
Timed Model-based Programming:

Executable Specifications for

Robust Mission-Critical Sequences

by MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

Michel Donald Ingham SEP 1 0 2003
B.Eng., McGill University (1995)

S.M., Massachusetts Institute of Technology (1998) LIBRARIES

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2003

© Massachusetts Institute of Technology 2003. All rights reserved.

A uthor
Department of Aeronaktis and Astronautics

May 23, 2003

Certified by
Brian C. Williams

Associate Professo of Aeronautics and Astronautics
7 Committee Chairman

C ertified by
David W. Miller

Associate Professor of Aeronautics and Astronautics

Certified by
Eric Feron

Associate Professor gf~eron.autics and Astronautics

Accepted by
Edward M. Greitzer

H.N. Slater Professor of Aeronautics and Astronautics
Chair, Department Committee on Graduate Students

AERO 11

Timed Model-based Programming:

Executable Specifications for

Robust Mission-Critical Sequences

by

Michel Donald Ingham

Submitted to the Department of Aeronautics and Astronautics
on May 23, 2003, in partial fulfillment of the

requirements for the degree of
Doctor of Science

Abstract

There is growing demand for high-reliability embedded systems that operate robustly
and autonomously in the presence of tight real-time constraints. For robotic space-
craft, robust plan execution is essential during time-critical mission sequences, due
to the very short time available for recovery from anomalies. Traditional approaches
to encoding these sequences can lead to brittle behavior under off-nominal execution
conditions, due to the high level of complexity in the control specification required to
manage the complex spacecraft system interactions. This work describes timed model-
based programming, a novel approach for encoding and robustly executing mission-
critical spacecraft sequences.

The timed model-based programming approach addresses the issues of sequence
complexity and unanticipated low-level system interactions by allowing control pro-
grams to directly read or write "hidden" states of the plant, that is, states that are
not directly observable or controllable. It is then the responsibility of the program's
execution kernel to map between hidden states and the plant sensors and control
variables. This mapping is performed automatically by a deductive controller using
a common-sense plant model, freeing the programmer from the error-prone process
of reasoning through a complex set of interactions under a range of possible failure
situations.

Time is central to the execution of mission-critical sequences; a robust execu-
tive must consider time in its control and behavior models, in addition to reactively
managing complexity. In timed model-based programming, control programs express
goals and constraints in terms of both system state and time. Plant models capture
the underlying behavior of the system components, including nominal and off-nominal
modes, probabilistic transitions, and timed effects such as state transition latency.

The contributions of this work are threefold. First, a semantic specification of the
timed model-based programming approach is provided. The execution semantics of a
timed model-based program are defined in terms of legal state evolutions of a physical

3

plant, represented as a factored Partially Observable Semi-Markov Decision Process.
The second contribution is the definition of graphical and textual languages for encod-
ing timed control programs and plant models. The adoption of a visual programming
paradigm allows timed model-based programs to be specified and readily inspected
by the systems engineers in charge of designing the mission-critical sequences. The
third contribution is the development of a Timed Model-based Executive, which takes
as input a timed control program and executes it, using timed plant models to track
states, diagnose faults and generate control actions. The Timed Model-based Execu-
tive has been implemented and demonstrated on a representative spacecraft scenario
for Mars entry, descent and landing.

Thesis Supervisor: Brian C. Williams
Title: Associate Professor of Aeronautics and Astronautics

4

Acknowledgments

First and foremost, I dedicate this thesis to the love of my life, my amazing wife Leslie.

Words cannot express how grateful I am to you for being my sunshine through this

long, arduous and sometimes stressful process. Thank you for your endless patience

and constant support. I couldn't have done it without you!

To the rest of my family, Mom, Dad, Scott, and Diana, thanks for always being

there with a kind word of encouragement when I needed it. It's been a long time

since I've had a completely guilt-free family vacation, but now that I'm done, this is

one of the things I look forward to most.

To my advisor Brian, thank you for providing me with the opportunity to grow as

a researcher and engineer over the past five years as your doctoral student. I've bene-

fitted greatly from your guidance and shared insight, as well as from my interactions

with the outstanding team you've assembled in the MERS group.

To my doctoral committee members, Dave Miller, Eric Feron, and Ed Crawley,

and my thesis readers, Dave Watson and Kristina Lundqvist, thank you for your

support and positive feedback.

To Lorraine Fesq, a very special expression of thanks for all the help you've pro-

vided to me over the last few years - I've learned so much from working with you.

Thanks for all the positive reinforcement, and your unwavering confidence in me.

Most of all, thanks for caring. The world needs more folks like you.

To Margaret Yoon, I am indebted to you for all the assistance you've provided

me over the last year. It's been a tremendous stress reliever to know that I can count

on you to make things happen. You've been a godsend to the MERS team - I don't

know what we ever did before you joined us!

To SharonLeah Brown and the rest of the MIT Space Systems Lab staff, I thank

you all for your contributions in helping to make the Lab a home away from home for

me and my labmates. Thanks also to Marie Stuppard and the Aero/Astro Department

staff, for their unfailing helpfulness and patience in dealing with stressed-out graduate

students.

5

To all the folks at JPL who have gone out of their way to make me feel like one

of the team, thanks so much. In particular, I owe a huge thank-you to Steve Chien,

Tony Barrett and the rest of the AI Group for taking me in upon my transition to

the west coast. Another big thanks goes out to the MDS team, for being such a

pleasure to work with, particularly Dan Dvorak, Bob Rasmussen, Sandy Krasner,

Kenny Meyer, Nic Rouquette, George Rinker, and Alex Moncada. And thanks to

Ben Smith and others who provided me with some great feedback in preparation for

my thesis defense.

To Milind Tambe and the Teamcore group at USC/ISI, thanks again for finding

a place for me while I was in the Green Card "holding pattern". I very much enjoyed

getting to know all of you during my brief stay at ISI. Your group made me feel very

welcome.

To Mike Pekala and the rest of the team at JHU/APL, thanks for all your hard

work, frequently above and beyond the call of duty. It's been great to have you guys

as part of the team.

To the best friends I've made in my years here in Cambridge: Brett deBlonk,

Greg Mallory, Seung Chung, Alice Liu, Alex Makarenko, Fred Bourgault, Yool Kim,

and John & Sarah Enright, you guys are the best! I will always cherish the memories

from the good old days at MIT.

To Paul Elliott, thanks for your invaluable contributions in the implementation

of Titan.

To Greg Sullivan, thank you for sharing your insights on my research work, and

for stepping in to unload me of some extra responsibilities toward the end of my

doctoral program.

To all the other students at MIT whom I've had the pleasure of working with,

"merci beaucoup" and best of luck to you in your future endeavors.

And last but definitely not least, all my love and appreciation goes out to the rest

of my family, as well as the Ravestein family.

Finally, the acknowledgments wouldn't be complete without recognizing the spon-

sorship of this research by NASA's Cross Enterprise Technology Development Pro-

6

gram, under contract NAG2-1466. I also acknowledge the Northrop Grumman Space

Technology company for giving me permission to include the Chandra spacecraft ac-

tivation sequence flowchart in Appendix A. Copyright of this flowchart belongs to

Northrop Grumman Space Technology.

7

8

Contents

1 Introduction

1.1 Robustness in Mission-Critical Sequences

1.2 Role of Time in Mission-Critical Sequences

1.3 Timed Model-based Programming

1.4 Timed Model-based Execution

1.5 O utline .

2 Related Work

2.1 Synchronous Programming

2.2 Concurrent Constraint Programming . . .

2.3 Robotic Execution

2.4 Model-based Programming and Execution

2.5 Formal Modeling of Real-Time Systems . .

2.6 Mission Data System

3 Timed Model-based Programming Example

3.1 Timed Control Program .

3.2 Timed Plant Model .

3.3 Model-based Program Execution

3.4 Sum m ary .

4 Timed Model-based Programming and Execution Semantics

4.1 Timed Plant Model .

9

19

............... 19

. 22

. 24

. 28

. 30

31

. 31

. 33

. 35

. 37

. 41

. 43

51

. . . 54

. . . 55

. . . 58

. . . 61

63

64

4.1.1 Timed Plant Model as a Factored POSMDP 66

4.1.2 Legal Trajectories of the Plant 68

4.2 Timed Control Program . 69

4.2.1 Timed Control Program as a Deterministic Automaton 69

4.2.2 Legal Executions of the Timed Control Program 70

4.3 Timed Model-Based Executive . 71

4.3.1 Control Sequencer . 72

4.3.2 Deductive Controller . 73

4.4 Timed Model-based Program Execution 81

4.5 Sum m ary . 82

5 Control Sequencer 85

5.1 The Reactive Model-based Programming Language 86

5.1.1 Constraint System: Propositional State Logic 86

5.1.2 RMPL Control Programs . 87

5.1.3 RMPL Language Specification 92

5.2 Control Programs as Timed Hierarchical Constraint Automata 95

5.2.1 Timed Hierarchical Constraint Automata 96

5.2.2 Compiling RMPL to THCA 100

5.3 Executing THCA . 101

5.4 THCA Execution Example . 103

5.5 Sum m ary . 112

6 Deductive Controller 113

6.1 Plant Models as Timed Concurrent Constraint Automata 114

6.1.1 Physical Plant Component Modeling 115

6.1.2 Timed Constraint Automata 115

6.1.3 Timed Concurrent Constraint Automata 123

6.1.4 Feasible Trajectories of a TCCA 128

6.2 M ode Estim ation . 131

6.2.1 Consistent Executions of a TCCA 131

10

6.2.2 Belief State Update for TCCA 132

6.2.3 Approximate Belief Update for TCCA 140

6.3 Mode Reconfiguration . 145

6.3.1 Overview of Goal Interpretation in Titan 149

6.3.2 Overview of Reactive Planning in Titan 149

6.3.3 Extending MR for TCCA and Time-Critical Scenarios 150

6.4 Sum m ary . 157

7 Executive Implementation and Demonstration 159

7.1 Timed Model-based Executive Implementation 159

7.1.1 Execution Architecture . 160

7.1.2 Assumptions and Limitations of Implementation 164

7.2 Dem onstration . 166

7.2.1 Testing the Timed Model-based Executive 167

7.2.2 Mars EDL Scenario Description 169

7.2.3 Timed Control Programs . 170

7.2.4 Timed Plant Models . 174

7.2.5 Validated Capabilities . 183

8 Conclusions 187

8.1 Directions for Future Work . 189

8.2 Summary of Contributions . 192

A Chandra X-Ray Telescope Activation Sequence 205

B RMPL Control Programs for Mars EDL 207

C TCCA Plant Models for Mars EDL 213

11

12

List of Figures

1-1 State transition diagram for a simple science camera 23

1-2 Model of interaction for traditional embedded languages and model-

based programming languages . 26

1-3 Timed model-based programming architecture 29

2-1 Model of interaction for concurrent constraint programming languages

and model-based programming languages 34

2-2 Simplified MDS architecture diagram 44

2-3 Integrating model-based mode estimation into the MDS state determi-

nation fram ework . 50

3-1 Mars entry sequence 52

3-2 RMPL timed control program for the Mars entry sequence 54

3-3 Example state transition models for a simplified Mars lander 57

3-4 THCA representation of the Mars entry sequence 59

4-1 Illustration of the difference between the standard POSMDP model

and the variant defined in TMBP . 65

4-2 Block diagram showing inputs and outputs of the control sequencer . 72

4-3 Control sequencer function CS . 73

4-4 Block diagram showing inputs and outputs of mode estimation 74

4-5 A Trellis diagram depicts the plant's possible state trajectories 75

4-6 Block diagram showing inputs and outputs of mode reconfiguration 78

5-1 RMPL control program for the Spacecraft Deployment procedure . . 89

13

5-2 Corresponding THCA for various RMPL constructs 100

5-3 StepTHcA algorithm . 104

5-4 Initial marking of the THCA for Mars entry, corresponding to Cycles

1 to N1 105

5-5 Marking of the Mars Entry THCA for Cycle (Ni + 1) 106

5-6 Marking of the Mars Entry THCA for Cycles (N1 + 2) to N2 107

5-7 Marking of the Mars Entry THCA for Cycle (N2 + 1) 108

5-8 Marking of the Mars Entry THCA for Cycle (N2 + 2) 108

5-9 Marking of the Mars Entry THCA for Cycles (N2 + 3) to N3 109

5-10 Marking of the Mars Entry THCA for Cycles (N3 + 1) to N4 110

5-11 Marking of the Mars Entry THCA for Cycles (N 4 + 1) to N5 111

5-12 Marking of the Mars Entry THCA from Cycle (N4 + 1) to the cycle

when ME determines that Entry=Initiated 111

6-1 Architecture of the deductive controller 114

6-2 Component models for a driver and valve 116

6-3 Mapping of a transition with time bounds to an intermediate (transi-

tional) m ode . 116

6-4 Timed Constraint Automata for the driver and valve components . . 119

6-5 Timed Constraint Automata for the engine and camera components . 120

6-6 StepTccaalgorithm . 130

6-7 ConsistentStateTccA algorithm . 133

6-8 Trellis diagram for the simple spacecraft engine model, given control

actions {cmd = stby, none, none,...} 136

6-9 Trellis diagram for the simple spacecraft engine model, given control

actions {cmd = stby, none, none, ... , cmd = off} 137

6-10 BeliefUpdateTCcA algorithm . 139

6-11 TimedME algorithm . 144

6-12 Timed Constraint Automata models for the PDE and engine components 147

6-13 A spacecraft's complex paths of interaction 148

14

6-14 Simplified propulsion subsystem for the Mars lander spacecraft 151

6-15 TCCA models for a highly simplified propulsion subsystem model . . 152

6-16 Demonstration of the GI search process 153

7-1 Details of the Timed Model-based Execution architecture, based on

the Titan model-based executive . 161

7-2 Entry, descent and landing sequence for a Mars lander spacecraft . . 169

7-3 Main THCA control program for the Mars EDL sequence 171

7-4 THCA control program for the Entry sequence 171

7-5 THCA control program for the Descent and Landing sequence 172

7-6 THCA control program for the Powered Descent and Landing sequence 173

7-7 Simplified propulsion subsystem for the Mars EDL demonstration sce-

nario . 177

7-8 Timed Constraint Automaton model for the valve component 178

7-9 Timed Constraint Automaton model for the engine component 179

7-10 Timed Constraint Automaton model for the att state 181

7-11 Timed Constraint Automaton model for the nav estimator state . . . 182

7-12 Timed Constraint Automaton model for the entry state trigger 183

8-1 Screen snapshot from the Helios visualization tool 192

A-i Activation sequence flowchart for the Chandra X-Ray space telescope

(copyright Northrop Grumman Space Technology) 206

B-1 Main RMPL control program for the Mars EDL scenario 208

B-2 RMPL subprogram for the Entry Sequence 209

B-3 RMPL subprogram for the Descent and Landing Sequence 210

B-4 RMPL subprogram for the Powered Descent and Landing Sequence . 211

C-1 Timed Constraint Automaton for the tank component. 214

C-2 Timed Constraint Automaton for the valve component. 215

C-3 Timed Constraint Automaton for the engine component. 216

C-4 Timed Constraint Automaton for the PDE component. 217

15

C-5 Timed

C-6 Timed

C-7 Timed

C-8 Timed

C-9 Timed

C-10 Timed

C-11 Timed

C-12 Timed

C-13 Timed

C-14 Timed

C-15 Timed

C-16 Timed

C-17 Timed

C-18 Timed

C-19 Timed

C-20 Timed

Constraint

Constraint

Constraint

Constraint

Constraint

Constraint

Constraint

Constraint

Constraint

Constraint

Constraint

Constraint

Constraint

Constraint

Constraint

Constraint

Automaton

Automaton

Automaton

Automaton:

Automaton

Automaton

Automaton

Automaton

Automaton

Automaton

Automaton

Automaton

Automaton

Automaton

Automaton

Automaton

for the

for the

for the

for the

for the

for the

for the

for the

for the

for the

for the

for the

for the

for the

for the

for the

nav estimator mode variable. .

entry event flag

att state variable.

lander separation pyro component.

Mach-trigger event flag.....

chute pyro component.

heatshield pyro component. . .

alt-vel-trigger event flag.

legs pyro component.

radar-altim sensor component.

backshield pyro component. .

prop controller mode variable.

alt_40m-trigger event flag. .

alt_12m-trigger event flag. .

touchdown-sensor component.

landing event flag.

16

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

List of Tables

6.1 Transitions and transition probabilities for the driver component. . 127

6.2 Policy for the engine component . 154

7.1 List of TCCA plant models for the Mars EDL demonstration example. 176

17

18

Chapter 1

Introduction

There is growing demand for high-reliability embedded systems that operate robustly

and autonomously in the presence of tight real-time constraints and high levels of

uncertainty. The ever-increasing complexity of such systems imposes stringent re-

quirements on execution technology in the areas of software verifiability, temporal

reactivity and fault management. Through advances in embedded software, the risks

associated with high levels of system complexity can be mitigated. Robotic space

exploration provides an interesting domain for the study of these embedded program-

ming issues.

1.1 Robustness in Mission-Critical Sequences

In the past, high levels of robustness under extreme uncertainty was largely the realm

of deep space exploration. Billion-dollar space systems, like the Galileo spacecraft,

have achieved robustness by employing sizable software development teams and by

using many operations personnel to handle unforeseen circumstances as they arise. Ef-

forts to make these missions highly capable at reduced costs have proven challenging,

producing notable losses, such as the Mars Polar Lander and Mars Climate Orbiter

failures [92]. Contributing to these failures was the difficulty associated with thinking

through the large space of potential interactions between the embedded software and

its underlying hardware, and writing flight code to handle all possible situations.

19

The traditional approach to controlling spacecraft is through nominal command

sequences, which are time-tagged lists of commands and macros. These sequences

specify actions down to the level of detailed hardware commands, whose effects can

potentially be felt across spacecraft subsystem boundaries. Thus, to build confidence

that the spacecraft will behave as predicted, engineers must perform careful modeling

and extensive testing of these sequences on sophisticated hardware-in-the-loop simu-

lation testbeds, as well as the flight hardware itself, prior to launch. Once uploaded

to the onboard flight computer, these sequences are executed by simply issuing the

appropriate commands at their specified times, in open-loop fashion [28].

For flight activities where more flexible event-driven execution is necessary, such

time-triggered sequences are insufficient due to their inability to represent conditional

response. Thus, timed command sequences can be augmented with rule-based en-

gines [80] or hard-coded state machines [71] running as concurrent processes, which

periodically check the available onboard measurements for satisfaction of a trigger

condition and issue predetermined commands or macros in response. These condi-

tional execution mechanisms are also used for onboard fault protection. Off-nominal

behavior is usually handled by putting the spacecraft into "safe mode," in which all

non-essential spacecraft functions are disabled. Once in safe mode, the spacecraft

communicates its status to the ground controllers and then waits for them to diag-

nose the problem and uplink corrective actions. These interventions can be costly,

both in terms of ground operations costs and the science opportunities lost while in

safe mode.

During mission-critical activities, such as planetary fly-bys, orbital insertion and

entry, descent and landing, putting a spacecraft into safe mode would result in loss

of the mission. In such situations, standard fault responses are usually disabled, and

fault protection is provided by highly specialized dedicated sequences. These flight

software modules tend to be significantly more complex than non-critical sequences,

due to the need for the sequence to cover a broad set of possible fault scenarios

and provide "fly-through-failure" capability. Generating and testing these critical

sequences is an extremely expensive process; this cost can dominate the mission

20

operations budget even though these sequences represent a small fraction of the overall

mission duration [29]. Furthermore, at execution time, the complexity problem is

exacerbated by the very short time available for recovery from anomalies, and can

result in "brittle," non-robust behavior in unexpected off-nominal conditions.

For example, consider the leading hypothesis for the cause of the Mars Polar

Lander failure [13]. Mars Polar Lander used a set of Hall effect sensors in its legs to

detect touchdown. These sensors were watched by a set of software monitors that

were designed to turn off the engine upon landing. As the lander descended into the

Mars atmosphere, it deployed its legs. At this point it is most likely that the force

of deployment produced a noise spike on the leg sensors, which was latched by the

software monitors. The lander continued to descend, using a laser altimeter to detect

distance to the surface. At an altitude of approximately 40 m, the lander began

polling its leg monitors to determine touchdown. It would have immediately read the

latched noise spike and shut down its engine prematurely, resulting in the spacecraft

plummeting to the surface from 40 m.

If the spacecraft had been programmed with the ability to combine information

from multiple sensors and reason about its state, it would have recognized the con-

flicting information being provided by the altimeter sensor (which indicated 40 m

altitude) and the touchdown sensor (which indicated that touchdown had already

occurred). This kind of inconsistency would have led the spacecraft to the conclusion

that a sensor problem was most likely to blame. The desired response would have

been to gather additional information to determine the correct altitude and choose a

conservative approach in the presence of uncertainty.

Embedding this type of reasoning into a spacecraft based on current flight software

practices is a challenging and costly process. The full space of potential failures

and their interactions with the embedded software is too large for programmers to

completely enumerate within a dedicated landing sequence encoded as a complex,

ad-hoc software module. The cost of generating this type of specialized software and

testing it against a sufficient set of simulated failure scenarios is at odds with the

"faster-better-cheaper" philosophy adopted in missions like Mars Polar Lander.

21

The next generation of robotic explorer spacecraft will need to be endowed with

unprecedented levels of "self-awareness," enabled through onboard goal-driven com-

manding, state-based control and fault management built into the nominal execution

loop. Achieving this objective at a reasonable cost requires a rethinking of tradi-

tional embedded flight software architectures, in which fault protection is considered

an "add-on" capability [22, 69]. This work describes a novel approach for encoding

and executing robust mission-critical spacecraft sequences.

1.2 Role of Time in Mission-Critical Sequences

Given the urgency associated with mission-critical sequences, it is clear that time

should be a central consideration during their execution. While managing the com-

plexity of state-of-the-art spacecraft systems at reactive time scales, as discussed in

the previous section, a robust onboard executive must consider time in its control and

behavior models.

Time-critical spacecraft sequences generally include hard-coded delays between

certain actions, which implicitly capture knowledge about the state of the spacecraft

or its environment. For example, in the onboard sequence for atmospheric descent

of a Mars lander spacecraft, a delay of approximately 10 seconds between jettison of

the lander's heatshield and deployment of its legs is introduced, to ensure that the

deploying legs do not impact the separating heatshield. Engineers choose to encode

this type of engineering knowledge implicitly via a timing constraint, rather than

explicitly including the relevant states in the plant model, either because it simplifies

the onboard reasoning, or because of system observability limitations. For example,

the heatshield separation distance from the lander is not explicitly measurable, though

its expected behavior envelope has been determined from pre-launch empirical testing

and statistical simulation. Robust control programs for time-critical sequences must

allow for specification of such timing constraints, in addition to reactively handling

the complexity problem.

In addition to its aforementioned use in sequences to represent unmodeled states,

22

cmd =
turn-on ----

Off Idle

cmd=
turn-off

cmd=
take- [0.1,0.2]
picture

Taking-
Picture

Figure 1-1: State transition diagram depicting nominal operating modes of a simple
science camera and transitions between modes.

time also plays a role within the underlying system models that capture the behavior

of spacecraft hardware and software in various nominal and off-nominal modes of op-

eration. In order to realistically describe certain component behaviors, such as mode

transition latency and gradual state evolution, the models of these components must

allow for representation of these timed effects. For example, consider the nominal

sequence of mode transitions of a simplified science camera instrument. The behavior

of the camera is represented by the state transition diagram in Figure 1-1. From its

"off" mode, the camera can be turned on by issuing it a single "turn-on" command,

which puts it into "idle" mode. The transition from "off" to "idle" can be assumed

to occur instantaneously, i.e. it takes no time. In order to capture an image with

the camera, the "take-picture" command is issued. This results in the shutter of the

camera opening for between one and two tenths of a second ("taking-picture" mode).

This type of non-deterministic transient behavior is representative of the inherent

uncertainty associated with a real hardware component, and is depicted in the figure

by the state transition from "taking-picture" back to "idle" mode, labeled [0.1,0.2].

Traditional methods of controlling embedded systems generally assume synchro-

nous Markovian behavior, where all component state transitions occur simultaneously

at discrete instants, and a component's next state depends only on the current state

and the action taken. However, when multiple components with different timed be-

haviors are composed in a system model, the Markov assumption does not apply.

23

For such systems, an asynchronous semi-Markov model becomes appropriate. In

this model, time is modeled as a continuous variable, though the controller receives

observations and makes decisions only at discrete points [58, 66]. A component's

next state depends on its current state, as well as the amount of time spent in its

current state; actions (such as "taking-picture") can persist over time periods with

non-deterministic length. Given a semi-Markov system, time must be explicitly con-

sidered in the reasoning process.

1.3 Timed Model-based Programming

The objective of this work is to address the problems described in the previous two

sections through timed model-based programming (TMBP), a novel approach for en-

coding and executing robust mission-critical spacecraft sequences. This approach

aims to avoid common-sense mistakes resulting from sequence complexity and unan-

ticipated low-level system interactions. This is accomplished by adopting state-based

control specifications and by automatically reasoning through probabilistic, timed

models of nominal and off-nominal plant behavior, in order to track the system's

state and deduce appropriate control actions.

TMBP addresses the challenge of managing the complexity of a timed system in

two ways. First, it leverages and extends a new class of intelligent embedded systems

that automatically diagnose and plan courses of action at reactive time scales, based

on models of themselves and their environment [15, 43, 48, 83, 85]. This paradigm,

called model-based autonomy [84], has been demonstrated in space on the NASA Deep

Space One (DS-1) spacecraft [4], and on several subsequent space systems [30, 44].

Second, it elevates the level at which an engineer programs through a graphical spec-

ification language that is directly executable. This language allows the programmer

to delegate, to the language's compiler and run-time execution kernel, tasks involving

reasoning through system interactions, such as low-level commanding, monitoring,

diagnosis, and repair.

The TMBP approach described in this thesis is an evolution of the model-based

24

programming paradigm, introduced in [86] and formally presented in [90]. A model-

based program is composed of two parts. The first is a control program, which uses

standard embedded programming constructs, like iteration, conditional branching,

parallel and sequential composition, and preemption, to codify specifications of de-

sired system state evolution. In addition, to execute the control program, the exe-

cution kernel needs a model of the system it must control. Hence, the second part

is a plant model, which captures the physical plant's nominal behavior and common

failure modes. This model unifies constraints, concurrency and Markov processes.

The model-based programming approach provides the following key features:

1. state-based specification - In the model-based programming paradigm, control

programs for embedded systems are written by specifying desired state tra-

jectories of the plant. Unlike other embedded programming languages, like

Esterel [6], which interact with a physical plant by reading sensors and setting

control variables (left, Figure 1-2), a model-based programming language allows

the programmer to interact directly with "hidden" plant states, that is, states

that are not directly observable or controllable (right, Figure 1-2). Since en-

gineers prefer to reason about embedded systems in terms of state evolutions,

state-based specifications provide a natural means of encoding these systems.

Furthermore, because the details of how states are estimated and achieved are

omitted, state-based control programs are less complex than traditional embed-

ded programs, allowing for easier verification by systems engineers.

2. executable specification - As mentioned above, control programs operate on,

and are conditioned on, system states. Execution of a control program requires

mapping from the state goals specified in the program to actuator commands

that achieve the goals, and from the sensor observations to the current system

state. In the model-based programming approach, this mapping between states

and sensors/actuators is performed automatically, by a deductive controller that

reasons through a common-sense plant model. This model represents the set of

possible behaviors of the system components and the set of interactions be-

25

Model-based
Embedded Program

S
Deductive Controller

Obs Cntrl

S
Plant

Figure 1-2: Model of interaction for traditional embedded languages (left) and model-
based programming languages (right). Traditional embedded languages interact with
a physical plant by reading sensors and setting control variables. Model-based pro-
gramming languages interact directly with "hidden" plant states.

tween components. The deductive controller's on-line reasoning capabilities

relieve the programmer of the responsibility of a priori encoding the complex

set of low-level system interactions, for all possible execution scenarios. The

resulting control program provides a simpler specification of desired system be-

havior, which is directly executable by the model-based programming language's

execution kernel.

3. fault-aware execution - Model-based programs must ensure correct synthesis

of behavior in the presence of failures. In addition to representing the nom-

inal modes of operation of the system components, the plant model captures

off-nominal behaviors as well. The deductive controller performs model-based

diagnosis and reactive planning to enable the executive to detect and respond to

failures on-the-fly, within the state-achievement loop. These failure recoveries

are executed in a manner that is transparent to the control program. In addi-

tion, conditional reactions to unrepairable fault states can be encoded directly

into the control program, resulting in a system that is more robust to onboard

failures and anomalies than traditional procedural executives.

Though model-based programming has proven to be an effective approach for

encoding robust spacecraft sequences for a variety of mission scenarios and space-

craft designs [25, 44], it does not provide the ability to capture the types of timed

26

behaviors described in Section 1.2. For example, a model-based program's control

specification cannot represent the time delay between heatshield jettison and leg de-

ployment, which captures the need to wait until the (unobservable) distance from the

separating heatshield is large enough to avoid damage to the deploying legs. Further-

more, a model-based program cannot represent, in its plant behavior specification,

the type of non-deterministic timed transition exhibited by the camera component

(see Figure 1-1). In order to address these limitations, the TMBP approach extends

model-based programming with the following additional key feature:

4. timed specification - The model-based programming paradigm is augmented by

introducing clock variables and timing constraints, at both the control program

and the plant model levels. Introducing time into the control programs allows

their execution to be dependent on time as well as system state. In this ap-

proach, clock states are treated just like any other state, implying that timed

control programs can set and read clock variables just as they set and read

plant state variables. At the level of the timed plant models, introducing clock

variables allows the representation of inherently asynchronous timed behav-

iors, such as transient states and transition latencies. Thus, TMBP generalizes

the Markovian plant models defined in untimed model-based programming to

accommodate semi-Markov plant behavior. These augmentations to the model-

based programming approach provide the expressivity necessary for time-critical

real-time embedded applications.

Another contribution of this thesis is the development of a visual programming

paradigm for model-based programs (both timed and untimed). This contribution

maps to the fifth key feature of TMBP:

5. visual specification - Engineers generally prefer to use visual representations of

system specifications over textual encodings. For this reason, StateCharts [37]

and similar formalisms have become fairly standard tools in the design and

analysis of embedded systems. Timed model-based programming provides both

a textual and a visual programming paradigm. Graphical languages are used

27

to encode both the control programs and the plant models. The graphical lan-

guage used to specify timed control programs is a compact hierarchical state-

based formalism, in the spirit of Timed StateCharts [47], called Timed Hierar-

chical Constraint Automata (THCA). Timed plant models are specified using

another graphical formalism, called Timed Concurrent Constraint Automata

(TCCA), which represents physical component behavior through nominal and

faulty component modes, constraints and probabilistic timed transitions. The

adoption of a visual encoding for timed model-based programs allows them to

be specified and readily inspected by the systems engineers in charge of design-

ing mission-critical sequences. The alternative textual language used to encode

timed model-based programs is called the Reactive Model-based Programming

Language (RMPL). The RMPL constructs needed to encode untimed control

programs have been previously introduced in [43, 86, 90]. The extensions to

RMPL required to express untimed plant models have been presented in [87].

Later sections of this thesis describe how these features are provided by timed

model-based programs and introduce an implemented executive that interprets and

executes these programs at run-time.

1.4 Timed Model-based Execution

Figure 1-3 presents the TMBP architecture. A timed model-based program is exe-

cuted by automatically generating a control sequence that moves the physical plant

to the states specified by the timed control program. These specified states are called

configuration goals. Program execution is performed by a Timed Model-based Execu-

tive. Similar to the model-based executives that operate on untimed model-based pro-

grams, a Timed Model-based Executive consists of two modules, a control sequencer

and a deductive controller. The control sequencer is responsible for generating the se-

quence of configuration goals prescribed by the control program. Each configuration

goal specifies an abstract state for the plant to achieve. The deductive controller is

responsible for estimating the most likely current state based on observations from

28

Timed Model-based Timed Model-based
Program Executive

Trimed
Control -Control 'SequeAer
Prggramn

State Configuration System
estimates goals Clock

Plan - Estimation es Reconfiurtion

Model Deductive Controller

Observations Commands

Figure 1-3: Timed model-based programming architecture. The Timed Model-based
Executive automatically generates a sequence of commands that moves the physical
plant to a state that satisfies the configuration goal specified by the control program,
based on the current state estimate and system time.

the plant (mode estimation), and for issuing commands to move the plant through a

sequence of states that achieve the configuration goals (mode reconfiguration) [83, 85].

The TMBP architecture extends the model-based programming architecture de-

scribed in [90], by allowing both the control sequencer and the deductive controller

to access the current time from the system clock. The control sequencer can thus

execute control programs conditioned on time constraints, which are resolved based

on input from the system clock, and state constraints, which are resolved based on

state estimates deduced from the timed plant model.

The deductive controller's mode estimation capability continually estimates the

most likely state of the plant. Given the latest observations from the plant sensors and

the current time from the system clock, mode estimation reasons through the timed

behaviors of the physical plant, to confirm the successful execution of commands

and the achievement of configuration goals, and to diagnose failures. The deductive

controller's mode reconfiguration capability continually tries to transition the plant

towards a target state that satisfies the configuration goals, while maximizing some

reward metric at that target. When the plant strays from the specified goals due to

29

failures, the deductive controller analyzes sensor data to identify the current state of

the plant, and then moves the plant to a new state that, once again, achieves the

desired goals. The executive is reactive in the sense that it responds immediately to

changes in goals and to failures; that is, each control action is incrementally generated

using the new observations and configuration goals provided in each state.

1.5 Outline

In Chapter 2, related work is described, focusing on fields of research which have in-

fluenced the development of timed model-based programming, and comparisons with

other paradigms that address similar problems. Discussion of the timed model-based

programming approach begins in Chapter 3 with a motivating example of a timed

model-based program and its execution. The semantics of timed model-based pro-

gram execution are then described in Chapter 4. The next two chapters describe the

implementation of the two main parts of the Timed Model-based Executive: Chap-

ter 5 focuses on the control sequencer and the textual and graphical languages used

to write control programs, while Chapter 6 focuses on the deductive controller and

the graphical language used to specify plant models. The implementation details of

the integrated executive are discussed in Chapter 7, which also presents a demon-

stration of the executive on a Mars entry, descent and landing scenario. Finally,

Chapter 8 concludes the thesis with a summary of the contributions and a discussion

of directions for future work.

30

Chapter 2

Related Work

The TMBP approach unifies concepts from synchronous and concurrent constraint

programming languages, robotic execution languages, model-based programming and

execution, and formal modeling of real-time systems. This chapter discusses each of

these fields of research, identifying the concepts that TMBP shares with each of them.

In addition, it addresses related work on another real-time embedded architecture,

the Mission Data System, under development at NASA's Jet Propulsion Laboratory

(JPL), as an example of a project that shares many common themes with TMBP.

2.1 Synchronous Programming

The field of synchronous programming [35] offers a class of languages developed for

writing control programs for embedded reactive systems. Esterel [6], Lustre [34] and

Signal [31] are examples of synchronous programming languages that have been em-

ployed in industrial applications. The widely used StateCharts graphical specification

formalism [37] shares key aspects of the synchronous programming model. In the de-

sign of TMBP, certain key ideas from the synchronous programming domain have

been leveraged. This section highlights the similarities and fundamental differences

between the textual and graphical TMBP languages (RMPL, THCA and TCCA),

and one widely-used synchronous language, Esterel.

First, similarities between Esterel programming and TMBP are considered. Both

31

Esterel and RMPL/THCA include standard constructs for expressing reactive system

behavior, such as conditional branching, iteration, parallel composition, sequential or-

dering and preemption. Berry [6] has convincingly argued that such features, as well

as multiform time and determinacy, are necessary characteristics for reactive pro-

gramming. RMPL is a synchronous language, and satisfies all these characteristics. 1

One major goal of synchronous programming is to provide "executable specifications,"

that is, to eliminate the gap between the specifications about which properties can be

proven, and the programs that are supposed to implement these specifications. TMBP

carries this idea one step further, by performing reasoning on executable specifications

directly, in real time. Another important similarity is that both Esterel and RMPL

compile to underlying automaton models with clean mathematical semantics. Both

programming frameworks emphasize modularity in software design: Esterel uses the

'module' as its programming unit, while TMBP uses hierarchical, modular programs

expressed as THCA and factored plant models expressed as TCCA (a modular com-

position of concurrent automata). Finally, like Esterel, RMPL is fully orthogonal,

meaning that the constructs can be nested and combined arbitrarily.

Despite the similarities between Esterel and RMPL, there exist some fundamen-

tal differences in their corresponding philosophy. First, Esterel is a "signal-based"

language, whereas RMPL/THCA is a "state-based" language. In Esterel, signals are

logical objects received and emitted by a program, which are used to broadcast the

occurrence of an event or communicate information throughout a system [7]. Rather

than operating on signals, TMBP considers the notion of hidden system states to be

the fundamental basis for execution. This different point of view is reflected in the

way each language interacts with a physical system, as shown in Figure 1-2: Esterel

programs interact with the program memory, sensors and control variables (but not

directly with the plant state), by emitting and detecting signals. In contrast, timed

model-based programs operate directly on system state, leveraging the executive's

deductive controller to close the loop between state and the sensors and actuators.

'Reference [43] provides a mapping between constructs in Esterel and the corresponding RMPL
forms.

32

This difference is attributable to the different application domains targeted by the

two languages. For Esterel, which is primarily designed to provide coordination and

synchronization between computational processes, signals and events are the most

appropriate basic mechanisms. TMBP's task, which is to provide a framework for

monitoring and control of complex dynamic plants, lends itself to thinking more nat-

urally in terms of state evolution.

Another important difference is that the availability of instantaneous broadcasting

and control transmission in Esterel makes it possible to write syntactically correct

but semantically "non-sensical" programs, and programs whose behavioral semantics

are non-deterministic given an input [6]. Such causality problems are avoided in

RMPL/THCA, where constructs are conditioned on the current state of the physical

plant, and act on the plant state in the next execution cycle.

2.2 Concurrent Constraint Programming

The concurrent constraint programming paradigm [72] evolved from a re-analysis of

the ideas underlying synchronous programming, from the viewpoint of asynchronous

computation. Like synchronous programs, concurrent constraint programs are declar-

ative; they can be viewed as temporal logic formulas, with semantics based on so-

lutions of equations. Concurrent constraint programming languages similarly define

a set of basic combinators, from which programs are built compositionally. These

basic combinators can be used to define numerous derived control constructs. Fi-

nally, like synchronous programs, concurrent constraint programs can be compiled

into automata representations, which can be analyzed for guarantees of real-time

properties.

