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Abstract

Paraty is a small touristic city on the South Eastern coast of Brazil plagued with public health
problems inherently linked to its poor water and sanitation practices. This thesis centers on the
design of an appropriate wastewater treatment facility for the City. The new and interesting use
of seawater as a wastewater treatment tool and its effect on the disinfection potential of the
treated effluent is also reviewed and tested in a series of jar tests and laboratory experiments
Chemically Enhanced Primary Treatment (CEPT) is a wastewater treatment method that serves
as an attractive alternative to conventional primary treatment and can also be used as an efficient
preliminary step to biological secondary treatment processes. CEPT adopts coagulation and
flocculation and accomplishes remarkable increases in the removals of common pollutants and
contaminants from the influent. CEPT was chosen as the most favorable treatment alternative for
Paraty as it is an expandable, economic and highly efficient system. The main advantage to
CEPT is to generate an effluent that can be efficiently and economically disinfected at a low cost
compared to secondary treatment. The most optimal dose of FeCl3, polymer and seawater to treat
the Paraty sewage were estimated at 40mg/L, 0.1 mg/L and 5% seawater by volume respectively.
Jar tests were also conducted at the Boston Deer Island WWTP to check the efficiency of using
seawater as a coagulation enhancement mechanism on saline influents.

CEPT effluents treated with FeCl3 were also tested for disinfection with both Paracetic acid
(PAA) and Chlorine. Although PAA is an effective disinfectant, it was not included due to its
high cost. The optimal chlorine dose for Paraty was estimated at 3 mg/L.
Additional tests were conducted to test for the disinfectability of the Deer Island effluent treated
with CEPT. These tests helped show that the sensitivity of disinfection in the presence of
seawater is limited by low seawater concentrations.
This thesis concludes with a detailed design of the treatment plant sedimentation tanks,
chlorination/dechlorination chambers, and grit removal facility dimensions and draws general
encouraging conclusions on the suggested use of seawater as a coagulation catalyst in chemically
enhanced primary wastewater treatment.

Thesis Supervisor: Dr. Donald Harleman
Title: Emeritus Professor of Civil and Environmental Engineering
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CHAPTER ONE: PROJECT INTRODUCTION; RESEARCH AND APPLICATIONS

The United Nations and World Health Organization (WHO) have repeatedly included Brazil on

the list of nations required to immediately address sanitation infrastructure, appropriate treatment

technologies and related public health issues (United Nations, WHO, 2003). The city of Paraty in

Brazil is not an exception to these cases and is the setting for this work.

This thesis is part of a larger project aimed at providing a comprehensive solution to both potable

water and sanitation infrastructure and treatment problems in the City of Paraty, Brazil.

The thesis centers on two main goals:

1. Design: To provide the conceptual and preliminary design of a chemically enhanced

primary wastewater treatment plant. The raw sewage characteristics were qualified

from an extensive set of jar tests performed on samples collected from representative

collection points in the city. These results were also used to test for the disinfection

potential of chemical treatment. Sludge treatment options, recommended chemical

doses, and a suggested plant construction schedule are also presented as integral

components of the design.

2. Research: The second goal of this thesis is to research the use of seawater as a

coagulation enhancement mechanism in chemically enhanced primary treatment. A

detailed literature review on seawater is presented and used as a preface to the jar

tests performed in Paraty and in the Deer Island Wastewater Treatment Plant in

Boston with the use of seawater. The effects of seawater use on the disinfection

potential of chemical treatment are also a pivotal issue and are extensively explored

both in Paraty and on sample influents from the Deer Island Wastewater Treatment

Plant in Boston, MA.

This work comprises seven chapters:

1. Chapter 1 introduces Paraty and describes the constraints to designing a wastewater

treatment plant for the city. A range of treatment alternatives is briefly presented and

is analyzed for application in Paraty.

2. Chapter 2 introduces chemically enhanced primary treatment (CEPT) and explains

why it is the treatment alternative of choice for Paraty. This chapter explains the

kinetic theory behind using CEPT and includes an exhaustive list of sludge treatment

and disposal alternatives.
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3. Chapter 3 reviews chemically enhanced primary treatment in greater detail by

providing a thorough literature review on previous CEPT applications, each of which

highlight a distinct advantage to adding chemicals to influents. Seawater addition is

introduced in detail here as a promising coagulation enhancement mechanism.

4. Chapter 4 presents the results from the January 2003 jar tests performed in Paraty to

test for the efficiency of adding ferric chloride, polymers and seawater to wastewater

influents. This chapter focuses primarily on making recommendations for the dosages

of chemicals needed for a treatment plant in Paraty. It is also an important attempt at

showing the advantages of using seawater in chemical treatment

5. Chapter 5 introduces the Deer Island Wastewater Treatment Plant in Boston, which is

this project's second setting for additional jar tests. The results from these tests were

compared to the results from chapter 4 to reiterate the potential for seawater use as a

coagulation enhancement mechanism.

6. Chapter 6 consists of the project's disinfection component. The data presented in this

chapter are the results from the numerous chlorination tests performed on wastewater

effluent in Paraty and in Deer Island. The theory behind various methods of

disinfection is included in thorough detail.

7. Chapter 7 is the design chapter and presents the preliminary conceptual design for the

wastewater treatment plant in Paraty. Design parameters include estimated influent

characteristics, chemical doses, and tank dimensions among others.
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1.1 INTRODUCTION TO PARATY

Paraty is a historical, colonial city located in the state of Rio de Janeiro in Brazil, 252 kilometers

south of the city of Rio de Janeiro. Paraty is located on the acclaimed Green Coast of Brazil

(Figure 1.1) and due to its prime geographic location, is a key tourist attraction of the State of

Rio de Janeiro (Figures 1.2,1.3 and 1.4). With a winter population of 3000, the small historical

center in Paraty, alone, attracts close to 6000 visitors every summer. This three-fold population

flux is not formally documented but was nonetheless assumed to be true based on

communication with city representatives and residents. The population flux exerts a large

demand on water consumption and wastewater production. However, Paraty does not currently

treat its wastewater.

Paraty is currently actively pursuing a UNESCO World Heritage Site qualification but must treat

its wastewater in order to be eligible for nomination. The issue of sanitation in Paraty has

therefore become a pivotal and very critical issue not only from a public health perspective but

from an economic standpoint as well. Both the infrastructure and treatment alternatives must be

respectively revamped, retrofitted and designed to serve Paraty's fluctuating population both

efficiently and economically.

RIO DE JANEIRO ESPIRITO
SANTO

MINAS
GERAIS Muria

Sioo o doarra
Cam pos

Pico das Agulhas
Negras (2787 m) T re d ova Friburgo Mac 6Rio

Resende s Teres6polis r ' r P
..It. ~ ova mPetr6polis

sA0 Redonda.e 7 Iguagu
PAULO, Du ie de Caxiast. 'Q,

Anadl.&i -kRioeL i C abo Frio
PAraio~ao

A( i f"-

Figure 1.1:
The State of Rio de Janeiro inclusive of Paraty.

Figure 1.2:
The Green Coast of Paraty
http://www.bitourism.com
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Figure 1.4: The Paraty Harbour

In January 2003, a team of four environmental engineering graduate students spent three weeks

in Paraty to assess the extent of the drinking and wastewater problems in the city. The main tasks

addressed by the design chapters of this particular thesis however are the collection and testing

of the Paraty sewage to generate the most appropriate wastewater treatment plant design for the

city. Figures 1.5 through 1.8 below are examples of the poor wastewater management currently

plaguing the city of Paraty.

Figures 1.5: Sewage Discharge into stream Figure 1.6: Sewage Discharge into street (1)
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Figure 1.7: Sewage Discharge into Street (2)

1.2 PROJECT CONSTRAINTS

There are a number of constraints that became very evident for the design of an appropriate

wastewater treatment plant in Paraty. These are summarized below:

1.2.1 Old and New Infrastructure

Paraty is divided into three main sections: the historical downtown, the upper part of the city, and

the "Ilha das Cobras"(Snake Island). Few of these areas are served by a functional sewage

collection network. Sampling raw sewage for laboratory analysis therefore became a challenge

and the samples were collected from open pipes, street ditches through which sewage was

allowed to flow, or opened manholes. It is important to note however that the manholes did not

yield fresh sewage since the pipes that the manholes serviced were not functional.

Examples of sampling points are shown in Figures 1.9 through 1.12. The main sampling point

used for the jar testing (described in Chapter 4) was from an open ditch near a popular hotel that

was assumed to represent domestic sewage during the summer months. The city of Paraty also

only has one hospital that does not have wastewater treatment and discards directly to the

adjacent rivers. This obviously causes serious contamination of the river waters by potentially

very pathogenic organisms. The hospital wastewater however was not included in this project.
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Figure 1.9: Dilute sewage in an open ditch

Figure 1.11: Collecting sewage from a tank

Figure 1.10: Claire collecting sewage from street

Figure 1.12: River of sewage

1.2.2 Space allotment for the treatment plant

One of the most important constraints in the design of a wastewater treatment plant for Paraty

was the limited area of land allotted to the treatment facility. This area is approximately 6000 m2

(Choi, 2003) and is located in a poor residential area. Extra efforts had to be taken into

consideration therefore to ensure that the influent was treated quickly and efficiently and that the

treated effluent was disinfected and properly discharged to the ocean, with maximum odor

control.

1.2.3 Income gradients and Government funding

The "Ilha das Cobras" is home to many lower income people. This area has grown to be the

largest portion of the city with a wintertime population of approximately 4500 people. Since the

"Ilha Das Cobras" is a very poor and densely populated neighborhood, the risks to public health
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are greater than in the wealthier, cleaner and more touristic area of the Historical Center of

Paraty. Special attention therefore was paid to include the Ilha das Cobras in the early stages of

the wastewater treatment plant for Paraty.

The Paraty region is one of the most famous vacation spots in Brazil and the historical center is a

hub of entertainment and expenditure. This center was therefore chosen as this project's starting

point in order to provide a design example and to incite the government of Paraty to expand its

sanitary infrastructure and treatment capabilities.

The suggested design of a wastewater treatment plant (described in detail in Chapter 7) therefore

suggests a phased treatment construction plan. Phase 1 addresses the Historical Center, Phase 2

addresses the Ilha das Cobras and Mangeira Island (another low income section of the city) and

Phase 3 will address the remaining sections of the city (You, 2003)

1.2.4 Climate

The climate in Paraty is tropical with heavy rainstorms expected in the afternoons. As such, the

samples that were collected (from open ditches for example) were often heavily diluted and

considered unrepresentative of pure domestic sewage. These samples are identified and the

treatment removals observed are discussed correspondingly in Chapter 4.

It is important to note that a significant limiting factor to the collection of information in Paraty

was the general lack of information and engineering resources (engineering maps, past data,

water quality monitoring reports, public health statistics etc.) in the city. Many assumptions were

made and these are clearly identified in the project description and analysis
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1.3 WASTEWATER TREATMENT METHODS FOR THE DEVELOPING WORLD

Several treatment alternatives are available to treat the wastewater in Paraty. These are briefly

discussed in the following sections below. Conceptually effective, most of these treatment

methods however can no longer stand independently due to increasing population demands,

shrinking land availability, and increased pathogenic virulence. The advantages and

disadvantages of each treatment alternative are discussed and facilitated choosing chemically

enhanced primary treatment for the most optimal application in Paraty.

Natural and constructed wetlands, lagoons and septic tanks are few examples of the main

treatment methods that have been traditionally adopted for the developing world and are briefly

described in sections 1.3.1 and 1.3.3 below. The CEPT process will be presented and discussed

in detail in chapter 2. It was however considered the best system for this project due to Paraty's

heavily fluctuating population (and its correspondingly fluctuating flows), the limited amount of

land allotted to the treatment facility and the demand for immediate low-cost solutions to the

serious public health concern related to pathogens present in public water bodies.

1.3.1 Wetlands

Wetlands are inundated land areas with water depths typically less than 2 ft (0.6 m) that support

the growth of emergent plants such as cattail, bulrush, reeds and sedges (Metcalf and Eddy,

1991). The vegetation provides surfaces for the attachment of bacterial films, aides in the

filtration and adsorption of wastewater constituents, transfers oxygen into the water column and

controls the growth of algae by restricting the penetration of sunlight (Metcalf and Eddy, 1991).

Natural wetlands in the developed world are typically considered receiving water bodies and are

therefore designed to hold water that has already undergone secondary or advanced treatment. In

the developing world, however, natural wetlands are often perceived as ideal holding tanks for

the raw sewage. Consequently, these often become overloaded, breed pathogenic bacteriological

agents, seep into and contaminate surrounding groundwater, and jeopardize neighboring crop

quality. Constructed wetlands in the developed world, on the other hand, offer all the treatment

capabilities of natural wetlands without the constraints associated with discharging to a natural

ecosystem (Metcalf and Eddy, 1991). In the developing world, it is often very hard to distinguish

between constructed and natural wetlands.
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Wetlands were considered inappropriate for use in Paraty due to the limited land space allotted to

the future treatment facility. The proximity of the allotted treatment facility area to the ocean also

discouraged the use of wetlands in Paraty.

1.3.2 Lagoons

Lagoons are the world's oldest wastewater treatment technology and consist of in-ground earthen

basins in which the waste is kept for a specified detention time and then discharged. An aerated

lagoon is a basin in which wastewater is treated either on a flow-through basis or with solids

recycle; the essential function of this treatment process being waste conversion. Oxygen is

usually supplied by means of surface aerators or diffused air units. As with other suspended

growth systems, the turbulence created by the aeration devices is used to maintain the contents of

the basin in suspension. (Metcalf and Eddy, 1991). Lagoons can be classified under one of five

categories: Anaerobic, facultative, aerobic, partial mix or completely mixed (Metcalf and Eddy,

1991). Lagoons were considered inappropriate however for Paraty principally due to the

necessary land requirements and the high energy inputs.

1.3.3 Septic Tanks

Septic tanks were finally considered for Paraty and are defined as large, concrete or plastic tanks

buried underground to receive household sewage. These however, were considered inappropriate

for Paraty since the city was not interested in satellite treatment alternatives and due to the high

maintenance costs. The old infrastructure in the city would also not be amenable to the

installation of septic tanks.

Chemically enhanced primary treatment was chosen as the most appropriate treatment alternative

for Paraty for several reasons:

1. The large number of successful past projects implemented in cities similar to Paraty

for which CEPT had been the most efficient and cost effective treatment alternative

(Harleman and Murcott, 2001).

2. The space constraints, high maintenance and capital costs etc of other treatment

alternatives were considered limiting factors which made CEPT the best wastewater

treatment process for Paraty.

19



CHAPTER 2: CHEMICALLY ENHANCED PRIMARY TREATMENT

The following chapter addresses CEPT in extensive detail and will certify that it is the most

efficient and cost reducing first wastewater treatment step to address Paraty's immediate

sanitation needs.

2.1 INTRODUCTION

Chemically Enhanced Primary Treatment (CEPT) is a wastewater treatment method that serves

as an attractive alternative to conventional primary treatment and can also be used as an efficient

preliminary step to biological secondary treatment (such as activated sludge and trickling filters).

CEPT adopts the coagulation and flocculation processes and accomplishes a remarkable increase

in the removals of common pollutants and contaminants such as BOD (biochemical oxygen

demand), COD (chemical oxygen demand), TSS (total suspended solids), and TP (total

phosphorous) present in the influent. The main advantage to CEPT therefore is to generate an

effluent that can be efficiently and economically disinfected at a low cost compared to secondary

treatment.

The CEPT process is principally derived from conventional primary treatment since the influent

in both processes passes through a bar screen (to remove large objects from the flow), grit

removal chamber and clarifier both designed to remove suspended solids. CEPT however

enhances this process by injecting small doses of metal salts and/or cationic polymers prior to the

grit removal process. An optional anionic polymer can also be added as a flocculent prior to

clarification. Figure 2.1 below describes the processes involved in both conventional and

chemically enhanced primary treatment. The red processes are the conventional primary

treatment and the blue additions explain the role that CEPT plays in treating the influent.

Grit Removal Clarification

Bar Screen 1T I Disinfection

Optional Flocculent Injection
Coagulant Injection Anionic/Cationic Pblymer
Typically FeC. (30-40 mg/L) Typically 0. 1-0.2 mg/L

Figure 2.1: CEPT vs. Conventional Primary Treatment
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The injected chemicals act as coagulants/flocculants forming large heavy flocs that settle to the

bottom of the clarifier and form a sludge layer than can be appropriately collected and removed.

Particulate and colloidal settling are the processes responsible for the formation and settling of

floc. Consequently, the BOD, TSS, and phosphorus removal efficiencies in CEPT have

repeatedly been observed to be higher than those in conventional primary treatment and

appreciably close to biological secondary treatment (Harleman, 2003).

2.2 THEORY OF CEPT

Colloidal particles found in wastewater typically have a net negative surface charge. The size of

colloids (about 0.01 to 1 prm) is such that the attractive body forces between particles are

considerably less than the repelling forces of the electric charge. Under these stable conditions,

Brownian motion keeps the particles in suspension. Coagulation is the process of destabilizing

colloidal particles so that particle growth can occur as a result of particle collisions. (Metcalf and

Eddy, 1991)

2.2.1 Coagulation

Coagulation encompasses all the reactions and mechanisms involved in the chemical

destabilization of particles and in the formation of larger flocs by the aggregation of particulates

in the size range from 0.01 to 0.1 pmeters otherwise known as perikinetic flocculation. In

general, metal salts or cationic polymers are the chemicals added to destabilize the colloidal

particles in wastewater so that floc formation can result. Figure 2.2 of the following page shows

what typical floc in chemical treatment look like.
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Figure 2.2: Floc formation due to chemical addition

Typical coagulants and flocculants include natural and synthetic organic polymers, metal salts

such as alum, ferric sulfate or ferric chloride, and prehydrolized metal salts such as

polyaluminum chloride (PACI). (Metcalf and Eddy, 1991)

Ferric chloride (FeCl3) is an example of a common coagulant used in the chemical treatment of

wastewaters. When added to the influent, FeCl 3 reacts with the alkalinity and with phosphates to

form insoluble iron salts. The colloidal particle size of insoluble FePO4 is small, requiring larger

dosages of FeCl 3 to produce a well-flocculated iron hydroxide precipitate that carries the

phosphate precipitate (Metcalf and Eddy, 1991). The exact dosages of ferric chloride are usually

best determined by jar tests and full-scale evaluations. Typical average concentrations vary

between 10 and 50 mg/L (Harleman, 2003). These concentrations can be kept at a minimum with

the added use of polymers in the wastewater treatment.

Polymers or polyelectrolytes are high molecular weight compounds, usually synthetic, which,

when added to wastewater, can also be used as coagulants, coagulant aids, filter aids or sludge

conditioners. In solution, polymers may carry either a positive, negative or neutral charge and, as

such, are characterized as cationic, anionic or nonionic. As a coagulant or coagulant aid, cationic

polymers act as bridges, reducing charge repulsion between colloidal and dispersed floc particles

and thereby increasing the settling velocities (Metcalf and Eddy, 1991).
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The use of anionic polymers as flocculants for chemically enhanced primary treatment is a

proven and acceptable technique (Harleman, 2003). Typical concentrations of anionic polymers

in CEPT treatment average between 0.05 and 0.2 mg/L. Significant mixing (in the order of 100

rpm) is needed however for the cationic additive to bind to the suspended solids in the

wastewater and form flocs appropriate to the coagulation and flocculation process. Therefore the

coagulant is usually added as far upstream in the process as possible, or dosed in a contact

chamber equipped with mechanical mixers.

2.2.2 Flocculation

Flocculation is the process in which the size of particles increases as a result of particle

collisions. The two types of flocculation are: (1) microflocculation (or perikinetic flocculation),

in which particle aggregation is brought about by the random thermal motion of fluid molecules

known as Brownian motion and (2) macroflocculation (or orthokinetic flocculation) in which

particle aggregation is brought about by inducing velocity gradients and mixing in the fluid

containing the particles to be flocculated (Metcalf and Eddy, 1991).

Figure 2.3 below shows the typical difference in treated effluent quality compared to the raw

wastewater influent. Beaker 1 on the left of Figure 2.3 represents conventional primary treatment

(no chemical addition, rapid mix and 5 minutes settling), and beaker 6 to the right, contains the

treated wastewater, after injection with 40mg/L of FeCl 3, rapid mixing and 5 minutes of settling

time. The advantage of adding chemicals to the influent is therefore obvious.

Figure 2.3: Difference in effluent quality
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2.3 JAR TESTING

Jar tests are commonly conducted to test for the quality of raw sewage in an area preparing for a

treatment plant design. These experiments are typically undertaken as a first step to establishing

the efficiency of coagulants and flocculants at removing suspended solids (SS), chemical oxygen

demand (COD) and turbidity.

The standard jar testing apparatus shown in Figure 2.4 below consists of six 2-liter beakers, each

equipped with a stainless steel 1"x 3" mechanical mixer with a maximum mixing speed of 300

rotations per minute.

Figures 2.4 and 2.5 below show a complete and typical jar testing setup before and after a typical

jar test run. Beakers 1 through 6 in Figure 2.5 (from left to right respectively) represent

conventional primary treatment, 10, 20, 30, 40 and 50 mg/L FeCl3 with rapid mixing and 5

minutes settling

Figure 2.4: Typical jar tests apparatus

Figure 2.5: Difference in effluent quality due to chemical addition
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Batch jar testing results are representative of a continuous flow treatment system because the

overflow rates for both systems are equal. The efficiencies of the coagulation and flocculation

processes are proportional to the time that the chemicals are in contact with the water. It is

therefore possible to extrapolate data from the jar tests and apply it to plant design. For a

continuous-flow settling tank, the residence time can be calculated as the ratio of its volume to

the flow rate of water:

T= L.W.H /Q Eq. (2-1)

Where T is the residence time in days, L is the length of the tank in meters, W is the width of the

tank in meters, H is the height of the tank in meters and Q is the flowrate in m3/sec.

