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Abstract

Moving contact line problems involving polymeric materials and other complex fluids
are encountered in many applications such as coating flows, gravity-driven drainage,
and spin-coating operations. Viscous, capillary, inertial and gravitational forces can
all be important in these flows depending on the scale and speed of the spreading
process. In this research, a number of benchmark problems involving moving contact
lines of viscous Newtonian and non-Newtonian polymeric fluids have been studied
using non-invasive optical techniques.

A detailed study of viscous Newtonian and non-volatile liquids spreading on
smooth horizontal and inclined substrates is presented. A phase-modulated inter-
ference microscope was used to enable the simultaneous measurement of both the
inner (microscopic) length scale and the outer (macroscopic) flow scale in addition to
the intermediate matching region. The resulting measurements of both the apparent
contact angle and lateral scale of the precursor wetting film agree quantitatively with
theoretical predictions for the spreading of a van der Waals fluid over a wide range
of capillary numbers (10-6 < Ca < 10-1). It is also shown that the dynamic contact
angle of a perfectly wetting Newtonian fluid is not only a function of the capillary num-
ber (the Hoffman-Voinov-Tanner law), but also depends on a logarithmic correction
to this relationship, which is often overlooked. It is shown that both the microscopic
and macroscopic length scales affect this logarithmic correction. Our measurements
are in good quantitative agreement with available theoretical predictions.

In addition to the steady, isothermal spreading of fluids, we have studied insta-
bilities of volatile liquid films spreading on thermally conductive surfaces. When a
drop of volatile silicone oil is deposited on the surface of a smooth silicon wafer, its
thickness decreases with time in a power-law form as it spreads under the action
of capillarity. At a critical thickness, traveling waves can be observed on the free
surface of the film, and a confocal microscope was used to measure the amplitude,
frequency, and non-linear evolution of these waves. We interpret these waves in terms
of Marangoni instabilities induced by surface tension gradients close to the contact
line, generated by liquid evaporation.

The spreading of highly entangled polymer melts (Z > 10) on a solid surface is also
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considered. Our experiments confirm the existence of a non-Newtonian 'foot' region
in the vicinity of the moving contact line for highly entangled polymer melts. Our
experimental results of the lateral and vertical scales of this 'foot' are in fair agreement
with available theoretical predictions. The transient spreading motion of an ideal
elastic 'Boger' fluid (consisting of a dilute solution of high molecular weight polymer
dissolved in a viscous Newtonian solvent) is also investigated. It is shown that the
spreading rate of this model elastic fluid is smaller than is observed for corresponding
Newtonian fluid drops of similar size and viscosity due to the viscoelastic effects. A
foot-like structure is detected at the leading edge of the droplet for these unentangled,
elastic fluids as well. We argue that this structure arises from large viscoelastic effects
and the differential mobility of the large polymer molecules and smaller oligomeric
solvent molecules across the solid substrate close to the moving contact line.

Thesis Supervisor: Gareth H. McKinley
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

Understanding the dynamics of liquids spreading on solids is of importance in a

wide variety of industrial applications such as coating processes, soldering technology,

and the printing of inks. When two immiscible fluids are brought into contact with

a solid substrate, one of the fluids may spread spontaneously to form a thin film.

Alternatively, the final state may leave both of the fluids simultaneously in contact

with each other and the solid surface at a line of three-phase contact as shown in

figure 1-1. This line of three phase contact is usually called the contact line, and

the angle between the fluid interface and the solid substrate is called the contact

angle. When one fluid displaces the other, the contact line is considered to move

across the surface of the solid. Studies of the motion of a spreading axisymmetric

drop on a smooth horizontal substrate provide a good benchmark model for many of

these types of problems [69, 35]. The final equilibrium configuration of the drop may

be a thin uniform film covering the substrate (perfect wetting), or a drop of finite

lateral extent (partial wetting) depending on the relative magnitudes of the interfacial

tensions between the solid, liquid and vapor acting at the three phase contact line

[2]. Let's define USL and o-sv as the surface tensions between the solid and fluid, and

solid and vapor, respectively. A force balance in the horizontal direction when the

phases are in equilibrium leads to:

O'SV - 9SL = LV Cos (1.1)
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Figure 1-1: Schematic of the three phase contact region and the contact angle.

Equation 1.1 is commonly referred to as the Young equation [121]. An important

parameter in spreading is the spreading coefficient S which is the free energy change

per unit area for the spreading of liquid film on the solid and is defined as:

S = Usv - ULV - USL (1.2)

If S > 0, the spreading is spontaneous due to the decreasing of the free energy of the

system.

In addition to studies of the final static shape and equilibrium energetic config-

uration, considerable interest exists in understanding the dynamical process of the

spreading of the liquid droplets because, in the majority of commercial processes, a

wetting or partially-wetting droplet is rarely deposited in its final equilibrium shape.

Most experimental studies of wetting are concerned with the contact angle at a mov-

ing contact line. The contact angle associated with the moving contact line, which is

advancing across the substrate, is usually called the dynamic contact angle, 9 a.

There are several important parameters that govern the dynamical process of

spreading and the final shape of the drop. These include the initial drop volume,

Q, the shear viscosity, IL, surface tension, -, the spreading coefficient S between the

liquid and the surface, and the density, p, of the liquid plus the surface roughness of

substrate, E. Other parameters such as the volatility of the liquid and the temperature
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Figure 1-2: Examples of coating flows in which the motion of the dynamic contact line

and non-Newtonian rheology of the fluid are important; (a) dip-coating; (b) leveling

and stability of fluid films; (c) spin-coating; (d) drainage of a drop down an inclined

plane.
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difference between the substrate and the droplet can also be very important since the

thermophysical properties of liquids can be a strong function of temperature.

In trying to understand the mechanism by which a liquid wets a solid, the overall

theoretical challenge is to interpret the observed wetting behavior in terms of the

underlying fluid physics and chemistry of surfaces and spreading fluids. However,

this has proved difficult, and despite increasing attention, the problem remains only

partially solved. As a result of hydrodynamic studies, it is now widely recognized that

it is necessary to relax the classical no-slip boundary condition at the wall and allow

limited slip between fluid and solid in the immediate vicinity of the contact line.

Without slip, classical continuum hydrodynamics for Newtonian fluid of constant

viscosity makes the unacceptable prediction that the force exerted by the fluid on the

solid is locally unbounded. Nevertheless, the physical basis for slip and appropriate

form of slip condition remain a matter of great speculation.

In many of the commercially important operations indicated in figure 1-2, the

rheology of the film coating may be non-Newtonian (i.e. it may exhibit shear-thinning

in the viscosity or presence of additional viscoelastic normal stresses) which can have

a very important effect in the region of high shear rate and complex two-dimensional

flow near the advancing contact line due to the singularity at the moving contact

line. Pioneering works on spreading of non-Newtonian fluids such as polymer melts

were done by Schonhorn et al.[101] and Ogarrev et al. [83]. Their experimental data

have shown different behaviors of non-Newtonian fluids during spreading compared

to those observed Newtonian fluids.

A fluid droplet deposited on a substrate rapidly forms a thin film with a lateral

extent R(t) greatly exceeding its characteristic thickness h(t) and consequently lu-

brication analysis can often be used to understand the dynamics of the spreading

process. Experiments and analysis show that the lateral size of the spreading droplet

and the steady rate of spreading are frequently a power-law function of elapsed time

[16]. A common example is the "Hoffman-Voinov-Tanner law" [59, 116, 110] which

relates the lateral rate of spreading, R(t), to the dynamic contact angle of the inter-

face, 0,. The power-law exponent characterizing this spreading is a sensitive function
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Figure 1-3: Patterns in fingering instabilities on a liquid film with of a surfactant

solution on a horizontal surface (from [112]).

of the dominant physical forces (e.g. capillary, viscous, inertia, and gravitational)

that are driving and resisting the spreading. A detailed review of these regimes is

provided by Oron et al. [84] and will be discussed in chapter 3 of this thesis.

Inertial effects in a spreading film can be neglected if the dimensionless Ohnesorge

number, Oh = p/v/pR-, which is the ratio of the viscous force to the inertia force

in the presence of capillary forces, is much greater than one. The spreading regime

then depends on the relative lateral extent, R, and characteristic height of the drop,

h, compared to the intrinsic capillary length of the system, f., = -/pg, over

which gravitational effects are important. Huppert [65] and Cazabat & Cohen Stuart

[18] have examined these regimes extensively. When inertial effects are important,

different power-laws are obtained. This situation was considered quite early in the

context of oil films spreading rapidly on the ocean (see [41, 61] for additional details).

Other experiments have been performed to show the effects of the substrate on

the motion of the three-phase contact line and the rate of spreading. For example,

Ehrhard [38] investigated the dynamical changes induced by a non-isothermal sub-

strate and Cazabat & Cohen Stuart [18] demonstrated the effect of surface roughness

on the power-law spreading of liquid drops. The studies discussed above have all

assumed that the spreading profile of the liquid drop is stable in time and remains

29



Figure 1-4: Patterns in 'festoon' instabilities on a PDMS film on a horizontal surface

(from [96]).

axisymmetric as spreading proceeds. However it is also frequently observed that the

spreading film may become unstable and develop a spatially-periodic fingering pat-

tern due to the surface tension gradients induced by surfactants [40, 112] (figure 1-3)

and so-called 'festoon instability' as reported by Redon et al. [96]. This instability

is due to surface tension gradients caused by higher evaporation rate at the moving

contact line (figure 1-4) and leads to elimination or control of such hydrodynamic

instabilities is important in painting, coating and inkjet printing which all involve

solvent evaporation and mass transfer during the drying process. Another important

application of this family of instabilities are the 'orange peel' instabilities which affect

the quality of the finished painted surface.

These interfacial instabilities are frequently driven by local lateral variations in

the surface tension, o-(x), which controls the rate of spreading. Such variations can

arise naturally due to the dependence of the surface tension on the temperature field

[8] and on the concentration of dissolved solutes. The resulting phenomena are collec-

tively referred to as Marangoni effects [102]. When unsteady flows arise as a result of

surface tension gradients dependent on from thermal variations perpendicular to the

fluid interface the resulting unsteady flows are usually called Marangoni instabilities.

The classical example is Marangoni-Benard convection [82] as shown in figure 1-5.If

instability occurs because surface tension gradients arising from an applied tempera-

ture field parallel to the interface of the liquid film, the motion is typically referred to
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Figure 1-5: Patterns in Benard instabilities on a liquid film on a horizontal hot

substrate (from [34]).

as hydrothermal instability (See for example the studies of Smith & Davis [106, 107]).

Detailed reviews of both of these classes of instabilities can be found in [27] and [100].

A separate class of Marangoni flows arises from evaporation. Thermal energy is re-

moved from the liquid resulting in local changes in the temperature and thus also in

surface tension. Because the more volatile components of a mixture evaporate most

rapidly, concentration gradients also develop. Furthermore, since the evaporative flux

is largest near a contact line, spatial gradients in the concentration and/or temper-

ature can drive strong secondary flows. Such evaporatively-driven Marangoni flows

lead to formation of coffee rings [31] and also wine tears and tear ducts [60]. These

flows also been have been proposed as a way to elongate DNA chains for subsequent

sequencing analysis [62, 63] (figure 1-6) and enhance heat transfer from menisci in

inclined capillary tubes [80].

Such instabilities have been studied in the past in static geometries for which the

base flow is stationary and consequently both experimental and theoretical analysis

is more tractable. However, evaporatively-driven Marangoni instabilities may also

spontaneously arise in spreading droplets, especially if the drops are small so that
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Figure 1-6: Evaporating of spreading droplet on a solid surface. The length and

direction of the arrows are the magnitude and direction of the evaporative mass flux

from the free surface of the liquid drop. The inset is the mass flux as a function of

the radius of the drop (from [63]).

the surface area/volume ratio is large or if the droplets are polymeric in composition

and have poor thermal conductivities. We will present studies of these phenomena in

chapter 6 of this thesis.

In order to successfully investigate the steady and transient motion of spreading

fluids, it is necessary to develop non-invasive techniques for rapidly and accurately

probing the surface profiles of fluid microdroplets. Optical techniques are obviously

well suited for such tasks. Ellipsometry has been used in the past to spatially resolve

the shape and thickness of spreading liquid films but the authors reported major

errors, which they speculated arose from surface heating by the laser and subsequently

drove Marangoni instabilities [45].

The determination of the static or dynamic shape of a transparent sample on a

solid substrate and the thickness of a coating for industrial applications are common

goal of many areas of surface science. A detailed understanding of dynamic wetting

phenomena and contact angle measurements frequently involve either visual or math-

ematical extrapolations of the macroscopic interfaces. However, it might seem unwise

to expect the extrapolated dynamic contact angle to be preserved at very small dis-

tances from the solid surface. Since the force singularity predicted by macroscopic
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Figure 1-7: Microscopic features close to the contact line [2]. SEM picture of drop of

cooled glass on Fernico metal with same coefficient of thermal expansion as glass.

Newtonian hydrodynamic must be relieved on some macroscopic scale, many authors

stress this by referring to the observed angle as the apparent dynamic contact angle

but their caution derives from theoretical considerations, not experiment. Examined

through an optical microscope, the fluid/fluid interface appears to meet the solid

surface with a well-defined slope. This is true in both the static and dynamic cases.

Observations made with a scanning electron microscope have given important insight

into effects of surface roughness and heterogeneity on wetting behavior. Nevertheless,

the technique reveals no sudden changes in meniscus curvature down to distances as

small as 0.5 pm from a moving wetting line.

When techniques with higher vertical resolution than optical microscopy are used,

new microscopic features are detected which a optical microscope can not detect. For

systems in which the liquid spreads spontaneously to give a nominally zero con-

tact angle (S > 0), optical techniques such as ellipsometry and interferometry have

shown a precursor or primary film which moves ahead of the main body of liquid

[6, 7, 73]. A representative precursor film is shown in figure 1-7. Precursor films form
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when the intermolecular forces of attraction between the solid and liquid are suffi-

ciently strong to create positive spreading coefficients and disjoining pressures. These

related properties provide the driving force for spreading and the released energy is

dissipated by viscous drag as the film spreads. The disjoining pressure, which is de-

fined as 11(h) = A/67rh3 where A is the Hamaker constant and h is the film thickness,

is a steep, inverse function of film thickness and therefore creates a correspondingly

steep, negative pressure gradient between the bulk liquid and the thin periphery of

the film. Hence, the liquid is drawn out of the bulk and into the film (figure 1-8). In

cases when the disjoining pressures are large and the viscosity small, the precursor

films may spread quite rapidly for significant distances ahead of the bulk liquid.

A simplifying feature of wetting via a precursor film is that flow within the film

is virtually one-dimensional. More significantly, the motion of the bulk liquid is

decoupled from the wetting line, hence the liquid may be considered to spread across

an already pre-wetted surface. Under these conditions, the hydrodynamic equations

can be solved explicitly, the velocity dependence of the apparent contact angle is

predicted to follow a simple cubic law (the Hoffman-Voinov-Tanner law), 0' ~ U,

where 9 a is the dynamic contact angle and U is velocity of the advancing contact line.

The free surface of the spreading drop is governed by a nonlinear differential equation

,h2 d3h/dX3 = 3pU/o- [30]. This equation has the property that the free surface profile

has an inflection point. The existence of this inflection point is a requirement for drops

with small apparent contact angles and is discussed in chapter 3.

In this thesis, I will address both the macroscopic and the microscopic character-

istics of a spreading drop on a solid substrate through a detailed experimental and

theoretical investigation. In chapter 2, two non-invasive optical techniques (confocal

surface metrology and phase-shifted laser feedback interferometry) which are used

in this research are presented. The theories behind the instruments are summarized

and calibration techniques utilized to evaluate the accuracy and repeatability of the

optical systems are presented.

In chapter 3, a number of different regimes of spreading of liquid films on a solid

substrates are reviewed. When a viscous drop of wetting liquid is placed on a solid
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Figure 1-8: Schematic of microscopic features close to the contact line.

surface, the evolution of the droplet shape depends on its physical properties and its

initial volume. For the conditions considered in the present study, the impact velocity

has negligible effects. The Ohnesorge number, Oh = p/V/pRo-, scales the forces that

resist the spreading. For Oh >> 1 the spreading is resisted primarily by viscous stresses

in the fluid, whereas for Oh < 1 the spreading is retarded principally by fluid inertial

effects. The dominant force driving the spreading depends on the relative size of the

drop compared to the capillary length, fcap = oU/pg . In chapter 3, we characterize

three regimes for the evolution of spreading viscous droplets. The three regimes for

a viscous drop with Oh > 1 depend on the relative magnitudes of the height, h(t),

the radius, R(t), as compared to the capillary length. If the characteristic length

scale for a drop of volume,Q is taken as (Q/7r)1 / 3 then an appropriate measure of the

dimensionless drop size is q = (Q/7r) 1 / 3 fcap . For small viscous drops (0 < 1), the

spreading is driven by capillary force imbalance at the contact line, and resisted by

viscosity (for Oh > 1). However for larger viscous drops (0 > 1), spreading is initially

driven by the gravitational body force instead of capillary forces. For Oh < 1, the

spreading is driven by the capillary force and resisted by the inertial force.

Studies of dynamic wetting phenomena and contact angle measurements fre-

quently involve precise measurement of the macroscopic interfaces due to the dif-

ficulties inherent in quantitatively measuring the microscopic fluid physics that arise

near the moving contact line. We have developed a phase-shifted laser feedback in-

terferometer (psLFI) that can be used to rapidly and non-invasively measure the
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interfacial profile in the vicinity of moving contact lines of simple Newtonian (chap-

ter 3 - 5) and complex fluids (chapter 7). By utilizing an XY stage, we are able to

measure the profile of a spreading drops by scanning the free surface of the drop with

a constant speed.

The work presented in chapters 3 - 5, is intended to constitute a comprehensive

set of quantitative measurements to which theoretical analyses can be compared. To

meet this goal, a set of experiments have been performed for a variety of liquids.

The test fluids used in chapter 4 are constant-viscosity silicone oils (Gelest Inc.)

which perfectly wet the smooth silicon substrate. The viscosities are varied in order

to explore a wide range of capillary numbers, Ca. For wetting systems (in which the

liquid spreads spontaneously to give a nominally zero contact angle) a precursor or

primary film moves ahead of the main body of liquid. By utilizing our optical system,

we are able to not only investigate the macroscopic features of the wetting front (such

as the dynamic contact angle, Oa) but also to probe the structure of the microscopic

front (precursor layer). In this chapter, the connection between the macroscopic and

microscopic regions of the spreading liquid drop is shown. We also show the effect

of the capillary number, Ca, on each of the different characteristic length scales that

are present in these regions.

In chapter 5, the characteristics of liquid drops spreading on inclined plates are

presented. Large drops (0 > 1), spread on inclined plate under the gravitational

driving force while viscous forces (and sometimes surface tension forces) resist the

spreading. In this chapter we present the experimental and theoretical results of

macroscopic features of this process ( i.e. the shape of the free surface of the drop)

and microscopic features such as the existence of precursor film and dynamic contact

angle of the drop.

During our experiments on spreading drops it was noticed that if a drop of volatile

wetting liquid was deposited on a surface and allowed to spread, then, after a few

seconds, periodic fluctuations at the free surface of the liquid film were detected using

the confocal measuring system. In chapter 6, a series of experiments are described

which show that these instabilities arise as a result of the volatility of the liquid
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and the non-uniform evaporation rate across the drop. A linear stability analysis

shows that the critical onset conditions for this evaporatively-driven instability can

be characterized by a dimensionless interfacial resistance, R which has to be a larger

than a critical value at the onset of instability.

Finally, in chapter 7, the effects of fluid viscoelasticity on the dynamics of the

moving contact line are presented. The test fluids used in this chapter are a dilute

constant viscosity elastic fluid (i.e. a Boger fluid [13]), and highly entangled polymer

melts. As noted above, the importance of non-Newtonian fluids in the coating and

paint industries increases the demand for such research studies.

Boger fluids are special dilute solutions which are composed of low concentrations

of high molecular weight flexible polymer dissolved in a very viscous, yet Newtonian,

liquid, such as a low molecular weight polymer, or oligomer. The high molecular

weight of the polymer, combined with the high viscosity of the solvent, boosts the

polymer relaxation time into the range of around 1 second or so. With such long

relaxation times, strongly nonlinear effects are brought into the range of shear rates of

conventional torsional-flow rheometers and typical spreading processes. Boger fluids

have been extensively used as model fluids to investigate complex viscoelastic flows,

but this is the first study of free surface spreading flows using such fluids.

Finally, at higher concentrations or in the melt state, fluids containing long poly-

mer molecules become extremely viscous due to entanglement. At a characteristic

molecular weight, denoted Mc, the shear viscosity begins to rise more rapidly than

linearly with molecular weight. Below Mc, the zero-shear viscosity is found to de-

pend roughly linearly on molecular weight as expected by the Rouse theory [71], while

above M, it rises with a much higher power-law exponent (typically r ~ M34 ). The

steep increase of viscosity with molecular weight for M > M, is caused by entan-

glements, which are topological restrictions on molecular motion resulting form the

fact that the individual chains cannot pass through each other. As a result if these

entanglements, a long molecule surrounded by other such molecules cannot move very

far in directions perpendicular to its own molecular contour. Therefore, molecular

diffusion or relaxation is limited to a snake-like motion called reptation [28].
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We show that during the spreading of these fluids, there exist an additional regime

(a so called 'foot region') at the vicinity of the moving contact line as predicted by

Brochard & de Gennes [16] for highly entangled polymer melts spreading on a solid

surface. Comparison between the available theoretical predictions and our experimen-

tal results is also presented. Finally, the effects of viscoelasticity in the wetting process

and on the profile of spreading drop near the moving contact line are presented.

Chapter 8 summarizes the contributions of this thesis to the physics of wetting

and moving contact lines and to the understanding of the spreading behavior of

Newtonian and non-Newtonian fluids, concluding with some comments on potential

future research directions.
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Chapter 2

Non-invasive optical measurement

Techniques

2.1 Introduction

Characterization of the profile of a solid surface, measurement of amplitude and fre-

quency measurement of waves and disturbances on vibrating surfaces, fluid flow char-

acterization, and measurement of flame velocity in combustion chamber are examples

of the use of optical techniques for fluid flow applications in scientific and industrial

research. Optical techniques are usually preferred to other conventional methods for

following reasons:

* High spatial and

other methods.

" Optical methods

can operate the

experiment.

temporal resolution of the optical techniques as compared to

are usually non-invasive. This is a huge advantage since one

measurement system without affecting the dynamics of the

* Optical techniques can be used for almost any material. There are typically no

limitation for electrical conductivity, thermal conductivity, and other physical

properties of the sample.
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" Dynamic range of optical methods are much higher than other methods.

" Compatibility of these systems to be a part of a feedback control system due to

the short response time of these systems..

Among all of the applications for optical techniques, our specific interest in this

thesis is to select a system with ability to measure the characteristics of a spreading

liquid drop on a solid surface. These features as mentioned in the previous chapter,

have a wide range in size (from nanometers to hundreds of microns in thickness) and

time scale of the phenomena can be as small as milliseconds. In the following section,

these features and commonly used measurement techniques are reviewed.

2.1.1 Measurement methods for spreading liquid films

Since the early 20th century, a number of methods have been used to characterize

the liquid spreading phenomena. Important features of interest for spreading drops

include the radius of drop, R, the local thickness of drop, h, and the dynamic contact

angle, 0a. Direct imaging of drop was the first method used to study the spreading

phenomena. Using photographic techniques, one would take pictures of the drop over

a span of time and from those photos the radius R(t) and the surface profile, h,

were measured. The dynamic contact angle 0, were calculated by dedifferentiation

of the regression fit to for h(x) at the point where h = 0 [1]. This method has some

limitations that have made scientists look for alternative methods. Local thickness of

drop could not be derived from these photos and contact angle measurements were

very inconsistent. As it will be explained in detail in chapter 4, the profile of free

surface of the drop does not follow the same relation as the macroscopic part of it

due to the long-range forces. Therefore, calculating the contact angle from a global

curve fit would not yield an accurate value.

Later on, scientists came up with other methods to measure these desired features.

The capacitance probe technique was developed which is based on the differing elec-

trical properties of the substrate and the liquid. By producing an electrical potential

between the substrate and a probe, one can calibrate the thickness of a liquid as
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Table 2.1: Capability of different optical measurement systems.

it passes between two electrodes by measuring the capacitance of the system as the

function of time. This methods has a very good vertical resolution (- 100ptm) [70],

however there are several issues regarding the lateral resolution: in particular lateral

resolution of this system is strong function of the size of the probe which is usually

on the order of 10mm. Also electrical properties of substrate and spreading liquid

can effect the measurements.

Methods such as Atomic Force Microscopy (AFM)

[94, 42], ellipsometry [7], and X-ray reflectivity [26] have also been used in recent

years. In table 2.1, the dynamic range of some of the optical methods commonly used

for probing the shape and size of spreading liquid droplets have been compared. As

indicated, systems such as direct imaging or capacitance probe do not have a good

vertical resolution. Also systems like ellipsometry or AFM, have a very good verti-

cal resolution but what they lack is dynamic range. These system can not measure

features larger than 1pm.

An ideal selection for an instrument for liquid film characterization is one which

is non-invasive, with high lateral and temporal resolution, and very broad dynamic
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Figure 2-1: The schematic of a confocal system.

range. Such a system not only enable the user to measure the radius and thickness

of the drop at any location, but also the variation of these parameters in time can be

quantified. As seen in table 2.1, the psLFI system has a wide range of measurement

(1nm < h < 500pLm) and high vertical and lateral resolution.

For my experiments, I have used two optical systems:

(i) a laser confocal displacement meter.

(ii) a phase-shifted laser feedback interferometer.

In the following sections these systems are described in detail.

2.2 Laser confocal displacement meter

2.2.1 The confocal principle

Confocal microscopy is a very common technique for high-resolution optical measure-

ments and is utilized in many applications from non-invasive study of
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biological tissues to measurements of surface roughness [23, 113, 114].

The basic optical principle behind a confocal laser microscope is to scan the target

with an illuminating spot, and at the same time have a small detector aperture follow

that illuminating spot. This is usually achieved by having a laser as the illumination

source and placing a pinhole or other small aperture in front of the detector. A

schematic of a simplified optical path can be seen in figure 2-1. The laser beam

enters from below in the center of this figure. It is first reflected to the left by a

beamsplitter. Then the laser beam focused to a spot by a microscope objective lens.

