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Abstract

This project implements a hardware solution to the Advanced Encryption Standard (AES)
algorithm and interfaces to IBM's CoreConnect Bus Architecture. The project is IBM
SoftCore compliant, is synthesized to the .18 micron CMOS double-well technology, runs
at 133 MHz, and is approximately 706K for the 16x128 bit buffer implementation and
874K gates for the 32x128 bit buffer implementation. Data can be encrypted and
decrypted at a throughput of 1Gbps. The work described in the paper was completed as a
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1 Introduction

As processor speeds become faster, methods used to implement data security

become more important. Until recently, the Data Encryption Standard (DES) was enough

for most purposes. However, processor speeds are now fast enough that the algorithm can

be broken by trying every possible key.

In January of 1997 the National Institute of Standards and Technology (NIST)

announced that they were going to begin an effort to find a new, more secure, algorithm to

replace the DES. After many tests and careful evaluation by the encryption community,

the Rijndael encryption algorithm was officially approved for the Advanced Encryption

Standard (AES) in December of 2001. This paper will discuss one implementation of the

AES algorithm, which will be referred to as the AES Encryption Core.

DCR DCR AES Encryption Core PLB PLB
Bus Interface Interface

Figure 1.1 Top Level Block Diagram. The AES Encryption Core contains interfaces to
the Processor Local Bus (PLB) and the Device Control Register (DCR) Bus.

The AES Encryption Core is a soft corel compliant with IBM's Softcore

methodology and is capable of encrypting and decrypting data at a throughput of 1Gbps

using a 133 MHz clock in 0.18 micron double-well CMOS (SA27E) technology. The

architecture minimizes the area while meeting the 1 Gbps throughput. This project was

completed through architecture design, verification, synthesis, and static timing.

1. A soft core is supplied to a customer as VHDL or Verilog netlists and is verified to meet test and
timing requirements.
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The AES Encryption Core is implemented modularly, interfacing with the IBM

Core Connect Bus Architecture. This allows the Core Connect Interface to be easily

removed and replaced with another interface. The Encryption Core interfaces with the

Core Connect Bus Architecture through the Device Control Register (DCR) Bus and the

Processor Local Bus (PLB). The PLB is a high performance bus used to access memory,

while the DCR Bus is used for configuration purposes. In the case of the AES Encryption

Core, the DCR Bus is used to configure an encryption or decryption transaction. Given

this configuration information, the core first reads data from memory using the PLB, then

processes the data, and finally writes the data back to memory using the PLB. The

interfaces are shown in figure 1.1.
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2 Encryption Algorithm

2.1 Encryption Overview

Encryption is a way to keep data secure by using mathematical transformations on

a sequence of bits. These transformations use a set sequence of bits known as a key.

There are two well known types of encryption: public key/private key pairs and symmetric

keys.

The advantage of public key/private key pairs is that they are more secure because

anyone can use the public key to encrypt data, but only the private key owner can decrypt

the data. This keeps the private key uncompromised. The problem is that the algorithms

require most public key/private key pairs to have a large number of bits (usually of at least

1000 bits) to keep the private key secure, making the encryption or decryption slow.

Because this type of encryption is slow, public key/private key pairs are most often used to

transfer keys over an insecure line or are used for authentication. It is not used for

encrypting or decrypting large amounts of data. The symmetric keys are changed often, so

that a compromise of a single key provides access to a limited amount of data.

Symmetric key encryption is secure given that the key is securely distributed.

Most algorithms use anywhere from 56 to 256 bit keys, and can be much faster than the

public key/private key encryption. A single key is used for both encryption and decryption

and must be kept secret. Symmetric keys are well suited for encrypting large amounts of

data.

2.2 Encryption Algorithm Selection

The Advanced Encryption Standard (AES) algorithm was selected for several

reasons. The Encryption Core will need to support a wide range of applications and will

be used to encrypt large amounts of data. The core will go into a library that other

designers can use as a black box design. Using a standard algorithm instead of a non-
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standard algorithm may allow more designs to use the Encryption Core. In this case, we

assume that data that is encrypted will be decrypted at some point in time. In some

applications, data gets encrypted and decrypted on different blocks. If so, both blocks

need to use the same, ideally standard algorithm.

Two standard algorithms will be compared: the Advanced Encryption Standard

(AES) and the Data Encryption Standard (DES). Both of these are symmetric key

algorithms. The DES algorithm supports a key length of 56 bits. The DES is older and

has a much smaller key space to exhaust. The AES algorithm supports key lengths of 128,

192, and 256 bits. Given that a block of encrypted data and a block of decrypted is known,

if the 56-bit DES algorithm could be broken in 1 second simply by trying every single key,

the same method using the 128-bit AES algorithm will take approximately 1.5x10 14 years

to break; the 192-bit AES algorithm, 2.8x10 33 years; the 256-bit AES algorithm, 5.1x10 52

years. It is easy to see that an algorithm with more bits has a much greater impact on the

security.2

2.3 Advanced Encryption Standard Algorithm

The AES algorithm is based on simple mathematical transformations whose

inverses are difficult to compute without the key. The algorithm has 4 basic

transformations that are repeated 10, 12, or 14 times, depending on what key size is being

used. Repeating the transformations multiple times helps to ensure that breaking the

algorithm will be more difficult to compute than trying every single key. Currently it is

believed that no simplification of the transformations will allow a shortcut to break the

AES algorithm. This belief is held because the transforms are simple and allow thorough

analysis.[6]

2. For a detailed discussion on security of the AES algorithm, see AES Proposal: Rijndael.
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All four transformations are applied to the 128-bit state, represented in Figure 2.1

where each square represents one byte. Transformations on the state can be applied to

each individual byte, the columns, or the rows.

Figure 2.1 128 Bit State Representation. Each square represents one byte of the state.

2.3.1 Notation

{xx} is the representation of a byte in hexadecimal.

x * y is the representation for finite field multiplication.

x @ y is the representation for an xor.

Nb is the number of 32 bit words in the state.

Nk is the number of 32 bit words in the key.

Nr is the number of rounds

2.3.2 Mathematics 3

The AES algorithm is based on addition and multiplication using finite field

elements. The finite field elements can be represented in several ways: polynomial and

hexadecimal are two examples shown in equation 2.1.

x 5 + x 4 + x = {32} (Equation 2.1)

3. See the Specification for the Advanced Encryption Standard for a more detailed description of the
mathematics behind the AES algorithm.
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Addition is simply the xor of two numbers. Multiplication can be thought of as the

multiplication of two polynomials modulo an irreducible polynomial. To multiply a byte

by x ({02}) the following steps should be taken. First, the byte is shifted to the left by one

bit. If the highest order bit is a 1, the modulo of the irreducible polynomial consists of the

xor of the shifted byte and the irreducible polynomial. If the highest order bit is a zero, the

shifted byte is already in reduced form. Equation 2.2 shows how to multiply a byte by x2

and Equation 2.3 illustrates how to multiply a byte by x3. Equation 2.4 demonstrates how

the distributive property reduces a multiplication to use the multiplication by x algorithm

described above.

{32}{04} = ({32}.{02})*{02}

{32}.{08} = (({32}.{02})9{02})*{02}

{32}.{26} = {32}9({20}G{04}{02})
= (({32} e {20}) @ ({32} e {04}) @ ({32} {02}))

(Equation2.2)

(Equation2.3)

(Equation2.4)

One of the transformations requires the multiplicative inverse of a byte. The

inverse of b(x) can be found by applying the extended Euclidean algorithm (outlined in

Figure 2.2) to Equation 2.5 to find a(x) and c(x).[19] Equation 2.5 leads to equation 2.6,

which leads to equation 2.7, resulting in the multiplicative inverse of b(x). An example of

this algorithm can be found in Appendix B.

b(x)a(x) + m(x)c(x) = 1 (Equation 2.5)
m(x) =x8+x4+x3+x+ 1

a(x) 9 b(x) mod m(x) = 1

b-1 (x) = a(x) mod m(x)

(Equation 2.6)

(Equation 2.7)
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1. a2(x)=1, a(x)=0, c2(x)=0, cI(x)=1
2. While m(x) /= 0 do the following:

2.1 q(x)=b(x) div m(x), r(x)=b(x)-m(x)q(x)
2.2 a(x)=a 2(x)-q(x)al(x), c(x)=c2(x)-q(x)c(x)

2.3 b(x)=m(x), m(x)=r(x)
2.4 a 2(x)=al(x), al(x)=a(x), c2(x)=cl(x), cI(x)=:c(x)

3. a(x)=a2(x), c(x)=c2 (x)

Figure 2.2 Extended Euclidean Algorithm. [1]
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2.3.3 Transformations for Encryption

There are four transformations used for encryption: SubBytes, ShiftRows,

MixColumns, and AddRoundKey. Each of these transformations are used in each round.

For a key size of 128-bits there are 10 rounds; for a 192-bit key, 12 rounds; for a 256-bit

key, 14 rounds. In addition the AddRoundKey function is used one additional time in

round 0. The last round does not use the MixColumns transformation. Figure 2.3 shows

which transformations are applied in each round.

AddRoundKey

SubBytes

Shift Rows

MixColumns

AddRoundKey

yes ounds<1 0(12)(1

no

SubBytes

Shift Rows ;

AddRoundKey j

Figure 2.3 AES Encryption Algorithm.
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ShiftRows is a cyclic transformation that is applied to each row of the state. Figure

2.4 shows which bytes need to be swapped.

Figure 2.4 Shift Rows Transformation. [19]

SubBytes is a non-linear transformation applied to each byte of the state. The

transformation is expressed in Equation 2.8 [19] where b is the multiplicative inverse of

the byte that is being transformed and bx represents one bit of the byte. The multiplicative

inverse is found using the algorithm described in Section 2.3.2. In this case, the

irreducible polynomial is equal to x8+x4+x3+x+1. Note that when multiplying the two

matrices in Equation 2.8, finite field addition should be used. Equation 2.9 [19] shows

how to calculate bo'.

0

0

0

bo' = bo @ b4 ( b5 ( b6 G b7 Gl

+

0

0

0

0

1

1

0

(Equation 2.8)

(Equation 2.9)
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Table 2.1 shows all values the SubBytes transformation produces with reference to

an arbitrary byte { xy }. For example the transformation of byte { xy } = {21} is { fd }. An

example of how values in this table are computed is found in appendix B.

