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Abstract

In this thesis we focus on addressing two aspects pertinent to biological release de-
tection. The first is that of detecting and localizing an aerosolized particle release
using a sparse array of sensors. The problem is challenging for several reasons. It
is often the case that sensors are costly and consequently only a sparse deployment
is possible. Additionally, while dynamic models can be formulated in many envi-
ronmental conditions, the underlying model parameters may not be precisely known.
The combination of these two issues impacts the effectiveness of inference approaches.
We restrict ourselves to propagation models consisting of diffusion plus transport ac-
cording to a Gaussian puff model. We derive optimal inference algorithms utilizing
sparse sensor measurements, provided the model parametrization is known precisely.
The primary assumptions are that the mean wind field is deterministically known and
that the Gaussian puff model is valid. Under these assumptions, we characterize the
change in performance of detection, time-to-detection and localization as a function
of the number of sensors. We then examine some performance impacts when the
underlying dynamical model deviates from the assumed model.

In addition to detecting an abrupt change in particles in an environment, it is also
important to be able to classify the releases as not all contaminants are of interest.
For this reason, the second aspect of addressed is feature extraction, a stage where
sensor measurements are reduced to a set of pertinent features that can be used as
an input to the classifier. Shift invariance of the feature set is critical and thus the
Dual Tree Complex Wavelet Transform (DT CWT) is proposed as the wavelet feature
domain.

Thesis Supervisor: Jerome J. Braun
Title: MIT Lincoln Laboratory Technical Staff

Thesis Supervisor: John W. Fisher III
Title: Principal Research Scientist
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Chapter 1

Introduction

Inferring the state of an environment from a sparse set of imprecise sensor measure-

ments is essential to many applications in a variety of fields. Questions arise as to how

a distributed sensor network should be configured to monitor the given environment

as well as how the sensor measurements should be combined in a meaningful and in-

formative manner. Biological sensing is one of the areas in which these questions are

particularly acute. There are a variety of reasons why detection and localization of

biological releases are of interest ranging from biodefense applications, both civilian

and military, to environmental monitoring in industrial settings. It is often the case

that rapid detection is an important consideration of such an application.

Due to the cost, size, and other logistical issues, it frequently the case that only

a sparse set of biological and particle sensors are deployed to monitor a given area.

In addition, these sensors are sensitive to small local regions and as such yield only a

myopic view of the environment when used in isolation. These issues complicate the

monitoring problem and impact the ability to rapidly detect releases. However, in

combination with a dynamical model, it is possible to combine measurements from

several sensors with non-overlapping fields of view so as to improve detection, time-to-

detection, and localization beyond that obtained using a single sensor. A fundamental

property of this system is that the complex dynamics operate on a small scale while

observations are only available at a coarse, macroscopic scale. This is similar to the

types of problems faced in a wide variety of fields as different as meteorology and
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epidemiology.

Detecting and localizing a biological release requires fusing information both tem-

porally and spatially from multiple collocated and distributed dissimilar sensors in-

cluding biological sensors, particle counters, and anemometers. In many biological

sensing applications, detection and time-to-detection of releases are of primary im-

portance, and localization is secondary. The goal of the sensor network, then, is

to intelligently combine sensor measurements to first detect the release in a timely

manner and secondarily to localize the release in space and time. The two goals are

distinct in that reasonable detection may be obtained from early measurements while

localization generally relies on measurements aggregated over a longer time period.

Bayesian filtering approaches provide a natural framework for such problems given

an appropriate state definition and model of system dynamics.

In this thesis, we examine two aspects pertinent to the biological release detection

problem. The first topic analyzed is that of detecting and localizing aerosol releases

using Bayesian filtering techniques. We restrict ourselves to scenarios where particle

propagation is reasonably well modeled by diffusion plus transport. We derive optimal

inference algorithms for the case where the model is perfectly known, characterizing

performance for a set of sensor configurations with regard to probability of detection

Pd, time to detection Td, and localization in time and space. This is accomplished

via a series of controlled experiments using synthetic data. We characterize both

the improvement of estimation performance attained by combining multiple sensor

measurements as well as the sensitivity in performance to mismatched models.

A classification stage is needed to aggregate various sensor measurements and

determine the type of release both in terms of material and various other proper-

ties. This stage also provides redundancy in release detection. For this reason, the

second aspect investigated in this thesis is that of feature selection and finding an ap-

propriate basis which contains the sensor measurement information crucial to event

classification. A goal of the feature extraction stage is to reduce the dimensional-

ity of data presented to the classifier which is then trained to differentiate between

background and various events of interest. The focus of this thesis is on extracting
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information from the particle concentration measurements. We investigate the utility

of the wavelet transform for both signal conditioning (i.e. denoising) and as a feature

basis.

In this application, it is important to have the feature set associated with a given

signal be the same or similar to that of the signal shifted in time so that both signals

are classified in the same way. The Dual Tree Complex Wavelet Transform (DT CWT)

[16, 17] provides approximate shift invariance. A denoising technique combining the

DT CWT and Donoho’s wavelet shrinkage [9, 8] is developed and compared with other

denoising techniques. The proposed denoising method indicates significant benefits

in terms of shift invariance and computational complexity as compared to the other

methods. The DT CWT is then used as a feature basis for representing particle

concentration time histories. A preliminary set of features are proposed. Although

the denoising technique is developed as a separate unit, because both the signal

conditioning stage and feature extraction stage rely on the same transformation, both

can be done in a combined fashion.

By considering only the particle concentration measurements, the feature extrac-

tion and Bayesian filtering algorithms developed in this thesis aid in identifying the

time and location of an aerosol release, but not in determining the type of material.

Because not every contaminant is of concern, it is important to be able to discrim-

inate between release materials. Thus, a classifier incorporates features from other

sensors such as biological sensors. However, the design of a classifier is beyond the

scope of this thesis.

The filter provides information about the time and location of releases while a

classifier identifies and distinguishes between types of releases. A decision stage is

necessary in order to fuse the information provided from the Bayesian filter with that

from the classifier, but this issue is not addressed in this thesis and is a topic of future

research.

Chapter 2 provides a summary of past research that has been conducted in the

areas of multisensor data fusion as applied to the chemical and biological defense prob-

lem, wavelet features for discrimination tasks, as well as Bayesian Filtering approaches
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to similar applications. In Chapter 3, a potential laboratory setup is described and the

measurements from this setup are taken as the sensor outputs throughout the rest of

the thesis. Release detection and localization algorithms using Bayesian filtering are

developed in Chapter 4 while the issue of determining shift invariant wavelet features

from time series measurements for classification purposes is explored in Chapter 5.

Finally, Chapter 6 provides a discussion of the results presented and outlines potential

future work.
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Chapter 2

Background

2.1 Multisensor Data Fusion with Biological Sen-

sors

Multisensor data fusion is a large field encompassing applications where disparate

and overlapping or congruent information is combined in a manner so as to provide

more information about the system.

2.1.1 Biological and chemical detection

Several researchers have addressed issues related specifically to biological or chemical

release detection. Braun et. al. [4, 5, 3] present multisensor fusion and machine learn-

ing approaches to such detection problems. In particular, aerosol anomaly detection

for subway biodefense is presented in [4, 5]. The overall architecture involves signal

conditioning, feature extraction, Principal Component Analysis (PCA) analysis, and

a machine learning stage. The signal conditioning is performed using a 12th order

median filter. Among the features investigated were: the peak amplitude per particle

size-band in a given time window, the standard deviations for each size-band, and

the coefficients of a fitting polynomial. After performing PCA as a means to reduce

dimensionality, the feature vector was passed to a set of two 3-layer feedforward MLP

neural networks to perform the classification. Because the performance of the classi-
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fier is dependent upon the quality of the selected features, in this thesis we investigate

other features pertinent to bioaerosol detection and develop better signal conditioning

by using wavelet transforms.

2.2 Feature Extraction Using Wavelets

By providing both time and frequency information about a signal, the wavelet trans-

form domain forms a suitable basis in which to select features from time-varying

measurements. In addition to providing a feature basis, the wavelet transform allows

for signal conditioning.

2.2.1 Wavelet signal conditioning prior to feature selection

Conditioning a signal prior to feature selection is an important yet complicated step.

By filtering the signal, one must insure that the critical information is not lost through

oversmoothing, etc. Denoising a signal by transforming it to the wavelet domain and

then thresholding coefficients eliminates noise while still preserving the frequency

components and signal characteristics to a certain degree. After deciding on a thresh-

old, there is the choice between hard and soft elimination of coefficients. Hard thresh-

olding involves removing all coefficients below the threshold while soft thresholding

tapers smaller coefficients to zero. The choice between soft and hard thresholding will

have an impact on the quality of the features and the performance of the classifier.

The theory behind various wavelet denoising techniques is outlined by Donoho [9, 8]

and Birge and Massart [2].

Farooq and Datta [10] explore the differences between hard and soft thresholding

denoising methods as a pre-processing stage before feature extraction and Automatic

Speech Recognition (ASR) stages. Although both denoising techniques proved to

be very helpful in the classification performance, word recognition based off of hard

thresholded coefficients was better in a high SNR situation while soft thresholding was

better at a low SNR. These results are specific for phenome recognition and similar

studies would have to be conducted in the biological sensor network application.
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2.2.2 Wavelets as a feature basis

With or without signal conditioning, the wavelet coefficients may be used as features.

Yen and Lin [30] conduct a thorough analysis of wavelet packet feature extraction

as a method for vibration monitoring. The framework involves performing a seven-

level wavelet packet decomposition (WPD) for each signal segment, computing robust

feature measures, selecting a subset of the features, and then passing the features

as the input to a neural network. In order to overcome the translation dependent

nature of the WPD, Yen and Lin calculate the wavelet packet node energy (i.e. the

sum of the squared wavelet coefficients in a given subband). Although not perfectly

shift invariant, this representation provides a more robust feature for classification.

Discriminant analysis is then used to identify a robust set of features from the set

of transform domain energies. The paper claims that although the Karhunen-Loeve

(KL) expansion is optimal in terms of signal representation, it is not optimal in terms

of class separability. It argues that mean-square error should not be the primary

criterion in reducing the feature dimension, but rather classification accuracy which

improves with class separability. Using Linear Discriminant Analysis (LDA), the

discriminate power of each feature was examined and those containing little class

separation information were discarded. The WPD based features yielded nearly 100%

correct classification from the neural network. The idea of finding a best basis for

phoneme recognition is also explored by Long and Datta [18]. Specifically, the Best-

Basis Algorithm of Coifman and Wickerhauser [7] is applied to the problem of speech

recognition. Intrator et. al. [12] also examine the issue of best basis pursuits in

discrimination tasks using wavelet features.

In the application of biological sensor networks, a single-tree expansion could be

used instead of a WPD if the majority of the pertinent information is held in the

lower frequency subbands. This is explored in Chapter 5 Section 5.3.4. In addition,

because the shift invariance of the subband energies of the Dual Tree Complex Wavelet

Transform (DT CWT) exceeds that of a standard DWT [17], the DT CWT is explored

as an alternative transform method. However, the idea of best basis pursuit is not
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examined in this thesis because it is classifier dependent and the design of the classifier

is beyond the scope of this thesis. Thus, best basis pursuit is a topic for future work.

Dual Tree Complex Wavelet Transform

The Discrete Wavelet Transform (DWT) is the most general and widely used wavelet

transform algorithm. However, although the DWT is a good approach in terms of

representation of the signal, it is not a shift invariant transform. Various strictly shift

invariant transforms have been proposed, but at the cost of high redundancy and

computational complexity. Kingsbury proposes what is called the Dual Tree Complex

Wavelet Transform (DT CWT) as an approximately shift invariant transform with

only limited redundancy and perfect reconstruction [17]. For this application, the

large data sets make low redundancy an important issue.

Neumann and Steidl [22] explore the DT CWT as a feature basis for signal classi-

fication using a hard margin Support Vector Machine. If one wants to use real filter

banks in the time domain, the DT CWT requires the use of specially designed filters

which may not be best suited for a given application. Thus, Neumann and Steidl

examine the DT CWT in the frequency domain where standard wavelet filters can

be used. The classification performance of the various filters is then compared. Once

again, this topic relies on the classifier and could be an area of future research.

2.3 Bayesian Filtering for Dynamic State Estima-

tion

Given an appropriate model, state estimation can play an important role in the de-

tection of aerosolized releases and can supplement the information about the system

provided by the types of features described above. However, Bayesian filtering re-

quires the modeling of both system dynamics and observational errors. Airflow and

particle dispersion are challenging to accurately model from sparse measurements

and the uncertainty model is difficult to obtain because there is no ground truth.
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Typically, Kalman filtering [15] and other Bayesian filtering techniques have been

applied to problems of state estimation in the tracking community, and some of these

methods have been known since the 1960s. Only recently have Bayesian filtering

techniques been applied to more imprecise fields such as weather modeling. Weather

prediction is a significantly different application from indoor airflow modeling. How-

ever, the underlying measurements and lack of global knowledge is similar to both

applications. In weather prediction balloons, buoys, and satellites provide informa-

tion at only specific places and times, which is analogous to anemometer readings

in the system investigated in this thesis. Mackenzie [19] reports the nonlinear dy-

namics of atmosphere creates a non-Gaussian model of observational errors. This

implies that the standard Kalman filter must be modified to apply to weather pre-

diction. Although many forecasters are experimenting with ”ensemble forecasting”,

Miller suggests using a nonlinear filter [19]. While the conclusion is that more ex-

perimentation is needed in order to verify the applicability of Bayesian filtering to

weather prediction, researchers in the field have made significant advances and shown

promising results using these techniques.

Specific to chemical and biological detection, Nehorai et. al. [14, 31] have ex-

amined using a combination of maximum likelihood parameter estimation with the

Generalized Likelihood Ratio (GLR) test to create a binary hypothesis testing prob-

lem of detecting a release from a moving source. This is done in a non-recursive

fashion and the state dimension grows with time and spacial extent of the region

being monitored. To aid in reducing computational complexity, a parametric moving

path model is used. Similar work by Nehorai et. al. can be found in [13, 21].

