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Abstract

An outstanding issue in computer-aided design (CAD) is the creation of geometric shapes
from the description of functional requirements (FRs). This thesis presents a method that can
generate assembled shapes from the given FRs without human intervention. To achieve this
goal, the design process follows a V-model of decomposition and integration based on
axiomatic design. The V-model consists of three main sub-processes; (1) a top-down
decomposition of FRs and design parameters (DPs), (2) mapping of DPs into geometric
entities, and (3) a bottom-up integration of the geometric entities. A shape decomposition
technique is used in the V-model to generate solid cells from the geometric entities in the
CAD models based on FRs. These cells are stored and reused during the integration process.
A set of cells mapped to an FR is called a functional geometric feature (FGF) to differentiate
it from geometric features defined by only geometric characteristics. Each FGF has mating
faces as its pre-defined interfaces. Links of FR-DP-FGF-INTERFACES and their hierarchies
are made and stored in the database as fundamental units for automatic assembled shape
generation. The retrieval of proper FGF from the database is performed by matching a query
FR with stored FRs by a lexical search based on the frequency of words and the sequence of
the words in the FR statements using a synonym checking system. The language-matching
rate is calculated as a value of FR metric between 0 and 1. A computer algorithm
automatically combines and assembles the retrieved FGFs. Genetic algorithm (GA) searches
for the best combination for matching interface types and generates assembly sequences.
From the highest-valued chromosome, the computer algorithm automatically assembles FGFs
by coordinating, orienting, and positioning with reference to the given mating conditions and
calculates geometric interface-ability to a value of INTERFACEmetric between 0 and 1. The
higher the values of FRmetric and INTERFACEmetric, the better the generated design
solution for the given FRs that must be satisfied. The process of top-down decomposition and
bottom-up integration reduces the number of possible combinations of interfacing FGFs.
Design matrix visually relates FRs to FGFs. The method presented in this thesis has
demonstrated that a "functional CAD" can aid designers in generating conceptual design
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solutions from functional descriptions, in reusing existing CAD models, and in creating new
designs.

Keywords: CAD (computer-aided design), axiomatic design theory, design process, top-
down, bottom-up, FR-DP-FGF-INTERFACES, database, language matching, assembled
shape generation, interface-ability
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Chapter 1

Introduction

Computer has advanced the field of design. The most significant use of computers has

been in representing and manipulating geometry. However, the idea that we will use

computers to generate design solutions that exceed human capability still remains to be an

intellectual challenge. The challenge is even greater if we are to design a complex systems

such as the Orbital Space Plane using the ability of computers to go from functional

description of the design goals to geometric shapes. To achieve the next stage of advances in

utilizing computers in mechanical design, computers should be used to generate geometric

shapes that satisfy a given set of functional requirements (FRs) so as to generate creative

design solutions that defy human imagination.

Design process may be divided into three stages. Stage 1 is a mapping from customer

needs to functional requirements (FRs) where information on the product is collected and

transformed into functional requirements. Stage 2 is the design of the artifacts that satisfy the

FRs. In many mechanical design situations, it involves the generation of geometric

embodiments that satisfy the FRs. These high-level designs (some call it conceptual design)

gradually acquire design details as we decompose the FRs and design parameters, (DPs). In

the final stage, which may be called the leaf-level design, dimensions and geometric shapes of

individual components, are determined in mechanical design. The high-level design decisions,

plays an important role in the overall success of design. Unfortunately, design is done

empirically, which involves iteration of the "design/build/test" cycles until the design seems

to work. This empirical approach to design is costly and unreliable. The goal of any design
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process ought to be "design it right first time". Otherwise, the performance, reliability, and

robustness of large complicated systems cannot be assured at the design stage. The empirical

process may be responsible for the cost over-run and the long development time.

1.1 Problems of Current CAD Systems

Current CAD technology successfully supports generation of geometric shapes and

assemblies of the designed artifacts in detailed design stage using solid modeling techniques

and specific data structures. However, current CAD programs are understood as drawing

packages, which cannot be used to support the conceptual design process. Since commercially

available CAD systems cannot reason and create geometric shapes based on the FRs of the

design tasks, all the basic design decisions on geometric details must be made by human

designers. Solid modeling techniques are useful only after detailed shapes of the designed

artifacts have been determined. The lack of the functional representation in CAD models

limits the usefulness of CAD in developing a new product, because designers do not

understand why certain shapes are created, and must update the CAD models based only on

the geometric shapes and their assemblies. Furthermore, it is difficult to reuse existing design

knowledge or concept using existing CAD models in developing new geometric artifacts with

computer support. In most CAD packages, the designed artifacts are decomposed only in the

physical domain, relating only information and knowledge of geometry of the artifacts.

However, the artifacts are designed to satisfy FRs and therefore, they must be functionally

decomposed from the early stage of the design. Thus, information and knowledge of

functional requirements should be related to those of geometric artifacts in CAD systems.

1.2 Feature-Based Design

The organization of design information is one of the most important factors that

determine performance and functionality of the CAD systems. Most CAD systems are

primarily concerned with data structure and information flow for representing and
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constructing 3D shapes on computers. Those CAD systems enable us to generate complex

shapes. They also utilize the geometric information in designing and manufacturing products.

Feature-based representation or design is one of the well-known results of such an effort. The

concept of design by features was first proposed by Pratt and Wilson. [1] It seems to be

conceptually agreed that one of the key benefits using features is that the designers can put

their deign intent into the geometric model. Also, many techniques using features have been

developed to automate machining, to diagnose the defect of geometric models, to generate

finite element models, and so on.

Nevertheless, there still exist two main bottlenecks for the feature-based design

systems to be useful for designing geometric artifacts. One is the lack of the means of

defining features based on functions, though a major benefit of using features is to put design

intent into geometry. The other is difficulty to collect geometric features to be reused. The

problems exist because most research on features or geometric models is conducted only in

the physical domain. For example, Dixon and Cunningham [2] proposed a system for design

with features, in which they classified static features into five types; primitives, intersections,

add-ons, macros, and whole-forms, and then constructed a feature library to reuse them.

Sreevalsan and Shah [3] addressed the problem of integrating design by features, interactive

definition, and automatic recognition. They provided designers with templates to edit features

by formal language. Their taxonomy is useful to handle geometric features in a physical

domain, but no information on functions of the features is included in their design system. In

addition, capability of the feature based design system is limited by the number of the

collected features or templates, but it is not easy to collect the pre-defined features for design

intent only in terms of geometric features.

There exist many CAD approaches to using database. Most of them classify CAD

models by similarity of the shape, stored them in the database, and searched similar shape to

an input geometric model. In these approaches, it is relatively easy to collect and classify

CAD models and to find out similar shapes, but this database cannot help designers to
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generate design solutions. It is usually used to find out similar parts for manufacturing

purpose.

1.3 Aim of Thesis

The problems described in the previous paragraphs can be summarized as the

following questions. The aim of this thesis is to find out a systematic method by which the

questions can be answered.

- How can we relate the geometric features of the CAD models to functional

requirements?

" How can a computer reuse the geometric features to generate candidate shapes in the

conceptual design phase?

To answer these two questions, the following five sub-topics have been considered and will

be explained in the following sections of this thesis.

" Design process

- Shape decomposition to geometric features

- Data structure

" Language matching

" Automatic assembly of the geometric features

1.4 Overview of A Proposed Method

The methodology presented in this thesis uses axiomatic design theory to provide a

framework in implementing an intelligent CAD program to support conceptual design tasks.

Axiomatic design framework [4, 5] has been created to incorporate functional aspects of the

designed artifacts based on a natural thinking process for conceptual design. We extend the
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axiomatic design theory to create a formalized design process, called V-model, for designing

geometric artifacts using computer aid. The goal of the design process is to generate the links

between functions, actual language descriptions of the functions, i.e. FRs, and geometric

entities in a most logical way.

Xue et al. [6] implemented III (Intelligent Integrated Interactive) CAD system to

support conceptual design. It was a rule-based expert system, which has relational database of

physical principles and objects. It may have a limitation to store design knowledge and to

extract proper design knowledge, because it's not easy to collect all the physical principles

and objects and create rules. In contrast to this, we used case-based approach. [7] We are

trying to collect as many design cases as possible through V-model design process, and to

store them as properly formatted information into a database. The database has information on

language descriptions of FRs and DPs, and decomposed geometric features mapped to the

FRs and DPs. The information is related to how they are decomposed in the hierarchical trees

and mapped together. The larger the database, the more helpful to search design solutions as

empirically proved in the CYC project. [8] In CYC project, many knowledge engineers have

been collecting common sense knowledge and organizing them through top-down

decomposition in knowledge bases for about 15 years. It now supports language

understanding and infer relevant knowledge from the input queries, though it cannot perform

real thinking to generate solutions.

In this thesis, cell decomposition technique has been used to decompose a whole solid

or an assembled CAD models into a set of geometric features. Sakurai and Gossard [9]

developed an algorithm to automatically recognize geometric features such as pockets and to

delete unnecessary geometric features, and Sakurai [10] found out a set of maximal convex

cells from concave edges, a combination of which can be mapped to a sequence of machining.

Several cell decomposition techniques have been used to decompose a whole solid into basic

cells to automate manufacturing process from CAD models [11-13] or generate finite

elements [14]. Most shape decompositions using cell decomposition technique are performed

to find out geometric features from characteristics of input geometry. Our shape
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decomposition is performed to separate the geometric features from a whole solid or an

assembly based on FRs. The decomposed geometric features by FRs are called functional

geometric features(FGFs) hereafter in this thesis, because it is defined by functional

requirements rather than geometric characteristics. During shape decomposition process,

information on interfaces of the FGFs can be extracted and stored in the database. The

traditional cell decomposition techniques gave us an idea, that is, a solid can be decomposed

into a set of cells based on the geometric characteristics. If a set of cells can be related to an

FR, the set is defined as an FGF to satisfy the corresponding FR.

Links of FR-DP-FGF-INTERFACES and their hierarchies are made and stored in the

database.. Each link of FR-DP-FGF-INTERFACES is a fundamental unit for automatically

generating assembled shapes from a given set of FRs. Each FGF is a set of cells with

information on internal interfaces, by which the cells have been interfaced to form the FGF,

and on dangling interfaces, which are mating faces of the FGF to be interfaced later with other

FGFs. Detailed geometric information of each FGF has been encapsulated. Only information

on dangling interfaces, i.e. mating faces, has been explicitly described and used for computer

algorithms to automatically assemble the FGFs. The internal interfaces can be used to

visualize the generated shapes.

The retrieval of proper FGF from the database is performed by matching a query FR

with stored FRs by a lexical search based on the frequency of words and the sequence of the

words in the FR statements using a synonym checking system. The language-matching rate is

calculated to a value of FRmetric between 0 and 1. This algorithm is relatively simple

comparing to other text-based knowledge base, because focus of this thesis is not text-based

learning or knowledge extraction [15]. It only checks similarity between FR statements based

on the words.

We developed a computer algorithm that automatically combines and assembles the

retrieved FGFs. Genetic algorithm (GA) [16] searches for the best combination for matching

the geometric interface and generates assembly sequences. From the highest-valued
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chromosome, the computer algorithm automatically assembles FGFs by coordinating,

orienting, and positioning with reference to the given mating conditions and calculates

geometric interface-ability to a value of INTERFACEmetric between 0 and 1. The

INTERFACEmetric is multiplications of three metrics for interface types, relative

orientations between mating faces, and possibility to position mating faces.

The higher the values of FR-metric and INTERFACEmetric, the better the generated

design solution for the given FRs that must be satisfied. The V-model design process of top-

down decomposition and bottom-up integration reduces the number of possible combinations

of interfacing FGFs.

1.5 A Limitation and Expected Impact

A limitation of our method is not to fully automate decomposing shapes by FRs.

Because an FGF is not defined by geometric characteristics, but by FRs, it is not easy to

automatically decompose solids in an assembly into cells and then to relate the cells to FGFs.

We propose that the shape decomposition must be done by knowledge engineers guided by V-

model design process.

Despite of the limitation of our method, our method can be a first step to answer the

questions we raised as a break-through for common problems most CAD systems have. Our

method provides designers with design environment for designing geometric artifacts from

functional descriptions. A number of FRs, DPs, and FGFs can be related and collected in

databases and they can be automatically assembled to generate candidate shapes from

language descriptions of their functional requirements. It is estimated that there exist over 30

billion CAD models generated using commercial CAD packages in the world. [17] Most

CAD models are topologically and geometrically almost complete and being standardized by

STEP or IGES. However, it's not easy to reuse them for the conceptual design, because

information on their functional intent has been missed so as to be impossible to understand

why they are created in many design cases. The research on the automatic shape integration or
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generation for reuse of design concepts is rare, because most research focuses on the complex

geometry, which causes heavy computational load. In this thesis, we proposed a method. The

proposed method can be a solution to reuse the CAD models by incorporating FRs into the

CAD models in a manageable computational complexity. It is expected that our method may

create shapes, that human designer did not think, by different combinations of pre-defined

FGFs from given FRs. The following sections will be detailed explanations of our proposed

method and application examples of the method.
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Chapter 2

Axiomatic Design Theory

In axiomatic design theory, synthesized solutions that satisfy the highest-level FRs are

created through a decomposition process that requires zigzagging between the functional

domain and the physical domain as shown in Figure 1. It decomposes a top-level FR into leaf

level FRs, which are not decomposable any further. Designer creates leaf level DPs in his

brain or extracts those from his knowledge base to satisfy the corresponding FRs. Once leaf

level DPs are found, they must be integrated to create the whole design artifact, which is then

checked to determine if they work well and satisfy FRs based on two design axioms. The first

axiom is the independence axiom, which states that the independence of FRs must be

maintained in design. Second axiom is information axiom, which states that the information

content must be minimized.

FRO

Fi FR2 FR

FR2I FR22

FR211 FR212

Functional Domain

DPO

Mapping

DPI DP22
Decomposition

DP211 DP212

Mapping

Physical Domain

Figure 1. Zigzagging decomposition/mapping/composition process of axiomatic design
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Mathematical representation of axiomatic design is

FR1 All

FR2 = A21

FR3 A31

A12

A22

A32

A13 DPI1
II I DFRi

A23 <DP2 where, Aij = a ..
A33 DP3 J

Aij represents sensitivity, either qualitative or quantitative, of FRi with respect to DPj and it

can be interpreted as a causality, which represents cause-effect between DPs and FRs. The

elements Aij of the design matrix (DM) are determined in mapping process. The following

three matrices show coupling conditions represented by the design matrix.

