
Applying a Randomized Nearest Neighbors

Algorithm to Dimensionality Reduction

by

Gautam Jayaraman

Submitted to the Department of Electrical Engineering and Computer

Science

in partial fulfillment of the requirements for the degree of

Master of Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2003

® Gautam Jayaraman, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document
in whole or in part. MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUL 3 0 2003

LIBRARIES
A uthor

Department of Electrical lngineering and Computer Science

May 21, 2003

Certified by. T..P....
Joshua B. Tenenbaum

Assistant Professor of Cognitive Science and Computation

jThesis SuDervisor

Accepted by... . .

Arthur C. Smith

Chairman, Department Committee on Graduate Students

ARCHIVES

Applying a Randomized Nearest Neighbors Algorithm to

Dimensionality Reduction

by

Gautam Jayaraman

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 2003, in partial fulfillment of the

requirements for the degree of
Master of Engineering

Abstract

In this thesis, I implemented a randomized nearest neighbors algorithm in order
to optimize an existing dimensionality reduction algorithm. In implementation I
resolved details that were not considered in the design stage, and optimized the
nearest neighbor system for use by the dimensionality reduction system. By using
the new nearest neighbor system as a subroutine, the dimensionality reduction system
runs in time O(nlogn) with respect to the number of data points. This enables us
to examine data sets that were prohibitively large before.

Thesis Supervisor: Joshua B. Tenenbaum
Title: Assistant Professor of Cognitive Science and Computation

3

Acknowledgments

I would like to thank:

* Professor Josh Tenenbaum for supervising and patiently teaching me. He

reeled me in with an exciting research topic, and throughout the year he con-

sistently pushed me in constructive ways.

" Professor David Karger for helping me find and complete the project. As

my academic advisor he helped me plan my scholastic career for the past three

years; as a resource in my thesis work he assisted me with analysis of his data

structure.

" Divya Bhat for constantly encouraging, flattering, and teaching me, all from

three thousand miles away.

" Neil Basu, Casey Muller, Charles Floyd, and Deb Dasgupta for keep-

ing me entertained and healthy throughout the thesis process, but more impor-

tantly, for filling the past five years of our lives with laughter and music.

" My sister Anu Jayaraman for her quiet blend of admiration and protective-

ness, both of which have always been reciprocated.

* My parents, Drs. Krishna and Nilima Jayaraman, for generously funding

my work, and supporting me always without hesitation.

5

Contents

1 Introduction 13

1.1 Dimensionality Reduction . 13

1.1.1 Definition . 13

1.1.2 Purpose . 14

1.1.3 Applicability and Canonical examples 14

1.2 The ISOMAP Algorithm . 16

1.2.1 How ISOMAP works . 17

1.2.2 Interpreting output . 18

1.3 Nearest Neighbors . 19

1.3.1 Definition . 19

1.3.2 Purpose . 20

1.3.3 Nearest Neighbor component of ISOMAP 21

1.4 Purpose and Organization . 22

2 The Karger-Ruhl Near Neighbor Algorithm 23

2.1 Background and Motivation . 23

2.1.1 General metrics . 24

2.1.2 Distance functions . 24

2.1.3 Low-growth data sets . 24

2.2 How the KR Algorithm Works . 26

2.2.1 Search step . 26

2.2.2 Build and Query framework 27

2.2.3 Search strategy . 27

7

2.2.4 Structural components . 28

2.2.5 Find operation . 29

2.2.6 Insert operation . 29

2.2.7 FindRange and FindK operations 30

2.2.8 Dynamic updates . 31

2.3 Theoretical Performance . 32

2.3.1 Single-nearest neighbor queries 32

2.3.2 Insertions . 33

2.3.3 E- and k-nearest neighbor queries 33

3 Implementation 35

3.1 Implementation Framework . 35

3.1.1 Integration with ISOMAP code 35

3.1.2 Languages and technologies used 35

3.1.3 Motivations in modular design 36

3.2 Description of Modules . 36

3.2.1 Point . 36

3.2.2 FingerList . 37

3.2.3 Node . 38

3.2.4 NNStruct . 38

3.3 Design Decisions . 39

3.3.1 Completing the Insert design 39

3.3.2 Completing the FindK design 40

3.3.3 Optimizing each search step 41

3.4 A Modified Approach . 41

3.4.1 c-neighborhood variant . 41

3.4.2 k-neighborhood variant . 43

3.5 Omitted Optimizations . 44

3.5.1 Finger list shortcut pointers 44

3.5.2 Use of heaps . 45

8

4 Testing and Analysis 47

4.1 Variables.................................. 47

4.1.1 Independent variables . 47

4.1.2 Observed variables . 48

4.2 Results. 48

4.2.1 Performance v. input size . 49

4.2.2 Performance v. finger list size 50

4.3 A nalysis . 51

4.3.1 Why small finger lists work well 51

4.3.2 Assessment of my variants . 55

5 Conclusions and Further Research 57

5.1 Conclusions . 57

5.2 Further Research . 58

5.2.1 Analysis . 58

5.2.2 Data sets . 58

5.2.3 Optimizations . 58

5.2.4 Comparison to other near neighbor schemes 58

A Source Code 61

A.1 Header file . 61

A.2 Class Point . 64

A.3 Class FingerList . 65

A.4 Class Node . 66

A.5 Class NNStruct . 67

A.6 Classes EpsNbr and EpsCombo . 73

A.7 Classes KNbr and KCombo . 76

A.8 Testing code . 80

9

0

List of Figures

1-1 The swiss roll data set. Dotted line shows Euclidean distance between

two points, and solid line shows distance along the manifold. 15

1-2 ISOMAP output on the faces data set, showing three intrinsic degrees

of freedom . 16

1-3 The swiss roll data set. Left frame shows data points in 3-d embedding,

middle shows neighborhood graph that approximates the manifold,

right shows the 2-d embedding output by ISOMAP............. 17

2-1 Expansion rate example in two dimensions. Since IB,(p)l = 2 and

|B2, (P)I= 8, expansion around p = 8/2 = 4. 25

4-1 Processing time on the swiss roll data set with respect to input size.

Finger list size = 3. ..49

4-2 Processing time on the swiss roll data set with respect to finger list

size. n = 1600, cF= 3.953 . 50

4-3 Search step success rate on the swiss roll data set with respect to finger

list size. n = 1600, c = 3.953 . 51

4-4 Sampling from B 3,/ 2 (c) to find something in B,/2 (q). 53

4-5 Sampling from B2 ,r(c) to find something in Br (q). 54

4-6 Processing time on the swiss roll data set with respect to input size.

EpsCombo outperforms the regular KR structure. Finger list size = 3. 55

11

Chapter 1

Introduction

Dimensionality reduction is a technique used to express a high-dimensional data set

in fewer, more meaningful dimensions while preserving the intrinsic variability of the

data. Nearest neighbor searching is a well-studied problem that has proven very

applicable in dimensionality reduction problems.

This chapter provides background by introducing the concepts of dimensionality

reduction and nearest neighbor searching. It also explains the purpose of this thesis,

as well as how the rest of the paper is organized.

1.1 Dimensionality Reduction

1.1.1 Definition

The problem of dimensionality reduction involves mapping high-dimensional inputs

into a lower-dimensional output space. The goal is to represent the given data set in

as few dimensions as possible while retaining its intrinsic modes of variability.

The premise of dimensionality reduction is that a data set representing features

observed in a high-dimensional space typically lies in a subspace that can be rep-

resented in fewer dimensions. When creating a new set of dimensions, each new

dimension is some function of the old dimensions. The problem of dimensionality

reduction is to define this new set of dimensions that more succinctly describe the

13

data.

1.1.2 Purpose

The intent of dimensionality reduction is to make a data set easier to interpret and

analyze. In many areas of science, data is gathered by observing many different

characteristics of a situation and grouping the observations together as one data

point. In observing many different situations, the result is a data set composed of

high-dimensional data points, where each data point is a vector of observations about

a certain situation.

Though the observations are taken in a very high-dimensional space, it is often the

case that some of the dimensions are related to others. In nonlinear dimensionality

reduction, the goal is to define a set of new dimensions that describes the relationships

as precisely and succinctly as possible, using nonlinear functions as needed.

After applying dimensionality reduction techniques to a data set, the data set is

viewed in terms of the new minimal set of meaningful dimensions (as in Figure 1-2).

Or in order to understand the significance of each intrinsic dimension individually,

the data points can be plotted (on a line) with respect to a single intrinsic dimension.

1.1.3 Applicability and Canonical examples

Dimensionality reduction techniques are applicable to various areas of science. In ma-

chine learning a common problem is to mimic the human visual system by gathering

data from thousands of sensors and extracting meaningful low-dimensional structures

(see Figure 1-2). A goal in climate analysis is to infer meaningful trends using data

points composed of all the parameters measured by modern weather instruments.

In order to give the reader a better feel for situations in which dimensionality

reduction is useful, this portion presents some canonical examples that illustrate

different facets of dimensionality reduction.

14

Figure 1-1: The swiss roll data set. Dotted line shows Euclidean distance between
two points, and solid line shows distance along the manifold.

Swiss roll

The swiss roll is a set of data points that lie in a manner resembling a swiss cake roll

pastry. This data set helps illustrate some of the basic principles and terminology of

dimensionality reduction.

What is immediately apparent in Figure 1-1 is a two-dimensional "sheet" of points

that has been "rolled up" so that it lies in three-dimensional space. The swiss roll

data set allows us to see intuitively the concept of a nonlinear manifold, which is

a "surface" on which the data points lie. In this case, since the manifold is two-

dimensional, the data set is defined to have intrinsic dimensionality 2. Similarly,

since the embedding is given in three dimensions, the data set is defined to have

extrinsic dimensionality 3.

Faces

The faces data set presents a dimensionality reduction problem that the human visual

system solves all the time. Given sensory data from millions of retinal receptors, how

do people distill the data into useful information about the structures that they see?

This data set contains computer-generated images of a human face, each one rep-

15

I.
I.

U;,1 * -0~U

W e .. h r *d. !
EoE. m EQ. U.

U ghting direcion Left-dgh o

Figure 1-2: ISOMAP output on the faces data set, showing three intrinsic degrees of
freedom.

resented as a 64x64 pixel grayscale image. This presents an input space of 4096

dimensions, where each image is expressed as a 4096-dimensional vector of bright-

ness levels for each pixel. Though expressed in a very high-dimensional space, the

variations among the images are apparent to the human eye upon a quick glance at

Figure 1-2. Just three intrinsic degrees of freedom emerge among the images: the

pose angle of the head varies both vertically and horizontally, and the lighting angle

varies horizontally. Dimensionality reduction allows the computational discovery of

what our eyes already know- that all the images lie in a three-dimensional subspace

of the original high-dimensional space.

1.2 The ISOMAP Algorithm

This research was initially motivated by a desire to improve the performance of a

nonlinear dimensionality reduction algorithm called ISOMAP [2]. The nearest neigh-

bor system implemented in this thesis is applicable to a variety of systems in data

analysis [4], machine learning [7], and Internet applications [8]. We use ISOMAP as

just one example to assert the applicability of the nearest neighbor structure.

16

.1f* A0~4

4~

Figure 1-3: The swiss roll data set. Left frame shows data points in 3-d embedding,
middle shows neighborhood graph that approximates the manifold, right shows the
2-d embedding output by ISOMAP.

1.2.1 How ISOMAP works

To reduce the dimensionality of a data set, ISOMAP uses a strategy that is fairly

intuitive given the concept of a nonlinear manifold (introduced in Section 1.1.3). In

this class of problem the data points are assumed to all lie on some manifold, which

defines the subspace we are trying to determine. Given a set of data points embedded

in a high-dimensional space, ISOMAP first approximates the manifold defined by the

data points, and then "unwraps" the manifold to embed it in a lower-dimensional

space while preserving its geometry. This process is visually summarized with the

swiss roll data set in Figure 1-3.

First step: Approximating the manifold

For the first step ISOMAP constructs a graph on the data set by connecting each data

point to its nearest neighbors. The resulting neighborhood graph approximates the

manifold, as we see in the middle frame of Figure 1-3. This step of ISOMAP provides

the basis for this thesis work, in that it calls for the use of a nearest neighbor algorithm.

The specifics of the neighborhood graph problem are covered in Section 1.3.3.

Remaining steps: "Unwrapping" the manifold

For the remaining steps, ISOMAP first approximates the geodesic distances between all

pairs of points. The geodesic distance between two points is defined as the distance

along the manifold between the two points. Once again, this concept can be grasped

17

A 0 C

intuitively using the swiss roll as an example. The geodesic path is visible as a solid

line in Figure 1-1.

In order to approximate the geodesic distances between all pairs of data points,

ISOMAP calculates all pairs shortest path distances (using Dijkstra's or Floyd's al-

gorithm) on the neighborhood graph. Proofs and extensive discussion [2] about this

phase of ISOMAP are outside the scope of this thesis, and therefore omitted. As long

as there is adequate density of points on the manifold, the shortest path on the neigh-

borhood graph provides a good approximation (specifically an upper bound) on the

actual geodesic distance (see right frame of Figure 1-3). Further, there are assump-

tions of limited curvature [2] of the manifold that allow us to ignore possibilities of our

neighborhood graph "short-circuiting" the manifold (see dotted line in Figure 1-1).

Typical data sets conform to these requirements of limited curvature, allowing them

to be predictably analyzed by ISOMAP.

In its final step, ISOMAP constructs a lower-dimensional embedding for the mani-

fold while preserving the geodesic distances. The technique used for this is classical

multidimensional scaling (MDS), which is a proven method for linear dimensionality

reduction [9]. Though discussion of MDS is omitted due to scope, there is a simple

explanation as to how ISOMAP uses MDS to perform nonlinear dimensionality reduc-

tion: By applying MDS only to the geodesic distances (instead of the distances in the

original embedding), ISOMAP effectively removes the nonlinear aspect of the problem

prior to invoking MDS.

