same Lyapunov function
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need not be used for each argument: one Lyapunov function may be used to demonstrate

stationarity, and a second used to obtain a performance bound.

For a simple example of the utility of the above facts, consider the linear SDE

dx = Ax dt + B 1 dw

y = Cix.

which is Equation 4.1 with K = 0. Assuming the matrix A is Hurwitz, the steady-state

variance of the output can be determined as described above

lim E|y(t)||2 = tr {CiPCT} (4.9)
t-oo

AP + PAT + B1BT = 0.

Alternately, one may also use

lim E|y(t)112 = tr {BTQB 1 } (4.10)
t-oo

ATQ+QA+CTC 1  = 0,

where the equivalence (duality) of the two forms is demonstrated in, e.g. [91].

The latter of these expressions can be derived directly from the stochastic Lyapunov

theorems above. Since A is Hurwitz, it is possible to find a positive definite matrix, Q > 0,

such that QA + ATQ = -CTCi [34]. Choose the quadratic Lyapunov function,

V = xTQX,

which satisfies

LV = xT(ATQ + QA)x + Itr {BTQB 1 },
1

= -xTCTCx + Itr {BTQB 1 }.

Since the trace of BTQB1 is bounded, as IxI -+ oo, the magnitude of the first term

becomes larger than the second term, which makes LV negative, and Theorem 4.1 is

satisfied, ensuring an asymptotically stationary distribution for x(t). Now let h(x) =

xTCTCx - tr {BTQBI}, then

LV(x) + h(x) = 0.

Hence, using Proposition 4.1, the steady-state output variance is given by

E{XTCTCix} = E{yTy} = tr {BTQB 1}. (4.11)

Comparing Equation 4.10 and Equation 4.11, the Lyapunov performance prediction is ac-

tually exact in the linear case.
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4.2.2 Statistical/Stochastic linearization

Another useful tool for analysis of stochastic systems is the technique of stochastic lin-

earization. Stochastic (or statistical) linearization utilizes a quasi-linear approximation of

the nonlinearities in a system with Gaussian random inputs [20, 21]. Quasi-linearization is

quite different from ordinary linearization of a nonlinear component. In both approximation

strategies an equivalent gain is used to replace a static nonlinearity. However, in ordinary

linearization the corresponding gain is a constant, depending only on the equilibrium point

of the system (usually taken as 0), whereas the stochastic linearization gain is actually a

function, which depends upon the statistics of the input to the nonlinearity.

Theorem 4.2 Given a single-valued nonlinear component, #, driven by a zero-mean, sta-

tionary Gaussian process u as shown in Figure 4-2. The response of the nonlinear system

v = #(u) can be approximated by an equivalent linear, time invariant filter N that minimizes

the mean-squared approximation error,

min E{e(t)2 } = min E{(v(t) - b(t))2

If the nonlinear component is static or memoryless, the linear filter is a scalar gain given

by [20],
E{u#!(u)} E{u#(u)}

N(u) = =}

where E{u#(u)} is the cross-correlation between the input process u and the output process

v evaluated at zero time lag.

U V(U

U N V

Figure 4-2: Stochastic linearization of a static nonlinear element

Gelb and Vander Velde [20] have a thorough discussion on such an approximation tech-

nique, and the claims made in the above theorem can also be found in their reference.
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Furthermore, [21, 60] show that the equivalent gain can also be computed by

N = E{#'(u)}, (4.12)

where #'(u) is the derivative of #(u) with respect to u. From this equation, N can be

computed easily if d#/du is a computable function of u.

4.2.3 Scalar application of Theorems 4.1 and 4.2

To illustrate the ideas introduced so far, consider a simple nonlinear SDE

dx = -xdt + dw + #(u)dt,

u = -kx,

where x, w, and u have scalar values. Since the output y is the same as the state x here,

the RMS output deviations are the same as the state variance. To make the example more

specific, #(.) is assumed to be a saturation function with saturation level a in this example.

Exact solution

For this simple system, the exact steady-state PDF can be computed from the Fokker-Planck

equation Equation 4.2,

PX W ye-(1+k)X2  |kx < a

,e-x 2_2a/kikxi--a 2 /2) |kxl > a

The exact steady-state performance can then be obtained by numerically integrating

or2 = 2 X
Y =a = xp(x) dx

for a specified value of k.

Linear prediction

If the input nonlinearity is ignored, implicitly assuming that the input remains within

the linear region of the actuator, the steady-state performance O2 is trivially found from

U = CiPC = P (since C 1 = 1 here), and P satisfies

AP+PAT+B1BT=0 < -(1+k)P-P(1+k)+1=O,
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(using A - B 2K = (1 + k) and B1 = 1), so that

a2 = 2 1 k, (4.13)

Lyapunov (nonlinear) prediction from Theorem 4.1

Define the quadratic Lyapunov function,

12
V =-x2.

2

which satisfies

LV = -x 2 - x(kx) + 1/2.

Since # is a saturation nonlinearity, x#(kx) > 0 for any positive k, hence for x 2 > 1/2,

LV becomes negative, and Theorem 4.1 is satisfied. The closed-loop system will thus

asymptotically converge to a solution with a stationary density. Define

h(x) = x2 + x#(x) - 1/2

Then LV + h(x) = 0, satisfies Proposition 4.1 and hence

E{x 2 + x#(kx) - 1/2} = 0

- + E{x#(kx)} - 1/2 = 0. (4.14)

In order to compute E{x#(kx)}, it is necessary to know the asymptotic density function

of x. As suggested in Section 4.1, a Gaussian distribution with variance &2 will be assumed,

and the conditions which must be satisfied by &x determined. The expected value of x#(kx)

can then be calculated by direct integration using the assumed density,

E{x#(kx)} = j x#(kx)px(x)dx

/*1 -x2

x#(kx) exp ( 2 dx
-Coo f x 2&2/

= kerf a 2

where erf(.) is the standard error function

erf(x) = 2 jxexp(-t2)dt.

Substituting this result into Equation 4.14, the unknown variance &2 must satisfy

&+ kerf a &2 1 =0, (4.15)
Ts is ank&x ) a 2 

This is a nonlinear algebraic equation which must be solved numerically to obtain uex.
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Stochastic linearization (nonlinear) prediction from Theorem 4.2

Before examining the solution of Equation 4.15 numerically, consider instead an applica-

tion of the stochastic linearization technique to the same scalar problem. The equivalent

"linearized" system is given by

dx = -xdt + dw - Nkxdt

= -(l+Nk)xdt+dw.

Treating N as a constant, the steady-state performance of this system can be computed

easily using linear system methods as

1 1
&2 =(4.16)

X 21+Nk'

where ^ is again used to indicate that &x is an estimate of the true o-x. However, N and

&x are not independent. N is a function of the density pu(u) and pu(u) = px(kx) here, and

hence the two equations are coupled.

To analytically determine this coupling, again assume that the density of x will be

Gaussian with variance &x. The equivalent gain for the saturation function # is computed

as

N(&x) = erf ( = erf a . (4.17)

Solving Equations 4.16 and 4.17 simultaneously shows that the closed-loop variance estimate

must satisfy

&2 + kerf a &2 = . (4.18)X \ 2k&x ) x 2

Note that although the system is "linearized", it is still necessary to solve a nonlinear

equation in order to obtain the closed-loop performance. Since the stochastic "gain", N,

depends on the input to the nonlinearity, the resulting system is not really linear because

N has nonlinear dependence on o-. Note also that the condition which &x must satisfy is

exactly the same as the one derived from the stochastic Lyapunov method (Equation 4.15).

Comparison of predictions

Figure 4-3(a) shows the different predictions developed above for the RMS variations in the

output y as a function of the controller gain k when saturation level of the actuator is a = 1.

The solid line illustrates the predicted performance from the solution of Equations 4.15 or
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4.18, the dashed-dotted line shows the exact solution, and the circles indicate the estimates

computed from numerical simulation of the differential equation. The three estimates are

quite close, differing by at most 5% for all values of k. Note that the numerical simulation

itself contains errors approximating the exact closed-loop performance, a consequence of

the limited accuracy of conventional differential equation solvers for systems with stochastic

inputs [7].

Figure 4-3(b) compares the steady-state performance of the predicted output deviation

obtained by ignoring the actuator saturation effects. The solid line shows the nonlinear

system performance, and the dashed line shows the linear prediction from Equation 4.13.

Note that the relative error between the two predictions grows unbounded as the gain

increases. Unlike the Lyapunov and stochastic linearization predictions, the linear method

incorrectly predicts that RMS output deviations are a monotonically decreasing function of

the gain k. In fact, as the true solution curve shows, RMS performance is limited by the

nonlinear characteristic of the actuator. RMS performance better than about 0.175 units

is not achievable using this actuator. If the designer decides to ignore actuator saturation

he may obtain overly optimistic performance predictions, when the indicated performance

may not, in fact, be physically achievable.
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Figure 4-3: Steady-state variance of x as a function of the controller gain

The achievable performance limitations inherent in a particular combination of quan-
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tization and saturation for an actuator are not immediately obvious, and an important

application of the above ideas for system design will be to make such predictions analyti-

cally. The objective of the following section is thus to extend the above prediction methods

to systems with an arbitrary number of states and inputs.

4.3 Multi-input, N-DOF Performance Prediction

In the simple, scalar example above, under the assumption of an ideal Gaussian closed-

loop density, the stochastic Lyapunov and stochastic linearization methods give identical

predictions. In the general case, considered below, the two approaches will be shown to

again make the same predictions, but via equations which are dual to each other. In the

analysis below, it is assumed that the controller K is chosen so that the closed-loop system

is stable, despite effects of saturation. Closed-loop stability concerns will be addressed in

the final section of this chapter.

4.3.1 Some useful identities

Before discussing the application of stochastic Lyapunov and stochastic linearization tech-

niques on multi-dimensional and multi-input systems, an important property of Gaussian

random vectors is discussed first. This property and the subsequent equations presented

below will be useful to the development of multi-input and N-DOF systems.

For a zero-mean, Gaussian input random vector x E R', the correlation between x and

a scalar nonlinear function, #(x) : R' -+ R is given by [33, 69],

E{x#(x)} = E{xx T }E{V#$(x)}, (4.19)

where V is the gradient vector defined by

_O21 IO21 OXn.

This result can be extended to compute the correlation between a vector function,

#: R' -> R', and a Gaussian random vector x. The function #(x) is a vector composed of

single-valued functions, #i,

#(x) = [#1(x), #2(X) ... km (X)] T ,
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and the correlation can be found using Equation 4.19, together with the linearity of the

expectation operator:

E{x# T (x)} = E{[xz#(x), X#2(x), - - -, Xm(X)]}

= E{xx T}[E{V4 1 (x)}, E{V0 2 (X)}, - , E{Vm(x)}]

= E{xxT}E{#VOT}, (4.20)

where E{V# T } is a matrix of dimension n x m with the (ij) element given by i. Note

that if # is a non-interacting function such that #i(x) = #i(zi), with the same length as the

vector x (m = n), then the term E{V#T} is a diagonal matrix with the ith diagonal entry

given by a.

Now, let y@(x) = #(Kx) be a n, x 1 vector. The correlation between x and 4$(x) can be

computed from Equation 4.20,

E{XT T(x) } = E{[xV@1 (x), X02(x), --- , X4n.(x)]}

= E{xxT}E{[V2@1(x), Vx0 2 (x), ... , V2 n.(z)]}

= E22E{ V2T(X)} I

where V2 denotes that the partial derivative vector is with respect to x. Using the vector

chain rule, this partial derivative term is computed as

E{V2@)T(X)} = E{(Vxu)(V,# T (U)) T E{(V#T } (4.22)

where Vu#T(u) is the partial derivative of #(u) with respect to u. As a result, E{X#T(Kx)}

and E{#(Kx)x T } can be expressed as

E{rX# T (Kx)

E{#5(Kx)x }

= NxxK TNT

= NKZxx

NT = E{uuT }- 1 E{u#T(u)} = E- E{u#T(u)}

= E{VU#T(u)}

(4.25)

(4.26)

The last substitution uses the result from Equation 4.20 and is an extension of the single

input-output case described in Theorem 4.2 [19]. Note that the term N is the multi-

dimensional version of the stochastic linearized gain given by Equation 4.12.
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The exact expression of N depends on the nonlinear function # which is chosen to

characterize various actuator nonlinearities. For the actuator properties considered in this

thesis, each element of the vector function # describes the saturation or quantization char-

acteristics of one actuator input. Since the constraints and limitations of one actuator is

assumed not to affect the other actuator properties, the ith element of the nonlinear func-

tion #i is only a function of the input ui. Therefore, the resulting gain matrix is diagonal

with the diagonal element given by

Nii(ou ) = E{#'(ui)}, (4.27)

where i = [1, ... , nu].

Although N is diagonal, the correlation matrix between the inputs u and outputs v of

the nonlinear function # will generally still be a fully populated matrix since E{uvT} =

E{u#(u) T } = NE{uu T } = NKE22KT. This means that the output vi of the ith nonlin-

earity #i indirectly depends on the other inputs u3 , j 0 i, through the correlation of uj

with ui implicit in the feedback control law, and the "mixing" that occurs through plant

dynamics.

4.3.2 Stochastic Lyapunov prediction

With the tools introduced above, this section discusses the application of stochastic Lya-

punov methods on system performance prediction. A general quadratic Lyapunov function

is used for this development:

V = xT Px, (4.28)

where P is a symmetric, positive definite matrix. Evaluating Equation 4.7 along trajectories

of system Equation 4.1 yields

LV(x) XTPAx + XTATPX + xTPB24(Kx) + #T (Kx)BTPx + tr {BTPB1 } (4.29)

Assume for the moment that it can be shown that CV(x) becomes negative as x grows

larger than a ball with radius R,. Let h(x) = -IV(x), then Proposition 4.1 gives the

performance estimate as,

E{-[xTPAx + XTATPX + XTPB 2 #(Kx) + #T(Kx)BTPX]} = tr {BTPB1} (4.30)
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Now, using E{xTPx} = tr {E{PxxT} } Equation 4.30 can be rewritten as

tr { E{-[PAxx T + ATPxxT + PB 2#(Kx)x T + B'Px#T(Kx)]}} = tr {BTPB1 }.

Assume that the stationary distribution of x is Gaussian with covariance ix. Using

the linearity of the expectation operator

tr {[PA xx + ATPbxx + PB 2E{$b(Kx)x T } + BT PE{x#bT(Kx)}]} = tr { BT PB 1 }.

(4.31)

From the discussion in Section 4.3.1, with our existing assumption that x has a Gaussian

distribution then

E{#(Kx)xT } = NKtxx (4.32)

E{x#T(Kx)} = b3XXKTNT. (4.33)

Substituting these equations into Equation 4.31,

tr {BT PB 1 } = tr {-[PAtxx + ATPXX + PB 2NKtxx + PtBPtxxKT NT]

= tr {-[PA + ATP + PB 2NK + KT NT BP]XX}

= tr{-[P(A+B 2NK)+(A+B 2NK)TP]bxx} (4.34)

Although this equation is in a more simplified form than Equation 4.30, it is still not

immediately obvious how it can be used to predict the system performance. The equation

cannot be solved for txx directly, since the gain N depends on the density function of

u which in turn will depend on $xx. This inter-dependence suggests that some kind of

iterative scheme will be required in order to solve the problem.

Since # is assumed to be noninteracting, N is diagonal with its ith diagonal entry given

by Nei = E{#'(uj)} where the expectation is over the distribution of ui. This distribution

will be Gaussian, since x is assumed Gaussian, and u is a linear function of x. The expec-

tation can thus be evaluated to determine the diagonal entries of N as a function of the

(as yet unknown) control variances d&u, i.e. Nii = fi(&u,) where fi is a nonlinear function

determined by the nonlinearity #i. For a convenient shorthand, collect the nu terms &u, into

a single vector &u, and write N(&u) to denote the diagonal matrix of nonlinear functions

fi(&u). Note that &u = fdiag(KExxK T ) (taking square roots component-wise).
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For any given N, if A + B 2NK is Hurwitz it is possible to find P such that the following

Lyapunov equation is satisfied:

Pi(A + B 2NK) + (A + B 2NK)TP. = -KfKj (4.35)

where Ki is the ith row of the control matrix K. Substituting this result into Equation 4.34

tr {KTKiExx} = tr {BTPiBi}. (4.36)

Since tr{KfKi Exx} =KixKf = &

&2 = tr {BPiBi} . (4.37)

If there are nu control inputs, a family of Lyapunov solutions P can be used to compute

the variance of each input as shown in the above equation. However, the &u, computed in

Equation 4.37 must be consistent with the one used to compute N. Therefore, the following

set of equations must be satisfied simultaneously

P(A + B 2N(&u)K) + (A + B 2N(&u)K)TPi = -KKi (4.38)

& 2 = tr {BTPB1} (4.39)

for i = 1, ... , n. Algorithms which solve these equations will be presented in Section 4.4.

After determining a &u and N which satisfy the consistency constraints (4.38) and

(4.39), the steady-state, closed-loop performance can be computed from a slightly different

Lyapunov equation,

Py, (A + B 2 N(&u)K) + (A + B 2N(&u)K)TPy, = -C(C14, (4.40)

where Py, is a symmetric, positive definite matrix that replaces the role of Pi in the above

development, and Ci is the ith row of the output matrix C1. Substituting this equation

into Equation 4.34,

tr CT Cis xx tr {BTPyBi}
1i I = tr

&2 =tr {BTPyB}, (4.41)

which produces the desired steady-state estimate of the ith RMS output yi.

In summary, the 2 x nu sets of equations (4.38, 4.39) must be solved simultaneously

to obtain correct &u and N. Then, the 2 x nu equations (4.40,4.41) must be solved to

determine the performance prediction &y. Note that in this approach ixx is not computed

directly, only &u and N are needed to predict the output variance &,Y.
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4.3.3 Stochastic linearization prediction

The extension of the stochastic linearization technique from the single DOF to the multi-

DOF and multi-input case is fairly straightforward. Applying stochastic linearization to

the nonlinear input system,

dx = (Ax + B 2#(Kx))dt + Bidw

the resulting "linearized" system can be expressed as

d2 = (A + B 2NK)Idt + B 1 dw,

where N is the stochastic linearized gain. Assuming a Gaussian distribution for the random

variable u, the gain N can be computed as

N = E{uuT}-1 E u }(u)T} = E{V#UO(U) T }. (4.42)

Again, assuming the nonlinearities #i are noninteracting, N is a diagonal matrix, and the

ith diagonal entry depends only on the distribution of the ith input ui.

Treating N as a constant for the moment, if A + B 2NK is Hurwitz, an estimate of the

steady-state covariance matrix is obtained by solving the Lyapunov equation:

(A + B 2NK)bxx + $xx(A + B 2NK)T = -B 1 B . (4.43)

The solution $xx is the steady-state covariance matrix of the quasi-linearized system. The

corresponding variance of each control input ui is given by

&2 = KiKxxT K (4.44)

where Ki is the ith row of the controller gain matrix K.

However, N is not truly a constant, but rather depends on the distribution of u. Since

this distribution is Gaussian, N is a function of the variances &3., and N is diagonal with

Nii = fi(&ui). Adopting the notation of the previous section, write the gain as N(&u), where

&u is the nu length vector containing the &ui, so that &u = diag(K$xxK T ). Consistency

then requires the simultaneous solution of

(A + B 2N(&u)K)bxx + $xx(A + B 2N(&u)K)T = -B 1BT. (4.45)

&2 = diag(KhxxK T). (4.46)
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Once N and &, have been found which solve the consistency conditions (4.43) and (4.46),

the steady-state output variance is calculated as

o-y, = CliEXxCi. (4.47)

where Ci is the ith row of the output matrix C1.

4.3.4 Duality

The prediction calculations of the two different methods above are summarized in this

section. In order to compute the control variance, the stochastic Lyapunov prediction

requires solving a family of Lyapunov equations

PiAc(&u) + Ad(6n)Pi = -K K%, (4.48)

where Ac1(&u) = A + B 2 N(&u)K and the individual control variances are given by

&2 = tr {BPiB1} . (4.49)

For the stochastic linearization technique, only one Lyapunov equation is needed,

Ac(&u)$xx + $xxA A(&U) = -B 1 B , (4.50)

where Act is the same as above, and the individual control variances are given by

&.2 = KizxxKT. (4.51)

In both cases, the Lyapunov equation is coupled with the control variance equation, since

they both depend on &u. The two equations are considered solved if they can be satisfied

simultaneously.

When taking a closer look at the two sets of consistency equations, it is clear that the

stochastic Lyapunov equations are "dual" to the stochastic linearization equations. One set

of equations can be changed to the other by making the substitution of (A , Kf, BT) for

(Act, B 1 , Ki). This result is exactly parallel to the familiar controller/observer duality seen

in linear system theory.

Now consider the performance variance calculations. After satisfying the consistency

constraints of the control variance equations for &u, the stochastic Lyapunov technique

requires the solution of a different Lyapunov equation

Py, Acl (&u) + Ac(&u)TPy = -CTC1,, (4.52)

109



and the variance of each output is given by

&2 = tr {BPyjB1 (4.53)

The stochastic linearization technique uses the same Lyapunov function as used in its con-

sistency equations Equation 4.50,

Ac(&u)$xx + -xxA -B 1 B, (4.54)

and the variance of each output is given by

o2 = tr C1i$2xC1 (4.55)

Again, this set of equations is dual to the stochastic Lyapunov case, replacing (AT, C[, BT)

for (Ac, B, IC1,).

Since the set of equations from stochastic Lyapunov is dual to the set of equations from

stochastic linearization, these two analytical performance prediction methods are actually

equivalent. The duality between the two techniques are summarized in Table 4.1, where

X = lyap(A, C) is the short-hand notation for solving the Lyapunov equation: AX+XAT -

-C.

Table 4.1: Duality between stochastic Lyapunov and stochastic linearization performance
prediction techniques

Stochastic Lyapunov Stochastic Linearization

Consistency P = lyap(Acl(&U) T , K[K,) ixx = lyap(Ac,(&u), B1BT)

________ & 2  tUTP _ &2 TK ̂ KT&_ =tr {BIPB1} &___ = K i EXXK

( A , Kr, jBI) ( Acl, B1, Kr )

Output variance Py = lyap(A , CT) = lyap(Ac., B 1 )

& = BTPyB1 &2 = CTxxCT

(A AT, C) ( Act, B1,IC1,)

4.4 Computational Methods

From the previous section, the stochastic Lyapunov technique is dual to the stochastic

linearization technique, and therefore, they are equivalent analysis tools. More importantly

the consistency conditions for the stochastic linearization calculations require solution of
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only one Lyapunov equation, whereas the stochastic Lyapunov technique requires solutions

to a family of Lyapunov equations. Since both methods can arrive at the same results, use of

the stochastic linearization equations is simpler and minimizes the number of computations

required. The following section discusses some basic numerical techniques for solving the

equations required to develop an accurate prediction of the closed-loop output variance for

a specified state feedback control law.

4.4.1 Computation of the gain functions N

If the actuator nonlinearities consist of resolution, quantization, and saturation, a nonlinear

function which describes the input-output relationship of the nonlinear component can be

expressed as

+ai, ni ai

qi * round(ui/qi), ri < ui < ai

#i(Ui)= 0, -ri < ui < ri (4.56)

qi * round(ui/qi), -ac < ui < -ri

where ai is the saturation level, qj is the quantization level, and ri is the resolution level of

the actuator. The notation round(.) rounds its component to the nearest integer, so that the

output #i(ui) can only take on integral multiple values of qj. For convenience, assume that

ai = Miqi and r = Liqi, i.e. the saturation and resolution levels are integer multiples of the

quantization step size. Carrying out the expectation E{#'(uj)}, the stochastic linearization

gain for this nonlinearity can be written as

2r- (-ry 2qi M ~ 2_____
Nii(&) = fi(&i) =u exp + 2 exp 2 , (4.57)

S2&2 UE 8&2

If quantization is not taken into account, the gain Nei for resolution plus saturation is

given by
ac__ (ri 2r (-r 2

Nii(&) = erf - erf + exp ( 2  (4.58)

For the simplest case, where only saturation limits are considered, the stochastically lin-

earized gain becomes the limit of Equation 4.57 as qj and ri -+ 0

Nii(&u) = erf (. (4.59)
( 0'si)
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A representative plot of Nji as a function of &u, for the saturation-only case is shown in

Figure 4-4(a). In this case, Nei is a strictly decreasing function of &ui, and the value of Nei

stays close to 1 if the system operates in the linear region, <pi(ui) = ui. As the control gain

increases, the RMS control ou, also increases, but the actual control signal cannot increase

without bound due to saturation effects. Therefore, the gain Ni decreases with au, to

model the effect that the actual control signal of the system is limited. Since the available

control is limited, the achievable performance of the system will also be limited. This result

has already been demonstrated earlier in Section 4.2.3, where the output deviation does not

decrease with increasing controller gains as shown by Figure 4-3(b).

For the saturation plus quantization and resolution case, representative Nii curves are

shown in Figure 4-4(b). In this plot, the dashed line illustrates Nii for the saturation plus

resolution case. This curve has three general regions: Nji first increases with &,, then

Nii ~ 1, and finally Nii decreases with &,i. In the flat section of the curve, where Nii ~ 1,

the system is operating in the linear region, so Nii does not change the effective controller

gain. By comparing Figures 4-4(b) and 4-4(a), the region where Nei decreases with &,, is

clearly caused by saturation effects. As a result, in the region where Ni increases with &u,,

the system must be affected by resolution effects. Recall that resolution acts as a deadzone

function on the control input. As the RMS control &u, decreases, an increasing fraction of

the actuator output becomes 0 after passing through the resolution (deadzone) nonlinearity.

