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Abstract

A computer program called FUNSCAN was developed which identifies protein coding
regions in fungal genomes. Gene structural and compositional properties are modeled
using a Hidden Markov Model. Separate training and testing sets for FUNSCAN were
obtained by aligning cDNAs from an organism to their genomic loci, generating a 'gold
standard' set of annotated genes. The performance of FUNSCAN is competitive with
other computer programs design to identify protein coding regions in fungal genomes. A
technique called 'Training Set Augmentation' is described which can be used to train
FUNSCAN when only a small training set of genes is available. Techniques that
combine alignment algorithms with FUNSCAN to identify novel genes are also discussed
and explored.
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Chapter 1

INTRODUCTION

For centuries, biology has been a field in which its practitioners have dealt mostly with

specimens and Petri dishes. However, in recent years, the development of technology for

efficient, automated DNA sequencing has led to the accumulation of large databases of

DNA and protein sequences. As a result, there has been a sudden ascendancy of

computing in biology over the past five years and many of the challenges in biology have

become challenges in computing. Bioinformatics, a branch of computing concerned with

the acquisition, storage and analysis of biological data, has become a linchpin in the

completion of several major biology projects such as the Human Genome Project (HGP).

Section 1.1 examines the reasons why biologists are excited about major genome

sequencing projects such as the HGP and Section 1.2 explains why some scientists are

beginning to shift their gaze towards fungal genomes. Section 1.3 provides a brief review

of basic molecular biology and Section 1.4 describes some of the work that has been done

in the area of gene-finding. Section 1.5 describes the main objectives of this thesis.
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1.1 The Purpose of Sequencing Genomes

The HGP has been compared to the Apollo space program by the National Human

Genome Research Institute and a leading science writer declared the completion of the

HGP to be "the greatest intellectual moment in human history, bar none."

Given that scientists have been enraptured by the HGP, a person not familiar with

biology and the HGP might be tempted to ask several questions. For example, what is a

genome? What do scientists mean when they say that they've 'sequenced' a genome?

What was the purpose of sequencing the human genome and what are the potential

benefits?

A genome is the entire collection of chromosomes in each cell of an organism. A

chromosome is a very long chain of nitrogenous bases. When dealing with nucleotide

sequences in biology, the beginning of a sequence is known as the 5' end the end of a

sequence is known as the 3'end. There are four different kinds of nitrogenous bases:

adenine, cytosine, guanine and thymine and they are generally referred to by their initial

letters, A, C, G and T. The two main regions of a chromosome are the coding regions

and the intergenic regions. Coding regions are also called genes and they code for the

production of proteins. Proteins are made of smaller molecules, called amino acids,

which are strung together in chains that are normally several hundred amino acids long.

Just as there are only four different nucleotides, there are only 20 different amino acids.

It is these proteins that play an important role in molecular biology; almost every

molecule in a eukaryotic organism is either a protein or the direct result of a protein's

activity. Coding regions occupy a small portion of a higher eukaryotic genome; it is

estimated that coding regions constitute only 3% of the human genome. However, for

Schizosaccharomyces pombe, a fission yeast, it is estimated that the protein-coding

regions occupy 60.2% of the S. pombe genome.

The task of scientists working on sequencing the genome of an organism is to obtain

a complete genomic sequence and to identify a complete set of genes. An important

secondary goal of sequencing the genome of an organism is to gain an understanding of

when, where and how a gene is turned on. This process is known as gene expression.

Scientists can then compare how a gene is expressed under normal conditions and in an
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altered state, such as in disease. Ultimately, one would also like to know the functions of

all the proteins encoded by the genome.

1.2 Fungal Genome Initiative

Now that the HGP is complete, genome centers are prioritizing new organisms for

genome sequencing. For example, the Whitehead Institute Center for Genome Research

has recently defined a Fungal Genome Initiative, which is an effort to provide an impetus

for research on the fungal kingdom by prioritizing a set of fungi for genome sequencing.

Researchers are interested in sequencing the genomes of various fungi because in

addition to presenting threats to human health, they can serve as useful tools for

biomedical research. Fungi also have numerous agricultural and industrial uses.

1.3 Gene Structure

Before discussing how coding regions are identified, it is important to review the

structure of genes as this will give one a better understanding of the challenges involved

in finding genes in uncharacterized DNA. The coding regions of a chromosome are not

contiguous since coding regions for different genes are separated by intergenic regions.

Furthermore, even the coding region for a single gene is often not continuous since

eukaryotic genes are typically they are interrupted by noncoding regions called introns.

One feature of DNA structure that must be taken into consideration when building a

gene-finder is that DNA is not one long strand of nucleotides, but rather two strands.

However, the second strand is merely the reverse complement of the first strand. The

reverse complement strand is obtained by replacing every A with a T, every T with an A,

every C with a G and every G with a C. If a DNA strand is 5' ACCGTCGAGA 3', then

the reverse complement is 5' TGGCAGCTCT 3'. It can therefore be said that all

information about a genomic sequence can be obtained by examining just one strand.

However, both strands actually code for the production of proteins. Although there are

coding regions on both strands, these coding regions rarely overlap. As a result, when
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building a gene-finder, one must ensure that gene predictions for both strands do not

overlap.

5' promoter exon I intron exon II intron exon III 3'

DNA

TSS 5' UTR start codon stop codon 3' UTR

This picture shows gene structure in eukaryotes. Note that the start codon does not appear in

the first exon. As a result, the first exon is never translated.

The process by which DNA codes for the production of proteins and ensure the

inheritance of information is explained by the Central Dogma of Molecular Biology.

This dogma is represented by four major processes:

1) Replication: The DNA replicates itself in a process involving many protein

enzymes.

2) Transcription: DNA codes for the production of RNA. RNA is very similary to

DNA since the RNA is composed of four nitrogenous bases: guanine (G),

adenine (A), cytosine (C) and uracil (U).

3) Processing: Introns are removed from the RNA by a process called splicing and

exons are assembled to form messenger RNA (mRNA)

4) Translation: mRNA carries coded information to the ribosomes, where the

information is 'read' and used for protein synthesis.

mRNA is a long chain of A, C, G and U nucleotides. However, when thinking about

mRNA, it is better to think of mRNA as being a chain of three-nucleotide-long 'words'

flanked on either side by untranslated regions (UTRs) known as the 5' and 3' UTRs.
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The words are located in the middle of the mRNA and generally occupy most of the

mRNA. These three nucleotide words are known as codons. Recall that proteins are

long chains of molecules called amino acids. Given that there are four possible

nucleotides and given that codons are three nucleotides long, there are 43 = 64 different

possible codons. Since cells only use 20 different types of amino acids to construct

proteins, it is sufficient for codons to be 3 nucleotides long.

The Central Dogma of Molecular Biology

Replication
DNA duplicates

Transcription
RNA synthesis

Nuclear membrane

llTiilITT.J}IllTIflITlTI

Cyroplasm

TnRNA
ribosome

Translation
Protein synthesis

This figure shows the the Central Dogma of Molecular Biology and is avaiable online at

http://allserv.rug.ac.be/~avierstr/principles/centraldogma.html
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When mRNA is read by the ribosome, it first reads the 5' UTR. The ribosomes only

start to direct the construction of amino acid chains once it encounters a special codon

called the 'start' codon and stops directing this construction when a 'stop' codon is

encountered. The first codon of an mRNA specifies which amino acid will be the first on

the chain. Similarly, the second codon specifies which amino acid will be the second on

the chain, and so on. In almost all cases, the first codon (known as the 'start' codon) is

AUG and the last codon (known as the 'stop' codon) is either UAA, UAG or UGA.

Given that mRNA can be thought of as being a chain of three-nucleotide-long words, the

length of the protein-coding region of mRNA is always a multiple of 3. This has

ramifications in the design of computer programs that predict gene structure in a given

DNA sequence input.

The Central Dogma of Molecular Biology may at first appear to some to be an

unwieldy process. After all, why would the cell use RNA as an intermediary between

DNA and the proteins that it encodes? One advantage of using RNA is that DNA can

remain protected in the nucleus and away from the cytoplasm where the ribosomes are

located. Another advantage is that it is easier to regulate the expression of a gene when

there are more opportunities to control gene expression, e.g. at the level of synthesis of

the initial RNA transcript, at the level of RNA splicing, at the level of translation of the

processed mRNA, or at the level of the stability of the mRNA.

1.4 Gene-Finding

Once scientists have obtained the genomic sequence of an organism, they must next

identify which regions of the sequence code for the production of proteins. The two main

methods used to identify genes are (1) sequencing expressed sequence tags (ESTs) and

(2) computational approaches.

ESTs are short strands of DNA sequence (typically 500 nucleotides long). They are

generated by sequencing either one or both ends of the mRNA of an expressed gene. If

scientists have the genome sequence of an organism, they can use these 'tags' to identify

genes in chromosomal DNA. Isolating mRNA is essential if one wishes to generate
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ESTs. However, mRNA is very unstable outside of a cell. Scientists therefore use

enzymes to convert mRNA to cDNA. cDNA is a much more stable compound

representing the same sequence information as the mRNA it was derived from. 5'ESTs

are usually obtained from the regions of cDNAs that code for a protein while 3'ESTs are

usually obtained from regions that fall in the 3'UTR. 5'ESTs therefore tend to be

conserved to a far greater degree across species than 3'ESTs.

Although the EST approach has proven to be very fruitful, it is not a panacea. One

limitation of the EST approach is that highly expressed genes are represented thousands

of times in EST databases while genes expressed at low levels may be absent. Another

limitation is that ESTs represent only bits and pieces of mRNAs, not complete sequences,

and even when many are known for a given gene, it is common that they cover only parts

of the whole mRNA.

There are two main types of computational methods for finding genes: similarity-

based approaches and ab initio gene recognition. With homology approaches, exons are

identified by comparing conceptually translated regions of a genomic sequence to

databases of known protein sequences. Among homology approaches, BLASTX is one

of the more popular algorithms. In addition to genomic:protein comparison methods,

there are also genomic:genomic comparison methods. One example of a

genomic:genomic comparison method is the GLASS/ROSETTA approach. This method

of gene-recognition simultaneously analyzes homologous loci from human and mouse

genomic sequences and identifies coding exons. GLASS is an alignment algorithm that

provides global alignments of human and mouse genomic regions and ROSETTA is a

program that identifies coding exons in both species (Batzoglou et al 2000).