1.2.2 Interpreting output

In this section we describe the nature of the output given by ISOMAP and show

examples using the three data sets we introduced in Section 1.1.3.

Given a new embedding (produced by ISOMAP) of a data set, we can evaluate it by

calculating the residual variance [2], which quantifies how well the distance between

two points in the new embedding approximates their true geodesic distance.

ISOMAP does not, in itself, "figure out" the intrinsic dimensionality of a data set.

Rather, it is a tool that allows a user to accomplish this goal. ISOMAP takes an

18

input parameter d and returns the optimal d-dimensional embedding of the input

data. Then the validity of that reduction can be evaluated by calculating its residual

variance. This suggests that a user interaction with ISOMAP would be an iterative

process during which we compute embeddings for values of d. Due to the underlying

linear algebra [2], it is more efficient to work with decreasing values of d because

we can reuse results from previous iterations to speed up the computation of a new

embedding. With that consideration we propose the following strategy:

1. Set d to be an upper bound guess of the intrinsic dimensionality of the data set.

2. Run ISOMAP to embed the data set in d dimensions.

3. While residual variance is lower than the required level: decrease d and run

ISOMAP again.

Once the user discovers a reasonable range of values for d (which corresponds

to a reasonable range of residual variances), a second strategy can be used. This

strategy is to try values of d throughout the reasonable range, and find the point

where increasing d no longer significantly reduces the residual variance.

1.3 Nearest Neighbors

1.3.1 Definition

The nearest neighbor problem has been the subject of much research due to its wide

applicability. The literature has defined it in many ways, so for clarity we provide

our own definition here.

The nearest neighbor problem as we consider it takes place within a framework

called a metric space, which is a combination of a space M and a function d(mi, M2) -+

r that returns the distance between any two points (Mi, M 2) E M. For the nearest

neighbor problem, given a set S C M, ISI = n of data points, we define the following

searches:

19

Definition 1 The nearest neighbor of a point q C M is the point si c S such that

d(q, si) is minimized.

Definition 2 The k-nearest neighbors of a point q E M comprise the set s C S such

that

s I = k and V[si C s, sE £ {S - s}] : d(q, si) < d(q, sj).

Definition 3 The c-nearest neighbors of a point q E M comprise the set s C S such

that

V[si £ s, sj e {S - s}] : d(q, si) < c and d(q, sg) > c.

1.3.2 Purpose

Applicability

The nearest neighbor problem is applicable in many contexts. A simple spatial ap-

plication is mapping a customer to their nearest service provider, e.g. dispatching

emergency vehicles to the scene of a fire. The dispatcher consults a map to determine

which fire station is closest to the fire.

Another example that is spatial, but in a more "virtual" sense, occurs in delivering

content through the Internet. Given several "mirror" servers that each carry the

desired content, the user and the network save time if content is delivered from the

mirror that is closest, i.e. the least number of routing "hops" away.

There are also applications that are less spatial. In classification we are given a

training set of data points, each of which has been classified. For example, each data

point in S could be the vector of attributes (age, sex, education, income) of a person,

as well as a label of either "Democrat" or "Republican." Then given a new point

based on a new person, we can classify it with the same label as its nearest neighbor

in S.

Another application is in lossy compression, where we can encode a chunk of

data using the closest match from among a small set of representatives. One image

compression scheme [10] divides a picture into blocks of 8-by-8 pixels. It then checks

20

each block against a predetermined set of "library" blocks, and replaces the block

with the most similar representative from the library.

1.3.3 Nearest Neighbor component of ISOMAP

This research focuses on the part of the ISOMAP algorithm that constructs a neigh-

borhood graph on the data set by determining the nearest neighbors for each data

point.

In the case of ISOMAP, data sets are embedded in a high dimensional space, and

the distance function is typically straight-line Euclidean distance (though this is not

a requirement). In constructing the neighborhood graph, ISOMAP connects each data

point to either its c- or k-nearest neighbors. This approximates the manifold, relying

on the idea that when looking only at nearby points, Euclidean distance is a good

approximation for geodesic distance [7].

A subtype of the nearest neighbor problem

For construction of the neighborhood graph, ISOMAP must solve a very specific sub-

type of the standard nearest neighbor problem. Some literature refers to this as the all

nearest neighbors problem [12], [11]; here we call it neighborhood graph construction.

There are two defining characteristics of neighborhood graph construction:

" Only points within the data set S are queried.

Conventional nearest neighbor algorithms support nearest neighbor queries on

general points in the space M. Since neighborhood graph construction only

involves queries on points in S, there is no need to consider distances other

than those between the 0(n2) pairs of points in S.

* Each of the n data points in S is queried exactly once.

This has implications on performance assessment because it adds the knowledge

that exactly n queries will take place. In a data-structural framework, there

will be one build phase and n queries, instead of a boundless number of queries.

Knowing a bound on the number of queries may permit the de-emphasis of

21

query time in relation to build time by optimizing on the (1: n) ratio of builds

to queries. These considerations are more thoroughly discussed in the analysis

in Section 4.3.

Performance bottleneck

The all-points nearest neighbor calculation required by ISOMAP can be solved in

0(n 2) time brute-force by determining the Euclidean distances between all Q pairs

of data points. All the other phases of ISOMAP can be executed in O(nlog n) time,

so the neighborhood graph-calculating step is considered a performance bottleneck.

The goal is to create the neighborhood graph in time 0 (n log n), allowing ISOMAP to

achieve an 0(nlog n) overall running time.

1.4 Purpose and Organization

The purpose of this thesis is to assert the applicability of the KR algorithm to a

variety of problems. This is done using dimensionality reduction and ISOMAP as

an example of a potential application. The thesis goal is met by demonstrating a

full implementation that performs well on low-dimensional data in high-dimensional

embeddings.

The remainder of the paper is organized as follows: Chapter two introduces the

KR algorithm, describing its design as originally published [1]. Chapter three dis-

cusses our implementation of the KR nearest neighbor structure, and the issues that

had to be resolved to produce an efficient, effective system. Chapter four assesses the

performance of our implementation, evaluating the KR algorithm as well as the re-

sults of the decisions and design alterations enacted during the implementation stage.

Finally, chapter five provides conclusions and suggestions for further research in this

area.

22

Chapter 2

The Karger-Ruhl Near Neighbor

Algorithm

This chapter introduces the Karger-Ruhl near neighbor algorithm and data structure

(hereafter called the KR algorithm) [1]. Its distinguishing characteristics, structure,

and theoretical performance benefits are discussed here, with emphasis on those facets

that benefit ISOMAP directly. Implementation optimizations and empirical perfor-

mance of the KR algorithm are discussed in subsequent chapters.

2.1 Background and Motivation

Among a diverse field of nearest neighbor schemes, the KR algorithm differentiates

itself in important ways. Most nearest neighbor algorithms ([11], [5], [6], [12]) scale

exponentially with the extrinsic dimensionality of the data, making them a poor choice

for ISOMAP input data, which is, by definition, of inflated extrinsic dimensionality.

The KR algorithm is designed to operate on growth-constrained metrics (defined

in Section 2.1.3 below), and as a result it scales roughly exponentially in the intrinsic

dimensionality of the data set (see Section 2.3 for more discussion). This feature alone

makes it worthy of implementation and testing with ISOMAP, but its compatibility

with a variety of data sets and metrics is also an important strength.

23

2.1.1 General metrics

Unlike most nearest neighbor research, the KR algorithm is not designed specifically

for the Euclidean case. It is compatible with general spaces and a large class of

distance metrics.

2.1.2 Distance functions

The KR algorithm places two constraints on the distance function that is used:

1. It must be symmetric:

Vp, pj e M : d(pi, pj) = d(p, pi)

2. It must obey the triangle inequality:

VP, PJPk E M : d(pi,pk) d(pi,pj) + d(pJ,pk)

These criteria are obeyed by most intuitive distance metrics, including Euclidean

(L2) distance. But note that certain alterations to the distance metric can "break"

its support of these criteria. Consider the case of Euclidean distance squared (which

is easier to compute because the square-root operation is omitted): If we have three

points (a, b, c) on a number line at (0, 2, 4), respectively, then using the Euclidean

distance squared metric, d(a, b) = 4, d(b, c) = 4, and d(a, c) = 16. The triangle

inequality is violated because 16 > (4 + 4).

2.1.3 Low-growth data sets

The KR algorithm guarantees correctness in arbitrary metric spaces that obey sym-

metry and the triangle inequality. But certain aspects about the growth rate of the

data set are also important to the KR algorithm's correctness and efficiency. Before

elaborating on this growth requirement, some definitions are necessary:

Definition 4 B,(p) := {s E S I d(p, s) < r} indicates the ball of radius r around p

in S.

24

+ +

+ 2+

Figure 2-1: Expansion rate example in two dimensions. Since IB,(p) = 2 and

I B 2,(p) = 8, expansion around p = 8/2 = 4.

Definition 5 We say that a data set S has (p,c)-expansion iff for all p G M and

r > 0,

IBr(p)I > p # |B2r(p)I <; c - |Br(P) I

Throughout this thesis we refer to c as the "expansion rate" of S. Intuitively, c

bounds the rate at which new points from S "enter" a ball that we expand around

some point p E M.

We now consider the relationship between expansion rate and intrinsic dimension-

ality. If we think of points scattered uniformly on a two-dimensional manifold, then

a "ball" is a disk (see Figure 2-1). We find that doubling the radius of a ball re-

sults in a ball containing four times as many points, since the area of the disk (given

by 7rr 2) scales with the square of the radius. Similarly if the points come from a

three-dimensional manifold, a sphere of double the radius will contain eight times as

many points. Thus we infer that expansion rate is roughly 2d, where d represents the

intrinsic dimensionality of the data.

The expansion rate c of a data set is important in several different ways. The

correctness of some parts of the KR algorithm (see Sections 3.3.2 and 2.2.8) rely on

the knowledge of c and the smoothness it implies by definition. The time analysis of

the KR algorithm assumes c is a constant, so real-world efficiency relies on c being

25

small. This issue becomes a focus in later chapters.

2.2 How the KR Algorithm Works

2.2.1 Search step

A few basic principles govern the structure of the KR algorithm. Here we introduce

these principles as lemmas, followed by the concept of a search step, which is a situ-

ation that arises in nearly every function the data structure performs.

Subset Lemma:

A random subset of m points from a metric space with (p, c)-expansion will have

(max(p, O(log m)), 2c)-expansion with high probability.

Sandwich Lemma:

If d(p, q) <Kr, then Br(q) C B2 (p) C B 4 (q).

Sampling Lemma:

Let M be a metric space, and S C M be a subset of size n with (p, c)-expansion.

Then for all p, q C S and r > d(p, q) with IB,/2(q) > p, the following is true:

When selecting 3c 3 points in B2r (p) uniformly at random, with probability at least

9/10, one of these points will lie in B/ 2 (q).

Though their proofs from the original paper [1] are not repeated here, these lemmas

combine to reveal a good basic search strategy. First we put all the data points from

S in an absolute ordering, s1 , S2, ... , s,. A search step refers to a situation where we

are given a query point q and a "current point" si, d(si, q) = r where our search

currently stands. We look in a ball around si to find the next search point s,. The

hope is that we find an s that is closer to q than si was. For analysis we define

a criterion for the "success" of a search step. In the case of the KR algorithm, this

26

criterion ranges from (d(sj, q) <; r/2) to (d(sj, q) < r).

Though this phenomenon occurs in all functions of the data structure, it is easiest

to grasp in terms of a single-nearest neighbor query. For a nearest neighbor query on

a point q, we keep taking search steps to bring the current point closer to q, until the

current point is the closest point to q, at which time we return the current point.

The three lemmas allow us to analyze a single search step, and determine how

to maximize the probability that it is successful and efficient. The subset lemma

allows us to work with a random subset of data points without suffering unbounded

increases in the growth rate. The sandwich lemma uses the triangle inequality to

allow a near neighbor search to "close in" on its target output. The sampling lemma

tells us how many points we need to sample in order to find a "good" one with high

probability. The sampling lemma and subset lemma together guarantee that if we

sample 3(2c)3 = 24c3 points from a ball around si then with probability > 9/10, an

sj within r/2 of q will exist in our sample.

2.2.2 Build and Query framework

Given a set of data points, the KR algorithm builds its data structure by inserting the

points individually. Once every data point has been inserted, the structure can answer

near neighbor queries on the data set. There are three kinds of queries supported,

corresponding to the nearest neighbor definitions given earlier:

* nearest-neighbor(q)

" k-nearest-neighbors (q, k)

* E-nearest-neighbors (q,c)

2.2.3 Search strategy

The basic search strategy is to step through a metric skip list on the points, keeping

track of the best choice(s) of points to return. Due to the structure of the skip list,

27

all "good" points are visited but only a small, bounded number of "bad" points are

seen during the course of the search.

A search starts at the beginning of the ordering (si), and jumps forward in the

ordering with each search step until it reaches the end of the ordering (sn). Each

jump can be modeled as a step in a random walk: with some probability p the jump

goes to a point that is closer to the query point, and with another probability 1 - p

it gets farther away. The data structure is designed such that in the random walk

along current points, the current distance r to the query point has a negative drift to

converge quickly on the goal.

2.2.4 Structural components

The data structure is composed of n nodes, where a node is created by inserting a

data point, such that node i represents the point si, and the "distance" between nodes

i and j is just d(si, si).

For each node the structure maintains several finger lists, each associated with

a certain node and radius. The finger list at node i of radius r is defined as a random

subset of all nodes within distance r of node i. The finger list size is a constant

f (equal to 24c3 in the worst-case as shown in Section 2.2.1) chosen based on the

sampling lemma and expansion rate of the data set.