Therefore, the Nii curve decreases as &,, decreases to illustrate that the effective control

gain is reduced due to resolution effects.

The dashed-dotted line shown in Figure 4-4(b) illustrates the saturation plus quanti-

zation case. This curve exhibits similar behavior as the saturation plus resolution case.

The stochastic gain Ni varies between 0 and 1 - when Ni is close to 1, the actuator is

operating in its linear region; when Nji is close to 0, the actuator is either near saturation

(on the right side of the curve), or in quantization region (on the left side) depending on

the magnitude of &u,. The quantizer thus also induces a deadzone effect, since the actuator

output becomes zero if its input lies below the first quantization level.

When saturation is combined with quantization and resolution effects, the corresponding

Nii curve is marked by x's in Figure 4-4(b). Interestingly this curve lines up closely to the

saturation plus resolution case. When the resolution level is greater than the quantization

level (ri > qi), the left half of the Nei curve is dominated by resolution effects. This result is
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Figure 4-4: Stochastically linearized gain N as a function of input variance &,- (a = 10,
q = 0.1, r = 0.5) (a) saturation only (b) saturation plus resolution

not surprising since that part of the curve primarily illustrates the deadzone phenomenon

caused by quantization and resolution effects. The N curve does not appear to be very

sensitive to the jumps caused by the quantizer. It is well known that dithering can improve

the performance of the system [17] and can also smooth the nonlinear function like the one

described in Equation 4.56 [20]. From this perspective, adding random noises to the system

can effectively smooth the quantizer jumps, and hence, the stochastic linearization gain is

insensitive to small quantization levels.

An important observation is that the probability that ui is smaller than the saturation

limit ai can be computed by

P{|uil <ai} = exp 2 dx
- "u 20-,)d

= erf

Notice that the above expression is the same as the stochastic linearized gain for the sat-

urating actuator given in Equation 4.59. As a result, when saturation is the only actua-

tor nonlinearity considered, the stochastic linearized gain Nei is also the probability that

the actuator does not saturate. Reciprocally, 1 - Nii is the probability of saturation, i.e.

P{Iuil > ai}. This parameter plays an important role in a system study or a tradeoff

analysis. Since 1 - Nii estimates the percentage of time that the ith actuator spends in
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saturation, it would be desirable to look for solutions that minimize 1 - Nii in order to

preserve the actuator lifetime during a mission.

4.4.2 Numerical solution techniques

Consider the single-input case first, and assume that N(&,) is a strictly decreasing function

of &u. In this case, a simple bisection method can be used to solve the above equations for a

single input problem. Recall that N = f(&u) = E{<p'(u)}, and define g as the unique inverse

of f, so that &u = g(N) = f- 1 (N). Given a system (A, [B1 B 2], C1, 0) and a controller K,

the stochastic linearization algorithm used for performance variance is summarized here.

1. Let NH = 1 and NL = 0.

2. Set 5 = NH+N, where N is an estimate of the value N which satisfies the consistency2

conditions.

3. Solve Equation 4.43 for the corresponding steady-state covariance matrix estimate

EXX

(A + B 2$K) xx + xx( A + B 2 K)T = -B1B

4. Solve for the corresponding estimate &u using the state covariance matrix

&2 = K~xx KT.U

5. Solve for &, from N

6. Define an error measure 6= &2 - &2

7. If 6 < 0, NL = N; otherwise, NH = N

8. Repeat steps 2-7 until 161 < E, where E > 0 is the tolerance on the error measure.

9. Solve the Lyapunov equation with the final estimate N which satisfies the error tol-

erance in the previous step.

(A + B 2 $K)bxx + $xx (A + B 2 K)T = -BBi

114



10. Determine the steady-state output variance from

Y2 = C1iEXXC-rT.

For the multi-input case, the consistency constraint has to be satisfied for each input

variance (Equation 4.50) and the associated Lyapunov equation (Equation 4.51). Since

u = Kx, the control inputs are coupled through the dynamic coupling of the plant states.

As a result, even if N is assumed to be diagonal, the control couplings may prevent the

use of simple bisection methods. In this case, general purpose nonlinear optimization algo-

rithms must be used to solve the problem. One possible algorithm is the multi-resolution,

exhaustive search technique described below. This algorithm is described using two control

inputs as an example; it can be easily extended for an arbitrary number of actuators.

1. Let Ni and N 2 be a grid of points between 0 and 1

2. At each grid point, the estimated linearization gain N is given by

~ENi 0
N =

L0 12 _

3. Solve the steady-state covariance matrix P at each grid point

(A + B 2 NK)bxx + txx(A + B 2 RK)T = -B 1 BT.

4. Solve for &u at each grid point from txx

& ,2 = K

&2 = K2bxxKTU2 2

5. Solve for control variance from N at each grid point

-2 2

O,2 = g(N 2 )

6. Collect the &u. into a vector &u, and similarly collect the 6s, into a vector &6. Define

the vector e = &u - &u for each grid point, and define a corresponding error measure

6 = |e112
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7. Repeat 2-6 for each grid point, and find the grid point corresponding to the minimum

error 6

8. Generate a refined grid of N1 and N 2 centered around the minimum 6 grid point.

Repeat steps 2-7 until the minimum 6 is less than some specified accuracy E, or the

grid size is smaller than a threshold.

9. Solve the Lyapunov equation with the final estimate N which satisfies the error tol-

erance in the previous step.

(A + B 2$K)$xx + $xx(A + B 2$K)T = -B1B T

10. The predicted steady-state output variance is given by

og2, = C1 iXCT.

Using duality, the same algorithms above may also be used for stochastic Lyapunov

replacing (Act, B 1, Ki) with (Ac, Kf, B,) and (Act, B 1, C1,) with (AC1, CT, BT). The Lya-

punov equation associated with control variance computation has to be solved n, times,

where n, is the number of actuators, in order to obtain &, for each actuator input.

4.4.3 Dealing with non-monotonic Nei

When Nei is a strictly decreasing function of &, such as the saturation-only case, the algo-

rithm above can find the required solution to the consistency equations. In the saturation

plus resolution and/or quantization case, the Ni curve is a strictly increasing function of &s,

at low &s, and then a strictly decreasing function of &, at high &?is. As a result, the function

fi(&sg) is not uniquely invertible. There may be two possible values of &,, for any given

Nij, corresponding to the left ("resolution") half of the curve, and the right ("saturation")

half.

For this problem, each linearization curve can be separated into left and right halves,

on which the N vs o-, curve is invertible, and the optimization routine set to search for a

solution in both sections. For example, if there is one actuator input, the bisection algorithm

can be used to search for a solution in the right half of the N curve, and also search for

a solution in the left half of the N curve. The solution which satisfies the consistency

constraint, 6 < E, will be taken as the final solution. If the system has two actuators,
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there are a total of four possible solution search regions: (resolution region of u1 , resolution

region of u2), (resolution region of u1, saturation of u2), etc. The consistency measure 6

is evaluated for each of these four possibilities, and the case with the lowest error is the

solution. For nu actuators there will be 2u regions which need to be checked.

4.5 Multivariate Examples

This section illustrates application of the above techniques to a few examples of multi-

dimensional and multi-input systems. Both techniques are used for the following examples

to verify that they indeed provide the same results.

Example 4.1 Two-state, one-input

The first example is a two-state, spring-mass system with a single input as shown in

Figure 4-5, with dynamics given by

dx = Axdt + Bldw + B 24(u)dt (4.60)

y = C1x

u = Kx,

where

0 1
A =B

with wn = 1 Hz. The nonlinear function

saturation level a = 4.

[ 0
B2  C1 = [10),

#(u) is assumed to be a saturation function with

W

Figure 4-5: Single mass-spring example

The feedback gain for this system is K = [-118.4, -17.8] which, if actuator saturation

were ignored, would create closed-loop poles with a damping of 0.7 and a natural frequency

of 2 Hz. The expected output variance ignoring the saturation would be &y = 1.78 x 10-4.
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The stochastic linearization method is used first to predict the steady-state performance

of the system. Utilizing the bisection algorithm described in Section 4.4, the results are

summarized as follows:

N = 0.64, &2= 19.3, & =3.8 x 10-4

Exactly the same results are also obtained from the stochastic Lyapunov technique. A

numerical simulation using a fixed-step, fourth order Runge-Kutta algorithm is conducted

to verify these results. The numerical simulation estimate of the steady-state performance

is approximately 4.0 x 10-4, so there is a 7.5% difference between the predicted performance

and the numerical simulation. Since the stochastic linearization technique typically has a

prediction error within 10% of the actual value, this result is expected.

Note that the actual output variance is more than twice as large as the linear prediction.

This is due to the saturation of the actuator, which is saturating approximately 100 x (1 -

N) = 36% of the time.

Example 4.2 Four-state, two-input

This example uses a double spring-mass system as illustrated in Figure 4-6. Each of the

masses is controlled by a separate actuator and the general dynamics is the same as Equa-

tion 4.60 with the system matrices given by

0 0 1 0 0 0

0 0 0 1 0 0
A= B

_i _cl _ 1 0
ml m1 mi mi Mi

_L (ki+k 2) _C (cl+c2) 0 1
m2 m2 m2 m2 m2

0 0

0 0 1 0 0 0
B2= C1=

1 0 _0 1 0 0
M11

0

where mi = m2 = 2, ci = c2 = 0.1, ki = 1, and k2 = 4. The state vector contains the

position and velocity of each mass, X = [Xi, X2, zi, z' 2]T. The nonlinear component # is a

noninteracting saturation function with saturation levels ai = a2 = 2. The controller gain
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W2

Figure 4-6: Double mass-spring example

is selected so that the closed-loop system consists of two critically damped, second-order

pole pairs with natural frequencies of 2 and 3 rad/sec respectively. The resulting controller

gain is

17.0 1.0 8.4 0.1
K=- I'

1.0 3.0 0.1 5.5

If the system were linear, the expected output variances would be 0.3 x 10-2 and 1.1 x 10-2

for output one and two, respectively.

The stochastic Lyapunov and linearization analysis techniques are used again to predict

the steady-state performance of the system. Using the procedures outlined previously, they

both arrive at the same results:

Ni = 0.57 N2 = 0.89

&2 = 6.41 &2 = 1.611l 
0

U2

&2 = 0.96 x 10-2 &2 = 1.3 x 10-2
Yi Y2

The same numerical simulation used for the previous examples is applied here to simulate

this dynamical system and estimate the steady-state performance. The numerical estimates

for the output variances are o, = 1.07 x 10-2 and o, = 1.14 x 10-2, so there is about a

10% difference between the simulation and the predicted results.

Again note that the linear prediction is off by more than a factor of three in the prediction

of a 1 , which is again due to the fact that the actuators are saturating 43% and 11% of the

time respectively.

Example 4.3 Two-state, two-input

This example uses a two-state, spring-mass system with two control inputs and one

disturbance input. The plant itself is critically damped with a natural frequency of 50 Hz.
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The disturbance spectrum is not a constant as that used in the previous examples, but it

is modelled as the output of the second order filter

Fw
Gw(s)= *+ 2'2 2wWdS Wd

driven by white noise. The parameters F, = 5, (w = 0.707, and wd = 10 Hz are used in this

example, and the disturbance is modelled to enter the plant at the output. Two actuator

filters GA, and GA2 are also added to capture the bandwidth of each actuator, and they are

modelled as critically damped second order low pass filters with frequencies at Wa, = 2 Hz

and Wa2 = 20 Hz. A block diagram of this system is illustrated by the composite model in

Chapter 3 (see Figure 3-10), and methods to integrate the various models together are also

discussed in that chapter. The actuator model again only incorporates saturation effects,

with saturation levels of ai = 100 and a2 = 5. These actuator properties are chosen to

reflect a realistic staged actuation system, where one actuator has high saturation level but

low bandwidth, and the other actuator has low saturation level but high bandwidth.

The output of the system is the deviation in the position of the mass x1 from 0. The

control input was designed to minimize the following cost,

J = min y2(t) + u2(t)dt
oo

under the assumption that the actuators do not saturate. This results in a feedback gain

matrix of

1.6 141.6 30.1 1019.7 8.1 1.0 44.5 2820.0

14.5 2081.0 8.1 1028.1 31.8 6182.5 91.5 10194

If the linear assumption were satisfied, the expected output variance would be about o- =

225.6.

The Stochastic linearization and Lyapunov techniques are used make more accurate

predictions of the steady-state output variance of y in this problem. Again, both methods

converged to identical predictions, which are summarized as follows:

Ni = 1.0, N 2 = 0.33

2 = 15-0 &2 139.0, &2 = 370.5

Numerical simulations are again conducted to verify the prediction results. The estimated

variance from time simulation is about 364, so there is a 2% difference between the simula-

tion and the predicted results.
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Again, the prediction using the linear assumption is off by more than 50%, primarily

because the smaller actuator is saturating 67% of the time. More importantly, the change

in output variance caused by the nonlinearity means that the K above is not in fact the

minimizing solution for the cost functional J, considering the actual closed-loop dynamic

response. Accurately accomplishing the desired control power vs output RMS tradeoff

expressed in such a cost function must take the nonlinear effects into account. The next

chapter will build upon the ideas above to develop an algorithm for accomplishing the

desired tradeoff in a manner which accurately incorporates the effects of nonlinear actuators.

Example 4.4 Resolution and quantization effects

In the examples above, the stochastically linearized gains Nei were monotonic functions

of each &j. This section presents a simple example, where a system has input nonlinearities

consisting of quantization, resolution, and saturation.

Consider the same single DOF problem as the one examined in Section 4.2.3

dx = -xdt + dw + 4(kx),

where #(-) now describes both uniform quantization and saturation. Using stochastic lin-

earization and Equation 4.57, the nonlinear algebraic equation for &e is expressed as

p2q m (-(2k - 1) 2 q2 )) X 2 0.
X v"27 k&I 8k2&? X 2&&7rcr k=1

where here a = 2 and q = 0.5.

The stochastic Lyapunov and stochastic linearization solutions of the above equation

as a function of k are plotted in the solid line of Figure 4-7(a). Numerical simulations

using a fixed-step, fourth order Runge-Kutta algorithm are used to estimate the actual

steady-state performance of this problem, and the results are plotted as a dashed line in the

figure. The predicted performance using stochastic linearization is close to the numerical

simulation predictions with a maximum difference less than 5%. For comparison purposes,

the predicted output variance of the system with only saturation constraints is plotted as

a dashed-dotted line in Figure 4-7(a). Comparing the solid and the dashed-dotted line, it

is clear that the effect of quantization is most pronounced at low control gain.

The corresponding N curves for this example, is plotted in Figure 4-7(b). This plot

looks similar to Figure 4-4, where N is plotted as a function of &,. Since the RMS control
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Control gain (k)

(a) (b)

Figure 4-7: Comparison of quantization and saturation effects on performance (a)&' versus
controller gain (b)N versus controller gain

& increases with increasing control gain k, the N curves have similar shapes either plotted

as a function of &, or k. For the saturation plus quantization case, the system is mostly

affected by quantization effects at low control gain, k < 0.5, and operates in the linear region

for k = 0.5 - 2. For control gain greater than k = 2, the system will start experiencing

saturation effects as the output variance asymptotes to its achievable limit as illustrated in

Figure 4-7(a).

This example shows that the system performance can be affected by quantization effects

at low control gains. However, such effects do not limit the system performance the same

way as saturation limitations. If most of the control signal is in the deadzone region of the

quantizer, it is always possible to increase the control gain in order to boost the control

signal outside the deadzone region. Hence, the output variance decreases as the control gain

increases as shown in Figure 4-7(a). If saturation effects are present, the output variance

will asymptote to some limiting value and will not continue to decrease as control gain

increases. In summary, quantization can affect system performance, but it cannot limit the

performance in the same fashion as saturation effects.
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4.6 Stability

Most stability analysis of linear systems with input nonlinearities like saturation are carried

out using deterministic Lyapunov theory, or its close relatives the Circle or Popov criteria.

For example, it is straightforward to show that the system (4.1) is at least locally stable

when dw = 0 provided that A + B 2 K is Hurwitz [34]. The guaranteed regions of local

stability can be further extended by taking into account the "average" linear behavior of

the nonlinear function #, such as using the stochastic linearization N above [21].

Unfortunately, proofs of the above facts rely on the identification of compact invariant

sets for the closed-loop trajectory of the system (4.1). While this technique works in the

deterministic case, in the stochastic case there is a nonzero probability that the disturbance

will push the state out of any specified compact set. Hence such results cannot be used to

assess the stability of a stochastic system with input nonlinearities.

One possible method for avoiding these techniques is to use the stochastic version of

the Lyapunov theorem in Section 4.2.1, to determine conditions under which a stationary

density function can be assured to exist for the nonlinear process. If A itself is Hurwitz, it

is possible to find a positive definite matrix P, such that for any given positive definite Q,

[34]

AP + PAT = -Q. (4.61)

The quadratic Lyapunov function

V = xTPx, (4.62)

then satisfies

£V(x) = XTPAx + XTATPX + XTPB 2#(Kx) + #T(Kx)BTPx + tr {BTPB1}

= xT(PA + ATP)x + 2XTPB2 #(Kx) + tr {BTPB1}

= -XTQX + 2XTPB 2#(Kx) + tr {BTPB1}

-Amin(Q) |IIX2 + 2 |xii iPB2 | 11(Kx)| |+ tr {BTPB 1} (4.63)

where Amin denotes the minimum eigenvalue, the term || is the standard vector 2-norm,

and IPB 2 1 is the induced matrix norm on PB 2 . In this equation, the nonlinear vector

#(Kx) E R"- describes actuator characteristics considered in this thesis, and therefore,

I|(Kx) is bounded due to saturation limitations. In addition, the 2-norm on the nonlinear
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vector is upper bounded by its infinity norm,

||#(Kx)|| < jnu ||#(Kx)||,0

= fi~ max Il = Vuamax,
1<i<nu

where amax is the largest saturation level.

Substituting the above result into Equation 4.63

CV <_ -Amin(Q) 11X11 2 + 2 |xii |PB 2|finiamax + tr {BTPB1}. (4.64)

For sufficiently large ||x I, the second order term dominates and in particular LV becomes

negative, hence Theorem 4.1 is satisfied. This shows that stationary density exists for the

system described by Equation 4.1 when A is Hurwitz and actuator inputs are limited by

saturation.

Interestingly, the above argument does not depend upon the feedback gain K. If A +

B 2NK is not Hurwitz, the local "linearization" becomes unstable. However, the state is

still stochastically stable in the RMS sense (i.e. bounded second moment), by the above

argument, but the state variance may become quite large. One method of bounding this

worse-case variance o,2 is presented here. Applying Young's inequality [47], Equation 4.64

can be written as

LV K -(Amin(Q) - 7) IIXI 2 + 2|PB2 |2 nua 2ax + tr {BTPB1 }, (4.65)

for any positive constant -y > 0. Without loss of generality, let = Amin(Q) = AQ. Substi-

tuting this value of -y into the above equation,

LV < - AQ ||X12 + 2 |PB2|2 nua2 + tr {BT PBi } . (4.66)

The bound on the variance of x can be estimated using Proposition 4.1, and it is given by

XWc = E{x 2} ( PB22namax+tr {BiPB 1} (4.67)

Since the output is a linear combination of the states (y = Cix), an upper bound on the

output variance when A + B 2NK is not Hurwitz is

&2,w E{1y1|2} 5 |C1||2 E{||x112}. (4.68)YWC = {yj 2
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On the other hand, if A + B 2NK is Hurwitz, the local linearization is stable, and the

state variance can be estimated by the prediction tools developed from Section 4.3.3 above:

& = E{j|X| 2} = tr $22 , (4.69)

where $22 is the state covariance matrix which satisfies

(A + B 2NK)$xx + $x(A + B 2NK)T = -B 1Bf, (4.70)

and the stochastic linearization gain N must satisfy the consistency constraints discussed

in Section 4.3.3.

In summary, when the Hurwitz condition is satisfied, the bound on the state variance

is given by Equations 4.69 and 4.70. When the Hurwitz condition is violated, the local

linearization becomes unstable. However, the actual nonlinear system has a stationary

density function, and a bounded output variance given by Equation 4.67, although this

variance is much larger than the state variance obtained when A + B 2NK is Hurwitz. A

graphical representation of the two bounds is shown in Figure 4-8 for a two state system.

All the example problems presented in this chapter do have a controller that satisfies

the Hurwitz condition. However, it is not generally true that A + B 2NK is Hurwitz for an

arbitrary K. The control synthesis suggested in the next chapter will discuss the implication

of the Hurwitz condition in more detail and provide a methodology to ensure that this

property holds true during the control design process.

tX2

x1

Figure 4-8: Spheres with radii defined by the standard deviation of the state. (inner sphere

- satisfies Hurwitz condition, outer sphere - does not satisfy Hurwitz condition)
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4.7 Summary

Given that a stationary density function exists, two methods for steady-state performance

prediction are presented in this chapter. One method is derived from the stochastic Lya-

punov approach and the other is based on stochastic linearization. These methods assume

that the density function is Gaussian and produce a set of dual equations that need to be

solved to analytically estimate the steady-state performance. As a result, the Lyapunov

approach is equivalent to the stochastic linearization technique. Software algorithms are

also presented in this chapter to aid the solution search procedure, and numerous examples

are shown above to validate the analytical performance predictions.

It should be noted that the controllers used in the above examples are chosen somewhat

arbitrarily, since the prediction analysis only requires a stabilizing control design. However,

for the space interferometer missions, the control design must stabilize the ideal optical

geometry to a specified RMS tolerance under random perturbations. In addition, since the

resources are limited onboard a spacecraft, it is necessary to penalize the control effort or

power usage. A control synthesis framework that uses the analytical framework presented

above to characterize actuator constraints, while satisfying RMS performance requirements

and minimizing control effort is presented in the next chapter.
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Chapter 5

Staged Controller Synthesis

The tradeoff attempted in Example 4.3 of Chapter 4 typifies the controller synthesis ideas

examined in this chapter: find a feedback control law achieving a specified level of closed-

loop performance, while minimizing the total required mechanical or electrical power and

taking into account the nonlinearities and bandwidth constraints of the available actuators.

As the examples of the previous chapter have shown, when input nonlinearities are taken

into account the closed-loop performance can diverge substantially from the performance

predicted by linear techniques. Indeed, actuator limitations may even result in a desired

closed-loop performance level being unachievable.

The classical LQR or R2 framework for performing this kind of tradeoff, which uses

linear predictions of the closed-loop performance, is thus unsuitable as a design tool for the

actuator models considered in this thesis. In the development below, extensions of the R 2

framework are examined which incorporate the nonlinear performance prediction techniques

of Chapter 4. The resulting stochastic linearized LQR or "SLQR" methodology is one

possible technique for automating the design of a controller which balances the competing

objectives and limitations of a staged actuation system. Moreover, the proposed control

design technique also provides a system analysis tool that is very useful for examining the

sensitivity of the desired performance to variations in the actuator characteristics.

Gkgek et al. were the first to study the combination of stochastic linearization and

LQR/LQG control, and coined the term "SLQR" to describe the resulting algorithm [21].

Their work extensively studied the case of a single, saturating actuator. Although [21] does

mention the multi-input case, and other types of nonlinearities, the necessary equations and
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solution techniques needed for these situations are not as straightforward as they suggest.

The analysis below formally extends the SLQR methodology to the multi-input setting, and

to the variety of nonlinear actuator models examined above.

Section 5.1 first formally presents the problem statement, and the controller synthesis

theory is developed in Sections 5.2 and 5.3. Numerical techniques for determining the

solution of the coupled equations which describe the desired controller are discussed in

Section 5.4. A series of examples demonstrating the control design methodology, and its

utility as a system design tool, are discussed in Section 5.5. Section 5.6 describes a further

extension to SLQR: saturation weighting, allowing the designer to explicitly influence the

probability of saturation for each of the actuators during operation. Finally, the extension

of the techniques discussed in this chapter to output feedback designs are discussed in

Section 5.7.

5.1 Formal Problem Statement

The dynamics of the stabilization problem examined in this chapter are given by

dx = Ax dt + B1 dw + B 2#(u) dt (5.1)

y = CiX

u = Kx

where #(u) describes the nonlinear characteristics of the actuators, assumed noninteracting

#i(u) = #i(ui) and the generalized A matrix incorporates the dynamics of the optical

system, the actuator bandwidth filters, and disturbance innovations filter as discussed in

Chapter 3. The objective is to find the feedback gains K in order to minimize the following

cost function

J(K) = + p pj&, (5.2)
i=1

As opposed to conventional 72 control, the notation ^ on the variances is used to emphasize

that these quantities will be estimated using the analytical prediction techniques described

in Chapter 4, and hence will capture the effects of the actuator nonlinearities. The param-

eter p > 0 expresses the desired tradeoff between closed-loop performance, measured by the

output variance, and the amount of control power used to achieve a given performance level.

The parameters pi > 0 are used to express the relative importance of each input variance
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in this tradeoff, differentially weighting the use of different actuators, for example to reflect

force/Watt differences in total power consumption.