Table 2.1: SubBytes Transformation Lookup Table.[19]

y
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 fD ad d4 a2 af 9c a4 72 cO

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 fl 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c la lb 6e 5a aO 52 3b d6 b3 29 e3 2f 84

5 53 dl 00 ed 20 fc bI 5b 6a cb be 39 4a 4c 58 cf

6 dO ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

x 7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd Oc 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e Ob db

a eO 32 3a Oa 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e Ic a6 b4 c6 e8 dd 74 If 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 Oe 61 35 57 b9 86 cl Id 9e

e el f8 98 11 69 d9 8e 94 9b le 87 e9 cc 55 28 df

f 8c al 89 Od bf e6 42 68 41 99 2d Of bO 54 bb 16

MixColumns is the transformation shown in Equation 2.10.[19] It uses finite field

multiplication where the irreducible polynomial m(x) is equal to x4+ 1. Note that when

multiplying the two matrices finite field addition should be used.

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

so,c

s1,c

s2,c

_s3,c_

(Equation 2.10)

Add RoundKey is a transformation that takes the xor of the 128-bit state and the

round key, an intermediate 128-bit key for each round of the algorithm. A description of

how to calculate the round key can be found in Section 2.3.5.
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The designers of the AES algorithm chose these transformations because they are

simple, provide resistance against known attacks, they minimize the correlations between

inputs and outputs, and they are invertible.

2.3.4 Transformations for Decryption

AddRoundKey

+o InvShiftRows

11111
0-

InvSubBytes

AddRoundKey

InvMixColumns

yes ounds<1 0(12)(1

no

InvShiftRows

InvSubBytes

AddRoundKey -

Figure 2.5 AES Decryption Algorithm.

There are also four transformations for decryption: InvSubBytes, InvShiftRows,

InvMixColumns, and AddRoundKey. These transformations are the inverses of the

transformations described in the previous section. As in encryption, each of these

20



transformations are used in each round plus the AddRoundKey is used one additional time

in round 0. Figure 2.5 shows the order the transformations are applied in.

InvShiftRows, shown in Figure 2.6, is the inverse of ShiftRows, a cyclic

transformation that is applied to each row of the state.

Figure 2.6 InvShiftRows Transformation. [19]

InvSubBytes is the inverse of SubBytes, a non-linear transformation that is applied

to each byte of the state. Table 2.2 shows the results of the transformation. For example,

the transformation of byte {xy}={21} is {7b}.

Table 2.2: InvSubBytes Transformation Lookup Table. [19]

y
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 S d7 fb
1 7c e3 39 82 9b 2f if 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 Ob 42 fa c3 4e

3 08 2e al 66 28 d9 24 b2 76 5b a2 49 6d 8b dl 25
4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c be d3 Oa P e4 58 05 b8 b3 45 06
x 7 dO 2c le 8f ca 3f Of 02 cl af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce fO b4 e6 73
9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 Ic 75 df 6e

a 47 fl la 71 Id 29 c5 89 6f b7 62 Oe aa 18 be lb

b fc 56 3e 4b c6 d2 79 20 9a db cO fe 78 cd 5a f4

c If dd a8 33 88 07 c7 31 bl 12 10 59 27 80 ec 5f
d 60 51 7f a9 19 b5 4a Od 2d e5 7a 9f 93 c9 9c ef

e aG eO 3b 4d ae 2a fB bO c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 el 69 14 63 55 21 Oc 7d

21

SO,O S0,1 SO,2 SO,3

S1,0 S1,1 S1,2 S1,3

S 2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3 ,3

So,O S0,1 SO,2 SO,3

S1,3 S1,0 S1,1 S1,2

S2,2 S2,3 S2,0 S2,1

S3,1 S3,2 S3,3 S3,0



InvMixColumns is the inverse of MixColumns, a transformation that uses finite

field multiplication using the irreducible polynomial x4+ 1. The transformation can be

expressed by equation 2.11 [19].

so,' Ge Ob Od 09 sO'C

siC' 09 Ge Ob Od s1,c

s2,c' Od 09 e Ob s2,c (Equation 2.11)

s3,c Gb Gd 09 Ge S3,c

AddRoundKey for decryption is the same as for encryption. It is a transformation

that takes the xor of the state and the round key.

2.3.5 Key Expansions

The AES algorithm supports 128, 192, or 256 bit keys. That key is used to

produce a 128-bit intermediate key (round key) for each round of the algorithm. The first

round key is used by round 0 and is the first 128 bits of the key. If the key is 256 bits then

the second round key is the last 128 bits of the key. If the key is 192 bits, then the first 64

bits of the second round key is the last 64 bits of the key. The last 64 bits of the round key

are found by taking a transformation of the original key. If the key is 128 bits then the

second round key is a transformation of the first round key. All of the other round keys are

found by transforming the previous round key if the key size is 128 bits or the previous

two round keys if the key size is 192 or 256 bits. Figure 2.7 shows the algorithm for

computing all of the round keys for a particular key. Sample key expansions can be found

in Appendix A.
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KeyExpansion(byte key[4 * Nk], word w[Nb * (Nr + 1)], Nk)
begin

i=0
while (i < Nk)

w[i] = word[key[4*i],key[4*i+1],key[4*i+2],key[4*i+3]]
ii+ 1

end while

i= Nk
while (i < Nb * (Nr + 1))

word temp = w[i-1]
if (i mod Nk=O)

temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
else if (Nk = 8 and i mod Nk = 4)

temp = SubWord(temp)
end if
w[i]=w[i-Nk] xor temp
i=i+1

end while
end

Figure 2.7 Algorithm for Key Expansion.[19]

Rcon is a function that produces a round constant of the form given by equation

2.13. Table 2.3 lists the values the Rcon function produces.

Rcon(i) = [xi-1, {00}, {o}, {00}]

Table 2.3: Rcon Values.

Rcon(i)

1 [{01},{00),{00},{00}]
2 [{02},{00),{00},{00}]

3 [{04},{00),{00},{00}]

4 [{08},{00),{00},{00}]
5 [{ 10},{),{00},{OO00}]
6 [{20},{00),{00},{OO}]

7 [{40},{00),{oo},{oo}]

8 [{80},{OO),{ 00},{OO}]
9 [{1lb},{00),{00},{Oo}]
10 [{36},{00),{00},{00}]

(Equation 2.12)
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RotWord is a function that performs a cyclic permutation on a four bit word. Each

byte is shifted to the left by one. See an example in equation 2.12.

[{01}, {23}, {45}, {67}] = [{23}, {45}, {67}, {01}] (Equation 2.13)

SubWord is simply the SubByte transformation applied to each byte of the word.
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3 IBM Core Connect Bus Architecture

3.1 Core Connect Bus Architecture Overview

The IBM Core Connect Bus Architecture is a standard used for System-On-a-Chip

(SOC) designs. The two busses used in the AES Encryption Core are the Processor Local

Bus (PLB) and the Device Control Register (DCR) Bus. The PLB is used for high

performance, low latency devices. The OPB is a secondary bus that is used for low-

bandwidth devices. The DCR Bus is a low performance bus that is primarily used to

configure a device through reading and writing to control registers. Figure 3.1 shows an
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Cotoler G Cntroller uC1Aff US13 G.P1

F0U7A1r On-Ch~p Prlphral Bus (CPS) 32-bit

PPC~a Interrupt OPB DIAA 1W100 EthernEk
CPU Controller BrIdga Conhroller

Devica
t It Control

PLBE Processor Local Bus (PLB) 128-bit Registar
Arbltar I Bus

C1 33 DDR133 Sr RA~g C Mtr Mc Co ntrul
:SDRrA aniiler U-2 CPower Mgmt

Figure 3.1 Core Connect Diagram Based on System-On-a-Chip.[15]

example of what types of devices might be on each bus.

The PLB and DCR Bus were chosen to interface with the AES Encryption Core, as

the project requires an interface to the Core Connect Bus Architecture. The DCR Bus is

used to configure the core with control information such as where to get the data to be
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processed, where to send the processed data to, how many blocks to encrypt or decrypt,

and when to start the transaction. The AES Encryption Core will take this data, process it,

and request the key and data to encrypt or decrypt over the PLB. Once the data is received

and processed the Encryption Core will write the data back out to memory over the PLB.

Control and status information can be read from the DCR Bus.
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3.2 Device Control Register Bus

The DCR Bus accesses the status and control registers for the OPB and PLB

masters and slaves without using OPB and PLB bandwidth. The DCR slaves are

organized in a ring architecture. The DCR Bus has a 10-bit address bus and a single 32-bit

read/write data bus. The slaves and master do not need to be clocked at the same

frequency. Figure 3.2 diagrams the DCR bus.

CPU dwA3LsD3 i,)
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inLarfta CPtU_dtrRead

IJCR...rtW~d .

-b

13 R Srav. 2

-I EcRa

D :R Slan 2

acRt

CCR.puDuItjD.:31)

Figure 3.2 DCR Block Diagram.[17]
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3.3 Processor Local Bus

The PLB is a high-performance bus that supports 16, 32, and 64-bit address and

32, 64, 128, and 256-bit data widths. There are two data busses, one for reading and the

other for writing. The PLB supports single and bursting reads and writes with address

pipelining. It has an arbiter that decides which master gets access to the bus. All masters

and slaves must be connected to the same clock. Figure 3.3 shows how the masters and

slaves are connected to the bus.
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Figure 3.3 PLB Block Diagram.[21]

28

Dala

tard

AddIdonel

CannaM Bus Athilme

-- I



4 Encryption Algorithm Implementation

This AES implementation has a throughput of I Gbps using a 133 MHz clock.

The design is pipelined so that one 128-bit block of data is processed every 16 clock

cycles, meeting the target throughput. There are 15 pipeline stages giving a latency of 240

clock cycles to process one block of data.

There are two blocks in the top level AES algorithm: GetDecKey and Encrypt/

Decrypt Data. (Figure 4.1.) The GetDecKey block will iterate through the round keys and

output the last one. The Encrypt/Decrypt Data block processes data using the key from

the GetDecKey block. Once a key has been loaded into the system, data can be processed

continuously. Table 4.1 describes the input and output signals of the AES algorithm

block.

ein no

ein t

e~d outgo acks__

ed out done

ed out enc active 0
ed out enc

ed out state

ed out taiz

PLB/DCR Interface

Figure 4.1 AES Algorithm Block Diagram
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AES Algorithm Signal Descriptions.

