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ABSTRACT

A multi-channel statistical classifier to detect prostate cancer was developed by combining
information from 3 different MR methodologies: T2-weighted, T2-mapping, and Line Scan
Diffusion Imaging(LSDI). From these MR sequences, 4 sets of image intensities were obtained:
T2-weighted(T2W) from T2-weighted imaging, Apparent Diffusion Coefficient(ADC) from LSDI,
and Proton Density (PD) and T2 (T2Map) from T2-mapping imaging. Manually- segmented tumor
Jabels from a radiologist were validated by biopsy results to serve as tumor “ground truth.”
Textural features were derived from the images using co-occurrence matrix and discrete cosine
transform. Anatomical location of voxels was described by a cylindrical coordinate system.
Statistical jack-knife approach was used to evaluate our classifiers. Single-channel maximum
likelihood(ML) classifiers were based on 1 of the 4 basic image intensities. Our multi-channel
classifiers: support vector machine (SVM) and fisher linear discriminant(FLD), utilized 5 different
sets of derived features. Each classifer generated a summary statistical map that indicated tumor
likelihood in the peripheral zone(PZ) of the gland. To assess classifier accuracy, the average
areas under the receiver operator characteristic (ROC) curves were compared. Our best FLD
classifier achieved an average ROC area of 0.839 (£0.064) and our best SVM classifier achieved
an average ROC area of 0.761 (£0.043). The T2W intensity maximum likelihood classifier, our
best single-channel classifier, only achieved an average ROC area of 0.599 (+ 0.146). Compared
to the best single-channel ML classifier, our best multi-channel FLD and SVM classifiers have
statistically superior ROC performance with P-values of 0.0003 and 0.0017 respectively from
pairwise 2-sided t-test. By integrating information from the multiple images and capturing the
textural and anatomical features in tumor areas, the statistical summary maps can potentially
improve the accuracy of image-guided prostate biopsy and enable the delivery of localized
therapy under image guidance.

Thesis Supervisors: William Wells Ill, Eric Grimson
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Preface

This thesis consists of two parts. Part 1 describes the experimental methods
and results and Part 2 serves as a user manual for the software tools developed
for the experiments in part 1. While we are planning to publish the results
from part 1 in a research journal, it 1s my hope that readers will find some
documentation in part 2 which can help them develop their own applications
for future prostate cancer studies. I also plan to post a web version of the user
manual in Part 2 on the internet as well as the accompanying Java and
MATLAB source code. Correspondence and request for source codes should
be made by email: ianchan@mit.edu.

Part 1: The Experiment
Introduction

Prostate cancer is the most commonly diagnosed non-cutaneous malignancy
and the second-leading cause of death from cancer in American men'. Over
40,000 American men are diagnosed with prostate cancer each year and cancer
is found at autopsy in 30% of men at the age of 50°. 1.5T axial T2-weighted
MR prostate images with an endorectal coil enables improved visualization
and localization of prostate substructure [central gland(CG) and peripheral
zone(PZ)], providing valuable anatomical information because the majority of
prostate cancers develop in the PZ®. While such diagnostic T2-weighted MRI
is a sensitive non-invasive imaging technique for detecting focal abnormalities
in the prostate, it lacks specificity for tumor against benign prostatic
hyperplasia(BPH) and other abnormalities. It is reported that T2ZW MR has a
specificity of 43% for nonpalpable tumors and a sensitivity of 85% for
nonpalpable, posteriorly located tumors®, There is a need of integrating
information from other MR methodologies or imaging modalities to improve
tumor detection.

Recent advances in MR techniques have allowed us to integrate information
based on water diffusion and T2 properties to improve MR specificity for
prostate cancer. Quantitative T2-mapping is motivated in part by some
intriguing results from Liney et al, which suggest that there is a positive
correlation between the concentration of citrate, as determined by 'H
spectroscopy, and the water T2 value obtained from T2-mapping methods
Since citrate is the “good” metabolite of the prostate gland, presenting the
strongest metabolite signal in normal tissue and BPH®, a decrease in the citrate
signal provides an indirect indication of potential cancer. If T2-maps indeed
correlate with citrate concentrations, i.e. carry the same diagnostic content, the
higher spatial resolution of T2-mapping compared to MR spectroscopy would
offer potentially greater utility in tumor localization in the prostate.