An illuminating spot is formed in the focal plane of the objective. Reflected light

travels through the objective lens and most of it passes through the beam splitter.

One or more optical lenses focus the light onto the detector aperture. The path

indicated with dashed lines shows how light from out of focus objects propagates

through the optical system. In this configuration the illuminating spot is defocused,

thus illuminating a larger area with a weaker intensity. This is indicated at the left of

the figure with the dotted focal position within the specimen. The reflected light takes

a different path through the objective lens, beamsplitter and the detector aperture.

In this way the depth discriminating properties of the system are achieved. Light

from out of focus parts of the specimen give rise to little or no signal from detector.

This principle is utilized together with addition of moving parts and a feedback

control system to construct the laser confocal displacement meter. This system is

based on a dynamic focus-detection technique together with a closed-loop feedback

system. This system differs from a conventional optical or confocal microscope in that

it illuminates and images the sample one point at a time through a pinhole. A laser

beam that passes through the beamsplitter is focused by a high numerical aperture

objective lens to a diffraction-limited spot at the focal plane. If the light spot is

focused on a surface by adjusting the objective lens vertically during the scanning

process, then the displacement of the objective lens determines the vertical dimension

of the surface topography. In the present system, the objective lens is dynamically

refocused by a tuning fork in order to automatically maintain an optimal focus of the

laser spot on the surface. Whenever the surface is in focus, the intensity of reflected

43



(a)

(b)

Figure 2-2: (a)The confocal surface metrology system, Keyence LT-8110. (b) Mea-

surement of surface waves using LT-8110 (chapter 6.)
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light passing through the pinhole and received by the light-receiving photodetector is

maximized. When the surface is not in focus, the spot size reflected onto the detector

plane, containing the pinhole, becomes larger and the transmitted intensity is less. A

feedback loop is then used to maintain the maximum intensity.

2.2.2 Specifications

The confocal surface metrology system that we used in our experiments manufactured

by Keyence Inc.(LT-8110) is shown in figure 2-2(a). The displacement data can

either collected as a voltage output (4 mV= 1 um), or observed on the system's video

monitor. In figure 2-2(b) the appearance of surface waves due to the onset Marangoni

instabilities (as discussed in chapter 6) are shown on the monitor output.

Calibration tests using micromachined silicon targets show the resolution of this

method is approximately 0.5 pm for measurements normal to the surface and the

diameter spot at best focus is approximately 7 pm. The response time of the feedback

system is 2.2 ms. The power output of the laser is 20 MW.

In our experiments, the confocal measurement system was focused on the free

surface of a spreading drop at the desired point. The analog output of the measuring

instrument is digitized using an A/D card controlled by the LabView program and

corresponds to the evolution of the local deviation of height as a function of time.

The substrate can be translated laterally either in discrete increments or at constant

velocity using an automated XY stage (Compumotor, ZETA4 drive with encoder)

with a positioning resolution of ±0.5 pm. A step made on a silicon wafer using wet

etching process is measured by LT-8110. By scanning the surface with the XY stage

(0.1 pm/s), we were able to accurately measure the height of the step (figure 2-3).
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Figure 2-3: Measurement of a 13 1am step etched on a silicon wafer obtained by

scanning the surface using the LT-8110.
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Semi-silvered Glass Compensator Plate M2

Observer

Figure 2-4: The schematic diagram of a Michelson interferometer.

2.3 Phase-shifted laser feedback interferometry

2.3.1 Interferometer

An interferometer is a device that uses optical interference of coherent light to make

precise measurements of distances in terms of the wavelength of the light. Around

1880, A. A. Michelson invented the instrument, which its schematic diagram is shown

in figure 2-4. Light from a monochromatic source is partly reflected and partly trans-

mitted by a glass plate that is semi-silvered on one surface. Approximately half the

incident light goes to mirror, M 1, is reflected there, and then travels through the semi-

silvered glass to reach the observer. The light from the source that is transmitted by

the semi-silvered glass is reflected by the mirror M 2 and then reaches the observer

after being reflected by semi-silvered glass. The distances form the semi-silvered glass

to M 1 and M 2 are called the arms of the interferometer. The compensator plate makes

the distance traveled through the glass the same for both beams. If light travels trav-
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els slightly different distances to the mirrors, the resulting phase difference may lead

to constructive or destructive interference.

Michelson's interferometer is useful because one mirror can be moved on a finely

threaded screw, so that the arm length can be adjustable. This arm is usually called

the reference arm of the interferometer. If Mi moves back by A/4, a path difference

of A/2 is added for the light traveling in this arm. Thus, at any given point on

the fringe pattern, a bright fringe is replaced by a dark fringe and vice versa. By

counting the number of fringes that move past the reference point, one can determine

the distance traveled by one mirror to within a fraction of the wavelength of light.

An interferometer may also be used to determine the refractive index of a gas [51].

2.3.2 Feedback system and its advantages

Laserbeams are are spatially and temporally coherent form of light. These properties

make laserbeams the prime choice of light in interferometry. One of the most com-

monly used lasers is the He-Ne laser. By drilling a hole at the back of the . He-Ne

laser cavity, and collecting the light from this hole by using an optical fiber one can

eliminates the reference arm of the interferometer. The light will be collected by a

photodetector from the optical fiber. This type of interferometer is often called Laser

feedback interferometer [88]. Laser feedback interferometry (LFI) is a modified in-

terferometer with only single-axis optical arrangement that requires minimal optical

components. Because of the frequency selectivity of the laser, LFI is less sensitive

to incoherently reflected light than other forms of interferometry. By elimination

of additional optical elements, this system is much easier to align and more robust

compared to the Michelson interferometer.

We simplify the physics of this interferometer by assuming the we can model the

effect of coherent feedback in a He-Ne gas laser as a three-mirror Fabry-Perot etalon

[51], where each mirror can be represented by reflectivity, Rt. As was demonstrated

by Ovryn & Andrews [85] the steady-state change in the intensity of the laser that is

subjected to feedback, I(m, b, q), can be written as:
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I(m, b,) =lo I + m cos( )Z(-b)i cos(j) (2.1)
j=0o

Equation 2.1 represents the change in intensity caused by a phase difference e

between the incident and the reflected light with fringe visibility m, Io is the average

intensity of the interference, b is the coupling parameter, and j is number of reflections.

Because the laser hits the sample and is reflected back into the laser cavity, the

phase 4 is related to the change in the optical path length (OPL), J as = 47r6/A,

where A is given by the line integral of the index of refraction along the optical path.

When LFI is used in a regime where the effect of multiple reflections is small (j = 0),

equation 2.1 has the same form as a two-beam interferometer.

The interference of two electric fields El and E2 with same polarization:

E, - aie-i01 (2.2)

E2 = a 2 e i2 (2.3)

generate interference intensity, I, which can be calculated, if = - q1 , as:

I = jE1 + E212 = Io (1 + m cos()) (2.4)

and

m = 2 a1a2 (2.5)
a1 + a2

where m is the fringe visibility of the interference. If E1 is the incident beam and E2

is the reflected beam, since all of the light will not couple back into the laser cavity

(a2 < ai), the visibility in LFI will not reach unity (m < 1).

2.3.3 Phase-shifting interferometry

To achieve higher accuracy we use an electro-optical phase modulator situated in

the beam path between the front mirror of the laser cavity and the object. This

modulation can be used to introduce discrete known changes in OPL that can be

combined to solve for the phase and fringe visibility from a least-square fitting to an

over-determined set of measurements.
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To determine the phase q and fringe visibility m from equation 2.4, an experi-

mentally controlled additive phase shift 0 can be introduced:

Ii = Io (1 + m cos(O + )) (2.6)

Using an overdetermined set of measurements, it is possible to solve for the three

unknowns in equation 2.6. One algorithm [50] which reduces the random error in the

discrete phase step 4, uses five discrete phase shifts: 0 = -7r, -7r/2,0,7r/2,7r. Once

the phase step has been introduced, the intensity is measured at the corresponding

phase shift. The five resulting intensities are:

I1 = Io(1 - m cos ) (2.7)

12 = 1 + m sin ) (2.8)

13 = Io(1 + m cos) (2.9)

14 = Io(1 - m sin ) (2.10)

15 Io(1 - m cos) (2.11)

Then the five phase-shifted measurements can be combined and the phase and fringe

visibility can be determined from:

2(12 - 14)tan(3) = (2.12)

3 (2 (12- 14)) + (23 -1 - Ii)2 (2.13)
2(11+12 + 213 + 14 + 15)

The variation in the OPL, J, can be determined from equation 2.12 by using the

following relation:

= (2.14)
47r

2.3.4 Specifications

We have combined an electro-optically phase-shifting laser feedback interferometer

(psLFI) together with a reflecting light microscope. The resulting interference micro-
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Figure 2-5: The psLFI system.

scope was used to measure the variation of the optical path length and fringe visibility

(which is proportional to the sample reflectivity). Light from a low power helium-neon

laser was passed through a linear polarizer and electro-optic phase modulator (New

Focus, 4002) and focused with a 20x/0.4 NA objective lens (Zeiss, Epiplan). After

reflection from the surface of interest, the light re-enters the laser cavity. The time-

dependent change in the laser intensity was measured with a detector (New Focus,

1801) that monitored the light transmitted through the rear mirror of the laser.

The five-step phase-shifting process requires equal shifts. Therefore by determin-

ing the modulation depth for the electro-optical modulator, the process is automated

with the LabView program. The used the same program to collect the output volt-

age from the photodetector and to calculate the phase and the fringe visibility. The

program then stores the change in the optical path length and the fringe visibility as

a function of time in a tab delimited text file.
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Figure 2-6: The setup for the calibration of psLFI using a cantilever bimorph.

2.3.5 Calibration

In order to calibrate the psLFI system, a measurement of of the cantilever bending

of a piezoelectric bimorph was produced. The bending of the bimorph is directly

proportional to the applied voltage and is a quadratic function of its length [86].

Figure 2-6 presents a schematic diagram of the apparatus used for this measurement.

The bimorph was mounted on a clamp so that it formed a cantilever 10.16 mm in

length with 0.38 mm thickness. Then we applied a sinusoidal voltage that produced

oscillations at the tip of the cantilever of the form:

6 = A sin 27rft (2.15)

where the amplitude, A, is set to be 72 nm and the frequency, f, is 80 mHz. In

figure 2-7(a), the measurement at the tip of cantilever is shown. In figure 2-7(b) the

measurement of displacement of the tip is shown when the length of the cantilever
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increased to change the amplitude of oscillation to 850 nm for a sinusoidal wave (.)

and a sawtooth wave (LI)with the same amplitude and frequency.

Additional experiments have been performed to calibrate other aspects of the

psLFI system [85, 87, 44]. For example, a spatial calibration of the psLFI microscope

was done [87] also using a piezoelectric bimorph (figure 2-8). The data is acquired

using psLFI by utilizing a XY stage to scan along the bimorph cantilever. It can be ob-

served that the instrument accurately captures the theoretically-predicted parabolic

deflections of the cantilever.

The important issue of using psLFI on transparent materials with curved surface

was investigated in detail by Fischer & Ovryn [44]. When psLFI is focused on a

dry reflective surface, most of the incident rays will reflect back and are collected by

the objective lens. However, the curved surface and difference in index of refraction

between air and the liquid influence the path of the rays. Fischer & Ovryn [44]

showed that there is always a single reflected ray, which they called the magic ray,

that follows the same path as the incident ray (figure 2-9).

A phase correction needed to justify this effect on the psLFI measurements is

given in equation 2.16.

-4wr
7= -(nh(xc) - b) (2.16)

b = h (x) 2 2+(xf- x )2  (2.17)

xf is the scan position and x, is the virtual location. The geometrical parameters in

these equations are shown in figure 2-10.

Calibration tests indicate that the lateral spatial resolution (diffraction limited)

of this system is 0.96 pm when an objective lens with 0.4 NA is used and that the

optical path length may be measured with an rms error of 10 nm, with a response

time of approximately 2 ms. Numerical aperture is defined as the ratio of the radius

of the objective lens to the lens focal length NA = R/f. Since we are also interested

in measuring curved surfaces (surface of spreading drops, chapter 3-6,7), the issue

of numerical aperture is very important. By increasing the numerical aperture, the

lateral resolution, Res, of the measurement improves, Res - A/2NA. However, by
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Figure 2-7: The results for psLFI measurement of the tip of cantilever bimorph when

it oscillates as (a) a sinusoidal oscillation with amplitude of 72 nm with frequency of

f = 80mHz, and (b) a sinusoidal oscillation (EI) and a sawtooth oscillation (9). Both

waves have amplitude of 850 nm and frequency of f = 80mHz.
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Figure 2-8: Bending curve for the piezoelectric bimorph after two separate voltages

applied, 4.0 V and -500 mV. Profile is measured by psLFI (from [87])
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(c). The ray shown by the arrow represent the magic ray (from [44]).
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NA = R/f in

Limitation of the measurement of the surface slope for

psLFI.

a lens with

increasing the numerical aperture, the ability of measuring at the liquid free surfaces

with slope 9 larger than a = arcsin (NA/n) (figure 2-11). By increasing the numerical

aperture, alpha increases, but to have a correct measurement of slope, a + 0 < 7r.

Therefore, for NA can not be larger than certain number. This is a trade off between

the lateral resolution and the slope of the profile. In the following chapters, we will

always be careful in our selection for objective lens. We make sure that the numerical

aperture is big enough to lead to a better lateral resolution that lateral length scales

but at the same time able to measure the slope of drop accurately.

In table 2.2, we compare the two optical measurement systems that have been

~ 6 -

7



Table 2.2: Comparison between psLFI and the confocal surface metrology systems.

Features psLFI Confocal surface metrology

LT-8110

Response time - 1 ms 2.2 ms

Lateral resolution 0.8 pm 7 pm

Vertical resolution 10 nm 500 nm

Range of measurement up to 500 pm ±1 mm

Working distance 6.25 mm 25mm

Light source He-Ne laser Semiconductor laser

Wave length, A 633 nm 670 nm

Power output 0.5 mW 0.02 mW

Data output OPL and fringe visibility Displacement

discussed in this chapter. As indicated, the psLFI system has much better lateral

and vertical resolutions compared to the LT-8110 system. If very high resolution

is not desired, LT-8110 provides the users with a greater flexibility because of large

range of measurement and working distance. Furthermore, LT-8110 is very compact

unit compared to the psLFI microscope.

Having developed and calibrated the above mentioned systems, we now proceed

to use them to investigate steady and dynamic spreading of liquid film on dry surfaces

in the following chapters.
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Chapter 3

Steady spreading of viscous fluid

drops

3.1 Introduction

The spreading of liquid drops on solid surfaces has been subject of numerous research

papers through out the last century. Several aspects of this problem have been of

interest of engineers and physicists. Some common examples include the spreading of

liquid droplets on solids such as in the spraying of paint and agricultural chemicals, the

penetration of ink in paper, the liquid absorbency or propellency of fabrics, and the

displacement of one fluid by another over a solid in enhanced oil recovery. Generally,

one can separate this field to two general categories:

9 Macroscopic features of spreading. Variation of radius and thickness of the

spreading liquid drops as a function of time is very important. In paint industry,

the final thickness and area of painted as well as the time of process are very

critical. Liquid viscosity, p, surface tension, -, volume of the drop, Q, are

all important parameters that can affect the spreading process. As it will be

discussed, the spreading regimes of the liquid drop is greatly depends on these

properties.

* Microscopic features of spreading such as characteristics of the precursor layer
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and its effect on the spreading. The surface energy, Hamaker constant, polarity

of the fluid, molecule size and formation, and surface charges are some examples

of the parameters that affect the microscopic region of the drop. The physics of

microscopic features are very important for the understanding of fundamental

of spreading process.

Historically, most of the early work has focused on the macroscopic features of

spreading dynamics. This was due to the lack of experimental instruments that were

able to detect and quantify the microscopic dynamics of spreading. As noted in

chapter 2, it was not until the 1960s that suitable optical methods become available

for these types of experiment. However, this did not stop scientists from looking for

answers to questions of spreading in the microscopic regions. A good example is work

of Hardy [49] who used the humid air environment and investigated the microscopic

"invisible" film of acetic acid. He observed interactions between macroscopic drops

of acetic acid placed with a distance from each other on glass. The humidity of

surrounding air effected the shape of these drops. He concluded the interactions are

due to an invisible film of acetic acid spreading from the macroscopic drops.

In this chapter, the theories of several different regimes of spreading are presented.

It will be shown that depending on values of certain dimensionless parameters, the

liquid drop will exhibit different spreading behavior which often take the form of a

power-law relation for the radius of the drop as a function of time, R(t) = At". The

relation for the dynamic contact angle, 0a, as a function of time and other physical

parameters will also be derived, and the well-known Hoffman-Voinov-Tanner law will

be presented. Following the analysis, the experimental results are presented to confirm

or refute the theoretical predictions.

3.2 Theoretical approach

When a viscous drop of wetting liquid is placed on a solid surface (figure 3-1), the evo-

lution of the droplet shape depends on its physical properties and its initial volume.

The Ohnesorge number, Oh = M/ pRo-, scales the forces that resist the spreading.
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Rt)

Figure 3-1: The schematic geometry of the spreading drop.

For Oh >> 1 the spreading is resisted primarily by viscous stresses in the fluid, whereas

at low Oh < 1 the spreading is retarded principally by fluid inertial effects. The dom-

inant driving force of the spreading depends on the relative size of the drop compared

to the capillary length eap- = u/pg. In figure 3-2 we show three regimes for evo-

lution for spreading viscous droplets corresponding to Oh >> 1. If the characteristic

length scale for a drop of volume Q is taken as (Q/7r)1 /3 then an appropriate measure

of the dimensionless drop size is 0 = (Q/qr)1/ 3 /cap . For small viscous drops (0 < 1;

Oh > 1), the spreading is driven by capillary force imbalance at the contact line,

and resisted by viscosity. However for larger viscous drops (0 > 1; Oh > 1), spread-

ing is initially driven by the gravitational body force instead of capillary forces. For

the conditions considered in the present study, the impact velocity during the drop

deposition process has negligible effects. The three regimes shown in figure 3-2 for a

viscous drop (Oh > 1) depend on the relative magnitudes of the height, h(t), and

the radius, R(t), compared to the capillary length, Lcap = fu/pg. Small drops with

h < R < Lcap assume the shape of a spherical cap. In this regime, capillarity acts

as the driving force and viscous flow throughout the spherical cap provides the re-

sistance. Scaling arguments yield a power-law for variation of the drop radius as a

function of time of the form R(t) - t1 /10 [110] (for further details see section 3.3.2).

For larger initial volumes (0 > 1) with f£ap < h < R the drop initially spreads as a
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Figure 3-2: Three characteristic regimes of spreading drops of a drop The dynamics

in each regime depends on the relative magnitudes of the height, h(t), the radius,

R(t), the capillary length, Leap, and the Ohnesorge number, Oh.
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gravity current. Evolution of the drop radius as a function of time can be found by

balancing the gravitational body force with viscous stresses and yields R(t) ~ t1/8

(see [65]; also section 3.3.1). After a long time, the thickness of the spreading drop

becomes very small and both of the regimes described above evolve towards a pan-

cake regime with h < fcap < R. In this regime, capillarity and viscous stresses are

important in an annular region close to contact line (of lateral extent cap from the

contact line). Gravitational forces once again become important in the rest of the

drop but only serve to act as a hydrostatic force, leading to a pancake-like central

region of constant thickness. In this regime the power-law spreading is of the form

R(t) ~ t1/7 [39].

An important note must we had regarding the conventional definition of the Ohne-

sorge number as used in this work. The common definition for the Ohnesorge number

is Oh = pf/ pRc- where p, o-, p and R are the viscosity, surface tension, density and

the length scale of the system, respectively. The Ohnesorge number is the ratio of

the viscous force to the inertial force in the presence of the capillary force. If one sub-

stitutes the velocity in the Reynolds number, Re = pUR/p, with capillary velocity

scale, o-/p, it is found that Oh2 - 1/Re. However the Reynolds number that natu-

rally arises in lubrication analyses (with h/R < 1) is defined as Re = (pUR/L) (h/R)2

where h is the maximum drop thickness and R is the drop radius. This leads to a

modified definition for the Ohnesorge number as:

Oh = Re-1/2- I R (3.1)
Vpa-R h

Since both radius and thickness of drop are function of time, it is not clear a

priori if the Ohnesorge number decreases or increases during the spreading process.

It is however known that the drop volume, Q, is conserved during the spreading

therefore the radius of the spreading is related to the drop thickness via h ~ Q/R 2 .

By substituting this relation into the equation 3.1, one can find the relation between

the Ohnesorge number and the radius as:
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Oh(t) ~ t R(t)5/2  (3.2)
VP0, Q

As the drop spreads (larger radius), the Ohnesorge number increases and the effect

of viscous forces progressively dominate over inertial effects. The modified definition

of the Ohnesorge number (equation 3.1) can rationalize the behavior of all of spreading

regimes that will end up the the viscous dominated regimes after initial stages of the

spreading (figure 3-2).

There is also another approach to these types of problems that is called scaling

analysis. The idea is to balance the dominant forces acting in the system, one can

find relations between characteristic parameters of the system. This method provides

a powerful tool for systems which involve two dominant competing forces. For well-

defined region of Oh and q, the drop spreading problem is a case in which there

are usually two active forces acting on the drop. These forces are usually called the

driving force that provides the energy for the system and the resisting force which

serves to dissipate the energy. For example for Oh > 1 and # < 1, the driving force for

spreading is the capillarity and the viscous force resists spreading. The mathematics

used in this scaling approach is less complicated than required for directly solving the

governing equations, which are usually non-linear PDEs. However, the final relation

usually lacks a numerical front factor of order unity. This method has been used in

a wide range of subjects [5]and was first used in the spreading problems by Fay [41]

and [61]. A few interesting works have been done (e.g. [33]) to explore the use of this

powerful tool in this area of research.

In the next section, both of this methods are used to derive the relations for radius,

R(t), thickness, h(t), and dynamics contact angle, 6 , as a function of time.
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Figure 3-3: The schematic geometry of the spreading drop in gravity current region.

3.3 Regimes of macroscopic spreading

3.3.1 Gravity Current

As mentioned in the previous section, if <b > 1, then one can neglect interfacial

effects. Therefore the driving force of spreading is the gravitational body force and

the resisting force arises from viscosity. A schematic figure of this problem is shown in

figure 3-3. By assuming that the flow is axisymmetric and using standard lubrication

analysis, the continuity and Navier-Stokes equations have the form of:

O 108
+ I- (ru) = 0

Oz r ir
Op _ 9

2 U

Or 5z2

(3.3)

(3.4)

By neglecting the effect of

only gravity effects it:

surface tension, we can write the pressure relation when

p = po + pg(h - z)

therefore:
Oh _ 2U

P 9 - A 0z 2

By integrating the continuity equation from z = 0 to z = h(r, t):

65

(3.5)

(3.6)



v(h) - v(0) + udz = 0 (3.7)
r Or o

Since v(0) = 0 and v(h) = Oh/Ot then:

Oh 10 jh
+ -- udz = 0. (3.8)

Or r ar o

Also we assume the drop volume, Q is fixed as:

Q = 27 j rhdr. (3.9)

By integrating 3.6 twice with respect to z and imposing the boundary conditions:

z = 0 - = 0, (3.10)

z = h Ou = 0, (3.11)
az

the axial velocity, u, can be found to be:

u = pg h z(2h - z). (3.12)
2p ar

By substituting in equation 3.8, we obtain the following differential equation:

Oh pgO Oh _8h -(rha) 0. (3.13)
ot 3p rr Or

This nonlinear PDE can be solved analytically by similarity transformation. First

we define:

3 P ) r 1/8. (3.14)

Also, a new dependent variable, (, is defined such that the drop thickness is

expressed as:

h(r, t) = 2/3 3Qp ) 1/4 t-1/4(, (3.15)

Here R is the value of at r = R. By combining equations 3.14 and 3.15 in

equation 3.13, the following differential equation relates the similarity variables:
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d d( 1 2d 1
d ' (, §) + --; d + -( = 0, (3.16)d, d,; 8 d(; 4

where § = / From equation 3.9, (R is calculated to be:

/(r1 -3/8

The solution to equation 3.16 is [91]:

() 13 - 2) , (3.18)

210 8
S20 = 0.894. (3.19)

(34 7T3 J
or

h(r, t) = 0.531 (I - (r/R)2)/ 3 , (3.20)

R(t) = 0.894 pgQ3 1/8 t1/8 (3.21)

It can be seen that the radius of drop has a power-law relation of the form R(t) ~/

with time.

3.3.2 The Hoffman-Voinov-Tanner law

When <0 < 1, the gravitational effects is negligible in the spreading drops. If Oh > 1,

then the driving force of the spreading is the capillarity force and the resisting force

is the viscous force. Let's assume the geometry which is shown in figure 3-4. A quasi-

steady hydrodynamic analysis of the drop spreading on a horizontal substrate leads

to an explicit model for the dynamic contact angle and power-law that relates the

radius of the drop as a function of time. Let's begin with the lubrication equation:

Op j92-- = P (3.22)
ar = 9z2

This equation is integrated twice with respect to z and with no slip boundary con-

ditions at the wall and no shear at the free surface, the mean velocity in r direction

is:
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Figure 3-4: Drop shape near the inflection point close to the moving contact line.

h2 dp 
(3.23)

3p dr

For pressure gradient, we can use the Laplace-Young relation (p = -- d 2 h/dr2 assum-

ing slope of the free surface of drop is very small) which gives the following:

dp _ d3hd -0 d 3  
(3.24)dr dr3

replacing 3.24 in equation 3.23, the governing equation for the free surface of the

spreading drop is found to be:

3Ca = h2dh (3.25)
dr3

where the capillary number, Ca, is defined based on the average velocity, n.