30

signal name description

sys_clk System clock.

sysreset System reset.

sysstartenc 16 cycle pulse. One 128-bit block processed every pulse.

ed_in_enc Encrypt/Decrypt data selector for input data.

edinencactive Input data is valid.

edin go Start a transaction, process key information.

edin-key Key for transaction.

ed-in-key-size Size of key.

edinstate Data to be encrypted or decrypted.

ed-injtag Signals that correspond to the input data and are to be used by the PLB interface.

edoutenc Encrypt/Decrypt data selector for output data.

edoutencactive Output data is valid.

ed-out-go-ack The key has been processed and the encrypt/decrypt data block is ready for data.

edoutstate Data that has been encrypted or decrypted.

ed-out-tag Signals that correspond to the output data and are to be used by the PLB interface.

Figure 4.2 is a flow chart that outlines a transaction, where a transaction is an

encryption or decryption operation that uses the same key. To start a transaction the go

signal, edin-go, needs to be asserted (set to logical 'l'). When this signal is asserted, the

Get Decrypt Key block must process the key. When the key has been processed the go

acknowledge, edout go ack, must be asserted. After the go acknowledge has been

asserted, data can be sent through the Encrypt/Decrypt Data block. To enter data into the

Encrypt/Decrypt Data block the data active signal, edinencactive, must be high on the

rising edge of the start signal, sysstartenc. If the data active signal is high on the rising

edge of the start signal, then the input signals are latched into the first round. Each time

the start signal pulses, the data will pass from one round to the next. When all of the data

has been sent for a particular key and transaction type, then edingo may be asserted

again to process a new key.

Table 4.1



Assert edingo.
ake the following signals valid:

edinjkey, ed inkeysize, and
ed in enc.

rocess ey with
GetDecKey block.

Assert ed_out_goack.

Deassert ed in0go.

rocess more data. no

yes

e~s Data ready?

no

Assert ed in enc actie.

Make the following signals valid:
ed in enc, ed in kecsze

ed in state, and edintag.

Wait or nsing edge of
sys_startenc.

Figure 4.2 AES Algorithm Flow Chart.
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Input to the Encrypt/Decrypt Data block is sent through a 15-round pipeline.

Each round is 16 clock cycles. The inputs are latched into the round on the rising edge of

the start signal. If the key size is 128, then rounds 10 through 13 are not used and the

input data is simply latched into the next round. Rounds 12 and 13 are not used for a key

size of 192. Within each round, up to four transformations are computed. The

transformations for a round use most of the 16 clock cycles and minimize the logic. If the

transaction is an encryption then the SubBytes, ShiftRows, and MixColumns

transformations may be used. If the transaction is a decryption then InvSubBytes,

InvShiftRows, and InvMixColumns may be used. Both transaction types use the

AddRoundKey transformation. Figure 4.3 displays a signal diagram of a round and Table

4.2 describes each of the round signals. A block diagram for each round is specified in

Figures 4.4 through 4.7. Note that there are 80 bits reserved for a tag to be used by the

interface.

reset 1

go next round key ~

enc active next enc active-,

enc next enc

nk Round next nk

prey round key state out

state in tag out

tag in done

cik

Figure 4.3 Round Signal Diagram.
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Table 4.2 Round Signal Descriptions.

Signal Name Signal Description

generic: round Indicates the round number to set up constants in the VHDL.

clk System clock.

reset System reset.

go 16 cycle pulse. One 128-bit block processed every pulse.

encactive Encrypt/Decrypt data selector for input data.

enc Indicates input data is valid.

nk(3:0) Indicates the number of words in the key.

prevroundkey(255: Holds the value of the two previous round keys
0)

state-in(127:0) Holds the value of the input state.

tag-in(79:0) Holds the value of the tag.

nextroundkey(255: Holds the value of the previous round key and the current round key. This will
0) be sent to the next round.

nextencactive Indicates the value of encactive for the next round.

nextenc Indicates the value of enc for the next round.

next nk(3:0) Indicates the value of nk for the next round.

state-out(127:0) Holds the value of the output state. This will be sent to the next round.

tag-out(79:0) Holds the value of the tag for the next round.

done Indicates that all of the output signals are valid.

128

256 ks 128 128

iks 128 128

128

enc

ark 28 tate out
128 128

Figure 4.4 Round 0 Block Diagram. Not all signals are shown.
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Figure 4.7 Round 14 Block Diagram. Not all signals are shown.
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4.1 Key Setup

When a new key is received, it needs to be processed so that it can be sent into the

first round. If the transaction is an encryption transaction then the first 128 bits are used as

the round key for round 0. If the key size is 192 or 256, then the last 64 or 128 bits are

saved to be used as the round key for round 1. If the transaction is a decryption

transaction, then the key needs to be processed to get the last round key. For a key size of

128, there are 10 round keys; for a key size of 192, 12 round keys; for a key size of 256, 14

round keys. The algorithm for finding each round key can be seen in Section 2.3.5.

To implement the key setup for decryption, each key is found one at a time. Each

round key requires one SubWord transformation, which uses the SubByte function. This

implementation replicates the SubByte function four times, once for each time the

SubByte function is used in the SubWord transformation, reducing the latency to find the

decryption key. The design is optimized for encrypting or decrypting large amounts of

data while using a single key. For large amounts of data, the key setup time is negligible

and it may make more sense to not replicate the SubByte function. However, for small

amounts of data, the latency is improved by replicating the SubByte function. The Rcon

function is implemented once as it is only used one time per round key. Inputs to the

GetDecKey Block indicate which round key needs to be found. A signal diagram of the

GetDecKey Block is displayed in Figure 4.8 and descriptions of the signals are listed in

Table 4.3.
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reset 01
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round

round key in P

cik

done

round key out-,

Figure 4.8 GetDecKey Block Diagram.

Table 4.3 GetDecKey Signal Descriptions.

Signal Name Description

reset System reset.

clk System clock.

go Indicates that the inputs are valid and that the next round key should be found.

nk(3:0) Indicates the number of words in the key.

round(3:0) Indicates the round number that should be found.

roundkey-in(255:0) key-size=128: Bits 127:0 hold the previous round key. Other bits unused.
key-size/= 128: Holds the previous two round keys. The upper bits hold the
round key from two rounds before and the lower bits hold the previous round
key. (For round 0 and 1, bits 127:0 hold the round key for round 0 and bits
255:128 hold the round key for round 1.)

done Indicates that roundkey-out is valid.

round-key-out(255:0) Holds the previous round key in the upper bits and the round key for the current
round in the lower bits.

A timing diagram for the GetDecKey block can be found in Figure 4.9. When the

go signal is asserted, the other inputs must be valid. At this point the GetDecKey block

latches in all of the inputs. The round and key size will be applied to the input key to get

the next round key. When the transformation is complete the done signal will be asserted

with a valid output round key. The done signal is asserted for one clock cycle.
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clk

go

round

round-keyin

done

round-keyout
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vai vai1  I

vald 
va 1

Figure 4.9 GetDecKey Timing Diagram. Note that this is not to scale. From the time go
is asserted, it takes 6 cycles for done to be asserted.

4.2 Encryption

There are four main transformations used on the state for encryption: SubBytes,

ShiftRows, MixColumns, and AddRoundKey. The key scheduler is a transformation

applied to the key. Each of these transformations are described in Chapter 2.

A timing diagram of an encryption round is displayed in Figure 4.10. A go signal

is sent every 16 clock cycles. If enc and encactive are both high when the go signal is

received, then the output state and the next round key are computed. First the SubByte

block and the Key Scheduler begins processing. When the SubByte block finishes, the

ShiftColumns transformation is applied to the bits and the resulting data is sent to the

MixColumns block. After both the Key Scheduler and the MixColumns block complete,

the state and the key is sent to the AddRoundKey block. When the AddRoundKey block

completes, the key and state are valid output until the next go signal is received.
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Figure 4.10 Encryption Round Timing Diagram.
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4.2.1 SubBytes Implementation

SubBytes is used in rounds 1 through 14 and is implemented by a lookup table

(Table 2.1) with 256 entries, each of which is 8 bits wide. The lookup table was

implemented because the computation of the multiplicative inverse can take a large

number of cycles to complete. Because the number of cycles to compute the inverse is

large, more rounds would need to be inserted in parallel with the current rounds. While

the implementation of the multiplicative inverse and the additional xors could be smaller

than the lookup table, the extra replication that would be needed to achieve the target

throughput did not yield a significant savings. The SubBytes transformation is replicated

twice for each round. Each of these replicas are used 8 times per round, processing a total

of 16 bytes. A block diagram of the SubBytes transformation is found in Figure 4.11 and

a list of signal descriptions are found in Table 4.4.

reset

go

enc activeconsbi

enc count sb out
upper SubByte result
lower

nk
(rounds 10-13 only)

clk

Figure 4.11 SubBytes Signal Diagram.
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Table 4.4 SubBytes Signal Descriptions.

Signal Name Signal Description

generic: numinputs(4:0) Indicates the number of bytes that need to be transformed in a particular
round. Set to 8.

generic: numoutputs(2:0) Indicates the number of locations the output bytes can go to. Set to 2.

elk System clock.

reset System reset.

go Indicates inputs are ready and SubByte transformation should begin.

encactive Indicates that the round is processing data.

enc Indicates whether the transaction is an encryption or decryption

upper(3:0) Upper four bits of the byte to be transformed.

lower(3:0) Lower four bits of the byte to be transformed.

nk(3:0) Indicates the number of works in the key.

count-sbjin(4:0) Indicates which byte should be input to the SubByte block. (Max of
numinputs.)

count-sb-out(2:0) Indicates which byte is being output from the SubByte block.

result(7:0) Result of the SubByte transformation.

done Indicates that the last of the bytes specified by count-sbout have been
processed.