5,6,7

Diffusion-weighted and quantitative diffusion MR imaging (ADC mapping) is
used to obtain tissue contrast reflecting water molecular diffusion. Diffusion
MR has become essential for assessing acute stroke in the brain”'®. More
recently, evidence has been presented which suggests that diffusion imaging
may also play a role in the early detection of tumor response to therapy' "2,



However, diffusion studies have largely been limited to the brain for a variety
of reasons including motion sensitivity and the chemical shift and
susceptibility artifacts which plague single-shot echo planar imaging (EPI)
techniques used to overcome motion sensitivity. A diffusion technique with
low motion sensitivity and reduced susceptibility and chemical shift artifacts is
the so-called line scan diffusion imaging (LSDI) technique recently developed
and shown useful for brain and spine imaging'”. Its primary drawback is
slower acquisition times compared to single-shot EPI methods, though full
coverage of the rather small prostate gland at reasonable spatial resolutions
(16 mm® voxels) is readily attained in several minutes. Thus we have used
LSDI methodology to obtain quantitative diffusion data from our patients,
motivated in part by preliminary results of others which suggest reduction of
ADC values in tumor vs normal PZ".

Earlier works on multi-channel MRI classifier are based on maximum
likelihood'>'®. There are also many alternative statistical approaches to multi-
channel classification for image analysis and pattern recognition”. Fisher
linear discriminant'® is a traditional approach where the d-dimensional feature
space is projected onto a line which results in the largest variance of the data.
y= w' x
where X is the data vector and y is the projected value on a line. w is
proportional to:
W Sw'l(mt - my)
where Sy = Zumor (X - M)(X — m)" + Zormar (X — mp)(x —my)" is the pooled
sample variance of the two classes and m¢ and m, are the mean of the tumor
and normal samples respectively.

Introduced in 1995 by Vapnik'™, support vector machine® is a classification
technique that has gained popularity in recent years for medical applications®'.
The objective function that SVM maximizes is: Lp = 2 ot - 0.5 X j ooy K(X,X;)
, subject to 0 < o < C and Z; ajy; = 0. x is the multi-dimensional data vector
and y is the corresponding class label (+1 or —1 for our 2-class problem). i,j =
1...L where L = number of training samples. K(x,y) is the kernel function that
maps the input to a higher dimensionality and giving the decision boundary its
non-linearity. SVM ftraining yields w, which is given by 2y o; K(y;,X;) where
N is the number of support vectors. A data point x; is a support vector when
the corresponding a; > 0. Support vectors are sample data points that lie on
the decision boundary. One can assign the class label basedony =x" w + b
where b is the bias term obtained from SVM training. The more positive y 1s,
the farther x is away from the decision boundary and the more likely it is to be
a member of class +1. The case is similar for the —1 labels when y < 0.

To enhance the feature space, many medical image classification applications
used machine vision techniques including co-occurrence matrices and various
spatial-frequency filters that can enhance image features. Haralick and
Shanmugan22 pioneered the use of co-occurrence matrix(CM) to capture
image texture. A co-occurrence matrix is a probability density distribution of
two pixel intensities conditioned on distance and angle between the two pixels.
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Recent applications of CM in medical image analysis include MR T2-

. 23 24 . . .
weighted breast cancer”, breast mammograms®’, MR imaging for tracking
Alzheimer's disease® and coloscopic images of cervix lesions®®. The textural
features generated by co-occurrence matrices were reported to enhance
classification power in these studies.

We conducted a set of experiments to assess our hypothesis that the SVM
classifier performs better than a FLD or a ML classifier. Also, we hypothesize
that classifiers that integrate anatomical and textural can achieve a higher
tumor detection performance than a classifier based on image intensities alone.
Our objective is to construct a summary statistical map based on multi-
parametric MR images that can improve tumor detection and localization.
Improved tumor localization will be valuable for a variety of treatment
strategies for prostate cancer including brachytherapy, focused-ultrasound and
other image-guided therapies in the future.

MATERIALS AND METHODS
Patient selection and imaging protocols

We enrolled 15 patients who satisfy the eligibility criteria of this study. They
were men with abnormal PSA levels ( > 4 ng/ml) and either have had at least 2
prior negative/normal prostate biopsies performed by TRUS or who cannot
undergo TRUS biopsies because of prior rectal surgery. In our analysis, we
separated the patients into two groups based on whether they underwent
brachytherapy because post-brachytherapy patients tended to have altered
T2W intensities. We only built multi-channel classifiers for the non-
brachytherapy group because we had a larger number of patients in that group.
The 1.5T MR imaging used endorectal coil with an integrated pelvic-phased
multicoil array (Signa LX, GE Medical Systems, Milwaukee WI). The
endorectal coil is a receive-only coil mounted inside a latex balloon, and
assumes a diameter of 4-6 cm once inflated in the patient’s rectum). The
patient is placed supine in the closed-bore magnet for the examination. The
axial T2-weighted images were fast spin echo (FSE) images (4050/135, field
of view of 12 c¢m, section thickness of 3 mm, section gap of 0 mm, matrix of
256x256, 3 signal averages). Typical acquisition times are 5-6 min.
Diffusion-weighted images were obtained with LSDI acquired in an oblique
coronal orientation for maximal gland coverage. LSDI involved the use of a
pair of slice selective RF pulses to elicit an appropriately diffusion weighted
spin echo signal from a single column (loosely referred to as “line” in the
LSDI acronym) of tissue. The LSDI sequence employed 64 columns per slice
with each column being 4 mm? in cross-section and with a column resolution
of 1.5 mm. Two b-factors, 5 and 750 sec/mm” were employed along with three
separate diffusion sensitization directions (1,-1,-1/2), (1/2,1,-1) and (1,1/2,1).
Though individual columns were sampled every 0.12 s, the effective repetition
time (TR) was greater than 4 sec so that minimal T1-weighting occurred. A TE
of 70 ms accommodated the high b-factor of 750 sec/mm” using our available
gradient strengths (maxima of 2.3 Gauss/cm). With these sequence parameters,
high quality trace ADC maps that combined diffusion coefficient from the 3
orthogonal directions were generated. A total of 5 to 12 slices at 4 mm slice
thickness and no gap were used to cover the entire gland with 4 x 4 x 1.5 mm’
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voxel dimensions in total scan times between 5 and 10 minutes (50 s/slice).