Programs that perform ab initio recognition only use the information contained in the

input sequence itself when predicting gene structure. Homology approaches, by contrast,

also use databases and cross-species comparisons. Most ab initio programs available to

the public were developed for gene-finding in vertebrates (Chen and Zhang 1997). Many

gene-finding programs use Hidden Markov Models (HMMs), a stochastic signal model,

for predicting gene structures. Examples of HMM-based gene-finders for vertebrates

include GENSCAN (Burge 1997), HMMgene (Krogh 1997) and Genie (Kulp et al.

1996). Other vertebrate gene-finders include FGENEH (Soloyev, 1995), which uses
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dymanic programming and pattern recognition algorithms, and Morgan (Salzberg et al.

1998), which uses a combination of decision trees, dynamic programming and Markov

chains.

Several comparative analyses of the performance of gene-finding programs have been

performed in recent years. In 1996, Burset and Guigo (Burset and Guigo 1996)

compared the performance of GeneID, SORFIND, GeneParser2 and GeneParser3,

GRAIL 2, GenLang, FGENEH and Xpound. In 2001, Rogic, Mackworth and Ouellette

(Rogic et al, 2001) performed a comparative analysis of several new programs that were

developed since the Burset/Guigo analysis was published. These programs were:

FGENES, GeneMark.hmm, Genie, GENSCAN, HMMgene, Morgan and MZEF.

While there are a wide variety of gene-finders for mammalian sequences, there

haven't been nearly as many gene-finders developed for fungal genomes. Pombe (Chen

and Zhang 1997) is a publicly available program that was designed to identify protein

coding regions in Schizocassharomyces pombe (S. pombe) genomic sequence. This

program uses linear discriminant analysis and dynamic programming. Another program

designed for fungal genomes is Fgenesh, which is an HMM-based program with the

algorithm similar to GENSCAN and Genie. Fgenesh is not available publicly.

One might think that scientists annotating genomes may only be interested in only

using the best available gene-finders. However, scientists annotating genomes often

make use of several different gene-finders. When the Neurospora crassa genome was

sequenced and annotated, FGENESH, FGENESH+ and Genewise were all used (Galagan

et al. 2003).

1.5 Goals of this thesis

While there are several HMM-based gene-finders available for mammalian sequences,

there doesn't exist a publicly available HMM-based gene-finder for fungal genomes. The

first goal of this thesis was to develop FUNSCAN, a new HMM-based gene-finder for

fungal genomes using some of the ideas from HMM-based gene-finders such as

GENSCAN and to apply FUNSCAN to all available fungal genomes. Once FUNSCAN
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performs at a level comparable or better than pombe, I will like to make it publicly

available. In addition to the predictive goal of high predictive accuracy, the following

properties for FUNSCAN were also considered desirable:

1) FUNSCAN should be trainable with a minimum of effort. Since one objective of

developing FUNSCAN was to apply it to several different genomes, it was

considered desirable to automate as much of the training process as possible.

2) FUNSCAN should perform at a speed that is comparable to most other gene

finding programs. For example, FUNSCAN should be able to process sequences

of 100 kilobases (105 bases) in less than one minute.

The second goal of this thesis was to explore new ways in which small datasets and

comparative genomics could be leveraged. Since fungal genes are much less studied than

mammalian genes (with the exception of the model organism Saccharomyces cerevisiae),

there are often only a small number of high-quality genes available for training fungal

gene-finders. Furthermore, since several new fungal genomes will be made publicly

available in the next few years, it is worth exploring how tools such as BLAST and

FUNSCAN can be combined to develop new algorithms for similarity-searches.

1.6 Outline of this work

This work is structured as follows:

Chapter 2 provides a concise introduction to HMMs. After discussing HMM-based

algorithms and providing an example of an HMM, I describe how HMMs can be

applied to gene-finding and I provide a brief overview of the architecture of

GENSCAN, an HMM-based genefinder
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Chapter 3 describes the architecture of FUNSCAN and explains why this design was

chosen. The training and testing of FUNSCAN is also described

Chapter 4 is devoted to exploring how FUNSCAN can be trained with small datasets

and how it can be used in comparative genomics.

Chapter 5 provides a summary of this work.
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Chapter 2

BACKGROUND IN HMMs AND BIOINFORMATICS

Signals can be classified broadly into two classes: deterministic and stochastic signals.

A deterministic signal is a signal in which each value of the signal is fixed and can be

determined by a mathematical equation, rule or table. Deterministic models exploit a

known property of the signal (i.e., signal is a sine wave), thus making signal specification

very straightforward. All that is required is to obtain accurate estimates of the parameters

of the signal model (i.e. frequency, amplitude, phase).

When dealing with stochastic signals, one does not try to characterize the precise

behavior of the signal. Instead, one tries to characterize the statistical properties of the

signal. Examples of statistical models include Gaussian processes, Poisson processes,

Markov processes and Hidden Markov processes.

The main difference between deterministic and stochastic signals is that while the

values of deterministic signals can be calculated from past values with complete

confidence, stochastic signals have uncertainty about their future behavior.

Chapter 2 discusses Hidden Markov process and examines how they can be used to

build a gene-finder. Section 2.1 provides a brief review and an example of a Markov

process. This discussion provides a suitable background for section 2.2, in which HMMs

are explained and an example is discussed. Section 2.3 discusses how HMMs can be

used to identify coding regions in genomic sequences and provides an overview of

GENSCAN, an HMM-based gene-finder is provided. The discussion of FUNSCAN in

Chapter 3 builds upon and extends many of the ideas discussed in this chapter.
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2.1 Discrete Markov Processes

Consider a system which is described as being in one of a set of N distinct states, SI, S2,

... SN. If the probability of transition from state Si at time t to state S at time t + 1

depends only on Si (i.e. the state at time t) and not on previous history of the process (i.e.

the states at times t -1, t -2, etc..), then the process is said to be a first-order Markov

chain. It can be described in the following manner:

P~qi, I= Sj qt = S, qj-j = Sk, ... ] = P =qt+l - SjIq = Si]

Similarly, if the probability of transition from state Si at time n to state Sj at time t + 1

depends only on Si (the state at time t) and on Sk (the state at time t-1), the process is said

to be a second order Markov chain. More generally, an nth-order Markov chain can be

described in the following manner:

P[qt+1= Sj qt = Si, qti- = Sk.., qo = S]

=P[qt = Sj|q= Si, .. ,qn+ = S,]

An example of a first-order Markov model is a simple 3-state model of the weather.

In this model, the weather can be described as being in the following states:

State 1: rain

State 2: cloudy

State 3: sunny

Since this is a first-order Markov model, the weather on day t+1 depends only on the

weather on day t. For a first-order Markov model, the state transition probabilities are

defined in the following manner:

aij = P[qt+; = S| qt= Sj]

19



All state transition probabilities have a value which is greater than or equal to zero. A

matrix of state transition probabilities for the Markov model of the weather is the

following

0.5 0.3 0.2

aij= 0.2 0.6 0.2

0.1 0.1 0.8

From this matrix of state transition probabilities, one can make some observations

about the behavior of our weather system. For example, if the weather is in state x on

day t, then on day t + 1, the state that the weather is most likely to be in is state x.

2.2 Hidden Markov Models

Markov models are considered to be too restrictive to be applicable to many problems of

interest because each state corresponds to an observable event. A stochastic process

where the observation is a probabilistic function of a hidden state is called a Hidden

Markov Model. The coin toss model described in the following paragraph is an example

of a Hidden Markov Model (HMM). This example is also discussed in a paper written by

Lawrence Rabiner entitled "A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition" (Rabiner, 1989), which is an excellent reference for

HMMs.

Assume that you are in a room with a curtain behind which you cannot see what is

happening. On the other side of the curtain, another person is performing a series of coin

flips and is telling you the result of each coin flip. For each coin flip, this person is using

a gold coin, a silver coin or a bronze coin. However, this person will not tell you which

coin is used for each coin flip, i.e. a series of hidden coin tossing experiments is being

performed.

20



The observation sequence of this HMM is the series of heads and tails results from

the experiment and the hidden state sequence of this HMM is the sequence in which the

coins were used. Here is an example of a typical observation and state sequence

0 = 0 1 0 2 0 3 .... OT

=HHTTTHTTH ... H

S = S1 S 2 S 3 ... ST

=GGBSSGSG ... B

Here are what typical state transition probability distributions and observation

probability distributions would be:

State Transition Probability Observation Probability

COIN

Gold Silver Bronze

P(heads) .8 .5 .2

P(tails) .2 .5 .8

More generally, an HMM is characterized by the following (Rabiner 1989):

1) N, the number of states. In the coin-tossing experiment, the states correspond to

the coins that were used for each flip. The set of individual states is denoted as S = {SJ,

S2, ... , SN} -

2) M, the number of distinct observation symbols per state. In the coin-tossing

experiment, the observation symbols for all three states are Heads and Tails. The

individual symbols are denoted as V = {v1, V2, ... , vM}.

3) The state transition probability distribution A(aij), which is the probability

oftransition from A1 -> A1. In the coin-tossing experiment, the state transition

probabilities describe which of the three coins the experimenter will use next. The

probabilities are a function of which coin the experimenter has just used.

21
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4) Observation symbol probability distribution in each state. In the coin-tossing

experiment, this corresponds to the probability of getting either heads or tails for each of

the biased coins. The probability of observing the symbol k in state j is bj(k), where

bj(k) = P[vk at tlqt= S], for I Pi<N

1 <k<M

5) Initial State Distribution. This is the probability of being in each possible state at

the start of the experiment. This is denoted in the following manner:

7ri = P[q, = Sj], I < i < N

In the coin-tossing experiment, a few properties can be inferred about the coins that are

being used and the coin preference of the person performing the experiment. For

example, the silver coin is unbiased while the gold and bronze coins are biased. In

addition, the person performing the experiment behind the curtain has an obvious

preference for using the gold coin in the experiments. As a result, if the person

announces several heads in a row, then it is reasonable to hypothesize that the gold coin

was used for those flips.

Given the definition of HMMs, there are two basic problems that must be solved in order

for the model to be useful in gene-finding applications:

1) Given an observation sequence 0 = 01, 02, 03, ... , ON and an HMM model, how do

you efficiently computer P(Olmodel)?

2) Given an observation sequence 0 = O1, 02, 03, ... , ON and a model, how do you

choose the state sequence S = S1, S2, S3, ... , SN that maximizes P(0, S)? In this case,

S is the state sequence that best "explains" the observations.

