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EXECUTIVE SUMMARY

This report Summarizes the research work performed under

the project

"Nuclear Plant Reliability Analysis - Optimization of

Test Intervals for Standby Systems in Nuclear Power Plants"

as outlined in the Agreement or Detailed Scope of Work as of

November 21, 1977. The section numbers used below refer to those

employed in this agreement.

1. Collection and Review of Available Information on Test
Interval Optimization

An extensive literature review on analytical methods for

test interval optimization has been performed and its results are

reported. It has been found that analytical methods are only avail-

able for single component systems and a limited number of majority

voting systems (k-out-of-n systems). This analysis of complex

technical systems with these formulations is questionable, although

they provide first estimates. Some of the equations found in the

literature differ from others with respect to the extent of handling

imperfect testing, test caused failures and the like. When these

effects are included in the analysis, an explicit solution for

the test interval is no longer possible even for a single compo-

nent. At the end of this literature review it became quite apparent,

that the analytical methods must be recognized as convenient
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guidance into this special area of reliability analysis. However,

on the other hand, the limitation for practical work became

also obvious, especially for systems of technical interest.

2. Review and Assessment of Technical Specification

The information supplied by the utilities has been reviewed.

All efforts were concentrated upon subtask 2a, involving diesel

generators.

3. Data Collection and Analysis of Diesel Generators

A literature review has been performed on diesel generator

failures covering reports issued after the publication of WASH-

1400. The data are listed in Appendix A which also summarizes

the analysis and the comparison with the WASH-1400 results. For

the purpose of this study a conservative set of data has been

used consisting of the most conservative data found in either

assessment. There are some indications, that the data unavail-

ability upon demand of D.G.s may be lower by a factor of about 3.

5. Development of the Methodology for the Optimization of
Test Intervals

Starting point of the development of a methodology was the

optimization study of test intervals for a diesel generator unit

by applying various strategies suggested by different authors.

All of these methods were compared and recommendations given.

Based on these findings a simplified Auxiliary Feedwater System

as an example of a multi-component system was studied. The pur-
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pose of this study was primarily to answer the question whether

optimum test intervals for single component systems can be equally

well applied for multicomponent systems. Our results indicate

that this is generally not the case. Under certain circumstances,

lumping procedures may be found which make the single component

formulation work, however, a much more reliable way to obtain the

optimum test interval for complex systems is by using a computer

code in an iterative manner. For this purpose, the NRC-code

FRANTIC has been made operational at MIT and benchmarked against

a variety of analytical and numerical codes. The results of this

study indicate that FRANTIC is a useful engineering tool with a

high degree of flexibility.

The tested code is available for the sponsors upon request.

6. Applications

The results obtained from the analytical procedures were

compared to FRANTIC results for the Aux-Feed System. It was found

that they do not necessarily agree. After the limitations of the

analytical formulations have been detected, it was decided to

perform all other optimization studies by using FRANTIC. These

studies included the Emergency Power System, a blackout study

and a special study concerning test caused failures and detection

inefficiency.

Each of these studies addressed different aspects of test

interval optimization which are given in full detail in the main

report.



During the work various shortcomings of FRANTIC became

apparent, among them

- the inconvenience for user to derive the system unavail-

abilility function rather than providing the fault tree

as input

- the lack of the code to account for wearout

- the lack of any physical model behind test caused

failures, detection inefficiencies, etc.

- the need for the propagation of uncertainties in the

input data with proper account of possibly different

distributions to the fault tree top event

Despite all of these drawbacks, it is felt that with the methodology

developed during this project a technically sound basis and starting point

are given for the utilities to enter the field of probabilistic

system analysis in the near future.

-4-
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1. INTRODUCTION

Engineered safety systems are standby systems. They are

tested periodically to confirm that they are operational and then

returned to the standby status. Although some failures of com-

ponents in standby systems are self-annunciating, there are

other unsafe failures that are not revealed until the next perio-

dic test. The longer the interval between test, the higher the

probability that a failure has occurred since the last test.

On the other hand, testing the system too frequently may take

it out of service too often or even wear it out prematurely

both of which lead to increased unavailability.

To be meaningful, any reliability goal must be enforced

throughout the lifetime of the nuclear power plant. As a result,

these goals are of concern to the design engineer at the concep-

tual stage, as well as to the plant operator, who must demonstrate

continued performance capability of systems.

The purpose of this research in the general subject of testing

engineered safety systems and concentrates specifically on the

following areas:

1. The time interval between tests as a design consideration;

2. Optimizing the availability by proper selection of the

time interval between tests;

3. Adjusting the time interval between tests on the basis

of field data on failure rates to assure conformance

to an availability goal over the nuclear power plant

lifetime.
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Before any further reference is made to availability and

unavailability, it seems to be appropriate to give their defini-

tions as summarized in the IEEE - Standard [1];

Availability: The characteristic of an item expressed by

the probability that it will be operational at a randomly

selected future in time.

Unavailability: The numerical complement of availability.

Unavailability may occur as a result of the item being

repaired or it may occur as a result of undetected malfunc-

tions.

If records are maintained in an operating system, availability

and unavailability may be simply determined from the following

equations:

Availability = Up TimeUp Time + Down Time

Unavailability = Time + D own Time

It should be noticed that both measures are actually time-depen-

dent functions. However, it can be shown that after several

cycles of testing and repair both, availability and unavailability

approach a long-term asymptotic value which is time invariant.

It is this time invariant value which is mostly used as an approxi-

mation for calculational purposes.
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Some of the failures that occur in systems annunciate

themselves, and any repair process may start immediately. How-

ever, in standby systems failures are not self-annunciating and

can be discovered only by periodic testing. This way, the down

time is a strong function of the test interval, test time as

well as repair time. As a result, the test interval is one of

the most important parameters that can be readily adjusted to

parametrically study the predicted unavailability of a system.

As will be shown later, it is also the test strategy among

redundant systems which also plays a major role.

It should be recognized right from the outset, that although

the test interval may be adjustable seemingly at will it is

limited to the following constraints [1].

a) Wearout: The frequency of tests should be limited such

that wearout does not become the dominant cause of failure.

b) Test Duration: If the system is out of service while

undergoing a test, then the tests should not be done too fre-

quently, since the unavailability due to testing may become

as high or even higher than that due to random failures.

c) Fatigue: There is no incentive to test for failures due

to fatigue if all the fatigue is induced by the tests them-

selves.

d) Judgement: The designer would do well to apply good judgement

and not to design a system wherein an extremely short

test interval is necessary or one wherein an extremely long

test interval is allowed.
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It is especially the last point which will be illuminated for

typical standby systems of nuclear reactor power plant in what

follows. Thus, it will be tried to quantify the engineering judge-

ment related to test interval apportionments within the limita-

tions set forth in the available analytical and computational

tools.

It must be stressed that none of the analytical and compu-

tational procedures used in this study is able to simulate con-

tinuously distributed parameters. Therefore, questions related

to wearout and fatigue cannot and will not be addressed in what

follows. This is certainly one of the shortcomings encountered

by using any method which is solely based upon systemsuccess or

system failure and does not account for partial failure or degra-

dation effects. Therefore, in areas or procedure where wearout

effects may play an important role, engineering judgement is still

needed in its qualitative capacity because it cannot be quanti-

fied. It is important to comprehend this limitation because

at the same time it is the explanation for unresolved problems

with respect to the results provided by this study.

Recently methods have been developed for determing test

intervals for certain simple systems such as the "one-out-of-

two" system, "two-out-of-three" system and "two-out-of-four"

system [2]. The test interval for each component is such that

the system will meet system availability goals assuming that

unavailability due to failure equals that due to testing. These

test intervals may not yield a minimum for system unavailability

which is desirable.
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The availability of a single component affects the overall

system availability but it is not true that the optimum test

interval for a single component is the same as the optimum test

interval for that component when it is an integrated part of a

complex system. The purpose of this study is to determine the

optimum test interval for a system's components such that the

system's unavailability is minimized.

The availability is a function of many parameters. One

of the most general models was developed by Coleman and Abrams

[3]. This model allows for imperfect testing, failure due to

testing along with differentiating between test time and repair

time. Jacobs [4] derived a very simple formula for calculating

the optimum test interval for a single component. The methods

of Hirsch, Jacobs, and Coleman and Abrams will be used to check

the applicability of their methods for determining the optimum

test intervals that minimize system availability.

For the purpose of calculating the pointwise and mean system

unavailabilities as a function of the component test intervals

the computer code, FRANTIC [5], will be used. This computer

code has the capabilities of determining the system unavailability

as a complex function of component parameters. The effect of

staggering component tests is also a capability of the code.
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2. REVIEW OF ANALYTICAL METHODS AND COMPUTATIONAL TOOLS FOR
TEST INTERVAL OPTIMIZATION

2.1 Introduction

Many safety systems are standby systems. Therefore they

remain idle during their expected lifetime. There is a certain

possibility that the equipment, particularly passive components

in these systems, may fail prior to demand and make the system

inoperable. Critical standby systems, such as engineered safe-

guard systems in nuclear reactor plants, are therefore tested

periodically to decrease the likelihood that the equipment will

be unavailable upon demand.

If active components are tested frequently and maintained,

it is reasonable to assume that their failure rate remains con-

stant during the system mission time.

The following factors contribute to the system unavailability:

1) The possible existence of undetected failures for some

period of time caused by either human or hardware related

events;

2) The system downtime due to scheduled maintenance or testing.

Table 2.1 summarizes Vesely's [6] compilation of the relative

contribution of the hardware, test and maintenance and human

errors to the system unavailability. It should be noticed that

the contributions listed in the individual columns do not add

to 100% because failure causes, such as the combination of human

errors and hardware fialures, are not included. As the table

depicts, the various Engineered Safeguard Systems are
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TABLE 2.1 Contribution to System Unavailability for Various
Engineered Safeguard Systems [6]

System

Low pressure recircu-
lation system

Sodium hydroxide
system

Safety injection
control system

Low pressure injec-
tion system

Consequence limiting
control system

Containment
leakage

Reactor
protection

Hardware

14%

51%

15%

65%

44%

Test &
Maintenance

75%

38%

20%

33%

Human

47%

18%

53%

91%

I

'I
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subject to fairly different impacts upon their unavailabilities

by the four contributors. Specifically, the sodium hydroxide

system shows a remarkable sensitivity to test and maintenance

procedures.

2.2 Mathematical Models

Neglecting the human error effects, availability model

calculations fall into three general classifications depending

upon the relative importance of the repair and test interval.

1) In case the mean time to repair is short compared to the

test interval, it can be shown that the effect of the

repair rate may be neglected. Thus, the availability

calculation is solely based on failure rates and test

intervals. This approximation may work well for systems

which are tested manually once every week, for instance.

For a single system, the availability, A, can be calcu-

lated from

A =T2 - (XT2 )(T2/2) (2.1)
T2

where T2 is the average time per test interval and A

is the constant failure rate characteristic of the exponen-

tial distribution. Using the following assumptions

a) AT2 << 1

b) The system is known to be in a working state at the

beginning of each test.

c) Every test interval has a test duration time of T2.
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d) Failure is only detected when the system is tested.

e) If a failure has been detected at the end of a test

interval, the system is renewed either by repair or

replacement.