A Fast Spin Echo (FSE) sequence utilizing 8 echoes with an echo spacing of
13.5 ms was employed to make maps of the spin-spin relaxation time T2
throughout the entire prostate gland at a3 x 0.7 x 0.8 mm® spatial resolution.
The signal intensity (S) has the approximate form S = p (1- exp(-TR/T1) exp(-
T2/TE), where p is the PD intensity, T1 the spin-lattice relation time, T2 the
spin-spin relaxation time and TR/TE the repetition time/effective echo time
combination. A 256 x 192 (frequency by phase) in-plane matrix was used with
a2.5 s TR to gather 5 to 12 three-mm thick contiguous images of the gland in
60s. The sequence is repeated 4 times with 4 different values of the effective
echo time ranging from 27 to 108 ms at 27 ms intervals. Thus in
approximately 4 minutes a complete data set is collected that allows for
mapping the T2 value throughout the gland by performing mono-exponential
fits of signal intensity vs echo time for each voxel. The y-intercept of the fits
is the Proton Density (PD) intensity and the negative inverse of the slope is the
pure T2 value used for the T2Map intensities.

Tumor “ground-truth” labels

A radiologist manually outlined suspected tumor(TU), peripheral zone(PZ),
and total gland (TG) on axial T2-weighted images, which are used in clinical
diagnosis. We combined the tumor label with sextant biopsy pathology
reports to form biopsy validated tumor labels for classifier training. In sextant
biopsy, the PZ is divided into 6 regions: left/right + base/mid/apex. Only
regions marked positive for cancer in both the biopsy report and the
radiologist’s label are included in the validated tumor labels.

Textural features

It is observed that tumor textures in the prostate possess radial symmetry, we
eliminated the angle(6) dependence in the co-occurrence matrices. Our co-
occurrence matrix covered a 9x9 pixel window and had 14 distinct distances.
We scaled image intensities to fit a range between 0-255 by mapping the 256
levels linearly onto the image intensity range of max {0, (u—-3ec)} to (u+3e0).
For each center pixel, we considered its n neighbors that were equi-distant
from the center pixel. We constructed log likelihoods (log
(P(tumor)/P(normal)) for each of these n pairs and took the median of the n
log likelihoods as the feature statistic. Because radiologists often considered
the slice above or below the current image slice for clues of tumor, we
extended the co-occurrence matrix to 3D by constructing co-occurrence
matrices one slice above and below the current slice. 14 features for the CM
from the same slice and 15 features from the CM one slice above or below the
center pixel resulted in 29 CM features total for each of the four basic MR
images.

To capture the frequency characteristics of tumor, we computed discrete
cosine transform(DCT)? using a 7pixel x 7 pixel window. The 49 DCT
coefficients formed our feature statistics for each of the four basic MR images.



Anatomical features

We used the cylindrical coordinate system(r, 8,z) to describe each anatomical
location and set the origin at the centroid of the gland. r and z are rescaled to
fit the range of —1 to 1 for each gland. 6 is in the range of 0 to = with anterior
set to 0 and we assume left/right symmetry of the gland. The z coordinate
could help distinguish the apex, mid-gland, and base, which had observably
different image and anatomical features. Empirical observations pointed to
common occurrences of prostate tumors in the axial 5:00 and 7:00 o’clock
positions of the PZ and the 6 coordinate could potentially distinguish these
anatomical areas.

Feature sets

5 feature sets were chosen to test our classifiers. basic 4 includes only the four
signal intensities: T2W, ADC, PD and T2Map. basic 4+anatomy includes the
4 signal intensities and the 3 cylindrical coordinates from anatomical features.
Besides the 7 features in basic4+anatomy, allCM also includes 29 co-
occurrence matrix entries for each MR sequence, generating an additional
4x29 features. allDCT includes all the basic4+anatomy features plus the DCT
features from all 4 types of MR images. a//[CM+DCT is the union of all the
features in allCM and allDCT.