Concurrent constraint programming languages, such as the Timed Concurrent

Constraint Language (TCC) [33], replace the traditional embedded programming no-

tion of an information store as a valuation of variables with the notion of a store as

a set of constraints on program variables. These languages interact with the store by

"telling" and "asking" constraints at consecutive time points (Figure 2-1). As is the

33

Model-based
Embedded Program

Ask Achieve

I S
Deductive Controller

Obs ,Cntrl

S
Plant

Figure 2-1: Model of interaction for concurrent constraint programming languages
(left) and model-based programming languages (right).

case in synchronous programming, it is the programmer's responsibility to perform

the mapping between intended state and the sensors and actuators. This mapping

involves reasoning through a complex set of interactions under a range of possible

failure situations. The complexity of the interactions and the number of possible

scenarios make this an error-prone process. A model-based programming language

leverages the benefits of both synchronous programming and concurrent constraint

programming, with the key difference that it interacts directly with the plant state:

state assertions (configuration goals) are specified as constraints on plant state vari-

ables that should be made true (achieve constraints, rather than tell constraints),

and state condition checks are ask constraints. Further discussion of this distinction

is found in Chapter 5.

TMBP and concurrent constraint programming share underlying principles, in-

cluding the notions of constraint-based modeling and computation as deduction over

systems of partial information [33]. Just as concurrent constraint programming offers

a family of languages, each characterized by a choice of constraint system, TMBP

defines a family of languages, each characterized by the choice of the underlying

plant modeling formalism. TMBP extends concurrent constraint programming with

a paradigm for exposing hidden states, a replacement of the constraint store with a

deductive controller, and a unification of constraint-based and semi-Markov modeling.

34

2.3 Robotic Execution

State-of-the-art embedded executives are used to coordinate the run-time activity

among various software modules within a control system. They must be able to re-

spond quickly to events while bringing potentially large amounts of information (both

system knowledge and real-time measurement data) to bear on their decisions [271.
In doing so, robust executives must manage interacting goal- and event-driven pro-

cesses, while remaining reactive to contingencies. TMBP supports both goal- and

event-driven execution, where goals and events are represented as changes to system

states.

The robotic execution languages used to encode robust executives, like Reactive

Action Packages (RAPs) [26] and Task Definition Language (TDL) [761, provide con-

structs for various task-level control capabilities. This section highlights the capabil-

ities of a representative robotic executive and describes how the Timed Model-based

Executive provides each of these capabilities.

The procedural executive EXEC was demonstrated onboard DS-1 as part of the

Remote Agent Experiment [65]. Remote Agent's EXEC is written in a rich procedural

language, the Execution Support Language (ESL) [27], which is an extension to multi-

threaded Common Lisp. ESL provides language features that allow the encoding of

execution knowledge into embedded autonomous agents. These features translate

to the following key capabilities for EXEC, which are also provided by the Timed

Model-based Executive: contingency handling, task management, goal achievement,

time-keeping, logical database querying, and resource management. Each of these

capabilities is discussed below.

1. Contingency handling - As discussed in Chapter 1, the Timed Model-based

Executive is inherently fault-aware. The use of a deductive controller within the

state-achievement loop enables the executive to detect and respond to failures

"on-the-fly". Furthermore, through the combination of preemption constructs

encoded in RMPL/THCA control programs and the hidden state diagnosis ca-

pability provided by the deductive controller, mechanisms for identifying and

35

recovering from failure contingencies and specifying cleanup procedures can be

constructed.

2. Task management - Task management capabilities, such as spawning new

concurrent tasks, aborting tasks, setting up task networks and defining guardian

tasks (for task monitoring) are provided by parallel composition and preemption

constructs in the timed control program. Task synchronization features, includ-

ing signaling and waiting for particular events, are also provided by TMBP. By

representing events as changes to states of the system or its environment, event-

driven execution is straightforwardly accommodated.

3. Goal achievement - The mechanisms for specifying and commanding goal

achievement methods in the TMBP framework are provided by the underlying

deductive controller. The capacity for a Timed Model-based Executive to per-

form sequencing at the level of system state specifications, and to abstract away

the details of how states are achieved, is considered a significant benefit.

4. Time-keeping - The introduction of clock variables, clock initializations, and

time constraints in TMBP enables the Timed Model-based Executive to pro-

vide capabilities for timeout definitions and relative-time event scheduling. As

discussed in Chapter 1, time is considered both at the level of the control spec-

ification and at the level of the plant behavior specification. This allows for

execution conditioned on time as well as system state, and for reasoning about

timed (semi-Markov) plant behavior.

5. Logical database querying - The need to explicitly maintain, query and

reason about a distinct logical database is made obsolete by the presence of the

deductive controller. This deductive controller maintains the latest system state

knowledge and provides the control sequencer with all the state information it

requires.

6. Resource management - The Timed Model-based Executive provides ca-

pabilities for basic resource management, using preemptive constructs in the

36

control program to trigger when a certain property, expressed in terms of state

constraints, is no longer entailed. The current incarnation of RMPL/THCA

does not provide advanced property locking mechanisms, to handle resource in-

teractions between concurrent tasks. Incorporation of more advanced resource

management features is a focus of current work.

In summary, the Timed Model-based Executive offers most of the goal-directed

tasking and monitoring capabilities of robotic execution languages. A key difference

is that TMBP fully covers synchronous programming, hence moving towards a uni-

fication of a goal-directed AI executive with its underlying real-time language. Fur-

thermore, the incorporation of a deductive controller into the execution loop enables

control sequencing to be performed at the level of system state specifications, and to

abstract away the details of how states are achieved. This hidden state abstraction

provides a powerful mechanism for goal- and event-driven execution.

2.4 Model-based Programming and Execution

In general terms, a model-based executive is defined as a reactive configuration man-

agement software module that uses a declarative specification of system behavior

(plant model) to track system state and compute desired sequences of control ac-

tions. Model-based execution encompasses research in the fields of synchronous and

concurrent constraint programming, robotic execution, model-based reasoning, diag-

nosis and reactive planning.

The first-generation model-based executive is the Livingstone system [83]; Living-

stone is composed of an estimation component called Mode Identification (MI) and

a control component called Mode Reconfiguration (MR). The MI capability builds

off earlier work in model-based diagnosis (the GDE [19] and Sherlock [20] diagnos-

tic systems) by including probabilistic transitions between modes of components in

the plant model. This extension improves the diagnostic discrimination by allow-

ing likely state estimates to be tracked through commanded reconfigurations of the

system. To track the state of the plant, the Livingstone executive uses Sherlock's

37

any-time conflict-directed A* algorithm [20, 91] to efficiently search over the set of

possible transitions in the model, in combination with a satisfiability engine based

on an incremental truth maintenance system [59]. Livingstone employs these same

algorithms and models in its MR capability, which computes a set of optimal control

actions required to achieve a specified goal. Livingstone's MR has been upgraded to

include the Burton reactive planner [85], which enables MR to reason through com-

plex paths of interaction through the system, and generate multiple-action sequences

that achieve the specified goals.

The core Livingstone MI and MR algorithms were reimplemented and improved

by Kurien [50, 51]; the resulting model-based executive is named Livingstone2. Liv-

ingstone2 extends the MI capability, allowing it to incrementally generate, rather

than revise, an approximate belief state by abstracting and summarizing segments

of the likely plant state trajectories. This enables a system to maintain a partial

belief state as long as it remains consistent with observations, and to revisit past as-

sumptions about the state evolution when certain state estimates are ruled out. The

MR capability is extended to provide safe planning in the presence of uncertainty or

ambiguity in the current state estimate. It adopts an any-time conformant planning

approach: given a set of possible initial states and a goal configuration, it chooses

one of the initial states, finds a plan that achieves the goal for that initial state, and

then incrementally tries to extend this plan into a new plan that is conformant for

additional initial states.

Other extensions to the Livingstone algorithms were made by Ragno [67], van

Eepoel [79], and Chung [16]. Ragno [67] first extended Livingstone by incorporating

a complete DPLL-based satisfiability engine [17], replacing the original implemen-

tation's limited unit propagation-based satisfiability engine. He also demonstrated

substantial performance improvement by replacing the conflict-directed A* algorithm

(a weak coupling of A* search and satisfiability checking) with clause-directed A *,

an approach in which the search and satisfiability are more tightly coupled. Other

work has focused on further improving the core Livingstone algorithm performance by

"pre-compiling" its computationally expensive on-line model-based reasoning opera-

38

tions into a set of model-derived rules, which can be used to diagnose or command the

spacecraft in time that is linear in the number of rules. A compiled version of mode

estimation that implements approximate belief state update (as opposed to Living-

stone's limited single-trajectory tracking capability) was developed by van Eepoel [79].

Chung [16] developed a compiled mode reconfiguration capability that extends the

Burton reactive planning approach by leveraging transition-based decomposition and

a compact symbolic encoding as Ordered Binary Decision Diagrams.

The next-generation model-based executive, called Titan [90], combined a de-

ductive controller (evolved from Livingstone) with a procedural state-based control

sequencing module, and formally introduced the model-based programming paradigm

that the current TMBP work is based upon. By coupling deductive reasoning capa-

bilities with the task control capabilities of an advanced procedural sequencer, the

resulting executive demonstrates greater flexibility, fault-awareness and robustness

than traditional executives.

A similar type of combined procedural/deductive executive was previously demon-

strated as part of the Remote Agent Experiment (RAX), which flew on the DS-1

spacecraft in 1998 [60, 64]. In that case, the executive consisted of an integration of

the EXEC system [65], with the Livingstone deductive executive [83]. This demon-

stration proved that the combination of knowledge encoded in procedures and in

declarative models yields a rich modeling framework suitable for the control of space-

craft systems. However, the two components of the executive required a distinct

knowledge representation, expressed using very different modeling languages. While

such heterogeneous representations have a number of benefits, including the ability

for different software components to reason at different levels of abstraction, they

also present several difficulties. Most significant are the possibility for models to

diverge and the need to duplicate knowledge representation efforts. One conclusion

drawn from the Remote Agent design effort was the desire to head towards a unified

representation of the spacecraft, while maintaining the ability to accommodate the

complexities of the spacecraft domain and the capacity for knowledge abstraction [4].

The Titan model-based executive improves upon the design of the Remote Agent's

39

procedural/deductive executive, by embracing a cleaner separation of the roles of the

procedural and deductive parts of the executive. The two modules require truly

complementary knowledge bases, with the control programs representing state-based

control specifications, and the plant models capturing system behavior within each

state. This leads to less duplication of knowledge between the modules, which was

a drawback of the Remote Agent's procedural/deductive executive. This duplication

of knowledge resulted from Remote Agent's use of the Livingstone MR capability as

a "recovery expert": MR suggested recoveries to EXEC rather than actually issue

the commands it generated. This required EXEC's control programs to cover all

the possible commands MR could generate. In contrast, the only common informa-

tion shared by Titan's control programs and plant models is the set of system state

variables.

The Timed Model-based Executive described in this thesis builds off the Titan

executive, by folding time into both the control programs and plant models. The

ability to express timed control programs allows the Timed Model-based Executive's

control sequencer, described in Chapter 5, to accommodate time-critical sequences,

like entry, descent and landing. The design of the Timed Model-based Executive's

deductive controller, detailed in Chapter 6, extends Titan's algorithms for state in-

ference and optimal system reconfiguration, to allow reasoning about timed plant

models, capturing system behaviors that are characterized as semi-Markov.

Other work in model-based programming has also folded time into the computa-

tional model. The Kirk model-based executive [48] combines the flexibility of embed-

ded programming and reactive execution languages, and the deliberative reasoning

power of temporal planners. As introduced in Chapter 1, the Timed Model-based Ex-

ecutive focuses on reactively executing a timed control program expressed in terms of

hidden state, and reasoning about semi-Markov behavior at the level of plant compo-

nents. Kirk, on the other hand, operates at a higher level of abstraction: it provides

capabilities for reasoning about activity-level contingencies, scheduling, and planning

cooperative paths [88].

Kirk uses a non-deterministic control program representing a form of contingent

40

plan graph that encodes alternative activities with associated symbolic constraints

and time bounds. Kirk's control programs differ from the timed control programs

considered in this thesis, in that they allow for non-deterministic choice between

activities and they do not operate directly on hidden plant state. Furthermore, Kirk

control programs adopt a non-deterministic model of time, where time bounds are

specified on activities, capturing the lower and upper limits on activity duration.

In this sense, they resemble timed plant models in TMBP, except that they do not

specify probabilistic time constraints.

Kirk reasons through its control program, choosing a set of activities that form

a consistent (i.e., satisfies all symbolic constraints) and schedulable (i.e., satisfies

all time constraints) plan. Kirk then executes its plan using a robust execution

algorithm, described in [78], which adapts to execution uncertainties through fast

online scheduling. Ongoing work in model-based programming is underway to ex-

tend the Kirk paradigm to distributed planning and execution problems [81], and

to unify Kirk's capabilities for scheduling and contingency planning with the Timed

Model-based Executive's capabilities for reactively operating on hidden states of semi-

Markov plants.

2.5 Formal Modeling of Real-Time Systems

System specification languages for real-time system modeling, such as Timed Au-

tomata [3] and Timed Transition Systems [39], are characterized by their clean se-

mantics and amenability to verification via formal tools. Widely used model-checking

tools, such as SPIN [41], KRONOS [10], UPPAAL [55] and SMV [12], are used to ver-

ify whether a system described using a formal system specification language satisfies

certain state properties, including reachability, safety, and progress.

The incorporation of time into the formal semantics of TMBP borrows various

ideas from the semantic descriptions of these system specification languages. For

example, both paradigms define a complex system as a composition of concurrently-

operating automata. Furthermore, like most existing semantic models that describe

41

timing-based systems, TMBP adopts an interleaving model of computation, where an

execution is represented as an alternating sequence of instantaneous "discrete" events

and "continuous" phases. Consequently, legal executions of a timed model-based

program are defined as discretized timed state sequences (see Chapter 4) satisfying

all timing constraints on transitions; this definition is similar to the definition of

computations of a Timed Transition System [39].

Key ideas from these formal system specification languages are also folded di-

rectly into the languages used to implement timed model-based programs, at both

the control program and plant model levels. The THCA graphical language used

for control programs defines clock variables, clock interpretations, clock initializa-

tions, and timing constraints, elements common to modeling formalisms like Timed

Automata [3]. However, whereas THCA are intended to provide a framework for exe-

cutable specification of embedded control.programs that run "in the loop" as part of a

system's real-time control system, formal system specification languages are intended

to provide a framework for off-line formal verification and model checking. This fun-

damental difference in intent leads to some key differences in the language, such as

THCA's adoption of a hierarchical computational model. Another formal specifica-

tion language, Timed Statecharts [47], also adopts a hierarchical structure, but THCA

are distinguished by their use of state-based configuration goals as a mechanism for

goal-driven execution. A more detailed discussion of the comparison between formal

specification languages and THCA is found in Chapter 5.

At the level of the plant models, the TCCA formalism has similarities with a

variant of Timed Automata, called Probabilistic Timed Automata [52, 53]. Both for-

malisms describe system behavior through a set of concurrently-operating automata,

where probabilistic transitions between states are conditioned on event labels and

clock constraints. There are, however, some key differences between the two repre-

sentations due to the constraint-based encoding of TCCA and its use for modeling

semi-Markov plant behaviors. For instance, TCCA use general propositional logic

constraints on plant variables to specify behavior in each component mode, whereas

Probabilistic Timed Automata simply associate with each node a set of atomic propo-

42

sitions that are true in that node. A more detailed discussion of the differences

between the TCCA and Probabilistic Timed Automata formalisms is provided in

Chapter 6.

Recent work in formal verification has studied the use of model-checking tech-

niques to validate plant models for untimed model-based executives [61, 63]. Re-

search in applying these methods to timed plant models and timed control programs

is identified as an area for future work (see Chapter 8).

Finally, it is interesting to note that recent research has seen formal models and

model-checkers used for diagnosis [53, 54]. Chapter 6 includes further discussion

of this work in comparison with the mode estimation approach used in the Timed

Model-based Executive.

2.6 Mission Data System

The Mission Data System (MDS) is an embedded software architecture, currently

under development at NASA JPL. Its overarching goal is to provide a multi-mission

information and control architecture for the next generation of robotic exploration

spacecraft, that will be used in all aspects of a mission: from development and testing

to flight and ground operations. In the process of achieving this ambitious goal, the

MDS team has rethought the traditional mission software lifecycle, and has adopted

a vision that acknowledges and leverages the intimate coupling between software and

systems engineering: "Software is part of and contributes substantially to a new

systems engineering approach that seamlessly spans the entire project breadth and

life cycle." [22]

Though its scope and objective are much broader, MDS shares numerous archi-

tectural themes with TMBP:

1. Take an Architectural Approach

In traditional approaches to designing mission software, code is "compartmen-

talized" in various ways, e.g. flight vs. ground vs. test, and by subsystem

(power, thermal, navigation, etc...). As a result, each subsystem's software en-

43

state timeline
constraints on state,

state estimates

Figure 2-2: Simplified MDS architecture diagram.

gineering and programming teams tend to apply customized solutions to prob-

lems in their subsystem, leading to minimal amounts of software reuse across the

different subsystems. Furthermore, in addition to the problem of inefficiency,

this approach leads to increased interface complexity between subsystems, as

many important mission considerations (such as onboard resource limitations)

introduce coupling across subsystem boundaries [23]. Getting the interfaces

right generally requires many iterations on the part of multiple subsystem soft-

ware teams.

In contrast, MDS adopts an architectural approach, meaning that it strives to

identify common problems and provide common solutions, in the form of shared

core architecture elements, such as estimators, controllers and planners. Sub-

systems are constructed from architectural elements, instead of the other way

around. This decreases the amount of redundant (and potentially conflicting)

code written, and promotes consistency through common resource coordination

services provided by the architecture. A simplified interpretation of the MDS

architecture is shown in Figure 2-2.

44

TMBP adopts a similar philosophy. The three main architectural modules

(control sequencer, mode estimation and mode reconfiguration) are used for

system-wide control. Component- and subsystem-specific behavior information

is embodied in the plant models, with couplings specified through interconnec-

tion constraints; the executive's deductive controller has the responsibility of

managing these couplings in a system-wide way, rather than locally, based on

feedback from the spacecraft sensors and goals from the control sequencer. Sim-

ilarly, subsystem-specific control information is captured in control programs,

for system-level management by the control sequencer.

2. Consider State and Models to be Central to the Architecture

In traditional approaches to embedded software, and spacecraft flight software

in particular, programs are written such that they prescribe the desired state

evolution implicitly, through low-level commands to actuators and references

to sensors. Their implicit consideration of state makes these programs hard to

encode and verify.

Like TMBP, MDS is a state-based architecture, where state is defined as the

momentary condition of a dynamic system. State is accessible in a uniform way

through state variables, instead of through local variables in the control pro-

gram. Both paradigms emphasize the separation of application-specific knowl-

edge, in the form of models that describe how state evolves, from reusable

general-purpose code that operate on the models to track and control state.

The novelty in this approach is that models are used explicitly, rather than be-

ing "hidden" in the details of the control program, as in traditional flight code.

This leads to easier portability from mission to mission, as only the models need

to be updated with domain-specific knowledge.

In keeping with its broader scope, MDS adopts a more general representation

of state than TMBP. Unlike TMBP, which currently operates only on discrete

state models, MDS considers both continuous and discrete state. Furthermore,

state evolution in MDS is described on state timelines, which provide a record

45

of current estimates, past estimates, and future predictions. The concept of

state timelines, while not inconsistent with TMBP, has not been implemented

within the paradigm. The current implementation of the Timed Model-based

Executive focuses on using current state estimates to direct the execution of

control programs.

The concept of models is also more general in MDS than in TMBP. MDS models

can be tables, functions, rules, state machines, etc... The plant models used in

the current TMBP implementation are encoded as a specific form of factored

POSMDP, described in Chapter 6. However, it should be noted that the TMBP

paradigm conceptually defines a broader family of languages, each distinguished

by the choice of semantic model for the plant. This allows for different imple-

mentations of Timed Model-based Executives that operate on behavior models

represented in different forms.

3. Enable Goal-Directed Closed-Loop Operation

Traditional spacecraft control programs essentially consist of unconditional,

time-tagged sequences of commands to be issued, generally in an open-loop

manner, based on implicit assumptions of state. These sequences must be

painstakingly designed by systems engineers on the ground, who must rea-

son about the complex end-to-end spacecraft system to successfully predict the

resulting spacecraft behavior and ensure it follows the desired trajectory. Be-

yond the "low-level" controllers specified for particular subsystems, such as the

attitude control or thermal subsystems, onboard system-level monitoring and

response capabilities are generally limited, involving ground-controllers in the

loop and a fault-monitoring/safing system that operates in parallel with the

nominal flight software.

This operational model can lead to lengthy control specifications, due to the

command-level detail of sequences. Furthermore, it can lead to brittle behavior,

due to its very limited branching ability and the lack of onboard consideration

of the intent of the sequence. MDS and TMBP both address these problems:

46

instead of issuing low-level open-loop commands, they issue goals that indi-

cate intent in the form of desired state. Goals are easier to specify than the

actions needed to achieve them, and result in more compact specifications of

desired behavior. Furthermore, goal-directed operation goes hand-in-hand with

closed-loop control, because goals can be thought of as set points for onboard

controllers, which are then given the latitude to decide how best to achieve the

goals. The latter role is filled by the deductive controller in a Timed Model-

based Executive. For MDS, these onboard controllers are known as goal achiev-

ers. It should be noted that TMBP's definition of a goal, as a constraint on

state variables that must be satisfied, is not as general as MDS' definition of

goal, as a prioritized constraint on the value of a state variable over a specified

time interval. This distinction is consistent with the emphasis on state timelines

in MDS.

4. Separate State Determination from State Control

Unlike traditional approaches to embedded software, in which control logic is

intermingled with state determination logic, MDS and TMBP advocate making

a clear separation between these two key functions, which are coupled solely

through state variables. Taking this approach allows state knowledge to be

updated in a unified, consistent way, for use by any control function in the ar-

chitecture. For instance, in the Timed Model-based Executive, state estimates

from the mode estimation module are used both by the control sequencer and

the mode reconfiguration module. In MDS, multiple controller modules might

need to access the same state variable. Keeping the state determination and

state control functions separate ensures that all active controllers use a consis-

tent estimate of state. Furthermore, this type of increased modularity simplifies

module-level testing of various state determination or control algorithms, and

allows for minimally invasive upgrades to individual state determination and

control modules.

47

5. Provide Integrated Fault Protection

The goal-directed nature of the MDS and TMBP paradigms leads to intrinsic

fault-awareness in the system; that is, fault detection, diagnosis, and recovery

are an integral part of the design of the architecture. This is in contrast with

traditional flight software, where fault protection is provided as an "add-on"

capability, running in parallel with the nominal sequence execution code. In-

trinsic fault-awareness is enabled by providing the executive with knowledge

of the operational intent (in the form of state goals), and the ability to derive

appropriate actions by reasoning about the state of the system, instead of by

edict [69]. In both paradigms, fault states are included in the behavior models

and are treated just like any other nominal state. Fault detection and diagno-

sis are thus performed by the state determination (mode estimation) modules,

whenever the observed system behavior is different from the behavior dictated

by the current nominal mode estimate. This diagnosis process is performed in

the same loop as the nominal state tracking process. Similarly, in the case of a

diagnosed failure, recovery is also handled by the same goal achieving controller

in charge of performing the nominal system control actions (assuming such a

recovery is possible, of course; if it isn't, the goal achiever's job is to signal

failure of the goal to the module that issued the goal).

Another key element of robust operations is the consideration of knowledge

uncertainty. In the MDS framework, state knowledge uncertainty is tracked in

an explicit way, within the state variables. In TMBP, state uncertainty is built

into the plant models in the form of probabilistic transitions, and is considered in

the process of mode estimation. However, more sophisticated capabilities, such

as conditional execution based on the level of confidence in the state estimate,

are not currently provided by the Timed Model-based Executive (except to

the extent by which such reasoning can be captured within the plant model).2
2 For example, consider the case where a given state is determined by mode estimation to be the

most likely, but that its associated probability is only 60%. It would seem reasonable, in certain

48

MDS also provides the ability to issue goals on knowledge quality/certainty,

a capability that is not presently built into the Timed Model-based Executive.

MDS provides a good model for the TMBP paradigm, with respect to improving

its mechanisms for handling state uncertainty.

To summarize, both the MDS and TMBP paradigms advocate that system state

and models form the foundation for monitoring and control. As stated above, MDS'

goal is to provide a unified architecture and a set of component frameworks to accom-

modate appropriate technologies in support of a broad spectrum of space missions.

Model-based execution technology bridges the gap between system-level planning (a

capability provided by MDS' Mission Planning and Execution module) and real-time

subsystem commanding (provided by goal achievers in MDS). Consequently, an effort

is currently underway to infuse various elements of the Timed Model-based Executive

into MDS, including the control sequencer, mode estimation and mode reconfigura-

tion. Each of these component technologies has been identified as complementary to

baseline MDS functions. The control sequencer provides a capability for execution-

time goal elaboration, closing a more reactive loop than the MPE goal failure and

replanning cycle. The mode estimation and mode reconfiguration engines can play an

important role at the goal achiever level, providing a system-wide deductive estima-

tion and control capability not already provided by MDS core framework elements.

For example, Figure 2-3 illustrates a proposed integration of model-based mode esti-

mation into MDS' state determination framework. This infusion effort is being carried

out in the context of the first "customer" mission for MDS, Mars Science Laboratory,

a rover mission scheduled for launch in 2009.

situations, to avoid pursuing the nominal execution sequence conditioned on that state, in favor of
taking another course of action that is perhaps more conservative, or might provide more confidence
in the state estimate. The current Timed Model-based Executive implementation does not allow
this type of behavior.

49

State muuc sur.
Feedback

Local Qualitative

State Vars Observations

Local
States

Qualitative
Commands Commands

Local issued

Estimators

Measurements

Commands
Sensor Actuator (from controllers)

Adapters -Adaptors

H/W
Devices

Figure 2-3: Integrating model-based mode estimation into the MDS state determina-
tion framework.

50

Chapter 3

Timed Model-based Programming

Example

As explained in Chapter 1, the execution of complex critical spacecraft sequences

depends on timing conditions, as well as knowledge of spacecraft state. As an example,

consider the entry sequence for a Mars lander spacecraft, such as the Mars Polar

Lander [92] (Figure 3-1).

At the end of the cruise phase of its mission, as the spacecraft approaches Mars,

it turns on and heats up its descent engine, putting it into standby mode. Four and a

half hours later, as the spacecraft nears its entry point into the Martian atmosphere,

it switches from Earth-relative navigation, using a combination of a star tracker and

an inertial measurement unit (IMU), to inertial navigation using only the IMU. This

navigation mode switch is necessary because, once atmospheric entry is initiated, the

spacecraft will no longer be able to perform the reorientations necessary to track

the reference stars. Four minutes after switching its navigation mode, the spacecraft

prepares for atmospheric entry by rotating to its entry orientation. Once the entry

orientation has been achieved, the lander stage of the spacecraft separates from the

cruise stage and proceeds toward entry into the Martian atmosphere (all the while

holding its attitude at the entry orientation). When atmospheric entry is initiated (as

determined by a change in the spacecraft's acceleration due to atmospheric drag), the

entry sequence ends and the spacecraft proceeds to the descent and landing phases of

51

engine to standby
planetary approach switch to
- inertial nav rotate to entry -orient

- & hold attitude

A , separate
lander

Figure 3-1: Mars entry sequence.

the mission. The full entry, descent and landing sequence is described in Chapter 7,

in the context of a demonstration of the implemented Timed Model-based Executive.

In the above sequence, execution is conditioned on time conditions. For exam-

ple, consider the four and a half hour delay between putting the descent engine into

standby mode and switching to inertial navigation. Though it might seem more de-

sirable to condition the sequence execution on a state of the spacecraft, in this case

the relative distance of the spacecraft from the entry point, this is not an option:

the spacecraft does not have access to any observations that would allow it to mea-

sure this relative distance. For this reason, the sequence must include a hard-coded

delay, the length of which has been conservatively (but fairly accurately) estimated

from computations performed by ground operations personnel based on the cruise

trajectory of the spacecraft. The onboard executive must therefore have the ability

to initiate clocks that it can reference, in order to check for satisfaction of timing

conditions.

The executive must also consider time as it reasons about its hardware behavior.

For example, the process of putting the descent engine into standby mode involves

turning on and heating up the engine. Based on engineering specifications of the

engine design, the spacecraft should know that this heating-up operation nominally

takes from 30 to 60 seconds to complete. Based on available engine temperature

52

measurements, the onboard executive should then be able to confirm achievement of

the standby state. If the sensors indicate that the engine has not reached its nominal

standby temperature within the specified nominal time window, the executive should

deduce that the engine has somehow malfunctioned, and that it should attempt to

either repair the fault or work around it by leveraging any onboard redundancy. To be

able to perform such time-based reasoning, the executive needs to have a mechanism

for keeping track of the amount of time each modeled spacecraft component spends

in each state.

It is also important to note that this sequence specification is expressed in terms

of states of the spacecraft. Many of the states in the sequence are "hidden"; that

is, they are not directly observable, but instead must be deduced indirectly based on

one or more sensor observations and knowledge of how these observations relate to

the state of interest. For instance, the state of an engine must generally be deduced

based on various measurements of electrical power, temperature, and acceleration.

Similarly, hidden states are not necessarily directly controllable, but instead must

be commanded indirectly, sometimes through a complex communication path condi-

tioned on states of multiple components. Considering the same descent engine, for

example, engine commands from the flight computer must pass through a propulsion

drive electronics module, which must be powered on for the commands to reach the

engine.

This type of state-based specification is far simpler than a control program that

must turn on heaters and valve drivers, open individual valves in the propulsion

subsystem, and interpret readings from the various sensors in the system. Having

engineers specify desired spacecraft behavior in terms of more abstract hidden states

makes the task of writing the control program much easier and avoids the error-prone

process of reasoning through low-level system interactions. In addition, it gives the

program's execution kernel the latitude to respond to novel failures as they arise, as

described above for the engine example. This is essential for achieving high levels of

robustness.

The remainder of this chapter informally introduces the timed model-based pro-

53

1 EntrySequenceo :: {
2 engine = standby;
3 tl = 0;
4 when (t1 > 270.0) donext {
5 nav = inertial;
6 t2 = 0;
7 when (t2 > 4.0) donext {
8 do {
9 always (att = entry-orient),
10 when (att = entry-orient) donext (lander = separated)
11 } watching (entry = initiated)
12 }
13 }
14 }

Figure 3-2: RMPL timed control program for the Mars entry sequence.

gram corresponding to the Mars entry sequence described above. It begins by spec-

ifying the two components of the timed model-based program: the timed control

program and the timed plant model. It then describes the execution of the program

under nominal and failure situations.

3.1 Timed Control Program

The above discussion illustrates that execution of a critical sequence, like Mars entry,

depends on timing conditions as well as knowledge of spacecraft state. The RMPL

control program shown in Figure 3-2 provides a textual encoding of the informal spec-

ification given previously as a set of state trajectories. The specific RMPL constructs

used in the program are introduced in Chapter 5.

The timed control program begins by placing the engine in the standby state

("engine = standby"), and then notes the current time by initializing a clock variable

("ti = 0'). This sequence of actions is performed by lines 2-3, where a semi-colon

at the end of a line denotes sequential composition. The program then waits until

270 minutes have elapsed (line 4) before switching the navigation to inertial mode

("nav = inertial" on line 5). After initializing a second clock and waiting 4 minutes

(lines 6-7), the program performs two activities concurrently (the comma at the end

of line 9 indicates parallel composition): it commands the spacecraft to rotate to its

54

entry orientation ("att = entry-orient"), and then hold this orientation indefinitely

(line 9); concurrently, the program waits for the entry orientation to be achieved,

then commands the lander spacecraft to separate from the cruise stage ("lander =

separated" on line 10). These concurrent activities are preempted as soon as the

spacecraft is determined to have begun atmospheric entry (line 11), by watching for

entry to be initiated ("entry = initiated") and terminating as soon as that condition

is observed.

This timed control program highlights several of the features of TMBP, discussed

in Chapter 1. First, the program is stated in terms of state assignments, such as

"engine = standby", clock initializations (such as "ti = 0"), and clock constraints

(such as "ti < 4.0"). Second, state assignments appear both as goal assertions and

execution conditions. For example, in line 9, "att = entry-orient" appears in a goal

assertion, while in line 10, it appears in an execution condition. Third, these state as-

signments are generally not directly observable or controllable; they must be deduced

from the spacecraft's sensors (e.g., accelerometers, gyros, and temperature sensors)

and controlled indirectly through flight computer commands acting on the spacecraft

actuators (e.g., attitude control thrusters, reaction wheels, and heaters). Fourth, time

constraints are used to capture unmodeled information about the spacecraft or its en-

vironment. For example, the 270-minute delay reflects the change in relative position

of the spacecraft with respect to the Mars atmospheric interface, based on the cruise

trajectory computations performed by ground controllers. Finally, by referring to

hidden states directly, the RMPL program is far simpler than a corresponding pro-

gram that operates on sensed and controlled variables. The added complexity of the

latter program is due to the need to fuse sensor information and generate command

sequences under a large space of possible operation and fault scenarios.

3.2 Timed Plant Model

The timed plant model is used by a Timed Model-based Executive to map queried

and asserted states in the timed control program to sensed variables and control

55

sequences, respectively, in the physical plant. The timed plant model is built from

a set of component models. Each component is represented by a set of component

modes, a set of constraints defining the behavior within each mode, and a set of

timed probabilistic transitions between modes. Chapter 4 describes the semantics of

timed plant models in terms of factored Partially Observable Semi-Markov Decision

Processes.

For the Mars entry example, the spacecraft is represented by supplying state mod-

els for "components" (not necessarily physical components), such as those depicted

graphically in Figure 3-3.1 Nominally, an engine can be in one of four modes: off,

heating, standby, or firing. The behavior within each of these modes is described

by a set of constraints on plant variables with finite domains, namely thrust, power,

and temperature. In Figure 3-3, these constraints are specified in boxes next to their

respective modes. These constraints are expressed as logical relationships between

plant variable assignments. The engine also has a failed mode, capturing any off-

nominal behavior. The possibility that the engine may fail in an unexpected way

is always entertained, by specifying no constraints for the engine's behavior in the

failed mode. This approach, called constraint suspension [18], is common to most

model-based diagnostic approaches [20, 83].

Models include timed, commanded and uncommanded transitions, all of which

are probabilistic. For example, the engine has uncommanded transitions from off,

heating, standby, and firing to failed. These transitions each have a 0.1% probability.

Such uncommanded transitions are always enabled, capturing the possibility of an

unexpected fault occurring at any time. Transitions between nominal modes are

conditioned on commands and/or time constraints. Time constraints are expressed

in terms of clock variables, which capture the amount of time spent in a given mode.

For example, the engine's transition from off mode to heating mode is conditioned

on the command "cmd = standby." The transition from heating to standby mode is

'It should be noted that the models described here provide a fairly abstract representation of
component behavior. However, timed plant models can also be written at lower levels of abstraction;
for example, a spacecraft engine could be modeled as a composition of more detailed component
models of valves, thrusters, heaters, etc...

56

Engine:

(power = on) AND
(power = off) AND cmd = standb (thrust = zero) AND

(thrust = zero) (temp = increasing)

0.0011 NOT (cmd = off) &
0.001' cmd= 30 <= tE <=60

off

0.001 (power = on) AND
(thrust =zero) AND
(temp = nominal)

cmd= cmd=
standby fir e

0.001

(power= on) AND
(thrust = full) AND
(temp = nominal)

Att (excerpt for Mars Entry):

(acs = entry-controller) AND
(NOT (attLobs = in-entry-orient))

(acs = cruise-controller) AND S {acs = entry-controller) AND(att-obs = in-cruise-orient) (attobs = in-entry-odent)

c toE 10 <= t p <=60 Entry-m
orient amn

10 <= tA <=60 = fiedmOCrise toCruise

(b acs =cruise-controller)
AND

(NOT (att-obs = in-cruise-orient))

0.0001

Lander:

(primarypyro = k ' (primary.pyro =
not-fired) AND fired) OR

(backup fire-prir (backupyro =
not-fired)fired)

0.001

0.0001: pyro--cmd=
fire-backup

(primary-pyro=
_ _ _misfired) AND

C W0.000 (backup-pyro=
not-fired)

Figure 3-3: Example state transition models for a simplified Mars lander spacecraft.

Nominal modes are represented as circles, and fault modes are represented as ovals.

The probabilities on nominal transitions are omitted for clarity.

57

conditioned on the time constraint "30 tE 60," as well as the non-issuance of

the command "cmd = off," which would result in the transition back to off mode.

In this example, all commanded nominal transitions occur with probability 99.9%,

immediately upon assertion of their triggering commands. The timed transition is

associated with a uniform probability density function over the time interval [30, 60]

that integrates to 99.9%, representing the fact that the timed transition from heating

to standby can occur at any time from 30 to 60 seconds after the engine has entered

the heating mode. This implies that the timed plant model correspond to a partial

specification of system behavior, which can have many consistent executions, even in

the case of nominal behavior. This is an important distinction of timed plant models,

as compared to the untimed plant models used in model-based programming [90].

The full plant model for the simplified spacecraft used in the Mars entry example

includes component models for the engine, nav, att, entry and lander states. The full

set of models is provided in Appendix C. Further detail on plant modeling is deferred

to Chapter 6.

3.3 Model-based Program Execution

Figure 3-4 shows the graphical representation of the timed control program for the

entry sequence discussed in Section 3.1. This representation, called a Timed Hierar-

chical Constraint Automaton, consists of a set of locations (represented as circles and

boxes in the figure) arranged in a hierarchy, in the spirit of StateCharts [37]. While

they are marked, locations can assert configuration goals, corresponding to states that

the plant must progress toward (e.g., nav = inertial is asserted in the location labeled

"5"). Locations can also assert clock initializations (e.g., location 3 initializes clock

t1 to zero). Transitions between locations (represented as arrows in the figure) can

be conditioned on time and/or state constraints (e.g., the transition from location 4

to location 5 is conditioned on the time constraint ti > 270 min). These automata

will be formally defined in Chapter 5 of the thesis. Here, general references are made

to the figure, to provide an informal idea of how timed control programs are written

58

11 < 270mins t2 < 4 mins 8

nst 4 = MAINTAIN entry = initiated

engine= 27 ns nav= 4 mins
standby ineta t2=

a56=
2 3 4 5 6 7 entry-

orient

9 10

att=entry-orient

lander=
att=entry-orien parat

11 12

Figure 3-4: THCA representation of the Mars entry sequence.

and executed. In Chapter 5, this example will be revisited and its execution will be

discussed in more detail.

Recall that the Timed Model-based Executive is composed of two modules, the

control sequencer and the deductive controller. The control sequencer's role is to

execute the timed control program by issuing appropriate configuration goals, based

on the current state estimate and the current system time. The deductive controller's

role is to generate the current state estimate based on observations from the plant

and the current system time, and to issue commands that move the plant through a

sequence of states that achieve the configuration goals.