Eq. (1) reduced to

XT 2

A = 1 2 (2.2)

for the availability and gives for the unavailability

T2

X 2 (2.3)

This approximation has been used for accounting for periodic

testing in the Reactor Safety Study - WASH 1400 [7].

2) In case the mean time to repair is very long compared to

T2, the test interval may be neglected. Thus the avail-

ability calculation can be solely based upon the failure

and repair rates. For this approximation, the availability

and unavailability are given by

A = 1 - Tr (2.4)

and

A = Tr (2.5)

respectively. The underlying assumption may be valid for

systems which are automatically tested on a very short period.

Here, Tr is the mean time to repair. The approximation

is valid provided XTr << 1 and the time-to-repair process
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is exponentially distributed.

3) For the situation where mean time to repair is of the same

general order of magnitude as the test interval, the accurate

determination of the availability becomes more difficult.

By assuming that the time it will take to test and repair

or renew the system is on the average Tr and that failure

cannot occur during testing, then the availability is given by

1 e- AT2
A X(T2 + Tr) (2.6)

provided that the failure is exponentially distributed.

From Eq. (2.6) the optimum test interval can be determined as

T2 = r (2.7)

Naturally, for systems consisting of several subsystems and

components, the failure distribution is determined by the indi-

vidual distributions as well as the logical interconnections

between them.

Engineered Safeguard Systems most often work in some sort

of redundancy for safety reasons. In redundant systems a failure

can be detected only when the system is tested. This test can

be conducted in either of two ways. During simultaneous testing

all the components are tested consecutively whereas in staggered

tests the components are tested at different times and as a result,

the components or subsystems have been in operation for different

times at any instant of time. It is obvious that by planning

to test at certain times one can increase the availability of the
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system. The objective then is to estimate the availability

of the system under a given policy and to select the best test

interval and/or repair time according to some criterion. This

approach is widely used and various aspects of it are discussed

in [8]. Green and Bourne [9] give the unavailability for some

redundant configurations due to undetected failures of the system

for simultaneous and symmetrically staggered testing. Their

results indicate that the unavailability is always greater or

just equal for a uniformly staggered test than for a simultaneous

test for any configuration.

The foregoing discussion was confined to estimate the effects

of testing and renewal on the availability of the system. It

should be noticed that these results may be used to choose T2

and Tr such that a predeterminined availability can be achieved.

Hirsch [2] used the criterion that during testing and repair

the unavailability of the system should be equal to its unavaila-

bility during normal operation. Presentation of other general

models can be found in References [9-12]. A general model which

allows for imperfect test distinction between testing time and

repair time and failure during test was developed by Coleman

and Abrams [3] who made the following assumptions:

a) The system fails according to the exponential distribu-

tion

b) Test is performed every T2 units of time

c) Inspection takes Tc units of time

d) The probability that a failure will be detected is 
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e) The probability of a false alarm is a

f) Inspection introduces stresses on the system and the

probability that the system will fail during the check-

out period is 

g) The probability that the failure, which occurs during

the checkout period, occurs before the actual testing

is K

h) If a failure is detected the duration of repair is

on the average TR

Under these assumptions the availability of the system is found

to be

e(1 - e- XT2)

( T2+Tc){l+e 'KT2[B(1-m+aK-K)-(1-e}+8lTR[1-(l-)(1-a)e R T 2] (2.8)

In case that the system cannot fail during the test (=0) and

if no false alarm is possible (a=O), than A is given by

)t(T2+TA =l (1 - e- T2)
X(T2+Tc)[1-e- eT2(1-)] + XTR(1-e-T2)j (2.9)

If in case the detection of failure is perfect, i.e. = 1,

this equation reduces further to

A = 1 - e-XT2

X[T2 + Tc + TR(1 - e-kT2)] (2.10)
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which can be compared to Eq.(2.6). It turns out that both equa-

tions are similar with the exception that in Eq.(2.6)the test

duration time and the repair time are lumped together into the

constant Tr whereas Eq.(2.10)treats these terms separately and

the time for repair is additionally multiplied by the probability

of the system being unavailable at the end of T2.

2.3 General Review

It should be noticed that Eq. (2.8) seems to cover quite

a broad spectrum of possible events during testing. Thus, it

will serve as the starting point of the analytical efforts in the

course of this research. However, it should be recognized that

this model does not account for the effect of human errors and has

not been extended yet to treat redundant systems. The former

effect has been examined recently by Apostolakis and Bansal [13]

who developed a set of equations for the commonly used redundant

configurations by using the model of coupling of successive human

actions as developed by Young and Conradi [14] for use in WASH-

1400.

Dressier and Spindler [15,16] presented a self-consisting

study concerning the effects of test and repair strategies on

reactor safety for commonly used logic configurations. However,

they neglected the impact of human error. Their results show

that the effect of repair times on the mean unavailability is

usually negligible for cold-standby systems which supports the

approximation used in the aformentioned category 1.
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Although the literature on reliability theory is filled

with methods for optimally designing multi-component systems

subject to various constraints, very little is indeed available

on methods for optimally testing such systems. It is obvious

that in terms of the unavailability of a single system there must

exist a minimum as function of test frequency, test duration,

failure and repair rate. The existence of this minimum has been

demonstrated by Kontoleon et al. [17] who imposed additional cost

constraints upon the system which was subject to both partial

and catastrophic type of failures. Problems of this type call

upon the use of the Markovian process, continuous in time with

three discrete states. This approach was already used by Flehinger

[12] who examined the effect of marginal testing in 1962.

If the system consists of several components, some com-

ponents are probably tested more often than others because of

their reliability, cost of testing, or importance in the system.

Mastran [18] provides Bayesian decision rules for testing compo-

nents sequentially to minimize the sum of the cost of testing.

Another approach is to minimize, for instance, the impact

to the system unavailabilityby human error [13] or to divide

the unavailability goal equally between the test interval and

test duration [13]. The latter approach actually was devised

by Hirsch [2]. It allows to calculate both the testing interval

and the allowable repair time T.

In summary, it is believed that the literature provides

some interesting and promising concepts which can be used as
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starting points for the analytical search of optimal testing stra-

tegies provided that the quantities and their distributions which

enter these formulations are known for the systems under considera-

tion. In what follows advantage will be taken of these formu-

lations for the present study.

2.4 Jacobs' Solution to the Test Interval Optimization

2.4.1 Formulation

Jacob's [ 4] solution procedure start out by considering

one cycle of test interval as shown in Fig. 2.1.

The availability of the system is defined as the probability

that the system is operational at any future time. The probability

that the system is up can be given in terms of conditional pro-

babilities as

P(S) = P(SJA) P(A) + P(SJB) P(B) (2.11)

where

P(S) : probability that the system is operational

P(SIA) : conditional probability that the system is up,

given that the random point in future time falls

into the time domain designated as A

P(A) : probability that the random point in future time

falls into A

P(SIB) : conditional probability that the system is up,

given that the random point in future time falls

into the time domain designated as 

P(B) : probability that the random point in future

time falls into B
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Figure 2.1: One Cycle of Test Interval
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It is apparent from the foregoing discussion, that P(SIB)

zero because the system is known to be completely inoperative

during test, i.e.

P(SIB) = 0

P(A) can be derived as

-T

T
2

P(A)

because all times are equally probable.

P(SIA) is taken to be the average reliability over the interval,

i.e.

1

P(S IA)
x(T - ?r)

0

which yields

= 1 ., [
X (T2-T r )

after substituting Eqs. (2.12), (2.13) and (2.15) into Eq.

one obtains for P(S)

P(S) = X1 [1-e-X(T2
r

As a result, the availability of the system is a function of the

three parameters X,T2, and T .
r

is

(2.12)

(2.13)

T2-Tr
e-Xxdx (2.14)

P(S IA) (2.15)

(2.11)

- Tr)]
r (2.16)

1-e-X (T2 -.. Tr I
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2.4.2 Test Interval Optimization

In order to derive analytically the optimum , one has to

assume that the other two parameters, A and t are known and fixed

constants of the system. Then, by differentiating Eq. (2.16)

with respect to T2 and by setting this equal to zero, one obtains

dP(S) = 1
dP(S) = 1 e- (T2Tr) (1 + AT T = 0 (2.17)aTXT' 2T2 AT

2 2

which is a transcendental equation not readily solvable in an

explicit manner for T2. However, Eq. (2.17) can be brought into

the following form

-XT2 + ATeA2 = e-Xr (2.18)
e 2 2e 2

which is an exact equivalent of Eq. (2.17). Eq. (2.18) can be

solved explicity for T2 if the exponential terms are approximated by

2 3 

e = 1 + x + 3! + (2.19)e =lx-3!

By neglecting terms higher than second order yields

T2TT2 =12T (1 - T-r) (2.20)
2 = 2( 2

Generally, >> t, so that with little error

2 (2.21)
2 , A
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With respect to the various approximations introduced into the

last equations, Eq. (2.21) is an approximate solution for T2.

The ATr vs. AT2 curve derived from Eq. (2.21) and labeled "Approximate

Solution" is compared to the "Exact Solution" in Fig. 2.2. As

can be seen it compares very favorably to the latter as long as

AT2 <0.1. For T2 = al the error amounts to 6.7% However, for most

technical problems and their respective values for , Tr and T2

the approximate solution for T2 given by Eq. (2.21) can be considered

adequate.

2.5 Discussion of Jacobs' Result

As already indicated in the introduction, Jacobs' result

applies directly to any nonredundant system. However, as Jacobs

noticed, the result can be used euqally well to any redundant

system in which the level of redundancy is reduced during the

test. If for instance in a one-out-of-two system, one channel

is bypassed for test, it becomes a l-out-of-l system, and safety

is impaired for the test duration. The availability is highest

when the availability of each channel in any 1-out-of-n system is

the highest, such that the results can be applied to each inde-

pendently.

It should be noticed however, that for a majority logic,

for instance a 2-out-of-3 system, the test usually results in

a -out-of-2 system for which the Eq.(2.11)does not apply. With

the solution of Eq.(2.11)on hand, it must be recognized that it
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is not conservative to formulate the test interval on the assump-

tion of a higher than expected failure rate. Moreover, once this

test interval is properly formulated, it is not conservative to

test more frequently. These are the most important conclusions

which result from the study so far.

Fig. 2.3 illustrates the effect of testing on system avail-

ability. In the upper part, a, of the figure, the system is tested

once each T1 hours as compared to the lower part, b, of the figure,

where the system is tested every 2 hours, with 2< T1. The

test requires t hours where the system is rendered inoperable.

Furthermore, it is assumed that the system may fail with a con-

stant failure rate, X and the availability is perfect (unity)

immediately following a test but decreases exponentially until

the next test. For the duration of the test, the availability

is essentially zero (unavailability is unity).

By comparing both parts of Fig. 2.3, it becomes apparent

that in part b the availability degrades along the same curve

as in part a due to the same failure rate assumption. However,

due to the shorter test interval the curve does not reach as low

a level as in part a.

Under the extreme condition, that the interval between

tests is decreased until it is equal to the testing time, T

the system would be on test all the time and its'availability

would be clearly zero. On the other hand, if the interval between

the tests is made extremely long, the system would degrade down
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Figure 2.3: Effect of Test Interval on Availability
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to a very low level of availability. Intuitively then, it can

be expected that there may be a test interval that is optimum

for a given system failure rate, characteristic of the whole system,

and test duration that maximizes availability thereby minimizing

unavailability.