Statistical classifiers

For this study, we randomly sampled 30% of the PZ data and retained all the
tumor data because we had about 20 times more PZ data than tumor data. All
features were standardized to p = 0 and 6 = 1 prior to training. After
obtaining the FLD vector w, we constructed a maximum likelihood classifier
using the training dataset.

For SVM training, we randomly sampled 10% of the PZ data and retained all
the tumor data to confine the training dataset to a reasonable size for SVM
training convergence. All features are standardized to p =0 and o = 1 prior to
training. We chose the radial basis function kernel K(x,y) = exp {-|x-y|"/c}
with parameters ¢ = 2 and C = 100. In this study, we used the MATLAB
support vector toolbox®® developed by Crawley, which used Platt’s sequential
minimization algorithm for optimization®.

Software

All feature generation and classifier training were computed using the
MATLAB software package. The software for manual segmentation by the
radiologist, volume calculation and image interpolation was developed in-
house for this project with the Java language.

Classifier accuracy

To compare the accuracy of classifiers, we performed standard Receiver
Operator Characteristics (ROC)30 analysis on each of the 11 non-



brachytherapy patients. We chose the area under the ROC curve as our
benchmark for classifier performance. We adopted a jack-knife strategy where
we trained the classifier with n-1 cases and applied the trained classifier on the
remaining case. The p = o of the n leave-one-out ROC areas were reported.
To determine the significance in the difference in mean ROC areas of two
classifiers, we utilized pairwise 2-sided students’ t-test at a=0.05.

RESULTS
Pathology summary

We divided the patients into two groups: post-brachytherapy and non-
brachytherapy. Ofthe 11 non-brachytherapy patients in this study, 9 had
confirmed adenocarcinoma and 1 had prostatic intraepithelial neoplasm(PIN),
a precursor to cancer, from the biopsy reports. The average tumor volume was
1.03+0.56cm’ and the average total gland volume was 43.03£19.26cm’. The
mean percentage of tumor volume/PZ volume was 6.80£3.99%. Patients in
this group had small to medium size tumors, with minimal seminal vesicle and
extra-capsule invasion. The average Gleason score for those with confirmed
cancer was 6.2 and had a range of 6-7, indicating that most of the non-
brachytherapy patients had medium grade adenocarcinoma. Of the 4 post-
brachytherapy patients in this study, the average tumor volume was
1.72+1.50cm® and the average total gland volume was 33.36+£7.26cm’, The
mean percentage of tumor volume/PZ volume was 17.62+18.16%. The
average Gleason score for this group was 6.5 and had a range of 6-8,
indicating that the patients in this study had medium to high grade
adenocarcinoma and had larger tumors.

Signal intensity statistics

The p + o of the signal intensities for each MR image parameter in this study
is shown in table 1 and 2. For each patient, PZ intensities were standardized
to u =0 and o = 1 and tumor intensities were standardized using the mean and
standard deviation of the PZ for comparison.

Image Type PZ (L +o5) Tumor (4 *o0o)
T2W 01 -0.58+0.48
ADC 01 -0.60+0.96
PD 0+1 -0.32+0.83
T2Map 01 -0.55+0.79
ADC (in u“/ms) 1.611+£0.366  1.432+0.349
T2Map (in ms) 128.3+42.9 102.7+27.5

Table 1 Signal intensity summary for 11 non-brachytherapy patients. PZ signals are
standardized to 0 mean and 1 std dev. Tumor signals are normalized with the mean and
standard deviation of the PZ for comparison. Mean and std dev of non-standardized ADC and
T2Map values are also presented.



Image Type PZ(uto) Tumor (u+o)

T2W 01 -0.04%0.89
ADC 01 -0.60£0.83
PD 01 0.30+1.19
T2Map 01 -0.4920.71
ADC (in i5/ms) 1.524£0306  1.250£0.314
T2Map (in ms) 88.020.7 76.6£15.9

Table 2 Signal intensity summary for 4 post-brachytherapy patients. PZ signals are
standardized to 0 mean and 1 std dev. Tumor signals are normalized with the mean and
standard deviation of the PZ for comparison. Mean and std dev of non-standardized ADC and
T2Map values are also presented.

Classifier accuracy

Figure 2 shows two sample summary statistical maps generated by FLD and
SVM classifier and figure 3 shows several ROC curves for our best ML
classifier and our best multi-channel classifier for 5 patients. The results for
the 1-channel maximum likelihood (ML) classifiers, multi-channel Fisher
Linear Discriminant Classifiers (FLD) and Support Vector Machine classifiers
(SVM) are shown in table 3. Pairwise 2-sided t-tests with o = 0.05 among the
four 1-channel classifiers supported the hypothesis that all 1-channel
classifiers based on intensity alone had statistically equivalent ROC
performance (P-values > 0.05).