A timing diagram for the SubByte block is found in figure 4.12. When the

SubByte transformation is needed, the go signal is asserted. If the encactive and the enc

signals are high, then the SubByte block will process the inputs, otherwise the result is hex

"00". The countsbin signal indicates which byte to input. Before the go is asserted, the

countsbin signal is set to 0. Countsbin counts up to the number of inputs,

num-inputs. The result is valid the clock cycle after the input is valid. At this point, the

system has one clock cycle to make the inputs valid. As the results become valid, the

countsbout signal counts up to the number of outputs, numoutputs. In this

implementation, there are eight bytes that will be input and four sets of two bytes are

output. Each time the done signal is asserted, two bytes are loaded into the MixColumns

42



transformation. When the SubBytes block is finished countsbin and countsbout are

set back to 0.

clk

go

countsbin

upper

lower

countsbout

result

done

I 1 0 1 11/ 2 1 3 11 4 5 11)/ 6 7 0

I I I I I I I I I I

I I vai d vld vld vld vld vid a
.. .. ...

Figure 4.12 SubBytes Timing Diagram

4.2.2 ShiftRows Implementation

After the SubBytes transformation is applied, the ShiftRows transformation is

implemented by changing the order of the bits in the state according to Figure 2.4. This

does not take any logic or clock cycles. ShiftRows is used in rounds 1 through 14.
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4.2.3 MixColumns Implementation

After the bits have been rearranged, the MixColumns transformation is applied in

rounds 1 through 13. The MixColumns transformation is implemented with

combinational logic using the multiplication by x algorithm described in Section 2.3.2.

This multiplication takes one cycle to complete. The MixColumns transformation is not

replicated and is reused four times, once for each word, taking a total of 4 clock cycles.

The block diagram of the MixColumns transformation can be found in Figure 4.13 and the

signal descriptions are listed in Table 4.5.

reset

go

enc active

enc

done ks

byte0

bytel

byte2

byte3

nk
(rounds 10-13 only)

clk

count mc out

result

done

MixColumns Signal Diagram.
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Table 4.5 MixColumns Signal Descriptions

Signal Name Signal Description

generic: numsbjblocks(4:0) Indicates the number of time the SubBytes block is replicated. Set to 2.

generic: numoutputs(2:0) Indicates how many locations the result can go to. Set to 4.

clk System clock.

reset System reset.

go Indicates that valid data is on the inputs and that the MixColumns trans-
formation should begin.

encactive Indicates that the round is processing data.

enc Indicates whether the transaction is an encryption or decryption

doneks Indicates that the round key is ready and that the done signal can be
deasserted.

byteO(7:0) Bits 7:0 of the input word.

bytel(7:0) Bits 15:8 of the input word.

byte2(7:0) Bits 23:16 of the input word.

byte3(7:0) Bits 31:24 of the input word.

nk(3:0) Indicates the number of words in the key.

countmcout(2:0) Indicates which word is being output.

result(3 1:0) Result of the MixColumns transformation.

done Indicates that the result holds valid data.

The done signals from the SubBytes block are used as the go signals for the

MixColumns block. The MixColumns block gets two bytes of data from each of the

SubByte blocks. When all four bytes of data are ready, the data is processed and the result

is valid on the next clock cycle. The data stays valid until countmcout changes. In this

implementation, the number of outputs, num outputs, is set to 4. When there is no valid

data, countmcout stays at 4. When all four words of data have been output, the done

signal becomes high and stays high until it sees that the done signal from the key

scheduler, doneks, is also high.
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Figure 4.14 MixColumns Timing Diagram.

4.2.4 Key Scheduler Implementation

The key scheduler computes the round key for each round using the previous

round key. (For key sizes of 192 or 256 the key scheduler uses the previous two round

keys.) The Rcon transformation is implemented once. The SubByte transformation is

replicated 4 times, once for each time it is used in the SubWord transformation. The other

logic is implemented custom to each round. A signal diagram is displayed in figure 4.15

and table 4.6 gives a description of each of the signals.
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reset
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done mc

prev round key

nk

clk

next round key

done

KeyScheduler Signal Diagram.

Table 4.6 KeyScheduler Signal Descriptions

Signal Name Signal description

generic: nummcblocks(3:0) Indicates the number of times the MixColumns block was replicated.
Set to 1.

generic: round(3:0) Indicates the round number

generic: num-sb-blocks(4:0) Indicates the number of times the SubByte block is replicated. Set to 2.

clk System clock.

reset System reset.

go Indicates that valid data is on the inputs and that the Key Scheduler
should begin.

encactive Indicates that the round is processing data.

enc Indicates whether the transaction is an encryption or decryption

done_mc Indicates that the MixColumns transformation is complete and that the
done signal can be deasserted. (For round 14 this signal is donesb and
it indicates that the SubBytes transformation is complete.)

prevround_key(255:0) Holds the value of the last two round keys.

nk(3:0) Indicates the number of words in the key.

nextroundkey(255:0) Result of the Key Scheduler. Holds the value of the current round key
and the previous round key. For round 14 this signal is only 127 bits and
holds the value of the current round key.

done Indicates that the nextround-key is valid.
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Figure 4.16 gives an example of how the key scheduler works. The key scheduler

latches in the previous two round keys when it receives a go signal. First, the SubWord

transformation is performed. After the result is valid, it is used to find the first word of the

next round key. All of the other words in the round key are then found using the previous

word and the previous round key. When all of the words of the round key have been

found, the done signal is asserted. It stays asserted until the done signal from the

MixColumns transformation has been received.

I I I I I I I I I I
clk

go

preyroundkeM valid

sw-temp valid
(internal) ..

sw-result I xvalidlI

(internal)
temp
(internal)

nextroundke

done

done_mc

I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I

va id va id va id va id

I I I I I I I I I II I I I I I /

I I I I I I I I I I

I I I I I I I I I I I

Figure 4.16 KeyScheduler Timing Diagram.

48



4.2.5 AddRoundKey Implementation

Once the MixColumns transformation and the key scheduler has completed, the

AddRoundKey transformation is applied. This is a simple xor of the result of the

MixColumns transformation and the round key. Figure 4.17 displays a signal diagram of

the AddRoundKey block and Table 4.7 provides descriptions of the signals.

reset

go

enc active

enc

start enc

done imc

round key

state in

clk Ap.

state out

done

Figure 4.17 AddRoundKey Signal Diagram.

Table 4.7 AddRoundKey Signal Descriptions

Signal Name Signal Description

generic: numimcblocks(3:0) Indicates the number of times the InvMixColumns block is replicated.
Set to 2.

clk System clock.

reset System reset.

go Indicates that valid data is on the inputs and that the AddRoundKey
transformation should begin.

encactive Indicates that the round is processing data.

enc Indicates whether the transaction is an encryption or decryption

startenc Indicates that new data is coming in on the pipeline.

doneimc Indicates that the InvMixColumns transformation is complete and that
the done signal can be deasserted.
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Table 4.7 AddRoundKey Signal Descriptions

Signal Name Signal Description

round-key(127:0) Holds the value of the current round key.

state-in(127:0) Holds the value of the current state.

state-out(127:0) Holds the value of the result of the AddRoundKey transformation.

done Indicates that state-out is valid.

A timing diagram for the AddRoundKey transformation can be seen in Figure

4.18. The AddRoundKey block will get a go signal when the round key and the input state

are valid. The transformation takes one clock cycle to complete and the done signal is

asserted with the output state.

clk

go

round-key

statein

stateout

done

II I I I

I I L I I

valid

I I Ivalidd~ I I

I I I I I

Figure 4.18 AddRoundKey Timing Diagram.

Appendix C contains a worked out example of an encryption.
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4.3 Decryption

The AES decryption algorithm is simply the inverse of the encryption algorithm.

The four transformations that are used on the state are: InvShiftRows, InvSubBytes,

AddRoundKey, and InvMixColumns. Section 2.3.4 gives a detailed description of the

transformations. Before a decryption round begins, the input key must be processed by

the GetDecKey block to provide the first round key for decryption. The GetDecKey block

is described in Section 4.1.

A timing diagram of a decryption round is found in Figure 4.19. A go signal is

sent every 16 clock cycles. When the go is received and encactive is high and enc is low,

then the output state and the next round key are computed. First, the state bits will be

switched around according to the InvShiftRows transformation described by figure 2.6.

Next the InvSubBytes and the Key Scheduler blocks will begin processing. The round

keys will be computed in the reverse order as in encryption. When InvSubBytes and the

Key Scheduler are complete, the state and the round key are input to the AddRoundKey

block. After the AddRoundKey block are completed the state is sent to the

InvMixColumns block. Once the InvMixColumns block completes, the output state is

valid.

51



I I I I I I I I I I I I I I I I I I I I
clk

go

prevround_k a 1

state-in an

go-isb

done-isb

111111111 I I I 1|| a I

a i

goiks

doneiks

I I I I

I I I I

nextround ke

I I I
go-ark I I I

d I I
doneark

goimc

I I I I I I

I I I I I I
I I I I I I

1 I I
I I I
I I I

/
I I

I I I I I I I I I
I I I
I I I
I I I

I I I I

valid

I I I I I I I I I

I I I I I I I I I I I I
I I I I I I I I I I I I
I I I I I I I I I I I I

I I I I I I I I I I I I
doneirnc i i 1111111111| |

I I I I I I I I I I I I

stateout

I I I

vllid '

I I I I I I I I I I I I I I I I I I I

Figure 4.19 Decryption Round Timing Diagram.
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4.3.1 InvShiftRows Implementation

The InvShiftRows transformation is applied first in decryption. This is a simple

rearrangement of bits in the state and is the inverse of the ShiftRows transformation. This

does not use any additional logic.

4.3.2 InvSubBytes Implementation

The InvSubBytes transformation is applied after the InvShiftRows transformation.

It is the inverse of the SubBytes transformation and is implemented as a lookup table for

the same reasons that the SubBytes transformation is implemented as a lookup table. The

lookup table is shown in Section 4.2.1. InvSubBytes is replicated twice, each of which are

reused 8 times per round, processing a total of 16 bytes of data. A signal diagram of the

InvSubBytes transformation is found in Figure 4.20 and a list of signal descriptions is

found in table 4.8.

reset

enc active

enc -count isb in

upper . InvSubByte count isb out
lower -resl

done ark done

nk I
(rounds 10-13 only)

clk

Figure 4.20 InvSubBytes Signal Diagram.
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Table 4.8 InvSubBytes Signal Descriptions.