Finally, it must be pointed out that the aforementioned

ideas are only valid for a system which can be treated as one

component characterized by a constant failure rate, constant

testing time and where applicable constant repair rate. How-

ever, most technical systems and especially engineered safety

systems are multi-component systems and are characterized by

redundancy. Most of these components may display failure rates,

test times and repair rates ranging over a broad spectrum. Under

these circumstances, the considerations performed above do not

hold, and it should be recognized that there is no analytical

procedure available to optimize multi-component system avail-

ability

As a result and in view of the goals of this research, two

conclusions can be drawn

a) If there are sufficient data available which allow

to characterize uniquely a total system, without

breaking it down to sub-system or even component

levels, then, analytical procedures exist which

allow the determination of an optimum test interval.

b) No analytical procedure for test interval optimization
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exist for systems which are characterized by redundancy

and sub-systems or components whose reliability para-

meters vary over a broad range, and when no sufficient

data base exists to characterize those systems uniquely

by failure rate, testing time, test interval and repair

rate. Under these circumstances complicated computer

codes must be used on a trial-and-error basis.

Accordingly, this research has to focus on both approaches.
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2.6 Fault Tree Analysis and Evaluation

Because use will be made of the features of the fault tree

analysis later in this report it seems to be appropriate here

to outline some of its underlying principles.

Fault tree analysis is a formalized deductive analysis

technique that provides a systematic approach to investigating

the possible modes of occurrence of a defined system state or

undesired event.

Undesired events are identified either by inductive analysis

as a preliminary hazard analysis or as a failure mode and effect

analysis.

The events are usually undesired system states that can

occur as a result of sub-system functional faults.

Fault tree analysis consists of two major steps:

1) The construction of the fault tree.

2) The evaluation of the fault tree.

It should be noticed that the evaluation of the fault tree

can be qualitative, quantitative, or both depending upon the scope

and extent of the analysis. This study calls for a qualitative

and quantitative analysis with major emphasis on the latter.

The objectives of a fault tree analysis are:

a) To identify systematically all possible occurrence of

a given undesired event.

b) To provide a clear and graphical record of the analytical

process.
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c) To construct a baseline for the evaluation of design

and procedural alternatives.

2.6.1 Fault Tree Construction

The construction of the fault tree necessitates a thorough

understanding of the system. The undesired event, called the

"top event" must be carefully defined. Furthermore, the limit

of resolution should be stated, potential system interfaces

identified and constraints of the analysis realized.

A fault tree is a deductive logic model that graphically

displays the various combinations of possible events, both fault

and normal occurring in a system that lead to the top event.

The term "event" denotes a dynamic change of state that occurs

to a system element. If the change of state is such that the

intended function of the particular element is not achieved or an

unintended function is achieved, the event is an abnormal system

function of fault event.

Fault events may be classified according to two types:

1) A system element fails to perform an intended function.

2) A system element performs an inadvertant function.

System elements include hardware, software, human and environmen-

tal conditions.

In order to apply Boolean logic in fault tree analysis,

the outcome of each event must exhibit two states only, the OFF

state and the ON state. This limits the application of fault

tree analysis to two-state systems. In fact multi-valued state
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systems are difficult to handle with this technique.

More details about fault tree analysis can be found in special

reports such as for instance Vesely [19].

2.6.2 Evaluation of the Fault Tree

In view of the fact that the FRANTIC code is used in this

study, the fault tree will be qualitatively specified by a system

unavailability function which is input to the code as described

in the next section. The evaluation of the tree, specifically

the occurrence of the top event will use the time-dependent method-

ology which forms the mathematical basis of FRANTIC.

2.7 Computational Tool - The FRANTIC Code

2.7.1 Introduction

The FRANTIC computer code [5] evaluates the point and mean un-

availabilities for any general system model. Non-repairable com-

ponents, monitored components, and periodically tested components

are handled. This flexibility together with the fact that FRANTIC

has been devised and tested by NRC led to the selection of this

code as the appropriate computational tool for this analysis.

One of the more unique features of FRANTIC is the detailed, time

dependent modeling of periodic testing which includes the effects

of test downtimes, test overrides, detection inefficiencies, and

test-caused failures. With regard to these features, FRANTIC

has to be considered the most flexible tool in engineering unavail-

ability analysis. The exponential distribution is used for the
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component failures and equations are developed for the testing

and repair contributions. In addition, human errors and common

mode failures can be included by assigning an appropriate constant

probability for these contributions.

It should be noticed, that in order to accommodate the

various processes, FRANTIC uses a variety of mathematical approxi-

mations all of which add to the conservative character of the

calculations.

The only real drawback of FRANTIC is that it needs the system

unavailability equation of the system under consideration as input.

This formula expresses the system unavailability in terms of the

component unavailabilities and is obtained either from a block

diagram, event tree, or fault tree by using standard Boolean

techniques. This requires a certain in-depth knowledge of these

methods by the user. The functions needed for the systems studied

for this analysis were derived from the respective fault trees

of the systems. These trees will be discussed in detail in the

following chapters.

2.7.2 Summary of Mathematical Models for Various Types of Components
Handled by FRANTIC

Four types of components are handled by the FRANTIC code:

1) Constant unavailability components

2) Non-repairable components

3) Monitored components

4) Periodically tested components
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In what follows, the unavailability equations as used by the code

are summarized:

1) Constant Unavailability Components

By definition, a constant unavailability component is charac-

terized by a per demand (or per cycle) unavailability which

is independent of time, i.e.

q = qd (2.22)

2) Non-repairable Components

A non-repairable component is one, if it fails, is not

repaired during plant operation

q(t) = 1 - t (2.23)
(2.23)

q(t) = At

where is the constant component failure rate.

3) Monitored Components

A monitored component is one for which the failure is imme-

diately detected and repair is then begun. The detection

device can be any kind of signal

XTR

q =+RTR X (2.24)
R XT R

where TR is the average (detection plus repair) time.

4) Periodically Tested Components

A periodically tested component is one for which tests are

performed at regular intervals. The failure of the component

is not detectable until the test is performed. For this

type of component, one has to account for the following



contributions:

a) Between test contribution:

q(t) = A(t - T) for Tc<T<T 2 (2.25)

b) Test contribution:

Cql = Pf + (1 - Pf) qo + (1 - Pf) (1 - q)Q (2.26)

c) Repair contribution:

q2 = Pf + (1 - Pf) Q + (1 - Pf) (1 - Q) 1/2 TR (2.27)

where

t = the time from the preceding test

T2 = Test interval

T, = test period

TR = Repair period

Pf = Probability of test-caused failure

Q = A (T2 - Tc) = between test failure probability

qo = test override unavailability

For the first test interval T1, the between test contribution

is modified to q(t) = At and Q changes to AT1. In case of

periodic detection inefficiencies, gets modified to

A (1 - p) and an undetected contribution q'is added, with

q = Xpt.

It should alsobe noticed, that human error and common mode

contributions can be handled. This is usually done by

using q = qd

Fig.2.4 illustrates the instantaneous unavailability benavior

as generated by FRANTIC with all three contributions included.
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The graph shows the familiar saw-tooth shape with the test and

repair plateaus given by ql and q2. It should be noticed, that

even though test and repair period Tc and TR are usually of short

duration, the contributions by ql and q2 can be important to the

peak and average unavailabilities.

The average unavailability is computed by FRANTIC as the

area of the time dependent instantaneous unavailability curve

divided by the total time interval, the latter being any interval

of interest, for instance one year. Thus, by considering Fig.2.4

and taking T2 to be the cycle time (neglecting the effect of the

different first test interval T1, because it is usually small)

the average unavailability q can be approximately given as:

- 2 1T 2 + ql Tc + q2 TR2 X T 2 T_ (2.28)
where the first term on the right hand side constitutes the between

tests contribution, the second term is the test contribution and

the third term is the repair contribution.

It is obvious -from the foregoing discussion that

FRANTIC not only provides average values for the unavailability

but also its total time dependent behavior. Therefore, in what

follows, both the average as well as the peak unavailabilities

will be reported for the systems under consideration. The peak

unavailability is a good indicator for the increase in system

unavailability no matter how short the test period is. Thus,

it is an additional parameter of interest for system design,

although it should be recognized that only the average unavailability
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of systems has been considered in the relevant literature (WASH-

1400).

2.8 Connection Between FRANTIC-Methodology and WASH-1400

It is certainly interesting to show how the aforementioned

methodology compares with that used by the Reactor Safety Study.

The following arguments follow these given by Vesely and Goldberg

[5].

In WASH-1 400, the system unavailabilities were calculated

in order to predict the accident sequence probabilities and then

the corresponding accident risks.

The system unavailabilities which were applicable for the

WASH-1400 predictions were the average unavailabilities, averaged

over a one year time period.

In addition to the average unavailability, the time depen-

dent, instantaneous unavailability can also be important in pro-

babilistic evaluations as discussed in the foregoing section.

T

=T q(t)dt where T = 1 year (2.29)

By definition the instantaneous unavailability q(t) is the pro-

bability that the system is unavailable at the given instant of

time t. The q is the average fraction of time that the system

is down.

To illustrate the roles of q and q(t) in probabilistic

analysis consider a particular accident sequence consisting of
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one initiating event and one system which is called upon to

operate. Let A be the constant occurrence rate for the initiating

event. The probability f(t)dt that the accident sequence will

occur in some time interval dt at time t is:

f(t)dt = Aq(t)dt (2.30)

and hence Aq(t) is the instantaneous accident frequency, i.e.,

the probability of an accident occurring per time at time t.

The yearly accident frequency P, which is what WASH-1400

considered is the integral of q(t)dt over a one year period T.

p = Aq(t)dt = AT | q(t)dt (2.31)

O0

or

P = ATq (2.32)

Thus from Eq.(2.30)the instantaneous unavailability q(t) enters

into the instantaneous accident frequency rate Aq(t) and from

Eq.(2.32)the average unavailability q enters into the yearly

accident probability ATq.

The instantaneous accident frequency Aq(t) describes the

detailed time behavior of the accident. likelihood. The time

at which Aq(t) is a maximum, i.e., the time at which the instan-

taneous system unavailability q(t) is a maximum, is the time

at which the accident is most likely to occur. A safety system
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may have a low average unavailability q and yet at particular

times the instantaneous unavailability q(t) may be quite high

indicating the plant is most vulnerable to accidents at these

times.

Fig. 2.5 compares two systems which have the same average

unavailability but show quite different instantaneous unavail-

ability behaviors. Certainly, the system with the highest unavail-

ability maxima in q(t) is the more loosely controlled system. Thus

it becomes apparent that for a more complete evaluation of system

design or system operation, both

a) the instantaneous unavailability, particularly the maxima

and

b) the average unavailability q

should be assessed. Because FRANTIC is providing these informations,

they will be both displayed for each system to be studied in

what follows.

2.9 Benchmark Tests of the FRANTIC Code Against the REBIT Code

2.9.1 Introduction

Because FRANTIC will be heavily used later in this study

and due to the fact that NRC upon releasing this code has not

provided the general public with any information as to how this

code compares to others, it seems to be appropriate to perform

benchmark tests with the code before it is employed. For this purpose,
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FRANTIC results will be compared to those obtained by the REBIT

[20] and the PL-MODT [21] codes for simple systems.