We compared the multi-channel FLD classifiers with T2 axial ML classifier,
the best of the four 1-channel classifiers. Pairwise 2-sided t-tests with o = 0.05
supported that FLD with basic 4+anatomy (P-value = 0.0024), all CM (P-
value = 0.0004), all DCT (P-value = 0.002), and alICM+DCT (P-value =
0.0003) offered greater classification power than ML classifier based on T2
axial intensity alone. However, pairwise 2-sided t-tests with a = 0.05 did not
support that FLD with basic4 classifier performed better than 1-channel T2
axial ML classifier (P-value = 0.355). Similarly, we compared the multi-
channel SVM classifiers with T2 axial ML classifier. Pairwise 2-sided t-tests
with o = 0.05 supported that SVM with basic 4+anatomy (P-value = 0.0017)
offered greater classification power than ML classifier based on T2 axial
intensity alone. However, pairwise 2-sided t-tests with o = 0.05 did not
support that SVM with basic4 classifier performed better than 1-channel T2
axial ML classifier (P-value = 0.483).

For SVM training, we failed to get convergence for the feature sets a//CM,
allDCT and allCM+DCT after 72 hours of simulation. For the other 3 feature
sets basic4 and basic4+anatomy that we managed to get convergence, we
compared the average area under ROC of SVM classifier with FLD classifier
using 2-sided pairwise t-test at oo =0.05. SVM performs better than FLD for
basic4+anatomy (P-value = 0.0003) while SVM and FLD have equal
performance statistically for basic 4 (P-value = 0.29).



Classifier Features

ROC area: p(oc)

T2 axial 0.599 (0.146)
ML ADC Map 0.533 (0.114)
Proton Density 0.521 (0.165)
T2Map 0.562 (0.058)
basic 4 0.620 (0.089)
basic 4 + anatomy 0.729 (0.058)
FLD allCM 0.825 (0.056)
all DCT 0.791 (0.043)
allCM + DCT 0.839 (0.064)
basic 4 0.635 (0.079)
basic 4 + anatomy 0.761 (0.043)
SVM allCM traini
all CM +DCT

Table 3 Summary of Maximum Likelihood (ML), Fisher Linear Discriminant
(FLD) and Support Vector Machine (SVM) classifiers results of 10 non-
brachytherapy patients. Mean(std dev) of area under ROC of each classifier
are presented. T2 axial, ADC Map, Proton Density and T2Map are the 4 basic
image intensities and the classifiers for these 1-channel cases are based on
maximum likelihood. “basic4” consists of the 4 basic image intensities.
“basic4+anatomy” consists of the 4 basic image intensities and the 3
cylindrical coordinates that describe anatomical location relative to the
centroid of the prostate. “all DCT” consists of all 4 basic intensities,
anatomical information, and frequency transform statistics for all 4 basic
images. “all CM” consists of all 4 basic intensities, anatomical information,
and co-occurrence statistics for all 4 basic images. “all CM+DCT” consists of
all intensity, co-occurrence, anatomical and frequency features.

DISCUSSION

Students’ t-test comparisons of ROC areas suggested that SVM produced
greater detection power than FLD classifiers for the feature sets a//[CM and
basic4+anatomy and statistically equivalent detection power for the basic4
feature set. The merits of the nonlinear decision boundary of the SVM
classifier become noticeable when the number of features increases.

Although SVM achieved a better performance than FLD, classifier training
convergence and simulation time are two issues to consider. The training time
for FLD classifiers is generally between 1 to 6 hours and for SVM classifiers
between 2 to 60 hours, depending on number of classification channels and the
number of samples. We included all tumor samples from the 9 cases for
training (approx. 2500 voxels) and 10% of healthy PZ samples (approx. 5000
voxels). We failed to get convergence on SVM training after 72 hours for the
larger feature sets allCM+DCT and alIDCT. This is because both of these
feature sets include over 150 channels. The FLD results suggest that feature
sets allCM and allCM+DCT have statistically equivalent performance and
therefore, we expected similar findings for SVM had the allCM+DCT training
converged. To include both frequency and CM features, we could have
randomly selected a smaller number of CM entries and DCT frequencies to



reduce the dimensionality of the problem as many CM entries and DCT
frequencies contain high mutual information.

Utilization of co-occurrence matrix and DCT significantly enhanced tumor
features in the images as supported by t-test analysis. For both FLD and SVM
classifiers, we noticed that allCM, alIDCT and allCM+DCT performed better
than basic4 and basic4+anatomy feature sets according to the ROC area
analysis, which proved the effectiveness of these machine vision techniques
for prostate cancer detection with MRI.