From the analysis described in the previous chapter, the steady-state variances in the

above cost function can be obtained by solving the following equations:

(A + B 2N(&u)K)bxx + txx(A + B 2N(&.)K)T = -BBi (5.3)

&2 = Kiixx K , (5.4)

oY = tr {CixxCT}. (5.5)

where again the shorthand &u is used for the vector of standard deviations &ul and the

noninteracting assumption on 4 implies that N is diagonal, with Nii(&u) = fi(&ui) =

E{4'5(ui)} as discussed above. This is a set of coupled, nonlinear equations which must be

satisfied simultaneously in order to determine a set of variance estimates consistent with

the assumption of an asymptotically stationary Gaussian distribution on the closed-loop

dynamics.

To move closer to the classical 'H2 terminology, define a performance variable z which

includes the output and control terms in J

C1 0

0 _J D12 _

where D12 is a diagonal matrix with diagonal entries f5p. Using the equations above, the

performance cost can be written as

j = 62

= tr {Ci 122C} + tr {D12 KixxKTD12 }, (5.6)

where t22 is the covariance matrix of the Gaussian approximation to the asymptotic dis-

tribution of x. The objective is to determine the gain K such that the performance cost J

is minimized.

5.2 Saturated 'H2 Controller

One well established linear controller design that minimizes a quadratic cost function similar

to Equation 5.6 is the standard LQR/LQG technique. However, such a technique does not

129



take actuator nonlinearities into account, and therefore, it is necessary to use the prediction

tool developed in Chapter 4 to accurately estimate the resulting closed-loop performance of

the nonlinear system. An example of such an LQR plus stochastic linearization performance

prediction technique, hereafter denoted (LQR+SL), was given in Example 4.3 above. This

section gives additional examples to illustrate the LQR+SL control design methodology,

and identifies several possible drawbacks to this approach.

Consider a single actuator system with dynamics given by:

dx = Axdt+B1dw+B 2 4(u)dt, (5.7)

y = Cix,

where the open-loop system has three poles at -0.01, and hence,

0 1 0

A= 0 0 1

-1 x 10-6 -3 x 10-4 -3 x 10-2

0

B1= B2 = B= 0 C1= 1 2 1
0 2 i]
1

The LQR control design minimizes the following cost function,

J = E jY2(t) + pu2(t)dt
0

= tr {CiE 2C"} + tr {D12KE2xKTD 2}T

In this example, the control weighting parameter p is varied over a wide range. At each

p, a LQR controller is computed assuming that there are no actuator nonlinearities. The

closed-loop output variance of the system with a saturating actuator is then calculated from

the performance prediction tool developed in Chapter 4.

Figure 5-1 (a) shows the output variance as a function of the control weighting p when the

saturation level o = 3. As p decreases, the control usage becomes cheaper, so larger control

command is used to suppress more output variance. Therefore, the closed-loop variance

is an increasing function of p. The probability of saturation corresponding to each control

design is illustrated in Figure 5-1(b). The actuator saturates less than 1% of the time for
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Figure 5-1: LQR + SL controller design: (a) Output variance as a function of p (b) Prob-
ability of saturation as a function of p

p > 4 (&2 - 1.62) and becomes more likely to saturate for smaller values of p, reaching

asymptotically an achievable performance of & = 0.065. By "serially" computing the

LQR gain K, then the corresponding stochastic linearization gain N and the performance

&Y from the methods of Chapter 4, a designer can iterate on p to achieve the required

level of performance. Thus, p offers a mean to "tune" the LQR+SL design for a desired

performance.

Note that a change in the saturation level a will not affect the LQR solution for K, since

the LQR algorithm does not "know" about the saturation. This change in a will, however,

change the performance &y and the probability of saturation 1 - N of the actuator. These

changes reveal a potential difficulty in the LQR+SL design process. Since the LQR control

gain K is computed independent of the saturation level a, and hence of the stochastic

linearization gain N, there is no guarantee that A + B 2NK is Hurwitz. When this Hurwitz

condition is violated, the prediction tool developed in Chapter 4 can no longer be used

to estimate the closed-loop performance. Indeed, the linearized closed-loop system may be

(locally) unstable for a given LQR gain K and saturation level a as discussed in Section 4.6.

To illustrate this phenomenon, the dynamic system presented in Equation 5.7 is again

used here. In this problem, the LQR feedback gain K corresponding to p = 4 is used, and

the effect of different saturation levels a on the resulting closed-loop system is examined.
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Figure 5-2: LQR + SL controller design: real part of closed-loop eigenvalues eig(A+B 2NK)

as a function of saturation levels

For the problem considered, there are a total of three linearized closed-loop poles - one real

and one complex pair. The real part of the closed-loop poles are plotted in Figure 5-2 as a

function of the saturation level a. At smaller saturation levels, the actuator becomes more

likely to saturate, so the probability of saturation increases, or equivalently, N decreases.

A decrease in N causes a decrease in the effective controller gain and pushes the real part

of the closed-loop poles closer to the origin. For a below approximately 1.28, the prediction

algorithm can no longer find N such that the consistency equations of Chapter 4 are satisfied.

Numerical simulations of the above dynamic system are conducted to verify the observed

results. Two saturation levels are chosen for these simulations: one of them is selected to

be 1.285, which is slightly above the critical level (a = 1.28), while the other is set at the

critical level. The simulated system output y for both cases is shown in Figure 5-3(a) and

5-3(b). For the subcritical value of a = 1.285, A + B 2NK is Hurwitz and the observed

variance is close to the predicted value. For the critical value a = 1.28, N has decreased so

that A + B 2NK is no longer Hurwitz, and the system exhibits local instability about y = 0.

It is important to note that y does not actually become unbounded, however, its variance

becomes very large. As discussed at the end of Chapter 4, when A + B 2NK is not Hurwitz,

the nonlinear system is still stochastically stable with bounded second moment, but the

state variance will be much larger than the variance can be obtained when the Hurwitz

condition is satisfied.

In addition to the phenomenon identified above, another potential drawback of the
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Figure 5-3: Numerical simulation of a linear system with saturated LQR control (a) satu-
ration level a = 1.285 (b) saturation level a = 1.28

LQR+SL strategy is in the multi-actuator controller design. To achieve a specified closed-

loop performance using the serial design process outline above, it may be necessary to change

the control weighting pi of each actuator separately to reflect the different saturation levels

of each actuator. However, if pi have been specifically chosen to represent, for example, the

electrical or mechanical power requirements on each actuator, independent adjustment of

each pi in this fashion will not preserve the proper relative control weightings. Consequently

the resulting cost function may not have any physical meaning and may be undesirable for

the specific design objectives.

Thus, rather than designing a controller by LQR techniques, then predicting the per-

formance in a serial fashion, it would seem more sensible to couple the prediction tool

with the controller design process. In such a technique, K would be designed with the

knowledge of the resulting N, enabling the A + B 2NK Hurwitz condition to be continually

maintained. This technique could also automatically accomplish the desired tradeoffs for

a multi-actuator system by directly adjusting the gains in K to account for the different

actuator probabilities of saturation. A control synthesis approach that merges the predic-

tion tool of Chapter 4 and the 'H2 optimization techniques is the focus of the rest of this

chapter.

133



5.3 Stochastic Linearized H2 Controller

The control synthesis problem can be posed as a quadratic (7H2 ) optimization problem,

K = arg min&
K

= arg min (tr {C1$ xCT} + tr {D12KixxKD12 }). (5.8)

and the variances must satisfy the constraints posed by Equation 5.3 and 5.4. The latter of

these can be rewritten as

YiK>XKTYx T = gZ(Nii), (5.9)

where Y is a 1 x n. row vector with 1 in the ith column and zeros elsewhere, and from

Chapter 4, gi(Nii) is defined as the inverse function of Ni, i.e. Nii(&u) = fi(&ui) with 6r, =

gi (Ni) = f-1 (Nii). For nonlinearities where fi is not uniquely invertible, the techniques of

Chapter 4 can be used to split this function into two invertible sections in the search for a

solution.

The above formulation turns the control synthesis problem into a constrained nonlinear

optimization, which can be solved by Lagrange multiplier techniques [90]. For this problem,

the Lagrangian is defined by

= tr {C 12xCtI + tr {D12KtxxKDT2 } + Aj(YjKixxK T Y i - gi(Nij))
i=1

+tr {[(A + B 2NK)xx + xx(A + B 2NK)T + B1B]Q} (5.10)

where Q and Ai are Lagrange multipliers. Differentiating T with respect to K, Nij, $2,

Q, and Ai respectively, the following necessary equations are obtained for the minimizing

solution:

- 0 => {NB2Q + [D 2 D 1 2 + Z u AjYTY ]K}$XX =0,

or {NB2Q + <bK}ixx = 0 (5.11)

where <D = [D 2D 12 + A] is diagonal with ppi + Ai on the ith diagonal, and A is a diagonal

matrix with elements Ai. Next, from T = 0 =>

B2TQtxxKT - A=g (Ni) - 0, (5.12)2i 1 gi'(Aii)
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where B 2i is the ith column of B 2 , g(-) is a function of Nei only, and g'(Nii) is the partial

derivative with respect to Nij. Next for 4 = 0

flu

(A + B2 NK)TQ + Q(A + B 2NK) + KT (D2D12 + AiYiTYi)K + CTC1 = 0.
i=1

This expression can be simplified using the definition of 4

(A + B2NK)TQ + Q(A + B 2NK) + KT QK + CTC1 = 0. (5.13)

Finally, the derivatives of 1 and = 0 recover the two constraint equations given by

Equation 5.3 and Equation 5.9, respectively.

The optimal controller is found by solving Equation 5.11,

K = -D- 1 NB2 Q. (5.14)

Substituting Equation 5.14 into Equation 5.13, a Riccati equation describing Q is found,

ATQ + QA - QB2 N~b-NTB'Q + CTC1 = 0. (5.15)

Substituting Equation 5.14 into Equation 5.3, the closed-loop Lyapunov equation can be

written as

(A - B 2 N- 1NBTQ)$xx + $x(A - B 2NQ--1 NBTQ) T + B 1B=T 0. (5.16)

Pre- and post-multiply Equation 5.11 by Y and KTYIT,

YK~XXKTYrT + YiNB'QxxKT iT = 0

(pp + )YKxx i + NBQXXK = 0.

By substituting in Equation 5.9 and Equation 5.12 for the first and second term in the

left-hand-side of the above equation, an equation relating Ai and Ni is found

A Ni + ppi gi(Ni) = 0. (5.17)
9i( Nii ) + Njigil( Nii )

Finally substitute Equation 5.14 into Equation 5.9 to obtain

Yi- 1 NB QXXQB 2Nk-Y( T - g|(Nij) = 0. (5.18)

The five equations, or necessary conditions, (5.14)-(5.18) must be simultaneously satis-

fied in order to find the minimizing solution to the constrained optimization problem. Due
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to the similarity between this optimization problem and the standard LQR problem, the

resulting control design is referred to as the stochastically linearized (or, given the duality

demonstrated in Chapter 4, the stochastic Lyapunov) LQR technique - SLQR for short

[21].

A stability related note should also be made here. Recall in the previous chapter, the

stochastic Lyapunov performance analysis requires that A+B 2NK be Hurwitz. Since N is a

diagonal matrix with elements in (0, 1], it does not change the controllability/stabilizability

or observability/detectability of the system. If the system (A, B 2) is stabilizable and de-

tectable, the Riccati equation (5.15) has a positive semi-definite, stabilizing solution for any

given N [91]. As a result, the SLQR control synthesis procedure ensures that A + B 2NK is

Hurwitz, and hence the performance prediction technique developed in the previous chapter

can be used.

5.4 Multi-input SLQR Solution Methods

Solving the coupled nonlinear equations (5.14)-(5.18) is a nontrivial task. There are algo-

rithms available to aid the solution process in MATLAB or other numerical programming

packages, but most of them require explicit computation of the gradients with respect to

unknowns (K, Nij, t22, Q, and Ai). Since the above equations are coupled, the associated

gradient equations also turn out to be a coupled set of nonlinear equations which cannot be

solved explicitly. As a result, algorithms that do not require gradient information must be

used to solve this problem. The standard MATLAB algorithms for this situation have not

proven sufficiently robust to reliably find a consistent solution, and even simulated annealing

[35] has difficulties converging.

A numerical solution procedure is relatively straightforward for systems with a single

input for which the nonlinearity # is a simple saturation. This is the case studied in [21].

In such a case, the N function is a strictly decreasing function of &,, and a simple bisection

algorithm is sufficient to solve the problem. This idea can be extended to single input

problems with non-monotonic N curves, such as the saturation plus quantization and/or

resolution nonlinearities. In this case the N curve can be divided into two halves: the

"resolution" side, on which the N curve is a strictly increasing function of &,, and the

"saturation" side, on which the curve is a strictly decreasing function of &,. The bisection
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algorithm can then be used to find a possible solution on either side of the N curve. If a

solution exists on both sides of the curve, i.e. all five necessary conditions are satisfied, the

solution with the lowest cost J is the solution.

Bisection does not extend to a multi-input problem. As discussed above, the coupling

of the input variances through the gain matrix K means that independent line searches on

d21 will not generally be sufficient to find a solution to the necessary equations. Instead, an

iterative, exhaustive search algorithm similar to the one described in Chapter 4 is used in

this thesis for the general problem. This section outlines the application of this method to

the solution of the necessary equations (5.14)-(5.18).

1. Discretize the possible set of Ni into a grid of points between 0 and 1. Each of these

points corresponds to a "trial" gain matrix N.

2. Compute the diagonal elements of A for each N using Equation 5.17.

Ai + -- P g(A) = 0.
gi(ii) + Siig'(5ii)

3. Solve the Riccati equation given by Equation 5.15 at each grid point with associated

values of N and A.

AT Q + QA - QB 2$<bNB1 Q + CC 1 =0,

where b = (A + DT2 D12).

4. Find the optimal controller at each grid point (Equation 5.14)

K = -(b 1NB2Q.

5. Solve for the closed-loop Lyapunov equation (Equation 5.16

(A + B 2$K)bxx + x A B 2 $K)T + B 1 BT = 0.

6. Check the consistency constraint for each control variance (Equation 5.18)

YiKhxxKTYrT - g (Nji) = 6j,

where bi is an error measure on how close the consistency constraint is satisfied. The

quantity 6 is the ith component of the vector 6, which has a length equal to the

number of actuators.
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7. Compute the 2-norm of the vector 6 at the current grid point N.

8. Repeat the above steps for each grid point, then determine which grid point has the

minimum 6.

9. Refine the grid for N around the location of minimum 6 and repeat steps 2-8 until 6

is less than a specified tolerance e.

Similar to the single actuator case, when both saturation and resolution or quantization

are considered, the algorithm has to check for solutions in two possible regions of each

actuator. For example, if two actuators are used, there are a total of four possible solution

regions: (resolution region of ui, resolution region of U2 ), (resolution region of u1 , saturation

of U2), etc. The solution from these four possibilities with the lowest total cost is then the

SLQR solution.

For a given plant, actuator model, and relative control weightings pi let [K, i]=SLQR (p)

denote the solution to the necessary equations determined from the procedure above. The

predicted closed-loop performance obtained using control law u = Kx is then

o-, = C1$22CT (5.19)

assuming a single output for clarity. The main control objective is to meet a specific

performance requirement, o-y c-y,target. To meet this target, the overall control weighting

parameter p can be iterated until the desired performance is achieved. Since the performance

can be shown to be a monotonic function of p for the problems considered, a bisection

algorithm on p can be used to conduct the performance iteration, iteratively calling SLQR(p)

until the performance target is achieved. As a result, the optimization algorithm has two

loops - the inner loop searches for the solution to the above consistency equations and the

outer loop performs p iteration until the desired performance is achieved. Sample MATLAB

code that implements these two loops is shown in Appendix C.

5.5 Example Applications and Design Tradeoffs

This section presents a number of simple example problems to illustrate the SLQR solution

technique. The examples serve to highlight the differences between SLQR and classical

LQR, as well as illustrating the ways that SLQR analysis can be used for system design
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tradeoff analysis. The examples below are based on the simple mass-spring systems exam-

ined in the previous chapter. Chapter 6 will explore in greater detail application of the

SLQR methodology to space interferometry systems.

5.5.1 Single actuator problem

Consider again the single spring-mass system

mz + c1+ kx = #(u) + d,

with input control force u and disturbance force d, assumed to have units of Newtons, and

here suppose m = 1, c = 1.26, k = 3.95 x 103 , which corresponds to an open-loop natural

frequency of 10 Hz with 1% damping. For this problem, # is a saturation nonlinearity, with

saturation level a = 1.

The disturbance innovations filter is a second order low pass transfer function

Fdw2
d = Gw(s)w = w + ,

S2 2d~ +Wd

where w is the zero-mean white noise, Fd controls the intensity of the disturbance, Wd is the

disturbance corner frequency, and (d is the effective disturbance damping ratio. The values

of these parameters are Fd = 0.45, Wd = 50 Hz, and (d = 0.01 in this example; the PSD of

the disturbance is shown in Figure 5-4(a). The controlled output of the system is defined

as the position deviation of the mass. The open-loop transfer function from disturbance w

to the output deviation y is plotted in Figure 5-4(b).

Example 5.1 p variations

In this study, the overall control penalty p is varied over a wide range in order to visualize

the tradeoff between predicted closed-loop performance &Y and corresponding control input

&,. A secondary objective is to quantify the accuracy of the SLQR predictions, by comparing

the predicted output and control variances with those computed by numerically simulating

the nonlinear closed-loop dynamics.

The solid line shown in Figure 5-5(a) illustrates the output variance &2 obtained fromy

the SLQR prediction as a function of p. As the control penalty decreases, the algorithm

permits greater control usage which in turn permits smaller output variances. Hence & is

an increasing function of p. However, the control input cannot grow arbitrarily large due
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Figure 5-4: (a) Disturbance spectrum of the single actuator problem (2) Open-loop transfer

function from disturbance w to controlled output y

to saturation limitations. As a result, the achievable performance is limited; that is, there

is an asymptotic value of &2 below which the output variance cannot be decreased.
y

Figure 5-5(b) shows the 1 - N curve, which is also the probability of saturation in this

case. As p decreases, the input to the actuator increases, and the actuator becomes more

and more likely to saturate. As 1 - N approaches 1, the actuator is saturating almost all

the time, and hence is approaching a "bang-bang" operating limit, in which it is operating

in saturation virtually 100% of the time. The output variance achieved in this "bang-bang"

control limit is approximately 3.6 x 10-4, and represents the achievable performance limit

for this system.

From a systems perspective, Figure 5-5(a) and Figure 5-5(b) can be used in conjunction

to make design decisions. For example, the performance curve flattens at p ~ 10-7; very

little performance improvement is gained by further decreasing p. For this value of p, the

actuator saturates about 55% of the time. Decreasing p to 10-6, for example, results in a

design with approximately 10% more output variance, but almost a 50% decrease in the

probability of saturation (down to 0.3, or 30% of the time).

The dashed line in Figure 5-5(a) illustrates the output variance computed from numerical

simulations as a function of p. The predicted SLQR solution agrees reasonably well with

the numerical simulation results, and the maximum difference between the two performance
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prediction methods is less than 8 %.

Finally, a family of classical LQR controllers are designed for this example problem,

assuming that there are no saturation effects <(u) = u. The expected linear output variance

from the LQR control design is shown as a dashed line in Figure 5-6(a), and the SLQR results

are plotted as a solid line for comparison. If the LQR controller is used in the system with

actuator nonlinearities, the performance of the closed-loop system may be estimated by

exhaustive numerical simulations or the performance prediction tool developed in Chapter 4.

The second technique can obtain results much faster than the first, and it is the LQR+SL

design methodology as discussed in Section 5.2. The LQR+SL estimate of output variance

is illustrated as a dotted line in Figure 5-6(a).

For large control weighting (p > 2 x 10-5), all three curves lie closely together, indicating

that the actuator operates mostly in its linear region. Comparisons between each pair of

the three curves are made in order to reinforce ideas previously discussed or to add insights

to the different control design schemes:

" Comparison between SLQR (solid) and LQR (dashed) - Since the LQR method does

not take saturation into account the curves diverge sharply as p decreases below 2 x

10-5, which from Figure 5-5(b) is when the actuator begins to saturate an appreciable

fraction of the time. The LQR design indicates that arbitrarily small output variance

can be obtained, while the SLQR design illustrates the performance is limited due to

saturation effects.

" Comparison between LQR (dashed) and LQR+SL (dotted) - The LQR variance devi-

ates greatly from the LQR+SL prediction for p < 10-5, since it does not account for

saturation effects. This phenomenon again demonstrates that the expected system

performance may differ significantly from the actual performance when saturation

effects are ignored.

* Comparison between SLQR (solid) and LQR+SL (dotted) - The output variance

estimated from the LQR+SL technique is significantly worse than the SLQR solution

for small values of p (less than 10-), and the variance of LQR+SL continues to

deteriorate as p decreases. There is a small region around 4 x 10-7 where the LQR

controller can obtain the achievable performance that the SLQR controller recovers in

the cheap control limit (p -+ 0). For this single actuator problem, it is possible to use
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the analysis tool to find an appropriate LQR controller which achieves similar level of

performance as the SLQR design. In this case, A + B 2NK is Hurwitz for each of the

LQR designs studied, however, the Hurwitz condition will not always be satisfied, as

discussed in Section 5.2.

z

Control penalty (p)

(a) (b)

Figure 5-5: Single actuator examples: (a) Output variance as a function of p (b) Probability

of saturation as a function of p
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Figure 5-6: Single actuator examples: (a) Output variance computed from

and LQR+SL techniques (b) Control variance as a function of p
SLQR, LQR,
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Example 5.2 Effects of saturation

This example studies the effect of the saturation level. For each saturation level, the

desired closed-loop control is to reduce the open-loop RMS &y by a factor of 2, so the

closed-loop &Y = 0.0024. Instead of using p as a design parameter, it is iterated until the

specified performance is achieved. In Figure 5-7(a), both N (dashed line) and 1 - N (solid

line) are shown. In this case, 1 - N is the probability of saturation, and as shown this

quantity decreases as a1 increases. If the actuator has a saturation level greater than 1.6,

the desired closed-loop performance can be achieved without saturating the actuator.

Recall that u is the ideal control command, and v is the actual control signal acting on

the system. The estimated &u (solid) and &v (dashed) are plotted in Figure 5-7(b). Under

the stochastic linearization framework, v is approximated by Nu, so &, ~ N&s. In this

figure the level of o-, required to achieve the same closed-loop performance remains constant

regardless of the saturation level. However, o-. increases as saturation level decreases. Since

the SLQR algorithm takes saturation nonlinearities into account during the gain design

phase, it automatically adjusts control gain as a function of the predicted N, so that the

net control input acting on the plant remains the same.

Combining the results of this example with the p variation analysis of the previous

example, the tradeoff among performance, saturation level, and probability of saturation for

this system may be summarized on a single plot. Figure 5-8 shows the contours of constant

1 - N (probability of saturation) as a function of the RMS output level o-, and saturation

level a. The heavy solid line in the plot represents the achievable performance limit for each

actuator size. Below this line are unachievable combinations of performance and actuator

size; above it, the contour lines show the degree of saturation necessary for a particular

actuator size to maintain a target performance. Above the last contour line, actuators are

essentially working in their linear regions to maintain the corresponding performance levels.

Note that Figure 5-7(a) is essentially a "slice" through this contour plot, along a line parallel

to the a axis at a height of &y = 2.4 x 10-.

Such a plot can be an important design aid when selecting an actuator. Given a target

performance level, for example &y = 10-, following a line parallel to the a axis shows

that achieving this performance requires an actuator with at least 2.2 N maximum output,

although this actuator will be saturating virtually 100% of the time. If the actuator can

be selected to have 4 N maximum output, the 10-3 performance can be maintained with
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virtually no saturation. Alternately, for the 2 N actuator, if the performance requirement

can be relaxed to closer to 2 x 10--3, this actuator can provide that level of performance

with again no saturation. Of course, different sized actuators will likely also have different

bandwidths, complicating the tradeoff analysis, but this simple example suggests the utility

of the SLQR analysis for automating certain aspects of a system design study.

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
a (Saturation level)

(a)
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Figure 5-7: Saturation effects of a single actuator: (a) 1- N and N as functions of saturation

level a (b) RMS control &, and &, as functions of saturation level a
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Figure 5-8: Contour plot of probability of saturation (1-N) as a function of performance

and saturation level
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Example 5.3 Effects of bandwidth

In this example the effects of actuator bandwidth are studied. The single, spring-

mass system is representative of a simple actuator model, assuming that the bandwidth

is characterized by the natural frequency of the second order filter (Wn), and the mass is

the load on the actuator. For this case study, the control objective is again to reduce the

open-loop RMS output deviations by a factor of 2 to &Y = 2.4 x 10-3. The saturation level

chosen for this problem is 2.5, so that the nominal system is not affected by saturation

effects. The probability of saturation (1 - N) of the nominal system with a bandwidth at

on = 10 Hz is approximately zero as illustrated in Figures 5-7(a) and 5-8

Figure 5-9(a) and Figure 5-9(b) show the probability of saturation and &. as functions

of wn, respectively. Not surprisingly, as the bandwidth decreases, more control input is

required in order to achieve the specified closed-loop performance. As this input increases,

the actuator will become more likely to saturate, and thus, both o, and 1 - N increase as

bandwidth decreases. Both curves asymptote to a limit around 2 Hz, which suggests that

when the actuator bandwidth is lower than this level, the desired performance cannot be

achieved with a 2.5 N actuator.