The solution to the first problem is the forward algorithm (Rabiner 1989). The key idea

behind the forward algorithm is that one must only computer P(O, St = ilmodel) for each

state I recursively. P(Olmodel) will then be the sum of the probabilities in each of the

possible states at time N. Consider the forward variable:
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at(i) = P(01 02 ... O, q,= Sijmodel)

This is the probability of the partial observation sequence 01 02 ... O, and also having

the HMM be in S1 at time t, given our model. Given the above definition of the forward

variable at(i), it can be seen that if one can calculate aT(i) for each possible state i, then

the first problem can be solved by simply taking the sum of aT(i) for each possible state i.

aT(i) for each i is calculated in the following manner:

1. Initialization:

aj(i) = iribi(O), 1 < i < N

2. Induction: N

at+1() = [ at(i)ay ] bj(0.+1), 1 t < T -1

I 1 j<N

3. Termination: N

P(Olmodel)= ZaT(i).

i=1

The solution to the second problem is the Viterbi algorithm, which is very similar to the

Forward algorithm. The Viterbi algorithm finds the single best state sequence Q = {q]

q2 ... qT} for the given observation sequence 0 = {01 02 .. OT}. Just as an at(i) variable

was defined for the first problem, a 61(i) variable is defined for the Viterbi algorithm,

where 65(i) is the probability of the observing the observation sequence when the

underlying state sequence is the best path, but ends in qi.

bt(i) = max P[qj q2 ... qt = i, 01 02 ... Ot! model]

6,(6) can be calculated recursively in the following manner:

6t+1(j) = [max 6t(i)aij]- bj(Ot+1)

23



Just as for the forward algorithm, where there was an cT(i) for each state i, there will be

an 6 T(i) for each state i in the Viterbi algorithm. However, for the Viterbi algorithm, one

must select the 6 T(i) that has the maximum value. In the Forward algorithm, we merely

take the sum of all UT(i) values.

Once the maximum 6T(i) is established, it is known that the last state of S is Si. To

retrieve the rest of S, we need to keep track of the state that maximizes ei+1(O). Here is

the complete procedure for finding the best state sequence:

1. Initialization:

61j) = 7ribi(Ol), 1 < i < N

2. Recursion:

ot61) = max [r6tj(i)ay ] b;(0d, 2 < t < T

1 i5 N 1 j N

)= argmax [3t.1(i)a] 2 < t < T

1! i:SN1 Nj <N

3. Termination:

q= argmax [T(T)]
1 i< N

4. Path (state sequence) backtracking:

qt = Vt+ 1() (qt+ 1) t = T -1, T-2, ..., 11.

2.3 Application of HMMs to gene-finding

As can be seen from the discussion of HMMs in the previous section, HMMs have the

ability to model grammar. Suppose one wanted to modify the coin-tossing experiment

from the previous chapter to include the following rule: when the person behind the
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curtain uses a silver coin, the person cannot use a gold coin for the next coin toss. This

rule could easily be incorporated into the HMM by setting ailver, gold equal to 0. If the

states of the coin-toss experiment were considered as being 'words' in a language, one

rule of the grammar of this language would be that one cannot have a sentence of the

form .... silver-gold.... .

The problem of analyzing genomic sequences and predicting gene structures also has

a grammatical structure. If one considers 'intergenic', 'exons' and 'introns' as being

words in a sentence, then the sentences of gene-structure must be of the following form

exon-intron-exon-intron... exon-intron-exon. These sentences must always begin with an

exon and exons cannot be adjacent to one another; they must be separated by exactly one

intron.

2.3.1 Signals in gene-finding

In addition to gene structures possessing a grammatical structure, genes also possess

several notable signals which must be taken into consideration when building a gene-

finder. With very rare exceptions, eukaryotic genes possess each of the following

properties:

1) Start codon: The first three bases of the first exon, are ATG

2) Stop codon: The last three bases of the last exon of a gene are one of the three stop

codons TAA, TAG or TGA.

2) Donor and acceptor sites: The first two bases of an intron are GT (the donor or 5'

site) and the last two bases of an intron are AG (the acceptor or 3' site).
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Consensus sequence of splice donor and acceptor sites

These sites are used by most pre-mRNA molecules.

5 exon intron 3 exon
sequence sequence sequence

C A UUUUUUUUUU U C G
5'--or A G GU or A G U ----- A -- or or or or or or or or or or or N or AG or --- 3'

A G C C C C C C C C C C C U A

consensus sequence for branch- consensus sequence for 3' splice site
5' splice site ("donor site") point A ("acceptor site")

This picture shows the donor and accpetor site of an intron. In addition, a base from the

branch signal is shown. Picture is available online at

(http://amigal.med.miami.edu/Medical/Werner/Images/Lecture6/Consensus%
2 0splice% 2

Osites.JPG)

3) Branch signal: Although branch signals are conserved to varying degrees in

different organisms, they are well-conserved in fungi. The branch signal is a

seven base-pair long sequence that is located 10-30 nucleotides away from the

end of an intron. The branch signal in fungi and methods for identifying it will be

discussed in greater detail in Chapter 3.

2.3.2 Overview of GENSCAN

GENSCAN is a semi-Markov HMM-based gene-finder. The difference between a

Hidden Semi Markov Model (HSMM) and an HMM is how state duration is modeled. In

an HMM, the amount of time that is spent in a particular state follows a geometrical

distribution. However, with HSMM models, the time spent in a particular state is not

necessarily geometric; it can be modeled by other distributions. It can be stated that an

HMM is a HSMM where state duration is modeled with a geometric distribution.

GENSCAN was designed to predict genes in vertebrate organisms. It is desirable to use
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an HSMM when building a gene-finder for vertebrates because there is a great deal of

variability in the length of vertebrate introns. For fungi, the length of introns does not

vary a great deal. In vertebrates, however, intron length can vary from 100 to 50000

nucleotides.

The Gene model of the input DNA sequence of GENSCAN has 27 states and

simultaneously predicts genes on both strands. As we will see, FUNSCAN first

processes the forward strand and then processes the reverse strand. GENSCAN models

the intergenic region and also the promoter and 5'UTR, which are both located before the

first exon. Since some genes do not contain introns (i.e. they are 'single-exon' genes),

GENSCAN models single-exon genes and intron-containing genes in two different

manners. The FUNSCAN gene-model, on the other hand, models one generalized gene

type (which may or may not have introns).

Although the gene-structure for intronless genes is straightforward, the gene-structure

for genes with introns is more elaborate. The Eo+, El+, E2+, Io+, I,+ and 12+ states are

used to ensure that the length of the coding region of the mRNA is a multiple of 3.

Gene signals such as the start codons, stop codons, donator sites and acceptor sites

were modeled implicitly in GENSCAN as part of the associated exon models in order to

keep the number of states manageable (Burge 1997).

The purpose of examining the GENSCAN model is to demonstrate that there are

several design decisions to be made when building an HMM-based gene-finder, a fact

that will become readily apparent when the FUNSCAN gene model is discussed in the

next chapter. The following table summarizes the features of GENSCAN and

FUNSCAN that were discussed in this chapter:

FEATURE

State duration Overlapping genes State design

GENSCAN HSMM Genes on both strands predicted Gene signals modeled

simultaneously implicitly in states
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This is the gene model for GENSCAN. 13 coding regions states

and the intergenic state is shown. The 13 states not shown in this

diagram are identical to the 13 coding region states shown above.

Although HMMs are effective for solving the gene-finding problem, they are not

sufficient for all problems in bioinformatics. With RNA folding, there are correlations

between bases far apart from each other in the linear sequence. For RNA folding,

Stochastic Context-Free Grammars (SCFGs), which generalize HMMs, have proven to be

effective.
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Chapter 3

IMPLEMENTATION AND TESTING OF FUNSCAN

This chapter covers the implementation and testing of the FUNSCAN program. Section

3.1 describes the GenBank format for annotating genes and how training and test data

sets were obtained. Section 3.2 describes the model architecture of FUNSCAN and

Section 3.3 goes into greater detail into how both the observation symbol probability

distribution and the state transition probability distribution were obtained. FUNSCAN

performance and testing is discussed in section 3.4.

3.1 Construction of Datasets

Publicly available DNA sequences are archived at GenBank, the National Institute of

Health (NIH) genetic sequence database that is available online. Sequences are

submitted to GenBank from scientists around the world; many journals even require

submission to a database at time of publication. A certain errors are present in sequences

that are submitted to GenBank and in the annotation that accompanies the sequence. For

example, sequences may not have the proper donor and acceptor sites (GT and AG

respectively); in one case, a sequence had an intron that was only 1 nucleotide long.

In addition to this, some of the genes structures submitted to GenBank are

computationally predicted, as opposed to experimentally verified ones. It is for this
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reason that a gene annotation script called GENOA was developed in the Burge lab (Lee

P. Lim, Ru-Fang Yeh, Dirk Holste and Chris Burge, unpublished). GENOA takes

available cDNAs for an organism and aligns then to their genomic loci, generating a

'gold standard' set of annotated genes.

GenBank has a standard format, known as 'GenBank format' for submissions of

DNA sequences with associated annotation of gene-structures. An example of a DNA

sequence in Genbank format is included in Appendix A. For the purposes of training and

testing FUNSCAN, the most important data element is the 'CDS' field, which indicates

the region of the DNA sequence that corresponds with the sequence of amino acids in a

protein (CDS includes start and stop codons).

3.2 Gene Model of FUNSCAN

The figure discussed in this section is a conceptual model of FUNSCAN. The only

difference between the conceptual model of FUNSCAN and the actual model is that the

conceptual model does not explain how FUNSCAN ensures that the lengths of predicted

coding regions will always be a multiple of 3. Still, the actual model is much more

effective at highlighting the key features of FUNSCAN.

Starting from the intergenic state, a gene is first defined by a special start codon state.

Notice that the promoter region and the 5' UTR is not modeled. After the start state, the

next structure defined is the codon state. After the codon state, the next state can either

be the stop codon state or the intergenic state. After the intergenic state, the next state is

the codon state. For all genes, the last state that is entered is the stop codon state. The

next state after the stop codon state is the intergenic state.
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Exon 5' SS Branching site

G T A

3' SS

Intergenic base o on

This is the conceptual model of FUNSCAN. The intronic state is represented by a circle, but all other states are represented by rectangles. Note

that the arrows above the Intergenic and Intronic states mean that it is possible to be in the Intergenic state at both times t and t+1. In this model,

when two rectangles are adjacent to each other and no arrow is present, the state transition probability between them is equal to 1.
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Each state in FUNSCAN emits exactly one base. The following states are fixed,

meaning that they will always emit the same base(s):

Intron State Base

Position Emitted

One of the states in the branch site is also fixed, but this will be discussed in the next

section.

The method by which FUNSCAN ensures that the lengths of predicted coding regions

are a multiple of 3 is very similar to the method that is used by HMMgene (Krough,

1998).