The execution of this timed control program begins by asserting the configuration

goal engine = standby (at the location labeled "2" in Figure 3-4), which the control

sequencer issues to the deductive controller for achievement. To determine how to

achieve this goal, the deductive controller considers the latest estimate of the state of

the plant. Suppose the deductive controller determines from its sensor measurements

and previous commands that the engine is off. The deductive controller deduces from

the model that it should send a command to the plant that will lead the engine to

standby mode. Based on the "engine" model in Figure 3-3, the deductive controller

issues the command cmd = standby. Based on new sensor measurements confirming

that the engine is indeed powered on, that its temperature is increasing and that

the thrust is still zero, the deductive controller tracks the engine's transition into

heating mode. Since the configuration goal engine = standby is not yet achieved, the

59

control sequencer continues to assert this goal. The deductive controller determines

from the model that the standby mode will be reached eventually, because of the

timed transition from the heating mode, without issuing any explicit command. At

each execution cycle, the deductive controller considers the amount of time elapsed

since the engine's transition into standby mode, and computes the likelihood that

the timed transition is taken. It also checks the latest updates to the observables,

to provide confirmation of the transition into standby mode. After 43 seconds, the

engine temperature is observed to reach its nominal level and the deductive controller

deduces that the transition into standby mode has been taken.

With the configuration goal now achieved, the sequencer then initializes a clock

variable (at location 3) and waits for the clock to read 270 minutes (at location 4).

At this point, the control sequencer asserts the goal nav = inertial (at location 5).

The deductive controller determines that the goal can be achieved by simply issuing

a command that triggers the desired change in navigation mode. After receiving

confirmation that the goal has been achieved, the sequencer initializes a new clock

(at location 6), and waits for 4 minutes to elapse (at location 7). At this point, it starts

continuously asserting the configuration goal att = entry-orient (at location 10, which

gets continually re-marked by the transition from location 9), which the deductive

controller begins to achieve by commanding the appropriate mode switch for the

attitude control system (acs-cmd = toEntry, see the "att" model in Figure 3-3). When

the entry orientation is achieved (transition from location 11 to 12) after a 12-second

slew, the sequencer proceeds by issuing the configuration goal lander = separated

(location 12), all the while continuing to assert att = entry-orient, to maintain the

spacecraft's attitude. This results in the deductive controller triggering the firing of

the lander's pyro latches to separate it from the cruise stage. The sequencer continues

to hold its entry orientation until the deductive controller indicates that entry has

been initiated (entry = initiated), based on IMU sensor measurements indicating the

onset of drag due to atmospheric entry, at which point execution of the Mars entry

control program in Figure 3-4 terminates.

This describes a nominal (i.e. fault-free) execution of the entry sequence. How-

60

ever, the robustness provided by the TMBP approach is particularly emphasized in

the case of off-nominal execution. One of the main strengths of TMBP is its fault-

awareness, i.e. its seamless incorporation of fault diagnosis and recovery capabilities

within the sense-decide-act loop. Consider a hypothetical situation where the pri-

mary latches connecting the lander to the cruise stage fail to release upon command

(corresponding to the fault transition into the unsuccessful-attempt mode for the "lan-

der" model in Figure 3-3). Since the timed control program for the entry sequence

has specified the configuration goal lander = separated (at location 12), the control

sequencer will continue to assert this goal to the deductive controller until it has

been achieved, or until it has been determined that the goal state cannot possibly

be achieved from the current estimated state. Presuming that the mission-critical

pyro latch subsystem incorporates some redundancy, failure of the primary latches

to fire open would result in the deductive controller reasoning through the "lander"

model to deduce that it should fire the backup latch. Whereas current approaches to

spacecraft fault protection would require explicit diagnosis and recovery actions to be

built into the sequence, the Timed Model-based Executive can perform this recovery

in a manner that is transparent to the control sequencer.

3.4 Summary

This chapter has provided an informal overview of TMBP by describing the timed

model-based program for a simple lander spacecraft and a Mars entry sequence. Nom-

inal and off-nominal executions of the program have been described, highlighting the

interactions between the control sequencer and deductive controller modules of the

Timed Model-based Executive.

The key insights to extract from this chapter are listed as follows:

" the execution of critical spacecraft sequences is conditioned on both time and

state, as illustrated in the timed control program for Mars entry;

" the components that make up the physical plant can exhibit timed behaviors,

61

as illustrated by the engine's heating process, about which the executive must

be able to reason;

* the Timed Model-based Executive is fault-aware, in that it has the ability to

detect and manage faults, within its nominal goal achievement loop.

In the following chapter of the thesis, a formal description of the semantics of

Timed Model-based Execution is provided. Subsequent chapters describe the imple-

mented framework for specifying and executing timed model-based programs, and

illustrate their execution in more detail.

62

Chapter 4

Timed Model-based Programming

and Execution Semantics

As described in Section 2.2, the concurrent constraint programming paradigm [33]

offers a family of languages sharing a common semantics, with each language char-

acterized by a choice of constraint system. Similarly, TMBP defines a family of lan-

guages, each characterized by the choice of the underlying plant modeling formalism

and the implementation of the associated deductive controller. This section presents

a semantic model for the family of TMBP languages, and the Timed Model-based

Executive that operates on a timed model-based program. The implementation of

the executive, described in Chapters 5 and 6, provides a computationally tractable

approximation to the abstract executive semantics presented in this chapter.

This chapter begins by describing the semantics for the two parts of the timed

model-based program: the timed plant model and the timed control program. The

semantics for the control sequencer and deductive controller modules of the Timed

Model-based Executive are then presented. The chapter concludes with a semantic

definition of the execution of a timed model-based program in terms of legal state

evolutions of a physical plant. The execution semantics for a timed model-based

program is one of the key contributions of this thesis.

63

4.1 Timed Plant Model

Previous work in model-based programming and execution used a factored Par-

tially Observable Markov Decision Process (POMDP) model to describe a physical

plant [90]. However, for timed plant models of the type introduced in Section 3.2, the

POMDP model is inadequate. It does not provide the ability to represent timed state

transitions, which are necessary to model system behaviors such as delayed reactions

and gradual state evolutions. Rather, this work models the plant as a factored variant

of a Partially Observable Semi-Markov Decision Process (POSMDP) [58]. The term

factored is used here to indicate that the system model is composed of component

models. Each component model, corresponding to a variant of a POSMDP, has an as-

sociated state variable and clock variable. The state variable stores the current mode

of the component. The set of all current component mode assignments is referred

to as a plant state. The clock variable stores the amount of time elapsed since the

component transitioned into its current mode. A dense model of time is assumed,

where the time domain is taken as the set of non-negative real numbers, R+.

The POSMDP model used in this work has some notable differences from the

"standard" POSMDP model described by Mahadevan [58]. The key distinction of the

POSMDP model presented here lies in the assumption that decision points (referred

to in the literature as decision epochs) are sufficiently frequent that the state does not

change more than once between decision epochs, and a state change (if one occurs)

can be assumed to happen at the instant of the following decision epoch. This differs

from the POSMDP model presented in [58], in which decision epochs occur at random

points of time determined by a probability distribution and in which the state of

the system can change between decision epochs. This distinction is illustrated in

Figure 4-1, which shows representative evolutions of state in the system over time

for both POSMDP models, and the decision epochs at which observations of the

behavior and decisions are made. The difference in the POSMDP model adopted

here is due to TMBP's use of the model to capture low-level plant behavior, where a

higher frequency of control interaction with the plant is necessary.

64

"Standard" POSMDP Model
state

D.E. I D.E. 2 D.E. 3 D.E. 4 time

state TMBP POSMDP Model

D.E. I D.E. 3 time
D.E. 2 D.E. 4

Figure 4-1: Illustration of the difference between the standard POSMDP model [58]
and the variant defined in TMBP. "D.E." stands for "decision epoch", that is, a time

at which a decision is made.

In both models, state transitions depend not only on the current state and ac-

tion, but also on how long the system has been in the current state. The standard

POSMDP model represents separately a transition probability function describing

transitions at decision epochs only (independent of time) and a probability distri-

bution of transition times for each state-action pair. The POSMDP plant model

adopted for TMBP captures this time dependency explicitly in a single transition

probability function, defined below, which specifies a probability associated with a

particular transition between states and valuation of the clock variables. This defi-

nition of a single transition probability function is similar to the semi-Markov model

considered by Lunze in [57], though his model does not consider partial observability

in the system.

Another important distinction of the POSMDP model presented here is that it is

factored. Other work has similarly leveraged factored representations of POMDPs,

in which state is implicitly described by an assignment to some set of state vari-

ables [9, 32]. Key differences in this work's factored POSMDP model are the depen-

dence of the transition function on time (in the form of clock values), and the com-

65

pact representation of the implemented model as a set of concurrent constraint-based

automata (the factored approaches described in [9, 32] employ Dynamic Bayesian

Networks as their compact representation).

4.1.1 Timed Plant Model as a Factored POSMDP

The semantic model of a plant defines a set of variables H. H is partitioned into

state variables U*, control variables [', observable variables U', and clock variables

W* Variables in H', fcl, and 1* each range over a finite domain. A state s is defined

as an assignment to each variable in fl'. An observation o assigns a value to each

variable in H* A control action y assigns a value to each variable in [c. A clock

interpretation v assigns a value to each clock variable in 11'. For 6 E R+, the clock

interpretation that adds 6 to the value of each clock variable in v is denoted by v +6.

A full assignment o- is defined as a set consisting of an assignment to each variable in

H, that is, -= (s, o, I, v)

Formally, the plant is modeled as P = (E, T, Pe, PT, PO, R). E is the set of all

possible full assignments over H. E, the projection of E onto variables in U"8, is the set

of all possible states, and Et is the set of all possible clock interpretations over *. T

is a finite set of transitions, where each transition T E T is a function r : E -> E, x Et.

Upon transitioning into a new state, some subset of the clock variables in [t are reset

to zero (corresponding to the components which have changed modes as a result of

this transition). Thus, for (s', v') = r(o-), s' denotes the state obtained by applying

transition T to the full assignment a, and v' denotes the clock interpretation resulting

from resetting the appropriate subset of clocks. The transition function Tr" E T models

the system's nominal behavior, while all other transition functions model failure. PRT

associates with each transition r and full assignment o- a probability P,(-). P,(a)

is shorthand for Pr(s' I s, y, v), where s, p, and v are the state, control, and clock

variable assignments in o-. Pe (so) is the probability that the plant has initial state

so. The reward for being in state s is R(s). The probability of observing o in state s

is Po(o | s).

As defined above, the factored POSMDP plant model extends the factored POMDP

66

semantic model adopted by the untimed model-based programming paradigm [89, 90].

The main extensions are:

1. the definition of clock variables and clock interpretations,

2. the conditioning of transitions on clock interpretations (i.e., the conditioning of

the transition probability on the current clock interpretation), and

3. the resetting of clock variables upon transitions.

It should be noted that the factored POSMDP plant model shares the key features of

the factored POMDP plant model from untimed model-based programming. First,

it captures nominal and various off-nominal system behaviors, by defining multiple

possible transitions from each full assignment. Second, it is encoded compactly using

concurrency and constraints (recall the factored plant model in Figure 3-3).

The semantic model of the plant as a factored POSMDP has a number of similari-

ties with other real-time modeling formalisms, such as Timed Transitions Systems [39]

and Timed Automata [2]. In particular, both of these models augment an untimed

transition system with non-deterministic time constraints on the transitions, and de-

fine a complex system as a composition of concurrently-operating automata. Both

models also adopt a dense model of time. The most important differences in the

factored POSMDP model described above are: (1) the adoption of a probabilistic

transition model (as opposed to the purely non-deterministic transitions in Timed

Transition Systems and Timed Automata), (2) the distinction made between nom-

inal and failure transitions, (3) the association of a single plant clock variable with

each state variable (only one clock variable is necessary to capture the amount of

time elapsed since the component transitioned into its current mode), and (4) the

conditioning of transitions on system variable assignments rather than general event

"labels."

67

4.1.2 Legal Trajectories of the Plant

In TMBP, an interleaving model of computation is adopted1 , where execution pro-

ceeds in cycles. Each cycle i consists of an instantaneous "discrete" event and a

"continuous" phase in which time advances by some amount (). As far as the plant

model is concerned, the discrete events correspond to transitions between plant states,

which are assumed to occur instantaneously at absolute system times t(0), t('), ... The

plant maintains its state between these discrete event times; that is, state s(') is as-

sumed to hold in time interval [t) t(t+')). The time step () = t0+ _) - (0 is not

necessarily constant from one cycle i to the next; it is determined by the amount of

time required for the Timed Model-based Executive to complete one cycle of control

sequencer and deductive controller operations.

Given a sequence of control actions [p(0), p(M, ...], a legal plant trajectory is

represented discretely by a sequence of states [s(0), s(1, ...] and clock interpretations

[v(O), v,(1) ...], such that:

1. s(O) is a valid initial plant state, that is, Pe(s(0)) > 0;

2. v(0) is a valid initial clock interpretation, that is, the value of each clock in v(0)

is zero;

3. each transition from (0) to s(-+1) occurs at time t0+);

4. for each i, there is a full assignment o(*'+') E E which agrees with s(') on

assignments to variables in IP, with p(') on assignments to variables in H', and

with v(0) + P() on assignments to variables in IP'. U(*.+l) captures the state and

clock interpretation at time t0+) - e (i.e., just prior to the transition), where e

is infinitesimally small;

5. (s+ I0+l)) - T(4.i+l)), for some T E T with P,(o(i+)) > 0, where 0+1)

assigns zero to the newly reset clocks, and agrees with o(*+') on assignments

'Real-time modeling formalisms such as Timed Transition Systems [39] and Timed Automata [2]
have previously adopted a similar interleaving model of concurrency; Henzinger, Manna and
Pnueli [39] have shown that the interleaving model is an appropriate model for capturing most
phenomena of interest occurring in the timed execution of real-time systems.

68

to all other clock variables; and

6. the trajectory is non-zeno [1], that is, time as captured in the clock interpre-

tations never converges: infinitely many transitions do not occur in a finite

interval of time.

A trajectory involving only the nominal transition r" is called a nominal trajectory.

A simple trajectory does not repeat any state.

This definition of legal trajectories of a timed plant model is similar to the defi-

nitions of computations of a Timed Transition System [39], and runs of Timed Au-

tomata [2], in that it specifies initial conditions, satisfies all timing constraints on

transitions, alternates state transition activities and time progress activities, and ex-

hibits the non-zeno property.

4.2 Timed Control Program

In this section, the semantics of the second part of the timed model-based program,

the timed control program, is discussed. A legal execution of a timed control program

is defined in terms of a timed sequence of control program locations, which represent

the "state" of the control program's execution at any given time, configuration goals,

which provide the mechanism for goal-driven execution, and control program clock

interpretations, which provide the mechanism for conditioning goals and activities on

time constraints. The semantics of timed control programs builds on the semantics

of untimed control programs [89, 90], by introducing the clock interpretations and

conditioning the transitions between program locations on these clock interpretations.

4.2.1 Timed Control Program as a Deterministic Automaton

A set 1-t of clock variables is defined for the control program (distinct from the

plant clock variables defined in Section 4.1). Whereas plant clocks have the specific

role of keeping track of how long each component has been in its current mode,

control program clocks are more general-purpose: a control program clock variable is

69

initialized whenever a new time reference is needed to trigger time-delayed goals and

activities in the control specification. Control program clocks measure the system

time elapsed since their initialization.

Similar to the definition of plant clock interpretation, a control program clock

interpretation w assigns a value to each control program clock in UJe,. c is defined

as the set of all possible clock interpretations over Utep. A clock x' is defined to be

active in execution cycle i if it was initialized in some earlier cycle. Conversely, if

x' has not been initialized prior to cycle i, it is defined to be inactive. To keep the

semantics simple, the assumption is made that, once active, clocks cannot become

inactive. Unlike the clocks associated with the plant model, control program clocks

are never "reset" to zero: a new clock is initialized whenever a new time reference is

needed. No loss of generality follows from this assumption - introducing new clocks as

they are needed in the control program enables the specification of parallel activities

triggered on independent time conditions.

Formally, a timed control program is a deterministic automaton TCP = (Lep, AcP,

Tcp, gcp, cp) , Qcp). Lcp is the set of program locations, where Acp E Lcp is the

program's initial location. Tp is a transition function rcp : Lcp x E, x cp - Lcp-

Transitions between program locations are conditioned on plant state estimates and

control program clock interpretations. Each location has a corresponding set of clock

initializations tcp(l) C Ute,, which is the set of clocks to be initialized upon transition-

ing to location 1. Each location I E Lep also has a corresponding configuration goal

gep(l) C E, which is the set of plant goal states associated with location 1.

4.2.2 Legal Executions of the Timed Control Program

Similar to the timed plant model, the timed control program changes locations instan-

taneously at absolute system times t(O), t(1), ... , and maintains its location between

these discrete event times. Again, the time step 60) = t(+) - t) is determined by the

amount of time required for the Timed Model-based Executive to complete one cycle

of control sequencer and deductive controller operations, and is not necessarily con-

stant over i. Given a sequence of most-likely state estimates [s(O), s(1), ...] of a plant

70

P, a legal execution of a timed control program TCP is represented by a sequence of

locations [(0), l(1), ...], configuration goals [g(O), g(, ...], and clock interpretations

[w(0), (), ...], such that:

1. l() is the initial program location Ac,;

2. w(0) is a valid initial clock interpretation, that is, ofo)(xt) = 0 for all clocks

x* E lIc, and all clocks are initially inactive;

3. (w('), w(i+1)) represents a legal clock interpretation sequence, that is:

e for each clock xt that is inactive in cycle i, w(i)(xt) = 0,

" for each xt that is active in cycle i, w(i)(xt) - w(4--)(xt) + 6 (-1), where

(i-1) E R+ is the same for all active clocks,

" for each xt that is initialized in cycle i (i.e., x' E tcp(l(i))), xt is active for

all cycles j > i;

4. (1(), l('+1)) represents a legal control program transition, that is, 1('+1) - (l

s(i) , WO) + 60)); and

5. g(') represents a valid configuration goal, that is, g(') = gcp(l(i)).

The semantics of a timed control program can thus be considered a variant of

Deterministic Timed Automata [2], with two key distinctions:

1. its execution is conditioned on the hidden state of a physical plant;

2. its locations assert configuration goals intended to operate on the hidden state

of a physical plant.

4.3 Timed Model-Based Executive

A timed model-based program is executed by a Timed Model-based Executive, de-

fined as a high-level control sequencer, coupled to a low-level deductive controller (see

Figure 1-3). In this section, the semantics of each of these two executive modules is

presented.

71

Timed Control Program

cLp' cp'cp' Sp'ep ' gC C s, cp

State Estimate Control Sequencer Time Step

S (w)transitions Program Location Po _ 0 - ()

updates Program Clocks WU) -+ *+

Configuration Goal
g(i+l)

Figure 4-2: Block diagram showing inputs and outputs of the control sequencer.

4.3.1 Control Sequencer

The control sequencer's role is to direct the closed-loop goal-driven execution, by issu-

ing the configuration goals specified in the timed control program. In each execution

cycle, it takes as input a timed control program TCP, the plant state estimate and the

time step from the system clock, and it issues a configuration goal to the deductive

controller (see Figure 4-2). More precisely, the control sequencer advances the control

program from its current location (i) to a new location l(i+1), by taking the transition

enabled by the state estimate s() and the clock interpretation w('). It generates the

configuration goal g(i+1) associated with the new program location 1(i+1).

Formally, the semantics of the control sequencer can be described by the function

CS (see Figure 4-3), which operates on the control program TCP defined in Sec-

tion 4.2. Given an initial program location 1(0), an initial clock interpretation W(O),

and sequences of state estimates [s(0), s (1), ...] and cycle time intervals [6(0), 6(1),]

CS can be used to generate a legal execution of TCP, i.e., it outputs legal sequences

of program locations, clock interpretations and configuration goals (as defined in Sec-

tion 4.2).

72

CS(TCP,10),),WM,6W3) + (;0+1),W(i+1),g0i+U):

1. Advance to new program location.

2. Update clock interpretations.
For each clock xt E Hp:

w(2+1) _ Iw(i+1)(xt) = 0 if xt is inactive;
W(i+1)(zt) = w()(t) + 60) if xz is active.

Xz becomes active if xz E tcp(l(i+1)

3. Issue configuration goal.

g (i+1) = gcp (10 +1)

Figure 4-3: Control sequencer function CS.

4.3.2 Deductive Controller

The deductive controller's dual role is to (a) infer the system state based on obser-

vations from the sensors, and (b) issue control actions that achieve the configuration

goals. In each execution cycle, it takes as input the plant model P, the configura-

tion goal from the control sequencer, the observation from the physical plant, and the

time step from the system clock. It generates the most likely plant state estimate and

an appropriate control action. This section presents the semantics of the deductive

controller by defining semantics for its two distinct capabilities, mode estimation and

mode reconfiguration.

Mode Estimation

The sequence of state estimates is generated by the deductive controller's mode esti-

mation (ME) capability. ME is an online algorithm for tracking the likelihood of each

possible plant state, given the plant model, the observations, the control actions, and

the time elapsed since the last execution cycle. In each cycle, ME returns the most

likely plant state as the current state estimate (see Figure 4-4).

Recall that previous work in model-based execution defined the semantic model

of the plant as a factored POMDP [90]. In this case, ME is framed as an instance

73

Timed Plant Model

(Y, T,P9, P P, R)

Observation

0 (+1) Timed Mode Estimation Time Step

Control Action computes Belief State b(" [s] -> b(*)[s]

U updates Plant Clocks VW -> y *1

State Estimate Belief State
"(i+1)

Figure 4-4: Block diagram showing inputs and outputs of mode estimation.

of POMDP belief state update. Belief state update computes the current belief state,

that is, the probability associated with being in each state, conditioned on the control

actions performed up to the last cycle, and the observations received up to the current

cycle. Exploiting the Markov property, the belief state b('+1) [s] at execution cycle i +1

is computed from the belief state and control actions at cycle i and observations at

cycle i + 1 using the following belief update equations:

p(ei+)[k] = P(i*)[s]P(sk | Sj,
j=1

(i+1)[p(ei+[s 0 (0 (i+1) I 8

where p(.i+Bk] = P(i+1) 1 o(0), .. . I ,(), and b(+)[s) = p1= [(i+1.)

p(,s i+l) 1 0(0),.. , 0 (i+1), pI(0), ... , A(W)). PT (s I sj, p(i)) is defined as the probability

that P transitions from state sj to state sk, given control actions [p(i). Po(o(i±l) I k)

is the probability that observation o(i+1) is received in state s(+1). The initial belief

state b(0) is computed based on p(*0) [sk = Pe(sk).

Traditional belief state update associates a probability to each state in a Trellis

74

A () '^(1) s_-1N s iA ~(-) I/
p(')[s,]

. pO-)[s 21 I
most likely stateS A~i
sk chosen a s

p(*)[s3]

Figure 4-5: A Trellis diagram depicts the plant's possible state trajectories. Given
the previous belief state, the latest control action and the latest observation, ME
computes the current belief state, and selects the most likely state as its estimate for

diagram, which enumerates all possible states at each time step and all transitions

between states at adjacent times (Figure 4-5). For ME, the tracked state with the

highest belief state probability is selected as the most likely state P(.

For the representation of the plant as a factored variant of POSMDP, traditional

belief state update is not directly applicable: the semi-Markov nature of the compo-

nent models implies that the evolution of a component's state depends not only on

the current state and control actions taken, but also on the amount of time spent

in the current state (as captured in the current clock interpretation). However, by

considering the system state 9 to be the plant state augmented with the current clock

interpretation, i.e. 9 = (s, v), the factored POSMDP P can be converted to a factored

POMDP P = (ET,Pe, PwPo,R), where:

* Z is the set of full assignments, computed as the cross product E, x Ec x E,

where f, is the set of all possible system states 9. Due to the inclusion of the

real-valued clock interpretations into the state, E, has an infinite domain, in

contrast with the finite domain of the state space of P. Note that, for each

& = (9, o, pi) E Z, there is a one-to-one correspondence with o = (s, o, y, v) E E

in the original factored POSMDP P.

t is the set of transitions, where each transition T E t is a function i: Y -+ ,

The transitions are derived from P's transition set T, with the appropriate

75

clocks reset in the target system state. More precisely, for each T E T in 'P,

a corresponding i E t is defined such that s' = f(&), where & is the full

assignment corresponding to o- in P, and s' = (s', v') = T(cr).

" Pe (s) is the probability that system state 9 is the initial system state. For each

S=(s, vi),

Pe(s) if v assigns zero to each plant clock;
Pe (s) =

0 otherwise.

* PT associates with each transition i corresponding to r in P, and full assignment

& corresponding to o- in P, a probability P(&) = Pr(o-).

" Po(o |) is the probability of observing o in system state s. For each . (s, v),

Po(o|) =Po(o 1 s).

" R(§) is the reward associated with system state 9. For each . = (s, v), R(s) =

R(s).

Now that the factored POSMDP P has been mapped to a factored POMDP 7,

the POMDP belief state update equations can be applied, to compute the likelihood

of the system states in each execution cycle:

n

Po+1[] EPi)§=3(§ jl~)

j=1

p p(.i+1) p 0 (0 (i+1) Ik)

j"1 p(i+1)[g)p 0 (0 (i+1) | §j)

where the belief state b(2+1)[§k] = p(i+1-) [s]. The transition probability PT(§k

si, pt()) is computed as the sum of P(&) over transitions -, such that & includes the

system state §j and the control action p(i), and N(&) = Sk.

Once the likelihood of each possible system state has been computed, ME must

extract from this belief state b(i+1) the probability of each possible plant state, to

determine the most likely state estimate s('+1). The probability of each possible

76

plant state s is computed by summing the belief state probabilities associated with

all system states 0+1) that include plant state s. The plant state with the highest

probability is returned by ME as s('+). The belief state itself is needed for the

deductive controller's mode reconfiguration capability, so it is also considered an

output of ME, in Figure 4-4.

Even for an untimed plant model, the state space of the factored POMDP is very

large, on the order of m", where n is the number of components in the system, and m

is the average number of modes for each component. Various implementations of the

untimed ME capability have been developed, which provide tractable approximations

to this belief state update computation [90, 87, 83, 50]. By augmenting the state to

include the current clock interpretations, the timed ME problem becomes even more

computationally expensive due to the continuous nature of the system state space.

Given the high level of reactivity required for the Timed Model-based Executive, it

is necessary to approximate the belief state update process, such that only a limited

number of the most likely state estimates are computed in each execution cycle.

Section 6.2 provides more detail on belief state update for an implementation of the

factored POSMDP semantic model, and on the approximations used to make the ME

problem computationally tractable.

Mode Reconfiguration

The sequence of control actions is generated by the deductive controller's mode recon-

figuration (MR) capability. MR provides an online algorithm for finding an optimal

policy that achieves the configuration goal, given the plant model and the current

belief state from ME (a policy 7r is a state-action mapping that specifies, for each

state, an action to be taken). In each execution cycle, MR returns the first control

action from the optimal policy (see Figure 4-6).

In the untimed model-based execution case, the semantics of MR maps to a goal-

directed decision theoretic planning problem, based on the plant model expressed as

a POMDP. In decision theoretic planning for POMDPs, the objective is to choose

actions such that some measure of reward is maximized [46]. More precisely, decision

77

Timed Plant Model

(1,T, Pe,Pr, Po,R)

Belief State Timed Mode Reconfiguration Configuration Goal

b(I[s] computes Optimal Policy 9 g(M

Control Action

Figure 4-6: Block diagram showing inputs and outputs of mode reconfiguration.

theoretic planning computes an optimal policy lr* for the POMDP that maximizes

the expected (possibly discounted) sum of reward over the finite discrete-time horizon

of interest h:

max E [trj.
i=0

The MR problem is described as goal-directed, because the specific objective of

the planning problem is to find a policy that leads to a state that satisfies the given

configuration goal. As such, the reward metric R(s) for the MR planning problem is

defined as a sum of a goal-specific reward function, which biases the solution toward

states that achieve the specified configuration goal, and the state reward function

R(s) built into the plant model POMDP, which biases the solution toward lower-cost

policies among the set of policies that achieve the configuration goal.

The solution of the basic decision-theoretic planning problem (assuming the sys-

tem is a Markov Decision Process (MDP) with fully-observable states) is obtained by

78

solving the Bellman optimality equations [66]:

V*(s) = max R(s) + 7 P (s' I s, L) Vi*1(s')1
s'EE

ir*(s) = arg max R(s) + E P(s' |s,t)Vd*(s).
L s'EE

In these equations, the optimal value function in the ith cycle, V*, is defined induc-

tively as the maximum of the sum of the immediate reward R and the discounted

expected value of the remaining (i - 1) steps. The optimal policy for the ith cycle, 7r*,

is defined in terms of the optimal value function V*_1 for the (i -1)th cycle. Common

approaches for solving the Bellman equations for a MDP include value iteration [42]

and policy iteration [36].

For a plant model modeled as a POMDP, the solution to the planning prob-

lem is obtained by solving the Bellman equations associated with the "belief MDP"

(B, A, T, p) [46], where:

" B, the set of belief states b(s) = p(i) [s] of the POMDP, defines the state space

for the belief MDP;

" A is the set of actions for the belief MDP, corresponding to the set Ec of control

actions for the POMDP;

* r(b, y, b') is the probability that the belief state transitions from b in cycle i to

b' in cycle i + 1, given control action y in cycle i. This probability is computed

as follows:

T(b, /, b') = Zp(b' I b, P, o)p(o I b, p),
OEEo,

where

p(b' | b, y, o) = 1 if BeliefUpdate(P, b, p, o) = b'

0 otherwise;

and

p(o I b, p) = p(*+1)]Po(o I s)
j=1

79

* p(b, p) is the reward function on belief states, computed from the original MR

planning problem's reward metric:

p(b, p) = (b(s)R(s)
SEEs

Just as the belief update equations could not be applied directly to the states in

the timed plant model, due to the model's semi-Markov nature, the Bellman optimal-

ity equations cannot be directly applied to the timed MR problem. However, using

the same insight introduced for ME, augmenting the state with the clock interpreta-

tion transforms the factored POSMDP into a factored POMDP, which would enable

the use of the POMDP decision theoretic planning approach described above. The

resulting solution would be an optimal policy for the given timed plant model 'P, the

current configuration goal g(t), and the current belief state b0.

However, it has been shown that solution of the decision theoretic planning prob-

lem associated with the "belief MDP" is generally intractable via exact dynamic

programming algorithms, even for a standard POMDP model, due to the continuous

nature of the belief state space [8, 46]. Indeed, it has been shown that finding the

optimal policy for a finite-horizon POMDP is a PSPACE-complete problem [62]. Nu-

merous approaches have been developed for finding approximate solutions, including

for example Sondik's One-Pass algorithm [77] and the Witness algorithm [46]. These

algorithms take the approach of computing approximations to the optimal value func-

tion, by exploiting properties of the belief state space. For the huge factored state

spaces (exponential in the number of components) of interest in TMBP, this approach

does not scale well [46].

Instead, this work follows the approach adopted in untimed model-based pro-

gramming, by making key assumptions that allow MR to be performed reactively by

dividing the planning problem into two steps: first, find a reachable goal state that

satisfies the configuration goal and maximizes reward; second, find a (possibly subop-

timal) sequence of control actions that lead from the current most-likely state to the

maximum-reward goal state. These assumptions and the resulting implementation of

80

MR are described in Section 6.3.

4.4 Timed Model-based Program Execution

Now that the semantics of the timed model-based program and the various modules of

the Timed Model-based Executive have been introduced, this section combines these

semantic descriptions into an overall execution semantics for the timed model-based

program.

Given a timed model-based program consisting of a timed plant model P and a

timed control program TCP, a sequence of cycle time intervals [6(0), 6(1), ...], and a

sequence of observations [o(0), ol), ...], a legal execution of the timed model-based

program is represented by sequences of state estimates [s(0), s(1), ...] of P, plant

clock interpretations [v(O), v (1)...] of P, program locations [1(0), I(), ...] of TCP,

program clock interpretations [W(f), WMJ ... of TCP, configuration goals [g(O), g(1),

...] of TCP, and control actions [pL(), p), ...], such that:

1. The initial conditions are valid, that is:

* Pe (s(0)) > 0;

" l(0) is the initial program location A4;

e o()(xrcp) = 0 for all program clocks xzrcp; and

* v(0)(xtp) 0 for all plant clocks xti.

2. The sequences of program locations, program clock interpretations, and config-

uration goals correspond to a legal execution of TCP, which is consistent with

the semantics of the control sequencer (presented in Section 4.3.1).

3. If plant state s(+1) is the result of a nominal plant transition from 0), then s(i+1)
is the state resulting from taking p(i), the first action in an optimal policy that

achieves configuration goal g(i), consistent with the semantics of MR (presented

in Section 4.3.2).

81

4. Given the sequence of control actions, the sequences of state estimates and plant

clock interpretations correspond to a legal trajectory of P, which is consistent

with the semantics of ME (presented in Section 4.3.2)

4.5 Summary

The semantics of both parts of the timed model-based program have been presented.

The timed plant model is described as a variant of factored POSMDP; it extends

untimed plant models with plant clocks, and specifies non-deterministic timed tran-

sitions between modes. It is distinguished from other real-time modeling formalisms,

such as Timed Automata [2], in its constraint-based factored implementation, its

adoption of a probabilistic transition model, its representation of semi-Markov behav-

ior through a single plant clock variable for each state variable, and its conditioning

of transitions on system variable constraints rather than general event "labels." The

timed control program is specified as a deterministic automaton; it extends untimed

control programs with program clocks, and enables transitions between locations to

be conditioned on time. It differs from representations like Deterministic Timed Au-

tomata [2] in its mechanisms for conditioning on, and operating on, hidden states of

the physical plant.

The semantics of the Timed Model-based Executive modules have also been speci-

fied. The control sequencer executes a timed control program and issues configuration

goals for achievement by the deductive controller, which operates on the factored

POSMDP model of the physical plant. The deductive controller provides a mode

estimation capability, which performs a variant of belief state update, and a mode

reconfiguration capability, which performs a variant of decision theoretic planning.

The deductive controller semantics leverages the key insight that the plant state can

be augmented with the plant clock interpretations, leading to a mapping from a

semi-Markov to a Markov process. Finally, the semantic models for each of the ex-

ecutive modules have been composed into an overall execution semantics for timed

model-based programs.

82

In the following two chapters of the thesis, one particular instance of a TMBP lan-

guage and its corresponding executive are defined. In Chapter 5, an implementation

of the control sequencer is presented, including the specification of a graphical model-

based programming language, in the spirit of StateCharts [37], that allows engineers

to specify desired state trajectories in the form of timed control programs. Chapter 6

presents an implementation of the deductive controller for the Timed Model-based

Executive, including the specification of another graphical specification language, sim-

ilar to Probabilistic Timed Automata [52], that provides the expressivity necessary to

model physical plant behaviors. The practical importance of this instance of TMBP

language is demonstrated in Chapter 7, on a representative spacecraft application.

83

84

Chapter 5

Control Sequencer

In this chapter, the control sequencer module of the implemented Timed Model-based

Executive is described. The chapter begins with a description of the textual language

RMPL, which is used to specify timed control programs for embedded systems. Ex-

ecuting a timed control program written in RMPL involves compiling it to a variant

of hierarchical automata, called Timed Hierarchical Constraint Automata (THCA),
and then executing the automata in coordination with the deductive controller. In

addition to providing a compact computational model for timed control programs,

the THCA representation is a graphical specification language in its own right, sim-

ilar to StateCharts [37]. THCA can be used directly by systems engineers in the

design, analysis and verification of control specifications for embedded systems. Af-

ter a formal definition of the THCA as a specific instance of the deterministic timed

control program automaton presented in Section 4.2, the compilation of RMPL to

THCA is discussed. Finally, the execution algorithm used by the control sequencer is

presented, and its execution is illustrated on the timed control program for the Mars

entry example introduced in Chapter 3.

85

5.1 The Reactive Model-based Programming Lan-

guage

This section introduces RMPL, by first introducing its underlying constraint system,

and then discussing the desired features of a TMBP language, in the context of a

motivating example. Finally, the RMPL constructs used for writing timed control

programs are introduced.

5.1.1 Constraint System: Propositional State Logic

A constraint system (D, =) is a set of tokens D, closed under conjunction, together

with an entailment relation y= C D x D. The relation = satisfies the standard

rules for conjunction (identity, A elimination, cut and A introduction), as defined

in [73]. RMPL currently supports propositional state logic as its constraint system.

Constraints can be of two types: state constraints and clock constraints. In the case

of state constraints, propositions take the form (x' = v), where variable x" ranges

over a finite domain ID[xs]; in the case of clock constraints, propositions take the

form (xt ineq t), where clock variable x' ranges over R+, and ineq E {<, > I, ;>}. A

proposition can have a truth assignment of true or false. Propositions are composed

into formulae using the standard logical connectives: and (A), or (v), and not (,).

The constants True and False are also valid constraints. A constraint is entailed

if it is implied by the conjunction of the plant model and the most likely current

state of the physical plant; otherwise, it is not entailed. Entailment is denoted by

simply stating the constraint. Non-entailment is denoted by using an overbar. Note

that non-entailment of constraint c (denoted c) is not equivalent to entailment of the

negation of c (,c); the current knowledge of plant state may not imply c to be true

or false.

In specifying an RMPL control program, the objective is to specify the desired

behavior of the plant by stating constraints that, when made true, will cause the

plant to follow a desired state trajectory. State assertions are specified as constraints

86

on plant state variables that should be made true. RMPL's model of interaction is

in contrast to that of embedded programming languages, like Esterel [6], and con-

current constraint programming languages, like TCC [74]. Embedded programming

languages interact with the program memory, sensors and control variables, but not

directly with the plant state. For example, Esterel interacts by emitting and de-

tecting signals. In contrast, RMPL control programs ask constraints on plant state

variables, and request that specified constraints on state variables be achieved (as

opposed to tell, which asserts that a constraint is true). State assertions in RMPL

control programs are treated as achieve operations, while state condition tests are

ask operations. The definition of achieve constraints distinguishes TMBP from con-

current constraint programming, where the language interacts with a constraint store

strictly by telling and asking constraints. In TMBP, the constraint store is replaced

by a deductive controller; the language interacts with the deductive controller by

asking constraints on the system state, and issuing achieve constraints as goals on

the system state (recall Figure 2-1). It should be noted that, although RMPL pro-

vides the flexibility of asserting any form of propositional logic constraint on plant

variables, the current implementation of the Timed Model-based Executive handles

only assertions of constraints that are conjunctions of state variable assignments.

5.1.2 RMPL Control Programs

To motivate RMPL's constructs, another example control program is considered,

corresponding to an important type of critical mission sequence: the post-launch de-

ployment sequence of a spacecraft. This sequence is roughly based on the Chandra

X-Ray Telescope Activation Sequence Flowchart, included in Appendix A. This ex-

ample assumes the spacecraft is launched into low Earth orbit by the Space Shuttle

(as was the case for the Chandra observatory). It also assumes the spacecraft is at-

tached to an Inertial Upper Stage (IUS), which serves to boost it into a higher Earth

orbit, after it has been ejected from the Shuttle's payload bay. The IUS communicates

with the spacecraft across a data interface, and is assumed to have its own processor,

attitude control system (ACS), propulsion system, power system, etc...