To construct the finger lists as random samples from balls around a node, we first

impose a random ordering (S1i, S2, ... , sn, corresponding to a random permutation of

the points) on all the nodes. We can now precisely define a finger list in the context

of the structure:

Definition 6 The finger list F,(i) is the list comprised of the next f nodes in the

ordering that are within distance r of node i

Thus building a finger list is a deterministic process, but the resulting list represents

a random sample since the ordering is random. Using this definition of a finger list,

we can prove [1] that there will only be O(log n) distinct finger lists per node. This

allows us to bound the space complexity of the data structure (see Section 4.3.1).

28

We briefly defer discussion of the insertion algorithm in order to explain the Find

algorithm. Then Insert is explained as an extension of Find.

2.2.5 Find operation

Once all the data points have been inserted into the structure and all the finger lists

have been constructed, queries on S are supported. The Find function uses the finger

list framework to implement the search strategy suggested by the sampling lemma.

It returns the single nearest neighbor.

Find(q) (finds nearest neighbor of q in S)
let i = 1 // i is current node
let m = 1 // m is best node so far
while i < n do:

let r = d(si, q)
if]j C F2 (i) such that
d(sj, q) < d(sm, q) or d(s 1 , q) < r/2 then

let i be the smallest index C F2r(i) with that property
if d(si, q) < d(sm, q) then let m = i

else let i = max F2 r(i)

output sm.

2.2.6 Insert operation

When inserting a new node, we place it at the beginning of the ordering. We insert

the nodes in reverse order (sr, s_1, sn-2, -.. , S2 , si), so that the resulting structure

will have the nodes in the proper order. Recall that since this ordering was originally

determined randomly, we can still model the finger lists as random samples.

Adding nodes only to the front of the structure simplifies insertions because we

only need to construct finger lists for the new node; no other nodes or finger lists are

affected. The new node's finger lists are constructed based on all the existing nodes,

since all existing nodes occur later in the ordering. For the same reason, no existing

finger lists need to be modified, since finger lists only "look" forward in the ordering.

The brute-force approach to construct the finger lists would be to start at the

beginning of the data structure and move forward in the ordering, maintaining an

29

array of the f nodes that are closest to the one being inserted. Every time a node

is encountered that is closer than some node in the array, we replace the worst array

element with the node just encountered. That way every time the array is altered, a

new finger list is made, with a smaller radius than the previous one.

The brute-force approach will construct all the finger lists by the time it moves

through all the existing nodes in the data structure. This is efficient in the beginning,

when the array is not full and every node encountered is added to what will become

the first finger list. But as the search goes on, updates to the array become less

frequent and the brute-force method wastes more time looking at nodes that will

never be in a finger list. To reduce the time it takes to build finger lists, the original

publication [1] suggests using the Find algorithm to jump to the nodes that will

actually appear in the finger lists. Details about our implementation of Insert are in

Section 3.3.1.

2.2.7 FindRange and FindK operations

FindRange operation

This variant of the Find algorithm returns the c-nearest neighbors of a query point

q. The basic idea is to modify Find so that in its random walk over the ordering, it

never misses any points within distance c of q. This is accomplished with a couple of

changes to the search step criteria.

FindRange(q, c) (finds c-nearest neighbors of q in S)
let outputset = 0

let i = 1 // i is current node
let rm= 1 // m is best node so far

while i < n do:
let r = d(si, q)
if r < e then r = e
if -1j c F2 (i) such that

d(sj, q) < d(sm, q) or d(s1, q) <r/2 or d(s, q) < c then
let i be the smallest index c F2,(i) with that property

if d(si, q) < d(sm, q) then let m = i

if d(si, q) < E then add si to outputset

30

else let i = max F2,(i)
output outputset.

FindK operation

This operation, which returns the k-nearest neighbors of a query point q, uses Find-

Range as a subroutine. The strategy is to make a series of 6-nearest neighbor queries

around q, increasing e until a query returns at least k points. Then we return the k

best points from among those returned in the last e query.

FindK(q, k) (finds k-nearest neighbors of q in S)
let B = FindRange(q, r) for some r such that B = O(log n)
while |BI < k do:

r = Augment(r, B, q)
B = FindRange(q, r)

output the k points in B closest to q.

In order to increase r appropriately in the while loop, we use the Augment proce-

dure, which assures that the r value returned will increase JB = B7 (q)I by a constant

factor each time.

Augment(r, B, q) (finds a new value of r such that IB,(q)I grows geometrically)
let B = {b1, b2, ...b1} be an enumeration of B's elements
for i = 1 to 1 do:

let ai be the element closest to b in b's finger lists with d(ai, bi) > 2r
let ri = d(ai, bi)

output the median of {ri| 1 < i < l}

These two algorithms defer a certain problem, namely determining the initial value

of r for the FindK procedure, to the implementation phase. We discuss our solution

to this problem in Section 3.3.2.

2.2.8 Dynamic updates

The KR algorithm is also designed to support dynamic structural updates. Supporting

online insertion and deletion of nodes adds significant complexity to the structure,

31

including a requirement of knowing c for correctness [1]. The primary reason for the

added complexity is that we cannot dynamically insert a new node at the "back" of

the structure, because the randomness of the ordering (and thus the randomness of

the finger lists) would not be maintained.

New nodes must be inserted at a random position in the ordering; as a result, all

of the finger lists for preceeding nodes are subject to change. The dynamic structure

presented in the original publication [1] inserts a node to a random place in the

ordering, and adjusts all of the affected finger lists automatically.

The dynamic structure was not implemented in this research because it is out of

the scope of the thesis work, which focuses on building neighborhood graphs offline

on a given data set. The value of the dynamic structure is undeniable, however, so

others are encouraged to implement it using our offline implementation as a starting

point.

2.3 Theoretical Performance

The KR algorithm is Las Vegas, which means that its correctness is guaranteed, but

its time bounds are not. The time bounds given here hold with high probability;

proofs from the original publication [1] are not repeated here.

The analysis leading to these bounds takes the expansion rate c as a constant,

which is sensible because the expansion rate does not scale with the number n of

data points. Since the finger list size f is theoretically a function of c, it is also

treated as a constant.

In practice, we expect f to be polynomial in c (e.g. 24c3). Since c is exponential

in the intrinsic dimensionality, we say that the KR algorithm's performance scales

exponentially with respect to intrinsic dimensionality.

2.3.1 Single-nearest neighbor queries

The data structure performs nearest neighbor queries in O(log n) time. This is be-

cause a query is answered in O(log n) search steps. Each search step involves 0(f)

32

distance computations, so in practice a factor of f could be included in the bound.

2.3.2 Insertions

Insertions are also performed in O(logn) time. This is because an insertion is like

running a Find on the new point, except instead of maintaining the closest point so

far, it maintains the f closest points so far. This causes the random walk of search

steps to be slower than a regular Find by a factor of f, so in practice a factor of f2

could be included in the bound.

2.3.3 c- and k-nearest neighbor queries

The structure answers c-nearest neighbor queries in O(logn + k) time, where k is

the number of points returned. It answers k-nearest neighbor queries in O(log n + k)

time. Each search step involves O(f) distance computations, so in practice a factor

of f could be included in the bound.

33

03

Chapter 3

Implementation

This chapter discusses the implementation of the KR algorithm. First the implemen-

tation context is discussed, in terms of the languages used and the interface between

ISOMAP and the KR algorithm. Then the implementation is described in terms of the

structure of its code modules. Finally, the important design completions, modifica-

tions and optimizations are discussed.

3.1 Implementation Framework

3.1.1 Integration with ISOMAP code

ISOMAP is implemented in MATLAB, which provides rich libraries to support all the

necessary linear algebraic computation with minimal code. The KR algorithm re-

quires requires a heavy load of primitive calculations, and so is not well-suited to the

MATLAB environment.

3.1.2 Languages and technologies used

The KR algorithm was implemented in C++, which offers fast, efficient computation

and control over memory, both valuable to our purpose. Also, MATLAB is designed

to interface with C++ programs, allowing them to be invoked easily from within

MATLAB programs.

35

Another valuable benefit of implementing the KR algorithm in C++ is the accom-

modation of object-oriented design. In our case this allows for the development of a

modular system with a few different classes.

3.1.3 Motivations in modular design

The modularity of our implementation makes the code easier to understand and

more extensible. For example, our implementation of the Point class focuses on the

Euclidean case. In order to use the KR algorithm in a different metric space, only the

Point class needs to be rewritten. Another example benefit of this modularity is that

it simplifies the addition of real-world optimizations, some of which are discussed in

Section 3.5.

3.2 Description of Modules

This section will introduce the modules used to implement the KR algorithm. Each

module is introduced in terms of its purpose, as well as its member variables and

functions. Some simplifications are made for clarity, so this should considered a

pseudocode representation. The actual code that this section describes can be found

in Appendix A.

3.2.1 Point

The Point class is used to represent data points. This class fully encapsulates the

metric space. In our implementation a Point represents a point in Euclidean space.

There are many different metric spaces that obey symmetry and the triangle inequal-

ity, and any of them can be accommodated by the KR algorithm with the appropriate

changes to the Point class.

Member variables

e an integer d representing its dimensionality

36

e an array coords of decimals representing its coordinates in space.

Member function

e dist (p), which calculates the Euclidean distance from this point to another

Point p.

3.2.2 FingerList

The FingerList class stores a finger list, which is a list of points that represent a

random sample of all the data points within a certain distance of the associated node.

Member variables

" an integer length representing its size

* a decimal r representing its radius (the distance of the farthest point, and hence

the effective radius of the ball)

" an array fingers, which stores integers that refer to nodes by their rank in the

ordering. For example, if points si and sj are in the finger list, then the integers

i and j are in the array fingers.

* a pointer nextList to the next FingerList (of smaller radius) belonging to

this node

Member functions

* a method getSize() that returns length

* a method getR() that returns r

* a method getListElt (i) that returns f ingers [ii

* a method getNext 0 that returns nextList

* a method setNext (f1) that sets the value of nextList to fi

37

* a method findJ(q,rad) that identifies (by rank) the lowest-ranked node in

this finger list that is within distance rad of point q. If no such node exists,

it returns the highest-ranked node in this finger list. This method implements

the bulk of a search step.

3.2.3 Node

The Node class encapsulates the information that is added to the data structure when

a Point is inserted. Accordingly, a node just keeps track of a set of FingerLists. It

does this in the form of a linked list, so it only keeps track of the first FingerList

then follows along the nextList pointers to subsequent finger lists.

Member variable

* a pointer firstList to the FingerList of largest radius that belongs to this

node

Member function

* a method getFirstList() that returns firstList

3.2.4 NNStruct

The NNStruct class encompasses the entire data structure.

Member variables

* an integer f ingListSize that represents the size of every finger list used or

created by the structure

* an integer numnodes that represents the number of data points that the structure

is allocated to represent

* an array nodes of the Node objects that comprise the structure

38

Member functions

* a method getNode (k) that returns nodes [k]

* a method insert (p) that inserts a point p at the front of the existing data

structure, by creating a new Node and determining every FingerList associated

with it

" a method find(q) that returns (by rank) the point in the data set that is the

nearest neighbor of the point q

" a method f indRange (q, E) that returns (as an array of node ranks) all the

points in the data set that are E-nearest neighbors of the point q

* a method findK(q, k) that returns (as an array of node ranks) all the points

in the data set that are k-nearest neighbors of the point q

3.3 Design Decisions

During implementation it became clear that certain details and optimizations were

omitted from the original [1] description of the KR algorithm. Here we discuss our

corresponding design decisions, along with how they impact the structure.

3.3.1 Completing the Insert design

The procedure for offline insertions is roughly sketched in the paper [1] in terms of

modifications to the Find algorithm. No pseudocode was provided; this left some

decisions for the implementation phase.

To adapt the Find algorithm for insertions we must ensure that it does not skip

over any points that should be part of a finger list. This is accomplished by changing

the criterion for a "good" node in a search step, so that any node that should be in

a finger list is "good."

39

Insert(sk) (to be called after Insert has been called on so, s1,, Sk+2, Sk+1)
let curlist = 0 // current finger list
let m = oo // m is distance of farthest node in curlist
let i = k + 1
while (i < n) and size(curlist) < fingerListSize do:

add node i to curlist

use curlist to make the first fingerList
m = max(d(sp, sk) I p E curlist)

while i < n do:
let r = d(si, 8k)
if]j E F2 (i) such that d(sj, sk) < m or d(sj, sk) _< r/2 then

let i be the smallest-ranked node E F2, (i) with that property
if d(si, sk) < m then

replace node in curlist that is farthest from s with node i
use curlist to make a new finger list
set m = max(d(p, Sk),p E curlist)

else let i = max F2 (i)
end.

3.3.2 Completing the FindK design

We made some design decisions during the implementation of the k-nearest neighbor

procedure (introduced in Section 2.2.7).

Recall that this algorithm performs a series of c-nearest neighbor queries, itera-

tively increasing the value of r used as the c parameter. For setting the initial value of

r, the original publication proposes a solution [1] that requires knowing the expansion

rate c of the data set.

To avoid a situation where correctness depends on knowing c, we propose a dif-

ferent solution. We sample a few points from the beginning of the ordering and for

each point we check the radius of its last finger list. For a point si near the beginning

of the ordering, this tells us the value of e for an c-nearest neighbor query around

si that would return approximately f points. We average the results from the first

few points in the ordering, giving us an estimate on the radius of a ball containing f

points. We use this radius estimate as the initial value of r in FindK.

40

3.3.3 Optimizing each search step

The Find algorithm as described in the original paper [1] dictates that a single search

step from current point si, d(q, si) = r should look in the finger list F2 (i) for a point

j such that d(q, s) < (r/2) or d(q, s) < d(q, sm). This means that we examine

points sampled from B2,(si), hoping to find a "good" point, i.e. one that is inside

B,/ 2(q) or B,,(q), r' = d(q, sm).