3.2.1 Branch Site Located in Introns

Of all the gene elements included in the FUNSCAN gene model, the branch site is the

only one that was not discussed in the Chapter 1. The third stage of the Central Dogma

of Molecular Biology, discussed in section 1.3, is where introns are removed from RNA.

This process is known as RNA splicing and a seven-nucleotide-long structure known as

the branch site is involved in this process. The branch site is located approximately 10 to

40 nucleotides away from the acceptor site. The distance from the branch site to the

acceptor site is not uniform in each organism; it varies for each intron in an organism and

the average distance varies between organisms. Although the branch site is present in all

introns, it is conserved to varying degrees in different organisms. In Saccharomyces

cerevisiae (budding yeast), the sequence is almost invariably TACTAAC. While the

sequence is not conserved as strongly in other organisms, the sixth base is always 'A' and

the other six bases are also well-conserved in most fungi.
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2 T

3 G

Stop State Base Emitted

1 T

2 A or G
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L G



RNA splicing is an area in which active research is being conducted. This is because

many genes can be spliced in more than one way. Such genes are said to be 'alternatively

spliced'. Since some genes are alternatively spliced, knowledge of a genome sequence

does not imply a comprehensive knowledge of its transcriptome- the set of gene

transcripts (mRNAs) that the genome encodes (Burge 2001). Just as biochemists in the

1960s identified the rules governing the translation of mRNAs into amino acid chains,

today's scientists are attempting to identify the rules that govern the ways in which an

RNA transcript is spliced. The rules governing RNA splicing are likely to be more

complicated than those of translation, and they will not be the same for all organisms.

3.3 Observation and Transition Probabilities

Recall from the discussion on Hidden Markov Models in Section 2.2 that Hidden Markov

Models are characterized by the following five features:

- N, the number of states

- M, the number of distinct observation symbols per state

- The state transition probability distribution A(aj), which is the probability of

transition from At -> At,.

- Observation symbol probability distribution in each state (emission

probabilities)

- Initial State Distribution

Information about the number of states and the number of distinct observation

symbols per state can be obtained from the figures. However, only limited information

about the state transition probabilities and observation symbol probability distribution can

be obtained from the FUNSCAN gene model in Section 3.2.

3.3.1 Calculating the Observation Symbol Probability Distributions
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With the exception of the fixed states that were discussed in the previous chapter, every

state can emit any one of the four possible nucleotides (A, C, G, T). How does one

determine what the probability distributions should be for these states?

Before answering this question, let us first examine how one might determine

observation symbol probability distributions for the coin toss experiment introduced in

section 2.2, assuming that a person has access to the gold, silver and bronze coins that are

used in the experiment. One would flip each coin many times and keep track of the result

of each flip. Using the maximum likelihood estimator, the observation symbol

probability distribution for the gold coin is simply:

P(headsigold coin) = # of heads / # of flips P(tailsjgold coin) = # of tails / # of flips

The same procedure is repeated for the silver and bronze coins. One might then

choose to use the maximum likelihood estimator for calculating the observation symbol

probability distributions. However, such a design does not take into account important

facts about coding regions. For example, stop codons (TAA, TAG, TGA) never appear

in coding regions, so the conditional probability of an A or G at the third site of a codon

following TA at the first two positions should be zeros and other biases exist at the level

of DNA triplets. It is for this reason that the observation symbol probability distributions

of FUNSCAN are functions of what the previous two bases were.

For the intergenic state, the intronic state and for codon state 1, codon state 2 and

codon state 3, the observation symbol probability distributions are stored in 16x4

matrices. Appendix B shows the format that is used to submit observation symbol

probability distributions to FUNSCAN. Each row of the matrix corresponds to the

previous two bases and each column corresponds to the observation symbol probability

distribution of the four nucleotides. For example, bintergenic(Aprevious two bases were

AA) corresponds to the Intergenicii matrix entry, bintergenic(Tprevious two bases were

TT) corresponds to the Intergenici6 ,4 matrix entry and bintergenic(Cprevious two bases

were GC) corresponds to the Intergenic,2 matrix entry. Because stop codons do not

occur in coding regions, one can also deduce that bcodonstate_3(Alprevious two bases were

TA), bcodonstate_ 3(Alprevious two bases were TG) and bcodonstate_3(Glprevious two bases

were TA) will always equal 0. Since the intergenic, intronic and the three codon states

are dependent on the previous two bases, the emission probabilities of FUNSCAN are
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second-order HMM. Second-order probabilities are still estimated using the maximum

likelihood estimator discussed in chapter 2; they are a conditional version of maximum

likelihood.

Although the maximum likelihood estimator is not suitable for the intergenic, intronic

and coding states, it is used by FUNSCAN for the donor and acceptor sites. The

maximum likelihood estimator is also used for determining the observation symbol

probability distributions for each of the seven bases for the branching site.

To summarize, here is a table that lists how the observation symbol probability

distributions are obtained:

STATE METHOD OBTAINED

Start Maximum likelihood

Stop Maximum likelihood

Intergenic Second order

3 codon states Second order

Intronic Second order

3.3.2 Gibbs Sampling for the Branching Site

The only states missing from the above table are the branch site states. These states are

actually obtained by using the maximum likelihood method. However, identifying the

branch sites in introns is not trivial; a procedure called Gibbs Sampling is used (Lawrence

et al. 1993). Since Gibbs sampling is a stochastic process, it is not guaranteed to produce

the same results each time it is performed. In order for the branch site to be identified by

the Gibbs sampler, only the last 40 bases of each intron must be submitted to the Gibbs

sampling algorithm. If entire introns are submitted, the Gibbs sampling algorithm will

not be able to identify the intron regions.

The Gibbs sampler takes as input several sequences and the length of the motif (in the

case of FUNSCAN, the motif is the branch site). The output is the motif and statistics

about the motif, such as the frequency that the motif appears in the input sequence and

maximum likelihood estimators for each motif position. In addition, the Gibbs sampler
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will indicate where the motif is located in each sequence. This is very useful for

calculating state transition probabilities, as we will see in the next section.

3.3.3 Calculating State Transition Probability Distributions.

The methods used for calculating the state transition probabilities are very intuitive.

However, the parameters obtained by these methods did not always prove to be optimal.

The quality of parameters was verified by calculating the state transition probabilities

according to the formulas described below and then using them when testing on the

training set. The reason why the gene-finder was tested on the training set is because one

doesn't want to test on a testing set until a final gene-finder is ready. Automated testing

has been set up for FUNSCAN. Whenever a series of GenBank files is provided as input,

the output is a series of test statistics. These test statistics will be discussed in greater

detail later in this chapter.

These values were then modified slightly by hand in order to ensure that they were

indeed the optimal values. Below is a brief description of how several transition

probabilities were calculated. In addition, comments are included that describe how

successful each method proved to be:

Intergenic to start codon: In a training set, the number of intergenic bases and the

number of genes present are computed. The transition probabilily for Aintergenic,start

is calculated using the following formula: #genes/#intergenic bases. The transition

probability for Aintergenic,intergenic is equal to 1 - Aintergenic,start. These formulas

proved to be fairly effective; the number of genes predicted was about right. This

result is not very surprising, given that a gene is a very strong signal and that it

would require a very poor parameter formula in order to miss a complete gene.

This hypothesis was tested by testing a gene-finder on the training set and

modifying the order of this parameter by a factor of 1000. Since the gene-finder

still performed well, one can conclude that there can be a lot of variability in the

value of this parameter.
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Codon transition formulas: When the model is in the codon state, the model can

either remain in the codon state or change to the stop codon state or one of the

intergenic states. When the training set was processed, the number of exons and the

total number of exonic bases was computed. The following formulas were then

used:

Acodon_state_3,stopcodon_ = #genes / # bases in exons with stop codon

Acodonstate_3,intronic = (#total exons - #exons with stop codon)/ (# bases in

all exons except exons with stop codons)

Acodonstate_3,codon statel = 1 -(Acodon_state_3,intronic + Acodon_state_3,stopcodon_I)

Given that exons are hundreds of bases long, the values of the first two parameters

are very small and the value of the third parameter is very close to 1. The success

of these formulas varied greatly. On some organisms, these formulas worked very

well. However, for other organisms, the value for Acodonstate_3,intergenic was from

optimal. After testing on the training set, it sometimes turned out that the optimal

value for this parameter differed by a factor of 10 from the actual optimal value.

This might be because exon length is not actually distributed geometrically. Recall

that for HMMs, all state durations are geometrically distributed.

Intron transition probabilities: There are two parameters that must be calculated

here since there is an intron state before the branch site and an intron site after the

branch site. The follow are the equations that are used in calculating these

parameters. Explanations are included where necessary

(i) Aintronicbeforebranch,branch site = numintrons / (num intronicbases -

[numgenes(20 + 7 + avgdistbranch acceptor)] )

(ii) Aintronic-before branch,intronic before branch = 1 - Aintronic before branch,branch site

Explanation: For introns, FUNSCAN models the first 10 bases, the last 10

bases and the seven branch site bases using position-specific probabilities. This

is the purpose of having 20+7 in the equation. Since the branch site is located

10-30 bp upstream of the acceptor site, this amount must also be taken into

consideration when computing a parameter. The denominator of the first term

is the total number of intronic bases excluding the first ten from each intron, the
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branch site and the bases downstream from the branch site of each intron. The

second equation follows from the first equation.

(iii) Aintronicafter branch,acceptor_site = numintrons / (num intronic__bases -

[numgenes(7 + allgenesupstream-ofbranchsite + 10)] )

(iv) Aintronicafterbranch,intronicafterbranch = 1 - Aintronicafterbranch,acceptorsite

Explanation: The logic behind the equations for these parameters is similar to

the logic used in obtaining parameters for the two parameters above. Since

introns are on average over 100 bases long, one would expect the value of (ii) to

be higher than (iv). This is always the case, since (iii) is greater than (i).

Although these parameters are not always optimal, they need to be adjusted by

relatively small factors. When training a model, it is recommended to modify these

parameters simultaneously with codon transition probabilities in order to find an

optimal solution.