2.3.1 Surface Overflow Rate

The surface overflow rate (SOR) is correlated with the percent removal of particulate material in

a settling tank and it can be expressed as:

SOR = Q / L.W = H/T Eq. (2-2)

Where H is the height of the tank in meters and T is the residence time in days.

From the jar tests, we define a value for settling depth and time within the jar, h and t

respectively from which:

SOR=h/t Eq. (2-3)

Where h is the height of the outlet in the beaker below the water surface and equals 8 cm and t is

the residence time in the beaker.

For a residence time t = 5 minutes, the SOR was then determined to be:

SOR = (8 cm)/(5 minutes) = 23 m/day approximately.

For settling times of 1 or 2 minutes (instead of the 5 minutes used in this project's jar test)

however, jar tests (with the beaker outlet located at 8 cm) typically display CEPT overflow rates

in the range of 60 m/d (Harleman, 2003). Since jar tests are designed to model the wastewater

25



treatment process, the 60 m/d value is consistent with typical overflow rates for full-scale CEPT

settling tanks (Metcalf and Eddy, 1991). The lower surface overflow rate of 23 m/d seen in these

experiments however can therefore be attributed to the fact that the settling time allowed (5

minutes) was higher than average jar testing settling times of 1 to 2 minutes and therefore

yielded overflow rates lower than 60 m/d. Also, it is important to note here that for the jar tests

exhibiting high pollutant removal rates, the effluent was clear at settling times of approximately

2 minutes. If the clear effluent sample had been collected after the 2 minutes therefore rather

than waiting the longer 5 minutes, the corresponding overflow rate would have therefore been

equal to the expected 60 m/d.

2.3.2 Measured Parameters

Standard jar test experiments are performed to test the efficiency of chemically enhanced

primary treatment in removing certain specific pollutants of concern in the wastewater influent.

These pollutants are typically total suspended solids, chemical oxygen demand, and turbidity and

can also encompass phosphorous and nitrogen removal tests, dissolved oxygen and pathogen

levels. For the experiments described in Chapter 4, the prime emphasis was on tracking the

removal rates of suspended solids, chemical oxygen demand and turbidity.

2.3.2.1 Total Suspended Solids

Total suspended solids (TSS) is defined for an influent sample to be the fraction of total solids

retained on a filter of specified pore size, measured after being dried at 105 degrees Celsius. The

filter most commonly used for the determination of total suspended solids is the Whatman glass

fiber filter, which has a nominal pore size of 1.58 tm (Metcalf and Eddy, 1991)

Spectrophotometers are common pieces of equipment used to measure TSS quickly and

efficiently. Suspended solids are another way of referring to total suspended solids (Metcalf and

Eddy, 1991). For the experiments in this project therefore, the suspended solids were measured

by the Hach Spectrophotometer (www.hach.com).

Suspended solids test results are routinely used to assess the performance of conventional

treatment processes and the need for effluent filtration in reuse applications. These are also used

as universal effluent standards (along with BOD) by which the performance of treatment plants

is judged for regulatory control purposes. In chemically enhanced treatment therefore, which
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achieves high-suspended solids removal rates (See Figures 2.8 and 2.9 below), measuring

suspended solids is then of utmost importance to gauge the removal efficiency.

2.3.2.2 Turbidity

Turbidity is a measure of the light-transmitting properties of water and is another important test

used to indicate the quality of waste discharges and natural waters with respect to colloidal and

residual suspended matter. The measurement of turbidity is based on comparison of the intensity

of light scattered by a sample to the light scattered by a reference suspension under the same

conditions (Standard Methods, 1998). Formazin suspensions are used as the primary reference

standard. The results of the turbidity measurements are read from a turbidimeter and are reported

as nepholometric turbidity units (NTU) (Metcalf and Eddy, 1991). Figure 2.6 below is the Hach

PocketTM Turbidimeter Analysis System set that was used for the experiments in this project.

Figure 2.6: Hach Pocket TTurbidimeter Analysis System

In general, there is no relationship between turbidity and the concentration of total suspended

solids in untreated wastewater (Metcalf and Eddy, 1991). There is however, a reasonable

relationship between turbidity and total suspended solids for the settled and filtered secondary

effluent from the activated sludge process. Since the TSS removals for secondary treatment are

very similar to those achieved by CEPT (See Table 2-6 on p.24), the following equation can be

adopted to relate TSS and turbidity values in chemically enhanced jar tests as well:

TSS, mg/L ~ (TSSf)(T) Eq. (2-4)

Where TSS = total suspended solids, mg/L

TSSf = factor to convert turbidity readings to total suspended solids, (mg/L TSS)/NTU

T = Turbidity in NTU
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The specific value of the conversion factor depends on the wastewater treatment plant

characteristics. For settled secondary effluent and for secondary effluent filtered with a granular

medium-depth filter, the conversion factors will typically vary from 2.3 to 2.4 and 1.3 to 1.6

respectively (Metcalf and Eddy, 1991).

2.3.2.3 Chemical Oxygen Demand

The chemical oxygen demand (COD) is used to measure the oxygen equivalent of the organic

material in wastewater that can be oxidized chemically using dichromate in an acid solution.

Biochemical oxygen demand (BOD) is also a common wastewater parameter used to qualify the

characteristics of the wastewater and measures the dissolved oxygen used by microorganisms in

the biochemical oxidation of organic matter (Metcalf and Eddy, 1991).

Although it would be expected that BOD and COD readings are similar, this is seldom the case.

Some of the reasons for observed differences are as follows:

1) Many organic substances that are difficult to oxidize biologically (lignin for example)

can be oxidized chemically.

2) Inorganic substances that are oxidized by the dichromate increase the apparent

organic content of the sample.

3) High COD values may occur because of the presence of inorganic substances with

which the dichromate can react (Metcalf and Eddy, 1991)

Interrelationships between BOD and COD have been researched however. Typical values for the

ratio of BOD/COD are described in Table 2-1:

Type of Wastewater BOD/COD
Untreated 0.3-0.8
After Primary Settling 0.4-0.6
Final Secondary Effluent 0.1-0.3

Table 2-1: BODICOD Ratios

In chemically enhanced treatment plants, the ratios of BOD removal have been observed to be

very close to the ratios of COD removals (Harleman, 2003). Since the BOD test is a 5-day test

and the COD test is a 2-hour test, COD removals are commonly measured to represent the

wastewater characteristics pre and post treatment instead of BOD in time-constrained laboratory
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settings. Figure 2.7 below shows the Hach COD Reactor (www.hach.com) used in this project to

incubate the COD vials containing effluent samples.

Figure 2.7: Hach COD Reactor

2.3.3. Effects of chlorides on chemical oxygen demand readings

In this project, seawater was added to the influent wastewater to test its efficiency as a

coagulation enhancement mechanism. Seawater is naturally very abundant in chlorides that

constitute slightly more than half of the percent by weight of dissolved ions (Table 2-2 below)

Chloride

Sodium

Sulfate

Magnesium
Calcium
Potassium

Bicarbonate
Bromide

Boric Acid

Strontium

Fluoride
Total

(C)
(Na')

(S0 4 )

(Mg)
(Ca 2+)

(K+)

(HC0 3~)
(Br-)

(H3B0 3)

(Sr 2*)
(F)

55.04

30.61

7.68
3.69
1.16

1.1

0.41

0.19

0.07

0.04

0.002
99.992

1.898

1.0556

0.2649

0.1272

0.04

0.038

0.014

0.0065

0.0026
0.0013

0.0001

3.4482
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Table 2-2: Dissolved Ions in Seawater

(http://www.guilford.edu/riginal/academic/eolo-!v/Seawater.html)
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Chloride (Cl-) is however the prime interference when determining COD concentrations. Each

COD vial contains mercuric sulfate that will eliminate chloride interference up to the level

specified by Hach (Hach Water Analysis Handbook, 2003), in Table 2-3 below. Samples with

higher chloride concentrations should be diluted enough to reduce the chloride concentrations to

the level given in column three of Table 2-3.

For these experiments, the high-range Hach COD vials were used which are limited by the 2000

mg/L Chloride concentration.

Vial Type Used Max. Cl- Conc. in sample Suggested Cl- Conc. Max. Cl- Conc. In sample

m I Diluted sample (mg/L) when 0.5 HgS04 was added

Ultra Low Range 2000 1000 N/A

(0.7 - 40 mg/L)

Low Range 2000 1000 8000

(3 - 150 mg/L)

High Range 2000 1000 4000

(20 - 1500 mg/L)

High Range Plus 20,000 10,000 40,000

(200 - 15,000 mg/L)
Table 2-3: Recommended Chloride Concentrations for accurate COD testing.

If sample dilution will cause the COD concentration to be too low for accurate determination,

then 0.5 g of mercuric sulfate (HgSO4) can be added to each COD vial before the sample is

added. The additional mercuric sulfate will raise the maximum chloride concentration allowable

to the level given in Column four of Table 2-3 (Hach Water Analysis Handbook, 2003)

The chloride concentrations added to the wastewater in a jar test must therefore be closely

monitored to ensure that chloride interference is not yielding misleading COD results when using

Hach Equipment. Two approaches were adopted to determine the concentration of chloride (Cl-)

concentrations in different seawater volumes used for the 2-liter jar tests described in section 2.3.

Both methods are based on the values from Table 2-3 above and are important at showing the

sensitivity of COD removal readings in the Hach vials to the presence of chlorides.
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2.3.3.1 % Weight of Chlorides

The percent of chlorides in seawater by weight is 1.898 % (Table 2-2). This means that 1 gram of

seawater contains 0.018 grams of chlorides. The mass of seawater can therefore be calculated

knowing the density of 1.0250 g/cm 3 for seawater at a temperature of 16 degrees Celsius and a

salinity of 35 parts per thousand (http://duedall.fit.edu). The following sample calculation was

performed to monitor the addition of 10 ml of seawater to the 2-liter jar-testing beaker:

1 gram seawater = 0.018 grams C1

10 ml seawater = (1.025 g/10-3 L)(10 *10-3 L) = 10.25 grams

10.25 grams of seawater therefore contains 0.1845 grams Cf

So the concentration of chlorides in the 10ml = 18450 mg/L

When the seawater is added to the 2-liter beaker, the total chloride concentration is:

Concentration = (18450 mg/L)(10 ml)(1L/1000ml)/(2 L)

C = 92 mg/L

The masses of chlorides for various volumes of seawater were therefore calculated following the

method described above to check that the maximum concentration of chlorides had not been

reached in the Hach COD vials. These are presented in Table 2-4 below:

0.5
1
2
5

10

15

10
20
40
100
200

300

10.25
20.5
41

102.5
205

307.5

0.1845
0.369
0.738
1.845

3.69
5.535

92
185
369
923
1845
2768

Table 2-4: Chloride concentrations Method 1

The results show therefore that the addition of 15% of seawater by volume to the 2-liter beaker

contributes 2768 mg/L of chlorides to the solution. This is significantly larger than the 2000
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mg/L chloride limit for the Hach vials described in Table 2-3. The COD readings for 15 %

seawater additions are therefore incorrect.

2.3.3.2 % Sodium Chloride in the seawater

To roughly estimate the amount of chlorides in seawater, NaCl can be used as an indicator. This

is the basis for method 2 described in detail below to calculate the concentration of chlorides

added to the beaker with the addition of various seawater volumes. The example shown below is

for a 10ml seawater addition to the 2-liter beaker:

Assuming a seawater salinity of 36 ppth (parts per thousand)= 36 g NaCl / liter of

seawater:

NaCl -+ Na+ + CI

Atomic weight of sodium Na' is 23 g/mol and the atomic weight of Cl is 35 g/mol.

NaCl -+ Na+ + Cl

1 mole NaCl -+1 mole Cl

(35 + 23) g/mol NaCl -+ 35 g/mol C1

36-g/liter NaCl -+ X g/liter Ci

X = 22 g CF/liter = 2200 mg CF/liter

Therefore, when 0.5% by volume of seawater is added to the 2-liter beakers used in the

jar testing apparatus, this volume equals 10 ml of seawater:

2200 mg Cl ->1000 ml

Y -> 10 ml

Y = 22 mg CF / liter

The values of chloride concentrations added to the wastewater in the jar tests for various

concentrations of seawater by volume were therefore calculated and summarized in Table 2-5 of

the following page:
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0.5%
1%
2%
5%
10%
1% 

10 ml
20 ml
40 ml
100 mI
200 ml
300 ml

22 mg/L
44 mg/L
88 mg/L

200 mg/L
400 mg/L
600 m/L

,5% ,00 ml
Table 2-5: Chloride Concentrations in seawater volumes Method 2

Method 2 shows that the volumes of seawater added to the two-liter beakers did not cause the

chloride concentrations to approach the 2000 mg/L maximum chloride concentration and

therefore did not interfere with the COD readings using Hach equipment.

Method 2 can be considered less reliable than method 1 however because method 1 encompasses

all the possible sources of chlorides in the seawater and does not limit the analysis to the salt

concentrations in the water. Therefore, the results from method 1 are considered correct and the

addition of 15% seawater does not yield correct COD readings using the Hach vials.

2.4 EXPECTED PERFORMANCE: CEPT VS SECONDARY AND PRIMARY WWT

Preliminary wastewater treatment is used to screen out, grind up, or separate debris and is the

first step in wastewater treatment. Sticks, rags, large food particles, sand, gravel, toys, etc., are

removed at this stage to protect the pumping and other equipment in the treatment plant.

Treatment equipment such as bar screens, comminutors (a large version of a garbage disposal),

and grit chambers are used as the wastewater first enters the treatment sequence. The collected

debris is usually disposed of in a landfill.

Conventional primary treatment is the second step in treatment and separates suspended solids

and grease from wastewater. Wastewater is held in a quiet tank for several hours allowing the

particles to settle to the bottom and the greases to float to the top. The solids drawn off the

bottom and skimmed off the top receive further treatment as sludge. The clarified wastewater

flows on to the next stage of wastewater treatment. Clarifiers and septic tanks are usually used to

provide primary treatment. (Ohioline, 2003)
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As discussed in Section 2.1, chemically enhanced primary treatment therefore enhances

conventional primary treatment and achieves significantly higher removal rates at lower costs

compared to secondary treatment.

2.4.1 Removal Efficiencies

Table 2-6 below is a summary of expected removal rates in conventional primary, chemically

enhanced and secondary wastewater treatment (NRC, 1996). These removal rates, graphed in

Figures 2.8 and 2.9 below, and coupled with the financial estimates for the three treatment

alternatives in Table 2-7, are critical to determining CEPT as the most efficient and economical

wastewater treatment option.

Conv. Primary 55 35 20 15 51

Conv. Primary + Secondary 91 85 30 31 98

CEPT 1 85 57 85 37 71
Table 2-6: Relative Removal Efficiencies

Table 2-6 above shows that CEPT achieves pollutant removal rates significantly higher than

those achieved in conventional primary treatment. When secondary treatment is used to

complement the conventional primary treatment measures, the removal rate of TSS is only 7%

more efficient than CEPT. BOD removals also increase by approximately 33% when secondary

treatment is used. However, since the main goal of chemically enhanced primary treatment is to

produce an effluent that can be disinfected (Harleman, 2003) and since suspended solids are a

limiting factor to disinfection as opposed to BOD (Harrington, 2003) then the higher BOD

removals in secondary treatment are not a limiting factor to using CEPT. It is also important to

note that since the CEPT effluent is usually discharged into the ocean or other tolerant water

body after disinfection, the BOD removals become less of a limiting factor compared to

phosphorous or suspended solids for example and the 57% removal rate achieved is therefore

considered acceptable for specific discharge locations (Harleman, 2003).

34



Phosphorous removals in CEPT are almost three-fold those in secondary treatment and nitrogen

removals are very comparable for both secondary and CEPT treatment alternatives.

Figures 2.8 and 2.9 below therefore show that chemically enhanced primary treatment achieves

significantly higher removal rates compared to conventional treatment and is comparable to

secondary treatment especially with regards to suspended solids removals.

Removal Efficiencies

100

0 80---
60- 3 Secondary

o 40 - Rimary
Ee 20 --

20

TSS BOD TP TN FOG

Pollutant Type

Figure 2.8: Secondary vs. Primary removal efficiencies

Removal Efficiencies

100
0 80-

60 - E Secondary
o 40-- m CEPTE
e 20-

0
TSS BOD TP TN FOG

Pollutant Type

Figure 2.9: Secondary vs. CEPT removal efficiencies
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2.4.2 Relative Costs

Table 2-7 below compares and contrasts CEPT, conventional primary and secondary treatment

processes on a cost scale and proves that chemically enhanced treatment is a cheaper and more

efficient alternative to reducing BOD and suspended solids prior to secondary treatment, or to

using secondary treatment alone.

Conv. Primary

Conv. Primary + Secondary

3.1--4.2 0.8--4.9 1.7--2.1

9.1--9.8 1.2--1.6 3.5--4.3

CEPT 1 4.2--5.3 1 0.9--1.1 2.1--2.6
Table 2-7: Relative Treatment Costs (NRC, 1996)

2.5 DISINFECTION

After leaving the settling tank, the clarified effluent is then disinfected to eliminate bacterial

pathogens. Chlorination is the most commonly used disinfection process and will be discussed in

greater detail in Chapter 6. Disinfection involves the addition of elemental chlorine or

hypochlorite to the wastewater. When chlorine is used, it combines with water to form

hypochlorous (HOCl) and hypochloric (HCl) acids. Hydrolysis goes virtually to completion at

pH values and concentrations normally experienced in municipal wastewater applications

(Metcalf and Eddy, 2002) Hypochlorous acid will ionize to hypochlorite (OCl) ion with the

amount greatly affected by pH. However, in wastewater treatment the primary disinfectant

species is monochloramine. Therefore the tendency of hypochlorous acid to dissociate to

hypochlorite ion should be discouraged by maintaining a pH below 7.5 (Metcalf and Eddy,

2001).

Chlorine demand is determined by the difference between the chlorine added and the measured

residual concentration after a certain contact time of usually 15-30 minutes (AWWA, 2001) The

chlorine or hypochlorite is rapidly mixed with the wastewater, after which it passes through a

detention tank, which normally contains baffled zones to prevent short-circuiting of the

wastewater. The main limitation to the use of chlorine as a disinfecting agent is the potential

formation of chlorinated hydrocarbons, some of which are known to be carcinogenic compounds.

Chlorine gas is also a hazardous material and requires sophisticated handling procedures. The

typical concentrations of chlorine required vary between 5 and 25 mg/L (Delaney, 2003).
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This thesis will examine and prove the efficiency of using chemically enhanced primary

treatment to produce an effluent that can be easily and efficiently. An example is taken from the

Halifax wastewater treatment plant in Canada that will be upgraded by the use of CEPT (Civil

Engineering News, 2002)

Figures 2.10 below shows how the three wastewater treatment plants to be built in Halifax will

lower current bacteria levels in the harbor and keep them low. The left figure shows fecal

coliform levels projected for the harbor in 2041 without treatment, and the figure on the right

shows coliform levels with treatment. The white shades represent low E.Coli presences verses

the highly pathogenic black shades:

Figure 2.10: E.Coli levels in the Halifax Harbor with (right) /without (left) CEPT
(Civil Engineering News, July 2002)
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2.6 CEPT ADVANTAGES

The advantages to using chemically enhanced primary treatment revolve mainly around large

reductions in the volume and concentrations of required chemicals, ecological effects

downstream, maintenance and operation labor demands, all of which translate into substantial

economic savings. CEPT also allows the sedimentation basins to operate at higher overflow

rates, while still maintaining ideal removal rates of BOD and TSS at approximately 55 and 85%

respectively (Refer to section 2.4.1 above). The footprint of the treatment plant's infrastructure

can therefore be significantly smaller, reducing capital costs. Since CEPT can be easily used to

retrofit already existing secondary treatment processes (such as activated sludge basins for

example), and reduce the BOD and SS load entering the secondary treatment process, these latter

units are therefore made smaller and more efficient. Also, the addition of metal salts and

polymers only require the installation of injection valves from storage tanks.

2.7 SLUDGE PRODUCTION AND TREATMENT TECHNOLOGIES

Increased sludge production due to chemical addition has been one of the most common

criticisms of the chemically enhanced wastewater treatment process. The focal goal of CEPT

however is to remove more suspended solids and this inherently comes with an increased sludge

volume. Sludge production is also not limited to the chemically enhanced process and plagues

conventional primary and secondary treatment sequences as well. The sludge digestion processes

used after secondary treatment are very expensive and contribute to significant capital, operation

and maintenance costs and therefore pose another indirect disadvantage related to sludge

production.

The dry weight per capita production of sewage sludge resulting from primary and secondary

treatment is approximately 90 grams per day per person in most of the countries of the European

Union where municipal communities are served by two stage physical, mechanical and

biological processing plants (European Environment Agency, 1997). Sludge production therefore

presents a large and impending problem at all levels of wastewater treatment including

secondary treatment for example that contributes chemical precipitates and microorganisms to

the sludge.
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Many different techniques exist to handle and treat the sludge produced from wastewater

treatment facilities. The agricultural use of raw sludge or other composting practices is

encouraged by European national authorities as the best way to recycle, while incineration is

considered the worst method of sludge treatment (European Environment Agency, 1997).