We are guaranteed that all the good points are contained in B2,(si), but this

may be a larger ball than necessary. Because of the "or" in the criterion that deter-

mines if a point is good, we know that the "good" radius around q is in the interval

[r/2, d(q, sin)]. We can tighten the B 2 r(Si) to B,(si), r' = (r + max(d(q, sm), r/2)),

and by reducing the radius of the outer ball to snugly fit around the "good" ball, we

increase the probability of finding a good next point. We implemented this optimiza-

tion for every function the structure supports.

3.4 A Modified Approach

The special case of building a neighborhood graph, or solving the all nearest neighbors

problem, was introduced in Section 1.3.3. Here we introduce a modified version of

the KR algorithm that is designed specifically to build a neighborhood graph. Two

versions are introduced: one that builds an c-neighborhood graph for a pre-specified

E, and another that builds a k-neighborhood graph for a pre-specified k.

3.4.1 e-neighborhood variant

This variant utilizes the symmetry of the c-nearest neighbor relation to simplify the

building and querying into one phase. As it inserts each new point, it determines the

E-nearest neighbors to the new point among those following it in the ordering. Every

time it finds an E-nearest neighbor relationship, it notifies the other point as well.

That way each point "knows" about c-nearest neighbors that are inserted after it was

inserted.

41

Implementing this variant required adding two classes: EpsNbr and EpsCombo.

EpsNbr is a simple linked-list of nodes that are within distance e. EpsCombo builds a

structure with an EpsNbr object associated with every node. Details of both classes

are provided below.

EpsNbr member variables

* pointers first and last that point to the beginning and end, respectively, of

the linked list

" an integer size that represents the length of the linked list, which is the number

of -nearest neighbors that have been found so far for the associated node

EpsNbr member functions

* a method getFirst () that returns the first element in the linked list

* a method getSize () that returns the length of the linked list

EpsCombo member variables

* an integer numnodes that represents the number of data points that the structure

contains

" an array nodes of the Node objects that comprise the structure

" an array epsHood of the EpsNbr objects that store the adjacencies

* a decimal eps that stores the value of E

EpsCombo member functions

* a constructor EpsCombo (n, f , data, c) that builds the structure with n nodes

and finger list size f on the data set data with each node connected to its e-

nearest neighbors

* a method getEpsNbr(i) that returns epsHood[i]

42

3.4.2 k-neighborhood variant

This variant is similar to the c variant in that it combines building and querying into

a single phase. But since the k-nearest neighbor relation is not symmetric, we cannot

rely on nodes inserted later to notify nodes inserted earlier about k-nearest neighbor

relationships. Because of this potential asymmetry we must build the data structure

twice-once forwards and once backwards. That way each node can explore the nodes

after as well as before it in the ordering to find all its k-nearest neighbors.

Implementing this variant required adding two classes: KNbr and KCombo. KNbr

maintains an updateable list of k nodes that are close to a node. KCombo builds a

structure with a KNbr object associated with every node. Details of both classes are

provided below.

KNbr member variables

* an array nbrs of integers identifying (by rank) the nodes that are the k-nearest

neighbors seen so far for the associated node

" an array dists of decimals containing the distances between the associated

node and each of the nodes contained in nbrs

" an integer k that is equal to k, used to set the size of the arrays nbrs and dists

KNbr member functions

* a method getNbrs0 that returns the array nbrs

* a method getSize (that returns the length of the array nbrs, which is equal

to k

* a method add(node, distance) that adds node to the set of k if dist is one

of the k smallest seen so far

43

KCombo member variables

* an integer numnodes that represents the number of data points that the structure

contains

* an array nodes of the Node objects that comprise the structure

* an array epsHood of the EpsNbr objects that store the adjacencies

KCombo member functions

* a constructor KCombo (n, f , data, k) that builds the structure with n nodes

and finger list size f on the data set data with each node connected to its

k-nearest neighbors

* a method getKNbr(i) that returns kood [i]

3.5 Omitted Optimizations

Some optimizations that provably reduce the time complexity of the KR algorithm were

not implemented. Because this research stresses the proof-of-concept of the KR algo-

rithm, it evaluates performance in terms of number of distance calculations, which

facilitates analysis. The optimizations discussed in this section improve overall time

bounds, but do not affect the number of distance calculations performed.

3.5.1 Finger list shortcut pointers

The finger list access method in our implementation is simple and slow. When looking

up a finger list at a certain node, it looks through the linked list of finger lists until

it finds the one of the correct radius. This takes time linear in the number of finger

lists per node, which means O(logn) time per finger list access.

The original paper [1] proposes something faster-finger list pointers that span

nodes. Specifically, for each j E F,(i) we add a pointer to F(j). Also for each finger

list Fr(i) we add a pointer to F2 , (i). This allows for constant finger list lookup between

44

search steps, since with each search step, r either decreases slightly or increases to at

most 2r.

3.5.2 Use of heaps

In some situations in our implementation we maintain a dynamic set of items by

continually replacing the "worst" member. For example, in the Insert procedure,

every time a new finger list is made we throw out the node that is farthest away from

the node being inserted. In our implementation these operations are carried out with

simple linear passes over arrays. These can be optimized using more advanced data

structures. Binary and Fibonacci heaps, for example, support find-min in 0(1) time

and delete-min in O(log n) time [13].

45

C)

Chapter 4

Testing and Analysis

This chapter reviews the testing conducted with the KR algorithm as well as the anal-

ysis of some of our results. First we describe the variables in our testing framework.

Then we show and comment on some sample test results. Finally we provide some

empirical analysis to explain the behaviors we observed.

4.1 Variables

This section introduces the variables involved in testing. We split these into two

classes: independent and dependent. Within each class, some of the variables we

introduce are inherent to the data set, while others are parameters of the near neighbor

data structure.

4.1.1 Independent variables

* n: The size, in number of data points, of the data set.

* D: The extrinsic dimensionality of the data set, i.e. the dimensionality of the

input space.

* dist: The distance metric. Recall that it must obey symmetry and the triangle

inequality. In all of our tests we used Euclidean distance.

47

" d, c and f: These are listed together because they seem to be dependent on one

another. d is the intrinsic dimensionality of the data set, i.e. the dimensionality

of the manifold. d < D, and for dimensionality reduction, often d << D. The

expansion rate c is a property of the data set, presumably equal to 2d. The

finger list size f, a parameter of the data structure, is likely a function of c.

* E or k: This is the parameter we use for building the adjacencies in the neigh-

borhood graph.

4.1.2 Observed variables

* clock ticks: This is one way of measuring time performance. It counts ticks

on the system clock in order to estimate the amount of time taken by certain

operations.

* distance computations: This is our preferred way of measuring time perfor-

mance. It counts the number of times the dist function is invoked. It is more

machine-independent, and it allows us to assess performance without worrying

about less-important optimizations.

* search step success rate: This is the ratio of successful search steps to total

search steps. Success is indicated by the search step finding a new current node

that is within the desired distance of the query node.

4.2 Results

To test the KR structure we calculated neighborhood graphs on the swiss roll data

set. Recall that a neighborhood graph is formed by connecting each data point to its

c- or k-nearest neighbors. So in order to compute the neighborhood graph on n data

points, the structure must perform n insertions to build itself, and then n queries to

determine the adjacencies.

Performance was measured in terms of distance calculations. The time bounds

given in Section 2.3 were in terms of standard operations, but we did not implement

48

1 o

'1 1o5

ca

r_

E
8 10C

10 L
102

10 - - ' -l-- - o ' -s- - - - ' - ' - - ' -
10p 10

input size (number of data points)

Figure 4-1: Processing time on the swiss roll data set
Finger list size = 3.

with respect to input size.

the optimizations necessary to achieve those. The theoretical bounds are the same

for number of distance calculations as for standard operations.

4.2.1 Performance v. input size

As we see in Figure 4-1, the running time appears to be 0(nlog n) for the insertions

as well as the queries. The extra factor of n appears because the times are aggregate

over all of the insertions and all of the queries, respectively.

Notice that Figure 4-1 evaluates performance with finger list size of 3. This is

very different from the 24c3 value derived in Section 2.2.1, which for the swiss data

is equal to 24 * (22)3 = 1536. We show the plot for f = 3 because that value gave

the best results (see Figure 4-2). This efficiency for small finger list sizes is a central

discovery of this project; it is analyzed in Section 4.3.

49

- build
--query .

-~

. I

10'

ins -

0-

0

E
o 10

co

Es

100 101 10,
finger list size

10 10

Figure 4-2: Processing time on the swiss roll data set with respect to finger list size.

n = 1600, C = 3.953

4.2.2 Performance v. finger list size

Figure 4-2 considers how performance depends on the finger list size f. We see

that the optimal f value is 2 for inserts (see the "build" curve, which represents

the sum of all n inserts) and 5 for queries. The sum of build and query time is

optimized at f = 3. The worst performance appears for medium-sized finger lists,

and performance improves as the finger list size approaches n, which is 1600 in this

case. This is probably because with finger lists of approximately n, the algorithm

becomes brute-force, and search steps are very successful but the running time is

quadratic.

Our test results, which show optimal performance for very small finger lists (f = 3)

in the case of the swiss roll, require us to rethink the analysis that led to the theoretical

suggestion of f = 24c3.

50

-x-query

10 - - - . . . 11

rr-

0.9 - -9- build
-- query

0.8-

.07-

0.6-

0.5-

n 0.4-

0.3-

0.2-

0.1 ' . ..
10 101 102 110 1

finger list size

Figure 4-3: Search step success rate on the swiss roll data set with respect to finger
list size. n = 1600, E = 3.953

4.3 Analysis

4.3.1 Why small finger lists work well

In examining the significance of finger list size, we first consider the benefit of small

finger lists. Clearly a smaller finger list means each search step takes less time. Also

the space complexity of the data structure is O(nf log n) (n nodes, each with O(log n)

finger lists of length f), so for large data sets large finger lists make the structure

difficult to store.

Now we examine the case for having large finger lists. The reason f was originally

set to 24c3 was to give a good probability of success for each search step. But the

analysis used to reach the value 24C3 appears conservative; as Figure 4-3 shows, very

high search step success rates were found for quite low values of the finger list size f.
We also see a region where the success rate scales proportionally to log f, but there

is little benefit to increasing the finger list size beyond f = 10.

One explanation for the optimality of small finger lists in our tests could lie in

the nature of the neighborhood graph problem, for which we optimize the running

51

time on exactly n inserts and n queries. In many other near neighbor applications we

perform one build phase (of n inserts) followed by an unbounded number of queries.

In those situations we prefer to optimize the query time; in our case, we give equal

weight to inserts and queries. The best f for the build phase is less than that for

the query phase (probably because Insert scales with f2), and our overall optimal f

value of 3 reflects the blend of the two individual optimal f values.

Another explanation considers the data sets we used for testing. Both the swiss roll

and faces data sets consist of points sampled uniformly from a pre-defined manifold.

This allows us to use a new model, one which assumes a uniform distribution of data

points on the manifold, to re-analyze a search step.

Rethinking the success criterion

We re-examine the success criterion. In a search step starting at a current node that

is distance r from the query node q, we are looking for a node within distance r' of

q, where (r/2 < r' < r). This means the success criterion is always somewhere in

the spectrum between the "difficult" extreme of r/2 and the "easy" extreme of r.

We consider these criteria in two separate cases, using a new context for both that is

simpler than the one which led to the 24c3 value.

Given a point p at distance r from the query point q, we choose points randomly

from a ball around p and assess the probability that at least one of them is within the

desired distance of q. We consider the two extreme cases from the previous paragraph,

and use two-dimensional examples to assist in the descriptions.

Case 1: r' = r/2

Figure 4-4 shows an inner circle of radius r/2 and an outer circle of radius 3r/2. The

radii differ by a factor of 3, so the areas of the two disks differ by a factor of 32 = 9. If

we randomly choose one point on the larger disk, with 8/9 probability it will not be

on the smaller disk. So our probability of success with three randomly chosen points

is:

1 - (8/9)3 > .29

52

++

Case I predicts .30 success rate with f= 3

+

Figure 4-4: Sampling from B 3r/2 (c) to find something in Br1 2 (q).

Case 2: r' = r

Figure 4-5 shows an inner circle of radius r and an outer circle of radius 2r. The radii

differ by a factor of 2, so the areas of the two disks differ by a factor of 22 = 4. If we

randomly choose one point on the larger disk, with 3/4 probability it will not be on

the smaller disk. So our probability of success with three randomly chosen points is:

1 - (3/4)3 > .57

Blending the two cases

If we average the success rates of case 1 and case 2 for f = 3 we get approximately

.43, which roughly matches the success rate observed for f = 3 in Figure 4-3. Thus

we empirically verify our guess that the KR algorithm uses a blend of the two cases

when defining its search success.

53

+ +

+

Case 2 predicts .58 success rate with f = 3 +

Figure 4-5: Sampling from B 2,(c) to find something in B,(q).

A more general case

We can generalize our analysis to points uniformly distributed on d-dimensional man-

ifolds. Given the ratio
r

x , 1 < x < 2,

we know that the radius of the inner ball is r/x and the radius of the outer ball is

(.+x). The ratio of outer radius to inner radius is (1 + x), so the ratio of the size of

the outer ball to the size of the inner ball is (1 + x)d. Then

p(success with one sample) = (1)d , and
+ x

p(success with f samples) = 1 - (1 - ()d)f

We can verify the answers to Case 1 and Case 2 by computing with d = 2, f = 3, and

x = 2 and 1, respectively.

54

10

-o

0

CLE

0

E

10 -1- -2 - i- 3-io
4- - - - - - - .

10 (1nda
input size (number of data points)

Figure 4-6: Processing time on the swiss roll data set
EpsCombo outperforms the regular KR structure. Finger

with respect to input size.
list size = 3.