Let's define the following dimensionless parameters:

r = r (3.26)
ro

h
h* = - (3.27)

ho
ho = ro(3Ca)1 / 3  (3.28)

The dimensionless form of equation 3.25 is then:

d3h*
h *2d = - (3.29)

dr*3
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This equation has the property that there is a range of values of the parameter

ho such that the curve h* has an inflection point as shown in figure 3-4. To identify

the apparent contact angle, Oa, which is the slope of the drop at the inflection point

[79], one can write:

S(dh _ h (dh (3Ca)1/3 dh* (3.30)a dr , ro dr* ( dr* (
The term (dh*/dr*)i is usually assumed to be a constant however in the following

section, it will be shown that this term is actually a logarithmic function of the

capillary number [30]. Most of the previous experiments were done by assuming this

term is constant and the relation between the dynamic contact angle and capillary

are presented as:

0, = kCa1/ 3  (3.31)

The equation 3.31 is usually called "Tanner's law" or "Hoffman-Voinov-Tanner

law" [69]. The constant k, is not a universal constant [15] and it varies for each

experiment but its value is usually close to 3 when 0a is in radian. A summary of a

few of the experimental and analytical works regarding this power law is presented

in table 3.1.

Going back to the spreading power-law, since gravitational force is negligible, the

shape of the spreading drop is that of a spherical cap of a radius R and height of h.

For R > h:
rhR2  1Fr 3Oa (3.32)

2 4

Using this relation in the equation 3.31:

rk R ( AdR\ 1/3 (3.33)
4 (a dt

This equation can be integrated to give:

R(t) =(4Q )3/10 lout 1 0 + Ro (3.34)
rki 3

For a very large radius and k, = 3:
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R(t) = 0.97 (uQ3t1/10 (3.35)

Or simply R(t) ~ 0110.

3.3.3 Scaling analysis

In this section, a scaling analysis is applied to the above mentioned regimes of spread-

ing. An important constraint of this system is the volume of the drop is always con-

served which means there is no evaporation or chemical reaction present during the

spreading. The volume of drop, Q, can be calculated as Q = rR 2 h/2 where R(t) is the

drop radius and h(t) is the drop thickness at its center. For all of the following cases,

it is assumed that the fluid fully wets the surface (spreading parameter S > 0 as it

defined by equation 1.2).As it was mentioned before cap = uo-/pg is the capillary

length.

Capillary-Viscosity

For very small drops, the characteristic length of the drop, (Q/7r)1 / 3, is smaller

than capillary length (<0 < 1). The drop always assumes the shape of a spherical

cap. Since the effect of gravity is negligible, the driving force of spreading is the

capillary force and viscous forces is resisting the spreading.

From the equation of motion, one can balance these forces (forces per unit

volume) as:

p ~ uh (3.36)

The left hand side of this relation is the viscous dissipation term from Navier-

Stokes equation and the right hand side is the dp/dr term as shown previously

in equation 3.24. From the Laplace-Young relation the pressure term can be

written as the capillarity term. The curvature of the surface is -h/R 2 due to

the fact that the drop has a shape of a spherical cap. By substituting dR/dt

for Nt and Q/(27rR2 ) for h, we find the following relation:
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dR 1 2 ah Q
dt (Q/(2-rR2))2  R 3 27rR 2 (

By rearranging and integration, the relation for R(t) as a function of time is

found to be:

80Q3 1/10 (0) 1 1 0 1/10 (Q 3 t 1/10(3
R~t ~ 3 - t =.1(3.38)

Thus by using this simple scaling analysis we were able to generate a similar

relation to equation 3.35. The ratio of the scaling result to the direct solution

is Rscaling/RDirect =1.13.

Gravity current :

If the drop size is large compared to the capillary length, <> 1, then the effect

of capillary forces are negligible (Bo = pgh 2 /u >> 1). Then the driving force of

spreading is the gravitational force and the resisting force is the viscous force.

Following the governing equation, one can balance the forces as:

P ~ - pgh (3.39)

Once again by substituting for t = dR/dt and h = Q/(27rR 2 ) and integrating,

the following relation for the radius of the large drops as a function of time is

found:

/ 3' 1/8
R(t) ~_ 1.095 4gR ti/8 (3.40)

which is reproduction of the equation 3.21. Once again the ratio of scaling to

direct solution is RScaling/RDirect =1.41.

We can assume that the dynamic contact angle can scale as '~ h/R. Using the

conservation of mass and equation 3.40, the power-law relation for the dynamic

contact angle is found to be 0a ~ Ca/ 7.
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Pancake region :

When a spreading drop in either of previously mentioned regions spreads for a

long time, the thickness of it becomes very small and it evolves to a 'pancake

regime' with h < cap < R. In this regime, capillarity and viscous stresses are

important in an annular region close to the contact line (of a lateral extent

Ar - cap from the contact line). Gravitational forces become important in

the rest of the drop but only serve to act as a hydrostatic force, leading to

a 'pancake-like' central region of constant thickness. However, near the edge

region the surface tension effect provides energy for spreading and viscous forces

dissipate this energy. Unlike the spherical cap region, the curvature at the edge

region is now h/ne' and the gradient of the pressure is only taken over the edge

region:

A 1 (~ h )(3.41)

ap cap

Following the previous procedures, the relation between R(t) and time is found

to be:

31/7

R(t) ~_ 1.09 U317t 1/7 (3.42)

which is similar to the power law presented by [39] which is derived by directly

solving the governing equations.

The power-law for the dynamic contact angle is found to be 0a ~ h/cap - Ca1 /3

which is similar to HVT law (section 3.3.2).

Inertia-Capillary :

At very early stage of spreading for drops with low viscosity(Oh < 1), there

exists a regime in which the driving force of spreading is capillarity but since

viscous effects are negligible (small Ohnesorge number), the inertial force is the

only resisting force. Since the shape of the spreading drop is approximately
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hemispherical, the curvature of the free surface is -2/R. By balancing the

capillary force and inertia forces:

pR2 12u-- - ~ - - (3.43)R R R

By integration, one can get the following relation:

R(t) ~- 1.65 (p)1 t 2 / 3  (3.44)

The scaling method is a very powerful tool that not only enable us to find the

solution faster and easier, but helps elucidate the understanding of the physics of the

problem. Many nonlinear and complicated problems in physics can be solved or are

solved by scaling analysis. A book by [5] in this subject is highly recommended.

3.3.4 Microscopic model and the matching region

In this section, an important issue regarding the "Hoffman-Voinov-Tanner" law is

addressed. In the last 50 years, there have been numerous experiments regarding the

spreading regimes of a viscous drop on surfaces. Before the 1970s (before the HVT law

was established), power law form of spreading for the dynamic contact angle, 0a, and

the velocity of spreading was known. Analytical work for spreading of a liquid drop

on a previously wetted surface [47] and experiments on spreading of polymer melts

on solid surface [101] were shown such a relationship. However Hoffman, Voinov,

and Tanner were the first to realize the more general relation between 0a and the

dimensionless capillary number. Since this time, most of the spreading results are

presented in form of 0a ~ Ca1 / 3 or Oa- Ca n where the value of n is experimentally

determined and is close to 1/3. These experiments are carried out by using well

characterized Newtonian fluids on different substrates or inside a capillary tubes.

A detailed discussion is given by Kistler [69]. We have summarized most of the

published works (experimental and analytical) in table 3.1. In the derivation of the

HVT law, the fluid and the surface properties do not effect the governing equation
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(surface tension and viscosity effects are considered only in setting the magnitude

of the capillary number). However, as it seen in table 3.1 the front factor and the

power-law exponent of the relation are not consistent. The first thing that comes to

mind is that the geometry of the experiments are different. A few sets are obtained

from inside of a capillary tube, or parallel plates. In many cases, the drop was allowed

to spread under the gravitational or capillary driving forces, and there are also some

cases in which the fluid was forced to wet the surface by plunging a plate or a rod

into the fluid.

There is also an important issue regarding the measurement of contact angle. As

mentioned before in chapter 2, during the last forty years the methods that have been

used did not all possess same lateral and vertical resolutions. To measure the contact

angle, it was customary to measure the slope of the free surface near the contact

line. This type of measurements was very inconsistent since the measurements are

resolution dependent. Due to the existence of the inflection point (point of maximum

slope at which the dynamic contact angle has to be measured) close to the moving

contact line (figure 3-4), the closer they got to the contact line, the measured angle was

closed to the real contact angle. The dependency of the contact angle measurement

on the system resolution could have caused the inconsistency in the reported data in

the earlier works. However this could not be the only reason since in the late 1970s

and early 1980s, most of these measurements were done by high resolution systems.

Due to these issues, the contact angle measurement and the shape of the free

surface have been of special interest of physicists. Garoff and co-workers [36, 77, 22]

have extensively investigated the free surface of the spreading film on a solid surface

at the vicinity of the moving contact line. Their experiments consisted of immersing

a glass tube tilted at an angle to the horizontal at a constant speed into a bath

of silicone oil. the slope of air-fluid interface was measured at distances from the

contact line. They were able to confirm the analytical prediction of such profiles

given by Ngan & Dussan V. [81]. Also found in their experiments was the HVT law

is valid for capillary numbers up to 0.1 and for Ca > 0.1 the model fails to describe

the experimental data. They concluded that the breakdown is due to the low-order
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of the geometry -free part of the perturbation solution of their analysis.

Works done by Chen & Wada [19, 20, 21] were concentrated on the shape of the

free surface of the drop and the dynamic contact angle. By observing interference

fringes relating them to the film thickness, they were able to measure the thickness

of a spreading drop of silicone oil on glass. To measure the dynamic contact angle,

numerical differentiation of the measured thickness was used. The experimental re-

sults had a good agreement with the HVT law, however the issue of the location

of dynamic contact angle were not resolved. By relying on the visible interference

fringes, there were not able to detect an inflection point at the free surface of drop

because interference fringes disappeared at a thickness less than thickness of the film

at the inflection point.

Let's look back to the theoretical arguments on the moving contact line. It was

mentioned in chapter 1 that there exists a paradox in the moving contact line. If

the liquid is considered Newtonian and the "no-slip" boundary condition is applied

at the solid surface, the velocity field at the contact line become multivalued. A

non-integrable stress is produced at the contact line, which leads to an infinite force

at that location. However, this can not be a real singularity because we experience

the spreading process in the everyday life. For example, if an infinite force existed at

the moving contact line, then it was impossible fill up a glass with water.

This singularity is particularly very serious since it does not permit the specifica-

tion of a boundary-value problem.

This problem can be removed and the force made finite by making some ad hoc

assumptions [35, 69]. The simplest way of eliminating the singularity is to assume

slip occurs at the immediate vicinity of the contact line. This means the velocity at

the moving contact line u,, is non-zero and assumed to be u, = t?,jdu/dy where £f,
is the slip length. In the region far from the contact line however, no-slip condition

still holds. The region close to contact line, in which slip boundary condition is

applied, is usually called the inner region. The region in which no-slip boundary

condition is applied is called the outer region. An intermediate region is required

to properly match the inner and outer regions [25, 58, 116]. To date, Cox [25, 24]

75



Table 3.1: Experimental and analytical results published of the last 40 years on the

power-law relationship between the apparent contact angle and spreading velocity (or

capillary number) of spreading viscous drops.

0a = klCa' kI n Ca Liquid/Substrate Notes

Rose & Heins (1962) 3.4 1/3 Up to 6 x 10-3 Oleic acid Capillary tube

Friz (1965) 3.4 1/3 ------------- -------------- Theoretical, prewetted surface

Schwartz & Tejada (1972) 3.4 1/3 Up to 1 different liquids/solids Capillary tube

Hoffman (1975) 4.54 0.35 4 x 10-5-36 Si oil on Glass Capillary tube

Tanner (1979) 3.20 1/3 5 x 10-6-6.5 x 10-4 Si oil on Glass Different values of k1

3.00 1/3 are calculated from paper

3.40 1/3

3.10 1/3

3.70 1/3

3.24 1/3

Ngan & Dussan (1982) 3.41 0.31 3.8 x 10-3-2 x 10-2 Si oil on glass Between flat plates, 0.01 cm gap

4.44 0.36 5 x 10-3-1.8 x 10-2 Between flat plates, 0.07 cm gap

3.90 0.35 6 x 10-3_2 x 10-2 Between flat plates, 0.12 cm gap

Ausserr6 et al (1986) 3.12 0.333 1 x 10-6_1 x 10-2 PDMS on Si Different values of kj

3.37 0.333 is calculated from their results

3.11 0.333

4.87 0.333

2.66 0.333

Chen (1988) 3.9 0.35 1 x 10-5-1 x 10-3 PDMS on Si

Chen & Wada (1992) 7.1 0.39

3.33 0.333

3.85 0.333

Ehrhard (1993) 3.19 0.36 1 x 10-4 Si oil & parafin/glass Capillary tube

Marsh et al (1993) 5.17 0.35 Up to 1 x 10-2 PDMS on Pyrex Force wetting, plunging pipe

Starov et al (1994) 4.1 0.333 --- Theoretical

Schonhorn et al (1966) 24.6 0.63 1 x 10-3_1 x 10-2 Ethylene-vinyl acetate Polymer melt,0.02 g drop

22. 056 on aluminum at 170'0 Polymer melt,0.0055 g drop
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performed the most comprehensive analysis of this problem with the three region

model. For perfectly wetting liquids with small dynamic contact angles Cox's results

can be simplified to:

Oa= (9Ca ln(-) (3.45)

where E9 is the ratio of the slip length to the characteristic length scale of the

flow (cap). This ratio is always less than unity as slip < cap. The typical values of

c, that equation 3.45 becomes the HVT law is 10-4 [69]. As it can be seen in the

equation 3.45, there is a logarithmic correction in this relation which depends on the

flow characteristics and the slip length. Equation 3.45 may be able to answer the

question of inconsistency among the experimental results but there are still doubt

about the assumption made in this analysis. The slip length in this problem has been

subject of debate among the researchers. A comprehensive discussion on the modified

HVT law using the slip length is given by Kistler [69] and Eggers & Stone[37].

Another approach to resolving this problem is presented by de Gennes [30]. By

including microscopic effects close to the contact line, de Gennes was able to derive

a modification to the HVT's law. The analyses assume that long range fluid/solid

interactions (van der Waal's interactions) furnish the sole driving force for the precur-

sor film, and that the film remains sufficiently thick so that the molecular structure

and topology of the interfaces is unimportant and continuum theory remains appli-

cable. In this case, the net aggregate of all fluid/solid interactions as a function of

thickness can be lumped into the disjoining pressure, I, that was first introduced by

Derjaguin [32]. By inclusion of van der Waals forces to the hydrodynamic model [52],

the governing equation for the thickness of the drop is found to be:

3Cah2 (d2 h A
3Ca = h+2 (3.46)

dx dx 2  67r-h (

where h is the thickness of the film, x is the horizontal coordinate (same as r

in equation 3.25), Ca is the capillary number based of the spreading velocity of the

contact line, - is the surface tension of the liquid, and A is the Hamaker constant for

the long range interaction between solid and gas through a thin liquid film. HVT law
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can be derived from this nonlinear lubrication equation by neglecting van der Waals

forces so that a balance of capillary pressure and viscous stress in the vicinity of the

advancing contact line gives h2d'h/dx3 = 3Ca. This equation has the property that

h(x) has an inflection point (denoted hi) near the intersection with the precursor film.

The existence of this inflection point is a requirement for drops with small apparent

contact angles and provides a connection between the inner macroscopic region near

the tongue and the outer macroscopic region as it was shown in section 3.3.2.

More on the precursor layer and analysis in this regard will be discussed in the

chapter 4. In the mean time, the equation 3.46 is used to derive a modified relation to

the HVT law. Let's pick appropriate length scales to non-dimensionalize the equation

3.46. If X = x/xo and H = h/ho where

xo = 3- 1 /6 micCa-2/3 (3.47)

ho = 31/ 6 micCa-1/3  (3.48)

and the microscopic length scale of the drop, £mic, is defined as [30]:

A
fmic A (3.49)

The dimensionless form of the equation 3.46 using these length scales is:

H dH d3HH-2d - H 2  = 1 (3.50)dX dX3

At large distance from the contact line, the van der Waals forces are negligible

compared to the capillary forces. There is a particular solution to this equation that

has zero curvature for large H [52]. This part of the profile, which is usually called

the wedge region has the asymptotic form of

H -+ X 31n( ) 1 /3  (3.51)
X0

The constant cut off length, Xo, is determined by matching equation 3.51 with

the appropriate solution for the precursor layer. Hervet & de Gennes used asymptotic

techniques and found a solution that matches the macroscopic solution at the wedge
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Figure 3-5: Different length scales at the vicinity of the moving contact line.

region (zero curvature region). The value of the constant, Xo, is calculated to be

equal to 2.5. The most important part of this analysis is the dynamic contact angle,

Ga, defined as the slope of the free surface at the inflection point which is found to

be:

a = d ~ (3f Ca)/ 3  (3.52)

where

A.xf = 3 In(O.4X) = 3 In (04) (3.53)

By substituting xO from equation 3.47, the modified HVT law becomes:

Ga = (9Ca ln (0-4 Ca23 1/3 (3.54)

In equation 3.54, x is the macroscopic matching distance from the the contact line

where the inner microscopic profile matches the the outer macroscopic profile. From

this point on, we call this length the macroscopic length, emac. All of the important

length scales in this analysis is shown in figure 3-5. The form of equation 3.54 is very

similar to equation 3.45 as they both have a logarithmic term related to microscopic

and macroscopic length scales. If E, - Ca-2/13 then these relations are approximately

the same.
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As indicated in equation 3.54, the front factor in the modified HVT law is no longer

a constant and has logarithmic dependency to the capillary number (Ca2/ 3 ). Another

important note is that the location of the measured contact angle is important since

the position itself (emac) appears in this relation. This effect is even more important

when two experimental systems with different global geometry are compared with

each other. For example the existence of inflection point for the experiment of flow

in the capillary tube is doubtful due to the fact that free surface profile of drop is

different than a spontaneously spreading drop on a horizontal surface. Thus 3mac is

somehow arbitrary. Also this might explain the size effect which is reported in earlier

wetting experiments [81].

There have been other efforts to modify the HVT law and consideration of other

effects that may effect the spreading phenomena. An interesting work is the model

presented by Pismen et al. [93]. This work is also based on asymptotic analysis

however they were not able to confirm the numerical constant reported by Hervet &

de Gennes. Instead they found this numerical constant to be dependent of geometry

and other factors. They also included the effect of gravity to their analysis on the

front factor in the HVT's law. The important dimensionless parameter was found

to be G = (fmic/fcap) 2 which is the ratio of microscopic length scale to the capillary

length. We will return to this paper later in the discussion of our experimental results.

Recently, Eggers & Stone [37] have used de Gennes approach to this problem and

found a similar result. They found out the numerical constant in the logarithmic

term was not calculated accurately in the original work of de Gennes and they found

this relation to be:

Oa = 9Ca ln (-jj mac Ca2/3 1 / 3  (3.55)
( mic

They believe this difference is simply due to the large values of X necessary for

integration until the true asymptotic limit is reached given by equation 3.51. There

is also similar calculation by this group using the slip model in the equation that

leads to the dependency of the logarithmic term to the Ca1 / 3 unlike van der Waals

effect (Ca2 /3). Therefore the slip length argument can not be equivalent to the van

der Waals effect. No experimental evidence was reported to support the dependency
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to the slip length by Eggers & Stone [37].

To summarize, there have been several relations used to present the relation be-

tween the dynamic contact angle, 0a, and capillary number, Ca for spreading of a

perfectly wetting Newtonian viscous fluid over a smooth substrate. To make it easier

to compare our results with the theory we rewrite these relations as following:

Oa = kCa1 / 3  (3.56)

a= k2Ca" (3.57)

Oa k3 (Ca ln (k 4Ca2/3 ))1/3 (358)

In equation 3.58, k3 = 91/3 and k4 = 1.44emac/emic according to the most recent

article by Eggers & Stone [37].

3.4 Experimental results

3.4.1 Fluids

The test fluids used in this study are constant-viscosity silicone oils with relatively

low molecular (No reptation effect; cf. chapter 7) weights which are produced by

Gelest Inc. There are several advantages in using these silicone oils: first, they all

wet the substrates that are used in our experiments; secondly, the viscosities of these

liquids are well characterized. This enables us to explore several regimes of spreading

on viscous liquids on the surface. The general thermophysical properties of these

liquids are given in appendix A. Rheological measurements show that test fluids have

a constant viscosity for deformation rates less than 300 s-.

3.4.2 Spreading regimes

The first step in our experiments was test the capabilities of the confocal measurement

system applied to the spreading drops. A viscous drop of silicone oil (DMS-T21,

Oh = 0.98, # = 0.86) was placed on a silicon surface and by using the XY translation
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stage, the free surface profile of the spreading drop was scanned repeatedly as it

spread. The scanning speed of the stage is 1 mm/s and is fast enough that the profile

can be assumed to be quasi-steady over each scan. The results are shown in figure

3-6(a) for t = 0, 55, 214, 255 s after dispensing the drop. On the abscissa we show

the measured distance from the center of drop, r, in millimeters and on the ordinate

axis we plot the local thickness of the drop, h, in micrometers. By normalizing the

height profiles by the maximum thickness at each instant, h* = h(r, t)/hmax(t), and

the radius by the maximum radius, R* = r/R(t), all of the results of figure 6.27a

collapse to form a single self-similar profile as shown in figure 3-6(b). Given this self-

similarity in the spatial profile of the spreading fluid droplet, it is sufficient to monitor

the temporal dynamics of the process by using the confocal system to measure the

evolution in the height at a single fixed spatial position, and we employ this approach

in the majority of the results we present below.

The different power-law regimes of spreading for viscous drops have been outlined

and we have also validated these experimentally. Many of the previous experiments

were done by observing the radius of the drop as it spreads on the substrate by

using imaging systems such as CCD cameras. Our measurement system enables us

to measure the local thickness of the drop and derive the associated power-law from

this data. The power-law coefficients for the radial extent and local thickness are

constrained by the self-similarity of the shape and conservation of mass so that at all

times. There are analogous power-law relations for the inertial-capillary spreading

of less-viscous drops (Oh < 1). For fluid droplets of low viscosity, the resistance to

spreading from viscous stresses is negligible and inertial resistance balances the driving

force of capillarity. Viscous drops (Oh >> 1) spread much more slowly compared to

relatively inviscid drops as expected because the large viscous forces in the thin film

retard the spreading. At long times, the volume of the drop (q5) is not a factor

since all spreading drops will eventually move to pancake regime regardless of initial

size (cf. figure 3-2). Table 3.2(a) shows the approximate form of the similarity

solution for spreading at low and high Ohnesorge numbers in the pancake regime.

The analytical relation for h as a function of time is derived from the scaling relations
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Figure 3-6: (a) Evolution of the free surface, h(r,t), of a spreading droplet of silicone

oil (Oh = 0.98, # = 0.86) on a silicon substrate. Measurement is done by scanning

the free surface at a scanning speed of U = 1mm/s. (b) Normalized height, h* =

h(r, t)/hmax(t), vs. normalized lateral position, R* = r/R(t), for the same data set.
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Figure 3-7: Spreading experiments of drops of silicone oils on silicone wafer substrate.

Data include (0) V (Oh = 92,0 = 1.8); (0) H (Oh = 0.98,# = 1.4); (A) L (Oh =

0.003,0 = 1.2). The solid lines are the best power-law regression to each data set.
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Table 3.2: (a) Theoretical power-laws for viscous-capillary and inertia-capillary

spreading of droplet on smooth solid surface. (b) Comparison between the analytical

spreading results and the experimental spreading results in the pancake regime.

(a)

Driving force Resisting force Oh Scaling form

Capillary Viscous Oh > 1 h/ cap ~ ((F/7r) 1 / 3 /cap)'/ 7 (t/ (Afcap/u)- 2 /7

Capillary Inertia Oh < 1 h/ecap ~ ((/r)// 3 p 3

(b)

Power-law has the form of h/&c2, ~ At*B. Data include (0) V (Oh = 92,0 = 1.8);

(0) H (Oh = 0.98,# = 1.4); (A) L (Oh = 0.003,0 = 1.2).

for radius and by assuming the volume of drop remains constant during the spreading

(Q ~ 7rh(t)R(t)2/2). In figure 3-7 we show experimental spreading results for three

different silicone oils with small, medium, and large Ohnesorge numbers. The fluids

used in this experiments are silicone oils with low (L), high (H), and very high (V)

viscosities. The rheological properties of these fluids are reported in appendix A. The

vertical axis of the plot shows the local thickness of the film h(t), which is measured by

a confocal surface metrology system (chapter 2), , and the horizontal axis of this plot

is elapsed time. For silicone oil droplets spreading at very large Ohnesorge number

(V, Oh = 92, q = 1.8), the analytical power-law result in table 3.2 is of the form

,cp = A(t/(lecap/ )) 2 /7 . For the silicone oil with lowest Ohnesorge number (L,

Oh = 0.003, # = 1.2), the analytical form of the power-law in the pancake regime

is h/Ccap = A(t/ pR3/)- 4/ 3 as shown in table refpowerlaws(a). These power-law

relations are derived from the radius power-laws, previously driven in section 3.3,
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L 0.003 A = 2.32, B = -1.33 A = 2.97, B = -1.28

H 0.98 NA A = 2.00, B = -0.36

V 92 A = 0.71, B = -0.28 A = 0.56, B = -0.28



and using the conservation of mass to find the relation for thickness (h = Q/27rR 2 ).

Linear regression of a power law to the experimental results shows that these forms of

spreading equations accurately describe the experimental observations. The power-

law coefficients and the front factors obtained from experiments and from theory are

shown in table 3.2(b). For fluids with intermediate Ohnesorge numbers close to one

(e.g. H, Oh = 0.98, # = 1.4), there is no analytical power-law form available for the

evolution of a spreading drop since viscous, capillary and inertial effects are all equally

important. However, the power-law coefficient may be expected to lie between the

two extreme cases described above. The values obtained from the experiment confirm

that the power law coefficient for viscous-inertial spreading of a drop lies between the

limiting values of inertia-capillary and viscous-capillary spreading.