Signal Name Signal Description

generic: numinputs(4:0) Indicates the number of bytes that need to be transformed in a particular
round. Set to 8.

generic: numoutputs(2:0) Indicates the number of locations the output bytes can go to. Set to 8.

clk System clock.

reset System reset.

go Indicates inputs are ready and SubByte transformation should begin.

encactive Indicates that the round is processing data.

enc Indicates whether the transaction is an encryption or decryption

upper(3:0) Upper four bits of the byte to be transformed.

lower(3:0) Lower four bits of the byte to be transformed.

doneark Indicates when the AddRoundKey block has completed.

nk(3:0) Indicates the number of works in the key.

countjisb-in(4:0) Indicates which byte should be input to the InvSubByte block. (Max of
numinputs.)

countisbout(4:0) Indicates which byte is being output from the InvSubByte block.

result(7:0) Result of the SubByte transformation.

done Indicates that the last of the bytes specified by count-sbout have been
processed.

A timing diagram for the InvSubByte block is found in Figure 4.21. If the

encactive signal is high and the enc signal is low when the go signal is asserted, the

InvSubByte block should begin processing. Countisbin indicates what byte should be

input to the block and countisbout indicates what byte is being output. When all eight

bytes have been output, the done signal should be asserted until the done signal from the

AddRoundKey block, doneark, has been asserted.
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Figure 4.21 Timing diagram for the InvSubByte block.

4.3.3 Inverse Key Scheduler Implementation

In round 0, the decryption algorithm starts with the last round key. In each round

the inverse key scheduler computes the previous round key. The RotWord and Rcon[(i- 1)/

nk] transformation is implemented once and the SubBytes transformation is replicated 4

times, once for each time it is used in the SubWord transformation. A signal diagram is

found in figure 4.22 and a list of signal descriptions is found in Table 4.9.
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Figure 4.22 InvKeyScheduler Signal Diagram.

Table 4.9 InvKeyScheduler Signal Descriptions.

Signal Name Signal description

generic: numimcblocks(3:0) Indicates the number of times the InvMixColumns block was
replicated. Set to 2.

generic: round(3:0) Indicates the round number

generic: numisbblocks(4:0) Indicates the number of times the InvSubByte block was replicated.
Set to 2.

clk System clock.

reset System reset.

go Indicates that valid data is on the inputs and that the Key Scheduler
should begin.

encactive Indicates that the round is processing data.

enc Indicates whether the transaction is an encryption or decryption

doneimc Indicates that the MixColumns transformation is complete and that the
done signal can be deasserted. (For round 14 this signal is donesb
and it indicates that the SubBytes transformation is complete.)

prevroundkey(255:0) Holds the value of the last two round keys.

nk(3:0) Indicates the number of words in the key.

nextroundkey(255:0) Result of the Key Scheduler. Holds the value of the current round key
and the previous round key. For round 14 this signal is only 127 bits
and holds the value of the current round key.

done Indicates that the next round-key is valid.
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A timing diagram for the Inverse Key Scheduler block is found in Figure 4.23.

The Inverse Key Scheduler should begin computing when the go signal is received. The

last words of the round key are found in reverse order as the round keys are found in

reverse order. When the round key has been found, the done signal should be asserted and

held high until the done signal from the AddRoundKey block, doneark, has been

asserted.
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swresult Vail
I
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Figure 4.23 KeyScheduler Timing Diagram.
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4.3.4 AddRoundKey Implementation

After the InvSubBytes transformation and the inverse key scheduler has

completed, the AddRoundKey transformation is applied. The AddRoundKey

transformation for decryption is the same as the AddRoundKey used for encryption, a

simple xor of the round key and the state. Because the encryption and decryption units

found within a round are not used at the same time, they share the logic for the

AddRoundKey transformation described in section 4.2.5.

4.3.5 InvMixColumns Implementation

The InvMixColumns transformation is applied last. This is the inverse of the

MixColumns transformation and is implemented with combinational logic. The

transformation is replicated twice, each of which are used two times per round. The

InvMixColumns needs to be replicated because it must wait until after the inverse key

scheduler and the AddRoundKey transformation have completed. Figure 4.24 displays a

signal diagram and Table 4.10 is a list of signal descriptions.
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enc

start enc count imc in

byteO InvMixColumns ount imc out

be el result
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by e3
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Figure 4.24 InvMixColumns Signal Diagram.
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Table 4.10 InvMixColumns Signal Descriptions.

Signal Name Signal Description

generic: numsb-blocks(4:0) Indicates the number of time the SubBytes block is replicated. Set to 2.

generic: numoutputs(2:0) Indicates how many locations the result can go to. Set to 2.

clk System clock.

reset System reset.

go Indicates that valid data is on the inputs and that the MixColumns trans-
formation should begin.

encactive Indicates that the round is processing data.

enc Indicates whether the transaction is an encryption or decryption

startenc Indicates that a new block of data is being processed.

byteO(7:0) Bits 7:0 of the input word.

byte1(7:0) Bits 15:8 of the input word.

byte2(7:0) Bits 23:16 of the input word.

byte3(7:0) Bits 31:24 of the input word.

nk(3:0) Indicates the number of words in the key.

countimcin(3:0) Indicates which word is being input.

countimcout(3:0) Indicates which word is being output.

result(3 1:0) Result of the MixColumns transformation.

done Indicates that the result holds valid data.

A timing diagram for the InvMixColumns block is found in Figure 4.25. The go

signal is asserted when the first word becomes valid. Countimc in indicates which word

is being input. Countimcout indicates which word the result holds. When the result is

invalid, countimcout holds the value num-outputs. When all words have been output,

the done signal is asserted and held high until startenc is asserted.
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Figure 4.25 InvMixColumns Timing Diagram.

Appendix D contains a worked out example of a decryption.
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4.4 Implementation Flexibility

The implementation of the encryption and decryption algorithms is flexible. In the

VHDL code, each transformation uses generics to indicate how many times the block is

replicated. By changing the number of times the block is replicated, the throughput of the

design can be altered. For different implementations, the VHDL file for the round will

need to be modified by changing the generics. To get the fastest throughput, the SubBytes

block should be replicated 16 times, the MixColumns block should be replicated 4 times,

and the AddRoundKey block should be replicated once. This implementation will

increase the area by a factor of 4 while only raising the throughput to 1.55 Gbps. This is

limited by the key scheduler and could be pushed to 5.67 Gbps with architecture changes.

To get the slowest throughput, but the smallest area, each of the blocks should be

replicated only once. The area will be decreased by a factor of 4. This will give a

throughput of 709 Mbps.
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5 IBM Core Connect Bus Interface Implementation

The AES Encryption Core interfaces with the Processor Local Bus (PLB) and the

Device Control Register (DCR) Bus found in the IBM Core Connect Bus Architecture

described in Chapter 3. The top level block diagram can be found in Figure 5.1. The

Encryption Core functions as a PLB master and a DCR slave. As a DCR slave, the

Encryption Core receives configuration and start instructions from CPU write instructions

to the Encryption Core's Control Registers. Once the Encryption Core is configured, the

Core gets and sends data to main memory through the PLB.

4xx
CPU

DCR
Bus

dcr cpu interrupt

SYS cpuReset

DCR cpuAck

DCR cpuDbusln

CPU dcrRead

CPU dcrWrite

CPU dcrABus

CPU dcrDbusOut

dcr upper addr(9:

PLB
Bus

Figure 5.1 Top Level Signal Diagram.
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5.1 Device Control Register Bus

A block diagram of the DCR interface is found in Figure 5.2. The AES Encryption

Core uses nine registers for configuration. The upper 6 bits of the addresses are set by

dcrypperjaddr during reset and the lower 4 bits are used to access the Encryption Cores

control registers. Register 0 is the control register, registers 1 through 6 are the address

registers, and registers 7 and 8 are the error registers. Table 5.1 describes the signals that

are held in these 9 registers.

.4 dcr cpu interrupt

SYS cpuReset

1 4DCR Signals,
Reg 0

dcr reset

dcrgo I

dcr enc

dcr key size

dcr length

dcr addr size

IDCR Sigynal - Reg 1 dcr key-add
Reg 2
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Reg45
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ed in ene
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ed out eneReg 6 o
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Figure 5.2 DCR Interface Signal Diagram. Not all DCR Bus logic is shown. See DCR
Bus Specification.[17]
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Table 5.1 DCR Bus Register contents. The Core Connect Architecture specifies that the
highest order bit of a signal is zero. This is reversed in the interface to the AES Encryp-
tion Algorithm.

Signal Name Register Register Description
Number Bits

der_reset 0 31 Indicates that a transaction should stop and the pipe-
line should be flushed.

dcrpriority 0 29:30 Indicates what priority the transaction should have on
the PLB. "00" is lowest, "11" is highest.

dcrjlength 0 13:28 Indicates how many consecutive 128-bit blocks of
data need to be processed.

dcr-key-size 0 11:12 Indicates what size the key is. "00"=>128,
"01"=>192, "10"=>256

dcr_instid 0 7:10 Tags the instruction with a 4 bit ID to help decode
error messages.

dcirgo 0 6 Indicates registers are ready and the Encryption Core
can start a transation.

dcrenc 0 5 Indicates whether the transaction should encrypt ('1')
or decrypt ('0').

dcraddrsize 0 4 Indicates whether the memory address is 32 or 64
bits.

dcr-keyaddr (31:0) 1 0:31 Lower 31 bits of the PLB key address.

dcr-key-addr (63:32) 2 0:31 Upper 31 bits of the PLB key address.

dcr_sourceaddr (31:0) 3 0:31 Lower 31 bits of the first PLB source address.

dcrsounceaddr (63:32) 4 0:31 Upper 31 bits of the first PLB source address.

dcrjtarget-addr (31:0) 5 0:31 Lower 31 bits of the first PLB target address.

dcrjtarget-addr (63:32) 6 0:31 Upper 31 bits of the first PLB target address

dcr-error-type 7 29:31 Indicates if there is an error and what type of error
occurred.

dcrerrorinstid 7 25:28 Indicates the instruction ID of the transaction that
was being processed when and error occurred.

dcrerroraddr (31:0) 7 0:24 Lower bits of the PLB error address. Lowest seven
bits are assumed to be zero because an address must
be quad-word aligned.

dcr_error_addr (63:32) 8 0:31 Upper 31 bits of the PLB error address.
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To configure a transaction, the flow chart found in Figure 5.3 should be used. If

64-bit PLB addressing is used, all registers are needed. However, if 32-bit addressing is

used, the upper address registers are not needed. The control register should be written

last because this register holds the go signal, dcr-go, which indicates when all of the other

registers are ready and a transaction can begin. Because the registers are latched into the

Encryption Core on the rising edge of the go signal, the CPU can prepare the next

transaction by setting up all of the address registers for the next transaction before the

interrupt is received. Once the go signal is set high, a new transaction will start. After the

results have been written back into memory through the PLB, an interrupt signal is sent to

the CPU. At this time the CPU should read the error register to see why the interrupt was

sent. If the error register indicates that no error occurred, then the CPU should reset the go

signal. After reseting the go signal the CPU can send another transaction request. If the go

signal is deasserted and reasserted before the interrupt is received, the transaction will be

ignored. This is described in the timing diagram in Figure 5.4.
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If the CPU finds that an error has occurred, then the CPU should take steps to

recover from the error. The different types of errors are listed in Table 5.2. The error

registers hold the upper 57 bits of the address of the last attempted PLB write. The lower

bits are assumed to be zero because all addresses for the Encryption Core must be quad-

word aligned. The error registers also contain the error type and the instruction ID that the

error occurred on.