4.3.2 Assessment of my variants

Figure 4-6 shows the performance benefit of using my EpsCombo variant of the stan-

dard KR structure. EpsCombo uses approximately half as many distance calculations

as FindRange when building neighborhood graphs. Though this doesn't offer asymp-

totic benefits, a factor of two could be useful for large data sets. My KCombo variant

did not demonstrate a significant performance advantage over the standard FindK

function.

55

KR build + query
EpsCombo variant

10

10 s

10 C

10,

Qi
0

Chapter 5

Conclusions and Further Research

5.1 Conclusions

The KR algorithm proved itself to be an efficient way of computing neighborhood

graphs on low-dimensional data in high-dimensional embeddings. It performs searches

correctly and quickly. My variants of the KR algorithm were marginally faster than

the originals at neighborhood graph construction, but they require the prior specifi-

cation of the E or k parameter, and in many applications this parameter is not known

beforehand.

The KR structure exceeded performance expectations by working best with very

small finger lists. On the swiss roll data set, f = 3 resulted in the best performance.

This is a very different result from the 24c3 value suggested in the original publica-

tion [1]. We have some intuitive feel for why this was the case. It appears that the

original analysis (see Section 2.2.1) was conservative, and the swiss roll data set can

be modeled as a two-dimensional surface containing points distributed uniformly at

random. In preliminary testing, the optimality of small finger lists has extended to

data sets of high extrinsic dimensionality (e.g. the face data set shown in Figure 1-2).

57

5.2 Further Research

5.2.1 Analysis

Theoretical analysis is still needed to prove the benefit of very small finger lists. It is

plausible that the benefit we observed is a product of our testing limitations. The data

sets we tested on were all uniformly sampled; this probably elevated the success rate

of search steps. Data gathered in real-world contexts does not provide this uniformity.

Perhaps along with more analysis of finger list size we will be able to determine the

optimal list size as a function of some properties (e.g. n, c) of the data set.

5.2.2 Data sets

In order to truly prove its utility, the KR algorithm should be used to allow ISOMAP to

operate on data sets that were prohibitively large before. Finding large real-world

data sets for dimensionality reduction has been difficult. Some good candidates are in

the MNIST [14] database, which contains an archive of images of various handwritten

characters. More "toy" dimensionality reduction data sets like the swiss roll can also

be generated by random functions, but the results are less gratifying, and could

produce artificial performance gains due to properties such as uniform distribution of

data points.

5.2.3 Optimizations

This research invites many continuations and extensions. Our implementation omit-

ted several useful optimizations (see Section 3.5) that can reduce real-world running

times. Also if the dynamic version (see Section 2.2.8) of the KR algorithm were

implemented, the structure would become accessible to a new set of applications.

5.2.4 Comparison to other near neighbor schemes

Before it can be claimed as the "best choice" for purposes such as dimensionality re-

duction, the KR structure should be compared to other near neighbor schemes. Even

58

though other schemes (such as k-d trees [15]) do not promise competitive theoretical

time bounds on low-dimensional data embedded in high-dimensional spaces, many

seem to work well in practice.

59

C0
C

Appendix A

Source Code

This appendix shows all the C++ code for my implementation of the KR algorithm.

A.1 Header file

#include <math.h>
#include "matlab.hpp"
#include <stdlib.h>
#include <iostream.h>
#include <time.h>
#include <stdio.h>

class Point{
int d;
double* coords; 10

public:
Point(int dim, double embedding[]);
PointO;
PointO;

int getDQ;
double getCoord(int i);
double dist(Point* p1);
static int usage;
static void resetUsage(;
static int getUsage(; 20

static void incrUsage(;

class FingerList{
int length;
int* fingers;
FingerList** shortcuts;
FingerList* nextList;
FingerList* prevList;

61

double r;

30
public:
FingerList(double maxr, int size, int fings[]);
~FingerList(;
double getR(;
FingerList* getNext(;
void setNext(FingerList* f);
FingerList* getPrev(;
void setPrev(FingerList* f);
int getListElt(int i); // doesn't check if i is in bounds

40
//looks in this fingerlist for the node j with the
// smallest index s.t. (d(jq) <= r). if there is no
/ such j, then it returns the maximum j seen.
int findJ(Point* q, double r, Point* data[]);
int getSize(;

// returns the index of fList containing the
//index of the node most distant from Point q.
int farthestIndex(int q, Point* data[]);

50
/ returns a random int in the closed interval of params
static int randRange(int lowestnumber, int highest..number);

};
class Node{ //basically just a linked list of FingerList items

FingerList* firstList;
FingerList* lastList;

public:
Node(FingerList* firstL);
~Nodeo;
void addFingerList(FingerList* f); 60

// returns the finger list with the largest radius
//that is less than or equal to r
FingerList* getFingerList(double r);

FingerList* getFirstList();
FingerList* getLastList();

1;
class KNbr{

int* nbrs; 70
double* dists;
int k;
int size;
double maxR;
int worstInd;

public:
KNbr(int kVal);
~KNbro;
int* getNbrs(; // returns nbrs array directly
int getSize(; 80
bool add(int indx, double dist);

62

class EpsNbr{
FingerList* first;
FingerList* last;
int size;

public:
EpsNbrO;
~EpsNbr(;
FingerList* getFirst(); 90

bool add(int indx); / doesn't check or verify distance

int getSizeQ;

I-
class NNStruct{

int numnodes, fingListSize, numSteps, numGoodSteps;

Node** nodes;
public:
NNStruct(int n, int listSize);

~NNStructO;

Node* getNode(int k); 100
int getSteps(;
int getGoodStepso;
bool resetStepsQ;
double getKBallRO;
double augment(double rad, int* curBall, int sizeBall, Point** dat);

static double median(double* arr, int len);

// insert a point at the beginning of the structure

void insert(int q, Point** data);
110

/f find single nearest-neighbor
int find(Point* p, Point** data);
int findRange(Point* p, Point** data, double range, int** output);

int findK(Point* p, Point** data, int k, int** output);
int findKOld(Point* p, Point** data, int k, int** output);

class KCombo{
int n, k, numSteps, numGoodSteps;
KNbr** kHood;

public: 120

KCombo(int numnodes, int listSize, Point** dataO, int kVal);

~KCornboO;
KNbr* getKNbr(int k);
int getSteps();
int getGoodSteps();
bool resetStepsO;

};
class EpsCombo{

int numnodes, numSteps, numGoodSteps;

Node** nodes; 130

EpsNbr** epsHood;
double eps;

public:

EpsCombo(int n, int listSize, Point** data, double epsVal);
~EpsComboo;
Node* getNode(int k);

63

EpsNbr* getEpsNbr(int k);
int getSteps(;
int getGoodSteps(;
bool resetSteps(; 140

class OldNN{
double** distances;
int numnodes;

public:
OldNN(int n, Point** data);
~OldNNO;
int singleNN(int indx, Point** data); // NN to pt IN DATA SET
int epsilonNN(int indx, Point** data, double range, int** output);
int kNN(int indx, Point** data, int k, int** output); 150

int compare(int nsize, bool epsmode, double param, int fListLen,

Point** points, Point** kPoints, int* derand, int kRand);

int compare2(int nsize, bool epsmode, double param, int fListLen,

Point** points, Point** kPoints, int* derand, int kRand);

int loadData(bool swiss, int nsize, Point*** points,

Point*** kPoints, int** derand);

#endif 160

A.2 Class Point

Point::Point(int dim, double embedding[]){
d = dim;
coords = new double[d];
int i;
for (i=O;i<d;i++)

coords[iJ = embedding[i];

}

Point::~Point(){

delete[] coords; 10

}
int Point::getD({

return d;

I

double Point::getCoord(int i){ // requires in-bounds i
return coords[i];

}
20

double Point::dist(Point* p){ // requires matched dimensionality

double dist=O;
int i;
for (i=0;i<d;i++)

64

}

dist = dist + pow(p->getCoord(i) - coords[i], (double)2);
incrUsage();
return sqrt(dist);

int Point::usage = 0;

void Point::resetUsage(){
usage = 0;
return;

}

int Point::getUsage({
return usage;

I

void Point::incrUsage(){
usage++;
return;

I

A.3 Class FingerList

FingerList::FingerList(double
r = maxr;
nextList = NULL;
prevList = NULL;
fingers = new int[size];
length = size;

I

maxr, int size, int fings[]){

for (nt i=O;i<length;i++)
fingers[i] = fings[i];

FingerList::-FingerList(){
delete[] fingers;

}
double FingerList::getR({

return r;

}

FingerList* FingerList::getNext(){
return nextList;

I

void FingerList::setNext(FingerList* f){
nextList = f;

I

65

30

40

10

20

FingerList* FingerList::getPrev(){
return prevList; 30

}

void FingerList::setPrev(FingerList* f){

prevList = f

}

int FingerList::getListElt(int i){
return fingers[i];

}
40

int FingerList::getSize(){
return length;

}

int FingerList::findJ(Point* q, double rad, Point* data[J){
int maxNode=0;
int minGoodNode=O;
bool foundGoodNode=zfalse;
int curNode;

for (int i=0; i length; i++){ 50
curNode = fingers[i];

if ((q->dist(data[curNode]) < rad) &&

((curNode < minGoodNode) I| !foundGoodNode)){
minGoodNode =-curNode;

foundGoodNode = true;

I
if (curNode > maxNode) { maxNode = curNode; }

}
if (foundGoodNode) { return minGoodNode; }
else { return maxNode; } 60

}

1/ see randomrange() at http://www.cpp-home.com/tutorial.php?3191

int FingerList::randRange(int lowestnumber, int highest-number) {
int range = highest-number - lowest-number + 1;
int i = random()%RANDMAX;
return lowest-number + int(range * i/(RANDMAX + 1.0));

I

A.4 Class Node

Node::Node(FingerList* firstL){
firstList = firstL;
lastList = firstList;

I

Node::~Nodeo{
FingerList* f = getFirstList(;
FingerList* f2;

66

while (f->getNext()!= NULL){
f2 = f->getNext(; 10
delete f;
f = f2;

}
delete f;

}

void Node::addFingerList(FingerList* f){
lastList ->setNext(f);
f->setPrev(lastList);
lastList = lastList->getNext(; 20
return;

}
FingerList* Node::getFingerList(double r){

FingerList* f = getFirstList(;
while (f->getNext(!= NULL){

if (f->getR(<= r)
return f;

f = f->getNext(;

30
return f; // return a suboptimal list; better than nothing.

}

FingerList* Node::getFirstList(){
return firstList;

I

FingerList* Node::getLastList(){
return lastList;

} 40

A.5 Class NNStruct

NNStruct::NNStruct(int n, int listSize){
numnodes = n;
fingListSize = listSize;
nodes = new Node*[numnodes];
for (int i=O;i<numnodes;i++)

nodes[i] = NULL;
numSteps = 0;
numGoodSteps = 0;

}
10

NNStruct::~NNStruct(){
for (int i=0;i<numnodes;i++)

if (nodes[i] != NULL) { delete nodes[i]; }
delete[] nodes;

}

67

int NNStruct::getSteps(){
return numSteps;

}
20

int NNStruct::getGoodSteps(){
return numGoodSteps;

I

bool NNStruct::resetSteps(){
numSteps = 0;
numGoodSteps = 0;
return true;

}
30

Node* NNStruct::getNode(int k){
return nodes[k];

}
void NNStruct::insert(int q, Point** data){

int* curList = new int[fingListSize];
double* curDists = new double[fingListSize];
int curListSize = 0; // indicates the next-open index in curList
double curR;
int curListWorstIndex = 0; 40
int curPos = q;

// loop to discover the first (and possibly only) finger list
while (curListSize < fingListSize){

curPos++;
curList[curListSize] = curPos;
curR = data[q] ->dist(data[curPos]);
curDists[curListSize] = curR;
if (curR > curDists[curListWorstIndex]){

curListWorstlndex = curListSize; 50
curDists[curListWorstIndex] = curR;

I
curListSize++;
if (curPos > numnodes-2){

nodes[q] = new Node

(new FingerList(curDists[curListWorstIndex], curListSize, curList));
return;

}

60

//if we reach this point, we know curListSize == fingListSize,
/ so we construct the new node and its first fingerList:
nodes[q] = new Node

(new FingerList(curDists[curListWorstIndex], fingListSize, curList));

double queryR;

while (curPos < numnodes-1){
if (curDists[curListWorstlndex] < (curR/ (double)2))

queryR = (curR/(double)2); 70

68

else queryR = curDists[curListWorstIndex];
curPos = nodes[curPos] ->getFingerList(queryR+curR)-

findJ(data[q], queryR, data);
curR = data[q] ->dist(data[curPos]);
numSteps++;
if (curR <= queryR)

numGoodSteps++;
if (curR < curDists[curListWorstIndex]){

// substitute to form the new list
curList[curListWorstIndex] = curPos; 80
curDists[curListWorstlndex] = curR;
// find the r for the new list
for (int i=O;i<fingListSize;i++){

if (curDists[i] > curDists[curListWorstIndex])
curListWorstIndex = i;

}
nodes[q]->addFingerList

(new FingerList(curDists[curListWorstIndex], fingListSize, curList));

90
delete[] curList;
delete[] curDists;
return;

}

int NNStruct::find(Point* p, Point** data){
int curNode = 0;
int minNode 0;
double curDist = p->dist (data[curNode]);
double minDist = curDist; 100
double queryR;

while (curNode < numnodes-1){
if (minDist < (curDist/(double)2))

queryR = (curDist/(double)2);
else queryR = minDist;
curNode = nodes[curNode]->getFingerList

(curDist+queryR)->find J(p, queryR, data);
curDist = p->dist(data[curNode]);
numSteps++; 110
if (curDist <= queryR)

numGoodSteps++;
if (curDist < minDist){

minDist = curDist;
minNode curNode;

}
}
return minNode;