3.4.3 Experimental results of dynamic contact angle

In this section, the characterization of the dynamic contact angle, 0a, in the spreading

process is presented. We have used the psLFI system (chapter 2) to measure the free

surface profile of the moving drop close to the contact line. We have used the same

experimental geometry as earlier investigations [4, 21] and consider well-characterized

silicone oils spreading on polished silicon wafers. First, we deposit a drop of silicone

oil of a known volume on a cleaned silicon wafer using a syringe pump (Harvard Appa-

ratus, pump 11). When the advancing contact line of the spontaneously wetting drop

moves below the focal point of the objective lens its instantaneous rate of spreading,

R, is measured using a CCD camera and the profile, h(t), is measured interferomet-

rically. Knowing the local speed of the wetting line, the profile of the drop, h(t), is

converted to h(x) via a simple Gallilean transformation. The spreading velocity of

the drop is a time-varying function that depends on the drop size and the dominant

driving and resisting forces. The drops used in the present experiments have a volume

V = 10pL (0 = 0.92) and initially assume the shape of a spherical cap, which spreads

such that R t/ 10 (section 3.3), but ultimately evolve to a pancake regime which

follows the same power-law relation shown table 3.2. All of our measurements are

performed when the drops are in the final pancake regime. A number of different
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silicone fluids have been used in our experiments in order to generate results for a

wide range of capillary numbers. These materials are supplied by Gelest Inc. and

have constant shear viscosities spanning the range 7 x 10-3 < P < 10.0 Pa.s. The sur-

face tension, u-, of these silicone liquids vary weakly with increasing molecular weight

but are in the range of 19 x 103 - 21 x 103 N/m. Further details of the rheological

properties are provided in appendix A.

A representative drop profile (# = 0.9; Oh = 6.22) is presented in figure 3-8,

where the abscissa represents the lateral displacement (x) of the front and the left

ordinate shows the measured value of the decrease in optical path length (or local

thickness of the drop, h(x)) in micrometers. The fluid front passes through the

measuring volume and the macroscopic profile of the drop can be accurately imaged.

Rather than assuming a model-dependent drop profile, the local slope was determined

by a direct numerical differentiation of the profile h(x) using a fifth order Gram

polynomial [120] that minimizes amplification of experimental noise. The resulting

values of dh/d are shown on the right vertical axis. As shown in figure 3-8, at

Ca = 7 x 10-4, the slope dh/dx has a maximum value at a distance of 13pm from

the moving contact line, corresponding to an inflection point of the drop profile. By

definition [79, 93], this point separates the inner region of microscopic physics from the

outer or macroscopic domain which was discussed in section 3.3.2. The macroscopic

dynamic contact angle is conventionally defined [79] as max[arctan dh/dx] and we can

thus determine unambiguously a precise value for 6a. As the spreading proceeds, the

capillary number falls and the maximum slope or apparent contact angle decreases

[4] as Oa ~ t-0.3 .

In figure 3-9(a), we show the variation in the measured dynamic contact angle 9 a

(in radians) as a function of the capillary number for 2 x 10-6 < Ca < 3.2 x 10-4.

We were able to get a range of Ca in one experiment by several measurement of

the dynamic contact angle during the spreading at different times. It was shown

(section 3.3) that R - t1/7 for the pancake region. Therefore the spread of spreading

has a power-law of t ~ t- 6/7 . This indicates that the velocity of spreading and

therefore capillary number decreases in time and each spreading drop provided us
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Figure 3-8: Free surface profile, h(x), and the spatial derivative, dh/dx for different

values of capillary number (Ca = 1 x 10-4 and Ca = 7 x 10-4) for a spreading

viscous drop (0p = 0.9; Oh = 6.22). The maximum value of the slope corresponds to

the macroscopic dynamic contact angle, 0a.
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with a range of capillary numbers. Numerous functional forms for the variation in 0 ,

with Ca have been proposed in the literature and can be compared impartially with

this data (section 3.3.2). Direct regression to the Hoffman-Voinov-Tanner law (HVT;

Oa = kiCa1 /3) gives k1 = 1.92 ± 0.04 with a confidence level of R 2 = 0.968 and is

shown by the broken line. Careful examination shows that in fact there is a systematic

deviation from this line. A better fit to the data set is given by a somewhat stronger

power-law, 6a = k2Ca" with k2 = 3.4+0.4 and n = 0.39+0.01 (at a confidence level of

R2 = 0.986). Previous experiments have also noted a power law exponent exceeding

n = 1/3 [110, 21] as shown in table 3.1. However, as noted first by de Gennes [30],

there is in fact a weak logarithmic dependency of the numerical coefficient k, on the

speed of the spreading drop. A more detailed treatment [37] gives an equation of the

functional form of equation 3.58 with k4 = fmac/Cmic. Here imac is a characteristic

matching length where the inner microscopic profile matches the outer macroscopic

profile of the drop. Regression to this form is shown by the solid line in figure 3-9a and

yields k3 =1.2 ± 0.7 and k4 = 32450 ± 23276 with a confidence level of R 2 = 0.987.

This dependence is clearer when data is plotted in semi-log scale for 6/Ca as a

function of Ca as shown in figure 3-9(b). The slope of the solid line, which is the

regression to the data, is approximately 1/3 which is another evidence to the effect

of capillary number on the logarithmic correction.

It therefore appears that this logarithmic dependence is the correct functional

form to be used as a correction to HVT's law which becomes increasingly important

at small Ca. A recent computation [37] suggests that k4 = 1.44fmac/fmic as the

matching length can be calculated by substituting values of fmic (chapter 4) and k4 in

this relation as shown in equation 3.55. We find inac ~- 14pm which, according to our

measurements, is the average distance from the inflection point to the intersection of

the macroscopic region and the precursor layer (chapter 4) for the range of capillary

numbers in our experiments. This length scale is large with respect to the microscopic

region (fintc) but still small with respect to outer scales such as the capillary length

(&,ap = 1.4 mm) or the Landau-Levich-Deryagiun lengthiLLD f- fLeCa 1 / 3 which is

important in forced wetting problems [37].
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Figure 3-9: (a)Dynamic contact angle, 0,, as a function of capillary number. Dashed

line --- -) is the regression to the experimental data following HVTs law,'9. =

kiCa"/3. Dashed dot line is a regression to the experimental data of form, Oa = k2Ca".

The solid line is a regression to the experimental data using the de Gennes model,

Oa = k3 (Ca ln (k4Ca2/3)) 1/3. (b) deGennes model fit to the same set of data (solid

line) when the reduced angle G2/Ca is plotted as a function of log Ca. The slope of

the solid line is 1/3.
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In original asymptotic theories [30, 37] the front factor in the spreading law is

determined from the wedge flow in the intermediate matching region to be k3 =

91/3 = 2.08. Our experiments yield a smaller value that is consistent with earlier

experiments in the same system [4]. This so-called size effect [69, 81] arises from two

distinct physical phenomena; (i) the additional curvature resulting from the geometry

of the spherical caps formed by the very small fluid droplets and (ii) the coupling

between the inner and outer scales. The latter effect was demonstrated by recent

simulations [93] which show that the front factor varies systematically with the van

der Waals number G = (femc/ecap) 2 . For the present silicone/silicon system G =

(6.1 x 10-10/1.4 x 10-3)2 ~ 1.8 x 1013. We have performed additional experiments

using two-dimensional silicon strips [78]. In these experiments, a viscous drop spreads

only along the strip instead of radial spreading. These experiments yield a somewhat

larger front factor, k' = 1.7 ± 0.35. These results are shown in figure 3-10. The

regression to this data leads to k' = 15455+1460 with a confidence level of R 2 = 0.977.

3.5 Discussion

In this chapter, we have investigated the steady spreading of perfectly wetting viscous

liquid drops on solid substrates. We have reviewed the important parameters in this

phenomena and how they can affect the system. The drop volume, surface tension,

viscosity, and density of the liquid all have profound effects on the spreading process.

Depending on the importance of these parameters or some combination of them,

different dynamical regimes of spreading are present in the process. The drop size

and its value compared to the capillary length of the drop, 0, can dictate whether the

gravitational forces are of importance or not. Also inertia, viscous and the capillarity

forces may act as resisting force or driving force.

Three dynamical spreading regimes have been introduced in this chapter. The

gravity current, spherical cap, and the pancake regions develop depending on the

drop size and the relevant driving and resisting forces in the process. When the drop

characteristic size, #, is larger than unity and Ohnesorge number is large (Oh > 1),
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Figure 3-10: Dynamic contact angle, 0 ,, as a function of capillary number for spread-

ing of drop (05 = 0.9, Oh > 1) on silicon strip (2-dimensional spreading) is shown

with symbol (0). The thick solid line is a regression to the de Gennes model. The

result of the axisymmetric spreading (from figure 3-9) are also plotted for comparison.
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then gravitational force is important in the spreading and acts as the driving force

in spreading. While viscous force resists the spreading, the capillary force can be

neglected. The spreading rate, R, and the power-law function of radius of drop,

R(t) as a function of time can be found either by directly solving the Navier-Stokes

equation or by using the scaling analysis. The analysis leads to R(t) - t 1/8 relation

which are confirmed by previous works as well (figure 3-2).

If q5 < 1 and Oh > 1, the drop size is small compared to the capillary length. This

means the gravitational force are not important in this process. The droplet shape is

set by the Laplace equation which for small drops leads to a spherical cap shape. The

capillary force acts as the driving force and the viscous force is the resisting for in

the spreading process. The analytical solution (as well as the scaling analysis) leads

to the well known power-law for this regime as R(t) ~t/10.

When Oh < 1, the viscous forces can be neglected and instead it is the inertia

that resists the spreading. This usually happens in the very early stages of spreading

when a drop is deposited on the the solid surface. The power-law relation for this

regime is found to be R(t) ~ t2/3

Almost all of the above mentioned regimes will ultimately evolve to a 'pancake'

regime. In this regime, the radius of the spreading drop is much larger than the

capillary length and the spreading drop has the shape of a pancake (constant thickness

almost everywhere except near the rim). The thickness reduces to reach the contact

line near the rim over a distance of order £cap. The driving force is capillarity and

viscous force is the resistance. Gravity only acts as a hydrostatic force in the central

pancake region. From the scaling analysis, the power-law of the spreading is of the

form of R(t) ~ t1/7.

It is noteworthy that because of the conservation of mass in the spreading drop

(Q - hR2 ), similar power-laws can be found for h(t) by substituting R(t)2 ~ Q/h

in the above mentioned power-laws. The dynamic contact angle can be scales as

Oa ~ h(t)/R(t) for first order approximation.

The relationship between the dynamic contact angle and capillary number is called

the Hoffman-Voinov-Tanner law (HVT). This power-law relation Oa Ca1 / 3 is valid
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when the gravitational effect are negligible, h, R < Leap, which means in pancake or

spherical cap regions in figure 3-2.

We have also applied a non-invasive phase-shifting laser feedback interference mi-

croscope to investigate the evolution of moving contact lines in dry spreading of per-

fectly wetting van der Waals fluids. The system has sufficient resolution and dynamic

range to resolve details of both the physics of the inner (microscopic) interfacial re-

gion and its interconnection to the outer (macroscopic) fluid response. The coupling

between these regimes that is revealed by the experimental measurements is in good

agreement with theoretical predictions and numerical simulation. The variation in ap-

parent contact angle with Ca is roughly consistent with the Hoffman-Voinov-Tanner

relationship; however careful examination shows the clear existence of a logarithmic

dependence on the spreading velocity or capillary number as predicted previously by

de Gennes [30]. We shown that the measured contact angles for spreading of fluids

on strips have better agreement (especially the front factor, k') with the HVT's law

which can be due to the so-called "size effect".

It is obvious from these results that there exists a very important relation between

the microscopic and macroscopic part of the spreading drop. The existence of the

inflection point as a linking point between the microscopic and macroscopic regions,

and the logarithmic modification to the HVT law which is due to the microscopic

effects, motivate us to characterize the microscopic region of the moving contact line.

In the next chapter, the characteristic of this region specially the precursor film will

be presented.
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Chapter 4

Characteristics of the precursor

film for spreading Newtonian fluids

4.1 Introduction

In chapter 3, the macroscopic features of spreading viscous drops have been thor-

oughly investigated. We have pointed out the important parameters in the wetting

process and how they affect the spreading dynamics. The relationships for different

spreading regimes and the Hoffman-Voinov-Tanner law were derived from the bal-

ances between different forces acting in this problem. However, the singularity at the

moving contact line can not be removed unless microscopic parameters at the region

very close to the contact line effects the spreading dynamics. At the end of the chapter

3, the logarithmic correction to the HVT law was presented and our experiments and

theoretical results [30, 37] have shown that the microscopic length scales are involved

in this correction. A common way of removing the singularity at the moving contact

line is the assumption of spreading of the drop on a pre-wetted surface [69]. This

is possible if a microscopic film spreads spontaneous in front of the moving contact

line. The film thickness at the contact line is not zero and the singularity is removed.

The velocity slip at moving contact line was mentioned in chapter 3 (equation 3.45),

however we would like to investigate the existence of a microscopic feature at the

moving contact line which is commonly called the precursor film.
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For systems in which the fluid spreads spontaneously to give a zero equilibrium

contact angle (S > 0; equation 1.2), the precursor film (or precursor layer) is a

microscopic film which moves ahead of the contact line and pre-wets the solid surface.

Existence of this layer prevent the singularity at the contact line since the thickness of

the film does not go to zero at the contact line. Thus, the velocity is not multivalued

and the resulting viscous force at the moving contact line is bounded. Precursor

films form when the thickness of drop becomes small enough that the intermolecular

forces of attraction between the solid and liquid are strong enough to to generate a

positive spreading coefficient, S, (equation 1.2) and disjoining pressure. These forces

provide the driving force for spreading. The released energy is dissipated by the

viscous forces in the thin film [30]. A pressure gradient is generated between the bulk

of the liquid and the fluid close to the contact line by the disjoining pressure. This

pressure gradient draws the liquid out of the bulk and pulls it into the precursor film.

An important feature of existence of a precursor film in wetting processes is that flow

within the film is approximately one-dimensional (h < R) and can be described by

a lubrication analysis. The spreading of the bulk liquid is effectively decoupled from

the motion of the wetting line, and is independent of the spreading coefficient, S,

for perfectly wetting fluids. This has been well-documented both experimentally and

theoretically [30, 69].

Hardy's experimental work [49] provided the first observation of a very thin film

in front of a spreading wetting line on solid surfaces. Numerous studies have sub-

sequently confirmed the existence of precursor films using ellipsometry, interference

patterns, and polarized reflection microscopy. From this point of time, there have

been a few experimental, numerical, and analytical studies on the precursor films.

Bascom et al. [6] used the interference patterns on spreading of fluids on the metal

surfaces and reported a thin layer of liquid in front of the moving contact line. Ellip-

sometry is another vastly used measurement system in the precursor film experiments.

In experimental work performed by Heslot et al. [55, 54, 53], Valignat et al. [115],

L6ger et al. [73], and Beaglehole [7], ellipsometry have been used to quantify this

film. However the dynamic range of this system only allowed them to measure the

96



Vapor

LV

h
Liquid

Figure 4-1: A liquid film on a solid surface.

thicknesses up to 500Awhich prevented them to match their measurements in the

nanoscale to the macroscopic part of the drop. The polarized reflection microscopy

was used by Leger et al. [73] to detect a precursor films in front of the moving contact

line. All of these systems lacked the spatial resolution required to measure the length

of the precursor film in the earlier stages of spreading. Therefore, almost all of these

experiment were performed after a long time after the deposition of the drop. In

the next section, we will review the theoretical analyses that predict two different

regimes for the precursor films (an 'early time' and 'late time'). Most of these ex-

periments only investigated the film which appears at the later stages of spreading.

X-ray reflectivity is another method that was used by Daillant et al. [26] to probe

the precursor films but this method also lacks the dynamic range desired for this

problem. Finally, numerical simulations [118, 117, 12] have modeled the spreading of

long chain polymers to characterize the precursor films.

In this chapter, we review the available analytical results and prediction of the

two regimes of precursor films. Our measurement of the precursor films using the

psLFI system will be presented and these experimental results will be compared with

analytical predictions.

4.2 Theoretical predictions

When the thickness of a liquid film approaches the molecular dimensions, 'long range'

molecular forces must be considered in the analysis of the liquid films. Here, this issue

will be explained as it is first described by Joanny & de Gennes [68].
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In figure 4-1, an schematic of a liquid film on a solid surface is shown. The free

energy per unit area between the vapor and the solid through the liquid film, F, is in

form of:

F = aSL + rLV (4.1)

where YSL and ULV are the solid-liquid and liquid vapor surface tensions, respectively.

As it seen from the equation 4.1, the free energy, F, does not depend on the thickness

of the liquid film. This assumption is valid as long as the boundaries between liquid-

solid and liquid-vapor can be considered as interfaces. However, in reality these

boundaries are interphases in which the liquid molecules exhibit variations in density

and orientation as they move around. If the thickness of the film, h, is small enough,

these molecular interactions overlap in the sense that the molecules at liquid-solid

interphase can interact with the those at the liquid-vapor interphase. Thus, we can

rewrite equation 4.1 to include the thickness dependent of the force which leads to

the following equation:

F = USL + ULV + 4(h) (4.2)

The form of the function (h) depends on the fluid properties such as polarity of the

molecules. The most common form of this function for the non-retarded London van

der Waals interaction fluids can be written as [79]:

A
J(h) = A (4.3)121rh2

The constant A, is called the Hamaker constant and it depends on the properties of

the three phases of material. This model can be used for a non-volatile and non-polar

oils on metal surfaces [79]. For more complex materials such as water, where the

possibility of double layer interaction exists, a much more complicated relation must

be used [56].

A "disjoining pressure" arises from the interfaces of the ultrathin films since the

above mentioned interactions can generate pressure contributions within the liquid

film. The disjoining pressure H(h) can be calculated as:

d4)
1(h) = -(4.4)

dh
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so the disjoining pressure is the free energy of a film with thickness h, relative to the

bulk liquid on the surface where H - 0 (for larger thickness h). Combining equations

4.3 and 4.4 results in the relation between the disjoining pressure and the thickness

of the film:
A

H7(h) = (4.5)
67rh3

When the film thickness h decreases, equation 4.5 predicts an increase in the disjoining

pressure. This means the free energy increases and for very thin films in the atomic

scale, this is energetically disfavored. Therefore, it is expected that the van der Waals

forces could support a finite film thickness. This would not be valid for the analysis

with the continuum assumption.

Let's try to find this minimum thickness for the ultrathin liquid film on a solid

surface. The free surface energy difference per covered area between the dry surface

and the wetted surface is

S = cxsv - (cUSL + ULV) (4-6)

where usv is the solid-vapor surface tension. The free surface energy is positive when

the wet surface is energetically favored because of a lower energy compared to the

dry surface. A liquid drop would spread spontaneously on a dry surface if S > 0 as

discussed in chapter 1. The static equilibrium contact angle will be equal to zero.

For a drop spreading on a surface, the free energy can be written as:

E = (F - -sv)A = (4(h) - S)A = (D(h) - S)- (4.7)
h

where A is the wetted area which is approximately equal to the volume of the drop,

V, divided by its thickness, h.

The minimum thickness of a liquid layer can be calculated by minimizing the free

energy of the liquid film. At the minimum thickness, the free energy is given by

dE/dh = 0. From equation 4.7, the following relation for the spreading parameter

can be written:
3 A

S = 4(h) - hH(h) = - 3A(4.8)
2 67h2

By substituting for A from the equation 3.49, the minimum thickness allowed is found
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to be:

hmin = mic (4-9)

where Cmic is the microscopic length scale of the liquid drop from equation 3.49 and

a is same as JLV.

Now that the minimum thickness allowed by the molecular forces is estimated,

one can look closer to the precursor film. By knowing the minimum thickness, the

thickness of the location that the precursor film is truncated is found. It is also

known that the precursor film must match with the macroscopic profile of the drop

close to the inflection point as it was pointed out in chapter 3. The precursor films are

assumed to have two main regions [68]. The section of the film that starts from the

macroscopic part of the drop (inflection point) and moves with a constant velocity

with respect to the stationary coordinate (or solid surface) is called the adiabatic

precursor film. However, there is another part of the film which spreads as a diffusive

front and is called the diffusive film. In the next two sections, these regimes will be

discussed.

4.2.1 Adiabatic precursor film

The effect of molecular forces was included to the calculation for the free surface

profile of the spreading viscous drop (equation 3.46) by Hervet & de Gennes [52]

to calculate the profile of the drop in the vicinity of the contact line. Due to the

flatness of the precursor film, the first term in the right hand side of equation 3.46

which represents the curvature of the free surface can be neglected. The profile of the

precursor film is governed by:

f2 idh
Ca =. 'i (4.10)

h 2 dx

Integration of equation 4.10 would give us the film profile as:

f2 1
h(x) Mic (4.11)

Ca x
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Figure 4-2: A schematic of a mixed precursor. The adiabatic film is moving with the

same velocity as the average velocity of the macroscopic front but the diffusive films

moves with different speed from the front.

The length of the precursor film, Lp, is the the distance from the crossover be-

tween the macroscopic and microscopic profiles (approximately the inflection point

of the profile) to the tip of the film where it is truncated by the molecular force.

The thickness of the film at these points are hcrossover and hmin, respectively. It is

important to note that hcrossover hmjn.

By using equation 4.11, we can calculate Lp as:

_ £2 1 1 ~ g£nic_1
LP = xtip - xerossover -O fmia h (4.12)

Ca hmin hcrossover Ca hmin

Substituting the value of hmin from equation 4.9 in equation 4.12, the length of

the precursor film is:

L -mic 2S 2SA 1
Ca 3c= 187ro 2 Ca

LP is the length of the adiabatic precursor film only if there is no diffusive film

present.

4.2.2 Diffusive precursor film

At longer times [68], the length of the precursor film becomes longer since the length is

inverse proportional to the capillary number (or velocity of the spreading). At larger
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distances from the inflection point (crossover point),there exists a diffusive regime in

which the velocity of the moving contact line becomes negligible. The part of the film

close to the macroscopic drop (adiabatic part) (x/xit < 1) would be governed by

the relations derived in the previous section. However, the spreading of the precursor

film farther from the length of the adiabatic precursor is governed by a non-linear

diffusion relation. It was shown by Joanny & de Gennes [68] that

Oh = - - (4.14)
ot ax 6,7rph Ox

It was also indicated that the thickness of a diffusive film has a functionality of

h(x) - 1/x 2 whereas for the adiabatic film it is h(x) - 1/x (see equation 4.11).

The thickness of the crossover point, hint, between these regions was found to be:

hint = mzc (4.15)
R 2p t

where R is the average velocity of the spreading drop and t is time.

It is important to note that the value of hint has to be between the minimum

thickness hmin and the macroscopic thickness of the drop at the inflection point. If

hin < hmin then the whole film is adiabatic and it is only governed by the adiabatic

relations.

It is very important for this analysis for both adiabatic and diffusive precursor

films, that fluid wets the surface completely. Another condition suggested by de

Gennes [30] is the dynamic contact angle has to be very small:

, <2S (4.16)
a-

To summarize, at the early stages of spreading of a perfectly wetting fluid with

small dynamic contact angle, an adiabatic precursor film exists that spreads in front

of the wetting line. The length of this film is inversely proportional to capillary

number. However at the later stages of spreading, a diffusive film is generated at the

end of the adiabatic film with smaller thickness. The length of this film is found to

be Ld = emic (2a/tph)t [68].
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4.3 Experimental results and discussions

Most of the experiments previously performed to quantify precursor films have not

been able to simultaneously confirm the existence of the macroscopic and micro-

scopic descriptions of the spreading process and quantitatively interconnect the two

processes. We have measured the length of precursor films using a novel interference

microscope (psLFI) with both high temporal and spatial dynamic range (chapter 2).

We have used the same experimental geometry as explained in chapter 3 and con-

sider well-characterized silicone oils spreading on polished silicon wafers. First, we

deposit a drop of silicone oil of a known volume on a cleaned silicon wafer using a

syringe pump (Harvard Apparatus, pump 11). When the advancing contact line of

the spontaneously wetting drop moves below the focal point of the objective lens its

instantaneous rate of spreading, R, is measured using a CCD camera and the profile,

h(t), is measured interferometrically. Knowing the local speed of the wetting line, the

profile of the drop, h(t), is converted to h(x) via a simple Gallilean transformation

(x = t).

The spreading velocity R(t) of the drop is a time-varying function that depends

on the drop size and the dominant driving and resisting forces. The drops used in

the present experiments have a volume V = 10[L and initially assume the shape of a

spherical cap (which spreads such that R - t 1/ 10) but ultimately evolve to a pancake

regime ( R ~ t1/ 7). All of our measurements are performed when the drops are in the

final pancake regime as noted in section 3.3.

To quantify the precursor lengths for a wide range of capillary numbers, a number

of different silicone fluids have been used in our experiments . These materials are

supplied by Gelest Inc. and they are same as those that were used in experiments in

chapter 3. The rheological properties are tabulated in appendix A.

A representative drop profile is presented in figure 4-3. Here the abscissa represents

the lateral displacement (x) of the front and the left ordinate shows the measured

value of the decrease in optical path length (or local thickness of the drop, h(x))

in pm. To convert the measured phase to drop height, we used n = 1.44 for the
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Figure 4-3: (a)Evolution in the profile of a silicone oil drop spreading on a smooth dry

silicon substrate at Ca = 2 x 106. Symbols (o) show the local thickness of the drop

(in pm) and solid line is the visibility of the interference fringes, m. (b)An enlarged

view of the precursor film detected in front of the moving contact line.
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index of refraction of the liquid. The solid line represents the interferometric fringe

visibility, m, and is represented on the right ordinate axis. The fringe visibility, m,

remains constant until the edge of the precursor film reaches the focal point of the

laser interferometer. At this instant, the fringe visibility decreases rapidly, well in

advance of the macroscopic front reaching the measurement point. Figure 4-3(b)

shows that a thin liquid precursor film or tongue of fluctuating but approximately

constant thickness Hp = 99 ± 10 nm preceding the macroscopic contact line is the

cause of the drop in the fringe visibility. As noted before, Hp - 1/x from equation

4.11. This decrease in fringe visibility is the interferometric equivalent of the impeded

condensation of humid air that can be observed using a breath test[49]. Later in the

spreading process, the macroscopic front passes through the measuring volume and

the macroscopic profile of the drop can be accurately imaged.