The limitation in achieving the desired performance is due to saturation effects. If there

is no saturation limit, as the bandwidth decreases the actuator could maintain the necessary

control authority over the motion of the mass by correspondingly increasing the magnitude

of the inputs to the actuator. However, when saturation effects are present, there is an upper

limit to the increased input which can be used to compensate for the decreased bandwidth,

up to the "bang-bang" limit of the actuator, occurring when 1 - N approaches 1. Thus,

the interaction between saturation level and actuator bandwidth also plays an important

role in the multi-actuator problem, as the examples below will further demonstrate.

Example 5.4 Effects of resolution

Resolution is another parameter that can affect the system performance in addition

to saturation and bandwidth. To study resolution effects, saturation and bandwidth are

fixed in the problem above as a = 2.5 and Wn = 10 Hz. The objective of the closed-loop

controller is to again attenuate the open-loop RMS output by a factor of two, corresponding

to a closed-loop output standard deviation of about 2.4 x 10-3.

Figure 5-10(a) shows N as a function of resolution level. Recall that the resolution level

r indicates the width of the deadzone around the zero input level in the actuator response.
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Figure 5-9: Bandwidth effects of a single actuator: (a) 1 - N as a function of the actuator
bandwidth (b) RMS control &, as a function of actuator bandwidth

When resolution is taken into account, 1 - N is no longer precisely the probability of

saturation, at least for small &,, but N is still a measure of the linearity of the system.

When N is close to 1, the system operates almost linearly and #(u) ~ u. As &u decreases,

however, N decreases, indicating that a larger fraction of the actuating signal lies in the

resolution deadzone and hence transmits no force to the mass. Figure 5-10(a) illustrates

that the parameter N decreases as the deadband size increases.

The amount of RMS control used to achieve the desired closed-loop performance is

shown in Figure 5-10(b), and is seen to be a monotonically increasing function of deadzone

size. As the deadzone size increases, a wider range of actuator inputs become ineffective

in applying force to the system. Hence SLQR generates larger actuator inputs &, in order

to meet the performance requirements. Physically, rather than "wasting" control effort

(electrical power, etc) driving the actuator with input signals that produce no effect on the

plant, the SLQR algorithm increases the actuator input to keep a sufficient fraction of the

input above the deadzone level. This example also shows how the SLQR algorithm again

automatically adjust the control gains to compensate for nonlinear characteristics of the

actuator.

Note that the effects of resolution are negligible in this analysis if the deadzone size

is less than about 10% of the saturation level (r < 0.25). Experimentation with similar

examples suggests that this is a useful rule of thumb for system design, although it should
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Figure 5-10: Resolution effects of a single actuator: (a) Gain N as a function of the resolu-
tion level (b) RMS control & as a function of the resolution level

be checked formally using the above techniques for any particular application.

5.5.2 Two-actuator sample problem

This second set of example problems examines two actuators acting on a spring-mass system

similar to the above plant, here taken to be critically damped with a natural frequency of

50 Hz. The dynamics of the overall system are the same as the "two-state, two-input"

example problem used in Example 4.3. The disturbance spectrum is again modelled as

a second order system (Fd = 5, (m = 0.707, Wd = 10 Hz), but in this example entering

the plant at its output. Filters Ga, and Ga2 capture the bandwidth of each of the two

actuators, and are modelled here as damped second-order systems with natural frequencies

Wai = 2 Hz, Wa 2 = 20 Hz respectively. The saturation characteristics of each actuator were

modelled; one actuator saturates at ai = 100 and the other at a2 = 5. Resolution and

quantization were not modelled in this example. The actuator characteristics above were

selected to reflect a typical staged actuation system, with one high bandwidth actuator of

limited force output, and a second lower bandwidth actuator with significantly more force

output.

The controlled output of the system is again the position deviations of the mass. The

magnitude of the open-loop linear transfer function from disturbance to output is plotted

as a solid line in Figure 5-11. The transfer functions from actuator 1 and actuator 2 to
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Figure 5-11: Linear open-loop transfer functions: from disturbance input to output (solid-

line); from actuator 1 to output (dashed line); from actuator 2 to output (dashed-dotted

line)

the output are illustrated as a dashed line and a dashed-dotted line, respectively, in this

figure. Clearly the first actuator has more authority on output deviation at low frequencies,

but it has a smaller bandwidth than the second actuator, and hence is much less effective

at higher frequencies. At high frequencies, the second actuator has almost an order of

magnitude greater authority over the motion of the mass than the first actuator.

The Bode diagrams suggest a natural "hand-off" frequency between the two actuators at

around 6 Hz. Below this frequency, actuator 1 has more authority on the output, and above

this frequency, actuator 2 has more authority. Without saturation limitations, of course,

either actuator acting in isolation could bring the output RMS to below any desired level,

simply by using sufficiently large feedback gains. However, with the assumed saturation

properties, there is a limit to the output of each actuator, and hence the two actuators will

have to collaborate in order to suppress broadband disturbances. This is the essence of a

staged control system, and the examples below illustrate how SLQR helps to automate the

design process for such a system.

Example 5.5 p variations

Similar to the single actuator example, the overall weighting p on the control cost is

varied over a large range to examine the behavior of the performance output &y and the

control effort &, of each actuator. The relative control weightings p1 and p2 are set to

148



1 here to penalize the actuator usage equally. The closed-loop output variance & using

the SLQR control design is shown as a solid line in Figure 5-12(a), and it is an increasing

function of control penalty p. The output variance asymptotes to about 100 in the cheap

control limit due to saturation limitations. The dashed line in this figure illustrates the LQR

variance prediction; since this prediction ignores saturation effects, the variance estimate

can approach 0 as p decreases.

If the LQR control design were used in the system with saturation actuators, the stochas-

tic Lyapunov or stochastic linearization (SL) technique may be used to predict the output

performance of the closed-loop system. As presented in Section 5.2, this predicted per-

formance is denoted by LQR+SL and is plotted as a dotted line in Figure 5-12(a). The

LQR+SL output variance first decreases with p but starts to increase when p becomes less

than 104; increasing the control gain using the LQR design actually degrades the perfor-

mance of the system. For this problem, it is interesting to note that there is no case where

the LQR design out performs the SLQR design.

The probability of saturation of the SLQR and LQR+SL designs are shown in Figure 5-

12(b) as solid and dotted lines, respectively. There are two curves for each control design,

corresponding to the probability of saturation of each of the actuators. Clearly the LQR

design is not aware that actuator 2 is in saturation for more than 90% of the time, and

attempts to use it as much as possible. Since actuator 2 cannot deliver the authority com-

manded by the LQR design, the system performance (dotted line) is significantly different

from the expected performance (dashed line) as shown in Figure 5-12(a).

One could argue that the LQR+SL performance can be improved by adjusting the

relative actuator weighting pi in the cost function, so actuator 2 does not operate near

saturation for most of the time. Such a procedure can certainly be accomplished by having

the control designer adjusting the actuator penalty at each design point and use the anal-

ysis tool developed here to determine if the probability of saturation is adequate for each

actuator. In fact, the designer may use any technique, not just LQR, together with the

analysis tool of Chapter 4 to synthesize the desired controller. However, it may be desirable

to specify the relative control weightings in the cost function according to metrics such as

the electrical power usage. If these weightings are varied as tuning knobs to find the desired

performance, the resulting cost function does not retain the intended control cost metrics

and becomes nonphysical.
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Figure 5-12: Two actuator example: (a) Output variance &2 as a function of control penalty

p. (b) RMS control input 6, as a function of p

The SLQR technique suggested here is a desirable option to accomplish a large number

of trade studies quickly and is capable of maintaining the relative control weightings in the

cost function while searching for the desired solution. It takes disturbance and actuator

properties into account, and thereby, systematically creating optimal staged controllers

without the need of a designer to constantly tune the controller parameters. The utility of

SLQR technique on multi-actuators are demonstrated in the following examples and applied

to the pathlength control problems in the next chapter.

Example 5.6 Variations in saturation level 1

In this example, SLQR is used to examine the effect of variations in the saturation level

of actuator 1 is examined, with the saturation level of actuator 2 fixed at a2 = 5. The

control objective here is to reduce the open-loop RMS output deviations by a factor of 2,

resulting in a target closed-loop output standard deviation of about 12. The cost function

places equal weight on each control variance, p1 = P2, and the overall control weight p is

iterated until the desired closed-loop performance is obtained.

As the saturation level of actuator 1 increases, both actuators become less likely to

saturate as shown in Figure 5-13(a) and (b). Actuator 1 almost never saturates when its

saturation level is greater than 140. However, the probability of saturation for actuator 2

asymptotes to about 0.6 as al increases. Since actuator 2 is more effective in the higher

frequency region, it is less costly to work actuator 2 harder at those frequencies in order to
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Figure 5-13: Saturation effects of actuator 1: (a) 1 - N as a function of saturation level a1
(b) RMS control input &u as a function of saturation level ai

attenuate high frequency disturbances.

Notice that the disturbance has appreciable energy in the high frequency region where

actuator 2 has a factor of 10 greater authority over the motion of the mass than actuator 1.

Suppressing the effects of the disturbance in this band would thus require approximately 50

N RMS input from actuator 1, as compared to the 5 N RMS or so used by actuator 2. Since

the control variance terms are weighted equally in the cost function, SLQR opts to use the

smaller actuator more, despite the fact that this puts the actuator into saturation a high

percentage of the time. Relatively weighting the variance terms would be one way to alter

this tradeoff; Section 5.6 will explore a more direct method of influencing the saturation

levels of the ultimate design point if this is desired.

Finally, note that the saturation curves levels off after ai ~ 100. Increasing the satu-

ration level of the first actuator beyond this point will not cause much additional change

in the saturation state of either actuator to maintain the target performance level. The

nominal value of ai = 100 will be used in the examples which follow.

Example 5.7 Variations in saturation level 2

In this example, the saturation level of actuator 1 is fixed at 100, and the SLQR al-

gorithm is used to examine the effects of decreasing the saturation level of actuator 2.

Figure 5-14 shows that as the saturation level of actuator 2 decreases, the probability of

saturation of both actuators increases. This result demonstrates that if the second actuator
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Figure 5-14: Saturation effects of actuator 2: 1 - N as a function of saturation level a 2

has smaller saturation level, the first actuator will have to work harder in order to meet the

closed-loop performance requirements. In addition, the probability of saturation of actuator

1 increases more steeply as a2 decreases than actuator 2, since it is not as effective at the

high frequency region.

Example 5.8 Effects of bandwidth

Another factor that may cause actuator 1 to work harder is a decrease in bandwidth

of actuator 2. In this example, the bandwidth of actuator 2 is decreased from the nominal

20 Hz to the bandwidth of actuator 1 set at wni = 2 Hz. The saturation levels of both

actuators are fixed at ai = 100 and a2 = 5. The target closed-loop performance is to reduce

the open-loop RMS output by half in each of the cases.

Figure 5-15(a) shows the probability of saturation, and Figure 5-15(b) shows the RMS

control (ou) of both actuators as functions of Wn2. The solid and dashed lines show the

responses for actuator 1 and actuator 2, respectively. As the bandwidth of actuator 2

decreases from the nominal 20 Hz, actuator 1 starts to work harder and becomes more

likely to saturate in order to maintain the same level of performance. With less authority at

higher frequencies, actuator 2 also has to work harder as its bandwidth decreases; however,

the amount of change is not as drastic as actuator 1. In addition, when Wn2 decreases below

6 Hz, actuator 2 is used less since it no longer has a bandwidth advantage over actuator 1.

When both actuators have the same bandwidth, they each saturate about 55%-60% of the

time.
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Figure 5-15: Bandwidth effects of actuator 2: (a) 1 - N as a function bandwidth Wa2 (b)
RMS control input 6, as a function of bandwidth Wa2

Additional examples and tradeoff studies for multi-input systems will be conducted for

space interferometer systems in Chapter 6. The following sections examine some useful

additional extensions of the SLQR methodology.

5.6 Saturation Weighted SLQR

In addition to penalizing the RMS control input &,-, other cost metrics can also be added

to the optimization problem introduced in Section 5.1. For example, another important

metric on control effort is how frequently the actuator saturates. Due to mechanical fatigue

or duty cycle limits, it may be desirable to limit the saturation of a subset of the actuators

in a multi-input problem. Alternately, it may be desirable to saturate the actuators equally,

so that one actuator does not fail due to mechanical or material failure before the other

one.

In those cases where quantization effects are negligible as compared to the saturation

effects, or when quantization can be modelled as additive noise, it is reasonable to model

saturation as the only nonlinearity. In such a case, the linearization gain N provides an

estimate of the probability of saturation (Psat = 1-N) of the actuator. In order to explicitly

penalize the probability of saturation, it is possible to directly include this parameter in the
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cost function:

nu nu

J(K) = &+ p ib + (vi [1 - Ni(&u)]
i=1 i=1

= tr {C 1 xxCT + tr {D12KtxxKTD12 + vi (1 - Nii),
i=1

Psat,i

where vi adjusts the penalty on the probability of saturation of the ith actuator, and DT2D12

is again a diagonal matrix with elements ppi that penalize control usage. The optimization

problem is again formulated as

K = arg min J(K) (5.20)
K

with constraints given by Equations 5.3 and 5.9. The Lagrangian is formed by extending

Equation 5.10 to incorporate probability of saturation parameters,

x= tr {C 1RC1} + tr {D 12KRKD12 } + vi(1 - Nii) (5.21)
i=1

+tr { [(A + B 2NK)$xx + $xx(A + B 2NK)T + BiBi|Q
flu

+ Ai(YKRKi g -gN,,))
i=1

where Q and Ai are the Lagrange multipliers associated with the constraint equations.

Taking the first partial derivative of T with respect K, Nii, Q, t, and Ai and setting

them equal to zero, a set of nonlinear algebraic equations is obtained:

K = -<b- 1 NB2 Q (5.22)

Ai + 0.5viNii + ppig{2 (Nii) 0 (5.23)
Ag +J= 0 (5+23gi{ Nii ) + Nii gi( Nii )gj( Nii )

ATQ + QA - QB 2N-7NTB'Q + C1C1 = 0 (5.24)

(A + B 2NK)ixx + $xx(A + B 2 NK)T + B 1BT = 0 (5.25)

YiKRK T Y T 
- gi(Nii) = 0 (5.26)

The derivation of these equations is shown in Appendix A. This set of equations is similar

to the ones obtained in Section 5.3. The only significant difference is Equation 5.23 that

describes the coupling between Ai and Nii. The same numerical algorithm described in

Section 5.4 can be used to find the solutions to the above equations.
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Figure 5-16: Effect of penalty on probability of saturation of actuator 2 (a) 1 - N as a

function of V2 (b) RMS control input & of each actuator as a function of v2

To illustrate the utility of this modification, consider the two-actuator problem presented

in the previous section. The same plant, disturbance, and actuator dynamics models are

used, with the saturation levels set at ai = 100 and a2 = 5. Recall that for these saturation

levels, the probabilities of saturation found in the previous example are 1 - N1 = 0.09 and

1 - N2 = 0.66. The controller design is iterated on p to achieve the same closed-loop RMS

performance o as above.

The only variable in this case is the additional penalty on the probability of saturation.

The penalty on 1 - N 1 , vi, is fixed at 1, and the penalty on 1 - N 2 , v 2 , is varied over

a range. Figure 5-16(a) shows the 1 - N curve for each actuator as a function of v 2 ;

the solid line and dashed line represent actuator 1 and 2, respectively. As the penalty on

1- N 2 increases, the probability of saturation of actuator 2 decreases, which is the expected

result. It is interesting to note that by saturating actuator 1 slightly more, the probability of

saturation on the second actuator can be greatly reduced while maintaining the same closed-

loop performance. Since actuator 1 has much larger maximum force output, increasing its

probability of saturation slightly allows a dramatic reduction in the probability of saturation

of actuator 2.
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5.7 Output Feedback Designs

The above analysis assumes that the entire state vector x is available for feedback in the

closed-loop system. This is almost never the case in practice, since it is often not possible to

measure all the states in the system, and certainly the disturbance states in the innovations

filter are fictitious and cannot be measured. As a result, the above technique must be

extended to utilize only output feedback. The extension to output feedback from the SLQR

control design for a single saturating actuator has been presented by G6kgek [21]. As with

the basic SLQR technique above, the output feedback results are extended in this section

to incorporate multiple actuators and more general actuator nonlinearities.

The general system dynamics can be summarized as

= Ax + B1 w1 + B2 4(u)

z = X + U (5.27)

0 .D12_

ym = C2x+D 2 1w2

where z is the performance variable that contains the controlled output, y = Cix, and the

control penalty, D1 2u. The measurement output is denoted by ym. The state disturbance is

wi, and the measurement noise is w2, assumed to be uncorrelated, zero mean, unit-intensity

white noise processes. The intensity of wi and w2 can be changed by changing the values

of matrices B 1 and D 21 , respectively.

A general form of an output feedback controller for this system is [91]

Xc = Acxe - Bym (5.28)

u = Kxc (5.29)

The objective is to find a control design (Ac, Bc, K) that minimizes the cost:

nlu

J(K) = 2 p
i=1

= tr {C1 2CT} + tr {D12K$.CXxKTD12 - (5.30)

The derivation in Appendix B shows that the optimal controller is given by

Ac = A + B 2NK + BeC 2 (5.31)
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BpT - (5.32)Bc = -PC(D21D21)-1(.2

K = -4- 1 NBIQ, (5.33)

where Nji = f(&), <P = Df2 D 12 + A, and (N, P, Q, R, S, A) are solutions to the following

nonlinear set of equations,

ppigi (Nij)
,i+ g i(N ii) + = 0 (5.34)

AP + PAT - PC2T(D 21DT)-'1 C2 P + B 1B[ = 0 (5.35)

ATQ + QA - QB 2NT 1 NB"Q + CTC 1 = 0 (5.36)

(A + B 2NK)R + R(A + B 2NK)T + PC2T(D 21D2i) 1 C2 P = 0 (5.37)

(A + BeC2 )TS + S(A + BcC2) + QB 2N4- 1NBTQ = 0 (5.38)

YjKRK T Yi - (g,(N,,)) 2 = 0 (5.39)

which again represent a coupled set of nonlinear equations which must be solved simulta-

neously. A numerical algorithm for accomplishing this is discussed in the next section. Due

to the similarity of the above control design and the standard LQG problem, the solution

of the above optimization problem is referred to as the SLQG control design.

5.7.1 Numerical solution procedure for SLQG

Comparing the SLQR and SLQG problem, there are two additional equations that must be

solved in the SLQG design. Numerical algorithms similar to that used in Section 5.4 can

be extended to solve the above nonlinear equations.

1. Discretize the possible solutions Nii into a set of grid points between 0 and 1.

2. For each point in the grid form a trial solution N.

3. Compute the diagonal elements of A for each N using Equation 5.34.

Ai +- p 9g (N) -0
gi(Nii) + gj(Nii)

4. Solve the "control" Riccati equation given by Equation 5.36 at each grid point.

AT Q + QA - QB 2$<-1'BQ + CTC1 -0

where <b = (A + Di2D 12 ).
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5. Find the optimal controller gain K at each grid point as defined by Equation 5.33

K = -<kNB2Q.

6. Solve the "observer" Riccati equation given by Equation 5.35

AP + PAT - PC2(D 2 1D -C 2P + B 1 BT = 0

7. Find the optimal observer gain B, (Equation 5.32)

B, = -PC2T(D21D2)1

8. Solve the closed-loop Lyapunov equation (Equation 5.37)

(A + B 2$K)R + R(A + B 2$K)T + PC2T(D 21D2- 1 C2 P =0

9. Check the consistency constraint from Equation 5.39

YjKRKT - (g,(g,,)) 2 _

where 6i is the ith component of the vector 6, which has a length equal to the number

of actuators.

10. Compute the 2-norm of 6 for each grid point and determine which grid point has the

minimum 6.

11. Refine the grid point with minimum 6 into finer grid points and repeat items 2-10

until 6 is less than a specified tolerance.

5.7.2 Numerical example

The two-actuator sample problem presented in Section 5.5.2 is used again here to illustrate

the SLQG algorithm. The intensity of the noise measurement is taken as pI = D21D2

where p will be a variable parameter. The actuator saturation levels are taken to be

al = 100 and a2 = 5.

Figure 5-17(a) shows the RMS output &Y as a function of control penalty p. Three

different curves are shown corresponding to different values of the noise intensity A. The

SLQR solution obtained above is also plotted on this figure (solid line) for comparison.

More importantly, notice that the achievable performance is an increasing function of p.

Starting from the SLQR limit, increasing levels of noise in the sensor measurements result

in progressively larger minimum output variance.
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Figure 5-17(b) and Figure 5-17(c) show the probability of saturation 1 - N and RMS

control o,, respectively. These values do not change much with the noise intensity levels

considered, since the noise intensity is small compared to the intensity of the disturbance.

Notice that the SLQG solutions converge toward the SLQR solutions as the measurement

noise p is decreased. If the noise intensity is small compared to other disturbances in the

system, the RMS output jitter, N, and RMS control input will be very similar to the results

obtained in the SLQR case. This situation is likely to occur for the space interferometer

mission, since laser metrology with accuracy on the order of sub-nanometers will be used

to measure the position changes of various optical devices. For such a system, the SLQR

solution is sufficiently accurate for carrying out preliminary design tradeoffs.

5.8 Summary

This chapter has presented one possible synthesis technique for staged control systems. The

proposed controller design attempts to meet the target performance objectives while mini-

mizing the mechanical or electrical control power required. Unlike classical 'H2 algorithms,

the current design takes actuator nonlinearities into account by using the analytical predic-

tion tool developed in the previous chapter. Several examples are shown in this chapter in

order to demonstrate the utility of the proposed control design framework. Some important

findings from these examples are summarized here:

" Saturation and bandwidth limit the achievable performance of the system. For a given

set of actuators, SLQR can accurately predict what the performance limit will be in

the cheap control limit, and can thus assist in actuator selection at the system design

level.

" Ignoring saturation nonlinearity at design time, or simply allowing a classical LQR

controller to saturate in general may produce significantly worse performance than the

controller provided by SLQR. The performance predicted by LQR diverges sharply

from the actual nonlinear performance when the actuator operates in its nonlinear

region. LQR designs may be serially followed by a stochastic linearization analysis of

the closed-loop performance, but such a design may not guarantee that A + B 2 NK

is Hurwitz. It can also be difficult to tune the design for required performance in the
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multi-input case. By coupling the control design and prediction analysis together, the

SLQR algorithm avoids these difficulties.

" For actuators in which the dominant nonlinearity is saturation, the parameter Nii,

computed as part of the SLQR optimization process, predicts the saturation state of

the actuator during closed-loop operation Psat(ui) = 1 - Nii. This parameter can be

tuned directly by using the saturation weighted SLQR extension.

" Saturation level and bandwidth of each actuator play an important role in the multi-

actuator control design problem. There exists a natural frequency "hand-off" between

the stronger/slower and weaker/faster types of actuators, determined by the relative

bandwidths and saturations. The control techniques proposed in this chapter can

automatically determine this hand-off, balancing the capabilities of each actuator

against the disturbance spectrum to meet the performance target.

With the insight developed from the relatively simple examples above, Chapter 6 will

explore how the controller design strategy discussed in this chapter can be employed for

space interferometry applications.
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Chapter 6

Staging Control of Optical

Pathlength

The goal of the controller designs examined in this chapter is to achieve the 3nm optical

path difference (OPD) stabilization determined in Chapter 2 for accurate extra-solar planet

detection, while minimizing the total required mechanical or electrical power supplied by

the actuators. As discussed in Chapter 3, no single actuator can provide the combination

of stroke and bandwidth needed to accomplish this task in the expected disturbance envi-

ronment, and therefore, a staged actuation system with multiple actuators of overlapping

stroke and bandwidth will be employed to stabilize the optics of space based interferometer

missions. This chapter uses the SLQR framework developed in Chapters 4 and 5 to sug-

gest a simplified design process for determining controllers with the required stabilization

properties.

The intention here is also to offer a possible alternative to the more classical, loop-

shaping designs commonly used for ODL control [23, 27, 46], and to analytically quantify

some of the design and performance tradeoffs inherent in such systems. One of the major

drawbacks of the previous ODL control designs is the effort required to shape the input-

output transfer function loop, since the control parameter tuning process can be difficult

and time consuming. The control algorithm proposed in the previous chapter offers a

methodology that automatically synthesizes a controller, as a consequence of optimizing

the performance metric, and does not require additional tuning on the control parameters.

In addition, this framework also indirectly quantifies and controls the expected saturation
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level in order to enforce lifetime limits on actuators. Loop-shaping techniques can only

estimate the saturation state of the actuators through exhaustive numerical simulations.

The system models used for the pathlength control benchmark problems considered in

this chapter are presented in Section 6.1. Controller designs for a two-stage optical delay line

(ODL) are discussed first in Section 6.2, with numerous examples and trade studies. These

designs attempt to minimize the total mechanical energy used by the actuators. Section 6.3

re-examines the two-stage problem using instead electrical energy in the cost function, and

illustrates how the saturation weighting discussed in Chapter 5 can be employed to further

shape the resulting designs. Finally the design and analysis framework is extended to a

three-actuator system, using thruster control of the spacecraft relative position as the third

stage.