87

The control program for spacecraft deployment is written from the point of view

of the spacecraft processor, such that information from the IUS, which takes the form

of simple binary signals sent across the interface, are considered external events. Once

received, these signals trigger a flag to be set in the spacecraft's onboard memory.

Because the spacecraft has no observability into the internal state of the IUS, it does

not have access to the actual physical states that cause the signals to be issued.

Thus, these flag settings represent important "indirect observation" states that drive

the execution of the SpacecraftDeploy control program, shown in Figure 5-1.

SpacecraftDeploy proceeds as follows. Once the spacecraft (attached to the IUS)

is notified that it has separated from the shuttle (line 3), it concurrently warms up

its two IMUs and its Reaction Control System (RCS) thrusters (lines 4-8). It then

waits to receive the next signal from the IUS (lines 10-14). In the nominal execution

situation, the next signal triggers the flag indicating that the spacecraft can deploy

its Low Gain Antenna (LGA) (line 10); in this case, the spacecraft executes the

DeployLGA subprogram (line 11). On the other hand, if the next IUS signal triggers

the Solar Array (SA) deployment flag first, the non-critical LGA deployment process

is bypassed in favor of the DeploySolarArrays process (line 14).

The DeployLGA process involves several sequential steps:

1. it turns on at least one of the redundant Solid State Recorder (SSR) devices,

to begin storing onboard telemetry (lines 21-24);

2. its communication subsystem begins downlinking a beacon signal (line 25);

3. it turns on the primary IMU, using the second IMU as a backup in the case of

failure (lines 26-27); and

4. finally, it deploys its LGA (line 28).

Upon completion of this subprogram, the spacecraft waits for receipt of the Solar

Array (SA) deployment signal from the IUS, if it hasn't already been received (line

12).

The DeploySolarArrays subprogram performs the following steps:

88

1 SpacecraftDeployment(:: {
2 do {
3 when (shuttle = separated) donext {
4 {
5 IMU.1 = warmed,
6 IMU-2 = warmed,
7 RCS = warmed
8
9 {
10 when ((LGA..deploy-flag set) A (-(SA-deploy-flag set))) donext {
11 DeployLGAO;
12 when (SA.deploy-flag set) donext DeploySolarArrays()
13 },
14 when ((SA-deploy-flag = set) A (-(LGA-deploy-flag = set))) donext DeploySolarArrays()
15 }
16 }
17 } watching ((spacecraft-deployment = success) V (spacecraft-deployment failure))
18 }
19
20 DeployLGAO:: {
21 do {
22 SSRA = on,
23 SSRB = on
24 } watching ((SSR-A = on) V (SSR.B = on));
25 downlink = beacon;
26 do (IMU.1 = on) watching (IMU-1 = failed);
27 if (IMU-1 = failed) thennext (IMU_2 = on);
28 LGA = deployed
29 }
30
31 DeploySolarArrays(:: {
32 tl = 0;
33 unless ((SSR.A = on) V (SSR-B = on)) thennext {
34 do {
35 SSRA = on,
36 SSR.B = on
37 } watching ((SSR.A = on) V (SSR.B = on));
38 };
39 downlink = nominal;
40 unless ((IMU-1 = on) V (IMU-2 = on)) thennext {
41 do (IMU-1 = on) watching (IMU-1 = failed);
42 if (IMU-1 = failed) thennext (IMU-2 = on);
43 1;
44 do{
45 SA-1 = deployed,
46 SA-2 = deployed
47 } watching ((SA-1 = failed) V (SA_2 = failed));
48 {
49 if ((SA-1 = failed) V (SA_2 = failed)) thennext (spacecraft-deployment = failure),
50 if ((SA-1 = deployed) A (SA-2 = deployed)) thennext {
51 when (t1 > 19 mins) donext {
52 ACS = active;
53 when (tl > 22 mins) donext {
54 power-switch = engage-onboard-batts;
55 when (IUS = separated) donext (spacecraft-deployment success)
56 }
57 }
58 }
59 }
60 }

Figure 5-1: RMPL control program for the Spacecraft Deployment procedure. In
RMPL programs, comma delimits parallel processes and semicolon delimits sequential
processes.

89

1. first, it initializes a clock variable, to keep track of the amount of time elapsed

since the setting of the SA-deploy-flag (line 32);

2. in case the DeployLGA process was bypassed, it turns on at least one of the

SSRs (lines 33-38);

3. it puts its communication subsystem into its nominal telemetry downlinking

mode (line 39);

4. again, if the DeployLGA process was bypassed, it activates the primary (or

backup) IMU (lines 40-43);

5. it then initiates the SA deployment process (lines 44-47), to be preempted if the

deployment of either SA is determined to have failed (deployment of a SA will

only fail after attempting recovery actions built into the SA subsystem model);

6. in the case of a SA deployment failure, failure of the entire SpacecraftDeploy

sequence is flagged (line 49), resulting in preemption of the sequence (line 17);

7. in the case of nominal deployment of both SAs (line 50), the sequence waits for

the active clock to indicate that 19 minutes have passed since the setting of the

SA-deployflag (line 51) - this delay captures the time required for the IUS to

null out any residual spacecraft rotations;

8. after 19 minutes, the spacecraft's own ACS is activated, in anticipation of the

separation from the IUS, which has been providing attitude control for the

spacecraft/IUS system (line 52);

9. after 22 minutes have elapsed since the setting of the SA-deploy-flag (line 53),

capturing the time needed for the IUS to complete its pre-separation maneuvers,

the power system switches from IUS-supplied power to power supplied by the

spacecraft's onboard batteries (line 54); and

10. the spacecraft waits until the separation of the IUS via the successful firing of

the pyro latches responsible for breaking the connection with the IUS, at which

90

point it confirms success of the full SpacecraftDeploy sequence (line 55) and

terminates execution (line 17).

Desiderata

SpacecraftDeploy highlights six design features for RMPL. First, the program exploits

full concurrency, by intermingling sequential and parallel threads of execution. For

example, the IMUs and RCS are issued warming goals in parallel (lines 5-7), while de-

ployment of the LGA and waiting for the SA deployment flag to be set are performed

in sequence (lines 11-12). Second, it involves conditional execution, such as turning

on the redundant backup IMU if the primary IMU fails to turn on (line 27). Third,

it involves iteration; for example, "when (shuttle = separated) donext ... " (line 3)

says to iteratively test until the shuttle state is determined to be separated, and then

to proceed. Fourth, the program involves preemption; for example, "do (IMU_1 = on)

watching (IMU_1 = failed)" (line 26) tries to turn on the primary IMU, but inter-

rupts this effort as soon as the watched condition (IMU_1 = failed) is entailed. These

first four features are common to most synchronous reactive programming languages.

The fifth feature of RMPL, which distinguishes the model-based programming

paradigm, is the ability to reference hidden states of the physical plant within asser-

tions and guards. For instance, "if (IMU-1 = failed) thennext (IMU-2 = on)" (line

27) uses constraints on the hidden state of an IMU in both a condition check (IMU-1

= failed) and an assertion (IMU-2 = on). The state of an IMU is considered hidden

because it cannot be directly observed and commanded: the state must be inferred

based on observations of electric currents through the IMU electronics, and can only

be controlled via flight computer commands that pass through a communication bus

and IMU driver electronics, for example.

The sixth and defining feature of RMPL, as far as the TMBP paradigm is con-

cerned, is its use of time constraints to implicitly capture knowledge about the state

of the spacecraft or its environment. For example, the spacecraft waits for 19 minutes

to have passed since receipt of the SA deployment signal from the IUS before acti-

vating its own ACS; this allows the IUS enough time to control the residual rotations

91

in the unmodeled attitude state of the IUS/spacecraft system.

5.1.3 RMPL Language Specification

RMPL is a modular, constraint-based language that is closely related to other syn-

chronous programming languages, such as Esterel [6], and constraint programming

languages, such as TCC [74). The RMPL language is specified by first introducing a

small set of primitives for constructing timed control programs. These primitives are

fully orthogonal, that is, they may be nested and combined arbitrarily. To make the

language usable, a variety of derived combinators are defined on top of these prim-

itives, such as those used in the EntrySequence and SpacecraftDeployment timed

control programs (see Figures 3-2 and 5-1).

In the following discussion, lowercase letters, like c, are used to denote constraints,

and uppercase letters, like A and B, are used to denote well-formed RMPL expres-

sions. An RMPL expression is specified by the following grammar in Backus-Naur

Form:

expression - assertion | combinator | prgm-invocation

combinator - A maintaining c I do A watching c

if c thennext A I unless c thennext A

A,B I A;B I always A

prgm-invocation -4 program-name(arglist)

where an assertion is either a clock initialization of the form (clock = 0) or a state

constraint to be achieved. Note that procedure calls are specified as RMPL program

invocations, in which program-name corresponds to another specified timed control

program. The arglist used in a program invocation corresponds to a (possibly empty)

list of parameters defined for the program. Within the invoked procedure, each pa-

rameter is replaced by the appropriate argument in arglist.

92

Primitive Combinators

RMPL provides standard primitive constructs for conditional branching, preemption,
iteration, and concurrent and sequential composition. In general, RMPL constructs

are conditioned on the current state of the physical plant and the current values of

active clocks (that is, clocks that have been initialized); they can act on the plant

state and/or initialize new clocks in the next time instant.

g: If g is an achieve constraint on state variables of the physical plant, this expression

asserts that the plant should progress toward a state that entails constraint

g. If g is an initialization of a clock variable, this expression activates the

corresponding clock. This is the basic construct for affecting the plant's hidden

state and starting new clocks.

A maintaining c: This expression executes expression A, while ensuring that con-

straint c is maintained true throughout. c is an ask constraint on active clock

variables or state variables of the physical plant. If c is not entailed at any

instant, then the execution thread terminates immediately. This is the basic

construct for preemption by non-entailment.

do A watching c: This expression executes expression A, but if constraint c be-

comes entailed by the most likely plant state at any instant, it terminates exe-

cution of A in that instant. c is an ask constraint on active clock variables or

state variables of the physical plant. This is the basic construct for preemption

by entailment.

if c thennext A: This expression starts executing RMPL expression A in the next

instant, if the most likely current plant state entails c. c is an ask constraint on

active clock variables or state variables of the physical plant. This is the basic

construct for conditionally branching upon entailment of the plant's hidden

state and clock constraints.

unless c thennext A: This expression starts executing RMPL expression A in the

next instant if the current theory does not entail c. c is an ask constraint on

93

active clock variables or state variables of the physical plant. This is the basic

construct for conditionally branching upon non-entailment of the plant's hidden

state and clock constraints.

A , B: This expression concurrently executes RMPL expressions A and B, starting

in the current instant. It is the basic construct for forking processes.

A ; B: This is the sequential composition of RMPL expressions A and B. It performs

A until A is finished, then it starts B.

always A: This expression starts expression A at each instant of time, for all time.

This is the only iteration primitive needed, since finite iteration can be achieved

by using a preemption construct to terminate an always.

Derived Combinators

The previously described primitive combinators cover the six desired design features.

They can be used to implement a rich set of derived combinators, some of which are

used in the EntrySequence and SpacecraftDeployment examples.

Some useful derived combinators are listed as follows:

next A: This expression starts executing expression A in the next instant. It is

equivalent to:

{if true thennext A}.

if c thennext Athen elsenext Aese: This extends if c thennext A. Expression

Aeise is executed starting in the next instant if c is not entailed by the most

likely current state. c is an ask constraint on active clock variables or state

variables of the physical plant. This expression is equivalent to:

{if c thennext Athen, unless c thennext Aeise}.

when c donext A: This is a temporally extended version of if c thennext A. It

waits until constraint c is entailed by the most likely plant state, then starts

executing A in the next instant. c is an ask constraint on active clock variables

94

or state variables of the physical plant. This expression is equivalent to:

{do always true watching c; A}.

whenever c donext A: This is an iterated version of when c donext A. For every

instant in which constraint c holds for the most likely state, it starts program

A in the next instant. c is an ask constraint on active clock variables or state

variables of the physical plant. This expression is equivalent to:

{always if c thennext A}.

The primitive and derived RMPL constructs are used to encode model-based

control programs. This subset is sufficient to implement most of the control constructs

of the Esterel language [6]. A mapping between key Esterel constructs and analogous

expressions in RMPL was presented in [44]. Note that RMPL can also be used

to encode the probabilistic transition models capturing the behavior of the plant

components. The additional constructs required to encode such models are defined

in [87]. The plant model is further defined in Chapter 6.

5.2 Control Programs as Timed Hierarchical Con-

straint Automata

Engineers generally prefer to use visual representations of system specifications over

textual encodings. For this reason, StateCharts and similar formalisms have become

fairly standard tools in the design and analysis of embedded systems. The TMBP

paradigm follows this trend, by adopting the THCA graphical representation for its

timed control programs (e.g., Figure 3-4). Execution of these automata is performed

by the control sequencer in coordination with the deductive controller. This section

defines THCA as a specific instance of the deterministic timed control program au-

tomaton presented in Section 4.2. In addition to providing a visual programming

paradigm, THCA are the computational model for timed control programs written

in RMPL. The compilation from RMPL to THCA is also discussed in this section.

95

5.2.1 Timed Hierarchical Constraint Automata

This section provides a formal definition of the THCA language. In the following

discussion, the "states" of a THCA are called locations, to avoid confusion with the

physical plant state. The overall state of the program at any instant of time corre-

sponds to a set of "marked" THCA locations. A THCA has seven main attributes:

1. it composes sets of concurrently operating automata;

2. each location is labeled with a state constraint, called a goal constraint, which

the physical plant must immediately begin moving towards, whenever the au-

tomaton marks that location;

3. each location is labeled with a time constraint, called a clock initialization,

which initializes a set of clock variables upon transitioning into the location;

4. each location is labeled with a constraint on clock and state variables, called a

maintenance constraint, which must hold for that location to remain marked;

5. transitions between locations are conditioned on time and hidden state;

6. automata are arranged in a hierarchy - a location of an automaton may itself

be an automaton, which is invoked when marked by its parent. This enables

the initiation and termination of complex concurrent and sequential behaviors;

and

7. each transition may have multiple target locations, allowing an automaton to

have several locations marked simultaneously. This enables a compact rep-

resentation for iterative behaviors, as illustrated in the Mars entry example

(Figure 3-4).

THCA extend the Hierarchical Constraint Automata (HCA) defined in the context of

model-based programming [86, 87, 90], to allow for the initialization of clock variables

(feature #3), the possibility of preemption based on time constraints (feature #4),

and the conditioning of transitions on time constraints (feature #5).

96

The THCA graphical language adopts various notions from real-time modeling

formalisms like Timed Automata [2], including clock variables, clock interpretations,

clock initializations, and timing constraints. However, whereas THCA are intended

to provide a framework for executable specification of embedded control programs

that run "in the loop" as part of a system's real-time control system, formal system

specification languages are intended to provide a framework for off-line formal verifi-

cation and model checking. This fundamental difference in intent leads to some key

differences in the language, such as THCA's adoption of a hierarchical computational

model. It should be noted that hierarchical encodings form the basis for embedded

reactive languages like Esterel [6], StateCharts [37], and Timed StateCharts [47]. Dis-

tinctive features of a THCA are its compact encoding, and its use of constraints on

plant state, in the form of goal constraints and maintenance constraints.

Formally, a THCA A is a tuple (E, E, H, G, I, M, T), where:

* E is a set of locations, partitioned into primitive locations E, and composite

locations Ec. Each composite location corresponds to another hierarchical con-

straint automaton. The set of subautomata of A is defined as the set of locations

of A, and locations that are descendants of the composite locations of A:

subaut(A) = E (A) U U{subaut(o-) | o' E Ec(A)}-

* e C E is the set of start locations of A.

* H is a set of variables, partitioned into Hd and Ht:

- Ud is the set of discrete plant state variables. Each Xd E Id ranges over a

finite domain D[xd]. C[Hd] denotes the set of all finite-domain constraints

over variables in H" of the form A = TRUE | FALSE I (x -- v) I ->A1 |

A1 A A2 I A1 V A2 , where v C D[xdi.

- Ht is the set of clock variables. Each xt e Ht ranges over R+. Ctime [I]

is the set of all possible clock variable constraints over Ht of the form
A tA = TRUE I FALSE I (xt < ti) I (it > ti) I (it < ti) I (it > t1)

97

A, A A2 I A, V A2, where ti E CR+ t[It] is the set of all possible clock

initializations over 11t of the form A = (x' = 0) | A, A A2 .

" G: E, - C[7d], associates with each primitive location U-P E E, a finite-domain

constraint G(oP) that the plant progresses towards whenever o-P is marked.

G(uP) is called the goal constraint of UP.

" I : E, -+ Cinit [fit], associates with each primitive location o-P E E a set of ini-

tializations of clock state variables [(aP) that are performed when o-P is initially

marked. I(oP) is called the clock initialization of o-P.

" M: E -+ C[1d] x Crime [fit], associates with each location a E E a pair M(a) =

(Md (a), Mt (-)) consisting of a discrete state constraint and a clock constraint

that must both hold at the current instant for a to be marked. M(a) is called

the maintenance constraint of a.

" T : E X C[fid] X Ctime [fit] - 2E associates with each location a E E a transition

function T(-). Each T(a) : C[fid] x Ctzme [fit] -+ 2E, specifies a set of locations

to be marked in execution cycle i + 1, given appropriate assignments to 11 in

cycle i.

At execution cycle i, the state of a THCA is the set of marked locations m C E,

called a marking. A marking represents the current state of multiple concurrent

threads of execution. 91 denotes the set of possible markings, where DR C 2E. Goal

constraints G(of) may be thought of as abstract set points, representing a set of states

that the plant must evolve towards when -P is marked. Maintenance constraints M(o)

may be viewed as representing monitored constraints that must be maintained in order

for execution to progress towards achieving any goal constraints specified within a.

In the graphical representation of THCA, primitive locations are represented as

circles (locations 2-7 and 9-12, in Figure 3-4), while composite locations are repre-

sented as rectangles (locations 1 and 8 in Figure 3-4). Clock initializations, goal

constraints and maintenance constraints are written within the corresponding loca-

tions, with maintenance constraints preceded by the keyword "maintain". Looking at

98

Figure 3-4, the assignment "tl=0" in location 3 is an example of a clock initialization,

and the assignment "nav=inertial" in location 5 is an example of a goal constraint.

Maintenance constraints can be of the form b c or V c, for some c E C[Hd] X Ctime [].

For convenience, c is used in the THCA diagrams to denote the constraint = c, and T

is used to denote the constraint k c (e.g., "MAINTAIN entry=initiated" for location

8, in Figure 3-4). Maintenance constraints associated with composite locations are

assumed to apply to all subautomata within the composite location. When either a

goal or a maintenance constraint is not specified, it is taken to be implicitly True.

Transitions are conditioned on constraints that must be satisfied by the con-

junction of the plant model, the most likely estimated state of the plant, and the

current clock interpretation. For each location a, the transition function T(o) is

represented as a set of transition pairs (1, a'), where a' E E, and 1 is a label (also

known as a guard condition) of the form = c (denoted c) or L c (denoted i), for

some c E C[I-d] x Ctime[Ht]. This corresponds to the traditional representation of

transitions as labeled arcs in a graph, where a and a' are the source and target of an

arc with label 1. In Figure 3-4, the guard on the transition from location 7 to itself

is the time constraint "t1<4 min", and the guard on the transition between locations

11 and 12 is the state constraint "att=entry-orient". Again, if no label is indicated,

it is implicitly True.

The THCA encoding has four properties that distinguish it from the hierarchical

automata employed by other reactive embedded languages [6, 37, 47]. First, multiple

transitions may be simultaneously traversed. This permits a compact encoding of

the state of the automaton as a set of markings. Second, transitions are conditioned

on what can be deduced about the plant state, not just what is explicitly observed

or assigned. This provides a simple, but general, mechanism for reasoning about the

plant's hidden state. Third, transitions can be enabled based on lack of information,

that is, non-entailment of a constraint. This allows default executions to be pursued in

the absence of better information, enabling advanced preemption constructs. Finally,

locations assert goal constraints on the plant state. This allows the hidden state of

the plant to be controlled directly.

99

Figure 5-2: Corresponding THCA for various RMPL constructs.

5.2.2 Compiling RMPL to THCA

Each RMPL construct maps to a THCA as shown in Figure 5-2. The derived com-

binators are definable in terms of the primitives, but for efficiency they are mapped

directly to THCA as well. As before, lowercase letters denote constraints expressed

in propositional state logic. Uppercase letters denote well-formed RMPL expressions,

each of which maps to a THCA.

To illustrate compilation, consider the RMPL code for Mars entry, shown earlier

in Figure 3-2. The RMPL compiler converts this to the corresponding THCA, shown

in Figure 3-4.1 The next section describes the algorithm used by the Timed Model-

'Note that the compilation process takes place offline. Only the resulting THCA model needs to
be loaded into the embedded processor for eventual execution.

100

A, B

-4iIA-ALZ

A; B

always A

next A

AI

I

whenever c donextA

w A

when c donext A

CA

based Executive's control sequencer to execute timed control programs expressed as

THCA.

5.3 Executing THCA

Informally, a THCA execution cycle proceeds as follows. The control sequencer be-

gins with a marked subset of the THCA's locations, an estimate of the current plant

state from mode estimation, and a clock interpretation providing a value for each

active clock variable. It then creates a set consisting of each marked location whose

maintenance constraint is satisfied by the current estimated state and clock interpre-

tation. Next, it conjoins all goal constraints of this set to produce a configuration

goal. A configuration goal represents a set of states; the plant must progress towards

the state in this set with greatest reward (called the goal state). 2 This configuration

goal is then passed to mode reconfiguration, which executes a single command that

makes progress towards achieving the goal. Next, the sequencer receives an update

of the plant state from mode estimation. Based on this new state information, the

THCA advances to a new marking, by taking all enabled transitions from (a) marked

primitive locations whose goal constraints are achieved, (b) marked primitive loca-

tions whose maintenance constraints have been violated, and (c) marked composite

locations that no longer contain any marked subautomata. This execution model

builds upon the execution of HCA [90], by handling clock initializations, checking for

satisfaction of clock constraints in the maintenance constraints and transition guards,

and updating clock variables based on the current time from the system clock.

More precisely, to execute a THCA A, the control sequencer starts with an esti-

mate of the initial state of the plant, s(0), and an empty clock interpretation, W(O) = 0.

It initializes A using mF(A), a function that marks the start locations of A and all

their starting subautomata. As described in Chapter 4, execution proceeds in cycles.

The length of an execution cycle is determined by the amount of time required for

2"Progress" is defined as taking an action that is part of a simple sequence of actions that leads
to the goal state.

101

the Timed Model-based Executive to complete its control sequencer and deductive

controller operations (further detail on the order of operations in an execution cycle is

deferred to Chapter 7). In each execution cycle, the control sequencer steps automa-

ton A using the function StePTHCA, which maps the current state estimate, clock

interpretation and marking to a next state estimate, clock interpretation, marking

and configuration goal. The functions mF and StePTHCA are defined below. Execu-

tion completes when no marks remain, since the empty marking is a fixed point.

Recall from Section 4.2 that a timed control program's timing mechanism is im-

plemented via a set of active clock variables x), similar to the clock variables defined

in Timed Automata [2]. In any execution cycle, an assignment to an active clock

variable represents the amount of metric time elapsed since that clock variable was

initialized. Clock variable assignments are updated at the beginning of each execution

cycle, and remain constant throughout. The clock interpretation WW consists of the

set of assignments to all active clock variables at the start of each execution cycle i.

The assignment to each active clock variable x) is computed as the difference between

the absolute system time at the start of cycle i, tabs (i), and the absolute system time

when clock j was initialized, tj""(i). Unlike the clocks used in Timed Automata,

active clocks are never "reset" to zero in a THCA, as discussed in Section 4.2.

Given a THCA A to be initialized, mF(A) creates a full marking, by recursively

marking the start locations of A and all starting subautomata of these start locations:

mF(A) = AuU{a tartIstart E ZpAnE(A) l

U {mF (start) Istart E Ec(A) -(A)}.

StePTHCA transitions an automaton A from the current full marking to the next

full marking and generates a new configuration goal, based on the current state es-

timate and clock values. The StepTHCA algorithm is given in Figure 5-3. Key fea-

tures of the algorithm are as follows. Reactive preemption is implemented in step

2, which unmarks all subautomata of composite locations whose maintenance con-

straints have been violated by the latest state estimate, preventing the assertion of

102

any goal constraints by these subautomata. Clock persistence is ensured in step 3,

where an already-active clock does not get reset to zero if the primitive location gets

re-marked, for example due to incomplete achievement of its goal constraint. Goal-

driven execution is provided by steps 4 and 5 via assertion of the configuration goal

for achievement by the deductive controller. Closed-loop execution is implemented

in steps 6 and 7, based on state feedback from the plant; a goal continues to be

asserted until it is determined to have been achieved by the deductive controller.

Finally, progress due to goal achievement or preemption is ensured in step 8; by en-

abling transitions out of locations whose maintenance constraints have been violated,

the language can encode sequenced reactions to preemption events, in addition to

traditional catch/throw mechanisms.

A trajectory of a THCA A, given estimated plant state sequence [(O), s(1), ...] and

absolute system time sequence [tabs (0),tabs (1), ...], is a sequence of markings [m(0),

ml), ...], configuration goals [g(O), g(), ...], and clock initialization times [tini(O),

tinit(1), . . .], such that: (a) mMo) is the initial marking mF(A); (b) tinit (0) is an empty

set; and (c) for each i > 0, (g), m+, g(i+), tinit(i + 1)) = StePTHCA(A, m 90) 1

tit(i), tabs(i)). A's execution completes at step if if mGI) is the empty marking, and

there is no i < if such that m(') is the empty marking.

5.4 THCA Execution Example

The tight interaction between the control sequencer and the mode estimation and

mode reconfiguration capabilities of the deductive controller is best illustrated by

walking through a simple example. Consider a nominal (i.e., failure-free) execution

trace for the Mars entry sequence introduced in Chapter 3. Markings are represented

in Figures 5-4 to 5-12 by filling in the corresponding primitive locations. Any compos-

ite location with marked subautomata is considered marked. Locations are numbered

1-12 in the figures, for reference.

Initial State - Initially, all start locations are marked (locations 1 and 2 in

Figure 5-4). Mode estimation provides the following initial plant state estimate:

103

StePTHCA (A, m(i, 9i), tini*t(*),tabs) (g(i), (i+1), §(i+1), ttnit (i + 1)) ::

1. Update active clocks. Clock variable assignments in w(i) are computed from tab' and tinit(i). Update
each active clock variable (xt = tab' - tjnit). Add these new clock variable assignments to w(i).

2. Check maintenance constraints for marked composites. Unmark all subautomata of any marked
composite location in mi whose maintenance constraint is violated by 90) A W(.

3. Assert clock initializations. For any clock initialization (x) = 0) asserted by currently marked primitive

locations, unless tnlit is already specified in tinit(i), set t "it(i + 1) = tabs.

4. Setup configuration goal. Output, as the configuration goal g(), the conjunction of goal constraints from
currently marked primitive locations in m(i) whose maintenance constraints are satisfied by s) A w(.

5. Take action. Request that mode reconfiguration issue a command that progresses the plant towards a state
that achieves the configuration goal g(i).

6. Read next state estimate. Once the command has been issued, obtain from mode estimation the plant's
new most likely state 90+1).

7. Await incomplete goals. If the goal constraint of a primitive location marked in m(i) is not entailed by
9(i+1), and its maintenance constraint was not violated by s0) A W(i), then include that location as marked
in m('+1).

8. Identify enabled transitions. A transition from a marked primitive location oP in m(i) is enabled if both
of the following conditions hold true:

(a) gP's goal constraint is entailed by 90+1), or its maintenance constraint was violated by s0) A w(');

(b) the transition's guard condition is satisfied by 9(i+1) A W(i).

A transition from a marked composite location ac in m(i) is enabled if both of the following conditions hold
true:

(a) none of ac's subautomata are marked in m(i+1) and none of ac's subautomata have enabled outgoing
transitions;

(b) the transition's guard condition is satisfied by ('+1) A W(i).

9. Take transitions. Mark and initialize in m(i+1) the target of each enabled transition, using function mF-
Re-mark in m(i+1) all composite locations with subautomata that are marked in m('+1).

10. Update list of clock references. Add the contents of tinit(i) to tinit(i + 1).

Figure 5-3: StePTHCA algorithm.

{ Engine=Off, Nav=Earth-relative, Att= Cruise-orient, Lander- Connected, Entry-

Not-initiated}.

Execution will continue as long as outermost composite location 1 remains marked.

Note that system time values associated with each cycle are for illustrative purposes

only, and do not reflect the actual rate of execution of the control sequencer.

Cycle 1, system time tabs = 0.0 sec - The first StepTHCA cycle proceeds as

follows. (Step 1) There are no active clocks, so no clock variables are updated. (Step

2) Since no maintenance constraints are specified for marked composite location 1,

104

ti < 270mins 2 < 4 mins 8

n
QMAINTAIN entry = Initiated

27r~n 3av 4 alt-

2 3 45 6 7entry-
orient

9 10

att=entry-orient

-- '&. ender=
att -entroien parat

11 12

Figure 5-4: Initial marking of the THCA for Mars entry, corresponding to Cycles 1
to N1.

it remains marked. (Step 3) No clocks are initialized by the start locations. (Step

4) The only goal constraint asserted is Engine=Standby. This state assignment is

passed to MR as the configuration goal. (Step 5) MR issues the first command in

a sequence that achieves the configuration goal. Based on the simple plant model

shown in Figure 3-3, this command is cmd=standby. (Step 6) ME returns the new

state estimate, which indicates that Engine=Heating is achieved as a result of this

command. (Step 7) The goal constraint for the only marked primitive location has

not yet been achieved, so location 2 will remain marked in the next cycle. (Step 8)

Since location 2's goal constraint is not yet achieved, its outgoing transition is not

enabled. (Step 9) Since no transitions are enabled, locations 1 and 2 remain marked

for the next execution cycle. Thus the next execution step's marking remains as

shown in Figure 5-4. (Step 10) There are no active clocks, so no initialization times

to update.

Cycle 2, system time tabs = 0.5 sec - Skipping the uninteresting algorithm

steps, the next StepTHcA cycle proceeds as follows. (Steps 4-5) The configuration

goal Engine=Standby is still being asserted by location 2. MR reasons through the

plant model and sees that the engine's standby mode is reachable without taking any

action, so it returns no command. (Step 6) ME returns the new state estimate, which

is the same as the previous estimate. (Step 7) The goal constraint for location 2 has

not yet been achieved, so it will remain marked in the next cycle. (Steps 8-9) Thus,

105

t1 < 270mins 12 < 4 mins 8

t > MAINTAIN entry = Initiated

~ inertinl

5 6 7-
orient

9 10

att=entry-oient

lander=
att=entry-orlen parat

11 12

Figure 5-5: Marking of the Mars Entry THCA for Cycle (N1 + 1).

its outgoing transition is not enabled, so locations 1 and 2 remain marked for the

next cycle (Figure 5-4).

Since, according to the component model in Figure 3-3, it takes between 30 and

60 seconds for the engine to reach standby mode, the execution behavior from Cy-

cle 2 will be repeated for multiple cycles. Consequently, this discussion skips to

the next "interesting" execution cycle, Cycle N1, which occurs 43.2 seconds later.

The state estimate { Engine=Heating, Nav=Earth-relative, Att= Cruise-orient, Lan-

der=Connected, Entry=Not-initiated} is unchanged, and locations 1 and 2 remain

marked from Cycle 3 to Cycle N1 .

Cycle N 1, system time tab' = 43.2 sec - (Steps 4-5) The goal constraint

Engine=Standby is asserted as the configuration goal. MR again returns no command.

(Step 6) ME determines from the latest observations that the engine has reached

standby mode. (Step 7) Since location 2's goal constraint is now achieved, it will not

remain marked in the next cycle. (Step 8) Since location 2's outgoing transition is

labeled True, it is enabled. (Step 9) After taking the enabled transition, the marked

locations are 1 and 3, as shown in Figure 5-5.

Cycle (N1 + 1), system time tab" = 43.8 sec - (Step 3) Location 3 asserts

the clock initialization tl=O, so the current system time of 43.8 sec is stored as the

initialization time for t1. (Steps 4-5) No goal constraints are asserted by the set of

marked locations, so no action needs to be taken by MR. (Step 6) ME's new state

estimate remains unchanged from the previous cycle. (Step 8) Since location 3's

106

t1 < 270mins t2 < 4 mins 8

2 > MAINTAIN entry = Initiated

engine- S7mn nav= 4 mnins
stanby iertial t2=0-

2 3 4 5 6 7 entry-
orient

9 10

att=entry-orient

Iander=
att=entry-aien parat

11 12

Figure 5-6: Marking of the Mars Entry THCA for Cycles (N1 + 2) to N2 .

outgoing transition is labeled True, it is enabled. (Step 9) After taking the enabled

transition, the marked locations are 1 and 4, as shown in Figure 5-6. (Step 10)

t"" = 43.8 sec is added to the set of initialization times for the next cycle.

Cycle (N 1 +2), system time tabs = 44.2 sec - (Step 1) Clock variable t1 = 44.2

- 43.8 = 0.4 sec is updated. (Steps 3-6) No clock initializations or goal constraints

are asserted by the marked primitive location 4, and ME's state estimate remains

unchanged from the previous cycle. (Step 8) Since the value of ti is less than 270

minutes, only the transition from location 4 to itself is enabled. (Step 9) After taking

the enabled transition, locations 1 and 4 remain marked (Figure 5-6).

Since this behavior will be repeated for multiple cycles, the discussion again skips

to the next "interesting" execution cycle, Cycle N2, which occurs 16199.8 seconds

later. The state estimate { Engine=Standby, Nav=Earth-relative, Att= Cruise-orient,

Lander= Connected, Entry=Not-initiated} is unchanged, and locations 1 and 4 remain

marked from Cycle (N1 + 3) to Cycle (N2).

Cycle N2 , system time tabs = 16244.0 sec - Clock variable t1 = 16244.0 - 43.8

= 16200.2 sec is updated. No clock initializations or goal constraints are asserted and

the new state estimate remains unchanged. Since the value of ti is greater than 270

minutes, only the transition from location 4 to location 5 is enabled. After taking the

enabled transition, locations 1 and 5 are marked (Figure 5-7).

Cycle (N 2 + 1), system time tab" = 16244.5 sec - Clock variable t1 = 16244.5

- 43.8 = 16200.7 sec is updated. Location 5 asserts the goal constraint Nav=Inertial.

107

t1 < 270rnns t2 < 4 mins 8

t n >= MAINTAIN entry = Intated

engine- 2Om~ne 4 2-0
tandb t 00 0t=

2 3 4 5a6 7

Figure 5-7: Marking of the Mars Entry THCA for Cycle (N2 + 1).

Figure 5-8: Marking of the Mars Entry THCA for Cycle (N2+ 2).

This state assignment is passed to MR as the configuration goal. MR issues the

first command in a sequence that achieves the configuration goal. ME confirms that

Nav=Inertial is achieved as a result of this command. The goal constraint for the

only marked primitive location has been achieved, so it will not remain marked in

the next cycle. Since location 5's outgoing transition is labeled True, it is enabled.

After taking the enabled transition, the marked locations are 1 and 6, as shown in

Figure 5-8.

Cycle (N 2 +2), system time tab" = 16245.1 sec - Clock variable t1 = 16245.1

- 43.8 = 16201.3 sec is updated. Location 6 asserts the clock initialization t2=0, so

the current system time of 16245.1 sec is stored as the initialization time for t2. ME's

new state estimate remains unchanged from the previous cycle. Since location 6's

outgoing transition is labeled True, it is enabled. After taking the enabled transition,

108

Figure 5-9: Marking of the Mars Entry THCA for Cycles (N2 + 3) to N3 .

the marked locations are 1 and 7 (Figure 5-9). tit" = 16245.1 sec is added to the set

of initialization times for the next cycle.

Cycle (N 2 + 3), system time tab = 16245.6 sec - Both clock variables t1

= 16245.6 - 43.8 = 16201.8 sec and t2 = 16245.6 - 16245.1 = 0.5 sec are updated.

Since the value of t2 is less than 4 minutes, only the transition from location 7 to itself

is enabled. Thus, in the next cycle, locations 1 and 7 remain marked (Figure 5-9).

Again skipping to the next "interesting" execution cycle, Cycle N3 , which occurs

239.9 seconds later, the state estimate {Engine=Standby, Nav=Inertial, Att=Cruise-

orient, Lander= Connected, Entry=Not-initiated} is unchanged. Locations 1 and 7

remain marked from Cycle (N2 + 3) to Cycle (N3).

Cycle N3, system time tabs = 16485.5 sec - Clocks ti = 16485.5 - 43.8 =

16441.7 sec and t2 = 16485.5 - 16245.1 = 240.4 sec are updated. Since the value of

t2 is greater than 4 minutes, only the transition from location 7 to composite location

8 is enabled. After taking the enabled transition and marking location 8's starting

subautomata, the marked locations for the next cycle are 1, 8, 9, 10, and 11, as shown

in Figure 5-10.

Cycle (N 3 + 1), system time tab, = 16486.0 sec - The maintenance constraint

corresponding to non-entailment of Entry=Initiated on location 8 holds for the current

state estimate, so all its subautomata remain marked. The only goal constraint

asserted is Att=Entry-orient. MR issues the first command in a sequence that achieves

this configuration goal. The following ME update indicates that Att=Slew-to-Entry,

109

t1 < 270mins 12 < 4 mins 8

t >=ated
engine- 2 27rTn nav= 2 4 mrns

9 10

att=entry-orient

11 12

Figure 5-10: Marking of the Mars Entry THCA for Cycles (N3 + 1) to N 4 .

so Att=Entry-orient is not yet achieved. Consequently, location 10 remains marked

in the next cycle. The transitions from locations 9 to 9, 9 to 10, and 11 to 11 are

enabled by the current state. After taking these transitions, locations 1, 8, 9, 10 and

11 remain marked, as in Figure 5-10.

It takes 12 seconds for the spacecraft to complete its rotation to the entry orien-

tation, as a result of the closed-loop goal-driven commanding of the executive; the

behavior from Cycle (N3 + 1) will repeat over multiple execution cycles. Discussion

skips once again to the next "interesting" cycle, Cycle N4, which occurs 12.2 seconds

later.

Cycle N4, system time tabs = 16498.2 sec - The maintenance constraint on

location 8 still holds, and the only goal constraint asserted is A tt=Entry-orient. This

time, ME confirms achievement of this goal. Taking the enabled transitions leads to

a new set of marked locations: 1, 8, 9, 10 and 12 (Figure 5-11). Note that location

10 remains marked despite achievement of its goal constraint, due to re-marking by

the transition from 9 to 10. This reflects a desire to hold the spacecraft at the entry

orientation.