The code REBIT [201 (REliability by BIT handling) is a

small but powerful computer code ( 350 statements) written in

FORTRAN-IV language which determines the minimal cut sets of

a fault tree by Boolean expressions using convenient bit-handling

techniques and calculates various reliability and availability

characteristics by employing analytical techniques. The limitation

in the size of fault tress which can be analyzed by REBIT is

primarily dependent on the dimensions of the arrays. In its pre-

sent version the code can be considered as an interesting alterna-

tive to much more complex and time-consuming codes for treating

small to medium sized fault trees. It is of special importance

to those users who have no access to a PL/1 compiler to run PL-

MODT [ 21,22]. In contrast to the FRANTIC code [5 1, REBIT accepts

a fault tree as input, determines the minimal cut sets for the

system under consideration and continues by calculating the unavail-

ability, the cumulative failure probability and other relevant

data for both the minimal cut sets and the system.

2.9.2 Classes of Components Treated by REBIT

In its present version, REBIT is set up to handle components of

the following classes. Below,each class is shown with its asso-

ciated analytical expression for the component unavailability.

1. Periodically maintained components
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= 1 - exp [- A(t - nTn)]

2. Non-repairable components

A = 1 - exp (- Xt)

3. Repairable components

2A =[1 - exp [-( A+p )t]]

Where

X A component failure rate

Tn: component maintenance interval

n : n-th maintenance interval

p : component repair rate

REBIT determines the point unavailability for the minimal

cut sets and the system every At hours for a prespecified number

of time increments. Both quantities are given as inputs. It

should be noticed that the time step size primarily determines

the accuracy of the calculation for the mean unavailability as

well as the magnitude of the peak unavailabilities. The effect

of this variable upon the calculated results will be discussed

in the following section.

REBIT uses the following expression for calculating the mean

unavailability Amean

n
A i Z A(j At) n: number of time increments.
mean n j=l

j=l
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2.9.3 Comparison of Results Between REBIT and FRANTIC for Two
Sample Problems

Due to the fact that REBIT does not handle periodically

inspected components at present, the approach which has been

taken in REBIT to compare it with FRANTIC has been to approxi-

mate periodically tested components by periodically maintained

components. To clarify this difference, a periodically main-

tained component has zero testing time and zero repair time,

that is, the component is instantaneously renewed at each main-

tenance. To perform an honest comparison the appropriate para-

meters have been set equal to zero in FRANTIC in order to give

the best simulation in the component models used by both codes.

The results for a parallelsystem of two components and a

3-out-of-4 gate are summarized in Tables 2.2 and 2.3 , res-

pectively. Figures 2.6 and 2.7 compare the point unavaila-

bilities obtained by both codes for the two sample cases, respec-

tively. The results shown for the REBIT calculations are those

for the larger time increments.

As can be seen from Figure 2.6 and Table 2.2, both codes

are in general agreement for the peak system unavailabilties and

the mean system unavailability. The agreement becomes even

closer for the case where REBIT was run with the smaller time

increment. Fig. 2.6 clearly indicates that the first term

approximation for the exponential distribution employed by

FRANTIC gives very reasonable results. For all practical pur-
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REBIT

TFRANTIC

REBIT 100 Time Steps
43.8 hr/step

I

1[

FIGURE 2.6:

TIME-DEPENDENT UNAVAILABILITY OF A TWO-COMPONENT
PARALLEL SYSTEM AS CALCULATED BY FRANTIC AND REBIT
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poses the comparison with REBIT shows a very satisfactory behavior

of the FRANTIC results.

For the 3/4 problem the two codes do not agree to the extent

that they did for the previous case. This is especially true

for the case where REBIT was run with the larger time increment.

For this case, REBIT obviously misses relative minima and maxima

which are calculated by FRANTIC. This deviation is mainly caused

by the time step size and partly by the maintenance times selected

for the components. With respect to the mean system unavailability,

Table 2.3 reveals that the results of the two codes agree only

in magnitude and that an increase in the number of time steps

from 100 to 1000 in REBIT has only little effect in bringing the

results closer to each other. FRANTIC is not supposed to give

precise answers either because it is based also on several approxi-

mations whose overall impact on the final results are difficult

to assess. The only way to decide what approach is closest to

reality would be to benchmark both codes against one employing

the Markovian approach.

As the complexity of the systems under study increases,

it can be expected that the agreement between the two codes will

greatly depend on the time increment chosen for REBIT and the

maintenance intervals selected for the components. Some disagree-

ment will always exist due to the fact that REBIT and FRANTIC

use different expressions for the unavailability of non-repair-

able components as shown below.



REBIT FRANTIC

A = l-exp (- At) A = At

Differences in A between these two expressions are certainly

small for At << 1. On the other hand, FRANTIC is limited by

its approximation since it can lead to unavailabilities greater

than one in certain cases.

Finally, it is of interest to compare the computation times

for both codes. These are given in the table below.

CPU Time in Minutes

This table reveals the interesting fact that FRANTIC although

it only obtains the unavailability for a given system unavailability

function is still slower than the REBIT code which generates both

the minimal cut sets as well as the unavailabilities. Further-

more, it is surprising to see that an increase in the number of

time steps from 100 to 1000 does not lead to a substantial increase

in computation time for REBIT which is certainly the result of

the benefit of using analytical expressions.

In conclusion, although the two examples do not constitute

a-complete basis, these results are the first published which

show how FRANTIC compares to other methods. A broader spectrum

of comparison is offered by PL-MODT and will be addressed in the

REBIT FRANTIC

100 time steps 1000 time steps 0.431
0.353 0.392
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following section.

2.10 Benchmark Tests of the FRANTIC Code Against the PL-MODT
Code

2.10.1 Introduction

The apparent advantages of modularizing fault trees rather

than taking the commonly employed cut-set approach nave been.

highlighted by the recent development of the code PL-MOD [22 ]

which uses the list processing features provided by the PL/1

language. This code is limited to the analysis of steady-state

problems.

In the meantime, analytical models have been added to PL-MOD

which allow the analysis of time-dependent problems and still main-

tain the advantages of modularization. Thus, a new version of

the code, PL-MODT, has been devised which still uses the unaltered

scheme for finding the modular structure and importances of the

fault tree. The following three classes

Class 1: Nonrepairable components

Class 2: Repairable components, failures of which are

detected immediately

Class 3: Repairable components, failures of which are

detected upon inspection.

The latter class includes the treatment of test override unavail-

abilities. Additional features of PL-MODT are the calculation

i)f the Vesely-Fussell importance as function of time and the

possibility to arbitrarily refine the time mesh which is an impor-

tant feature for getting detailed representations of test ard
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repair intervals. With all these features, PL-MODT is certainly

better suited to test FRANTIC's validity than REBIT. Thus, more

insight can be expected from a comparison of these two codes, which

adds to the observations described in the foregoing section.

2.10.2 Results for the Comparison Between FRANTIC and PL-MODT

Two examples have been run with both codes for illustrative

purposes. The first one concerns the special fault tree given

and analyzed by Vesely in his original paper [24] by PREP-KITT.

This fault tree is shown in Fig. 2.8 The data assigned to the

primary events in this fault tree are summarized in Table 2.4

below

TABLE 2.4

FAILURE AND REPAIR RATES FOR SAMPLE TREE IN FIGURE 2.8

Primary Failure Index

1

2

3

4

5

6

7

8

9

10

A(hr-l)

2.6 x 10-6

2.6 x 10-6

2.6 x 10-6

3.5 x 10-5

3.5 x 10-5

3.5 x 10-5

5.0 x 10-6

5.0 x 10-6

8.0 x 10-6

8.0 x 10-6

1 (x hr10)

4.1 x 10-2

4.1 x 10-2

4.166 x 10-2

1.66 x 10-1

1.66 x 10-1

1.66 x 10- 1

0

0

0

0

- - -



Figure 2.8: Fault Tree Example Given by Vesely
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The results obtained from the various codes are shown in

Fig.2.9which indicates that all methods give essentially the same

asymptotic value for the unavailability. In fact, FRANTIC is

predicting only this value by neglecting the transient period

over the first 20 hrs. of system operation, whereas PL-MODT and

KITT are suited for handling even this transition period. Ob-

viously PL-MODT is closer to the exact solution than KITT. The

computation time for PL-MODT to analyze the tree and to calculate

the top event unavailability for 15 time steps is 0.62 seconds.

The solution which is called "exact" has been generated

by using the exact system function and the analytical unavail-

ability expression for a single component which is failing randomly

and gets repaired, which is derived from a Markovian model. The

reason for the small differences between PL-MODT and the "exact"

result lies in the fact that the former contains some approxima-

tions concerning the time-dependent behavior of moduler. However,

it becomes quite obvious from this figure that the modular approach

is in fact quite superior over the kinetic tree procedure employed

by KITT. On the other hand it should be honestly mentioned that

these differences show up only in the minute details, whereas

for engineering calculations the correct determination of the

asymptotic value is of most importance.

The second example concerns the simple electric system as

discussed by Lambert [25] and shown in Fig. 2.10. The purpose of

this system is to provide light by the bulb when the switch is
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.1V )L II

Power
supply 2

Sample System for Mutually Exclusive Events
....~· . ... .. . .. .. .

Figure 2. 10.
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Figure 2.11
9 10

Fault Tree for Sample System in Figure 2.10.
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is closed, the relay 1 contacts are closed and the contacts of

relay 2 (a normally closed relay) are opened. Should the contacts

of relay 1 open, the light will go out and the operator will imme-

diately open the switch which in turn causes the contacts of the

relay 2 to close which restores the light. The fault tree, with

the top event of "No Light" shown in Fig. 2.11 neglects operator

failures, wiring failures as well as secondary failures. Failure

rates, repair times and test periods for the various components

are summarized in Table 2.5. No replicated component or module

exists in the system. In order to enable FRANTIC to analyze this

system, its unavailability function must be developed and pro-

vided as input. This function was found to be

QS = {l.O-(l-Q(1)){l-[(l-Q(2))(1-Q(4))(1-Q(7)91-Q(8))*

* (1-Q(9))(l-Q(10))][1-(1-Q(3))(1-Q(6))(1-Q(5)))}

On the other hand, for PL-MODT the fault tree was directly inputted

and the code modularized the tree as follows:

Module #4: components 5, 6, and 3

Module #3: components 4, 7, 8, 9, 10, and 2

Module #2: modules 4 and 3

Module #1: component 1 and module 2

Fig. 2.12 compares the results of both codes for one complete

period of 28 days. As can be seen, the results are in close

agreement. Again, FRANTIC gives conservative results compared

to PL-MODT, primarily due to the comparatively high failure rates
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which have been selected as well as the straight line approach for

the exponential function employed by FRANTIC.

As can be seen from Fig. 2.13 both codes give essentially

the same results during the test time but differ during the repair

time because of the different procedures used in the codes. How-

ever, as discussed previously, these differences show up only during

a very brief period of time and therefore do not affect the over-

all results.

The CPU time for PL-MODT was 0.98 seconds for the modulariza-

tion and the evaluation of the unavailabilities of the components,

modules and the top event for 32 time steps as well as for the

determination of the importances for the components and modules.