X 0 0

X X o

X X X_

Decoupled

[XX
X

X X

X X

X X

Coupled

A design must be decomposed deeply enough to have the mathematical relationship

between FRs and DPs and to select parameters or dimensions as key variables to calculate

information content as a quantitative value for a given FRj which is defined as

Ii = log 2 = -10g2 Pi,
Pi

where pi is probability of success. The total information content can be formulated as below

based on the definition of information content for an FR. For the uncoupled design,

m 

m
,Sys -log 92PIm} 109 2 Pi .where p~mi HPi
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and for the decoupled design,

m rn

ISYS -g10 2 Pim =Z102 pilitj, where p m =11prilj, for { j}={1,2,....i-1}
i=1 i=_

Here, p{,,, is a joint probability that all m FRs are satisfied, and piijg is the conditional

probability of satisfying FRi given that all other relevant(correlated) {FRj}j=1,2,....,i-1 are also

satisfied. The probability of success is defined as the portion of common range in which

system range(SR) is overlapped inside design range to the design range (DR). The larger the

portion of common range is, the higher the probability of success is.

Design Range
System Range

~FR

Figure 2. Design Range (DR) and System Range (SR)
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Chapter 3

Design Process

3.1 V-Model

In artificial intelligence, top-down or bottom-up approach has been used to represent

the human brain model. Top-down approach is represented as a process to decompose a big

problem or a big structure into small pieces from top to bottom. The decomposed concept or

knowledge is pre-programmed and stored into a large knowledge base. Then, inference

techniques based on deduction, induction and/or abduction are used to infer relevant concept

or knowledge from given queries to solve a given problem. Natural language processing [18]

or CYC project [8] are the representative examples of the top-down approach. In contrast to

the top-down approach, bottom-up approach begins with a relatively small number of physical

building blocks. It interfaces the physical building blocks in the physical space, and finds out

solutions by simulating their various combinations as alternatives to satisfy a certain goal.

This approach has been used for robotics or artificial life [19, 20] using neural networks or

genetic algorithms.

As a design process, the top-down approach requires a large knowledge base and

extracts corresponding knowledge if the required design knowledge exists inside the

knowledge base, but it has a small degree of freedom for creative design, because the

traditional top-down approach lacks the re-composition process of combining extracted pieces

of various design concept or knowledge. The bottom-up approach has more degrees of

freedom to generate physical shapes or assemblies in the physical space that human designer
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have not considered. However, the combination of the building blocks is sometimes too large

to determine the best solution. Thus, the bottom-up process has been applied to small ad hoc

problems or confined to a limited number of physical building blocks due to the

computational complexity. Also, physical assembly without explicit description of FR must

have a limited utility.

A V-model, adapted from Do and Suh [21], is proposed as a thinking process for

computer-aided design of geometric topologies and shapes, which is based on the idea that

design cannot proceed without zigzagging between the functional domain and the physical

domain. It combines the advantages of the top-down and the bottom-up approaches and

consists of three sub-processes as shown in Figure 3: top-down decomposition process,

mapping process, and bottom-up integration process. Top-down decomposition process is the

zigzagging decomposition process used in axiomatic design process. The decomposition

process conceptually divides a big, complex problem into solvable small pieces and finds

design solutions for the divided small problems. It produces language descriptions of

decomposed FRs and DPs. A DP is a language description of a proposed solution to satisfy

the corresponding FR, and plays a role as a key design variable as a part of the whole design

solution.

Mapping process is a process to create geometric entities to the leaf level DPs

produced by the top-down decomposition process. The geometric entities mapped to the leaf

level DPs are key geometric objects that satisfy the corresponding leaf level FRs. They must

be interfaced with each other and be integrated into a complete physical model in the physical

domain to satisfy higher-level FRs through the bottom-up integration process. There are three

steps in the bottom-up integration process. First step is to establish interfaces between the

physical entities including geometric entities created during the mapping process. Second step

is to construct topologies by integrating related geometric entities into complete solids. The

construction of the topologies is determined by locating the geometric entities and connecting

them with boundaries or connecting volumes in the physical space.
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In this thesis, topology is defined as the number of faces. Thus, either the different

number of faces are considered as different topologies of two geometric artifacts in this sense.

Third step is the determination of the final shapes. The determination of the final shape is

performed by changing locations, orientations, and/or dimensions of the geometric entities to

satisfy all the FRs. The constructed topology constrains the change of the geometric entities

and therefore affects to the satisfaction of FRs. The design matrix, shown in chapter 2, is used

to visually relate each geometric entity, mapped to each DP, to each FR to check functional

couplings. An illustrative example about the use of the V-model and the design matrix for

geometry design will follow in section 4.

Customer Mechanical

needs devices

Determine shapes
Define FRs

Construct topologies

Establish interfaces

Build F F hy Integrate p sical en es

(Top-down proch' Decompose / Identify (Botto p )
Define physical entities

modules

Mapping DPs into
physical entities

Figure 3. Axiomatic thinking process for designing physical products

The V-model design process finally produces an FR tree, a DP tree, and a final shape

as design solutions for a design problem as shown in Figure 4. From the nature of the

zigzagging decomposition process between FRs and DPs, all the DPs in the same level are

sub-sets or elements of their parent DP in one-level higher, because the corresponding FRs

come from the parent DP. For example, DP2 is a child of DPO, and DP1 and DP3 are sub-sets

of DPO. DPll and DP12 are elements of DP1 and DP31 is a sub-set of DP3. DP311 and
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DP312 are elements of DP31. In this sense, DPs become more detailed as the decomposition

is performed further. We propose zigzagging decomposition as an important design process,

because lower level FRs can not be decomposed unless a concept of the higher level DP has

been already determined. In Figure 4, FRI, FR2, and FR3 can not be determined, unless a

concept on DPO has been determined. Thus, FRI, FR2, and FR3 are functional requirements

for DPO.

Most design theories using decomposition strategies looked over this fact or did not

explicitly explain it. Taura and Yoshikawa [22] tried to mathematically represent a design and

a design process for an intelligent CAD system based on General Design Theory proposed by

Yoshikawa. [23] They proposed paradigm model and function concept set. The paradigm

model is similar to the concept of zigzagging decomposition, but their mathematical model is

not correct, because functional requirements and design solutions are mixed as functional

concept sets. Thus, the intersection of some parts of physical objects in the lower level can not

be represented as a higher level physical object to satisfy the higher level function. The higher

level physical object must be synthesized from lower level physical entities, but cannot be an

intersection of them. Umeda et al. [24] developed the function-behavior-state modeler and

decomposed design problems between functions and behaviors, that is defined as 'sequential

state transition along time.' They classified the types of decomposition into causal and task

decomposition. However, we argue that there exists some cases in which behavior cannot be a

design solution. Gero et al. [25] defined behavior with 'a role as a link between function and

structure'. Their definition of behavior was how the structure of an artifact achieves its

functions. This definition is the same as that of DP in axiomatic design. They claimed that

behavior support explicit reasoning between functions and structures. In contrast to those

approaches to design process, we did not try to formalize the mapping between functions and

geometric entities using behavior, but just used a direct mapping between them, because it is a

more general representation of design problems. It is not easy to explicitly explain the

mapping between functions and physical solutions in many design problems. Also, the trial to

represent the mapping is a very laborious work for designers. Therefore, our design process is
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more simple and general. Also, it can be applied to any design problem for designing a new

artifact from scratch.

FRO DPO
Physical part I

FRI FR3 DPI

FR2 Phsclpart2 Assemblyl

I 

R2

FR31 FR32

FR11 FR12 DP11 DP12 Physical part3

FR311 FR312 DP311 DP312

DP1 c DPO, DP2 e DPO, DP3 c DPO

DP11 e DP1, DP12 E DPI

DP31 c DP3, DP32 e DP3, DP311 E DP31, DP312 e DP31

Figure 4. Fundamental structure of decomposed FRs, DPs, and geometric entities

3.2 Illustrative Examples of V-Model

Two illustrative examples show how the proposed design process is applied to create

design solutions as a thinking process for designing geometric artifacts. First example is a

cam-pawl mechanism design to satisfy "prevent the vehicle from moving on its own." Second

example is the design of a hanger to satisfy "hang a load on the wall with a certain stiffness."

We have explicitly represented a thinking process to create two design solutions for these two

examples based on the V-model.
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3.2.1 Pawl and Cam Mechanism Design

This example shows how the proposed design process is applied to a design of a

simple cam and pawl mechanism used for a parking mode in automatic transmission of

automobiles.

Step 1: FR-DP decomposition

In this step, the zigzagging decomposition process produces FR-DP hierarchies. FRs

are defined as "what we want to achieve" in functional domain and DPs are defined as "how

we want to achieve it" in physical domain. Language description is used to explicitly

represent the meaning of FRs and DPs. In this example, FRI, FR2, FR3, and FR4 are

language descriptions, decomposed from DPO for DPO to function correctly satisfying FRO.

The real physical shapes of solid parts and their assemblies might be in the designer's mind,

but have not been explicitly represented in this step. The followings are the decomposed FRs

and DPs from top to bottom.

FRO = Prevent an attended parked vehicle from moving on its own

FRi = Engage the pawl to the engaged position

FR 1I = Push the cam

FR12 = Push up the pawl to the engaged position

FR2 = Keep the pawl in the engaged position

FR3 = Disengage the pawl from the engaged position

FR31 = Pull out the cam

FR32 = Pull down the pawl from its engaged position

FR4 = Carry the weight of the vehicle in the engaged position

FR41 = Carry the force to the pin

FR42 = Endure the force at the pin
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DPO = Assembly of cam and pawl mechanism

DPI = Engagement mechanism

DP 1 = Pushing force

DP12 = Tapered section of cam

DP2 = Flat surface of cam

DP3 = Disengagement mechanism

DP31= Pulling force

DP32 = Tension spring

DP4 = Force carrying mechanism

DP41 = Vertical surface of the pawl

DP42 = Pin

Step 2: Mapping DPs into geometric entities at the leaf-level

One of the most important features for axiomatic design theory is the design matrix.

The design matrix is a relational basis for controlling DPs to satisfy FRs based on the

relationship between FRs, DPs, and geometric entities. The couplings between FRs of each

design alternative are checked by the design matrix. In this step, only diagonal elements are

checked as shown in the Figure 5.

DPO
DP2

DP11 DP12 DP31 DP32 DP41 DP42
FRO FRI FR11 X

FR12 X
FR2 X

FR3 FR31 X
FR32 X

FR4 FR41 X
FR42 X

Figure 5. Full design matrix of pawl-cam design
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A designer creates key geometric entities using the geometry sketch tool and links

them to corresponding language descriptions of the DPs at the leaf level. Each geometric

entity is defined by its location, orientation, and shape parameters in the physical space. DP-

geometry database stores information on the definitions of geometric entities as briefly

explained in section 3.2. Table 1 shows the created geometric entities at the leaf level.

Cami - facel
DP11 FPUSh --- * DP12

DP2 Cam1 - face2

DP31 FPUI 4- - DP32 springi

02
DP41 DP42 Pint

Pawil - facel

Table 1. Geometric entities mapped from leaf level DPs of the pawl-cam design

Step 3: Establish interfaces

All interfaces between geometric entities must be explicitly defined and represented

during this step. A process of defining the interfaces using the geometry sketch tool makes the

designer to represent all the geometric entities and their interfaces explicitly in a

computational form. In this example, information on the pawl, the designer considered in the

top-down decomposition process, but not shown as any DP, is explicitly represented and

visualized during this step. Table 2 shows all the interfaces between geometric objects that

include all the leaf level DPs. As shown in the table, one level higher DPs are constructed in

this step.
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DPI DP2

pawl1 - pivoti

pawli - pivoti rotation

PAWLI
PAWL1

cami - facel
force 1

cam1 - face2 ----- pw CAM1
CAM1 pawl- face3 translation pawl1 - face2

DP3 DP4

pawil - pivoti
Pawll - facel force3 rotation

PAWL1
rotation

force2 pawl1 - face4
PAWL1 pawil - pinI 4 CAM1 springl

translation

Table 2. Defined interfaces and corresponding DPs of the pawl-cam design

Step 4: Construct topologies

The created and interfaced geometric entities through the previous steps are integrated

into certain topologies in this "construct topologies" step. Three procedures are needed to

complete this step:

(1) Collecting related geometric entities that consist of complete solid parts based on their

names or language descriptions

(2) Locating the geometric entities in the physical space
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(3) Skinning by making boundaries between geometric entities and then filling materials

inside the closed boundaries

Topology construction is crucial for the performance of the final product and is closely

related to creativity. Generally, designers use sketches to create various topologies. However,

topology construction procedure in the physical space is a very tedious even with a small

number of geometric entities. Therefore, a computer support is needed for constructing

various topologies with only key geometric entities. Figure 6 shows possible topologies for

DPO integrated from leaf level DPs. The three alternatives are generated by positioning the

same geometric entities in the different locations. Alternative 1 and 3 have the same

topologies based on the definition of the topology, because each part has the same number of

faces. However, the topology of pawl in alternative 2 is different from others.

Alternative 1 Alternative 2 Alternative 3

Figure 6. Possible alternatives based on topology construction of the pawl-cam design

Step 5: Determine shapes to satisfy given FRs

The best shape for each alternative design generated through the step 4 is determined

by controlling DPs to satisfy the corresponding FRs. The FRs, described by language in step

1, can be represented by using mathematical equations to calculate system ranges, which

satisfy given design ranges as shown in several engineering design problems of [4, 5]. In this

example, six mathematical equations have been made for alternative 1 to calculate system

ranges. Figure 7 shows the links of FRs to the mathematical equations for each module ("SR"

stands for "System Range"), and the links of DPs to geometric entities created in the physical

space on the computer screen. SR1 is the difference between the pushing force (DP 1I) and
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the friction force generated from an interface between the pawl and the tapered section of cam

(DP12). Thus, SRI should be greater than zero to engage the pawl to the engaged position.

SR2 is a safety factor to keep the cam at the engaged position from any disturbances. SR31 is

the difference between the pulling force (DP3 1) and the friction force generated from an

interface between the pawl and the flat surface of the cam (DP2). SR32 is a sum of vertical

forces in downward direction to disengage the pawl from the engaged position after pulling

out the cam. SR41 is a force applied to the pin carried by the vertical surface of the pawl

(DP41) from the given force generated by the weight of the vehicle. SR42 is a maximum

stress produced in the pin (DP42). The system ranges are calculated based on dimensions

shown in Figure 8 based on assuming quasi-static equilibrium. Once design ranges are given,

each geometric entity can be controlled to move the system range inside the design range. As

shown in Figure 7, SR32 and SR41 are coupled. Thus, change of either DP32 or DP41 will

affect both SR32 and SR41, requiring iterations to satisfy given design ranges for FR32 and

FR41. The procedure to satisfy all the given design ranges determines the best shape to satisfy

the FRs of the design task. The determined shapes of the product on the sketch tool are

generated in solid models for further analysis in detailed design stage. Figure 7 shows one

possible shape for alternative 1 by given arbitrary design ranges.
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Figure 7. Links of FRs to geometric entities based on the design matrix for alternative 1
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L5
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Fpiny h' h3

0

DP2 DPI
DP1 0a DP3
DP3

Figure 8. DPs and dimensions of alternative 1

3.2.2 Hanger Design

This example is much simpler than the pawl and cam design problem, but explicitly

shows the concept of independence axiom. The design problem is to design a hanger to hang a

load on the wall.