Cycle (N4 + 1), system time tab" = 16498.8 sec - The maintenance con-

straint on location 8 still holds. The configuration goal passed to MR now consists of

A tt=Entry-orient and Lander=Separated. The following ME update confirms achieve-

ment of both goal states. Since location 12 has no outgoing transitions, its thread of

execution dies. Thus, taking the enabled transitions leads to marked locations 1, 8,

110

t1 < 270mins 2 < 4 mins a

tI >= Q2MAINTAIN entry =Initiated

ngine-7ns
landb inetia

2 3 45 6 7

9 10

att=entry-orient

Figure 5-11: Marking of the Mars Entry THCA for Cycles (N4 + 1) to N5 .

t1 < 270mins t2 < 4 mins 8

1 >n MAINTAIN entry = initiated

eine= =o270m~ins navetw 4 mins
tandb inertial -

2 3 4 5 6 7

9 10

att=entry-orient

kender-

att=entry-orien parat

11 12

Figure 5-12: Marking of the Mars Entry THCA from Cycle (N4 +
when ME determines that Entry=Initiated.

1) to the cycle

9, and 10, as in Figure 5-12.

Remaining Cycles - Execution continues with locations 1, 8, 9, and 10 remain-

ing marked (and Att=Entry-orient continuing to be asserted as a goal) until ME

indicates that Entry=Initiated. At this point, location 8's maintenance constraint

becomes violated. It has no outgoing transitions, so its thread of execution dies.

Since none of location l's subautomata remain marked, it also becomes unmarked,

and execution of the Mars Entry THCA terminates.

111

5.5 Summary

In this chapter, the RMPL and THCA languages for encoding timed control programs

have been formally specified. THCA provide a compact, hierarchical implementa-

tion of the semantic model for the timed control program presented in Section 4.2.

The THCA language extends the HCA representation from model-based program-

ming [90] by incorporating various notions from real-time modeling formalisms like

Timed Automata [2], including clock variables, clock interpretations, clock initial-

izations, and timing constraints. THCA is distinguished from these other real-time

modeling formalisms by its adoption of a hierarchical computational model and its

use of constraints on plant state, in the form of goal constraints and maintenance

constraints.

The execution algorithm for THCA has also been presented. In each execution

cycle, the control sequencer steps a THCA by mapping the current state estimate,

clock interpretation and program marking to a next state estimate, clock interpreta-

tion, program marking and configuration goal. Key features of the algorithm include

reactive preemption, clock persistence, goal-driven and closed-loop execution, and

progress due to goal achievement or preemption. The tight interaction between the

control sequencer and the deductive controller has been illustrated by walking through

the execution of the Mars entry control program.

112

Chapter 6

Deductive Controller

In this chapter, the deductive controller for the Timed Model-based Executive is

described. The deductive controller uses a timed plant model to estimate and con-

trol the state of the system. Recall that a physical plant is comprised of discrete

and analog hardware and software. As discussed in Section 4.1, the behavior of the

plant is modeled as a factored POSMDP, which is encoded compactly using prob-

abilistic Timed Concurrent Constraint Automata (TCCA). Constraints are used to

represent cotemporal interactions between state variables and intercommunication

between components. Probabilistic timed transitions are used to model the stochas-

tic behavior of components, such as failure and latency. Reward is used to assess the

costs and benefits associated with particular component modes.

This chapter begins by defining TCCA as a composition of Timed Constraint

Automata for individual components of a plant. The TCCA encoding of the plant

model is essential to the efficient operation of the deductive controller (see Figure

6-1). The two core capabilities of the deductive controller, ME and MR, are then

developed. These two capabilities reason through timed plant models encoded as

TCCA, to estimate the plant state (ME) and generate an appropriate control sequence

that achieves a configuration goal (MR).

113

Figure 6-1: Architecture of the deductive controller.

6.1 Plant Models as Timed Concurrent Constraint

Automata

In this section, components of the physical plant are first defined in terms of prob-

abilistic transition systems with time bounds associated with transitions between

modes. These systems are then re-cast as Timed Constraint Automata, by mapping

each time-bounded transition to an intermediate mode representing the state of going

from the source mode to the target mode of the transition.

The full plant model is represented in terms of Timed Concurrent Constraint Au-

tomata (TCCA). TCCA are defined as a composition of Timed Constraint Automata

for the individual components. The component automata operate concurrently, syn-

chronized with a global system clock. Prior model-based executives considered un-

timed plant models (i.e., without time bounds on the transitions). For these execu-

tives, the nominal trajectories of the plant were defined as deterministic executions of

(untimed) Concurrent Constraint Automata [83, 85, 90]. Now that the plant model

includes time-bounded transitions, even a nominal (fault-free) execution must be de-

fined in terms of non-deterministic executions of TCCA. In particular, specifying a

range of time that it takes for a component to transition introduces non-determinism

into the nominal model. Probabilistic transitions to fault modes provide another

source of non-determinism in the model.

114

6.1.1 Physical Plant Component Modeling

The behavior of each component of the physical plant can be captured in a transition

system, as shown in Figure 6-2. Each component is represented by a set of component

modes (represented as circles in the figure), a set of constraints defining the behavior

within each mode (specified in boxes adjacent to each mode), and a set of time-

bounded probabilistic transitions between modes (represented by the arrows in the

figure).

Conceptually, a mode of a component can be thought of as a state in which dis-

tinct behavior is observed, and can be described in terms of a constraint on plant

variables with finite domains. Components can only be in a single mode at a time.

Component modes are specified for both nominal and off-nominal behavior. Tran-

sitions with nominal modes as their target are defined as nominal transitions, and

transitions with off-nominal (or fault) modes as their target are defined as failure

transitions. Transitions are labeled with guard conditions on plant variables that

must hold for the transition to be taken, time bounds corresponding to the upper

and lower limits on the amount of time it can take the system to fully transition from

the source to the target mode (once the corresponding guard has been satisfied), and

probabilities corresponding to the likelihood that the transition will be taken when

its guard condition is satisfied.

6.1.2 Timed Constraint Automata

In the above transition system representation, transitions between component modes

take finite time, as specified in the associated time bounds. However, in traditional au-

tomata model formulations, transitions correspond to instantaneous changes in state.

The component models can therefore be re-cast as Timed Constraint Automata, by

mapping each transition with a time bound to an intermediate mode representing the

transitional state of going from the source mode to the target mode of the transition

(see Figure 6-3).

In the Timed Constraint Automaton formulation, the source and target mode

115

Driver:

(dcmd~ = no-cmd)

dcmii

[0-

(dcmdw = no-cmd)

d;,~ = Ot

100 ms]

dcmdin = off

dcmd, = on [0-100 ms] dcmdi. = reset
[0-100 ms] [0-200 ms]

(dcmdi = dcmd])

Valve:
(flow: = zero) (flow = zero)

vcmdin = close
vcmdi.:= ope [0 ms]

[0 fs]

flow flo,) (floww = flowir>

Figure 6-2: Component models for a
tions are omitted for clarity.

driver and valve. Probabilities and fault transi-

Figure 6-3: Mapping of a transition with time bounds to an intermediate (transitional)
mode.

116

guard g
9 bounds [c,u]

constraint CS [constraint C-rj

constraints remain the same as in the original transition system representation (i.e.

Cs and CT, respectively). Choice of an appropriate constraint C for the intermediate

mode depends on the physics of the plant being modeled. Four possible approaches

are discussed here:

1. If the transition from the source mode's behavior regime to the target mode's

behavior regime occurs very quickly, but is simply delayed from its triggering

event by time 6 (with 1 < 6 < u), then an appropriate model would be C, = Cs.

Since the component behavior during the intermediate mode representing the

delay is the same as the source mode behavior, the constraints for these modes

should be the same.

2. If the transition follows a slow, monotonic transient from the source mode's

behavior regime directly into the target mode's behavior regime, then an appro-

priate model would be C, = Cs V CT. This allows for the behavior to transition

smoothly from the source mode's behavior to the target mode's behavior, over

the course of the sojourn in the intermediate mode.

3. If the transitional behavior is known a priori (e.g., as a result of empirical tests

performed on the component), and can be explicitly captured by the modeler

in a constraint (which might be completely unrelated to Cs and CT), then this

constraint is the best choice for CI.

4. On the other hand, if the transitional behavior follows an arbitrary unknown

transient prior to stabilization into the target mode, then it would be most

appropriate to model the behavior while in the intermediate mode as uncon-

strained, i.e. C, is specified by the empty constraint True. This captures the

most general behavior during the transition.

In this thesis, approach #3 is adopted, where the specific transitional behavior is

generally available to the modeler.

In the mapping shown in Figure 6-3, the transition from the source mode to

the intermediate mode is conditioned on the original transition's guard constraint

117

(represented as label g, corresponding to a propositional logic constraint on system

variable assignments). Upon transitioning into the intermediate mode, a plant clock

is started (represented by the assertion t := 0 in the figure). The transition from

the intermediate mode to the target mode is conditioned on a time constraint on the

clock variable, represented as label (t > 1) A (t < u) in the figure. Thus, all transitions

between modes in a Timed Constraint Automaton are assumed to be instantaneous,

and conditioned on system variable assignments or clock variable constraints. Note

that timed transitions are taken at some time 6 that satisfies the time constraint, but

not necessarily at the first time that does so (i.e. a transition with the time constraint

(t > 1) A (t < u) is not necessarily taken at time t = 1). The non-deterministic nature

of timed transitions differentiates Timed Constraint Automata from the Constraint

Automata defined in [90].

The model of a physical plant is composed of a set of Timed Constraint Automata,

one for each component in the model (e.g., Figure 6-4). Each Timed Constraint Au-

tomaton has an associated mode variable xj with domain D(xj). D(xj) is partitioned

into a set of nominal modes and a set of fault modes. A component's behavior within

each mode is modeled by an associated constraint Mj (xj = v) over the system vari-

ables. Each mode also has an associated reward Rj (xj = v). Given a current mode

assignment, xj = v, the component changes its mode by taking an enabled outgoing

transition T. A transition is enabled if its guard condition and time constraint are

satisfied. A probability P,(tj) is associated with each transition T. PT(tj) is the

probability that T is taken when enabled, for a given value of the clock variable tj.

For a transition T with a time constraint, this can be viewed as associating with

T a probability density function p, over the possible values of the clock variable

tj. For example, given a transition conditioned on a time constraint of the form

(tj 1) A (tj 5 u), pr should equal zero for all values of tj up to the lower bound

and greater than the upper bound, and should integrate to one from the lower bound

to the upper bound. This probability density function is specified by the modeler,

based on engineering knowledge of the component's stochastic behavior (e.g., as de-

rived from analysis of the design specification of the component, or determined from

118

Figure 6-4: Timed Constraint Automata for the driver and valve components. The
names of the driver's four transitional modes are TurningOn (from Off to On),
TurningOff (from On to Off), ResettingOn (from Resettable to On), and Resettin-
gOff (from Resettable to Off). Probabilities and fault transitions are omitted for
clarity.

empirical testing).

Modeling physical systems in terms of Timed Constraint Automata

Though Timed Constraint Automata have been introduced in the context of a map-

ping from a probabilistic transition system with time-bounded transitions, it should

be noted that these automata allow for more general modeling of physical behavior

than the original probabilistic transition system. Consider the simple models in Fig-

ure 6-5, expressed directly in terms of Timed Constraint Automata. On the left, a

simple spacecraft engine is modeled with four nominal modes: Off, Heating, Standby,

and Firing. The Heating mode corresponds to a transitional state that captures the

fact that it takes time for the engine to heat up to its nominal standby temperature.

This heating process can take anywhere from 30 to 60 seconds to complete. How-

ever, this model also captures the following important feature: an engine in the midst

of heating up can still be commanded off (preempting the heating-up process). If

this model had been expressed in terms of the type of probabilistic transition system

119

Engine:

(power = on) AND
(thrust = zero) AND
(temp = increasing)

|(power = off) AND](thrust = zero)= off) &
0.001 cmd= 30 <= t, <=6

Of f

0.001 (power = on) AND
(thrust = zero) AND
(temp = norninal)

cmd= cmd=
0001 standby fire

(power = on) AND
(thrust = full) AND
(temp = nominal)

Camera:

(power = off) AND
(shutter = closed) \

cmd = cmd=
camnOff camOn

(power = on) AND
(shutter = closed) cmd =

tc=0. I takePicture
&tc<=0 .2 00001

(power = on) AND
(shutter = open)

Figure 6-5: Timed Constraint Automata for the engine and camera components.

shown in Figure 6-2, the resulting mapping to a Timed Constraint Automaton would

not have produced this preempting transition.

On the right in Figure 6-5, a simple camera component is modeled. When the

"takePicture" command is issued from the Idle mode, the following behavior is ob-

served: the camera shutter opens for between 100 and 200 milliseconds, then closes

automatically. This behavior is captured as a transient Taking-Picture mode, with an

outgoing timed transition back to Idle mode. Again, this type of transitional behavior

cannot be accurately represented by the form of transition system in Figure 6-2. Con-

sequently, physical systems are generally modeled directly in the Timed Constraint

Automaton representation, to take advantage of the greater expressivity it provides.

Formal definition of Timed Constraint Automata

The Timed Constraint Automaton model for component j is described by a tuple

(UJ, My, [, Ty, Pe ,I P 3 , Rj), where:

S171 is a set of variables, partitioned into UIT, Ml and l!:

- HT is the singleton set containing the component's mode variable xz. xj

ranges over the finite domain D(xj).

120

- H is the singleton set containing the component's clock variable tj. tj

ranges over D(tj) = Ctime [Ul] is the set of all possible clock variable
A

constraints over tj of the form A = TRUE I FALSE I (tj <; ti) I (tj >

ti) I (t3 < ti) I (t3 > ti) | Ai A A2 I Ai V A2, where ti E R+. Cinej [H] is the

singleton set {(t := O)}, where (tj := 0) is the clock initialization of t,.

- H7 is the set of attribute variables a3 . Attributes include input variables,

output variables, and any other variables needed to describe the modeled

behavior of the component. Each a3 E L1 ranges over a finite domain

D(aj). C[H] denotes the set of all finite-domain constraints over variables

in UI of the form A - TRUE I FALSE | (a3 = v) H,Ai I Ai AA2 1 AiVA 2,

where v C D[a].

" M : D(xj) -+ C[Hlq] associates with each mode variable assignment xj = v

a finite domain constraint Mj (xj = v) E C[Hq]. This constraint captures the

component's behavior in a given mode.

* Rj : D(xj) -+ CinjtU[f] associates with each mode variable assignment xj = v

a clock initialization (tj := 0) that is asserted upon transition into this mode

from a different mode.

" T G D(xC) x C[flH] x D(xj) is the set of transitions. Each transition r =

(v, g, v') E T has a source mode (xj = v), a target mode (xj = v'), and

is conditioned on the guard constraint g E C[HIl]. Transitions with nominal

modes as their target are called nominal transitions; all others are called fault

transitions.

" Pe : D(xj) -+ R[0, 1] denotes the probability that xj = v is the initial mode

for component j.

* Pr, : Tj x D(tj) -* R[0, 1] associates, with each transition r = (v, g, v') E Tj

and value of clock variable tj, a probability P,(tj). This corresponds to the

probability that the transition will be taken if enabled at a given value of clock

121

variable tj. P'r, can be viewed as associating with each timed transition a prob-

ability density function p,(t3), over the possible values of the clock variable tj.

This provides the mechanism for enforcing the time constraints on transitions,

where each time constraint is an element in Crime [1J].

e Rj : D(xj) -+ R denotes the cost (or conversely, the reward) associated with

mode variable assignment xz = v.

This definition of Timed Constraint Automata builds upon the definition of Con-

straint Automata for untimed plant models [83, 90]. In particular, Timed Constraint

Automata extend Constraint Automata by defining the clock variables tj and clock

initializations f[j, and by conditioning the transition probability functions P-r, on the

clock variables.

These time-related augmentations lead to similarities between the Timed Con-

straint Automaton representation and two variants of Probabilistic Timed Automata

(PTA) [52, 53]. PTA extend the Timed Automata formalism [2] by associating

probabilities with the non-deterministic timed transitions. The PTA model proposed

by Largouet and Cordier [53] assumes that the probability of taking a timed transi-

tion is constant for any time that satisfies the associated timing constraint. Timed

Constraint Automata adopt a more realistic transition probability model, similar to

the Continuous PTA model presented by Kwiatkowska et al. [52], by assuming the

transition probability is computed based on the current clock value, according to a

specified probability density function.

There are two key differences between Timed Constraint Automata and PTA.

First, Timed Constraint Automata adopt a constraint-based encoding, where general

propositional logic constraints on plant variables are used to specify behavior in each

component mode (Mj, in the above definition). PTA, on the other hand, simply

associate with each node a set of "labels", i.e. atomic propositions that are true in

that node. The only other constraints associated with nodes of PTA are the invariant

clock conditions that must hold while in that state. Timed Constraint Automata do

not explicitly define such invariant conditions on clocks; rather, these time constraints

122

are folded into the transition probability function PT3 . Furthermore, transitions of

Timed Constraint Automata are conditioned on general constraints on plant variable

assignments, rather than event labels, as is the case for PTA.

The second key difference is that, unlike PTA, which allow for the specification

of arbitrary numbers of clocks, each Timed Constraint Automaton defines a single

clock. This restriction can be traced back to the adoption of a factored POSMDP

model for physical plants: a single plant clock variable is all that is required to

capture the types of semi-Markov behaviors exhibited in physical plant components,

e.g. the latency associated with the heating of an engine component, or the non-

deterministic duration of a camera's "taking-picture" action (see Figure 6-5). In this

regard, the PTA provides a more general time-modeling capability, and thus can be

used to describe systems with more complex timed behaviors. Nonetheless, Timed

Constraint Automata are sufficiently expressive to model the rich set of timed physical

behaviors described in the POSMDP framework.

6.1.3 Timed Concurrent Constraint Automata

A physical plant is modeled as a composition of Timed Constraint Automata that rep-

resent its individual concurrently operating components. This composition, including

the interconnections between component automata and interconnections with the en-

vironment, is captured in a TCCA.

Formally, a TCCA is described by a tuple (A, H, Q), where:

" A = {A 1, A2, ..., A} denotes the finite set of Timed Constraint Automata as-

sociated with the n components in the plant.

" H is a set of plant variables, partitioned into sets of mode variables 1"'

Ui=1...ryT, controlvariables rfl C Ui=1..,ry , observable variables r"J C Ui=1...n f

dependent variables Ud C U=1.. and clock variables HiU'= U_1..r.

Q E C(re U r1 U 1ld) is a conjunction of finite-domain constraints providing the

interconnections between the attributes of the plant's components.

123

Mode variables represent the state of each component. Actuator commands are

relayed to the plant through assignments to control variables. Observable variables

capture the information provided by the plant's sensors. Dependent variables repre-

sent interconnections between components. They are used to transmit the effects of

control actions and observations throughout the plant model. Finally, clock variables

enable component transitions conditioned on metric time, allowing representation of

delayed effects, for instance.

The state space of H, denoted E(H), is the cross product of the D(var), for all

variables var E H. The state space of the plant mode variables H', denoted E(H"), is

the cross product of the D(xj), for all variables xj E 1". A state of the plant in cycle

i, s() E E(H'), assigns to each component mode variable a value from its domain.

Similarly, an observation of the plant, o(') E E(H*), assigns to each observable variable

a value from its domain, and a control action, p(W E E(IP), assigns to each control

variable a value from its domain. A clock interpretation, (0) E E((l), assigns a real

value to each clock variable in the system.

The above definition of TCCA as a composition of Timed Constraint Automata is

analogous to the composition of untimed Constraint Automata into CCA [90]. Like

CCA, TCCA model the evolution of physical processes by enabling and disabling

constraints in a constraint store. Enabled constraints in the store would include

the set of Mj (xj = v) constraints imposed by the current plant state, and the Q
constraints associated with the TCCA.

TCCA Specification Example

Consider the driver and valve component models depicted in Figure 6-4. The plant

variables xj associated with these components are Driver and Valve, with domains

of { TurningOn, On, TurningOff, Off, Resettable, ResettingOn, ResettingOff, Failed}

and { Open, Closed, Stuck-open, Stuck-closed}, respectively. The driver's constraint

automaton has attributes dcmdin and dcmdut, each with domain { on, off, reset,

open, close, no-command}. The valve's constraint automaton has attributes vcmdin

(with the same domain as dcmdin and demd0 nt), flowin (with domain {zero, nominal})

124

and flowst (with the same domain as flowi,). The clock variables for the driver and

valve are tD and ty, respectively.

For the driver component, the mode constraints M are specified as follows:

MDriver (On) = (dcmdin = dcmdout)

MDriver (Off) = (dcmdout = no-cmd)

MDriver (Resettable) = (dcmdout = no-cmd)

MDriver (TurningOn) = True

MDriver (TurningOff) = True

MDriver (ResettingOn) = True

MDriver (ResettingOff) = True

MDriver(Failed) = True.

In this example, the transitional modes (TurningOn, Turning0ff, Resetting0n,

and ResettingOff) are assumed to be unconstrained, i.e. the constraint for each of

these modes is True.

The transitions and associated probabilities for the driver component are specified

in Table 6.1, where the probabilities in this table are based on the following:

" there is a 0.1% likelihood of transitioning into Failed mode from any other mode,

at any time;

" there is a 1% likelihood of transitioning into the Resettable fault mode from any

nominal mode, at any time;

" the following uniform probability density functions are associated with each

timed transition:

pr(t) = 10 for 0 < t < 0.1,= 0 otherwise,

p. 1,(t) = 10 for 0 < t < 0.1,= 0 otherwise,

125

p 22 (t) = 5 for 0 < t < 0.2, = 0 otherwise,

p 26 (t) = 10 for 0 < t < 0.1, = 0 otherwise;

e the likelihood of remaining in a given mode (i.e. taking a self-transition) is

computed as one minus the sum of the probabilities of the outgoing fault and

timed transitions.

Mode constraints, transitions and probabilities can be similarly expressed for the

valve component.

The following modal rewards are assigned:

RDriver (Off) = 0,

RDriver (On) = 0,

RDrive, (TurningOn) = 0,

RDrive,(TurningOff) = 0,

RDriver (ResettingOn) = 0,

RDriver(ResettingOff) = 0,

RDriver(Resettable) = -10,

RDriver (Failed) = -20,

Rvalve(Closed) = 0,

RValve(Open) = -5,

RValve(Stuck-open) = -20,

RValve(Stuck-closed) = -10.

Note that repairable fault modes, such as (Driver = Resettable), are given a lower

reward than nominal modes, to bias mode reconfiguration toward repairing them

whenever possible. For the valve, the Closed mode is given a higher reward than the

Open mode, to bias the system toward closing any valves that need not be open in

order to achieve a given goal (thus minimizing loss of propellant, for instance).

126

Table 6.1: Transitions and transition probabilities for the driver component.

Transition TDriver Probability PDr,,,,, (tD)

Ti (Off, (dcmdi, = on), TurningOn) 0.989
T2 (Off, (demdi, = on), Off) 0.989
T3 (Off, True, Resettable) 0.01
r4 (Off, True, Failed) 0.001
T5 (TurningOn, True, TurningOn) 0.989(1 - f D pr (t)dt)

T6 (TurningOn, True, On) 0.989jf p,6(t)dt
r 7 (TurningOn, True, Resettable) 0.01

T8 (TurningOn, True, Failed) 0.001
T9 (On, (dcmdin = off), TurningOff) 0.989

Tio (On, (dcmdi2 = off), On) 0.989
Til (On, True, Resettable) 0.01
T12 (On, True, Failed) 0.001

T13 (TurningOff, True, TurningOff) 0.989(1 - f0D P 14 (t) dt)
T14 (TurningOff, True, Off) 0.989 ftD p 14 (t)dt
T15 (TurningOff, True, Resettable) 0.01

T16 (TurningOff, True, Failed) 0.001

T17 (Resettable, (dcmdi, = off) V (dcmdi, = reset), Resettable) 0.999

T18 (Resettable, (dcmdi, = reset), ResettingOn) 0.999

T19 (Resettable, (dcmdi, = off), ResettingOff) 0.999

720 (Resettable, True, Failed) 0.001

T21 (ResettingOn, True, ResettingOn) 0.989(1 - I D pT2 2 (t)dt)

T22 (ResettingOn, True, On) 0.989 f') p (t)dt

T23 (ResettingOn, True, Resettable) 0.01

T24 (ResettingOn, True, Failed) 0.001

r25 (ResettingOff, True, ResettingOff) 0.989(1 - f D pT26 (t)dt)

T26 (ResettingOff, True, Off) 0.989 f0D PT26 (t)dt

T27 (ResettingOff, True, Resettable) 0.01

728 (ResettingOff, True, Failed) 0.001

T29 (Failed, True, Failed) 1

127

To complete the specification of the Timed Constraint Automata for the two

components, the following initial mode probabilities are specified:

PEDriver (Off) = .9,

PeDrver(On) = .1,

Pe.,ve(Closed) = .9,

Pev.l,,(Open) = .1,

with all other modes having zero initial probability.

For the TCCA composed of the driver and valve Timed Constraint Automata,

the set of control variables is IlP = {dcmdi,}, the set of observable variables is U" =

{flowin, flowout}, and the set of dependent variables is Ud {dcmdout, vcmdin}.

Finally, the component interconnections are given by:

Q = (dcmdet = vcmdin).

6.1.4 Feasible Trajectories of a TCCA

Next, consider the set of plant trajectories that are feasible, that is, trajectories in

which each pair of sequential states is consistent with a TCCA. Discussion of the

computation of the most likely plant state, given a set of observations, is deferred to

the next section. Recall that, in the interleaving model of computation, each execution

cycle consists of an instantaneous "discrete" event and a "continuous" phase in which

time advances by some amount 6. 6, the length of an execution cycle, need not remain

constant from one cycle to the next. As mentioned in Section 5.3, 6 is determined by

the amount of time required for the Timed Model-based Executive to complete its

control sequencer and deductive controller operations. From the point of view of the

deductive controller, the discrete events correspond to transitions between states in

P.

128

As discussed in Section 4.1, the assumption is made that execution cycles are

sufficiently short that the state does not change more than once per cycle (i.e., each

component only takes one transition per cycle). This assumption is built into the

definition of a feasible trajectory, which takes a single step along an enabled transition

at each execution cycle. This assumption is necessary to ensure correct operation of

the deductive controller: in particular, the current implementation of mode estimation

only searches over the states that are reachable via a single transition. Relaxing

this assumption would significantly increase the size of the state space that mode

estimation would need to search.

In the following definition of a feasible trajectory, a clock initialization vector

tinit(i) is an n-tuple defining an absolute clock initialization time t T'(i) for each

clock variable, and tabs (i) is specified as the latest reading of the absolute system

clock.

Given sequences of control variable assignments [p(O), P()] and absolute system

times [tas(0), tabs(1), ...], a feasible trajectory of a plant P is defined by sequences of

plant states [s(O), s(1), ..] and clock initialization times [tinit(0), tinit (), . . .], such that:

1. s(O) is a valid initial plant state, i.e. Pe, (xj = v) > 0 for all assignments

(xj = v) E s(0);

2. each entry in ti""t(O) is set to the absolute system clock time at startup, i.e.

tj"it(0) = tabs(0), Vj;

3. for each cycle i > 0, (s(i+1), tinit(i+ 1)) = StePTCCA(P, s(i), 0i), tinit(i), tas(i)).

StePTCCA : E(fl m) x E(IlP) x E(flt) - E(Um) x E(Ut) transitions the TCCA of

a plant P, by executing a transition for each of its component automata. In Figure

6-6, an algorithm for StePTCCA is presented, which handles the non-determinism in

the model by non-deterministically choosing one of its enabled transitions to take. As

mentioned previously, a transition is enabled if its guard and time constraint are both

satisfied. For example, consider the driver component in Figure 6-4. Assuming the

current mode is TurningOn and the current value of clock tD is 0.05 sec, transitions

129

StePTCCA (, S(i), P(M, tini (i), tabs (i)) -4 (S(i+1), tinit (i + 1))

1. Define new clock initialization vector. For each clock variable, set newInit= ti"(i).

2. Update clocks. For each clock variable, set tj(i) = tabs _ nit Wi)

3. Compute constraint store. Take the constraint store to be the conjunction of the interconnection con-
straints and all state constraints:

CM :=Q A M;(x, = v)
(xi=v)EsN('

4. Identify enabled transitions. For each component mode variable assignment xj = v, identify as enabled
any transition r = (v, g, v') E Tj, for which g is satisfied by the constraint store CM and the current control
variable assignments p(0, and for which P, > 0, given the current value of tj (i) (for transitions with time
constraints, this implies that tj (i) satisfies the time constraint).

5. Take transitions. Only one transition can be taken for each component mode variable; when more than
one transition is enabled, non-deterministically choose one of them to be taken. For each transition taken, set
newMode; = v'.

6. Assert clock initializations. For each component mode variable, compare the current and next assignments:
if v' $ v, assert clock initialization (tj := 0) by setting newInitj = tabs.

7. Return feasible next state and clock initialization.

s(i+1) = Uf(x = newModej)},
j

tinit(i+ 1) = Ufnewlnitj}.

Figure 6-6: StePrCCAalgorithm.

r5 , r6 , r7 and r8 would all be enabled (see Table 6.1). However, if the current mode is

TurningOn and the current value of clock tD is 0.1 sec, the probability of self-transition

r5 drops to zero; at this point, the only enabled transitions are the outgoing timed

transition r6 , and the two fault transitions T7 and r8. Note that StepTCCA does not

explicitly track the clock interpretations (values of each clock variable). Rather, it

tracks the initialization time of each clock (in absolute time); the current value of

clock tj is derived in each cycle by taking the difference between the current absolute

time tb"(i), and the initialization time tj" (i).

The above definition of a feasible TCCA trajectory is based on the definition

of feasible trajectories of CCA: StepTCCA extends the untimed StePcCA algorithm

presented in [90], by adding steps 1, 2, and 6, and modifying the notion of enabled

transitions to include transitions whose time constraints are satisfied by the current

130

clock values. As for CCA, StepTcCAN denotes a variant of the step function that

takes only nominal transitions. A trajectory that involves only nominal transitions is

called a nominal trajectory.

6.2 Mode Estimation

In this section, the ME capability of the deductive controller is described. Recall

that the role of ME is to estimate the current set of component modes that comprise

the state of a physical plant. The ME algorithm used by the Timed Model-based

Executive builds off the StePTCCA algorithm presented in the previous section, using

the transition probabilities and the observations from the system's execution to re-

solve the non-determinism in the plant model. This section begins by defining the

notion of consistency with respect to the constraints imposed by an observation se-

quence. It then describes belief state update for plants modeled as TCCA. Finally,

the ME algorithm is presented, which provides a tractable approximation of belief

state update.

6.2.1 Consistent Executions of a TCCA

In this section, the notion of feasible trajectories presented in Section 6.1.4 is extended

to define state trajectories that are consistent with respect to a sequence of plant ob-

servations. Given sequences of control variable assignments [p'(0), pA,], observable

variable assignments [o(1), o(2), ...], and absolute system times [tabs(0), tabs(1), .. .], a

consistent trajectory of a plant P is defined by sequences of plant states [s(O), (1),.. .

and clock initialization times [tinit(o), tinit(1), . . .], such that:

1. s(O) is a valid initial plant state, i.e. Pe3 (xj = v) > 0 for all assignments

(xj = v) E s(O);

2. each entry in tinit(O) is set to the absolute system clock time at startup, i.e.

tj""(0) = tabs (o), Vj;

131

3. for each cycle i > 0, (s(+1), tinit(i + 1)) = ConsistentStateTccA(P, s(i), y(,

0 (i+1), tinit (i), tab 8(0)

ConsistentStateTccA : E(U) x E(fc) x EU*) x (ft) 4 Z(fU) x E(flt) tran-

sitions the TCCA of a plant P, by executing a transition for each of its component

automata, and by comparing the next state with the observations. Figure 6-7 presents

an algorithm for ConsistentStateTccA, based on the StePTCCA algorithm from Sec-

tion 6.1.4. ConsistentStateTCcA adds two steps to StePTCCA. In step 6, it computes

the constraint store corresponding to the modes in the proposed next state, s(+). In

step 7, it makes sure that the observations o(+1) are consistent with this constraint

store and the proposed next state s(+').

Now that consistent trajectories have been defined, the probabilistic nature of

timed plant models can be addressed. The following section describes how the

TCCA's transition probabilities are used to estimate the state of the plant.

6.2.2 Belief State Update for TCCA

Recall from Section 4.3.2 that ME for a factored POSMDP can be framed as a variant

of belief state update. In this section, the general belief state update approach is

formalized for timed plant models expressed as TCCA.

At this point, the probabilistic nature of the transitions in a TCCA is considered.

As described in Section 6.1.2, probabilities P,(tj) have been specified, corresponding

to the likelihood that a transition r will be taken for any given value of the compo-

nent's clock variable t3 . This probability information can be used to compute, in each

execution cycle, the belief state associated with each possible plant state and clock

interpretation.

The key insight is that a factored POSMDP, as encoded in a TCCA, can be

mapped to a POMDP by augmenting the plant state with the clock interpretation.

Thus, the system state s(') is specified by the current assignments to each component's

state variable, as well as the current clock interpretation:

So) = (SO), t(i)).-

132

ConsistentStateTCcA (P, s (), p(), 0(+1), tinit (i), tabs (i)) -+ (s(+1),tinit(i + 1)) ::

1. Define new clock initialization vector. For each clock variable, set newInit = tnit (i).

2. Update clocks. For each clock variable, set tj(i) = tabs - tinit(i).

3. Compute constraint store. Take the constraint store to be the conjunction of the interconnection con-
straints and all state constraints:

CM :=QA A M3 (x, = v)
(xj =v)Es()

4. Identify enabled transitions. For each component mode variable assignment xj = v, identify as enabled

any transition r = (v, g, v') E Tj, for which g is satisfied by the constraint store C) and the current control
variable assignments p(M, and for which P, > 0, given the current value of tj (i) (for transitions with time
constraints, this implies that tj (i) satisfies the time constraint).

5. Choose a transition for each component. For each component, non-deterministically choose an enabled
transition to be taken. For each transition taken, set newMode = V'.

6. Compute constraint store for proposed next state. Let s('+1) = Ua{(xa = newModej)}. The
constraint store for the next state is the conjunction of the interconnection constraints and all state constraints
for the new modes: C 1 :=QA A M(z=v')

(xM)A mj+1) =v'

7. Check consistency of proposed next state. Unless s(i+1) A C(+ A o('+) is consistent, return to stepM
5 and select a different set of enabled transitions to take.

8. Assert clock initializations. For each component mode variable, compare the current and next assignments:
if v' $ v, assert clock initialization (tj := 0) by setting newInit = tabs.

9. Return feasible next state and clock initialization.

s(i+1) = Uf(xj =newModej)},
j

tinit(i ±) = Ufnewlnitj}.
i

Figure 6-7: ConsistentStateTCCA algorithm.

Though multiple trajectories in the system state space can lead to the same phys-

ical plant state, these trajectories do not necessarily assign the same value to each

clock variable. Since state transitions are conditioned on clock constraints as well as

control actions, this means that system states that assign the same values to plant

state variables but different values to clock variables can lead to divergent state evolu-

tions. It would therefore be inappropriate to merge these multiple trajectories during

belief update, unless the full system state is the same (that is, both the state and

clock variables have the same values). Consequently, even though the likelihood of a

133

plant state is computed by summing the probabilities of trajectories leading to that

state, these trajectories are tracked separately unless they correspond to identical

system states, that is, unless they also have common clock variable assignments.

Once the timed problem has been mapped to an untimed (i.e. Markovian) prob-

lem, the belief state at cycle i + 1 can be computed from the belief state and control

actions at cycle i and observations at i+ 1 using the standard belief update equations:

n

p(+ [s,] E= Zp()[sk]PT(sI Sk, PW

k=1

(P(.i+1)Is] P 0 (o(i+ | st)
p~k= []-p [s] P(.i+l) [sk]Po(o(i+1) I sk)'

where the prior probability p(.i+) [si) is conditioned on all observations up to o(i),

and the posterior probability (belief state) p(i+1) [s,] is also conditioned on the latest

observation o(i+). Pr(si Sk, P(i)) is defined as the probability that ' transitions

from system state sk to system state sl, given control actions p_(0). pO(o(i+) I s1)

is the probability that observation o(i+1) is received in system state si. The initial

belief state is computed based on p(*0)[sl] = Pe(si), where Pe(si) = Pe(si) if clock

interpretation t, assigns zero to each plant clock, and Pe(si) = 0 otherwise. To

complete the presentation of belief update for TCCA, the transition probability PT

and observation probability P 0 must be defined.

Transition Probability

To calculate the transition probability PT(sI I Sk, p(P) of a plant TCCA, recall that

a plant transition T is composed of a set of component transitions, one for each

component mode (xj = v). The key assumption is made that component transition

probabilities are conditionally independent, given the current plant state. This is

analogous to the failure independence assumptions made by GDE [19], Sherlock [20]

and Livingstone [83], and is a reasonable assumption for most engineered systems.

Hence, the plant transition probability is computed as a product of the component

134

transition probabilities:

PT(S1 I Sk, iA) = J J PT(X ii) = V' I X(5) - V i ti)

where PT,(xf+l = -'|x v, p t2)) is the probability P- (t3) for the transition

from mode (xj = v) E Sk in cycle i to mode (xj = v') E st in cycle i + 1 enabled by

the current constraint store and the control action p(i. 1

As mentioned previously, a TCCA specifies in P, a probability for each transition

T, given the current clock value t(.. For an enabled timed transition T from mode v
3.

to mode v', the component transition probability P,. (tv) is obtained by integrating

from t(' 1' to t(the conditional probability density function p I-l1>,, given that3 3 r i

the transition had not yet occurred at i-1. This conditional probability density

essentially rescales the original probability density function p,. over the time interval

[t ,oo). In other words, for an enabled timed transition:

PTj (xj =v' I x1 = v, p(0, tf) = P. (tt)) = p _1>)=dtj.

The trellis diagrams in Figures 6-8 and 6-9 depict the possible state evolutions for

the simple engine model from Figure 6-5, assuming two different sequences of control

actions p(O. In Figure 6-8, the engine starts in Off mode, is issued the command cmd

= standby in the first cycle, and is given no further commands. Note the changes

in the probabilities associated with the transitions, as time advances through the

interval that satisfies the time constraint on the transition from Heating mode to

Standby mode. At time ti + 60, the only enabled outgoing transitions from Heating

mode are the timed transition to Standby and the fault transition to Failed mode.

Because the upper bound has been reached on the time constraint for the Heating to

Standby transition, the self-transition from Heating mode back to itself is no longer

'This assumes each Timed Constraint Automaton specifies only one transition from any given
source mode to any given target mode. If more than one transition from source to target is enabled,

PT (xj = V' | zy = V, p(i), tV)) would be computed by summing the probabilities of these "parallel"
transitions.