We have determined the length of the adiabatic precursor film, Lp, for the sponta-

neously spreading liquid drops for a wide range of capillary numbers. It is important

to note that the diffusive precursor films which usually develop at longer times (when

hint > hmin) are not part of this analysis. We define Lp as the distance from the

point that the fringe visibility, m, suddenly decreases from the constant value corre-

sponding to the bare silicon wafer surface to the point that the macroscopic profile is

measured (figure 4-3(b)). In figure 4-4(a), we show the length of the precursor film

Lp, as a function of capillary number, Ca. The length of the precursor film decreases

monotonically as the spreading rate of the drop or fluid viscosity increases. Regres-

sion to a power-law relationship yields a best fit, Lp = 7.2 x 10-1OCa- 0. 98±0.16 with

Lp in meters. This result is in excellent agreement with the form of the theoretical

prediction ([30, 68]) in equation 4.13. Furthermore, the front factor is in good agree-

ment with the calculated value of VSA/6-roa = 6.1 x 10-1 0 m which is shown by the

dashed line in figure 4-4(a) (S = 20 x 10- Pa s; o- = 20 x 10-3 Pa s; A = 1.4 x 10-19

[56, 2]). In figure 4-4(b), we show the average thickness of the adiabatic precursor

film, Hp in nm, as a function of capillary number. As can be seen from figure 4-3,

significant local fluctuations in this local measurement of the precursor film can be

measured using the psLFI technique; however there is no evidence of a dependency
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of the average thickness Hp on capillary number and a constant average thickness of

98 ± 20nm is measured.

These results are significant since most of the experiments done before to quantify

the precursor films focused exclusively on the diffusive part of the film. Among all of

these results only one [7] has documented a relation between Lp and the spreading

velocity however the results do not span a wide range of capillary number and it is

difficult to separately asses the effects of viscosity and surface tension.

Another important note is that the precursor films measured in our experiments

are adiabatic precursor films. The calculated thickness between adiabatic and diffu-

sive films (hit) from equation 4.15 is always smaller that minimum possible thickness

of drop (hmin) from equation 4.9 in our experiments. Therefore according to Joanny

& de Gennes [68], the measured precursor films are adiabatic precursors.

To summarize, we have applied a non-invasive phase-shifting laser feedback inter-

ference microscope to investigate the evolution of the precursor films ahead of moving

contact lines in dry spreading of perfectly wetting van der Waals fluids. The system

has sufficient resolution and dynamic range to resolve details of both the physics of

the inner (microscopic) interfacial region and its interconnection to the outer (macro-

scopic) fluid response. The theoretical predictions of different regimes of precursor

films (adiabatic and diffusive) have been reviewed. We have shown that the length of

the adiabatic precursor film, Lp, that forms in advance of the drop during the early

stages of spreading is inversely proportional to the capillary number as anticipated

theoretically [68, 30]. The front factor of this function is in good agreement with the

theoretical prediction calculated by using the independently determined fluid proper-

ties. Even though we were not able to characterize the thickness of this layer (Hp) as

a function of dynamic parameters of spreading, the average film thickness was shown

to be approximately 100 nm for most of the measured precursor films over the range

of capillary number (10-6 < Ca < 10 ).
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Chapter 5

Liquid drops spreading on inclined

plates

5.1 Introduction

In the previous chapters, the analysis and the experimental results for the spreading

of the viscous drops on horizontal surfaces have been presented. In all of these ex-

periments, the effect of gravitational body forces were negligible (Bo = pgh 2 /a < 1)

unless explicitly mentioned (gravity currents). The dynamic contact angle measure-

ments (HVT law) and microscopic characteristics of the spreading drop were all per-

formed when gravitational effects were negligible, except in providing a hydrostatic

pressure in the center of the large drop.

Another class of spreading drop problems which has been of interest to scientists

through the last 50 years, is the spreading of a drop (or liquid film) on an inclined

plate. This problem has been considered in the literature via several different ap-

proaches. The subject of most of the published works on the gravity driven drainage

of films are on the fingering instabilities at the moving contact line (e.g. [64, 104, 9]).

The mechanism for these instabilities involves a region of fluid far from the front

line where the surface tension is not important [64] and a region close to the contact

line where the surface tension dominates. Huppert [64] characterized this flow and

concluded that the effect of surface tension is of a secondary nature.
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4

Tail

Front hump

Figure 5-1: The schematic of a viscous drop spreading on an inclined plate. hN is the

maximum thickness of the drop and XN is the location of the moving contact line. a

is the slope of the inclined surface.

In recent years, theories were developed for spreading of a drop on inclined plate

to derive a base solution for the instabilities. Huppert, as a pioneer in this type of

experiments and analysis, showed that most of the energy will dissipate at the tail

of the spreading drop (figure 5-1) by the viscous force. He assumed that for this

reason one can neglect the effect of the surface tension in the spreading process. In

his analysis, he totally neglected the effect of the front hump (from the location of

the maximum thickness, hN, to the tip of the drop). We will discuss this further in

section 5.2. Later, Troian et al. [111] improved Huppert's analysis by adding the first

order effects of surface tension into lubrication analysis of the base state flow. They

went on to develop a stability analysis of the two-dimensional lubrication equations

for very small contact angles.

The analysis of the spreading of liquid films on an inclined plate without the

above mentioned instabilities are done partly by Goodwin & Homsy [48]. A boundary

integral technique was used to obtain the numerical solution to the problem in which

a contact angle boundary condition as a fixed value was imposed as shown in figure

5-2. Numerical simulation of this type of flow was also performed by Reznik & Yarin
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[97]. In most of these numerical simulations, the dynamic contact angle and capillary

number were inputs of the simulations. Thus, it is very difficult to compare these

results with the experimental data since the observed contact angle depends on the

capillary number in the spreading process (figure 3-9). One of the main conclusions

by Goodwin & Homsy [48] and Hocking [57] is that for larger capillary numbers at

which the dynamic contact angle becomes large, the lubrication analysis breaks down

and other approaches, such as the Stokes flow problem, are needed to analyze this

problem [48].

In this chapter, we investigate the steady flow of a viscous drop on an inclined

plane before the onset of these instabilities. We made sure that no instability existed

during our experiments (due to the small size of drop). Our high resolution optical

system (psLFI microscope) was used to investigate the macroscopic and microscopic

features of this regime of spreading.

5.2 Theoretical analysis

Detailed analysis of a spreading viscous drop on an inclined plate can be found in

previous studies (e.g. [64, 48, 9]; also [90] on powerlaw fluids). In this section, a

similar scaling analysis is used to derive a relation for the characteristics of the drop

as a function of time.

First, we used lubrication analysis to derive the governing equation of spreading

of a viscous drop on an inclined plate as :

3pU = -h2d + pg sin (a) h2  (5.1)
dx

where a is the angle of inclination of the plate, P is the pressure, U is the average

velocity of the leading front, and h is the thickness of drop. From the pressure balance

at the free surface, pressure can be calculated as P = -u(d 2 h/dx2 ). Equation 5.1

can be written as:

3puU = -- h A - pg sin (a)h2  (5.2)
dx
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We can rewrite equation 5.2 in dimensionless form using h* = h/hN and x* = x/xo,

where hN is the thickness of the front and xO is a lateral length scale, as:

h3 dah* 7*
3Ca Nh*2 Boh*2  (5.3)3C_ xo dx*3

where Bo = pg sin (a)h 2/a and Ca = pU/o are Bond number and capillary number,

respectively.

Let's choose 1O = hN/(3Ca)1/3 similar to what we chose for lateral length scale in

section 3.3.2. Equation 5.3 can be written as:

2d~h* Bo
-1=h*2 + oh*2 (5.4)

dx*+ 3Ca

If Bo < Ca (e.g. a 0), then equation 5.4 would have the form of equation 3.29

and drop spreads similar to spreading on a horizontal plate. The dynamic contact

angle of the advancing drop front, 0a, is scaled with the thickness of the drop and

the distance of the maximum thickness from the front, 1o, as Oa ~ hN/xo. Using the

scaling for 1O, the dynamic contact angle as a function of capillary number is found

to be Ga - Ca1 /3. This scaling is similar to the HVT law for the spreading liquid

drops on inclined plane when Bo < Ca.

If Bo > Ca, the left hand side of equation 5.2 is negligible and after simplification

and integration in respect to x, it can be written as:

h 2 1 d 2h*
NB x + 1 = 0 (5.5)

xO Bo dx*

If we choose 1O = hN/Bo1 / 2 , equation 5.5 is found to be:

d2h*
dx*2 + 1 = 0 (5.6)

The dynamic contact angle of the advancing drop front, Oa, when Bo > Ca is found

to be:

Ga ~a Bo1 / 2  (5.7)
10

An interesting feature of drop spreading on an inclined plate, when both the

gravitational body forces and viscous force are important and capillarity effect is
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negligible in equation 5.2, is the following:

sn 2
Bo pg sin ahN = Ca (5.8)

As seen in equation 5.8, in this type of spreading the Bond number and capillary

number are equivalent. This is a very unique feature that is not obvious at the

beginning of analysis.

In the next section, the experimental results that were performed to confirm these

scaling analysis will be presented.

5.3 Experimental results

We have used the same experimental setup as one used for spreading on a horizontal

surface, as explained in detail in chapters 4 and 5. Since the laser beam in the psLFI

microscope has to be perpendicular to the substrate, psLFI system and the substrate

were mounted on a rigid breadboard. Then the breadboard was tilted to the desired

inclination angle, a, and held firmly by a jack (figure 5-3).

The fluids used in these experiments are silicone fluids (Gelest Inc.) same as those

used in the previous chapters. The fluid properties are presented in appendix A. The

experiment procedure is also similar to the previous cases. A drop of silicon oil is

deposited on a clean silicon wafer using a syringe pump (Harvard Apparatus, pump

11). While the drop moves down the inclined plate, its free surface profile is measured

by the psLFI system as a function of time. The velocity of this drop is measured from

the side by a CCD camera to convert the observation time to the spatial coordinate,

X = U(t-to)). The dynamic contact angle is calculated by numerical differentiation of

the free surface profile (same as chapter 3). We carefully observed the fringe visibility,

m, to be able to detect a possible precursor film in front of the moving contact line

as we did in chapter 4.
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Figure 5-3: Tilted psLFI system for measurement of spreading drop on inclined plate.
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5.3.1 Profiles of drops moving down the inclined plate

Figure 5-4 shows the profiles of drops spreading on a silicon wafer when it is tilted

with an inclination angle, a. Figure 5-4(a) shows a picture of a drop spreading on an

inclined plate which free surface profile was measured using psLFI microscope and

shown in 5-4(b) (Ca = 7.1 x 10-3, a = 240). The left vertical axis of this plot is

the measured thickness, h, of the moving drop in Mm and the right vertical axis is

the fringe visibility, m, from the psLFi system. The horizontal axis of the plot is the

lateral displacement, x in pm. The maximum thickness of the drop is hN-

To make the profiles dimensionless , the following scaling forms are used:

h* h (5.9)
hN

pg sin (a) 1/3 - X) -Bo
1 /3  hN (5.10)

ahN )hN

where XT is the location of the inflection point and ( is the distance from the moving

contact line into the drop. The resulting dimensionless profiles, for several drops with

different Ca and inclination angle a, are shown with solid lines in figure 5-4(c). As

seen in this figure, the profiles close to the contact line are self-similar as predicted

by Huppert [64]. The scaling for the self-similar profile close to the contact line is:

h* + h ( 64) 1/4 4 (5.11)

The self -similar profile is shown on the figure 5-4(c) with a dashed line. The vertical

axis of this plot is the dimensionless thickness h* and the horizontal axis is the dimen-

sionless lateral displacement . The dimensionless thickness of the drop at inflection

point is h*. The reference for is taken at the inflection point to unify the starting

point for all of the profiles.

As shown in this figure, the similarity solution is not valid for ( = 0 since it predicts

Oa = 7r/2 for all the drops regardless of the capillary number. We will show the results

for the dynamic contact angle in the next section which varies with capillary number.
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5.3.2 Characteristics of the moving contact line

For drops with Ca < 2 x 10-3, a thin liquid film (precursor film) was detected which

moves in front of the contact line. The analysis of these film has been addressed in

chapter 4. As shown in chapter 4, the length of the 'adiabatic' precursor film, Lp is

inversely proportional to the capillary number (equation 4.13). The measured length

of the precursor film as a function of capillary number is presented in figure 5-5. The

vertical axis of the graph is the length of the precursor film Lp and the horizontal

axis is the capillary number. Similar to our observation in chapter 4, a power-law

regression to the experimental data gives Lp = 8.4 x 10- 10 Ca-1-01*0-01 with Lp in

meters. This result is in good agreement with the results of the chapter 4 and the

theoretical prediction. However, the front factor of the regression is lower than the

front factor for horizontal spreading. We were not able to detect any precursor films

for capillary numbers higher than 1.5 x 10-3 since the length of the precursor films

become on the order of the lateral resolution of psLFI.

Represented drop profiles for two different capillary numbers and inclination an-

gles, a, are shown in figure 5-6. The dynamic contact angle of the drop with higher

capillary number, shown in figure 5-6(a) (Ca = 2 x 10-2 spreading on an inclined

plate, a = 240), is larger than dynamic contact angle of drop with a lower capillary

number, figure 5-6(b) ( Ca = 3.8 x 10-4 which spread on an inclined plate, a = 70).

In figure 5-7 the measured dynamic contact angle Oa (chapter 3) is plotted as a

function of capillary number. For smaller values of Ca, the dynamic contact angle

follows the well known HVT law (cf. chapter 3). The power law regression to this data

set gives 6a = kiCan where k, = 3.3 ± 0.06 and n = 0.38 ±0.02 with a confidence level

of R 2 = 0.966. However for Ca > 10-2, the dynamic contact angle 0a increases more

rapidly compared to those for smaller capillary numbers. A power-law regression to

this part of data gives Qa = kiCan where k, = 5.03 ± 0.4 and n = 0.45 ± 0.02 with

a confidence level of R 2 = 0.950. We are not aware of any prior experimental work

that has reported this behavior for the dynamic contact angle for spreading viscous

drops on an inclined plate. In previous section, we argued that if Bo > Ca then
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the dynamic contact angle would scale as equation 5.7. This can be the reason for

the change in exponent of the power-law in figure 5-7. To further investigate this

matter, we plotted Boexp = pg sin ah'/- as a function of measured capillary number

CaeXP = ij/- in figure 5-8. In figure 5-7, Ca is measured capillary number, Caexp.

Since Bond number and capillary number are equivalent earlier in this process as

shown in lubrication analysis, the value of Bond number increases as capillary number

increases with a power-law exponent of unity. The lubrication analysis is only valid

for small angles and BO < 1. Therefore for higher Bond numbers, a deviation from

the HVT law can happen. It shown in figure 5-8 that for capillary numbers higher

than 0.01, the values of the measured Bond numbers, BOexp, become larger than the

corresponding capillarity numbers, Caexp. This deviation supports our argument for

the change in power-law exponent from the HVT law.
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5.4 Discussion

In this work, we have studied the slow spreading of perfectly wetting viscous drops

on a silicon wafer with an angle of inclination, a, with the horizontal surface. The

fingering instabilities that may happen in this process at long times have been widely

investigated [64, 104, 9]. In this study, we are interested in the relationship between

the advancing contact angle and rate of spreading of moving contact line in the

absence of the instability.

Analytically, we have shown that capillary number,Ca = pU/u- and Bond number

Bo = pgh' sin (a)/- are equivalent for lower values of Ca when lubrication analysis

is valid. The gravitational force is the main resource for the spreading in this process

and the drop spreading velocity can be found by balancing the viscous force with the

gravitational force.

The free surface of the drops with the range of viscosities (0.5 Pa s < p < 10

Pa s) have been measured on plates with angle of inclination of a = 70, 160, 240.

By using the proper scaling, we have shown that the all of the drop profiles close to

the contact line fall on a master curve h* ~/. However, this can not accurately

predict the contact angle since it gives a contact angle of 7r/2 at the wall and does not

predict an inflection point. The existence of the inflection point is important because

it is the location of the dynamic contact angle [79] and it is a crossover point to a

microscopic region as we explained in detail in chapters 3 and 4. We have detected

and quantified the precursor films present in front of the moving contact line and

showed that they follow a similar power-law which was predicted by Joanny & de

Gennes [68] and discussed in chapter 4.

Finally, the measured dynamic contact angle is presented as a function of capillary

number. For smaller capillary number, the power-law fit to the experimental data has

a good agreement with the HVT law. For Ca > 0.01 however, the dynamic contact

angle systematically deviates from the HVT law and the new power-law has the form

of 0 - Cal/2 . We argue that when the dynamic contact angle is small, lubrication

estimation is valid, thus the viscous force and gravitational body force are involved

123



in spreading precess and this leads to the HVT law. However we have shown that

for the high Bond numbers (Bo > Ca), the gravitational body force balances the

capillarity and this lead to 0, - Bo/ 2.
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Chapter 6

Evaporatively-driven Marangoni

instabilities on spreading liquid

films

6.1 Introduction

In the previous chapters, the macroscopic and microscopic features of the 'isothermal'

spreading of viscous drops have been presented. The volume of the drop is assumed

to stay constant during the spreading process. The temperature of the environment

and the spreading fluid were constant. The silicon wafer is used in this process

have a very high thermal diffusivity 9.34 x 10- 5m 2/s. Thus, we can assume that

the temperature of the substrate is always constant and is equal to the environment

temperature. The silicone liquid used in the steady spreading experiments are all

have very high saturation temperature. This means the evaporation rate for these

fluids are negligible.

It is also know that if the spreading is non-isothermal, new features may appear

during the spreading process. One of most common features of non-isothermal films

are a class of instabilities that are usually called Marangoni instabilities. Marangoni

instability arises from the thermal or concentration variations (for mixtures) in the
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liquid film that result a gradient in the surface tension due to its dependence to

temperature and concentration of the dissolved solutes.

The parameters involved in this type of instability is characterized by the Marangoni

number, Ma, which is defined as:

- OoR 2 O a OTR 2  (6.1)
Mx ay OT Ox ap

This definition is in terms of drop radius R, thermal diffusivity a, viscosity ti, and

surface tension gradient Oa/Ox. The critical Marangoni number value for a system

showing Marangoni instability is usually 50 - 100 [2].

Instability of liquid films is a branch of interfacial science that has attracted many

scientists because of its mathematically and physically aspects since early 20th cen-

tury. The phenomenon of cellular convection in a liquid with a free surface heated

from below was first discovered by Benard [8]. A fundamental theoretical paper is

that of Lord Rayleigh [95], who considered instability due to the buoyancy resulting

from expansion of a heated liquid. Later, Jefferys [66, 67] and Low [75]extended and

refined Lord Rayleighs analysis. The agreement with experiments involving marginal

stability has been generally good. In all these treatments the cause of instability was

buoyancy. Pearson [92] argued that buoyancy was not the driving force and offered

a new explanation for the instability. He showed that if the upper surface was free

then Benard type cells could be produced by tactions arising from the variation with

temperature of surface tension. He argued that in many of Benards experiments the

cells observed must have been due to surface tension effect rather than buoyancy.

Nield [82] combined these two theories and showed that the two effects reinforced one

another and are tightly coupled. Scriven & Sternling [102, 103] extended Pearsons

analysis to include a deformable interface and demonstrated that this added degree of

freedom renders the system convectively unstable at all Marangoni numbers. Detailed

reviews of this type of instabilities can be found in [27, 100]

During our experiments on spreading drops it was noticed that if a drop of volatile

wetting liquid was deposited on a surface and allowed to spread, then, after a few

seconds, periodic fluctuations at the free surface of the liquid film (figure 6-1) were
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Figure 6-1: Snap shots of a volatile liquid drop during spreading on a conductive

substrate.

detected by the confocal measuring system. A series of experiments described in this

chapter show that these instabilities arise as a result of the volatility of the liquid

and the non-uniform evaporation rate across the drop. Also a detailed linear stability

analysis is presented using the lubrication analysis developed by Ehrhard & Davis [39]

and Oron et al. [84]. The linear stability results is compared with the experimental

result at the end of this chapter.

6.2 Experimental results

The latent heat of spreading and the latent heat of evaporation can both be impor-

tant in such problems. However, our calculation shows the latent heat of spreading

is negligible compared to the latent heat of evaporation. For example, using material

properties (appendix A), the latent heat of spreading, AH = -a + TO-/aT, can be

calculated as 40mJ/m2 . This means to change the temperature in drop of silicone

oil by 1K, the area of spreading has to be 2m 2 [56]. A detailed thermal analysis [84]
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shows that the important dimensionless parameter in this type of evaporatively-driven

instabilities is the dimensionless interfacial thermal resistance, R. This dimensionless

parameter R quantifies the relative magnitude of the evaporative resistance to heat

transfer at the interface compared to the conductive resistance of the liquid film itself.

It is analogous to the inverse of the Biot number encountered in convection-diffusion

heat transfer problems, Bi = hconv/(ks/ho), in which hcon, is the heat transfer coeffi-

cient for convection into a liquid and k,/ho is the heat transfer coefficient for thermal

diffusion through the solid boundary. A linear stability analysis will be presented

later in this chapter shows that for a critical R disturbances on the spreading film are

amplified and for R smaller than this critical value, the liquid microdroplets spread

without showing this type of evaporative instability. The limit R = 0 is special

and corresponds to the case of a perfectly thermally-insulating film or a non-volatile

spreading fluid with zero mass flux from the surface. There are several thermophys-

ical parameters of both the spreading fluid and the underlying substrate that affect

the observed instability phenomenon. In the following sections, we explore each of

these factors.

6.2.1 Effect of Liquid Viscosity

In 6-2 we show the evolution in the height of the spreading droplets close to onset

of instability for (a) L ; Oh = 0.003, # = 1.39, (b) M; Oh = 0.02, # = 1.35, and

(c) H; Oh = 0.23, # = 1.33. In each figure the ordinate axis is the local thickness

of the drop in micrometers and the abscissa represents elapsed time in seconds. The

solid lines show the power-law relation expected for the spreading in the absence of

Marangoni instability.

For the liquid with the lowest viscosity (figure 6-2(a)) the instability starts at a

film thickness of about 30pm. The insets to the figure show details of the periodic

fluctuations in the free surface height of the drop. It can be seen that as the drop

spreads and the film thickness decreases the relative amplitude of the oscillations

increases and the frequency decreases. In figure 6-2(b) we show the onset of instability

in the oil of intermediate viscosity (M). It can be seen that the instability threshold
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is achieved at a lower critical thickness than observed in the previous case. Also the

amplitude of oscillations is smaller than observed in the low Oh case. The inset to

figure 6-2(b) shows the same data plotted on double logarithmic axes. Initially, the

film thickness has a power-law form as expected. As the disturbance grows there is a

small but systematic deviation from the simple power-law spreading. In figure 6-2(c)

we show the onset of instability in the more viscous fluid (H). The same trend can be

seen here as the instability starts at a yet lower film thickness and the amplitude of

the oscillations are smaller than those observed at lower Oh. Finally, in figure 6-2(d)

we show the spreading profile observed in the most viscous fluid (V). No instability

can be observed within the resolution of the measuring system down to the minimum

detectable height of approximately 0.5pm.

6.2.2 Directionality of the Traveling Waves

The disturbances shown in figures 6-2(a)-(c) correspond to surface perturbations prop-

agating past the fixed measuring point of the laser confocal microscope. To inves-

tigate the speed and direction of the surface waves generated by this evaporative

Marangoni instability, the surface profile of a spreading droplet of low viscosity sil-

icone oil (L) is measured by scanning the laser probe across the drop at a constant

speed of U = 320mm/s. First the film surface is scanned from the contact line toward

the center of the drop and then in the reverse direction from its center toward the

contact line. The scanning results are shown in figure 6-3. The solid line shows the

wave profile when the scanning direction is from the leading edge towards the center

and the dashed line represents the wave pattern when the scanning direction is from

the center to the contact line. It can be seen in this figure that the waves have a

higher apparent frequency when the scanning direction is from the center outwards

towards the contact line. This Doppler shifting in the disturbance frequency indicates

that the surface waves resulting from the evaporatively-driven Marangoni instability

propagate radially-inwards from the contact line to the center of the drop.
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Figure 6-2: Onset of instability for fluids of low, medium and high viscosity (a)L,

(Oh = 0.003, # = 1.39); (b) M. (Oh = 0.02,0 = 1.35); and (c) H, (Oh = 0.23,

0 = 1.33). The solid lines show the power-law relation expected for the spreading in

the absence of instability. (d) Spreading profile for fluid V, (Oh = 62.9, q = 1.31).

No instability can be observed within the resolution of the measuring system. Dotted

line is the expected power-law relation expected from the analysis.
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Figure 6-3: Scanning a droplet of silicone oil (L; Oh = 0.003, <$ = 1.4) spreading

on silicon substrate with scanning speed of 320mm/s with the direction (-) from

contact line toward the center and (- - -) from center toward the contact line.
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Figure 6-4: Effect of thermal conductivity of substrate on the onset of instability.

Spreading of silicone oil (L, Oh = 0.003, # = 1.39) on (...) glass; (- - -) Brass;

and (-) silicon substrates.

6.2.3 Effect of Substrate Thermal Conductivity

Several materials have been used as substrates in our experiments and their ther-

mophysical properties are found to have a pronounced effect on this new type of

Marangoni instability. In figure 6-4 we show the effect of the thermal conductivity

of the substrate on the stability characteristics. Three different smooth substrates

were used to observe the spreading of the lowest viscosity silicon fluid (L). The ther-

mal diffusivities of the selected materials are: glass (a = 3.40 x 10- 7m 2 /s), brass

(ce = 3.41 x 10- 5m 2 /s), and silicon (a = 9.34 x 10- 5 m 2/s). The thermal diffusivity of

silicon and brass are close to each other and both are good thermal conductors. The

instabilities that develop during the spreading of a volatile liquid on these surfaces

are very similar, the amplitudes of oscillation are almost identical and the critical film
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Figure 6-5: Effect of substrate roughness on spreading and instability. Silicone oil (L,

Oh = 0.003, f = 1.39) drop spreading on copper substrates of characteristic roughness

(-) E, = 1.13 x 10- 6m, and (- - -) 2 =1.83 x 10- 5m.

thickness for onset of instability are very close to each other. However, although the

silicon fluid readily wets the smooth glass surface, the substrate material is a thermal

insulator with a much smaller thermal diffusivity. No surface oscillations are observed

during the steady spreading of the drop across the glass surface. It is thus clear that

heat transfer from the underlying substrate is very important in driving the onset of

Marangoni instability in the fluid film.