6.1 System Models

A typical ODL consists of a three-staged system: a D. C. servomotor, a voice coil, and a

piezoelectric actuator (PZT) [23, 46, 27]. A common reference design is shown in Figure 6-

1 which consists of an optical assembly cage, or "Cat's eye", sitting on a trolley moved

by the motor. Flexures between the trolley platform and the cage are used to partially

isolate the cage from motor induced vibrations. The voice coil is used to move the cage

or the primary mirror position against the trolley, while the PZT changes the position

of the secondary mirror. Often, there is an opposing ("reactuated") PZT stack on the

secondary mirror designed to partially decouple PZT and voice coil inputs and to attenuate

the impact of high frequency disturbance on the cages. The entire assembly is mounted

inside the spacecraft during an interferometry mission.

The VC and PZT constitute two layers of "fine" control over the OPD via the corre-

sponding small changes they make in the relative positions of the mirrors. The DC motor

is used for coarser control, compensating for larger (centimeter or greater) offsets in the

relative positions of the spacecraft, and for achieving initial "fringe lock" acquisition of the

observation target. The most common scenario uses the motor to achieve the initial lock,

then the motor position is fixed and the OPD stabilized by the voice coil and PZT during

the observation mode.
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Figure 6-1: Generic Optical Delay Line Diagram [23, 27]

6.1.1 Two-stage Design: Fixed ODL

The preliminary controller development will be directed towards the benchmark problem

shown in Figure 6-2, which captures many interesting aspects of ODL dynamics. In this

model the relative positions of the spacecraft are assumed approximately constant, and

the trolley carrying the optics is held fixed in place at a distance along the track which

removes most of the coarse OPD. The OPD is then stabilized against residual small path

length variations by continuous adjustment of the voice coil and the PZT. This is the usual

operating configuration for a space interferometry system during its observation mode.

In the lumped-mass model of this situation shown in Figure 6-2, M 1 is the total cage

mass including the primary mirror and PZT masses. This mass is much larger than the

flat secondary mirror mass M 2 . The first (K 1 ) and second (K 2 ) spring stiffnesses represent

the case-trolley flexure and PZT stiffness, respectively. The voice coil is the first stage

actuator (ui), which pushes against the cage and the primary mirror in order to change the

optical pathlength by varying the positions of the Cat's eye assembly relative to the cart.

Fine stage control is provided by the PZT (U 2 ); there is an equal and opposite PZT stack

pushing against the carriage to reduce the coupling to the motion of the Cat's eye.

A physical model for this system is developed from Lagrangian dynamics [9] as

M4 + Cq + Kq = Fu + Gw, (6.1)

M 1  0 0 cl + 2c2 -c 2 -c 2  k1 + 2k 2 -k 2 -k 2

M= 0 m 2  0 C _C2 c2  0 K= -k 2  k2  0

0 0 m2 -C2 0 C2 _k2 0 k 2

165



X 2

K,

.X 3

Figure 6-2: Two-stage benchmark problem (Mi = 1Kg, M 2 = 5g, Ki = 1250 N/m, K2 -

1 x 106 N/m)
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0 1 0

where q = [xi, X2, X1]T is the state vector, u = [ui, u 2]T is the control input vector,

w is the disturbance input, model here as an input disturbance entering the plant in the

same manner as the voice coil. This is used to model vibrations transmitted through the

spacecraft structure to the trolley and ultimately to the Cat's eye. The damping matrix C

consists of VC and PZT damping coefficients (ci, C2), and the stiffness matrix K consists of

flexure stiffness and PZT material stiffness (ki, k2 ). The physical parameters of the ODL

model and stroke ranges of these actuators are selected to be representative of those delay

lines currently being studied at the NASA Jet Propulsion Laboratory (JPL) [23, 27], which

corresponds to approximately Mi = 1 Kg, m2 = 5 g, ki = 1250 N/m, k2 = 1 x 106 N/m,

ci = 1.41 N/m/s, and c2 = 77.8 N/m/s. With these parameters, the voice coil has a

maximum stroke of t1.5 mm - that is, the maximum deflection from the voice coil will not

exceed +1.5 mm. Similarly, the PZT has a maximum travel of +10 Am with an equivalent

force limit of ±2 N.

6.1.2 Three-stage design: ODL and Spacecraft

Traditional spacecraft designs use gas jet thrusters for adjusting their relative position and

attitude, however these actuators introduce large vibrations into the onboard optics. As a

result, most interferometry missions are planned to make observations while the spacecraft
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thruster system is disengaged. Essentially, the spacecraft will be maneuvered into the

correct positions, then allowed to "drift" uncontrolled while the observations are made.

The gentle force applied by the new FEEP thrusters, discussed in Chapter 3, offers the

possibility of continuing to control the spacecraft relative positions even while observations

are occurring, potentially coupling the spacecraft rigid body controller directly to the optical

stabilization loop. With such a coupling, the DC motor driven trolley could be omitted from

the ODL design, since the spacecraft could be gently moved back and forth by the thrusters

directly to achieve the initial fringe lock and to adjust OPD. As a result, micro-Newton

thrusters like FEEPs are actively being considered as the 3 rd stage to the interferometer

path length control system, replacing the role of the motor stage [65]. Since thrusters are

already needed for rigid-body control, it can simplify the overall mechanical design, and

moreover will potentially allow near-continuous observations as opposed to the burn-and-

drift strategies currently proposed. The three-stage designs considered in this section will

examine this configuration.

In order to capture the rigid body dynamics of the spacecraft and its thrusters, an

additional stage is added to the two-stage benchmark problem. The three-stage benchmark

problem has the structure illustrated in Figure 6-3. The dynamic equation of this system

has the same form as Equation 6.1 with the matrices now given by

Mt 0 0 0 ci -ci 0 0

M 0 M 1  0 0 C -cl cl + 2c2 -C2 -C2

0 0 m2 0 0 -C2 C2 0

0 0 0 m 2  0 -c2 0 c2

ki -ki 0 0 1 -1 0

K -k 1  k1 + 2k 2 -k 2 -k 2  F 0 1 0

0 -k 2  k2  0 0 0 -1

0 -k 2  0 k2  0 0 1

where the state vector is augmented to q = [Xt, X1 , X2, X 3 ]. The stiffness and damping

coefficients will be those defined previously for the two-stage system, and the anticipated

spacecraft mass for the TPF mission is approximately Mt = 500 Kg [2].
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Figure 6-3: Three-stage benchmark problem

6.1.3 Model Scaling

Before forming the state-space model of the overall system for either of the above models,

it is important to note that the states and input-output parameters span a large numerical

range. For example, the maximum displacement of VC is around 10-3 m, the maximum

displacement of PZT is on the order of 10-6 m, and the desired performance is on the

nanometer level, 10-9 m. Severe numerical problems exist when solving the Riccati equa-

tions or Lyapunov equations for such ill-conditioned systems. In order to preserve precision

in numerical computations, the system state, input, and output units should be normal-

ized with care to improve the numerical conditioning of the problem. The methodology

suggested below is an adaptation of that discussed in [63].

First, the states of interest for OPD stabilization are actually the relative displacements

of the VC and PZT actuators. To reflect this interest, a state transformation matrix is

introduced to change the inertial referenced states to relative actuator displacements,

1 0 0 0 Xt

-1 1 0 0 X1

0 1 -1 0 X2

0 -1 0 1 X3
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and hence, inverting the transformation matrix

q = Ts4 =

1 0 0 0

1 1 0 0

1 1 -1 0

1 0 1

(6.2)q.

Now the relative displacements can be normalized by the maximum stroke of each ac-

tuator:

q = Usq (6.3)

where U, is a diagonal, state normalization matrix, whose diagonal elements are the max-

imum stroke of each actuator, e.g. qtmax, q1max, 42max = 43max- In the thruster case, there

is no theoretical limit on the stroke range, so its maximum stroke is approximated as the

largest anticipated position change of the spacecraft during observation.

Similarly the inputs can also be normalized by their maximum possible values,

F = TfF, (6.4)

where Tf is the input normalization matrix with diagonal elements given by the maximum

available force output of each actuator.

Applying the normalization factors to the equation of motion, the final normalized

equation has the form

MTsUsq + CTsUsq + KTsUs= Tf F,

and can be written as

+II7 +K=F,

using the substitution M = MTUS, C = CTsUs, R = KTUS, and P = TfF. The

corresponding state-space model (Ay,By,C,,D,) of the plant dynamics are described as

0 I
A P = L M 1 R 1

-q2max 0 ... 0 p -=[ 0 0
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The state vector in this model is chosen to represent the relative displacements of the PZT

and voice coil actuators, and the absolute displacement of the spacecraft. The output of the

plant corresponds to the OPD for the interferometer. The vector C, includes the maximum

stroke of each actuator in order to recover the true relative displacement from the state

normalization. The factor of two in C, comes from the fact that a unit position change in

the mirror positions would cause two units of change in total OPD.

After combining the plant dynamics with disturbance and actuator dynamics, the inte-

grated model can be expressed by the familiar SDE:

dx = Ax dt + B1 dw + B 24(u) dt

C1x

D12U

where y = Cix is the performance output or the deviation of OPD. This output can also

be normalized by the desired OPD RMS performance level,

y = Zopdg, (6.5)

so that

z= Z;-1C1x

_D12U, _

and the system output becomes the percentage of the desired performance output. That is,

the performance objective of < 3 nm RMS OPD is expressed in the scaled coordinate by

0-9 < 1.

The model scaling suggested in this section dramatically improves the numerical condi-

tioning of the OPD control problems considered below. All the problems below will follow

the above scaling scheme, so the over-bar notation is dropped for simplicity in the sequel.

Design criteria

The controllers to be designed for each of the models above must ensure (to the extent the

actuators permit it) stabilization of the OPD such that the RMS value of g is approximately

one, and such that the cost functional introduced in Chapter 5 is minimized:

flu

J(K) = &2 + p p & (6.6)
i=1U

170



Full state feedback is assumed for these designs, so that u = Kx, and the relative weights

pi will be chosen to effect a specific input-magnitude/accuracy tradeoff. The initial designs

in Section 6.2 will use pi = p2 = 1, penalizing directly RMS force input from the actuators,

while Section 6.3 will utilize a slightly different weighting, explained below, which penalizes

the RMS current draw, and hence the battery drain, of the control system. The SLQR

design procedure of Chapter 5 will be used to determine the desired feedback matrix K in

all cases, and the parameter p will be iterated until the desired closed-loop performance

target on b. is achieved.

6.2 Two-Stage Designs

In this section, control designs for the two-stage benchmark problem described in Sec-

tion 6.1.1 are examined. The actuators are expected to operate in a broadband stochastic

environment, so it is important to examine how each input influences the output across

a range of operating frequencies. Figure 6-4 shows the Bode diagrams for the open-loop

transfer functions from ui and U2 to the re-scaled output, plotted as solid (voice coil) and

dashed lines (PZT) respectively. Note that these are linear loop transfer functions and

do not include saturation effects; i.e. they are computed assuming N 1 1 = N2 2 = 1. The

voice coil transfer function has a resonance at around 5.6 Hz corresponding to the cage

flexure mode, and its frequency response rolls off quickly afterwards. The PZT has signifi-

cantly lower D.C. gain, but it has a much larger bandwidth, out to about 2200 Hz. From

Chapter 3, the dynamics introduced by the electronics of each actuator are negligible up

to approximately 3-5 kHz, which is considerably beyond the mechanical bandwidth of the

system. Accordingly, the electrical filtering will be neglected in the designs below.

The disturbance input for the benchmark problem is representative of a vibration trans-

mitted to the cage of the ODL by the spacecraft bus. It thus enters the plant dynamics

in the same way as the voice coil input. The nominal disturbance assumed for the de-

signs has normalized power spectral density (PSD) shown in Figure 6-5. This PSD profile

is coarsely representative of a broadband disturbance vibration arising from unbalanced

reaction wheels on a spacecraft [57].

The saturation levels for these inputs are determined from the electro-mechanical prop-

erties of each actuator and their corresponding maximum theoretical deflections. The max-
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imum force inputs in this model were computed from JPL design documentation and man-

ufacturer spec sheets to be 2 N and 10 N, respectively for the voice coil and PZT [30, 84].

Application of these inputs at D. C. will cause each actuator to achieve its respective maxi-

mum deflection. For the current JPL design, the resolution level of the PZT is on the order

of one or sub-nanometer, which is 3 orders of magnitude smaller than its maximum defec-

tion. The voice coil actuator has no friction and stiction, so it has very good mechanical

resolution; however, its resolution can be limited by quantization. The effect of quantization

and resolution will be considered in Section 6.2.3; the designs below initially assume that

saturation is the dominant nonlinear effect in the dynamics.
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Figure 6-4: Plant transfer functions. Solid: voice coil to output; Dashed: PZT to output.
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6.2.1 Vibration Suppression

For relatively "small" disturbances, the saturation characteristics of the actuators will not

be an issue and linear state feedback should easily be capable of reducing the closed-loop

OPD to the desired 3 nm level. As the magnitude of the disturbance input increases,

however, the actuators will need to work harder to maintain the desired 3 nm closed-loop

performance. For some level of disturbance intensity, the actuators will no longer have

sufficient control authority to achieve the desired closed-loop performance.

To examine this tradeoff, the investigation below examines a series of cases where the

intensity of the disturbance is varied, but the overall shape of its PSD remains the same,

as shown in Figure 6-5. For each intensity level, there is a corresponding open-loop output

RMS cpen = &, when u = 0 and, up to some critical limit, there exists a control design

that reduces the &y to less than 3 nm RMS in the closed loop (when u = K x). In this

fashion a family of control designs can be generated, parameterized by different input noise

levels. Since the physical meaning of a specific disturbance intensity is difficult to visualize,

the solutions presented below are instead parameterized by the corresponding open-loop

RMS levels oopen of OPD which each disturbance intensity provokes.

PZT actuating alone

Before examining the complete solution with both actuators, it is instructive to examine

the performance which can be achieved using just one of the two actuators. Figure 6-

6 demonstrates the case when the PZT is used alone to reduce OPD perturbations. In

Figure 6-6(a), the plot shows RMS control signals a, normalized by its maximum force

input (10 N), as a function of copen. For reference, the corresponding LQR designs, which

neglect the nonlinear characteristic of the actuator, are shown as the dashed line on the

plot.

Notice that the LQR and SLQR solutions coincide until the normalized a, reaches

about 50% of its maximum input level, at which point the SLQR solution diverges rapidly

from the LQR solution. This phenomenon occurs because the actuator starts to saturate

for larger input disturbances. As the disturbance magnitude increases, corresponding to

larger equivalent open-loop OPD variance, the SLQR solution asymptotes rapidly upwards

at a value of o-open equal to approximately 16 pm. For copen greater than this value, the
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Figure 6-6: PZT actuating alone (a) Normalized RMS control signal (b)1 - N, probability
of saturation

actuator does not have enough authority to maintain the 3 nm closed-loop performance.

Therefore, this point can be considered the achievable performance for the PZT actuator;

it is the largest Copen that can be suppressed by the PZT alone to achieve the closed-loop

requirement. Of course, the LQR solution, which does not take into account actuator

saturation limits, incorrectly predicts that the closed-loop performance requirement may be

achieved for arbitrarily large open-loop disturbances.

Figure 6-6(b) shows the probability of saturation, or equivalently the percentage of

time that the actuator spends in saturation. For uopen below 5.5 pm, the probability of

saturation is small, and this corresponds to the region where SLQR and LQR solutions are

almost indistinguishable. For these disturbance levels the PZT is essentially acting in its

linear region. As the Uopen level increases to the PZT's achievable performance point, the

1 - N curve asymptotes in the same way as the normalized a and approaches the value

of 1, indicating 100% probability of saturation. When 1 - N is close to 1, the actuator is

saturating almost all the time, and therefore, it is near its "bang-bang" limit.

Voice coil actuating alone

Figure 6-7(a) illustrates the corresponding performance obtained using the voice coil alone

to attempt to achieve the closed-loop performance of 3 nm RMS OPD. Similar behavior
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is observed as in the PZT alone case; the LQR and SLQR solutions are coincident until

about the voice coil's RMS utilization approaches 50% of its maximum input, then rapidly

diverge with the SLQR solution approaching an asymptote at about 42 pm of open-loop

OPD. Thus 42 pm RMS is the largest amount of open-loop OPD which can be suppressed

to the 3nm RMS level using the voice coil alone. This asymptotic limit is again shown in

the 1 - N curve Figure 6-7(b) for this scenario, which rapidly increases to the limiting value

of 1 (100% saturated; bang-bang limit) as the open-loop OPD approaches 42 pm.

With its larger stroke, the voice coil can obtain better achievable performance, suppress-

ing larger open than the PZT. However, note that the maximum extension of the voice coil

is 1.5 mm, and is thus capable of inducing a 3 mm change in OPD (recall that one unit of

change in voice coil or PZT causes two units of change in OPD). The achievable open-loop

rejection limit of 42 pam is barely 1.5% of the maximum possible voice coil OPD change

(3 mm). Compare with the PZT case above, where the 16pm rejection limit is 75% the

maximum piezo OPD change (20 pm). This discrepancy is primarily a result of the low

bandwidth of the voice coil transfer function as compared with the spectrum of the driving

noise in this example. Since the transfer function from voice coil to OPD rolls off quickly

after its resonance (Figure 6-4), the voice coil does not have sufficient authority at the plant

output to compensate for disturbances with significant, high frequency content. As a result,

the voice coil cannot utilize its stroke range efficiently to reduce high frequency disturbances,

whereas the PZT with its higher bandwidth can utilize almost all of its deflection range to

suppress the effect of such disturbances.
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PZT and voice coil actuating together

Finally, Figure 6-8(a) shows results for the case when PZT and voice coil work together.

In this figure, solid and dashed lines represent the voice coil and PZT inputs when the

two actuators operate together, and the dashed-dotted and dotted lines show VC and PZT

when they act alone. It is clear that with both actuators operating jointly they can suppress

much larger ranges of Uopen while achieving the closed-loop performance requirement. The

achievable performance for this case is slightly greater than 150 pm RMS open-loop OPD -

almost a factor of four larger than that achievable using either actuator in isolation. From

Figure 6-8(b), both the PZT and the voice coil stay in their linear regions for much larger

values of upen than when either actuator acts alone.

Figure 6-8(c) compares the SLQR solution (solid and dashed lines) with the LQR solu-

tion (dashed-dotted and dotted lines). For the PZT actuator, the LQR and SLQR curves

stay close together until about 50 pm, at which point the VC starts to saturate. After this

point, the PZT begins to work harder and deviates from the nominal LQR solution in order

to prevent voice coil from being driven into saturation. When the PZT starts to saturate

around orpen = 110 pm, it no longer has sufficient authority to desaturate the voice coil, so

the voice coil SLQR solution deviates from the LQR solution and both actuators saturate

quickly after this point.

It is also interesting to observe that, in addition to the achievable performance limits

identified, the analysis above provides additional information useful for the practical opera-

tion of these systems, especially in the predictions of the degree of saturation. For example,

from Figure 6-8, the SLQR analysis predicts that this control strategy can reject open-loop

OPD perturbations up to 60 Am RMS while keeping both actuators below 10% saturation

with this disturbance spectrum. Up to 120 pm can be rejected while keeping both actuators

below 50% saturation. This kind of information can be quite useful at the system design

level for life-cycle analysis of the actuators.

Control authority "hand-off"

Chapter 3 discussed the idea of an optimal "hand-off" frequency for the actuators of a staged

control system, reflecting the manner in which the control algorithm assigns responsibility

to each actuator for suppressing the disturbance over a particular range of frequencies. This
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section examines how the SLQR control algorithm designs this hand-off for the two-stage

OPD stabilization problem, and in particular it demonstrates how the relative saturation

levels of each actuator serve to modify the hand-off frequency.

Analyzing the hand-off frequency requires examining the closed-loop response of the

system in the frequency domain. Using the gain matrix N determined from the consistency

constraints of the SLQR algorithm, these responses can be determined from the closed-loop

dynamic model

dx = (A+B 2NK)xdt+Bdw (6.7)

U = Kx,

allowing computation of the effective closed-loop transfer functions Ts, from the distur-

bance w to each of the control inputs u.

Figure 6-9(a) shows the family of Ts,, curves corresponding to the LQR designs for the

two-stage model above. The solid and dashed lines are the transfer functions from distur-

bance w to voice coil (Tu1,) and PZT (T12W), respectively. As the disturbance magnitude

increases, each of the transfer functions is correspondingly shifted upwards but otherwise

remains unchanged. In particular, the hand-off frequencies of the LQR designs, indicated

by circles on the plot where the two transfer functions cross, remain identical regardless of

the disturbance intensity.

The corresponding SLQR results are presented in Figure 6-9(b). Clearly the transfer

functions in this case do not simply shift upward as disturbance intensity increases. The

mid-range peak of voice coil transfer function, for example, becomes narrower and occurs

earlier in frequency as the disturbance intensity increases. More significantly, the crossing

between the voice coil and PZT magnitude plots moves to the right, indicating that the

hand-off frequency increases as the disturbance magnitude increases. This effect was not

seen in the LQR designs of Figure 6-9(a) and is a consequence of the relative saturation

states of the two actuators as the disturbance intensity increases.

A naive interpretation of Figure 6-9(b) would lead to an opposite interpretation of

relative actuator usage than that offered in the previous section. Since the hand-off of control

authority from voice coil to PZT occurs at progressively higher frequency as the actuators

saturate, it would appear that the voice coil is taking on more control responsibility to

prevent the PZT from saturating. However, such an interpretation neglects the dramatically
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different effect each actuator input has on the OPD. As shown in Figure 6-4, the voice coil

has much more authority on the output OPD at low frequencies. As a result, only a small

ui is needed to produce a large change in OPD at low frequency, while a very large ui is

needed to provoke even small OPD changes at high frequency. Conversely, only a small

PZT command, U2, is required to produce large changes in OPD at high frequencies.

To compensate for these differences, Figure 6-10(b) shows the result of passing each

actuator transfer function Tum through the corresponding plant dynamics Gy. This figure

hence shows the changes in OPD each actuator provokes so as to counter the effect of the

disturbance, thus providing a more accurate picture of the manner in which the PZT and

voice coil partition disturbance rejection responsibilities in the frequency domain.

The hand-off frequency, at which the voice coil and PZT transfer functions cross, is

again emphasized by a circle in Figure 6-10(b). To the left of the circle, the voice coil has

more authority, and to right of the circle, the PZT authority surpasses that of the voice

coil. As the voice coil saturates with increasing disturbance intensity, the hand-off moves to

lower frequencies, so that the PZT starts to take over more of the high frequency authority

from the VC. Measured in this fashion, this motion of the hand-off frequency corresponds

with the earlier observation that PZT is effectively desaturating the voice coil, by taking

over from the voice coil disturbance suppression responsibilities at high frequencies. Finally,

Figure 6-10(a) shows the corresponding OPD hand-off for the LQR design family. Recall

from Figure 6-9(a) that the hand-off frequency is invariant for each disturbance intensity,

since the LQR designs do not take the actuator saturation states into account.

The controller designs developed from the SLQR algorithm thus use the VC at the low

frequency region where its most effective in reducing RMS OPD and use PZT more in

the 100+ Hz region as the VC becomes more saturated. This strategy is one of the key

heuristics used in many of the semi-classical approaches to the design of a staging control

law for optical delay lines [23, 46], where an integrator is augmented into the voice coil

loop so as to force the voice coil to take responsibility for low frequency disturbances. It is

interesting to observe that this SLQR analysis has essentially arrived at the same design,

in a more or less automatic fashion, as a consequence of optimizing the performance metric

given by Equation 6.6 above.
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6.2.2 Disturbance spectrum variations

The previous analysis is based on a disturbance spectrum with fixed shape and varying

intensity levels. The innovations filter associated with the disturbance spectrum is essen-

tially a second order bandpass Butterworth filter with corner frequencies at Flo, = 30 and

Fhigh = 1000 Hz. The objective of this section is to examine the effects of changing the

corner frequencies of the innovations filter, and hence to examine to effects on the design

when the disturbance energy is distributed over lower, or higher, frequency bands.

Low frequency spectrum variations

This first example explores the effect of changing the low corner frequency of the innovations

filter from the original 30 Hz to three other frequencies - 0, 10, and 100 Hz. When Fo" = 0

Hz, the innovations filter becomes a low pass filter, and the disturbance has nontrivial

energy all the way down to DC. As in the case studies above, for each disturbance spectrum

a family of designs was explored corresponding to increasing disturbance intensity, until

both actuators reach their achievable performance limits.

Figure 6-11(a) shows the normalized &, corresponding to four sets of disturbance spectra,

where each spectrum has the same high corner frequency Fhigh = 1000 Hz and different

low corner frequency Fow. In this figure, the solid and dashed lines indicate VC and

PZT actuator, respectively. The results obtained form the previous section are labelled by

Flow = 30 Hz for comparison purposes. Figure 6-11(b) shows the corresponding probability

of saturation curves. As the low frequency corner of the disturbance spectrum decreases,

the shape of all four sets of curves remains similar, but they are shifted along the x-axis.