Sludge typically undergoes standard pre-treatment processes before it proceeds to advanced

disposal and reuse processes. Common pre-treatment operations include dewatering, anaerobic

stabilization, pasteurization and aerobic pretreatment. These processes are described in Figure

2.11:

Raw Slude (thickened)

Aerobic/thermoph Pasteurization
pretreatment

Wet- Anaerobic Anaerobic Anaerobic
composting stabilization stabilization stabilization

Dewaterin Dewaterin Dewaterin Dewaterin Dewaterin

Thermal Thermal
dowatering datering

Stabili zed and hygienic sludge

9'2nio thonr

Figure 2.11: Sludge Pre-treatment options

Figure 2.11 is a summary of the several options for sludge treatment and disposal routes.

Sections 2.7.1 through 2.7.6 will highlight the different fates that sludge has (as depicted in

Figure 2.12) and will expand on the conditions, advantages and disadvantages of each process.
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Figure 2.12: Sludge Treatment Options

2.7.1 Agricultural Use

The main reason for using sludge as an agricultural fertilizer is to make use of its essential

nutrients (mainly phosphorous and nitrogen) and to utilize organic substances for soil

improvement. As such, almost all sludges can be used as agricultural sources of nutrients and

organic substances as long as they conform to the heavy metal and nutrient concentration, pH

and crop type controls and limitations.

The sludge is normally spread on farmland once or twice a year in connection with ploughing

and seeding. Hence the maximum uptake of nutrients by the plants is obtained, thus leading to a

reduced washout of the nutrients to the ground and surface waters (European Environment

Agency, 1997).

The advantages to spreading sludge on farmland are mainly:

1. Utilization of nutrients contained in the sludge (mainly phosphorous and nitrogen).
2. Utilization of organic substances contained in the sludge for the improvement of the

humus layer of the soil
3. Often the cheapest disposal route
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The disadvantages to using sludge as an agricultural resource however are the following:

1. Major investments in storage facilities since sludge can only be spread a few times a
year.

2. Potential impact of micro-pollutants and pathogenic organisms on the food chain

It is important to note that by applying sludge from a wastewater treatment plant, one always

runs the risk of introducing excess concentration of potentially toxic elements into the soil. These

parameters were qualified by the Food and Agriculture Organization of the United Nations and

are summarized in Table 2-8 below:

Zinc 200 250 300 450 15
Copper 80 100 135 200 7.5
Nickel 50 60 75 110 3
Cadmium 35 0.15
Lead 300 15
Mercury 1 0.1

Chromium 400 15 (provisional)
Molybdenum 4 0.2

Selenium 3 0.15

Arsenic 50 0.7
Fluoride 500 20

Table 2-8: Max Permissible Conc. of potentially toxic elements in soil after application of sewage

sludge and max. annual rate of addition (www.fao.or )

2.7.2 Compostin2

Sludge composting aims at biologically stabilizing sludges in order to develop agricultural

outlets that exploit the nutrient or organic value of sludges. Composting is also used to digest

sludge and involves the aerobic degradation of organic matter as well as a potential decrease of

the sludge water content, the efficiency of which depends on the composing efficiency

(European Environment Agency, 1997).
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Sludges can be composted if they have sufficient organic matter as well as relevant water

content. As a general reference, the water content of a compostable mixture of organic wastes

should be around 55% while the organic matter content should be greater than 70%, which

facilitates effective bio-degradation. High moisture content above 60% reduces the temperature,

porosity and thus the oxygen concentration while low moisture content, below 50%, could limit

the rate of composting.

A balance of nitrogen and carbon content is necessary for the proper growth of microorganisms.

Typical C/N ratios are between 25 and 30. (European Environment Agency, 1997)

Figure 2.13 below depicts a typical in-vessel sludge composter:

Air inlet

Clst FermentE

Storage 2nd Ferment

Hopper

3rd Ferment:

Constant
Regulator

CDryg

Vent

Bypasscre

O~r

Mixer

Compost

Air flow Mass flow

Figure 2.13: In-vessel Sludge Composter Process ((http://www.emc.or.krlenglish/koetv)
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The advantages to composting sludge are:

1. Reductions in the volume of sludge to be transported to agricultural fields for
example.

2. Easier storage and spreading capabilities.
3. Control of compost materials which leads to a more stable end-product

The disadvantages however are:

1.
2.

Higher treatment costs compared to direct sludge application to agricultural fields.
High energy costs of aeration

3. Need for an outlet market for the compost products.

2.7.3 Dryin2

The general flow sheet for a typical sludge drying process is shown in Figure 2.14 below:

TN LUPGE

dewatering

Dewatered sludge

Water to Thermal
WWTP direct/i

Emission to air

Dust Heat reoovery
separation odourremoval

Air
& vapour

Water to WWPT

Granulatioi, Cooling
Dried sludge whwn adequate When adequate

PRODUCT

Figure 2.14: Typical Drying Process Diagram (European Environment Agency, 1997)

The two distinctly different drying methods are indirect and direct drying. In direct driers, there

is a direct contact between the sludge and the heated gas supplying the required heat for

evaporation and simultaneously carrying the water vapor formed out of the system. In indirect

driers however, heat is transferred to the material to be dried indirectly by heat conduction

through a heat transfer surface (European Environment Agency, 1997).
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A drying plant that, in most cases, includes granulation is more expensive to install compared to

mechanical methods such as pressing and centrifugation. Prior to drying, proper mechanical

dewatering must therefore be installed. The greatest advantage to having sludge in a dry form as

compared with various other methods, is the possibility of marketing the product for a number of

applications including fertilizer/soil conditioners in agriculture and forestry, fuel in power plants

and incinerators, as well as top soil, landscaping, landfilling and disposal (European

Environment Agency, 1997).

2.7.4 Incineration

15% of Europe's sludge is currently incinerated (European Environment Agency, 1997). Since

the agricultural uses of sludges, by direct application, as well as sludge landfilling are subject to

increasingly stringent regulatory control, the incineration of sludges has been expected to gain

some popularity even though it can be a capital intensive investment and is also subject to strict

regulation pertaining to combustion criteria, management of the off-gas treatment residues and

treatment of fly and bottom ashes.

Incineration of sludges is performed in designated incinerators or in municipal solid waste

incinerators under specific constraints for each type, where the process results in the combustion

of the sludge's organic matter. After pre-drying, sludges can also be incinerated in cement kilns

because they have a high calorific value (European Environment Agency, 1997).

These methods of sludge treatment are only economical however for large volumes of sludge

(2.5 tons of evaporated water per hour) and that are not appropriate for agricultural application.

It is also important to note that Japan has some experience with the vitrification of sludge. This

process however remains very expensive and is therefore not considered, as of yet, a feasible

sludge treatment solution.

The advantages to incinerating sludge are: (European Environment Agency, 1997)

1. A significant reduction in sludge volume, after incineration
2. Energetic valorization of sludges
3. Recycling of sludge treatment sub-products such as ashes and inert material that can be

used in filler material for asphalt, concrete production, and in brick fabrication.
4. Low sensitivity to sludge composition
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5. Reliable systems
6. Odor minimization due to closed systems and high temperatures

The disadvantages however are: (European Environment Agency, 1997)

1. Incinerators are capital intensive and usually justified only in larger volume
situations.

2. With co-incineration, the treatment capacity and treatment efficiency depend on the
saturation of the incinerator by other solid waste streams and/or the ratio of sludge
mass to solid waste mass.

2.7.5 Landfilling

Since sludges are considered infectious materials and contain large concentrations of organic

material (fat, proteins and carbohydrates) that are biodegradable, putrescible, and cause odor

problems, it is of critical importance that sludges be stabilized.

Sludges are classified as stabilized when they have undergone either aerobic or anaerobic

stabilization processes or have been chemically treated, which includes a liming step. The

addition of lime to the sludge for stabilization theoretically results in a better disinfection

efficiency (Metcalf and Eddy, 1991), compared to anaerobic digestion for example. The

disinfection effect of aerobic stabilization is uncertain in that respect. Thermal aerobic

stabilization processes are also used for pathogen removal and this system is considered to be

much more efficient in that respect compared to other previous systems (European Environment

Agency, 1997).

In smaller plants, sludge-drying beds are also popular, but mechanical dewatering is becoming

more and more widespread (European Environment Agency, 1997). As a result of the

mechanical dewatering, the original dry material content (2-3%) of the liquid sludge is increased

to 20-30% that describes a sludge that can already be shoveled into a landfill. Dewatering

machines require chemical preconditioning or treatment of the sludge, usually with lime.

Stabilized, dewatered sludge always contains pathogenic microorganisms that have to be taken

into account. Lime treatment can however increase the pH of the sludge up to values of pH = 12,

but the inactivation effect on the pathogens is only temporary (European Environment Agency,

1997).
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2.7.6 New Technologies: Gasification and Wet Oxidation

The processes of sludge gasification and wet oxidation are very new sludge-treatment

technologies for which detailed information and data is not very readily available. They will

nonetheless be briefly mentioned.

Gasification is a thermal process where a feedstock containing combustible material is converted

with air (sometimes with oxygen or steam) to an inflammable gas. The most commonly used

reactors for gasification are the fixed bed reactor, the fluid bed reactor, and the circulating bed

reactor (European Environment Agency, 1997)

In wet oxidation, the organic content of sludge is oxidized in specific reactors at temperatures

varying from 200 to 300 degrees Celsius and at pressures between 30 and 150 bar. The main

output of the wet oxidation process is a sludge containing more than 95% of mineral components

and less than 3% of low-molecular organic substances. The sludge is dewatered (typically using

a belt filterpress) and then recycled or landfilled. (European Environment Agency, 1997).
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2.7.7 Slud2e Decision Making Tree
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Figure 2.15: Sludge Decision Making Tree (European Environment Agency, 1997)

Figure 2.15 above is a suggested flow diagram to follow in the decision-making process

concerning sludge management technologies. It classifies sludge management technologies

according to the nature of the contaminants in the sludge

Table 2-9 below accompanies Figure 2.15 and is an explanation of the numbers in the decision

tree:
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Table 2-9: Conditions Influencing Sludge Decisions
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CHAPTER THREE: CASE STUDIES ON CEPT

Chemically enhanced primary treatment (CEPT) of wastewater is not a new technology. The use

of chemicals to increase the level of coagulation and flocculation in municipal wastewater was

widespread in England as early as the late nineteenth century (Harleman, 2002). At the time

however, large chemical doses were used and these consequently increased the volumes of

sludge produced in the treatment process. Groundbreaking research has been performed however

on increasing the efficiency of chemically enhanced primary treatment with the use of smaller

volumes of coagulants and stronger synthetic polymer aids. The case studies presented in the

sections below are a collection of the relatively recent studies performed on CEPT in addition to

a summary of the removal efficiencies reported by functioning CEPT plants.

The following are examples of current CEPT plants around the world and highlight the different

aspects and advantages of using chemicals in the preliminary treatment of wastewater.

3.1 Point Loma Wastewater Treatment Plant in San Diego: The Point Loma Outfall

3.1.1 Introduction

The Point Loma Wastewater treatment plant in San Diego is typically considered the landmark

case used to prove the effectiveness of CEPT (Harleman, 2002). When operators were faced with

strict effluent requirements in 1985, they retrofitted the treatment plant by using potable water

treatment schemes and adding various doses of metal salts and polymers to the influent in the

primary sedimentation basin. Increased removal efficiencies at three times the design overflow

rate with minimal amounts of additional chemical sludge were consequently reported, certifying

the efficiency of CEPT. (Hansson et al, 1994). The mean annual percent removal of total

suspended solids remains at 80% and the 5-day biochemical oxygen demand removal is 58% on

a mean annual basis. (City of San Diego, 1995). These removal rates are significantly higher than

the 60% TSS and 30% BOD removals typically expected in conventional primary treatment.

49



The key parameters to the Point Loma design are summarized in Table 3-1 below:

Flow 190 MGD
Peak Flow 240 MGD

Dry Base FeCI3 40 ppm
40% Liquid FeC13 100 ppm
Anionic Polymer 0.2 ppm

Surface Load 2 rn/h
Peak Surface Load 3 rn/h
Total Retention 2 hours

Avg. Sludge Density 3% dry solids
Digester Retention 15 days

Table 3-1: Design Specifications at Point Loma WWTP

Jar tests were also conducted as part of a preliminary study designed to test the efficiency of

using ferric chloride as a coagulant, with the added efficiency of an anionic polymer (Hansson

and Langworthy, 1994) The results from the jar tests are presented in Table 3-2 below and prove

the efficiency of upgrading the conventional primary treatment plant to a chemically enhanced

treatment facility. Close inspection of the economic analyses of the data shows that adding

chemicals is a cost-efficient method since the cost to turbidity removal ratio increases steadily

with the addition of small doses of chemicals.

Cost/Rem.
Product Dose Turbidity Removed Cost Turb.

/MVm3 NTU Turbidity $/m3

Blank 0 145 0 0 0

Ferric Chloride 32 62 83 0.0036 8.59

64 26 119 0.0059 13.11

96 23 122 0.0107 22.46

128 17 128 0.0143 28.92

160 14 131 0.0178 36.37

PAC 24 38 107 0.006 56.07

poly-aluminum chloride 48 9.4 135 0.012 88.52
72 6.4 139 0.018 129.87
96 5.2 140 0.024 171.67
120 4.2 141 0.03 212.92

Table 3-2: Point Loma Jar Test Results
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3.1.2 Key Issue: The Point Loma Outfall

The Point Loma outfall is an essential component of the treatment and discharge system. Treated

wastewater is discharged to ocean waters at a depth of approximately 310 feet through the

23,472-foot-long Point Loma ocean outfall. The outfall was extended in 1993 by approximately

12,246 feet and discharges through a 4992-foot long diffuser with 416 ports (City of San Diego,

1995).

Discharging treated effluent through a carefully engineered outfall must meet the following

constraints: (City of San Diego, 1995).

1. Not adversely affect recreation or other beneficial uses of the ocean waters
2. Not adversely stimulate phytoplankton growth to the point of creating an aesthetic or

nuisance condition.
3. Not alter the balance or diversity of benthic species to a biologically significant

degree outside the zone of dilution
4. Not introduce concentrations of toxic compounds into the ocean which could be toxic

to humans, mammals, fish, or other marine species and
5. Not significantly reduce water clarity outside the zone of initial dilution or

significantly reduce dissolved oxygen in the water column

Many tests are constantly relied upon at Point Loma to monitor the discharges from the outfall

and its compliance with Ocean Plan Standards and Federal Criteria. As such, common tests used

to prove the inoffensive effects of outfall discharges on the surrounding ocean environments are

tests on dilution, physical oceanography, dissolved oxygen, and marine biology.

3.2 Sao Paulo -Tests at the Ipiranga Facility: The Retrofitting Capabilities of CEPT

3.2.1 Introduction

The full scale and jar tests that were performed at the Ipiranga Facility serving the Greater Sao

Paulo area were primarily centered on proving that the existing and deteriorating WWTP facility

could be retrofitted using CEPT. The results from the full-scale test are presented in section 3.2.2

below.

Greater Sao Paulo, the largest city in South America, has a population of approximately 17

million distributed in 339 municipalities (www.brazil.com). Data from the period of 1993 to

1996 show that Ipiranga's primary sedimentation basins were achieving removal efficiencies of

only 20% of influent TSS in contrast to the 60% expected from a well-operated plant. BOD and

COD removals were similarly low, at 20 and 30% respectively (Harleman, 2002).
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3.2.2 Full Scale Tests Results

The results from the Ipiranga full-scale tests are presented in Table 3-3 below. These are

consistent with the removal efficiencies described in San Diego's Point Loma:

Ferric Chloride Dose Polymer Dose Flow Rate COD Rem. BOD Rem. TSS Rem.

mg/L mg/L Lsec % % %

0 0 25 34 37 52

0 0 50 27 28 36

25 0.5 50 45 44 50

50 0.5 50 52 52 64

25 0.25 50 58 60 52

50 0.25 50 63 62 69

50 0.5 50 62 58 80

Table 3-3: Full Scale Results from Ipiranga Tests (Sao Paulo Brazil)

Table 3-3 above shows the positive effects of adding chemicals to the influent. When 0 mg/L

Ferric chloride was used to treat the wastewater, the COD and TSS removals were 34 and 52%

respectively. When 50 mg/L Ferric chloride was added with 0.5 mg/L polymer, the removals

increased to 52 and 64% respectively.

3.3 Rio de Janeiro: Phosphorous Removal in CEPT

Phosphorous and nitrogen are commonly present in WWTP discharges and are the limiting

nutrients in algal growth. Guanabara Bay in Rio de Janeiro suffers from extensive

environmental contamination and algal growth due to high nutrient inputs (Harleman, 2002).

Discharge of untreated industrial and residential wastes has resulted in high coliform levels,

eutrophication problems, and low dissolved oxygen in the surrounding waters (Harleman, 2002).

Therefore the WWT facility near the Bay was chosen as a test site to explore using CEPT in

future new plants.

The full-plant test performed in Rio de Janeiro was divided into two streams; one that was fed to

a conventional settling tank and the other was routed through a parallel sedimentation tank with

the addition of metal salts and polymers (Harleman, 2002). As the testing period was too short to

report significant amounts of data, the general conclusions from the full-scale tests were that

using ferric chloride in doses between 35 and 59 mg/L almost doubled the removal efficiencies

of TSS and BOD; In contrast to unaided primary settling which achieved maximum removal

rates of 43% of the influent TSS, 44% of the BOD and 29% of the COD, the chemically dosed
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streams reported levels as high as 76% TSS removals, 75% BOD and 65% COD (Harleman,

2002).

Figure 3-1 below depicts the locations of the treatment plants in Rio de Janeiro that were

considered for CEPT's retrofitting capabilities.

1ha de

/0

a Eistng TP o Epan &Modify

AS TP to Be Installed
ExUngrsP & Ex Under GB(JC

0 sy.11em to Be Re'covered

Figure 3-1: Rio de Janeiro Plants

3.4 Seawater and CEPT

3.4.1 Seawater in Hong Kong

The Stone Cutter's Island plant in Hong Kong is the world's largest and most efficient

chemically enhanced primary treatment plant. It was placed in operation in July 1997 and has a

maximum capacity of 40 m3/sec.

The plant was originally designed for conventional primary treatment with expected removals of

55% SS and 30% BOD (Harleman, 2003). Following recommendations of an International

Review Panel in 1995, the design was changed to a CEPT plant (Harleman, 2003). The number

of settling tanks was reduced from the original 58 to 38; the smaller plant was made possible by

the more rapid settling of particles after coagulation by ferric chloride.

The average performance data for the years between 1997 and 2000 are tabulated in Table 3-4

below:
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Flow rate 3.7 m3/sec

Surface Overflow Rate 66 m/d

Influent BOD 156 mg/L

Effluent BOD 39 mg/L

BOD Removal Efficiency 75%

Influent SS 200 mg/L
Effluent SS 32 mg/L

SS Removal Efficiency 84%

Ferric Chloride 10 mg/L

Anionic Polymer 0.1 mg/L

Seawater by volume 20%

Table 3-4: Hong Kong Stonecutter's Island Performance Data

The use of seawater in chemically enhanced primary treatment is a new phenomenon that has not

been intentionally included in any CEPT plants as of yet. The use of seawater in Hong Kong's

Stonecutter's Island was not by choice since the sanitary systems are flushed with seawater so as

to avoid buying fresh water from Mainland China. The 20% seawater (by volume) was therefore

already present in the wastewater influent and had to be accounted for in the design. The

presence of the 20% seawater in the influent is believed to have caused the reduction in ferric

chloride demand from an average 40 mg/L in other CEPT plants to the 10 mg/L used at

Stonecutter's Island.

Sections 3.4.2 to 3.4.5 below are a collection of the available literature review on the use of

seawater as a coagulation enhancement mechanism in wastewater treatment. Many of the studies

described below focus strongly on the use of lime in wastewater treatment and then look at the

combined effect of seawater. Although this research-focus in not recommended due to the large

volumes of chemical sludge produced with the addition of lime (Harleman, 2003), the use of

seawater certainly enhances treatment performances and these studies can therefore be

considered catalysts for future research. It is also important to note that the use of seawater was

very carefully studied and considered for use in Paraty. Detailed data analysis is described in

Chapters 4 and 5.
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3.4.2 Bagot (1990): Chemical Treatment of Sewage: Experiences in San Francisco

In early March of 1970, the California Regional Water Quality Control Board called for

immediate improvements in the sewage collection and treatment facilities belonging to the City

and County of San Francisco. An immediate upgrading of the primary-type treatment by the use

of one or more of the synthetic organic chemical polymers was favored by both the city and the

state. (Bagot, 1990) The North Point Plant was chosen to test the idea of chemical addition and

Figure 3-2 is the flow diagram of the North Point Plant process.
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Figure 3-2: North Point Treatment Process
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Several doses and different types of polymers were used with varying doses of ferric chloride in

the North Point initial tests. In April 1971, the following feed program had been proposed:

Hours Ferric Chloride Anionic Polymer
12:00 am - 7:00 am 15 mg/L
7:00 am - 5:00 pm 25 mg/L 0.4 mg/L
5:00 pm -12:00 am 40 mg/L 0.4 mg/L

10% Bay Water added on a continuous basis.
Table 3-5: North Point CEPT Feed Program

The qualities of effluents derived from different types of treatment at North Point are

summarized in Table 3-6 below. It is very important to notice that the behavior of ferric chloride

was influenced by the salt content of the raw sewage. Variations of the salt concentration are

caused by infiltration of tidal water into the sewer system (Bagot, 1990)

78

72

45

164

164

120

x

x

166

33.1

28.7

22.2

Table 3-6: Effluent Qualities in North Point for varying treatment schemes (Bagot, 1990)

The use of salt water yielded better results and as such, further tests were conducted on the use of

saltwater to enhance the chemical treatment of wastewater in San Francisco. Bay water was

tested in percentages varying from 0-10% by volume (Chloride ion concentrations ranged from

140 mg/L to 1880 mg/L) and were all tested with 10 mg/L of ferric chloride (Bagot, 1990). The

removal efficiencies from these tests are tabulated in Table 3-7 below:
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Scheme A: With Ferric Chloride
0 10 140 50

1 10 316 43

2 10 476 33

4 10 761 33

6 10 1100 28

8 10 1430 34

10 10 1880 28

Scheme B: Without Ferric Chloride
0 0 125 41

1 0 295 51

2 0 436 41

4 0 750 54

6 0 1060 50
8 0 1330 51

10 0 1840 77

Table 3-7: Effluents in Salt Water treatment with/out FeCl3 (Bagot, 1990)

The pH values used in these tests were consistent at approximately 7.2. It is obvious that large

volumes of seawater did not necessarily increase the removal efficiencies of suspended solids

since 6% seawater performed as well as 10% seawater for example (Refer to Table 3-7 above).