135

to

action:
cmd=stby

t

action:
none

t,+dt ...

action:
none

t,+30 + dt

action:
none

0.99(1-

0 0 0

t1+30 + 2dt

action:
none

0.99(1-

t, +30 +3dt ...

action:
none

t,+60

action:
none

000

*00

000

0.01
0.1Failed .0. Fale

tE:= 0

Failed Failed * * .

tE:= IE=dt

t, 30
t
, 30+dt tE = 30+2dt

t
= 60-dt tE

E = 30+dt tE = 30+2dt
t
E E30+3dt 60 tE =60+dt

Note: PT(tE) = PT(Standby I Heat, none, t E)

Figure 6-8: Trellis diagram showing the possible state evolutions for the simple space-
craft engine model, for the sequence of control actions { cmd = stby, none, none,. .. }.

enabled: nominal behavior of the engine dictates that the engine must transition to

Standby. In Figure 6-9, the command cmd = off is issued at time ti + 30 + 3dt. In

this case, transitions back to Off mode are taken (in the nominal case), whether or

not the timed transition from Heating to Standby mode has been taken by that time.

Observation Probability

The observation function Po(o(i+) I si) is calculated from the TCCA, taking an ap-

proach similar to that of GDE [19]. Given the constraint store C(1) for si, computed

in Step 6 of ConsistentStateTccA, each observation in o('+) is tested for entailment

136

to t,+dt ... t +30+dt t+30+2dt t,+30+3dt

action: action: action: action: action: action:
cmd=stby none none none none cmd=off

0.99(1- 0.99(1-

Off 0.99 Heat 0.99 Heat 0 0 0 Heat PT(30+d Heat PT(30+2dt) Heat 0'99

tE: 0 E d E E0 - 30+2 PT(02t 1 E:0

0.99 0.9
P T(30+dt)n

0.01 0.01

Stan 0.99 Stan 0'99 Failed
by by 0.01

tE 0E E

0.01
0.01

Failed Failed

1 1

0.01
tE EtE

2 dt

Failed 0 F Faile F

tEE 3 E 30d E 32d E 3+

Failed Failed * eled al ed

tE: 0 E E t 30+dt tE =3 2d E 3+:f E304

Note: PT(tE) PT(Standby | Heat, none, t E)

Figure 6-9: Trellis diagram showing the possible state evolutions for the simple space-

craft engine model, for the sequence of control actions { cmd = stby, none, none,
cmd = off}.

or refutability by the conjunction of C +1 and sl, giving P0 probability 1 or 0, re-

spectively, for that observation. If no prediction is made (i.e. if an observation is

neither entailed nor refuted), then an a priori distribution on possible values of the

observable variable is assumed (e.g., a uniform distribution of 1/n for n possible val-

ues). This offers a probabilistic bias towards states that predict observations, over

states that are merely consistent with the observations. Po(o2+l) I si) is computed

as the product of the P 0 for all observations in o(+'). These two definitions for P7

and Po complete the belief update equations for TCCA.

137

Implementing Belief Update for TCCA

An algorithm for TCCA belief update, BeliefUpdateTCCA, is presented in Figure 6-

10). BeliefUpdateTCCA computes p(.i+1) [si] for each possible next system state that is

consistent with o(+). BeliefUpdateTCCA takes in a plant model P, a set of possible

current system states S('), the posterior probabilities (belief states) p(') for each

possible current system state, the current system time tabs (i), the control action p(),

and the new observation 0 +1). It returns a set of possible next system states S(i+l)

and the posterior probabilities p0+1.) for every next system state consistent with the

latest observations. Rather than keep the current value of each clock variable in the

system state, it stores the last initialization time (as measured on the absolute system

clock) for each clock. Thus, the current value of each clock variable is computed in

each cycle by taking the difference between the initialization time and the current

absolute time.

To compute the probability associated with each plant state (independent of the

clock values), the probabilities of all returned system states in S('+) that have the

same state variable assignments are summed. The resulting most likely plant state is

taken as the current state estimate, for the purposes of control program execution.

This algorithm for TCCA-based belief state update provides an "ideal" solution

for the mode estimation problem (i.e., an implementation of the semantic model de-

scribed in Section 4.3.2). Various alternative approaches for performing model-based

state estimation on timed systems are documented in the literature. For example,

Largouet and Cordier [54] have proposed an approach that performs consistency-

based diagnosis on Timed Automata via model-checking. More specifically, their

approach uses the Kronos [10] model-checking engine's reachability analysis capabil-

ity to compute diagnostic trajectories explaining a sequence of observations. Their

modeling representation is similar to TCCA, in that it defines a system as a com-

position of component automata, which capture timed behaviors of the components,

such as transition latencies. However, unlike the constraint-based encoding of TCCA,

their Timed Automata model is fluent-based, and thus does not support more gen-

138

Belief UpdateTCCA (P, S , >p(i*)[S(i)], p(0), o(i+), tabs (i)) -+ S 0 (g +), 0p(i+1)[S(i+l) :

1. Initialize targetStates and targetProbs to empty sets. These sets accumulate the target system states, and the
probabilities associated with each target system state.

2. For each system state s(i) = (S(i),tinit(i)) E g(0:

" Initialize newMode, newInit and newProb to empty sets. These sets will hold the target modes, clock
variable initialization times and transition probabilities, for each enabled transition.

" Update clocks. For each clock variable, set tj = tabs - tinit

" Compute constraint store.

C =QA A Mj (x 3 =v)
(xj =v)Es(i)

" Identify enabled transitions. For each component mode variable assignment (xj = v) E s(),
identify as enabled any transition r = (v,g,v') E Tj, for which g is satisfied by the constraint store

C() and the current control variable assignments p(0, and for which P, > 0, given the current value
of tj (for transitions with time constraints, this implies that tj satisfies the time constraint). For each
enabled transition r, let newModei(r) = V' and newProbj(r) = P,(t3).

" Assert clock initializations. For each enabled transition r, if v' # v, assert clock initialization

(ti := 0) by letting newInitj(r) = tabs. If V' = v, let newInitj(r) = tj"st(i).

" Compute set of target states and probabilities. Add to ordered set targetStates each element
targetStates= ((i = '),...,(x= v),' init, .tinit), where (vi,...,v') E newModej,

and (tn,. .. , tni) E Og®=l.. newInitj. Add to ordered set targetProbs each element targetProbsk =

p(ie)[(] =1 pj, where (Pi,. pn) E 0 n=1..n newProbj.

3. Consolidate probabilities for common targets. Let S0+ 1) = Uk{targetStatesk} be the set of unique
target system states, and let p(ei+l) [s(i+1)] be the sum of all probabilities targetProbsk associated with the
same target state s(i+1) E S(i+').

4. For each s(+0 = (,(i+1), tin (i + 1)) E S(i+1):

" Compute constraint store for proposed next state. The constraint store for the next state is
the conjunction of the interconnection constraints and all state constraints for the new modes:

C :=QA A Mj (xj = V').
(zj=v')E(i+1)

" Compute observation probability.
no

Po(o(i+1) s(i+1)) = J pO(0 (i+1) |(i+1)), where:
1=1

Po(o +') s(i+1)) 1 1 if s('+1) A C"'| o) +

Po(o+1) | s+1) 0 if s+1) A C + ,0 (i+,1

Po(o4(+1) is('+1)) = 1/m otherwise, and

m = number of possible values for the observation o0

" Condition on latest observation. Compute the posterior probability associated with s(i+1) by
multiplying by the observation probability:

p(i+1e)[s(i+1)] = p(es+1)[s(i+1)]pO(O(t+1 | s0+).

Note that the normalization by the overall observation probability PO(o(i+l)) is omitted here. The
posterior probability is therefore not exact, but still provides an accurate likelihood ordering.

5. Return next system states and probabilities. Return SO+') and p(i+1)[S0+).

Figure 6-10: BeliefUpdateTCCA algorithm.

139

eral behavior specifications based on propositional logic constraints. Furthermore,

Largouet and Cordier model fault transitions deterministically, by conditioning tran-

sitions into fault modes on explicit event labels. Non-determinism is folded into the

system through its observation model, where observations can be modeled as impre-

cise, i.e. an observation is described by a set of possible fluents. Unlike the TCCA,

their method provides no mechanism for diagnostic discrimination based on likeli-

hood of failure. To address this limitation, Largouet and Cordier have extended their

approach [53] through the adoption of Probabilistic Timed Automata. A comparison

between their PTA model and TCCA was made in Section 6.1.2.

One benefit of diagnosis methods based on model-checking is that they do not

require the assumption that only a single plant transition is taken in each diagnos-

tic cycle. Model checkers like Kronos consider any trajectory (single- or multi-step)

through the Timed Automaton model that leads to a state explaining the latest ob-

servation. However, this advantage comes at the expense of reactivity. Furthermore,

diagnosis methods based on model-checking are exhaustive, in that they compute all

consistent nominal and faulty trajectories at each diagnosis step. Consequently, these

approaches become computationally expensive for complex processes (i.e. Timed Au-

tomata with large state spaces and many different fault behaviors). In order to

perform estimation and diagnosis on-line during time-critical sequence execution, it

becomes necessary to use approximate methods that incrementally compute the most-

likely states of the system. Describing an approximation to the intractable belief state

update process for TCCA is the topic of the following section.

6.2.3 Approximate Belief Update for TCCA

As illustrated in Figures 6-8 and 6-9, augmenting the plant state with the current clock

interpretations results in a significant expansion of the state space. This expansion is

associated with the presence of non-determinism in the model, in the form of timed

nominal transitions and fault transitions. For instance, in each execution cycle where

a timed transition is enabled, the non-deterministic nature of the timed transition

leads to a new branch in the Trellis diagram, even in the absence of a control action.

140

Similarly, additional branching results from the non-determinism associated with fault

transitions, as seen by the expansion to a new failed node at each step in the Trellis

diagram. Even for a single-component system, as depicted in Figures 6-8 and 6-9, the

number of additional branches in the Trellis diagram that appear over a given time

horizon T is on the order of m -T/6, in the worst-case, where m is the number of

possible states at the start of the time horizon, and 6 is the average execution time

step. For the full system model, this implies a worst case state expansion on the order

of (m. T/6)" over the time horizon T, where n is the number of components in the

system.

Because it computes the full belief state (i.e., the probability associated with each

possible system state) at each step, the BeliefUpdate TCCA algorithm is very costly, in

terms of memory usage and computation time. In particular, step 2 iterates over each

system state in the current belief state and step 4 iterates over each system state in

the new belief state. For embedded systems with severe memory and computational

resource constraints, such as spacecraft, a state estimation approach that limits the

amount of online search performed and the number of possible states tracked must

be used. To this end, a key assumption is made: the probabilities of a limited number

of most-likely system states are assumed to dominate the probabilities of other system

states. Recent implementations of mode estimation (for untimed plant models) have

leveraged this type of assumption to approximate belief state update by tracking

a limited set of most-likely states, from one cycle to the next. For instance, the

Livingstone [83 and Titan [90] model-based executives perform mode estimation by

identifying the r best extensions to the current most likely trajectories, as solutions

to a shortest path problem. This shortest path problem can be framed as an Optimal

Constraint Satisfaction Problem (OCSP), which is solved using the OPSAT algorithm,

presented in detail in [67, 91].

An OCSP (x, f, C) is a problem of the form "arg max f(x) subject to C(x),"

where x is a vector of decision variables, C(x) is a set of propositional state con-

straints, and f(x) is a multi-attribute utility function that is mutually preferentially

independent (MPI). f(x) is MPI if the value of each xi E x that maximizes f is

141

independent of the values assigned to the remaining variables. Solving an OCSP con-

sists of generating a prefix of the sequence of feasible solutions, ordered by decreasing

value of f. A feasible solution assigns to each variable in x a value from its domain

such that C(x) is satisfied. To solve an OCSP, OPSAT tests a leading candidate for

consistency against C(x). If it proves inconsistent, OPSAT summarizes the inconsis-

tency (called a conflict) and uses the summary to jump over other leading candidates

that are similarly inconsistent. OPSAT generates solutions to the OCSP in best-first

order, and can thus be used to generate the K leading solutions.

The Timed Model-based Executive's deductive controller adopts a similar ap-

proach to ME. Starting from a current approximate belief state (consisting of the ,

most likely system states), it computes at each execution cycle a new approximate

belief state, based on the latest control actions, the current system time, and the new

observation from the plant. One limitation of this approach is that a low-probability

system state may be pruned, which could become very likely after additional evi-

dence is collected. It should be noted, however, that in the current paradigm of flight

software design, typical onboard fault protection is designed to handle single faults,

or, at worst, dual faults. More complex fault scenarios are generally considered so

unlikely as to be unnecessary to model and test for. Thus, by judiciously setting the

"number of solutions" parameter K, the approximate belief state approach provides

no less fault coverage than current spacecraft fault protection systems.

Another limitation is that this approach does not add posterior probabilities for

multiple separate trajectories leading to the same target system state; instead, the

most likely trajectory among these multiple trajectories is taken as the shortest path

to the target, and its associated probability is used in the computation of the target

system state's probability. Consequently, the resulting target system state "probabil-

ity" is an underestimate (lower bound) of the true probability of being in that target

system state.

Formally, the system state probabilities at cycle i + 1 are computed from the

system state probabilities and control actions at i and the observations at i + 1, using

142

the following shortest-path update equations:

p(ei+1)[Is,]- max p(i)[sk1PT(si sI, pW
k=1..n.

p(i+1-)[s] = p(i+- [s,] P(0(i+1) I si)

E K p(.i+0[io1)+) ek(e±1 [s1]POO~+1 I Sk)

with PT(s, I Sk, [p()) and Po(o(+) I si) defined as above for belief state update.

The TimedME algorithm, presented in Figure 6-11, computes this shortest-path

approximate solution to the belief state update problem (see Figure 6-11). TimedME

takes in a plant model P, a set of K current system states S(), the approximate belief

state probabilities p(i) for system states in S(', the current system time tabs(i), the

control action p(), and the new observation o(i+). It returns the set of r most likely

next system states S(+' and the approximate belief update probabilities p(i+1.) for

each system state in S(i+ 1.

Step 1 of TimedME extracts from S() each current possible system state sk, and

defines each system state in terms of its plant state sk and vector tinitk of clock

initialization times. Step 2 updates the set of plant clocks, by advancing each clock

by the amount of time elapsed since the previous call to TimedME. Step 3 frames the

enumeration of likely trajectory extensions as an OCSP, as follows.

Recall that each plant transition consists of a single transition for each of its

component automata. A solution to the OCSP corresponds to a plant transition r.

Hence, a decision variable rj is introduced into T for each component j. The domain

of each decision variable T is the set of possible transitions for component j. C(r) is

used to encode the constraint that:

* the source state of solution T and its corresponding constraint store C() must

be consistent with one of the current system states in S(') and the control action

p(; and

* the target state of T and its corresponding constraint store C(+' must be

consistent with the observed values o(+1.

143

TimedME (P, S(, pOe), pU(),0(i+1), tabs) -+ (S(i+1),p(i+1e)) -

1. Let sk = (Sk,tink) be the k-th element in S() = (s1, 2,,* sk is a vector of component mode

assignments ((= v), and tinitk is a vector of initialization times ttnitk for each plant clock.

2. Update plant clocks to reflect elapsed time since last execution cycle:

For k = 1 to n., define tk = t = tabs - tinitk) (tk - abs - tinitk), ... , = tabs - tinitk))).

3. Setup the OCSP (r, f, C):

" The vector r includes a decision variable ry for each component of the plant. The domain of rj is the
set of transitions (v,g,v') E Tj, where each transition is expressed as a propositional logic formula

[(x5) = v) A g => (z4i+1) = v')]. Source(r) and Target(rg) denote the source and target modes for

component transition Tj. Source(r) and Target(r) denote the source and target plant states associated
with plant transition r.

" The objective function f(,r) is the probability of a trajectory into the next system state, that is,

f(r) = p(io)[s()] . P,(s(i+1) | sMi (O)

= p(io)[s(i)] - r P, (v' I V, pM), ti),
j=1..n

" C(r) encodes the constraint that rA (V 1. (sk A tk)) AC(J ALM) AC(+l) Ao(+l) must be consistent,

where C) = Q A A 3 . EAvED[x.] [(W = v) - Mj (O) = V)

" The OPSAT solver requires that all variables have finite domain. Thus, the domain of each time
variable tj is taken to be the discrete and finite set of possible times {t , t ,.. ., t }.

4. Compute the r most likely solutions to the OCSP using OPSAT:

OPSAT returns solution (r1 ,r 2,....rK) and (s'1, s2.s'"), where s'k = (Target (,rk), tinitk), and tinitk is
the vector of clock initialization times in the system state sk that led to the solution rk.

5. Reset the appropriate clocks in the target system state of each solution:

For each solution (rk, s'k), update the clock initialization times in s'k as follows:

For each component mode variable x, compare the assignments (xj = v) E Source() and (xj = V') E Target(rk):

if v' # v, let tinitk(i + 1) - tabs.

if v' = v, let ti'if (i + 1) remain unchanged.

6. Return the set of target system states, and the associated probabilities:

S + = (S1, '2 _..S

p(i+lo) = (f(71), f(r 2)..))

Figure 6-11: TimedME algorithm.

144

The objective function, f, is the probability of each trajectory from a current sys-

tem state to a next system state. The probability of a trajectory is computed as

the product of the approximate belief state probability p(i)[s(0] associated with the

current system state and the probability P,(s('+) I s(0), p_(Z)) of the transition from

the current system state to the next system state. Solving the resulting OCSP using

OPSAT (step 4) identifies the leading transitions from the set of possible current

system states. OPSAT must also provide the target system states associated with

the "optimal" plant transitions, since a plant transition does not capture information

about the clock variables.

Once the r, best solutions have been computed, step 5 resets the appropriate

clock variables in each solution's target system state. This corresponds to updating

the initialization time associated with each component that transitioned into a new

mode. Finally, in step 6, TimedME returns the K target system states and their

associated probabilities. It should be noted that the conditioning of the probability

based on the observation (recall Step 4 in BeliefUpdaterCCA) is folded into the OCSP

solution step. By including the observation o(i+1) in the OCSP constraint C(T), this

effectively imposes P0 = 0 or 1, for a refuted or entailed observation, respectively.

The case where an observation is neither entailed nor refuted is handled as if the

observation were entailed, i.e. P0 = 1. This case results in an overestimation of the

actual probability of the system state, because the 1/m correction factor has been

omitted.

6.3 Mode Reconfiguration

Given the most-likely state estimates computed by ME, MR is used to command the

plant to achieve configuration goals issued by the control sequencer. As discussed

in Section 4.3.2, the semantics of MR is presented in terms of a variant of decision-

theoretic planning on the factored POSMDP plant model. By augmenting the plant

state with the clock interpretation, the factored POSMDP is mapped to a factored

POMDP, which can then be transformed into a "belief MDP", and solved via dynamic

145

programming, in theory. In practice, however, the decision theoretic planning problem

associated with the belief MDP is known to be intractable [8, 46].

Fortunately, previous work in model-based programming [85] has identified two

key assumptions that can be made about the system, which allow the MR problem

to be decomposed and solved reactively:

1. the probability of nominal behavior is assumed to dominate the probability of

off-nominal behavior; and

2. the reward associated with being in a goal state is assumed to dominate the

reward of getting to the goal state.

Assumption #1 allows MR to disregard fault states and transitions, to focus its

planning over nominal states and transitions. Assumption #2 allows reward to be

used in determining which of the reachable states corresponds to the "optimal" goal

state (i.e., satisfies the configuration goal while maximizing reward) and allows MR

to disregard reward in the process of generating the sequence of control actions that

leads to the goal state.

Consequently, the implementation of MR is decomposed into two capabilities, the

goal interpreter (GI) and reactive planner (RP). These capabilities operate in tight

coordination with ME, described in Section 6.2. GI uses the plant model and the

most likely current state, provided by ME, to determine a reachable goal state that

achieves the configuration goal, while maximizing reward. RP takes a goal state and

the most likely current state, and generates a command sequence that moves the

plant to this goal state. RP generates and executes this sequence one command at a

time, using ME to confirm the effects of each command. This decomposition of the

MR problem was introduced for the Burton model-based executive [85], and has also

been used in the Titan model-based executive [25, 90].

To illustrate the roles of GI and RP, consider an example drawn from the execution

of the Mars entry sequence (Chapter 3). Given a configuration goal of (Engine =

Standby), the MR operation begins with a call to GI, to determine the maximum-

reward (alternatively, least-cost) state in which this goal is achieved. GI finds this goal

146

Engine:

(dcmd = dcm) (dcmd = no-cmfd)

dcmd(= reset I

0.001

0.001/

demddemnd. dmd i

0.000\

0.0001

(dcmd no-cmd)

(power = on) AND
(thrust = zero) AND

(power = off)
(thrust =

ecrmd =standb

AND(tcmd==roff
Pro)

NOT (ecmd = off)
0.001 0.001 , ecadb AND 30 <= tE <=h60

off (power =on) AND
(thrust =zero) AND

0.001 (temp nominal)

0. ecmd = pressure I = high
.001 N standby AND pressure2 =high

AND ecmd = fire

(temp = nomninal) AND
(pressure1 = high) AND

(pressure2 = high)

Figure 6-12: Timed Constraint Automata models for the PDE and engine compo-
nents. The TCCA includes interconnection constraints that link the PDE's output
command (dcmdout) to the Engine's input command (ecmd).

state by reasoning through the TCCA plant model for the system, the relevant subset

of which is shown in Figure 6-12. Assuming that a propulsion drive electronics (PDE)

unit must be powered on in order to issue commands to the engine, and assuming

that the cost in terms of power draw associated with this PDE is non-negligible, the

least-cost goal state computed by GI would include the states (Engine = Standby)

and (PDE Off). RP then takes this goal state and determines the appropriate

ordering of actions that leads to the goal state. In this case, RP issues the sequence of

actions "power on PDE" (dcmdin - on), followed by "issue engine standby command"

(dcmdin = standbyEngine). Given confirmation of the (Engine = Heating) mode

from ME, the correct action for RP is next to wait for the engine to automatically

transition into standby mode between 30 and 60 seconds after entering heating mode.

Once (Engine = Standby) mode is confirmed, RP performs the final action "power

off driver" (dcmdin = off), to minimize unnecessary power draw. Assuming nominal

execution, this sequence results in achievement of the goal state.

As illustrated in the above example, the deductive controller's closed-loop execu-

tion capability continues to monitor the progress of the system through to achieve-

147

PDE:

Figure 6-13: A spacecraft has complex paths of interaction: commands issued by
the flight computer pass through the bus controller, 1553 bus, and propulsion drive
electronics (PDE) on the way to the spacecraft main engine subsystem.

ment of the goal state. This enables an immediate response to off-nominal execution.

For example, should the PDE suddenly be determined to have transitioned into its

resettable fault mode, RP then issues the appropriate recovery command to ensure

achievement of the (Engine = Standby) and (PDE = Off) goal state. In this case,

assuming no further engine commands need to be issued, the appropriate recovery

command is (dcmdin = off).

Several properties make the MR problem complex. First, devices are controlled

indirectly through physical interactions that are established and removed by changing

modes of other devices. Hence, to change a device's mode, a communication path

must be established from the control processor to that device, by changing the modes

of other devices (see Figure 6-13). Second, because communication paths are shared

with multiple devices, mode changes need to be carefully ordered, in order to avoid

unintended or destructive effects. Third, since failures occur, the modes of all relevant

devices need to be monitored at each step, through all relevant sensors.

The Timed Model-based Executive's MR implementation is based on the MR

engine for the Titan model-based executive [90]. Recall that Titan's deductive con-

troller was designed to reason through plant models expressed as untimed Concurrent

Constraint Automata (CCA). In this section, a very brief overview of Titan's GI and

RP capabilities are provided, followed by a discussion of the issues associated with

adapting Titan's MR engine to TCCA plant models and time-critical scenarios.

148

6.3.1 Overview of Goal Interpretation in Titan

The GI problem is analogous to the ME problem discussed in Section 6.2.3: while ME

searches for likely modes that are consistent with the observations, GI searches for

modes that entail the configuration goal while maximizing reward [85]. GI generates a

maximum-reward plant state s) that satisfies the current goal configuration g(i) and

that is reachable from the current most likely state s0), using nominal transitions

whose effects are either reversible or correspond to fault repair actions. Reversible

transitions are defined as transitions for which the source state may be returned to

from the target state via a sequence of nominal control actions. Reversibly reachable

states are states that are reachable from the current state through repeated applica-

tion of reversible transitions.

Following the analogy with ME, GI can be solved by casting it as an OCSP

(x, f, C), as follows. There is a decision variable in x for each xj, with domain set

to the reversibly reachable modes of component xj. C(x) is the condition that the

target assignment x is consistent with constraint store CM, and that x, together with

Cm, entail configuration goal g(i). f - E(xV)sS R (xi = v) is the reward of being in

a state s. An example of a typical modal reward metric is power consumption. This

OCSP can be solved using OPSAT [91].

6.3.2 Overview of Reactive Planning in Titan

Given a goal state supplied by GI, the RP is responsible for achieving this goal state.

Titan's model-based RP is based on the Burton model-based executive [85]. RP takes

as input the current most likely state s0) and the goal state s) selected by GI, and

generates the first control action pM that moves the plant toward the goal state.

RP extends the classic AI planning problem [82] to address the problem of indi-

rect control: control variables interact indirectly with internal plant state variables,

through co-temporal physical interactions represented in the CCA. RP achieves reac-

tivity by exploiting the requirement that all actions, except repairs, be reversible, and

by exploiting certain topological properties of component connectivity that frequently

149

occur in designed systems. This permits a set of subgoals to be solved serially, i.e.,

one at a time.

The key to RP's efficiency lies in its offline construction of a set of coupled con-

current policies, one for each state variable, rather than a single global policy for the

complete state space. This "divide-and-conquer" approach enables the RP to avoid

the state space explosion associated with traditional decision theoretic policies [46]

and universal plans [75]. Recent work by Chung [16] has further improved RP's com-

pactness and efficiency by adopting Ordered Binary Decision Diagram representations

for the CCA model and the concurrent policies.

Once the concurrent policies have been generated, they are used by RP for online

planning. More specifically, given the current state estimate () and the goal state

sf, RP generates successive control actions [P) as a depth-first traversal through

the concurrent policy tables [85]. In the presence of failures, RP generates repair

sequences, which are selected so as to minimize the number of irreversible steps taken.

The algorithm used by RP to invoke appropriate repair actions is presented in [85].

6.3.3 Extending MR for TCCA and Time-Critical Scenarios

Titan's MR capability (as described in Sections 6.3.1 and 6.3.2) requires some simple

augmentations to address two issues that arise from the use of timed plant models, and

the focus on time-critical mission scenarios. First, Titan's MR capability was designed

to reason through untimed CCA models of plant behavior; what extensions need to

be made to the GI and/or RP algorithms to enable them to operate on models with

timed transitions? Second, much emphasis was placed on the requirement of control

action reversibility (in the nominal execution case); what impact does this have on

the execution of the type of time-critical scenario addressed in this thesis? In this

section, each of these issues is addressed.

150

PDEI

commands

Tank Tank
1 2

Valvel - - + - - Valve2

Engine

Figure 6-14: Simplified propulsion subsystem for the Mars lander spacecraft.

Addressing the issue of timed plant models

The Titan GI and RP algorithms described in the previous two sections were designed

to operate on plant models expressed as CCA, which represent a form of factored

POMDP. As described in Section 6.1, this model is inadequate to capture the types

of latencies and transient effects that are present in realistic systems. To address

this deficiency, the TCCA modeling formalism was introduced in Section 6.1. In this

section, a simple extension to Titan's MR algorithms is presented, which allows them

to operate on TCCA.

To illustrate the issue, it is helpful to consider an example based on the simplified

propulsion subsystem for the Mars lander spacecraft, shown in Figure 6-14. The

TCCA models of the PDE, valve and engine components used in this example are

shown in Figure 6-15.

Suppose the configuration goal is to reach a state where (Engine = Firing), which

is achievable by opening flow of two propellants into the engine and placing the

engine in firing mode. Figure 6-16 shows GI's conflict-directed search sequence for

the (Engine = Firing) configuration goal. The initial state assumes that the PDE is

off, both valves are closed, and the engine is off (upper left, Figure 6-16). The desired

151

PDE:

(dcmd. = dcmd.) (dcmd, = no-cmd)

demda = rese

(dcmd. = no-cmd)

Engine:
(power = off) AND

(thrust =zero)

ecmd =stdbX_

ecmd =off

ecmd =
ogf

I -

ecmd = pressure1 = high
standby AND pressure2 = high

AND ecmd = fire

(power =onl) AND)
(thrust full) AND

(temp = nominal) AND
(pressure1 = high) AND

(pressure2 = high)

Valve:

(pressureo= pressured (pressure, =pressure)

vcmd = close

vcmd = open

Cloed

(pressure = low) (rsue =low)

Interconnection constraints:

1) (pde.dcmdou, = open1)
if (valvel .vcmd = open)

2) (pde.dcmdo, = closel)
iff (valvel.vcmd = close)

3) (pde.dcmdout = open2)
iff (valve2.vcmd = open)

4) (pde.dcmdo, = close2)
iff (valve2.vcmd = close)

5) (pde.dcmd ou,= offEng)
iff (engine.ecmd = off)

6) (pde.dcmdou, = stdbyEng)
iff (engine.ecmd = stdby)

7) (pde.dcmd o, = fireEng)
iff (engine.ecmd = fire)

8) valvel.pressure out =
engine.pressu rel

9) valve2.pressure out =
engine.pressure2

Figure 6-15: TCCA models for a highly simplified propulsion subsystem model. The
fault transitions have been omitted for clarity.

152

(power = on) AND
(thrust =zero) AND
(temp = increasing)

NOT (ecmdt off)
AND 30 <= tE <--60

(power = on) AND
(thrust = zero) AND

(temp = nominal)

Valve1 + - - Valve2

Engine

4- - .4

Figure 6-16: Snapshots demonstrating how GI searches for a reachable state that
achieves the configuration goal of (Engine = Firing) with maximum reward. GI
generates the goal state {PDE = Off, Valvel = Open, Valve2 = Open, Engine =
Firing} after three iterations, in which it discovers conflicting mode assignments in
the tested candidate (highlighted by the small black arrows). The conflict found in
each iteration is used to direct the search for the next candidate.

response from the GI capability is that it returns the goal state {Engine = Firing,

Valvel = Open, Valve2 = Open, and PDE = Off}. This means that GI must realize

that the firing mode is reachable from the initial off mode, despite the existence of

an uncommandable timed transition in the path from off to firing. As long as GI's

search space, which consists of the cross product of the sets of reachable modes for

each component, includes the ultimate goal state, the OPSAT engine will properly

consider it for both its conflict-directed search and goal-entailment check operations.

Assuming GI produces the correct goal state, the desired RP behavior is to gen-

153

Table 6.2: Policy for the engine component.

engine Target

Current off heating standby firing

off Idle ecmd = standby ecmd = standby ecmd = standby
heating ecmd = off Idle Idle Idle
standby ecmd = off ecmd = off Idle valvel = open

valve2 = open
ecmd = fire

firing ecmd = standby ecmd = standby ecmd = standby Idle
failed Failure Failure Failure Failure

erate a sequence of control actions that transitions the system from its current state

to the goal state. The concurrent policy associated with the engine component is

shown in Table 6.2. RP uses this policy to generate the following sequence, assuming

nominal execution:

1. issue the standby command to the engine, placing it in heating mode (En-

gine.ecmd = standby);

2. wait until the engine transitions to standby mode;

3. turn on the driver (Driver. dcmda, = on);

4. open valve 1 (Driver.dcmdin = open1);

5. open valve 2 (Driver.dcmda = open2);

6. issue the fire command to the engine (Engine. ecmd fire);

7. turn off the driver to conserve power (Driver. dcmdin = off).

After step 1, the system state is {Engine = Heating, Valvel = Closed, Valve2 =

Closed, and Driver = Off}. The RP then realizes that the correct control action to

perform is to do nothing at all (i.e., to "wait"): the engine's nominal transition from

heating to standby mode should occur automatically from 30 to 60 seconds after step

1. Once ME reports that the standby mode has been reached, the RP proceeds to

154

steps 3-5, which are necessary to satisfy the two pressure preconditions on the engine's

standby-to-fired transition. Upon opening of the second valve (as confirmed by ME),

the RP then issues the "fire" command to the engine. After completion of step 6,

the system state is {Engine = Firing, Valvel = Open, Valve2 = Open, and Driver

= On}. Finally, the only subgoal from the goal state that remains to be satisfied is

Driver = Off}; the RP completes the sequence by issuing the command to turn off

the driver.

Now that the desired GI and RP behaviors have been described, it is clear that

only a trivial extension to the untimed algorithms is necessary: the set of reversibly

reachable modes must be extended to include nominal modes which are reversibly

reachable via a timed transition (e.g., the engine's standby mode). During the con-

current policy generation process, time constraints map to the Idle control action (as

shown in the heating -- standby and heating -> firing entries in the policy table in

Table 6.2. This implies that, in the absence of another control action in the transition

guard, the desired control behavior is to "wait" (i.e., repeatedly issue the Idle control

action) until the time at which the non-deterministic transition is taken.

It should be noted that this implementation of the RP capability has two limi-

tations. First, it does not guarantee that an optimal path to the goal state will be

followed (where "optimal" might be defined as involving the least number of con-

trol actions, or possibly even defined with respect to some resource metric, such as

time, or overall power consumed by the sequence). Second, it enforces serialization of

commands, even when no causal link exists between them. This effect is particularly

evident in the presence of timed transitions: because RP considers "waiting" for a

nominal timed transition to be a sequence of Idle actions, and because it treats these

Idle actions to be control actions like any other command, it will not try to fill this

idle time with other control actions that it needs to do, even if no undesired interac-

tions would result. For instance, in the above example, the executive waits for the

engine to reach standby mode (step 2) before progressing with the control sequence.

In theory, it could further "optimize" the execution of the desired control sequence

155

by moving ahead to step 3 and turning on the driver while it is waiting.2

Addressing the issue of irreversible actions

Chapter 5 showed how the Timed Model-based Executive's control sequencer dictates

the execution of the control program based on the most likely state estimate returned

by ME. This greedy decision-making approach, which amounts to assuming the most

likely estimated state is the correct state, introduces risk: the control action appro-

priate for the most likely state trajectory may be inappropriate, or worse damaging,

if the actual state is something else. Furthermore, the reactive focus of the executive

precludes extensive deliberation on the long-term consequences of actions, thus leav-

ing open the possibility that control actions, while not outright harmful, may degrade

the system's capabilities. For example, firing a pyro valve is an irreversible action

that has a permanent effect on the behavior of the spacecraft's propulsion subsystem.

Under non-time-critical circumstances, such actions would generally only be taken

after a human operator explicitly reasons through the consequences of the actions

over a future time horizon.

The design of the MR capability for the Titan model-based executive ensures

the safety of the system by only generating reversible control actions, unless the

purpose of the action is to repair failures. While repair actions are irreversible, it

is important to allow a reactive executive to repair failures, to ensure robustness.

However, within time-critical sequences, the spacecraft does not have the luxury of

waiting for a ground operator to effect all irreversible actions that the spacecraft is

required to take to successfully complete its mission. For example, the Mars entry

scenario presented in Chapter 3 depends on the performance of a critical one-time

action, the separation of the lander from the cruise stage. In the full entry, descent

and landing scenario described in Chapter 7, a number of such irreversible actions

are required, including the deployment of the descent parachute, and the jettison of

2It should be noted, however, that opening the valves too far ahead of the fire command would
result in an unnecessary loss of propellant. In this case, RP's serialization actually prevents such
losses from occurring, because it waits until the engine is in standby mode before opening the two
valves.

156

the heatshield and backshell.

Just as the MR capability was allowed to invoke irreversible control actions to re-

pair component faults, it must be endowed with the ability to perform an irreversible

action that is critical to the success of the mission. The Timed Model-based Execu-

tive's MR capability must therefore relax the reversibility safety requirement imposed

in Titan. Rather than requiring all non-repair actions to be reversible, it allows ir-

reversible actions to be executed if explicitly directed to by the control sequencer;

that is, if the irreversibly-reachable state is directly specified within the configuration

goal. For example, during the execution of the Mars entry sequence described in

Chapter 3, when the control sequencer issues the configuration goal Lander = Sep-

arated, MR overlooks the fact that the Separated mode is not reversibly reachable

from the Connected mode (recall the Timed Constraint Automaton for the Lander in

Figure 3-3). Thus, MR determines from the model that this goal can be achieved by

issuing the fire-primary pyro command.

MR can achieve irreversibly-reachable goals which are explicitly requested, pro-

vided no irreversibly-reachable intermediate goals are encountered along the way in

the reactive planning process. This approach does not achieve irreversible goals that

are not explicitly directed, for instance, if an irreversibly reachable component mode

appears as an intermediate goal in the concurrent policy for another component. This

means that MR will not achieve irreversible goals as "side effects" of other goals. A

more detailed discussion of this issue is provided in [16].

6.4 Summary

In this chapter, timed plant models have been specified as TCCA, that is, a composi-

tion of Timed Constraint Automata for the components in the system. TCCA provide

a constraint-based implementation of the abstract timed plant model described as a

factored POSMDP in Section 4.1. TCCA extend the CCA representation adopted in

model-based programming [83, 90] by introducing clock variables, clock interpreta-

tions, clock initializations, and timing constraints. These time-related augmentations

157

are based on similar notions from real-time modeling formalisms like Timed Au-

tomata [2]. The probabilistic nature of the TCCA model leads to similarities with

Probabilistic Timed Automata [52]. TCCA are distinguished from PTA by their

constraint-based encoding, and their use of a single clock in each Timed Constraint

Automaton. To capture the semi-Markov behaviors of interest in this work, a single

clock per component is sufficient.

The deductive controller of the Timed Model-based Executive has been described,

in terms of its core ME and MR capabilities. These two capabilities reason through

timed plant models encoded as TCCA, to estimate the plant state (ME) and generate

an appropriate control sequence that achieves a configuration goal (MR).

The theoretical development of ME presents an algorithm for belief state update

for plants modeled as TCCA, based on the definition of system state as the plant

state augmented with the current clock interpretations. The intractability of belief

state update is addressed in the implementation of ME by framing the problem as

an OCSP that can be solved using the OPSAT engine [91]. This approach generates

system state estimates in best-first order, while limiting the amount of online search

performed and the number of system states tracked.

The Timed Model-based Executive's MR capability builds off the GI and RP

algorithms developed for untimed systems [85]. A trivial extension of the notion of

"reachability" allows GI and RP to handle plants modeled as TCCA. In addition,

an extension to Burton's RP implementation has been presented, to accommodate

explicitly-issued irreversible actions, which are key in the execution of mission-critical

sequences.

158

Chapter 7

Executive Implementation and

Demonstration

The Timed Model-based Executive has been implemented in C++, as an extension

of the Titan model-based executive [90]. This chapter describes how the control se-

quencer (defined in Chapter 5) and the deductive controller (defined in Chapter 6) are

coupled together within the implemented Timed Model-based Execution architecture.

It then describes a proof-of-concept demonstration of the Timed Model-based Exec-

utive that has been performed in the context of a Mars entry, descent and landing

(EDL) scenario.

7.1 Timed Model-based Executive Implementation

The previous two chapters described algorithms for the Timed Model-based Exec-

utive's control sequencer and deductive controller modules, and demonstrated their

operation individually on simple representative spacecraft examples. This section

describes the executive's overall behavior, focusing on how the control sequencer in-

terfaces with the ME and MR modules in a typical execution cycle. Key assumptions

made by the Timed Model-based Executive are discussed, and limitations of the ex-

ecutive's implementation are identified.