The state transition probabilities are very useful for trouble-shooting. Whenever training

FUNSCAN, one should always first test on the training set in order to identify problems

that can be corrected by adjusting the state transition probabilities. A test set should

always be kept separate from the training data. The following table discusses common

problems with training FUNSCAN and how they can be corrected by modifying state

transition probabilities. All of these situations have arisen when training FUNSCAN for

different organisms

PROBLEM SOLUTION

Too many or too few genes are being Modify Aintergenic,start accordingly

predicted

Too many or too few introns are being Modify Acodonstate_3,intronic accordingly

predicted

FUNSCAN finds intronless genes Modify Acodon_state_3,intronic accordingly

well, but is not effective at finding

genes with introns
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3.4 Evaluating the performance of FUNSCAN

When building a gene-finder set, how does one select test statistics that will provide

useful information for the person attempting to improve the performance of the gene-

finder? There are two main types of test statistics: accuracy by nucleotide or accuracy by

correct gene structure. An example of accuracy by nucleotide would be statistics such as

percentage of exonic nucleotides predicted. Examples of accuracy by correct gene

structure are statistics such as percentage of exon structure and intron structures

accurately predicted (ie gene-finder predicts correct boundaries).

For the evaluation of FUNSCAN performance, several statistics on accuracy by

correct gene structure were chosen. Statistics that examine the percentage of correct gene

structures were chosen because they give describe more precisely the performance of the

gene-finder. A good performance for accuracy by correct gene structure predictions

implies that the gene-finder will also perform well when evaluated with accuracy by

nucleotide statistics. However, the converse is not necessarily true.

The following statistics were selected in order to evaluate the performance of

FUNSCAN:

Fraction of Correct Start/Stop Exons: A start/stop exon is an intronless gene.

Fraction of Correct Start Exons: A start exon is the first exon in genes that

contain introns

Fraction of Correct Stop Exons: A stop exon is the last exon in genes that

contain introns

Fraction of Correct Middle Exons: A middle exon are exons that are not Start

exons or Stop exons in genes that contain at least two introns.

Fraction of introns correct (intron accuracy): This statistic measures what

percentage of introns in a dataset are identified correctly. Since gene density is

quite high in fungal genomes, one must 'trim' each gene in the test set. This

means leaving 500 nucleotides flanking each side of the CDS region. If more

bases are left, then it is possible that FUNSCAN may be discovering new genes,

even though they have not been annotated.
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When testing FUNSCAN, special attention will be paid to the intron accuracy

statistic. This is because genes that contain introns are the most difficult to identify, and

successful prediction of introns can assist homology methods in confirming gene

predictions.

3.4.1 FUNSCAN Performance for S. pombe

Schizosaccharomyces pombe (S. pombe) is a fission yeast that was the sixth eukaryotic

genome to be sequenced (Wood et al. 2002). Of all the fungi of interest, GENOA (the

gene annotation script used in the Burge lab) obtained the most sequences for S. pombe.

GENOA also obtained a large number of genes for Saccharomyces cerevisiae (S.

cerevisiae), a budding yeast that was the first eukaryotic organism to be sequenced

(Wood et al. 2002). However, S. cerevisiae is not a very interesting organism for the

purposes of gene-finding because very few of its genes have introns. As a result, it is

very easy to build a gene-finder for S. cerevisiae.

GENOA obtained 234 genes for S. pombe. From these genes, 132 genes were used as a

training set and 102 genes were used as a test set. Below are the test statistics for

FUNSCAN when it was tested on the 102 genes. In this table, the test statistic is the

exact prediction of exon/intron boundaries; both boundaries of a structure must be

correctly identified.

Start/Stop Start Stop Middle Intron

Exon Exon Exon Exon

#correct 34 36 42 37 80*

# incorrect 16 16 10 13 22

Sensitivity 68% 69% 81% 74% 78.4%

* A total of 115 intron structures were predicted by FUNSCAN

Results obtained from FUNSCAN are competitive with results obtained from the

Pombe gene-finder. For FUNSCAN, the sensitivity and specificity of intron
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identification were 78.4% and 69.5% while for Pombe, these numbers were 67.8% and

77% respectively (Chen and Zhang 1998). Although FUNSCAN identifies exon/intron

structures more accurately, FUNSCAN is also making more predictions, thus leading to

lower specificity.

Here is the performance of FUNSCAN when only 60 S. pombe genes are used for

training. Not surprisingly, FUNSCAN does not perform as well when only 60 genes are

used for training. However, as will be seen in the next chapter, there are some methods

that can be used to improve the performance of FUNSCAN when only small datasets are

available. The sensitivity was 70.5% and the specificity was 66%.

Start/Stop Start Stop Exon Middle Intron

Exon Exon Exon

# correct 29 34 42 30 72*

#incorrect 21 18 10 20 30

Sensitivity 58% 65% 81% 60% 70.5%

*109 introns were predicted

3.4.2. FUNSCAN Performance for N. crassa

Neurospora crassa (N. crassa) is another fungal genome that was recently sequenced

(Galagan et al. 2003). The Neurospora genome is over three times larger than the S.

pombe genome. Here are the performance statistics for FUNSCAN on Neurospora

crassa (N. crassa). For this experiment, only 65 genes were available, so cross-

validations were used for testing. The number of introns predicted was 151 . For this

experiment, the sensitivity was 57.9% and the specificity was 77/151 = 51%.
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Start/Stop Start Stop Middle Intron

Exon Exon Exon Exon

# correct 1 24 35 37 77

#incorrect 4 22 11 50 56

Accuracy 20% 52% 76% 42.5% 57.9%

The performance of FUNSCAN in this experiment is inferior to the performance when

only 60 genes were used in a training set for S. pombe. This might be explained by the

fact that there are more introns in N. Crassa genes than in S. pombe genes. For the N.

crassa experiment, the start exons, stop exon and middle exon provide more interesting

insight into the performance of FUNSCAN. Notice that FUNSCAN was much better at

identifying start and stop exons than at identifying middle exons. This is not very

surprising since start and stop exons have stong signals (the start and stop codons)

3.4.3 Phylogenetic generality of FUNSCAN

When trained and tested on S. pombe, N. crassa and A. nidulans, FUNSCAN can identify

at least 70% of introns correctly. An interesting question to pose is how does FUNSCAN

perform when it is trained on S. pombe, for example, and then tested on either N. crassa

or A. nidulans? Some literature on GENSCAN suggests that it is possible for a gene-

finder to possess a high degree of phylogenetic generality. Although GENSCAN was

trained on vertebrate sequences, GENSCAN performed well when tested on a set of 202

complete Drosophila (fruit fly) genes and on a set of 41 complete maize genes (Burge

1997). However, there are also indications that GENSCAN performs poorly when tested

with C. elegans (round worm) genes.

To examine more closely the phylogenetic generality of FUNSCAN, the following

experiment was conducted:

1. Three different version of FUNSCAN were trained on training sets for S. pombe,

N. crassa and A. nidulans.
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2. Each version of FUNSCAN from step 1 was tested against the two organisms for

which it was not trained for. The intron accuracy statistic was recorded in each case.

3. Each version of FUNSCAN was then tested on how well it identified genes of the

organism on which it was trained:

- Since there is a dataset of 234 S. pombe genes, the last 102 genes were

set aside as a test set

- The last 50 genes of the N. crassa dataset were set aside as a test set

- Since the dataset of A. nidulans is very small, cross-validation tests were

used to determine how well an A. nidulans trained FUNSCAN gene-finder

could identify genes in A. nidulans.

4. 50 genes were selected from each of the following: S. pombe training set, N.

crassa training set and A. nidulans training set. These 150 genes were then used to

train FUNSCAN. This new version of FUNSCAN was then tested with the same test

sets from (3) for S. pombe and N. crassa. Given the small dataset for A. nidulans, it

was not possible to set aside a test set of 50 A. nidulans genes. As a result, the 50 A.

nidulans genes that were used in the 150 gene training set were also used as a test set

for the FUNSCAN gene-finder that was trained on genes from three different

organisms. Although using training genes as a test set is not ideal, the 100 genes

from S. pombe and N. crassa should help mitigate this effect and the results of this

experiment should still be useful. Here are two tables that summarize the results from

this experiment.

TESTED ON

TRAINED ON S. pombe N. crassa A. nidulans

S. pombe 78% 31% 41%

N. crassa 4.5% 76% 31%

A. nidulans 13% 58% 69%

50 genes each from 41% 61% 71%

all three organisms

Explanation of table: FUNSCAN was trained on the organism specified at the
beginning of each row and tested on the organism specified at the top of each column.
The test statistic is intron accuracy.
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When examining the first table, the first thing that becomes immediately apparent is that

it is very difficult to identify S. pombe genes unless the gene-finder has been trained on S.

pombe. However, a gene-finder trained on S. pombe can identify genes from other fungal

genomes reasonably well. This might indicate that certain characteristics are unique to

the S. pombe genome, or are at least not present to the same degree in the genomes of N.

crassa or A. nidulans. While not 'strong' enough to prevent an S. pombe-trained gene-

finder from identifying genes from other fungal genomes, these characteristics seem to

prevent S. pombe genes from being identified by gene-finders trained on different

organisms.

Given this observation, one would expect that if a gene-finder were trained on genes

from all three organisms, it would be most difficult for this gene-finder to identify S.

pombe genes. And this is exactly what happened when step 4 of the experiment

described above was performed. The second table shows that the performance of such a

gene-finder on S. pombe is noticeably poorer than for genes from N. crassa and A.

nidulans.

Another interesting observation that can be made from the above tables is that the

gene-finder that was trained on genes from three different genomes was more successful

at identifying A. nidulans genes than the gene-finder that was only trained on A. nidulans

genes. The most likely explanation is that the multi-organism gene finder benefited from

having a significantly larger training set than was available for the A. nidulans-specific

gene finder, emphasizing the importance of having a sufficiently large training set for

reliable parameter estimation.
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Chapter 4

DEALING WITH SMALL DATASETS AND

LEVERAGING COMPARATIVE GENOMICS

One might think that training gene-finders becomes routine once a gene-finder has been

built and the training and testing procedures have become automated. However, the

performance of gene-finders can be improved when they are trained in more creative

ways, especially when training data are united. Section 4.1 some modifications that can

be made to the process of training gene-finders when only a small number of genes are

available. Section 4.2 examines how genes that would not normally be detected by

sequence alignment techniques can be identified using a gene-finder

4.1 Dealing with small datasets

As was the case with A. nidulans in the previous chapter, there may not be enough high-

quality genes available to train a gene-finder using the traditional method of analyzing a

set of known genes and then computing certain statistics.

If one has a small dataset and cannot obtain additional known genes, then an

acceptable substitute may be computationally predicted genes. These computationally

predicted genes can be obtained from a gene-finder that was trained on the original set of
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known genes. A procedure called Training Set Augmentation (TSA) is outlined below

which incorporates computationally predicted genes into the training of gene-finders:

1. Take initial dataset and train a gene-finder in the normal manner

2. Take a chromosome or other large sequence containing uncharacterized genes of

the organism for which the gene-finder is being trained. Submit this chromosome to

the gene-finder in step (1).