Finally, Table 3-8 of the following page provides a comparison of various chemical treatment

schemes on North Point Raw sewage and is efficient at proving the effectiveness of using

saltwater in small concentrations to enhance chemical treatment of influent.
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Table 3: Comparison of various chemical treat-
ment schemes on Nortb Point raw sew-
age

Ferric Suspended Light % Light pH
Dose Solids. Absorption Transmission
(mg/I) (mg / 1) (700 mp) (700 mI)

Scheme A, Ferric Chloride ± '00% Water
0 61 0.135 73.0 7.30
5 57 0.105 78.0 7.20

10 37 0.095 80.5 7.15
20 33 0.080 83.0 7.10
25 32 - 0.077 83.5 7.00
30 35 0.075 84.5 6.90
40 37 0.063 86.5 6.80

Ferric Suspended Light % Light pH
Dose Solids Absorption Transmission
(mg/I) (mg/i) (700 mp) (700 mp)

Scheme Atp=erric Chloride + 10% Salt Water
5 40 0.070 85.0 7.20

10 32 0.055 88.3 7.10
20 21 0 0.043 90.5 7.00
25 22 0.040 91.5 6.95
30 22 0.037 92.0 6.90
40 19 0.030 93.5 6.80

Fsrric Suspended Light % Light pH
Dose Solids Absorption Transmission
(mg/i) (mg /1) (700 mu) (700 mu)

Scheme C: Ferric Chloride + 10% Water +0.5 mg/I Polymer
5 22 0.097 80.0 7.15

10 18 0.095 81.0 7.15
20 21 0.072 85.0 7.10
25 17 0.071 85.0 7.10
30 22 0.065 86.0 7.00
40 23 0.052 89.0 6.85

Ferric Suspended Light 9% Light pH
Dose Solids Absorption Transmission
(ma/i) (mg /I) (700 mu) (700 mju)

Scheme D: Ferric Chloride + 10% Salt Water + 0.5 mg/I

5
10
20
25
30
40

40
28
24
15
20
16

0.062
0.050
0.040
0.035
0.030
0.025

86.5
89.0
91.5
92.5
93.0
95.0

polymer
7.10
7.10
7.00
7.00
6.95
6.80

Table 3-8: Various chemical treatment schemes on North Point

Fergtuson and Vrale (1984): Seawater in wastewater treatment with lime

Ferguson and Vrale (1984) looked closely at the use of lime and seawater in wastewater

treatment. The use of lime is not often recommended because of the large quantities of chemical

sludge that incur (Harleman, 2003). However, a brief description of the findings is useful

(Ferguson and Vrale, 1984):

1. "Seawater adds enough magnesium to precipitate at least 0.6 millimoles/L of
magnesium hydroxide. The amount of seawater needed depends on the solubility of
magnesium hydroxide that is a function of pH. As little as 1 to 2% of seawater is
needed if pH values above 11 are used; if pH values are below 10.5, 10% or more
seawater is required."
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2. "Phosphate solubility is seldom limiting in the process, but can be described as a
function of pH and calcium concentration. At pH values below 10.5, orthophosphate
is a significant portion of the total phosphate"

3. Sludge recycle improves the steady state performance of the process.
4. "The lime seawater process is capable of producing an effluent suitable for marine

discharge if no more than 75% soluble BOD removal is required. Removal of
suspended solids and phosphorous is characteristically greater than 90%. The effluent
is very clear."

The Ferguson and Vrale study can be considered somewhat misleading because the large

expected quantities of sludge produced from the addition of significant concentration of lime

(varying from 165 to 240 mg/L) are not very clearly addressed. However, the efficiency of

seawater at enhancing the process provides other researchers with encouraging data.

3.4.4 Ayoub and Koopman (1986) and AYoub et al (1986): Seawater and Algae

The Ayoub and Koopman (1986) study focused on determining the effectiveness of the lime-

seawater process in the removal of algae from oxidation pond effluents. The second study was

identical except that lime was substituted by sodium hydroxide to evaluate the effectiveness of

the process at reduced Ca ions. The main conclusion of interest concerning seawater is as

follows:

"The effectiveness of seawater is largely a function of the extent of the Mg(OH) 2
reaction. In the presence of ample Mg+2 ions the optimal lime dosage required will
supply enough OH~ ions to react with the Mg+2 ions"

As the lime process is not typically encouraged, it is important to note that in chemically

enhanced primary treatment with the use of seawater, the naturally abundant Mg+2 ions will react

with the wastewater particles that are negatively charged therefore replacing the negatively

charged OH~ ion.

3.4.5 Ayoub et al (1991): Seawater as a demulsification agent.

Laboratory investigations were conducted to explore additional applications of seawater

flocculation and to gain a better understanding of the conditions under which effective

flocculation is achieved. The pollutants tested included emulsified oil, high alkaline industrial

wastewaters and a pilot scale oxidation pond. The conclusions reached were as follows (Ayoub

et al, 1991):
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1. Seawater is effective for demulsification of oily wastewater. Flocculation of alkaline
wastewaters maybe accomplished merely by the addition of seawater

2. Seawater addition is also highly efficient for suspended solids and phosphorous
removals as well as particulate forms of COD and nitrogen, and is also effective
against textile dyes.

3. Seawater serves as a source of magnesium ions, which precipitate as Mg(OH) 2 at high
pH. The ability to destabilize oil emulsion and particulates that are negatively
charged, suggests that the Mg(OH) 2 floc carry a positive charge in the seawater-
wastewater mixture. A minimum precipitate quantity of 2 to 3.5 g eq/m3 was required
to achieve good flocculation.

These conclusions are encouraging despite the fact that the tests were applied to sources of

wastewater that were not domestic. It can be implied however that further research on the use of

seawater as a coagulation enhancement mechanism in the chemical treatment of domestic

wastewater will yield comparable results. Please refer to Chapter 4 for data analysis on jar tests

performed in Paraty, Brazil.
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CHAPTER FOUR: PARATY ANALYSIS: FeCl3, SEAWATER AND
POLYMERS

4.1 INTRODUCTION

In January 2003, several jar test experiments were conducted to assess the sewage quality in the

city of Paraty. The measured suspended solids (SS), turbidity and chemical oxygen demand

(COD) removal rates were then used to estimate appropriate FeCl3 and polymer doses and then

to design a chemically enhanced primary treatment plant for Paraty. Seawater was also

considered for use as a coagulant enhancement tool.

This chapter will then introduce the results from three sets of experiments that were conducted in

the laboratory in Paraty. Each experiment is a collection of several comparable jar tests

conducted on one raw sewage sample or on a sample of similar raw wastewater characteristics

and to which ferric chloride, FeCl 3, was added either alone or with a combination of seawater

and/or anionic polymer in assigned percent volumes. The use of seawater as a coagulation

enhancement tool (Chapter 3 for literature review) was a critical examination point for the jar

tests results. These experiments are summarized in Table 4-1 below and are very effective at

comparing and contrasting the effect of FeCl 3 and seawater on the SS, turbidity and COD

removal efficiencies and are therefore critical at determining the optimal coagulant, seawater and

polymer dose required for the proposed CEPT plant in Paraty.

Experiment Number Jar Test Number Description Page

1 54
1A 2 and 6 FeC 3  54

1B 4, 5 and 8 FeC 3  57

2
2A 8,9 and 10 0.5% seawater and FeC 3  61
2B 8,11 and 12 1,2% seawater and FeC 3  64

2C 8, 25 and 26 5, 10% seawater and FeCI_ 68

3
3A FeCl 3 and Polymer 73

3B FeCl 3 and Seawater 76

3C FeCI3, seawater and polymer 78
Table 4-1 Summary of Experiments in Paraty, Brazil
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4.1.1 Constraints

It is critical to note that the lack of a sewage collection system in Paraty made finding

representative raw wastewater samples a challenging task. Also, once a sampling point in an

open sewer was finally located, the continuous rain falls diluted the samples significantly thereby

reducing the suspended solids and turbidity contents in the collected raw wastewater samples.

Please refer to figures 1.5 through 1.8 in Chapter 1 for examples of the state of wastewater

discharge in Paraty.

Figures 4-1 and 4-2 below show the effect of dilution on SS and COD removals. As the sample

is diluted, the influent SS and COD concentrations steadily decrease as do the SS and COD

removals. The response of SS and COD removals to increasing SS and COD influent

concentrations are compared to the South Essex treatment plant (Harleman, 2003):

Conv. SS Removals PARATY
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'~30- -U-Conv. SS
0 20-
E
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0
0 100 200 300 400 500 600

Influent SS (mg/L)

Figure 4-1: SS removals with increasing influent concentration
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Figure 4-2: TSS removals with increasing TSS concentration

62

-n-

:1= 4-. -0:!' -0--

. . . . . . . . .. :

S E-3 D (CDc. 

C)a nt -s ConC-3tration1 C3 C>



Figure 4-3: COD removals with increasing influent concentration

SESD (Oct. 1988 - Sept. 1 989)

BOO

-I

-+ +.. . , , . . , ,. . . .++ + + 4-1.A -4- I-_+

4-: 4- -F

±4 ++ 4 :r ++I

-z-**-+ -* -
+ +F

Influent BOD

Figure 4-4: BOD removals with

Concentration

increasing BOD concentration

It is also important to note that BOD removal rates were approximated by measuring the COD

removals of the raw and treated wastewater. This has been shown to be an acceptable technique

for the estimation of BOD (Harleman, 2003). Since the BOD test requires 5 days to yield final

results whereas the COD tests only requires 2 hours, measuring the COD was therefore more

practical for our time-constrained experiments in Paraty.
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4.2 EXPERIMENT ONE

4.2.1 Introduction

For this experiment, raw sewage was injected with ferric chloride, FeCl3, at different

concentrations to test for the optimal dose that would yield the most economical level of SS,

turbidity and COD removal. The optimal FeCl3 dose was chosen to most closely match the

expected and published removal rates for a typical chemically enhanced primary treatment plant:

85% for SS and 57% for BOD (NRC, 1996). As described in the introduction above, and for the

jar tests described below, COD removals were measured instead of BOD removals since the 2

hour COD test was more practical than the 5-day BOD test.

Experiment one consists of two sets of jar tests: In set one, Jar tests 2 and 6 were tested on

different raw wastewater samples to test the effectiveness of a 40 mg/L FeCl 3 dose for the

removal of suspended solids, turbidity and COD.

Similarly in the second set of jar tests under experiment one, a single sample of raw wastewater

was used for jar tests 4 and 5. This raw wastewater had characteristics very similar to the raw

sample used for jar test 8 and was therefore expected to perform similar to jar tests 4 and 5 under

the same FeCl 3 conditions.

4.2.2 EXPERIMENT IA: Jar tests 2 and 6

These jar tests were performed on two distinct samples of sewage having very similar raw

wastewater characteristics and collected from the same sampling spot. They were therefore

considered comparable in quality and, at identical FeCl 3 doses, expected to yield similar SS,

turbidity, and COD removal rates. The raw wastewater characteristics and removal rates are

shown in Table 4-2. It is important to note that the samples settled for 5 minutes after mixing

thus representing an overflow rate of approximately 23 m/day (Chapter 2). The blank sample

was not injected with any ferric chloride and therefore represents conventional primary

treatment. The turbidimeter was not functional at the time that Jar Test 2 was conducted.
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Removal Rates (%)

Jar Test Raw FeC 3 (mg/L) 0 20 40 60 80 100

2 1650 COD 5 34 47 45 5 57

435 SS 20 54 81 82 94 97

440 Turb N/A N/A N/A N/A N/A N/A

Jar Test Raw FeC13 (mg/L) 0 10 20 30 40 50

6 1540 COD 44 49 49 48 58 59

603 SS 43 40 53 53 63 90

350 Turb 36 50 60 62 63 62

Table 4-2: Experiment ]A Percent Removals Summary

4.2.2.1 Suspended Solids Removal

Jar Test 2 and 6 SS removals

100

0- 80-

606
0
E 40 -UJT 6

0Uo 20

0
0 10 20 30 40 50 60 70 80 90 100

Ferric Chloride (mg/L)

Figure 4-5: Experiment IA Suspended Solids Removals

The suspended solids removal rates were higher in Jar Test 2 peaking at 97% for 100mg/L of

FeCl 3. The results from Jar Test 6 were also considered within acceptable range and the observed

discrepancy in removal rates can be attributed to the fact that the initial SS reading in Jar Test 6

was 1.5 times larger than the initial SS in Jar Test 2. Lower removal rates would be therefore

expected for more dilute samples. The removals after conventional treatment (mixing with

Omg/L FeCl3) were also lower than the removals in jar test 6 because of the dilution effect (Refer

to Figure 4-1 above)

The most economical dose for Jar Test 2 was between 40 and 50 mg/L. The economic dose was

determined by finding the point at which increased doses of FeCl3 did not result in similar

increases in removal rates. Similarly, suspended solids removals in Jar Test 6 reached a

somewhat constant removal rate of 80% for FeCl 3 doses between 40 and 65 mg/L. The optimal

dose of FeCl3 was therefore determined to be 40 mg/L.
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4.2.2.2 Turbidity Removals

Jar Test 6 Turbidity Removal Rates

100

in80-

60 -5-Jar Test 6
40

20

0
0 5 10 15 20 25 30 35 40 45 50

Ferric Chloride (mg/L)

Figure 4-6: Experiment ]A Turbidity Removals

Turbidity measurements were not made for Jar Test 2 since the turbidimeter was not functional

at the time of the test. For Jar Test 6, however, turbidity removal rates peaked at 60% for FeCl 3

doses ranging from 20 to 60 mg/L. The optimal coagulant dosage for the turbidity alone was

therefore chosen to be the 20 mg/L. The most optimal FeCl 3 dose however which takes

suspended solids into account is 40 mg/L.

4.2.2.3 COD Removals

Sewage in Jar Tests 2 and 6 reached 60% COD removal rates at 50 and 80 mg/L of FeCl3

respectively. These values are comparable to the published and expected CEPT COD removal

rate of 57% (NRC, 1996).

Jar Tests 2 and 6, COD removals

O 100

80cc

S60-- -*Jar Test 2
0
E 404 -UJar Test 6

E20

0

0 10 20 30 40 50 60 70 80 90 100

Ferric Chloride (mg/L)

Figure 4-7: Experiment ]A COD removals
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There was not a large difference however in the removals at 40 mg/L and therefore the Ferric

Chloride concentration at a dose of 40 mg/L was therefore considered the optimal dose that

achieved 60% removal rates of suspended solids, turbidity and chemical oxygen demand for jar

tests 2 and 6.

4.2.3 EXPERIMENT 1B: Jar Tests 4,5 and 8

Similar to jar tests 2 and 6 above, experiments using raw wastewater and varying ferric chloride

doses were used to determine optimal coagulant doses in jar tests 4,5 and 8. These experiments

are identical in procedure and methodology to jar tests 2 and 6 above and were performed to

check the efficiency of the chosen 40mg/L FeCl3 dose.

The raw wastewater sample from which Jar tests 4 and 5 were taken had raw characteristics very

similar to the sample from which Jar test 8 was taken. The three jar tests were therefore grouped

together and assumed to be similar in wastewater quality and therefore expected to achieve

similar removal rates. It is also important to note that the samples from which jar tests 4,5 and 8

were taken were significantly more dilute than those for jar tests 2 and 6 in section 4.2.2 above.

Removal rates can therefore be expected to be lower.

The summary of raw waste characteristics and removal rates are shown in Table 4-3 below

The highlighted jar tests indicate samples taken from the same raw wastewater source:

Removal Rates (%)

Jar Test Raw FeCI 3(mg/L) 0 20 40 60 80 100

4 605 COD 10 11 19 23 26 34

149 SS 6 6 19 21 30 48

200 Turb 24 35 40 46 47 58

Jar Test Raw FeCI 3(mg/L) 0 10 20 30 40 50

5 605 COD 14 10 18 18 21 19
149 SS 6 6 7 9 14 15

200 Turb 40 35 43 42 46 54

Jar Test Raw FeC13(mg/L) 0 10 20 30 40 50

8 590 COD 6 6 8 15 16 20

208 SS 36 37 46 50 58 64

166 Turb 34 29 42 50 54 56

Table 4-3: Experiment 1B Percent Removals Summary
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4.2.3.1 Suspended solids removal

The results for the three different jar tests showed a clear sensitivity to initial suspended solids

concentrations: At 40 mg/L of FeCl 3, Jar Tests 4 and 5, at an initially low SS concentration of

149 mg/L, achieved an SS removal rate of less than 15%, which is very low compared to the

expected removal of 57% (Harleman, 2002). Jar Test 8 however, at an initial concentration of

208 mg/L, achieved removal rates of approximately 60% at the prescribed FeCl3 40 mg/L

concentration.

Jar Test 4,5, 8 SS Removal Rates

100

080
~i 70

S60 -4- Jar Test 4
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40 Jar Test 8"
@ 30
$ 20
0. 10
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0 10 20 30 40 50 60 70 80 90 100

Ferric Chloride (mg/L)

Figure 4-8: Experiment lB Suspended Solids Removal Rates

Dilution caused by continuous heavy rains in Paraty and infiltrating into the sampling location

was therefore considered a limiting factor to the suspended solids results in these jar tests.

It is important to note that dilution significantly affected the conventional primary treatment of

jar tests 4 and 5 where Omg/L of FeCl3 achieved SS removals much lower than the expected

30%. Avoiding sewage dilution with precipitation or storm water is therefore critical since the

coagulation process is impeded when the initial SS concentrations are low.

(Refer to the laboratory study constraints section in section 4.1.1 above.)

4.2.3.2 Turbidity Removal

The turbidity removals were more consistent between jar tests 4,5 and 8. Close examination of

Figure 4-9 of the following page shows that at a FeCl 3 dose of 40 mg/L, turbidity removal rates

for jar tests 5 and 8 were 50% and 40% in jar test 4.
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Jar Test 4,5 Turbidity Removals
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Figure 4-9: Experiment lB Turbidity Removals

4.2.3.3 COD removal

COD removals for jar tests 4,5 and 8 reached a 20% removal rate at FeCl3 doses of 40 mg/L.

This value is lower than the expected and representative 57% BOD removal for chemically

enhanced primary treatment but the low removals can be attributed, again, to the diluted sample

and to the low initial COD readings of the raw wastewater.

Jar Tests 4,5 and 8 COD removals
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Figure 4-10 Experiment JB: COD removals
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A summary table of the removals achieved with injection of 50 mg/L FeCl3 alone is provided

below. The average removals expected from FeCl 3 additions to the sewage in Paraty are 53, 80,

and 62% COD, SS and Turbidity for undiluted sewage (Jar Tests 2 and 6) and 19, 32 and 52 %

COD, SS and Turbidity for diluted sewage (Jar Tests 4,5 and 8)

Jar Test Raw 40 mg/L FeCI 3(mg/L) % Removal

2 1650 COD 47

435 SS 81

440 Turb N/A

Jar Test Raw 40 mg/L FeC13(mg/L) % Removal

6 1540 COD 58

603 SS 63

350 Turb 63

Jar Test Raw 40 mg/L FeCI3(mg/L) % Removal

4 605 COD 20

149 SS 14

200 Turb 43

Jar Test Raw 40 mg/L FeC 3(mg/L) % Removal

5 605 COD 19

149 SS 16

200 Turb 54

Jar Test Raw 40 mg/L FeC13(mg/L) % Removal

8 590 COD 16

208 SS 58

166 Turb 54
Table 4-4: Summary Removal Rates: Experiment One
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4.3 EXPERIMENT TWO

4.3.1 Introduction

For this second experiment, fresh domestic wastewater was collected and treated with 0 to 50

mg/L doses of ferric chloride. Different doses of seawater ranging from 0.5 to 15% of seawater

were also added to the samples to test the efficiency and feasibility of using seawater as a

coagulant enhancement. The seawater was collected from a beach nearby at a measured salinity

of 36 ppt (parts per thousand).

4.3.2 EXPERIMENT 2A: Seawater at 0.5% by volume.

The raw wastewater used for Jar test 8 in section 4.2 above was also used in Jar Test 9 for

Experiment 2 here to test the effect of adding 0.5 % seawater by volume as a coagulation

enhancement mechanism. Jar Tests 8 and 9 described were therefore supplied by the same raw

wastewater sample. Jar Test 10 is an independent test of importance here because the raw sample

from which it was taken was significantly less dilute than the sample from which jar tests 8 and 9

were taken. Jar test 10 is therefore important to test the doses of ferric chloride and volumes of

seawater needed to achieve appropriate SS, Turbidity and COD removals at all dilution levels.

Since the beakers in which the jar tests were conducted contain 2 liters of wastewater, then

adding 0.5% seawater by volume equals the addition of 10ml of seawater.