6.2.4 Effect of Surface Roughness

The experiments described above have all been carried out on relatively smooth sur-

faces. It is already known that changes in surface roughness significantly affect the

steady spreading of viscous fluid [18]. The rate of surface area generation will affect
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the coupled heat and mass transfer rate arising from evaporation of the fluid. Fur-

thermore, our observations above show that the onset of instability occurs at very

small film thicknesses; the microscopic surface roughness of the substrate may thus

also be expected to affect the onset of instability in a volatile liquid. In order to

investigate this, we used two different thermally-conductive copper surfaces with con-

trolled degrees of surface roughness and random orientation. Measurements using a

surface profilometer (DEKTAK3) gave average roughness values of E1 = 1.13 x 10- 6m

and 62 = 1.83 x 10- 5m . These surfaces were then used as substrates to investigate

spreading of a liquid micro-droplet of the least viscous and most unstable fluid (L;

Oh = 0.003, <) = 1.39).

In figure 6-5 we demonstrate the effect of surface roughness on the thermocap-

illary instability of volatile liquids during the spreading process. Prior to onset of

instability, the rate of steady spreading is observed to be slower for the surface with

smaller surface roughness than for the substrate with higher surface roughness The

critical film thickness at onset of instability appears to be approximately the same

for both cases (het ~ 20pm) but the amplitude of oscillations on the rough surface

are substantially larger. Details of the surface perturbations are shown in the inset to

figure 6-5. Fourier analysis of such local signal segments shows that the waveform of

the oscillations for the lower surface roughness case are essentially sinusoidal in nature

whereas the disturbances propagating over the substrate with high surface roughness

develop strongly non-linear characteristics when the film becomes very thin.

6.2.5 Effect of Liquid Volatility

We have argued earlier that this instability is a Marangoni instability driven not

by imposed temperature gradients but by gradients arising naturally as a result of

evaporation. The latent heat of evaporation (AH, ) of the spreading liquid should

thus play a central role in the critical onset conditions. To investigate this, we utilized

a special grade of silicone oil (Gelest Inc., DMS-T07R) with comparable properties

to fluids L and M but with a much lower volatility ( AHMS-T7R = 108.7kJ/mole,

cf. For fluid L, AHf = 12.9kJ/mole).
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Figure 6-6: Effect of volatility of liquid on the onset of instability. Spreading of

volatile silicone oil (-, L, Oh = 0.003, # = 1.39) and non-volatile silicone oil (- -

-, NV, Oh = 0.02, # = 1.3) on silicon substrate. No instability was observed for

non-volatile silicone oil.
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It can be seen from figure 6-6 that the spreading characteristics of the volatile and

non-volatile silicone oils on a smooth silicon substrate are dramatically different. At

short times, both droplets exhibit the same rapid initial decrease in film thickness.

For both fluid droplets the spreading parameters correspond to q5 > 1 and Oh <

1, so that spreading is controlled by a balance of gravitational and inertial forces

which are identical for both droplets. As the film spreads out and the surface area

increases, evaporative heat and mass transfer losses become increasingly important.

The evaporatively-driven Marangoni instability is clearly present for the volatile liquid

(L) whereas the non-volatile silicone oil continues to spread steadily on the silicon

substrate without indications of surface disturbances.

The parameter controlling onset of instability is the dimensionless interfacial ther-

mal resistance, R . This parameter can be evaluated using the tabulated values of the

thermal conductivity, latent heat of evaporation and the known molecular properties

of the silicone oil which control the heat/mass transfer coefficient. It will be shown

in the next section that this parameter is inverse proportional to the thickness of the

drop. As each microdroplet spreads, the local thickness decreases, and consequently

the interfacial resistance, R increases. For the volatile silicone oil, RL is two order

of magnitudes larger than RNV (cf. next section) and thus attains the critical value

Rjtitca at a much larger film thickness than the less-volatile fluid.

6.3 The two-dimensional disturbance equation

In this section we provide a two-dimensional model that governs the physics of this

problem. We analyzed the instabilities of the system and its important parameters.

Finally, the results of the calculations are compared with experimental observations

from the previous section.

Consider a drop of liquid on a horizontal surface located at the position y = 0 and

kept at a constant temperature T = To. The drop is composed of a volatile Newtonian

liquid and surrounded by a passive gas, which viscosity and thermal conductivity are

taken to be very small compared to those of the liquid. The far-field temperature
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Figure 6-7: The geometry of the spreading film.

is To. The drop, shown in figure 6-7, is two-dimensional in Cartesian coordinates

(x, y). The shape of the interface between the spreading liquids and the ambient gas

is denoted by y = h, and the position of the contact line is given by x = Ro. We

considered the region of the film far enough from the contact line, x < RO - eap. fcap

is the capillary length which is defined as Leap = ao-/pg where g is the magnitude of

the gravitational acceleration, and p is density of the liquid.

This problem is formulated by using the lubrication analysis. This analysis is

only valid for highly viscous films of fluids, which can be identified by the Ohnesorge

number, Oh = p1/vpgR x (R/h), where p is the viscosity of the liquid. The physical

meaning of the ohnesorge number is the ratio of the viscous forces to the inertia forces

in the presence of the capillary force. Therefore, large Ohnesorge number correspond

to the spreading of a drop when viscous and capillary forces are important and drops

with small Ohnesorge numbers are those with inertia and capillary forces interacting.

Here we consider the case of a drop with large Ohnesorge number.

If u is the velocity component in the x direction (uniaxial flow), the equation of

motion for a spreading viscous film, when gravity effect is negligible can be written

as:

U - P (6.2)
ay2 aX

where P = P(x) is the pressure. The rigid plane is considered to be impenetrable,

perfectly conducting material. Equation 6.2 is subject to the following boundary
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conditions:

y=O : U=0
&u &c-

y=h : ax-
ay OX

(6.3)

(6.4)

After integration and applying the boundary conditions, flow rate per unit depth, q',

of the spreading liquid is found to be

q =j h a p
fo 2pOx

2h3 + Ou_

3 2p Ox
(6.5)

Pressure at the interface between the liquid film and the ambient gas is given by

D2 h
(6.6)

therefore the pressure gradient in x direction is

03h aOU- 2 h
(6.7)x = - x- axax (9X3 9x j9x2

Also, evolution of free surface of the film can be derived from continuity equation:

ah aq' " -/

at ax p
(6.8)

where j" is the evaporative mass flux with unit of kg/sm2 .

By combining equations 6.5, 6.7, and 6.8, the final for of surface evolution of and

evaporative liquid drop is given by:

Oh a (uh3 3 3h
at ax 3/1 Ox 3 ax

( o- h 3a 2 h

[ ax (3 x2±

The variation of surface tension in x direction, au/x, can happened as a result of

temperature or concentration gradient in the liquid film. Since the spreading liquid

is considered to be a pure substance in this formulation, concentration gradient does

not exist in this problem.

For a thin film of liquid spreading on a solid surface, conduction in x direction is

negligible, therefore energy equation can be written as

d2T
dy2 =

(6.10)
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where T is temperature of the liquid. At the free surface boundary, conduction heat

transfer inside the liquid is equal to heat that leaves the free surface through evap-

oration process (convection heat transfer is negligible) and temperature at substrate

is assumed to be constant due to the high conductivity of the substrate:

y=O : T =Tw (6.11)
dT

y= h : -kf dy = i"AH (6.12)
dy

where kf is the thermal conductivity of the liquid, A\H, is the latent heat of evapora-

tion, and Tw is the substrate temperature. It is assumed that the thermal conductivity

of the substrate is very high therefore its temperature is always equal to the ambient

temperature, Tw = To.

Solution to the energy equation is a linear temperature profile in y direction:

T = T + yAH (6.13)
kf

To relate the dependence of the interfacial temperature, T, and the interfacial

mass flux, we have used the analysis by Palmer [89]. The linearized form of this

relation is given as [84]:

j" =1m(TiTsat) (6.14)

where

_& pg AHv M,
HM- TgA ir (6.15)

Ts/2 2rj A
S~at

Tsat is the absolute saturation temperature, p9 is density of the gas, & is the

accommodation coefficient, R is the universal gas constant, and M, is the molecular

weight of the vapor. The unit for Hm is: kg m2 s-'K-1 in SI unit system.

Let non-dimensionalize temperature, mass flux and thickness of the film as

T - Tsat
- Te= (6.16)

J= "hoAH (6.17)
kf(T - Tsat)

h* h (6.18)
ho
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therefore, the dimensionless form of temperature field and evaporative mass flux can

be found as:

(9 = 1 h* Y (6.19)*+R

1
(6.20)

h* + R

where y* = y/ho and R is the interfacial thermal resistance which is defined as:

R = kf (6.21)
'HmhoAHv

This dimensionless parameter, R, quantifies the relative magnitude of the evapora-

tive resistance to heat transfer at the interface compared to the conductive resistance

of the liquid film itself. It is analogous to the inverse of the Biot number encountered

in convection-diffusion heat transfer problems, Bi-1 = k/hc5, in which J is the length

scale of the system, h, is the heat transfer coefficient for convection into a liquid and

k, is the thermal conductivity of the solid boundary.

For a non-volatile liquid, R = 0, there would be no evaporation at the free sur-

face, therefore its temperature will be in equilibrium with the environment and the

temperature gradient (T - T)/h -> 0. if R -- oo, it means the conductive resistance

inside the liquid film is very small, ho/kf << 1 , thus interface temperature will

be very close to the substrate temperature, Ti = T,. In this case the free surface

temperature remains constant along the interface between fluid and vapor.

By introducing the following set of dimensionless variables:

ho O-Ot x
£c=p' =7 1, x* = e6 (6.22)
f cap ph ho

the equation 6.9 can be written as:

&h* E 1 a ( 3h* Ma h*2 ah*
+ + * + R = <Z2 O) 0 (6.23)

at* h* + R 3 Ox* 5x*) Pr ax* ( h* +R)

where Marangoni number, Ma, Prandtl number, Pr, and evaporation number, E,

are defined as:

Ma = A C 4 (6.24)
70
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Pr = P (6.25)
pa

E = kf(Tw - Tsat) 1  (6.26)

Evaporation number, E, represents the ratio of the viscous time scale, t, = hsp/p,

to the evaporative time scale, te = ph2AH,/kf(T - Tsat). The latter is a measure

of the time required for an initially stationary film to evaporate to dryness on a

horizontal substrate.

Here the first term in the right hand side of the equation 6.23 represents the

rate of volumetric accumulation, the second term is the mass loss, the third one

is the stabilizing capillary term, and the forth term is represent the destabilizing

thermocapillary effect.

If the drop is considered to be an evaporating thin layer and does not spread, the

evolution equation have a solution of

h -R + (R + 1)2 - 2Et* (6.27)

For low evaporation rates however, evaporation number, E, is very small but the

thermocapillary effects still play a big role in this problem. We can rewrite equation

6.23 with this assumption as:

Dh* 1 o h 3 Nah* Ma a h*2  Oh* =
+ ~ h* +*3 ±R r& ) = 0 (6.28)at* 3 ax* ( x*3 ) Pr (9x* ( h* + R )2 X)

The base solution for equation 6.28 is obviously h* = 1. This solution is valid in

the so called 'pancake region' which is part of the liquid film far from the contact

line.

We employ linear stability theory and perturb the base state by a small amount,

Eh':

h* = 1 + eh' (6.29)

We assume disturbance quantity, h', of the form

h'(x*, t*) = Re(H (x*) ei(kx* -wt*)) (6.30)
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Figure 6-8: The amplitude of the growth rate, wi as a function of the dimensionless

wave number, k, for various values of the interfacial thermal resistance, R. The value

of Ma/Pr is constant, Ma/Pr = 50.

where k and w = wr + iwi are the dimensionless wave number and the dimensionless

complex growth rate of the instability, respectively.

The dispersion relation for the normal modes is find to be:

1 4 Ma Z- 2
wr=O, w i= 1-k + 2 k2 (6.31)

3 Pr R 2

In the next section we analyze this relation and compare the analytical results

with the our experimental results.

6.4 Stability analysis results

In order to analyze the behavior of the instabilities, the dimensionless the growth

rate of the amplitude , wi, is plotted as a function of dimensionless wave number,
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k, using equation 6.31 for different values of the interfacial thermal resistance, R, in

figure 6-8. For 0 < R < 2, the growth rate of the amplitude, wi, is negative for all

the values of the modified Marangoni number, Ma = Ma/Pr, and k. R = 2 is the

onset of the instability and for R > 2, the growth rate become positive which means

the system is unstable.

The fastest growing mode of the instability, kfast, is the wave number which gives

the maximum value for the growth rate as it is shown in figure 3. kfast value can be

derived from equation 6.31 as

kjast = -R-2 (6.32)
2R2

As it is shown in equation 6.32, kfast depends on both R and Ma. In figure 6-

9(b), kfast is plotted as a function of Ma for various values of R. For any R, when

the modified Marangoni number increases, the fastest growing mode of instability in-

creases. This shows when liquid spreads faster, or its surface tension is more sensitive

to change of temperature, O-/&T, there will be more surface waves on the interface.

In figure 6-9(b), kfast is plotted as a function of R for various values of Ma.We

indicated in the previous section that R = 0 means non-evaporating film, and as

expected no instability is predicted by the analysis. As seen in this figure, for R < 2,

kfast = 0 because the system is stable. At R = 2, for any value of the Marangoni

number, flow become unstable and kfast increases rapidly (&k fst/oR = oo). Then

kfast reaches its maximum value and decays for larger values of R and as R -+ oo,

kfast -- 0. It is interesting to notice system will be unstable for all the values of R > 2

but it is stable at R = oc. As we mentioned in the previous section, when R = oc,

interface temperature, T, will be same as substrate temperature, T", therefore there

is no temperature gradient in x direction to initiate the instability.

In order to confirm our analysis, we compare these results with the experimental

results which have been presented in this chapter. These experiments have been

performed by putting a drop of silicone oil liquid (provided from Gelest Inc.) on

silicon substrate. Evolution of the interface, h(t), was measured as the drop spread

on the surface by a confocal surface metrology system (Keyence, LT-8110).
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Figure 6-10: Onset of instability for a spreading drop slightly volatile of silicone oil

on a silicon substrate. The inset plot is deviation from the average thickness as a

function of the interfacial thermal resistance.
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In figure 6-10, we show the evolution in the height of the spreading droplet close

to onset of instability for a drop of silicone oil (DMS-TO1, p = 0.001 Pa.s, o- =

0.017 N/m, and R = 5.25 x 10- 5 /h). The evaporation number, E, for this liquid is

approximately equal to 0.08 which justifies our assumption on neglecting the mass loss

term in equation 6.23. The onset of the instability is at the height of h = 27 x 10-6

which gives R = 1.94. This is very close to the prediction of the theory for Rcriticai =

2. The inset of figure 5(a), is another presentation of the same data. The vertical axis

is deviation of the free surface from its average value, Ah/have where have is fitted

power law to the data and Ah = h-have. The horizontal axis is the interfacial thermal

resistance, R. As it shown, deviation from have starts at approximately R = 2 as it

was predicted by our analysis.

6.5 Discussions

A non-invasive optical technique based on confocal microscopy has been developed

and been used to investigate steady spreading and the onset of an evaporatively-driven

Marangoni instability of spreading liquid microdroplets.

Time-resolved point-wise measurements of the evolution in the free surface of

spreading fluid drops have been used to investigate the onset of an evaporatively-

driven Marangoni instability. The onset of instability occurs once the height of the

liquid film has fallen below a critical value and it results in periodic surface fluctua-

tions which appear to travel radially-inwards towards the droplet center. Experiments

with a range of fluids have shown that as the viscosity of the fluid is increased (and

the rate of spreading concomitantly decreased) the amplitude of the disturbances is

progressively dampened.

The effects of substrate thermal diffusivity and surface roughness on the distur-

bance characteristics have also been shown in this paper. When droplets spread over

substrates with a low thermal diffusivity (such as glass) no instability can be detected

whereas for highly thermally-conducting substrates (for example silicon, copper and

brass), ripples were present on the free surface of the spreading droplet. Increasing
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the surface roughness of the substrate leads to larger amplitude and more nonlinear

waveforms.

Mathematical modeling of this interfacial instability is complicated due to the

coupled mass and heat transfer from the evaporating fluid droplet and the unsteady

base flow of the spreading film. A detailed linear stability analysis is currently being

performed using the lubrication framework developed by Ehrhard & Davis [39] and

Oron et al. [84]. Physically, the mechanism of instability appears to be the following:

evaporation of the volatile material from the fluid film results in a loss of thermal

energy from the fluid droplet and a consequent cooling in the droplet. The heat and

mass flux are largest near the singular contact line and consequently the liquid is

coldest here; a surface temperature gradient thus exists along the surface of the thin

fluid film which can drive a secondary flow. Under quasi-steady state conditions this

evaporative heat and mass flux from the free surface is provided by heat transfer from

the underlying substrate and conduction through the insulating liquid film; there is

thus also a temperature gradient normal to the fluid layer. The resulting temperature

gradients within the drop drive secondary thermocapillary surface flows which can be

unstable if the temperature gradient is large enough, although since the gradients

exist both parallel and normal to the free surface it is not clear a priori whether to

refer to them as Marangoni or hydrothermal instabilities [100]. The experimental

observations showing that the waves propagate towards the central (warmer) region

of the droplet suggest that the waves are principally hydrothermal in nature [105].

The observed sensitivity of the instability to the thermal properties of the sub-

strate is consistent with the picture above as the magnitude of the heat and mass

transfer rate from the surface and thus the temperature profile within the film are

constrained by the energy supply from the substrate below. It should be noted that

although the free surface instability documented in this paper shares some character-

istics with the steady and unsteady secondary flows documented in the coffee drop

problem [31] or in tear-ducts of wine [60], it is fundamentally different in origin. The

interfacial Marangoni stresses that drive the disturbances are not compositional in

nature since the spreading silicone oils are single-component liquids. The destabiliz-

148



ing Marangoni stresses arise from the coupled heat and mass transfer resulting from

evaporation. Although the thermal dependence of the material properties (especially

the surface tension) are essential in this instability, it is not simple to define a critical

capillary or Marangoni number since the spreading velocity of the droplet is con-

tinuously decreasing with time. Analysis shows that the parameter controlling the

temperature profile in the film and thus controlling the onset condition of the ther-

mocapillary instability is the dimensionless interfacial thermal resistance, R. Since

the relative magnitude of this interfacial resistance is inversely proportional to the

thickness of the liquid droplet, R increases as the film spreads and thins. When R

is larger than a critical value, Rcritica, infinitesimal disturbances on the surface of

the spreading drop grow spontaneously. More volatile liquids have larger values of R

in comparison to non-volatile liquids, due to the smaller latent heat of evaporation.

As a consequence, instabilities develop at larger film thicknesses for more volatile

materials. In our experiments, a non-volatile silicone oil did not show instability even

at thicknesses of order 1mm whereas a more volatile silicone oil became unstable at

thickness of approximately 20gm. From the definitions of R and Hm it can be seen

that R ~ A H, 2 and thus it would be expected that the non-volatile liquid film will

not become unstable until the thickness falls below approximately 0.4pm.
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Chapter 7

Characteristics of the moving

contact line for non-Newtonian

liquids

7.1 Introduction

In the previous chapters, we have presented the macroscopic and microscopic features

of spreading viscous drops on solid surfaces. Those studies, however, only focused

on Newtonian fluids. In many important commercial operations, the coating fluid

may be non-Newtonian and the rheological properties of the fluid can have very

important effects in the region of high shear rate close to the moving contact line.

Due to the complicated physics of this problem, until recently only relatively few

studies have focused on this challenging issue. However, the interest in this subject

is growing in the coating and paint industries. Polymer melts with high molecular

weight, dilute polymer solutions (e.g. Boger fluids), and photo-resist solutions in the

microfabrication process are examples of such fluids. The effect of the non-Newtonian

rheology of a fluid can have significant effect at the vicinity of the moving contact line

where the singularity in force occurs. For example viscosity of a shear-thinning fluid

would be reduced in the high shear rate region which increase the spreading rate.
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The shear-thinning effect close to the moving contact line was also used to remove

the singularity at the moving contact line [119].

In this chapter, we focus on the macroscopic and microscopic characteristics of

non-Newtonian fluids in the spreading process. We have chosen to investigate the

spreading of two families of non-Newtonian fluids:

Highly entangled polymer melts: This type of non-Newtonian fluid is used to

examine the effect of polymeric entanglements on the spreading of fluids on

solid surfaces. The impact of molecular length scales and entanglement close to

the contact line (in the high shear rate region) and the shape of the free surface

of the drop are of interest. Due to very high molecular weight, these fluids are

very viscous as we discuss in next section.

High viscosity dilute polymer solutions: These visco-elastic fluids are usually

referred to as 'Boger fluids' [13]. They are studied to investigate the effect

of visco-elasticity in the spreading process. Due to the large (and constant)

viscosity of these fluids, the Ohnesorge numbers for spreading of these fluids

are larger than one and shear-thinning effects are minimal. This means that

the effect of inertia is eliminated and the effect of elasticity on spreading process

can be determined. The spreading power-laws and the visco-elastic effects in

the vicinity of the contact line are of interest.

In this chapter, the basic physics of highly entangled polymer melts and Boger

fluids will be briefly reviewed. Also, available theories on spreading of these types

of fluids on solid surfaces are presented. Subsequently, the experimental results on

the spreading of these liquids on solid substrate are presented. For highly entangled

polymer melts, we have used a high molecular weight entangled polydimethylsilox-

ane (PDMS) and for the ideal elastic dilute polymer solution (Boger fluid), a high

molecular weight polystyrene dissolved in an oligomeric styrene oil (PS025) has been

used.
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CH 3  CH 3  CH3

CH 3 - Si-O -Si-CH 3

CH3  OH 3  n OH 3

Figure 7-1: The chemical formulation of the PDMS, trimethylsiloxy terminated.

7.2 Theoretical background on non-Newtonian

fluids

7.2.1 Rheology of the polymer melts

A polymer consists of one or more repeating subunits that are usually called monomers.

These units are connected to each other to generate a long chain. This long chain is

a macromolecule with a length that depends on the number of monomers. Along this

chain, many different side groups or substituents as simple as hydrogen or CH3 or as

complex as cyclic ring structures can be attached. These side branches will change

the properties of the polymers drastically. In this thesis, however, we restrict our

study of polymer melts to polydimethylsiloxane (PDMS) obtained from Gelest Inc.

As shown in figure 7-1, the repeating unit in this polymer is SiO(CH 3)2 with n as the

number of repeating subunits in the polymer chain. Since we are using a trimethyl-

siloxy terminated PDMS, the additional end groups are SiO(CH 3)3 and Si(CH 3 )3-

The molecular weight of the repeating unit mo is calculated to be 74 g/mole.

Flexible molecules permit rotational motions of one bond about another therefore

a large number of configurations is available. The distribution of configurations in

the melt can be modeled by a random walk. From this formula the time averaged

mean-square distance, (R2 )O, can be determined which characterizes the size of the

molecule in its most probable or equilibrium configuration:

(R2)0 = nb' (7.1)
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where n is the number of repeating monomers of the primary chain backbone and

bn is the length of an "effective" random walk step. This model is usually called the

freely jointed chain. However, clearly the bonds of a real macromolecule do not have

complete freedom to rotate because of the bond angle restrictions that depend on the

the orientation of a bond and its neighbors. Therefore, a new length scale (bn) larger

than the monomer length (1) is needed to represent an idealized random walk. Since

bond angle restrictions make (R2 )o more expanded, bn is larger than average bond

length, 1. Therefore, we can write:

(R 2 )0 = Ccnl2  (7.2)

where C, is the characteristic ratio given by Cc = (bn/l)2.

One can also define a fully extended length, Lmax, of the molecule, then another

effective random walk step size bK, which is also called Kuhn length, is defined as:

(R2)0 = LmaxbK (7-3)

The effective freely jointed chain of length Lmax would have NK = Lmax/bK rigid

links, with length of bK. Hence,

(R2)0 = NKb2 (7.4)

Since the bonds are not collinear in ordinary polymers, Lmax is less than nl. For

tetrahedral bonding angles:

Lmax = sin (arctan v'-) nI = 0.816nl (7.5)

By combining these equations, the number of Kuhn steps is given by NK = n(O.816 2 1C )

and the length of a Kuhn step is bK 1(C .0-816). Finally the mass of a Kuhn seg-

ment is MK = MW/NK. A very comprehensive explanation of these derivations can

be found in [71].

At this point, we would like to apply the preceding to the PDMS melts used in

this study. First, we used the rheology data taken from the Gelest Inc. manual for

PDMS and present the viscosity, r7, of the PDMS as a function of the molecular

154



z

0.01 0.1 1 10 100
10,

102

MC
03 0

a 10 -

10- _
lk.

10
102 10 104 105 106

M, [g/mole]

Figure 7-2: Relationship between the viscosity, n, and the molecular weight, M", of

PDMS (From Gelest PDMS Manual). The solid line is 71 - M 3 and the dashed

line is q ~ M,',. The dotted line is the linear scaling predicted by the Rouse model.

Symbols with up triangles indicates those PDMS used in our experiments in previous

chapters. Other triangles indicate Newtonian behavior of the fluids. The cross over

point at which the polymer molecules start to entangle is called Mc.

weight, M., in figure 7-2. For PDMS with low molecular weights, the viscosity has

a power-law relation with the molecular weight qo ~ Ml;3 shown with a solid line in

the figure 7-2. The Rouse theory [71] for monodisperse linear chains predicts a linear

relation in this regime as indicated by the dotted line. These fluids are used in our

experiments in previous chapters.

At a critical molecular weight, usually denoted Mc, this functionality crosses over

to a different power-law. In this region, the relation between the molecular weight of

the fluid and its viscosity commonly is expected to have the following form [11]:

q ~ m3;4 (7.6)

The regression to the data in this region, shown in figure ?? gives r ~ Mw. This
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power-law is shown by a dashed line in figure 7-2. The steep increase of viscosity with

the molecular weight is caused by molecular entanglements, which are restrictions on

molecular motion caused by the fact that molecules can not move through each other.