We found that the group of patients who underwent brachytherapy had
different T2W signal intensity properties compared to the group without
brachytherapy. The results in Table 1 and 2 showed that the post-
brachytherapy patients almost had no difference in mean T2W signal intensity
between PZ and tumor tissues while for the non-brachytherapy patients, the
difference in standardized means of T2W signal intensities between PZ and
tumor tissues is 0.58. From the T2W images of post-brachytherapy patients,
one can observe that the PZ intensity is darkened as a result of brachytherapy
and therefore, it is difficult to differentiate between tumor and PZ tissues
based on T2W intensity level.

From the results of the single-channel maximum likelihood (ML) classifiers in
Table 3, one may draw the conclusion that the T2-weighted axial images is
most informative about differentiating prostate tumor out of the four signal
intensities, with the largest average ROC area 0of 0.599. Yet, we found that the
4 image intensities are equally informative about tumor statistically. Another
explanation for the slightly larger ROC area with T2W is that we obtained
“ground truth” tumor label with a radiologist contouring axial T2-weighted
images. This can introduce bias even though the “ground truth” label is
confirmed by biopsy reports. Furthermore, the radiologist examined the axial
T2W images, which are at a higher spatial resolution than the LSDI and
T2Map images. Therefore, it can be self-serving that we found the T2W
images to be most informative about tumor when we defined the “ground
truth” tumor regions by expert examination of these images. However, this
limitation is difficult to avoid because we had no access to the “ground truth.”
Confirming the radiologist’s “ground truth” label with biopsy reports partially
remedied this bias.

The average ROC results show that both SVM and FLD classifiers with basic
4 feature set did not perform better than the best single-channel ML classifier
based on T2W intensities according to t-test analysis. However, it is not valid
to conclude that LSDI and T2Map did not add any useful information.
Although not statistically significant, we notice that the average ROC area for
the ML T2W classifier is 0.599, which is less than 0.620 and 0.635 of the FLD
basic 4 and SVM basic 4 respectively. Further studies need to be done to
compare the textural information in PD, ADC and T2Map images and their
mutual information with the textural features in T2W images.

T2W intensities in the PZ near the rectum were corrupted by sharp near-field
endorectal coil artifacts. This largely limited the tumor detection ability of the
T2W images for PZ tissues near the coil. Advances in intensity correction
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methodologies may remove the coil artifacts, which can dramatically improve
the quality of T2W images and boost classifier performance.

We adopted a jack-knife strategy when performing classifier assessment
because we only had 10 patients with pathologically confirmed tumor in the
non-brachytherapy group. As we collected more multi-parametric cases, we
could divide patients into two separate groups for classifier training and
validation. A larger number of patients could provide image samples that
covered a broader spectrum of focal abnormalities and cancer.

In general, we found that adding textural and anatomical information increases
the accuracy of three all classifiers used in this study. We also found that
SVM is the best of the three classification techniques when the number of
features increases. Both observations are consistent with our hypotheses.

CONCLUSIONS

For the purposes of the prostate group at the Surgical Planning Laboratory at
the Brigham and Women’s Hospital, we will use the statistical summary map
to plan MR guided biopsy. In many hospitals, prostate cancer is diagnosed by
transrectal ultrasound (TRUS) guided needle biopsy, prompted by either an
elevated prostate-specific serum antigen (PSA) level or a palpable nodule from
a digital rectal exam (DRE). TRUS biopsy does not target lesions, rather it
uses a sextant approach, attempting to sample six representative locations in
the gland. This method is limited by its inability to accurately detect, localize
and characterize focal tumors in the gland. It suffers from a 8-30% failure rate
to detect lesions, which are palpable on DRE?!*?. TRUS biopsy is also limited
by low sensitivity of 60% with only 25% positive predictive value A
randomized study of the efficacy of 6 versus 12 biopsy samples showed no
difference in cancer detection™. This suggests that the problem is not solved
by simply increasing the number of biopsy samples. In the face of high PSA
levels, the limitations of current biopsy methods are substantial and our project
is aimed at addressing these issues.

Integrating information from multiple images and enhancing prostate tumor
features in these images are two main objectives in this study. We have
demonstrated the utility of two multi-channel classifiers with feature
enhancements using machine vision techniques for prostate cancer detection.
We have also shown that our classifiers have statistically superior performance
over single-channel intensity-based classifiers. The summary statistical map
generated by our classifiers allows radiologists to visualize the high volume of
image data and provides summarized pre-operative information for intra-
operative procedures. The summary statistical map has the potential of
improving biopsy accuracy and enhancing tumor target identification for the
delivery of localized therapies.