For the same tree and data, FRANTIC needs 1.12 seconds for

the calculation of the system unavailability alone. It does not

provide any structural information about the fault tree.

2.11 Comments and Discussion

It has been demonstrated in the last two sections that

FRANTIC is in fact a reliable engineering tool for unavailability

calculations. The comparisons shown before are the first pub-

lished for FRANTIC. They show that the code can be safely applied

for this tudy and our finding support NRC views on FRANTIC as

recently indicated by Levine [26].

However, despite all of these favorable indications about

FRANTIC it should not be overlooked that it has the fundamental



-62-

drawback of needing the system unavailability equation as input.

The formulation of this equation mandates knowledge in Boolean

Algebra by the user even for smaller systems. Large and complex

systems are difficult to handle by FRANTIC. Despite this short-

coming, the following study is based on the application of FRANTIC

because this code is used now in the regulating process [26].

However, the foregoing remarks clearly indicate that FRANTIC can

only be applied to small systems. In order to overcome this

limitation, the code must be coupled to a minimal cut set generating

preprocessor such as PREP, WAM-CUT, etc., in future.
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3. TEST INTERVAL OPTIMIZATION STUDY FOR A DIESEL GENERATOR UNIT

3.1 Introduction

The diesel generator is one of the most vital subsystems of

the Emergency Power System. This chapter is concerned with the

optimization of the test interval for the D.G. by considering it as

one component which allows the application of the analytical

procedures discussed previously. One of the most general models

was developed by Coleman and Abrams [ 3 ]. Jacobs [ 4 1 neglected

the repair time contribution and derived a very simple formula

for calculating the optimum test interval which minimizes the

unavailability of a single component. Hirsch [ 2 1 extended this

analysis, whereas Vesely [ 5 1 simplified the model by Coleman

and Abrams.

In what follows, these four methods will be applied to

evaluate the optimum D.G. test interval,and possible differences

will be discussed.

3.2 Optimum Test' Interval Derived from the Coleman & Abrams
Procedure

These authors derived the following equation for the

unavailability of a single component under very broad and general

conditions

AT
= (l-e- T)

X(T+Tc ){l+e X [6(l-a+aPc-Pce)-(l-) ]}+XTR[1- ( )l- m(1-B - XT)

(3.1)
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where

A Component availability

X Component failure rate

8 Probability of the failure during a test period

T Testing periodc

TR Repair time period

a Probability of a false alarm

P Probability of failure occurring before actual test
c

of the failure occurs during testing period

a Probability that a failure will be detected

T Time between repair time of previous interval to the

next testing period as shown below

T2 Test interval

The various time periods are depicted in the sketch below.

Eq. (3.1) is a very good starting point for deriving formulations

for A under more simplified conditions. For instance, by assuming

.1) perfect testing, i.e.,9=l

2) no false alarm, a=O

3) Pc=l; =O
C

Eq. (3.1) reduces to



A = T-+ (3.2)
A (T+T c) + ATR[l-e ]

From the above sketch, it follows that

T2 = T + T + TR

from which

T = T2 - (Tc + TR)

This, together with

A= 1- A

for the unavailability, leads to the following formula

A =1- - eAT (3.3)-XT
X(T2- TRe 

In order to find the optimum test interval, T2, which minimizes

Eq. (3.3) for the D.G. unit, a graphical procedure will be

applied. For the base case, the following data are selected.

T = 1.5 hrs

TR = 21 hrs

X= 3 x 10-5hr-1

Table 3.1 shows the behavior of A as a function of T2,

and Figure 3.1 displays this in a graphical form. The minimum

is found at

T2 = 14 days where Ami n = 1.0045 x 10
opt

For T2 = 52 days, the unavailability is A =x 10.9965 x 2 .

-65-
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TABLE 3.1

D.G. Unavailability A as Function of the Test nterval.,
T2, for T =1.5 hr.; TR=21 hr. and -=3xl0-5hr-1

c R

T2 AxlO

days -

5 1.7199

10 1.0699

15 1.0066

20 1.0694

25 1.1747

30 1.3127

35 1.4584

40 1.6117

50 1.9313

250 8.53
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3.2.1 Effect of the Failure Rate on the Optimum Test Interval

In this section, the effect of the failure rate, , of the

D.G. on the optimum test interval, T2 , is studied parametrically
opt

and shown in Table 3.2. This is the result of a series of

studies as described at the end of the foregoing section. As

can be seen from this table, a decrease in the constant failure

rate, , results in an increase in T2 and a decrease in the
opt

associated unavailability.

3.2.2 Effect of Test Caused Failure on the Otimum Test Interval

In this section, the additional effects of test caused failures

on T2 are studied, i.e., the assumptions of setting p=O and

P =1 are now relaxed. If, for instance, the following data are

chosen for these two parameters

= 102

P = 0.75

and substituted into Eq. (3.1), the following expression results

for the unavailability, A, under the assumptions that still

1) e= 1

2) c = 0

A = 1- -3.4)

X(T+Tc)[l+l (0.25)e- T] + ATR[1-0.999e XT

which can be further rewritten as

-AT1-e
= 1- l (- T3.5)

AT2+[A(T2-TR)x2.5xlO 3 - o.99ATR]eXT
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TABLE 3.2

Effect of the D.G. Failure Rate on the Optimum
Test Interval and Associated Unavailability
(T = 1.5 hr; TR = 21 hr)

Ax 106 T2 A x 10 2

opt
-1

hr days -

1 75 0.175

5 35 0.3973

10 24 0. 566

30 14 1.0045

42 12 1.2003

60 10 1.4257

1.9158100
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Table 3.3 shows the behavior of A as a function of T2 for the data

previously selected for the base case. A direct comparison with

the results summarized in Table 3.1 reveals that by additionally

accounting for test caused failures, the unavailability increases

for a given test interval. As a net result, the optimum test

interval, T2 and the associated unavailability, Amin change to
opt

T2 = 15 days with Amin = 1.311 x 102
opt

T2 = 44 days with A = 1.9946 x 10-2

3.2. 3 Effect of Imperfect Testing

In this section, the assumption of perfect testing made in

the foregoing sections will be removed, i.e., will be changed

from unity to =0.95 for the purpose of this study. The other

parameters are kept the same. Still, the assumption of no false

alarm is kept, i.e., a=0. Table 3.4 shows the additional impact

of imperfect testing results in higher unavailabilities than by

assuming perfect testing. The optimum test interval and its

associated unavailability are

T2 = 14 days A = 1.4201 x 10- 2

opt

If an unavailability goal of A=2x10 should be maintained, a test

interval of Tmpare38 days (A = 2.009 x 0-2 ) mus t be chosen. This

must be compared to the 44 days which were found under the perfect

testing assumption in the foregoing section in order to see that im-

perfect testing necessitates shorter test intervals for any given

unavailability goal.
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TABLE 3.3

Effect of Test Caused Failure on the Test
Interval and Associated Unavailability

(X=3x10-5 hr-1; Tc =1.5 hr; TR=21 hr; =10-2; P=0.75; a=0; =1)

T2 A x l02

days

5 2.1704

10 1.4085

15 1.3111

20 1.357

25 1.4567

30 1.5825

35 1.7226

40 1.8714

50 2.184

250 8.7225
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TABLE 3.4

Effect of Imperfect Testing on the Test
Interval and Associated Unavailability

(X=3xlO0 5 hr-1; T =1.5 hr; TR=21 hr; =10 2; P =0.75; =0.95; a=0)

T2 Ax 10

days

5 2.25

10 1.50

15 1.4208

20 1.4389

25 1.6012

30 1.7444

35 1.9020

40 2.0681

50 2.4151

250 9.5445
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3.2.4 Effect of Changing the Probability for Failure During
the Test Period

In the foregoing sections, it was assumed that is equal

-2to =10 . In this section, how the results change when is

increased will be examined. Table 3.5 shows the results for the

unavailabilities as function of the test interval when is

increased by a factor of five to =5xlO - 2 , and when perfect

testing, =1, is assumed. Under these circumstances, the

optimum test interval and its associated minimum unavailability

increase to

T2 = 18 days and Ai n = 2.4854 x 1002
opt

As can be seen from this table, there is no way to keep the

unavailability goal of A=2xlO 2 because all values of A are

larger indeed.

The situation even worsens if the test is imperfect (=0.95)

as can-be seen from Table 3.6. Although the optimum test

interval is longer, the minimum unavailability is even higher, i.e.,

-2
T2 = 20 days and Ami n = 2.822 x 102

opt

A comparison with Table 3.4 for which was also assumed to be

6=0.95 reveals that an increase in has a remarkable effect on

the unavailabilities. If is even further increased, the

unavailability increases even more drastically.

-1Table 3.7 shows this very clearly where =10 . Although

again perfect testing (=1.0) is assumed, the larger results in
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TABLE 3.5

Effect of a Change in f

(X=3x10-5; Tc=l.5 hr; TR=21 hr;

-2
B=5x10 ; P =0.75; =1; c=0)

T2 A x 10

days

5 3.9318

10 2.740

15 2.511

20 2.491

25 2.5497

30 2.6468

35 2.7652

40 2.8966

50 3.182

250 9.4876
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TABLE 3.6

Effects of a Change in and Imperfect Testing

(X=3xlO 5 hr- 1 ; T=1 5 hr; TR=21 hr;

B=5x10-2 ; Pc =0.75; =0.95; a=0)

2
T2 A x 10

days

5 4.268

10 3.0 487

15 2.8293

20 2.822

25 2.8958

30 3.008

35 3.1417

40 3.2885

50 3.6047

250 10. 451
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TABLE 3.7

Effect of a Change in and Perfect Testing

(A=3xlO 5 hr - 1 ; T =1.5 hr; TR=21 hr;
-1 c R

S=10 ; P =0.75; e=l; =O)

2T2 Ax 102
days

5 6.045

10 4.357

15 3.9702

20 3.8719

25 3.887

30 3.9454

35 4.0378

40 4.1484

50 4.401

250 10.43
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much higher unavailabilities than those summarized in Tables

3.5 and 3.6. For this case, the optimum test interval increases to

T2 = 22 days
opt

and the associated unavailability becomes

Amin = 3.8673 x 10 -2

The results of the study concerning the impact of the probability

of failure during testing are summarized in Figure 3.2 for

perfect testing. It can be clearly seen from the curves in

this figure that the value of plays a major role. In fact,

if increases, a given unavailability goal may not be reached

anymore no matter what test interval is chosen.

It becomes apparent from both Figures 3.1 and 3.2 that for

any given availability goal A A but A>A there existmin min

two test intervals, one which is shorter than T2 whereas the
opt

other is longer. Due to the fact that costs, manpower and

services are required for performing these tests and all of

these quantities certainly increase with the test frequency,

there seems to be a strong economic incentive to select the

longer test interval as long as the availability goal is met for

all possible conditions in nuclear plant life. Only if it is

absolutely mandatory to achieve the lowest unavailability

possible is it important to determine the optimum test interval.
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3.2.5 Fixed Availability Goal

For the diesel generator unit, an unavailability goal of

A=2x10- 2 is selected. This is the result from the survey

that has been performed on D.G. failures in U.S. nuclear power

plants during this research. Appendix A summarizes the findings

which generally agree with the review reported in [27 ].