Note that as the low frequency content of the disturbance increases, (Fo, decreasing) the

system is able to reject a larger amount of RMS OPD variance oopen. This is a consequence

of the voice coil frequency response. In the designs of the previous section, much of the

disturbance energy was concentrated in frequency bands where the voice coil has minimal

authority over the output. Thus the voice coil could not operate at maximum effectiveness

to eliminate those disturbances, requiring the desaturating effort of the PZT to achieve an

adequate design. The VC has very large authority in the low frequency region, however,

and as more of the disturbance energy is concentrated there, the voice coil can be used more

efficiently to reject disturbance effects in this frequency range.
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Figure 6-11: Decreasing the lower frequency of disturbance spectrum: (a) Normalized RMS

control signal versus copen (b) Probability of saturation 1 - N versus Oopen

To illustrate this increased efficiency, Figure 6-12 shows the probability of saturation of

the VC actuator when it is used alone to suppress the different disturbances. Again, the

Fow = 30 Hz plot is the same as Figure 6-7(b) and is shown for comparison. As more and

more of the disturbance energy is at lower frequency, the voice coil becomes increasingly

effective in suppressing the disturbance by itself. In the limit when Fo", = 0 the voice coil,

acting alone, can suppress 1.2 mm of open-loop OPD perturbations. This is 40% of its

maximum stroke, indicating that the voice coil can be used far more efficiently for this kind

of disturbance, as compared to the 1.5% of its capability which was used in the nominal

Flow = 30 case.

A different perspective on the increasing utilization of the voice coil at lower frequen-

cies as Fo decreases can be seen in the family of transfer functions Gv ,Tui shown in

Figure 6-13. As the low frequency content of the disturbance increases, the compensat-

ing motion the voice coil creates in the OPD becomes significantly more prominent in the

low frequency region. Indeed, comparing the sequence (a)-(d) as Fow decreases, only the

voice coil response is affected at low frequencies by the downward shift in the disturbance

spectrum. For the case Fow = 0, the transfer function shows the voice coil demonstrating

orders of magnitude more authority over OPD than the PZT at low frequencies, which is

the expected result.
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High frequency spectrum variations

The second set of analysis focuses on the effects of changing the high frequency roll-off of

the disturbance spectrum. In these examples, the innovations filter is designed to have the

original low frequency corner at Flo = 30 Hz, while the high frequency corner is changed

to 800 and 1200 Hz from the original 1000 Hz. The above analysis is repeated here for

different levels of Fhigh.

The results are shown in Figure 6-14(a) and Figure 6-14(b). As illustrated by these

figures, the RMS control input 6, and the probability of saturation 1 - N are actually

relatively insensitive to the changes in the high corner frequency Fhigh. Since the disturbance

enters the plant the same way as the VC actuator, its effects are filtered by the ODL plant

itself. As shown in Figure 6-4, the transfer function from the VC input to the OPD output

rolls off at around 5.5 Hz, so the high frequency components of the disturbance (800-1200

Hz) are so effectively attenuated by the natural plant dynamics there is no need of additional

actuator effort to suppress the additional high frequency components of the disturbance.

Note that this result may not be true if the modelled disturbances act directly at the

plant output. Without filtering the disturbance through the plant as in this example,

extending the disturbance frequency spectrum in the high frequency region will directly

increase the open-loop RMS OPD and may cause both actuators to saturate at a lower Uopen.
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6.2.3 Quantization Effects

Quantization effects on the two-stage system are examined in this section. For this study,

the disturbance frequency spectrum is again given by Figure 6-5, and a relatively small

intensity is assumed, corresponding to an open-loop RMS output of &open = 2.5 pm. In the

nominal design for this situation considered above, where there are no quantization effects,

both actuators are operating in their linear regions as shown by Figure 6-8(b).

To examine quantization effects on the voice coil, its step size is varied from 0 to 30%

of the voice coil stroke. For each step size, the control design is iterated until the desired

closed-loop RMS OPD is achieved. Figure 6-15(a) shows the normalized &" for each actuator

as a function of the percent stroke. Note that as q increases, the RMS input to the voice coil

also increases. This is mainly due to the fact that the voice coil must be driven harder as

the quantization step increases in order to have any authority over the OPD motion. This

effect starts to become noticeable in this example when the quantization step size exceeds

10% of the voice coil stroke. As a design rule of thumb, if the quantization level is less than

10% of the maximum input, the quantization effects on performance is negligible. Since

resolution induce similar effects as quantization in the stochastic stabilization problem, this

rule also applies to resolution effects as discussed in 5.4.
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Figure 6-15(b) shows the linearization gain N as a function of q. At low q, both actuators

operate in the linear region where Nu1 = N 22 = 1. As q increases, more of the VC control

input becomes ineffective due to quantization effects, so the linearization gain Nu of the VC

decreases to reflect this phenomena. In this case, the algorithm decides that it is less costly

to bring the VC out of the deadzone region rather than to increase the PZT control signal in

order to maintain the desired output performance. By taking into account the decrease in

effective gain Nil as a function of the quantization level, the SLQR algorithm increases the

voice coil command to essentially "kick" the actuator out of the effective deadzone around

the origin.

Assuming that a 12-bit D/A converter is used, the quantization level for +2 N of the

VC input is around 10-3 N. The level at which quantization effects begin to influence the

performance of the system in this example is about q = 0.2N, which is more than two orders

of magnitude above the quantization level in this study. Thus, the effect of quantization

on nominal system performance is expected to be negligible, and will hence be neglected

in the remaining examples. Of course, this assumption would have to be validated for the

actual hardware and expected disturbance spectrum for a particular system. Even if the

quantization is found to be non-negligible, the SLQR design procedure can be used as shown

above to modify the design to maintain the required performance despite the quantization

effects.
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Figure 6-15: Quantization effects on the Voice Coil (a) Normalized RMS control signal
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6.3 Two-Stage, Minimum Electrical Power Designs

For spacecraft applications, the actuators are typically driven by power amplifiers which

draw current from rechargeable battery sources. Therefore, the steady-state RMS current

is one measure of how much each actuator consumes the electrical resources supplied by

the batteries, and is potentially a more meaningful measure of control effort for a space

interferometry control system to minimize.

The force applied by the voice coil is directly proportional to the current it draws as

discussed in Chapter 3, i.e. Fc = KfIc. Penalizing the voice coil current usage in the

cost function is thus straightforward by choosing pi = 1/K in Equation 6.6. On the other

hand, the force generated by the PZT actuator depends on the applied voltage, and there is

a more dynamic relationship between the voltage applied to the PZT and the corresponding

current it draws. The dynamics of this electrical relationship must be taken into account

to correctly analyze the RMS current draw of the PZT.

Recall from Chapter 3 that the PZT current and voltage can be related by the following

transfer function:

IP~t(s) G () = (is , (6.8)
VZt(s) Rt 72s+1

where Rt = R, + Rd, T1 = RdC, and -r2 = (RsRd)/(Rs + Rd). The source resistance and the

PZT discharge resistance are denoted by R, and Rd, respectively. This transfer function

can be separated into two parts,

G(s) = G1 (s) + G2 (s)
1 Tis

Gi(s) = -R +
Rt7T2s+1I
1 1

G2 (s) =
Rt r2s + 1

Using typical parameters described in Chapter 3, Ti = 1000 and -2 = 5 x 10~5, resulting in

a high pass transfer function Gi(s) and a low pass transfer function G2 (s) both with corner

frequency at approximately 3 kHz.

Parseval's Theorem can then be used to compute

II2(t)|2dt = |JIpzt(jw)| 2 do = j I(Gi(j) + G2(jw))V zt(jl 2dW
fO -o -or

= j [IGI(jo)12 + G1(jw)G*(jw) + G2 (jw)G*(jw) + |G2 (j)1 2

xIVpzt(jW)| 2dW
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To simplify this integral further, note that the electrical bandwidth of 3 kHz is about a

kHz larger than the mechanical bandwidth of the system. The effective operating range of

the mechanical components is thus below the upper 1/r 2 corner frequency of the transfer

functions above. In this frequency region, G 1 and G 2 are 900 out of phase, and hence the

cross terms in the integral above evaluate to zero. Moreover, in this frequency range the low-

pass filter G 2 has approximately the constant magnitude 1/Rt, so that this approximation

can be used to further simplify. The result is then

|It) 1t2dt ~| 12 w|2VPZt ( ju)| 2dW + |Vzt(j)|/Rd
0o -o7-

and hence

IPZt()t ~fo |fpzt (t) I|2dt + -R- 00c |PZt (t) 1|2,

where Ipzt is the output response of a linear system driven by the voltage Vpzt(t) with

transfer function given by G 1 .

Since G1 is a high-pass filter, it has a nonzero feedthrough term which will introduce

additional coupling into the necessary conditions for the SLQR design in Chapter 5. There

does not appear to be a straightforward method for "untangling" this additional decoupling

in the solution of the SLQR equations. However, the argument used above suggests that

an additional roll-off can be added to G1 at high frequencies without affecting the behavior

of this transfer function in the mechanical operating range of the system. Thus G 1 can be

replaced with

1 Tis
G'(s) =1 (6.9)Rt (r2s + 1)2

in the computation of ipzt.

From the above development, a cost function which penalizes RMS current usage can

now be expressed as

J & +p &2+& +1 &2 (6.10)

where u,, is the voice coil input, in Newtons, and Vpzt is the voltage applied to the PZT.

The state-space model of the two-stage mechanical system introduced above is augmented

in order to incorporate the additional filter G'(s), so that 1 is an output of the generalized

plant. In terms of the voltage input, the PZT has a saturation level of t50 V [30].

To examine in more detail the designs arising from minimization of Equation 6.10, the

analysis conducted in Section 6.2.1 is repeated here, with the same disturbance spectrum
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and intensity range. Figure 6-16(a) illustrates the probability of saturation of the voice

coil (solid line) and PZT actuator (dashed line) as a function of increasing o-open, and

Figure 6-16(b) shows the corresponding RMS o, curves. The design as a whole is capable

of suppressing almost the same total level of open-loop OPD perturbations (145tm) as

those above, but is quite distinctive in how it accomplishes this. In the new design the

PZT saturates very quickly as a function of disturbance intensity, essentially reaching its

"bang-bang" limit at approximately 40pm. Note that this is very close to the point where

the PZT saturated in Section 6.2 when it alone was used to suppress OPD variations. The

conclusion is that the SLQR algorithm with this cost function prefers to use the PZT almost

exclusively to control the system. The voice coil is used appreciably only after the control

authority of the PZT has been exhausted.

Such a result is obtained since the PZT draws significantly less current than the voice

coil for a given OPD change, and hence, the cost function above is minimized by using

the PZT actuator as much as possible. Although this result minimizes the RMS current,

and hence the draw on the spacecraft batteries, it is undesirable to keep the PZT at or

near 100% saturation because this may cause irreversible damage to the PZT material and

ultimately cause it to fail. To explicitly limit the saturation state of the PZT, the saturation

weighted SLQR algorithm of Section 5.6 can be used. In this approach the cost function is

modified to
( 1 1 nu

J=&2 +P p & +v+ + vi(1 - Nij) (6.11)

where, to penalize only the PZT saturation state, vi = 0 and v 2 will be varied over a range

to explore its effect on the design.

Figure 6-16(c) and Figure 6-16(d) illustrate the probability of saturation of the voice

coil and PZT actuator, respectively, as a function of increasing Uopen for the new cost

function. The solid line in these figures correspond to the results above when there is no

explicit penalty on saturation, v2 = 0. The dashed curves in these figures show a family

of solutions with various penalties on the PZT probability of saturation. It is clear that

the PZT is still the preferred actuator in these designs, entering the saturation region well

before the voice coil. Now however the explicit penalty on saturation prevents the PZT from

being driven to its bang-bang limit, instead flattening out at a saturation state determined

by the magnitude of the penalty v2 and holding this level until the performance limit of

approx 145pm is reached. This illustrates the benefits of saturation weighting in an SLQR
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design, and can be very useful for applications where the saturation state must be explicitly

constrained.
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Figure 6-16: Penalize power/current usage from actuators (a) Probability of saturation of
both actuators. (b) RMS control input o of each actuator normalized by the corresponding
saturation level. (c) Probability of saturation of VC when saturation state of PZT is directly
penalized (d) Probability of saturation of PZT with different levels of saturation penalty v

Frequency hand-off

The frequency responses of the above results are examined here to investigate the frequency

hand-off between the voice coil and the PZT actuator. First, the frequency hand-off for min-
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imizing the mechanical power is compared with the case when electrical power is minimized.

Under mechanical power minimization, the frequency hand-offs between the two actuators

occur around and beyond 100 Hz as shown in Figure 6-17(a). As the open-loop output

RMS oopen increases, the hand-off location moves to lower frequencies which indicates that

the PZT is taking over more of the voice coil's high frequency responsibilities.

When the electrical power is minimized, the hand-off is below 10 Hz at low copen, and

as the PZT saturates more with increasing o-open, the hand-off moves to higher frequencies

as demonstrated in Figure 6-17(b). The direction of the hand-off movement in this case is

the opposite of the mechanical power minimization problem. Since the PZT actuator draws

less current than the voice coil, the algorithm attempts to use PZT as much as possible to

suppress the disturbances. Consequently the hand-off occurs at a much lower frequency, so

the PZT has more authority than the voice coil for a large range of frequencies. It is also

interesting that the shape of the PZT response changes significantly in the 10-100 Hz range

for the two minimization criteria considered.

onereasing a

100'10 0  z 2010102 10"
Frequency (Hz) Frequen~cy (Hz)

(a) (b)

Figure 6-17: (Frequency response from disturbance w through each actuator to the OPD

output. Results associated with three c-open values are presented for each case: (a) Mini-
mizing mechanical power. (b) Minimizing electrical power

The frequency responses for different levels of saturation penalties v are studied next.

In Figure 6-18, three sub-figures are shown here; each corresponds to a different level of

v. These figures appear to be very similar; however, the hand-off frequency does increase
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with increasing saturation penalty on the PZT actuator. This result is sensible, since as

the penalty on PZT saturation state increase, the voice coil has to work harder, with higher

authority over a larger frequency range than PZT, in order to prevent PZT from saturating.

The frequency hand-offs for the various cases described above are summarized in Table 6.1.

For the electrical power case, the PZT does not saturate at small Uopen, N 22 ~ 1, so the

hand-off frequency stays the same as the penalty on PZT saturation increases. At larger

O-open, the PZT does start to saturate and the hand-off frequency increases with v for reasons

described above.

Table 6.1: Summary of frequency hand-off between voice coil and PZT for both mechanical
and electrical minimization

open [Am] 8.3 39.2 138.1

Mechanical Power

Hand-off [Hz] 246.8 235.0 86.0

Electrical Power

Hand-off [Hz] 6.3 7.0 66.0

v=0 _ ___

Hand-off [Hz] 6.3 9.0 76.4

v = 5 x103

Hand-off [Hz] 6.3 10.4 84.7
V = 8 x 10 3

Hand-off [Hz] 6.3 11.6 88.9

v = 10 x10
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(each plot displays three curves corresponding to three uopen values)
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6.4 Additional two-stage analysis

The previous analyses use a disturbance spectrum that is based on a broadband reaction

wheel model and assume the disturbance enters the plant the same way as the voice coil.

Since every wheel is built and mounted differently, it may not be possible to know the exact

intensity level of the disturbance a priori. However, if the designer can estimate a range of

disturbance intensities, the above analyses can be used to determine how hard the actuators

must work in order to suppress the disturbances and achieve the desired performance.

In this section, more realistic disturbance models incorporating recently published ex-

perimental ODL disturbance spectra are considered. Since these models are measured from

experimental data, the perturbations have been modelled as acting on the plant output

directly. Using such an assumption, it is not necessary to create a physical model to charac-

terize the relationship between the disturbance input and the plant output. In order to use

the models reported in these papers [23, 57], the disturbance models are also assumed to be

output disturbances, and as a reminder, the overall linear dynamic equations are discussed

in 3.1.2.

The first part of this section compares the SLQR control designs with the currently

proposed designs suggested by JPL engineers. Since the exact form of their controllers

is not available, the comparison is limited to performance and general design issues. The

second part of this section focuses on parameter trade studies and demonstrates how the

SLQR framework can help in the actuator selection process.

6.4.1 JPL design comparisons

In the first analysis, the control designs proposed in the thesis are compared with the JPL

delay line controllers. Various papers presented by JPL authors suggest a loop-shaping,

classical control technique for solving the ODL control problem [23, 27, 46, 57]. These

techniques have been demonstrated on experimental benchtop testbeds and have achieved

closed-loop performance on the order of 3-30 nm. In these experiments, the optical delay

line is placed on a fixed table. When the ODL cage is stationary, not moved by the motor,

the perturbation on the OPD output has a PSD as shown by the solid line in Figure 6-19(a).

When the motor moves the cage at a constant rate during the slew mode, the corresponding

output disturbance PSD is shown by a solid line in Figure 6-19(b). Note that the two curves
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have similar spectra but different intensities. The open loop RMS OPD c-open associated

with the stationary case is approximately 0.6 pm, and the moving case is around 400 pm.

These PSD curves are estimated from the experimental results presented in [23].

For the stationary case, the disturbance spectrum roll-off occurs within the bandwidth

of the voice coil and PZT, and the open-loop RMS OPD (0.6 pim) is below the stroke of

both actuators. As a result, when the SLQR control design is applied to this problem,

either the PZT or the voice coil actuator alone is capable of achieving the desired 3 nm

RMS OPD in the closed loop while operating in the linear region N 11 = N 22 = 1. Since the

disturbance level for the stationary case is quite small, the actuators do not need to work

hard to achieve the desired performance.

When the cage is moving at a constant rate, the amount of perturbation on the OPD

increases dramatically (oopen = 400 pm) as shown by Figure 6-19(b). For this larger level

of disturbances, neither of the actuators working alone can achieved the desired closed-loop

performance of 3 nm RMS OPD. However, when both actuators collaborate in the SLQR

control scheme, they are able to suppress this larger disturbance and satisfy the closed-

loop performance requirement without saturating, N 1 1 = N2 2 ~ 1. The closed-loop OPD

spectrum for the stationary and slewing case is shown as a dashed line in Figure 6-19(a)

and Figure 6-19(b), respectively.

From this analysis, the control designs suggested in the thesis can achieve comparable

closed-loop performance as the JPL designs. However, since the JPL designs are based on

classical loop shaping techniques, the control engineers have to redesign each of the actuator

loops whenever there is a change in the plant or disturbance environment. Unfortunately

redesigning the controllers or tuning the control parameters may not be an easy task,

because there are many degrees of freedom in shaping a particular transfer function loop.

For example, the JPL designs typically involve an eighth order filter for each control loop,

so the location of a total of 8 poles and up to 7 zeros must be tuned in order to find the

desired controller. As a result, generating a reasonable controller will require a good control

engineer spending time on placing zeros and poles in the correct location in order to obtain

the desired loop shape.

On the other hand, the control design proposed in the thesis is based on modern op-

timization framework, and hence, the resulting algorithm provides a consistent, and auto-

matic methodology for synthesizing controllers. Such an algorithm does not require tuning
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the control parameters directly and can save time during the control design process. It also

allows the engineers to look over a family of solutions under different parameter variations

and changes in the disturbance environment.
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Figure 6-19: Disturbance PSD on the OPD output. Solid line: Open-loop PSD estimated

from JPL experimental results [23]. Dashed line: Closed-loop PSD obtained after applying

active control to make &y 3 nm (a) stationary case where the ODL cage stays fixed. (b)

slewing case where ODL cage is moved at a constant rate.

The disturbances modelled in [23] mainly captures the disturbance environment of an

ODL sitting on a laboratory bench. During the actual space mission, the ODL will also

experience disturbances induced by the reaction wheels. Since wheel induced vibrations

are expected to be one of the largest disturbance sources onboard the spacecraft [38], it is

necessary to also take their effects into account. Therefore, by merging the low frequency

disturbances due to motor noises [23] and high frequency disturbances due to wheel imbal-

ances [57], the resulting spectrum will be closer to the anticipated disturbance spectrum for

the space mission. A nominal PSD representing this combined disturbance is shown as a

solid line in Figure 6-20, and the corresponding o-open is around 195 tim.

The SLQR control design with pi = p2 = 1 is again applied to reduce the open-loop RMS

OPD to the desired 3 nm RMS level in the closed loop. The probability of saturation for this

disturbance model is about 30% for the voice coil and 20% for the PZT. Since the combined

disturbance has a spectrum outside the voice coil bandwidth and an open-loop OPD above
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the stroke of the PZT, both actuators have to work together, even operate with appreciable

saturation, in order to achieve the desired performance. This analysis demonstrates that

it may be necessary to operate the actuators in their saturation regions under realistic

nominal circumstances. If the engineers are not satisfied with the probabilities of actuator

saturation for a given disturbance environment, actuator size can be changed in the ODL

system design or explicit saturation penalties can be used to reduce these probabilities. The

parametric studies using the combined disturbance model is presented in the next section.

10

10
10

C102
0)

102

10

10

1 102
10 10 102 103

Frequency (Hz)

Figure 6-20: Combined disturbance PSD on the OPD output. Solid line: Open-loop PSD
estimated from motor noise and reaction wheel disturbances. Dashed line: Closed-loop PSD
obtained after applying active control to reduce -Y~ 3 nm

6.4.2 Parameter TIradeoffs

Other design level tradeoffs can be examined using the framework developed in this thesis,

evaluating the families of solutions as different system parameters are changed. For example,

instead of varying disturbance intensity, one could fix the disturbance intensity as above and

evaluate the tradeoff between saturation and bandwidth of the actuators. In this fashion,

the SLQR framework above could also be a useful tool for sizing the components of ODL

systems, given a realistic model of the expected disturbance environment.
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PZT stroke and flexure stiffness

The first parameter study considers again a family of SLQR controller designs for the two-

stage benchmark problem. There are two system parameters of interest in this trade study

- the saturation level of the PZT actuator and the flexure stiffness of the Cat's eye cage.

Since the flexure stiffness directly controls the bandwidth of the voice coil's authority on the

output, it would be interesting to see how the mechanical design of the cage flexure may

affect the control design solutions. For each combination of PZT saturation and flexure

stiffness, the SLQR control design is again iterated until it obtains the desired 3 nm RMS

closed-loop performance. For each chosen parameter the objective is to examine how the

probability of saturation changes with system parameter variations.

The disturbance spectrum used in this example is composed of a low frequency compo-

nent as well as a smaller magnitude, high frequency component as shown in Figure 6-20.

As discussed in the previous section, the disturbance model results from merging two sets

of experimental data: one corresponds to motor and the other to wheel induced vibrations,

and the combined model corresponds to an open-loop OPD RMS of 195 pm. Using an out-

put disturbance model ensures that the effects of the disturbance on OPD remain constant

as the physical parameters in the plant are altered, allowing the available experimental data

[23, 57] for the output spectra to be used directly.

Figure 6-21 illustrates the probability of saturation of VC and PZT as solid and dashed

lines, respectively. Each set of curves (solid and dashed lines) correspond to a particular

level of flexure stiffness. As the PZT stroke range increases, the probability of saturation

of both actuator decreases. The PZT becomes unlikely to saturate if it has a stroke of

at least 20pm for this level of disturbance intensity. From the PZT vendor catalog [30],

such a PZT stroke level is well within the maximum stroke range. With the PZT out

of saturation, the VC still has to work quite a bit in order to reduce the low frequency

portion of the output disturbance to the specified closed-loop performance. Therefore, the

probability of saturation for the VC, 1 - Nil, levels off at high PZT stroke range. As the

PZT stroke decreases, the probability of saturation approaches a limit where the PZT stroke

is approximately 7.5 pm. If the PZT stroke is less than this value, the two-stage system

will not be able to meet the desired performance.

The three sets of curves plotted in Figures 6-21 corresponds to flexure mode of wf = 5.5,
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Figure 6-21: Parameter analysis on PZT stroke range and ODL flexure stiffness: probability
of saturation of each actuator (solid line - voice coil and dashed line - PZT) (nominal

wflex = 5.6Hz)

15, and 20 Hz. Since the VC-cage system can be modelled as a second order filter, the

flexure stiffness is expressed in terms of its natural frequency, i.e. wf = Vk 1 /MI, and the

nominal flexure frequency for the above study is set at 5.6 Hz. For the given plant model

and disturbance level, the voice coil becomes more likely to saturate as the flexure stiffness

increases, since it is harder for the voice coil to affect the position of the ODL cage. If the

disturbances are expected to have significant low frequency component, it is better to design

the flexure stiffness as low as possible, so the voice coil can be more effective in reducing

disturbances in the low frequency region.

PZT and voice coil strokes

The system parameter studies can also aid the actuator selection process. In this example,

the stroke of the PZT and voice coil are varied over a reasonable range determined from their

perspective vendor catalogs, and their probabilities of saturation for a given disturbance

environment is examined. If the designer wishes to limit the probability of saturation in

order to avoid excessive fatiguing of the actuators, he can choose actuator sizes that satisfy

the saturation requirements for an expected disturbance level.

The disturbance spectrum used in this study is the same as the previous example and

is shown in Figure 6-20. A typical voice coil stroke may range between 0.02 in (0.5 mm)
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Figure 6-22: Contours of probability of saturation as a function of voice stroke and PZT

stroke (a) voice coil (b) PZT

and 0.2 in (5 mm) [84], and the PZT stroke for the application considered is around 7-30

pLm [30]. Figure 6-22(a) and Figure 6-22(b) are contour plots of probability of saturation of

the voice coil and PZT actuator, respectively. If the designer wishes to limit the probability

of saturation of both actuators to less than 5%, he can select the combination of PZT and

voice coil stroke that follow the 0.05 1 - Nc and 1 - Npzt contour lines. Since the actuator

stroke is a discrete quantity, i.e. a PZT stroke of 14.29 pm may not be available, and

making an actuator to that specification may be very costly, the cost and availability of the

actuators are then used to narrow down the choices to possibly a few points on the contour

line.