Table 5.2 Error Types.

Error Bits Error Type

000 no error

001 timeout error

010 read error

011 write error

100 MIRQ

101 slave wrong size

110 dcr reset error

111 unused
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5.2 Processor Local Bus

The PLB is used to read and write data in main memory. Figures 5.5, 5.6, and 5.7

are flow charts for the PLB interface operation. After the Encryption Core is configured

through the DCR Bus, the Encryption Core uses the PLB to fetch the key. Once the key

has been fetched, the Core will use the source address to get data to encrypt. If the number

of blocks to be encrypted is greater than one, then the Encryption Core issues a burst read

on the bus and will store the data into a buffer. There are two implementations of the PLB,

one with a buffer size of 16 and one with a buffer size of 32. Each implementation has two

buffers. Initially, one buffer will be filled as much as possible. For example, if the number

of blocks is less than the buffer length, the buffer will not be filled completely.

The data is processed using a ping-pong buffer scheme. After the buffer is filled

with data from the PLB, the data will be sent out to be processed. As the data is

processed, the data in the buffer is overwritten. At the same time the data from the first

buffer is being processed, if there is more data that needs to be processed, data is requested

over the PLB and stored in the empty buffer. Once all of the data has been overwritten,

then the data is sent back out to memory through the PLB. After the first buffer has sent

all of its data into the pipeline, the second buffer starts sending data into the pipeline. This

allows the first buffer to send processed data to the PLB, then be refilled with new data, all

while the second buffer is sending data to be processed.
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Figure 5.6 Send Data Flow Chart.
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Figure 5.7 Empty Buffers Flow Chart.

When reading data, the interface issues burst transactions if possible. This reduces

the time to read and write data because only one address acknowledgement is needed for

multiple blocks of data. On average, the address acknowledgement and each subsequent

data acknowledgement takes 7.5 clock cycles. If each block of data has 16 cycles
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allocated to it, then using Equation 5.1, the buffer size should be a minimum of 15. There

is one read and one write per block, so the average acknowledgement time needs to be

multiplied by 2. It should be noted that the average acknowledge time could be increased

so that the a 1Gbps throughput will not be achievable. If this is not acceptable, a different

interface should be implemented. The buffer size should not become larger than 32 to

limit PLB bus utilization by the AES core. Because there are other devices on the PLB,

the bus should not be monopolized for long periods of time.

2 -avgacktime + 2 - avgacktime -buffersize (Equation 5.1)
blockallocatetime - buffersize

The PLB operations are shown in Figures 5.8 through 5.14. All of the read

transactions are either single or burst reads or writes. The master ends the burst requests.

However, if the slave should end a burst read or write early, the Encryption Core reissues

the read or write request and continues from where the slave stopped the operation.

The Encryption Core assumes that the key for a transaction is stored in a secure

location somewhere in memory. The DCR Bus provides the address of the key during

configuration. When the DCR bus indicates a transaction should start, the Encryption

Core uses the PLB to fetch the key. Figure 5.8 shows how 128-bit keys are fetched.

Figure 5.9 shows how 192- or 256-bit keys are fetched. After the key has been fetched,

the go acknowledge, ed-outgo_ack, will be set high.

After the go acknowledge is set high, data to be encrypted or decrypted will need

to be fetched. Figure 5.10 shows how a single block of data will be fetched and figure

5.11 shows how multiple blocks of data will be fetched. Figure 5.12 shows what will

happen if the number of blocks that need to be encrypted or decrypted is greater than the

buffer size.
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Once all of the data has been processed, the results will be written back out to

memory. Figure 5.13 shows how a single block of data is sent to memory and Figure 5.14

illustrates how multiple blocks of data are sent to memory.

Figure 5.8 PLB Interface Timing Diagram. Get Key, key size= 128. MRNW=l,
M_RdBurst=0.
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Figure 5.10 PLB Interface Timing Diagram. Get Data, Data=1. MRNW=1,
M_RdBurst=O. (Not to scale, edinencactive and edindata should be valid for 16
clock cycles.)

74

I I I I I I I I I I I I I I I I I I I I

FU1nJ1FffU1-FLFLFLFffU1JLFLFLn=



sys_clk

m m. i m i i i li

edoutgogac o

mm i ii m m ii

MRequest

M BE
10A0

ii i i m i i l i

M_ ABus
V: alid

PLBMAddrAck

M RdBurst

PLB_MRdDAck .... ..

PLBMRdDBDss

E: i I Did aa:el a

send-buffer

edinencact

edindata

ii mmliii

Figure 5.11 PLB Interface Timing Diagram. Get Data, 1 <Data<= 16. In this example,
Data=4. MRNW=1. (Not to scale, for example, edjin_encactive and edindata should

be valid for 16 clock cycles.)
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Figure 5.13 PLB Interface Timing Diagram. Send Data, Data=1. In this example,
Data=4. MRNW=O. (Not to scale.)
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6 Verification

Verification of the encryption algorithm and the bus operations were completed

using a VHDL testbench that connects to the DCR and PLB interfaces of the AES

Encryption Core. The testbench checks for PLB and DCR bus violations and ensures that

data is encrypted and decrypted correctly. The monitors in IBM's PLB and DCR

Functional Model Toolkits are used to check for bus violations. To ensure that the AES

algorithm implementation functions correctly, a set of known values were input to the

system to be encrypted or decrypted. These values can be found on the AES web page.

The AES Encryption Core connects to the PLB and DCR Toolkits as shown in

Figure 6.1. The toolkits provide support to implement other slaves and masters on the

buses. The Encryption Core testbench supports inclusion of up to 8 PLB slaves, 7 PLB

masters (not including the AES Encryption Core), and 1 DCR master. In the existing tests,

the PLB slaves function as memory devices and the PLB masters add activity to the PLB.

The DCR master reads and writes to the control registers, sending instructions to the

Encryption Core.

AES Encryption Core

OCR
BUS

Figure 6.1 Toolkit Block Diagram. [18]
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The toolkits provide a VHDL file that serves as a model for the top level testbench.

One of the PLB master implementations and the DCR master implementation was

replaced with the AES Encryption Core. One of the synchronization signals was

designated as a "test complete" signal. The dcr-upperaddr signal was set to all zeros.

Logic was added to handle interrupts and to instruct the DCR master to issue the next

instruction in the queue. When all of the transactions are complete, the DCR master sets

the "test complete" signal indicating that the PLB slaves should check their memory

contents. If the memory contents contain incorrect data, error messages will be output. A

message will also be output indicating when the test is complete.

The toolkits provide a language called the "Bus Functional Language" to write

models for masters and slaves. The PLB slaves are used as memory devices. One slave

holds the keys for all of the transactions, one holds the encrypted data, one holds the

decrypted data, and the last is used to store all of the data that the transactions produce.

The last slave checks all of its memory contents when all of the transactions are complete

to verify that the correct data is there. The slaves are configured so that they automatically

respond to a read or write request, ending the operation with one of the legal responses.

The legal responses include timeouts, read errors, write errors, interrupt requests, or

regular operation. A monitor on the bus checks that all bus specifications are adhered to.

If any specifications are violated, a message is printed to the screen.

The AES web page provides Known Answer Tests (KAT's) which are a set of

values that can be used to check that the encryption and decryption operations are working

properly. For 128-bit keys the KAT's have 128 sets of values for variable key, single data

block encryption; 192 sets for 192-bit keys; 256 sets for 256-bit keys. There are 128 sets

of values for single key, variable data block encryption for each of the different key sizes.

There are also a more extensive set of values, most of which were not tested due to time

constraints. Because the tests require the Encryption Core to run in the most non-optimal
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fashion, the estimated time to run the additional tests on the RTL using a single processor

is 100 days. Running the tests on the gate level would take five to ten times longer.

Modeltech's MTI version 5.4e was used for simulation. The tests did encryptions

and decryptions on transactions of length 1 to 128. They checked normal operation, read

errors, write errors, timeouts, and interrupt requests. The tests are summarized in Table

6.1.

Table 6.1 Verification Tests.

Test Name Test Description

ecbburstdec Tests decryption transactions of varying lengths. Compares results against
known answers.

ecbburstenc Tests encryption transactions of varying lengths. Compares results against
known answers.

ecbvkdec Tests decryptions of length one. Compares results against known answers.

ecbvkenc Tests encryptions of length one. Compares results against known answers.

ecbvt_dec Tests decryptions of length 128. Compares results against known answers.

ecbvt_enc Tests encryptions of length 128. Compares results against known answers.

test-mirq Tests to ensure that interrupt requests from the PLB are handled properly.

testread_error Tests to ensure that read errors from the PLB are handled properly.

testreset Tests to ensure that all resets are handled properly.

testslavewrong-size Tests to ensure that responses from PLB slaves of incorrect size are handled
properly.

testtimeout Tests to ensure timeout responses are handled properly.

testwriteerror Tests to ensure that write errors from the PLB are handled properly.
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7 Synthesis

Synthesis was performed using the Synopsys Design Compiler tool. The AES

Encryption Core was designed in VHDL and mapped to gate level code using logic

elements from IBM's SA27E ASIC technology library.

Scripts were written in dcshell to load the VHDL and timing assertions, map the

RTL to gates optimizing for area, and write out the design in db and in verilog formats.