It should be noticed that our results are obtained by

averaging over all different kinds of D.G. units by applying

point estimates. By using the exponential failure density

function, the mean availability was found to be A=0.9726,

with standard deviation of 0.0214. Therefore, the unavailability

goal of A=2x10 - 2 seems to be reasonable.

Table 3.8 shows the test interval which would assure keeping

the goal of A=2xlO - 2 as a function of the failure rate, . As

can be seen, the test interval can be substantially increased

if the failure rate can be reduced. The data of Table 3.8

are graphically represented in Figure 3.3.

From the discussions in the foregoing sections, the following

data were obtained for the test intervals which would maintain

-2
a given unavailability goal of A=2x10 .

a) X=3x10-5hr-1; T=1.5 hr; TR=21 hr

1) 0 = 1

2) a = 0

3) P =1 = 0

A = 1.9965 x 10T2 = 52 days
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TABLE 3.8

Effect of Failure Rate on Test Interval to Assure
A Given Unavailability of A = 2 x 10-2

Ax 10 T A x 10
2

hr1 days

1 >365 2.00

5 335 2.0063

10 165 2.0007

30 52 1.9965

42 36 2.0061

60 23.5 2.0000

11 2.0098100
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b) X=3x10- 5 hr-1; T =1.5 hr; TR=21 hr; =10- 2; P=0.75
c ; R c

1) 0 = 1

2) a = O

T2 = 44 days
-2

A=1.9946 x 10

c) X=3x10 5 hr ; T=1.5 hr; TR=21 hr; =10 ; P=075; 6=0.95

1) a = 0

T2 = 38 days A = 2.0009 x 10-2

An increase in leads to unavailabilities which are larger than

-22x10 2 Therefore, under these conditions the unavailability

goal cannot be kept.

3.3 Optimum Test Interval Prediction Following Jacobs' Method

By assuming that the time it will take to test and repair

or renew the system is on the average T and that no failure
c

can occur during testing, Jacobs showed that the optimum test

interval can be approximately calculated from

opt
2opt I 2

when T2 < 0.1 (3.6)

as was demonstrated in the derivation presented in Chapter 2.4.

Table 3.9 summarizes the values for T2
opt

obtained from

Eq. (3.6) for T =1.5 hr for various failure rates. It should be
c

noticed that the data given for T2
opt

are rounded to the nearest

whole day since testing will be performed on this basis.
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TABLE 3.9

Optimum Test Interval Derived from Jacobs'
Formula as Function of the Failure Rate

(T = 1.5 hr)

X x 106

hr 1
,hr

1

5

10

30

42

60

T
2opt

days

72

32

23

13

11

9

2
A . x 10
min

0.173

0.386

0.545

0.943

1.114

1.33

1.713100 7
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By comparing these results with those given in Table 3.2

for the Coleman and Abrams Method, one can conclude that Eq. (3.6)

is indeed quite adequate for finding the optimum test interval

for straight base cases, although the neglection of the repair

time contribution by Jacobs leads to somewhat shorter test

intervals and lower minimum unavailabilities.

However, it should be noticed that Jacobs' results deviate

substantially when imperfect testing, long repair times, failure

during testing, etc., must be considered. However, for perfect

testing and TR=0, Jacobs' equation is a special case of Coleman

and Abrams' more general question.

3.4 Optimum Test Interval Prediction Following Hirsch's Method

Hirsch 2 ]1 developed a methodology for determining the maximum

allowable test duration and the required test interval as a function

of the availability design goal. He started out by noticing that

the availability design goal of a system which actually expresses

the probability that the system will be available when needed is

at the same time also a measure of the allowable downtime permitted.

Since a portion of the unavailability is due to the test duration

and another contribution is associated with the predicted probable

failures, the assigned unavailability goal is the sum of both

contributions, i.e.,

G = AF + ATF T (3.7)
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where

AF: unavailability due to failures during the active
part of the interval

AT : unavailability during test with part of the system
bypassed

In accordance with Section 4.11 of IEEE-279 [28 ], the system

unavailability during bypass must be commensurate with the

unavailability of the system for the entire interval if no

bypass were applied. Therefore, Hirsch set

AF =AF = AT (3.8)

and then developed formulas for the "one-out-of-two" logic and the

"one-out-of-two, twice" logic. In addition, the procedure was

extended to cover the "two-out-of-three" and "two-out-of-four"

logic configurations.

Here, the analysis is continued for a single component. With

T_ c
T T2

(3.9)

AF = X(T2 - T )

one gets
T

X(T - T ) c
2 c T 2

from which the optimum test interval follows as

1 2 c +T = iT + T + -- ]
2 2 c c Xopt

and

(3.10[)

(3.11)



-86-

With T chosen to be T =1.5 hr, Table 3.10 summarizes the results
C C

for T and their related minimum availabilities for different
opt

failure rates, A. A comparison with the previous data indicates

that the results obtained by Hirsch's method when applied to a

single component system differ substantially from those obtained

by using the Coleman and Abrams or Jacobs methodologies. The main

reason for this is thought to lie in the fact that Hirsch developed

his method for redundant systems whereas it was applied to a single

component here.

3.5 Optimum Test Interval Following Vesely's Method Implemented
into the FRANTIC-code

Because the FRANTIC code will be used extensively in the

next chapter for the analysis of the optimum test intervals of

redundant, multi-component systems, it seems to be appropriate to

see what method it uses and how it compares to the approaches

previously discussed for a single component system.

FRANTIC uses the common approximation to the exponential

function

x -Xe l-x

to arrive at the unavailability of a component between the tests

A = X(T2 - Tc )

where T is understood as the average on-line test time. Due to
c

the fact that the FRANTIC code considers both test as well as
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TABLE 3.10

Optimum Test Interval Derived from Hirsch's Method
as Function of the Failure Rate

(T = 1.5 hr)c

T2
opt

days

51

23

16

9

8

7

2A x 10
min

0.1224

0.273

0.386

0.781

0.893

1. 04

X xlO 6

-1hr

1

5

10

30

42

60

6100
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repair contributions to the unavailabilities, two separate

expressions are used in the code, namely

for the unavailability during test time T :

ql Pf + (l-Pf)q0 + (1-Pf)(l-qo)A (3.12)

for the unavailability during repair time TR

q2 = Pf + (1-Pf)A + (1-Pf)(l-A)XTR (3.13)

where

Pf: probability of test caused failure

q: test override unavailability

The average unavailability of the component over a period

of one test interval is

1 Tc T R
q =T 2 + q c q (314)

2 2

by using the results for ql and q2 from Eqs. (3.12) and (3.13).

The optimum value of T2 is found by using Eqs. (3.12) through

(3.14) and performing

O( q 0 (3.15)

which leads to

o2T X + 2(1-Pf)TR (3.16)
opt

In this derivation, ql is assumed to be independent of T2

Moreover, a term by term comparison of the two terms under the
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square root reveals that the second term is negligible for all

practical purposes unless the failure rate is abnormally high.

Therefore, by assuming Pf=l and qo=l, one obtains

T2 = X (3.17)
opt

because q=l. Eq. (3.17) shows that Vesely obtains the same

formula as Coleman and Abrams as well as Jacobs for the condition

stated above. Therefore, it seems to be unnecessary to perform

a great deal of additional calculations for Vesely's method.

The optimum test interval for the data of the base case is

T2 = 13 days
opt

and follows from Eq. (3.17) as well as Eq. (3.6). This compares

favorably with the value of 14 days obtained by using the

Coleman and Abrams approach as shown in Table 3.2.

3.6 Comparison of Different Methods for the Prediction of the
Optimum Test Interval

Figure 3.4 summarizes graphically the findings of this chapter

by comparing the optimum test interval as function of the failure

rate for the following three methods: Coleman and Abrams, Jaccbs,

and Hirsch. In this context, it should be remembered that the

method by Vesely gives the same values as presented by the line

generated by Jacobs' method if qo=l and perfect testing is

assumed.
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Figure 3.4 shows that the results by Coleman and Abrams and

those by Jacobs are very close to each other. The results obtained

from Hirsch's method deviate from the other two by giving two

short optimum test intervals as compared to the other methods.

For the data selected for the base case, A=3x10 5 hr - 1

T =1.5 hr, and TR=21 hr, the optimum test interval found in this
c R

study ranges from 13 to 15 days depending on the method applied.

-2This results in a minimum unavailability of 1.00x10 2

On the other hand, by selecting the unavailability goal of

2x10- 2, the test interval will increase to between 38 and 52 days

depending on the perfectness of the test.

Finally, it can be concluded that for most practical purposes

Jacobs' method gives reliable results for T2 as long as the
opt

circumstances validate its underlying assumptions. The expression

given by Coleman and Abrams offers the highest flexibility

when additional effects are to be studied and more accurate results

about the repair time effect are desired.



-92-

4. STUDY OF THE OPTIMUM TEST INTERVAL FOR MULTICOMPONENT SYSTEMS
--EXAMPLE: AUXILIARY FEEDWATER SYSTEM

4.1 Introduction and Aux-Feed-System Description

It was shown in the foregoing chapters that analytical

procedures for estimating the optimum test interval only exist

for single component systems. Although at least Hirsch's methodology

[ 2 1 allows consideration of redundant situations, his formulas

were developed only for redundant systems consisting of identical

components. Therefore, the expressions given by Hirsch are only

of limited usefulness for systems such as the Aux-Feed-System

which, in its most primitive representation is shown in Figure 4.1,

would consist of 2 D.G.s and a pump in parallel. This system can

be described as a one-out-of-three system, i.e., functioning of

any one of the three paths leads to system success. As Figure 4.1

shows, two paths require that one of the diesel generators functions

while the third mandates that both valves and the pump are

operational because they are in series.

From the very simple system configuration shown in Figure 4.1,

it is an easy task to develop the fault tree of the Aux-Feed-

System as depicted in Figure 4.2. The numbers in the fault tree

correspond to the component numbers of Figure 4.1. From the

fault tree the system logic function can be easily determined by

inspection. This function is needed as input to the FRANTIC code

because it does not have fault tree analysis capability. In terms

of the FRANTIC nomenclature, the system logic function is given by
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Valve Pump Valve
1 3 2

Diesel Generator 4

Diesel Generator 5

Figure 4.1: Simplified Aux-Feed System

Unavailale

and

or

1 2 3 5

Figure 4.2: Fault Tree for the
Aux-Feed System

Simplified

- * _ F -

-
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QS = {1.0-[1.0 - QC(1) * [1.0 - QC(2)]
(4.1)

* [1 - QC(3)]} * [QC(4)] * [QC(5)]

where QS = system unavailability

QC(i) = unavailability of the ith component

NOTE: The numbers in parentheses correspond to the
component numbers in Figure 4.1.

It must be noticed that the unavailability of the i-th

component QC(i) is a function of many parameters, not only of

the component itself but also of the type of testing, effective-

ness of the test, and the probability of test caused failure.

Table 4.1 summarizes the input data to the FRANTIC code which

are kept constant during this study. Only the test interval and

the staggering times are varied.

Whereas most of the quantities in Table 4.1, such as failure

rate, average test time, and probability of a test caused failure

are self-explanatory, a few others need more clarification.

For example, the override unavailability refers to the probability

that the component, while being tested, cannot be switched back

to its safeguard function. A value of q=1 means that the

component cannot be used for its designed function while it is

being tested. The detection inefficiency is the probability for

a failure of a component's not being detected during the test.