The small triangle on these plots indicate the nominal PZT and voice coil strokes (10 pLtm

and 0.06 in) used for the two-stage actuator problem shown in the previous sections. This

triangle may also act as a first iteration design. If the designer has additional funding to

purchase new actuators, he may use these plots to decide on the best actuator to purchase

in order to decrease the saturation degrees of the actuators.

The two studies shown in this section are only representative examples of the kinds of

system analysis that can be conducted with the analysis and synthesis framework developed

above. Many other combinations of parameter studies may also be performed to provide

additional insights to the system designers.
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6.5 Three Stage Design

In this section, the two-stage control design discussed in the previous section is extended

to the three-stage design. The objective of this section is to demonstrate that the proposed

staged-control design can be extended to more than 2 actuators, and to investigate the

couplings of rigid body station keeping and optical element control. The problem setup is

discussed in Section 6.1.2.

The linear open-loop transfer function from each actuator to the scaled output is shown

in Figure 6-23. These plots are generated by assuming that the actuators are operating in

their linear region, i.e. Nii = 1. The peaks observed around 5.6 Hz describe the lightly

damped, cage flexure mode of the ODL. The capability of each actuator on changing the

OPD is also shown in the transfer function plot. The thruster has the most authority on

the output OPD at low frequencies (w < 0.0056 Hz), the voice coil has most authority in

the mid-frequency region (0.0056 Hz < w < 160 Hz), and the PZT actuator is most effective

in changing the OPD at high frequencies (u > 160).
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Figure 6-23: Linear open-loop transfer function from actuator input to plant output (solid

line - thruster, dashed line - voice coil, dashed-dotted line - PZT actuator)

This figure also shows that the system has two "natural" hand-off frequencies at 0.0056

Hz and 160 Hz, where actuator authority changes between the thruster and the voice coil,

and between the voice coil and the PZT. Furthermore, the frequency roll-off of each transfer

function also models the bandwidth limitation of each actuator. The actuator force limi-
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tations are again determined from hardware specifications. The voice coil and PZT force

limitations are the same as those used in the two-stage problems; they are 2 N and 10 N,

respectively. The maximum thrust for a typical tN-thruster is approximately 100 pN [53].

The set of analyses conducted on the three actuator problem assumes an output distur-

bance model. There are three disturbance spectra examined in this section, each of which

has significant frequency content in different regions of the frequency domain. One of them

provokes mostly high frequency disturbances, the other one provokes low frequency distur-

bances, and the third one is a combination of the low and high frequency disturbances,

which is similar to the experimental composite spectrum shown in Section 6.4.1. The in-

tention is to investigate how the SLQR algorithm makes the actuator tradeoff for each of

the disturbance spectra. Similar to the two-stage design problem presented in Section 6.2.1,

the disturbance intensity is increased until the desired performance is no longer achievable.

At each disturbance intensity level, the control design is iterated until it meets the desired

closed-loop performance of 3 nm RMS OPD.

High frequency spectrum

The first spectrum is a bandpass filter that models mid- to high frequency disturbances as

shown in Figure 6-24(a). Figure 6-24(b) illustrates the actuator probability of saturation as

a function of open-loop RMS OPD oope, or equivalently, increasing disturbance intensity.

For larger disturbance intensities, the actuators have to work harder in order to meet the

performance requirement, and hence, they become more likely to saturate. Since most of

the disturbance energy is concentrated in the high frequency region, the voice coil and PZT

are used mostly to reduce this disturbance. On the other hand, the thruster has very small

authority in high frequencies; therefore, it is not used as much as the other two actuators.

The frequency hand-offs between the PZT and the voice coil are shown as a function of

increasing oopen in Figure 6-24(c) and summarized in Figure 6-24(d). The hand-off frequency

lowers from 224 Hz to about 75 Hz. As the disturbance intensity increases, the voice coil

becomes more likely to saturate, so the hand-off frequency decreases which indicates that

the PZT is taking more of the high frequency responsibility from the voice coil. The use of

the PZT to "de-saturate" the voice coil has already been observed in the two-stage designs

of Section 6.2.1 with a similar disturbance spectrum.
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Figure 6-24: Three-stage analysis with high frequency disturbance spectrum (a) Normal-

ized disturbance PSD on the output (b) Probability of saturation of each actuator (solid -

thruster, dashed - voice coil, dashed-dotted - PZT) (c) Frequency hand-off between voice

coil and PZT (d) Summary of hand-off and actuator probability of saturation corresponding

to three o-oen values used in (c)
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Low frequency spectrum

The second set of analysis uses a low pass filter to model a low frequency disturbance

environment as shown in Figure 6-25(a). The disturbance shape remains fixed but the

disturbance level is increased in order to obtain a family of solutions. Figure 6-25(b) shows

the probability of saturation of each actuator as a function of the open-loop RMS OPD

Jopen. Since the disturbance energy is concentrated at low frequencies, the thruster and

voice coil which possess large authority in this region are used to reduce most of these

disturbances. The PZT with smaller authority at low frequencies is not used as much as

the other two actuators in this design, and it does not saturate until much larger levels of

1open-

When the disturbance intensity changes, the hand-off frequencies also change as shown

in Figure 6-25(c). The top plot zooms into the low frequency range to better illustrate the

hand-off between the thruster and the voice coil. As the disturbance level increases, the

voice coil starts to saturate first, but the thruster prevents it from becoming completely

saturated. Therefore, the hand-off frequency increases or moves to the right on the plot as an

increasing function of Uopen. For this problem, the thruster/voice coil hand-off frequencies

correspond to three increasing level of disturbance intensities are 0.043, 0.048, and 0.052

Hz. The bottom plot in Figure 6-25(c) shows the hand-off frequency between the voice coil

and the PZT. Similar to the high frequency disturbance problem, the PZT attempts to de-

saturate the voice coil at high frequencies as the voice coil begins to saturate. In this case,

the hand-off frequencies lowers from 362 Hz to 31 Hz. The hand-off frequency decreases or

move to the left as the PZT takes more high frequency responsibility away from the voice

coil.

Combined frequency spectrum

In reality, the system will likely experience a combination of low and high frequency dis-

turbances as discussed above. The third set of analysis adds the low and high frequency

disturbances used previously, and the combined disturbance is illustrated in Figure 6-26(a).

The probability of saturation of each actuator as a function of clopen is plotted in Figure 6-

26(b). In this case, the control design prefers to use the voice coil, since it can effectively

reduce both low and high frequency disturbances. As a result, the voice coil saturates first,
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and the other actuators begin to help and become more likely to saturate at larger ropen.

Eventually all three actuators asymptote to a vertical limit correspond to uopen = 1350 pim;

above this level of open-loop RMS OPD, the actuators will no longer be able to achieve the

3 nm RMS OPD in the closed loop.

The frequency hand-offs for the combined disturbance case are shown in Figure 6-26(c).

The top and bottom plots again demonstrate the frequency hand-off of thruster/voice coil

and voice coil/PZT, respectively. The hand-off frequency between thruster and voice coil

shifts to the right as the intensity level increases - 0.043, 0.069, 0.096 Hz. This phenomenon

indicates that the thruster is attempting to de-saturate the voice coil and taking on more of

the low frequency disturbances. The hand-off frequency between voice coil and PZT shifts to

the left from 221 to 112 and then to 68 Hz as disturbance intensity increases. Similarly this

behavior illustrates that the PZT tries to reduce the voice coil effort by suppressing more

high frequency disturbances. The hand-off frequencies and the probability of saturation of

each actuator corresponding to the three uopen values used in Figure 6-26(c) are summarized

in Figure 6-26(d).

Since the actual disturbance environment is not known in advance, it is difficult to

determine the exact disturbance shape and level of the actual disturbances. The disturbance

models used in the above analysis have incorporated as much of the realistic experimental

data as currently available [23, 27, 46, 57]. In practice the designers will have to approximate

the expected level and shape of the disturbance, and then use the proposed framework to

examine actuator behaviors for a given disturbance model. Furthermore, the framework also

allows the designer to investigate the sensitivity of the results to the frequency spectrum

and/or intensity levels. Other system trade studies as performed for the two actuator system

can also be conducted to provide more information to the system designer.

Before concluding this chapter, the partition of actuator authorities in the frequency

domain for two disturbance intensity levels of the combined spectrum are illustrated in

Figure 6-27(a) and 6-27(b). There is no new information introduced by these two figures.

They are used simply to give a more complete picture of how the SLQR algorithm stages

the available actuators for the control problem. Note that as the disturbance intensity

increases, the voice coil portion of the spectrum is "squeezed" from both sides, as the PZT

and thruster work harder to keep the voice coil out of saturation.

The actuator authority distribution for the closed-loop system is similar to that observed
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in the open-loop plant. The thruster has more authority in low frequencies, the voice coil

in mid frequencies, and the PZT in high frequencies. However, the closed-loop, hand-off

frequencies are very different from the open-loop "natural" hand-offs (0.0056 Hz and 160

Hz). The controller has redistributed the actuator responsibilities in the closed loop, taking

into account the disturbance spectrum, the open-loop dynamics, and the actuator saturation

limitations. These plots are alternate ways for visualizing staged controller designs in the

frequency domain.

6.6 Summary

The control synthesis framework presented in the previous chapter is applied to the optical

pathlength control problem in this chapter. The capabilities of the tools developed in

the thesis are demonstrated on the Two- and three-staged actuation systems. Important

findings in this chapter are summarized as follows:

" By varying the disturbance intensity levels, the largest open-loop RMS OPD (Copen)

that can be reduced to less than 3 nm RMS OPD in the closed-loop can be determined.

" To understand how the controller accomplishes actuator staging, the control author-

ity hand-off in the frequency domain can be visualized through linearized transfer

functions. From these plots, the frequency at which one actuator hands-off control

authority to another can be readily identified.

* As the disturbance increases, the hand-off frequencies in a classical LQR design remain

fixed, since it is unaware that one or more actuators may begin to saturate. For

the SLQR designs, the hand-off frequency shifts with changing disturbance levels to

indicate that the controller is redistributing control authority among actuators as a

function of actuator capabilities (e.g. bandwidth and saturation level).

" In addition to changing disturbance intensities, the proposed technique can be used

to generate a family of solutions as the disturbance frequency spectrum changes, and

thereby, testing the sensitivity of the SLQR solution to changes in the disturbance

model.

" It is also possible to fix the disturbance model and evaluate the tradeoff between

saturation and bandwidth of actuators. These studies have shown that it is more de-
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sirable to reduce the optical delay line flexure stiffness so that the voice coil may have

high authority at the low frequency region. When high frequency disturbances are

present, there is a minimum stroke requirement on the PZT. The proposed method-

ology can be used to find the minimum PZT stroke needed in order to achieve the

desired performance requirement.

" The proposed tool may also aid designers in the actuator selection process. By plotting

the probability of saturation contours as a function of actuator sizes for an expected

disturbance model, the designer can choose combinations of actuator properties that

satisfy the limits on the probability of saturation of each actuator while taking cost

constraints into account.

* In this chapter, the minimum electrical power designs are presented. The minimum

electrical power solutions tend to utilize the PZT as much as possible, which in turn

cause the PZT to saturate quite often. However, excessive usage of the PZT actuator

may damage its material and may even cause it to fail. The saturation weighings are

then applied to generate a different family of solutions, so the designers can continue to

penalize electrical power usage and limit the probability of saturation of each actuator

at the same time.

" A three-stage design is presented at the end of this chapter to demonstrate the cou-

plings between spacecraft control and optical control systems. The disturbance in-

tensity is varied for this problem; the achievable performance and the probability of

saturation of each actuator are computed for each intensity level. As the disturbance

intensity increases, the thruster attempts to offload the voice coil low frequency re-

sponsibilities, so the hand-off frequency between the thruster and voice coil increases.

The PZT actuator also tries to take the high frequency responsibilities away from

the voice coil as the voice coil starts to saturate. Therefore, the hand-off frequency

between the voice coil and the PZT decreases for larger disturbances.
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Chapter 7

Conclusions and Recommendations

This chapter will provide a brief summary of the thesis. The major contributions of this work

are highlighted, and future directions for extending the current framework are suggested.

7.1 Thesis Summary

Space-based interferometry is a promising technology that can greatly enhance astronomical

imaging and may enable the detection of Earth-like planets outside of our solar system.

However, studies have shown that these systems will require nanometer level stabilization

of the optical instrument to achieve these science goals. For a typical TPF mission scenario,

with four collecting apertures in a linear array configuration, a stochastic analysis of the

effects of perturbations on the optical geometry shows that 3nm RMS stabilization of the

optical path difference is required to achieve the extrasolar planet detection threshold.

The actual physical changes to the optical geometry of an interferometer will arise from

vibrations and disturbances acting on the spacecraft and the optical devices. It is unlikely

that the magnitude of the resulting geometric perturbations will be below the specified

RMS levels. Therefore, a suitable actuation system and appropriate control strategy must

be used to maintain the geometric perturbations within the specified tolerances.

If a single actuator with sufficient bandwidth and stroke were available, standard lin-

ear control synthesis techniques could be used to achieve the desired performance. Un-

fortunately, such an actuator does not exist - all physical actuators have saturation and

bandwidth limits. Actuators with larger strokes tend to have lower bandwidth and coarser

resolution, while the high bandwidth actuators tend to have smaller stroke and finer reso-
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lution. As a result, all current design candidates for space interferometer control plan to

use several actuators with overlapping stroke and bandwidth characteristics, thus forming a

staged actuation system that attempts to mimic the capabilities of the ideal single actuator.

In a staged actuation system, each actuator has bandwidth limitations and saturation

constraints. While the bandwidth limitation can be modelled as a frequency domain roll-off,

the saturation effects are nonlinear and it is much more difficult to accurately quantify their

effect on closed-loop performance. It should be emphasized that one or more actuators in

a staged actuation system are expected to saturate during normal operation; otherwise,

there would be no need for staging. Saturation effects thus cannot be ignored, and must be

handled properly in the staged controller design. Other actuator nonlinear effects, such as

quantization and resolution, have been shown to be much less significant than saturation

effects in the studies conducted in the thesis, and often can be neglected.

Given a staged actuation system and a specified feedback control law, the first challenge

is to predict the closed-loop performance when it is subjected to random perturbations.

Two analytical prediction methodologies are developed in this thesis, based on stochas-

tic Lyapunov and stochastic linearization theories respectively. These two methods have

been formally shown to be dual under the stationary Gaussian assumption, and both meth-

ods provide the same predictions. The analytical predictions from these analysis methods

provide quick estimates of the nonlinear closed-loop performance, and have been shown

to provide reasonably accurate approximation with errors typically less than 10% when

compared with numerical simulations.

With a performance analysis tool in hand, the focus becomes the staged controller syn-

thesis. In addition to satisfying closed-loop performance requirements, it is also important

to minimize actuator usage due to limited power resources onboard the spacecraft carrying

the optics. With these objectives, a standard LQR/LQG strategy would be appropriate, if

saturation were not a concern. Since the actuators may in fact saturate, it is necessary to

use the new performance prediction tool to estimate the nonlinear closed-loop performance.

A staged controller could, in principle, be designed by iterating the classical LQR synthesis

and new prediction analysis in a serial fashion until the desired performance is obtained.

However, the resulting controller may not result in a stable stochastically linearized system;

that is, A + B 2NK may not be Hurwitz, since the LQR control synthesis does not take into

account the stochastic linearization gain N which arises in the performance analysis.
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To ensure stability of the stochastically linearized closed-loop system, a staged de-

sign methodology that couples the prediction analysis (stochastic linearization) with the

LQR/LQG control synthesis is suggested in the thesis as a design methodology for staged

control systems. By simultaneously solving the linear quadratic synthesis and stochastic lin-

earization analysis problems (SLQR/SLQG), the resulting closed-loop system is guaranteed

to have a locally stable stochastic linearization. Moreover, the control cost can be iterated

in this framework to achieve a design with required performance, assuming the desired

performance is within the capabilities of the actuators. The resulting staged controller de-

sign directly incorporates actuator bandwidth and saturation limitations and automatically

trades these constraints to achieve the desired performance.

Returning to the original interferometer problem, the SLQR/SLQG algorithm is shown

not only provide a suitable control design for a given optical system and disturbance envi-

ronment, it is also capable of providing important design information such as the achievable

performance and the probability of saturation of each actuator. By changing system param-

eters such as the size and bandwidth of the actuator and the disturbance model, the staged

control algorithm can be used to investigate how each parameter affects the closed-loop

performance or actuator saturation levels. Consequently the proposed algorithm enables

system level trade studies as well as aiding the system designer in the actuator selection

process.

7.2 Contributions

The following list summarizes the principle contributions made in this thesis:

" A statistical analysis technique has been developed in order to determine the op-

tical tolerances needed for extra-solar planet detection for nulling interferometers.

The technique developed is capable of examining the effects of multiple perturbations

simultaneously, and investigating the influence of correlated disturbances on the in-

terferometer performance. These capabilities significantly extend the previous results

in this direction [64, 52] which examine only single variable perturbations.

" The statistical analysis was applied to a TPF baseline configuration consisting of four

apertures in a linear interferometer array. The results show that to achieve a mean null
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depth on the order of 10-6, the acceptable level of RMS aperture shear (or effective

change in baseline) is about 1 m, and the RMS optical path difference (OPD) must

be maintained below 3 nm for a nominal wavelength of 10 pm. Previously, results of

this form were available only for two-aperture systems [52]. The current development

can quantify the RMS optical perturbations for an arbitrary number of apertures in

any two-dimensional interferometer array.

e Two analytical tools were developed to predict the closed-loop RMS output for a

stochastically driven feedback system with actuator nonlinearities. These approx-

imation strategies were derived from both stochastic Lyapunov and stochastic lin-

earization theories. Furthermore, the stochastic Lyapunov and stochastic lineariza-

tion prediction methods were formally shown to result in a dual set of equations for

predicting RMS performance. The use of stochastic Lyapunov theory for performance

prediction in this fashion is a new result, as is the duality with stochastic lineariza-

tion technique. The demonstration of a deep connection between these two methods

presents a new perspective on stochastic linearization theory, and adds more rigor to

this classic quasi-linearization technique.

" Explicit procedures and numerical algorithms for solving the coupled nonlinear equa-

tions which determine the output variance have been developed. MATLAB code was

written to implement the numerical algorithms. The predicted variances are typically

shown to be within 10% of the values observed from exhaustive numerical simulations.

" The standard LQR control synthesis followed by stochastic linearization prediction

analysis (LQR+SL) has been demonstrated to have several drawbacks for controller

designs with multiple saturating actuators. Since the LQR control synthesis is un-

aware of saturation limitations, the resulting controller may not provide local stability

of the closed-loop nonlinear system. In fact, any control synthesis framework for such

systems that does not properly incorporate the performance prediction in the control

design procedure also cannot guarantee a locally stable closed-loop system.

" By merging the analytical prediction tool with 2 optimization, a controller synthe-

sis technique (SLQR/SLQG) has been proposed which explicitly takes into account

actuator nonlinearities and bandwidth. This control design significantly extends the
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prior work [21] which considered only a single saturating actuator. The new algo-

rithm can handle multiple actuators, and more general actuator nonlinearities. Since

the proposed SLQR/SLQG framework couples the controller design and performance

prediction analysis, it also ensures that the resulting controller guarantees local closed-

loop stability.

" The new multi-input SLQR/SLQG algorithms have been proposed as a formal syn-

thesis tool for staging controller design, and their utility in this context demonstrated.

The resulting staged control system is capable of making "optimal" hand-off choices

based upon the linear and nonlinear characteristics of the actuators. The new con-

troller is designed using modern optimization techniques, enabling rapid controller

synthesis for system level trade studies. Previously, separate controllers were designed

for each actuator loop [23, 27, 46, 57], and the authority hand-off was determined

subjectively by the designers. In the absence of performance analysis for saturating

actuators, studying system behavior required experiments or exhaustive simulations.

These techniques often require substantial effort on controller parameter tuning and

provide no guarantees of stability in the formal sense. All these concerns are addressed

with the proposed synthesis methodology.

" Software algorithms and MATLAB code have been developed to solve the coupled

multi-input SLQR/SLQG equations for staging control synthesis. The code is cur-

rently capable of solving up to a three-stage controller design, with an arbitrary state

dimension.

" The use of proposed analysis and synthesis framework for system design studies has

been extensively demonstrated, in particular to:

1. Quantify achievable performance for stochastic systems with nonlinear actuator

constraints.

2. Quantify the utilization of each actuator by predicting the probability of satura-

tion.

3. Explicitly limit the saturation of a particular actuator in system designs.

4. Examine the sensitivity of a particular design to changes in the physical param-

eters (actuator size and bandwidth) and disturbance environment.
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5. Quantify and visualize actuator control authority handoff for a given staged

control configuration.

None of the above studies, typical of the design concerns for a staging controller,

could have been carried out with previously available techniques, except by exhaustive

numerical simulations.

e The system design studies stated above are performed on the interferometer problem.

Some of the lessons-learned are summarized here:

1. Given a comparable disturbance spectrum, the proposed control design method

achieves performance similar to the baseline JPL control designs, without the

need to tune control parameters manually.

2. Two parametric studies are used to demonstrate how the proposed tool can help

with mechanical design decisions (flexure stiffness) and the actuator selection

process (stroke of voice coil and PZT actuators). Since the proposed algorithm

allows the actuator to operate in saturation, it enables use of smaller, lighter,

and cheaper actuators while still achieving the desired performance.

3. When electrical power must be minimized, the design process prefers to use

the PZT until its control authority is exhausted. By explicitly also penalizing

saturation of the PZT, the algorithm can be forced to utilize the voice coil so as

to prevent excessive wear of this actuator.

4. The proposed controller is applied to a three-stage benchmark problem in order

to investigate the couplings of thruster and optical element control. The studies

show that the proposed algorithm is capable of making the appropriate actu-

ator trades for different disturbance environments. In contrast to the current

"stop and observe" paradigm, this coupling of the spacecraft and optical control

loops enables observations even while the spacecraft position is being actively

controlled.

7.3 Recommendations for Future Work

There are several directions in which the work conducted for this thesis can be strengthened

or extended:
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" The tradeoff analysis performed for the space interferometer mission depends on the

disturbance spectrum given. In order to improve the fidelity of analysis, a more accu-

rate model of the expected disturbance environment for the optics of space interfer-

ometers is necessary. It is unlikely that an exact disturbance model will be available,

but a good approximate of the shape and intensity of the disturbance spectrum may

be used for a preliminary analysis. Since the controller redesign can be accomplished

rapidly, it is used to test the sensitivity of the results to the disturbance models or

update the designs as more accurate disturbance models become available.

" The present analysis and synthesis framework have been tested extensively on simple,

representative models. However, they have not been directly tested on hardware. To

demonstrate the applicability of this framework and develop confidence in the new

technique, the control designs should be tested on JPL interferometer testbed and

compared against other designs based on more traditional methods.

" Solving for the optimal controller requires the solution to a set of coupled nonlinear

algebraic equations. The numerical routines employed for solving these equations are

based on a exhaustive search method. Better nonlinear solvers should be implemented

to improve the speed and robustness of the current numerical algorithm.

" Actuation and sensing systems are the two important components to a control sys-

tem. The current framework has focused on the actuator limitations and staging of

actuators with different characteristics. A natural extension of this work is to incor-

porate sensor nonlinearities in order to appropriately stage the usage of measurement

sensors.

" The primary objective of the control system designed above is to reject random dis-

turbances during the observation mode of the interferometer operation. Another

interferometer mode of operation is the search mode, where the optical delay line may

be commanded to follow a specified trajectory. Therefore, it is necessary to extend

the current framework to include tracking applications in order to ensure that the

performance requirement is met during all operations.
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Appendix A

Necessary Conditions for
Saturation Weighted SLQR

The necessary conditions for obtaining the optimal controller while penalizing the proba-

bility of saturation in the cost function are described here. In order to explicitly penalize

the probability of saturation, this parameter is directly included in the cost function:

nu nu

J(K) = & + vi [1 - Nii(&u)]

flu

= tr {C1 IxCT} + tr {D12KixxKT D 2} + 7vi(1 -N
i=1

where vi is a design parameter ("knob") that can be used to penalize the probability of

saturation of the ith actuator, and DT2D12 is as before a diagonal matrix with elements

Ppi-
The optimization problem is again formulated as

K = arg min J(K), (A.1)
K

with two following constraint equations:

(A + B 2 N(&u)K)$xx + xx (A + B 2 N(&u)K)T = -BBi (A.2)

YiKZXXK T Yx = gi(Nii). (A.3)

All of the above parameters have already been defined in Chapter 5. As a reminder, Nii is

the ith diagonal element of matrix N, and it is a function of &ui, i.e. Nii = fi(&u,). The

inverse function of fi is defined as &, = gi (Nii). The row vector Y has the ith element

equal to 1 and zeros elsewhere.
The Lagrange multiplier technique is applied to find the minimizing solution, and the

Lagrangian is given here by
flu

= tr {C 1RCT} + tr {D 1 2KRKTD2j} + vi(1 - Nii) (A.4)
i:=1

+tr {[(A + B 2NK)xx + xx(A + B 2NK + B 1 BT]Q}

f u

+ SAj(YiKRK T f -Tg2 N,)
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Differentiating T with respect to K, Nij, $22, Q, and Ai, the following necessary conditions
are found. Setting - = 0 results in

nlu

{NB Q + [D12D1 2 + Ai YTY]K}$XX = 0
i=1

{NBTQ + QK}$2, = 0 (A.5)

where 4 = DT2D 12 + AiYiTYi = Df2D 12 + A is a diagonal matrix with ppi + Ai on the

ith diagonal, and A is also a diagonal matrix with elements Aj. Next, setting - = 0,

-vi + 2B ;QtxxKT - 2Ai gi(Nj) = 0, (A.6)2i 1 g4(Nii)

where B 2j is the ith column of B 2 , and g4(Njj) is the partial derivative of gi with respect
to Nii. Next for -9- = 0,

flu

(A + B 2NK)TQ +Q(A + B 2NK) + KT(D2D12 + AiYiTY)K + CC 1 =0.
i=1

This expression can be simplified using the definition of 4

(A + B2NK)TQ + Q(A + B 2NK) + KT K + CTC 1 = 0. (A.7)

Finally, the derivatives of ' and 9 = 0 recover the two constraint equations given by
Equation A.2 and A.3, respectively.