Thus, molecules surrounded by others can not move freely but must reptate past each

other. The theoretical power law exponent can be derived from reptation theory [71].

The theoretical Kuhn step expressions given above for the ideal Kuhn chain can

be applied to these PDMS fluids. From the available data for PDMS [71, 43], we

obtain m 0 = 74 g/mol, j = 2, and C, = 6.3. Therefore, we can calculate the number

of Kuhn steps, NK, and mass of the Kuhn step, MK, from the following relations:

Mw 0.8162 Mw
mo/j Co 350
mn0 C~

MK 2 = 4.73m 0  (7.8)
j 0.8162

The value of the mass of the Kuhn step for PDMS is thus calculated to be 350.

The ratio of n/NK is calculated to be 9.46 indicates that every Kuhn step contains

approximately 10 monomer molecules. The values of NK plotted in figure 7-3 are

calculated using equation 7.7. As shown, the number of Kuhn steps at cross over

point is Ne = NK ~ 80 which corresponds to the molecular weight of M, = 28000.

From theoretical calculation [10], for PDMS Mc = 28141 which is very close to the

experimental result.

The molecular weight between entanglements, Me, for PDMS is given by Larson

[71] and Ferry [43] to be approximately Me ~ 12263. According to these references,

Me is usually about a fifth to a half as large as Mc. Also theoretical results [10]

predicts Me = M,/2. According to our calculation, M, = 2.28Me which is within the

range of conventional estimates. The magnitude of Me depends on the "bulkiness"

of the polymer molecules and the extent of the excluded volume. The bulkier the

molecules are, the less free volume will be available for chain. The magnitude of Me

for PDMS is larger than most of the common polymers due to this effect.

The number of entanglements in the polymer is defined as Z = M,/Me. We also

show this values on the top axis of figure 7-3 to represent the number of entanglement
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Figure 7-3: Relationship between the viscosity, r7, and the Kuhn step, NK, and the

number of entanglements, Z, of PDMS. Data is reproduced from figure 7-2. The

last four data points are those which are highly entangled polymer melts used in this

chapter.
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for high molecular weight PDMS. As shown, the last four samples in this data set

are fully entangled molecules (10 < Z < 35). From the regression to the data,

o = 3.32 x 10--1 4 M and m7 = 0.06Z 3. Thus, we have used these fluids as working

fluids in our experiments. In the next section, previous theoretical work on the

spreading of entangled fluids will be reviewed.

7.2.2 Steady spreading of polymer melts

In chapter 3, the spreading of Newtonian fluids on solid surfaces was reviewed. Ex-

perimental measurements show that unentangled polymer melts with small molecular

weights behave as Newtonian fluids except at very high shear rates. A perfectly wet-

ting non-entangled polymer melt would thus be expected to follow the spreading

power-laws derived in chapter 3.3 and the HVT law (equation 3.58). The effects of

drop size and viscosity should scale in the same way as other Newtonian fluids and the

different regimes of spreading still exist. However, earlier experiments by Schonhorn

et al. [101] for the spreading of polymers with high molecular weights on solid sub-

strates have demonstrated totally different behavior compared to Newtonian fluids.

The measured dynamic contact angle did not have the same power-law relation as

Newtonian fluid (the HVT law, table 3.1). Also it was reported by several groups

[83, 99] that new foot-like structures have been detected close to the moving contact

line for PDMS which were not present for Newtonian fluids. Polymer melts with

high molecular weight (highly entangled molecules) may have significantly different

behavior close to the moving contact line where the high shear rates lead to a loss of

entanglements. The non-Newtonian behavior of these fluids can have drastic effects

on the spreading rate and shape of the free surface of the drop especially in the vicin-

ity of the moving contact line. In this section a review of the theoretical predictions

on the spreading of the highly entangled polymer melts is presented.

First, let's revisit the idea of slip in the vicinity of the moving contact line. In

presence of slip, for a simple shear flow with a velocity only in x direction (figure

7-4) using the Navier slip condition, the shear stress at the wall is proportional to the

velocity at the wall :
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islip Substrate

Figure 7-4: Velocity profile close to the moving contact line with slip at the wall.

r, = Ku(O) (7.9)

where K is the coefficient of proportionality and is independent of the molecular

weight, M, of the polymer melt [16]. As mentioned in the previous section, the high

viscosity of polymer melts is caused by entanglement between the polymer molecules

which must be absent for the molecules immediately adjacent to the smooth surface.

Since the effect of entanglement is not present, we can expect K to scale as:

K = ?7mon (7.10)
fmic

where qmon is the viscosity of the monomer and t mic is the molecular length scale

as defined before (equation 3.49). From the definition of shear stress, we know r =

p9au/&y. The slip length flip is defined as [16]:

u(0) (7.11)

OU) y=0

Putting together equations 7.9, 7.10, and 7.11, one obtains the following relation for

the slip length:

fsu, = emic 7 (7.12)
'77mort
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we can rewrite the equation 7.12 as a function of degree of polymerization, NK. It

is known [16, 71], q ~qmon(NK/N 2 ) where Ne is number of Kuhn steps at the cross

over from non-entangle to entangled region. Therefore equation 7.12 can be written

as:

fShp =mic = emicZ 3 Ne (7.13)
N 2

It is noted by Bruinsma [17] that the mobility of the polymer molecules

[29] close to the surface can be different depending on their location in the bulk

to close to the contact line. Bruinsma made a modification to equation 7.13 to in-

clude the effect the mobility. If M is the ratio of mobility of polymer monomer to

the mobility of the polymer molecules on the surface, then:

1si Ifi N3  (7.14)
M N,

According to the estimates done by Bruinsma [17], if M< N /2 /Ne then slip regimes

assumption is valid and the thickness of the foot can be calculated from equation 7.14.

We will show later that the thickness of the foot is of the order of £, i. However if

N3 2/Ne <M< (NK/OaNe) 3/ 2, there exists a new regime that includes the reptation

and a local slip flow in the foot. The thickness of the foot in this case is of the order

of the radius of gyration of the polymer melt. One must note that the mobility M

can only be measured experimentally and we have not been able to find any data in

the available literature for its value.

Now that we have a definition for the slip length, we return our attention to

the spreading process. Using the lubrication analysis and applying the velocity slip

boundary condition at the wall, the average velocity inside the spreading drop can be

written as [16]:

'a = dp-h fsii + -) (7.15)

were p is pressure, and h is the thickness of the drop. Far from the contact line, where

h >> slip, we can neglect the effect of the slip and the relation for velocity at the bulk

of the spreading drop becomes:

1 dp h2

'a = (7.16)
iq dx 3
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Figure 7-5: The schematic of the important features close to the moving contact line

of polymer melts.

If we substitute p = -od 2 h/dx2 , then the well-known relation of equation 3.25 will

be recovered. The solution to this equation is a spherical cap as mentioned before.

Closer to the moving contact line, the thickness of the drop is much smaller than

the slip length (h < fei,). In this case, the average velocity, U, can be calculated by

the following relation:
a = h (7.17)
77 dx 3

One can rewrite equation 7.17 by using Ca = Ti/- as:

Ca = fsliph dx 3  (7.18)

Solution to equation 7.18 gives the local profile of the drop near the moving contact

line. If X = R - x is the distance from the moving contact line, then one obtains:

8Ca 1/
h = (a X3/2 (7.19)

or in dimensionless form:

h/fslip = ~3 /2 (Xl/fs,)3/2 (7.20)
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This relation shows that in the region where h < 1ii, the free surface shape

of the spreading drop does not follow the spherical cap shape which is the solution

to the macroscopic part of the drop. Therefore there is a new feature close to the

moving contact line which is not as thin as the precursor layer but thinner than the

slip length which can be as big as tens of microns. This region is called the "foot"

[16, 30]. The length of the foot region, f, is defined as the distance from the moving

contact line to the point where h = fl. Thus,

1? = fslip C (7.21)

As seen in equation 7.21, ff is proportional to the slip length, fal, and it is

inversely proportional to Ca/ 3 . Since the slip length increases with the molecular

weight of the polymer melts (equation 7.13), therefore the length of the 'foot' region

increases for higher molecular weight polymers. Since sip ~ Z 3 and Ca - r70 ~ Z3,

therefore ~f ZI/3

7.2.3 Boger fluid

'Boger fluids' are named after David Boger who developed them as a class of model

elastic liquids in the late 1970s [13]. These fluids are very important for understanding

the effects of elasticity on flow of non-Newtonian fluids [76]. Boger fluids are dilute

polymer solutions with a nearly constant shear viscosity, but highly elastic behavior.

This is achieved by dissolving high molecular weight polymers into a viscous Newto-

nian solvent. The viscous Newtonian solvent eliminates shear-thinning effects, whilst

the high molecular weight polymers provide the elastic behavior of the solution. The

rheological properties of Boger fluids can be approximately described by the elastic

dumbbell model [71]. The first Boger fluids were made by dissolving polyacrylamide

(PAA) in corn syrup and water mixtures. However, experiments showed that PAA

degrades very fast, is polydisperse, and it is a polyelectrolyte which makes the solution

very sensitive to the ionic strength of the solvent [3].

Several other Boger fluids have been formulated since 1980. The most commonly

used are those based on polystyrene and polyisobutylene. Having linear and un-
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charged molecules, these systems are resistant to degradation and electrolyte effects.

For our experiments, we have used a polystyrene Boger fluid. These are formulated

from anionically polymerized, monodisperse high molecular weight polystyrene dis-

solved in a low molecular weight styrene resin. The characterization of these fluids

has been a focus of several recent works in non-Newtonian fluids. A detailed study

of shear and extensional rheology and modeling of this fluid can be found in [98, 3].

As noted previously, spreading of Boger fluids are of interest for applications

involving elastic fluids in paint and coating industries. However, few published works

are available that deal with the spreading of the viscoelastic fluids. Most of these

studies are experimental or numerical, and they focus on the effect of fluid elasticity on

global evolution and stability of the axisymmetric spreading of fluids during the spin

coating process [46, 14]. In these works, the authors found no qualitative differences

between the long term dynamic response of the Newtonian and viscoelastic films.

This is partly because the fluids studied were dilute polymer solutions and elastic

effects are relatively unimportant. However in many applications (for example spin-

coating), the solvent is volatile and as the experiment proceeds and the area of the

coated film increases, the solvent evaporates and the film becomes increasingly elastic

in nature as the concentration increases. These evaporative losses can dominate the

spreading at long times and significantly affect the final thickness of profile of the

coated film [72].

Work by Spaid & Homsy [108, 109] focused on the drop profile in the vicinity of the

moving contact line for viscoelastic fluids. Their numerical simulations were shown

the effect of elasticity on the free surface of the drop for both outer and inner regions

of drop by performing perturbation theory for the first order effects of elasticity. The

effect of fluid viscoelasticity on the local evolution of the shape of the free surface and

the stability of this motion is shown; however no experimental measurements of the

free surface profiles for viscoelastic fluids at the vicinity of the contact line exists.

In the following section, we will present results on the spreading of highly entangled

polymer melts and Boger fluid on a solid surface. The characteristics of the free surface

especially in the vicinity of the moving contact line is investigated. These results are
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compared with available theoretical predictions.

7.3 Results and discussion

The geometry of the spreading experiments in this chapter are the same as the ge-

ometry is explained in chapters 3 and 4. We have used the psLFI microscope as

the measurement system. The working fluids are high molecular weight silicone oils

which serve as entangled polymer melts (10 < Z < 35) and a polystyrene Boger fluid

denoted PS025. It was shown earlier in this chapter that the silicone oils are highly

entangled polymer melts. The PS025 is a polystyrene based Boger fluid that has 0.25

wt% of high molecular weight polystyrene dissolved in a low molecular weight styrene

resin. The preparation of PS025 is explained in detail by [3].

These fluids are deposited on a previously cleaned silicon wafer (same as those

used for experiments in chapter 3) by using a needle tip. Due to the high viscosity

of these fluids, the force required to push the fluids through the needles were so high

that our syringe pump could not provide it. The volume of the drop can be adjusted

by using a smaller or larger needle tip. The drop volume is measured by taking a

picture of the drop before depositing it on the surface. The silicon wafer was placed

on a XY translation stage. After the drop was deposited on the surface, the free

surface profile of the spreading drop was scanned repeatedly as it spread by utilizing

the XY stage and psLFI system. Using this method we were able to measure the

evolution of the drop thickness and its radius, simultaneously.

7.3.1 Highly entangled polymer melts

To identify the microscopic features at the vicinity of the highly entangled polymer

melts (Z > 10) (for simplicity from here on they are called polymer melts), we have

defined the expected features on the schematic of the spreading fluid in figure 7-5. In

the presence of the 'foot' region at the moving contact line, the distance between the

point where the moving front is located by the psLFI system and the inflection point

at the free surface of the fluid (located by numerical differentiation of the measured
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Figure 7-6: The radius of polymer melt drop, R, as a function of time, t, for different

sizes and viscosity of polymer drop.

profile; see chapter 3) is called ff. The thickness of the drop at the inflection point is

called hf as shown in figure 7-5.

We used four different polymer melts with viscosities ranging from 300 Pa s <

mrO < 2500 Pa s. The rheological properties of these fluids are given in appendix

A. The velocity of the contact line, k, is measured by observing the radius of the

drop as a function of time and using a power-law regression and differentiating this

expression with respect to time. It is important to note that in the case of polymer

melts, we consider the radius of the drop as the distance from the center of the

spreading drop to the measured inflection point. The results for the radius of the

polymer drops as a function of time, for different drop sizes (different #) and different

viscosity (different Z) are shown in figure 7-6. For large drops 0 > 1, the effect of

capillarity is negligible and the spreading of the drop is driven by the gravitational

force and resisted by the viscous force. As noted in chapter 3, the resulting power-
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Table 7.1: Power-laws for viscous-capillary and gravity current spreading droplet of

polymer melts on smooth solid surface. Comparison between the analytical spreading

results and the experimental spreading results.

law for Newtonian drops with # > 1 are R ~ t/ 8 . Also for small drops, q < 1,

the radius has the familiar power-law relation of R ~ t-/ 10 since the gravitational

force is negligible. It is noteworthy that since we choose to define the radius in such

way to neglect the foot region, we eliminated the effect of the entanglement in the

spreading and as a result, the spreading of the drops have the same relations as for

the drop of Newtonian fluids. The calculated velocity will be used in the calculation

of the capillary number, Ca = qoP/a-. We can also show these power-laws in the

dimensionless form of R* ~ At*" where for gravity current:

R* = , = ,A ~' -r3 / 8 9/8, n 1/8 (7.22)
Leap Pl/pgcap

and for capillary-viscous:

R* R , t* = , A ~ ?r/I 10 g09/10 n - 1/10 (7.23)
fcap Pfcap/t-

The results for these constants from theory (chapter 3, table 3.2) and experiments

is given in the table 7.1

After careful measurement of the free surface of the polymer melt drops close

to the moving contact line, we were able to detect a feature which was similar to

the precursor layer (chapter 4) but much thicker than the precursor layer (- 10pum

rather than 100nm). In figure 7-7(a), a profile of a spreading drop (Z = 25) on

a silicon wafer is shown. The left vertical axis is the thickness of the drop h in

micrometers. The right vertical axis is the fringe visibility, m, of the drop dur-

ing the measurement using psLFI microscope. As shown, the value of m decreases
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Z Oh # Analytical result Experimental result

25 3683 2.9 A 3.97, n= 1/8 A = 3.82, n = 0.121

25 6554 0.9 A 1.24, n = 1/10 A = 0.91, n = 0.097

35 16000 1.8 A = 2.30, n = 1/8 A = 1.31, n = 0.122
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Figure 7-7: (a) The profile of a drop of polymer melt (Z = 25, Ca = 1.3 x 10-3,

# = 1.2) and the fringe visibility, m, as it is measured from the moving contact line

to the center of the drop. The profile of a polymer melt drop at the vicinity of the

contact line, (b), for the same drop and (c) Ca = 1.01 x 10-, 0 = 1.8, Z = 35 . The

thin line shows the numerical differentiation of the free surface profile.
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Figure 7-8: The length of the foot region as a function of the capillary number. The

experimental data is shown by (.). The best regression fit (solid line) to this data

is lf = 7.2 x 10-0-7Ca-0-7. The theoretical prediction (Dashed line) by [16] gives

S0 1 /3.ff ~ Ca-1/

rapidly at the point that the drop is first detected. In contrast to spreading of

unentangled polymers (Z < 1, cf. chapter 4), no precursor film was seen for this

system. However, a new feature is present very close to the moving contact line. In

figure 7-7(b-c), we present examples of these features in an enlarged region close to

the contact line that, following [16], we call the 'foot'. The thin line is the numerical

differentiation of the free surface profile (dh/dx). The length of the foot, £f, is the

distance from the point the fluid is detected and the inflection point at the free surface

of the drop (location of the maximum slope of the free surface).

To compare these results with the theoretical prediction, we plot the length of the

foot £f as a function of capillary number in figure 7-8. According to equation 7.21, the

length of the foot has a power-law relation with the capillary number (ef ~ Ca-1/3)
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Figure 7-9: The maximum thickness of the foot, hf, as a function of the viscosity of

the polymer melt,rq. The theoretical prediction of the slip length, e,8 ip, is presented

by the thin solid line. The thick solid line is the best fit to the experimental data.

The top axis is the number of entanglements, Z.

169



10-

-, 10 - -

10-5

10-6
10 100 10 102 103 104

10O[Pas]

Figure 7-10: The comparison of the length of the foot region, £f, and the length of the

precursor layer, Lp, (from chapter 4) as a function of the viscosity, 'qo. The arrows

indicate the direction of increasing Ca (or decreasing time).

The thick line in this figure is the best regression fit to the experimental data (.) which

shows a relation as ff = 1180fmicCa-0.7 where £mic is the microscopic length scale of

the fluid as defined in equation 3.49. The thin dashed line is the predicted relation

(equation 7.21) for polymer melts. As shown, the length of the foot decreases when

capillary number increases, but the power-law is much faster than the one predicted

by the theory.

In figure 7-9, the measured thickness of the drop at the inflection point, h1 , as a

function of viscosity is presented. According to the theory (equation 7.15), the cross

over from the foot region to the macroscopic spherical cap happens at the thickness

which is in the order of the slip length of the polymer melt, e81ip. In order to examine

this prediction, we have also plotted the calculated slip length from equation 7.13

as a thin solid line in this graph. According to the equation 7.13, the slip length is

a linear function of the viscosity of the polymer melt as fip = emicqO/,mon where

71mon = 0.001 Pa s for PDMS. Along the top abscissa, the number of entanglements

Z is also presented for these fluids. By fitting a power-law function to these data

point, the best fit was found to be hf = 16.23fmic 0.98 . To employ the modification
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to equation 7.13 which is equation 7.14, we have used the front factor of the fitted

function and the theoretical results to calculate the mobility relation from the offset

in the data. The condition for the validity of Brochard & de Gennes theory is M <

Z 3/ 2N,/ 2 according to Bruinsma [17]. The range of this parameter for these fluids is

378 < Z3/2NJ/2 < 1255. From our experiments, by dividing the fel relation form

the theory to the fitted function for hf, we found M= 7.5. Validity of the condition

of the slip regime [17] is confirmed since M< Z 3/ 2Nj/ 2 for these polymer melts.

Finally to review the length of the structure for highly entangled polymer melts

and non-entangled polymer melts, they are presented together in figure 7-10 as a

function of the viscosity of the fluid, To. For unentangled polymer melts (low viscosity,

mo < iPa s), which are represented by the rectangles in this figure, the length of

the the structure close to the moving contact line (precursor layer), Lp, is inversely

proportional to the viscosity as shown in chapter 4 since Lp ~ Ca 1 . The length of

the foot, ff, for the highly entangled polymer melts, which are shown by the solid

circles, increases when the viscosity of the fluid increases ff ~ £ -.

The gap between these data sets are due to the fact that for the intermediate

viscosities, the length of adiabatic precursor films, if it exists, are smaller than the

lateral resolution of our optical system and it is not detectable with our optical system

(~ 10- 6 m). As shown before, the foot structure for polymer melts only appears for

highly entangled polymers (Z > 10). For fluids with Z < 10, the molecules of the

intermediate viscosity fluids are not highly entangled to generate the foot (figure7-3).

The cross over point between the solid lines (fit to the experimental data) moves as

times increases. This is due to the different functionality of these length with time.

As shown in chapter 4, the length of the precursor film is inversely proportional to

Ca. Therefore Lp ~ U-1 ~ tr.9.

7.3.2 Boger fluid

In the previous section, the effect of entanglement of molecules on microscopic struc-

tures at the moving contact line was investigated. In this section, we present the char-

acteristics of the spreading of Boger fluids on a silicon wafer substrate. An important
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note about this ideal elastic dilute polymer solution (PS025) is that it partially wets

the silicon surface. Therefore unlike silicone oils, for which the equilibrium contact

angle 0, is equal to zero, there exists a non-zero equilibrium contact angle. Existence

of a non-zero equilibrium contact angle affects the microscopic features of spreading

[69]. In chapter 4, it was noted that precursor films are only present for fluids that

wet the surface completely (S >> O,O ). This affects the universal spreading law (the

HVT law) as this relation is also for the perfectly wetting fluids. A modification to

this law is needed for fluids with a finite equilibrium contact angle. More on this

subject will be discussed in the results section. Previous published work on these

solutions [74] have shown a different behavior compared to the HVT law 3.31.

To investigate the effect of viscoelasticity on the spreading phenomena, the first

logical step is to run a bench mark experiment on a Newtonian fluid (non-viscoelastic)

with very similar physical properties to the Boger fluid as a reference for our experi-

ment. The ideal fluid is the oligomeric styrene which is used as a solvent to formulate

the PS025 Boger fluid. The value of viscosity of oligomer oil is 46 Pa s. However,

it is weakly elastic (Aps ~ 2.5 x 104 s) due to the lack of the large molecules of

polystyrene.

To measure the surface tension of the oligomer oil and the ideal elastic dilute

solution (PS025), we have performed a tensiometry test using a Wilhelmy Platinum

plate on our tensiometer (Kriiss, K10). The plate is lowered to touch the fluid surface

and the force exerted by the fluid on the plate is measured as a function of time. This

force is converted to the surface tension and it is measured for PS025 and the oligomer

oil of these fluids as a function of time. This is because the fluid meniscus takes a

long time to evolve to its equilibrium configuration and reaches it static form. After

a long time the surface tension stay constant and it is the equilibrium surface tension

that is used through out this research.

The result of this experiment is presented in figure 7-11. The solid line is an

exponential fit to the oligomer oil result and the dashed line is an exponential fit to

PS025 result. The resulting equations for the regression to the data are :
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Figure 7-11: Evolution of the measured surface tension of PS025 Boger fluid (f) and

the oligomer oil (o) as a function of time when it is measured using a Wilhelmy plate

tensiometer.
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0Oligomer 0.036 - 0.031exp(-t/263) (7.24)

gBoger 0.036 - 0.031exp(-t/555) (7.25)

The characteristic time to approach steady state are found from these exponential

fits are 263 s for the oligomer oil and 555 s for PS025 Boger fluids. This means it

takes almost twice as long for PS025 to approach the steady state value of surface

tension as for the oligomer oil. This difference on the characteristic time in wetting

the Wilhelmy plate can possibly be the source of generation of the thin film in front of

the moving contact line of PS025 Boger fluid as we will discuss later in this chapter.

Two drops of the oligomer oil were deposited on the silicon surface and the evo-

lution of their radius as a function of time were recorded. As noted in chapter 3, the

effect of drop size on the spreading of a viscous drop is very important, therefore a

range of drop volumes were chosen. The characteristic drop size for these drops are

# 0.65 and 2.3. The capillary length of this fluid is Ecap = -/pg = 1.9 mm. In

figure 7-13, the evolution of the radius of these drops as a function of time is pre-

sented. The best fit for the data of the largest drop (0 = 2.3), shows that this drop

is in the gravity current region of the spreading diagram (figure 3-2) and as expected

the power-law relation of this drop is R = 3 x 10 3 tO.12 8 . For the other drop, the

power-law is R = 10 3 t- 1 as expected since this drop is small and are in the spherical

cap region of spreading diagram. Using the dimensionless forms for R and t used in

equations 7.23 and 7.22:

R* = 3.05t*O. 12 8 (7.26)

R* = 1.05t*OlO0 (7.27)

These regressions (solid lines) are carried out for the data of the earlier stages (t <

5000s) of spreading.

Since the oligomer is not a perfectly wetting fluid on the silicon surface, the drops

stopped spreading at the time they reach their ultimate equilibrium contact angle.

This deviation from the power-laws in the spreading process are also shown in the
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Figure 7-12: (a)The evolution of the free surface (h) of a spreading droplet of oligomer

styrene oil, <$ = 0.65, on silicon substrate at t = 500, 5000, and 50000 s. (b) The same

profiles are shown very close to the contact line to the contact angle comparison. The

contact angle decreases with time as expected. No precursor film is observed.
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Figure 7-13: The spreading of the oligomeric styrene and PS025 Boger fluid on silicon

surface. The solid symbols represent the oligomer and the hollow symbols represent

PS025 Boger fluid. The lines are best fit to the early time data before equilibrium

approached for the oligomer (solid lines) and PS025 (dashed line). Spreading stops

after the drops reach their equilibrium contact angle.

figure 7-13. For small drops with the spherical cap shape, we showed in equation 3.32

that Q 2 7rR30a/4. Thus, for fluids with an equilibrium contact angle , a minimum

volume is required that leads to 0 a > 0,. Therefore there is a limitation for the volume

(or <5) for these drops to spread on the surface.

The evolution of a drop of oligomer is shown in figure 7-12. The global evolution

of the drop is shown in figure 7-12(a) as a function of time. The thickness of the

drop decreases and its radius increases with time (as it is shown in figure 7-13 as

well). In figure 7-12(b), these profiles are replotted by setting the coordinate origin

(X = 0) at the moving contact line. As seen in this figure, the dynamic contact angle

decreases with time as is expected from previous discussions. Also no precursor film
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is observable in front of the moving contact line. This is due to the fact that the

oligomer is not a perfectly wetting fluid on a silicon surface. It was indicated before

that an important condition for existence of the precursor film is a perfectly wetting

fluids [30].