FIGURES
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a) T2-weighted resampled b) LSDI ADC Map

C

c) T2 Map d) Proton Density

Fig 1 A sample set of multi-parametric MR images in the oblique coronal
plane. Figure (a) is a T2-weighted image, resampled from the axial planes to
the oblique coronal planes of the other images. Figure (b) is an ADC Map
from LSDI. Figure (c) and (d) are T2 Map and Proton Density images from T2
mapping. The green label is total gland, the yellow label is PZ and the pink
label is biopsy validated tumor label.
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a) Fisher Linear Discriminant — allCM+DCT b) Support Vector Machine — basic4 + anatomy

Fig 2 Summary statistical maps of a) Fisher Linear Discriminant classifier and
b) Support Vector Machine classifier. The FLD classifier utilizes all co-
occurrence, DCT, anatomical and signal intensity features and the SVM
classifier utilizes signal intensity and anatomical features only. The statistical
maps are superimposed on the T2-weighted axial images of the patient in Fig
1 and the magenta label indicates the biopsy-validated tumor region identical
to Fig 1. The statistical maps use the rainbow color scheme with red indicating
high tumor likelihood and purple indicating low tumor likelihood. One can
observe that both statistical maps correctly pick out the tumor area by shading
it with red and other non-tumor areas purple. Also, the FLD classifier paints
most of the tumor region red whereas the SVM classifier gives weaker results
with part of the tumor region painted green and yellow.
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Fig 3 Sample ROC curves for 5 different patients. The series of red curves are
from the single-channel T2ZW Maximum Likelihood (ML) classifier and the
series of green curves are from the Fisher Linear Discriminant (FLD)
allCM+DCT classifier. Although ROC curves can be processed to be convex
and above the diagonal by randomized decisions, these sets of ROCs are
derived from empirical data without processing.
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Fig 4 Scatter plot of raw T2map and ADC values from 10 patients. Red
samples belong to tumor tissues and blue samples belong to healthy PZ
tissues. One can see that there is an overlap region for the two classes which
makes intensity-based classifier non-ideal.
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Fig § Probability density functions of tumor(red) and healthy PZ(blue) data
from line-projected data of the Fisher Linear Discriminant classifiers. The
more co-occurrence matrix features are included in the classifier, the better the
discrimination between the two classes.
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Part 2: Software Tools
Getting started: Downloading Java
The first thing to do is to download the Java software from http://java.sun.com
for your appropriate platform. You can compile the source code with the
commands

Jjavac —classpath . AppWindow.java
and run the program with

Jjava AppWindow —Xms 128m —Xmx128m .

The parameters that follow —X specify the minimum and maximum stack size.

Aplicatien Console|

After executing AppWindow, the main window pops up. You can now load
images or perform statistical analysis on the images by choosing the available
options in the menu bar. Messages in this window will inform you of any
errors or messages. Be sure to make appropriate configurations the first
time you use the software! (see Configure section) The following sections
discuss how to perform different tasks with this software.

Basic Commands
Loading images

You can choose File and Load T2, T1, LSDI or T2Map and a file dialog box
will appear. You can click on any of the files of the image series (i.e. .001)
and click OK. The program will prompt you to select the range of slices you
want to load or the complete volume. Make the appropriate selection and the
images will be loaded.

Adjusting Window/Level

In the opened image window, select Adjust and then Window/Level. You will
see a control panel. Move the sliders or type in the desired window and level.
Click Reset or Reset All to undo any adjustments in this and all slices. Click
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Apply All to apply the current window/level to all slices in the volume.

B3 1 12 1Mages: Livanchan idwh  DELEs (s A
Fie Adust Segmediation imageSial ROIStatl StalMap W0 Export

Displaying Image # 21 of 36 T2 FSE AXIALS

ool a0 -

Close | Applytoalt - | o
‘Resst | - ReselAll .

Viewing to a Different Slice

You can use the up/down arrow or page up/down to traverse the volume and
view different slices.

Image Size

You can adjust the size of the image by dragging the corners of the image
window.

Scan Information

Choose Info and then Scan Info to see some of the information stored in the
image header such as Patient Name, Patient ID and date of Scan.

Export to MATLAB

Choose Export and then Export Images to Matlab from the image window to
export the current image volume to Matlab format. The data will be stored in a
256x256 matrix in ASCII text so that it can be opened by the Matlab command
load —ascii filename.

Export to Slicer
Choose File and Export to Slicer to save the current image volume to the 3D

Slicer format. You will be prompted to provide an image file that contains the
appropriate Slicer header information.
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Configuration

The user needs to provide some configuration information. such as Matlab
pathname for the program to run correctly. Choose from the main window
Options, Configure. The following dialog box will appear. Fill in the
appropriate information about directories and constants. You can use the
following settings in the figure as reference.

erm -geometry 10x10+10-10 -e Imitimatlabfarch/i386_linux22/bin/matlab
fsfathena.mit.edufuserifalianchanibwhimatiab/

fsfathena.mit.edu/userifalianchan/bwhitemp/

Closing Image/Exiting

You can choose Close or Exit from the File menu in the main window and
image window to quit.