3. Train a new gene-finder on the genes that were predicted in step 2.

When examining this procedure, one might think that since the initial training set is

small, the computationally predicted genes may be inaccurate and that therefore

performance will decline when those genes are used for training. However, it could be

that a gene finder trained on a very small set may not be 'flexible' enough to recognize as

many genes as a gene-finder trained with a larger dataset, even one which contains some

erroneous annotations. The TSA procedure was tested in order to distinguish between

these possibilities.

When attempting to evaluate the performance of TSA, it makes sense to perform this

evaluation on an organism where a large training set is available and then to compare the

performances before and after TSA. If TSA produces a gene-finder that is inferior to the

original gene-finder, then it can be safely concluded that TSA does not work. In the

following table, the sensitivity and specificity of a normally trained FUNSCAN gene-

finder for S. pombe is compared with a gene-finder that was trained using TSA. A set of

132 genes were present in the initial training set; the first row contains the same data as

the table in Section 3.4.1.

Start/Stop Start Stop Middle Intron Intron Intron

Exon Exon Exon Exon Sensitivity Specificity

FUNSCAN 34/50= 36/52= 42/52= 37/50= 80/102 80/102= 80/115=

trained 68% 69% 81% 74% 115 78% 69.5%

normally predictions

FUNSCAN 33/50 = 41/52 = 42/52 = 41/50 = 86/102 86/102 = 86/123=

trained 66% 79% 81% 82% 123 84.4% 69.9%

with TSA predictions
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The initial indications about the performance of TSA look promising. While it

might seem that TSA has the potential to improve the performance of gene-finders, one

might also wish to pose the following questions:

1. Can this phenomenon be demonstrated in other organisms?

2. Would the 'delta' (improvement in intron sensitivity) be greater with a smaller

training set?

To investigate the first question, an experiment was designed where 50 A. nidulans genes

were used for the training-set and 34 genes were used for the test set. Here are the result

that were obtained.

This experiment does not provide overwhelming evidence that this phenomenon can be

demonstrated in other organisms since although the sensitivity increases, the specificity

decreases. Still, this TSA-trained gene finder is at least as good as the standard one. To

answer the second question, the first experiment was repeated, but only 50 genes were

used in the training set. Here are the results of that experiment

Initial Dataset Normal Normal Sensitivity after Specificity after

size (genes) sensitivity specificity TSA TSA

Size = 120 78% 70% 84% 70%

Size = 50 64% 69% 79% 69%

The delta for the case when N = 120 is 6% (84.4% - 78.4%) and the delta for the case

when N = 50 is 15.4% (79.4% - 64%). This experiment suggests that the delta might be

bigger when the test set is smaller, although there must be a limit to how small the initial

dataset size can be before the initial gene finder becomes hopelessly inaccurate. This
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Sensitivity Specificty

FUNSCAN trained 51% 70%

normally (40/78) (40/57)

FUNSCAN trained 62% 65%

with TSA (48/78) (48/74)



experiment would have to be performed on several different organisms with several

different training set sizes to fully characterize this phenomenon.

In the bioinformatics literature, there are very few discussions of iterative learning

methods. One paper discusses how an ab initio interative Markov modeling procedure

was used to automatically perform the partition of microbial genomic sequences into

three subsets: coding, coding on opposite strand, and intergenic segments (Audic and

Claverie 1998).

4.2 Leveraging Comparative Genomics

Comparative genomics tools can be used to identify genes that are similar across different

organisms. One example of a comparative genomics tool is BLAST. The BLAST

package provides programs that take as input (1) a query sequence (sequence can be

either a nucleotide sequence or amino acid sequence) and (2) a database (this can be a

database of nucleotide sequences or proteins). The output of this program is a list of

candidate nucleotide sequences or proteins that match the query sequence. These

candidate sequences are scored according to how closely they match the query sequence.

So, how does one use such alignment tools to search for genes in an organism that has

not been annotated? The simplest strategy to follow would be the following:

1. Blast the entire genome of this organism against an organism that has been

annotated and is phylogenetically close to the organism to that we are trying to

annotate.

2. The output of step 1 will be pairs of sequences of length 50 to 500 bp that are

very similar to each other. In each pair, one sequence will come from the annotated

sequence and the other sequence will come from the organism that we are trying to

annotate.
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3. If the sequence from the annotated organism is a coding region, then there is a

reasonable probability that the sequence from the other organism is also a coding

region.

A more interesting question is the following: How does one search for novel genes

(genes that have not been annotated) in an annotated genome using only gene-predictions

from an un-annotated genome? For example, S. pombe has been annotated but A.

nidulans has not yet been annotated. However, a draft of the unannotated sequence of A.

nidulans has recently been released. It is not reasonable to expect that the gene

annotation that genome centers perform is 100% accurate. It is possible that genome

centers will miss some genes and predict other genes that are not correct. It would be

interesting to use FUNSCAN predictions for A. nidulans to attempt to identify novel

genes in S. pombe. The following strategy was used in order to perform this task:

For both A. nidulans and S. pombe, do the following:

1. Submit the entire genomic sequence of the organism to FUNSCAN

2. The output of FUNSCAN will be nucleotide sequences of predicted

genes. Convert these nucleotide sequences into their translated amino acid

sequences and BLAST these amino sequences against a database of all

known proteins

3. Discard proteins that score well. Since these proteins scored well, they

can be easily identified with BLAST methods similar to the one described

above. After step 3, we will have a set of amino-acid sequences of

predicted genes for S. pombe and A. nidulans.

4. When these three steps have been performed for both organisms,

BLAST all S. pombe amino acid sequences against all A. nidulans

sequences. If an amino-acid sequence from S. pombe aligns well with an

A. nidulans amino acid sequence, then it is possible that a novel gene has

been discovered.
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For the purposes of this experiment, a poor score for step 3 was considered to be when

there was less than 50% alignment between the protein sequences. Afterwards, when the

S. Pombe and A. nidulans amino acid sequences were aligned, a good score was

considered to be when 75% alignment.

Unfortunately, this method did not identify any candidates for novel genes in S.

pombe. It is possible that if two amino acid sequences align well after step 3, then their

corresponding nucleotide sequences could be identified using the first method described

in this section. Although novel genes were not identified using this method, many genes

predicted from both organisms obtained high scores when aligned with sequences from

protein databases. This suggests that in addition to test sets, aligning predicted gene

sequences against known protein sequences is a strategy that can be used to evaluate the

quality of gene-finders. Such an alignment test method can be used to confirm many of

the predicted genes. If a gene-finder does not perform well when tested using the

alignment method, then it wil surely not perform well when using the more traditional

test statistics of nucleotide accuracy and gene-structure accuracy. An alignment test

method can be used to gain insight into the types of genes that a gene-finder is able to

accurately predict. Is alignment successful when the genes are long or short? Is

alignment successful when the gene is located in a GC-rich region of the genome?

Although such statistics can also be obtained using test-sets, it might be worthwhile to

also compute such statistics using alignment methods since the number of predicted

genes is much larger than the number of genes available in any test set.
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Chapter 5

CONCLUSION

In Section 1.5, the two main objectives of this thesis were discussed: (1) designing a

gene-finder whose performance on fungal genomes is competitive with other existing

gene-finders and (2) the exploration of new methods that can be used to train gene-finder

when only small datasets are available and to leverage comparative genomics. Have

these goals been achieved? Below is a brief discussion:

1. Design of a gene-finder competitive with existing gene-finder for fungal genomes:

This goal has been accomplished. As can be seen from the discussion of the results for

S. pombe in Section 3.4.1, the performance of FUNSCAN is competitive with the

performance of Pombe. Furthermore, as was seen in section 4.1, the performance of

FUNSCAN is improved when Training Set Augmentation was performed on the 120

gene training set for S. pombe. The training procedure for FUNSCAN is highly

automated and only a cursory inspection of the state transition probabilities is required

to ensure that they are optimal (Section 3.3.3). Also, FUNSCAN processes 100

kilobase sequences in well under a minute

2. Developing new ways of dealing with small datasets and leveraging comparative

genomics: Only the first part of this goal was accomplished. As was seen in the

discussion in Section 4.1, Training Set Augmentation does indeed improve the
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performance of FUNSCAN. The effect of Training Set Augmentation is particularly

noticeable when only small datasets are available for training. As was seen for S.

pombe when only 50 genes are available for training, sensitivity increased from 64% to

80% and specificity was unchanged when Training Set Augmentation was used in the

training process. Training Set Augmentation was also shown to work for A. nidulans.

Unfortunately, a method designed to leverage comparative genomics was not successful

at identifying novel genes. Still, it was surprising to see how many predicted genes

align well with genes in a database of known proteins.

Although the topics discussed in this thesis dealt specifically with improving the

performance of gene-finders, some aspects of this work may be of interest to

bioinformaticians working on other tasks. Although Training Set Augmentation was

used only to improve the accuracy of identifying introns, it might also be possible to use

it to identify other gene structures such as promoter regions of genes. Since Markov

processes have also been used to identify promoters, the challenges involved in

identifying introns and promoters are somewhat similar. However, identifying promoters

is a little more difficult because all genes do not possess promoters (Ohler 2001). It

might also be possible to use iterative learning methods such as TSA to solve problems

bioinformatics besides those dealing with genomic DNA sequence.

Although the fungal genome sequencing projects have not made nearly as many

headlines as the sequencing of the human genome, scientists working on sequencing

fungal genomes have little to envy from their counterparts working with human genomic

DNA sequences. As discussed in Section 1.2, fungi have numerous industrial and

agricultural uses. In addition, since the size of fungal genomes is usually a manageable

size (10 million to 40 million bases), fungal genomes can be sequenced much more

rapidly. This gives researchers the opportunity to develop new methods for identifying

gene-structures. For example, a recent paper from the Whitehead Institute (Kellis et al

2003) describes how gene structures were identified aligning the genomic DNA of four

different fungi. An interesting project would be to compare the strengths and weaknesses

of these alignment methods with traditional gene-finders and to explore how they can be
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used together to identify new genes in fungal genomes. Using alignment methods is not

always practical when dealing with genomic sequences that are billions of base pairs

long, but they can be readily applied to fungal genomes. As a result, fungal gene-finders

are not the only solution available to scientists attempting to identify gene structures.