}
120

int NNStruct::findRange(Point* p, Point** data, double range, int** output){
int curNode = 0;
double curDist = p->dist(data[curNode]);
double minDist = curDist;

69

double queryR;
int numOut = 0;
FingerList* firstOut=NULL;
FingerList* lastOut=NULL;
int curOut[1];

130

while (curNode < numnodes-1){

// establish variables based on current search position:

if (curDist < minDist){ minDist = curDist; }
if (minDist < range) { minDist = range; }

// add curNode to output if needed:

if (curDist <= range){
numOut++;
curOut[O] = curNode;
if (firstOut == NULL){ 140

firstOut = new FingerList(curDist, 1, curOut);

lastOut = firstOut;

}
else {

lastOut->setNext(new FingerList(curDist, 1, curOut));

lastOut = lastOut->getNexto;

}

//jump to the next node:

if (minDist < (curDist/(double)2)) 150
queryR = (curDist/(double)2);

else { queryR = minDist; }
curNode = nodes[curNode]->

getFingerList(curDist+queryR)->findJ(p, queryR, data);

curDist = p->dist(data[curNode]);
numSteps++;
if (curDist <= queryR)

numGoodSteps++;

I
// check the last node before returning: 160

if (curDist <= range){
numOut+ +;

curOut[0] = curNode;
if (firstOut == NULL) { firstOut = new FingerList(curDist, 1, curOut); }
else { lastOut->setNext(new FingerList(curDist, 1, curOut)); }

I

// dump all the answers into the output array, and delete the FingerLists

if (numOut > 0) {
*output = new int[numOut]; 170

FingerList* fi = firstOut;
FingerList* tmp;
for (int i=O;i<numOut;i++){

(*output)[i] = fl->getListElt(O);
tmp = fl;
fl = fl->getNext();
delete tmp;

I

70

if (fl != NULL) { cout << "error making array" <<endl; }
} 180
else { *output = NULL; }
return numOut;

}
int NNStruct::findK(Point* q, Point** data, int k, int** output){

if (k > numnodes) {
cout << "invalid k-n-n query-- k is too high." << endl;
*output = NULL;
return 0;

190

double r = getKBallR();
if (r <= 0){

cout << "getKBallR() is broken, using r=1.0" << endl;
r = 1.0;

}
int* ball;
int ballSize = findRange(q,data,r,&ball);
while (ballSize < 1){

cout << "rescuing the ball!" << endl;
r = 2.0*r; 200
delete[] ball;
ballSize = findRange(q,data,r,&ball);

I
while (ballSize < k){

r = augment(rballballSize,data);
delete[] ball;
ballSize = findRange(q,data,r,&ball);

}
KNbr* kn = new KNbr(k);
for (int i=O;i<ballSize;i++){ 210

kn-->add (ball [i], q-> dist (data[ball [i]);

I
delete[] ball;
*output = new int[k];
int* nbrs = kn->getNbrs();
for (int i=0;i<k;i++){

(*output)[i] = nbrs[i];

I
delete kn;
return k; 220

}
double NNStruct::augment(double rad, int* curBall, int sizeBall, Point** dat){

double* rads = new double[sizeBall];
for (int i=0;i<sizeBall;i++){

rads[i] = DBLMAX; // return infinity by default
double minR = DBLMAX; /initial value for 'best' choice
if (curBall[i] == numnodes-1) // the last node has no finger lists,

continue; // so we can't pursue it.
FingerList* fl = nodes[curBall[i]] ->getFingerList(2.0*rad); 230
if ((fl->getPrev) != NULL) && (fl->getR(< (2.0*rad))){

fl = fl->getPrev(;

71

}
for (int j=O;j<fl->getSize();j++){

double curR = dat[curBall[i]] ->dist(dat[fl->getListElt(j)]);
if ((curR > (2.0*rad)) && (curR < minR)){

rads[i] = curR;
minR = curRE;

}
240

}
double out = median(rads, sizeBall);
delete[] rads;
return out;

double NNStruct::median(double* arr, int len){

for (int i=0;i<len;i++){
double candidate = arr[i];
int numSmaller = 0; 250

int numLarger = 0;
for (int j=0;j<len;j++){

if (arr[j] < candidate)
numSmaller++;

if (arr[j] > candidate)
numLarger++;

if (abs(numSmaller-numLarger) < 2)
return candidate;

260

}

double NNStruct::getKBallR(){
if (nodes[0] == NULL){

cout << "struct not fully built-- getKBallR is returning 0.0" << endl;

return 0.0;

}
int numSamples;
if (numnodes > 150)

numSamples = (int) log((double)numnodes); 270

else if (numnodes < 5)
numSamples = numnodes;

else numSamples = 5;
double output = 0;
for (int i=0; icnumSamples; i++)

output = output + nodes[i] ->getLastList()->getR();
return output/ ((double)numSamples);

}

int NNStruct::findKOld(Point* p, Point** data, int k, int** output){ 280

if (k > numnodes) {
cout << "invalid k-n-n query-- k is too high." << endl;
*output = NULL;
return 0;

I
*output = new int[k];

72

double curR;
double curListMaxR = 0;
int curListWorstIndex;

290
// start by setting output to the first k nodes.
for (int curPos=0;curPos<k;curPos++){

(*output)[curPos] = curPos;
curR = p->dist(data[curPos]);
if (curR > curListMaxR){

curListMaxR = curR;
curListWorstIndex = curPos;

}
}
int curPos = k-1; 300
curR = p->dist(data[curPos]);
double queryR;

while (curPos < numnodes-i){
if (curListMaxR < (curR/(double)2))

queryR = (curR/(double)2);
else queryR = curListMaxR;
curPos = nodes[curPos] ->getFingerList(queryR+curR)->

findJ(p, queryR, data);
curR = p->dist(data[curPos]); 310
numSteps++;
if (curR <= queryR)

numGoodSteps++;
if (curR < curListMaxR){

// substitute to improve the list
(*output) [curListWorstIndex] = curPos;
// find the max-r for the altered list
curListMaxR = curR;
for (int i=O;i<k;i++){

double tempR = p->dist(data[(*output)[i]]); 320
if (tempR > curListMaxR){

curListMaxR = tempR;
curListWorstlndex = i;

}
}

}
}
return k;

}

A.6 Classes EpsNbr and EpsCombo

EpsNbr::EpsNbr(){
first = NULL;
last = NULL;
size = 0;

I

73

EpsNbr::~EpsNbro{} // getNbrs(int) deallocates the fingerlists.

FingerList* EpsNbr::getFirst(){
return first; 10

}

bool EpsNbr::add(int indx){
int tmp[] = { indx };
if (first == NULL){

first = new FingerList(O,1,tmp);
last = first;
size++;
return true;

} 20

last ->setNext(new FingerList(0,1,tmp));
last = last->getNext(;
size++;
return true;

}

int EpsNbr::getSize(){
return size;

}
30

EpsCombo::EpsCombo(int n, int listSize, Point** data, double epsVal){

numnodes = n;
numSteps=O;
numGoodSteps=O;
nodes = new Node*[n-1];
epsHood = new EpsNbr*[n];

epsHood[n-1] = new EpsNbr();
epsHood[n--1]->add(n-1);
eps = epsVal;

for (int q=n-2; q>-1; q--){ 40

epsHood[q] = new EpsNbrO;
epsHood[q]->add(q);
int* curList = new int[listSize];
double* curDists = new double[listSize];
int curListSize = 0; // indicates the next-open index in curList

double curR;
int worstIndex=O;
int curPos = q;
bool breakFlag = false;

50

//loop to discover the first (and possibly only) finger list

while (curListSize < listSize){
curPos++-;
curList[curListSize] = curPos;
curR = data[q] ->dist(data[curPos]);
curDists[curListSize] = curR;
if (curR <= eps){

epsHood[q] ->add(curPos);
epsHood[curPos] ->add(q);

74

1 60
if (curR > curDists[worstIndex])

worstIndex = curListSize;
curListSize++;
if (curPos > n-2){

breakFlag = true;
break;

}
}
|/ construct the node and its first (largest radius) finger list. 70
nodes[q] = new Node(new FingerList(curDists[worstIndex], curListSize, curList));

/ stop constructing this node if the first fingerlist was the only one.
if (breakFlag) {

delete[] curList;
delete[] curDists;
continue;

}
//loop to construct the remaining finger lists. 80
double queryR;
while (curPos < n-1){

if (curDists[worstIndex] < (curR/(double)2))
queryR = (curR/(double)2);

else queryR = curDists[worstIndex];
if (queryR < eps) { queryR = eps; }
curPos = nodes[curPos]->getFingerList(queryR+curR)-

findJ(data[q], queryR, data);
curR = data[q]->dist(data[curPos]);
numSteps++; 90
if (curR <= queryR)

numGoodSteps++;
if (curR <= eps){

epsHood[q]-> add (curPos);
epsHood[curPos]->add(q);

I
if (curR < curDists[worstlndex]){

// substitute to form the new list
curList[worstIndex] curPos;
curDists[worstlndex] curR; 100
// find the r for the new list
for (int i=O;i<listSize;i++){

double tempR = curDists[i];
if (tempR > curDists[worstIndex])

worstIndex = i;

I
nodes [q] ->addFingerList

(new FingerList(curDists[worstIndex], listSize, curList));

}
110

delete[] curList;
delete[] curDists;

}

75

return;

}
EpsCombo::~EpsCombo(){

for (int i=O;i<numnodes-1;i++){
delete nodes[i];

delete epsHood[i]; 120

}
delete epsHood[numnodes-1];
delete[] nodes;
delete[] epsHood;

}
int EpsCombo::getSteps(){

return numSteps;

I
130

int EpsCombo::getGoodStepso{
return numGoodSteps;

I

bool EpsCombo::resetStepsO{
numSteps = 0;
numGoodSteps = 0;
return true;

}
140

EpsNbr* EpsCombo::getEpsNbr(int k){
return epsHood[kl;

}

A.7 Classes KNbr and KCombo

KNbr::KNbr(int kVal){
k = kVal;
nbrs = new int[k];

dists = new double[k];

size = 0; // next open slot in nbrs array

maxR = 0;
worstInd = 0;

I

KNbr::~KNbro{ 10
delete[] nbrs;
delete[] dists;

I
int* KNbr::getNbrs({

return nbrs;

}

76

int KNbr::getSize(){
return size; 20

}

bool KNbr::add(int indx, double dist){
if (size < k){

nbrs[size] = indx;
dists[size] = dist;
if (dist > maxR){

maxR = dist;
worstInd = size;

1 30
size++;
return true;

I
if (dist < maxR){

nbrs[worstInd] = indx;
dists(worstInd] = dist;
maxR = dist;
for (int i=O; i<k; i++){

double temp = dists[i];
if (temp > maxR){ 40

maxR = temp;
worstInd = i;

}
}
return true;

}
return false;

}
KCombo::KCombo(int numnodes, int listSize, Point** dataO, int kVal){ 50

n = numnodes;
numSteps=O;
numGoodSteps=O;
k kVal
// initialize KNbr output objects
kHood = new KNbr*[n];
for (int i=O;i<n;i++){

kHood[i] = new KNbr(k);
kHood[i]->add(i, (double)Q);

} 60

// construct backward array of Points for second pass
Point** datal = new Point*[n];
for (int i=0;i<n;i++){

datal[i] = dataO[n-i-1];

I

for (int pass=O;pass<2;pass++){
Node** nodes = new Node*[n-1];
Point** dat;
if (pass == 0) { dat = data0; } 70
else { dat = datal; }

77

// loop that builds structure on "dat" into "kH"
for (int q=n-2; q>-1; q--){

int* curList = new int[listSize];
double* curDists = new double[listSize];
double curR;
int worstIndex=O;
int curPos = q;

80

//loop to discover the first (and possibly only) finger list for this q
int curListSize = 0; next open index in curList
bool breakFlag = false;
while (curListSize < listSize){

curPos++;
curList[curListSize] = curPos;
curR = dat[q]->dist(dat[curPos]);
curDists[curListSize] = curR;
if (curR > curDists[worstlndex])

worstIndex = curListSize; 90
curListSize++;
if (curPos > n-2){

if (pass == 0)
for (int i=0; i<curListSize; i++)

kHood[q] ->add(curList[iJ,curDists[i]);
else

for (int i=0; i<curListSize; i++)
kHood[n-q-1]->add(n-curList[i]-1,curDists[i]);

breakFlag = true;
break; 100

}
}
/ construct the new node and its first fingerList:

nodes[q] = new Node

(new FingerList(curDists[worstIndex], curListSize, curList));

// stop working on this node if first fingerlist was only one.
if (breakFlag) {

delete[] curList; 110
delete[] curDists;
continue;

}
// loop to discover the rest of the finger lists.
double queryR;
while (curPos < n-1){

if (curDists[worstIndex] < (curR/ (double)2))
queryR = (curR/(double)2);

else queryR = curDists worstIndex]; 120
curPos = nodes[curPos]->getFingerList(queryR+curR) ->

findJ(dat[q], queryR, dat);
curR = dat[q]->dist(dat[curPos]);
numSteps++;
if (curR <= queryR)

numGoodSteps++-;

78

if (curR < curDists[worstIndex]){

// substitute to form the new list
curList[worstIndex] = curPos;
curDists[worstIndex] = curR; 130
/1 find the r for the new list
for (int i=O;i<listSize;i++)

if (curDists[i] > curDists[worstIndex])
worstIndex = i;

// make new list, add it to node
nodes[q] ->addFingerList

(new FingerList(curDists[worstIndex], listSize, curList));
}

}
/1 update the KNbr object for q 140
if (pass == 0)

for (int i=0; i<listSize; i++)
kHood[q] ->add(curList[i],curDists[i]);

else
for (int i=0; i<listSize; i++){

kHood[n-q- 1]->add(n-curList[i] -1,curDists[i]);
I

delete[] curList;
delete[] curDists;