In addition, researchers have considered other Bayesian approaches. Release de-

tection in hyperspectral imagery has been considered by O’Donnell [24] exploiting

properties of isolated pixel intensities and Nofsinger [23] uses ensemble Kalman fil-

tering approaches for detecting chemical plume. Broad coverage of abrupt change

detection and the GLR is covered by Basseville in [1].
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Chapter 3

Application Details

3.1 Laboratory Setup

The algorithms proposed in this thesis are not constrained to a particular laboratory

setup, however, for the sake of completeness a possible laboratory setup is addressed

here. Conforming with the cost of biological and other sensors in general, the proposed

setup consists of a number of clusters of sensors dispersed sparsely within an enclosed

area. These multiple sensor clusters are often different from one another and are

categorized as follows:

• Primary - consisting of many sensors, both sophisticated and simple, such as

biological sensors, particle counters, and anemometers.

• Secondary - consisting of fewer sensors which provide measurements that are re-

quired to be available at more locations throughout the region (e.g. anemometer

readings).

Figure 3-1 shows an arrangement or primary and secondary clusters.

3.2 Measurements Available

In order to accurately determine whether a biological release occurred, it is essential

to have information about particle density and the biological nature of the particles.

25



Figure 3-1: Example of possible room setup with two primary clusters and four sec-
ondary clusters. The secondary clusters may consist only of anemometers to measure
wind velocity, or they may also contain a particle counter. Primary clusters will
provide information about the biological content of the air.

This information is obtained by using commercially available particle counters that

measure particle density based on size and biological sensors that determine whether

there is biological matter in its locality by testing, for example, the fluorescence

properties of the particles.

To connect the information provided by widely spaced primary clusters, one must

have information about the wind field in addition to the particle concentration at

each location. An array of anemometers provide information about the local x, y,

and z components of wind velocity as well as temperature and humidity readings.

This setup provides us with sparse, discrete measurements of particle densities,

airflow, and the biological nature of the particles. The goal of the project is to fuse

this information in an appropriate manner so that a decision can be made about the

state of the entire region at all times.

In this thesis, we will restrict ourselves to the measurements available from such

a laboratory setup.
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Chapter 4

Generalized Likelihood Ratio Test

4.1 Problem Formulation

The problem of detecting a localized release is illustrated in Figure 4-1. Particle

sensors, indicated by black circles, are distributed sparsely over a region of interest.

In this context, sparsity of the sensor configuration refers specifically to the coarse

spacing of the sensors relative to the spatial extent of the release at time to. Particle

concentrations at time t > to are indicated by shaded contours. In a sparse sensor

network, it will often be the case that there is a delay in observability of the event.

That is to say that a release at time to may not be immediately registered by any of

the sensors. The goal of the sensor network, then, is to intelligently combine sensor

measurements distributed both temporally and spatially to first detect the release in a

timely manner and secondarily to localize the release in space and time. The two goals

are distinct in that reasonable detection may be obtained from early measurements

while localization in both space and time generally relies on measurements aggregated

over a longer time period.

In this thesis we specifically consider scenarios in which the dispersion of particles

in the environment is well modeled by diffusion plus transport due to the presence

of a wind field. With an appropriate definition of a state space, Bayesian filtering

approaches provide a framework for such problems, presuming that the model pa-

rameters are available and inter-sensor communication is possible. In our particular
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application it will be necessary to modify the standard equations to include a term

which represents a localized event in time and space (i.e. the release) whose effects

persist over time. The specific choice enables us to formulate the problem as a hybrid

filtering and hypothesis testing problem resulting in certain efficiencies.

Figure 4-1: Sparse sensors, indicated by • symbols. Contours indicate particle density
following a localized release at a single time instant.

Given a sparse sensor configuration and uncertainty regarding the underlying dy-

namics (e.g. rate of diffusion, knowledge of the wind field) it will generally be the

case that the optimal inference approaches under an assumed parametrization will

degrade in both detection and localization performance as compared to the matched

case. Consequently, two primary issues that we will examine are:

• The utility of using a dynamical model for this multisensor application.

• Sensitivity of the inference procedure to a mismatch in the parametrization of

the model.

In this chapter we examine these questions in some detail in the context of a specific

dynamical model and a specific set of sensor configurations. Our results indicate that

optimal inference on mismatched models yields reasonable detection performance at

the cost of precise localization. Additionally, the methodology presented provides a

framework within which to study these questions in more detail.
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4.1.1 Adopting a Bayesian approach
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Figure 4-2: Sensor configurations for 1 (N), 2 (N + �), 4 (N + � + ◦), and 16
(N + ◦+ � + ∗) sensors.

Figure 4-2 depicts the set of sensor configurations, consisting of 1, 2, 4, and 16

sensors, that we will consider in our experimental section. The sensors can be seen

to lie on a regular grid although the approach and analysis do not require such

regular configurations. The symmetry of the configurations does serve to simplify the

presentation of some of the results. For our purposes, all releases shall occur in the

center of the 16 sensor configuration.

Defining a state space and associated dynamical model enables the use of a

Bayesian filtering approach. We divide the area of interest into a set of small regions

or cells. The state of the system at time t is then the mean particle concentrations

over one time step of the set of cells. The granularity of the cells is at a substan-

tially finer resolution than the sensor placement. Specific settings will be discussed

in Section 4.2.

4.1.2 Dynamic and measurement models

The standard Bayesian filtering problem, whether linear or nonlinear, Gaussian or

non-Gaussian involves two main stages: prediction and update. In the prediction

stage the dynamical model is used to predict the state distribution one time-step in
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the future. In the update stage, current measurements are fused to update the state

distribution. In order to formulate the filter equations, one must characterize the

dynamical model, measurement model, process noise, and measurement noise.

Gaussian puff model

Accurately describing the spatial and temporal distribution of a contaminant released

into an environment is a challenging problem because of the inherent randomness of

the wind velocities in turbulent flow. Turbulent diffusion describes the behavior

particles are supposed to follow within an airflow and often these particles can just

be considered elements of the air itself. The term ”turbulent diffusion” is commonly

applied to the scenario of particles or gases dispersing in turbulent flow and is not

the same as ordinary molecular diffusion. Rather, the concentration of a species, c,

satisfies the continuity equation (see Equation 4.1. The derivations shown throughout

this section can be found in [26].

∂c

∂t
+

∂

∂xj

(ujc) = D
∂2c

∂x2
j

+R(c, T ) + S(x, t) (4.1)

where uj is the jth component of the wind velocity, D is the molecular diffusion of the

species, R is the rate of generation of species by chemical reaction and is dependent

on the temperature T , and S is the rate of addition of species at location x = (x1, x2)

and time t.

In a perfectly known wind field which represents the wind velocities at all locations,

there would not be any turbulent diffusion. Instead, the process would simply follow

the advection equation,

∂c

∂t
+

∂

∂xj

(ujc) = 0 (4.2)

However, due to the randomness of the wind velocities, we can represent u as the sum

of a deterministic and stochastic component, ū+ u′. Because u′ is a random variable

and drives the particle concentration, the resulting concentration c can similarly be
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divided into the sum < c > +c′ where the < . > indicates averaging. The u′ and

c′ terms are zero mean by definition so < c′ >= 0. Substituting these variables into

equation 4.2 yields,

∂〈c〉
∂t

+
∂

∂xj

(ūj〈c〉) +
∂

∂xj

(u′jc
′) = D

∂2〈c〉
∂x2

j

+R(〈c〉+ c′, T ) + S(x, t) (4.3)

The most common method for relating the turbulent flux 〈u′jc′〉 is based on what is

called mixing-length theory or K theory (see [26]) and results in the following equation,

〈u′jc′〉 = −
∑

k

Kjk
∂〈c〉
∂xk

(4.4)

where Kjk is the eddy diffusivity. When the coordinate axes are aligned with the

principle axes of the eddy diffusivity tensor {Kjk}, then the only nonzero elements

are the Kjj. In this scenario, equation 4.4 becomes,

〈u′jc′〉 = −Kjj
∂〈c〉
∂xj

(4.5)

Furthermore, it is common to invoke three assumptions:

1. A chemically inert species,

R = 0

2. Negligible molecular diffusion relative to turbulent diffusion,

∂2〈c〉
∂x2

j
� ∂

∂xj
〈u′jc′〉

3. An incompressible atmosphere,

∂ūj

∂xj
= 0

With the above assumptions and assuming Equation 4.5 holds, the atmospheric dif-

fusion equation becomes,

∂〈c〉
∂t

+ ūj
∂

∂xj

(〈c〉) =
∂

∂xj

(
Kjj

∂〈c〉
∂xj

)
+ S(x, t) (4.6)
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Another convention is to represent a rapid release of material as an instantaneous

point source. This idealization simplifies the solution of the partial differential equa-

tion. The assumptions are as follows:

1. 〈c(x, y, 0)〉 = coδ(x)δ(y)

2. 〈c(x, y, t)〉 = 0 as x, y, z → ±∞

Using all the preceding assumptions and defining the mean and initial concentrations

as 〈c(x, y, t)〉 = cx(x, t)cy(y, t), cx(x, 0) = c
1/2
o δ(x), and cy(y, 0) = c

1/2
o δ(y), the set of

atmospheric diffusion equations in 2D are,

∂cx
∂t

+ ū
∂cx
∂x

= Kxx
∂2cx
∂x2

(4.7)

∂cy
∂t

+ ū
∂cy
∂y

= Kyy
∂2cy
∂y2

(4.8)

The differential equations can be solved by using the Fourier transform. The deriva-

tion is shown below.

C(s, t) = F{cx(x, t)} =
1√
2π

∞∫
−∞

cx(x, t)e
−jsxdx

∂C

∂t
+ jsūC = −s2KxxC

C(s, 0) =
c

1
2
o√
2π

C(s, t) =
c

1
2
o√
2π
e−(s2Kxx+jsū)t
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cx(x, t) =
1√
2π

∞∫
−∞

C(s, t)ejsxds

=
1√
2π

∞∫
−∞

e−(s2Kxxt−js(x−ūt))

=
1√
2π

∞∫
−∞

e
−{
�

s(Kxxt)1/2− j(x−ūt)2

2(Kxxt)1/2

�2

− (x−ūt)2

4Kxxt
}

=
c

1
2
o

2(πKxxt)
1
2

e
−(x−ūt)2

4Kxxt

The same solution holds for computing the concentration in the y-direction, replacing

x with y, ū with v̄ and Kxx with Kyy. This results in the following equation for

computing the mean concentration of a species at a position (x, y) after a time t

given an initial concentration of co,

< c(x, y, t) > =
co

4πt(KxxKyy)
1
2

e
− (x−ūt)2

4Kxxt
− (y−v̄t)2

4Kyyt (4.9)

Because of the random nature of atmospheric motions, the distribution of a concen-

tration can never be predicted with absolute certainty. Although there is an equation

for turbulent diffusion, a single mathematical model cannot accurately compute con-

centrations over a wide range of conditions. The resulting Gaussian solution which

involves diffusion plus transport by a wind field is valid in the situation where the

release is embedded in a field in which turbulent eddies are small relative to the puff.

See Figure 4-3(a).

Dynamic and measurement models

Equations 4.10 and 4.11 describe the dynamic model in the case where the mean

wind field (the primary cause for transport) is known. In practice this quantity

must be estimated from, for example, a set of separate anemometer measurements.

This estimation process itself represents some complexity in determining how to fuse

the wind field measurements. Furthermore, uncertainty in the wind field results in
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Figure 4-3: Dispersion of a puff of material when: (a) turbulent eddies are smaller
than the puff, (b) turbulent eddies are larger than the puff, and (c) turbulent eddies
are of comparable size to the puff.

a nonlinear dynamical system. In this chapter we develop the inference procedure

assuming the mean wind field is known at each time step. In Section 4.2 we relax

this assumption and investigate the impact of an incorrect mean wind field. The

primary advantage of presuming a known wind field is that the dynamical model

remains linear allowing for a computationally efficient inference procedure. At issue,

addressed empirically, is the impact on estimation performance when this assumption

is incorrect. More specifically, we address how much deviation from the assumed wind

field in terms of bias and variance can be tolerated and still yield acceptable estimation

performance.

The propagation model is a point source Gaussian puff model (see [26]) in 2D,

thus there is no reflection or absorption of particles. Effectively, the formula results

in Gaussian diffusion, the variance of which is determined by a diffusion coefficient,

biased by the mean wind field. This Gaussian kernel is formed for every cell based

on the given wind vector and distributes the particles accordingly. The total mean

particle concentration mapping, A(t;Vw), is the the sum of the new concentration
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maps from each cell. Note that this formulation still allows for time-varying wind

fields. The system equations for the ambient case (i.e. no release) are given by:

x(t+ 1) = A(t;Vw)x(t) + w(t) (4.10)

y(t) = C(t)x(t) + v(t) (4.11)

where x(t) is the vector of cell particle concentrations, A(t;Vw) is the matrix of biased

diffusion coefficients parameterized by the wind field Vw, w(t) is the process noise,

v(t) is the measurement noise, and C(t) is a matrix relating the state to the sensor

measurements y(t). The process noise and measurement noise are assumed to be

Gaussian and independent of each other over all time.

4.1.3 Modeling localized releases

While Equations 4.10 and 4.11 capture the ambient background conditions, they are

not sufficient for reliably modeling a localized release. Releases are incorporated as

an abrupt change to the dynamical system as in [29]. The advantage to this approach

is that it allows one to simultaneously model a release as a localized event in time

and space while capturing the persistent effects of the release over time. As we shall

see, this leads to an efficient hypothesis testing approach. The equations presented

in this section were rederived from [29].

Equations 4.10 and 4.11 are modified to account for an abrupt state change (a

release in cell i at time φ) as follows:

x(t+ 1) = A(t)x(t) + w(t) + βfi(t, φ) (4.12)

where fi(t, φ) represents an impulse of particles in cell i at time φ, while β represents

the strength of the release (e.g. number or volume of particles).