To further investigate the evolution of the dynamic contact angle of the spreading

of the oligomer of silicon surface, we have plotted the measured contact angles of the

drop as a function of capillary number in figure 7-14(a). These measurements are

compared with the HVT law which is presented with a solid line in this figure. As it

is shown, for low capillary numbers, the dynamic contact angle, 0a, deviates from the

HVT prediction (for a perfectly wetting fluid, Oe = 0) and becomes almost constant

approaching 0e ~ 0.04rad. For the spreading of fluids with non-zero equilibrium

contact angle, the following modifications to HVT law have been suggested [69]:

03 _ 03 = K 1Ca (7.28)

Oa(02 -- 02) = K 2Ca (7.29)

where K1 and K 2 are constants depend on the slip length [69]. We have plotted our

results using both of these relations in figure 7-14(b). The regression to the the data

for equation 7.28, gives K1 = 11.6 ± 0.3 with the confidence level of R 2 = 0.999. The

regression to the data for equation 7.29, gives K 2 = 13.2 ± 5.4 with the confidence

level of R 2 = 0.997. Due to the small equilibrium contact angle for the oligomer,

Oe ~ 0.04 rad, the difference between these models are negligible.

From the spreading experiments of the oligomer, we confirmed that the behavior of

these fluids is like the low viscosity silicone oils as they follow the spreading regimes

depend on the size of the drop (#). When fluid is not perfectly wet the surface,

evolution of the dynamic contact angle does not follow the conventional HVT law.

However in figure 7-14, we showed that using the modified versions of HVT law

(equations 7.28 and 7.29) this behavior can be captured as well.

Now that we have quantified the behavior of the oligomer oil, the spreading results

of PS025 Boger fluid are presented. The drops of PS025 Boger fluid were deposited
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Figure 7-14: (a) The measured dynamic contact angle, 0 a, shown by (.) as a function

of capillary number. The solid line is the HVT law for the comparison. (b) represents

the same data by using 0' - 0' (.) and 6a(92 - ) (A) as suggested by [69]. The

solid lines are the best regression fit to the data.

178

I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



on a clean silicon wafer and the evolution of their radius and thickness as a function

of time is measured. In figure 7-13 the spreading of PS025 with different sizes of

# = 2.0 (o), and q = 3.1 (0) are shown. The smaller drop spreads much slower than

the drop of similar size of oligomer fluid. A regression fit (dashed line) to the data

gives R - t0 -06 which is slower than the power-law for Newtonian fluids of the same

size. The larger drop however, spreads at a faster rate in earlier stage of spreading,

R ~ to. 126 , but the rate of spreading soon decreases and the drop spreads at a slower

pace. Both of these drops stop after their contact angle reach the equilibrium value in

the same way as the oligomer oil. It is important to notice that PS025 Boger fluid is

not a perfectly wetting fluid on silicon surface as well and when it reaches a non-zero

equilibrium contact angle, the spreading process stops.

The effect of capillary number on spreading of PS025 Boger fluid is shown in figure

7-15(a). The symbols represent experimental measurements of the dynamic contact

angle, 0a, as the drop of a PS025 Boger fluid (0 = 2.1) spread on a silicon surface. The

solid line represent the HVT law. The values of the measured contact angles are less

than the values predicted by HVT law for higher capillary numbers but as the drop

spreads and the capillary number decreases, the contact angle approaches a constant

value of 0e = 0.057, asymptotically. Once again we have used the modification to

the HVT law from equations 7.28(e) and 7.29 (A) to further analyze this behavior

in figure 7-15(b). The solid lines are regression fits that give 03 - 03 = 34Ca1 1 with

the confidence level of R2 = 0.988 and Oa(02 - 2) = 90Ca 2 with the confidence level

of R 2 = 0.985. These results are similar to those of oligomer fluid however the front

factor and the power are larger than the oligomer fluid. This can be due to different

values of exponents for PS025 and oligomer oil.

To further investigate the dynamic contact angle of PS025 Boger fluid, the region

close to the moving contact line is shown in figure 7-16(a). The profiles of the drop

during the spreading process are plotted in this figure. The last profile is the static

shape of the drop after it reaches the equilibrium shape. As seen in this figure, at the

earlier stages of spreading, there exists a film of liquid that spreads in front of the

macroscopic profile of the drop. This observation is somehow unexpected since the
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Figure 7-15: (a) The measured dynamic contact angle, 0,, shown by (0) as a function
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by [69]. The solid lines are the best regression fit to the data.
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existence of this film is not predicted by theory. This film can not be the precursor

film because PS025 Boger fluid does not perfectly wet the silicon surface and thus is

not expected to produce a precursor film. Also the thickness of this film (~ 5pm) is

much larger than a typical precursor film (~ 100 nm) as shown in chapter 4. The

PS025 Boger fluid is a dilute polymer solution and the effect of entanglement, which

is important for highly entangled polymer melts, to generate the "foot" in front of

the moving contact line does not apply to this problem.

As it is shown in figure 7-16(b), the length of this foot-like film is decreasing

when capillary number decreasing. To see this relation clearer, the length £j and the

thickness hf of this film is plotted as a function of capillary number in figure 7-17.

The length of this film is the distance from the inflection point at the drop to the

moving contact line (the point that the fringe visibility m drops rapidly ) which is the

same method that was used for the highly entangled polymer melts. The thickness of

this film hf is the average thickness of the film along its length. The average thickness

of the film is approximately constant for all of the capillary numbers while its length

decreases as capillary number decreases.

Since PS025 Boger fluid is a viscoelastic fluid, another possible source of this

feature can be the effect of viscoelasticity close to the contact line. To characterize

this effect, we define the following parameters:

DeA - (7.30)
tspread R

Wi = (7.31)
hf

where De is the Deborah number which is the ratio of the longest relaxation time

of the fluid A to the characteristic time scale of the flow along the radius of the

drop, which is R/R . The Weissenberg number, Wi, is defined as the relaxation

time multiplied by a characteristic shear rate of the flow. In the film the shear rate is

R/hf for shear flow where R is the average velocity of the moving front. The Deborah

number and Weissenberg number are dimensionless parameters that can be used to

identify the effect of viscoelasticity in the flow. If De -+ 0 the effects of viscoelasticity
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Figure 7-16: The evolution of the free surface of PS025 Boger fluid at the vicinity of
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moving fronts.
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at extensional flows are negligible and if Wi -+ 0, the effect of viscoelasticity in shear

flow is negligible and the fluid behaves like a Newtonian fluid. If De - 0(1) or

Wi ~ 0(1), the non-Newtonian effects become important. Using the available data

for PS025 (A = 4 s) from [98], Deborah number and Wissenberg number are calculated

for this process.

These numbers along with the corresponding capillary number is given at the

legend of figure 7-16(a). For this spreading process, the values of Deborah number

and Weissenberg number are much smaller than one. The largest Deborah number

is De = 3 x 10- and largest Weissenberg number is Wi = 0.16. Thus, there is no

evidence that the non-Newtonian effects can cause the the appearance of this thin

film.

There is another possible source for the generation of the foot-like film. If we

look back to the rate of spreading, figure 7-13, for the oligomer oil and PS025 Boger

fluid, for drops with approximately the same size, Boger fluids spread slower than the

oligomer oil.

Earlier in this section in figure 7-11 the results of dynamic surface tension mea-

surement for Oligomer oil and ideal dilute solution was presented. The solid line is an

exponential fit to the oligomer oil result and the dashed line is an exponential fit to

PS025 result. The relaxing time scale found from these exponential fits are 263 s for

the oligomer oil and 555 s for PS025 Boger fluids. This difference on the relaxation

time in wetting the Wilhelmy plate can possibly be the source of generation of the

thin film in front of the moving contact line of PS025 Boger fluid.

It is possible that at the beginning of spreading process, a thin film of the oligomer

fluid separates itself from the dilute solution of PS025 and advance in front of the

moving front of PS025. Thus early in the process there would be a film in front of

the moving front. However, since the oligomer oil is not a perfectly wetting fluid

on silicon wafer, and its spreading rate decreases with time, the bulk of PS025 fluid

spreading on a prewetted surface of the oligomer oil eventually catches up with the

film until an equivalent contact angle is approached 7.3.2. This c
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Boger fluid. The top figure is early in the spreading process and a foot structure

exists at the moving contact line. The the equilibrium state with no foot is presented

in the bottom figure.
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Chapter 8

Conclusions

The development of high resolution measurement techniques with high lateral and/or

vertical resolution over the last 30 years has provided a major breakthrough in the un-

derstanding of microscale phenomena in various subjects in science. Techniques such

as interferometry, Atomic Force Microscopy (AFM), Scanning Electron Microscopy

(SEM), confocal microscopy, X-ray diffraction, and ellipsometry have been widely

used in material science, surface science, physics, and biology. Concurrent devel-

opments in computers (hardware and software) especially assisted the evolution of

these instruments, not only as a reliable control systems, but also as data acquisition

systems that can acquire accurate experimental information in very short spans of

time (high sampling rates). Optical systems have also made great contributions to

these subjects. New precision production techniques in optics industry have enabled

researchers to use high quality optical elements. Optical techniques are of special

interest for investigations of phenomena which are sensitive to external disturbances.

For example to quantitatively understand the physics of fluid flow, a non-invasive

measurement system is desired to in order to keep the flow undisturbed. The work

presented in this thesis takes advantage of modern optical measuring techniques and

data acquisition systems to quantify the dynamics of spreading liquids.

The capabilities of the optical systems used in our experiments for characterizing

the free surfaces of fluid films were demonstrated in chapter 2. The confocal surface

metrology system (LT-8110, Keyence Inc.) was shown to be a non-invasive measure-
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ment system with lateral resolution of 7pm and vertical resolution of 0.5pum. This

system is based on the confocal principle and is calibrated to measure changes of

height on a surface with a response time of ~ 2.2ms. It was shown that this sys-

tem can be used in experiments when macroscopic features such as the radius of a

spreading drop, or the thickness of the drop (especially far from the contact line) are

of interest. The large working distance (25mm) and wide dynamic range of measure-

ments in the vertical direction (±1mm) combined with the fast response time, makes

the confocal technique a useful tool in our experiments.

The other optical system which was widely used throughout this thesis is a phase-

shifted interference microscope which was based on the phase-shifted laser feedback

interferometry principle [87]. It was shown that by using a phase-shifting algorithm,

the lateral resolution of the feedback interferometer could be improved drastically.

Our calibrations showed that the system has a lateral resolution of 0.9pum (diffraction

limited) and vertical resolution of 10nm. The dynamic response of this system was

shown to be ~ Ims. The broad dynamic range of this system enables us to not only

investigate the microscopic structure of the moving contact line but also simultane-

ously measure the thickness of transparent liquid samples with thicknesses of up to

100lm, in sharp contrast to other high resolution optical systems such as ellipsometry

which has a resolution of tens of Angstroms but the maximum measured thickness of

approximately 500 A.

The steady spreading of perfectly wetting fluids (S > 0) on smooth solid substrates

was presented in chapter 3. We have shown that the physical properties of the fluid,

such as viscosity, surface tension, and density, as well as the characteristic size of

the drop (as quantified by the dimensionless scale < = (Q/wr)1 / 3 /f,) have profound

effects on the spreading process. To compare the resisting force of spreading, we

introduced the Ohnesorge number Oh = y/ pRo- x R/h, which quantifies the ratio

of the viscous time scale for spreading to the inertial time scale in the presence of the

capillary effect. If Oh < 1, inertia is the dominant resisting force and conversely if

Oh >> 1, then the viscous force is the dominant dissipating force. The shape of the free

surface of the spreading drop, R(t), and the rate of spreading of drop, R(t), depend
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on the relative importance of these parameters. We have separated these regimes into

three major categories for spreading of viscous drops. For large viscous drops, 0 > 1

and Oh > 1, the effect of gravity is important and the gravitational force becomes the

main driving force in the spreading with viscous forces resisting the spreading of these

gravity current. If the viscous drop is small (0 < 1, Oh > 1), then the gravitational

forces are negligible and capillarity acts as the driving force. Due to the shape of drop

in this case, this regime of spreading is usually called the spherical cap regime. For

drops with small Ohnesorge number it is inertia, instead of viscosity, that initially

provides the resistance to the spreading. However, the Ohnesorge number increases

with time and eventually viscosity becomes the dominant resisting force. We have

shown that drops in all of these regimes ultimately spread to have the shape of an

approximately constant film of fluid except in a region close to the moving contact line

(on a lateral distance of order of cap). This type of spreading is called the pancake

regime due to the shape of the drop. All of these regimes are summarized in figure

3-2.

We used scaling analysis and direct solution of the governing equations to show

the power-law relations that connect the radius of spreading drop and time. We

have shown that each of these regimes has a different power-law exponent due to the

interaction of different driving and resisting forces. For the gravity current regime,

this relation was found to be R - t/, however for the spherical cap and the pancake

regimes, the power-law relations become R t/ 10 and R - t1 /7 , respectively. For the

case of Oh < 1 where inertia resists the spreading, the power-law is R ~ t 2 / 3 . We also

demonstrated that as a result of conservation of mass of the spreading drop, the maxi-

mum thickness of drop has closely related power-law relations for the different regimes

that can be derived using the expression h 2 Q/27rR 2. Finally, the dynamic contact

angle of the drop can be determined from Oa ~ h(t)/R(t), and the corresponding

power-laws for each regime can be derived accordingly. We used the confocal system

to compare the power-laws derived from theoretical analysis with the experimental

results and showed that the front factors and exponents are in quantitative agreement

with predictions.
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We have also applied the psLFI measuring system to investigate the inter-relation

between the microscopic and macroscopic structure of the free surface at the vicinity

of contact line. These results were shown in chapters 3-5. In chapter 3, the evolution

of the dynamic contact angle, 0a, is documented for a wide range of capillary num-

bers (10' < Ca < 10-3). The resolution (lateral and vertical) and dynamic range of

psLFI is sufficient to enable us to quantify the drop profile from very close distances

to the substrate (~ 10nm) until the macroscopic thickness of the spreading drop is

attained (- 10pm). This feature allowed us to locate and quantify the inflection point

on the free surface of the drop. The slope at this point is, by common definition, the

dynamic contact angle [79]. The coupling between the microscopic and macroscopic

regimes that is observed in our measurements is in good agreement with theoretical

analysis and numerical simulation. The variation of measured dynamic contact angle

with capillary number shown in chapter 3, is roughly consistent with the Hoffman-

Voinov-Tanner law (0a - Ca1 /3);however we were able to confirm the existence of an

additional logarithmic dependence on the capillary number, which was predicted by

de Gennes [30], Pismen et al. [93], and Eggers & Stone [37]. This logarithmic func-

tion has not only a capillary number dependence, but also a geometric factor which

can be interpreted as the ratio of a macroscopic length scale (imac) to a microscopic

length scale (emic). This is additional evidence of the importance of an experimental

technique that can measure both the microscopic and macroscopic scale of the drop.

We also demonstrated the presence the so-called size effect by performing the same

experiments using silicon strips that laterally constraint the spreading to generate a

two dimensional flow instead of axisymmetric spreading. The results of two dimen-

sional spreading have better agreement with the HVT law because this law is derived

under the assumption of two dimensional spreading.

In addition to the measurements of the dynamic contact angle, we were able to

observe a microscopic film that exists in front of the moving contact line. This film

is often called the adiabatic precursor film. The length of this film is measured by

observing the interferometric fringe visibility, m, and the measured thickness of the

drop. We have shown that the value of m decreases rapidly before the macroscopic
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droplet moves past the measurement point. This sudden drop in m is due to the

thin precursor film of fluid in front of the moving contact line. We showed that the

length of the adiabatic precursor film, Lp, is inversely proportional to the capillary

number of the spreading drop as was first predicted by Joanny & de Gennes [68].

The thickness of this film (~ 100 nm) was found to be approximately constant for

our range of experimental parameters.

Spreading of viscous drops on inclined plates were considered in chapter 5. The

effect of an additional driving force due to the new resolved component of gravitational

force were demonstrated. The profiles and rate of spreading of drops for a range of

inclination angles (0 < a < 250) were measured. The dimensionless form of these

profiles were plotted using the similarity parameters given by Huppert [64] and are in

fair agreement with the theoretical prediction far enough from the contact line and

from the point of maximum thickness. This is due to the fact that the theory is only

valid for regions close enough to the contact line but only considers a contact angle

of 90' which is not in agreement with measured contact angles. The variation of the

dynamic contact angle with capillary number for these drops have a fair agreement to

our results in chapter 3 for small Ca. However for Ca > 0.01, a new power-law with

higher exponent is found to control the spreading behavior. We showed that for Ca <

1, the lubrication approximation is valid due to the small dynamic contact angles and

Ca = Bo = pgh' sin a/- where hN is the maximum thickness of the drop. However

for Ca > 0.01, due to the breakdown of lubrication approximation, the measured

capillary number Caxp = pU/-, where U is the measured velocity of moving contact

line, is not equal to the measured Bond number Boep = pgh2 sin a/o- which is

calculated by measuring hN. This breakdown in the lubrication approximation needs

more experimental and analytical investigation in the future.

During our spreading experiments (chapter 3), we discovered surface waves that

develop along free surface of spreading drops when the fluids are slightly volatile.

These waves were due to evaporatively-driven Marangoni instabilities that induced by

lateral surface tension gradients because of local evaporation of the fluid. In chapter

6, we showed that the viscosity and volatility of the fluid control the onset of the
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instability. Our experiments also showed that the surface roughness, and substrate

thermal diffusivity can affect the dynamic characteristics of the waves. For substrates

such as glass with very low thermal diffusivity, the instability is eliminated. We

performed a linear stability analysis to characterize these effects and we showed that

there is a parameter, interfacial thermal resistance R, that has a major contribution

to the onset of the instability. For R larger than a critical value, (R,,it = 2, surface

perturbations are linearly unstable and grow. Since R is inversely proportional to

the thickness of the drop, there is a thickness for each drop that set the onset of the

instability and depends on the material properties of the liquid. In our analysis, we

assumed the surface temperature remains constant throughout the process and we

neglected the effect of enhanced evaporation at the moving contact line. The analysis

used here was essentially a one dimensional problem. As future work, these parts can

be integrated into a general two-dimensional system that couples substrate and film

and contact line region and include mass transfer, heat transfer, conduction in solid

substrate, and fluid mechanics of the system.

The working fluids in chapter 3 - 6 are all Newtonian fluids. In chapter 7, we

presented the features of spreading of non-Newtonian fluid on a solid substrate. The

spreading characteristics of highly entangled polymer melts (10 < Z < 35) and

viscoelastic polymer solutions (Boger fluids) were shown to be different form unen-

tangled polymer melts (Z < 1). Macroscopically, the spreading regimes both exhibit

power-law spreading characteristics at short times. However, the Boger fluid is not

a perfectly wetting fluid on the silicon substrate surface and spreading slows down

before eventually stopping after a long time, whereas PDMS is a perfectly wetting

fluid and spreads the surface until it fully covers the surface. It was shown that the

variation of the dynamic contact angle as a function of capillary number for Boger

fluid (and oligomer oil) follows a modified HVT law (equation 7.28). Microscopically,

the existence of the 'foot' feature first predicted by Brochard & de Gennes [16] was

confirmed for the highly entangled polymer melts. We were able to characterize this

structure and we showed that the length and thickness of the foot roughly agree with

the theoretical predictions. The length of the foot decreases with increasing Ca sub-
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stantially faster than the theoretical prediction. The thickness of the foot, hf, is on

the same order as the slip length 'lsip according to the theory, however the measured

value of hf in our experiments are significantly lower than estimated values of the

slip length fslip = fmicNeZ 3 . We also shown that the modified version of the theory

by Bruinsma [17] who included the effect of polymer mobility and predicted lower

thickness for hf.

A foot-like structure close to the moving contact line of spreading Boger fluid

was also observed and documented in chapter 7. However, unlike the foot for highly

entangled polymer melts, the length of this foot-like structure decreases as Ca de-

creases. We argued that this structure arises from differential mobility of the large

polymer molecules and smaller oligomeric solvent molecules across the solid substrate

close to the moving contact line.

In this thesis, we have demonstrated the close connection between the microscopic

and the macroscopic regions of the spreading viscous drop in the vicinity of moving

contact lines. The validity of the Hoffman-Voinov-Tanner law and its modifications

were investigated. As shown, several parameters can affect the spreading of drops on

solid surfaces. We chose silicon wafer as our solid substrate due to the fact that it

has a very smooth surface (elimination of roughness effects) and it is very clean when

purchased. In future, to further explore the effect of spreading coefficient S (equation

1.2), one might choose high energy or low energy surfaces as substrate. Another

effect observed in our experiments was the 'size effect' which leads to the geometry

dependence of the modified HVT law as shown in table 3.1. We only considered

spontaneous spreading of drop on a flat substrate. Other type of spreading such as

forced spreading and spreading on curved surfaces, such as inside or outside of a

capillary tube, are good examples for future direction of these experiments [69].

Another aspect of our experiments that can be expanded is the theoretical analy-

sis of the foot region in front of the moving contact line as shown in chapter 7. Even

though we confirmed the existence of the foot structure for spreading of highly entan-

gled polymer melts, the predicted scaling and experiments did not fully agree with

each other. Also the shape of the foot is different than the predicted shape [16], as
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the measured profiles have an extra inflection point very close to the moving contact

line (figure 7-7), we plan to explore the this further. The existence of a new 'foot-like'

structure for spreading of a dilute ideal elastic polymer solution was also reported in

this thesis. However, the physics behind this new structure is still unclear and need

more detailed experiments and analysis.

It is unlikely that progress with such free surface flows of multicomponent vis-

coelastic fluids will require collaboration between microscale experimentation, asymp-

totic analysis, and molecular dynamic simulations.
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Appendix A

Material properties

In this appendix, the properties of all of the materials used throughout this thesis are

tabulated and plotted.
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Table A.1: Physical properties of PDMS fluids used in the spreading experiments.

Fluids Mw [kg/kmoll T10 [Pa s] a [N/m] NK Z

DMS-TOl 237 0.001 17.4x10 3  1 <1

DMS-TO1.5 340 0.0015 * 18.0x10-3 * 1 <1

DMS-T02 410 0.002 * 18.7x10-3* 1 <1

DMS-T03 550 0.003 * 19.2x10-3* 2 <1

DMS-T05 770 0.005 * 19.7x10 3 * 2 <1

DMS-TO7 950 0.007 * 19.9x10-3* 3 <1

DMS-T11 1250 0.01 20.1x10- 3  4 <1

DMS-T12 2000 0.02 * 20.6x 10-3* 6 <1

DMS-T15 3780 0.05 * 20.8x10-* 11 <1

DMS-T21 5970 0.1 20.9x10- 3  17 <1

DMS-T22 9430 0.2 * 21.0x10- 3 * 27 <1

DMS-T23 13650 0.35 21.1x10-3 * 39 1

DMS-T25 17250 0.5 21.1x10-3  49 1

DMS-T31 28000 1.0 21.3x10- 80 2

DMS-T35 49350 5.0 21.5x10 3- 141 4

DMS-T41 62700 10.0 21.5x10- 3  179 5

DMS-T41.2 67700 12.5 * 21.5x10-3 * 193 6

DMS-T43 91700 30.0 * 21.5x10 3  262 7

DMS-T46 116500 60.0 * 21.5x10- 3* 333 10

DMS-T51 139000 100.0 21.5x10-3  397 11

DMS-T53 204000 300.0 21.5x10-3* 583 17

DMS-T56 260000 600.0 21.6x10-3* 743 21

DMS-T61 308000 1000.0 21.6x10-3* 880 25

DMS-T63 423000 2500.0 21.6x10- 3 * 1208 35

Data include (Mm) molecular weight; (rio) viscosity; (-) surface tension; (NK) number

of Kuhn steps; and (Z) number of entanglements in polymer chain. A number Z <

1 corresponds to a non-entangled fluid. Values of properties indicated by (*) are

provided by the manufacturer (Gelest Inc.).
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Table A.2: Thermal and physical properties of silicon oils used in chapter 6.

Fluids DMS-TOI DMS-Ti1 DMS-T21 DMS-T41 DMS-TO7R

a.k.a L M H V NV

[Pa s] 0.001 0.01 0.1 10 0.007

p [kg/M3] 818 935 966 977 920

a [N/mi 0.0174 0.0201 0.0209 0.0210 0.0180

k [W/mK] 0.1256 0.1256 0.1256 0.1256 0.1256

a [m2/sJ 10-7 9.2x10-8 8.9x1O- 8.8x1O- 9.1x1O-

Pr 1.2x10' 1.16x10 2  1.16x10 1.07x10 5  8.3x10'

da/dT [N/mK] -7.63x10- 5 -8.28x10- 5  -9.5x10- 5  -3.77x10- 5  
-

AH 9 /R [K] 1093.5 1660.4 2138.9 5582.9 -

io [Pa s] 8.7x10-4 9.6x10- 3  9.8x10-2  6.74 -

AHk [J/mo] 12896 60837 66531 82903 108653

M, [kg/kmol] 237 1250 5970 62700 950

Tsat [K] 284 290 295 573 510

data include (M) viscosity; (p) density; (k) thermal conductivity; (a) thermal diffu-

sivity; (Pr) Prandtl number; (d-/dT) variation of surface tension with temperature;

(AH,/R) and (pzo) constants for variation of viscosity with temperature; (AH,) heat

of evaporation; (Mm) molecular weight; and (Tsat) saturation temperature.
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Figure A-1: Dependence of (a) surface tension and (b) viscosity of the working fluids

on temperature. Data include (0) L; (9) M; (A) H, from table A.2
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Table A.3: Thermal and physical properties of substrate materials.

Substrate Copper Silicon Brass Glass

k [W/mK] 399 153 111 0.81

a [m2
/s] 1.16x104 9.34x10-5  3.41x10- 5  3.40x10-7

C, [J/kgK] 383 703 385 800

Es Im] 10,1 0.01 1 0.01

Data include (k) thermal conductivity; (E.) average roughness; (Cp) specific heat;

and (a) thermal diffusivity. Copper substrates with two surface roughness were used

in the experiments.
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Figure A-2: Dependence of steady shear viscosity of PDMS fluids on shear rate. The

number of entanglements of these fluids are given in table A.1. These curves are

truncated due to onset instability when shear stress reaches a maximum value.
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