150

/ throw out the nodes array at the end of each pass
for (int i=0;i<n-1;i++)

delete nodes[i];
delete[] nodes;

}
// deallocate backwards array, retain input (data0) and output(kHood0).
delete[] datal;

160
return;

}

KCombo::~KCombo(){
for (nt i=0;i<n;i++){

delete kHood[i];

I
delete[] kHood;

}
170

int KCombo::getSteps(){
return numSteps;

I

int KCombo::getGoodSteps(){
return numGoodSteps;

I

bool KCombo::resetStepsO{
numSteps = 0; 180

79

numGoodSteps = 0;
return true;

}

KNbr* KCombo::getKNbr(int i){
return kHood[i];

}

A.8 Testing code

OldNN::OldNN(int n, Point** data){
numnodes = n;
distances = new double*[n];
distances[0] = NULL;
int ij;
// fill in distancesi][j] for all i > j
for (i=1; i<n; i++){

distances[i] = new double[i];
for (j=0; j<i; j++)

distances[i][j] = data[i]->dist(data[j]); 10

}
}
OldNN::~OldNNO{

for (int i=1;i<numnodes;i++)
delete[] distances[i];

delete[] distances;

}

int OldNN::singleNN(int indx, Point** data){ 20

int bestIndex = (indx+1)%numnodes; // chosen arbitrarily

double minDist;

if (indx < bestIndex) { minDist = distances[bestIndex][indx]; }
else { minDist = distances[indx][bestIndex]; }

for (int i=0;i<numnodes;i++){
double curDist;
if (i indx) { curDist = (double) 0; }
else {

if (i > indx) { curDist = distances[i][indx]; } 30

else { curDist = distances[indx][i]; }
}
if (curDist < minDist){

minDist = curDist;
bestIndex = i;

}
}
return bestlndex;

}
40

int OldNN::epsilonNN(int indx, Point** data, double range, int** output){

80

FingerList* firstOut = NULL;
FingerList* lastOut = NULL;
int curOut[1];
int numOut = 0;
for (int i=O;i<numnodes;i++){

double curDist;
if (i == indx) { curDist = (double) 0; }
else {

if (i > indx) { curDist = distances [i][indx]; } 50
else { curDist = distances[indx][i]; }

}
if (curDist < range){

curOut[0] = i;
numOut++;
if (firstOut == NULL){

firstOut = new FingerList(curDist, 1, curOut);
lastOut = firstOut;

}
else { 60

lastOut->setNext(new FingerList(curDist, 1, curOut));
lastOut = lastOut->getNext(;

I
}

}
/1 dump all the answers into the output array, and delete the FingerLists
if (numOut > 0) {

*output = new int[numOut];
FingerList* fi = firstOut;
FingerList* tmp; 70
for (int i=0;i<numOut;i++){

(*output)[i] = fl->getListElt (0);
tmp = fl;
fl = fl->getNext(;
delete tmp;

I
if (fl != NULL) { cout << "error making array" << endl; }

}
else { *output = NULL; }
return numOut; 80

}

int OldNN::kNN(int indx, Point** data, int k, int** output){
if (k > numnodes) {

cout << "invalid k-n-n query-- k is too high." << endl;
*output = NULL;
return 0;

I
*output = new int[k];
double maxR = 0; 90
int worstIndex;
for (int i=0;i<numnodes;i++){

double curDist;
if (i == indx) { curDist = (double) 0; }
else {

81

if (i > indx) { curDist = distances[i][indx]; }
else { curDist = distances[indx] [i]; }

I
if (i<k){

(*output)[i] = i; 100
if (curDist > maxR){

maxR = curDist;
worstIndex = i;

}
}
else if (curDist < maxR){

(*output) [worstIndex] = i;
// find the max-r for the altered list
maxR = curDist;
for (int j=O;j<k;j++){ 110

double tempR;
if ((*output)[j] == indx) { tempR = (double) 0; }
else {

if ((*output)[j] < indx) { tempR = distances[indx][(*output)[j]]; }
else { tempR = distances[(*output)[j]][indx]; }

I
if (tempR > maxR){

maxR = tempR;
worstIndex = j;

} 120

}
}

}
return k;

}

int loadData(bool swiss, int nsize, Point*** points,
Point*** kPoints, int** derand){

int d;
if (swiss) 130

d = 3;
else d = 4096;
int n nsize;

cout << "n is " << n << ", d is " << d << endl;

if (n-i > RANDMAX)
cout << "warning, RANDMAX is " << RAND-MAX

< < ", which is too small for n!" << endl;

if (n < 2) 140
cout << "n is too small for KR alg to work correctly!" << endl;

/ initialize seed for random generator.
srandom((unsigned)time(0));

// we will use ti and t2 to calculated elapsed times.
clockt t1, t2;
mwArray matpts;
double* thedata;

82

if (swiss) { 150
load("swiss-rollidata.mat", "X-data", &matpts);
thedata = new double[3*20000];

}
else {

load("f ace-_data . mat", "images", &matpts);
thedata = new double[4096*698];

}
matpts.ExtractData(thedata);

// allocate the input array from the heap 160
double** input = new double*[n];
for (int i=O;i<n;i++)

input[i] = new double[d];

1 fill the input array with the first n points
|/ of the imported (.mat) data set.
for (int i=O;i<n;i++)

for (int j=O;j<d;j++)
input [i][j] = thedata[(d*i)+jJ;

170
delete[] thedata;

/ create an array containing the data points
// and create the Points inside

points = new Point[n];
double* coords = new double[d];
for (int i=O;i<n;i++){

for (int j=O;j<d;j++)
coords[j] = input[i][j]; 180

(*points)[i] = new Point(d,coords);

}
delete[] coords;

for (int i=O;i<n;i++)
delete[] input[i];

delete[] input;

// construct kPoints, a copy of Points that
// the karger alg will shuffle and use. 190

kPoints = new Point[n];
for (int i=O;i<n;i++)

(*kPoints)[i] = (*points)[i];

// allocate "derand," the mapping
// from 'kPoints' index to 'Points' index

(*derand) = new int[n];
for (int i=O;i<n;i++) 200

(*derand)[i]=i;

cout << "randomizing data set for Karger aig.

83

tl=clockO;
/ randomize the order of the data pts in the array,

// while maintaining correctness of the mapping.

cout << " (rand seq: " << randomO << " " << random() << ") ";

for (int i=Q;i<n;i++){
int j = FingerList::randRange(O,n-1); / assume n < (compiler's max)

210

Point* temp = (*kPoints)[i];
(*kPoints)[i] = (*kPoints)[j];
(*kPoints)[j] = temp;

int k = (*derand)[i];
(*derand)[i] = (*derand)[j];
(*derand)[j] = k;

}
t2=clockO;
int kRand = t2-t1; 220
cout << "took " << kRand << " ticks." << endl;

return kRand;

}

int compare2(int nsize, bool epsmode, double param, int fListLen,

Point** points, Point** kPoints, int* derand, int kRand){

int n = nsize;
bool modeIsEpsilon = epsmode;

double epsilon = param; // parameter for epsilon-nearest-neighbors

int kParameter = (int) param; 230
int fingerListLength = fListLen;

if (fingerListLength > n){
fingerListLength = n;

cout << "optimization: f ingerList size reduced to

<< n << ", which is input size." << endl;

I

if (modelsEpsilon)
cout << "epsilon mode; epsilon is " << epsilon << endl;

else { 240

cout << "k mode; k is " << kParameter << endl;
if (kParameter > fingerListLength)

cout << "fListSize < k! KR-Nbr will have to raise fListSize later."

<K endl;

// initialize seed for random generator.

srandom((unsigned)time(0));

// we will use ti and t2 to calculated elapsed times. 250
clockt ti, t2;

// allocate the Karger data structure

NNStruct* nns = new NNStruct(n, fingerListLength);

cout << "KR structure allocated with fingerlists of size

<< fingerListLength << endl;

84

cout << "Building KR data structure... "

Point::resetUsage(); 260
ti = clock();
for (it Hn-2;i>-1;i--)

nns->insert(i, kPoints);
t2 = clockO;
int kBuild = t2-tl;
int kBuildUsage = Point::getUsage(;
cout << "took " << kBuild << " ticks and used "

<< kBuildUsage << " dist calcs." << endl;

int kBuildGoodSteps = nns->getGoodSteps(; 270
int kBuildSteps = nns->getSteps(;
nns->resetSteps(;

cout << "Querying with KR method, and derandomizing. .

Point::resetUsage(;
ti = clock();
int** kOut = new int*[n];
int* kSizes = new int[n];
for (int i=O;i<n;i++){

if (modeIsEpsilon) 280
kSizes[derand[i]I =

nns->findRange(kPoints[i],kPoints,epsilon,&(kOut[derand[i]]));
else

kSizes[derand[i]] =
nns->findK(kPoints[i],kPoints,kParameter,&(kOut[derand[i]]));

for (int j=O;j<kSizes[derand[i]];j++)
kOut[derand[i]][j] = derand[kOut[derand[i]][j]];

}
t2 = clockO;
int kQuery = t2-tl; 290
int kQueryUsage = Point::getUsage(;
cout << "took " << kQuery << " ticks and used "

<< kQueryUsage << " dist calcs." << endl;

int kQueryGoodSteps = nns->getGoodSteps(;
int kQuerySteps = nns->getStepsQ;
delete nns;

// construct my variant of karger structure
cout << "building/querying karger nbr structure with fingerlists of " 300

<< fingerListLength <<
Point::resetUsage(;
tI = clock();
int** myOut = new int*[n];
int* mySizes new int[n];
int mySteps, myGoodSteps;
if (!modeIsEpsilon){

if (fingerListLength < kParameter){
fingerListLength = kParameter;
cout << "KR-Nbr is raising fListSize to " << kParameter << endl; 310

}

85

KCombo* myNns = new KCombo(n, fingerListLength, kPoints, kParameter);
for (int i=0;i<n;i++){

KNbr* nbr = myNns->getKNbr(i);
if (nbr->getSizeo != kParameter)

cout << "size of " << i << " neq k!" << endl;
mySizes[derand[i]] = nbr->getSize(;
myOut[derand[i]] = new int[mySizes[derand[i]]];
int* tmp = nbr->getNbrs(;

for (int j=O;j<mySizes[derand[i]]; j++) 320

myOut[derand[i]][j] = derand[tmp[j]];

}
mySteps = myNns->getSteps(;
myGoodSteps = myNns->getGoodSteps(;
delete myNns;

}
else {

EpsCombo* myNns = new EpsCombo(n, fingerListLength, kPoints, epsilon);
for (int i=0;i<n;i++){

EpsNbr* nbr = myNns->getEpsNbr(i); 330

mySizes[derand[i]] = nbr->getSize(;
myOut[derand[i]] = new int[mySizes[derand[i]]];
FingerList* tmp = nbr->getFirst(;
for (int j=0; j<mySizes[derand[i]]; j++){

myOut[derand[i]][j] = derand[tmp->getListElt(0)];
tmp = tmp->getNext(;

}
}
mySteps = myNns->getSteps(;

myGoodSteps = myNns->getGoodSteps(; 340

delete myNns;

}
t2 = clockO;
int myTime = t2-tl;
ijt myUsage Point::getUsage(;
cout << "took " << myTime << " ticks and used

<< myUsage << " dist calcs." << endl;

cout << "Verifying consistency of results.

t1 = clock(); 350

int mismatches = 0;
for (int i=0;i<n;i++){

if (kSizes[i] != mySizes[i]){
cout << "mismatch for point " << i << ": kSize=

cout << kSizes[i] << " and kNbrSize= " << mySizes[i] <<

}
if (!modelsEpsilon)

if ((kSizes[i] != kParameter) I (mySizes[i] != kParameter))

cout << "exactly k not f ound f or point " << i << endl;

// first match kOut against myOut. 360

for (int j=O;j<mySizes[i];j++){
bool match = false;
for (int k=0;k<kSizes[i];k-++)

if (kOut[i][k] == myOut[i][j]) { match = true; }
if (!match) {

86

mismatches++;
cout << i << " " << myOut[ij] << endl;

}
}
//then match myOut against kOut. 370
for (int j=0;j<kSizes[i];j++){

bool match = false;
for (int k=O;k<mySizes[i];k++)

if (myOut[i][k] == kOut[i][j]) { match = true; }
if (!match) {

mismatches++;
cout << i << " " << kOut[i][j] <<endl;

380
t2 = clockO;
cout << "took " << t2-t1 << " ticks." << endl;
if (mismatches==0)

cout << "Results match!" << endl;
else {

cout << "Results DO NOT MATCH-- there were " <<
mismatches << " mismatches, " << endl;

cout< < " for a failure rate of " <<
(double)mismatches/ (double) (n*n) << endl;

390

clock-t tFinish = clockO;
cout < K<endl;
cout << "time for KR was: " << endl

<< kRand << " rand + " << kBuild << " build + "
<< kQuery << " query. Total = " << kRand+kBuild+kQuery << endl;

cout << "dist calc usage for KR was:" << endl
<< kBuildUsage << " build + " << kQueryUsage << " query."
<< " Total = " << kBuildUsage+kQueryUsage << endl;

cout << "step success for build was " << kBuildGoodSteps 400
<< " / "1<< kBuildSteps << " =
<< (double)kBuildGoodSteps / (double)kBuildSteps
<< endl;

cout << "step success for query was " << kQueryGoodSteps
<< " / " << kQuerySteps << " =
<< (double)kQueryGoodSteps / (double)kQuerySteps << endl;

cout << endl;
cout << "time for KR-nbr method was:" << endl

<< kRand << "rand + " << myTime << " build/query. Total -

<< kRand+myTime << endl; 410
cout << "dist calc usage was " << myUsage << endl;
cout << "step success was " << myGoodSteps << " / " << mySteps << " =

<< (double)myGoodSteps / (double)mySteps << endl;
cout <c< endl;
cout << "total time taken was." << tFinish << endl;
int oldUsage = (int)((pow(n, (double)2) -n) /2.0);
cout << "KR-nbr perf indices (over KR) are "

<< (double) (kRand+kBuild+kQuery) / (double) (kRand+myTime)
<< " procTicks and "

87

<< (double) (kBuildUsage+kQueryUsage) / (double) (myUsage) 420
<< " distCalcs." << endl;

cout << "perf indices (over Old) for dist calcs are:" << endl;

cout << (double)oldUsage / (double) (kBuildUsage+kQueryUsage)
<< " for KR and "

<< (double)oldUsage / (double)(myUsage)
<< " f or KR-Nbr." << endl;

/1 CLEANUP
f/ first deallocate the inner pointers for some 2-d arrays. 430

for (int i=O;i<n;i++){
delete[] kOut[i]; // don't need to check if these are null

delete[] myOut[i];
delete points[i];

}
// then deallocate remaining dynamic arrays

delete[] kOut;
delete[] myOut;
delete[] kSizes;

delete[] mySizes; 440

return 0;

}

int compare(int nsize, bool epsmode, double param, int fListLen,

Point** points, Point** kPoints, int* derand, int kRand){

int n = nsize;
bool modeIsEpsilon = epsmode;

double epsilon = param; // parameter for epsilon-nearest-neighbors

int kParameter = (int) param; 450

int fingerListLength = fListLen;

if (fingerListLength > n){
fingerListLength = n;

cout << "optimization: f ingerList size reduced to

<< n << ", which is input size." << endl;

}
if (modelsEpsilon)

cout << "epsilon mode; epsilon is " << epsilon << endl;

else {
cout << "k mode; k is " << kParameter << endl; 460

if (kParameter > fingerListLength)

cout << "fListSize < k! KR-Nbr will have to raise fListSize later."