Reports are generated to produce area and timing information.

The Synopsys Design Compiler and the static timing tool, Einstimer, use different

models for timing. To force the models to behave similarly and to meet IBM's softcore

timing requirements, a 7.0 ns clock was used for the Synopsys model and a 7.519 ns (133

MHz) clock was used for the Einstimer model.

The 5.3 mm wire load model was used. The operating conditions were set to worst

case conditions of 1.65 Volts and 100 degrees Celsius and the maximum fanout was set to

20. Certain gates were specified to not be used for various reasons such as the large cell

size or incompatibility with other gates.

The clock inputs were set to ideal and the tool was prevented from repowering the

clock trees. For a softcore the customer is required to handle the clock trees. The inputs

were given 50% of the clock period to arrive and the output were given 25% of the clock

cycle to arrive, leaving the remainder of the clock period to be used by external logic.

While this does not match the assertions used for Einstimer, it served as a reasonable

approximation.

The VHDL was compiled hierarchically as the design is larger than is

recommended for a top down compilation. First, each of the rounds were compiled and

optimized for area. The results were written out in db format. Next, the top level for the

encryption algorithm was compiled. The round db files were used as inputs, the design

was flattened and once again optimized for area. The results were written out in db and
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Verilog format. The Verilog was written out because it is one of the formats Einstimer can

read. Next, the interface was compiled. After the interface was optimized, the entire

design was flattened and optimized again. Results were written out in db and verilog

format.

The synthesis results are listed in Table 7.1. The design name indicates the point at

which the design was flattened and compiled. The table assumes the conversion: I cell =

2.96 gates.

Table 7.1 Synthesis Results.

Design name Cells Gates Area (um2)

AES Encryption Core 238,547 706,099 2,354,937
Buffer size 16

AES Encryption Core 295,429 874,469 2,722,302
Buffer size 32

AES Algorithm 171,903 508,832 1,811,873

Round 0 3,769 11,156 50,131

Round 1 11,794 34,910 121,766

Round 2 11,827 35,007 124,715

Round 3 11,750 34,780 124,349

Round 4 11,527 34,119 123,561

Round 5 11,763 34,818 124,799

Round 6 11,629 34,421 123,717

Round 7 11,687 34,593 124,512

Round 8 11,792 34,904 124,930

Round 9 11,760 34,809 124,387

Round 10 12,623 37,364 128,115

Round 11 12,680 37,532 129,110

Round 12 11,721 34,694 122,137

Round 13 11,715 34,676 122,016

Round 14 8,646 25,592 88,340
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8 Static Timing

Einstimer, an internal IBM tool, was used to evaluate the static timing. The gate

level netlists were read into the tool in Verilog format. Timing assertions that met IBM's

SoftCore guidelines were then provided for the design. Tests to check for setup time and

hold time violations were run on the following paths: inputs to output, input to register,

register to output, and register to register. Early and late mode for both the best case and

worst case conditions were run. Early mode tests check for hold time violations by tracing

each of the shortest paths to ensure that the actual arrival time was greater than the

required arrival time. Late mode tests check for setup time violations by tracing each of

the longest paths to ensure that the required arrival time is greater than the actual arrival

time. Einstimer was also used to ensure that there were no electrical violations. One

example is checking to make sure the load capacitances are in the correct range.

Scripts were written in Tool Command Language (TCL) to provide the timing

assertions. The worst case temperature is set to 125 degrees Celsius and the best case is

set to -40 degrees Celsius. The worst case voltage is set to 1.65 volts and the best case is

set to 1.95 volts.

A phase file provides information about the clock. The clock period is 7.519 ns

(133 MHz) with a 50% duty cycle. The late mode clock slew is set to 0.3 ns and the early

mode clock slew is set to 0.05 ns.

Another file provides information on the slews for the input signals. The late mode

slew is set to 0.7 ns and the early mode slew for non-clock inputs is set to 0.02 ns. The

early mode slew for the clock input is set to 0.05 ns. The maximum arrival times are set to

the three cycle timing guidelines listed in the specifications for the PLB and DCR busses.

The maximum arrival times for all other inputs are set to 50% of the clock cycle, shown in

Table 8.1. The minimum arrival times are set to 0.5 ns.
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Table 8.1 Required Arrival Times for Inputs.

Signal Name Required Arrival Time
(% of clock cycle from rising

edge of SYSPLBCLK)

SYSPLBRESET 50%

SYSCPURESET 50%

CPUDCRREAD 18%

CPUDCRWRITE 18%

CPUDCRABUS 18%

CPUDCRDBUSOUT 18%

DCRUPPERADDR 50%

PLBMADDRACK 50%

PLBMTIMEOUT 15%

PLBMBUSY 30%

PLBMRDERR 30%

PLBMWRERR 30%

PLBMIRQ 30%

PLBWRDACK 50%

PLBMWRBTERM 50%

PLBMRDDACK 50%

PLBMRDBTERM 50%

PLBMSSIZE 50%

PLBMRDDBUS 50%

A file for the output signals specifies that the maximum arrival times meet the three

cycle timing guidelines listed in the specifications for the PLB and DCR buses. All

maximum arrival times for the other outputs are set to 30% of the clock cycle, shown in

Table 8.2. The minimum arrival times are set to 0.0 ns.
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Table 8.2 Required Arrival Times for Outputs.

Signal Name Required Arrival Time
(% of clock cycle from rising

edge of SYSPLBCLK)

DCRCPUINTERRUPT 30%

DCRCPUACK 68%

DCRCPUDBUSIN 68%

M_REQUEST 15%

M_RNW 15%

M_ABORT 15%

M_WRBURST 15%

M_RDBURST 15%

M_PRIORITY 15%

M_BE 15%

M_SIZE 15%

M_ABUS 15%

M_WRDBUS 15%

One file was created to specify maximum capacitances and driving resistances for

the inputs. The maximum capacitance for the clock input is 9999.0 pf, which functions as

an infinite capacitance. The driving resistance is set to 0.0 ohms. The capacitances on the

Core Connect inputs are 0.1 pf with a driving resistance of 1.0 K ohms. The capacitances

on other inputs are 0.2 pf with a driving resistance of 1.0 K ohms.

Another file was created to specify the minimum and maximum capacitances for

the outputs. The maximum capacitances on the Core Connect outputs are 0.20 pf and the

minimum capacitances are 0.01 pf. The other signals had a maximum capacitance of 0.30

pf and a minimum capacitance of 0.01 pf.

These assertions were applied to both the 16 block and the 32 block

implementations of the AES algorithm. The first time there were setup violations. These
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violations were fixed by setting the clock to a higher frequency during synthesis. This

forced the Synopsys Design Compiler to work harder and reduce the number of gates in

the longer paths. Reducing the clock to 7.0 ns had the desired effect of eliminating the

setup violations in Einstimer. Another problem that occurred is that the maximum load

capacitances were exceeded. To fix this problem the power level on some of the registers

were adjusted. This eliminated all of the errors produced by Einstimer.
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9 Future Work

There are several enhancements that can be made at all levels for this system.

Several architectural changes could significantly reduce the area or improve the latency for

a transaction. First, the GetDecKey block and the key scheduler implementation should

be investigated. The GetDecKey block could be modified to find all round keys for a

particular key during key setup. Then these keys could be sent to all rounds of the design.

This would eliminate the Key Scheduler from each of the round implementations which

would significantly reduce the area of the design. This is legal because only one

transaction is allowed to be in the pipeline at one time.

A second architectural change would be to allow multiple transactions in the

pipeline at one time. Currently, only one transaction is allowed to be in the pipeline to

simplify error recovery.

A third architectural change is to split the encryption and decryption operations

into two cores. This would allow both encryption and decryption to occur simultaneously

and would allow the throughput to be optimized for encryption and decryption. Currently,

the encryption operation does not use all of the 16 cycles allocated to it.

In addition, more verification should be done. The confidence is high that the

encryption and decryption algorithms are working because many thousand values have

been encrypted and decrypted correctly. However, the remainder of the KAT's should be

sent through the core. As this is about twelve million sets of values, the confidence that

the algorithm implementation works will improve. The PLB and DCR interfaces should

also undergo more extensive verification. The tests could be further improved by inserting

more randomness into the tests.

The synthesis scripts could be optimized. The timing assertions can be made so

that they are more exact. In addition, more iterations of optimizations could be run.
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While this will have less effect than the architecture changes, the script changes will be

much less effort.

There are few changes that can be made with static timing. Most of the values in

the timing assertions are set by IBM softcore guidelines or by the PLB and DCR

specifications.

Before the AES Encryption Core can be used as a softcore, it must pass Design-

For-Test Compliance and the CMOS checks, both of which help ensure testability. To use

the core as a hardcore, physical design will be necessary. Implementing as a hardcore

could improve the clock cycle time and the area, but would be very labor intensive.
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Appendix A: Sample Key Expansion Transformation

Table A. I outlines the key expansion for a 128-bit key. The resulting round keys are found

one word at a time and are displayed in the column w[i]. The starting key used in table A. 1 is

2b7e151628aed2a6abf7158809cf4f3c, indicated by w[O] through w[3].

Table A.1 Key Expansion of a 128-bit key.[19]

i temp After After Rcon[i/ After xor w[i-Nk] w[i]
(dec) RotWord SubWord Nk] with Rcon

0 2b7e1516

1 28aed2a6

2 abf71588

3 09cf4f3c

4 09cf4f3c cf4f3c09 8a84eb01 01000000 8b84eb01 2b7e1516 a0fafel7

5 a0fafe17 28aed2a6 88542cb1

6 88542cb1 abf71588 23a33939

7 23a33939 09cf4f3c 2a6c7605

8 2a6c7605 6c76052a 50386be5 02000000 52386be5 a0fafe17 f2c295f2

9 f2c295f2 88542cb1 7a96b943

10 7a96b943 23a33939 5935807a

11 5935807a 2a6c7605 7359f67f

12 7359f67f 59f67f73 cb42d28f 04000000 cf42d28f f2c295f2 3d80477d

40 575cOO6e 5c006e57 4a639f5b 36000000 7c639f5b ac7766f3 d014f9a8

41 d014f9a8 19fadc2l c9ee2589

42 c9ee2589 28d12941 el3fOcc8

43 eI3flOcc8 575c006e b6630ca6
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Table A.2 outlines the key expansion for a 192-bit key. The resulting round keys are found

one word at a time and are displayed in the column w[i]. The starting key used in table A.2 is

8e73b0f7da0e6452c8 10f32b809079e562f8ead2522c6b7b, indicated by w[O] through w[5].