Table 4-5 below summarizes the raw wastewater characteristics and achieved SS, turbidity and

COD removal rates in the three jar tests. It is important to note the difference and compare

removal rates in samples with and without seawater. Again, the highlighted jar tests indicate

same raw wastewater sources:

Removal Rates %)
Jar Test Raw FeCI1 (mg/L) 0 10 20 30 40 50

8 590 COD 6 6 8 15 16 20

NOSW 8 SS 36 37 46 50 58 64

166 Turb 34 29 42 50 54 56

Jar Test Raw FeC 3 (mg/L) 0 10 20 30 40 50

9 590 COD 10 13 17 28 31 30

0.5% SW 8 SS 37 43 55 70 60 75
166 Turb 42 46 57 64 69 68

Jar Test Raw FeCI 3 (mg/L) 0 10 20 30 40 50

10 1302 COD 24 25 30 35 41 37

0.5% SW 619 SS 49 59 62 65 68 73

395 Turb 31 48 51 59 71 76
Table 4-5: Experiment 2A Summary of Removals
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4.3.2.1 Suspended solids removal

Jar Tests 8,9,10 SS Removals
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Figure 4-11: Experiment 2A Suspended solids removals

The suspended solids removals for Jar Test 8 to which no seawater was added, was 64% at a

FeCl3 dose of 50 mg/L. When the same wastewater was well mixed and injected with 50 mg/L

FeCl3 and 10 ml of seawater (Jar Test 9, pink line on Figure 4-11), the suspended solids

removals increased to 75% marking a 17% increase in suspended solids where:

% Increase in solids = [final (mg/L) - initial (mg/L)]/[initial (mg/L)]

Similarly for Jar Test 10, the SS removal rate at 50 mg/L FeCl3 was 73%, marking a 14%

increase from the 64% removals when no seawater was added.

For suspended solids removal, the addition of small volumes of seawater was therefore effective

at achieving the following essentially identical goals:

1. Reduce the amount of ferric chloride needed to achieve a specified SS removal rate

2. For the same concentration of ferric chloride, increase the suspended solids removal rate.

Therefore, as a first conclusion, seawater enhances the coagulation process and leads to

significant reductions in suspended solids removals
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4.3.2.2 Turbidity Removals

Jar Tests 8,9,10 Turbidity Removals

100

80
- -- JT8noSW

E60 -U-JT9 0.5% SW

40 1 JT1 00.5% SW

20

0
0 10 20 30 40 50

Ferric Chloride (mg/L)

Figure 4-12: Experiment 2A Turbidity Removals

The turbidity removal for jar test 8 to which no seawater was added was 56% at 50 mg/L of

FeCl 3. However, in jar test 9, and for the same concentration of ferric chloride, a 69% turbidity

removal was achieved marking a 23% increase in removal efficiency. In jar test 10, the removal

efficiency increased from the original 56% to 75% at 50 mg/L FeCl 3 and with 0.5% seawater,

thus marking a 34% increase in removal efficiency.

It is interesting to note that, unlike in the suspended solids removal above, the difference

between removal efficiencies with and without seawater, in jar tests 8 verses 9, remained

consistent at approximately 55% on average for all values of ferric chloride tested. Therefore, if

the wastewater treatment objective for example, is 55% turbidity removal, then a concentration

of 50mg/L of ferric chloride could be used (Blue line). Alternatively, a ferric chloride

concentration of approximately 23 mg/L could be used with 0.5% seawater by volume. The

second alternate suggests a 54% decrease in required ferric chloride concentration that translates

into significant economic savings
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4.3.2.3 COD Removals

COD removals for jar test 8, at FeCl3 concentration of 50 mg/L reached a 20% value. When the

0.5% seawater was added to jar test 9, however, and at the same FeCl 3 concentration of 50 mg/L,

the COD removal rate increased to 30%, marking a 50% increase. When the results from jar test

10 were compared to those from jar test 8 for COD removals, an 85% increase was noted,

bringing the COD removals from 20% to 37%.

Jar Tests 8,9,10 COD removals

100

0-0
+JT8 no SW

0 -4-JT 9 0.5% SW
E

40 JT 10 0.5% SW

0o 20

0 10 20 30 40 50

Ferric Chloride (mg/L)

Figure 4-13: Experiment 2A COD removals

It is important here to note again, that because of the initially diluted raw wastewater samples

(especially for that used in jar tests 8 and 9), the COD removals for conventional primary

treatment (at Omg/L FeCl 3) were significantly lower than expected. The importance of avoiding

diluted sewage is therefore of primary importance. It is also important to note that increases in

the concentration of seawater contributed significantly to increases in SS, turbidity and COD

removals. Seawater therefore might prove to be an in-plant solution to treating influents with low

suspended solids, turbidity and COD readings.
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4.3.3 EXPERIMENT 2B: Seawater at 1 and 2% by volume

Since the results from the addition of 0.5% on jar tests 9 and 10 were very positive, additional jar

tests were conducted with the addition of 1 and 2% seawater. This was done to test for the

increased efficiency of using seawater as a coagulation enhancement in the removal of

suspended solids, turbidity and COD. In Jar test 11, ferric chloride doses up to 50 mg/L were

used with 1% by volume of seawater (20 ml of seawater in the 2 liter jar testing beaker). In Jar

test 12, 40ml of seawater (2% seawater by volume) was used with the same doses of ferric

chloride and on the same raw wastewater sample from which jar test 11 was used. The raw

wastewater from which jar tests 11 and 12 were taken was very similar in characteristics to jar

test 8 raw wastewater. Therefore the removal results from jar tests 11 and 12 were compared to

those from jar test 8 to which no seawater was added. Table 4-6 below summarizes the raw water

characteristics and the observed removal efficiencies.

Removal Rates (%)

Jar Test Raw FeCI 3 (mg/L) 0 10 20 30 40 50

8 590 COD 6 6 8 15 16 20

no SW 208 SS 36 37 46 50 58 64

166 Turb 34 29 42 50 54 56

Jar Test Raw FeCI3 (mg/L) 0 10 20 30 40 50

11 620 COD 11 25 34 36 39 44

1% SW 218 SS 13 27 41 50 64 69

131 Turb 8 16 48 51 59 59

Jar Test Raw FeC 3 (mg/L) 0 10 20 30 40 50

12 620 COD 15 28 32 38 46 50

2% SW 218 SS 17 33 47 61 70 65

131 Turb 10 33 45 60 68 68

Table 4-6 Experiment 2B Summary of Removals
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4.3.3.1 Suspended Solids Removals

Jar Tests 8,11 and 12 SS Removals

100-

A 80
0--JT 8 no SW

0 -- I-JT11 1%SW

40 -JT 12,2% SW

20

0
0 5 10 15 20 25 30 35 40 45 50

Ferric Chloride (mg/L)

Figure 4-14: Experiment 2B Suspended Solids Removals

Increases in suspended solids removal efficiencies caused by the addition of seawater occurred

after the addition of 30 mg/L FeC13 to jar tests 8, 11 and 12. These results vary slightly therefore

from the SS removal rates at lower seawater concentrations where differences in SS removals as

large as 50% occurred at FeCl3 concentrations of 10 and 20 mg/L (Figure 4-14 above). The

increase in SS removal efficiency was 20% with a 2% seawater addition at 30 mg/L FeCl3 and

21.5% at 40 mg/L FeCl3. The increases in SS removals due to seawater addition seemed to

stabilize in excess of 50 mg/L FeC13 indicating a potential limit to the level at which seawater

and FeCl3 can be effectively mixed and used as coagulants.

4.3.3.2 Turbidity Removals

Turbidity removals followed the same trends as suspended solids with the addition of 1 and 2%

of seawater. Increases of turbidity removal efficiencies caused by seawater addition were not

noted until after 20mg/L of FeCl3 was added to the influent. At 30 mg/L, the addition of 1% of

seawater also did not have any differentiating effect on the turbidity removals and the 2%

seawater addition instigated a 20% increase in removal efficiency. The highest removal

efficiencies observed were at 40 mg/L FeCl 3 whereby a 1% seawater addition caused a 15%

turbidity removal increase and 28% increase with the addition of 2% seawater.
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Jar Tests 8,11 and 12 Turbidity Removals
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Figure 4-15: Experiment 2B Turbidity Removals

4.3.3.3 COD Removals

COD removals followed significantly different trends compared to their suspended solids and

turbidity counterparts. At FeCl3 concentrations as small as l0mg/L, a 1% seawater addition

caused a 300% increase in removal efficiency, from 5.5% to 26%. In addition, at the estimated

most economic FeCl 3 dose of 50mg/L, increases in COD removals reached a 170% difference.

COD was therefore very strongly affected by the increased seawater presence in the influent and

greatly increased coagulation. It is important to note here that seawater enhanced the FeCl3

coagulation process and yet appears to be more effective in removing colloidal COD compared

to removing colloidal suspended solids (or turbidity) for small concentrations of seawater less

than 2%. This theory will be checked for confirmation after analyzing the jar tests with larger

concentrations of seawater additions.

Jar Tests 8,11 and 12 COD Removals
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80
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Figure 4-16: Experiment 2B COD Removals
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4.3.4 EXPERIMENT 2C: Seawater at 5 and 10% by volume

Similar to the experiments above, additional jar tests were performed to test for the added

efficiency of injecting 5 and 10% seawater by volume into the influent. The drive for performing

these additional tests was the positive results observed in the SS, turbidity and COD removal

efficiencies for the injection of 0.5%, 1% and 2% seawater into the influent. The results from jar

tests 25 and 26 will be presented in this section. Both jar tests were injected with FeCl 3

concentrations ranging from 0 to 40mg/L and seawater concentrations of 5 and 10% by volume.

Although jar tests 25 and 26 were not taken from an identical raw wastewater source, their

respective raw

below:

sources are very similar in SS, turbidity and COD values, as shown in Table 4-7

Jar Test Raw FeC 3 (mg/L) 0 10 20 30 40 50

8 590 COD 6 6 8 15 16 20

No SW 208 SS 36 37 46 50 58 64

166 Turb 34 29 42 50 54 56

Jar Test Raw FeC 3 (mg/L) 0 20(5) 30(10) 40(0) 40(5) 40(10)

25 389 COD 5 0 0 2 1 3

5and10% 101 SS 0 25 42 11 66 68

84 Turb 5 19 38 4 63 68

Jar Test Raw FeC 3 (mg/L) 0 30 30(5) 30(10) 40(5) 40(10)

26 348 COD 4 20 14 25 14 22

5and10% 110 SS 3 9 58 60 65 72

143 Turb 8 7 53 58 62 70

Table 4-7: Experiment 2C Summary of Removals

4.3.4.1 Suspended Solids Removal

SS removals with 40 mg/L FeCI3 and varied seawater

100

-0-80-

>60 JT25

0 -

20

Conv. Prim. 5 10

% seawater added

Figure 4-17: Experiment 2C Suspended Solids Removals
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In this experiment, the ferric chloride concentration was held constant at 40 mg/L and the jar

tests were enhanced with seawater concentrations varying between 0% (to represent

conventional primary treatment) and 10%. The SS removals increased significantly between the

0% and 5% marks (at about 660% difference in removal efficiencies) and yet remained

approximately equal for the 10% addition of seawater, varying from 68 to 70% removals.

SS Removals with 30 mg/L Ferric and varied Seawater

100

080----

60
0- -JT26
E 40--

0

Conv. Prim no SW 5 10

Seawater %

Figure 4-18: Experiment 2C Suspended Solids removals (2)

Since finding the optimal ferric chloride concentration is the end goal of these experiments, the

jar test described above was repeated to test for the efficiency of SS, turbidity and COD

removals for the addition of 30 mg/L of ferric chloride and various seawater concentrations.

Figure 4-18 above shows the clear improvement in SS removals for the sample to which no

seawater was injected and which achieved a removal rate of 10%. After the addition of 5%

seawater, with the same 30 mg/L FeCl 3 concentration, the SS removal rate achieved was 60%

thus marking a 500% increase in removal efficiencies. It is interesting to note here that the

removal efficiencies remained constant for 5 and 10% seawater injections.

Comparing the results of 30 mg/L of FeCl3 to the previous sample where 40 mg/L FeCl3 was

used, it is obvious that the removal efficiencies did not differ appreciably and that 30 mg/L is

enough coagulant to achieve very high removal rates and that using 40 mg/L FeCl3 with 5%

seawater is not the optimally economic coagulant dose.
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4.3.4.2 Turbidity Removals

Turbidity Removals with 30 mg/L Ferric chloride and varied Seawater

O 100

c. 80

o 60-
CD 

-- JT 26
40

20

0-
Conv. Prim no SW 5 10

Seawater (%)

Figure 4-19: Experiment 2C Turbidity Removals

Similar to most of the previous jar tests, turbidity removals followed the same trend as that seen

in suspended solids. Therefore, at a constant FeCl3 concentration of 30 mg/L and with varied

seawater volume additions, the turbidity removals increased by 400% between using no seawater

to injecting the 5% seawater by volume (from 9 to 52% at 5% seawater).

It is important to note that turbidity removals were slightly lower when compared to the

removals in suspended solids for the same FeCl 3 and seawater concentrations; at a 5% seawater

concentration, SS removals were 60% compared to 51% for turbidity for example. It is also

important to note that, unlike suspended solids, the turbidity removals continued to increase

(although not as dramatically) with increased seawater concentrations; removals at 5% were 51%

and 59% at 10%. It is this type of situation where the cost of pumping the extra seawater would

have to be compared to the extra assumed benefit of reducing the turbidity by an extra 8

percentage points.
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Turbidity removals with 40 mg/L FeCl3 and varied seawater

100

80-

0
Conv. Prim. 5 10

seawater(%)

Figure 4-20 Experiment 2C Turbidity Removals (2)

Figure 4-20 above shows the results from an identical experiment, in which a FeCl 3

concentration of 40 mg/L was used instead of 30 mg/L. Again, the turbidity removals followed

very similar trends to those seen in suspended solids. The increase in ferric chloride

concentration to 40 mg/L also did not yield significant increases in turbidity removals since at a

seawater injection of 5%, the turbidity removals were 62% compared to 55% removal when 30

mg/L was used with 5% seawater.

4.3.4.3 COD Removals

COD Removals with 30 mg/L Ferric chloride and varied SW
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0
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-- JT 26
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Figure 4-21: Experiment 2C COD Removals

COD removals were, as expected, lower than the suspended solids and turbidity removals for the

same FeCl3 and seawater concentrations. However, the COD removal rates still increased with

the addition of seawater, although not to the same extent as the SS or turbidity measurements. A

5% addition of seawater yielded a 30% increase in COD removal efficiency. Also at 10%
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seawater and with 30 mg/L FeCl3, the removal efficiency increased to 25% from the initial 6% in

conventional primary treatment marking a 316% in removal efficiency.

COD removals with 40 mg/L Ferric chloride and varied seawater
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Figure 4-22: Experiment 2C COD Removals (2)

At a ferric chloride concentration of 40 mg/L, the COD removals increased linearly with the

increased addition of seawater. The observed efficiencies in COD removal were not significantly

different from those observed in graph 4-22 above where only 30 mg/L FeCl3 was used. At 5%

seawater injection, the COD removal was approximately 17% at 40 mg/L and 20% at 30 mg/L.

Similarly, at 10% seawater, the COD removals for 40 mg/L FeCl3 were 21% and approximately

24% for 30 mg/L.

4.4 GENERAL FeC 3 CONCLUSIONS & DOSAGE RECOMMENDATIONS IN

PARATY

The general conclusions on the observed trends that the jar tests described above yielded are

listed below:

1. Seawater has a positive effect on the removal efficiencies of diluted wastewater

samples.
2. At FeCl3 doses higher than 50 mg/L, the effect of seawater decreases significantly.

3. Minimum FeCl3 doses for seawater to take effect are approximately 20-25 mg/L.

4. Large seawater additions do not necessarily yield large increases in removal

efficiencies.
5. COD removals are mostly affected with small seawater volume additions.

6. Relatively negligible increases in removal efficiencies of SS and COD for seawater

additions larger than 5% by volume.
Therefore, based on these preliminary tests, the recommended chemical doses for chemically

enhanced primary treatment in Paraty are:

40 mg/L FeC13 or 30 mg/L FeC13 with 5% seawater
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4.5 EXPERIMENT 3: POLYMER ANALYSIS

Polymers are frequently used in chemically enhanced primary treatment to aid in the removals of

suspended solids and chemical oxygen demand. Typical doses vary between 0.05 and 0.25 mg/L

depending on the characteristics of the raw wastewater (Harleman, 2003).

The anionic polymer, OPTIFLOC, was tested in Paraty and the SS and COD removals were

closely monitored for increases in removals caused by the presence of small doses of polymers.

The jar tests involving polymers did not all use identical raw wastewater samples and, as such,

focused primarily on identifying the trends in SS and COD removals caused by the presence of

polymers in varying wastewater samples. The first set of jar tests therefore tested FeCl 3 doses

combined with polymer doses. FeCl 3 was then tested with seawater alone. Finally, a combination

of FeCl3, polymer and seawater at varying concentrations were combined to test for the most

efficient and economically optimal dosage to treat the wastewater in Paraty

4.5.1 EXPERIMENT 3A: Ferric Chloride and Polymers

COD and SS removals with varied FeCI3 and 0.1 mg/L Polymer

100
90
80
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i 60- - ---- COD
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10
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10 20 10 +0.1P 20 +0.1P 30+0.1P

Ferric Chloride mg/L

Figure 4-23: Experiment 3A: COD and SS Removals with FeCl3 and 0.1 mg/L Polymer

In figure 4-23 above, the FeCl3 doses were varied while the polymer dose was kept constant at

0.1 mg/L. Suspended solids removals increased significantly with the increase of ferric chloride

doses. The most optimal ferric chloride/polymer dose was therefore chosen off the graph to be at

30 mg/L FeCl3 and 0.1 mg/L Polymer which yielded approximately 38% COD removal and 90%

SS removal.

It is also important to note that at relatively low FeCl 3 doses of 20 mg/L, adding 0.1mg[L of

polymer did not have the desired effect of an increase in COD or SS removal efficiencies. It
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wasn't until at least 30 mg/L of FeCl 3 was used that the polymer displayed an effect in enhancing

removal efficiencies.

COD and SS removals with 40 mg/L FeC 3 and varied polymer
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Figure 4-24: Experiment 3A COD and SS removals with 40 mg/L FeCl3 and polymer

In figure 4-24 above, the same jar test was reiterated (with different raw wastewater) to check for

the accuracy of using ferric chloride with varying polymer doses. The FeCl3 concentration was

held constant here at 40 mg/L while the polymer concentration varied between 0.1 and 0.4 mg/L.

Again, using more than 0.1 mg/L of the polymer did not yield any increases in SS removal

efficiency and only caused a slight increase in COD removals. Bearing in mind that 0.4 mg/L

would be a relatively expensive investment, the 13% increase in COD removal does not appear

significant. The optimal dose was therefore selected here to be 40 mg/L FeCl3 with 0.1 mg/L of

polymer.

It is very important to note there that the observed removal efficiencies for conventional

treatment are significantly lower than those published and expected for treatment without

chemical addition.

The two jar tests above therefore indicate that 0.1 mg/L of polymer is very sufficient to treat the

Paraty wastewater. Although doses of recommended FeCl3 varied between 30 and 40 mg/L ,

both figures remain within acceptable range.
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COD and SS removals with varied FeCI3 and varied Polymer
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Figure 4-25: Experiment 3A: COD and SS removals with varied FeCl3 and polymer

The jar test above was used to try to confirm the FeCl3 and polymer doses shown in Figure 4-24

before. Both FeCl 3 and polymer concentrations here were varied, in particular, to look for trends

in the addition of polymers to the raw wastewater and to note the observed removals of COD and

SS.

Since the SS removals were very high (greater than 85% on average), COD became the limiting

factor in analyzing the results from this jar test. 0.05 mg/L of polymer had a larger effect on

COD removals than did 0.1 mg/L, both being used with 30 mg[L FeCl3. The COD removals at

40 g/L FeCl3 however were significantly high (50%) and only decreased with the addition of

polymers. This test therefore pointed to using 40 mg/L FeCl 3 alone without the use of polymers

Based on the results from the three jar tests above, it is hard to determine what polymer dose is

most suitable for use in conjunction with FeCl3. General conclusions can be made however

regarding the general performance and effect of polymers on jar tests with FeCl3 as the only

coagulant:

1. As FeCl 3 doses increase, suspended solids removals increase. This effect is not as

noticeable if SS removals are already very high.

2. The use of small polymer doses seems to display better COD removals with larger

doses of FeCl3 (i.e. polymers used with FeCl3 concentrations smaller than 20 mg/L

did not show large increases in removal efficiencies)

3. The use of polymers (even in relatively small doses of 0.1 mg/L) caused very large

jumps in SS removals (typically varying from 30 to 90%). Using additional polymer

doses did not lead to further removals. This is simply because SS removals were

already 90% with polymer doses of 0. lmg/L

4. Increasing polymer concentrations does not necessarily increase removals.
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4.5.2 EXPERIMENT 3B: Ferric Chloride and Seawater

These tests were designed to observe the reaction of FeCl 3 to using seawater as a coagulation

enhancement mechanism. Jar tests were therefore performed with varying FeC13 and seawater

concentrations to test for the most optimal seawater dose to use with FeC13.

COD and SS removals with Varied FeCl and varied Seawater
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Dosages (mg/L and % Seawater)

Figure 4-26: Experiment 3B COD and SS removals with varied FeCl3 and seawater

In this test, both FeCl 3 and seawater concentrations were varied to test for the most optimal

combination to yield the highest COD and SS removals.

Adding 5% seawater to the 30 mg/L FeCl3, increased SS removals from 20 to 60% marking a

200% increase. COD removals remained constant at 20% removal for both tests. The use of

additional seawater (10%) with 30 mg/L FeCl 3 did not induce increases in SS removals that

remained constant at 60%.