159

7.1.1 Execution Architecture

Figure 7-1 provides an interface-level view of the Timed Model-based Execution archi-

tecture. The interfaces between the control sequencer and the deductive controller,

and between the deductive controller and the underlying physical plant, are pro-

vided through Titan's Real- Time Application Programming Interface (RTAPI). This

RTAPI is derived from that of the Livingstone model-based executive, which was

flight demonstrated on the DS-1 spacecraft [5]. The RTAPI "insulates" the deductive

controller from the real-time stream of commands and observations arriving from

the physical plant, and from the goals and reconfiguration requests arriving from

the control sequencer. The RTAPI provides a first-in-first-out queue and a message

dispatching process for each of the ME and MR engines, labeled MERTAPI and

MRRTAPI in the figure, respectively. When a command or observation arrives from

the plant, it is queued up as a message in the MERTAPI's incoming queue. The ME

dispatcher dequeues messages off the queue and makes appropriate ME function calls.

Similarly, when a state estimate arrives from the ME dispatcher, or when a goal or

MR request arrives from the control sequencer, these messages are pushed onto the

MRRTAPI's queue, for handling by the MR dispatcher.

Interactions with the physical plant are made through the Control Adapter and

Monitor Adapter processes. The Control Adapter's role is to translate the commands

received from MR, expressed as assignments to control variables, into executable com-

mands for the actuators. The Monitor Adapter's role is to convert continuous mea-

surement data from onboard sensors into discrete assignments to observable variables,

compatible with the timed plant model. In the process of generating the qualitative

abstractions of the measurements, the Monitor Adapter process may simply sample

the data, compute an average over a short time window, apply some general filtering

on the data (including Kalman filtering), or apply feature extraction and symptom-

detection operators to discriminate between classes of sensor behavior. This process

is analogous to the monitor processes associated with the Remote Agent architecture

on DS-1 [5]. A development of the issues associated with monitoring is beyond the

160

Figure 7-1: Details of the Timed Model-based Execution architecture, based on the
Titan model-based executive.

scope of this thesis, but more details can be found in [70, 71]. As discussed below,

correct execution of the deductive controller requires that the sample rate of the ob-

servations fed into ME by the Monitor Adapter be at least as high as the execution

cycle rate (i.e. there is at least one observation per execution cycle).

In order to clearly describe how the integrated executive works, it is helpful to walk

through an execution cycle, following the flow of information through the executive

architecture. This discussion traces the path of the label numbers in Figure 7-1. The

control sequencer and deductive controller are assumed to begin the following cycle

with a prior state estimate and clock values:

1. The execution cycle starts with the control sequencer querying the system clock

for an update of the current absolute time, which is used to update its clock

variables (this corresponds to step 1 in the StepTHCA algorithm, defined in

Section 5.3). These updated clock values, along with the prior state estimate,

161

are used to check the maintenance constraints of the currently marked control

program locations and to establish which goal constraints in the program are

to be asserted in this cycle.

2. The control sequencer asserts these goals by pushing them onto the MR queue,

one at a time.

3. Once it has asserted all its goals, the sequencer then queues up an "MR request"

message, which signals to the MR that it should initiate an MR computation

based on the goals received to date (step 5 in the StePTHCA algorithm).

4. As the goal messages arrive in the MR queue, the MR dispatcher dequeues

them, and conjoins them into a configuration goal.

5. When the MR dispatcher sees the MR request message, it invokes the MR

algorithm by passing it the configuration goal.

6. When MR finishes computing the next command in a sequence that leads to the

least-cost state that achieves the configuration goal (as described in Section 6.3),

it returns this command to the MR dispatcher.

7. The MR dispatcher sends the resulting command to the Control Adapter, which

has the responsibility of issuing the command to the appropriate actuator in

the physical plant.

8. The Control Adapter notifies ME that the command has been issued by pushing

a command message onto the ME queue.

9. Sensors in the physical plant return measurements that provide evidence of

the instantaneous state change resulting from the issued command. A Monitor

Adapter translates these measurements into a qualitative observation, which is

sent to the ME queue.

10. After a short timeout delay, long enough to allow the "instantaneous" obser-

vations to be queued up, the Control Adapter pushes an ME request message

162

onto the ME queue. For untimed model-based executives, such as Livingstone

and Titan, choosing the duration of this timeout delay proves to be a challenge.

This is due to their underlying assumption of synchronous Markovian behavior,

where the system spends most of its time in a steady state, and the transitions

between states are rapid enough that by simply waiting for quiescence (over the

short timeout delay), these transitions can be treated as instantaneous. This

"waiting for quiescence" step is problematic for many physical plants, in which

transitions between states are slow [11]. This requires careful tuning of the

timeout delay to balance the need to avoid transients in the observation stream

against the need to provide reactivity in the control loop. The additional flexi-

bility of the TCCA modeling framework in terms of capturing timed behaviors

allows for explicit modeling of transient states, thus mitigating the problem

associated with timeout tuning.

11. As the command and observation messages arrive in the ME queue, the ME

dispatcher dequeues them, and invokes the appropriate ME function in order

to assert them into the system theory.

12. When the ME dispatcher sees the ME request message, it invokes the ME

computation (the TimedME algorithm from Section 6.2.3).

13. ME queries the system clock for the current time, so that it can update its plant

clock variables (see step 1 of TimedME).

14. When ME has finished computing the most likely state estimate (corresponding

to an assignment to each component's state variable), it returns this state to

the ME dispatcher.

15. Finally, the ME dispatcher sends the state update to the MR engine and the

control sequencer (which has been waiting for this new state estimate to be

returned, in step 6 of StepTHCA).

The introduction of time into the execution model adds steps 1 and 13 to the ex-

ecution cycle for the Titan model-based executive. In step 1, the system time is used

163

by the control sequencer to advance the current marking of the timed control pro-

gram, based on clock conditions in the maintenance constraints or transition guards

of the THCA (see Section 5.3). In step 13, the system time is used by the deduc-

tive controller's ME capability to determine the new most-likely state estimate, as

discussed in Section 6.2.3.

7.1.2 Assumptions and Limitations of Implementation

The current implementation of the Timed Model-based Executive makes a number of

assumptions to ensure the correct execution of timed model-based programs. This set

of assumptions defines a corresponding set of limitations to the executive's capabili-

ties. This section points out two key assumptions made, and associated limitations.

Assumption #1: bounded execution cycle time

Because it involves no search or satisfiability computations, the control sequencer's

StePTHCA algorithm is worst-case linear in the size of the THCA control program.

However, the deductive controller's algorithms, as presented in Chapter 6, are worst-

case exponential in the size of the TCCA plant model. This is due to the online

OpSat engine's use of search and satisfiability within the control loop. Thus, the

length of an execution cycle (i.e., the execution time step resolution) is dictated by

the amount of time it takes for ME and MR to complete their computations in each

step. To ensure timely execution of control programs, the cycle time of the deductive

controller operations must be short.

As it turns out, this assumption is not particularly unreasonable: experience with

previous model-based diagnosis engines and executives [20, 50, 83, 85] has shown that

only a small fraction of the large state space needs to be explored, to cover essen-

tially all cases that are considered "feasible" by spacecraft systems engineers. Due to

the significant cost associated with testing and validation of flight software, typical

onboard fault protection is designed to manage (i.e., detect and provide responses

for) single faults, or, at worst, two independent faults. Based on a risk analysis and

164

the fact that spacecraft components are designed to guard against cascading failures,

more complex fault scenarios are generally considered so unlikely as to be unneces-

sary to model and test for. Thus, practically speaking, worst-case performance of the

model-based reasoning engine is rarely, if ever experienced: OpSat employs a best-

first search to identify candidate states in increasing order of cost (or likelihood, in

the case of ME); OpSat's conflict-directed approach rapidly focuses the search space

down to a set of candidates that are consistent with the model and observations (in

the case of ME) or goals (in the case of GI). The performance of the OpSat engine is

discussed in [59, 91].

Nonetheless, current work is underway to address the worst-case performance

problem introduced by online model-based reasoning [15, 16, 79, 85]. The idea is to

perform the computationally-expensive deduction steps off-line, resulting in compila-

tion of the model into a set of rules that the deductive controller can use to quickly

identify most-likely candidate states. In the case of ME, for example, these rules

define a mapping from a set of possible observations to a set of possible diagnoses of

the component modes [15]. These rules can be fed into an online engine that trig-

gers appropriate rules based on the current observations, and combines the resulting

"partial diagnoses" into a most likely state estimate for the system.

The assumption of bounded execution cycle time translates into a limitation on the

resolution of time conditions that should be used in the control program. For example,

if the executive's cycle time is on the order of 0.1 sec, it makes no sense to specify, in

the THCA control program, a transition out of a location that is conditioned on a very

small time delay, such as t1 > 0.001 sec. It should be noted, however, that execution

of the timed control program will still proceed correctly, even in the presence of time

conditions smaller than the execution cycle time.

Similarly, at the level of the plant models, timed transitions with guards shorter

than the executive's time step are considered to occur within a single execution step.

For example, consider the timed component model for the driver in Figure 6-4. The

transition from the transitional TurningOn mode to the On mode is conditioned on

the time constraint tD < 0.1 sec. Unless the execution cycle time is less than 0.1 sec,

165

the ME computation will integrate the entire probability density function in a single

step (that is, the time-dependent probability function shown in row r6 of Table 6.1

will reach its final maximum value of 0.989 within a single cycle of the executive).

This means that the transition will be taken after one cycle spent in Turning On mode,

assuming nominal behavior.

Assumption #2: timely observation updates

The Timed Model-based Executive assumes that observations are received in a timely

fashion from the physical plant, in order for them to be useful in discriminating be-

tween target states of the non-deterministic timed transitions. For example, consider

the example of the engine component from Figure 6-5, where uniform probability

density functions over the value of clock tE are used for the timed transitions. Start-

ing 30 seconds after the engine transitions into Heating mode, ME needs to receive

observation information, in order to discern whether the transition from Heating to

Standby has been taken, versus the idle transition from Heating to Heating (and ver-

sus an off-nominal transition into Failed mode). If no observations are received over

the next 15 seconds (i.e., up to tE = 45 sec), ME will determine that the engine

most likely transitions into Standby in the first execution cycle for which tE ;> 45 sec,

because the integrated probability density associated with this transition becomes

greater than that associated with the Heating to Heating idle transition.

7.2 Demonstration

A proof-of-concept demonstration of the Timed Model-based Executive has been per-

formed, by running it through a Mars EDL scenario. This section describes the vali-

dation objectives of this demonstration, defines the reference EDL scenario, outlines

the set of models (both control programs and plant models) that are used in the

scenario, and discusses how the demonstration satisfies the validation objectives.

166

7.2.1 Testing the Timed Model-based Executive

As shown in Figure 7-1, the Timed Model-based Executive can be interfaced with

a simulation environment, which provides a mechanism for injecting realistic obser-

vations in response to commands, for a variety of nominal and off-nominal behavior

assumptions. The sophistication and complexity of this type of simulator can vary

widely, from a simple rule-based simulator, to a stochastic model-based simulator

whose models of the simulated plant are at least as detailed as the models used

within the executive itself (with probabilities and system parameters that may have

been empirically derived, for example). The demonstration described in this sec-

tion uses a simple simulation framework, developed at the Johns Hopkins University

Applied Physics Laboratory, which eavesdrops on the issued command and state es-

timate streams. Based on the command/state at each execution cycle, the simulator

triggers one or more "rules" that inject desired observations some specified number

of execution cycles later.

The obvious limitation of this rule-based validation approach (and of case-based

testing, in general) is that its scope covers only those off-nominal cases that an appli-

cation expert has explicitly thought through and provided responses for. Nonetheless,

this approach is adequate for demonstrating that the Timed Model-based Executive

provides a set of desired capabilities that traditional approaches to encoding critical

sequences cannot achieve, or can only achieve at greater cost. The application of

more formal verification methods, such as those identified in [61], is identified as an

area for future work.

A set of validation requirements has been specified for the Timed Model-based

Executive, in the form of key capabilities that the executive must be able to pro-

vide. The list of validation requirements has been derived from various sources,

including autonomy studies for NASA (such as the New Millenium Program tech-

nology roadmap [24]), documentation describing other autonomy software frame-

works [49, 69], and documented experience from previous missions (such as DS-

1 [5, 60]). Generally speaking, these capabilities can be categorized as either ap-

167

plicable to nominal operation or operation in the presence of faults. Each of these

capabilities is listed below, along with an indication of which module in the executive

provides it:

e Validation requirements for nominal operation:

1. accept high-level activity goals and decompose them (control sequencer)

2. execute goals conditioned on state constraints (control sequencer)

3. execute goals conditioned on time constraints (control sequencer)

4. accept a configuration goal and generate/execute a single-step command

that achieves the goal (deductive controller)

5. accept a configuration goal and generate/execute a multiple-step reconfig-

uration sequence that achieves the goal (deductive controller)

6. track nominal modes through commanded transitions (deductive controller)

7. track nominal modes through timed transitions (deductive controller)

e Validation requirements for operation in the presence of faults:

1. diagnose faults through commanded transitions (deductive controller)

2. diagnose faults through timed transitions (deductive controller)

3. perform recovery by repair (deductive controller, control sequencer)

4. perform recovery by leveraging physical/functional redundancy (deductive

controller, control sequencer)

Though relatively simple, these capabilities cover a large subset of desired fea-

tures for autonomous spacecraft control. The remainder of this chapter describes a

representative mission-critical sequence scenario, presents a set of control programs

and models for this scenario, and discusses how each of the above capabilities has

been demonstrated in the context of this scenario.

168

guidance system initialization

alt: 4600 km command turn to entry attitude

cruise ring separation

atmospheric entry
alt: 2300 km

alt: 125 km parachute deployment

alt: 8800 m heatshield jettison

alt 7500 m leg deployment

alt: < 7500 m radar ground acquisition

alt: 250 backshell separation

A radar power off
alt: 1300 m R

alt: 40 m touchdown
alt: 0 m

Figure 7-2: Entry, descent and landing sequence for a Mars lander spacecraft.

7.2.2 Mars EDL Scenario Description

Demonstration of the Timed Model-based Executive has been performed in the con-

text of a Mars EDL scenario (see Figure 7-2), which extends the Mars entry sequence

presented in Chapter 3 to include the descent and landing phases of the mission. The

Mars EDL sequence executes as follows.

At the end of the cruise phase of its mission, as the spacecraft approaches Mars,

it turns on and heats up its descent engine, putting it into standby mode. Four

and a half hours later, it switches from navigation using a combination of a star

tracker and an inertial measurement unit (IMU), to inertial navigation using only the

IMU. Four minutes after switching its navigation mode, the spacecraft prepares for

atmospheric entry by rotating to its entry orientation. Once the entry orientation has

been achieved, the lander stage of the spacecraft separates from the cruise stage and

proceeds toward entry into the Martian atmosphere (all the while holding its attitude

at the entry orientation).

When atmospheric entry is initiated (as determined by a change in the spacecraft's

169

acceleration due to atmospheric drag), the spacecraft changes its attitude to zero out

its angle of attack relative to its velocity vector. It then holds this attitude as the

spacecraft descends into the atmosphere. Once the lander's velocity drops below some

threshold value, its parachute is deployed. Ten seconds later (enough time for the

spacecraft to stabilize with the deployed chute), the heatshield is jettisoned. The

lander's legs are deployed ten seconds after heatshield jettison, to ensure that the

deploying legs do not impact the separating heatshield. The landing radar sensor is

activated 1.5 seconds later.

Once the radar acquires the ground, providing altitude and descent rate informa-

tion, the onboard computer computes the time at which the lander's backshell and

parachute must be jettisoned. When this time arrives, the backshell is jettisoned, and

the descent engines fire 0.5 second later, turning the lander to its proper orientation

for landing, and slowing it to its landing speed through a gravity-turn maneuver (in

which the thrust vector always pointed in the opposite direction of the instantaneous

velocity vector).

The radar is turned off at an altitude of 40 meters above the surface. Once the

lander reaches an altitude of 12 meters, it descends vertically to the surface at a

constant speed. The descent engines are shut off when touchdown is detected by

sensors in the footpads.

In the next two sections, the sets of control programs and plant models that

implement this EDL scenario are presented.

7.2.3 Timed Control Programs

Once this type of scenario has been specified, it is fairly straightforward to translate

it into a state-based control program, expressed as a THCA. Figures 7-3 to 7-6 depict

the THCA control programs for the Mars EDL scenario. The corresponding RMPL

code is provided in Appendix B.

In Figure 7-3, the main program for the EDL critical sequence is shown. Upon

startup, it initializes two concurrent subautomata, corresponding to the EntrySe-

quence and DescentLandingSequence subprograms. Execution of the overall sequence

170

MarsEDL:

Figure 7-3: Main THCA control program for the Mars EDL sequence. MarsEDL
invokes the EntrySequence and DescentLandingSequence control programs in parallel.

EntrySequence:

t1 < 270mins t2 < 4 mins

ti > QMAINTAIN entry = initiated

ne , = 27.0mina nav=, t2-4 mins
standby inertial -.2 0 satt=

att=entry-orient

lander=
att antry-orln pra

Figure 7-4: THCA control program for the Entry sequence.

completes when the spacecraft lands successfully (corresponding to violation of the

maintenance constraint landing = success).

The EntrySequence control program, which has previously been discussed in Chap-

ter 3, is shown in Figure 7-4. The DescentLandingSequence THCA (Figure 7-5) begins

by waiting for the entry = initiated state. As soon as this state is entailed, the lander

= separated goal is reissued. This goal is redundant, having also been issued in the

EntrySequence. It is also issued here, in case the EntrySequence was preempted by

the premature initiation of Mars entry prior to achieving its lander = separated goal.

When the lander is determined to have separated from the cruise stage, the De-

scentLandingSequence THCA transitions to a composite location with two concurrent

171

MAINTAIN landing = success

EntrySequence

DescentLandingSequence

DescentLandingSequence:
entry-initiated

initiated

lander=separated

MAINTAIN Mach-trigger = triggered

separated

orient

Mach-trigger=3
IN ad t3 <l1sees

chute- heatahletd=
Mach c te= > tt ed MAINTAIN attve trigger = triggered

ttrg e= 10 sec s oa
triggered att--

vel-vector-
orient

4 < 10 secs t5 < 1.5sec

PoweredDescentLandingSequence

Figure 7-5: THCA control program for the Descent and Landing sequence. Descent-
LandingSequence invokes the PoweredDescentLandingSequence control program.

threads.1 The first thread results in the lander holding its attitude in the direction

of the velocity vector, until the Mach-trigger is determined to be triggered. The sec-

ond concurrent thread waits for this Mach-trigger = triggered state to be entailed,

then proceeds to deploy the parachute. Ten seconds later, the heatshield is jetti-

soned, and then three concurrent threads are spawned. The first tells the lander

attitude control system to resume pointing in the direction of the velocity vector,

and to maintain this attitude control mode until the alt-veLtrigger is determined to

be triggered. The second thread delays 10 seconds, deploys the legs, and then 1.5

second later, activates the radar altimeter sensor. The third thread initializes the

PoweredDescentLandingSequence THCA, depicted in Figure 7-6.

The PoweredDescentLandingSequence thread waits until the alt-veLtrigger = trig-

'The term "thread" is used here to refer to separate and concurrent activity paths in the THCA
control program. It is important to note, however, that this does not imply that the control se-
quencer process that executes this control program must be multi-threaded; in fact, the current
implementation of the control sequencer, as presented in Chapter 5, is single-threaded.

172

PoweredDescentLandingSequence:

alttveltrigger=
triggered t6 < O.5sec

backshield=- engine>
ailtvel jettisoned t6>= firing
trigger= 0.5 sec
triggered

alt_4rn_tngger=
triggered

radar-

atA0rm Offtnogger= atm

triggered

alt_12mtrigger=
trig ered

con stvel-
att 2m_ descent
trigger=
triggered

touchdown

ail_2mjrigger= not-rggered

tcdownosenso=
triggered

alt 1 2mrigger=
touu he _nor

r t erieerd
touchdownsensor=

triggered

Figue 76: HCAconrolproram or heoweed escnt ngain g teqence.

al2mt ljriger
triggered AND

tocouchdwn senso
triggered

gered before jettisoning the backshield (thereby releasing the lander from the parachute).

Powered descent begins 0.5 second later, when the engine = firing goal is issued. At

this point, six concurrent threads are initiated. In the first thread, the attitude con-

trol system rotates the lander and holds it in its landing orientation. In the second

thread, the propulsion control system concurrently initiates a gravity turn maneuver.

This prop = gravity-turn goal is continuously asserted until the alt.12m-trigger is

173

att=
landing-
orient

triggered. (3) In the meantime, another parallel thread waits for the alt40m-trigger

to be triggered, then it turns off the radar altimeter. (4) As soon as alt_12m-trigger =

triggered, the propulsion controller mode is switched to perform a constant-velocity

vertical descent from 12 meters altitude. (5) The fifth concurrent thread implements

some basic touchdown sensor logic, preventing the sensor from signaling touchdown

before the 12-meter altitude trigger is engaged. This basic logic protects against a

recurrence of the type of fault that is presumed to have led to the demise of the Mars

Polar Lander spacecraft, as described in Chapter 1. (6) Finally, one more concurrent

activity waits for the simultaneous entailment of both alt_12m-trigger = triggered

and touchdown-sensor = triggered, at which point it turns off the engine and signals

landing = success. As mentioned above, this results in successful termination of the

overall MarsEDL THCA.

7.2.4 Timed Plant Models

This section provides an overview of the various spacecraft component models built for

the Mars lander spacecraft example. Since the goal of this demonstration is to show

that the Timed Model-based Executive satisfies the set of validation requirements in

Section 7.2.1, the plant models implemented here are far fewer and generally simpler

than those one would expect to assemble for a real spacecraft. In particular, many

details of the spacecraft are abstracted away for the purpose of this demonstration,

including important functions such as power distribution through the system and bus

communication between the processor and devices. Consequently, a number of the

"components" described below actually correspond to abstracted models of multiple

physical components, or sometimes entire subsystems. By implementing these models,

the assumption is made that lower-level controllers are folded into the plant, to inter-

pret the abstract states and control the lower-level hardware appropriately. It should

be noted that this paradigm of abstraction enables the Timed Model-based Executive

to operate as a "configuration manager", responsible for commanding switches be-

tween lower-level controller modes. This higher-level role is appropriate for the Timed

Model-based Executive in its interactions with spacecraft subsystems like the Atti-

174

tude Control Subsystem (ACS), which closes very tight high-frequency control loops

around the spacecraft's attitude sensors and pulse-frequency modulated thrusters, for

example. It would be impossible to insert the action of Timed Model-based Executive

into these control loops and still maintain the necessary level of control bandwidth.

The implemented plant models focus on the states that are referenced in the EDL

control program's goal constraints, maintenance constraints, and transition guards.

The set of TCCA plant models also includes additional components that are coupled

to the referenced components, to demonstrate the executive's ability to manage more

complex low-level interactions and reason about hidden state. The components/states

modeled for the EDL demonstration scenario are listed in Table 7.1.

This set of models includes several classes of state variables:

" hardware component states, such as the propulsion subsystem components

(engine, PDE, valves, tanks), the onboard sensors (radar-altim, touchdown-sen-

sor), and the various pyro components (lander, chute, heatshield, legs, back-

shield);

* discrete abstractions of continuous states, such as att;

" controller/estimator mode states, such as prop and nav; and

* event triggers, such as entry, Mach-trigger, alt..veLtrigger, alt-40m-trigger,

alt-12m-trigger, and landing.

In the remainder of this section, discussion is focused on the TCCA corresponding

to a subset of these state variables, representing each of the four classes. The full set

of TCCA for the demonstration scenario is included in Appendix C.

Hardware component states

As an example of the modeled hardware components, the propulsion subsystem of

the Mars lander spacecraft is considered. Figure 7-7 illustrates the interconnections

between the six components that make up the subsystem. This is an abstraction of an

actual spacecraft propulsion subsystem, made up of two tanks that feed propellant

175

Table 7.1: List of TCCA plant models for the Mars EDL demonstration example.

State Variable Model Description Type

engine spacecraft main engine hardware component

PDE propulsion drive electronics hardware component

valve 1 propulsion system valve hardware component

valve2 propulsion system valve hardware component

tanki propellant tank hardware component

tank2 propellant tank hardware component

nav navigation estimator mode controller/estimator mode

entry spacecraft's entry trigger state event flag

att spacecraft attitude state continuous state abstraction

lander lander separation pyro subsystem hardware component

Mach trigger Mach number trigger state event flag

chute parachute pyro subsystem hardware component

heatshield heatshield pyro subsystem hardware component

alt vel trigger altitude/velocity trigger state event flag

legs lander leg subsystem hardware component

radar_altim rader altimeter sensor hardware component

backshield backshield pyro subsystem hardware component

prop propulsion controller state controller/estimator mode

alt 40mtrigger 40-meter altitude trigger state event flag

alt 12m trigger 12-meter altitude trigger state event flag

touchdownsensor touchdown sensor state hardware component

landing landing trigger state event flag

176

PDE

commands

Tank Tank
1 2

Valvel (- - + - Valve2

Engine

Figure 7-7: Simplified propulsion subsystem for the Mars EDL demonstration sce-

nario.

to the spacecraft's main engine (in this case, the usually complex path from tank

to engine is simplified to a single valve component). The valves and engine are

commanded through the PDE. The only input to this system is the PDE command,

and the following observations are available: the pressures downstream of either valve,

the power input and engine temperature of the engine, and the spacecraft thrust level.

The tank component is modeled as having two possible modes, a nominal mode

full and a fault mode empty. A full tank provides high pressure at its outlet, and an

empty tank provides low pressure. The valve component model is shown in Figure 7-

8. The valve has nominal modes open and closed, and fault modes stuck-open and

stuck-closed. The modal constraints are shown in boxes adjacent to the corresponding

modes.

The engine model, shown in Figure 7-9, has been previously introduced in Sec-

tion 6.3.3. Recall that the engine exhibits timed behavior: it nominally spends be-

tween 30 and 60 seconds in heating mode before the transitioning to standby mode,

based on the engine temperature having reached its nominal level. The probability

177

Valve:

(pressureo = zero) (pressureout= zero)

P (t) =0.001

vcmdd = vm P (t=0.001

open close \

PP (t) =.0 0.0P/ (t) = t)0.001

(pesr =pesr (pressure, = pressure,,)

Figure 7-8: Timed Constraint Automaton model for the valve component.

density function associated with this timed transition is assumed to be uniform from

30 to 60 seconds, and zero outside this interval. It should also be noted that the fir-

ing mode corresponds to an operational mode where the propulsion controller has the

authority to throttle the engine as necessary. This throttling process is not captured

in the engine plant model, but is handled within the real-time control layer that sits

beneath the deductive controller.

The simplified model of the propulsion drive electronics was previously presented

in Figure 6-15. When the PDE is in its on mode, commands that are sent to it

are passed along to the connected components (in this case, the two valves and the

engine). A resettable fault mode is specified, which can be repaired by issuing a reset

or off command to the PDE. An unconstrained and permanent failed mode is also

specified.

TCCA models for the other hardware components are included in Appendix C.

178

Engine:

(power = off) AND
(thrust = zero)

0.001

ecmd = standb y

ecmd =off

ecmd =

ff
_0. _0

- -
Stff

0.001ecmd =

0.001 standby

(power = on) AND
(thrust = zero) AND
(temp = increasing)

NOT (ecmd = off)
AND 30 <= tE <=60

(power = on) AND
(thrust = zero) AND

dby (temp= nominal)

pressure1 = high
AND pressure2 = high

AND ecmd = fire

(power= on) AND '
(thrust = full) AND

(temp = nominal) AND
(pressure 1 = high) AND

(pressure2 = high)

Figure 7-9: Timed Constraint Automaton model for the engine component.

Discrete abstractions of continuous states

Many spacecraft states, such as its attitude, are generally described using continuous

representations, such as three dimensional vectors or quaternions. In order to be

able to reason about these states at the level of the Timed Model-based Executive's

deductive controller, discretized abstractions of these states must be considered. For

example, the TCCA model for the att state variable provides a discretized abstrac-

tion of the spacecraft's continuous attitude state. This model has been discretized

by defining modes corresponding to the attitude set-points of interest at the level of

the control specification (namely, cruise-orient, entry-orient, vel-vector-orient, and

landing-orient), and transitional modes corresponding to the act of slewing between

these set-points. This model is inherently qualitative - it is assumed that the underly-

179

ing attitude control system knows what specific attitude quaternions each qualitative

description (e.g., entry-orient) corresponds to, at any given time.

The utility of this type of qualitative representation is that it allows the control

sequencer to specify attitude goals that map to specific "control modes" of the attitude

control system. This idea is consistent with the way spacecraft systems engineers

generally define trajectories, at the level of the control sequences: it is generally

more informative to specify a goal of the form att = landing-orient, and to allow the

attitude control system to work out the details of what specific pointing angle this

corresponds to. This type of high-level configuration management role is well suited

for the Timed Model-based Executive.

The att model is shown in Figure 7-10. The modal constraints make reference

to the att-obs observable, which can be thought of as qualitative feedback from the

attitude control system; e.g., the attitude control system will return att-obs = in-

entry-orient if the current attitude quaternion is within some small range around

the entry-orient set-point. The modal constraints also refer to assignments to the

A CS variable, which captures the current control mode of the attitude controller.

This value is assumed to be returned by the underlying ACS as an observable. As

modeled, the att TCCA transitions from any set-point mode to the slewing modes

associated with all other set-points (most of the transitions are "stubbed-out" in the

figure, for the sake of clarity).2 The time bounds on the transitions from a slewing

mode to its corresponding set-point mode are set conservatively to 0 < tA 300sec,

to allow plenty of time for a full range of spacecraft rotation in each slew; that is, the

control authority of the ACS actuators is assumed to be sufficient to easily rotate the

spacecraft from any arbitrary attitude to entry-orient within 300 seconds. For the

purposes of this demonstration, uniform probability density functions over time are

assumed for each timed transition.

2 Though all these transitions are possible, the desired trajectory specified by the control program
follows a linear path through these modes: cruise-orient -+ slew-to-entry -+ entry-orient -+ slew-to-
vel-vector -+ vel-vector- orient -+ slew- to-landing -+ landing-orient.

180

Att:

(acs = cruise-controller) AND
(NOT (att-obs = in-cruise-orient))

(acs = cruise-controller) AND
(atLobs = in-cruise-orient)

acsscmd =

(acs = landing-controller) AND toLanding
(att-obs = in-landing-orient)

0 <= tA <=300

(acs = landing-controller) AND
(NOT (att-obs = in-landing-orient))

(acs = enty-controller) AND
(NOT (attobs = in-entry-orient))

0 <=- t, <=-300

(Acs =entry-controller) AND
(att~obs = in-entry-orient)

|0 < = t < = 3 0 0

(acs = vel-vect-controller) AND (acs = vel-vect-controller) AND
(altobs = in-vel-vect-orient) (NOT (att-obs = in-vel-vect-orient))

0.0001
/

/
/

Figure 7-10: Timed Constraint Automaton model for the att state. Not all the
possible transitions are shown.

181

Nav:

navvcmd= (IMU = active) AND
(star-tracker = inactive)

A toInertial

nav-cmd=

(IMU = active) AND toEarthRel

(star-tracker = active) \ /

0.001 0.001

Figure 7-11: Timed Constraint Automaton model for the nav estimator state.

Controller/estimator modes

As described above, the Timed Model-based Executive is well-suited to act as a

"configuration manager", by commanding appropriate switches between lower-level

controller or estimator modes. In this scenario, the executive serves in this role with

respect to the propulsion controller (prop) and the navigation estimator (nav). The

nav model, shown in Figure 7-11, is considered in more detail here.

During the cruise stage of the mission, the navigation estimator on the spacecraft

uses all sensors at its disposal (in this case, both an IMU and a star tracker) to

compute its position relative to the Earth, as accurately as possible. This mode of

operation for the navigation estimator is referred to as Earth-relative mode. Prior to

the spacecraft entering the Mars atmosphere, it disables its star tracker, switching

over to inertial navigation. Though faults in software components are not generally

considered, the model specifies an unconstrained unknown fault mode.

Event triggers

The fourth type of state variable present in the demonstration model is event triggers.

Event triggers correspond to software "flags" that are set as a result of observables

182

Figure 7-12: Timed Constraint Automaton model for the entry state trigger.

in the plant model. They provide a mechanism for execution of a control program

to be conditioned on observed information. Figure 7-12 depicts the model for the

entry state trigger, which is tied to the detection of atmospheric drag by onboard

accelerometers. The transition from not-initiated to initiated is timed but unbounded

(its upper bound is infinite), and the probability density function is a gaussian with

mean equal to the predicted time of atmospheric entry, based on pre-launch trajectory

calculations.

This completes the discussion of the plant models for the Mars EDL demonstration

example. In the following section, a brief discussion of how the execution of the

Mars EDL control program in conjunction with these models addresses the validation

requirements identified in Section 7.2.1.

7.2.5 Validated Capabilities

Now that the demonstration scenario has been presented, and its control programs

and plant models described, it remains to discuss how each of the aforementioned

validation requirements are satisfied in this scenario, for both the nominal and off-

nominal capabilities.

183

Entry:

(drag-flag =set)l
0 0 <= tN

(drag flag =not-set) \

0.001 /0.001

Nominal operation

Successful monitoring and execution of nominal spacecraft operations are clearly criti-

cal, as one typically expects the majority of operations to be conducted in the absence

of faults. This section discusses how the Timed Model-based Executive provides the

set of nominal operation capabilities mentioned above. First, the executive must be

able to accept high-level activity goals or procedure invocations (either generated on-

board using a system-level planner/scheduler, such as ASPEN [14] or EUROPA [45],

or uplinked from ground controllers) and decompose them into an appropriate se-

quence of detailed task assignments. In this scenario, the onboard planner or ground

controller would simply issue the "initiate MarsEDL" activity goal to the Timed

Model-based Executive. This goal would invoke the MarsEDL control program. The

executive's control sequencer demonstrates the ability to decompose this high-level

activity goal into a valid series of subactivities (e.g., EntrySequence, DescentLand-

ingSequence) and, further, into configuration goals for the deductive controller.

Second, the executive must be able to execute sequences conditioned on state and

time constraints. The demonstration scenario clearly highlights this capability, as its

execution depends on spacecraft state (e.g., attitude), a number of "external" event

triggers, and clock conditions.

Third, the executive must be able to take a configuration goal and generate an

appropriate sequence of atomic plant commands that will achieve this goal. More

specifically, the executive should be able to generate both single-step and multi-step

reconfiguration sequences, as required. The Mars EDL demonstration highlights the

ability of the Timed Model-based Executive's deductive controller to do this. Simple

goals, such as nav inertial, are reachable with a single plant command. Multi-step

nominal reconfigurations are demonstrated in the achievement of goals like engine =

firing, which requires the executive to deduce that the engine must be heated, the

PDE must be turned on, the valves must be opened and finally, the engine must be

commanded to fire (see detailed discussion in Section 6.3.3).

Finally, the executive must be able to perform nominal mode tracking through

184

both commanded and timed transitions. This capability is key to the proper exe-

cution of control programs, as a thread of execution (i.e., a marked location in the

THCA) does not progress until the deductive controller confirms that the specified

goal has been satisfied. In the Mars EDL scenario, for instance, pressure = high

measurements from the propulsion subsystem are used to confirm the belief that a

valve has successfully opened when commanded to do so, during achievement of the

engine = firing goal. Similarly, receipt of a temp = nominal observation allows the

executive to conclude that the engine has taken the timed transition from heating to

standby mode.

Off-nominal operation

While the general expectation is for the bulk of spacecraft operations to be con-

ducted under nominal operating conditions, the ability to autonomously detect and

correct/manage faults is essential, especially in environments where timely ground in-

tervention is impossible. Thus, there exist a number of important capabilities related

to autonomous operation in the presence of faults.

One core requirement is the ability to diagnose faults, both as a result of unsuc-

cessful commanded transitions, and unsuccessful timed transitions, as well. The Mars

EDL scenario allows for demonstration of fault diagnoses in several ways, including

detection of an unsuccessful pyro firing for the lander separation, and detection of a

fault in the engine component as a result of it spending too much time in its heating

mode, without reaching its nominal temperature.

Another key consideration with respect to fault diagnosis is the management of

completely unanticipated faults. The Timed Model-based Executive provides a mech-

anism for accommodating such faults, through the definition of unconstrained fault

modes in the TCCA plant models (frequently referred to as "unknown" modes in

the plant models). This unconstrained state definition provides runtime robustness

by serving as a fallback for component failure modes not explicitly encoded by the

spacecraft engineer. This feature can be demonstrated in various ways in the Mars

EDL scenario, including the case where the engine component suddenly observes a

185

loss of power while in its heating mode.

Once faults have been detected, the executive must be able to take necessary

action to return to nominal operations, if possible. One expectation is that the

executive should be able to effect recovery by repairing faulty components. This

is demonstrated, for example, by the ability to issue a reset command to the PDE

component should it experience a resettable fault. As directly repairing a faulty

component is not always possible, an executive must also be able to take advantage

of physical or functional redundancy to address faults. In the scenario, physical

redundancy in the lander pyro component allows for proper separation of the lander

stage from the cruise stage, after an unsuccessful-attempt due to misfire of the primary

pyro mechanism.

In conclusion, the Mars EDL scenario allows the Timed Model-based Executive

to demonstrate each of the key capabilities, both nominal and off-nominal. Further

testing of the executive with more complex models and control programs is planned,

in the context of ongoing research in infusing TMBP technology into actual flight

missions.

186

Chapter 8

Conclusions

The work described in this thesis has been motivated by the need to improve the

robustness and reduce the development costs of traditional approaches to encoding

mission-critical spacecraft sequences. The TMBP paradigm provides specifications

of timed control programs and plant models, which are expressive enough to cap-

ture the time-dependent behaviors that characterize the state evolution of complex

asynchronous systems, such as spacecraft. The timed control programs correspond

to specifications of desired system state trajectories, leveraging this state-based ab-

straction to reduce the complexity inherent in traditional programming approaches,

which interact with a physical plant in terms of low-level sensor measurements and

actuator commands. Furthermore, the visual nature of the control and plant speci-

fications make them more appealing to the systems engineers in charge of designing

the mission, and ensuring the survival of the spacecraft through its critical sequences.

This thesis has defined a Timed Model-based Execution framework that allows for

direct execution of these state-based control specifications by employing a deductive

controller that performs in-the-loop automated reasoning through the plant models.

By providing the deductive controller with models of both nominal and off-nominal

component behavior, the Timed Model-based Executive is inherently fault-aware; that

is, it diagnoses and responds to faults on-the-fly, within the nominal state monitoring

and achievement loop. In addition, Timed Model-based Execution offers the following

advantages, which can result in decreased software development costs as compared to

187

traditional approaches to complex sequence execution:

* Modularity - Because of its use of modular system models, flight software writ-

ten as a model-based program can accommodate component-level modifications

late in the spacecraft design cycle. New component models can be swapped in

without having to rewrite significant sections of flight code. Furthermore, modu-

larity within the deductive layer allows for transparent upgrading of the engines

used for mode estimation and mode reconfiguration, when more powerful ones

become available.