Instead, the ab initio gene-finder is one weapon in an arsenal that researchers can draw

upon. If used skillfully, the total value of this gene-finding arsenal might prove to be

greater than the sum of its individual parts. Fungi, given the manageable size of their

genomic DNA sequences, are ideal organisms for researchers to use in order to explore

how traditional techniques such as HMM-based gene-finders and alignment methods can

be used as a platform for more innovative techniques.
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Appendix A

Below is a sample GENBANK file. This is the format of the training and testing sets for

FUNSCAN. The main field of interest for FUNSCAN is the CDS field since this field

indicates the coding regions. For example, one of the CDS fields is 687.3158, meaning that

a start codon starts at 687 and a stop codon finishes at 3158. Another CDS field is

complement(3300..4037). This means that there is a gene located on the complement strand with

the start codon that starts at base 4037 and the stop codon that finishes at base 3300. As a

result, bases 4037, 4036 and 4035 are t, a and c respectively. This corresponds to a start

codon a, t and g on the complement strand. Also, bases 3302, 3301 and 3300 are a, t and

t. This means that the stop codon on the complement strand is taa.

LOCUS
DEFINITION

ACCESSION
VERSION
KEYWORDS
SOURCE

ORGANISM

REFERENCE
AUTHORS
TITLE

JOURNAL

MEDLINE
REFERENCE
AUTHORS

TITLE

JOURNAL
MEDLINE

REFERENCE
AUTHORS

TITLE
JOURNAL

FEATURES

source

CDS

gene

SCU49845 5028 bp DNA PLN 21-JUN-1999
Saccharomyces cerevisiae TCP1-beta gene, partial cds, and Axl2p
(AXL2) and Rev7p (REV7) genes, complete cds.
U49845
U49845.1 GI:1293613

baker's yeast.
Saccharomyces cerevisiae
Eukaryota; Fungi; Ascomycota; Hemiascomycetes; Saccharomycetales;
Saccharomycetaceae; Saccharomyces.
1 (bases 1 to 5028)
Torpey,L.E., Gibbs,P.E., Nelson,J. and Lawrence,C.W.
Cloning and sequence of REV7, a gene whose function is required for
DNA damage-induced mutagenesis in Saccharomyces cerevisiae
Yeast 10 (11), 1503-1509 (1994)
95176709
2 (bases 1 to 5028)
Roemer,T., Madden,K., Chang,J. and Snyder,M.
Selection of axial growth sites in yeast requires Axl2p, a novel
plasma membrane glycoprotein
Genes Dev. 10 (7), 777-793 (1996)
96194260
3 (bases 1 to 5028)
Roemer,T.
Direct Submission
Submitted (22-FEB-1996) Terry Roemer, Biology, Yale University, New
Haven, CT, USA

Location/Qualifiers
1..5028
/organism="Saccharomyces cerevisiae"
/db xref="taxon:4932"
/chromosome="IX"
/map="9"
<1..206
/codonstart=3
/product="TCP1-beta"
/protein id="AAA98665.1"
/db xref="GI:1293614"
/translation="SSIYNGISTSGLDLNNGTIADMRQLGIVESYKLKRAVVSSASEA
AEVLLRVDNIIRARPRTANRQHM"
687..3158
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CDS

gene

CDS

BASE COUNT
ORIGIN

1 gatcctccat
61 ccgacatgag
121 ctgcatctga
181 gaaccgccaa
241 ccacactgtc
301 agacgcgaaa
361 attttggcaa
421 aatacccatc
481 gagtcgccct
541 tttactctca
601 acaattactt
661 cgtatatcaa
721 ctactatatc
781 aacaataccc
841 cctataaatc
901 gctggctttc
961 tatctgatgc
1021 acagcacgtc
1081 tatcgtcaga
1141 acgctctgaa
1201 ctaacgaaga
1261 ccaattggct
1321 actcggcgat
1381 gattttctgc
1441 ctattcaaaa
1501 ctctaaacta
1561 acttattgga
1621 cagatgaatt
1681 cttatggtga
1741 ttagttctct
1801 cttctcagtt

atacaacggt atctccacct
acagttaggt atcgtcgaga
agccgctgaa gttctactaa
tagacaacat atgtaacata
attattataa ttagaaacag
aaaaaagaac aacgcgtcat
cttatgtttc ctcttcgagc
gtaggtatgg ttaaagatag
cctttgtcga gtaattttca
catcctgtag tgattgacac
aatagaaaaa ttatatcttc
gaagcattca cttaccatga
actactccat ctagtagtgg
cccagtggca agagtcaatg
gtctgtagac aagacagctc
gtttgactct agttctagaa
gaacaccacg ttgtatttca
tttgaacaat acataccaat
tttcaatcta ttggcgttgt
actagatcct aatgaagtct
atccattgtg tcgtattacg
gttcttcgat tctggcgagt
tgctccagaa acaagctaca
cgttgaggta gaattcgaat
tagtttgata atcaacgtta
tgtttatctc gatgacgatc
tgctccagac tgggtggcat
actcggtaag aactccaatc
tgtgatttat ttcaacttcg
tcccaatatt aacgctacaa
tacagactac gtgaatacaa

caggtttaga
gttacaagct
gggtggataa
tttaggatat
aacgcaaaaa
agaacttttg
agtactcgag
catctccaca
cttttcatat
tgcaacagcc
ctcgaaacga
cacagcttca
ccacgcccta
aatcgtttac
aaataacata
cgttctcagg
atgtaatact
ttgttgttac
taaaaaacta
tcaacgtgac
gacgttctca
tgaagtttac
gttttgtcat
tagtcatcgg
ctgacacagg
ctatttcttc
tagataatgc
ctgccaattt
aagttgtctc
ggggtgaatg
acgtttcatt

tctcaacaac
aaaacgagca
catcatccgt
acctcgaaaa
ttatccacta
gcaattcgcg
ccctgtctca
acctcaaagc
gagaacttat
accatcacta
tttcctgctt
gatttcatta
tgaggcatat
atttcaaatt
caattgcttc
tgaaccttct
cgagggtacg
aaaccgtcca
tggttatact
ttttgaccgt
gttgtataat
tgggacggca
catcgctaca
ggctcaccag
taacgtttca
tgataaattg
taccatttcc
ttctgtgtcc
cacaacggat
gttctcctac
agagtttact

ggaaccattg
gtagtcagct
gcaagaccaa
taataaaccg
tataattcaa
tcacaaataa
agaatgtaat
tccttgccga
tttcttattc
gaagaacaga
ccaacatcta
ttgctgacag
cctatcggaa
tccaatgata
gacttaccga
tctgacttac
gactctgccg
tccatctcgc
aacggcaaaa
tcaatgttca
gcgccgttac
ccggtgataa
gacattgaag
ttaactacct
tatgacttac
ggttctataa
gggtctgtcc
atttatgata
ttgtttgcca
tattttttgc
aattcaagcc
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/gene="AXL2"
687..3158
/gene="AXL2"
/note="plasma membrane glycoprotein"
/codonstart=1
/function="required for axial budding pattern of S.
cerevisiae"
/product="Axl2p"
/protein id="AAA98666.1"
/db xref="GI:1293615"
/trans lation= "MTQLQI SLLLTAT I SLLHLVVATPYEAYPIGKQYPPVARVNESF
TFQISNDTYKSSVDKTAQITYNCFDLPSWLSFDSSSRTFSGEPSSDLLSDANTTLYFN
VILEGTDSADSTSLNNTYQFVVTNRPSISLSSDFNLLALLKNYGYTNGKNALKLDPNE
VFNVTFDRSMFTNEESIVSYYGRSQLYNAPLPNWLFFDSGELKFTGTAPVINSAIAPE
TSYSFVIIATDIEGFSAVEVEFELVIGAHQLTTSIQNSLIINVTDTGNVSYDLPLNYV
YLDDDPISSDKLGSINLLDAPDWVALDNATISGSVPDELLGKNSNPANFSVSIYDTYG
DVIYFNFEVVSTTDLFAISSLPNINATRGEWFSYYFLPSQFTDYVNTNVSLEFTNSSQ
DHDWVKFQSSNLTLAGEVPKNFDKLSLGLKANQGSQSQELYFNIIGMDSKITHSNHSA
NATSTRSSHHSTSTSSYTSSTYTAKISSTSAAATSSAPAALPAANKTSSHNKKAVAIA
CGVAIPLGVILVALICFLIFWRRRRENPDDENLPHAISGPDLNNPANKPNQENATPLN
NPFDDDASSYDDTSIARRLAALNTLKLDNHSATESDISSVDEKRDSLSGMNTYNDQFQ
SQSKEELLAKPPVQPPESPFFDPQNRSSSVYMDSEPAVNKSWRYTGNLSPVSDIVRDS
YGSQKTVDTEKLFDLEAPEKEKRTSRDVTMSSLDPWNSNI SPS PVRKSVTPS PYNVTK
HRNRHLQNIQDSQSGKNGITPTTMSTSSSDDFVPVKDGENFCWVHSMEPDRRPSKKRL
VDFSNKSNVNVGQVKDIHGRIPEML"
complement(3300..4037)
/gene="REV7"
complement(3300..4037)
/gene="REV7"
/codonstart=1
/product="Rev7p"
/protein id="AAA98667.1"
/db xref="GI:1293616"
/translation= "MNRWVEKWLRVYLKCYINLILFYRNVYPPQSFDYTTYQSFNLPQ
FVPINRHPALIDYIEELILDVLSKLTHVYRFSICIINKKNDLCIEKYVLDFSELQHVD
KDDQIITETEVFDEFRSSLNSLIMHLEKLPKVNDDTITFEAVINAIELELGHKLDRNR
RVDSLEEKAEIERDSNWVKCQEDENLPDNNGFQPPKIKLTSLVGSDVGPLIIHQFSEK
LISGDDKILNGVYSQYEEGESIFGSLF"