<< endl;

}

// we will use ti and t2 to calculated elapsed times.
clock-t ti, t2;

// allocate the Karger data structure

NNStruct* nns = new NNStruct(n, fingerListLength); 470

cout << "Karger structure allocated with f ingerlists of size

<<fingerListLength << endl;

88

cout << "Building Karger data structure..1.";

Point::resetUsage(;
ti = clock();
for (nt i=n-2;i>-1;i--)

nns->insert(i, kPoints);
t2 = clock(; 480
int kBuild = t2-tl;
int kBuildUsage = Point::getUsage(;
cout << "took " << kBuild << " ticks and used "

<< kBuildUsage << " dist calcs." << endl;

int kBuildGoodSteps = nns->getGoodSteps(;
int kBuildSteps = nns->getStepsQ;
nns->resetStepsQ;

cout << "Querying with KARGER method, and derandomizing. . . "; 490
Point::resetUsage(;
tl = clock();
int** kOut = new int*[n];
int* kSizes = new int[n];
for (int i=O;i<n;i++){

if (modelsEpsilon)
kSizes[derand[i]] =

nns->findRange(kPoints[i],kPoints,epsilon,&(kOut[derand[iJ]));
else

kSizes[derand[i]] = 500
nns->findK(kPoints[i],kPoints,kParameter,& (kOut[derand[i]]));

for (int j=O;j<kSizes[derand[i]];j++)
kOut[derand[i]][j] = derand[kOut[derand[i]][j]];

}
t2 = clockO;
int kQuery = t2-t1;
int kQueryUsage = Point::getUsage(;
cout << "took " << kQuery << " ticks and used

<< kQueryUsage << " dist calcs." << endl;
510

int kQueryGoodSteps = nns->getGoodSteps(;
int kQuerySteps = nns->getSteps(;
delete nns;

// construct my variant of karger structure
cout << "building/querying karger nbr structure with f ingerlists of

<< fingerListLength << ". . .

Point::resetUsage(;
tI = clock();
int** myOut = new int*[n]; 520
int* mySizes = new int[n];
int mySteps, myGoodSteps;
if (!modelsEpsilon) {

if (fingerListLength < kParameter){
fingerListLength = kParameter;
cout << "KR-Nbr is raising fListSize to " << kParameter << endl;

}

89

KCombo* myNns = new KCombo(n, fingerListLength, kPoints, kParameter);
for (int i=O;i<n;i++){

KNbr* nbr = myNns->getKNbr(i); 530
if (nbr->getSize(!= kParameter)

cout << "size of " << i << " neqc k!" << endl;
mySizes[derand[i]] = nbr->getSize(;
myOut[derand[i]] = new int[mySizes[derand[i]]];
int* tmp = nbr->getNbrs(;
for (int j=0;j <mySizes[derand[i]]; j++)

myOut[derand[i]][j] = derand[tmp[jfl;

}
mySteps = myNns->getSteps();
myGoodSteps = myNns->getGoodSteps(; 540

delete myNns;

}
else {

EpsCombo* myNns = new EpsCombo(n, fingerListLength, kPoints, epsilon);
for (int i=O;i<n;i++){

EpsNbr* nbr = myNns->getEpsNbr(i);
mySizes[derand[i]] = nbr->getSizeQ;
myOut[derand[i]] = new int[mySizes[derand[i]]];
FingerList* tmp = nbr->getFirst(;
for (int j=O; j<mySizes[derand[i]]; j++){ 550

myOut[derand[i]][j] = derand[tmp->getListElt(0)];
tmp = tmp->getNext(;

}
I
mySteps = myNns->getSteps()
myGoodSteps = myNns->getGoodSteps(;
delete myNns;

}
t2 = clockO;
int myTime = t2-tl1; 560
int myUsage = Point::getUsage(;
cout << "took " << myTime << " ticks and used

<< myUsage << " dist calcs." << endl;

cout << "Building old nn structure..
Point::resetUsage(;
ti = clock();
OldNN* ns = new OldNN(n, points);
t2 = clockO;
int oldBuild = t2-tl; 570

int oldBuildUsage = Point::getUsage();
cout << "took " << oldBuild << " ticks and used

<< oldBuildUsage << " dist calcs." << endl;

cout << "Querying with Old method...
Point::resetUsage();
ti = clock();
int** oldOut = new int*[n];
int* oldSizes = new int[n];
for (int i=O;i<n;i++){ 580

if (modeIsEpsilon)

90

oldSizes[i] = ns->epsilonNN(i,points,epsilon,&(oldOut[i]));
else

oldSizes[i] = ns->kNN(i,points,kParameter,& (oldOut[i]));

}
t2 = clockO;
int oldQuery = t2-tl;
int oldQueryUsage = Point::getUsage(;
cout << "took " << oldQuery << " ticks and used

<< oldQueryUsage << " dist calcs." << endl; 590

delete ns;

cout << "Verifying consistency of results. . .

ti = clockO;
int mismatches = 0;
for (int i=O;i<n;i++){

if (kSizes[i] != oldSizes[iJ){
cout << "mismatch for point " << i << ": kSize=
cout << kSizes[i] << " and oldSize= " << oldSizes[i] << ". "; 600

}
if (mySizes[iJ != oldSizes[i]){

cout << "mismatch for point " << i << ": mySize=
cout << mySizes[i] << " and oldSize= " << oldSizes[i] << ".

I
if (!modeIsEpsilon)

if ((kSizes[i] != kParameter) ||
(oldSizes[i] != kParameter) ||
(mySizes[i] != kParameter))

cout << "exactly k not found for point " << i << endl; 610
|/ first match kOut against oldOut.
for (int j=0;j<oldSizes[i];j++){

bool match = false;
for (int k=O;k<kSizes[i];k++)

if (kOut[i][k] == oldOut[i][j]) { match = true; }
if (!match) {

mismatches++;
cout << i << ", " << oldOut[i][j] << endl;

}
} 620
// then match myOut against kOut.
for (int j=0;j<kSizes[i];j++){

bool match = false;
for (int k=0;k<mySizes[i];k++)

if (myOut[i][k] == kOut[i][j]) { match = true; }
if (!match) {

mismatches++;
cout << i << ", " << kOut[i][j] << endl;

} 630
//last match oldOut against myOut.
for (int j=O;j<mySizes[i];j++){

bool match = false;
for (int k=0;k<oldSizes[i;k++)

if (oldOut[i][k] == myOut[j]) { match = true; }

91

if (!match) {
mismatches++;
cout << i << ", " << myOut[i][j] << endl;

}
} 640

}
t2 = clockO;
cout << "took " << t2-tl << " ticks." << endl;
if (mismatches==O)

cout << "Results match!" << endl;
else {

cout << "Results DO NOT MATCH-- there were " <<
mismatches << " mismatches, " << endl;

cout<< " for a failure rate of " <<
(double)mismatches/ (double) (n*n) << endl; 650

}

clockAt tFinish = clockO;
cout << endl;
cout << "time for KR was: " << endl

<<kRand << " rand + " <<kBuild << " build +
<< kQuery << " query. Total = " <<kRand+kBuild+kQuery <<endl;

cout << "dist calc usage for KR was:" << endl
<< kBuildUsage << " build + " << kQueryUsage << " query."
<< " Total = " << kBuildUsage+kQueryUsage << endl; 660

cout << "step success for build was " << kBuildGoodSteps
<< " / " << kBuildSteps << " =
<< (double)kBuildGoodSteps / (double)kBuildSteps << endl;

cout << "step success for query was " << kQueryGoodSteps
<< " / " << kQuerySteps << " =

<< (double)kQueryGoodSteps / (double)kQuerySteps << endl;
cout <<endl;
cout << "time for KR-nbr method was: " << endl

<<kRand << "rand + " << myTime << " build/query. Total -

<<kRand+myTime <<endl; 670
cout << "dist calc usage was " << myUsage << endl;
cout << "step success was " << myGoodSteps << " / " << mySteps << " =

<< (double)myGoodSteps / (double)mySteps << endl;
cout << endl;
cout << "time for old method was " << oldBuild+oldQuery << " procTicks,"

<< " dist calc usage was " << oldBuildUsage+oldQueryUsage << endl;

cout << endl;
cout << "total time taken was..........." << tFinish << endl;
cout << "KR perf indices are "

<< ((double) (oldBuild+oldQuery)) / ((double) (kRand+kBuild+kQuery)) 680
<< " procTicks and "
<< ((double) (oldBuildUsage+oldQueryUsage)) / ((double) (kBuildUsage+kQueryUsage))
<< " distCalcs." << endl;

cout << "KR-nbr perf indices are
<< ((double)(oldBuild+oldQuery)) / ((double)myTime) << " procTicks and
<< ((double) (oldBuildUsage+oldQueryUsage)) / ((double) (myUsage))
<< " distCalcs." << endl;

// CLEANUP

92

/ first deallocate the inner pointers for some 2-d arrays. 690

for (int i=O;i<n;i++){
delete[] kOut[i]; // don't need to check if these are null
delete[] oldOut[i];
delete[] myOut[i];
delete points[i];

}
/ / then deallocate remaining dynamic arrays
delete[] kOut;
delete[] oldOut;
delete[] myOut; 700
delete[] kSizes;
delete[] oldSizes;
delete[] mySizes;

return 0;

}

int main(int argc, char** argv){
if (argc < 6)

cout << "not enough args." << endl; 710
char* dSet = argv[1];
int inpSize = atoi(argv[2]);
char* mode = argv[3];
double param = atof(argv[4]);
int fingerListSize = atoi(argv[5]);

bool swissDs=true; //defaults
bool epsMd=false;

if (dSet[0] == 's'){ 720
swissDs = true;
cout << "using swiss." << endl;

I
else if (dSet[O] == 'f '){

swissDs = false;
cout << "using faces." << endl;

}
else

cout << "datset not found, using swiss." << endl;
730

if (mode[O] == 'e')
epsMd = true;
cout << "using epsilon." << endl;

}
else if (mode[O] ==k')

epsMd = false;
cout << "using k." << endl;

I
else

cout << "mode not found, using k. " << endl; 740

Point** datpts;
Point** kDatpts;

93

int* dernd;

int randTime = loadData(swissDs, inpSize, &datpts, &kDatpts, &dernd);

compare2 (inpSize, epsMd, param, fingerListSize,
datpts, kDatpts, dernd, randTime);

delete[] datpts; 750

delete[] kDatpts;
delete[] dernd;

return 0;

}

94

Bibliography

[1] D. Karger and M. Ruhl. Finding Nearest Neighbors in Growth-Restricted Metrics.

STOC 2002.

[2] J. Tenenbaum, V. de Silva, and J. Langford. A Global Geometric Framework for

Nonlinear Dimensionality Reduction. Science 2000.

[3] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A. Wu. An Optimal

Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions.

1999.

[4] M. Belkin and P. Niyogi. Using Manifold Structure for Partially Labeled Classifi-

cation. NIPS 2002.

[5] K. Clarkson. A Randomized Algorithm for Closest-Point Queries. 1987.

[6] J. Friedman, J. Bentley, and R. Finkel. An Algorithm for Finding Best Matches

in Logarithmic Expected Time. 1977.

[7] L. Saul and S. Roweis. Think Globally, Fit Locally: Unsupervised Learning of

Nonlinear Manifolds. Univ. of Pennsylvania, 2002.

[8] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A

Scalable Peer-to-peer Lookup Service for Internet Applications. ACM SIGCOMM

2001.

[9] K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate Analysis. Academic Press,

1979.

95

[10] S. Skiena. The Algorithm Design Manual. 1997.

[11] M. Dickerson and D. Eppstein. Algorithms for Proximity Problems in Higher

Dimensions.

[12] K. Clarkson. Fast Algorithms for the All-Nearest-Neighbors Problem. FOCS

1983.

[13] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms,

Second Edition. 2001.

[14] The MNIST database of handwritten digits. Available from

http://yann.lecun.com/exdb/mnist/ .

[15] H. Samet. Applications of Spatial Data Structures. Addison-Wesley, 1990.

96