In the FRANTIC code, this situation is treated by considering

the undetected failure rate as the product of the component
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TABLE 4.1

Symbols and Typical Values Which Are
Used in FRANTIC Code

X - component failure rate (x 10- 6 hr - 1)

T2 - component test interval (days)

T1 - initial component test interval used for
staggering purpose (days)

T - testing time (hrs)
c

TR - repair time (hrs)

q0 - override unavailability

Pt - probability of test induced failure

p - undetermined failure rate (10- 6 hr- 1)

qd - residual unavailability

= .3

= 38 days

= 1.5

= 7.0

= 1.0

TOTAL UMEAN - Aux-Feed-System mean unavailability for 1-year period
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failure rate, , and the detection inefficiency, i.e.,

A = A p (4.2)

where

: undetected failure rate

X component failure rate

p : detection inefficiency

The objective of this study is to optimize the availability,

i.e., minimize the unavailability of the Aux-Feed-System by

finding the optimum tet intervals while keeping the other

components and testing characteristics constant as shown in

Table 4.1.

4.2 Strategies for the Optimization of Test Intervals

Procedures for determining the optimum test interval for

simple systems such as a single-component system or a two-

component parallel system were already discussed and used in

Chapter 3. As has been already indicated there, no analytical

methods exist at present which allow explicit determination of

the optimum test interval for large and complex systems.

Therefore, the methods of Hirsch, Jacobs, and Coleman and Abrams

are used again, this time to find the test intervals of the

components, while the resulting system mean unavailability is

determined by the FRANTIC code by using these test intervals as

input. These results will the be compared to those resulting from

an iterative search for the optimum test interval.
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The basis of all comparisons presented in what follows is

the system mean unavailability with due consideration given to

the peak unavailability during the period of interest which is one

year. Although it is acknowledged that the selection of test

intervals should be related to risk and consequences, the present

study is solely based on the mean and peak system unavailabilities.

4.3 Optimum Test Interval Determination for Components

4.3.1 Hirsch's Methodology

By using the availability design goals of the standard

IEEE-279 [28 ], Hirsch developed a method for determining test

intervals and allowable bypass time for several simple system

configurations as already discussed in Chapter 3. For the

purpose of the present study, the bypass (testing) time is

considered predetermined and only the testing interval needs to be

calculated. According to IEEE-279, the system unavailability

due to testing must be commensurate to the system unavailability

and is the sum of these two components as stated by Eq. (3.7 ).

When the bypass time is considered variable, both the bypass time

and the test interval are determined by the system configuration

(for example, one-out-of-two), component failure rates, and the

design goal. When the bypass time is given along with the

system configuration and component failure rates, the test

interval and system unavailability are determined.
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Valve Pi-mp Valve

Turbine Pump Train

Diesel Gen tor 54

Figure 4.3: Subsystems of the Simplified
Aux-Feed System
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Unfortunately, Hirsch did not develop an expression for the

one-out-of-three type of configuration which is the main

characteristic of the Aux-Feed-System. However, in order to be

able to apply Hirsch's methodology despite the nonexistence of a

special expression for the one-out-of-three system, the Aux-Feed-

System is being broken down into two subsystems as shown in

Figure 4.3. One subsystem is the one-out-of-two diesel generator

subsystem; the other is the turbine pump chain. The analytical

method is applied as follows.

For the turbine pump chain, the system can be partitioned to

an equivalent subsystem describing this series. Since an

exponentially distributed failure has been assumed throughout

this analysis, the failure rate, , for this series system is the

sum of its component failure rates, i.e.,

E =A +X +X
E -v 1 v2 p

= (0.3 + 0.3 + 3.0) x 10 hr

= 3.6 x 10 hr (4.3)

The testing time, Tc, is assumed to be the same for all

components, i.e.,

T T = T = T = 1.5 hr (4.4)
c c 2c c

v1 v2 P
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Following the Hirsch method, T2 is found as

XET - XET )2 + 4 ETc

T = (4.5)
opt 2XE

With the data given above, T2 follows as

T2 = 646.25 hr = 27 days (4.6)
opt

For the diesel generator subsystem (one-out-of-two), one can

either consult the graphs supplied by Hirsch in 2 ] for the

determination of T2 or use the following exact expressions
opt

for perfect staggered testing among the diesel generators.

With

AF = ( ) (T2 (4.7)

AT = AT (4.8)

By satisfying Hirsch's requirement

AF = AT

one can solve for T2 which follows as

2

2 = ) l-AT (4.9)

With the data for the diesel generators taken as

-6 h-1
= 42 x 06 hr0) (4.10)

T = 1.5 hr
C
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one obtains

T2 = 414.04 hr = 17 days (4.11)

The testing of the diesel generators according to the perfect

staggered testing is shown on the time scale shown in Figure 4.4.

It should be noticed that the testing time of 1.5 hr is not shown

on this scale.

4.3.2 Jacobs' Methodology

For a single component, Jacobs has determined the optimum

test interval as a function of the failure rate, X, and testing

time, T . This test interval results in a minimum meanc

unavailability for the component. It will later be shown as

for the other cases, that this test interval for the component

differs from the test interval for the component when it is

considered part of the system which is minimized.

The equation below can be solved to find the optimum single

component test interval when both the failure rate and testing

time are given.

1 [eX (T2Tc)(l+T 2)] - = (4.12)

T2 AT2

This function is transcendental and is not quickly solved

without computer aid. Therefore, it is simplified according to

the assumption that,

AT <<1
c
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Test Test
D.G #4 D.G #5

A -

Test Test Test
D.G #4 D.G #5 D.G #4

0 8.5 17 25.5 34
Days

NOTE: Testing time is 1.5 Hrs. and is not shown on time scale.

Figure 4.4: Time Scale for Staggered Test Procedure

WI
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to yield,

2T
T2 = / C (4.13)

This formula is quite simple in nature since it does not account

for the effects of repair time, test inefficiency, and other

contributors to the components' unavailability.

Using Eq. (4.13), the test intervals for the Aux-Feed-

System components are determined. It should be recalled that the

valves and pump of the system must be tested simultaneously

and, therefore, the equivalent failure rate, E) is used for this

part of the Aux-Feed-System. Table 4.2 below summarizes the

results.

TABLE 4.2: TEST INTERVAL CALCULATED USING JACOBS' METHODOLOGY

Component X(10-6 hr-l) T (hrs) T2 (days)
c

Diesel Generator 4 42 1.5 11

Diesel Generator 5 42 1.5 11

Pump Valve Chain 3.6 1.5 38

NOTE: The test interval, T, is rounded off to the nearest
whole day since testing will be on this basis.
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4.3.3 Coleman and Abrams Methodology

As discussed already in Chapter 3, these authors developed

the most comprehensive expression for the component availability.

For the present study, the following assumptions are made

= 0, i.e., system does not fail during test

a = 0, i.e., no false alarm

= 1, i.e., perfect testing

which simplify Eq. (3.1) to the following expression for the

availability

l-e-XT2
A (4.14)

X[T2+Tc+TR(1-e XT2)J

A= 1- A

By using Eq. (4.14), the unavailability A is calculated for each

component of the Aux-Feed-System.

Table 4.3 summarizes the results of these calculations for

all components for a series of test intervals. These unavaila-

bilities are plotted versus T2 in Figure 4.5 for the pump,

valves, and pump-valve chain, whereas Figure 4.6 shows A vs. T2

for the diesel generators. By noticing where the minima occur,

the test intervals for the diesels and the pump-valve chain are

determined. The pump-valve chain is used rather than the

individual components since they must be tested coincidentally.

Table 4.4 summarizes the resultant test intervals.
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TABLE 4.3

AUX-FEED-SYSTEM COMPONENT UNAVAILABILITIES AS A
FUNCTION OF TEST INTERVAL

Component
Test Interval (Days)

7

10

12

14

15

20

25

30

35

140

45

50

60

80

100

120

Pump

(10- 3)

3.2

3.1

3.1

3.1

3.1

3.3

3.7

4.3

Unavailability
Valve Pump Valve Chain

(10- 3) (10-3)

-- 4.9

-- 4.0

-- 3.6

2.2 3.4

1.9 3.35

1.7 3.34

1.6 3.4

1.14 3.5

1.3 3.7

1.1 4.3

.99 --

.95 --

Diesel
Generator

(10- 3)

1.32

1.2

1.2

1.2

1.25

1.4

1.6

1.8
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TABLE 4.4

OPTIMUM TEST INTERVALS CALCULATED USING
COLEMAN AND ABRAMS METHODOLOGY

Component (10-6 hr- 1 ) Tc TR T2c R 2

Diesel Generator

Pump-Valve Chain

42

3.6

1.5

1.5

21 12

17 38

The resultant test intervals for the components as computed

by using the methods of Hirsch, Jacobs, and Coleman and Abrams

are summarized below in Table 4.5.

TABLE 4.5

OPTIMUM COMPONENT TEST INTERVALS (DAYS)

Method

Component

Diesel Generator

Pump-Valve Chain

Hirsch

17

27

Jacobs

11

38

Coleman and Abrams

12

38

The methods of Jacobs and Coleman and Abrams agree quite

closely since the objective of these two methods is to optimize

the test interval versus the method of Hirsch which has as its

objective to meet an unavailability goal for the system. Hirsch's

method also uses the IEEE-279 requirement that unavailability

due to testing be equal to the unavailability due to failure.

-108-
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4.4 Determination of the System Unavailability by FRANTIC

The next step is to input these test intervals along with

the component and testing characteristics in to the FRANTIC code and

to calculate the resultant Aux-Feed-System unavailability.

The FRANTIC code does not compute or determine optimum test

intervals but rather determines the system unavailability due to

test intervals.

For redundant systems,staggering is used to prevent testing

the total system at one time, which results in the unavailability

being unity. The actual method of staggering itself can have

great effects on the system unavailability. Two methods of

staggering are used here to show the upper and lower bounds of

the Aux-Feed-System unavailability for each of the three methods

used to calculate test intervals. In FRANTIC, staggering is

handled by the input value of T1. T1 represents the first test

interval for that component while T2 is the test interval which

was calculated using the methods previously cited.

The first type of staggering used is the simultaneous method.

Since the diesels are tested on the same test basis, one diesel

should be tested before the other to avoid large unavailabilities

due to coincident testing. Therefore, simultaneous testing is

used. Simultaneous testing means that after one diesel has been

fully tested, the other diesel is tested immediately. To avoid

testing either diesel at the same time as the pump and valves, the

diesels must be staggered relative to the pump tests also. Because
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of this, T1 for diesel #4 is 0.063 days (1.5 hrs = Tc ) and T1

for diesel #5 is 0.13 days (3.0 hrs = 2T ). Simultaneous testing

yields an upper bound for system unavailability.

To determine the lower bound for the Aux-Feed-System unavaila-

bility, the method of perfect staggering is used. Since the

test intervals,T2, of the diesels are equal but are different

from the test interval of the pump and valves, perfect staggering

is applied to the diesels only. In perfect staggering, the first

test interval, T1, for one diesel is set equal to the actual

test interval, T2, divided by 2 since there are two diesel

generators. The resultant initial test interval, T1, for the

methods of Jacobs and Hirsch are not whole numbers but have

been rounded off to the nearest whole number of days. Again,

to alleviate any possibility of coincidentally testing either

diesel with the pump and valves, T1 for each diesel has been

offset by 0.063 days (T = 1.5 hrs).