Segmentation and Region of Interest (ROI)
Drawing/Erasing/Hiding a ROI

Choose Segmentation and Manual Draw and the segmentation panel will
appear. Choose the color you want to draw with and you can draw on the
image window. There is also auto connect and you can click on various
locations and a line will be drawn to connect the points. Click Apply or press
Enter to complete the ROI You cannot move between slices when drawing
an ROL

To erase, click the Clear button in the panel and the entire ROl in this current
image will be erased. To hide a ROI, check the Hide box and the ROI will
disappear.
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Loading/Saving ROI

Select File from the image window and choose Load labelmap and Save
labelmap to load and save a ROL

Export an ROI to Slicer

Slicer saves label map with no header but requires a header when loading a
label map. Choose Export, Export ROI to paste a header to a ROI so that
Slicer can open it.

Copying/Subtracting 2 ROIs

To copy an ROI from one image to another, choose ROI from the main
window and Copy ROI to. A dialog box will prompt you to select the source
and destination image windows and the ROI you want to copy. You can also
subtract ROI A from ROI B to generate ROI C by choosing ROI and Subtract
ROI from the main window.

Biopsy Validated ROI
To combine information from a biopsy report and confirm the presence of
tumor in an ROI, choose ROI and Make Pathology Validated Labelmap. The

dialog box will prompt you to enter the sextant biopsy results and ask you for
a destination filename for the validated labelmap.

Image Statistics
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ROI Volume

Choose ROI Stat and ROI Velume from the image window. Then select the
appropriate ROI and a dialog with the ROI volume in cm’ will appear. The
method uses an averaging of 2 neighboring slice areas and multiply the
average by the slice thickness to interpolate the volume.

Histogram: Image, ROI, Smap Histogram

Histograms for the pixel values within the ROI or the summary statistical map
values within the ROI can be displayed by choosing ROI Stat and ROI
Histogram/ROI Smap Histogram. Histogram of intensities can also be
generated by choosing Image Stat and Histogram from the image window.

F2iROT Histogram

Correlation Coefficients and Scatter Plots

Correlation coefficients of the same ROI in 2 images can be found by
choosing Multi Stat, Correlation Coefficient from the main window. You can
also get a scatter plot from Multi Stat, 2D Scatter Plot to generate a scatter
plot similar to Figure 4. However, please ensure that the ROI is the same in
the 2 images by using a Copy ROI to command. Also, the 2 images need to be
taken in the same plane for this to work.

Fitting one image volume into another: Resampling

When one image volume is scanned in an axial plane and another volume is
scanned in a coronal plane for example, we need to resample one of the image
volumes into the other by interpolation and linear transformation. Choose
Registration, Resample and choose the source and destination image volumes.
A new image volume will be generated and will match the lattice of the
destination volume.
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FEiResample and Interpolation

Classifier Training
Standardizing Feature

Before training the classifiers, we need to find the mean and standard
deviation of all the features so that we can perform normalization. To do that,
choose Training, Standardize Features from the main window. It will ask you
for 1) the path for the text file that stores the directories of the patient scans,
the co-occurrence matrix data file, the feature output file and the pmem, or the
fraction of data to sample. Entering 0.5 here means sampling half the data to
find the mean/std dev.

Build Co-occurrence matrices

To build the co-occurrence matrices for the images, choose Training, Build
Co-occur. Matrix from the main window. It will prompt you for the patient
directory location file and the output file for the CM data.

Building Classifiers: FLD and SVM

From the Training menu in the main window, choose the appropriate classifier
from the sub-menu and a dialog will prompt you for the file locations,
including the patient directory location file, the Co-occurrence matrix output
file, the standardized feature file, etc. Matlab will start and simulations will
begin. Do no close the Matlab window as this will terminate the classifier
training.

Summary Statistical Map (Smap)

Generating a Smap/Applying a Classifier

From the main window, choose Stat Map and Apply FLD or Apply SVM to
apply the trained classifier to a specific case. Fill in the appropriate image

location directories for the particular case in the dialog provided. You can
click on Browse to search for the filenames.

22



Loading a Smap

From an image window, choose Stat Map, Load Smap. A dialog will prompt
you for the smap location. You can load up to 3 Smap’s in the same image
window.

Controlling Smap Appearance

After loading the Smap, choose Stat Map, Appearance and Threshold to
open the Smap adjustment panel to change the bounds and transparency of the
Smap. To get a histogram of the distribution of the Smap values, click Histo
from the panel. The hide checkbox toggles the Smap appearance in the image
window.
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Smap Error Rate/ ROC

To find the area under the Receiver Operator Characteristic Curve and plotting
the ROC, choose Stat Map, Smap Error Rate from the image window.
Matlab will be invoked and the ROC for the chose classifier and Smap will be
plotted.
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