The assumed linearity of the system allows us to decompose Equations 4.12 and

4.11 into two terms. The first term xo(t) is related to the background process while the

second γi(t, φ) captures the persistent effect of the release fi(t, φ). This decomposition
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is expressed as:

x(t) = x0(t) + βγi(t, φ) (4.13)

y(t) = C(t)x0(t) + v(t) + βC(t)γi(t, φ) (4.14)

The utility of the decomposition is that the problem reduces to one of detection in

correlated noise (i.e. xo(t)) performed in parallel for each cell. The detection for-

mulations are greatly simplified by whitening the data and calculating the signature

ρi(t, φ) of γi(t, φ) once it has been passed through the whitening filter yielding. Be-

cause the model is linear and the noise processes are Gaussian, a Kalman filter can

be used to whiten the data. In this case, it yields the innovations sequence:

ν(t) = ν0(t) + βρi(t, φ) (4.15)

Due to the additive form of the model the filter is designed assuming there is no

abrupt change. The standard Kalman filtering equations are as follows:

x̂(t|t) = A(t)x̂(t|t− 1) +K(t)ν(t)

x̂(t+ 1|t) = A(t)x̂(t|t)

ν(t) = y(t)− C(t)x̂(t|t− 1)

P (t+ 1|t) = A(t)
(
P (t|t− 1)−

K(t)C(t)P (t|t− 1)
)
AT (t) +Q(t)

V (t) = C(t)P (t|t− 1)CT (t) +R(t)

K(t) = P (t|t− 1)CT (t)V −1(t)

Where, P (t+1|t) is the error covariance at time t+1 given sensor measurements up to

time t, K(t) is the Kalman gain, and V (t) is the covariance of the residual ν(t). The

state estimate of the whole system at any time is then the sum of the estimate due

to xo(t) (x̂0(t|t) and x̂0(t|t − 1)), and the signature of γi(t, φ) (εi(t, φ) and µi(t, φ)).
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The Kalman filter state estimate can be decomposed similarly:

x̂(t|t) = x̂0(t|t) + εi(t, φ) (4.16)

x̂(t|t− 1) = x̂0(t|t− 1) + µi(t, φ) (4.17)

Taking β = 1, the state of γi(t, φ) evolves as in equation 4.18. The resulting estimates

of the deterministic unknown γi(t, φ) are given by Equations 4.20-4.22.

γi(t+ 1) = A(t)γi(t) + fi(t, φ) (4.18)

yγ(t) = C(t)γi(t, φ) (4.19)

µi(t+ 1, φ) = A(t)εi(t, φ) (4.20)

εi(t, φ) = µi(t, φ) +K(t)[yγ(t)− C(t)µi(t, φ)]

= µi(t, φ) +

K(t)C(t)[γi(t, φ)− µi(t, φ)] (4.21)

ρi(t, φ) = yγ(t)− C(t)µi(t, φ)

= C(t)[γi(t, φ)− µi(t, φ)] (4.22)

where ρi(t, φ) is the desired signature of γi(t, φ) after it has been passed through the

Kalman whitening filter.

4.1.4 Cell hypothesis testing framework

While the preceding framework has simplified the dynamical model we are still left

with the task of testing various release hypotheses enumerated over space (cell index)

and time. Additionally, the model is parameterized by the unknown release amount β.

We address this issue using a Generalized Likelihood Ratio (GLR) approach allowing

us to formulate and analyze a set of enumerated hypotheses which both detect and

localize a release.

Referring to Equation 4.15 and assuming that β is known for the moment, we can

construct an indexed set of hypotheses. The null hypothesis, H0, indicates no release
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while the alternative hypotheses, Hi,φ, indicates an event in cell i occurring at time

φ. Note that prior to time φ both the null and alternative hypotheses are identical.

H0 : ν(t) = ν0(t) (4.23)

Hi,φ : ν(t) = βρi(t, φ) + ν0(t) (4.24)

It is well known [28] that the sufficient statistics for this particular hypothesis test

are the correlation between the signal ρi(t, φ) and the output ν(t),

di(t, φ) =
t∑

τ=φ

ρT
i (τ, φ)V −1(τ)ν(τ) (4.25)

and the energy of the signal

ai(t, φ) =
t∑

τ=φ

ρT
i (τ, φ)V −1(τ)ρi(τ, φ) (4.26)

resulting in a log-likelihood of

li(t, φ) = βdi(t, φ)− 1

2
β2ai(t, φ) (4.27)

for the hypothesis Hi,φ versus H0 given sensor measurements up to time t. The

derivation of these standard results is shown Appendix A.

Under the assumption of there being one and only one release, the number of

hypotheses grows linearly with time. The resulting hypothesis tree after three time

steps is shown in Figure 4-4. Because of the growing size of the tree, in practice a

sliding window is used to implement the inference algorithm. This is well justified by

two related issues. The first is that it takes some time for releases to propagate to the

nearest sensor. The second is that after a period of time, additional measurements

do not contribute significantly to the probability of a detection in a given cell at a

specific time. Therefore, there is little need to look further back in time. Specifically,

the window enforces that only hypotheses of a release occurring a maximum of M
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timesteps in the past are considered.

Figure 4-4: Hypothesis tree for a region with n cells at time step 3. Hypothesis hct

represents a release in cell c at time t.

4.1.5 Estimating the release amount β

In a GLR approach [25, 28], one substitutes the Maximum-Likelihood esimate of β

for each hypothesis. Conditioned on hypothesis Hi,φ, di(t, φ) is Gaussian with mean

βai(t, φ) and variance ai(t, φ) (see Appendix A) giving an alternative expression for

Equation 4.25 as

di(t, φ) = βai(t, φ) + ζi(t, φ) (4.28)

where ζi(t, φ) is a zero-mean Gaussian with variance ai(t, φ). Consequently, the ML

estimate of β is:

β̂i(t, φ) =
di(t, φ)

ai(t, φ)
(4.29)

and the resulting log-likelihood ratio is:

li(t, φ) = β̂i(t, φ)di(t, φ)− 1

2
β̂i(t, φ)2ai(t, φ) (4.30)

=
1

2

d2
i (t, φ)

ai(t, φ)
(4.31)
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If one takes φ̂ and î to be the values that maximize li(t, φ) and define

l̂i(t, φ̂) , max
i,φ

li (t, φ) (4.32)

and denotes H1 as the hypothesis that a release has occurred regardless of time or

location, the likelihood ratio test for detection is simply

l̂i(t, φ̂) ≷ η (4.33)

where the value of η is set using Neyman-Pearson criterion to specify a fixed proba-

bility of false alarm, PF .

4.1.6 Probability of detection

The probability distribution of an individual li(t, φ) conditioned on H0, p(l|H0) is a

chi-squared distribution with 1 degree of freedom (see Appendix A). Equations for

the probability of false alarm and probability of detection (given a specific location,

time, and amount) are

PF =

∫ ∞

η

p(l|H0)dl (4.34)

PD(β, φ, i) =

∫ ∞

η

p(l|H1, β, φ, i)dl (4.35)

In this case, hypotheses are being tested in parallel, so in practice due to the maxi-

mization function in Equation 4.32 the threshold is set empirically.

4.1.7 Bounds on probability of false alarm

Because the application considered in [29] is a M-ary hypothesis test rather than one

of detecting any alternative hypothesis, there is no maximization over the likelihood

ratio. In this section we extend the results presented in [29] by deriving bounds on

the probability of false alarm in the case where we consider the detection problem

described by Equation 4.32. With the likelihood ratio as defined in Equation 4.31,
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the ratio test of Equation 4.33 can be rewritten as,

max
(i,φ)

(
|di(t, φ)|√
ai(t, φ)

)
≷
√
η (4.36)

where di(t, φ) and ai(t, φ) are as previously defined. Let yi(t, φ) = di(t,φ)√
ai(t,φ)

. The

probability of false alarm, PF , is given by,

PF = Pr(∃{(yi(t, φ) >
√
η) ∪ (−yi(t, φ) >

√
η)}|H0)

≤ Pr(∃(yi(t, φ) >
√
η)|H0) + Pr(∃(−yi(t, φ) >

√
η)|H0) (4.37)

PF ≥ max{Pr(∃(yi(t, φ) >
√
η)|H0), P r(∃(−yi(t, φ) >

√
η)|H0)} (4.38)

α ≤ PF ≤ α+ δ (4.39)

where α = max{Pr(∃yi(t, φ) >
√
η|H0), P r(∃−yi(t, φ) >

√
η|H0)} and γ = min{Pr(∃yi(t, φ) >

√
η|H0), P r(∃ − yi(t, φ) >

√
η|H0)}.

Each di(t, φ) has a Gaussian distribution, namely,

di(t, φ) =

 N (0, ai(t, φ)) : H0

N (βai(t, φ), ai(t, φ)) : Hi,φ

Because ai(t, φ) is a deterministic quantity, yi(t, φ) is also distributed as a Gaussian.

Conditioned on the null hypothesis, the mean is given by E[yi(t, φ)|H0] = 0. Similarly,

yi(t, φ)yj(t, θ) =
di(t, φ)dj(t, θ)√
ai(t, φ)aj(t, θ)

E[yi(t, φ)yj(t, θ)] =
aij(t, φ, θ)√
ai(t, φ)aj(t, θ)

aij(t, φ, θ) = E[di(t, φ)dj(t, θ)] =
t∑

τ=max(φ,θ)

ρT
i V

−1ρj

R = cov(y
¯
(t)) = [E[yi(t, φ)yj(t, θ)]]ij

Thus, y
¯
, conditioned on H0, is distributed as N (0

¯
, R).
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Although the above bounds are valid, they are challenging to compute given that

each ai(t, φ) is unique to the wind field present between times φ and t. Therefore,

the threshold used in this thesis is determined empirically through Monte Carlo sim-

ulations (sample size of 1500) of background conditions in the four and 16 sensor

configurations.

4.1.8 Approximations

There are a few key approximations used to simplify the current problem. Firstly, in

order to formulate this problem in terms of a Kalman filter, the mean wind field is

taken as a known parameter so that the dynamic model is linear and both the dynamic

uncertainty and measurement noise are assumed to be white Gaussian processes.

Secondly, it is assumed that there is one and only one release. Also, this release is

an impulse of particles at the center of a given cell. Another significant simplification

is the fact that analysis of the environment is constrained to two dimensions rather

than three.

The easiest alteration in these assumptions is to work in 3D. This would drastically

increase the state dimension, but would be feasible with enough computational power.

Allowing a uniform release over some time frame rather than an impulse of par-

ticles would change the formulation by also having an unknown time at which the

abrupt change ends. Having multiple releases of unknown and possibly different sizes

would drastically increase the hypothesis space as well. Both of these relaxing of

constraints would greatly complicate the formulation.

Because detection is the primary objective and localization in time and space

is secondary, an appropriate question to ask is whether the simplified system (as

outlined by the approximations above) can perform well in terms of detectability when

the assumptions do not hold in the data but are still implemented in the inference

procedure.
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4.2 Empirical Results

We present a series of experiments in which we examine the utility of using multiple

sensors. The first set of experiments utilize a known mean wind field, specifically

no transport term, to characterize probability of detection, time to detection, and

localization in time and space as a function of the number of sensors used. In the

second set of experiments, a sequence of increasing wind fields are incorporated into

the dynamical model, but not into the inference procedure. In the third set of ex-

periments, noise is generated on the mean wind field provided to the simulation, but

the inference procedure only uses mean wind field. The purpose of the second and

third set of experiments is to examine the utility of the inference procedure as the

model deviates from that assumed by the inference procedure. Detection probabili-

ties for the 4 and 16 sensor configurations are examined and compared as a function

of the wind field. In addition, localization performance is examined for these model

mismatch scenarios.

4.2.1 Simulation parameters

In order to have symmetry and eliminate extraneous variables, we consider the case

where the release is in the center of a room populated with sensors as given in Figure

4-2. The coordinates of the sensors shown in this figure are relative to a 13x13 cell

area of interest. However, to reduce edge effects, the data is simulated over an area

of 25x25 cells. A sensor is assumed to observe the particle concentration throughout

the entire cell in which it is located with a measurement noise standard deviation of

10 particles per cell area.

The dynamics of the particle concentration in every cell is propagated using a

Gaussian kernel with a diffusion coefficient of 0.5. The process noise standard de-

viation is taken to be 100 particles per cell area. For Sections 4.2.2 and 4.2.3, we

restrict ourselves to a pure diffusion model in order to avoid the effects of wind which

could blow the particles towards or away from the nearest sensor. In the case where

there is wind, the utility of having multiple sensors to better cover the region becomes
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apparent. In Section 4.2.4, simulations were run for increasing wind biases. However,

the wind bias in the truth model was not incorporated into the inference model which

allows us to analyze this model inaccuracy. In Section 4.2.5, simulations were run for

the model mismatch case of temporally and spatially white noise on the mean wind

field of the simulation data, while the inference model only used the known mean

wind field.

For every release amount and sensor configuration scenario, 100 Monte Carlo

simulations were performed.

The size of the sliding window, M, was determined to be 14 time steps by analyzing

the minimum time from the onset of the release by which the accrual of additional

information was insignificant in the case of pure diffusion. In a sensor network which

is distributed as a regular grid, like in the 16 sensor configuration used in this thesis,

the pure diffusion scenario will be a worst case analysis because any wind would blow

particles more rapidly towards a sensor.

The log-likelihood ratio threshhold was determined experimentally to achieve a

false alarm rate of 0.01 on 1,500 Monte Carlo simulations under benign conditions

(i.e. no release) for the four and 16 sensor configurations. The values are 9.55 and

10.85, respectively. These thresholds were used in all experiments conducted.

4.2.2 Detectability

Figure 4-8(a) shows the number of detections achieved out of 100 simulations as a

function of release magnitude for various sensor configurations. The figure demon-

strates that significant gains are made in detectability of small release amounts going

from one to four sensors while there is only marginal improvement from four to 16.

For a sufficient release amount, all sensor configurations are able to reliably detect.

It is important to note that in all configurations, the release location was central

within the four sensors in Figure 4-2. Hence, the distance to the nearest sensor is

identical in all cases. The reason for the insignificant increase between four and 16

sensors in Figure 4-8 is that under pure diffusion with a release in the center, at least

four sensors will see the release in both configurations. These four sensors can provide

44



time step = 1

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

time step = 16

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

time step = 17

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

time step = 18

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

time step = 19

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

time step = 20

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

time step = 21

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

time step = 22

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

time step = 23

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

time step = 24

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

time step = 25

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

time step = 26

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

time step = 27

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

time step = 28

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

time step = 29

5 10 15 20 25

5

10

15

20

25

1000

2000

3000

4000

5000

6000

7000

8000

9000

Figure 4-5: Screenshots of a simulation of an aerosol release. The red ’*’ indicates
sensor locations in the 16 sensor configuration. Parameters: release amount = 1e5
particles; release time = 16; release location = (13,13); wx = 0; wy =0; standard
deviation of dynamic uncertainty = 100 particles per cell area; standard deviation of
measurement noise = 10 particles per cell area.
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Figure 4-6: Screenshots of a simulation of an aerosol release with a wind bias. The
red ’*’ indicates sensor locations in the 16 sensor configuration. Parameters: release
amount = 1e5 particles; release time = 16; release location = (13,13); wx = 1; wy
=0; standard deviation of dynamic uncertainty = 100 particles per cell area; standard
deviation of measurement noise = 10 particles per cell area.
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Figure 4-7: Screenshots of a simulation of an aerosol release with wind field noise.
The red ’*’ indicates sensor locations in the 16 sensor configuration. Parameters:
release amount = 1e5 particles; release time = 16; release location = (13,13); wx
= 0; wy =0; standard deviation of dynamic uncertainty = 100 particles per cell
area; standard deviation of measurement noise = 10 particles per cell area; standard
deviation of wind vector uncertainty = 0.3162.
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sufficient evidence of a release earlier and more often than one or two sensors which

have not aggregated enough information. With a wind bias, it is likely that the 16

sensor configuration will have better performance if more sensors see the release than

in the four sensor case. In addition, a release in a random location is likely to be

further from the nearest sensor in sparser configurations. In such cases, the benefit

of using multiple sensors will become clear.

The corresponding time to first detection for the same experiment is plotted in

Figure 4-8(b). The figure shows the time of detection of a release occuring at time

index 16. For a small release amount, significant performance is obtained using a

larger number of sensors. The convergence for large release amounts is indicative of

the time required for the release to propagate to the nearest sensor and is purely a

function of the distance between the release and the sensor and thus sensor density.
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Figure 4-8: (a) Number of detections per 100 simulation data sets and (b) time to
first detection versus release amount. Actual release time was 16 seconds.

4.2.3 Localization manifolds

In Figure 4-9 we examine one time slice of the hypothesis space (t=30). At any given

time, there are multiple hypotheses of releases in a given cell, each differentiated by

various times of releases. The maximum likelihood ratio of all hypotheses for each cell

is plotted for various sensor configurations. Each hypothesis has an associated time

of release and maximum likelihood release amount. The real sensor measurements

provided to the inference algorithm for the four sensor case is plotted in the lower
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right-hand figure. For each of the other sensor configurations, the measurements

provided were a subset of those provided in the four sensor case.

The diagrams give an illustration of the degree of localizability achievable with

different sensor configurations. In the one sensor case, the manifold is approximately

circular indicating that the location of the release cannot be distinguished along a

ring around the sensor. The two sensor and four sensor cases provide progressively

better localization. As expected, two sensors have difficulty distinguishing along a

line while four sensors are able to localize to a point. The degree of shading in the

plots indicates the likelihood ratio value and hence the detection probability.

Note that the symmetry seen in Figure 4-9 is due to the combination of the release

being in the center of the sensor configurations and the model being pure diffusion.

Under wind or off center release locations, the localization manifolds would appear

differently.
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Figure 4-9: Maximum likelihood ratio at every cell in region of interest for 1,2, and
4 sensor configuration. The measurement sequence for the 4 sensor configuration
sequence is also shown.
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Figure 4-10: (a) Map of ML estimate of the log release amount associated with
maximum LR hypothesis, 4 sensors. (b) Map of time of release associated with
maximum LR hypothesis, 4 sensors

Figure 4-10 shows the release amount and time of release manifolds correspond-

ing to the 4 sensor configuration plot in Figure 4-9. That is to say, for each cell’s

maximum likelihood ratio hypothesis, the corresponding hypothesis time and release

amount are plotted in Figure 4-10. As expected, hypothesized releases further from

the true release location had to occur earlier in time and be of a larger magnitude

in order to appear similar to the actual sensor measurements. Plot (b) hides some

of this information because at the time slice examined, only hypotheses of a release

a maximum of 14 time steps in the past are considered. Thus, an artificial floor on

time of release is created.

Figure 4-11 shows the localization accuracy achieved using four and 16 sensors

for various release amounts. The circles illustrate the mean and covariance of the

hypothesized location of the detected release. The set of plots on the left are estimates

produced at the time of first detection while the plots on the right are estimates after

the system has accrued information until the detected hypothesis is ”almost” outside

the hypothesis window. We define ”almost” to be a fixed lag parameter, n, which

enforces that we stop accruing information when the window in which hypotheses of

a release n time steps before the time corresponding to the initial best hypothesis are

still considered. This is done because after the added time of gathering information, a

hypothesis at an earlier time step may be better than the initially detected hypothesis.

The main idea of this version of the algorithm is to alarm at the time of first detection
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and then wait an allotted period of time until producing localization results. The

acceptable amount of time to wait is application dependent. Thus, the plots in

Figure 4-11 are indicative of the bounds on localization performance.

The trend indicates that larger release amounts can be localized better and re-

gardless of release amount, 16 sensors outperform four sensors. The one and two

sensor cases were excluded due to the poor localization results. For smaller release

amounts, 16 sensors do not gain much by waiting to accrue additional information.

However, both sensor configurations achieve significantly better localization in the

case of larger release amounts. These results can be explained by the fact that the

signal to noise ratio at later time steps or further from the release location is lower.

Thus, the added information accrued by the outlying sensors in the 16 sensor case for

small releases will be negligible.

In Figure 4-12, histograms of the time from release until detection are plotted for

the various release amount scenarios for four and 16 sensors. Not surprisingly, for

larger release amounts the mean and variance of the time to detection is smaller than

that of small release amounts. Because the threshold in the 16 sensor case is different

than in the four sensor configuration, we see in the 2.5e4 release amount scenario

that it is possible for 16 sensors to not detect a release when 4 sensors can. This is

purely a result of the fact that in order to maintain a PF = 0.01, the likelihood ratio

threshold is more conservative in the 16 sensor case and in some outlying cases this

will result in lower detection though it is not the overall trend.

4.2.4 Effect of unmodeled wind bias

To analyze the effects of errors in the assumed known wind field, data produced under

various wind biases was provided to the inference algorithm. The wind was always

taken to be straight to the right (as defined in the coordinate system of Figure 4-6)

such that it tends to transport the release between the two right-hand sensors in the

four sensor configuration.

Figure 4-13 shows the probability of detection for the 4 and 16 sensor configura-

tions as a function of increasing wind bias. The release amount for these experiments
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Figure 4-11: Mean and covariance of localization for various release amounts con-
ditioned on first detection based on information (left) at time of first detection and
(right) accrued until the hypothesis is almost out of the window. Dashed lines = 16
sensor configuration, solid lines = 4 sensor configuration.
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Figure 4-12: Time to detection histograms for various release amounts. (Left) 4
sensors and (right) 16 sensors. No detection was assigned a value of 20 seconds.
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was set to 1e5 particles. Given that the dynamical model does not explain the disper-

sion of particles very well, we conclude that detection is explained by several factors.

The first is that the release amount is sufficiently large that only a few sensors are

necessary to detect the release. The second is that diffusion is sufficiently high that

some sensors detect particles before the material is blown clear of the network. Fi-

nally the detected particle concentrations are sufficiently high over a short period of

time to declare a detection under the pure diffusion model. It is likely that lower

release amounts would yield lower detection probabilities.

The 16 sensor network clearly outperforms the four sensor configuration because

as the strength of the wind bias increases, it becomes less likely that any of the four

sensors see the release because transport is overwhelming diffusion. By the time the

release has arrived at the added layer of sensors in the 16 sensor configuration, it

has diffused enough that a set of sensors are able to detect the release. With higher

wind biases, the performance of the 16 sensor network would degrade and another

layer of sensors would be needed to adequately cover the region. See Figure 4-6 for a

visualization of the above description.

Localization estimates for this data, as expected, degrade as the wind bias in-

creases. As Figure 4-14 depicts, for a small wind bias, the localization performances

are similar to those in the matched model case. For all larger wind biases, the 16

sensor configuration suffers in localization performance by accruing more information

while the four sensor configuration marginally benefits by waiting. This is because

in the 16 sensor configuration, more sensors are accruing mismatched information

and thus the sensor network has less evidence for the correct release location. The

plots of the two largest wind biases (the only ones where fours sensors outperform

16 sensors at first detection) are challenging to analyze since there are very few de-

tections in the four sensor configuration (see Figure 4-13). However, we can examine

the 16 sensor configuration which has full detection and see that the trend of worse

localization with increased wind bias still holds. These results highlight the point

that localization performance suffers more quickly than detection performance when

the wind field is mismatched to the inference procedure.
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Figure 4-13: Probability of detection versus strength of x-direction wind bias

4.2.5 Effect of unmodeled wind variance

In addition to our model suffering from an unknown wind bias, another plausible

error is an unmodeled variance on the perceived known wind field. To analyze this

type of error, data was produced under various standard deviations of spatially and

temporally white Gaussian noise on a known underlying mean wind field. The infer-

ence algorithm shared the knowledge of the mean wind field, but uncertainty on this

field was not modeled.

For all variance values tested (0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, 1),

there was a 100% detection rate based on 100 trials. All the trials were run with a

release amount of 1e5 particles. As in the case of an unmodeled wind bias, it is likely

that lower release amounts would yield lower detection probabilities for this scenario

of model mismatch.

Localization estimates for these data sets are shown in Figure 4-15. Comparing

the smallest wind variance plots with those of the corresponding 1e5 release amount

plots of Figure 4-11, one can see the degradation in localization performance caused

by the model mismatch. Performance degrades further with increased unmodeled

uncertainty on the wind field. In all cases, accruing more information provides better

localization results. As with the matched model, in almost all cases the 16 sensor con-

figuration outperforms the 4 sensor configuration. Only in the high variance situation
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Figure 4-14: Mean and covariance of localization for various strengths of wind bias
conditioned on first detection based on information (left) at time of first detection
and (right) accrued until the hypothesis is almost out of the window. Dashed lines =
16 sensor configuration, solid lines = 4 sensor configuration.
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where information is accrued does this not hold. Here, both sensor configurations per-

form approximately equally. Comparing these results with those from an unmodeled

wind bias, we see that the trends for randomness on the wind field better mirror those

of the nominal matched case. This is because the disturbances on the propagation of

particle concentrations caused by noise on the wind field are more similar to the type

of errors modeled in the dynamic equation than the effects caused by a bias on the

wind field.

4.3 Discussion

We have presented a Bayesian state estimation approach to the problem of detection

and localization of an airborne biological release. Our approach allows for integration

of measurements from multiple sensors over time. We have demonstrated the utility

of this formulation and characterized the performance of a set of sensor configurations

with regard to detection, time to detection and localization performance. We have also

investigated some aspects of model mismatch due to incorrect wind field assumptions.

From the experiments conducted, we see that model mismatch impacts localization

performance more than detectability.

The formulation presented provides a framework for answering questions such as

the interaction between release amount, release location, sensor density, and sensor

placement. The appropriateness of this formulation for a given application depends on

the validity of the modeling assumptions we have made. These assumptions include

that the mean wind field is deterministically known and that the dynamic model can

be described as linear when conditioned on the wind field. The linearity of a diffusion

plus transport dynamic model makes this framework suitable in many scenarios.

Our approach integrates sensor measurements at a centralized processor. By ar-

ranging sensor nodes into groups, our approach provides the basic building blocks for

a distributed processing configuration. The issues of how this arrangement should

be conducted are a topic of future research. In addition, it is clear that knowing the

model parameters is a critical factor in these approaches. Methods from machine
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Figure 4-15: Mean and covariance of localization for various levels of wind field un-
certainty conditioned on first detection based on information (left) at time of first de-
tection and (right) accrued until the hypothesis is almost out of the window. Dashed
lines = 16 sensor configuration, solid lines = 4 sensor configuration.
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learning may provide approaches to learning the underlying model parameters so as

to reduce sensitivity to mismatch.
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Chapter 5

Wavelet Feature Extraction

As a precursor to any classification of release and background events, it is important to

extract features from the sensor measurements which are salient to the discrimination

process. These features are derived from all sensor measurements. However, for the

purpose of this thesis we only address the question of determining important aspects

of particle concentration measurements.

It is desirable for the features to include information regarding the timing and rates

of particle concentration changes. The wavelet domain can provide an appropriate

basis in such a case because it provides both time and frequency information. This is

in contrast with the Fourier domain which only provides frequency information and

thus cannot be used to localize an event in time. In this thesis, the wavelet transform

is used to reduce the dimensionality of the data through both signal conditioning

(‘denoising’) and as a feature basis.

For the purpose of this thesis, we will analyze two types of signals and judge

feature validity on the ability to distinguish between these events. One signal will be

called ‘Type I’ and is characterized by having a fast, sharp peak of high amplitude.

This signal was generated by a mock event in which a plume of dust was released.

The other signal, ‘Type II’, is a low amplitude, long trend background event. This

signal is characteristic of the type of background events present in the environment

being monitored under benign conditions. See Figure 5-1 for time series plots of the

two types of signals.
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Figure 5-1: Plots of (a) Type I and (b) Type II signals in amplitude versus time form.
Note that the Type I plot has 100 samples while the Type II has 20,000.

In order to accurately classify signals in time using a wavelet domain feature

basis, it is important for these features to be shift invariant. This means that a signal

shifted in time should have approximately the same feature associated with it as the

unshifted signal. Section 5.1 outlines a framework for the problem and discusses the

analytical tools that will be used. Detailed theoretical information about the tools

used is described in Section 5.2. The results are presented in Section 5.3 and Section

5.4 provides a brief conclusion and discussion of results.

5.1 Framework

5.1.1 The wavelet transform

A wavelet transform provides efficient localization of signal information in both time

and frequency, which is very important in this application. This is in contrast with a

Fourier series, for example, which only provides information about frequency. When

examining signals versus time, we not only care about how quickly the signal changes,

but also when the change occurs.

A central framework of a wavelet transform is multiresolution analysis [20]. The

theory of multiresolution analysis is very similar to that of filter banks. At each level,
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the mother wavelet is scaled and convolved with the signal being analyzed to give

information in a certain frequency subband. The feature selection takes place in this

transformed domain. Some coefficients or subbands hold more pertinent information

than others and thus those are the ones analyzed as the features to represent the

signal.

Whereas with the Fourier series sinusoids are the chosen basis functions, in wavelet

analysis one can specify the desired properties of the signal decomposition and then

derive the appropriate basis functions. This allows for efficient representation of

signals in the best basis for the application. Best basis pursuit is a topic not explored

in this thesis.

5.1.2 Dual Tree Complex Wavelet Transform

The Discrete Wavelet Transform (DWT) is the most general and widely used wavelet

tranform algorithm. However, although the DWT is a good approach in terms of

representation of the signal, it is not a shift invariant transform. Various strictly shift

invariant transforms have been proposed, but at the cost of high redundancy and

computational complexity. Kingsbury proposes what is called the Dual Tree Complex

Wavelet Transform (DT CWT) as an approximately shift invariant transform with

only limited redundancy and perfect reconstruction [17]. For this application, the

large data sets make low redundancy an important issue. In addition, it may prove to

be important to reconstruct a denoised version of the signal, so perfect reconstruction

is also a significant benefit. For these reasons, the DT CWT transform is used as the

chosen wavelet basis. The properties of the DT CWT transform are explored in more

detail in Section 5.2.3.

5.1.3 Wavelet Feature Extraction

Wavelet transforms do not provide dimensionality reduction in and of themselves.

Rather, once in the wavelet domain, certain coefficients must be selected or functions

on the coefficients must be preformed to reduce the amount of information to only
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that which is pertinent to the classification problem.

Denoising

Like any real data, the data from the sensors in this application are noisy. The

wavelet coefficients that are primarily due to the noise and not the underlying signal

tells us very little about the environment condition and can be eliminated without

loss of information. Wavelet transforms provide a simple way in which to perform

denoising. The wavelet transform compresses the l2 energy of the signal into a few

large coefficients. Because the noise is not amplified through this transform if the

wavelet basis is orthonormal, it is possible to threshold the coefficients in the wavelet

domain to eliminate those due to noise. The reconstruction of the signal from the

thresholded coefficients provides an estimate of the true signal in the absence of noise.

A shift invariant denoising technique is established by applying the denoising process

to the DT CWT. The reduced set of coefficients after denoising form a starting point

for the dimensionality reduction.

Subband energy

Because the general trend of the Type I and Type II signals vary significantly in

frequency content, especially after the denoising process, the energy of coefficients in

the subbands of the DT CWT decomposition vary greatly. Therefore, subband energy

may be an appropriate shift invariant feature in terms of a class separability measure.

Using the energy in a subband as opposed to sets of coefficients, for example, also

drastically reduces the dimensionality of the feature vector.

Derivative as another feature

In addition to the subband energy, it may prove to be important in the classification

stage to have information about the derivative of the signal. Wavelets can provide a

useful way to perform the derivative by providing some smoothing which is important

with the type of data being analyzed.
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5.2 Methodological Details

The following section elaborates on the technical details of the tools previously de-

scribed. Sections through 5.2.4 describe standard wavelet transform results which

can be found in [6, 27] or the specific papers referenced.

5.2.1 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is very useful in compression and denoising

and has proven to be superior over the Discrete Cosine Transform (DCT) and the

Discrete Fourier Transform (DFT) in many applications. Performing a DWT trans-

form on a signal is equivalent to passing the input signal through a bank of bandpass

filters, each with an impulse response that is a scaled version of the mother wavelet.

The output signals are decimated so that the number of input samples is equivalent

to the number of output samples. This is the filter bank interpretation of the DWT.

A more formal definition of the DWT is that any signal g(t) can be decomposed into

approximation coefficients c(k) and detail coefficients d(k) by using a basis consisting

of a scaling function, φ(t), and wavelet, ψ(t), according to:

g(t) =
∑

k

cjo(k)2
jo
2 ϕ(2jot− k) +

∑
k

∞∑
j=jo

dj(k)2
j
2ψ(2jt− k)

=
∑

k

cjo(k)ϕjo,k(t) +
∑

k

∞∑
j=jo

dj(k)ψj,k(t) (5.1)

The coefficients cj(k) and dj(k) can be found by taking the inner products:

cj(k) = 〈g(t), ϕj,k(t)〉 =

∫
g(t)ϕj,k(t)dt (5.2)

dj(k) = 〈g(t), ψj,k(t)〉 =

∫
g(t)ψj,k(t)dt (5.3)

These formulas create a multiresolution interpretation of the DWT where the en-

tire space of real functions, L2, is the sum of the projection of the signal onto an

approximation space VJ and an infinite number of detail spaces, WJ [6, 27].
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.

L2 = V0 ⊕W0 ⊕W1 ⊕ · · · = VJ ⊕WJ ⊕WJ+1 ⊕ · · ·

VJ+1 = VJ ⊕WJ

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L2

In practice, only a finite decomposition is performed. That is to say, the decomposi-

tion will only represent a projection of the signal onto a given approximation space

VJ :

gJ(t) =
∑

k

cj0(k)ϕj0,k(t) +
∑

k

J∑
j=j0

dj(k)ψj,k(t) (5.4)

In essence, a chosen wavelet is scaled and convolved with the input signal to determine

how closely correlated the wavelet is with any section of the signal. By scaling the

wavelet, one receives information about the frequency content and by shifting the

wavelet one gains insight about time locality. The DWT uses dyadic sampling so

that only a subset of scales and shifted positions of a continuous convolution are

calculated.

The DWT can either be iterated as a single or dual tree. In the case of dual tree

iteration, the transform is referred to as a wavelet packet. When iterated as a single

tree, only the first level approximation signal is further decomposed rather than both

the approximation and detail signal. If the pertinent information about the signal is

held in the lower frequency subbands, it is common to use a single tree.

5.2.2 Perfect reconstruction

Although for the most part we are not concerned about perfect reconstruction (PR) in

the case of wavelet coefficients as a feature basis, a reconstructed denoised signal may

be useful in some other areas of the biodefense application. Below is a brief derivation

of the PR conditions for a filter bank. Figure 5-2 shows a simple decomposition and

reconstruction tree where H0 is the lowpass analysis filter, H1 is the highpass analysis

filter, G0 is the lowpass synthesis filter, and G1 is the highpass synthesis filter.
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Figure 5-2: Single level decomposition of signal X. Y may not equal X even under
PR conditions if U and V are processed in some way before the reconstruction stage.

Using standard linear system relationships, we obtain:

U(z) =
1

2

[
H0(z

1
2 )X(z

1
2 ) +H0(−z

1
2 )X(−z

1
2 )
]

V (z) =
1

2

[
H1(z

1
2 )X(z

1
2 ) +H1(−z

1
2 )X(−z

1
2 )
]

Yl(z) = G0(z) ∗ U(z2) =
1

2
[H0(z)X(z) +H0(−z)X(−z)]G0(z)

Yh(z) = G1(z) ∗ V (z2) =
1

2
[H1(z)X(z) +H1(−z)X(−z)]G1(z)

Y (z) = Yl(z) + Yh(z)

=
1

2
[H0(z)X(z) +H0(−z)X(−z)]G0(z) +

1

2
[H1(z)X(z) +H1(−z)X(−z)]G1(z)

=
1

2
[H0(z)G0(z) +H1(z)G1(z)]X(z) +

1

2
[H0(−z)G0(z) +H1(−z)G1(z)]X(−z)

For perfect reconstruction the aliasing terms must cancel which implies that the

following must be true:

H0(z)G0(x) +H1(z)G1(z) = 2z−l (5.5)

H0(−z)G0(x) +H1(−z)G1(z) = 0 (5.6)

5.2.3 Shift invariant transforms

The wavelet transform has become prevalent in signal compression and image coding

in the past decade. However, only recently has the transform been applied to signal

analysis and reconstruction. This is primarily due to the lack of shift invariance of

the DWT. Shift invariance is especially important in this application because shifted

versions of the same or similar signal should be classified the same as the unshifted
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signal.

DWT lack of shift invariance

Even though the DWT allows for perfect reconstruction, it does not provide shift

invariant reconstructions of the signal at each individual level. For example, if the

input signal x to the system in Figure 5-2 was shifted by one sample, or equivalently

the z-transform was multiplied by z−1, the reconstruction of the lowpass part of y due

to the shifted x is not a shifted version of the lowpass part of y due to the unshifted

x. This is due to the downsampling at every level.

Figure 5-3: Single level decomposition of a shifted version of X. For the DWT, Y l′

and Y h′ are not shifted versions of Y l and Y h (from Figure 5-2)

Referring to Figure 5-3 we can show that Y ′
l is not a shift of Yl and Y ′

h is not a

shift of Yh:

U(z)′ =
1

2
[z−

1
2H0(z

1
2 )X(z

1
2 ) + (−z)

1
2H0(−z

1
2 )X(−z

1
2 )] (5.7)

V (z)′ =
1

2
[z−

1
2H1(z

1
2 )X(z

1
2 ) + (−z)

1
2H1(−z

1
2 )X(−z

1
2 )] (5.8)

Yl(z)
′ = G0(z) ∗ Ũ(z2)

=
1

2
z−1[H0(z)X(z)−H0(−z)X(−z)]G0(z)

6= z−1Yl(z) (5.9)

Yh(z)
′ = G1(z) ∗ Ṽ (z2)

=
1

2
z−1[H1(z)X(z)−H1(−z)X(−z)]G1(z)

6= z−1Yh(z) (5.10)

As the formulas indicate, a negative sign in front of the X(−z) term arises from the

downsampling and upsampling of (−z)−1.
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The shift dependency of the subband reconstructions also implies that the energy

of the subband coefficients will vary depending on input shift. Figure 5-4 shows the

sensitivity of the DWT coefficient energies due to shifts on the input step relative to

the sampling grid.
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Figure 5-4: (a) Step response at level 4 of the Antonini (7,9)-tap wavelet; and (b) its
shift dependence, showing the variation of energy in each level of wavelet coefficients,
for a unit step input as the position of the input step is shifted. The zero lines
(shown dotted) for each level have been offset for clarity. Figure taken from [16] with
permission of the author.

Undecimated DWT

Since the original formulation of the DWT algorithm, various shift invariant trans-

forms have been developed. The simplest method is to compute the DWT for all N

shifts of a signal of length N . However, this requires storing N2 elements and has a

computational complexity of O(N2). Beylkin and others realized that there are only

approximately N*log(N) different coefficient values [6] because the shifts by any odd

number give the same coefficients as the shift by one and the shifts by an even number

give the same coefficients as the unshifted signal [11]. This implies that computing

the DWT and the shift of one at every level gives the total set of coefficients and has

a computational complexity of O(N*log(N)).

Another mathematically identical formulation is that of the algorithme a trous.

This algorithm is explained in the filterbank interpretation. Because the shift depen-
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dency of the DWT arises from the downsampling, the algorithme a trous solves the

shift invariance problem by using an undecimated version of the DWT. To imitate

the sub-sampling, the low-pass filter is upsampled at every level by inserting zeros

between the filter coefficients. Then, the detail coefficients are computed by taking

the difference between two levels of approximation coefficients [11].

Complex Wavelet Transform

Another solution to the shift invariance problem is to use a Complex Wavelet Trans-

form. The input to the first level is the real signal, but the output is complex. Every

level thereafter, both the input and output are complex leading to a redundancy of

only 2:1 in 1D (see Figure 5-5).

Figure 5-5: Block diagram of a 4 level Complex Wavelet Transform. The decimators
have been left out for simplicity. Figure taken from [16] with permission of the author.

The approximately shift invariant properties of the Complex Wavelet Transform

come from the fact that the magnitude of the step response varies slowly with input

shift and only the phase changes rapidly [16]. This keeps the energy of each level of

coefficients from varying greatly with input shift. See Figure 5-6.

Dual Tree Complex Wavelet Transform

Although the Complex Wavelet Transform provides approximate shift invariance,

it does not allow for perfect reconstruction using short support filters in a single

tree. When perfect reconstruction is possible, the filters have poor frequency selective

properties [16]. For this reason, there is still motivation for a new shift invariant

transform.
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Figure 5-6: (a) Step response at level 4 of complex wavelet (a); and (b) its shift
dependence, showing the variation of energy in each level of wavelet coefficient for a
unit step input as the position of the input step is shifted. Figure taken from [16]
with permission of the author.

One solution is the transform developed by Kingsbury called the Dual Tree Com-

plex Wavelet Transform (DT CWT) and is approximately shift invariant with perfect

reconstruction (PR) and limited redundancy [17]. The DT CWT is actually a real

DWT with twice the sampling rate at each level of the tree. To accomplish this, the

DT CWT uses two trees, a and b, for a typical single tree decomposition as shown in

Figure 5-7. At the first level, the delays of the lowpass and highpass filters of tree b

are one sample offset from those of tree a which ensures that after the downsampling

tree a will have the opposite samples of tree b. Below level 1, in order to obtain uni-

form intervals between samples the filter must have a relative half sample delay. In

the synthesis stage, the output from each tree is averaged to obtain the reconstructed

signal.

A transform is deemed to be shift invariant if the signal reconstructed from any

one level of coefficients is free of aliasing. In the case of the dual tree, this means

that if both x001a and x001b, for example, reconstruct to form a signal that is free

of aliasing as well as all other a/b subband pairs, the transform is shift invariant.

To analyze the filter constraints we start by looking at the case in which only the

coefficients from level m are retained. Using the noble identities we can push all

71



Figure 5-7: Analysis tree of the Dual Tree Complex Wavelet Transform (DT CWT).
Each filter samples the signal in such a way as to create approximate shift invariance
with limited redundancy

the downsampling and upsampling stages through the m filters and end up with an

equivalent downsample or upsample of M where M = 2m. The equivalent filters are

given by Ha, Hb, Ga, and Gb where Ha and Hb are either both lowpass or both

bandpass filters from tree a and tree b, respectively. See Figure 5-8.

Figure 5-8: Reconstruction tree from only a subband of coefficients.

For the case in which we are looking only at x001a from Figure 5-7, Ha is given

as follows:

Ha(z) = H0a(z)H00a(z
2)H001a(z

4)

One can similarly construct Hb, Ga, and Gb. For the general case, the z-transform
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of the reconstructed signal, Y(z), is given by:

Y (z) = Ya(z) + Yb(z) =
1

M

M−1∑
k=0

X(W kz)[Ha(W
kz)Ga(z) +Hb(W

kz)Gb(z)]

where W = e
j2π
M .

Only the X(z) component is shift invariant, so for approximate shift invariance we

need:

Ha(W
kz)Ga(z) +Hb(W

kz)Gb(z) ≈ 0 ∀k 6= 0

Referring to Figure 5-9, one sees that only the analysis lowpass filter shifts of k=1,-1

overlap with the synthesis filter. Kingsbury [17] derives a method for almost com-

pletely eliminating aliasing from the filter frequency responses. The solution he pro-

posed to avoid this overlap is to cancel all odd shifts when the two components from

tree a and b are summed. This leads to the following filter lowpass filter constraints:

Hb(z) = z±
M
2 Ha(z) (5.11)

Gb(z) = z∓
M
2 Ga(z) (5.12)

Hb(W
kz)Gb(z) = (−1)kHa(W

kz)Ga(z) (5.13)

The bandpass subband reconstruction is slightly more complicated. The upper pass-

band of the k=-1,-2 bandpass analysis filter shifts overlap with the lower passband

of the synthesis filter while the lower passband of the k=+1,+2 shifts overlap upper

passband of the synthesis filter. The solution is to give tree b filters lower passbands of

opposite polarity and tree apassbands of the same polarity. The bandpass constraints
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result in the following formulations:

Ha(z) = P (z) + P ∗(z) (5.14)

Hb(z) = −j[P (z)− P ∗(z)] (5.15)

Ga(z) = Q(z) +Q∗(z) (5.16)

Gb(z) = −j[Q(z)−Q∗(z)] (5.17)

Ha(W
kz)Ga(z) +Hb(W

kz)D(z) = 2P (W kz)Q(z) + 2P 8(W kz)Q∗(z) (5.18)

Where P (z) and Q(z) are complex filters with single passbands from fs/2M to fs/M

and negligible gain for negative frequencies. The bandpass filter responses for tree

a and tree b should be treated as the real and imaginary parts, respectively, of the

complex filters P (z) for analysis and Q(z) for synthesis.

Figure 5-9 shows the frequency responses of the analysis and synthesis lowpass

and bandpass filters at level 3 for both the DWT and the DT CWT. One can clearly

see the large aliasing of the DWT in plots (a) and (b) while the DT CWT only has

minor aliasing in the bandpass filter as shown in plot (d).

Plots of both the scaling function and wavelet step and frequency responses are

shown in Figure 5-10. When tree a and tree b are considered to be the real and

imaginary components of a complex filter, the DT CWT looks very similar to the

Complex Wavelet Transform. The fact that the magnitude of the filters vary gradually

with input shift means that the energy of the level coefficients is approximately shift

invariant.

From Figure 5-10 one can also see that unlike in the Complex Wavelet Transform

case, the frequency selective properties of the filters are very good according to [16].

The plots in Figure 5-11 show the vast improvement of the DT CWT over the

DWT in terms of shift invariance. A 4-level decomposition was performed on a se-

ries of 16 shifted step functions. Each plot under “wavelets” is the reconstruction

from the detail (bandpass) coefficients at that level. The plot under “scaling func-

tion” is the reconstruction from the approximation (lowpass) coefficients. The DT

CWT reconstructions differ only slightly between the shifted input signals whereas
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Figure 5-9: Frequency responses of analysis and reconstruction filters (from Table 1)
at level 3, showing aliasing terms. Plots (a) and (b) show the responses of the lowpass
and bandpass filters in a single wavelet tree, while (c) and (d) show the equivalent
responses for the dual tree and demonstrate the reduced overlap of the reconstruction
filters with the frequency-shifted (aliased) analysis filters. The horizontal axes are in
units of fs/M where M = 8 for level 3. The reconstruction responses are offset
vertically by -1.5 to avoid confusion. Figure taken from [17] with permission of the
author.
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Figure 5-10: (a) Impulse responses of tree a (red) and tree b (blue) level 2 scaling
function (top) and wavelet (bottom). (b) Frequency response of the level 6 scaling
function (red) and level 1 to 6 wavelets (blue).

the DWT reconstructions demonstrate great variation. It is important to note that

the coefficients themselves are not shift invariant. Rather, the shift invariance of this

transform comes from combining the two tree at every subband. This leads to the ap-

proximate shift invariance of the subband reconstructions. Although the coefficients

are not shift invariant, the magnitudes of the coefficients vary gradually with input

shift because of the complex nature of the filters and thus the energy of a given level

of coefficients is approximately shift invariant as in the Complex Wavelet Transform

case.

5.2.4 Denoising algorithms

There are many wavelet denoising algorithms, but regardless of the technique used,

the basic process involves converting the signal to the wavelet domain, thresholding

coefficients in some manner, and then converting back to the time domain. By elim-

inating most of the wavelet coefficients solely due to noise, an estimate of the signal

in the absence of noise is created.

For any wavelet basis W and signal x with additive noise z, the transformed signal

can be written as:

Wy = Wx+ σWz

If the basis W is orthonormal and the noise is white noise in the time domain, then it

will remain white noise in the wavelet domain. Also, the wavelet transform compresses
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Figure 5-11: Comparison of the approximate shift invariance of the DT CWT (left)
versus the DWT (right) by plotting the wavelet and scaling function components of a
4 level decomposition due to 16 shifted step responses. Figure regenerated according
to [16]

the l2 energy of the signal into a few large coefficients. Assuming that the signal to

noise ratio (SNR) is large enough, the signal coefficients will stick up above the noise.

This leads to the conclusion that simply thresholding the coefficients in the wavelet

domain will eliminate the noise. Reconstructing the signal from the thresholded

coefficients creates an estimate of the original uncorrupted signal.

There are two ways in which to threshold coefficients: hard and soft. Hard thresh-

olding involves merely setting all coefficients with a magnitude less than the threshold

to zero. However, this thresholding method causes artifacts in the reconstructed signal

which are created by the abrupt change in coefficient magnitudes from the threshold

to zero. In applications such as image compression, visual artifacts are significant and

to be avoided. The idea behind soft thresholding is that once the smaller magnitude
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coefficients have been set to zero, the remaining coefficients are scaled so that they

gradually taper to zero. See Figure 5-12 for visualization and formulation of hard

and soft thresholding.

Figure 5-12: Input-output plots of hard and soft thresholding of wavelet coefficients.
The x-axis corresponds to the size of the input coefficient and the y-axis corresponds
to the resulting output size.

Because the primary concern in this application is with the selection of pertinent

wavelet coefficients and not with the visualization of the reconstructed signal, it may

not necessarily be the case that soft thresholding is the appropriate method. Ex-

perimentation with classification results can be used to determine which method is

better. However, when the reconstructed signal is used for taking the derivative, it

is better to have the smoother reconstruction given by soft thresholding. For this

reason, it is likely that the denoising will take place over two stages, one in which

hard thresholding is used to create a feature basis followed by another stage where

the coefficients are tapered to zero to imitate soft thresholding. These coefficients

are the ones used for creating the derivative and appropriate features are selected at

this stage as well. The combined selected features are used as the feature vector. See

Figure 5-13 for a block diagram.

Wavelet Shrinkage

One of the most prominently used methods for determining the denoising threshold is

that of Donoho and Johnstone [9]. There are two ways to implement the thresholding.

The threshold can either be a set value for all the levels of decomposition or a level-
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Figure 5-13: Detailed block diagram of possible feature selection process with both
wavelet denoising and wavelet derivative.

dependent value can be used. The thresholds δ are given by:

δ = σ
√

2log(n) (5.19)

δj = 2σ

√
2log(n)

2J−j
√
n

(5.20)

Where σ = MAD
0.6745

, MAD is the median absoluted deviation of the level 1 detail

coefficients, and n= 2J+1. δj is the level-dependent threshold where J is the number

of levels in the decomposition and j is the current level. Donoho gives the name

“Wavelet Shrinkage” to this denoising technique.

5.2.5 Implementing Wavelet Shrinkage with the DT CWT

It is fairly straightforward to apply the Wavelet Shrinkage algorithm to Kingsbury’s

DT CWT. If the DT CWT coefficients are written in the form: Y (k) = a(k)+j ∗b(k),

and one assumes that the shrinkage is applied equally to both the real and complex

parts of the DT CWT coefficients, then the new coefficients are derived as follows.

The kth complex coefficient is converted into a single real coefficient by converting to

magnitude form. This new set of coefficients is then analyzed as in the DWT case.

That is to say, coefficients with a magnitude less than the threshold are set to zero

while the remaining are rescaled so that they taper to zero. The factor by which

each component of the kth complex coefficient was scaled is given by the ratio of the

magnitude thresholded coefficient over the original magnitude. In formulas, this is
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done as follows:

C(k) =
√
a(k)2 + b(k)2 (5.21)

C ′(k) =
√

(n(k)a(k))2 + (n(k)b(k))2

= n(k)C(k) (5.22)

Y ′(k) = n(k)a(k) + j ∗ n(k)b(k) (5.23)

In these equations, a(k) is the kth coefficient from tree a, b(k) is the kth coefficient from

tree b, C(k) is the magnitude of the original kth coefficient, C ′(k) is the magnitude

of the thresholded coefficient, n(k) is the kth scaling factor, and Y ′(k) is the new

complex coefficient.

5.2.6 Derivatives using wavelets

In addition to properties of the wavelet coefficients (e.g. subband energy), it may be

important to have information about the derivative of the signal for classification of

the Type I and Type II signals. However, there is still enough small variations in

the denoised signal that is not pertinent to the overall rate of change information to

make a pointwise difference infeasible. Using a wavelet to compute the derivative will

incorporate more samples into the derivative at any point through smoothing which

allows for better performance with the type of data in this application. The results are

similar to that of creating a high order polynomial fit of the data and performing the

derivative on the polynomial. Because the wavelet transform is already computed for

other purposes in this application, the added complexity of performing a polynomial

fit is not justified.

The basic formulas for performing the derivative are outlined below. The projec-

tion of a function f(t) onto the VJ space can be represented in terms of approximation

coefficients ck and the scaling function φ(t). The derivative of fJ(t) is fJ ′(t) and is

also in VJ . However, the resulting equation involves the derivative of the wavelet

which is not necessarily very smooth. A better approach is to assume that the deriv-
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ative fJ ′(t) is parameterized by a new set of coefficients ak, commonly referred to as

the connection coefficients, and the scaling function. These new coefficients are given

by the convolution of the old coefficients with a function Ω(l). In the biorthogonal

case where the analysis scaling functions φ′(τ) are orthogonal to the synthesis wavelet

ψ(t) and the analysis wavelets ψ̃(t) are orthogonal to the synthesis scaling functions

φ(t), the equations are as follows:

Ω(l) =

∫
φ′(t)φ̃(τ + l)dτ

fJ(t) =
∑

k

ckφ(2Jt− k)

fJ ′(t) =
∑

k

ck2
Jφ′(2Jt− k)

=
∑

k

akφ(2Jt− k)

=
∑

k

∑
m

cmΩ(k −m)φ(2Jt− k)

ak =

∫
fJ ′(t)φ̃(2Jt− k)dt

=

∫ ∑
m

cm2Jφ′(2Jt−m)φ̃(2Jt− k)dt

=
∑
m

cm

∫
2Jφ′(2Jt−m)φ̃(2Jt− k)dt

=
∑
m

∫
2Jφ′(τ)φ̃(τ +m− k)

dτ

2J

=
∑
m

cmΩ(k −m)

As these formulas indicate, it is not necessary to reconstruct the signal and then

take the derivative. Rather, the derivative can be computed directly from the old

coefficients given the scaling function and its derivative. This allows for greater

computational savings and blends in well with the framework of the wavelet feature

extraction presented in this thesis.

5.3 Results

The methodology described was applied to the proposed framework and achieved

promising results that will have be tested when the feature vector is passed to the

classifier (which is beyond the scope of this thesis). We first analyze the practicality of

wavelet denoising as compared to other methods such as median or lowpass filtering.

Results for the shift invariance of te developed DT CWT denoising technique are then

presented. After the signal is denoised, the subband energy of the denoised wavelet

coefficients are used as a feature basis. For discrimination between type I and Type II
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signals, the efficacy of this feature set is clear. Finally, the wavelet derivative results

are presented. Although the properties of the signal derivative are accurate, it is

unclear whether these features will improve discrimination performance.

5.3.1 Denoising

As a primary step in analyzing the utility of wavelet denoising, standard Matlab

Wavelet Toolbox routines were run and compared to other filtering methods. The

denoising using wavelets proved to be a vast improvement over other techniques such

as median and lowpass filtering (see Figure 5-14).

Figure 5-14: Original noisy data set containing both Type I and Type II events (top
left); wavelet denoised signal (top right); median filtered signal (bottom left); and
lowpass filtered signal (bottom right).

The large spike seen in the original data is a Type I event. Because this is one of

the events of interest, it is crucial that the filtering method does not eliminate any
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important characteristics of the event such as amplitude. Therefore, the median and

lowpass filtering techniques can readily be discarded. When examining a detailed

view of the plots, one also notices that the wavelet denoising preserves the jagged

characteristics of the signal while the median filter suffers from quantization and

the lowpass filter only leaves the low frequency content which hardly resembles the

original signal (see Figure 5-15).

Figure 5-15: Zoom in on: original noisy data set containing both Type I and Type II
events (top left); wavelet denoised signal (top right); median filtered signal (bottom
left); and lowpass filtered signal (bottom right). Note that each figure has a different
x,y-axis scaling. Refer to Figure 5-14 for information on relative amplitudes.

5.3.2 Shift invariant denoising

The method described for applying Wavelet Shrinkage to the DT CWT gave excel-

lent results in terms of creating shift invariant denoised reconstructions. Take, for

example, the Type II signal and a shifted version of this signal as shown in Figure
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5-16. The shifted signal is created by reflecting the first 950 samples of the signal

and cropping an equivalent amount at the end. The DWT and DT CWT denoised

versions are shown in Figure 5-17. While it may be difficult to see from the figures,

the denoised version of the shifted signal does not have all the same characteristics of

the unshifted version. The DT CWT denoising is a vast improvement. Whereas the

∞-norm of the error between the shifted and unshifted signals (||e||∞ = supt |e(t)|)

is 9.6328 for the DWT case, this number is reduced to 0.7830 in the DT CWT case.

The 2-norm of the error (||e||2 = (
∑
t

e(t)2)
1
2 ) over the time segment is 95.78 for the

DWT denoising and only 12.28 for the DT CWT denoising. Figure 5-18 shows DT
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Figure 5-16: Plot of Type II event (blue) and the same signal shifted by 950 samples
with the first 950 samples created by reflection (red)

CWT denoising applied to the Type I signal and the whole data set.

5.3.3 Subband energy analysis

In order for classification of the Type I and Type II signals to be successful, the

features selected have to be both shift invariant and significantly different for each

signal. One of the shift invariant features of the DT CWT is the energy of the

coefficients at every level of the decomposition (see Figure 5-6). Because the coefficient

content of the different levels varies greatly for the Type I and Type II signal (see
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Figure 5-17: Denoising of signal and shifted signal using (a) DWT and (b) DT CWT.
∞-norm of error: DWT = 9.6328, DT CWT = 0.7830. 2-norm of error: DWT: 95.78,
DT CWT = 12.28.

Figures 5-19 and 5-20), this appears to be an informative feature with respect to

discrimination between these signals.

5.3.4 Best tree analysis

Matlab’s routines ‘wpdec’ and ‘besttree’ were used to analyze whether a wavelet

packet would contain more pertinent information about the signal than the standard

decomposition. The results indicate that the wavelet packet is useful in the entropy-

of-coefficients sense. That is to say, the combination of wavelet levels that hold

the coefficients with the most information in the wavelet packet decomposition are

different from those given by the standard single tree (i.e. iteration of the lowpass

channel). However, there is only a difference for the Type I signal. See Figure 4.8 for

a visualization of the “best trees” for the Type I and Type II signals. The problem

of providing the best energy levels as a feature basis to the machine learning stage is

beyond the scope of this thesis.
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Figure 5-18: DT CWT denoising applied to (a) the whole signal and (b) zoomed in
on the Type I event. The denoised signal is shown in red and the original noisy signal
in red.

5.3.5 Derivatives

The final stage in the feature extraction framework presented is to perform the deriv-

ative on the denoised signal. One can adjust a parameter, i to change the number of

sample points per integer for the scaling function φ(t). Thus, setting i = 0 gives the

scaling function and wavelet values at integer points. Stem plots of φ(t) for values

i = 1, 2, 3, 4 are shown in Figure 5-22.

Figure 5-23 shows the wavelet derivative applied to the DT CWT denoised signal

as well as a zoom in on the Type II signal for a value of i = 8.

As expected, the wavelet derivative goes positive on the rising edge of the Type

II signal, falls to zero when the signal peaks, and drops negative on the falling edge.

Also note that the peak of the derivative is larger than the trough because the Type

II signal has a faster rate of increase than decay. The results are encouraging, but the

actual features obtained from the signal’s derivative and the classification performance

benefits gained are unclear and an area of future research.
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Figure 5-19: Magnitude of DT CWT wavelet coefficients for a 5 level decomposition
of a Type I signal. The 5th level has both the approximation and detail coefficients
plotted whereas the other levels only have the detail coefficients. The denoised re-
construction of the Type I signal is shown in the upper lefthand corner.

5.4 Discussion

Examining the results derived from applying the theory described in the methodology

section to the proposed framework, it is clear that the Dual Tree Complex Wavelet

Transform (DT CWT) provides an efficient way to compute shift-invariant wavelet

features (e.g. subband energy). In addition, through application of Donoho’s Wavelet

Shrinkage to the DT CWT, shift-invariant denoised signals were reconstructed. Fi-

nally, the denoised coefficients were used to compute the derivative of the signal using

scaling functions and connection coefficients and the results proved to give a fairly

accurate representation of the rate of change of the signal.

It is important to note that this chapter outlined a theoretically justified proposal

of features, but establishing their performance in terms of classification was beyond

the scope of this thesis and remains to be investigated.

Another area of future work is in determining how the algorithm should be applied

in real time. A sliding window approach has been developed, but the shape and length

of the chosen window are open questions.
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Figure 5-20: Magnitude of DT CWT wavelet coefficients for a 5 level decomposition
of a Type II signal. The 5th level has both the approximation and detail coeffi-
cients plotted whereas the other levels only have the detail coefficients. The denoised
reconstruction of the Type II signal is shown in the upper lefthand corner.

(a) (b)

Figure 5-21: Best tree diagrams for analyzing the Type I and Type II signals according
to Matlab’s ’besttree’ algorithm using Shannon entropy.
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Figure 5-22: Stem plots of derivative scaling function for smoothing values i =
1, 2, 3, 4, where i is a discretization parameter indicating 2i points per integer step.
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Figure 5-23: DT CWT denoising applied to (a) the whole signal and (b) zoomed in
on the Type I event. The denoised signal is shown in red and the original noisy signal
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Chapter 6

Conclusion

One application of the analysis presented here is detection, localization, and charac-

terization of a bio-aerosol release from sparse sensor measurements. In this thesis we

have examined two aspects pertinent to this application. The first section addressed

the problem of detecting and localizing a particulate release using a dynamical model

and nonlinear filtering. The second section of the thesis involved investigating fea-

ture extraction from sensor data relevant to biological release detection. Specifically,

we analyzed the suitability of wavelet feature extraction in reducing the dimension

of particle concentration data set while still maintaining the important signal char-

acteristics. These features would be part of the input to a classifier which would

distinguish between release events.

6.1 Bayesian Filtering

We have presented a Bayesian state estimation approach to the problem of detect-

ing and localizing a release. Our approach allows for integration of measurements

from multiple sensors over time. This method involves a dynamic equation which

incorporates an abrupt change of unknown magnitude at an unknown time in an un-

known cell. A set of hypotheses, restricted by a fixed window size, are generated and

a Generalized Likelihood Ratio (GLR) test compares the hypotheses using Kalman

whitened data and the maximum likelihood estimate of the release amount.
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We have demonstrated the utility of this formulation and characterized the per-

formance of a set of sensor configurations with regard to detection, time to detection

and localization performance. We have also investigated some aspects of model mis-

match due to incorrect wind field assumptions. From the experiments conducted, we

see that model mismatch impacts localization performance more than detectability.

The formulation presented provides a framework for investigating questions such

as the interaction between release amount, release location, sensor density, and sensor

placement. The appropriateness of this formulation for a given application depends on

the validity of the modeling assumptions we have made. These assumptions include

that the mean wind field is deterministically known and that the dynamic model can

be described as linear when conditioned on the wind field. The linearity of a diffusion

plus transport dynamic model makes this framework suitable in many scenarios.

6.2 Wavelet Feature Extraction

The classifier stage uses functions of the sensor data to categorize events. In addition

to distinguishing between various release materials, this stage provides redundancy in

discriminating between background and release events in the sense that release events

that are not well modeled by the Bayesian filter can potentially be captured by this

classifier stage. For this stage to be successful, one needs to limit the dimension of the

input to the classifier by using feature extraction. We have presented a method for

extracting information from the particle concentration measurements through the use

of an approximately shift invariant wavelet transform, namely the Dual Tree Complex

Wavelet Transform (DT CWT).

The results presented show that the DT CWT provides an efficient way to com-

pute approximately shift-invariant wavelet features (e.g. subband energy). Through

application of Wavelet Shrinkage to the DT CWT, we were also able to create approxi-

mately shift-invariant denoised signal reconstructions. We showed the shift-invariance

performance gains of this method as compared to using Wavelet Shrinkage with the

standard Discrete Wavelet Transform (DWT). Finally, the denoised wavelet coeffi-
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cients were used to compute the derivative of the signal using scaling functions and

connection coefficients and the results proved to give a fairly accurate representation

of the rate of change of the signal.

It is important to note that while this thesis proposed theoretically justified fea-

tures, the utility of any features would have to be verified empirically.

6.3 Future Work

There are many open research questions in the areas addressed in this thesis. Towards

the top of the agenda would be experimental verification of the results presented.

This includes testing the proposed features with a classifier and running the Bayesian

filtering algorithm on real sensor data. The latter poses a challenge due to the fact

that the sensors measure particle concentration in particles per cubic meter which

does not map well to a 2D problem. One could either map the 3D measurements

to 2D or extend the given inference formulation to 3D. In order to perform tests to

determine the applicability of these algorithms, a number of data sets with actual

events with some ground truth would have to be available.

The topic of choosing an optimal basis should be pursued. This would include

investigating the issues addressed in Chapter 2 such as choosing an appropriate DT

CWT wavelet and determining the subband energies necessary in terms of class sep-

arability.

Another area of future research is determining the specifics of the sliding window

in which the wavelet decomposition is computed. Both the shape and length of the

window must be determined.

In terms of the Bayesian filtering stage, the topics of further modeling system

dynamics and implementing the algorithm with large scale sensor networks are areas

of future research. Ultimately, the goal is to model only as much of the physics as is

necessary for inference. Methods from machine learning may provide approaches to

learning the underlying model parameters so as to reduce sensitivity to mismatch.

The approach described in this thesis relies heavily on knowledge of the mean wind
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field. This field is determined by interpolating sparse anemometer readings using a

weighted average scheme based on the cell’s distance from the sensors. More sophisti-

cated wind field determination methods could significantly improve the applicability

of this approach to real scenarios.

Finally, an inherently difficult aspect of this problem is the fact that a large net-

work of distributed sensors may need to perform detection in a decentralized manner.

When the sensors in question are wireless, the limited bandwidth and power available

to each sensor may pose a problem. Our approach integrates sensor measurements

at a centralized processor. By arranging sensor nodes into groups, our approach pro-

vides the basic building blocks for a distributed processing configuration. However,

an important area of future research is developing methods by which to effectively

summarize and share the information pertinent to inference and detection among the

distributed sensors in a communication constrained environment.
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Appendix A

Derivations of Sufficient Statistics

In this section, we derive the various results presented in Chapter 4 about the sufficient

statistics for hypothesis testing. We refer to H0 as the null hypothesis indicating that

there has not been a release. Hi,φ is termed an alternative hypothesis and represents

a release in cell i at time φ. The innovations process is defined under the null and

alternative hypotheses as follows:

H0 : ν(t) = ν0(t)

Hi,phi : ν(t) = ν0(t) + βρi(t, φ)

We note that ν0 is a white Guassian process so E[ν0] = 0. In addition, ρi(t, φ) is a

deterministic unknown so E[βρi(t, φ)] = βρi(t, φ).

In order to derive the sufficient statistics, it is useful to normalize ν0(t) to create

a stationary noise process. In the form of the equations as above,

Kν0ν0(t, τ) = V (t)δ(t− τ)

Because V (t) is a positive semidefinite matrix, we can decompose it into V (t) =

95



V
T
2 (t)V

1
2 (t). Thus, let us perform the following transformation:

ζ(t) = V − 1
2 (t)ν(t)

w(t) = V − 1
2 (t)ν0(t)

si(t, φ) = V − 1
2 (t)ρi(t, φ)

Now, the noise process w(t) is stationary with identity covariance.

Kww(t, τ) = E[w(t)wT (τ)]

= E[V − 1
2 (t)ν0(t)ν

T
0 (τ)V −T

2 (τ)]

= V − 1
2 (t)E[ν0(t)ν

T
0 (τ)]V −T

2 (τ)

= V − 1
2 (τ)V (t)δ(t− τ)V −T

2 (τ) = I

The sufficient statistics are derived by projecting the observations onto an orthogonal

basis where only a finite number of components have to be analyzed. We choose a

complete orthonormal (CON) set of basis functions, namely {φn(t)}∞n=1, where

t∑
τ=φ

φT
i (τ)φj(τ) =

 0 : i 6= j

1 : i = j

We project the signals onto this orthonormal basis as follows:

ζ(t) =
∞∑
i=1

ζiφi(t)

w(t) =
∞∑
i=1

wiφi(t)

si(t, φ) =
M∑

j=1

αijφj(t)

There are a finite number, M , of deterministic signals si(t, φ), and thus we need

at most M orthogonal functions to span the set {si(t, φ)}M
i=1. We now rewrite our
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hypotheses in this basis.

H0 : ζi = wi

Hi,φ : ζ1 = βαi1 + w1

ζ2 = βαi2 + w2

...

ζM = βαiM + wM

i > M, ζi = wi

We notice that the statistics for all terms i > M of the projection of the normalized

observation, ζ(t) → ζi, are the same for both hypotheses. Thus, they do not add to

the evidence of a given hypothesis and are deemed indifferent statistics. The problem

is now reduced to a standard detection formulation.

α
¯i = [αi1 αi2 . . . αiM ]T

ζ
¯

= [ζ1 ζ2 . . . ζM ]T

ζ
¯
∼ N (βα

¯
, I)

Let H0 = H0,φ and assume that the hypothesis indexed by (i, φ) are mapped to

the set of integers 1...M where M is the total number of hypotheses enumerated at

any time.

choose Hî,φ̂

(̂i, φ̂) = arg min
(i,φ)

M−1∑
(i,φ)=0

c(j,θ)(i,φ)Pr[Hi,φ|ζ
¯
]

The Minimum Probability of Error Criterion (MPE), which is used in this thesis,

determines the costs as,

c(j,θ)(i,φ) =

 0 : (i, φ) 6= (j, θ)

1 : (i, φ) = (j, θ)
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The Maximum A-Posteriori (MAP) rule then states,

choose Hî,φ̂

(̂i, φ̂) = arg min
(i,φ)

1− Pr[Hi,φ|ζ
¯
]

= arg max
(i,φ)

Pr[Hi,φ|ζ
¯
]

We use Bayes rule to rewrite the term of interest as follows:

choose Hî,φ̂

(̂i, φ̂) = arg max
(i,φ)

pζ
¯
|H(ζ

¯
|Hi,φ)Pi,φ

pζ
¯
(ζ
¯
)

= arg max
(i,φ)

ln pζ
¯
|H(ζ

¯
|Hi,φ) + lnPi,φ − ln pζ

¯
(ζ
¯
)

= arg max
(i,φ)

ln pζ
¯
|H(ζ

¯
|Hi,φ) + lnPi,φ

We are allowed to equivalently maximize over the log probability because the log

probability is a sum of convex functions and is therefore convex. Also assuming

uniform priors (i.e. Pi = 1
M
,∀i), we are left with Maximum Likelihood (ML) rule.

choose Hî,φ̂

(̂i, φ̂) = arg max
(i,φ)

ln pζ
¯
|H(ζ

¯
|Hi,φ)
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In this case, where ζ
¯
∼ N (βα

¯
, I), we have,

choose Hî,φ̂

(̂i, φ̂) = arg max
(i,φ)

−M
2

ln(2π)− 1

2
(ζ
¯
− βα

¯i)
T (ζ

¯
− βα

¯i)

= arg max
(i,φ)

−1

2
(ζ
¯
− βα

¯i)
T (ζ

¯
− βα

¯i)

= arg max
(i,φ)

−1

2
ζ
¯

T ζ
¯

+ βα
¯

T
i ζ
¯
− β2 1

2
α
¯

T
i α¯i

= arg max
(i,φ)

βα
¯

T
i ζ
¯
− β2 1

2
α
¯

T
i α¯i

= arg max
(i,φ)

β
M∑

j=1

αijζj − β2 1

2

M∑
j=1

α2
ij

We now examine the proposed sufficient statistics projected onto the CON basis.

di(t, φ) =
t∑

τ=φ

ρT
i (τ, φ)V −1(τ)ν(τ)

=
t∑

τ=φ

(V − 1
2 (τ)ρi(τ, φ))T (V − 1

2 (τ)ν(τ))

=
t∑

τ=φ

si(τ, φ)T ζ(τ)

=
t∑

τ=φ

M∑
j=1

αijφ
T
j (τ)

∞∑
k=1

ζkφk(τ)

=
M∑

j=1

∞∑
k=1

αijζk

t∑
τ=φ

φT
j (τ)φk(τ)

=
M∑

j=1

αijζj
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Similarly,

ai(t, φ) =
t∑

τ=φ

ρT
i (τ, φ)V −1(τ)ρi(τ, φ)

=
t∑

τ=φ

(V − 1
2 (τ)ρi(τ, φ))T (V − 1

2 (τ)ρi(τ, φ))

=
t∑

τ=φ

si(τ, φ)T si(τ, φ)

=
t∑

τ=φ

M∑
j=1

αijφ
T
j (τ)

∞∑
k=1

αikφk(τ)

=
M∑

j=1

∞∑
k=1

αijαik

t∑
τ=φ

φT
j (τ)φk(τ)

=
M∑

j=1

α2
ij

Thus, we see that the hypothesis testing rule can be written as,

choose Hî,φ̂

(̂i, φ̂) = arg max
(i,φ)

li(t, φ)

= arg max
(i,φ)

βdi(t, φ)− β2 1

2
ai(t, φ)

Therefore, ai(t, φ) and di(t, φ), as stated in Chapter 4, are sufficient statistics for the

given hypothesis testing problem.
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A.1 Derivation of likelihood ratio distributions

We now derive the fact that the likelihood ratios are distributed as chi-squared dis-

tributions.

li(t, φ) =
d2

I(t, φ)

ai(t, φ)

di(t, φ) =
t∑

τ=φ

ρi(τ, φ)V −1(τ)ν(τ)

E[di(t, φ)|H0] =
t∑

τ=φ

ρi(τ, φ)V −1(τ)E[ν(τ)|H0] = 0

E[di(t, φ)|Hi] =
t∑

τ=φ

ρi(τ, φ)V −1(τ)βρi(τ, φ) = βai(t, φ)

var(di(t, φ)) = var(
t∑

τ=φ

ρi(τ, φ)V −1(τ)ν0(τ) +
t∑

τ=φ

ρi(τ, φ)V −1(τ)βai(t, φ))

Because the second term in the sum,
t∑

τ=φ

ρi(τ, φ)V −1(τ)βai(t, φ)), is a deterministic

unknown, it does not contribute to the variance of di(t, φ). In addition, we use that

E[
t∑

τ=φ

ρi(τ, φ)V −1(τ)ν0(τ)] =
t∑

τ=φ

ρi(τ, φ)V −1(τ)E[ν0(τ)] = 0 and E[ν0(τ)ν0(σ)] =

V (τ)δ(τ − σ) in the following:

var(di(t, φ)) = var(
t∑

τ=φ

ρi(τ, φ)V −1(τ)ν0(τ))

= cov(
t∑

τ=φ

ρi(τ, φ)V −1(τ)ν0(τ),
s∑

σ=φ

ρi(σ, φ)V −1(σ)ν0(σ))

=
∑

τ

∑
σ

ρi(τ, φ)V −1(τ)E[ν0(τ)ν0(σ)]V −1(σ)ρT
i (σ, φ)

=
∑

τ

ρi(τ, φ)V −1(τ)V (τ)V −1(τ)ρT
i (τ, φ)

=
∑

τ

ρi(τ, φ)V −1(τ)ρT
i (τ, φ)

= ai(t, φ)
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Let X0 ∼ N (0, ai(t, φ)) and Xi ∼ N (βai(t, φ), ai(t, φ)). Then,

H0 : li(t, φ) =
1

ai(t, φ)
X2

0

H1 : li(t, φ) =
1

ai(t, φ)
X2

i

Thus, the likelihood ratios are distributed as chi-squared distributions with one de-

gree of freedom. Under the alternative hypothesis, there is a noncentrality term of

β2ai(t, φ),

E[li(t, φ)|H0] =
1

ai(t, φ)
E[X2

0 ]

=
1

ai(t, φ)
(var(X2

0 ) + E[X0]
2) = 1

E[li(t, φ)|Hi] =
1

ai(t, φ)
E[X2

i ]

=
1

ai(t, φ)
(var(X2

i ) + E[Xi]
2) = 1 + β2ai(t, φ)
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Appendix B

Pseudocode

B.1 Simulation

In this section, we outline how to implement a simulator to create state histories of

particle concentrations. It is assumed that the simulator is passed a structure con-

taining the mean wind field for all times over which the simulation is run. In addition,

the release value, c, and it’s corresponding (x,y) position, (rx,ry), the state noise co-

variance, Q, wind noise covariance, Rw, x and y diffusion coefficients, diffx and diffy,

and the dimensions of the region, mapsize, are passed to the simulator. The output

is the particle concentration and wind vector history. In this pseudocode, propmat

is a function that determines the propagation matrix from the room dimensions and

wind field.

Note: Throughout the pseudocode, ’→’ means draw a sample from this distribu-

tion.

function [x, wx, wy] = simdata(c,rx,ry,Q,Rw,diffx,diffy,mapsize)

r_vec = [0 ... 0 c 0 ... 0]’ %determined by rx,ry

if r_time == 1

<x(0)> = r_vec

x(0) -> N(<x(0)>,Q)
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for t = 1:stoptime

wx(t) -> N(<wx(t)>,Rw))

wy(t) -> N(<wy(t)>,Rw))

A(t) = propmat(mapsize,wx(t),diffx,wy(t),diffy)

x(t+1) -> N(A(t)*x(t),Q)

end

else

<x(0)> = 0

x(0) -> N(<x(0)>,Q)

for t = 1:r_time-1

wx(t) -> N(<wx(t)>,Rw))

wy(t) -> N(<wy(t)>,Rw))

A(t) = propmat(mapsize,wx(t),diffx,wy(t),diffy)

x(t+1) -> N(A(t)*x(t),Q)

end

wx(r_time) -> N(<wx(r_time)>,Rw))

wy(r_time) -> N(<wy(r_time)>,Rw))

A(r_time) = propmat(mapsize,wx(r_time),diffx,wy(r_time),diffy)

x(r_time+1) -> N(A(r_time)*x(r_time),Q)

for t = r_time+1:stoptime

wx(t) -> N(<wx(t)>,Rw))

wy(t) -> N(<wy(t)>,Rw))

A(t) = propmat(mapsize,wx(t),diffx,wy(t),diffy)

x(t+1) -> N(A(t)*x(t)+r_vec,Q)

end

end
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B.2 Inference Procedures

B.2.1 Initialization

We initialize our state estimate by sampling from a Gaussian distribution whose mean

is the true state at the first time step and whose covariance is the steady state error

covariance matrix, P0. P0 can be determined by solving the discrete time algebraic

Ricatti equation using a propagation matrix, A(t), for the pure diffusion case. In

code,

x0 -> N(x(:,1),P0)

where x(:,1) indicates taking the simulation particle concentrations in all cells at time

1.

B.2.2 Recursively obtaining windows of GLR statistics

The following code is run recursively and is designed to work with either real-time

data or simulations. In the case of real-time data, it is assumed that the measurements

are passed in a sensors structure and that this data includes information about the

particle concentration measurements, wind field measurements, and sensor positions.

In the case of synthetic data, we generate sensor measurements from the particle

concentration histories in the sensor cells by sampling from a Gaussian distribution

defined by a measurement noise covariance matrix R.

y -> = N(x(sensor_cells,:),R)

Here, x(sensor cells,:) indicates taking the simulation particle concentrations over all

time from only the cells with sensors.

The function runGLR takes in the previous statistics structure, stats prev, the size

of the hypothesis window, windowsize, the number of cells, N, the standard state-

space matrices B and C (in this case B is just the zero matrix), the measurement

noise covariance, R, the dynamic noise covariance, Q, the state, x(t), and the error

covariance, P(t). The term sensmap is a matrix with 1’s in the cells that have sensors
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and 0’s elsewhere. Assuming that the sensors remain stationary (i.e. sensmap is

constant), the C matrix is not time dependent. We initialize the statistics, stats prev,

to zero and pass x0 and P0 as the first x(t) and P(t), respectively. We then iterate

this algorithm for all time. The outputs at every iteration are the new statistics,

state, error covariance, and likelihood ratios for the current hypothesis window (LR).

function [LR stats x(t+1) P(t+1)]=runGLR(t,stats_prev,sensmap,

windowsize,N,B,C,R,Q,x(t),P(t))

% get previous stats:

a_prev = stats_prev.a

d_prev = stats_prev.d

gamma_prev = stats_prev.gamma

mu_prev = stats_prev.mu

%%%% Get measurements and model parameters %%%%

[y(t) wx(t) wy(t)] = getnewmeas(sensors,t)

% interpolates wind field using anemometer readings:

[windfieldx(t),windfieldy(t)] = interpwindfield(sensmap,wx(t),wy(t))

A(t) = propmat(mapsize,windfieldx(t),diffx,windfieldy(t),diffy)

%%%% Running GLR %%%%

% v(t) = y(t)-C*x(t|t-1):

nu(t) = y(t)-C*x(t)

% error covariance of nu: V(t) = C*P(t|t-1)*C’+R:

V(t) = C*P(t)*C’+R

K(t) = P(t)*C’*inv(V(t))

% Time-varying Kalman filter output = xhat(t+1|t), P(t+1|t)

[x(t+1) P(t+1)] = TVKalman(A,B,C,R,Q,y(t),x(t),P(t),K(t))
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k=1

for phi = t:-1:t-windowsize+1

if phi==t % if the hypothesize release time is the current time

% for every cell being monitored, hypothesize a release at this time:

for i=1:N

% make a release in cell i at beginning of current time step:

gamma0 = [0 ... 0 1 0 ... 0]’

% initialize states to 0 because it is a new hypothesis:

mu0 = [0 0 ... 0]’

d0 = 0

a0 = 0

% stat(k,i) means put info

% in appropriate row relative to the windowsize (working

% from the current time backwards) and column indicates

% cell of release.

% LR,a,d are structures that maintain information for a

% full window while gamma and mu only hold info from one

% timestep to the next.

[LR(k,i) a(k,i) d(k,i) mu(k,i) gamma(k,i)] = GLR(t,phi,i,

gamma0,mu0,d0,

a0,nu0,invV,N,

A,C,K)

end

else % if we are propagating a release hypothesized at a prior time step

for i=1:N

% we reference the (k+1)th row element because the hypothesis

% corresponding to this cell was indexed one row down

% in the previous stats window:

gamma0 = gamma_prev(k+1,i)

mu0 = mu_prev(k+1,i)

107



d0 = d_prev(k+1,i)

a0 = a_prev(k+1,i)

[LR(k,i) a(k,i) d(k,i) mu(k,i) gamma(k,i)] = GLR(t,phi,i,

gamma0,mu0,d0,

a0,nu0,invV,N,

A,C,K)

end

end

k = k-1

end

stats.mu = mu

stats.gamma = gamma

stats.a = a

stats.d = d

B.2.3 GLR

The function GLR computes the sufficient statistics, di and ai, and the likelihood

ratios, ai, for every hypothesis Hi. The terms mu and gamma are necessary for

computing the statistics and must be passed from one time step to the next, though

a history of these terms is not stored. The function f creates a release vector at the

appropriate time.

function [LRi ai di mu gamma] = GLR(t,phi,i,gamma0,mu0,d0,a0,nu0,invV,N,A,C,K)

%%%% Innovations %%%%

% rho_i(t,phi) = C*[gamma_i(t,phi)-mu_i(t,phi)]:

rho0 = C*(gamma0-mu0)

% nu(t) = nu0(t) + rho0(t)

nu = nu0 + rho0
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%%%% Sufficient Statistics %%%%

% d_i(t,phi) = d_i(t-1,phi) + rho_i(t,phi)’*inv(V(t))*nu(t)

di = d0 + rho0’*invV*nu

% a_i(t,phi) = a_i(t-1,phi) + rho_i(t,phi)’*inv(V(t))*rho_i(t,phi)

ai = a0 + rho0’*invV*rho0

%%%% Likelihood Ratio %%%%

% LRi(t,phi) = (1/2)*(di(t,phi)^2)/ai(t,phi)

if ai==0 && di==0

LRi = 0

else

LRi = 0.5*(di^2)/ai

end

%%%% Update %%%%

% eps_i(t,phi) = mu_i(t,phi)+K(t)*C*(gamma_i(t,phi)-mu_i(t,phi)):

eps = mu0 + K*rho0

%%%% Prediction %%%%

% mu_i(t+1,phi) = A(t)*eps_i(t,phi):

mu = A*eps

%%%% State Propagation %%%%

% gamma_i(t+1,phi) = A(t)*gamma_i(t,phi)+f_i(t,phi):

gamma = A*gamma0 + f(t,phi,i,N)
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