Using 40 mg/L FeCl 3 did not yield very significant increases in SS removals and seemed to

cause COD removals to begin to decrease. These COD readings should not have been altered by

the presence of chlorides in the samples as was explained in Section 2.3.3 above of Chapter 2.

The 30 mg/L FeCl 3 and 5 % seawater was therefore considered the most optimal dose for this jar

test.
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COD and SS removals with varied FeC13 and varied seawater
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Figure 4-27: Experiment 3B COD and SS removals with varied FeCl3 and seawater

In this test, various FeCl3 concentrations were again tested with different seawater volumes and

the SS and COD removals were consequently observed.

When FeCl3 was tested again with the use of seawater, the observed removal efficiencies were

lower than in previous tests (See Figure 4-26 above). At a FeCl3 dose of 30 mg/L and 10%

seawater the SS removal was 46% and the COD 25%, compared to the 20% COD and 60% SS

removals from using 30mg/L FeCl 3 and 5% seawater in Figure 4-26 above. The addition of

seawater only enhanced COD removals at relatively low FeCl3 doses (i.e. less than 30 mg/L).

When larger doses of FeCl3 were used, the COD removal rate steadily declined whereas the

suspended solids continued to increase. It is also critical to note that chloride interference is an

important aspect of adding 15% of seawater and that the COD readings were therefore incorrect

(Please refer to Section 2.3.3. on chloride interference with the COD Hach vial readings)

The general conclusions on the use of seawater and FeCl 3 in conjunction therefore are:

1. Higher volumes of seawater seem to cause larger increases in SS and COD removals

with smaller concentrations of FeCl3 (i.e. 30 mg/L FeCl3 and 15% Seawater yielded

higher results than 40 mg/L FeCl 3 and 15% seawater)

2. COD removals seem to decrease as the percentage of seawater increases. This is

probably due to the chloride interference with Hach COD vial readings (Section

2.3.3)
3. Small seawater additions caused large increases in suspended solids removals

(removals with seawater increasing from 20 to 90% marking a 350% increase in

removal efficiencies.)
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4.5.3 EXPERIMENT 3C: Ferric Chloride, Seawater and Polymer

Finally, FeCl3, seawater and polymers were tested simultaneously to gauge the effect of the

multiple presences on the SS and COD removals.

COD and SS removals with FeCI3 + 0.25 mg/L Polymer+ 1% SW
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Figure 4-28: Experiment 3C:- COD and SS removals with varied FeC 3, 0.25 mgIL polymer and 1%
Seawater

In this jar test, varying FeCl3 concentrations (ranging from 10 to 60 mg/L) were tested in

conjunction with O.25-mgfL of polymer concentration and 1% seawater.

The polymer and seawater did not have an effect on either SS or COD removals until a FeCl3 of

30 mg/L was used. This is consistent with the preliminary conclusions made in section 4.5.2

above concerning threshold limits for polymers and seawater to take effect on contaminant

removals. The COD and SS removals (10% for both) at 30 mg/L FeCl3, 0.25 mg/L (which can be

considered a strong dose of polymer) and 1% seawater are significantly lower than expected

removal rates at these dosages of FeCl 3 and polymer especially. The results from this jar test

cannot be therefore completely relied upon. This is particularly noticeable since the removals

from conventional treatment are so low. Overdosing on polymers might be a potential caused for

the low removals in these jar tests.
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COD and SS removals with varied FeCI 3,Polymer and Seawater
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Figure 4-29 Experiment 3B COD and SS removals with varied seawater, polymer and FeC 3

In this jar test, all of FeCl3, seawater and polymer concentrations were varied to observe for

trends in COD and SS removals. The COD results from the addition of 15% of seawater are

discarded due to chloride interference.

When 0.1 mg/L polymer alone was added to the 40 mg/L FeCl 3, SS and COD removals were low

compared to when 15% seawater was used with the same FeCl3 dose. The use of seawater seems

to be more effective in this jar test, therefore, at increasing SS and COD removals.

Using 40mg/L FeCl 3 with 20% Seawater and 0.1mg/L polymer instead of 40 mg/L FeCl3 with

15% Seawater also did not yield significantly higher SS and COD removals. In fact, using

30mg/L FeCl3, 0.1 mg/L polymer and 20% seawater yielded much higher SS and COD removal

rates and this dosage was therefore chosen as the most optimal for this jar test.

The conclusions on the combined use of FeCl3, seawater and polymer are as follows:

1. Polymer alone with FeCl3 is not as efficient as seawater acting with FeCl 3.

2. When FeCl3, seawater and polymer were used together, the use of smaller FeCl 3

concentrations performed as well as larger FeCl3 concentration dosages.

3. It is also important to note that the results from using 40 mg/L FeCl 3 and 0.1 mg/L

polymer in this jar test are not consistent with other jar test results and indicate that

experimental error might have occurred.
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4.5.4 POLYMER RECOMMENDATIONS FOR PARATY

Based on the results from the jar tests described above, the most optimal polymer dose

recommended for the Paraty CEPT plant is 0.1 mg/L

This polymer dose seems to work most efficiently with FeCl3 doses ranging from 30mg/L to 40

mg/L and with small seawater concentrations by volume ranging from 1 to 5%.

4.5.5 DESIGN PARAMETERS FOR PARATY

Based on the jar tests results displayed in sections 4.2 through 4.5.4 above, and taking from the

conclusions on the general trends that ferric chloride, seawater and polymers, the following

Table 4-7 was generated to summarize the raw wastewater characteristics in Paraty and the

required dosages of chemicals for the design of the CEPT plant:

Influent SS
Influent COD

200 mg/L

350 mg/L

Chemical Doses

Ferric Chloride mg/L 40 mg/L

Seawater Volume 5%

Polymer mg/L 0.1 mg/L

Expected Removals

SS removals 85%

COD removals 55%

Table 4-7: Design parameters for Paraty
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CHAPTER 5 :WASTEWATER TREATMENT AT DEER ISLAND WWTP,
BOSTON

5.1 Introduction

The Boston Deer Island wastewater treatment plant (Figure 5-1 below) is the second largest

wastewater treatment plant in the United Sates and serves a total population of 2 million people

producing 390 million average gallons of influent per day, with a maximum capacity of 1.27

billion gallons per day (MWRA, 2003). Although the plant is a secondary treatment plant and

only uses conventional primary treatment for preliminary suspended solids and grit removal, jar

tests were performed for this project to check the results that led to the conclusions on FeCl 3,

seawater and polymer in Paraty.

Figure 5-1: Boston Deer Island Wastewater treatment plant (http:llwww.bryant-
engrs.com/projects/deer.htm)
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5.2 CEPT Pilot Plant Test at Deer Island Wastewater Treatment Plant

A series of pilot scale tests were performed at the Deer Island Wastewater Treatment Plant to test

the efficiency of using CEPT to treat the influent of the Boston area served by the plant. The

results from these tests are shown in Figures 5-2 through 5-6 below (Harleman, 2003). The

results from the Deer Island Jar tests performed as part of this project were then compared and

contrasted to the pilot scale results:

40

61

61

29

53

54

33

58

57

11

45

50

Table 5-1: Pilot Plant Summary of Removals
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Figure 5-2: TSS removals with conventional and CEPT treatment
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Figure 5-2 above shows the increase in TSS removal efficiencies when CEPT was used as

opposed to conventional primary treatment in which chemicals were not added. The TSS

removals with conventional primary treatment did not exceed 50%, whereas CEPT removals

reached a high of 70%, marking a large increase in removal efficiency.

Comparison of Chemical Treatment with Conventional

COD % Removal vs. Equivalent Flow Rate
Deer Island Pilot Plant Study

Primary

0
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5 W* d
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Tests 4, 7 & 8 - 15

* CEPT
* Primary Treatment
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mg/i FeCI3 - 0.2 mg/1 anion; Tests 5 & 6

8

0

900 1000

- 30 mg/1 FeC13 + 0.2 mg/1 anion

Figure 5-3: COD removals at the Deer Island Pilot Scale Test

The COD removals for the primary treatment did not exceed 40% and those of CEPT were

consistently higher at approximately 55% (Figure 5-3 above). This is an obvious increase in

removal efficiencies and warrants the use of CEPT as an ideal treatment alternative.
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Figure 5-4: Pilot Scale Removal Rates

Since the Deer Island Pilot-scale test yielded such good results, the Deer Island influent was seen

as an ideal sampling location to test the reliability of the Paraty results.
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5.3 Salinity in the Boston Influent

The influent to the Deer Island Wastewater Treatment Plant was estimated to contain an initial

volume of seawater that would therefore affect the removal rates of suspended solids and COD

in the jar tests for this project.

The salinity of the Boston effluent was estimated by two methods. These are described in the

sections below:

5.3.1 Conductivity

Conductivity vs. Seawater Added

12-

0

25-4 6-* wastewater
4- N tapwater

0

0 5 10 15 20 25
% seawater added

Figure 5-4: Conductivity verses Seawater Added

The conductivity of the wastewater sample was compared and contrasted to the conductivity of

q-water (or distilled water) and to that of tapwater for varying concentrations of seawater added.

Figure 5-4 therefore shows that the wastewater contains a maximum concentration of 2%

seawater already present in the influent. This is important to further data analyses of the

laboratory experiments that were performed on the Deer Island influent with the addition of

seawater. Adding 5% of seawater by volume would therefore have the net effect of looking at the

reaction of the influent to a seawater addition of 7% since the sample already contained an

assumed maximum seawater concentration of 2%.
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5.3.2 Salinity Equation

The standard methods manual (Standard Methods, 2003) encourages the use of conductivity as a

measure of salinity since a seawater with a conductivity at 15 degrees Celsius equal to that of a

KCL solution containing a mass of 32.4356 g in a mass of 1 Kg solution is defined as having a

salinity of 35 parts per thousand" (Standard Methods, 2003).

The salinity dependence on resistivity (the inverse of conductivity), Rt, as a function of

temperature of a given sample to a standard S =35 seawater is used to determine the salinity:

S = 0.008 + (-0.1692)R/12 + (25.3851)Rt + (14.094)R 2 + (-7.0261)R 1
2 + (2.7081)Rs12 + DeltaS

Where:

Delta S = [(t-15)/(1+0.0162(t-15)](0.0005 -0.0056)R"1 -0.0066)Rt -0.03 75)R|rn + (0.0636)R/ -

(0. 01 44)Rt512)

Solving this equation also yields a salinity of approximately 2%.

5.4 DEER ISLAND Data Analysis

5.4.1 Experiment One

Experiment one was performed on raw wastewater collected from Deer Island consisted of two

jar tests. Jar Test 1 used ferric chloride in varying concentrations ranging from 1 to 30 mg/L and

Jar Test 2 used the same FeCl3 concentrations but also used 5% seawater (by volume) in the

influent. Results from COD, SS, and turbidity removals are presented in Figure 5-6, 5-7 and 5-8

Experiment One SS removals

100

Of 80

u60 T

0 -- JT2 5% seawater
E 40 4

S20
U) 2Raw SS:

0 118 mg/L
0 5 10 15 20 25 30

Ferric Chloride (mg/L)

Figure 5-6: Experiment One: SS removals
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Jar Test 2, (for which 5% seawater was added to the influent), yielded higher SS removal rates

compared to jar test 1 to which no seawater was added. The minimum difference in removals

however occurred at a FeCl3 dose of 20 mg/L and at the maximum difference at a FeCl3 dose of

10 mg/L. It is important to note that the SS removals without seawater at 20mg/L FeCl 3 were

already high at 80% and that additional removals would not be expected. The most optimal doses

of FeCl3 therefore would be 10 mg/L with 5% seawater addition and 20 mg/L FeCl3 without

seawater.

It is of critical importance to note that the Deer Island influent is assumed to already contain a

certain concentration of seawater as was explained in Section 5.3 above. Adding 5% seawater to

the Deer Island wastewater is therefore expected to yield removals identical to adding 7% to a

corresponding wastewater that does not contain initial seawater content.

Experiment One Turbidity Removals

100

80
0
E 60 77777-JT1

E 1JT2 5% seawater
40

0

|- Raw Turbidity:
0 75.9 mg/L

0 5 10 15 20 25 30

Ferric Chloride (mg/L)

Figure 5-7: Experiment One Turbidity Removals

Turbidity removals were unchanged with the addition of seawater to jar test 2 compared to jar

test 1. This points to concluding that the addition of seawater does not affect turbidity.
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Experiment One COD removals
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Figure 5-8: Experiment One COD Removals

Jar test 2 shows that COD removals decreased with the addition of seawater to the influent

compared to jar test 1. The removals were similar in the two jar tests when 20 mg/L FeCl3 was

used and the difference in removals remained relatively approximate with doses of FeCl3 higher

than 20 mg/L. This points to a potential sensitivity of the effect of seawater for flows treated with

low doses of FeCl3. This is inconsistent however with the results from the Hong Kong Stone

Cutter's Island Plant which achieves 58% COD removals using 10 mg/L FeCl3 and 20%

seawater. It may be that higher concentrations of seawater are more compatible with lower FeCl3

doses and that lower seawater concentrations are therefore more reactive with higher FeCl3

concentrations.

5.3.2 Experiment Two:

Varied SW with 20 mg/L FeCI3

100 -- COD

80------M SS
Turb

.' 60 -
cc

o 40
4) Raw:
a 20 COD: 312

0- SS: 125
Turb: 87.4

0 1 2 3 4 5 6 7 8 9 10

Seawater ADDED (%)

Figure 5-9: Experiment Two Removals
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In Experiment two, the FeCl3 dose was held constant at 20 mg/L while the concentrations of

seawater were varied between 0 and 10% by volume. Again, it is of critical importance to realize

that the abscissa of Figure 5.9 above represents the volume of seawater manually injected into

the influent and does not represent the total volume of seawater in the beaker at any time since

the Deer Island influent has seawater present initially.

The suspended solids and turbidity removals followed identical trends were only affected by the

addition of small volumes of seawater ranging from 1 to 2%. With the ongoing addition of

seawater, the suspended solids and turbidity removals remained constant at 80%. This is

considered a very good SS removal for 20 mg/L FeCl3 and the small seawater injection of 1%.

COD removals also increased with the addition of 1% but then began to steadily decrease with

the addition of more seawater. The optimal seawater dose from this jar test and with 20 mg/L

FeCl3 can therefore be identified at 1%.

Removals with varied ferric chloride
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SS
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v' 60
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Ferric Chloride (mg/L)

Figure 5-10: Removals with varied Ferric Chloride

In this jar test, ferric chloride concentrations were varied between 0 and 30 mg/L and no

seawater was added to the beakers. Again, it is important to expect variations in the effects of

FeCl 3 on SS, COD and turbidity removals since the influent in Deer Island is assumed to

naturally contain 2% of seawater (See section 5.3)

The SS and turbidity removals increased steadily with the added FeCl 3 concentration and did not

fluctuate very much higher than 80% past 20mg/L FeCl 3.
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COD removals followed the same trend and increased from the initial 34% to 60% at 20 mg/L

FeCl 3. However, at 30mg/L FeCl3, the COD decreased from 60% to 50%. This might be

attributed to the natural presence of seawater in the Deer Island influent and the sensitivity of

COD removals to the presence of seawater with the use of FeCl3 as a coagulant.

It is also important to compare the results from this test to those from Section 5.4.1 above which

help to show that the presence of seawater is responsible for higher SS and COD removals at

relatively lower FeCl3 concentrations.

5.3.3 EXPERIMENT THREE:

Experiment three was used again to test for the efficiency of adding seawater to ferric chloride

and gauging the respective effects on SS and COD removals. It is essential to note that since the

addition of seawater to a wastewater influent is a relatively new technique, a large number of jar

tests and significant amount of research are required. Therefore the jar tests were repeatedly tried

on the Deer Island influent to test the conclusions made in experiments one and two concerning

seawater addition.

COD Removals at 20 mg/L Ferric and varied SW

100- -4-JT 1

80 -E-JT 2

"'60-

0 40 Raw:
E COD : 369

20- SS: 105

0
Conv. Prim 0 1 5

Seawater ADDED (%)

Figure 5-11: COD removals with varied Ferric Chloride and seawater

In this jar test, 20 mg/L FeCl3 was added to every beaker in the jar test (except for the beaker

representing conventional primary treatment). Seawater was also injected a % volumes varying

between 0 and 5%. The Deer Island influent already contains seawater and therefore the abscissa

of Figure 5-11 only represents the percentage of seawater added. It is does not represent the total

% of seawater in the beaker.
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The COD removals did not vary very much with the addition of seawater since with no seawater

and at 20 mg/L FeCl3, removals were 80% and remained constant at 80% with the addition of

1% seawater. This fact points to the same prior conclusion regarding seawater addition and its

efficiency with lower FeCl3 doses.

SS removals with varied seawater and 20 mg/L FeCI3
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Figure5-12: SS removals with varied seawater and 20 mg/L FeC3

For the same jar test described above, the suspended solids removals also followed trends

identical to COD removals. The addition of seawater did not increase the SS removal that

remained constant at 93%.

EXPERIMENT FOUR

SS removals with varied seawater and 10 mg/L FeCI3
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Figure 5-13: SS removals with varied seawater and 10 mg/L FeC3
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COD removals with varied SW and 10 ppm Ferric
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Figure 5-14: COD removals with varied SW and I0mg/L Ferric Chloride
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CHAPTER SIX: DISINFECTION IN PARATY AND IN DEER ISLAND

6.1 Introduction

6.1.1 Constraints

Treated wastewater effluent is commonly discharged to a natural surface water body, such as a

river or the ocean. Since surface water generally sustains human life and is an ecological habitat

for large numbers of species, disease-causing organisms must be removed from treated

wastewater effluent before being discharged to nature. Disinfection is the process used for the

reduction of pathogenic microorganisms responsible for various diseases such as diarrhea or

infectious hepatitis. Although pathogens can be removed with suspended solids during the

sedimentation process, the settling processes alone do not meet the regulations for the treated

wastewater effluent. Therefore the disinfection process is required in wastewater treatment.

Before choosing a proper disinfection method for a wastewater treatment plant, the following

criteria designated by the EPA should be considered (EPA, 1999).

1. Ability to destroy infectious organisms under normal operation conditions.

2. Safe and easy handling, storage, and shipping

3. Absence of toxic residuals and harmful byproducts

4. Affordable capital, operation and maintenance (O&M) costs

Indicator organisms are generally used to monitor the concentration of pathogens in water.

Indicator organisms are microorganisms that originate from the same sources as the pathogens of

interest and are often found in high numbers. Thus, it is assumed that pathogens exist in water

when the indicator organisms are detected. Characteristics for an ideal indicator organism are

described in the following.

Indicator organisms must:

1. Be present when fecal contamination is present

2. Be equal to or greater number than pathogenic organisms

3. Have same or greater survival characteristics in the environment as the target

pathogens

4. Not reproduce during the culturing procedure

5. Be cheap and easy to cultivate compared to the target pathogen

6. Be a member of the intestinal microflora of warm-blooded animals (Metcalf & Eddy,

2002)
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6.1.2 Regulations in the U.S and Brazil

Although no ideal indicator organism has been found, coliform is commonly used as an indicator

organism. Humans discharge approximately one hundred billion coliforms per day per capita on

average. Thus the water is considered free from disease-producing organisms when there are no

detectable coliform bacteria in the water. The regulations for secondary treatment examine and

control the levels of biochemical oxygen demand (BOD), total suspended solids (TSS), pH, and

fecal coliform bacteria. In the United States, the fecal coliform bacteria standards vary from less

than 2.2 to 5000 MPN/100 ml depending on the quality of receiving water and the reuse

application. For the receiving water, 200 MPN FC/100 ml is the most common standard.

According to state ocean water quality standards in California, which have some of the strictest

standards in the United States, the minimum protective fecal coliform bacteria standards for

waters adjacent to public beaches and public water-contact sports areas is 200 MPN/100ml based

on the results of at least five weekly samples during any 30-day sampling period (Blumenthal. U.

J. et al, 2000).

In Paraty, Brazil, there are no regulations concerning the acceptable level of coliform

concentration in discharged treated wastewater. According to Brazilian regulation issued by the

Environmental Policy Commission, however, the maximum level of fecal coliforms in treated

wastewater effluent discharged into the natural water is 1000MPN/100ml. Considering the

proposed CEPT effluent discharging points, which are near the beach, and regulation of the

United States and Brazil, however, 200 FC MPN/100ml can be adopted for the effluent standard

because the beaches are main popular attractions in Paraty.

6.2 Characteristics of an Ideal Disinfection Agent

Disinfection can be performed with the use of chemical agents, physical agents, mechanical

means, and ultraviolet (UV) radiation. To safely achieve the desired concentration of coliform

safely, disinfectants would have to cover the wide range of wastewater quality. The

characteristics for an ideal disinfection agent are shown in Table 6.1, and are critical to choosing

an appropriate disinfection agent.
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Characteristic 
Properties/response

Availability

Deodorizing ability

Homogeneity

Interaction with extraneous

material

Noncorrosive and nonstaining

Nontoxic to higher forms of life

Penetration

Safety

Solubility

Stability

Toxicity to microorganisms

Toxicity at ambient temperatures

Should be available in large quantities and reasonably priced

Should deodorize while disinfecting

Solution must be uniform in composition

Should not be absorbed by organic matter other than bacterial

cells

Should not disfigure metals or stain clothing

Should be toxic to microorganisms and nontoxic to humans

and other animals

Should have the capacity to penetrate through surfaces

Should be safe to transport, store, handle, and use

Must be soluble in water or cell tissue

Should have low loss of germicidal action with time on

standing

Should be effective at high dilutions

Should be effective in ambient temperature range

Table 6.1 Characteristics of an ideal disinfectant (Metcalf & Eddy, 2002)

In addition, several factors that affect the efficiency of disinfection agents should be considered

before application. These are contact time, concentration of the disinfectant, intensity and nature

of physical agent or means, temperature, types of target organisms, and nature of suspending

liquid.