Step 1: FR-DP decomposition

FRO = hang a load on the wall with a certain stiffness

FRI = hang a load

FR2 = increase stiffness

DPO = hanger

DPI = L-type beam

DP2 = rib
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Step 2: Mapping DPs into geometric entities at the leaf-level

In this step, a full design matrix is constructed with only diagonal elements. The L-

type beam is mapped to DPI and three types of ribs are mapped to DP2 as candidate design

solutions to satisfy FRI and FR2. Figure 9 shows the diagonal elements between FRs and DPs

and Table 3 shows the corresponding geometric entities for DPI and DP2.

DPO
DP1 DP2

FRO FRI X
FR2 X

Figure 9. Full design matrix of the hanger design

DPI DP2

OR OR

L-type beam Triangular rib Rectangular rib Circular rib

Table 3. Geometric entities mapped from leaf level DPs of the hanger design

Step 3: Establish interfaces

Interface has been defined in this step. In this example, two concave faces of the L-

type beam and two convex faces of each rib, both of which are gray and have 90 degree, are

interfaced with each other. Table 4 shows an interface between the L-type beam and the

triangular rib. The interface is a rigid attachment of the two geometric entities. Other two ribs

have the same interface type.
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DPO

Interface

L-type beam Triangular rib

Table 4. Defined interfaces and corresponding DPs of the hanger design

Step 4: Construct topologies

Interface between the L-type beam and each of the three ribs generates three candidate

solutions with different topologies as shown in Table 5. As we defined in section 3.1, the

different face types mean the different topologies. Thus, three candidate solutions are

considered as they have different topologies. The three alternatives are created by the

combination of different geometric entities differently from the alternatives generated by

different locations of geometric entities in the pawl-cam design.

DPO

Alternative 1 Alternative 2 Alternative 3

Table 5. Design alternatives of the hanger design
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Step 5: Determine shapes to satisfy given FRs

The FRs and geometric entities are visually related with each other through the design

matrix as shown in Figure 10. The candidate shape 1 has a decoupled design matrix, because

the L-type beam affects the stiffness of the hanger, but the triangular rib doe not affect FRI to

hang a load on the beam. The SRI is D1 set to 15 cm to keep the space to hang a load on the

beam in the candidate shape 1. However, the candidate shape 2 has a coupled design matrix in

which DP2 affects FRi. In this case, both FRs cannot be satisfied. SR2 for both candidate

shapes are calculated by using finite element analysis.

DI

P0
DP1 'DP2

PRO FRI X
FR2 X X

SRI =D1 = 15cm

SR2 = stiffness

(a) Decoupled candidate shape 1

P0
ODP1 VDP2

FRO FR1 X X
FR2 X X

SRI =D1 =0cm

SR2 = stiffness

(b) Coupled candidate shape 2

Figure 10. Links of FRs to geometric entities based on the design matrix for alternative
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Chapter 4

Database

4.1 System Architecture

Figure 11 shows the system architecture and the flow chart. The flow chart shows how

the proposed method can help designers, who are designing geometric artifacts within the V-

model design process, to search geometric solutions as an assembled candidate shapes. The

existing design knowledge must be collected and stored in the database before the designers

use the database. The top two blocks on the flow chart show this knowledge engineering

process. It will be explained in detail in this section. The flow chart is modified from that of

Thinking Design Machine proposed by Suh and Sekimoto. [26] The proposed CAD system

consists of knowledge engineering tool, databases, CAD engine, and graphical user interface.

The knowledge engineering tool supports knowledge engineers or axiomatic designers to

transform existing designs and CAD models into properly formatted design knowledge and to

store it into the database. The necessary information on geometry can be easily constructed by

using current CAD packages, because only information on mating faces of FGFs is needed.

This is relatively simple comparing to most approaches using complex geometric information

on the shape of the artifacts. The CAD engine searches a plausible set of DPs and FGFs by

language matching between input FR and stored FRs. The similarity between FR statements is

calculated using a value defined in FRmetric between 0.0 and 1.0. It also simulates assembly

of FGFs and calculates the interface-ability using a value defined in INTERFACEmetric

between 0.0 and 1.0. The generated candidates are evaluated by constructing design matrices

as explained in chapter 3.
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Model an existing design
problem and its solution

Format input information as

design knowledge and store it

Definition of FRs

Find a plausible set of DPs and
FGFs by language matching of FR s

Combine FGFs and find sets of FGFs
interfacable as candidate solutions

Knowledge Engineering Tool

FR tree
DP tree

Cells from CAD models
Relations between cells

Design Matrix

Hierarchical trees of FR-DP-FGF links
Relations of internal interfaces between cells

Information of interfaces of FGFs

CAD Engine

Algorithms for language matching

Algorithms for integrating FGFs

[DM]
diagonal or
triangular

Yes

EvalutInomtoCott

Figure 11. System architecture and flow chart
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4.2 Data Structure

The V-model design process generates two types of design knowledge; one is

knowledge about how FRs, DPs, and geometric entities are related with each other, and the

other is knowledge about how FRs and DPs are decomposed in depth. Figure 12 shows the

design databases, which store both types of design knowledge. It consists of databases

expressed as:

fr-decomposition("A", [FRO(FR1(FRi1_, FR1_2),

FR2

FR3(FR3_1(FR31__1, FR3_1_2), FR3_2)])

dp-decomposition("A", [DPO(DP1(DPi1_, DPI_2),

DP2

DP3(DP3_1(DP3_1_1, DP3_1_2), DP3_2)])

dp-geometry("DPIA", "FGF1_A")

Figure 12. Fundamental structure of database

It is used to search for proper candidate DPs and FGFs for a given FR. The fr-

decomposition database stores information of hierarchies of decomposed FRs and the dp-

decomposition database stores information of hierarchies of decomposed DPs. A character,

"A" is an index to the corresponding design case. The dp-geometry database stores

information of FGFs mapped to the corresponding solid cells. The fr-decomposition database

and the dp-decomposition database can be constructed through the V-model design process.

However, additional operations are needed to generate information on FGFs from CAD

models for the reuse of them.
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4.3 Functional Geometric Feature (FGF)

The term "functional geometric feature (FGF)" is used to represent a set of geometric

entities mapped to an FR through a DP, because the mapping between geometric entities and

a DP ultimately cause a mapping between the geometric entities and an FR. Actually, a DP

can be mapped to a set of any geometric entities such as vertices, edges, faces, solids, and/or

assemblies of CAD models in axiomatic design theory. Thus, shape decomposition is needed

to separate the corresponding geometric entities and to keep information on the separated

geometric entities.

The shape decomposition starts from selecting "a set of faces," which represents a DP.

Any geometric entity can be represented by a set of faces. For example, if a vertex or an edge

is the element of FGF, the faces including the vertex or the edge can be selected to decompose

the shape. If a solid or an assembly is the element of FGF, a set of faces, which composes of

the solid or the assembly, can be selected. Based on the visualized CAD models, the

knowledge engineer selects a set of faces including the corresponding geometric entities and

then decomposes the CAD models into solid cells including the set of faces for each FGF.

Two kinds of the shape decomposition operations have been considered; cut and subtraction.

The operation, "cut," cuts protruded solid parts from the base solid and the operation,

"subtraction," subtract a volume, which is defined by a set of faces, from the whole solid.

Our hypothesis on FGFs is

"Functional geometric features (FGFs) can be topologically and geometrically separated

from a whole solid body or an assembly."'

This hypothesis must be true, if shapes are created through the V-model design process so that

geometric entities such as vertices, edges, faces, etc., can be mapped to each FR. Even though

this hypothesis is conceptually true, there exist more than one way to separate the geometric

This is consistent with the Independence Axiom and the FRIDP mapping of axiomatic design.
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entities in practice. This is inevitable, because an FGF is not defined by geometric

characteristics but by FRs. In this thesis, three examples are considered to look into the way

of separating the geometric entities. The designs and CAD models in the examples have been

decomposed into solid cells considering reusability of the cells. The way of making the

decomposed cells can be considered one design case. Thus, if the same design and CAD

models are decomposed in different ways by different people, all the different decompositions

can be stored in databases as different design cases. Some research related to knowledge bases

approaches to finding common elements of many design cases and to store the elements as a

generalized or common design knowledge in the database. [7] Others use concept of

inheritance in object oriented representation to classify the design knowledge. [27] Even

though those approaches are have some advantages (on search time or on inference of design

knowledge), it is not easy to generalize design knowledge related to geometry. Our approach

is not to generalizing all the specific design knowledge from all the design cases, but just to

collecting design cases. The design knowledge collected is linked lists of FR-DP-FGF-

INTERFACES and the corresponding decomposition trees.
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FGF1_B

FGF2_B

FGF1_A

FGF2-A

FGF1_A

Interfaces

FGF2_A

Interf
FGF2_B

aces FGF1_B

(a) Cut by plane (b) Subtraction

Figure 13. Operations: cut and subtraction

The guideline of separating correct FGFs satisfying a certain FR from the whole solid

body for collecting a set of FGFs is as follows:

"To determine the correspondance between an FR and an FGF, the cells corresponding to

the FGF can be removed from the whole solid body. If the resulting solid body can no longer

satisfy the FR, the removed cells are the proper FGF for the FR."
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We can have Q as the operator representing the entire decomposition procedure to

obtain the cells. B represents the original solid bodies and C is a set of cells, which are

decomposed by Q. Then, we have:

A(B) = C,

Each FGF is a set of cells. The cell is decomposed into either positive volume or negative

volume as shown in Figure 13. The cells of a lower level FGF is a subset or elements of its

parent FGF, because FGFs are defined by zigzagging decomposition between functional

domain and physical domain as explained in the accompanying thesis. Each cell can be

represented either type of representation, B-rep (boundary representation) [28] or face-edge

graphs. Information on the geometries of the cell can be encapsulated, but only information

on the interfaces of the cell is open for the computer algorithms to reuse the cell. Figure 14

shows face-edge graph representations of FGF1_A and FGF2_A shown in the Figure 13. All

the faces and edges of each cell has been represented by a face-edge graph as shown in (b).

The faces and edges can be encapsulated except mating faces as shown in (c). All the FGFs

can be regenerated from the existing CAD models using current CAD packages. SolidWorks

has been used in this thesis. Necessary information can be successfully extracted from STEP

files shown in [29]. The attributes associated with a node in a face-edge graph are related to

information on a face. For example, interface nodes, D and b, have the following attributes as

mating faces.

" Nodename D

" Cellname cell_1

" Face-type planar

- Dirnormal (0, 0, -1)

- Interface-type rigidattachment

- Mating-type against
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- Nodename

- Cellname

- Facetype

- Dirnormal

- Interface-type

" Mating-type

b

cell_2

planar

(0, 0, 1)

rigidattachment

against

The attributes associated with an arc are related to information on an edge and on the faces

connected to the edge. An arc 11 of FGF1_A has the following attributes.

- Edgename

- Cellname

- Node_1

- Node_2

- Edge-type

- Edge-geometry

11

cell_1

D

E

linear

(xI, yl, zI), (x2, y2, z2)

A node can be differentiated from others by node_ name and cellname. Dirnormal is

needed to attach this face to another face. An edge can be also differentiated from others by

edge-name and cellname. Node_1 and node_2 are the attached nodes to this edge in the

same cell. Edge-geometry has information on the geometry of the edge such as vectors of two

vertex points of the edge for 'linear' edge type. Bold lined nodes represent mating faces. A

node D and b has been created by the operation, 'cut'.
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D Interfaces
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a cZ e a FGF2_A

d
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a

FGF2f

A
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a
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EGEFOA

(a) Geometric models (b) Graph representations of all the faces and edges of FGFs

FGF1_A D b FGF2_A

(c) Graph representations with encapsulated geometry

Figure 14. Graph representations of FGFs

Interface types of mating faces can be classified as follows.

- Rigid attachment: two cells are merged into a solid. A face should be rigidly attached

with another face, or a volumetric cell can be subtracted from a bigger volumetric cell.

- Assembly: two solid cells contact each other.

o Static: two cells contact without relative motion between each other.
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o Kinematic: two cells contact with relative motion between each other. This

interface can be classified further into "slide", "roll", and "rotate".

Two types of mating for assemblies between components such as 'against,' and 'fits'

(or 'tight-fits') have been considered by Lee and Gossard,2 and Lee and Andrews [31] also

developed a way to infer the positions of the components from the given mating features. This

approach gave the basics to calculate the locations of components by using mathematical

equations and solving them. They considered only assemblies, but we consider rigid

attachment between cells in this thesis. Thus, 'against,' and 'fits' can be extended as follows.

- Against:assembly: two planar faces are located on a plane with opposite normal

vectors.

- Against-equal:rigid_attachment: all the boundaries of two planar faces are exactly

matched together.

- Against inside:rigid-attachment: a planar face is placed inside of the other planar

face.

* Against intersected:rigidattachment: two planar faces are intersected on a plane.

- Fits:assembly: two centerlines of cylinder and hole are located on a line. This

interface type is classified into 'cylinder,' or 'hole' for each mating face.

" Tight-fits: assembly: two centerlines of cylinder and hole are located on a line and

two points on the cylindrical faces locates on a cylindrical face. This interface type is

classified into 'cylinder,' or 'hole' for each mating face.

In this thesis, we grouped all kinds of rigid attachments into

'against:rigidattachemnt,' because we are not considering shape deformation of the

boundaries of the mating faces except some special cases. Deformation of the boundaries can

be performed by post-processing since interface-ability has been checked only considering

orientations and positions of the FGFs to satisfy given mating conditions. Thus, four types of

interface, 'against:rigid-attachment' 'against:assembly,' 'fits:assembly,' and 'tight-

2 'Against' applies between planar faces and 'fits' applies between a solid cylinder and a hole.[30]

52



fits:assembly,' are mainly considered, but only two types of interface, 'against' and 'fits' are

used for automatic assembled shape generation. These two types of interface can cover many

cases for assemblies as mentioned in [30]. For the 'against,' normal vector of the planar face

and one point on the face are needed for reusing the face for geometric interfaces. For the

'fits,' two points on the centerline of each cylindrical face are needed. Also, an operation,

'subtraction,' is not considered in this thesis.