The optimal controller is found by solving Equation A.5,

K = -- 'NB Q. (A.8)

Substituting Equation A.8 into Equation A.7, a Riccati equation describing Q is found,

ATQ + QA - QB 2N4- 1 NBTQ + CTC 1 = 0. (A.9)

Substituting Equation A.8 into Equation A.2, the closed-loop Lyapunov equation can be
written as

( A - B 2 NQ- 1 NBQ)xx + - B 2N-1NBTQ)T + B 1 BT = 0. (A.1)

To determine the necessary conditions for Nii and Aj, pre- and post-multiply Equation A.5
by Yj and KT YiT ,

YK2XX KTYYi + NB2QiXXKTYT =0. (A.11)

Using the definition of Y, the above equation can also be expressed as

(ppi + Ai)YiKxxKTY i + NijBiQiXXKT =0. (A.12)

By substituting in Equation A.3 and Equation A.6 for the first and second term in the
left-hand-side of the above equation, an equation relating Ai and Nii is found

A + O.5viNii + ppi gi(Nii ) = 0. (A.13)
g?(Nii) + Njjgj(Njj)gjI(Njj)
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Finally substitute Equation A.8 into Equation A.3 to obtain

Yi<- 1 NB2QxxQB2Nb-7Yi - gi(Nii) = 0. (A.14)

Equations A.8-A.14 are a set of nonlinear, coupled equations that need to be solved

simultaneously in order to obtain the optimal controller. The numerical solution procedures

suggested in Chapter 5 can be used to solve these equations, adding the terms in vi as

necessary.
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Appendix B

Output Feedback Extension

The necessary equations for extending the full-state control strategy to output feedback
control design are derived here. The system dynamics can be described by the following
equations:

dx = Axdt + Bldw1 + B 24(u)dt (B.1)

C1 + 0
y = x0 D12

ym C 2x+D 21dw 2

where y is the performance variable that contains the controlled output, y = Cix, and the
control penalty, D 12 u. The measured plant output is denoted by ym. The state disturbance
is wi, and the measurement noise is w2, assumed to be uncorrelated, zero mean, unit-
intensity white noise processes. The intensity of wi and w2 can be changed by changing
the values of matrices B 1 and D 2 1 , respectively.

The general form of an output feedback controller for this system is

dxc = Acxedt - Beymdt (B.2)

u = Kxc

The objective is to find a control design (Ac, Bc, K) that minimizes the cost:

nu

j = &2 + pEpinY =i

i=1

= tr {C122CT} + tr {D12K$2,XCKTD2 - (B.3)

The first step in deriving the necessary equations is to combine the system states (x) with

the controller states (xc) into a single state vector t = [x xc]T. Similarly, the disturbance

and measurement noises can also be grouped into a single perturbation vector, w = [w1 w 2 ]T.

The closed-loop system can then be written as

d = Adt + B 1 dw (B.4)

y= Ct

U =kt
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where

A B2NK 1

3cC2 Ac

B1

-BcD21

C = I C1 D12K ] = 0 K]

and stochastic linearization is used above to replace #(u) with
equations for N can be written as

I
NKxc. The constraint

AP+PAT +P1T =0

YiKP 22KTY7 = g?(N,,),

(B.5)

(B.6)

where

P 11

P 12

P 1
2

P 22

I, P 1 1 = $xx, P 2 2 = $xczc-

Rewriting the cost function from Equation B.3 as

J = tr {C1PniCT} + tr {D 12KP 2 2KD12}, (B.7)

the Lagrangian technique is again used to obtain the necessary conditions for J to be
minimized. Incorporating the constraint equations (B.5 and B.6), the Lagrangian for this
problem is given by

IF= tr {C1P11C} + tr {D12KP 22KT D 2} +

+tr { [AP + PAT + B1 BT]Q}
flu

+ SA(YKP22 K T Y' - gN))

where Q is the Lagrange multiplier matrix,

_ Q11 Q12

QT2 Q22 _

Differentiating T with respect to (K, Bc, Ac, Ni, P) and
necessary equations are obtained:

(B.8)vi(1 - Nij)

equating the results to zero, the

B2(Q1P2 + Q 12 P22 ) + <bKP22 = 0.

Q22BcD21D1 - (Q2Pu1 + Q22 P12 )C2 = 0.

Q122 + Q2 2P2 2 = 0.

-vi + 2BT (QnPT2 + Q12P22)KT - 2Aj gi (Nij) = 0.2iQ gi(Nii)

A TQ + QA + AjkAR = 0.

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)
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In addition, setting 2= 0 and 2 = 0 will recover the two constraint equations (B.5,

B.6).
To obtain the required relation between Ai and Nii, pre- and post-multiply Equation B.9

by Y and KT~jT, respectively.

YAIKP 22KTY + YiNB{QP 1 2 + Q12P 22 )KTYrT = 0

(ppi + A)YKP 22K T Y i + NjB~i 2+ Q12 P2 2)Ki = 0.

Substituting Equation B.12 and B.6 into the above equation produces

Ai + 0.5viNii + ppi g?(Nii ) 0. (B.14)
g|?(Nii) + Njjg (Njj)g1( Njj)

as the required constraint.
The optimal K is obtained by rearranging Equation B.9,

K = -D-1 NB (Q P 2 + Q12P22)P 2 . (B.15)

Similarly, arrangement of Equation B.10 gives Be as

Be = Q2 1 (Q2Pu + Q22 P 12 )C2T(D 2 1 D T)- 1, (B.16)

where from Equation B.11

-Q pfp2j = I. (B.17)

Define T- 1 = -Q2 Qf2 and T = P2P 21 . Then, according to Equation B.17, T- 1 T = I.
Furthermore, define

P = Pni - PJP2P2 P1 2

Q = Q11 - Q12QQ2 2,

and substitute the new variables (T, T- 1 , P, Q) into Equations B.15 and B.16 to obtain

K = -4-'NB QT, (B.18)

= -T-PCT(D 2 1 Di)- 1. (B.19)

Equation B.13 can be expanded into four separate equations,

ATQ 11 + Q11A - C2TBTQ2 - Q 12 BeC2 + CTC1 = 0 (B.20)

ATQ 12 + Q12 Ac - C2TBTQ 22 + Qn B2NK = 0 (B.21)

ATQ2 + Q2 A - Q22BcC 2 + KT NBI Q11 = 0 (B.22)

AQ22 + Q22 Ac + KT NBTQ 12 + QT2B 2NK + KT IK = 0 (B.23)

Similarly, Equation B.5 can also be expanded in the same fashion

AP11 + P11AT + B 2NKP12 + P1
7KTNB + B1BT = 0 (B.24)

AcP12 + P12AT + P22KT NBT - BcC 2 P 11 = 0 (B.25)

AP2 + P 7AT + B 2NKP2 2 - PnjC2T B = 0 (B.26)
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AcP 22 + P2- BcC2 P - P12 C2BT + BeD 2 D Be = 0

Now pre-multiply Equation B.26 by T- 1 and subtract the resulting equation from Equa-
tion B.27, to produce (after some additional manipulation)

Ac = T'(A + B 2NKT- 1 + TBcC 2)T. (B.28)

If Equation B.21 is post-multiplied by T- 1 , and the controller parameters (Ac, Bc, K)
are substituted with Equations B.28, B.19, and B.18, respectively, the following Lyapunov
equation is obtained,

(A - PCP(D 21D 1)-lC 2 )TS+ S( A-PC2T(D 21D )- 1 C2 ) + QB 2N- 1 NBTQ =0, (B.29)

where S = Q12Q221Q2. By pre-multiplying Equation B.25 by T and again substituting in
previously defined control parameters (Ac, Bc, K), a second Lyapunov equation is found:

(A - B 2N4b-1NBTQ)R + R(A - B2N4Db~NBTQ) T + PC2T(D 21D T)-C 2 P = 0, (B.30)

where R = PTP221P2
Substitute (Ac, Bc, K) into Equation B.20 and use Equation B.29 to obtain the control

Riccati equation (B.38),

ATQ + QA - QB 2Nb- 1 NB2TQ + CTC1 = 0. (B.31)

Repeating this procedure, substitute (Ac, Bc, K) into Equation B.24 and use Equation B.30
to obtain the estimator Riccati equation (B.39),

AP + PAT - PC2T(D 21 D )- 1C2 P + B 1 BT = 0 (B.32)

LFrom Equation B.18 and definitions of P and R above, the cost function given by
Equation B.7 can be written as

J = tr {Ci(P + R)CT + D12KRK T D} , (B.33)

In addition, a similarity transform can be applied to the observer based controller, (Ac, Bc, K)
(T- 1 AcT, TBc, KT-1) to eliminate matrix T from Equations B.28, B.19, and B.18. As a
result, the optimal output feedback controller can be computed by

Ac = A+B 2NK+BcC2  (B.34)

Bc = -PC2T(D 2 1D) 1  (B.35)

K = -<b7 1 NB2Q, (B.36)

where (A, N, P, Q, R, S) are solutions to the above derived set of nonlinear, coupled algebraic
equations:

0.5viNii + ppi g?(Nii) =Ai + gi(~ + _=- 0, (B.37)
g({Nii ) + Nii gj( Nii)gj1( Ni ) '

ATQ + QA - QB2 N- 1NB'Q + CTC1 =0, (B.38)

AP + PAT - PC2(D 2 1D2- 1 C2 P + B 1BT =0, (B.39)

(A +BC 2 )TS+S(A + BeC 2) + QB 2N4b- 1NB2Q=0, (B.40)

(A + B 2NK)R + R(A + B 2 NK)T + PC2T(D 21D )- 1 C2 P = 0. (B.41)

YiKRKTy7 - (g(N,,)) 2 = 0 (B.42)
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Appendix C

MATLAB Code for Implementing
Solution Methods

Representative MATLAB code is included here to illustrate software implementations of

the numerical solution methods suggested in 5.4.

function out = dist.iter(opt,SLQR,sat)

% Numerical algorithm for solving coulped SLQR necessary conditions
X for one or two actuator delay line system. This code varies the
X disturbance intensity in order to obtain a family of solutions. The
% algorithm also provides the LQR solutions for comparison purposes.

% Inputs:
X opt = 1 % voice coil
X = 2 % PZT
X = 3 % voice coil + PZT

SLQR = 0 % LQR control design
X = 1 % SLQR control design

X sat = [.] % saturation level of each actuator
% (default sat = [2 10]

X Outputs: (the output parameters are saved in a structure form)

X out.N = Stochastic linearization gain
X out.Z = closed-loop RMS output
X out.K = Optimal feedback gain
% out.U = closed-loop RMS control
X out.del = consistency constraint measure
X out.rho = control penalty that achieves the desired performance
X out.Q = Riccati equation solution
% out.R = Lyapunov equation solution
X out.Lam = Lagrange multiplier

% Written by: Kuo-Chia Liu

% Define performance targets
Ztarget = 1;

Ztol = Ztarget/100;

% Control penalties shape
if (opt>=3)

rsize - eye(2);

rhoN = zeros(1,2);
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else
rsize - 1;
rhoN - 0;

end

% Define model parameters
% Number of measurements
Splnt.nmeas - 1;

% Number of actuators
if (opt>-3)

Splnt.ncon - 2;
else

Splnt.ncon - 1;
end
Splnt.xvmax - 1.5e-3;
Splnt.xpmax - IOe-6;

% Number of performance variables
Splnt.nz - 1;

% Disturbance parameters
Splnt.nw - 1;
Sdist.F - 1; Sact - 0;
Sdist.w - [30 1000);

plant - modelODL(opt,Sdist,Sact,Splnt);

X Disturbance intensity levels
if opt -- I % VC case

distmag - 1e-2*[linspace(0.1,0.58,5) linspace(O.58,3.53,100)];
elseif opt -- 2 % PZT case

distmag - le-2*linspace(0.1,1.345,100);
elseif opt -- 3 % VC + PZT

distmag - 1e-2*[0.1 0.5 0.9 linspace(1,5,20)];
else

disp('Incorrect option')
end

% Varying disturbance level
frat 1;
rhold - 10;

for kr - i:length(distmag)

Sdist.F - distmag(kr);
plant = modelODL(opt,Sdist,Sact,Splnt);

% compute open loop variance
Xopen - lyap(plant.a,plant.b(:,1)*plant.b(:,1)');

stdOL(kr) - sqrt(plant.c(i,:)*Xopen*plant.c(1,:)');

% use rho iteration to find the controller that satisfies performance target
if SLQR

[rhold,N(kr,:),Z(kr),K{kr},U(kr,:),J(kr),del(kr,:),rhofin{kr},Qric{kr},Rlyap{kr},...
LAM{kr}] - rho.iter(plant,Splnt,sat,rhoN,opt,SLQR,Ztarget,Ztol, frst,rhold);

else
[rhold,Z(kr),K{kr},U(kr,:),rho.fin{kr},Qric{kr},Rlyap{kr}] -

rho-iter(plant,Splnt,sat,rhoN,opt,SLQR,Ztarget,Ztol,frst,rhold);
end
kr

end

% Generate output
if SLQR

out.N - N; out.Z - Z; out.K - K; out.U - U;
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out.del = del; out.rho = rho_fin; out.Q = Qric; out.R = Rlyap;
out.Lam = LAM;

else
out.Z = Z; out.K = K; out.U = U; out.rho = rho.fin;
out.Q = Qric; out.R = Rlyap;

end

function [rhold,varargout] = ...
rho-iter(plant,Splnt,sat,rhoN,opt,SLQR,Ztarget,Ztol,frst,rhold);

% The algorithm performs rho iteration until the predicted RMS output is
X equal or less than the specified RMS output.

lzt = log1O(Ztarget); lzo = 0;

if (frst)
frst = 0;
rhoL = -2; XInitialize lower rho limit
rhoU = 10; XInitialize upper rho limit

else
rhoL = rhold - 1;

rhoU = rhold + 1;
end

jj = 1; Z = 0;

rsize = eye(Splnt.ncon);
rhoM = rsize*(rhoL+rhoU)/2;

% rho iterate to achieve desired performance

while (abs(Z-Ztarget)>Ztol) & (jj<20)

theRho = 10^rhoM;

if (SLQR) % Find SLQR solution
if opt < 3 X Single actuator case

[N,Z,K,U,J,Del,Qric,Rlyap,LAM] = slqrbisect(plant,Splnt,sat,rhoM,rhoN);
else X Two actuator case

Nmin = [0.01 0.01];

Nmax = [0.999 0.999];
[N,Z,K,U,J,Del,Qric,Rlyap,LAM] =
slqr.mesh.ii (plant, Splnt,sat,rhoM,rhoN,Nmin,Nmax);

end
else % Find LQR solution

[Z,U,K,Q,R] = lqraliunew(plant,Splnt,theRho);
N = sat./sat;
Del = 0*sat;

end

lz - log1O(Z);

rho = rhoM(1,1);

if (jj<2)
if Z>=Ztarget

rhoU = rho;
else

rhoL = rho;
end
rhoM = rsize*(rhoL+rhoU)/2;

else
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end

m - (lz-lzo)/(rho-rhold);
rhoM = rsize*(rho + (lzt-lz)/m);

rhold - rho;

jj = jj+I;
izo - lz;

end % Found the desired controller

if (jj>-20)
disp('Failed
N - 2;
break;

end

to find solution after 20 iterations');

% Generate output
if (SLQR)

varargout(i) = {N};
varargout(4) = {U};
varargout(7) = {rhoM};
varargout(1O) = {LAM};

else
varargout(1) - {Z};
varargout(4) - {rhoM};

end

varargout(2) = {Z};
varargout(5) = {J};
varargout(8) = {Qric};

varargout(2) = {K};

varargout(5) = {Q};

varargout(3) = {K};
varargout(6) = {Del};

varargout(9) = {Riyap};

varargout(3) = {U};
varargout(6) = {R};

function [varargout] = slqr-bisect (plant, Splnt, sat, rhoU,rhoN)

%X-----------------------------------------------------------------------

% Bisection algorithm that solves necessary conditions in order to obtain
% the optimal SLQR controller

X -----------------------------------------------------------------------

% System setup
[a,b,c,d] - ssdata(plant);

ncon - Splnt.ncon;
nw - Splnt.nw;

nz - Splnt.nz;
nmeas - Splnt.nmeas;

% Control penalty
d(nz+[1:ncon],nw+nmeas+[l:ncon]) = sqrt(rhoU);

nx = max(size(a));
[i,m] = size(b);
[p,i] - size(c);

pi = p - nmeas;
mi - m - ncon;

ci - c(1:p1,:);
c2 = c(p1+:p,:);
bi - b(:,i:mi);
b2 = b(:,m1+i:m);

dii = d(1:p1,1:m1);

d12 = d(1:p1,m1+1:m);
d21 = d(p1+1:p,1:m1);
d22 -d(p1+1:p,m1+1:m);

% Initialize N and del
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NI = 0;
N2 = 1;
del = 1;
kk = 1;

X Iterate until consistent constraints are satisfied
while (abs(del)>=1e-5) & (kk<=20)

N = (N1 + N2)/2;
x = sat./(sqrt(2)*erfinv(N));

dfdSu = -sqrt(2/pi).*sat.*exp(-sat.^2/2./x.^2);

if dfdSu == 0
disp('Warning -- dfdSu = 0')

end

% Solve lambda
LAM = dfdSu.*(-1/2*rhoN.*N - (d1
LAM = LAM./x.~2;
ndl = N./(d12'*d12+LAM);

% Solve Riccati equation
hamQ = [a -b2*N*ndl*b2';

-ci'*cl -a'];

[yl,y2,fail] = ric.schr(hamQ);
Q = y2/yl;

if fail

del = 1e5*ones(1,length(N));

Q = 0;
R = 0;

disp('Warning -- Cannot solv

return

end

% Find feedback gain K
K = ndl*b2'*Q;
acl = a-b2*N*K;

2'*d12)'.*x.~2)./(dfdSu + N.*x);

e Riccati solution')

% Solve closed-loop Lyapunov equations
R = lyap(a-b2*N*ndl*b2'*Q,b*bl');

% Compute delta
tempvar = (b2'*Q*R*Q*b2)*ndl^2;

del = tempvar-x^2;

if del<0
N1 = N;

else
N2 = N;

end

kk = kk+1;

if kk == 100
display('kk = 100')

end

%end while loop (consistent constraints satisfied)

X Find closed-loop output variance and overall cost

stdZ = sqrt(trace(c1*R*c1'));
stdU= sqrt(diag(K*R*K'));
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Jcost - stdZ^2+trace(rhoU*K*R*K');

% Output variables
varargout(1) - {N}; varargout(2) = {stdZ}; varargout(3) = {K};

varargout(4) ={stdU}; varargout(5) = {Jcost}; varargout(6) = {del};

varargout(7) = {Q}; varargout(8) = {R}; varargout(9) = {LAM};

function [N,stdZ,Klqr,stdU,Jcost,Del,Qi,Ri,LAMi] =
slqr-mesh-ii(plant,Splnt,sat,rhoU,...

rhoN,Nmin,Nmax)

%X-------------------------------------------------------------------------

% Exhaustive search algorithm that solves necessary conditions for the
% multi-actuator SLQR control problem.

X -------------------------------------------------------------------------

if nargin < 7
Nimax - I-ie-8;
N2max - I-ie-8;

else
NImax = Nmax(1);

N2max = Nmax(2);
end

% Plant setup
as - plant.a;
bs - plant.b;

cs - plant.c;

ds - plant.d;

ncon - Splnt.ncon;
nw - Splnt.nw;

nz - Splnt.nz;

nmeas - Splnt.nmeas;

% Control penalty
ds(nz+[i:ncon],nw+nmeas+[i:ncon]) = sqrt(rhoU);

% Start main mesh iteration code
clear del

X Parameters to control mesh generation and refinement

fac = 5;

ncell - 11;

niter = 12;

ntol - ie-3;
atol - 1-1e-5;

Nimin = Nmin(1);

N2min - Nmin(2);

good = 0;

for kk = 1:niter,

N1 = linspace(Nlmin,Nimax,ncell);
N2 = linspace(N2min,N2max,ncell);
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for ii=l:ncell,
for jj=l:ncell,

[deli,LAMi,Qi,Ri,klqr,su,sz] = EVAL-lqrsat(as,bs,cs,ds,nmeas,ncon,rhoN,...
[N1(ii) N2(jj)],sat,O);

del(ii,jj) = real(sqrt(deli'*deli));
end

end

% find the minimum value in the current partition

amin = min(del(:));

if (Nimax-Nimin<ntol) & (N2max-N2min<ntol)
[nidex,n2dex]=find(del==amin);
N = [Ni(nidex) N2(n2dex)];
good = 1;
break;

end

% find all elements of del within fac of amin
nfac = 10^(-(kk-1));
[nidex,n2dex] = find(del<amin*(i+fac*nfac));

% Determine the Ni,N2 indices of elements of idx
nmin = min(nidex);
if (nmin>1)

nmin = nmin-1;
end
N1min = N1(nmin);

nmin = min(n2dex);
if (nmin>1)

nmin = nmin-1;
end
N2min = N2(nmin);

nmax = max(nidex);
if (nmax < ncell)

nmax = nmax+1;
end
Nimax = N(nmax);

nmax = max(n2dex);
if (nmax < ncell)

nmax = nmax+1;
end
N2max = N2(nmax);

end

if (~good)
[Nimin,Nimax]
[N2minN2max]
N=[Nimin+NimaxN2min+N2max]/2;

end

% Solve for optimal controller and output variance after satisfying consistent constraint
[Fdel,LAMi,Qi,Ri,Klqr,stdU,stdZ] = EVALlqrsat(as,bs,cs,ds,nmeas,ncon,rhoN,N,sat,0);
stdU = stdU';
Jcost - stdZ.^2 + trace(rhoU*Klqr*Ri*Klqr');
Del - sqrt(Fdel'*Fdel);

f [ L R r z E g a d ,st-----------------------------------------------------------

function [del,LAM,Q,R,klqr,su,sz] = EVALlqrsat (a, b, c,d, p2,m2, rho, N, sat, flag)
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% This algorithm evaluates the consistency constraints for a given guess
% of N. The variable del measures how well the constraint is satisfied.
X If the del is below the desired accuracy, this algorithm also provides
X the optimal control solutions.

% Plant setup
nx - max(size(a));
[i,m] - size(b);
[p,i] - size(c);

p1 - p - p2;
mi - m - m2;

ci - c(i:p1,:);
c2 - c(p1+i:p,:);
bi - b(:,1:m1);
b2 - b(:,mi+i:m);

d11 - d(i:pi,1:mi);
d12 - d(1:pi,m1+1:m);
d21 - d(p1+1:p,1:m1);
d22 - d(p1+1:p,m1+i:m);

% Solve for RMS control (x) from guess of N
x - sat./(sqrt(2)*erfinv(N));
dfdSu - -sqrt(2/pi)*sat.*(exp(-sat.~2/2./x.~2)./x.^2);

if find(dfdSu -- 0)
disp('Warning -- dfdSu - 0')

end

% Solve for lambda
LAM - dfdSu.*(-1/2*rho.*N - diag(d12'*d12)'.*x.^2)./(dfdSu.*x.^2 + N.*x);

N - diag(N); LAM - diag(LAM); x = diag(x);

% Solve Riccati equation
hamQ - [a -b2*N*inv(di2'*di2+LAM)*N*b2';

-c1'*ci -a'];

[yi,y2,fail] - ric.schr(hamQ); Q - y2/y1;

if fail
del - 1e6*ones(length(N),1);

Q- 0;
R - 0;
disp('Warning -- Cannot solve Riccati solution')
return

end

% Solve control gain klqr
klqr - inv(d12'*d12+LAM)*N*b2'*Q;

% Solve Lyapunov equation
acl - a-b2*N*klqr; R - lyap(acl,bi*bi');

% Compute delta
suuhat2 = klqr*R*klqr';
su - real(sqrt(diag(suuhat2)));
sz - sqrt(trace(c1*R*c1'));

smallu = su<=e-10; su = su + smallu*1e-5; Nhat = erf(sat'./(su*sqrt(2)));

del -diag(N)-Nhat;

240