6.3 Disinfection with chlorine

Chlorine is one of the most commonly used disinfection agents throughout the world.

Chlorination technology is therefore well established. Since chlorination is cheap relative to UV

radiation and ozone disinfection, it can significantly reduce the cost of wastewater treatment.

This can be an important factor of consideration in the developing areas such as Paraty. The

forms of chlorine used for wastewater treatment process are compressed gas (Cl 2), solutions of

sodium hypochlorite (NaOCl), or solid calcium hypochlorite (Ca(OCl) 2) which are chemically

equivalent. Chlorine dioxide (C10 2) is also another form of chlorine. Safety precautions must be
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taken in the storage, shipping, and handling because of the corrosion and toxicity of all forms of

chlorine. The characteristics of various forms of chlorine are presented in Table 6.2 below.

Molecular Chlorine Actual Available
Compound weight equivalent Chlorine, % Chlorine, %

Cl 2  71 1 100 100

C10 2  67.5 5 53 260

Ca(OCl) 2  143 2 50 99

HOCI 52.5 2 68 135

NaOCl 74.5 2 48 95

NHCl 2  86 2 83 165

NH 2Cl 51.5 2 69 138

Table 6.2 Actual and available chlorine in compounds containing chlorine
Actual Chlorine = % of Cl2 in compounds, wiw
Available Chlorine = Actual Chlorine * Chlorine Equivalent

(Metcalf & Eddy, 2002)

The disinfection efficiency of chlorine is dependent on the wastewater characteristics. Table 6.3

shows the impact of wastewater characteristics on chlorine. Other factors that affect the

disinfection efficiency include contact time, temperature, alkalinity, and nitrogen content (EPA,

1999).

Wastewater Characteristic Effects on Chlorine Disinfection
Ammonia Forms chloramines when combined with chlorine

Biochemical Oxygen Demand (BOD) The degree of interference depends on their functional

groups and chemical structures

Hardness, Iron, Nitrate Minor effect, if any

Nitrite Reduces effectiveness of chlorine and results in THMs

pH Affects distribution between hypochlorous acid and

hypochlorite ions and among the various chloramines

species

Total Suspended Solids (TSS) Shielding of embedded bacteria and chlorine demand

Table 6.3 Wastewater characteristics affecting chlorination performance (EPA, 1999)
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As mentioned in table 6-3, the level of suspended solids in treated wastewater affects the

chlorination performance. According to the research of Robert Armon et al., 1995, suspended

solids and soluble organic compounds are important in disinfection efficiency. Since suspended

solids surround and shield microorganisms, disinfection agents cannot go through suspended

solids and cannot inactivate the target microorganisms. Moreover, low suspended solids removal

efficiencies can indicate that the coliform levels in the treated wastewater effluent is not quite

different form the concentration in the effluent, since coliforms are included in the suspended

solids (Metcalf & Eddy, 2002; Water Quality and Treatment, 2000). As shown Chapter 3, SS

removal efficiency in CEPT reaches approximately 85 % that is appropriate level for the

disinfecting the treated wastewater effluent. Moreover, seawater addition increases the efficiency

of SS removal. Thus, chlorine may be more effective when seawater is added to the raw

wastewater in CEPT because seawater help raise the SS removal efficiency. Typical chlorine

dosages are showed in Table 6.4.

Initial Coliform, Chlorine dose, mg/L
Type of wastewater MPN/100mL Effluent standard, MPN/1OOmL

1000 200 23 2.2
Raw wastewater I0 7-109  15-40

Primary effluent 107-10 9  10-30 20-40

Trickling filter effluent 101-106 3-10 5-20 10-40

Activated-sludge effluent 105_106 2-10 5-15 10-30 8-30

Filtered activated-sludge effluent 104-106 4-8 5-15 6-20 8-20

Nitrified effluent 104-106 4-12 6-16 8-18 8-16

Filtered nitrified effluent 104-106 4-10 6-12 8-14 4-10

Microfiltration effluent 101-10 3  1-3 2-4 2-6 0-2

Reverse osmosis 0 0 0 0 0

Septic tank effluent 107-109 20-40 40-60

Intermittent sand filter effluent 102_104 1-5 2-8 5-10 8-18

Table 6.4 Typical chlorine dosages, based on combined chlorine unless otherwise indicated,
required to achieve different effluent total coliform disinfection standards for
various wastewaters based on a 30-min contact time (Metcalf & Eddy, 2002)

According to the table, the concentration of fecal coliform is rarely reduced by primary

treatment. Due to the high levels of fecal coliform, it is impossible to disinfect primary effluent
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efficiently by chlorine. The fecal coliform concentration in the activated sludge effluent is less as

three-order magnitude as raw wastewater. Due to the reduction of fecal coliform, activated

sludge effluent is disinfectable with chlorine. Since the removal efficiency of suspended solids of

CEPT plant is as good as activated sludge treatment, the same order magnitude of reduction of

fecal coliform by CEPT is expected. Therefore, CEPT effluent can be disinfected with less

amount of chlorine saving the cost of chemical.

6.3.1 Types of Chlorine

6.3.1.1 Molecular Chlorine (Cl 2)

Molecular chlorine is a dense gas that, when subjected to pressures in excess of its vapor

pressure, condenses into a liquid with the release of heat and with a 450-fold reduction in

specific volume. Hence, chlorine is provided as a form of liquid under high pressure to reduce

shipment volume (Mecalf & Eddy, 2002; Water Quality and Treatment, 2000).

6.3.1.2 Sodium Hypochlorite (NaOCl)

Sodium hypochlorite can be supplied in liquid form and available chlorine at the time of

manufacturing is usually 12.5 to 17 percent. The decomposition rate of the solution depends on

concentrations, exposure to light and heat. Therefore it must be stored in a cool location in a

corrosion-resistant tank (Metcalf & Eddy, 2002). One of the disadvantages of sodium

hypochlorite is cost. The cost of different types of chlorine will be discussed in section 6.3.5. It is

available to generate sodium hypochlorite from sodium chloride (NaCl) or seawater. However,

the use of onsite generation systems is limited due to high electric power cost.

The hydrolysis reaction of sodium hypochlorite is as follows:

NaOCl + H20 -+ HOCI + NaOH Eq. 6-1

6.3.1.3 Calcium Hypochlorite (Ca(OCI) 2)

Calcium hypochlorite is available in a dry or a wet form, and is commonly used to treat the

wastewater effluent from textile and paper mills under controlled conditions (PPG Industries,

Inc. 1999). High quality calcium hypochlorite contains more than 70% available chlorine. Its

oxidizing potential is high, so it should be stored in a cool, dry location separated from other

chemicals in corrosion-resistant storage containers. Calcium hypochlorite is more expensive than
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molecular chlorine, and its available strength is reduced on storage. Handling of calcium

hypochlorite can be difficult, since metering pumps, piping and valves can be clogged because

calcium hypochlorite is likely to crystallize.

The hydrolysis reaction of calcium hypochlorite is as follows:

Ca(OCl) 2 + 2H 20 -+ 2HOCl + Ca(OH) 2  Eq. 6-2

6.3.2 Reactions of Chlorine

6.3.2.1 Hydrolysis of Chlorine

When molecular chlorine is added to water, it equilibrates with aqueous chlorine, and then

aqueous chlorine is hydrolyzed to form hypochlorous acid, a chloride ion, and a proton as

described in equation 1 below.

Cl2(aq)+ H20-+ HOCI + H+ + Cl- Eq. 6-3

Hypochlorous acid is a weak acid and dissociates to the hypochlorite ion and to a proton.

HOCI <+ OC + H+ Eq. 6-4

The concentration of hypochlorous acid and hypochlorite ion is determined by the dissociation

constant (pKa~7.6 at 25'C) depending on the pH and the total concentration of chlorine. The

total amount of HOC and OC~ in water is the "free available chlorine." Because the disinfection

efficiency of HOCl is about 40 to 80 times that of OCI~, the actual disinfection efficiency of

chlorine varies according to pH (Water Quality and Treatment, 2000).

6.3.2.2 Reaction of Chlorine with Ammonia

Chlorine may react with ammonia and amino nitrogen compounds to transform into a less

biocidal form. In the presence of ammonium ion, free chlorine reacts with it to form chloramines.

NH4+ + HOCI -- NH 2Cl + H20 + H

NH 2Cl + HOCI - NHCl 2 + H20 + H+ Eq. 6-5

NHCl 2 + HOCl -+ NCl 3 + H20 + H

The ratio of concentrations of each compound depends on the pH, temperature, contact time, and

the ratio of chlorine to ammonia (White, 1999). Each of the chloramines (monochloramine

(NH 2CL), dichloramine (NHCl 2), and trichloramine (NCl 3)) contributes to the total or combined

chlorine residual in water. Total chlorine includes free chlorine compounds and reactive
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chloramines. The combined chlorine forms are considerably less effective for viruses and cyst,

and the reaction rate is slower than that of free chlorine (Water Quality and Treatment, 2000).

Chlorine readily oxidizes inorganic, and organic substances as it is added in water. When these

reactions are finished, the additional chlorine reacts with ammonia to form chloramines between

points A and B (Fig. 6.1).

Destruction of Formation of Destruction of Formation of free chlorine and
chlorine residual chloro-roganic chloramines and presence of chloro-organic
by reducing and chloramine chloro-organic compounds not destroyed
compounds compounds compounds

Free and

Chlorine 4Combined
Residual BResidual

Combined Free
Residual Residual

Breakpoint C Combined
Residual

1 2 3 4 5 6 7 S 9 10

Chlorine Dose (mgAi)

Fig 6.1 Chlorine breakpoint (Metcalf & Eddy, 2002)

Between point B and point C, the breakpoint, chloramines are oxidized to nitrous oxide (N20)

and nitrogen (N2 ), and ammonia nitrogen can be removed by this oxidation reaction. The residual

chlorine increases linearly with additional dosage after the breakpoint. Theoretically, the weight

ratio of chlorine to ammonia nitrogen at the breakpoint is 7.6 to 1, and the weight ratio at point B

is about 5.0 to 1. When free residual chlorine is obtained, the effective disinfection then can be

assured. Therefore, the amount of chlorine over the breakpoint should be added to water. The

amount of chlorine required to achieve a desired level of residual is called the "chlorine demand"

(Metcalf & Eddy, 2002).

6.3.3 Chlorine Dioxide (CIO2)

Chlorine Dioxide is another form of chlorine. The disinfection capability of chlorine dioxide is

equal to or greater than chlorine. The half reaction for C10 2 is as follows:

C10 2 + 5e~ + 4H' -+ Cl- + 2H20 Eq. 6-6
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Free dissolved chlorine dioxide has an extremely high oxidation potential. The equivalent

available chlorine content based on the reaction is equal to 263 % as compared to molecular

chlorine. This means that lg/L of C1O 2 is equivalent to 2.63g/L of chlorine (Water Quality and

Treatment, 2000). Based on this information and Table 1 from the section 2 above, the required

chlorine dioxide dosages for disinfection can be calculated. Because the data on the appropriate

dosages of chlorine dioxide are limited, however, site-specific testing is recommended to

determine proper dosage ranges.

The advantage of using chlorine dioxide as a disinfection agent is that the chlorine dioxide

residuals and end products are degraded more quickly than chlorine residuals. This means that

chlorine dioxide may not endanger aquatic life as chlorine does. In addition, chlorine dioxide

does not produce the potentially toxic chlorinated organic compounds (Metcalf & Eddy, 2002;

Water Quality and Treatment, 2000).

The DBPs of using chlorine dioxide are chlorite (ClO2) and chlorate (C120 2), both of which are

toxic. Chlorite can be produced during the generation of the chlorine dioxide and reduction of

chlorine dioxide. The chlorate ion is produced by the oxidation of chlorine dioxide, the

impurities in the sodium chlorite that is the source of chlorine dioxide generation, and the

photolysis of chlorine dioxide.

6.3.4 Dechlorination

Chlorine is one of the common disinfectants for pathogenic organisms that endanger human

health. At the same time, however, chlorine affects the natural environment. It may harm natural

organisms directly, and may react with organic matter to form toxic compounds that can

adversely affect the environment including water resource into which effluent is discharged.

According to the EPA's Quality Criteria for water (1986), 0.019 mg/l of chlorine is acutely toxic

to freshwater organisms, and 0.011 mg/l of chlorine is chronically toxic. In seawater, the acute

and chronic concentration is 0.013 mg/l and 0.0075 mg/l. Since chlorine disinfection normally

produces a total residual chlorine concentration of 1.0 to 5.0 mg/l in the effluent, it is required to

dechlorinate the treated wastewater before discharging to the surface water.

The most common dechlorination agent is sulfur dioxide (SO 2 ). Sodium sulfite (Na2SO 3) and

sodium metabisulfite (Na 2S20 5) and activated carbon have also been used as dechlorinatioin

agents. Following Table shows dechlorination reaction related to each agent and theoretical ratio

of residual chlorine to agent.
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Chemical Reaction Chemical Use Ratio

Sulfur Dioxide S03+ CI2 + 2H 20 -> H2 SO4 + 2HCI 1.1

Sodium Sulfite Na2 SO 3+ CI2 + H20 -> Na2 SO4 + 2HCI 1.8

Sodium Metabisufite Na2S205 + 2C 2 + 3H 20 -+ 2NaHSO 4 + 4HCl 1.5

Sodium Bisulfite Na2HSO 3+ CI2 + H20 -> NaHSO4 + 2HCI 1.5

Hydrogen Peroxide H20 2+ CI2 -> 2HCI +02 (g) 0.5

Table 6.5 Dechlorination agents and reactions (The Dow Chemical Company, 2000)

6.3.5 Cost

The cost of chlorine disinfection depends on the chemical and equipment manufacturer, the site,

the capacity of the plant, and the characteristics of the wastewater. In general, chlorine gas is the

cheapest one among the forms of chlorine. Sodium hypochlorite and calcium hypochlorite is

more expensive than chlorine gas. On the basis of available chlorine, sodium hypochlorite costs

three times more than chlorine gas, and calcium hypochlorite costs four times more than chlorine

gas. Accord to the Fact Sheet reported by EPA, however, the total cost of disinfection will be

increased by approximately 30 to 50% if dechlorination is added although chlorination is the

most inexpensive way of disinfection.

6.3.6 Environmental impacts of using chlorination

After dechlorinating the disinfected wastewater, microorganisms can regrow in receiving water

bodies and in long transmission pipelines. It is assumed that the regrowth of pathogenic

microorganisms on the pipe surfaces exposed to treated wastewater results because the organic

matter present in treated wastewater effluent maintains a high number of microbes even after

treatment of wastewater. Regrowth also occurs because of the lack of predators such as protozoa.

Due to this problem, it is important to maintain the proper concentration of residual chlorine in

effluent discharging into the nature. Typical residual is from 0.1 to 0.5 ppm for free available

chlorine, and 2 ppm for combined chlorine because of the less effectiveness.

Another environmental impact is DBPs of chlorination. It has been reported that very small

amount of DBPs can negatively affect the human health as well as aquatic lives. Residual

chlorine in dechlorinated wastewater produces chlorinated organic byproducts by reacting with

organic compounds. Among organic compounds, phenols, amines, aldehydes, ketones, and

pyrrole groups are very susceptible to chlorination. The most common disinfection byproducts
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are trihalomethanes (THMs) and haloacetic acids (HAAs) (Water Quality and Treatment, 2000).

The DBPs formation rate is dependent on the presence of organic substances, free chlorine

concentration, bromide concentration, the pH, and temperature. The principal means of

controlling the formation of DBPs in wastewater is not to add free chlorine directly because the

reactivity to produce byproducts is higher for the free chlorine than chloramine. Although the use

of chloramine can prevent from forming high levels of DBPs, however, alternative disinfection

means such as UV radiation should be concerned if specific precursors such as humic materials

are present in water.

6.4 Alternative Disinfection Agents

Although chlorine is a highly effective disinfectant, alternative disinfection methods have been

considered because of some serious concerns of its use. Followings are important concerns.

1. The high risk of transportation of chlorine

2. Potential health risks to treatment plant operators because of the high toxicity of chlorine

3. Formation of odorous compounds by reaction with the organic compounds in wastewater

4. Formation of disinfection byproducts (DBP) which are carcinogenic by reaction with the

organic substances

5. Toxicity of residual chlorine to aquatic lives in treated wastewater effluent

For the alternative disinfection agents, ozone, ultraviolet (UV) radiation, and peracetic acid will

be discussed in following section.

6.4.1 Ozone

Effectiveness

Ozone is an unstable and highly reactive form of oxygen, and therefore must be produced on-

site. Ozone has fewer safety problems related with shipping and handling especially compared to

chlorine. On the other hand, ozone is highly reactive and corrosive, and therefore corrosion-

resistant material is required. The reactions of ozone in water are as follows:

03 + H2 0 -* HO3+ + OH-

HO 3+ + OH- -+ 2HO2  Eq. 6-7

0 3 + H02 -* HO + 20 2

HO + H02 -+ H 20 + 0 2
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The free radicals, HO2 and HO, are very good oxidation agents and are very active in the

disinfection process. These radicals also oxidize other impurities in water.

The typical values for the ozone demand are shown in Table 6-6.

Initial Ozone dose, mg1L
Type of wastewater Coliform, Effluent standard, MPN/100mL

MPN/100mL 1000 200 23 2.2
Raw wastewater 101-101 15-40

Primary effluent 10 7-10 9  10-40

Trickling filter effluent 105-106 4-10

Activated-sludge effluent 105-106 4-10 4-8 16-30 30-40

Filtered activated-sludge effluent 104-106 6-10 4-8 16-25 30-40

Nitrified effluent 104-106 3-6 4-6 8-20 18-24

Filtered nitrified effluent 104-106 3-6 3-5 4-15 15-20

Microfiltration effluent 101-103 2-6 2-6 3-8 4-8

Reverse osmosis 0 1-2

Septic tank effluent 10-109  15-40

Intermittent sand filter effluent 102-104 4-8 10-15 12-20 16-25

Table 6.6 Typical ozone dosages required to achieve different effluent coliform disinfection standards
for various wastewaters based on a 15-min contact time (Metcalf & Eddy, 2002)

This table shows the same results as Table 6.4. Although ozone is more effective on viruses and

bacteria than chlorine, primary effluent cannot be disinfected efficiently. Since, ozone can

destroy chlorine-resistant organisms with relatively short contact time, approximately 10 to 30

minutes (EPA, 1999), basins for disinfection of ozone could be smaller than chlorination basins.

Advanta2es and Disadvantages

During ozonation, taste, odor, and color of water can be controlled. Moreover, ozonation can

elevate the dissolved oxygen concentration of the effluent because ozone readily decomposes to

water and oxygen. In contrast to chlorine compounds, ozone does not produce halogenated

organic matter. However, ozone can produce bromate which is harmful to human health when

water contains raw bromide concentrations at high pH. Ozone may also produce oxygenated

byproducts and assimilable organic carbon which bacteria may use to grow. The toxic

byproducts of ozonation are usually unstable, so they exist in water only for minutes.
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Cost

Ozonation is more expensive than chlorination in terms of capital and O&M expenses.

Especially, ozonation is not approprate to the effluent which levels of SS, BOD, or COD are

high. Therefore, ozonation is not appropriate for where want to treat wastewater more

economically. Table 6.7 in section 6.4.3 compares the cost of various disinfection methods.

6.4.2 Ultraviolet (UV) Radiation

Effectiveness

The range of an ultraviolet (UV) wave is between 40nm and 400nm, and the UV germicidal

range is between 250nm to 270nm. The disinfection efficiency of UV radiation depends on the

characteristics of the wastewater, the intensity of UV radiation, and the contact time.

Disinfection efficiency is also directly related to the level of turbidity and SS.

Advantages and Disadvantaes

The biggest advantage of UV as a disinfectant is that UV does not form disinfection by-products

and does not have toxic residuals in contrast to chlorine compounds. UV is effective against

protozoan pathogens as well as bacteria and viruses with relatively short contact time of

approximately 20 to 30 seconds with low intensity UV lamps. However, UV radiation is not

effective to disinfect wastewater with high turbidity and TSS level. UV disinfection with low

intensity lamps is not as effective for the treated wastewater effluent with TSS levels above 30

mg/i (EPA, 1999). In addition, microorganisms can regrow after UV radiation through a repair

mechanism.

Cost

UV radiation is more expensive than chlorination technology although the costs of UV radiation

have recently decreased due to improved technology and competition between suppliers. In

particular, facilities and O&M that includes electric power represent most of the high costs for

UV radiation. When dechlorination and fire codes are added to the chlorination, however, costs

of UV radiation are comparable (EPA, 1999).
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6.4.3 Peracetic Acid

Effectiveness

Peracetic acid (PAA, CH 3COOOH) is a very strong oxidizing solution containing peracetic acid,

glacial acetic acid, hydrogen peroxide, and water at the equilibrium.

CH 3COOOH + H20- CH 3COOH + H20 2  Eq. 6-8

According to the research of M.G.C. Baldry et al. in 1995, PAA performs better than soduium

hypochlorite against vibrio choleral species. Its efficiency was better at 30 *C than at 20 *C. PAA

is effective for treatment of sewage especially for cholera control in warm climates. In addition,

according to C. Sanchez-Ruiz et al. in 1995, increased concentration of PAA and contact time do

not substantially improve PAA efficiency against total coliform bacteria. It is easy to achieve the

corresponding guideline (1000 CFU/100ml of fecal coliform) of the WHO with concentration of

PAA 10 ppm for 30min. However, a much higher dosage, 400 ppm for 20min. was required to

achieve the stringent guideline for agricultural reuse (2 CFU/100ml of total coliform).