Table 6 shows a simple practice of how to generate the FGFs for a beverage can. The

generated FGFs are decomposed by simple disassemblies and cut operations in the V-model

design process. Figure 15 shows the detailed data structure between FGFs and cells for the

beverage can example. Each leaf level FGF has been linked to each cell. Each cell keeps

information on its interfaces, i.e. mating faces, and encapsulated geometry. Each higher level

FGF is composed of its lower level FGFs. This can be represented as a set of lower level

FGFs. Because the lower level FGFs are linked to cells, each higher level FGF is

consequently represented by a set of cells. FGF_0, FGF_1, FGF_2, or FGF_3 does not have

all the geometric information of the corresponding shapes, but only keeps a set of links to the

corresponding cells, a list of internally matched interfaces between the cells, and dangling

interfaces of each FGF that have not been interfaced yet. The geometry of the FGFs and their

dangling interfaces are shown in the Table 6. In the case, in which one mating face may be

used for mating two other faces, two interfaces of the same mating face are generated and

stored as design knowledge in the database. This gives complete information on how the

interfaces have been used in the existing design case. For example, A6

(fits:assembly:cylinder), a mating face of cell 6, has been interfaced with two faces, C3

(fits:assembly:hole) of cell 3 and A5 (fits:assembly:hole) of cell 5.
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FRs DPs FGFs Dangling interfaces

FRO= DPO= {FGF_1, FGF_2, FGF_3}

contain and beverage
carry can
beverage

FRI = cover DP= top {FGF I 1, FGF_ 12,

the body and FGF_1_3, FGF_1_4,

provide FGF_1 5, FGF 1 6}

pathway of C2(against:rigid-attachment)

beverage
FR_1 = DP1_1= {Cell_}

guide the cylindrical Al (against:rigid-attachment)

flow of extrusion
beverage wall Al

FR1_2= DP1_2= A2 {Cell_2}

store circular B2 A2(against:rigidattachment)

beverage pocket C2 B2(tight-fits:assembly:hole)
C2(against:rigid-attachment)

FRi_3= DPi_3= { Cell_3}

cover body circular D3 C3 B3 A3(tight-fits:assembly:cylinder)

of beverage cover with A3 B3(tight-fits:assembly:hole)

can and flow through C3(tight-fits:assembly:hole)

beverage out hole E3 D3(against:assembly)
E3(against:assembly)

FR1_4= DPi_4= {Cell_4}

enclose the gate A4 A4(tight-fits:assembly:cylinder)

hole before
opening

FR1_5 = DP1_5= 5 A5 { Cell_5}

open the opening tab A5(tight-fits:assembly:hole)

gate B5 B5(against: assembly)
C5(against:assembly)

FR1_6= DPi_6 =A6 C6 {Cell_6}

fasten fastener of A6(tight-fits: assembly:cylinder)

opening tab opening tab A6(tight-fits: assembly:cylinder)

on the cover to cover B6 B6(against:assembly)

L_ I_ I C6(against: assembly)
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FR2 = DP2 = { FGF_2_1, FGF_2_2}
provide cylindrical B7 (against:rigid attachment)
volume to body B8(against:rigid-attachment)
contain
beverage
with a
certain B8
stiffness
FR2_1 = DP2_1= {Cell_7}
reduce the conical B7 A7(against:rigid-attachment)
material and section of B7(against:rigid-attachment)
increase the body
stiffness of A7
the body
FR2_2= FR2_2= A8 {Cell_8}
provide a hollow A8(against:rigid attachment)
volume to cylinder B 8(against:rigid-attachment)
contain
beverage

B8

FR3= DP3= {FGF_3_1, FGF_3_2}
enclose the bottom A9(against:rigid-attachment)
bottom with A9
resistance to
an impact
FR3_1 = DP3_1= {Cell_9}
withstand a curvature A9 A9(against:rigidattachment)
moderate of the B9(against:rigid-attachment)
impact when bottom
the can is B9
dropped
FR3_2= DP3_2 A10 {Cell_10}
stand the cylindrical A10(against:rigid-attachment)
beverage extrusion
can and
stack on top

Table 6. FRs, DPs and the corresponding FGFs of beverage can
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Dangling Internal Interface FGF
Interface Match
Null {FGF_1, FGF_2, FGF_0

FGF_3}
(C2:B7) (B8:A9)

C2 {FGFI_1, FGF_1_2, FGF_1
FGF_1_3, FGF_1_4,
FGF_1_5, FGF_1_6}
(A1:A2) (B2:A3)
(B3:A4) (C3:A6)
(D3:B5) (E3:B6)
(A5:A6) (C5:C6)

Al {Cell_}( FGF 1_/1

A2, B2, C2 {Cell_2} FGF 1_ 2

A3,B3,C3,D3,E3 {Cell_3} FGF 1_3

A4 {Cell_4} FGF_1_4

A5, B5, C5 {Cell_5} FGF_1_5

A6, A6, B6, C6 {Cell_6} FGF 1 6

B7. B8 {FGF_2_1, FGF_2_2} FGF_2
(A7:A8)______

A7, B7 {Cell_7} FGF 2 1

A8, B8 { Cell_8} FGF 2 2

A9 {FGF_3_1, FGF_3-2} FGF_3
(B9:A1O)

A9, B9 {Cell_9} FGF 3 1

A10 {Cell_10} FGF 3 2

Figure 15. Data structure between FGFs and cells for beverage can

The following Table 7 and Figure 16 show generated data from the cam and pawl

mechanism and Table 8 and Figure 17 show the hanger design example described in the

chapter 3.
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Pointer Cell Interface Geometry
Cell_1 Al

Cell_2 A2, B2, C2

Cell_3 A3,B3,C3,D3,E3

Cell_4 A4

Cell_5 A5, B5, C5

Cell_6 A6, A6, B6, C6

Cell 7 A7, B7

Cell_8 A8, B8

Cell_9 A9, B9

Cell_10 AlO c)



FRs DPs FGFs Dangling interfaces
FRO = DPO = {FGF_1, FGF_2, FGF_4}
prevent an assembly of
attended cam and
parked pawl
vehicle from mechanism
moving on
its own

FR1= DP1= B2 {Cell_1, Cell_2, Cell_3}
engage the engagement BI Al (against:rigid-attachment)
pawl to the mechanism B 1 (tight-fits:assembly: hole)
engaged N C1(against:assembly)
position Al A2(against:rigid-attachment)

B2(against:rigid-attachment)
A3(against:rigid attachment)

FR2 = DP2= B { Cell_1, Cell_4, Cell_5}
keep the flat surface C4 B1(tight-fits:assembly)

pawl in the of cam Cl (against:assembly)
engaged A5 CIC4(against:rigid-attachment)
position A5(against:rigid-attachment)

FR4 = carry DP4 = force {FGF_4_1, FGF_4_2}
the weight carrying Al(against:rigid attachment)
of the mechanism A6 A6(against:rigidattachment)
vehicle in
the engaged
position

FR4_1= DP4_1= {Cell_1, Cell_6}
carry the vertical Al (against:rigid-attachment)
force to the surface of A6 BI B 1 (tight-fits:assembly)
pin the pawl C1 CI(against:assembly)

A6(against:rigidattachment)
Al

FR4_2= DP4_2= { Cell_7}
endure the pin A7 (tight-fits:assembly:cylinder)
force at the B7 B7(against:assembly)
pin

Table 7. FRs, DPs and the corresponding FGFs of cam and pawl mechanism
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Dangling Internal Interface FGF
Interface Match

Null {FGF_1, FGF_2, FGF_0
FGF_3, FGF_4}
(A2:C4) (A3:A5)
(B2:A6)

A1, B1, C1, {Cell_1, Cell_2, FGF_1
A2, A3 Cell_3}

(B32:B33)
B1, C1, C4, {Cell_1, Cell_4, FGF_2
A5 Cell_5}

(A1:A4), (B4:B5)
Al, A6 {FGF_4_1, FGF_4

FGF_4_2}
(B1:A7), (C1:B7)

A1, BI, C1, {Cell_1, Cell_6} FGF_4-1
A6
A7, B7 {Cell_7} FGF_4_2

Figure 16. Data structure between FGFs and cells of cam and pawl mechanism
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Pointer Cell Interface Geometry
Cell_1 Al, Bl, C1

Cell_2 A2, B2

Cell_3 A3, B3

Cell_4 A4, B4, C4

Cell_5 A5, B5

Cell_6 A6

Cell_7 A7, B7



Table 8. FRs, DPs and the corresponding FGFs of hanger design

Dangling Internal Interface FGF
Interface Match
Cl {FGF_1, FGF_2} FGF_0

(A1:A2), (B1:B2)
Al, Bl, CI {Cell_- FGF 1
A2, B2 {Cell_2} FGF 2

Figure 17. Data structure between FGFs and cells of hanger design
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FRs DPs FGFs Dangling interfaces
FRO = DPO = {FGF_1, FGF_2}
hang a load hanger C1 (against:rigid-attachment)
on the wall C1
with a
certain
stiffness

FR1= DP1= {Cell_11
hang a load L-beam Al Al(against:rigid attachment)

Cf B1(against:rigidattachment)
I B C1 (against:rigid attachment)

FR2= DP2= {Cell_2}
increase triangular A2 A2(against:rigidattachment)
stiffness rib B2(against:rigid-attachment)

B2

Pointer Cell Interface Geometry
Cell_1 Al, Bl, CI

Cell_2 A2, B2
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Chapter 5

Generation of Design Solutions

The first step of generation of design solutions is language matching between a query

FR and saved FRs. Once there exist any candidate FGFs to satisfy the query FR, the interface-

ability between the FGFs should be checked first and then those FGFs should be combined

and integrated as candidate shapes. These steps reduce a design solution space gradually and

finally can suggest alternatives for a design problem. Because the candidate design solutions

has been filtered through the language matching first through the hierarchical tree, the

computational complexity can be reduced to combine the FGFs to alternative shapes larger

than that of bottom-up approach.

5.1 Language Matching of FRs

The search of design solutions is basically performed by text analysis of FRs. Once a

designer input a query FR, a computer algorithm searches similar FRs to the query FR in the

fr-database. If the language description of the query FR has similarity to an FR1 of hierarchy

"A" and an FR2 of hierarchy "B" already stored in the case base, "DPiA" and "DP2_B" can

be thought of as different design solutions to satisfy the query FR. For one FR, many DPs can

be found out as candidate solutions through this search process in the databases. The mapping

between the query FR (FRO) and many candidate DPs can be expressed as

fr-dp("FRO", ["DP1_A", "DP2_B", .... ]).
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Each DP related to geometric entities is also linked to each FGF. Each FGF is defined by a set

of nodes in the face-edge graph that represent a set of faces in the solid model. Thus, the

representation of the mapping between FRO and many candidate solutions related to

geometric entities can be expressed as

fr-dp-geometry("FRO", [{"DPLA", "FGF1_A"}, {"DP2_B" "FGF2_B"},.

One difference in the structure of the case base proposed in this thesis from the

database of the Thinking Design Machine is a tree structure of the knowledge base and the

hierarchical information flow. This hierarchical information flow is more compact to store

design knowledge, because all the lower level branches from a certain FR can be searched and

extracted.

Search of the proper DPs from given FRs is performed by a statistical approach. The

statistical approach measures the distance between an FR already stored in the case base and a

query FR. The distance is calculated by the frequency of appearing words and the sequence of

words. A query FR and a given saved FR are decomposed into a set of words and pairs of

words. For example, "engage the pawl to the engaged position," is decomposed into two sets

as

Word set = {engage, pawl, to, engaged, position}

Word pair set = { (engage, pawl), (pawl, to), (to, engaged), (engaged, position)}.

Here, 'the,' 'a,' 'and,' 'or,' and pronouns are trimmed, because the word is not closely

related to the meaning of the sentence. The word set is used to check all the words of the

query FR are included in the given saved FR. The word pair set is used to check the sequence

of the matched words. When the words are compared, synonyms of a certain English word are

checked by WordNet [32]. The metric is
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FR metric = 2 x # of matched words + # of matched word pairs of saved FR (a)
# of total words + # of matched word pairs of input FR

Once two sentences for a query FR and a given saved FR are exactly the same, this metric

gives 100%. If not, it scales the difference by the mathematical equation defined for the

metric. Synonym checking reduces errors of describing a meaning of a word using synonyms.

5.2 Assembled Shape Generation

Integration of various FGFs to a complete shape is one of the key factors for geometry

design with functions, actually with FRs. To integrate FGFs, combining the candidate FGFs

and checking of geometric interface-ability between them have to be done. The combination

of FGFs is performed by genetic algorithm (GA) and geometric interface-ability is checked by

an algorithm simulating assembling operations to integrate them in the physical space. The

following attributes are checked to quantify the interface-ability between FGFs. Firstly,

interface type (IT) is checked by graph matching of interfacing nodes of FGFs. Graph

matching is known as NP-complete problem. [33] Secondly, relative angles between faces is

measured. Thirdly, the possibility of positioning mating faces.

- Interface type (IT): against: assembly, against:rigid-attachment, fits:assembly

" Angles between faces (AF)

- Positions (Pos)

5.2.1 Combinations of FGFs

Three sets of candidate FGFs to satisfy FRI, FR2, and FR3 can be supposed as

{

fr-dp-geometry ("FR1", [{"DPl_A", "FGF1_A"}, {"DP1 B", "FGF1B"}]),
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fr-dp-geometry ("FR2", [{"DP2_A", "FGF2_A"}, {"DP2_B", "FGF2B"},

{"DP2_C", "FGF2_C"}]),

fr-dp-geometry ("FR3", [{"DP3_A" "FGF3_A"}, {"DP3_C", "FGF3_C"}]),

}.

The possible combinations between the FGFs are 2*3*2 = 12 in this case. For each possible

combination, there are possible combinations of connectivity of FGFs. For example, the

FGF1_A, FGF2_A, and FGF3_A are decomposed cells as shown in the Figure 18. If each

FGF is supposed to have three interfaces, there are 16 cases of connectivity as shown each

connectivity graph and the number under the graph is the possible combinations of interfaces,

which satisfy the connectivity. There exist total 1044 possible combinations of connections

between the three FGFs with three interfaces. If we consider assembly sequence in addition to

the connections, the number of possible combinations will be increased.
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Figure 18. Possible combinations of connectivity of three FGFs in the same level
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Because there are a lot of possible combinations for interfacing FGFs, we used GA

(Genetic Algorithm) to avoid to checking all the combinations described above instead of

using an algorithm for generating all the combinations. GA evolution is used to generate

assembly sequences between FGFs and to find out combinations of mating faces, which are

matched well based on the interface types. GA can evolve to reduce the solution space with an

acceptable speed to maximize the fitness. The GA chromosome is defined as

FGFs:

Chromosome:

Interface pairs:

l.A 2_A 2_A 3_A 3_A 1_A

2 0 2 3 4 6

Pairl Pair2 Pair3

The interface pair represents connections and assembly sequences between two FGFs shown

on the top of the chromosome. Each interface pair consists of two genes, which are mapped to

the encoded mating faces of an FGF. The first FGF in a pair is a base FGF, which is fixed in

the physical space for the assembling operation. The second FGF is an interfacing FGF,

which is moved and deformed to be interfaced to the base FGF. In Figure 19, a directional

graph shows connections and assembly sequences between FGFs, which the chromosome

described above.

FGF
1_A

FGF FGF
2_A 3A

Assembly sequence :
FGF2_A ->FGF3_A
FGF3A ->FGF1_A

Figure 19. Connections and assembly sequences between FGFs
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The number of pairs is determined by mC2 = n, where m is the number of FGFs. Here,

the number of pairs in the example chromosome is 3C2 = 3. Table 9 shows the encoding of

mating faces according to each FGF. Each FGF is supposed to have three mating faces. The

codes are generated by combinations of three mating faces in each FGF and are represented as

a number in the gene. A number for each FGF is 0, or between 1 and 7. The maximum

number of codes for each FGF is determined by mCi+ mC2+.. .+ mCm. Thus, the chromosome

with codes (2 0 2 3 4 6) represents one possibility of the eleventh connectivity graph and the

assembly sequence shown in Figure 19. In this example, each pair can have any two numbers

between 0 and 7. If 0 is selected for a gene in a pair, there is no connection between two FGFs

in the pair.

FGF Code Mating faces FGF Code Mating faces FGF Code Mating faces

0 Null

lA 1 A 2_A 1 D 3_A 1 G

2 B 2 E 2 H

3 C 3 F 3 I

4 A&B 4 D&E 4 G&H

5 B&C 5 E&F 5 H&I

6 C&A 6 F&G 6 I&G

7 A&B&C 7 D&E&F 7 G&H&I

Table 9. Encoding of interfaces of FGFs into genes

Based on the chromosome with codes (2 0 2 3 4 6), the combinations of mating faces

and assembly sequences are generated. Table 10 shows the combinations of the mating faces

and the assembly sequences of FGFs. The sequence of the genes represents assembly

sequences of FGFs. There exists only one possible combination of mating faces between

FGF_2 and FGF_3. It is to interface E and I. However, there are two combinations of mating

faces between FGF_3 and FGF_1 as shown in Table 10. The assembly sequences of mating
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faces in a pair are not considered. It means that either assembly sequence of mating faces,

G:C -> H:A or H:A-> G:C is arbitrarily selected for checking geometric interface-ability.

FGF1 FGF_2 FGF_2 FGF_3 FGF_3 FGF_1

2 0 2 3 4 6

No interface E:I G:C & H:A

H:C & G:A

Table 10. Combinations of interfacing faces represented by a chromosome (2 0 2 3 4 6)

Through the GA evolutions, we can rank the fitness of interface type (IT) matching

between FGFs. The high fitness valued chromosome represents the high possibility of

interface type matching of the mating faces between all the FGFs. The value, 1.0, is assigned

for the fitness, if interface types of all the mating faces of the FGFs are completely matched

each other. The fitness can be represented as

fi _ 2 x# of matched ITs(b
fitness = IT metric = (b)

# of mating faces

After finishing GA evolution, a shape integration algorithm checks the geometric interface-

ability between FGFs from the highest valued chromosome, and generates assembled shapes

based on the mating conditions and the generated assembly sequences by GA evolution. The

highest fitness valued chromosome has the highest possibility to geometric interface-ability of

FGFs, because it gives the best combinations for interface type matching. The fitness values,

already decided by GA, are degraded, or maintained by checking geometric interface-ability.

The geometric interface-ability between FGFs is quantified as INTERFACEmetric. Thus, if

all the mating faces of all the FGFs are completely assembled in the physical space satisfying

all the mating conditions, the INTERFACEmetric gives a value of 1.0. If no mating faces

can be interfaced, the INTERFACEmetric value will be 0.0. For example of Figure 18, the

maximum value of INTERFACEmetric is 0.89 (=2x4/9), when four pairs of mating faces
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can be interfaced in 9 mating faces of all three FGFs. Figure 20 show the whole process to

calculate the INTERFACEmetric values.

Shape
Integration
Process

e Assembly sequence generation
GA evolution * Interface Type (IT) matching

Chromosomes(Fitness)

e Assembly of FGFs
Assembling e Calculation of degrees of freedom

INTERFACE metric

e Rigid attachment of FGFs
Gluing - Calculation of degrees of freedom

Figure 20. Processes to check interface-ability between FGFs

5.2.2 Automatic Assembly and Interface-ability of FGFs

The goal of the shape integration process is to check geometric interface-ability

between FGFs satisfying given mating conditions based on the assembly sequences given

from the highest valued chromosomes and finally to quantify the degree of the interface-

ability as a value of INTERFACEmetric. This shape integration process has been

implemented as computer algorithms that emulates human assembling operations and solves

assembly constraint equations using MATLAB. The steps of this process follow the flow

chart as shown in Figure 21. The basic strategy is checking the mating conditions by

orientating and positioning of FGFs in a given coordinate frame. Here, orienting means only

rotations of FGFs to match directions of mating faces, and positioning means only translations
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of FGFs to locate the mating faces to the given position. The first FGF in a pair of a

chromosome is a base part that is fixed in the absolute coordinate frame. The second FGF is

an interfacing part to the base FGF.
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Gluing (5) DOFs- (INTERFACE-metric)i

Assembling Yes
Bring jth pair of FGFs No If j>limit

Yes

of maing fac s 4 No If klimit Increase k by 1

Coordinating (1)

DOFs

Orienting (2)

AFsum=
AFsum + AFmetrick(2)

the orienta
constraints satisfied? No

(2)

Yes
DOFs

Positioning (3)

re the position
constraints satisfied? Yes

(3)

No

FScaling/Stretching (4)

e the positioni
constraints satisfied? Yes

(4)

<+ No

Figure 21. Shape integration process to check geometric interface-ability

The algorithm brings chromosomes sequentially from the highest value to the lower

value. In a chromosome, all the combinations of mating faces are generated according to the
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codes of the genes. For example, there are two combinations of interfacing mating faces in the

example chromosome in section 5.2.1. If the codes of the chromosome are (2 0 4 6 4 6)

according to the codes in Table 9, there are four combinations as shown in Table 11. There

are two pairs of mating faces in pair 2 and 3 of FGFs.

Sequence FGF1 FGF_2 FGF_2 FGF_3 FGF_3 FGF_1

2 0 4 6 4 6

1 No interface D:I -> E:G G:C -> H:A

2 No interface D:G -> E:I G:C ->H:A

3 No interface D:I-> E:G H:C ->G:A

4 No interface D:G -> E:I H:C ->G:A

Table 11. Combinations of interfacing mating faces in a chromosome

The algorithm recursively brings ith sequence (i = 1, 2, 3, 4) and jth pair ( = 1, 2, 3) in

a chromosome, and kth interfacing pair of mating faces (k = 1, 2) in pair 2 and pair 3 until all

the combinations have been checked. In a pair, the first FGF is fixed as a base part and the

second FGF is being interfaced to the first FGF to satisfy pre-defined mating conditions. Each

FGF has its local coordinate frame. Thus, the first step of assembling operations is to locate

the local coordinate frame with respect to the absolute coordinate frame commonly used for

the whole assembling operations. This is called 'coordinating' in this thesis. Once the

coordinating operation has been performed, the algorithm rotates the second FGF to match

orientation of its mating face with that of the base FGF. This operation is called 'orienting.'

Then, it translates the second FGF to locate its mating face to a position provided by assembly

constraints. This operation is called 'positioning.' All the operations are performed based on

the local coordinate frame and the corresponding DOFs. The mating conditions can be

interpreted as assembly constraints described by mathematical equations.

For example of Table 11, the algorithm recursively brings assembly sequences, and

automatically assembles the three FGFs. In sequence 1, it brings 2nd pair of FGFs first,
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because there is no interface between FGF1 and FGF2. Then, it brings 1st pair of mating faces,

D:I. It firstly locates the local coordinate frames of the FGF2 and the FGF3 coincidently with

the absolute coordinate frame. Then, it rotates the FGF3 to a direction to match the orientation

of I with that of D according to the given interface type. In the orienting operation, unit

normal vectors of two planar mating faces must be parallel and opposite for 'against' and two

centerlines must be parallel for 'fits'. The angle differences between mating faces are

calculated for AFmetric. It translates the FGF3 for positioning I to D after orienting

operations and calculation of values for AFmetric. In the positioning operation, a point on

the planar mating face must be on the other planar mating face for 'against' and two

centerlines must be located on a line for 'fits'. If scaling or stretching is needed, it is

performed. If it fails positioning FGF3, it gives a defined value (0.5 in this thesis) less than

1.0 for Posmetric. The algorithm output position and orientation of a local coordinate frame

w.r.t the absolute coordinate frame, in which the FGF3 can move further with DOFs

calculated through the assembling operations. It recursively checks the interface-ability of the

second pair of mating faces, E:G, and then do the same steps for 3 pair of FGFs (FGF3 and

FGF1). Finally, three values of ITmetric determined by GA evolutions, AFmetric, and

Posmetric are multiplied as a value of INTERFACEmetric, which represents the geometric

interface-ability for a given sequence in a chromosome. The value of the

INTERFACEmetric has scaled between 0.0 and 1.0. 1.0 means complete interface-ability for

the given FGFs and 0.0 means that any of the given FGFs cannot be interfaced. Consequently,

the proposed algorithm produces the assembled shapes and degrees of freedoms of each FGF

in the assembled shape, and ranks the assembled shapes by values of INTERFACEmetric,

which represent degrees of interface-ability of FGFs in the assembled shapes.

All the operations are performed by transformation matrix [34] and the corresponding

mathematical equations represented as follows.

n c O, ax P nm O1 a, ~1 0  0 p

T =n O, ay P R no OY ay 0 TT 0 P (c)
nz Oz a PZ nz oz a 0 0 0 1 Pz
0 0 0 1 L0 0 0 1 0 0 0 1
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, where TR denotes only rotation and TT denotes only translation. The elements of TR matnix

always have the following relations represented as six mathematical equations.

nX2 nY2 2 n
nx +ny +n =1

Ox +Oy 2+0 =1

n~oX + nyo, + n~oZ = 0 (d)
a, = nyoz - n o,
ay = o~nZ - nXoZ

a y = n yo - nxoX

DOFs are represented by TR(n) or TT(n). Here, n is a number less than or equal to three which

represent degrees of freedom for rotation or translation. If an FGF has [TR(1), TT(2)], it has

one DOF for rotation and two DOFs for translation.

Scaling or stretching is performed for special cases to show its effects to generating

assembled shapes. The effects or importance of scaling or stretching will be discussed in a

later section. An FGF is originally created with its own purpose. Thus, the more the shape of

the FGF deforms, the more its purpose is lost. In this sense, only the severe shape deformation

is not allowed, but scaling or stretching is performed. Here, scaling of shapes is enlarging or

reducing the size of the shapes in all directions in the physical space and stretching is doing it

in one direction. The basic scaling matrix is a special form of the transformation matrix,

which is

S( 0 0 0

D 0 SY 0 0 (e
0 0 SZ 0

L0 0 0 1
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where Sx, Sy, and Sz are scaling factors. If all Sx, Sy, and S, are equal, this matrix can be used

for scaling. Otherwise, one of Sx, Sy, and Sz is not zero, it is used for stretching.

(1) Coordinating

Coordinating is an operation to determine a base coordinate frame in which the

interfacing FGF can be rotated and translated. A proper coordinate frame is determined from

the previous assembling operation, because the assembling operations are procedural and

reduce DOFs of the interfacing FGF in this thesis differently from the approach in [31]. The

more mating faces between two FGFs exist, the possibility of less DOFs will be increased. A

base coordinate frame must be attached to a proper position with proper orientations to

correctly represent rotation and translation of the interfacing FGF for the next assembling

operation. There are mainly three types of base coordinate frames used in the shape

integration process.

" Coordinateabsolute: an absolute coordinate frame, which is attached and fixed to the

ground.

" Coordinate-against: a base coordinate frame which is attached to the point on the first

planar mating face of the base FGF that has been already interfaced by an assembling

operation of 'against' type. The z-axis is coincident with the unit normal vector of the

first mating face of the base FGF, Nbi, which has been already used for interface. The

y-axis follows an intersection line of two mating planes of the base FGF. The origin is

any point on the planar mating face of the base FGF.

-B =RA
B bl

B B X A
B Nb2

XB _B BX y XZ

- Coordinatefits: a base coordinate frame which is attached to the point of the

centerline, Cbl, of the base FGF that has been already interfaced by an assembling
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operation of 'fits' type. The point is common for both a cylinder and a hole. The z-

axis is coincident with the centerline of the first mating face of the base FGF, which

has been already used for interface.

-B CblA C b2

A transformation matrix from an absolute coordinate frame to a base coordinate frame is

obtained by the following method.

Coordabsbase( ) {

xA = (1,0,0), ^ = (0,1,0), 2 = (0,0,1), ^= (0,0,0)

iB =LTRCBIA, B =[TRCB]A, 2B =[TRCB iA

6 B =[TTC B A

[TC B TC B ][TRCB

}

(2) Orienting

Orienting operation only rotates the interfacing FGF to match a direction of its mating

face with a direction of the other mating face of the base FGF according to the given mating

conditions. The followings are the methods necessary for the orienting operations. The

superscript denotes a coordinate frame. Here, 'A' is the absolute coordinate frame, 'B' is a

base coordinate frame, Lb is the original local coordinate frame of the base FGF, and Li is the

original local coordinate frame of the interfacing FGF.

Orienting-against (TR(3)) {

Inputs : k,' I "

Outputs : [TRiA]

Equations : equations (d), and
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bA TR A ]NLb

*iA =LTRi A]INliLi (f)

1 -Ab

where Nb is a unit normal vector of a mating face of a base FGF and Ni is a unit normal vector

of a mating face of an interfacing FGF.

I

Orienting-fits (TR(3)) {

Inputs : Cb ', C Cbl C 2

Outputs : [TR A]() or [TRi A ](2)

Equations : equations (d), and

Cbl = TA] Lb

Ab [TA]C Lb

1A =[T ] Ci Li

Cl 2 =[ TRi A Ii2 Li

(g)

(Ci2,x - CilX A )I(Cb2,x - Cbl,x ) = (Ci2, A - Cil,,A ) /(Cb 2,y A- CblY,, ) = (Ci2,z
A - Ci,zA ) /(C 2,zA

(CilXA - Ci2,x )/(Cb2,xA - CbIxA ) = (C 1,, A - Ci2,yA )I(Cb2,yA - Cbl,^ ) = (Ci1,zA - Ci2,z A)/(C2,z^ - CblA ) (2)

where C is a point on the centerline of a cylindrical surface. Cbl and Cb2 are two points on the

centerline of a base FGF and Ci1 and C 2 are two points on the centerline of an interfacing

FGF.

I

Orienting-any (TR(1)) ( //rotation about z axis, iB, in a base coordinate frame
^B ^ B

Inputs : Nb, N

Outputs : [TRi B

Equations :
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NB 
N B

(N B 2 +(N B )2 cos0 -sinO (N B) 2 +(N,B)2

N B Lsin0 cosO _ N B

(NbXB ) 2 +(Nb B2 (NAB) 2 +(N 1 ,B) 2 _ (h)

cos0 -sin0 0 0

B sin0 cos0 0 0
[TRi B 0

0 0 0 1

where Nb is the unit normal vector of the mating face of the base FGF and Ni is the unit

normal vector of the mating face of the interfacing FGF.

I

Originally, a rigid body has three rotational DOFs in 3-dimentional spaces. To satisfy

a pre-defined interface type, 'against' or 'fits' in the orienting operations, orienting-against

(TR(3)) or orienting-fits (TR(3)) are used. Orienting-against (TR(3)) receives unit normal

vectors of the mating faces as inputs and calculates a rotational transformation matrix. (f) has

6 equations for 12 unknowns. Additional 6 equations are provided by (d). Orienting-fits

(TR(3)) receives two points on a centerline and two points on the other centerline, and

calculates two rotational transformation matrices in two different cases. In the first case, a

direction of a vector from Cb2 to Cbl is the same as that of a vector from C 2 to Ci1. In the

second case, both directions are opposite. For both cases, (g) have 9 equations for 15

unknowns. (d) are the additional 6 equations.

Once 'against' or 'fits' has been applied, the rotational DOFs is reduced to one for all

the cases. The rotational axis for the remaining DOF is defined as z-axis of the base

coordinate frame, coordinateagainst or coordinatefits. From the second pair of mating

faces, the interfacing FGF rotates about the z-axis. Figure 22 shows how orienting-any

(TR(1)) calculates a rotational transformation matrix from input unit normal vectors and the

rotation of the interfacing FGF. Nb is a unit normal vector of kth mating face of base FGF and

Nik is that of interfacing FGF. Those two vectors are projected on the xy-plane and then
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normalized. The corresponding projected and normalized vector, Nipk, rotated until it is

matched with -Nbpk. Equations (h) calculate the rotational angle for TRiB. This concept can be

directly applied for 'against' and the projected normal vectors can be considered as

normalized vectors from Cb2 to Cbl and from C 2 to C1 for 'fits'.

z
I

y

Ni k

Nbk

Nbp k )
x

-Nk,

Figure 22. Orienting of the interfacing FGF

AFmetric measures the orient-ability of faces based on the angles between the faces.

It quantifies the orient-ability by the following equations.

k-1 - angle, i 2
AF _metricpk =(I - _____

360 )p ,
p=1 JuU

if k > 2

(i)
nC2 M

I (Z AF - metric,')

AF _ metric = j=I k=2 C2

(m C 2 )j

where k is kth pair of mating faces, j is jth pair of FGFs, m is the total number of pairs of

mating faces between two FGFs, and n is the number of FGFs. In the AF-metricpk for the kth

pair of mating faces, angleb is an angle between two normal vectors of two mating faces on
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the base FGF, and angle is an angle between two normals of the two mating faces on the

interfacing FGF. Either angle can be calculated using the mathematical equations,

angleb =cos-b(Nb P Nbk)and anglej =cos-(Ni . N1k), where Nb is a unit normal of the base

FGF and Ni is a unit normal of the interfacing FGF. The arc cosine gives two values. Thus,

the minimum value of (angleb - angle) among the 4 combinations is selected in AFmetric,

because it has been already rotated to the orientation in which the angle between both mating

faces has been minimized. If it is 0', orientations of both FGFs are completely matched. If k is

greater than or equal to three, k-1 combinations, in which the given pair of mating faces is

combined to already interfaced pairs, are checked to calculate and sum the scaled values from

0.0 to 1.0. The values of AFmetricpk for kth pair are averaged to AFmetric for the given pair

of interfacing FGFs as shown in the flow chart in Figure 21. For example, Figure 23 shows

the simple calculation of AFmetric2 for two pairs of mating faces.

Base FGF

N k Interfacing

45 Nb FGF

450

z

NN 1

Nip

Nb = (0, 0,1), Nb =(1/ 2, 0, -1/ V)

) i = (0, 0, - 1), V" =(-I/1/ 2, 0, 1/ r)

angleb =cos (Nb e Nb)=135' or 225'

angle = cos- (NP N ) = 1350 or 225'

min(angleb - angle, )=00

AF _metric1I =1.0

Base FGF

1 -k Interfacin
4 5Nbk FGF

300

Nbt
x~

g

Nip

iv = (0, 0, 1), job = (I/ , 0, - I/,)

Nb =(0,0, -1), Nk =(-/2,0, V'/2)

angleb = cos-1 (N -V Nb) = 1350 or 225*

angle, = cos1-(N1  e Nj')=150 or 210

min(angleb - angle, )=150
A2AF -metric I = 0.96

Figure 23. Calculation of AFmetric

80



(3) Positioning

Positioning operation only translates the interfacing FGF to locate it on the correct

position by which the given mating conditions are satisfied. The followings are the methods

for the positioning operations based on the DOFs given from the preceded assembling

operations.

Positioning-against (TT(3)) {

^Lb, Lb - Li AInputs: Nb 'b L ,i TRi A

Outputs : [TTiA]

Equations :

Nb =TbA ] b Lb

A [ A ] Lb(j)

-^=[T.A][TRiA Li
Pi Ti R i

P=Pb

where Pb is a point on a mating face of a base FGF and Pi is a point on a mating face of an

interfacing FGF.

I

Positioning-fits (TT(3)) {

Inputs : CM ', ei1 , ei2Li 1TRiA () Ri A (2)

Outpts :[TT~A ](1) , [T A ](2)Outputs : [T ],Ti ]

Equations :

Cbl A=[Tb A]ICbl Ib

e A^=[T ](1 [TRiA](1) e Li ei r -TA ]( 2) Ri A (2 ) Li

il A i(k)
eii bl
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where C is a point on the centerline of a cylindrical surface. Cbl is a point on the centerline of

a base FGF and C1 and Ci2 are two points on the centerline of an interfacing FGF. (1) or (2) is

either case of orienting.

}

Positioning-against (TT(2)) {

Inputs : , P, [T, B [TRi B

Outputs : [TTrB]

Equations :

1 bB =TRi B CBT 'b'

PNB B B PBA
~b =[TBiIITB IISb

Plane:Nb,, B x+NbyBy+N Bz +d 0
B B ,,pB B B

d =-Nb~x Pb,x -Nby b,y - NbZ z b, z

iB B TB]*[TRiB TCB A

1 0 0 px

B *
[TT1r 0 0 1 0

0 0 0 1

B B B B B B

Nb ,x P, x + Nb,y' 1' + Nb, z Ji + d=0

1 0 0 P1
[TTB]=r0 1 0 P

Ti 0 0 1 0

0 0 0 1

(1)

where Pb is a point on a mating face of a base FGF and Pi is a point on a mating face of an

interfacing FGF.

}

Positioning-fits (TT(2 )) {

Inputs : bl ,b 2 , cilA, i2 ,TCB ],[TRiB

Outputs : [Ti B]
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Equations :

GblB =TRiB][TCB] blA, b2 B [TiB][TCB b2A

CB =[TRiB][TCB ]CiA, i2 B =[TRiB][TCB i2A

B bB_

CblB b2 B B

CblB b2 B

B B

1 B _eB i2 L =0

ei1 B _ei2 BI*

1 0 0 Px

NL_ L -L, L 0 y
b IFT1I P0 0 1 0 (m)

0 0 0 1

where Pb is an intersection point vector between xy-plane and a centerline of the base FGF

and Pi is an intersection point vector between xy-plane and a centerline of the interfacing

FGF.

}

Positioning-any (TT(1)) {

Inputs : an axis, I^, i[TB' RiB

Outputs : [TiB

Equations :

jSB TRi B TC B pbA

j B =[T B][TRiB][TcB ]Fpi A (n)
B B RB CB A

Pb,any B , 'any B+ Pany

where Pany is the vector component in a given axis of the base coordinate frame.

}
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Originally, a rigid body has three translational DOFs in 3-dimentional space. To

positioning FGFs with 3 DOFs, positioning-against (TT(3)) or positioning_fits (TT(3)) are

used. Positioningagainst (TT(3)) receives input normal and input points on the planar mating

faces of the FGFs and calculates a translational transformation matrix. Six equations in (j) are

solved for 6 unknowns in this method. Positioning-fits (TT(3)) coincides a point on the

centerline of the interfacing FGF with that of the base FGF. Six unknowns can be solved

using six equations in (k) for either case.

Positioning-against (TT(2)) locates a point on the mating face of the interfacing FGF

onto the plane on which the mating face of the base FGF lies. As shown in Figure 23, the

interfacing FGF has two translational DOFs in x and y direction, once one 'against'

assembling operation has been already performed. Because the second pair of the mating

faces has been oriented, the interfacing FGF must move in only x direction until its second

mating face is located on the plane with Nbk in the base coordinate frame. Thus, two

unknowns, Pi,,B and px, can be calculated by the corresponding two equation in (1).

A metric for positioning mating faces is defined as below. Once positioning of a

mating face is failed, a value less than 1.0 is assigned to degrade the INTERFACEmetric

assigned to quantify interface-ability between FGFs in a chromosome. If it is successful, 1.0 is

assigned to position metric for the mating.

k 1.0, if positioning is successful

0.5, if positioning is unsuccessful

(i)
n C2 M

Z((Z Pos _metrick )Im)

Pos _ metric j=1 k=1

n 2

where k is kth pair of mating faces, j is jth pair of FGFs, m is the total number of mating pairs

between two FGFs, and n is the number of FGFs.
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(4) Scaling / Stretching

In this thesis, only scaling operation has been applied for some special cases. The first

case is for a type of interface, 'tight-fits:assembly'. Once all the assembling operations by

'against' and 'fits' have been done, the algorithm checks the details of the 'fits'. If a 'fits' was

'tight-fits,' it scales the corresponding interfacing FGF in a base coordinate frame with a

scaling factor, S = radius of base cylindrical face/radius of interfacing cylindrical face. The

second case is 'against-equal:rigidattachment'. Though a shape deformation or optimization

technique to match boundaries of the mating faces is not considered, a simple scaling for

matching circular outer boundaries of two planar mating faces has been tested. It has been

performed by additional concentric constraints and the scaling factor, S, the same for 'tight-

fits'. The results of this operation will be shown in the section for application examples.

(5) Automatic assembly methods

The methods proposed in coordinating, orienting, positioning operations are the bases

to automatically assemble an interfacing FGF to a base FGF. Each method mainly outputs

transformation matrices, a base coordinate frame and information of DOFs from the given

inputs. The outputs of a method can provide information for inputs to another method.

Because assembling operations must be performed following given types of interface in a

chromosome, there should not be any discontinuity from outputs of a method to inputs of the

other method for automating the assembling operations. All the cases of the information flow

for 'against' and 'fits' have been considered, and then 10 methods have been made to be

recursively used according to the input type of interface and DOFs. Table 12 summarizes all

the methods.
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Against:assembly or Fits:assembly{

Coordinating

Orienting

Positioning

}

Assembly methods(DOFs) Output Conditions

DOFs

Against:assembly(TT(3), TR( 3 )) TT(2 ), TR(1) Always successful

coordinating, orienting, positioning

Against:assembly(TT(2), TR(1)) TT(2), TR(1) If the normal has the same direction as

coordinating, orienting, positioning the axis of rotation

TT(1), TR(O) If the normal has a different direction

from the axis of rotation

Failed Scaling / Stretching

Against:assembly(TT(1), TR(O)) TT(1), TR(O) If the mating face is parallel to the axis

coordinating, positioning of translation

TT(O), TR(O) If the mating face is not parallel to the

axis of translation

Failed Scaling / Stretching

Against:assembly(TT(1), TR(1)) TT(1), TR(1) If the normal has the same direction as

coordinating, orienting, positioning the axis of rotation, and if the mating

face is parallel to the axis of translation

TT(O), TR() If the normal has the same direction as

the axis of rotation, and if the mating

face is not parallel to the axis of

translation

86



TT(1), TR(O) If the normal has a different direction

from the axis of rotation, and if the

mating face is parallel to the axis of

translation

TT(O), TR(O) If this is not the cases above

Failed Scaling / Stretching

Against:assembly(TT(O), TR(1)) TT(O), TR(l) If the normal has the same direction as

coordinating, orienting the axis of rotation

TT(O), TR(O) If the normal is different from the axis

of rotation

Failed Scaling / Stretching

Fits:assembly(TT(3), TR(3)) TT(1), TR(l) Always successful

coordinating, orienting, positioning

Fits:assembly(TT(1), TR(1)) TT(1), TR(1) If the centerline is the same as the axis

coordinating, orienting, positioning of rotation, and parallel to the axis of

translation

TT(1), TR(O) If the centerline is different from the

axis of rotation, but parallel to the axis

of translation

TT(O), TR(1) If the centerline is the same as the axis

of rotation, but not parallel to the axis

of translation

TT(O), TR(O) If this is not the cases above

Failed Scaling / Stretching

Fits:assembly(Tr(1), TR(O)) TT(l), TR(O) If the centerline is parallel to the axis of

coordinating, positioning translation

TT(O), TR(O) If the centerline is not parallel to the

axis of translation

Failed Scaling / Stretching
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Fits:assembly(TT(2), TR(1)) TT(O), TR(1) If the centerline is the same as the axis

coordinating, orienting, positioning of rotation

TT(1), TR(O) If the centerline is parallel to the axis of

translation

TT(O), TR(O) If this is not the cases above

Failed Scaling / Stretching

Fits:assembly(TT(O), TR(1)) TT(O), TR(1) If the centerline is the same as the axis

coordinating, orienting of rotation

TT(O), TR(O) If the centerline is different from the

axis of rotation

Failed Scaling / Stretching

Table 12. Assembly methods and their output DOFs

An INTERFACEmetric for assembling FGFs based on a chromosome is calculated by

INTERFACE _metric = IT _metric x AF _metric x Pos _metric.

(6) Gluing

This thesis focuses on automatic assembling operations and measures

INTERFACEmetric as a degree of satisfaction of pre-defined mating conditions during the

automatic assembly operations. Gluing may be performed through a detailed shape

deformation process or by a shape optimization technique, once he/she decides the candidate

assembled shapes.
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5.3 Top-down Decomposition for Combining FGFs

Figure 18 shows the possible combinations of interfacing all three FGFs from the leaf

level. Once FGF1_A and FGF2_A are interfaced first on the different branch from that of

FGF3_A in a top-down hierarchical tree, the possible combinations of interfaces of three

FGFs are reduced to 870. All the cases, in which FGF1_A and FGF2_A were disconnected,

have been eliminated from the 1044 combinations. Finally, the 174 combinations can been

reduced comparing to 1044. Figure 24 shows the combinations of this case. Thus, the power

of V-model design process can be reduction of solution space for combinatorial search. If we

rely on only bottom-up approach, the combinatorial complexity will be much higher than that

of combinations of top-down decomposition first, search of unknown FGFs, and integration

of them as proposed in this thesis. The V-model design process provides designers with the

computing environment, in which advantages of both top-down and bottom-up approaches

can be maximized.
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Figure 24. Possible combinations of connectivity of three FGFs in a hierarchical tree
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5.4 Shape Determination

The method proposed in this thesis generates many candidate shapes from input

functional requirements defined through the V-model design process. Each candidate shape

can be selected or discarded by the following three decision supportive data.

- A value of FRmetric: 0.0 - 1.0

* A value of INTERFACEmetric: 0.0 - 1.0

- Design matrix

The values of FRmetric and INTERFACEmetric are automatically calculated by computer

algorithms with the assembled candidate shape. Construction of design matrix for each

candidate shape must performed by the designer to check independence axiom. This process

is related to change of dimensions of each FGF to satisfy the corresponding FR. The change

of dimensions may result in decoupled design matrix to guarantee satisfaction of all the FRs

as explained in the hanger design example in the chapter 3.
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Chapter 6

Application Examples

All the examples have been made by language matching algorithm and GA

implemented using Java and by assembled shape generation algorithm implemented using

MATLAB. Database has been constructed by using text files as explained in chapter 4.

Assembled shapes have been manually regenerated and visualized using SolidWorks based on

the results produced by the algorithms. Figure 25 shows a screen shot of the Java

implementations. The minimum value of FRmetric can be set in the textfield labeled Match

%. It controls the search space in the database.
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Fie Tree Shape

FR: fexlend piston Sele M 750

Search

M Iree DP Tree Candidat fR Select Candidate DPs Select

extend piston expansion mechanism CandidateFR CandidateDP

0 generate the steam 0- hot fylnder in which the piston i (1 00.0)extend the piston 0 pressure of the steam

0 inject the steam 0 heater 0 (100.0)expand the piston 0 expansion rnechanism

0 expand the steam and move th 1 0 hot air in the cylinder

[0.0,[1:000111100010001100]]
[0.0,[2:010001110111000111]]

[0.0,[3:110010110001110111]]

[0.0,[4:010110111110111100]]

[0.0,[5:101001110101010001]]
[0.0,[6:100100100101110110]]
[0.0,[7:111110001100100100]]
[0.0,[8:100110110100101011]]

[0.0,[9:100100111111101001]]

[0.0,[10:011011100010110101]]

[0.0,[11:011101011100111110)]

[0.0,[12:101011011001100010]]

[0.0,[13:111011110101010100]

[0.0,[14:111110011100000111]]

[0.0,[15:101100000100101110]]

[0.0, [16:110001100101011011]]
[0.0,[17:110011011000000111]]

[0.0,[18:100110001010000001]]
[O.O,[19:101100000000010011]]
[0.0,[20:1110001()1111100110]]I
[ro.O,[21:101010100001101010]]

rn~~~ ~~ n r-nnnnnin 111l

show hange sho ruat ad&4bl

Figure 25. Implementation of FR, DP trees, language matching and GA

6.1 Assembled Shape Generation of two FGFs

This is a simple example to find plausible FGFs from the database and to generate

assembled shape based on information of interfaces already stored in the database from the

existing design cases. A designer starts a design problem by describing his top-level FR first,

think a DP for the top-level FR, and decomposes it into two lower level FRs in the V-model

design process. Figure 26 shows the decompositions.
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Design Problem

FRO = contain coffee keeping its temperature warm

FRI = contain coffee

FR2 = cover DPi

Design Case 1

FRO = contain water and flowers

Design Case 2

FRO = make the people walk on the ground

FRi = support walking people

FR2 = make people to enter under the road

FR3 = cover the manhole

(a) vase

DPO = container

DPI =?

DP2 =?

DPO = vase

DPO = sidewalk road

DPI = road

DP2 = manhole

DP3 = cover of manhole

(b) sidewalk road

Figure 26. A simple example for search of proper FGFs and combination of the FGFs

Figure 27 shows the GA encoding as representation of assembly of two pairs of two

mating faces between two FGFs. There are 20 combinations of mating faces. The base FGF is

the vase and the interfacing FGF is the cover of manhole. The base FGF did not have any pre-

defined interface and the interfacing FGF had two pre-defined interfaces. Thus, any two of
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five faces on the base FGF are set to be candidate mating faces. This generates 10

combinations (5 C2) for candidate mating faces. The GA evolution is very quick in 3

generations with 200 populations using simple GA. Only three chromosomes in the

population have 1.0 of ITmetric value, because both interface types (against:assembly and

tight-fits:assembly) are completely matched in the chromosomes. 'a' denotes assembly, 'c'

denotes cylinder, and 'h' denotes hole. In the case of (1 1), there are two combinations for

matching interface types, A:F & B:G and B:F & A:G. The combination, B:F & A:G, gives an

exact match of the interface types.

FGF Gene Mating Interface type
faces

0 None
1 1 A & B Against:a, Tight-fits:ah

2 A & C Against:a, Tight-fits:ac
3 A & D Against:a, Against:a
4 A & E Against:a, Against:a
5 B & C Tight-fits:a, Tight-fits:ac
6 B & D Tight-fits:ah, Against:a
7 B & E Tight-fits:ah, Against:a
8 C & D Tight-fits:ac, Against:a
9 C & E Tight-fits:ac, Against:a
10 D & E Against:a, Against:a

2 1 F & G Tight-fits:ac, Against:a

A

C

D

E

F
G

6 1

71

FGFL FGF2 IT metric

I I Max:1.0

A:F & B:G 0.0

B:F & A:G 1.0

2 x#of matched ITs
IT#metric = =1.0

- # of mating faces

Figure 27. Encoding in GA and calculation of ITmetric
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In the next step, the shape integration process automatically assembles two FGFs and

checks geometric interface-ability for the three chromosomes based on the AFmetric and

Posmetric. This shape generation process is performed by two assembly methods,

fits:assembly (TT(3), TR(3)) and against:assembly (TT(1), TR(1). Figure 28 shows the

encapsulated geometric data obtained from STEP files. The table in the Figure also shows

data defined for mating faces in chromosome (1 1). Figure 29 shows the results of assembly

and calculations of the metrics. It includes value of FRmetric, value of INTERFACEmetric,

a base coordinate frame and final DOFs. This information can be used to visualize the

assembled shape and analyze the relative motion of the FGFs based on the final DOFs.
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P9

Ni2
P15 C

P10
X 2L

Cii
4 P13

P16

y 2 L

P13 (20.0, 0.0, -5.0)
P14 (17.0, 0.0, -5.0)
P12 (-17.0, 0.0, -5.0)
P16 (17.0, 0.0, -10.0)
P11 (-20.0, 0.0, -5.0)
P9 -20.0, 0.0, 0.0 )
P15 (-17.0, 0.0, -10.0)
P10 ( 20.0, 0.0, 0.0)

Nb
2

PI P 2  P 4  P 3

Nb'

ZL

P50 ' P6

P8 (9.0, 0.0, 1.0 )
P5 (-10.0, 0.0, 0.0)
P3 (10.0, 0.0, 30.0)
P2 (-9.0, 0.0, 30.0)
P4 ( 9.0, 0.0, 30.0)
P7 (-9.0, 0.0, 1.0)
P1 (-10.0, 0.0, 30.0)
P6 (10.0, 0.0, 0.0)

FGF1 FGF2

Tight-fits:ah Cb1 (0 ,0, 30) Tight-fits:ac Cil(0 ,0, -5)

Cb2( 0 ,0, 1 ) Ci2(0 ,0, -10)

Against:a P2 (-9, 0, 30) Against:a P12 (-17, 0, -5)

N (1, 0, 0 ) Ni (1, 0, o )

Figure 28. Initial configuration of FGFs and their geometric data
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ZB

yB

B

ZA

yA&

X

(a) Case I

zB

YB

XB

X

(b) Case II

FR DP FRmetric INTERFACEmetric

contain coffee vase 0.4 Case 1: 1*1*1=1.0

cover DP1 cover of manhole 0.5 Case II: 1*0.5*(1+0.5)/2=0.375

Figure 29. Results of shape generation from two FRs

As shown in the table of Figure 29, fits:assembly deals with two cases as explained in

section 4.2.2 (b). Case I can be selected, because its value of INTERFACEmetric is larger

than that of case II. In case II, one pair of mating faces cannot be positioned to satisfy the

given mating condition, 'against:assembly,' based on the DOFs generated by 'fits:assembly.'

Fitsassembly (TT(3), TR(3)) method outputs TT(1), TR(1) and a base coordinate frame, OB

The outputs generated by fits-assembly (TT(3), TR(3)) are provided to against-assembly

(TT(1), TR(1)) method as inputs. Against-assembly (TT(1), TR(1)) method outputs TT(0),

TR(1) about the axis, ZB, of the base coordinate frame, OB. It means that FGF2 can only rotate

about ZB. The followings are the fitsassembly (TT(3), TR(3)) and against:assembly (TT(1),

TR(1) that have been used to get the results.
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Fitsassembly (TT(3), TR(3)) (DOF, ObL ,b2 C i2L

[TRiA IM or [RA (2) = Orientingjfits( Cb ', b2 L il'''i2L)

[TTi^ ]() or [TTi A (2) = Positioning-fits( (blLb L 2 L 1TRi A (1) TRi A ](2)

B _ A "B _blA -Cb 2 A B 2 A X b A B _B "B
65 =C~ Z b Cb b j iB

bl bl A _ b2 Al 12 A Xe lA

Return DOF(( ZB B [TRi A ](1)(2) [TTiA ](1)(2) 5B ,B, ^B ^B

}

Against: assembly (TT(1), T R())(DOF((2ZB B iA()2 ()2

bB =TCB bA

B [TCB A

If( N1 B = Nb B) AF metricpk= 0.5

Else if( N B b B) AF metricpk = 1.0

Else {

[ iB B B
LTR, B I= Orienting any(N NB N B)

AF_ metricp = AFmetric( ) //see equations (i)

I

[TTiB]= Positioning-any( 2B bA A [TCB ], [TRiB ](1)(2)

If( N1 B = )DOFR - B

Else DOFR =0

If( 1 B .^B =0)DOFT =B

Else DOFT =0

Return DOF( DOFT , DOFR), [TRI B [TTi B

I

Figure 30 shows the other results for chromosomes (6 1) and (7 1). Thus, there are two

more candidate shapes each of which has 1.0 for INTERFACEmetric. The algorithm

proposed in this thesis produces the same results that SolidWorks can produce by manual
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assembly modeling operations with the same mating conditions. This algorithm automates the

manual assembling operations and quantifies the interface-ability as a value of

INTERFACEmetric during the automated assembling operations.

Case I Case II
INTERFACEmetric = 1.0 0.375

Case I
0.375

Case II
1.0

(a) Chromosome (6 1) (b) Chromosome (7 1)

Figure 30. Assembled shapes that chromosomes present

Figure 31 is three resultant shapes, which have the 1.0 value of INTERFACEmetric

scaled to satisfy 'tight-fits' instead of only 'fits'. The scaling operation has been performed by

calculating radii of two cylindrical faces of cylinder and hole and by making a scaling factor

from a ratio of two radii. The FGF2 has one rotational DOF in all the resultant assembled

shapes. Actually, FGF2 in (b) and (c) of Figure 31 does not satisfy its functionality, because it

does not cover the FGFI. Thus, (a) of Figure 31 must be determined by the human designer as

a design solution for the given design problem. In addition, FGF2 interferes with FGF1. If an

interference checking routine is implemented, (b) and (c) can be automatically discarded.

(a) chromosome (1 1) (b) chromosome (6 1) (c) chromosome (7 1)

Figure 31. Final results of container design problem
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6.2 Addition of a New FR to a Complete Design

One design scenario has been made to add one more FR to the original cam and pawl

mechanism design problem. An FR, "increase stiffness," is added, and a design solution , a

DP, is searched in the database. By language matching, three kinds of ribs may be found with

FRmetric = 1.0 from the database as described in the chapter 3. The three kinds of ribs can

be automatically assembled to the pawl. In this case, GA generates combinations of two faces,

which can be interfaced with the ribs. It generates 55 (11C2) combinations from the 11 faces of

the pawl, and finds the best pair to give the best value of INTERFACEmetric through the

shape integration process. Figure 32 shows the pawl and cam mechanism and the three kinds

of ribs to be interfaced together. Interfacing ways for all three kinds of the ribs will be the

same. Thus, only triangular rib is shown in this example.

(a) FGF1 = pawl (b) FGF2 = ribs

Figure 32. Addition of FGF2 to the pawl

Two methods, against:assembly (TT(3), TR(3)) and against:assembly (TT(2), TR(1)),

are used to generate the assembled shapes and to calculate INTERFACEmetric as follows.
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Lb" Li,- Lb Li\Against:assembly (TT(3), TR(3)) (DOF, N b, N ) {

[TRiA] = Orienting-against( Nb, Li

A Lb Lb Li A
[TTi ] = Positioning-against( Nb ,b I TRi A

B = A 2B A

Return(DOF((, 5) (B) B )[TR A]T A], 5B iB

}

Against:assembly (TT(2), TR(1)) (DOF, [TRIA A B B

"B B Xb B "B B
=B A I
1z X 'b

[TRi B]I= Orienting-any ([TCB],b A,N i A)

[ TBB B "A "A

AFvalue = AF metric(2B b A, N A )

TB B, B A AFTCB TRi B
[TTiB] = Positioning-any( 5Pb P

If( - B) DOFR ZB, DOFT =SB B

Else DOFR=0, DOFT =iB

Return DOF( DOFR, DOFT), [TRIB TB

I

Through the methods, the interfacing FGF, the rib, is oriented and positioned to the

base FGF, the pawl, in the same way as described in section 5.1. Against:assembly (TT(3),

TR(3)) outputs TT(2), TR(1), and against:assembly (TT(2), TR(1)) outputs TT(1), TR(O). A

translational DOF, TT(1), is in the axis, Y B, as shown in Figure 33. The INTERFACEmetric

gives the highest value, 1.0, at the right concave corner of the pawl and the second highest

value, 0.73 at the left concave corner of the pawl.
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Z B

(a) Left concave edge

xB ZB

B

(b) Right concave edge

FR DP FRmetric INTERFACEmetric

increase triangular rib 1.0 Left corner: 1.0*(1-11.30/3600)*(1+0.5)/2 = 0.73

stiffness Right corner: 1.0*1.0*1.0=1.0

DP42 DPI1 DP12 DP2 DP31 DP32 DP41 DP5

FR42 X------------------------X

FR1 1 X

FR12 X X X

FR2 _ _ X X

FR31 X---- ------------ *-- -- --------------------

FR32 X X X

FR4I X X X X

FR5 X t------------------K

Figure 33. Results of interfacing a rib to the pawl

The size of DP5, the triangular rib, affects FR31. This coupling has been added on the design

matrix constructed in the chapter 3. Thus, the size must be reduced not to affect the FR31.

Figure 34 shows the resultant assembled shapes generated by the human designer based on

the suggested locations of the FGF (triangular rib). The functional coupling described as a box

on the design matrix in Figure 33 can be eliminated by reducing the size of the rib in the left
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corner not to affect to FR31, "carry the force to the pin" by DP31 (a vertical surface of the

pawl).

DP42 DP11 DP12 DP2 DP31 DP32 DP41 DP5

FR42 x------------------------x

FRI X

FR12 K X X

FR2 x X X |

FR31 x-------- --------

FR32 X X __ __

FR41 X X X 'X

FR5 X -------------

Figure 34. Resultant assembled shape for additional FR to pawl and cam design
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6.3 Integration of FGFs for Beverage Can Design

This example shows the results of integration of more FGFs based on the beverage can

example. From the following input FRs, four candidate FGFs are supposed to be found in the

database as shown in Figure 35. Figure 36 shows the GA codes and one of GA chromosomes.

FRO = contain and carry beverage

FRI = enclose the bottom with resistance to an impact

FR2 = provide a volume to contain beverage

FR3 = reduce the material and increase stiffness of the body

FR4 = cover the body and provide pathway of beverage

DPO = beverage can

DPI = ?

DP2 = ?

DP3 = ?

DP4 = ?

FGF1

DPI = bottom

DP2 = hollow cylinder

DP3 = conical section of the body

DP4 = top

FGF2 FGF3

Figure 35. Definition of FRs and the corresponding candidate FGFs
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FGF Gene Mating FGF Gene Mating FGF Gene Mating FGF Gene Mating

faces faces faces faces

0

1 1 Al 2 1 A2 3 1 A3 4 1 A4

2 B2 2 B3

3 A2&B2 3 A3&B3

(a) GA codes of mating faces

FGF1 FGF2 FGF2 FGF3 FGF3 FGF4 FGF4 FGF2 FGF4 FGF1 FGF3 FGF1

1 1 2 1 2 1 0 0 1 0 0 0 0

(b) Example chromosome

Figure 36. GA codes of mating faces and an example chromosome

GA evolves to search the best matching of interface types to maximize fitness value

defined as IT_metric. Then, the proposed assembly methods are applied to integrate FGFs

into assembled shapes. In this example, GA evolves in 20 generations with 300 populations

and only against:assembly (TT(3), TR(3)) and against:assembly (TT(2), TR(l)) are used. Figure

37 shows the resultant candidate shapes. (a) shows the assembled shapes after one more

constraint, 'concentric'. All the candidate shapes have INTERFACEmetric = 1.0. It means

that all the candidate shapes are completely oriented and positioned satisfying all the pre-

defined mating conditions between FGFs. (b) shows some other assembled shapes of

INTERFACEmetric = 0.389. All these candidate shapes can be generated from three

different chromosomes
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FGF1 FGF2 FGF2 FGF3 FGF3 FGF4 FGF4 FGF2 FGF4 FGF1 FGF3 FGF1

0 0 1 1 0 010 0 ji ...i... 0 0

FGF1 FGF2 FGF2 FGF3 FGF3 FGF4 FGF4 FGF2 FGF4 FGF1 FGF3 FGF1

0 0GF 1F 2~ 0 0o 0 0GF2 1 11 01 0

FGF1 FGF2 FGF2 FGF3 FGF3 FGF4 FGF4 FGF2 FGF4 FGF1 FGF3 FGF1

0 0 3 3 0 1 0 o 1 1 01 0

In the first chromosome, one pair of mating faces has been missed to be interfaced

among total three pairs of mating faces. Thus, ITmetric is 0.67 (= 2*2/6). However, all the

mating faces given by the chromosome can be correctly oriented and positioned: AFmetric

= 1.0 and Posmetric = 1.0. The first chromosome represents the first candidate shape in (b)

and has INTERFACEmetric = 0.67 (ITmetric*AFmetric*Posmetric). The same analysis

can be applied to the second chromosome that represents the second candidate shape in (b).

The third chromosome represents interfaces of all the pairs of mating faces. In this case,

ITmetric is 1.0 (= 3*3/6), because all the interface types (against:assembly) can be matched

correctly. Also, all the mating faces can be oriented correctly so that AFmetric = 1.0.

However, one pair of mating faces cannot be positioned geometrically. This fact gives

Posmetric = 0.583 ((1+(1+0.5)/2)/3). INTERFACEmetric for the third chromosome is

0.583 (IT-metric*AFmetric*Posmetric). There are two combinations for interfacing two

pairs of mating faces; A2:A3 -> B2:B3 and A2:B3 -> B2:A3. These two combinations show

two different candidate shapes in (b). The value of INTERFACEmetric in this case highly

depends on a value, which is pre-set to 0.5 in Posmetric. The pre-set value is used for

degrading INTERFACEmetric if positioning is failed. If we set the value to a larger,

INTERFACEmetric can be increased for the same case.
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(a) Assembled shapes with INTERFACEmetric =1.0((2*3/6)*(3/3)*(3/3))

(b) Assembled shapes with INTERFACEmetric = 0.67((2*2/6)*(1/1)*(1+1)/2) or

0.583((2*3/6)*(1/1)*(l+(1+0.5)/2)/3)

(c) Shapes through scaling with INTERFACEmetric =1.0

Figure 37. Resultant shapes for the beverage can design problem
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Figure 38 shows the advantage of top-down decompositions for combining FGFs. The

body of the beverage can is assembled first, and then the bottom, the assembled body, and the

top are assembled. In this case, the length of chromosome for assembling the body is just 2

and that for the next assembly is 6. Each length is shorter than 12, which is the length for

assembling all four FGFs from the same level. Actual GA evolution of the two step

assembling is 3 generations with 200 populations plus 10 generations with 300 populations to

get the same results as shown in Figure 37. Total calculations are 3600 chromosomes for this

case. Thus, it is less than 6000 calculations in the other case, which has 12 length

chromosomes. This is rough estimation for GA calculations, but explains the advantage of

top-down decompositions for bottom-up integrations.

IFGF1 FGF23 FGF23 FGF4 FGF4 FGF1

1 1 2 1 2 1

FG 
F2 

FGF3

Figure 38. Advantage of top-down decomposition

6.4 Inference of FRs from Interfaces

In some cases, human designer has ignorance of FRs, what he/she wants to achieve,

due to the lack of knowledge. This example shows how the method proposed in this thesis can

help search the related design elements by geometric information. If a designer knows one
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FR, "transform gas pressure into translational motion," and the database provides a DP,

"piston," and the corresponding FGF as a candidate design solution. The corresponding FGF

has three dangling interfaces; 'against:assembly,' 'against: assembly,' and

'fits:assembly:cylinder'. The dangling interfaces mean that the piston has been interfaced with

another FGF in the design case. Computer algorithm can search FGFs with three interfaces

that are matched with the dangling interfaces of the piston. It is supposed that three candidate

FGFs be found in the database and the designer can select the most proper one. Figure 39

shows this process. The three FGFs, 'piston ring,' 'washer,' and 'supporter' may have been

found and 'piston ring' may be selected to be interfaced with the piston. The additional FRs

and DPs can be inferred by this process. Here, 'piston ring' and 'supporter' have the same

topology. Thus, the dimensions of them have important roles to satisfy two different FRs by

different shapes.

DP = piston ring
FR = prevent gas from leaking

Against:assembly
Against:assembly
Fits:assembly:h

DP = washer

FR = increase fastening force
Search

DP = spacer
FR = support heavy weight

FR1 = transform gas pressure into translational motion DPI = piston

FR2 = prevent gas from leaking DP2 = piston ring

Figure 39. Example for inferring FR and DP from interfaces
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Chapter 7

Conclusions

7.1 Concluding Remarks

This thesis presented a method that automatically generates assembled shapes from

input functional descriptions. The method includes V-model design process, database, and

computer algorithms for searching candidate FGFs and automatically assembling them. The

method generated interesting and reasonable shapes, which are satisfying input FRs.

FRmetric (0.0 - 1.0) and INTERFACEmetric (0.0 - 1.0) have been made to rank the

generated shapes and to support decision-making by computer algorithms and/or human

designers. FRmetric is a language-matching rate between an input FR statement and a

candidate FR statement. INTERFACEmetric (0.0 - 1.0) is an interface-matching rate

(interface type and geometric assemble-ability) between candidate FGFs. The computer

algorithms can filter a lot of the generated shapes by the values of FRmetric first, and then

by the values of INTERFACEmetric. The candidate shapes with FRmetric = 1.0 and

INTERFACEmetric = 1.0 can be considered as good design solutions among a lot of

generated shapes in this thesis. Design matrix shown in the chapter 2 and 3 must be

constructed for each candidate shape to check satisfaction of all the FRs and finally to

determine the best design solution.

This sort of shape generation using database is a combinatorial problem with a lot of

combinations and high computational complexity. This thesis used several important

techniques to handle the heavy computational load in a manageable level.
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- All the detailed geometry has been encapsulated. The developed computer algorithms

use only geometric information on interfaces, i.e. mating faces. Thus, the number of

combinations and computational complexity are relatively small comparing to other

approaches using complex whole geometry.

- Several modules of the computer algorithms have been used. The language-matching

module reduces the solution space a lot in a certain level by FR-metric. The module of

GA evolution reduces the solution space again by matching pre-defined interface-

types between FGFs by IT_metric. Then, automatic assembling algorithm operates

assembling of FGFs and calculates values of INTERFACEmetric. Because solution

spaces are reduced through the steps between the algorithms, computational

complexity of automatic assembling algorithm is in a manageable level.

- Bottom-up integrations of FGFs in top-down hierarchical tree can eliminate many

combinations and reduce search space for allowable combinations comparing to

integrations only by bottom-up manner.

7.2 Contributions

The followings are discussions about the contributions that have been made.

Design Process for Intelligent CAD system

The V-model design process is an important basis for intelligent CAD systems for

conceptual design. It combines the advantages of top-down decomposition for searching

proper information and of bottom-up approach to integrate the lower level geometric entities

to satisfy higher level FRs. This is because the zigzagging decomposition between the

functional domain and the physical domain, as suggested in the axiomatic design theory,

produces well-defined hierarchical trees of FRs, DPs and geometric entities. The lower level
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DPs must be subsets or elements of a higher level DP in the hierarchical tree by these logical

decompositions. The existing CAD programs generate solid parts first and then interface them

into an assembly without explicitly representing functional aspects of the generated shapes in

the design process. The most CAD programs represent a shape by a decomposed feature tree

generated by solid modeling technique only in the physical domain, but the V-model starts to

decompose a design problem in the functional domain and finds solutions in the physical

domain. This design process generates relations between functional descriptions and

geometric entities in hierarchical trees. The incorporation of the functional aspects to the

CAD models in a systematic way based on a thinking process - the essence of the V-model -

in conceptual design stage is an important step in computer-aided design. A CAD system

implemented by the V-model design process presented in this thesis will enhance

understandability and reusability of design concepts related to the CAD models, and increase

degrees of freedom for creative design.

Knowled2e-based system, Case-based system, and Intelligent CAD system

Most systems to support conceptual design have been focusing on searching and

relating information stored in the database to support search of design solutions. For example

of Invention Machine [35], Concept Database [36], Design Components [27] and most cased-

based design systems, technology of searching and relating information makes us to find

relevant concepts and visualizes them. A lot of progress has been made to generate language

explanations on the design solutions by composing lexical elements from many design

concepts, but research on generating integrated shapes or pictures from the pieces of

geometric elements or images is rare, because it is difficult to automate the integration. In

most systems, a lot of drawings or pictures are popped up from input queries by language

processing or inference technique. [37] In general, human designers analyze the drawings or

the pictures, separate or collect the important geometric or image elements, and finally

regenerate the integrated candidate shapes or images using sketch tool or CAD software. This

process is very time consuming or sometimes not tractable by human designers, if the number

of extracted drawings or pictures is large. Instead, out method can automatically generate
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assembled shapes as the design solutions for conceptual design, which are not just a collection

of drawings or pictures.

Feature based design

A concept of functional geometric feature (FGF) has been defined for feature based

design systems. If any geometric entities can be separated into geometric volumes, called

cells, from the whole solids based on FRs, it can be a big progress to reuse them by functional

purposes in feature based design systems. Conceptually, the V-model makes this possible. In

most research on feature-based design, geometric features are highly related to solid modeling

techniques (extrusion, cut, hole, round, and so on) or manufacturing features (slots, pockets,

steps, and so on). In contrast, our effort has been made to relate geometric features to

functional descriptions by using the V-model.

There may exist some cases, in which geometric entities cannot be separated from a

whole solid. In those cases, we propose that the corresponding geometric features do not have

to be separated. The cell that represents more than one FGFs can be defined to satisfy the

corresponding FRs. The importance of the V-model resides on that it can make links of each

geometric features to corresponding FRs in a logical and systematic way. In some other cases,

one FGF may be redundantly used to integrate in a level of a hierarchical tree. We limits

redundant use of one FGF only with redundant definition of one FR in this thesis

There must exist more than one ways of decomposing a shape into FGFs. Because of

this reason, it is not easy to automate the shape decomposition process. To overcome this

obstacle, we did not make an effort to find out a general way to decompose shapes to FGFs.

Instead, we allow different ways of decomposition of a shape as different cases. The

automatic shape generation algorithm can combine all the cases.
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7.3 Vision and Future Work

The method presented in this thesis has demonstrated that a "functional CAD" can aid

designers in generating conceptual design solutions from functional descriptions, in reusing

existing CAD models, and in creating new designs. Our vision in the future is to make large

distributed databases of FGFs, generated from a lot of existing CAD models distributed over

the world, and to use the databases for automatic candidate shape generation for conceptual

design from functional descriptions through the Internet. To achieve this vision, the following

topics should be covered further.

- Interference checking between FGFs

- More types of assembly interfaces

- Shape deformation and synthesis for rigid attachment

- Data transportation techniques between large distributed databases
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