Table A.2 Key Expansion of a 192-bit key.[ 19]

i temp After After Rcon[i/ After xor w[i-Nk] w[i]
(dec) RotWord SubWord Nk] with Rcon

0 8e73b0f7

1 da0e6452

2 c810f32b

3 809079e5

4 62f8ead2

5 522c6b7b

6 522c6b7b 2c6b7b52 717f2100 01000000 707f2100 8e73b0f7 feOc9lf7

7 fec9If7 da0e6452 2402f5a5

8 2402f5a5 c810f32b ec12068e

9 ec12068e 809079e5 6c827f6b

10 6c827f6b 62f8ead2 0e7a95b9

11 0e7a95b9 522c6b7b 5c56fec2

12 5c56fec2 56fec25c blbb254a 02000000 b3bb254a feIc91f7 4db7b4bd

13 4db7b4bd 2402f5a5 69b54118

14 69b54118 ec12068e 85a74796

15 85a74796 6c827f6b e92538fd

16 e92538fd 0e7a95b9 e75fad44

17 e75fad44 5c56fec2 bb09386

18 bb095386 095386bb Oled44ea 04000000 05ed44ea 4db7b4bd 485af057

46 8fcc5006 a7e1466c 282d166a

47 282d166a 9411fldf bc3ce7b5

48 bc3ce7b5 3ce7b5bc eb94d565 80000000 6b94d565 821f750a e98baO6f

49 e98baO6f ad07d753 448c773c

50 448c773c ca400538 8ecc7204

51 8ecc7204 8fcc5006 01002202
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Table A.3 outlines the key expansion for a 256-bit key. The resulting round keys are found

one word at a time and are displayed in the column w[i]. The starting key used in table A.3 is

603deb1015ca71be2b73aefD857d778l 1f352c073b6108d72d9810a30914dff4, indicated by

w[O] through w[7].

Table A.3 Key Expansion of a 256-bit key.

i temp After After Rcon[i/ After xor w[i-Nk] w[i]
(dec) RotWord SubWord Nk] with Rcon

0 603deb10

1 15ca7lbe

2 2b73aefU

3 857d7781

4 1f352c07

5 3b6108d7

6 2d9810a3

7 0914dff4

8 0914dff4 14dff409 fa9ebfD 1 01000000 fb9ebf0l 603deblO 9ba35411

9 9ba35411 15ca7lbe 8e6925af

10 8e6925af 2b73aefD a5la8b5f

11 a5la8b5f 857d7781 2067fcde

12 2067fcde b785b01d 1f352c07 a8bO9cla

13 a8b09cla 3b6108d7 93d194cd

14 93d194cd 2d9810a3 be49846e

15 be49846e 0914dff4 b75d5b9a

16 b75d5b9a 5d5b9ab7 4c39b8a9 02000000 4e39b8a9 9ba35411 d59aecb8

17 d59aecb8 8e6925af 5bf3c917

18 5bf3c917 a5la8b5f fee94248

19 fee94248 2067fcde de8ebe96

20 de8ebe96 ldl9ae9O a8bO9ela b5a9328a

21 b5a9328a 93d194cd 2678a647

22 2678a647 be49846e 98312229

23 98312229 b75d5b9a 2f6c79b3

24 2f6c79b3 6c79b32f 50b66dl5 04000000 54b66d15 d59aecb8 812c81ad
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Table A.3 Key Expansion of a 256-bit key.

i temp After After Rcon[i/ After xor w[i-Nk] w[i]
(dec) RotWord SubWord Nk] with Rcon

52 7401905a 927c60be 5886ca5d cafaaae3

53 cafaaae3 2e2f31d7 e4d59b34

54 e4d59b34 7e0aflfa 9adf6ace

55 9adf6ace 27cf73c3 bdlO190d

56 bdlO190d 10190dbd cad4d77a 40000000 8ad4d77a 749c47ab fe4890dI

57 fe4890dl 18501dda e6188d0b

58 e6188d0b e2757e4f 046df344

59 046df344 7401905a 706c631e
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Appendix B: Sample SubBytes Transformation

This appendix outlines an example of how to compute the values for the SubByte

transformation table found in section 2.3.3. This example finds the SubByte transformation

for b(x)=x= {02 }. Table B. 1 illustrates the steps used to apply the Extended Euclidean

Algorithm. Equation B. 1 shows how the multiplicative inverse is found and Equation B.2

finds the SubByte transformation for {02}.

Table B.1 Extended Euclidean Algorithm.

q(x) r(x) a(x) c(x) b(x) m(x) a2(x) ai(x) C2(X) ci(x)

0 x x 8+x 4 +x 1 0 0 1

3+x+1

1 0 x 1 0 x8+x4+x3 x 0 1 1 0

+x+1

2 X7+x3 1 X7+x 3 + 1 x 1 1 x7+x 3+ 0 1

+x2+1 x2+1 x2+1

3 x 0 x8+x4+ x 1 0 x7+x3 8+x4+ 1 x

x3+x+1 +x2+1 x3+x+1

4 x7+x 3+ 1

x2+1

b 1 (x) = a(x) mod m(x) = x7+x 3+x 2 +1 mod x 8+x 4 +x 3+x+1l

x7+x3+x2+1 = {ld}

bo'

bj'

b2'

b3'9

b4'

b5'9

b6'

b7'9

1

1

1

1

1

0

0

0

1

0

1

1

0

0

0

1

+

0

0

0

0

0

0

~1

(Equation B.1)

(Equation B.2)
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Appendix C: Encryption Example

Table C. 1 is an 128-bit key encryption example, showing the state after each

transformation. The start of round column shows the state after the AddRoundKey

transformation.

In this example the input state is 001 12233445566778899aabbccddeeff

and the key is 000102030405060708090a0b0c0d0e0f.

Table C.1 Encryption Example. [19]

Round Start of
Number Round

00 44 88 cc

input 11 55 99 dd]

22 66 aa ee

33 77 bb ff

00 40 80 c0

10 50 90 d0

20 60 a0 e01

3-0 70 bO fj

89 85 2d cb

d8 5a 18 12
2

10 ce 43 8f1

e8 68 d8 e4

After
SubBytes

63 09 cd ba

ca 53 60 70

b7 dO eO e I

04 151 1e7 18c

a7 97 d8 I f

61 be ad c9

ca 8b la 73

9b 45 61 69

[ 1Y[1fi-

After
ShiftRows

63 09 cd ba

53 60 70 ca

eO el b7 d0

8c 04 151 1e7l

a7 97 d8 If

be ad c9 61

1la 73 ca 8b

69 9b 45 61

After
MixColumns

5f 57 f7d

72 f5 be b9

64 bc 3b f9

592291 la I

ff 31 6 77

87 d8 51 3a]

96 6a 51 d0

84 51 fa 09.

Round Key
Value

00 04 08 Oc

01 05 09 Od

02 06 Oa Oe

03 7 Of

d6 d2 da d6

aa af a6 ab

74 72 78 76

rfd fa fl fe

b6 64 be 68

92 3d 9b 30

cf bd c5 b3

Ob fl 00 fe

bd f2 Ob 8b 7a 89 2b 3d 7a 89 2b 3d 13 e3 fB 4d

6e b5 61 10 9f d5 ef ca d5 ef ca 9f 11 94107 2b
10 I---- ------

7c 77 21 b6 10 f5 fd 4e fd 4e 10 f5 I1d 4a a7 30

3d 9e 6e 89 27 Ob 9f a7 a7 27 Ob 9f 7f 17 8b c5

69 6a d8 70

c4 7b cd b4
output eO 04 b7 c5

d8 30 80 5a
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Appendix D: Decryption Example

Table D. I is an 128-bit key decryption example, showing the state after each transformation.

The start of round column shows the state after the InvMixColumns transformation. In the

cases where the numbers from the "After AddRoundKey" column and the following "Start of

Round" column are the same, the InvMixColumns transformation is not applied.

In this example, the input state is 69c4e0d86a7b0430d8cdb78070b4c55a

and the key is 000 102030405060708090a0b0c0d0e0f.

Table D.1 Decryption Example. [19]

Round Start of
Number Round

69 6a d8 70

input c4 7b cd b4

eO 04 b7 c5

d8 30 80 5a

7a 89 2b 3d

d5 ef ca 9f

fd 4e 10 f5

a7 12710b9f

54 6b 96 al '

d9 aO bb 11
2

90 9a f4 70

al b5 Oe 2f

After
InvShiftRows

7a 89 2b 3d

9f d5 ef ca

10 f5 fd 4 e

27 Ob 9f a7

54 6b 96 al

11 d9 aO bb

f4 70 90 9a

b5 Oe 2f al

After
InvSubBytes

bd f2 Ob 8b

6e b5 61 10

7c 77 21 b6

3d9e 6e 89

fd 05 35 fl

e3 e5 47 fe

ba dO 96 37

d2 d7 4e fl

Round Key
Value

13 e3 B 4d

11 94 07 2b

I d 4a a7 30

54 fO 10 be

99 85 93 2c

32 57 ed 97

47 a4 eO ae

43 le 16 bf

87 65 ba 7a

35, b9 f4 d2

After
AddRoundKey

7a 89 12b 3d

d5 ef ca 9f

fd 4e 10 f5

a7 27 Ob 9f

e9 02 lb 35

P7 30 f2 3c

4e 20 cc 21

ecl f6 If2 107

ba al d5 5f

aO D9 51 41

3d b5 2c 4d

e7 6ba 23

63 09 cd ba 63 09 cd ba 00 40 80 c0 00 04 08 Oc 00 44 88 cc-
53 60 70 ca ca 53 60 70 10 50 90 dO 01 05 09 Od 11 55 99 dd

10 --
e el b7 d b7 dG eG elI 20 60 aO eI 02 06 a e 22 66 aa ee

8c 04 51 e7 04 51 e7 8c 30 70 b O 0310710b Of 331771bb ff

00 44 188 cc

oupt 11 55199 dd
22pu 66 1aa ee

3 7b ff
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