Advantages and Disadvantages

PAA has been used as a disinfectant for years in various industries, and research into the use of

PAA as a wastewater disinfectant began in the late 1980s. PAA was included among 5

disinfectants by the EPA 1999 report despite the lack of quantitative information about the

activity of PAA against the microorganisms in water. The desirable attributes of PAA listed in the

report were the absence of persistent residuals and by-products (DBPs), independence of pH,

short contact time, and high effectiveness as a bactericide and virucide. The biggest advantage in

using PAA for disinfection is that PAA is hydrolyzed and produces acetic acid and hydrogen

peroxide which are easily biodegradable in water.

The disadvantages of PAA are the increase of organic content in the treated wastewater effluents,

the potential microbial re-growth due to the remaining acetic acid which is the product of PAA

hydrolysis, the limited efficiency against viruses and parasites, and the strong dependence on

wastewater quality.

Cost

PAA disinfection is more expensive than chlorination. For example, according to Industrial

Water Treatment Bulletine by Houghton Chemical Corporation, 1 lb of 5% peracetic acid

solution costs 44 dollars which is 10 times more expensive than sodium hypochloride solution.
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According the pilot investigation performed by L. Liberti and M. Notarnicola in 1999, total cost

of disinfection using peracetic acid is the most expensive including operation and maintenance

costs among UV, peracetic acid, and ozone. The following table shows the results of the cost

estimation in 1999.

Flowrate Total Coliform O&M Costs (US$/1000m
3)

Disinfectant Dose FM3 rh)eTarget achieved Electric
(CFU/100ml) Powe Replacement Chemicals Total

UV 100mWs/cm 2  30 1 6.7 10.6 17.3

NaOCl 5ppm, 30min 30 1 10.5 10.5

NaOCl +
Dechlorination 5ppm, 30mi 30 1 10.5 + 5.3 15.8

PAA 10ppm' 30 240 64.5 64.530min

Ozone 15ppm. 30 97 34.2 3.1 37.310min
Table 6.7 Cost estimation for UV, chlorination, chlorination/dechlorination, PAA, and 03 disinfection

of clarified filtered effluent (Source: Liberti and Notarnicola, 1999, Currency exchange for
EURO to US$ is 1; REGAL-Chlorinators Inc.)

Since it is essential to provide economical wastewater treatment system to the city of Paraty,

peracetic acid which is much more expensive than chlorine cannot be used as a disinfectant in

Paraty.

Handling

To use PAA for disinfection, some safety precautions are required because of its corrosive

properties and oxidizing power. PAA should be stored in a cool, dry, well-ventilated area in

original shipping containers with hazard labels. PAA should be separated from acids, alkalines,

organic materials, and heavy metals. Because of its explosive potential, PAA should keep away

from sources of ignition and heat. Operators should wear protective equipment because PAA can

cause sever health problems such as eye irritation, skin bums, and gastrointestinal tract problems.
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6.5 Data Collection and Analysis

6.5.1 Procedure

CEPT effluents were used in the disinfection studies by peracetic acid and chlorine. To measure

the level of total colioforms and fecal coliforms, ColiPlate TM which has 96-micro-well was used.

Samples were injected in microplate, and incubated at 35*C for 24 hours. Total coliform positive

test results in a blue color, and fecal coliform positive test results in a fluorescence color.

Fig 6.2. Blue colour indicative of coliforms (left); Fluorescence indicative of fecal coliform (right)
(http:l/www.ebpi-kits.com/)

6.5.2 Data Analysis

6.5.2.1 Paraty Data

For disinfection experiment, CEPT effluent treated by 30 mg/l of ferric chloride was used. The

levels of COD and SS of this effluent were 19.8 mg/l and 9.1 mg/l. To compare the coliform

removal efficiencies of peracetic acid (PAA) and chlorine, 5, 10, 15, 20 mg/l of PAA and 20

mg/l of chlorine were added to the effluent, and contact time was 30 minutes. Following figure

shows the coliform reductions by various concentrations of PAA and chlorine.
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Fig 6.3 Coliform reduction of CEPT effluent by PAA and chlorine

As shown in the figure 2, coliforms in treated wastewater reduced with increased dosage of PAA

although PAA did not eliminate all the coliforms while chlorine at a 20mg/l concentration did.

Disinfection with PAA 15 mg/l achieved a FC concentration below 200 MPN/100ml which level

is recommended in section 6.12.

It is important to note that there is only one set of disinfection test in Paraty due to

unrepresentative jar-test effluents. Considering the high cost of PAA, however, it is obvious that

PAA is not a good disinfection agent for Paraty.

6.5.2.2 Deer Island Data

For the disinfection experiments, wastewater from the Deer Island wastewater treatment plant

was used. The raw sewage was treated by 20 mg/l and 10 mg/l of ferric chloride, and the effluent

was used for the disinfection tests. To examine the effect of additional seawater on the coliform

reduction, 1% and 5% of seawater was used. The effluent of conventional and CEPT was

disinfected by 5 and 10 mg/l of Cl 2 with 30-min contact time. The fecal coliform levels in the

raw sewage were 800000 and 500000 MPN/100ml and these are acceptable concentrations based

on the average fecal coliform level, 918000 MPN/100ml, in the influent of the Deer Island

wastewater treatment plant.

6.5.2.2.1 Conventional Effluent vs. CEPT Effluent

According to the collected data, there is a significant difference of fecal coliform reduction

between conventional effluent and CEPT effluent. Fecal coliform level was reduced below 10 5

MPN/100ml by CEPT without additional seawater while fecal coliform level was approximately
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106 MPN/100ml in the conventional effluent. The differences of fecal coliform reduction

between conventional and CEPT effluent can be explained by the relationship between SS

removal efficiency and coliform removal efficiency. Following graph shows the levels of COD,

SS, fecal coliforms in the effluent of conventional and CEPT using 20mg/l of ferric chloride.

1000000
M Conventional

100000 100000 - CEPT Fe20

.10000

0 1000 -

o 100

1-
Raw Effluent COD SS

*Unit of Concentration: mg/ for COD and SS, MPN/100mI for fecal coliform
* Fe20 means 20 mg/ of ferric chloride, Chl5 means 5mg/ of chlorine

Fig 6.4 COD, SS, and fecal coliforms in the effluent treated by 20mg/i of FeCl3 (1)
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* Fe20 means 20 mg/I of ferric chloride, Chl5 means 5mg/I of chlorine

Fig 6.5. COD, SS, and fecal coliforms in the effluent treated by 20mg/l of FeC3 (2)

As shown in the graphs, the quality of CEPT effluent treated by 20 mg/l of ferric chloride was

significantly better than that of conventional effluent.

In contrast, the chemical treatment with 10mg/i of ferric chloride did not make a significant

difference in SS and fecal coliform removals.

120



1000000
Mil Conventional

100000

10000

- 1000
00

m 100

S10

Raw Effluent COD SS

* Unit of Concentration: mg/I for COD and SS, MPN/100ml for fecal coliform
* Fel0 means 10 mg/I of ferric chloride

Fig 6.6 COD, SS, and fecal coliforms in the effluent treated by 10mg/l of FeCl3 (1)
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Fig 6.7 COD, SS, and fecal coliforms in the effluent treated by 10mg/I ofFeCl3 (2)

According to the graphs, it is obvious that 20mg/l of ferric chloride is more effective than 10mg/l

of ferric chloride for wastewater treatment in Boston.

It is noticed that the trends of reduction of SS and COD levels in the effluent are equal to the

trend of reduction of fecal coliform concentrations. As discussed above (section 6.2.1.),

microorganisms are partly removed with the removal of suspended solids. Since SS removal

efficiency of CEPT is much higher than that of conventional treatment, the concentration of fecal

coliforms in the CEPT effluent is much lower than that in the conventional effluent. In the same

way, the level of coliforms in the effluent is lower when seawater is added due to the higher SS

removal efficiency. The following graph shows the relationship between concentration of SS and

fecal coliforms.
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Fig 6.8 SS versus Fecal coliform concentration in the effluent treated with 20mg/I of FeC3
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Fig 6.9 SS versus Fecal coliform concentration in the effluent treated with 10mg/l of FeC3

6.5.2.2.2 Effect of Additional Seawater on the Fecal Coliform Reduction

For the CEPT effluent treated with 20 mg/l of ferric chloride, the effect of additional seawater on

the suspended solids removal efficiency is not constant. 5% of additional seawater negatively

affected the SS removal efficiency, and 1% of additional seawater made a little difference from

no additional seawater. The qualities of conventional and CEPT effluent are shown in the

following graphs.
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Fig 6.10 The concentration of COD, SS, and fecal coliform (1)
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Fig 6.11 The concentration of COD, SS, and fecal coliform (2)

Since raw sewage in Boston already includes approximate 2% of seawater (see section 5.3), SS

removal efficiency of conventional treatment for the Boston sewage is higher than the typical

removal efficiency. Therefore, it leads no significant difference of fecal coliform reduction with

additional seawater. However, it is obvious that 1% of additional seawater is more effective to

reduce the coliform levels than 5% of additional seawater for the Boston sewage.

For the CEPT effluent treated by 10 mg/l of ferric chloride, neither 1% nor 5% of additional

seawater made significant differences for the fecal coliform reduction. It is because the effect of

additional seawater on the SS removal efficiency. As shown in Fig. 6.12, SS removal efficiency

did not increase with additional seawater. Following graph shows the effects of additional

seawater on pollutant reduction in the effluent treated by 10mg/l of ferric chloride.
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Fig 6.12 Concentration of COD, SS, and fecal coliform in the effluent according to the additional
seawater

6.5.2.2.3 Disinfectability of the Effluent

Typically, the concentration of fecal coliforms in the conventional effluent is 10 7 ~ 109

MPN/100ml based on 10 7~ 10 9 MPN/100ml in raw sewage. It means that conventional treatment

barely removes fecal coliforms, and it is impossible to reduce the coliform level below

200MPN/100ml with high dosage of chlorine (see section 6.3 and Table 6.4). In contrast, the

concentration of coliforms reduces to 10% of raw sewage with CEPT, and this value is the same

as the secondary effluent (WPCF, 1986). This represents that the disinfectability of CEPT

effluent is higher than that of conventional effluent.

In the experiments in Boston, however, not only the CEPT effluent but also the conventional

effluent were disinfected with 5 mg/l of chlorine. The reason even the conventional effluent was

disinfected with low concentration of chlorine is that the level of fecal coliforms, 390000

MPN/100ml, in the effluent is much lower than the typical value. The level of fecal coliforms in

the conventional effluent of Boston sewage is similar to the typical value of the activated sludge

effluent. This low level of fecal coliforms in the conventional effluent is due to the lower level of

fecal coliforms, 106 MPN/100ml, in the raw sewage in Boston than the typical value, 107~109

MPN/100ml, and relatively high SS removal efficiency of conventional treatment for Deer Island

wastewater. The reason of high SS removal efficiency of conventional treatment for Deer Island

wastewater was discussed in the section 6.5.2.2.2.
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6.5.2.3 Chlorine Demand for CEPT Effluent of Deer Island Wastewater

Following graphs shows the coliform reduction in the effluent with 5 mg/l and 10 mg/l of

chlorine.
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Fig 6.13 Fecal coliforms reduction in the effluent with 5, 10 mg/i of chlorine (1)
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Fig 6.14 Fecal coliforms reduction in the effluent with 5, 10 mg/l of chlorine (2)

As shown in the Fig. 6.13 and 6.14, 5 mg/l of chlorine achieved the same coliform removal

efficiency as a dose of 10 mg/l. It probably means that 5 mg/l of chlorine is much higher than the

actual chlorine demand. According to the disinfection/dechlorination performance report of Deer

Island wastewater treatment plant, the average chlorine dose is 2.2 mg/l and the range is from 1

to 4 mg/l with 45-min average contact time. The average fecal coliform in the effluent is 10

MPN/100ml that is similar to results of experiments. In the experiments, 5 mg/l of chlorine with

30-min contact time achieved similar results to the Deer Island plant test. As mentioned in
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section 6.3, the disinfection efficiency of chlorine depends on the concentration of chlorine and

the contact time. Since the similar results in the experiments to the Deer Island wastewater

treatment plant were achieved with shorter contact time, it can be represented that 5 mg/l of

chlorine is much higher than the chlorine demand.

6.6 Conclusions and Recommendation

In Paraty, 15 mg/l of PAA achieved about 200 MPN/100ml that meets the Brazilian Regulations.

although the removal efficiency of PAA disinfection in Paraty was lower than chlorine.

Considering the cost if PAA is 10 times higher than chlorine, however, chlorine is a more proper

disinfectant than PAA in Paraty.

Coliform removal efficiency of wastewater treatment depends on the SS removal efficiency. It is

because coliforms are removed with SS during the settling process, and SS protect coliforms

from the disinfection agents. Since the SS removal efficiency of CEPT is higher than the

conventional treatment, the disinfectability of CEPT effluent is better than the conventional

effluent. However, both of CEPT and conventional effluent of Deer Island wastewater are

disinfectable. The reasons are:

1. Raw wastewater in Boston is relatively weaker than the typical value.

2. Coliform reduction in the conventional effluent is relatively higher than the typical

because approximate 2 % of seawater, already included in the Boston wastewater,

enhances the SS efficiency.

Additional seawater does not enhance the coliform reduction in the CEPT effluent in Boston.

The reasons are;

1. Initial SS and coliform removal efficiencies by CEPT with no seawater are already high.

2. Additional seawater did not make significant differences of SS removal.

Since raw sewage in Paraty does not include seawater, however, the level of fecal coliforms in

the effluent would be significantly reduced with small amount of additional seawater in Paraty as

if COD and SS removal efficiency were increased with additional seawater.

According to the data of Deer Island wastewater treatment plant where use secondary treatment,

the average dose of chlorine is 2.2 mg/l with an average contact time of 45 min. Since the SS

removal efficiency of CEPT is similar to the secondary treatment, it is expected that the amount
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of chlorine in Paraty would be also similar to that of in Deer Island wastewater treatment plant.

Considering cases that higher amount of chlorine demand and relatively short contact time

during the summer season, 3 mg/l of chlorine is recommended (see Table 6.3). If chlorine dosage

is well-controlled, the residual chlorine will not be varied, and therefore the amount of

dechlorination agent will not be varied. Based on the data of Deer Island wastewater treatment

plant, 0.5 mg/l of dechlorination agent is recommended. This dosage is for the case sulfur

bisulfate is used as a dechlorination agent. Following table shows the average chlorine dose in

Deer Island wastewater treatment and recommended chlorine dose in Paraty.

Efficiency (%) Dosage of Chemical
(mg/1)

SS COD/BOD Chlorine SBS

CEPT 85 55 3 0.5
Secondary 91 85 2.2 0.5Treatment

Table 6.8 Recommended dosage of Chlorine and sulfur bisulfate (SBS) in Paraty
based on SS Removal Efficiency of CEPT and Secondary Treatment
(Source: Chemical Dosage in Secondary Treatment: Deer Island WWTP)
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CHAPTER SEVEN: DESIGN OF THE PLANT IN PARATY

The CEPT tanks, chlorination and dechlorination basins are the main components to a CEPT

plant design and will be described in detail in the following sections:

7.1 CEPT Tanks

The plan to build a CEPT plant is divided into three stages. The following table 7-1 shows the

populations, and average and peak wastewater flow rates for each stage. The Paraty CEPT plant

will serve the Historical Center during the first stage, the area of Mangueira and the Ilha das

Cobras will be added during the second stage. The old city will be finally added during the third

stage.

Stage 1 Stage 2 Stage 3
Hist. Cntr + Man+Ilha + Old City

Population
(capita) 3000 7500 3000

Water
Consumption
(Uday-capita) 180 180 180

Seasonal Factor 3 1 3
Peak Factor 1.8 1.8 1.8

m3/day m3/day m3/day

Qavg 540 1890 2430

Qp 972 3402 4374

Qsp 1620 2970 4590

Qspp 2916 5346 8262

Table 7-1. The population, average and peak wastewater flow rate for each stage; Qavg = average flow
rate, Qp = peak flow rate, Qsp = average flow rate during the summer = Qavg * seasonal

factor, Qspp = peak flow rate during the summer season.

To ensure the plug flow of wastewater in the tanks, the ratio of width to height and length to

height should be at least 1 to 5 (W:L = 1:5, H:L = 1:5). The CEPT plant should also be able to

serve the summer flow rate at each design stage. When the typical overflow rate (SOR), 60

m/day, is used to estimate the CEPT tanks dimension, the tank length was too short for the first

stage of the design:

1620 m 3

Length day9 m

60 I x 3m
day
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The calculation above is based on the summer flow rate of the first stage and a 3 m width. In this

case, the ratio of width to height (W/H=1.5) does not meet the 1:5 ratio, so a shorter width could

be designed for. Taking the future phases into consideration, however, it would be better to

decrease the overflow rate than to shorten the width of tanks. Therefore, the CEPT tanks in

Paraty are designed based on a 30 m/day of overflow rate (SOR). In addition, CEPT also must

serve the peak flow during the summer season (Qspp). Since the removal efficiency of CEPT is

constant up to 90 m/day, then a 90-m/day overflow rate (SOR) is used for Qspp to ensure the

appropriate removal efficiencies in CEPT. The following table shows the estimated flow rate of

CEPT with 30, 60, 90 m/day of overflow rate in the tanks with a dimension of 15 * 3 * 3 3.

Width (m) 3

Height (m) 3
Length (m) 15

OFR (m/day) 30 60 90

Foot Print for 1 Tank (m2) 45 45 45

Qfor1 Tanks 1350 2700 4050

Flow Rate (m4/day) Q for 2 Tanks 2700 5400 8100
Table7-2. Estimated flow rates of CEPT tanks with the dimension of 15 * 3 * 3

According to the table, one tank has the capacity to meet the flow rate of summer season of the

first stage. Two CEPT tanks meet the flow rate of summer season of the second and the third

stage. Therefore, two CEPT tanks with dimension of 15 * 3 * 3 m3 are required for Paraty at the

end of the stage. For the maintenance of CEPT, one more tank is need. Therefore, total number

of CEPT tanks is three, and footprint is 135 m 2 (45 m2 * 3).

7. 2. Chlorination Basins

To maintain the proper disinfection efficiency, the ratio of width to length should be 1 to 20

(W:L = 1:20, Metcalf & Eddy, 2002). Also, the detention time of the average flow is 30 to 120

min, and 25 to 90 min for the peak flow. Due to the difficulty of obtaining the proper length of

contact basins for the whole stages, trial and error method is used to find proper dimension of

basins. The following table shows the proper dimension of chlorination basins and detention

time according to the various flow rates.
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1

2

20

1 2

40 80

20 40

1 2 3 1 2 3

540 1890 2430 540 1890 2430

107 30 24 213 61 47

972 3402 4374 972 3402 4374

59 17 13 119 34 26

1620 2970 4590 1620 2970 4590

36 19 13 71 39 25

2916 5346 8262 2916 5346 8262

20 11 7 40 22 14

Table 7-3. The detention time in the chlorine basins with various flow rates

As shown above, the detention time of the flow during the summer season (Qsp) of the third

stage is in the acceptable range, 25, 50, 90 minutes with two basins (Metcalf & Eddy, 2002). For

the maintenance of chlorination basins, one more basin is required. Therefore, total number of

basins is three, and footprint is 60 m2 (20 m2 * 3).

7. 3. Chemical Storage Tanks

For the treatment of wastewater, ferric chloride (40 mg/i) will be

polymer could be used. If the concentration of ferric chloride is 40%,

4 0 mg x 4590 M x 10 day
1 day

used, and small amount of

3

1.4 g xl1000ml 40 1000 1
ml l 100

For the case of higher doses, 20% more ferric chloride is stored and therefore:

3.3m 3 x 1.2 ~ 4.0m 3
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To ensure the proper storage capacity, the volume of tank is therefore chosen to be 4.5 m3 . When

the height of the tank is 1.5 m, the footprint is 3 m2 . Since the amount of polymer is much

smaller than that of ferric chloride, the footprint of the polymer tank is negligible.

Liquid sodium hypochlorite (3 mg/) will be used for disinfection, and sulfur bisulfate (0.5 mg/l)

can be used for dechlorination. Other chemicals, such as sulfur dioxide, can be used instead of

sulfur bisulfate. If the concentration of sodium hypochlorite is 13 %,

3

3 Mg x 4590 M x 10 day
1 day mi 3

1.2 X1000 M x 13 1000 1
ml 1 100

For the case for the higher chlorine demand,10% more can be stored and therefore:

0.9M 3 x 1.1 1.0M 3

To ensure proper storage capacity, the volume of the tank will be 1.2 M3 . When the height of the
2tank is 1.2 m, the footprint becomes 1 m2

If the concentration of sulfur bisulfate is 25 %,

0 .5 Mg x 4590 M x 10 day 3
1 day x m0.07m 3

1 .23 g x 1000 x 25 1000 1
ml 1 100

It is expected that the amount of sulfur bisulfite (SBS) will not change a lot considering the

proper dosage of chlorine. To ensure the proper storage capacity, the volume of the tank will be

0.1 m3 , and the footprint will be 0.1m 3 and 1 m height.

The volume, footprint of the CEPT tanks, chlorine basins, and chemical storage tank are

summarized in the following table. Bar screens, grit chambers, parshall flumes,and pumps will

also added.

jCEPT Tank Chlorine Basins FeC 3 Tank NaOCI Tank SBS Tank
Volume (m3) 135/each 40/each 4.5 1.2 0.1
Footprint m2  135 40 3 1 0.1

Table 94. Volume and footprint of CEPT facilities
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7.4 Plant Plan

The rough plan of the treatment plant is shown in Figure 7-1 below:
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Figure 7-1: CEPT treatment unit
locations (not to scale)
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