" Model Reusability - Another benefit to the use of modular system models is

that the component-level models can be reused. Over time, a database of models

for different subsystems and component designs can be assembled, dramatically

reducing the need for single-use flight code.

" Verifiability - As a consequence of being able to write control code in terms

of states, model-based programming results in cleaner code that is easier to

verify. Ease of verification is also a feature of the plant models, which can be

built up directly from system engineering specifications of hardware or software

components. It should be noted that the strong influence of formal approaches

to real-time modeling means that model-based programs are amenable to for-

mal verification via model-checking tools, such as SPIN [41], KRONOS [10] or

UPPAAL [55]. This is identified in Section 8.1 as a promising area for future

research.

It is important to re-emphasize the fact that the model-based programming frame-

work defines a family of languages, each characterized by a choice of underlying plant

modeling formalism. For example, [90] introduces a model-based programming lan-

guage that defines a plant model in terms of a factored untimed POMDP. This lan-

guage and its corresponding executive has been demonstrated through deployments

on a wide range of applications from the automotive and aerospace domains [25]. This

thesis defines a more general instance of a model-based programming language based

188

on a factored timed POSMDP representation of a physical plant, which subsumes

the untimed language of [90]. The practical importance of this instance has been

demonstrated in the context of mission-critical scenarios, such as Mars EDL.

In addition, model-based programming allows for a family of executives for each

language, with each executive characterized by the implementation details of its con-

trol sequencer and deductive controller modules. For instance, several variants of

deductive controller have been documented in [50, 83, 85]. The capabilities of these

variants differ by the nature of the approximations made in their respective model-

based reasoning algorithms; for example, the Livingstone2 [50] ME capability extends

the coverage of Livingstone's ME [83] to track multiple summarized histories of likely

past states, while the Burton [85] model-based executive extends Livingstone's one-

step MR capability to generate a sequence of control actions that lead to a desired

goal state. Another variant of deductive controller currently under development in-

cludes compiled versions of mode estimation [79] and mode reconfiguration [16], which

improve the performance of the online reasoning by moving the most computationally

intensive steps off-line, via pre-compilation of the plant model. A variant of control

sequencer is found in the Kirk executive [48, 81], which plans and executes a course

of action for networks of robots by reasoning through a non-deterministic control

program that encodes alternative time-bounded activities.

In the remainder of this chapter, directions for future work are suggested and the

thesis contributions are summarized.

8.1 Directions for Future Work

Many areas have been identified as potentially fruitful targets for future research.

In this section, a few of the most interesting possible extensions of this work are

highlighted, from both the theory and implementation perspectives:

e Formal Verification of Timed Model-based Programs - As discussed in

Chapter 4, the semantics of TMBP borrows various ideas from the semantic

descriptions of real-time specification languages, such as Timed Automata [2]

189

and Timed Transition Systems [39]. Such languages are characterized by their

amenability to verification via formal tools. Key ideas from these real-time

specification languages are also folded directly into the languages used to im-

plement timed model-based programs, at both the control program and plant

model levels (see Chapters 5 and 6).

The strong influence of formal approaches means that model-based programs

should be similarly amenable to formal verification via model-checking tools,

such as SPIN [41], KRONOS [10], UPPAAL [55] or SMV [12]. In fact, work has

already been done on the formal verification of untimed Livingstone plant mod-

els [61, 63], and the Remote Agent's procedural executive [38]. Porting these

tools to the types of models used in TMBP (namely, timed control programs

expressed as THCA and timed plant models expressed as TCCA) would enable

better characterizations of the coverage of complex spacecraft plant models

(via reachability analysis of states in the TCCA) and various important safety

properties (such as the identification of potential negative interactions between

concurrently-asserted goals in the THCA control program).

Hybrid Model-based Programming - The Mars EDL example discussed in

this thesis includes states, such as spacecraft attitude and altitude, that would

be more accurately modeled as continuous, rather than discretized qualitatively

as in the timed model-based programs. Current work is underway to extend the

TMBP framework to a full hybrid model-based programming paradigm, where

goals and conditions can be expressed in terms of both continuous and discrete

variables. This extension of TMBP will define yet another language in the family

of model-based programming languages. In a hybrid model-based executive,

the deductive controller will reason through hybrid models composed of both

discrete behavior models and continuous state dynamics described by ordinary

differential equations. This effort will unify the recent work done in hybrid

mode estimation [40] with the sophisticated discrete inference capabilities of

the Timed Model-based Executive's deductive controller.

190

One primary thrust of this effort will be to transparently integrate, into the

deductive controller, state-of-the-art continuous estimators and control engines

that are currently deployed onboard spacecraft. By first focusing on the inte-

gration of widely deployed estimators and controllers, the hybrid model-based

programming approach will target the "comfort zone" of spacecraft systems

engineers, and thus provide an incremental, but nonetheless very significant,

improvement in robust onboard executive capability.

* Visual Design Tools - In order to further TMBP's stated goal of making

the systems engineer's job easier, a suite of visual tools should be assembled

to facilitate the design and analysis of THCA control programs and TCCA

plant models. These tools should be designed with an intuitive graphical user

interface, in the spirit of Stanley and the Model-based Skunkworks tools [68]

developed at NASA Ames for use with the Livingstone2 model-based executive.

Preliminary work in this area has been initiated at the Johns Hopkins Univer-

sity Applied Physics Laboratory, where a plant visualization tool called Helios

has been developed and interfaced with the Titan model-based executive (see

Figure 8-1). Helios is a Java application that provides the capability to visualize

the ME and MR portions of the deductive controller both graphically, in the

form of a schematic display, and textually, in tabular format. Another tool for

visualizing the execution of Titan's control programs has been developed, based

on the Generic Modeling Environment (GME2000) toolkit [56] from Vanderbilt

University.

* Deductive Controller Improvements - The deductive controller implemen-

tation presented in this thesis has a number of limitations, as discussed in

Chapter 6. Future research should be done to develop a second-generation de-

ductive controller for the Timed Model-based Executive. Improvements should

be made to both the ME and MR capabilities. The second-generation ME

should provide a better approximation to the "exact" belief state update pro-

cess, for example, by enabling ME to track a set of most likely trajectories over a

191

Figu-re-1 CSs ot o aoA dC-Wdd WYS T Z 5Z4 *!
2

"T

514(AS 5.25:WE PMS 622022

~UO ~ RNCS ATL6 C ORRwS li~~C ~ O R 1 OMMAJ(J START-KAYBACK -dd. 5/24fl002 525 PMi

Figure 8-1: Screen snapshot from the Helios visualization tool.

time history, similar to the Livingstone2 capability [50], but operating on timed

plant models of the type described in Chapter 6 (TCCA). The MR capability

could be improved by choosing a more complex optimality criterion than the

current "maximum state reward" objective function, for example, by including

in the cost metric the time required to reach a state goal.

Finally, both deductive controller modules should be upgraded with algorithms

that enable them to utilize models where the computationally expensive on-

line model-based reasoning operations have been "pre-compiled" into a set of

model-derived rules, which can be used to diagnose or command the spacecraft

in time that is linear in the number of rules. Such compiled versions of ME and

MR have already been developed for the untimed deductive controller employed

by the Titan model-based executive [15, 16, 79].

8.2 Summary of Contributions

The work documented in this thesis has three key contributions:

1. Semantic Specification for TMBP - The semantics of the timed model-

based programming approach have been detailed. A timed control program is

192

DO*WLW-STATI
GROUM-COM A

4 OMW*JYWW
" OMMA
a OMW

5SR-PLAYWI,
SW04

0 MNM InER

modeled as a deterministic automaton that operates on the plant state. The

plant model is represented as a factored Partially Observable Semi-Markov De-

cision Process that captures both nominal and off-nominal behavior, and is en-

coded compactly using concurrency and constraints. The execution semantics

of the timed model-based program are defined in terms of timed sequences of

control program locations and legal state evolutions of the physical plant POS-

MDP. The semantics of the Timed Model-based Executive modules have also

been specified. The control sequencer executes a timed control program and

issues configuration goals for achievement by the deductive controller, which

operates on the factored POSMDP model of the physical plant. The deduc-

tive controller provides a mode estimation capability, which performs a variant

of belief state update, and a mode reconfiguration capability, which performs

a variant of decision theoretic planning. The deductive controller semantics

leverage the key insight that the plant state can be augmented with the plant

clock interpretations, leading to a mapping from a semi-Markov to a Markov

process.

2. Definition of graphical and textual TMBP languages - Graphical and

textual languages for encoding timed control programs and plant models have

been specified. The textual RMPL language provides standard constructs for

expressing reactive control behavior, such as conditional branching, iteration,

parallel composition, sequential ordering and preemption. The design of RMPL

unifies key ideas from synchronous programming, constraint programming, and

robotic execution languages. Graphical languages are used to encode both con-

trol programs (THCA) and plant models (TCCA). The adoption of a visual en-

coding for timed model-based programs allows them to be specified and readily

inspected by the systems engineers in charge of designing mission-critical se-

quences.

3. Development of a Timed Model-based Executive - A Timed Model-based

Executive is defined as consisting of two components, a control sequencer and

193

a deductive controller. The control sequencer executes a timed control program

conditioned on time and state constraints, by issuing state-based configura-

tion goals. The deductive controller is responsible for estimating the plant's

most likely current state based on observations from the plant, and for issu-

ing commands to move the plant through a sequence of states that achieve the

configuration goals. Key features of the control sequencer include its imple-

mentation of closed-loop goal-driven execution, and its consideration of time

via a set of active clock variables. The deductive controller operates on timed

(semi-Markov) plant models. Its mode estimation capability implements an ap-

proximate algorithm for belief update of the system state, where system state

is defined as a set of assignments to state variables, augmented by assignments

to plant clock variables that keep track of the amount of time each component

has spent in its current mode. The mode reconfiguration capability extends the

untimed model-based executive's MR capability, by addressing issues associated

with timed plant models and irreversible actions.

194

Bibliography

[1] M. Abadi and L. Lamport. An old-fashioned recipe for real-time. In Proceedings

of the REX Workshop on Real-Time: Theory in Practice, volume 600 of Lecture

Notes in Computer Science, pages 1-27. Springer-Verlag, 1991.

[2] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183-235, 1994.

[3] R. Alur. Timed automata. In 11th International Conference on Computer-Aided

Verification, volume 1633 of Lecture Notes in Computer Science, pages 8-22.

Springer-Verlag, 1999.

[4] D. Bernard et al. Design of the Remote Agent Experiment for spacecraft auton-

omy. In Proceedings of the IEEE Aerospace Conference, 1999.

[5] D. Bernard et al. Final report on the Remote Agent Experiement. In NMP DS-1

Technology Validation Symposium, February 2000.

[6] G. Berry and G. Gonthier. The synchronous programming language Esterel: De-

sign, semantics, implementation. Science of Computer Programming, 19(2):87-

152, 1992.

[7] G. Berry. The Esterel v5 Language Primer, version 5.21 release 2.0. Technical

report, Centre de Mathematiques Appliquees, Ecole des Mines and INRIA, April

6 1999.

[8] D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,

1995.

195

[9] C. Boutilier and D. Poole. Computing optimal policies for partially observable

decision processes using compact representations. In Proceedings of AAAI-96.

AAAI Press, 1996.

[10] M. Bozga et al. Kronos: A model-checking tool for real-time systems. In Proc.

10th International Conference on Computer Aided Verification, volume 1427,

pages 546-550. Springer-Verlag, 1998.

[11] J. Bresina, K. Golden, D. Smith, and R. Washington. Increased flexibility and

robustness of Mars rovers. In Proceedings of ISAIRAS-99, 1999.

[12] J. Burch et al. Symbolic model checking: 1020 states and beyond. Information

and Computation, 98(2):142-170, June 1992.

[13] J. Casani et al. Report on the loss of the Mars Polar Lander and Deep Space 2

missions. Technical report, JPL Caltech, March 2000.

[14] S. Chien et al. Using iterative repair to increase the responsiveness of planning

and scheduling for autonomous spacecraft. In Proceedings of AIPS-00, 2000.

[15] S. Chung, J. Van Eepoel, and B.C. Williams. Improving model-based mode

estimation through offline compilation. In Proceedings of ISAIRAS-01, 2001.

[16] S. Chung. Decomposed symbolic approach to reactive planning. S.M. thesis,

Massachusetts Institute of Technology, Department of Aeronautics and Astro-

nautics, Cambridge, MA, 2003.

[17] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem

proving. Journal of the ACM, 5(7), 1962.

[18] R. Davis. Diagnostic reasoning based on structure and behavior. Artificial In-

telligence, 24:347-410, 1984.

[19] J. de Kleer and B.C. Williams. Diagnosing multiple faults. Artificial Intelligence,

32(1):97-130, 1987.

196

[20] J. de Kleer and B.C. Williams. Diagnosis with behavioral modes. In Proceedings

of IJCA I-89, pages 1324-1330, 1989.

[21] A. Di Pierro and H. Wiklicky. An operational semantics for probabilistic concur-

rent constraint programming. In Proceedings of the International Conference on

Computer Languages (ICCL 98), pages 174-183. IEEE Computer Society Digital

Library, 1998.

[22] D. Dvorak et al. Software architecture themes in JPL's Mission Data System. In

Proceedings of the AIAA Guidance, Navigation, and Control Conference, Port-

land, OR, 1999.

[23] D. Dvorak. Challenging encapsulation in the design of high-risk control systems.

In Proceedings of the 17th ACM Conference on Object- Oriented Programming,

Systems, Languages, and Applications (OOPSLA-02), 2002.

[24] L. Fesq et al. Spacecraft autonomy in the new millenium. In Proceedings of

the 19th Advances in the Astronautical Sciences (AAS) Guidance and Control

Conference, number AAS-96-001, February 1996.

[25] L. Fesq et al. Model-based autonomy for the next generation of robotic space-

craft. In Proceedings of the 53rd International Astronautical Congress of the

International Astronautical Federation (IA C-02), number IAC-02-U.5.04, Octo-

ber 2002.

[26] R.J. Firby. Adaptive Execution in Dynamic Domains. PhD thesis, Yale Univer-

sity, Department of Computer Science, 1989.

[27] E. Gat. ESL: A language for supporting robust plan execution in embedded

autonomous agents. In Plan Execution: Problems and Issues, Papers from the

1996 AAAI Fall Symposium, pages 59-64, 1996.

[28] E. Gat and B. Pell. Smart executives for autonomous spacecraft. IEEE Intelligent

Systems, 13(5):56-61, Sep./Oct. 1998.

197

[29] E. Gat. The MDS autonomous control architecture. In Proceedings of the Fourth

World Automation Congress (WAC), International Symposium on Intelligent

Automation and Control (ISIAC-2000), number ISIAC-062, 2000.

[30] C. Goodrich and J. Kurien. Continuous measurements and quantitative con-

straints - challenge problems for discrete modeling techniques. In Proceedings of

ISA IRAS-01, 2001.

[31] P. Le Guernic, M. Le Borgne, T. Gauthier, and C. Le Maire. Programming

real time applications with Signal. Proceedings of the IEEE, 79(9):1321-1336,

September 1991.

[32] C. Guestrin, D. Koller, and R. Parr. Solving factored pomdps with linear value

functions. In Proc. of IJCAI-01 Workshop on Planning under Uncertainty and

Incomplete Infromation, pages 67-75, 2001.

[33] V. Gupta, R. Jagadeesan, and V. Saraswat. Models of concurrent constraint

programming. In Proceedings of the International Conference on Concurrency

Theory (CONCUR 96), volume 1119 of Lecture Notes in Computer Science, pages

66-83. Springer-Verlag, 1996.

[34] N. Halbwachs, P. Caspi, and D. Pilaud. The synchronous programming language

Lustre. Proceedings of the IEEE, 79(9):1305-1320, September 1991.

[35] N. Halbwachs. Synchronous Programming of Reactive Systems. Series in Engi-

neering and Computer Science. Kluwer Academic, 1993.

[36] E. Hansen. An improved policy iteration algorithm for partially observable mdps.

In Proceedings of the Conference on Neural Information Processing Systems,

pages 1015-1021, 1997.

[37] D. Harel. Statecharts: A visual formulation for complex systems. Science of

Computer Programming, 8(3):231-274, 1987.

198

[38] K. Havelund et al. Formal analysis of the remote agent before and after flight.

In Proceedings of 5th NASA Langley Formal Methods Workshop, Williamsburg,

VA, June 2000.

[39] T.A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In Pro-

ceedings of the REX Workshop on Real-Time: Theory in Practice, volume 600

of Lecture Notes in Computer Science, pages 226-251. Springer-Verlag, 1992.

[40] M. Hofbaur and B.C. Williams. Mode estimation of probabilistic hybrid systems.

In Proceedings of the International Conference on Hybrid Systems: Computation

and Control, May 2002.

[41] G. Holzmann. The model checker spin. IEEE Trans. on Software Engineering,

23(5):279-295, 1997.

[42] R. Howard. Dynamic Programming and Markov Processes. MIT Press, Cam-

bridge, MA, 1960.

[43] M. Ingham, R. Ragno, and B.C. Williams. A reactive model-based programming

language for robotic space explorers. In Proceedings of ISAIRAS-01, 2001.

[44] M. Ingham et al. Autonomous sequencing and model-based fault protection for

space interferometry. In Proceedings of ISAIRAS-01, 2001.

[45] A.K. Jonsson et al. Planning in interplanetary space: Theory and practice. In

Proceedings of AIPS-00, 2000.

[46] L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially

observable stochastic domains. Artificial Intelligence, 101, 1998.

[47] Y. Kesten and A. Pnueli. Timed and hybrid statecharts and their textual repre-

sentation. In 2nd International Symposium on Formal Techniques in Real-Time

and Fault-Tolerant Systems, volume 571 of Lecture Notes in Computer Science,

pages 591-619. Springer-Verlag, 1992.

199

[48] P. Kim, B.C. Williams, and M. Abramson. Executing reactive, model-based

programs through graph-based temporal planning. In Proceedings of IJCAI-01,

volume 1, pages 487-493, 2001.

[49] K. Kolcio, M. Hanson, and L. Fesq. Validation of autonomous fault diagnostic

software. In Proceedings of the IEEE Aerospace Conference, volume 4, pages

251-264, 1998.

[50] J. Kurien and P. Nayak. Back to the future for consistency-based trajectory

tracking. In Proceedings of AAAI-00, pages 370-377, 2000.

[51] J. Kurien, P. Nayak and D. Smith. Fragment-based conformant planning. In

Proceedings of AIPS 2002, 2002.

[52] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying quantitative

properties of continuous probabilistic timed automata. In Proceedings of the

International Conference on Concurrency Theory (CONCUR 2000), volume 1877

of Lecture Notes in Computer Science, pages 123-137. Springer-Verlag, 2000.

[53] C. Largouet and M. Cordier. Adding probabilities to timed automata to improve

landcover classification. In ECSQARU-2001 Workshop on Spatio-Temporal Rea-

soning and Geographic Information Systems, 2001.

[54] C. Largouet and M. Cordier. Using model-checking techniques for diagnosing

discrete-event systems. In Proceedings of DX-01, pages 39-46, 2001.

[55] K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Int. Journal on

Software Tools for Technology Transfer, 1(1-2):134-152, 1997.

[56] A. Ledeczi et al. The generic modeling environment. In Proceedings of IEEE In-

ternational Workshop on Intelligent Signal Processing (WISP-2001), Budapest,

Hungary, May 2001.

[57] J. Lunze. Diagnosis of quantized systems based on a timed discrete-event model.

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and

Humans, 30(3), May 2000.

200

[58] S. Mahadevan. Partially observable semi-markov decision processes: Theory and

applications in engineering and cognitive science. In Proceedings of AAAI Fall

Symposium on Planning with Partially Observable Markov Decision Processes,

1998.

[59] P. Nayak and B. C. Williams. Fast context switching in real-time propositional

reasoning. In Proceedings of AAAI-97, pages 50-56, 1997.

[60] P. Nayak et al. Validating the DS1 Remote Agent Experiment. In Proceedings

of ISA IRA S-99, 1999.

[61] S. Nelson and C. Pecheur. Formal verification of a next-generation space shuttle.

In Proceedings of the Second Goddard Workshop on Formal Aspects of Agent-

Based Systems (FAABS II), Greenbelt, MD, October 2002.

[62] C. Papadimitriou and J. Tsitsiklis. The complexity of markov decision processes.

Mathematics of Operations Research, 12(3):441-450, 1987.

[63] C. Pecheur and R. Simmons. From livingstone to smv: Formal verification for au-

tonomous spacecrafts. In Proceedings of the First Goddard Workshop on Formal

Approaches to Agent-Based Systems (FAABS), Greenbelt, MD, April 2000.

[64] B. Pell et al. A hybrid procedural/deductive executive for autonomous spacecraft.

In Proceedings of the Second International Conference on Autonomous Agents,

1998.

[65] B. Pell et al. The Remote Agent Executive: Capabilities to support integrated

robotic agents. In Proceedings of the AAAI Spring Symposium on Integrated

Robotic Architectures, 1998.

[66] M.L. Puterman. Markov Decision Processes. Wiley Interscience, New York,

1994.

[67] R. Ragno. Solving optimal satisfiability problems through Clause-directed A*.

M.eng. thesis, Massachusetts Institute of Technology, Department of Electrical

Engineering and Computer Science, Cambridge, MA, 2002.

201

[68] K. Rajan et al. Ground tools for the 21st century. In Proceedings of IEEE

Aerospace Conference, Big Sky, MT, 2000.

[69] R. Rasmussen. Goal-based fault tolerance for space systems using the Mission

Data System. In Proceedings of the IEEE Aerospace Conference, 2001.

[70] N. Rouquette and D.Dvorak. Reduced, reusable and reliable monitor software.

In Proceedings of i-SAIRAS, 1997.

[71] N. Rouquette, P. Gluck, and R. Kanefsky. The 13th technology of Deep Space

One. In Proceedings of i-SAIRAS, 1999.

[72] V. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent

constraint programming. In Conference Record of the Eighteenth Annual ACM

Symposium on Principles of Programming Languages, pages 333-352, Orlando,

Florida, 1991.

[73] V. Saraswat. The category of constraint systems is cartesian-closed. In Proceed-

ings of the 7th IEEE Symposium on Logic in Computer Science, 1992.

[74] V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of Timed Default

Concurrent Constraint programming. In Proceedings of the 9th IEEE Symposium

on Logic in Computer Science, 1994.

[75] M. Schoppers. Universal plans for reactive robots in unpredictable environments.

In Proceedings of IJCAI-87, volume 2, pages 1039-1046, 1987.

[76] R. Simmons and D. Apfelbaum. A Task Description Language for robot control.

In Proceedings of the Conference on Intelligent Robotics and Systems, Vancouver,

Canada, October 1998.

[77] E. Sondik. The Optimal Control of Partially Observvable Markov Decision Pro-

cesses. PhD thesis, Stanford University, Stanford, CA, 1971.

[78] I. Tsamardinos, N. Muscettola, and P. Morris. Fast transformation of temporal

plans for efficient execution. In Proceedings of AAAI-98, 1998.

202

[79] J. Van Eepoel. Achieving real-time mode estimation through offline compilation.

S.m. thesis, Massachusetts Institute of Technology, Department of Aeronautics

and Astronautics, Cambridge, MA, 2002.

[80] D. Watson. Model-based autonomy in deep space missions. IEEE Intelligent

Systems, 18(3):8-11, May/June 2003.

[81] A. Wehowsky. Safe distributed coordination of heterogeneous robots through

dynamic simple temporal networks. S.m. thesis, Massachusetts Institute of Tech-

nology, Department of Aeronautics and Astronautics, Cambridge, MA, 2003.

[82] D.S. Weld. An introduction to least commitment planning. AI Magazine,

15(4):27-61, 1994.

[83] B.C. Williams and P. Nayak. A model-based approach to reactive self-configuring

systems. In Proceedings of AAAI-96, volume 2, pages 971-978. AAAI Press, 1996.

[84] B.C. Williams and P. Nayak. Immobile robots: AI in the new millennium. AI

Magazine, 17(3):16-35, 1996.

[85] B.C. Williams and P. Nayak. A reactive planner for a model-based executive. In

Proceedings of IJCAI-97, volume 2, pages 1178-1185, 1997.

[86] B. C. Williams and V. Gupta. Unifying model-based and reactive programming

within a model-based executive. In Proceedings of DX-99, 1999.

[87] B.C. Williams, S. Chung, and V. Gupta. Mode estimation of model-based pro-

grams: Monitoring systems with complex behavior. In Proceedings of IJCAI-01,

2001.

[88] B.C. Williams et al. Model-based reactive programming of cooperative vehicles

for mars exploration. In Proceedings of ISAIRAS-01, 2001.

[89] B.C. Williams and M.D. Ingham. Model-based programming: Controlling em-

bedded systems by reasoning about hidden state. In Proceedings of the 8th

203

International Conference on Principles and Practice of Constraint Programming

(CP-02), September 2002.

[90] B.C. Williams, M. Ingham, S. Chung, and P. Elliott. Model-based programming

of intelligent embedded systems and robotic space explorers. Proceedings of the

IEEE, 91(1):212-237, January 2003.

[91] B.C. Williams and R.J. Ragno. Conflict-directed A* and its role in model-based

embedded systems. Journal of Discrete Applied Mathematics, 2003. Forthcom-

ing.

[92] T. Young et al. Report of the Mars Program Independent Assessment Team.

Technical report, NASA, March 2000.

204

Appendix

Chandra X-Ray Telescope

Activation Sequence

205

A

SCS 111 - DEPLOYMENT AND SAFE MODE ENTRY SCS
START

INITIAUIZE EPS l U-B to xpnxk A/9
3MET2-4 14SOe TAxn A, 32K

NOUn CALLXEC CCDMLETITn EP SENT AY 2p)
E1:EIAACTION RECONFIG, H

ENABLE CMD 3R0 KNIESOF E12: OF 41U YES
SCS FOR EP & PCAD SS 119: BWS OPE

2K, OBC CMD IU & 49 NO
doy CTU to STS ES: IUS SCRETfmt CNFG & 6SN?

E2: IUS DISCRETES 312, & FORMAT 6
MET 7:16:47 TITAN SEP SENT 0Y-) TL

e YES E2: IUS DISCRETES 3, & No

IRU tonp eirs on CALL SHUTTLE P SENT (ANY 2)?
SEP SCS #112 YES

ES: IUS DIS RE YES
E5: IUS DISCREE NO 6 SENT?

MET Y:E12:45 6 SENT? &1 5D NO

00035 YS 8,E SJDPYE DEY OR

to Fmtf 4, 32K, YS DLY1M ALSUTE

connect baots, CALL LGA DPLY | S SCSE#112

OBC tim1, lRUs on SCS #113 311
SRM BURNS E6: IUS DISCRETES$

2 & SENT? E6: IUS DISC

NO312: 4U 26 m& 5nb SENT?1

NE6: IUS DISCRETES 312 YES 2&5SN?

MET 6:45:24 2 & 5 SENT? SOBC TLM1 Nm m
YES SE5: IUS DISCRETE

ARUS on, SSR TIVATE STA DPLY ES
on, EPS Sag 2 SEDANAT#11 to Fmt 4, 326,#121ES

320 Connect bats, CALL LGA DPLY

allows 30 sac from | DELAY 5 MIN & OBC tim2, IRUs on | SCS #113

Od Ofk o t Ief | 45 SEC

firng dpoymnt

ED S C F6: IUS DISCRETES
E7: SA_1_DEPL1OYED & YES 2 & 5 SENT? /
A2 DEPLOYED = TRUE? YES

NO YES E7: SA-1iDEPLOYED &
3-2 YES E8&E9: S 1 EPOE& SA_2_DEPLOYED = TRUE?

HALTOC_DEPLOYED = DFALSEN
FTER.MINATE S/A 6

NO DPLY FWD SCS, ACTIVATE S/A DPLY
HOTm KN5VE RV SCS #15

andl of last hot kcnife DELAY 4 MIN & OF/DKVSBUSAFE
firing for deployment 20 SEC OFDBSF

354,356 DELAY 5 MIN &
355, ;3577 YES E8,E9: SA_1 _DEPLOYED OR 5 SEC

HALT OBC SA_2 _DEPLOYED = FALSE? 67

E7: SA_1_-DEPLOYED & YES
NO SA2DEPLOYED = TRUE? 4

NOE10: TIME SINCE aopnhrTEMNTS/
5 SET >19 MN? DPLY RV SCS, HOT

35e-3e4 OFF/DSBSAFE
ENABLE RW SAFING

SCS'S NOE10: TIME SINCE

enable RW monitors, CALL PCAD ACTIVATION|IUDSREE2&
calls SCS 34-36 SCS #116 5 SENT > 19 MIN?

95M YES

DISABLE SCS'S #34,
11: TIME SINCE IUS DISCRETES 35, 36

2 & 5 SENT > 22 MIN? 9

a67-"e YES CALL PCAD
ENABLE WRAP TESTS AND ACTIVATION SCS #116

SCSS FOR ALL RCTU'S

370E11: TIME SINCIE [US DISCRETE>S
CALLPW RRECOFIG2 & 5 SENT > 22 MIN?

EPS mgmt mons 101 YE
ain bus xfr @ CALL PWR/HTR RECONFIG3E12 2 F 4IUS26 min, enable SCS #117

MET 9:16'24 B W ESEN/ EPS mgmt mons

OB to Alna Ondine .ACTIVATE POST IUS NIE12: 2OF 4 US cPE
State, ,S SS3) SEPARATION SCS #118 BWS OPEN? BO

Safing SCSS ara 103-104 105-106

C END)SELECT FMT 5, EPS SUBFMT - NBE CPE -

109-221 EnabPC
EXEC POAD wrap, emib
RECONFIG CPE(RSM),

' Imt 5

CPE TO EXTERNAL
SYNC

DELAY 73 SEC FOR
COMPUTATION OF

SUN VECTOR BY CPE

ENBL NORMAL EPS
MGMT

ENBL CMD WRAP &
SCSS FOR SIM & TS

ENBL & INIT NBOG

THERMAL CONTROL eobl

2eo-som

ENABLE SIM TRIM
HTRS

END

DPLY SCS FLOW updated 1/20/99

Figure A-1: Activation sequence flowchart for the Chandra X-Ray space telescope
(copyright Northrop Grumman Space Technology).

206

Appendix B

RMPL Control Programs for Mars

EDL

207

1 MarsEDLO:: {
2 do{
3 EntrySequence(),
4 DescentLandingSequence()
5 } watching (landing = success)
6 }

Figure B-1: Main RMPL control program for the Mars EDL scenario. MarsEDL calls
the EntrySequence and DescentLandingSequence subprograms.

208

1 EntrySequenceo:: {
2 engine = standby;
3 tl = 0;
4 when (t1 > 16200.0) donext {
5 nav = inertial;
6 t2 = 0;
7 when (t2 > 240.0) donext {
8 do {
9 always (att = entry-orient),
10 when (att = entry-orient) donext (lander = separated)
11 } watching (entry = initiated)
12 }
13 }
14 }

Figure B-2: RMPL subprogram for the Entry Sequence.

209

1 DescentLandingSequence(:: {
2 when (entry = initiated) donext {
3 lander = separated,
4 when (lander = separated) donext {
5 do {
6 always (att = vel-vector-orient)
7 } watching (Machtrigger = triggered),
8 when (Mach.trigger = triggered) donext {
9 chute = deployed;
10 t3 = 0;
11 when (3 > 10.0) donext {
12 heatshield = jettison;
13 {
14 do{
15 always (att = vel-vector-orient)
16 } watching (alt..veLtrigger = triggered),
17 {
18 t4=0;
19 when (t4 > 10.0) donext {
20 legs = deployed;
21 t5=0;
22 when (t5 > 1.5) donext (radar-altim = on)
23 }
24
25 PoweredDescentLandingSequenceo
26 }
27 }
28 }
29 }
30 }
31 }

Figure B-3: RMPL subprogram for the Descent and Landing Sequence. Descent-
LandingSequence calls PoweredDescentLandingSequence.

210

1 PoweredDescentLandingSequence(:: {
2 when (alt.veltrigger = triggered) donext {
3 backshield = jettisoned;
4 t6 = 0;
5 when (t6 > 0.5) donext {
6 engine = firing;
7 {
8 always (att = landing-orient),
9 do {
10 always (prop = gravity-turn)
11 } watching (alt.12m.trigger = triggered),
12 when (alt_40m...rigger = triggered) donext (radar-altim off),
13 when (alt.12mtrigger = triggered) donext (prop = const-vel-descent),
14 whenever ((alt_12mtrigger = not-triggered) A (touchdown-sensor = triggered)) donext
15 touchdown-sensor = not-triggered,
16 when ((alt.12mtrigger = triggered) A (touchdown-sensor = triggered)) donext {
17 engine = off;
18 landing = success
19 }
20 }
21 }
22 }
23 }

Figure B-4: RMPL subprogram for the Powered Descent and Landing Sequence.

211

212

Appendix C

TCCA Plant Models for Mars EDL

213

Tank:

(pressure,,= low)I(pressureout= high)

Pt (t
FoE, - -

Figure C-1: Timed Constraint Automaton for the tank component.

214

)=0.001

Valve:

(pressure,= zero) (pressureo,, = zero)

P (t) = 0.001

Pt(t=0.001

=P(t) 0.001

P (t)= 0.001

pre pressurei, j (pressureo, = pressure,,,)

Figure C-2: Timed Constraint Automaton for the valve component.

215

vcmd. =
open

Engine:

(power = off) AND
(thrust = zero)

ecmd =standb

emd = offi

001 0.001 ecm =
off

0.001

N

ecmd =
0.001 standby

(power = on) AND
(thrust = zero) AND
(temp = increasing)

NOT (ecmd = off)
AND 30 <= tE <=60

(power = on) AND
(thrust = zero) AND

(temp = nominal)

pressure1 = high
AND pressure2 = high

AND ecmd = fire

(power = on) AND
(thrust = full) AND

(temp = nominal) AND
(pressure 1 = high) AND

(pressure2 = high)

Figure C-3: Timed Constraint Automaton for the engine component.

216

PDE:

(dcmdi, = dcmdo)

demd =res

0.001

0.001

demdi demd-
=on =off

0.0001

00001-

(dcmd =t no-cmd)

(dcmdo, = no-cmd)

et~

Figure C-4: Timed Constraint Automaton for the PDE component.

217

Figure C-5: Timed Constraint Automaton for the nav estimator mode variable.

218

Nav:

nav-cmd= (IMU = active) AND
(star-tracker = inactive)

toInertial

nav-cmd=

(IMU = active) AND \ torthRel
(star-tracker = active) /

0.001 0.001

Figure C-6: Timed Constraint Automaton for the entry event flag.

219

Att:

(acs = cruise-controller) AND
(NOT (attobs = in-cruise-orient))

(acs = landing-controller) AND
(attobs = in-landing-orient)

(acs = landing-controller) AND
(NOT (atobs = in-landing-orient))

(acs = vel-vect-controller) AND
(aft_obs = in-vel-vect-orient)

0.0001
A 3W at'

(acs = cruise-controller) AND
(attobs = in-cruise-orient)

(acs = entry-controller) AND
(NOT (attiobs = in-entry-orient))

0 <= tA <=300

(acs = entry-controller) AND
(att_obs = in-entry-orient)

(acs = vel-vect-controller) AND
(NOT (attobs = in-vel-vect-orient))

/
/

/

Figure C-7: Timed Constraint Automaton for the att state variable.

220

Lander:

(primary pyro =
not-fired) AND
(backup pyro =

not-fired)

0.0001'

w

4

pyro cmd =
fire-primary

0.001

spyro -cM
fire-back

4-----
0.0001

(primary pyro =
fired) OR

(backup pyro =
fired)

d=
:up

(primary pyro =
misfired) AND
(backup pyro =

not-fired)

Figure C-8: Timed Constraint Automaton for the lander separation pyro component.

221

Mach trigger:

(Mach-flag = set)
0 <= tm <= inf

(Machiflag = not-set)
/

/
/ 0.001

/
/

0.001

Figure C-9: Timed Constraint Automaton for the Mach-trigger event flag.

222

Chute:

(primary chute pyro =
not-fired) AND

(backup chute pyro =
not-fired)

mte-pyro -cmd
fire-pnmaryi

\ 0.001

0.0001'

_._0_-
0.0001

(primary chutepyro
= fired) OR

(backup chutepyro =
fired)

chute-pyroscmd =

fire-backup

(prima rychute-pyro =
misfired) AND

(backup chute pyro =
not-fired)

Figure C-10: Timed Constraint Automaton for the chute pyro component.

223

C

Heatshield:

hs-pyroscmd =
fire-primay

0.001

4-----
0.0001

(primary hs-pyro = fired)
OR

(backup hs-pyro = fired)

hspyrocmd =
fire-backup

(primary hspyro = misfired)
AND

(backup-hs-pyro = not-fired)

Figure C-11: Timed Constraint Automaton for the heatshield pyro component.

224

(primary hs-pyro = not-fired)
AND

(backup hspyro = not-fired) 0.00011

altvel-trigger:

0 <= tAV <= iif
--* (alt-vel flag = set)

(altjveLflag = not-set)
/

/
/

/ 0.001
I

/

Figure C-12: Timed Constraint Automaton for the alt-veLtrigger event flag.

225

0.001 \

0.001 \

Legs:

(legsepyro =fired)legscmd
deplo

/ 0.001

I

p

Figure C-13: Timed Constraint Automaton for the legs pyro component.

226

(legs-pyro =not-fired)]

(alt-data = false)

Radaraltim:

radarcmd =

tur nOn

radarcmd =

turnOff

I (alt data = true)

/
/

/
/

/ 0.0010.001 \

Figure C-14: Timed Constraint Automaton for the radar..altim sensor component.

227

Backshield:

bs-pyroscmd =
fire-primary

(primary bs-pyro = not-fired)
AND

(backup-bs-pyro = not-fired) \ 0.001

0.0001,

(primarybspyro = fired)
OR

(backup-bs-pyro = fired)

bs-pyroscmd =
fire-backup

(primary-bs-pyro = misfired)
AND

(backup bsjpyr = not-fired)

0.0001

Figure C-15: Timed Constraint Automaton for the backshield pyro component.

228

Figure C-16: Timed Constraint Automaton for the prop controller mode variable.

229

alt_40mtrigger:

(at40m-flag =
not-set)

0.001

0 <= t <= inf
(alt 40m flag =

set)

/
/

/
/ 0.001

/
/

Figure C-17: Timed Constraint Automaton for the alt 40m-trigger event flag.

230

Figure C-18: Timed Constraint Automaton for the alt.12m-trigger event flag.

231

0 <= trDS < if

tds cmd=
reset

Touchdown sensor:

(Touchdown =
true)

(Touchdown =
false)

,

/ 0.0010.001 \

/

p

Figure C-19: Timed Constraint Automaton for the touchdown..sensor component.

232

Figure C-20: Timed Constraint Automaton for the landing event flag.

233

landing:

