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ABSTRACT 
 
The Airborne Seeker Test Bed (ASTB) is an airborne sensor testing platform operated by 
the Tactical Defense Systems group at MIT Lincoln Laboratory.  The Instrumentation 
Head (IH) is a primary sensor on the ASTB.  It is a passive X-band radar receiver located 
on the nose of the plane.  The IH serves as a truth sensor for other RF systems on the test 
bed and is controlled by an onboard tracking system, the Seeker Computer.  The Seeker 
Computer processes IH data in real-time to track targets in Doppler, angle, and range.  
From these tracks it then produces angle-error feedback signals that command the IH 
gimbals, keeping targets centered along the antenna boresight.   
 
Over three years, a new Seeker Computer was built to replace an old system constrained 
by obsolete hardware.  The redevelopment project was a team effort and this thesis 
presents a systems-level analysis of the design process, the new Seeker Computer system, 
and the related team and individual contributions to software and digital signal processing 
research that took place during development. 
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1 Introduction 
 
The Airborne Seeker Test Bed (ASTB) is an airborne sensor testing platform operated by 
the Tactical Defense Systems group at MIT Lincoln Laboratory.  Shown in-flight in 
Figure 1.1, the ASTB is a converted Gulfstream 2 which is retrofitted to carry electronics 
inside its cabin, and sensor systems in pods located on the wings of the aircraft.   
 

 
Figure 1.1 – Airborne Seeker Test Bed (ASTB) 

 

1.1 Instrumentation Head 
The Instrumentation Head (IH), located on the nose of the plane, is a primary sensor on 
the ASTB.  The IH is a passive X-band radar receiver which consists of dual-polarized 
(vertically and horizontally) phased array antennas on a gimbaled mount followed by 
antenna electronics with receiver hardware inside the aircraft cabin.  The IH is a 
monopulse radar system.   
 
Monopulse describes a radar system which is capable of estimating the angle of a target 
from only a single measurement.  By making angle measurements from only a single 
measurement, a monopulse radar is capable of producing more accurate estimates of 
angle compared to radars that estimate angle based on several measurements over time.  
This is because the monopulse radar is immune to variations in the signal over time that 
might affect angle calculations.  Thus, monopulse is the preferred tracking technique 
when accurate angle measurements are required. [1]   
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Figure 1.2 – IH Monopulse Antenna and Associated Radar Channels 

 
Figure 1.2 shows one of the two phased array antennas from the IH (the second is 
mounted directly behind the first).  The antenna slots on the head of the anntenna can be 
grouped into 4 quadrants: the top right, the top left, the bottom left, and the bottom right 
quadrants labeled A, B, C, and D, respectively, in Figure 1.2 and redrawn below in 
Figure 1.3. 
  

Top
Left

Top
Right

Bottom
Right

Bottom
Left

 
Figure 1.3 – Quadrants of the IH Antenna Head 

 
The antenna electronics produce four radar channels: 1) the sum channel, 2) the delta 
pitch channel, 3) the delta yaw channel, and 4) the delta quad channel.  Each of these 
radar channels is a linear combination of the energy received in the quadrants of the IH 
antenna head.   
 
The sum channel is the sum of the energy from the array elements in all four quadrants of 
the antenna.  The delta pitch channel is the difference in energy between the elements in 
the top and bottom halves of the antenna.  The delta yaw channel is the difference in 
energy between elements in the left and right halves of the antenna.  Finally, the delta 
quad channel is the difference in energy between the elements in the diagonal quadrants.   
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The linear relationship between the 4 radar channels and the 4 monopulse quadrants 
means that the radar channels encapsulate information about the quadrant energies.  
Given the 4 monopuse radar channels we can solve for the energy in each quadrant. 
 
Figure 1.4 shows a drawing of a typical flight-test configuration with the ASTB closing 
in on a target of interest.  A ground-based illuminator illuminates the target with an RF 
waveform, a portion of which reflects off of the target and is received by the IH for 
tracking.     
 

 
Figure 1.4 – Example of ASTB Flight-Test Configuration 

 
The IH serves as a truth sensor for other RF systems on the test bed.  As shown in Figure 
1.5, signals from the IH antenna are fed to a receiver block with mixing, filtering, and 
amplification stages that produce radar data channels.  The radar data channels are routed 
to a real-time processing system, a data recording system, as well as an onboard tracking 
system called the Seeker Computer.  The Seeker Computer processes IH data in real-time 
to track targets in Doppler, angle, and range.  From these tracks it then produces angle-
feedback error signals that command the IH gimbals, keeping the IH antenna centered on 
the target.   
 

 
Figure 1.5 – IH System Diagram 

 
 

Phased Array 
Electronics 

Receiver Block 
(Mixing, Filtering, 
Amplification) 

Seeker 
Computer 

Angle-Error Feedback

Antenna Gimbals 



 14

1.2 Rebuilding the Seeker Computer 
The Seeker Computer was completely rebuilt between 2002 and 2005.  It replaced an old 
system based on obsolete hardware and software.  This thesis presents a systems-level 
analysis of the development of the new Seeker Computer.  The Seeker Computer upgrade 
was a team effort with substantial individual contributions made by the author.  Research 
and development was performed in a variety of topics ranging from software design to 
digital signal processing (DSP).  The three sections of this thesis each focus on one aspect 
of the upgrade process.   
 
First, software middleware was created to support portable, object-oriented code 
development on the computer platform chosen to perform DSP in the Seeker Computer.  
A framework for creating middleware software for real-time and desktop computer 
systems, called TaskRunner, had previously been created at Lincoln Laboratory [2], and 
the implementation of this framework for the Seeker Computer was the first on a 
multiprocessor signal processing platform.  
 
Second, new DSP software for the Seeker Computer was developed and tested using 
TaskRunner.  The new software was tested against a set of existing specification 
requirements.  The TaskRunner methodology was influential in guiding the development 
process.   
 
Finally, advanced algorithms for the Seeker Computer DSP were developed to track an 
aircraft in angle in the presence of a towed decoy jammer.  The upgrade to modern 
equipment produced a significant gain in processing power on the Seeker Computer.  
This gain in processing power opens up opportunities to extend the tracking capabilities 
of the Seeker Computer by using such advanced algorithms in real-time during test 
campaigns. 
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2 Mercury TaskRunner 
 
 
It was decided that the software of the new Seeker Computer would be developed 
according to a software framework created at Lincoln Laboratory called TaskRunner.  In 
order to use TaskRunner, a layer of middleware software, the TaskRunner Engine, must 
be developed for each hardware platform on which it is applied.  However, a TaskRunner 
Engine did not yet exist for the Seeker Computer’s target hardware platform, Mercury.  
Sections 2.1 and 2.2 describe TaskRunner, and Section 2.3 describes the principal 
individual contribution of the author which was the development of a TaskRunner Engine 
for Mercury. 

2.1 TaskRunner Concept 
TaskRunner is a general software framework for building portable, object-oriented 
software.  TaskRunner software is independent of the operational, or target, hardware and 
its operating system.  The TaskRunner framework was developed at Lincoln Laboratory 
by Louis Hebert in 2000 and has since been put to use on several software projects by the 
Tactical Defense Systems Group at Lincoln Laboratory.   
 
The initial motivation for developing TaskRunner was to give real-time programmers the 
ability to develop more robust real-time applications in C.  C is a low-level development 
language widely-used for building real-time applications because of its computational 
efficiency.  For this reason, it is the one development language supported by nearly all 
real-time operating systems.   
 
However, unlike modern programming languages such as C++ and Java, C was designed 
to be a procedural programming language, not an object-oriented programming language.  
Therefore, it does not support commonly-practiced computer science principles that 
derive from object-oriented programming, such as abstraction, encapsulation, and 
polymorphism.  Furthermore, it also lacks portability when used to build real-time 
applications. 
 
Real-time software developed in C is hardware-specific and is not portable because real-
time hardware platforms run unique, custom-built operating systems.  As a result, a 
substantial portion of the real-time software developed in C is specific to the target 
hardware.  For example, various hardware systems may rely on different initialization 
procedures, they might have different rules for handling memory, and they may have 
different protocols for handling communication between processes. 
 
Programs for real-time applications rely heavily on these hardware specific 
characteristics because they must meet strict timing requirements.  Real-time programs 
typically use methods such as alarms, interrupts, and message passing for purposes of 
synchronization.  However, these methods are not a standard part of the C language and 
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vary in availability depending on the operating system being used.  Furthermore, the 
function calls and processes needed to set these systems up vary widely.  Therefore real-
time C code developed for one operating system is not easily ported to run on other 
computer platforms. 
 
Despite these limitations, C is still very popular for real-time applications.  It is generally 
believed that the efficiency benefits of C outweigh its shortcomings.  For this reason, 
most real-time hardware vendors and real-time software developers usually default to C 
and support for other languages in real-time hardware systems is limited.    
 
The motivation for TaskRunner was the vision that basic object-oriented capabilities 
could be added to C while still preserving much of the efficiency required for real-time 
use.  Secondly, TaskRunner would make real-time C code more portable.  An application 
written for one real-time system would also work on other real-time systems.  In fact the 
application could work on all systems, including standard desktop systems, without 
having to go through the time-consuming process of customizing the code to make it 
work.  In Chapter 3 we will see how this proves especially useful in the testing phase of 
the design process.    
 
In order to use TaskRunner on a given operating system, a custom-built TaskRunner 
Engine needs to exist for that operating system.  The TaskRunner framework is based on 
the TaskRunner Application Programming Interface (API), a set of methods which are 
guaranteed to perform specific functions as set forth in the documentation.  The 
TaskRunner Engine guarantees that the functionality of the TaskRunner API will be met 
for the operating system to which it was built.  Similarly, each TaskRunner Task must 
satisfy the TaskRunner API so that it can interact with the TaskRunner Engine.   
 
This concept is very similar to the concept behind Java, where the Java Virtual Machines 
on various operating systems enable Java programs to run.  The Java Virtual Machines 
support an Application Programming Interface (API) which Java programs reference. 
  
By 2002, the TaskRunner framework had been successfully implemented on a number of 
operating systems including Windows, UNIX, Linux, and pSOS.  pSOS is a real-time 
operating system used on Motorola single board computers.  Windows, UNIX, and Linux 
are operating systems for standard desktop systems which are not real-time.   
 
In the typical real-time development environment, there are usually relatively few real-
time systems compared to developers.  There may be only one real-time system which is 
deployed in the field, one which is kept as backup, and one which is used for testing in 
the laboratory.  However, standard desktop systems have become commodity systems 
which are abundant.  Thus, the benefit to having TaskRunner implementations for non-
real-time operating systems is that a larger number of programmers can have access to a 
development platform with which to develop real-time applications.  Before TaskRunner, 
development of real-time applications was limited to programmers who had access to the 
real-time systems.   
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In 2002, a multiprocessor computer system built by Mercury Computer Systems was 
chosen as the hardware platform for the new Seeker Computer real-time radar system.  
The Mercury computer system ran a custom operating system called MCOS (Mercury 
Computers Operating System).  The designers of the new real-time radar system also 
decided to use the TaskRunner framework since it had been successfully used for other 
real-time projects.  However, no TaskRunner Engine existed for MCOS.  Furthermore, 
MCOS would be the first multiprocessor real-time operating system which would support 
TaskRunner.   
 
The following sections describe the development of TaskRunner for MCOS.  First, we 
will take a look at the general TaskRunner architecture.  We then see how TaskRunner 
was implemented for the Mercury Computers Operating System.   
 

2.2 TaskRunner Architecture 
TaskRunner has a two-tiered architecture.  On the first-tier are TaskRunner Tasks.  
TaskRunner Tasks are analogous to classes in other object-oriented programming 
languages such as Java.  Each TaskRunner Task is coded to support specific functionality 
set forth by the Task API.  TaskRunner Tasks interact with other TaskRunner Tasks to 
achieve more complicated behavior.  A TaskRunner application usually consists of a 
collection of interacting TaskRunner Tasks.   
 
On the second-tier is the TaskRunner Engine.  The TaskRunner Engine supports the 
TaskRunner API and manages the interactions between TaskRunner Tasks.  The 
TaskRunner Engine is built once for a given operating system and the same 
implementation is used by all TaskRunner applications running on that operating system.  
Developers using TaskRunner then develop applications by constructing TaskRunner 
Tasks which call methods from the TaskRunner API.   
 

Task N

TaskRunner Engine

Operating System (OS)

Task 1 Task  2 …

Hardware

OS
Independent

OS
Dependent

Task N

TaskRunner Engine

Operating System (OS)

Task 1 Task  2 …

Hardware

OS
Independent

OS
Dependent

 
Figure 2.1 – TaskRunner Hierarchy 
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Figure 2.1 illustrates the TaskRunner Architecture.  TaskRunner Tasks are operating 
system-independent.  They can therefore run on any hardware/OS system for which a 
TaskRunner Engine exists.  The TaskRunner Engine is operating system-dependent.  It is 
built with a programming language supported by the local operating system.  The 
operating system is usually developed by the hardware vendor specifically for use on the 
hardware they build.  The TaskRunner Tasks and the TaskRunner Engine comprise the 
TaskRunner framework.  The TaskRunner framework is applicable on any combination 
of operating system and hardware. 
 

2.2.1 TaskRunner Tasks 
 
Software is developed in TaskRunner as a collection of interlinked TaskRunner Tasks.  A 
TaskRunner Task is an object-oriented software block whose behavior is fully defined in 
a set of internal methods predetermined by the TaskRunner API.  TaskRunner Tasks are 
equivalent to software objects in the object-oriented programming model and are 
analogous to classes in C++ and in Java.     
 
Each Task includes a Task Constructor and a set of 5 standard internal methods: 1) an 
initialization method, 2) an alarm method, 3) an interrupt method, 4) a message method, 
and 5) an end method.  These method types were chosen due to their frequent use in real-
time software.   
 

Task N

TaskRunner Engine

Operating System (OS)

Task 1 Task 2 . . .

Hardware

Writing a C Software Task in TaskRunner

Initialization Method () {
One-time initialization code

}

Alarm Method () {
switch (alarmNumber) {

Alarm Processing
}

}

Interrupt Method () {
switch (interruptNumber) {

Interrupt Processing
}

}

Message Input Method () {
Message Processing

}

End Method () {
One-time termination code

}

Task N

TaskRunner Engine

Operating System (OS)

Task 1 Task 2 . . .

Hardware

Task N

TaskRunner Engine

Operating System (OS)

Task 1 Task 2 . . .

Hardware

Writing a C Software Task in TaskRunner

Initialization Method () {
One-time initialization code

}

Alarm Method () {
switch (alarmNumber) {

Alarm Processing
}

}

Interrupt Method () {
switch (interruptNumber) {

Interrupt Processing
}

}

Message Input Method () {
Message Processing

}

End Method () {
One-time termination code

}
 

Figure 2.2 – Task Structure 
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The Task structure described above is illustrated in Figure 2.2.  The internal methods 
define how Task objects react to input and produce output.  The TaskRunner Engine 
facilitates communications between Tasks by calling a Task’s associated internal method 
in the event of a message, alarm, or interrupt sent from another Task.  It also calls a 
Task’s methods when the Task is created or destroyed.     
 
The Task Constructor is called by the TaskRunner Engine at the start of a TaskRunner 
application.  It incorporates the Task into the TaskRunner environment. 
 
The initialization method is called immediately after the Task’s construction.  In the 
initialization method, the Task typically initializes variables, allocates shared memory, 
initializes interrupts which it will be sending, registers for interrupts which it will receive, 
and sets alarms as it prepares to run. 
 
The alarm method is called in the event that a Task’s alarm goes off.  Tasks have the 
ability to set alarms for themselves using the TaskRunner API.  The alarm method 
includes a parameter for alarm number so that tasks can differentiate between different 
alarm types.   
 
The interrupt method is called in the event that an interrupt the task has registered for is 
triggered.  As is the case with the alarm method, the interrupt includes a parameter for 
interrupt number so that tasks can differentiate between different interrupt types.   
 
The message method is called when another Task in the TaskRunner environment sends 
data to the Task via the TaskRunner API.  The receiving task is passed a pointer to the 
block of data which was sent as well as a parameter specifying the size of that block of 
data.   
 
Finally, the end function is called in the event that the task is explicitly closed, or when 
the TaskRunner simulation ends.  The end function can include a variety of clean-up 
procedures as required for the given Task object. 
 
By defining the Task Constructor and the 5 standard internal methods, a Task writer will 
have fully defined the behavior of a TaskRunner Task.   
 
Conceptually, Tasks can be thought of as black boxes whose interactions with other 
Tasks are facilitated by the TaskRunner Engine.  Tasks take input and produce output 
while the specifics of their internal methods are hidden from other objects in the 
TaskRunner environment.  In addition, each Task has its own space in memory which is 
inaccessible by other Tasks.  Thus, Tasks are able to keep track of their own state.  
Furthermore, Tasks can be instantiated several times in a TaskRunner application.  Each 
instantiation of a Task runs independently from the other instantiations.  Figure 2.3 
illustrates a TaskRunner Application with two Tasks.         
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Figure 2.3 – TaskRunner Application 

 
TaskRunner Tasks interact with each other by sending signals and messages which are 
received by other Tasks in the TaskRunner environment.  In this way, a set of Tasks can 
be linked in a variety of ways to achieve a range of behavior.  Once a Task is created, it 
can be run on any operating system which has a TaskRunner Engine.  Thus, TaskRunner 
Tasks have the property of being portable across multiple platforms. 
 

2.2.2 TaskRunner Engine 
 
The TaskRunner Engine is the foundation of all TaskRunner applications.  An operating 
system must have a TaskRunner Engine in order to support TaskRunner Tasks.  During 
runtime the TaskRunner Engine manages the lifecycle of a TaskRunner application.  The 
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TaskRunner Engine launches Tasks and runs their construction and initialization 
methods.  It sets up communication pathways between Tasks, and, when necessary, the 
TaskRunner Engine activates the appropriate internal methods of each Task.     
 
The TaskRunner API provides methods for Tasks to do a variety of things such as set 
alarms, register for interrupts, send interrupts, send messages, allocate shared memory, 
and access shared memory.  The complete TaskRunner API is included in the appendix.  
Using the TaskRunner Engine API frees the Task developer to think more about software 
design rather than about how to handle event-driven action within a specific system.   
 
By sitting between the target operating system and the Task layer, the TaskRunner 
Engine hides hardware and operating system-specific details such as memory 
management and signaling so that Tasks written to the TaskRunner API can be built and 
run for any computer system for which a TaskRunner Engine exists. 
 
There are no restrictions on how a TaskRunner Engine should be implemented other than 
that it satisfies the functionality guaranteed by the TaskRunner Engine API.  Thus, 
TaskRunner Engines can be designed to take advantage of any features in a given 
operating system or hardware platform.   
 

2.3 Mercury TaskRunner Engine 
One of the design specifications for the DSP software being developed for the Seeker 
Computer upgrade was that it be developed in accordance with the TaskRunner API.  
However, a TaskRunner implementation did not yet exist for the hardware and OS 
chosen to host the Seeker Computer DSP system, the Mercury Computer Systems 
multiprocessor digital signal processing platform and the associated MCOS operating 
system.  As a result of this design choice, a new TaskRunner Engine needed to be created 
for the Mercury platform in order to support software written to the TaskRunner 
framework. 
 

2.3.1 Mercury Computer Systems 
 
Mercury Computer Systems is a vendor of parallel processing boards that host multiple 
CPU’s connected via RACEway.  RACEway is a high-speed data bus interface 
developed by Mercury and accepted as an IEEE standard.  Data transfers over the 
RACEway on Mercury systems are specified to reach speeds of 160 MB/s.  Figure 2.4 
shows a Mercury motherboard hosting 4 PowerPC (PPC) processors, a typical 
configuration used for these systems.  To increase processing capability, Mercury 
computing systems are easily scalable by adding motherboards that carry more CPU’s.  
The Mercury platform was chosen to support signal processing in the Seeker Computer 
because of the need to process multiple channels of radar data in real time, which can be 
supported using the parallel processing capability that Mercury provides.  Processing of 
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channels can be split between the CPU’s, and the scalability of a Mercury system enables 
processing of additional radar channels in the future as may be necessary.   
 

 
Figure 2.4 – Mercury Motherboard with 4 PowerPC Processors 

 

2.3.2 Implementation Overview 
 
The TaskRunner Engine created for Mercury was the first implementation of TaskRunner 
on a parallel computing system.  TaskRunner Engines had previously been developed for 
Windows, Linux, UNIX, and pSOS, all operating systems designed for single-processor 
computing systems.  The challenge in developing a TaskRunner Engine for Mercury was 
figuring out if and how TaskRunner could take advantage of multiple processors to 
improve performance while still supporting the complete TaskRunner API in real-time. 
 
Parallel computing systems are useful when a program can be broken down into 
independent blocks, distributed over the multiple computers, and processed in parallel.  
When this is possible, a parallel computing system will provide reduced computation 
time over the analogous single-processor system.   
 
TaskRunner Tasks are independent blocks which are naturally suitable for parallel 
computing.  As illustrated in figure 2.5, the TaskRunner Engine on Mercury distributes 
TaskRunner Tasks across all available processors in an attempt to achieve efficient use of 
processing power.  However, after distributing Tasks across multiple processors, Tasks 
on different processors no longer have a direct pathway via which to communicate.  The 
challenge in creating the Mercury TaskRunner Engine was thus to use processing power 
efficiently while ensuring that Tasks would still be able to communicate via the 
TaskRunner API over multiple processors.    
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Figure 2.5 – TaskRunner Architecture on Mercury Platform 

 
Fortunately, the Mercury operating system, MCOS, has built-in functions which mirror 
several of TaskRunner’s communication functions across multiple processors, including 
alarm-handling, interrupt-handling, and signal-handling which is useful for basic 
synchronization.  These built-in functions were used directly by the TaskRunner Engine 
to provide the same services for TaskRunner Tasks.  However, MCOS does not have a 
built-in function for message handling.  As a result, a message routing system needed to 
be designed and built for the TaskRunner Engine.     
 

2.3.3 Message Router 
 
The function of the message router is to take data from a Task running on one processor 
and route it to any other Task, whether that Task be running on the same processor or 
another processor.  Furthermore, the message router needs to be efficient enough to meet 
real-time requirements.    
 
There are two ways of transferring data on a Mercury computer system: 1) local transfers, 
and 2) RACEway transfers.  Local transfers can be made between any two regions of 
memory.   Those two regions of memory can lie on the same processor or on different 
processors.  However, local transfers are slow when made between regions of memory 
that lie on different processors and will not support real-time performance.  Local 
transfers between regions of memory on the same processor are fast enough to support 
real-time performance.  The RACEway transfer is a special feature of the Mercury 
computer system.  RACEway transfers move data at high speeds between any two 
processors over the RACEway bus.  However, RACEway transfers can only access data 
which lies in special sections of shared memory on a processor, which must be pre-
allocated.  Furthermore, Mercury limits the number of special sections of shared-memory 
which can exist on each processor.   
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The implemented high-speed message router uses a combination of local transfers and 
RACEway transfers.  The result is an efficient mechanism of passing data between Tasks 
that meets real-time requirements.     
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Figure 2.6 – Message Passing by Local and RACEway Transfers 

 
Figure 2.6 illustrates the message passing procedure of the implemented Message Router.  
For each processor, one section of shared memory is pre-allocated and dedicated for 
Message Router use.  The shared memory on each processor dedicated to the Message 
Router is called a Message Buffer because it is a temporary storage location for messages 
in transit.   
 
The Message Router operates like a post office.  The sending-Task alerts the Message 
Router that it would like to send a message to a receiving-Task.  The sending-Task then 
hands the message to the Message Router.  The Message Router uses a local transfer to 
move the message from the sending-Task’s private memory to the local Message Buffer 
which lies on the same PPC as the sending-Task.  If the receiving-Task lies on a PPC 
which is different from the PPC on which the sending-Task lies, the Message Router then 
uses a RACEway transfer to move the message from the local Message Buffer of the 
sending-Task to the local Message Buffer of the receiving-Task.  The Message Router 
then notifies the receiving-Task that it has a message.  When the receiving-Task is ready 
to receive its message, the Message Router hands the message off to the receiving-Task 
by using a local transfer to move the message from the Message Buffer to the Task’s 
private memory. 
 
This Message Router implementation successfully and efficiently facilitates message 
passing between any two Tasks in the system.   
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2.3.3.1 Message Router Performance 
 
The implemented Message Router transfers data at speeds of up to 264 MB/s between 
Tasks on the same PPC, and at speeds of up to 125 MB/s between Tasks on different 
PPCs.  Transfer rates vary as a function of the amount of data being transferred.  The 
time of each transfer is dependent on a fixed setup cost to prepare the transfer route and 
variable transfer costs which depend on the transfer size.  
 
Figure 2.7 plots the Message Router’s intra-PPC transfer rate as a function of transfer 
size.  As described in the previous section, intra-PPC message transfers are performed 
entirely via Mercury local transfers.   
 

 
Figure 2.7 – Same-PPC Message Transfer Performance 

 
Figure 2.8 plots the Message Router’s cross-PPC transfer rate as a function of transfer 
size.  To compare its performance, the transfer rate of a RACEway transfer as a function 
of transfer size is plotted in blue.  While the Message Router’s fixed overhead costs 
affects the transfer rate for small transfer sizes, these fixed costs are averaged out for 
large transfers and the performance of the Message Router approaches the performance 
of a pure RACEway transfer.    
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Figure 2.8 – Cross-PPC Message Transfer Performance 

 

2.3.4 Design 
 
Figure 2.9 is a block diagram showing the final design of the TaskRunner Engine on 
Mercury.  The TaskRunner Engine supports the full TaskRunner Engine API including 
the methods TRAlarm, TRInterrupt, and TRMessage.  These methods and others are built 
upon the extensive signaling capabilities of MCOS.  In addition, the TaskRunner Engine 
manages a signal queue for each Task.  A Task’s signal queue stores pending signals 
which have been sent to that Task.  Signals are serviced when the TaskRunner pops a 
signal from the queue and calls the Task’s corresponding handling-method from the Task 
API.   
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Figure 2.9 – Mercury TaskRunner Design 

 
For example, when a Task interrupts another Task via the TRInterrupt command, the 
TaskEngine sends an interrupt signal to the receiving-Task on behalf of the sending-Task.  
The interrupt signal identifies the sending-Task and the time the interrupt was sent.  It is 
placed in the receiving-Task’s signal queue and waits to be serviced.  When the interrupt 
signal reaches the top of the queue, the TaskRunner Engine pops the signal off of the 
queue and triggers the Interrupt Method in the receiving-Task’s API.       
 
Calls to the TRMessage command require more than signals to be exchanged.  Blocks of 
data must be sent from Task to Task and, in addition to signals, the TaskRunner engine 
relies on the high-speed message router described in the previous section.      
 

2.3.5 Mercury TaskRunner Engine Performance 
 
The completed Mercury TaskRunner Engine implements the full TaskRunner API.  Aside 
from the message transfer function whose execution time depends on the message size, 
the execution time for all other communication functions in the API is less than .01 ms.  
This is very little overhead and is more than suitable for real-time use.      
 
There are two limitations to the Mercury TaskRunner Engine.  These limitations are 
associated with the Mercury platform and fortunately they do not greatly affect the 
Mercury TaskRunner’s usability.  First, MCOS limits the frequency of alarms to 1000 
Hz.  Second, the Mercury TaskRunner Engine can support up to 13 Tasks per PPC due to 
constraints in processor memory.  If additional Tasks are needed for an application, PPCs 
can be added to the system.   
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3 Development of the Seeker Computer DSP 
 
 
The Seeker Computer Digital Signal Processor (SCDSP), the component of the Seeker 
Computer which processes IH data in real-time, was rebuilt completely with software 
written in TaskRunner.  An existing specification created by the developers of the 
original SCDSP outlined the exact behavior of the system, and the new implementation 
was required to meet that specification.  For purposes of validation, an independent 
simulation environment was developed to verify that the new SCDSP running on 
Mercury met the specifications.   
 
Taking advantage of existing TaskRunner implementations and the new TaskRunner 
implementation for Mercury, development was carried out on Mercury as well as a 
combination of desktop systems.  The resulting SCDSP was successfully tested within 
the simulation environment on Mercury. 
 
Section 3.1 describes the overall development and testing methodology.  Section 3.2 
describes the SCDSP.  Sections 3.3 and 3.4 describe the development of the simulation 
environment and the testing process which were the primary individual contributions by 
the author to the work in this chapter.  Section 3.5 evaluates the new SCDSP which was 
built.       
 

3.1 Development and Testing Methodology 
Development of the simulation environment was completely separate from development 
of the SCDSP.  No code was shared between the development team working on the 
simulation environment and the development team working on the SCDSP.  This 
methodology allowed the simulation environment to give an independent evaluation of 
the SCDSP’s performance.  To be validated, the SCDSP had to run successfully within 
the simulation environment on the Mercury platform. 
 
However, while separate teams were tasked to work on the simulation environment and 
the SCDSP, only one Mercury system was available for development.  This posed a 
problem since both the SCDSP and the simulation environment had to eventually run on 
the Mercury platform. 
 
Due to this limitation in hardware availability, TaskRunner was crucial in applying black-
box testing.  The team building the SCDSP used Mercury as their platform for 
development, and the team building the simulation environment used a combination of 
desktop systems as their platform for development.  Since both teams developed their 
software according to the TaskRunner standard, the finished applications ran compatibly 
on the Mercury platform without problems.   
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3.2 Seeker Computer Digital Signal Processor 
As shown in Figure 3.1, the IH is comprised of the IH Receiver and the Seeker 
Computer. 
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Figure 3.1 – Components of the Instrumentation Head 

 
The IH Receiver converts the received analog radar signal into a digital signal.  The 
components of the IH Receiver include the monopulse antenna, the mechanical gimbals, 
and the receiver hardware in the back-end.  The monopulse antenna captures radar return 
and is mounted on the mechanical gimbals.  The gimbals control the orientation of the 
antenna.  The signal from the monopulse antenna is fed to the receiver hardware which 
filters, shifts, and samples the X-band signal.  The IH Receiver takes a guidance signal 
from the Seeker Computer which directs the receiver gimbals. 
 
The Seeker Computer processes the digital signal from the IH Receiver to extract targets 
and produce signal statistics.  The Seeker Computer consists of the radar interface and the 
SCDSP.  The digital signal from the IH Receiver is passed to the SCDSP via the radar 
interface.  The SCDSP performs signal processing on the digital signal and calculates the 
angle error of the target.  After processing, the SCDSP returns the calculated angle error 
as a guidance signal to the IH Receiver via the radar interface.   
 
A block diagram of the SCDSP is shown in Figure 3.2.  The SCDSP takes monopulse 
channels and a command message as input from the radar interface.  Depending on the 
command message, the SCDSP operates in either calibration mode, acquisition mode, or 
track mode.  It processes the monopulse channels in the time domain and in the frequency 
domain according to the settings in the command message.  The SCDSP then outputs 
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either a calibration report, an acquisition report, or a track report depending on which 
mode it was operating in.  The track report contains time domain and frequency domain 
statistics that indicate the angle error, Doppler, and range of the target. 
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Figure 3.2 – SCDSP Block Diagram 

 

3.2.1 Command Messages 
 
The SCDSP receives two types of command messages: 1) the initialization message, and 
2) the dwell message.  Depending on the command message, the SCDSP adjusts its 
processing of the monopulse channels and produces different sets of output reports.     
 
The SCDSP begins operation when it receives an initialization message.  The SCDSP sets 
internal variables based on parameters in the initialization message.  The initialization 
message defines parameters which describe the monopulse input channels and how the 
SCDSP should access them.  The SCDSP uses the initialization message to determine 
which data channel corresponds to the sum channel, the delta pitch channel, the delta yaw 
channel and the delta quad channel.  Other parameters include the number of sample 
points in each input channel, the length of FFT which should be taken, the block size to 
be used for processing, the underlying waveform of the illumination (either continuous or 
pulsed), and variables to be used for threshold detection.   
 
Shortly after initialization, the SCDSP receives dwell messages at intervals of time called 
dwells.  The dwell message instructs the SCDSP on how to process the monopulse input 
channels during each time interval.  In each dwell, the SCDSP operates in one of three 
processing modes: 1) calibration, 2) acquisition, or 3) track.   
 
The SCDSP is put into calibration mode to calculate weighting coefficients used to scale 
receiver data to account for imbalances between receiver channels.  A controlled test 
signal is fed into the monopulse antenna head and the SCDSP prepares a Calibration 
Report with statistics on the test signal which are verified with the known values. 
 
The SCDSP is put in acquisition mode when the IH attempts to acquire targets.  The 
SCDSP is told to look for potential targets in the return and to prepare an Acquisition 
Report.  In the Acquisition Report, the SCDSP identifies up to 7 targets in the return as 
determined by peak detection in the frequency domain.  The Acquisition Report specifies 
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the FFT bin location and magnitude of each target candidate as well as its pitch error and 
yaw error as calculated using monopulse amplitude comparison.   
 
The SCDSP is put in track mode when the IH is in the process of tracking a target.  Via 
the dwell message the SCDSP is passed the last known FFT bin location of the target 
being tracked and it is told to prepare a Track Report with updated tracking information.  
There are two components to the Track Report: 1) the Time Domain Track Report, and 2) 
the Frequency Domain Track Report.   
 
The Time Domain Track Report contains the results of track-mode processing in the time 
domain.  The report includes the mean and variance of peak samples in the time domain 
signal, the mean and variance of the pitch error, and the mean and variance of the yaw 
error.  It also gives the mean magnitude, the mean pitch error, and the mean yaw error of 
sequential sub-blocks of the time domain signal whose size was specified in the 
initialization message.   
 
The Frequency Domain Track Report contains the results of track-mode processing in the 
frequency domain.  The report gives the magnitude, the pitch error, and the yaw error of 
the target FFT bin specified in the dwell message and the 3 FFT bins on each side of the 
target FFT bin.  The report also gives the threshold of the noise floor.   
 
In tracking mode, the radar interface takes the Frequency Domain Track Report and 
identifies the FFT bin with the largest magnitude as the location of the target.  If the 
magnitude of the signal in that FFT bin location is greater than a threshold determined 
from constant false-alarm rate (CFAR) processing, the pitch error and the yaw error 
associated with that FFT bin is used as a guidance signal. [1] In the next dwell the dwell 
message is updated with the newly identified target FFT bin for the next tracking 
iteration.  If the magnitude of the signal in the identified FFT bin is less than the CFAR 
threshold, track of the target is has been lost and the SCDSP is put back into acquisition 
mode to find another target in the next dwell.    
 

3.2.2 Angle Error 
 
The most important calculation which the SCDSP performs is of target angle error 
calculated from the monopulse data channels.  The construction of the monopulse data 
channels was described in Chapter 1.  The SCDSP determines target angle errors using 
monopulse amplitude comparison, comparing signal strengths at different locations of the 
antenna head to determine angle.   
 
When a signal is emitted from above the boresight of the monopulse antenna, the signal 
received in the top half of the antenna will be stronger than the signal received in the 
bottom half of the antenna.  The greater the angle between the source of the signal and 
the antenna boresight, the greater this signal difference will be.  The reverse is true for 
signals which are emitted from below the boresight of the monopulse antenna.  Thus, the 
delta pitch channel, which is the energy received by the top half of the antenna minus the 
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energy received by the bottom half of the antenna, will be positive for targets which lie 
above the antenna boresight and negative for targets which lie below the antenna 
boresight.  
 
Similarly, a signal emitted from the right of the antenna will cause the energy received by 
the right half of the antenna to be greater than the energy received by the left half of the 
antenna.  The more a signal lies to the right of the antenna, the greater this difference in 
energy will be.  The reverse can be said of a signal emitted from the left of the antenna.  
Thus, the delta yaw channel, which is the energy received by the right half of the antenna 
minus the energy received by the left half of the antenna, will be positive for targets 
which lie to the right of the antenna and negative for targets which lie to the left of the 
antenna. 
 
By analyzing the monopulse difference channels, ∆P and ∆Y, the SCDSP determines in 
which quadrant a target lies.  Equation 3.1 is used to calculate pitch angle error, and 
Equation 3.2 is used to calculate yaw angle error.   
 

 
Σ

∆= P Error  Pitch  (3.1) 

 
Σ

∆= Y Error  Yaw  (3.2) 

 
The difference channels are normalized by the sum channel, ∑, to get an angle error 
measurement which varies monotonically with the actual angle of the target.   
 
One important point is that while there is a one-to-one mapping between the angle error 
and the actual angle of the target, this mapping is not necessarily linear.  The actual angle 
of the target is the geometrical angle between the incoming signal and the antenna's 
boresight line.  The angle error is a measurement that is used to guide the gimbal system 
in order to keep the antenna centered on the target.  The only guarantee is that the angle 
error is expected to vary monotonically with the actual angle.  A larger angle will result 
in a larger angle error and vice-versa.  The true mapping depends on the specific 
monopulse antenna in use. 
 

3.3 Simulation Environment for the SCDSP 
The simulation environment tests the SCDSP as a black box, simulating monopulse 
inputs and command messages for input and verifying that the output reports are 
consistent with the injected inputs.  The rules for exchanging inputs and outputs between 
the SCDSP and the radar interface are very specific on the real system and the simulation 
environment follows the same message structure, memory structure, and signaling 
protocol for this purpose.   
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3.3.1 Generating Inputs 
 
The simulation environment generates sample data that resembles what the IH receiver 
might produce on a typical ASTB flight given a fixed geometry between the ground-
based transmitter, the IH receiver, and any targets present.  While the ASTB usually 
operates in situations where there is only target present, the simulation can produce 
multiple targets by calculating the return from individual targets and then summing to 
produce the total return.  Figure 3.3 illustrates the signal generation process for one 
target.   
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Figure 3.3 – Generating Simulated Data for One Target 

 
Construction of simulated data begins with the illumination waveform.  The ground-
based transmitter provides either continuous or pulsed Doppler illumination.  The 
continuous waveform is defined by its underlying carrier frequency.  The pulsed Doppler 
waveform is defined by its underlying carrier frequency, its pulse repetition interval 
(PRI), and its duty cycle, which determines pulse width.   
 
Attenuation between the transmitted signal and the received radar signal is calculated by 
the bi-static radar equation.  This equation encapsulates characteristics of the transmitter, 
the target, and the receiver to estimate the power which is received as a ratio of the power 
which is transmitted. [3] 
 
To incorporate the effects of range, the sum is taken of the distance between the 
transmitter and the target and the distance between the target and the receiver to get the 
total distance traveled by the illumination before it reaches the receiver.  Since the 
illumination waveform travels at the speed of light, a delay is calculated directly from the 
distance traveled and injected into the signal.   
 
Given that the velocity of the targets is fixed, a frequency shift is introduced into the 
received signal to simulate the Doppler Effect.   
 
To capture the angle of a target, the simulation scales the received energy accordingly to 
produce sum and difference monopulse channels.   
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Finally, white noise is injected at the receiver to encapsulate any random effects.   

3.4 Design and Integration Using TaskRunner 
Development and testing of the SCDSP occurred in three phases.  In Phase 1, the SCDSP 
and the Simulation Environment were developed concurrently using the TaskRunner 
framework.  In Phase 2, the SCDSP was tested with the Simulation Environment on a 
desktop system.  In Phase 3, the SCDSP was tested with the Simulation Environment on 
the Mercury system.  Successful operation on the Mercury system completed the 
development and validation of the SCDSP.   
 
Figure 3.4 depicts the initial development of the SCDSP and the Simulation Environment 
as object-oriented Task applications.  The SCDSP was developed directly on the Mercury 
system while the Simulation Environment was developed on a desktop system.        
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Figure 3.4 – Concurrent Development of the SCDSP and Simulation 

 
The SCDSP’s design consists of an I/O Task, a Control Task, and a group of Processing 
Tasks.  The I/O Task is responsible for the SCDSP’s input and output with the external 
system, following the communication protocol described in the specification.  When the 
I/O Task is triggered by new input, it passes the received monopulse channel data and 
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associated command message to the Control Task.  The Control Task interprets the 
command message and initializes processing by the Processing Tasks.  The Processing 
Tasks produce a report which is sent to the I/O Task.  The I/O Task then writes the report 
as output.  In order to verify the I/O Task’s correctness during development, a Test I/O 
Task was developed to mimic the external I/O.  The SCDSP was developed and run 
exclusively on the Mercury system until it was completed.   
 
The Simulation Environment’s design consists of an I/O Task, an Input Generation Task, 
and an Output Verification Task.  Mirroring the SCDSP’s I/O Task, the Simulation 
Environment’s I/O Task is responsible for the Simulation Environment’s input and output 
with the SCDSP.  Synchronized to a periodic alarm in order to simulate a dwell, the Input 
Generation Task generates radar data and an associated command message which it sends 
to the I/O Task.  The I/O Task writes this the data and the command message as output.  
The I/O Task is triggered when it receives a report.  It sends the report to the Output 
Verification Task which verifies that the results are consistent with the previous dwell of 
data which was generated.  It then sends selected content from the report to the Input 
Generation Task so that it can generate the next dwell of data accordingly.  Finally, a Test 
I/O Task was developed to mimic I/O from the SCDSP.  The Simulation Environment 
was developed and run exclusively on desktop systems until it was completed. 
 
In Phase 2 of development and testing, the completed SCDSP and Simulation 
Environment TaskRunner applications were tested together on a desktop system.  As 
illustrated in Figure 3.5, the Test I/O Tasks were removed and the I/O Task of the 
Simulation Environment was linked with the I/O Task of the SCDSP on the desktop 
environment.   
 
The purpose of this phase was to isolate and correct algorithmic bugs in the SCDSP.  The 
desktop system was selected for this phase of testing because it was better understood 
than the new Mercury system which had not been used for such heavy applications 
before.  Furthermore, the Mercury TaskRunner Engine was also relatively new while the 
desktop TaskRunner Engine had been fully debugged over 3 years of heavy usage.      
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Figure 3.5 – SCDSP Testing on Desktop System 

 
After the SCDSP was fully tested and verified on the desktop system, the SCDSP was 
tested with the Simulation Environment on Mercury, the target platform.  Figure 3.6 
illustrates the Simulation Environment running with the SCDSP on Mercury.  As with 
testing on the desktop system, the Test I/O Tasks were removed and the I/O Task of the 
Simulation Environment was linked directly with the I/O Task of the SCDSP.   
 
The purpose of Phase 3 was to verify that the SCDSP worked correctly on the target 
platform and to identify and correct any remaining software bugs which were particular 
to the Mercury system or the Mercury TaskRunner Engine.       
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Figure 3.6 – SCDSP Testing on Mercury System 

 
Once the SCDSP was verified while running with the Simulation Environment on the 
Mercury, the development and testing process was complete.  The Mercury SCDSP was 
fully functional and was ready for full integration into the ASTB IH.  
 

3.5 Results 
Using TaskRunner to build the Mercury SCDSP resulted in significant savings in 
development time and higher code quality when compared to the development of the 
original SCDSP.   
 
The Mercury SCDSP was successfully built and tested by 2 full-time developers in 3 
months despite the fact that only one developer had access to a Mercury platform.  As a 
metric for comparison, the original SCDSP took 4 full-time developers over 12 months to 
build and test.  By enabling real-time code to be portable, TaskRunner allowed multiple 
developers to work together efficiently despite the severe bottleneck imposed by limited 
hardware availability. 
 
By supporting object-oriented software, TaskRunner resulted in a Mercury SCDSP which 
had a more intuitive design, and also a better code structure than the original SCDSP.  
The benefit of higher code quality is a reduction in future maintenance costs.   
 
The black box testing methodology proved successful when the team that later integrated 
the Mercury SCDSP into the ASTB IH encountered no software bugs.   
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4 Advanced Seeker Computer Tracking 
Algorithm 

 
The performance of the new Seeker Computer Digital Signal Processor (SCDSP) 
significantly improves upon the performance of the old system.  The SCDSP has a 20ms 
window within which to process each dwell of data and output its results before the next 
dwell of data arrives.  While the old system took the entire 20ms window to complete its 
processing, the new system takes a little under 3ms to produce the same results.  This 
improvement in performance presents a significant opportunity.  We have over 17ms of 
idle time on the new system with which to do additional processing.  We would like to 
take a look at ways we can use this processing time to extend the capabilities of the 
system.   
 
The ASTB is often flown in engagement scenarios with aircraft that employ electronic 
countermeasures (ECM) to jam radar systems trying to obtain a track.  As discussed in 
the introduction, the Seeker Computer is the system on the ASTB IH used to track 
aircraft.  While aircraft are employing ECM to jam tracking, electronic counter-
countermeasures (ECMM) may be employed by the tracking system to reduce the 
effectiveness of the ECM techniques.      
 
With the new SCDSP as a platform for processing, the focus of this section is the 
development of one particular ECCM, leading-edge range track, for the ASTB.  Leading-
edge range track is an ECCM that is used against a common ECM device called the 
towed decoy. 
 
The towed decoy is introduced in Section 4.1.  The concepts of leading-edge track are 
described in Section 4.2.  Section 4.3 describes the leading-edge track algorithm 
implemented by the author for the SCDSP. 
 

4.1 Towed Decoy Problem 
A towed decoy is a receiving and transmitting device that radiates electromagnetic energy 
specifically designed to jam enemy radar systems trying to track an aircraft.  Towed 
decoys are deployed in-flight via a towline from the rear of the aircraft.  Figure 4.1 shows 
the ASTB closing in on an aircraft carrying a towed decoy.  The target is boxed in red 
and the decoy is boxed in green.  For the remainder of this chapter, red is associated with 
the target and green is associated with the decoy.   
 
An enemy radar system tracking an aircraft with a deployed towed decoy receives 
jamming energy from the decoy in addition to any signal energy it normally receives 
from the aircraft.  The ratio of jamming energy to signal energy received by the radar 
system is known as the jamming-to-signal (J/S) ratio.  When J/S is sufficiently high, the 
tracking system will track the decoy instead of the aircraft. 
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RF Decoy

 
Figure 4.1 – ASTB Closing in on a Target with Decoy 

 
Towed decoys come in a variety of configurations and can emit a number of jamming 
waveforms.  We will focus our attention on one particular class of towed decoy, the 
repeater.  A towed decoy operating as a repeater receives illumination from the tracking 
radar and retransmits this illumination with gain in an attempt to simulate return from a 
large aircraft.   
 
Figure 4.2 shows the normal tracking procedure used on the ASTB.  Time domain return 
is collected by the IH.  An FFT of the return signal in the time domain gives a signal in 
the frequency domain.  Peak detection in the frequency domain isolates the target’s 
frequency bin and results in a track.  Taking the monopulse channels at the track bin, the 
angle of the target is determined by Equations 3.1 and 3.2, which were introduced in 
Section 3.4.   
 

 
Figure 4.2 – Angle Tracking Process in Frequency Domain 

 
However, when a monopulse radar tries to track an aircraft carrying a decoy, peak 
detection in the frequency domain will find energy from both the aircraft and the decoy.  
Since the aircraft and the decoy travel at the same velocity, they produce identical 
Doppler shifts and their energies will lie in the same frequency bin.   
 
This is illustrated in Figure 4.3.  The decoy’s contribution to the energy at the track bin is 
highlighted in green and the aircraft’s contribution is highlighted in red.  The decoy’s 
contribution is much greater than the contribution from the aircraft.   
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Figure 4.3 – Angle Tracking Process in Frequency Domain with Decoy 

 
The monopulse technique for determining angle assumes that all energy comes from a 
single source.  When the energy being processed comes from multiple sources, the 
monopulse radar will bias its track towards the source with highest energy.  This is why 
the J/S ratio is such a significant measure in determining the performance of electronic 
countermeasures.  If the towed decoy’s J/S is high enough, the tracking system will track 
the decoy instead of the aircraft.          
  

4.2 Leading-Edge Range Track 
Leading-edge range track is an electronic counter-countermeasure (ECCM) used to 
resolve the towed decoy problem.  Leading-edge track takes advantage of the separation 
in range between an aircraft and a decoy in order to isolate aircraft energy for tracking.   
 
The aircraft and the decoy are separated by a distance equal to the length of the towline.  
Assuming that the aircraft is flying towards the radar system, radar illumination will 
reach the aircraft before it reaches the decoy.  As a result, a radar system tracking an 
aircraft carrying a decoy will receive reflected energy from the aircraft before it receives 
the corresponding reflection from the decoy.  The difference in time-of-arrival between 
the two incoming signals allows leading-edge track to distinguish aircraft return from 
decoy return.  Whereas the target and decoy were inseparable in the frequency domain, 
they can be separated in the time domain assuming the radar system employs the right 
illumination waveform.   
 
One waveform which a radar system employing leading-edge track can use is a pulsed 
illumination waveform.  Leading-edge track can then be applied independently to each 
pulse return.   
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Figure 4.4 – Illumination and Received Waveforms 

 
Figure 4.4 illustrates a pulsed illumination waveform and the associated return waveform 
which can be expected at the receiver.  A transmitter transmits a pulsed waveform by 
sending pulses of energy followed by periods of silence.  The duration of the pulse is 
known as the pulse width and the period between pulses is known as the pulse repetition 
interval (PRI).   
 
As just described, the receiver receives return from the target-aircraft before it receives 
corresponding return from the decoy because of the difference in range between the 
target and decoy.  If the decoy is close to the aircraft, for each pulse the received 
waveform will contain a section of target-only return, followed by a section where the 
target return overlaps with the decoy return, followed by a section of decoy-only return.  
In Figure 4.4 the target-only return is colored red, the overlap of target and decoy return 
is colored blue, and the decoy-only return is colored green.  Finding the leading edge of 
the return allows us to isolate the target-only return.   
 

 
Figure 4.5 – Angle Tracking Process Using Leading-Edge Track 

 
Figure 4.5 shows an alternative angle tracking process using leading-edge track.  As 
before, time domain return is collected.  Next, the leading edge of the time domain return 
is identified.  Finally, angle error is calculated by comparing the monopulse channels at 
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the leading-edge.  Since the energy at the leading edge comes entirely from the aircraft, 
this process will correctly determine the direction of the target-aircraft.   
 

4.3 Leading-Edge Range Tracking for the ASTB 
While directly implementing the leading-edge track algorithm described in Section 4.2 
should be straightforward, 4 complications on the ASTB change the original problem.  
The leading-edge track algorithm described in Section 4.2 cannot be implemented 
directly on the ASTB because of 1) low signal-to-noise, 2) high jamming-to-signal, 3) 
under-sampling, and 4) a lack of time synchronization.   
 
Figure 6 shows one pulse of simulated data representing the received waveform from the 
ASTB and illustrates each of these complications.  Arrows indicate the different regions 
of return, which are color-coded as before. 
 

 
Figure 4.6 – Features of ASTB Data 

 
First, low signal-to-noise (S/N) makes it difficult to find the leading-edge of the target 
return.  The signal-to-noise ratio compares the power of target return with the power of 
the noise.  In our previous description of leading-edge track we assumed we could find 
the leading-edge from the target return.  However, in the presence of noise it can be 
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difficult to identify target return from the noise.  In Figure 4.6 the noise is colored in 
black and lies at the ends of the signal.  The leading-edge of the target return is colored 
red and lies adjacent to the noise.  In the Figure, the target return looks very similar to the 
noise.  As the signal-to-noise ratio decreases, the magnitude of target return becomes 
comparable to that of the noise and it becomes difficult to differentiate the two.   
 
A high jamming-to-signal (J/S) ratio in the return complicates matters even further.  A 
good decoy may emit jamming energy which is an order of magnitude, or more, greater 
than the signal energy.  In other words, the decoy return is likely to stand out much more 
from the noise floor than the target return.  The Figure illustrates how the decoy return 
can dominate the target return.  In trying to find the leading-edge it is easy overlook 
target return in favor of the larger decoy return.       
 
A third problem is under-sampling by the ASTB receiver of the received waveform.  The 
received waveform is a continuous signal.  However, the SCDSP does not process this 
received waveform directly.  The SCDSP processes samples of the received waveform 
taken by the A/D in the IH receiver.  Unfortunately, ASTB’s sampling rate is lower than 
the rate needed to reconstruct the signal.  In fact, because the sampling interval is greater 
than the pulse width of the received waveform, we are not guaranteed to get any samples 
from the target at all.  Figure 4.7 illustrates this problem.     
 

 
Figure 4.7 – Possible Sampling Cases 

 
Figure 4.7 shows that due to under-sampling, we can get 5 different outputs from 
sampling the same pulse return depending on the alignment of the samples with the 
return.  The target’s pulse return is indicated by a red line segment.  The decoy’s pulse 
return is indicated by a green line segment.  The sampling interval is greater than the 
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pulse width and is indicated by a dotted black line segment.  Samples are taken at the 
endpoints of the sampling interval.  For each case, the relationship between the target 
return and the decoy return is fixed.  The target return is received slightly before the 
decoy return.  However, in each case the sampling interval is aligned differently to obtain 
a different output.   
 
In Case 1 the target and decoy return lie within the endpoints of the sampling interval.  
No signal is sampled and both samples are noise.  In Case 2 the first sample lies in the 
region of target-only return.  The first sample is target return and the second sample is 
noise.  In Case 3, the first sample lies well before the return and the second sample lies in 
the decoy-only region of return.  The first sample is noise and the second sample is decoy 
return.  In Case 4, the first sample lies in the region where the target and decoy return 
overlap.  The first sample is target plus decoy return and the second sample is noise.  In 
Case 5, the first sample lies well before the return and the second sample lies in the 
region where the target and decoy return overlap.  The first sample is noise and the 
second sample is target plus decoy return.   
 
Note that since the decoy return dominates the target return, sampling the region where 
the target and the decoy overlap is basically equivalent to taking a sample from the decoy 
itself.  Only in Case 2 do we get useful information about the location of the target.   
 

 
Figure 4.8 – ASTB Sampling of the Received Waveform 

   
Figure 4.8 depicts 6 periods of the pulsed return waveform.  Data is processed in the 
ASTB in blocks called dwells and each dwell contains samples from roughly 2000 pulse 
returns.  The vertical arrows indicate A/D sample points within the IH receiver.  Due to 
the relative size between the sampling interval and the pulse interval, the pulse return is 
under-sampled.   
 
Looking at the samples over the whole dwell, we can see that in an ASTB IH dwell, there 
is no leading edge to track off of.  The dwell covers many PRI's and the signal is a 
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combination of noise samples, target return samples, target and decoy return samples, and 
decoy return samples in what appears to be an arbitrary order.  Therefore, the sampled IH 
signal return for a given dwell is not well suited for the leading edge track algorithm.   
 
Finally, a fourth problem is that the received samples are not synchronized with the 
transmitter emitting the illumination waveform.  Without synchronization we cannot 
determine range because we have no reference point with which to measure against.  This 
poses a problem because being able to discriminate target energy from decoy energy in 
range is the basis of leading-edge track. 
 

4.3.1 Algorithm Outline 
 
In order to determine the angle of the target we need some way of isolating the target-
only samples from the return.  The following section outlines an algorithm which 
accomplishes this and performs leading-edge track on the ASTB.  This algorithm is 
illustrated in Figure 4.9.  In the next section we will take a look at how the steps of this 
algorithm are implemented.   
 

 
Figure 4.9 – Normalizing the ASTB IH Dwell 

 
First, we normalize the data by the pulsed repetition interval (PRI) of the received 
waveform.  The value of the PRI is either known in advance or can be calculated from the 
data.  Starting from the first sample in the ASTB IH dwell we aligned the time domain 
samples against successive PRI intervals, subdividing regions of the ASTB dwell by the 
PRI.  We then redistribute all of the samples by their positions relative to the PRI interval 
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in which they lie.  The samples from the original dwell are re-plotted in a normalized 
domain based on one PRI interval of the illuminator.  We call this normalization the 
implied range form. 
 
The implied range form is beneficial because it gives the range of all of the samples 
relative to the other samples in the dwell.  While we cannot determine absolute range 
because the data is not synchronized with the illuminator, relative range is enough to 
perform leading edge track.  The implied range form gives us the three distinct signal 
regions needed for leading edge track: the target-only signal, target plus decoy signal, and 
decoy-only signal.  What the implied range form actually shows us is what we might 
expect if we finely sampled one period of the received waveform.  From the implied 
range form we can identify a leading edge and correlate all samples with the target, the 
decoy, or noise. 
 

 
Figure 4.10 – Noise Removal 

 
Given data in the implied range form, the next step is to remove noise so that we can 
identify the leading edge.  Figure 4.10 demonstrates that it is easy to identify the leading 
edge once noise is removed.   
 
Finally, we calculate the angle error of the target by comparing the energy in the 
monopulse channels at the leading-edge.  Figure 4.11 summarizes the leading-edge angle 
tracking procedure modified for the ASTB.   
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Figure 4.11 – Angle Tracking Process Using Leading-Edge Track on the ASTB 

 
Time domain return is collected by the IH.  The time domain data is normalized to obtain 
its implied range form.  Next, the leading edge of the data in implied range form is 
identified.  Finally, angle error is calculated by comparing the monopulse channels at the 
leading-edge of the implied range form.  Since we have successfully isolated the target-
only energy, this process will correctly determine the direction of the target-aircraft for 
the ASTB.   
 

4.3.2 ASTB Implementation 
 
The following algorithm performs leading-edge track on data received by the monopulse 
antenna on the ASTB.  The algorithm processes 4 channels of input data: sum, delta 
pitch, delta yaw, and quad.  Each channel contains one dwell of data, roughly 32,000 
samples taken over 2000 pulses of the received waveform.   
 
To help illustrate the algorithm, we will show intermediate outputs taken from running 
the algorithm on simulated data reflecting the geometry shown in Figure 4.12.  A ground-
based transmitter illuminates a target and a decoy with a pulsed Doppler waveform.  As 
the ASTB closes in an the target and the decoy, the target lies 30° above the boresight of 
the monopulse antenna while the decoy lies 30° below.  Therefore, the true angle error 
between the IH boresight and the target should be 30°.  The sampling interval of the 
receiver is 1.1 times the pulse width of the received illumination.  The pulse repetition 
interval is 9.14 times the sampling interval.  The tow length is such that the delay 
between target return and decoy return is 0.5 times the pulse width.  The decoy emits 
jamming energy which is 15 dB greater than the signal energy from the target.  The 
signal energy from the target is 10 dB greater than the energy of the noise.  The noise is 
white noise injected at the receiver.   
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Decoy

-30°
30° Antenna Boresight

 
Figure 4.12 – Example Geometry for Simulated Data 

 
Figure 4.13 displays the first 200 samples of simulated data from the sum channel.  The 
delta pitch and delta yaw channels are scaled copies of the sum channel.  The quad 
channel is not actually used in processing but may be useful for future improvements to 
the algorithm.     
 

 
Figure 4.13 – Samples from Simulated Sum Channel 

 
It is clear from Figure 4.13 that the raw dataset is not in the form in which we can apply 
leading edge track.  The samples are somewhat random.  There is a visible noise floor 
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and there are also samples which lie clearly above the noise floor.  However, it is not 
clear which samples belong to the target and which samples belong to the decoy.   
 
The monopulse channels are dominated by energy from the decoy.  Taking the ratio of 
the sum of the samples in the difference channel and the sum of the samples in the sum 
channel we get a monopulse angle error of -29.52°, which is approximately the location 
where we placed the decoy in our simulated data.  Similarly, if we calculate an angle 
error by performing peak detection in the frequency domain we get an angle error of        
-29.27°.  The jamming energy from the decoy obscures the true angle of the target at 30°.    
 

4.3.2.1 Determining the PRI of the Pulsed Return 
 
The first step in the algorithm is to normalize the data by the pulse repetition interval 
(PRI) of the illumination return.  In the case of the ASTB, the pulse repetition interval is 
known.  However in cases where it is unknown, the PRI can be accurately estimated 
directly from the data.      
 
In the case of the ASTB the PRI of the received illumination can be calculated with 
information that is available or that is easily measured.  The PRI of the received 
illumination is a function of the PRI of the transmitted illumination, the velocity of the 
target, and the speed of light.  By the Doppler Effect, frequencies in the transmitted 
illumination are shifted in the received illumination according to Equation 4.1, where fd is 
the Doppler shift, v is the velocity of the reflecting object, and c is the speed of light.    
 

 
c
vffd 2−=  (4.1) 

 
In cases where the PRI of the illumination return is unknown, it can be estimated by 
determining the dominant frequency in the received data.     
 
The assumption we make in using the received dataset to estimate PRI is that the return is 
a periodic signal and the return from a single pulse does not change significantly over the 
course of a dwell.  This means that the PRI is nearly constant, and the return from each 
pulse is consistent with the return from all other pulses in the dwell.  This assumption can 
be made on the ASTB because a dwell of data is collected over a very short span of time 
over which the target does not change position or velocity significantly.  Furthermore, if 
we suspect that the characteristics of the return may have changed over the course of the 
dwell, we can reduce the size of the dataset to a portion of the signal where we can make 
this assumption.   
 
To estimate the dominant frequency we take the autocorrelation of the sampled signal.  
Equation 4.2 defines the unbiased autocorrelation of a discrete signal, x[n] where N is the 
number of sample in x[n].   
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Cxx[t] is the correlation between samples from x[n] and a copy of x[n] shifted by t, x[n+t].  
The received dataset is a periodic signal, thus we expect that the autocorrelation of the 
periodic dataset will exhibit peaks at samples equal to or multiples of the underlying 
period.   
 
It is not necessarily true, nor should we expect, that the period of the return is equal to an 
integral number of samples.  In the simulated dataset used to illustrate this algorithm, the 
PRI is equal to 9.14 times the sampling interval.  This means that the period of the input 
data set is 9.14 samples and the underlying waveform repeats after 9.14 samples.  Taking 
the autocorrelation of the sum channel of our simulated data we get the signal in the 
Figure 4.14.     
 

 
Figure 4.14 – Autocorrelation of Sum Channel 

 
It is apparent from Figure 4.14 that the autocorrelation, Cxx[m], contains peaks roughly 
every 9 samples.  These peaks occur at m = 0, 9, 18, 27, 37, 46, 55.  Each peak is 
separated by 9 or 10 samples.  This is consistent with the PRI to sampling interval ratio of 
9.14 which we set.  Indeed, since 6 peaks occur over 55 samples the average number of 
samples between peaks is 55/6 = 9.16 which is fairly close to the true period of 9.14 
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samples which we have set.  By using this process over the entire autocorrelation signal, 
we can estimate the period of the underlying pulsed return waveform.  Calculation of the 
PRI is done by taking the autocorrelation of the sum channel, identifying the peaks, and 
calculating the average number of samples from peak to peak.  The larger the number of 
samples which we have, the more accurate our estimation of the PRI will be.  We can 
perform interpolation to increase the number of samples.   
 
For this example, the algorithm calculates the value of 9.1428 for the PRI, which is 
correct to 5 significant digits.   
 

4.3.2.2 Normalization to the Implied-Range Form 
 
Once we have obtained the PRI, we then proceed to normalize the received dataset into 
the implied range domain.   
 
Given that the 0th sample has an implied range of 0, implied ranges are assigned to the 
other samples based on the PRI.  The implied range, η, of each sample is calculated by 
Equation 4.3, where n is the sample number.   
 
 PRIn  mod =η  (4.3) 
 
The intuition behind this transformation is that after every PRI samples we reach another 
period of the underlying pulsed waveform.   
 
After calculating the implied range of all of the input samples, the points are sorted by 
their implied range and re-plotted to get the implied range form of the input data.  The 
implied range values are normalized by the PRI so that the implied ranges have a 
minimum value of 0 and a maximum value of 1.   
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Figure 4.15 – Simulated IH Sum Channel in Implied Range Form 

 
As we can see from Figure 4.15, the implied range graph gives a clear image of the pulse 
return.  It is an estimate of what we might see if we sampled one pulse of the return at a 
rate much higher than the actual sampling rate.   
 
In the implied range form, all of the significant points are grouped together.  From the left 
side of the graph moving right, we see a group of points which are target return, a group 
of points which are target return plus the decoy return, and a group of points which are 
decoy return.  There is a noise floor covering the entire signal.  The implied-range form 
makes it very easy to identify samples from these distinct regions of the signal.   
 

4.3.2.3 Finding the Leading Edge 
 
With the data now ordered by range in the implied range form, the next step is to find the 
leading edge.  The leading edge is the first non-noise signal returned in range.  In order to 
find the first non-noise signal returned in range we need to be able to distinguish signal 
return from noise.   
 
To do this, we make a few assumptions about the characteristics of the noise.  We assume 
that the noise is Gaussian, which means it consists of independent random samples from 
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a Gaussian distribution.  Knowing the variance of the noise will give us enough 
information to distinguish signal from noise with some confidence. [1]  
 
We remove noise by determining the characteristics of the noise present in the signal and 
then use likelihood testing to determine regions of return which are statistically 
significant.  Threshold filtering is based on the assumption that the target return will be 
significantly higher than the noise floor.  By calculating the statistics of the noise floor 
we can filter out all but the significant targets.   
 
The major challenge is to determine the statistics of only the noise with a signal that 
contains both noise and signal samples.  To calculate the variance of the noise we need to 
have noise samples with which to calculate the variance.  Given that we do not know 
which samples are noise and which samples are signal in the first place, choosing noise 
samples with which to calculate variance is not a trivial task.     
 
What we do know about the noise is that it lies in contiguous regions of the return signal.  
Figure 4.16 shows the implied range form with distinct returns from the target and decoy.  
Assuming that we only have two objects, the target and decoy, in our tracking space, the 
noise is split into at most two separate contiguous regions.  If we break up the signal into 
blocks that are small enough, we are guaranteed that at least one of the blocks contains 
only noise samples.   
 

 
Figure 4.16 – Regions of Return in Implied Range Form 

 
The proper size of these blocks in order to guarantee that at least one of the blocks is 
noise-only is half the width of the larger block size of noise.  Since we do not know how 
the target and the decoy are positioned, we assume, for purposes of calculating the proper 
noise block size, the worst case scenario in which the noise is split into two blocks of 
equal size.  The larger block of noise has a width that can be determined by Equation 4.4, 
and thus the proper block size, β, is determined by equation 4.5.   
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If we assume that the pulse width during operation is no larger than .25 times the PRI we 
get a block size equal to 1/8 the PRI.  The target and the decoy can occupy at most 3 
blocks each, leaving 2 blocks which contain only noise samples.   
 

 
Figure 4.17 – Segmentation of Implied Range Form for Noise Calculation 

 
The technique is shown in Figure 4.17, where blocks 1, 4, 5, and 8, contain only noise 
samples.  Since we know that at least one of the blocks contains only noise samples, we 
can find the mean and variance of all of the blocks, and choose the one that looks most 
similar to noise. 
 
Once we have the mean and variance of the noise, we filter out the noise by removing 
samples which are within 5 standard deviations of the mean noise.  If the noise is truly 
Gaussian then the probability that noise samples exceed 5 standard deviations is 
extremely low.  However, the threshold is set high to make the algorithm more robust in 
case the noise is not truly Gaussian.  The data in implied range form without noise 
appears in Figure 4.18.   
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Figure 4.18 – Implied Range Form after Removal of Noise 

 
We can now clearly identify the leading edge.     
 

4.3.2.4 Angle-Range Form 
 
We can take points on the leading edge to calculate angle error.  The question, however, 
is what the best way is to do this is in order to get a robust estimate of angle error.   
 
To answer this question we first calculate angle errors using Equations 3.1 and 3.2 as 
described in Section 3.4 for all of the remaining signal points and re-plot the data in a 
graph of angle error versus range.  This is shown in Figure 4.19.    
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Figure 4.19 – Angle Error in Implied Range Form after Removal of Noise 

 
The noise in the signal propagates into the angle error.  Because the noise has zero mean, 
the calculated angle error varies around the true value of 30° but has high variance.  If we 
zoom in closer at a portion of the leading edge as in Figure 4.20, we see that the angle 
errors are highly variable.  For this simulated data set, the angle errors vary around 30° 
but range from 0° to 70°.   
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Figure 4.20 – Angle Errors at Leading-Edge 

 
Clearly, calculating angle error from an arbitrary point on the leading edge will not give a 
robust estimate.  While the angle from each point has an expected value which is equal to 
the true angle error, the variance is high because of the receiver noise.   
 

4.3.2.5 Angle Smoothing and Correction 
 
We use averaging to reduce the variance of our angle measurements and to obtain a more 
precise angle estimate.  We smooth the raw angle estimates using a moving average.  As 
we saw in the previous section, the expected value of the calculated angle with noise is 
equal to the true angle value.  Taking a moving average will reduce variance while 
maintaining the same expected value.   
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Figure 4.21 – Angle Errors after Averaging 

 
The result of smoothing is a much clearer leading-edge range track of the angle of 
detected targets as shown in Figure 4.21.     
 
Figure 4.22 shows the angle errors for the leading edge portion of the signal.  The 
average angle error for this region is 29.44°, which is the final estimate of angle error 
from this algorithm.  This estimate is less than 2.5% off the true error of 30°, 
demonstrating the effectiveness of this algorithm. 
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Figure 4.22 – Angel Errors at Leading-Edge after Averaging 

 
Running this simulation 250 times we get an average angle estimate of 29.31° with a 
standard deviation of 2.22°.    
 

4.3.2.6 Analysis of Performance and Limitations 
 
The algorithm performs quite well on simulated data and gives an expected angle error 
estimate which is equal to the true angle error of the target.  The interesting feature of this 
algorithm is that it does not require the evaluation of any Fourier transforms.  Thus, it is a 
relatively lightweight algorithm for calculating the angle of a target.  The most time 
intensive portion of this algorithm is taking the autocorrelation to find the PRI.  The 
number of calculations needed to determine the autocorrelation grows with the number of 
input samples according to O(n2).  The processing requirement of other steps grows 
linearly with the number of samples O(n).  With a few modifications, the autocorrelation 
can probably be replaced by another process for finding PRI which would probably 
reduce the running time.    
 
Another interesting property of this algorithm is that is it is scalable to meet the desired 
input size.  If processing time is a constraint, the algorithm will work with fewer samples.  
More samples simply allow the algorithm to fill in the implied range form with higher 
resolution.  Even with samples from as few as 20 pulses, which is 1% of the data that is 
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actually available in one dwell of the ASTB, the algorithm still delivers a fairly accurate 
estimate of the angle error, however with higher variance.  If we run the simulation 1000 
times with only 20 pulses we get an average angle estimate of 29.66° with a standard 
deviation of 8.73°.  
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5 Conclusion 
 
As of May 2005, the Mercury Seeker Computer is in the process of being installed on the 
ASTB as the new tracking system for the IH.  The Mercury Seeker Computer improves 
upon the software architecture, processing power, and algorithmic capability of the old 
system.  It was developed over the course of 3 years.   
 
In the first stage of development, a TaskRunner Engine was implemented for the Mercury 
Computer Operating System.  The Mercury TaskRunner Engine allows TaskRunner 
software to be developed for the Mercury platform.  TaskRunner software is object-
oriented and portable across multiple platforms. 
 
In the second stage of development, Seeker Computer Digital Signal Processing (SCDSP) 
software was developed for the Mercury Seeker Computer using TaskRunner.  The new 
SCDSP software was thoroughly tested to meet all specifications.  It behaves in exactly 
the same way as the original system; however it runs roughly 10 times faster.  
Furthermore, since the new SCDSP software was developed using TaskRunner, its code 
is object-oriented and can be reused in the future in case a new hardware platform is 
selected for a next-generation system.   
 
Finally, the flexible software structure and the processing power of the Mercury Seeker 
Computer will allow it to support, in real-time, advanced tracking algorithms which were 
not possible in the old system.  One such advanced tracking algorithm, leading-edge 
range track, was examined in detail and an algorithm was implemented to employ the 
technique using ASTB IH data.  Against simulated data this algorithm proved to be very 
robust and efficient in tracking a single aircraft with a towed decoy.       
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