1510 a 1074 c 835 g 1609 t



1861
1921
1981
2041
2101
2161
2221
2281
2341
2401
2461
2521
2581
2641
2701
2761
2821
2881
2941
3001
3061
3121
3181
3241
3301
3361
3421
3481
3541
3601
3661
3721
3781
3841
3901
3961
4021
4081
4141
4201
4261
4321
4381
4441
4501
4561
4621
4681
4741
4801
4861
4921
4981

aagaccatga
agaatttcga
tatattttaa
caacgtccac
acactgcaaa
cagcagccaa
ctatcccatt
gaagggaaaa
atcctgcaaa
atgcttcctc
aattggataa
ctctatcagg
tagcaaaacc
cttctgtgta
tgtcaccagt
aaaaactttt
tgtcttcact
caccatcacc
ctcaaagcgg
ttgttccggt
gaccaagtaa
ttaaggacat
taattttatt
agtttttata
taaaacaaag
attttgtcgt
tcagaaccga
aaattttcat
tccaaactat
ttaataactg
ataatcaaac
tgatcgtctt
aaatcgttct
agaacatcca
acgaactgcg
acatttctat
tctacccatc
tcagtcgtcg
gtttatatta
atattaagaa
ctgtttatgt
tttggtaaag
cttagttcat
ccatctgtca
agcgcgtttg
tccaatgaat
tcttcgcact
atttgctcag
tcactgtctt
gatctcaagt
ttctccactt
ttttcagtgt
tgccatgact

ctgggtgaaa
caagctttca
catcattggc
aagaagttct
aatttcttct
taaaacttca
aggcgttatc
tccagacgat
taaaccaaat
gtacgatgat
ccactctgcc
tatgaataca
cccagtacag
tatggatagt
ctctgatatt
cgatttagaa
ggacccttgg
atataacgta
taaaaacgga
taaagatggt
gaaaaggtta
tcacggacgc
ttcctgtttt
cttagagaca
atccaaaaat
caccgctgat
ctaaagaagt
cttcttgaca
cgaccctcct
cttcaaatgt
tatttaagga
tatccacatg
ttttattaat
gtataagttc
gcaagttgaa
aaaataaaat
tattcataaa
caaaaacgta
gttaaacagg
agtggaaatt
ttctacgtac
gtgaaagcat
cttttttcca
gcaacatcag
tcgtttgtat
tagcaatttc
tcttttccca
agttcaaatc
ctagctgttg
tattggagtc
cactgtcgag
tagattgctc
cagattctaa

ttccaatcat
ttaggtttga
atggattcaa
caccactcca
acctccgctg
tctcacaata
ctagtagctc
gaaaacttac
caagaaaacg
acttcaatag
actgaatctg
tacaatgatc
cctccagaga
gaaccagcag
gtcagagaca
gcaccagaga
aacagcaata
acgaagcatc
atcactccca
gaaaattttt
gtagattttt
atcccagaaa
attttttatt
tttaatttta
gctctcgccc
taatttttca
gagttttatt
tttaacccag
gtttctgtcc
tattgtgtca
agatcggaat
ttgtaattca
aatgcagatg
ttctatatag
tgactggtaa
caaattaatg
gctgacgcaa
taccttcttt
gtctagtctt
aaattagtag
ttttgattta
aatgtaaaag
aaaagcaccc
ttgtgtgagc
cttccgtaat
gtccaattct
ttcatctctt
ggcctctttc
ttctagatcc
ttcagccaat
ttgctcgttt
taattctttg
ttttaagcta

ctaatttaac
aagcgaacca
agataactca
cctcaacaag
ctgctacttc
aaaaagcagt
tcatttgctt
cgcatgctat
ctacaccttt
caagaagatt
atatttccag
agttccaatc
gcccgttctt
taaataaatc
gttacggatc
aggaaaaacg
ttagcccttc
gtaaccgcca
caacaatgtc
gctgggtcca
caaataagag
tgctgtgatt
agtggtttac
attccattct
tcttcatatt
ctaaactgat
ttaggaggtt
tttgaatccc
aacttatgtc
tcgttgactt
tcgtcgaaca
ctaaaatcta
gaaaatctgt
tcaattaaag
gtagtgtagt
tagcatttta
cgattactat
ttccgacctt
agtgtgaaag
tgtagacgta
tagcaagggg
ctagaataaa
aatgataata
aataataaaa
tttagtctta
ttttgagctt
tcttcttcca
agtttatcca
tggtttttct
tgctttgtat
ttagcggaca
agctgttctc
ttcaatttct

attagctgga
aggttcacaa
ctcaaaccac
ttcttacaca
ttctgctcca
agcaattgcg
cctaatattc
tagtggacct
gaacaacccc
ggctgctttg
cgtggatgaa
ccaaagtaaa
tgacccacag
ctggcgatat
acaaaaaact
tacgtcaagg
tcccgtaaga
cttacaaaat
aacttcatct
tagcatggaa
taatgtcaat
atacgcaacg
agatacccta
tcaaatttca
gagaatacac
gaataatcaa
gaaaaccatt
tttcaatttc
ctagttccaa
taggtaattt
cttcagtttc
aaacgtattt
aaacgtgcgt
caggatgcct
cgaatgactg
agtataccct
tttttttttc
ttttttagct
ctagtggttt
tatgcatatg
aaaagaaata
atggacgaaa
actaaaatga
tcatcacctc
tcaatgggaa
cttcatattt
aagcaacgat
ttgcttcctt
tggtgtagtt
cagacaattg
aagatttaat
tcagctcctc
ctttgatc

gaagtgccca
tctcaagagc
agtgcgaatg
tcttctactt
gcagcgctgc
tgcggtgttg
tggagacgca
gatttgaata
tttgatgatg
aacactttga
aagagagatt
gaagaattat
aataggtctt
actggcaacc
gttgatacag
gatgtcacta
aaatcagtaa
attcaagact
tctgacgatt
ccagacagaa
gttggtcaag
atattttgct
tattttattt
tttttgcact
tccattcaaa
aggccccacg
attgtctggt
tgctttttcc
ttcgatcgca
ctccaaatgc
cgtaatgatc
ttcaatgcat
taatttagaa
attaatggga
aggtgggtat
cagccacttc
ttcttggatc
ttctggaaaa
cgattgactg
tatttctcgc
catactattt
taaagagagg
aaaggatttg
cgttgccttt
tcataaattt
gctttggaat
ccttctaccc
cagtttggct
ctcattatta
actctctaac
ctcgttttct
atatttttct
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Appendix B

Below is an example of a file that is provided as input to FUNSCAN. This file contains

the observation symbol probability distributions for the following states (listed in order):

Intergenic state, codon state 3, codon state 1 and codon state 2 and intronic state. The

first column of each 'matrix' is a combination of two letters such as 'aa'. With the

Intergenic Probabilities, for the row that begins with aa, each number indicates the

probability of observing each base given that the previous two bases were aa.

Recall that codon state n is the nth base in a codon. For the second matrix, the title is "we

are given one and two, predict three". This means that we know what the first two bases

of the codon are. Notice that for this matrix, the probability of obtaining a 't' or an 'a'

when the first two bases of a codon are ta is 0.000 and that the probability of obtaining an

'a' when the first two bases of a codon are tg is also 0.000. This is not surprising, since

there can be no stop codons in coding regions. For the third matrix, the title is "we are

given two and three, predict one". This means that we know what the second and third

bases of the previous codon were, and that the probabilities listed below are for the first

base of a codon, given that the previous codon finished with the bases indicated in the

first column.

/***********BEGINNING OF SAMPLE INPUT FILE

Intergenic Probabilities

a c g t

aa 0.274 0.222 0.243 0.261

ac 0.269 0.257 0.194 0.280

ag 0.267 0.265 0.238 0.230

at 0.232 0.254 0.239 0.275

ca 0.264 0.199 0.264 0.273

cc 0.274 0.242 0.201 0.283

cg 0.259 0.251 0.240 0.249

ct 0.178 0.282 0.253 0.287

ga 0.272 0.220 0.240 0.268

gc 0.258 0.237 0.205 0.301

gg 0.257 0.271 0.221 0.251

gt 0.226 0.264 0.218 0.292
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ta 0.225 0.242 0.210 0.322

tc 0.244 0.253 0.199 0.304

tg 0.271 0.251 0.241 0.237

tt 0.161 0.287 0.247 0.305

We are given one and two, predict three

a c g t

aa 0.167 0.293 0.385 0.154

ac 0.219 0.356 0.194 0.231

ag 0.166 0.440 0.158 0.236

at 0.081 0.381 0.286 0.252

ca 0.229 0.215 0.395 0.161

cc 0.187 0.282 0.241 0.290

cg 0.203 0.350 0.213 0.235

ct 0.107 0.350 0.258 0.286

ga 0.215 0.268 0.310 0.206

gc 0.176 0.330 0.192 0.302

gg 0.189 0.362 0.138 0.311

gt 0.081 0.408 0.212 0.299

ta 0.000 0.636 0.000 0.364

tc 0.184 0.299 0.246 0.271

tg 0.000 0.326 0.478 0.197

tt 0.083 0.441 0.245 0.231

We are given two and three, predict one

a c g t
aa 0.249 0.207 0.348 0.196

ac 0.266 0.248 0.298 0.188

ag 0.296 0.243 0.307 0.154

at 0.219 0.224 0.421 0.136

ca 0.301 0.191 0.299 0.210

cc 0.324 0.183 0.313 0.179

cg 0.256 0.262 0.293 0.188

ct 0.179 0.267 0.387 0.166

ga 0.292 0.207 0.310 0.191

gc 0.284 0.212 0.303 0.201

gg 0.300 0.252 0.279 0.169

gt 0.195 0.236 0.405 0.163

ta 0.240 0.257 0.292 0.212

tc 0.289 0.223 0.291 0.197

tg 0.281 0.247 0.319 0.153

tt 0.166 0.238 0.457 0.140
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We are given three and one, predict two

a c g t

aa 0.348 0.239 0.171 0.243

ac 0.297 0.243 0.191 0.268

ag 0.381 0.245 0.197 0.177

at 0.202 0.309 0.157 0.333

ca 0.385 0.222 0.131 0.263

cc 0.267 0.236 0.203 0.295

cg 0.379 0.218 0.224 0.179

ct 0.175 0.318 0.191 0.316

ga 0.375 0.229 0.145 0.250

gc 0.273 0.232 0.198 0.296

gg 0.388 0.251 0.167 0.194

gt 0.199 0.313 0.124 0.364

ta 0.246 0.270 0.127 0.357

tc 0.228 0.251 0.182 0.339

tg 0.322 0.249 0.216 0.214

tt 0.165 0.334 0.142 0.359

Intronic Probabilities

a c g t

aa 0.208 0.254 0.237 0.301

ac 0.270 0.215 0.160 0.356

ag 0.173 0.221 0.405 0.201

at 0.253 0.235 0.242 0.270

ca 0.233 0.205 0.288 0.274

cc 0.268 0.270 0.165 0.297

cg 0.257 0.280 0.183 0.280

ct 0.261 0.216 0.242 0.280

ga 0.227 0.262 0.219 0.292

gc 0.249 0.217 0.142 0.391

gg 0.170 0.194 0.142 0.494

gt 0.318 0.193 0.236 0.253

ta 0.294 0.210 0.198 0.299

tc 0.249 0.237 0.178 0.337

tg 0.301 0.291 0.180 0.228

tt 0.158 0.278 0.220 0.345

******************END OF SAMPLE INPUT FILE **********/
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