Tables 4.6 and 4.7 show the results of the FRANTIC calcula-

tion,along with the inputs, for each of the three

methods of test interval determination. Table 4.6 gives the

results for simultaneous testing while Table 4.7 gives the

results for perfect staggering.

The nomenclature used in these tables is explained below:

AF: mean system unavailability due to failure

AT: mean system unavailability due to testing

AR: mean system unavailability due to repair

ATotal: total mean system unavailability
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TABLE 4.6

Unavailability Calculations by Using the FRANTIC Code
for the Aux-Feed-System, Simultaneous Testing

(qo=l; Pf=0; p=0; qd=O)

HIRSCH METHOD

Component # Xx10 6hr- 1 T2 day22da

1 Valve 0.3 27 1.5 7
2 Valve 0.3 27 1.5 7
3 Pump 3.0 27 1.5 19
4 Diesel 42 17 0.063 1.5 21
5 Diesel 42 17 0.13 1.5 21

otal -6 F -7 of ATl AT % of otal AR-6 % of otal
1.928x10 1.813x10 9.4 1.724x10 6 89.44 2.223x10 8 1.15

A Time Time between peaks
peak 3
2.253x10 323 d varies

JACOBS METHOD

Component # x106hr- 1 T2 day T1 day T hr TR hr
2 1 c- R

1 Valve 0.3 38 1.5 7
2 Valve 0.3 38 1.5 7
3 Pump 3.0 38 1.5 19
4 Diesel 42 11 0.063 1.5 21
5 Diesel 42 11 0.13 1.5 21

ATotal -6 of ATota A % ofotal R% of otal
3.408x10 9.915x10 2.91 3.29x10 6 96.56 1.816x10 8 0.53

A Time Time between peaks
peak 3

3.203x10 341 d 67 d 1st 4 peaks

COLEMAN AND ABRAMS METHOD

Component # XxlO hr T2 day T day T hr T hr
2 1 c R

1 Valve 0.3 38 1.5 7
2 Valve 0.3 38 1.5 7
3 Pump 3.0 38 1.5 19
4 Diesel 42 12 0.063 1.5 21
5 Diesel 42 12 0.13 1.5 21

ATotal AF 7% of ATotal AT % of ATotal AR % of ATotal
3.34x10 1.182x10 3.54 3.198x10 6 95.84 2.066x10 8 0.62

Apeak Time Time between peaks3.307x 22peak8 d varies
3.307x10 228 d varies

T1 day T hr
C

TR hr
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TABLE 4.7

Unavailability Calculations by Using the FRANTIC Code for the
Aux-Feed-System, Perfect Staggered Testing

(qo=l; Pf=O; p=O; qd=0)

HIRSCH METHOD

Component # Xxl0 6hr- 1 T2 day22da T1 day T hr
c TR hr

R

1 Valve 0.3 27 1.5 7
2 Valve 0.3 27 1.5 7
3 Pump 3.0 27 1.5 19
4 Diesel 42 17 0.083 1.5 21
5 Diesel 42 17 8.080 1.5 21

otal 7 F -8 % of otal % f Total AR - % f ATotal
3.327x10 8.88x10 26.72 2.226x10 7 66.92 2.115x10 6.36

A Time Time between peaks
peak 4
1.743x10 324 d varies

JACOBS METHOD

Component # Xx10 hr T2 T day T1 day T hr TR hr
1 Valve 0.3 38 1.5 7

1 Valve 0.3 38 1.5 7
2 Valve 0.3 38 1.5 7
3 Pump 3.0 38 1.5 19
4 Diesel 42 11 0.083 1.5 21
5 Diesel 42 11 5.080 1.5 21

ATotal AF % of ATotal AT % of ATotal R of ATotal
2 .159x10-7 4.675x10 8 21.66 1.502x10 7 69.57 1.895x10- 8 8.78

A Time Time between peakspeak
7.943x10 342 d 38 d for peaks 2 through 7

COLEMAN AND ABRAMS METHOD

Component # %x10 hr- 1 T2 day T1 day T hr TR hr

1 Valve 0.3 38 1.5 7
2 Valve 0.3 38 1.5 7
3 Pump 3.0 38 1.5 19
4 Diesel 42 12 0.063 1.5 21
5 Diesel 42 12 6.060 1.5 21

ATotal F 8 ATota1 X % f of ATA of Total
2.463x10-7 5.605x10 22.75 1.693x10- 7 68.75 2.092x10-8 8.49

ApeA Time Time between peaks
peak

7.164x10 114 d 114 d 1st 3 peaks
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From Tables 4.6 and 4.7 it is obvious that using the optimum

test interval as determined by the Jacobs method for perfect

staggered test results in the lowest total mean system

unavailability of all three methods applied. However, it will

be shown in the next section that this unavailability of

-7
ATota = 2.159x10 is in fact not a minimum for the Aux-Feed-

System. Therefore, it must be concluded that optimum test

intervals stemming from single component expressions do not

necessarily result in a minimum system unavailability. Hence,

these test intervals are not truly optimum with respect

to the system as a whole.

Another observation which can be made by comparing these

tables is that perfectly staggered testing leads to mean and peak

unavailabilities which are by at least an order of magnitude lower

than those resulting from simultaneous tests.

4. 5 Optimization of the Test Interval by Iteration with FRANTIC

The FRANTIC code does not calculate the optimum test

interval for components of a system but rather calculates the

system and component mean unavailabilities for a given set of

component test intervals. Therefore, in searching for optimum

test intervals, various sets of test intervals for each component

of the system are systematically input, and FRANTIC outputs

the unavailabilities. By observing the output of FRANTIC, the

"best" test intervals are determined. These test intervals are
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those which yield the smallest system unavailability. It is

possible that these "best" test intervals are not optimum since

at this point there is no analytic means of checking.

In addition, there may be differences between the optimum

test interval and those test intervals which are implemented

at the plant itself due to scheduling problems. For example,

it would be rather difficult to schedule a six-day test interval.

Probably this test interval could be changed to a weekly basis

without great effect upon the system unavailability. Therefore,

the results of two different types of testing are included in this

section. The first is a result of testing on a basis without

consideration to ease of scheduling, i.e., a test interval of

13 days could result. The second set of test intervals are those

which could be scheduled relatively easily, i.e., weekly, biweekly,

etc. The results are shown graphically with explanation.

To find the optimum test interval, all components were tested

with equal test intervals on a perfect staggering basis. In

this case, the staggering dates were not rounded off to the

nearest whole day. Since there are three trains and all are

tested on an equal interval, the staggering time is:

T2 /3 = T1

The first diesel is tested after T1 days and the second diesel

is tested after 2T1 days for the first test interval only. The

pump is tested with an initial interval of T2 days. After the

first testing of all components, the test intervals are all set
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to T2 days, thus perfect staggering. The diesels are tested

first since it has been shown that the components with the

greatest failure rate should be tested prior to components

with smaller testing intervals. This results in smaller

unavailabilities.

Figure 4.7 is a plot of the Aux-Feed-System unavailability

versus test interval T2 using perfect staggering. From this

graph, it is obvious that there is no "best" test interval

because the curve obviously continues to decrease. Attempts were

made to test the system's components every 2 days, but the

FRANTIC code broke down. It should also be noted that already

for the 3-day test interval the code was beginning to have

underflow problems, but these were handled by the computer

fixup routine.

Figure 4.8 shows a plot of the Aux-Feed-System unavailability

versus the pump test interval. In this case, the diesels were

tested every 4 days (held constant) and the pump test interval

was varied to see its effects. The points plotted are for

pump test intervals of integer multiples of the diesel test

interval. The test intervals of 10 and 30 days are also

included to see this effect, but due to staggering problems

these unavailabilities did not lie on the curve. It is possible

to lower these unavailabilities using appropriate staggering

methods. From this figure, it is apparent that testing the

diesels every 4 days according to perfect staggering and the

pump every 8 days results in a minimum unavailability of approxi-

mately 5x10 8 which is a considerable improvement over the
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values found by the Jacobs method in Section 4.4 which was

ATotal= 2 .159xlO Therefore, it can be concluded that the

methods discussed in Section4.4 do not yield optimum test.

intervals. In any case, it should be carefully noticed that

neither result for the test intervals is implemented at the

plant site.

By fully recognizing this difficulty, a study was initiated

to investigate test intervals which could be practically scheduled

on site. Since the diesel failure rate is not equal to that of

the pump-valve train, tests were not only done on an equal test

basis for all components but the pump test was also varied

holding the diesel test interval constant. The basic test

intervals, T2, for the diesels were selected as 7, 10, 14, 15

days because it was deemed that these could relatively easily

be scheduled on site.

With respect to staggered tests, the diesel tests were

staggered on as nearly a perfect basis as possible, i.e., since

there are two diesel trains, the interval between diesel tests

equals one half the diesel test; interval. This interval was

rounded off to the nearest day. In the course of using the

FRANTIC code to determine the "best" test intervals, it was

found that testing a diesel on the day prior to testing the pump

resulted in the lowest unavailabilities. This was obtained by

still following the perfect staggered pattern for the diesel.

For example, the time scale shown below displays the testing of the

diesels every 7 days and the pump every 14 days using the method

described above.
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Figure 4.9 shows the results of testing the diesels for the

aforementioned 4 different test intervals along with the varying

pump test interval. From this figure, it is apparent that the

"best" practical test intervals for the diesels and the pump

are 7 days, respectively, because these test intervals result in the

lowest unavailability of the Aux-Feed-System. By referring

back to Figure 4.7 , the unavailability for testing the system

components every 4 days using perfect staggering between all

components is approximately 6.5x10 8. As can be seen from

Figure 4.9, the testing of the components every 7 days results in

about the same unavailability, which is the combined result of the

different staggering methods employed.

It is worth mentioning that the doubling of the pump test

interval from 7 to 14 days does not significantly increase the

unavailability of the Aux-Feed-System. (Note, the diesel test

interval is still kept at 7 days. However, doubling the

diesel test from 7 to 14 days results in a substantial increase

in system unavailability. This is due to the fact that there

are two diesel trains and that the diesel failure rate is by an

order of magnitude higher than that of the pump.
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A final note should be addressed to the presentation of the

curves in Figure 4.9. The data generated by FRANTIC represent

actually discrete unavailabilities. These were connected by

continuous lines to display the effect of increasing test

intervals. The actual system unavailability for pump test

intervals other than those used for the plots is unknown.

4.6 Conclusions and Recommendations

In the search for optimum test intervals, it has been shown

that one cannot solve for the optimum test interval of single

components and expect these test intervals to result in a minimum

mean unavailability for the system as a whole. Note that the

best result for the method of Section 4.4, the Jacobs method,

combined with perfect staggering yields a mean unavailability of

2.159x10- 7 versus a mean unavailability of 4.815xl0-8 using test

intervals of 3 days and perfect staggering (trial and error method)

of Section 4.5 . While this unavailability has not beenshown

to be a minimum for the system since FRANTIC breaks down for

intervals less than 3 days, this unavailability is a reduction of

a factor of 4.5 over that obtained by the Jacobs method. In

addition, it is shown in Figure 4.9 that by using more practical

test intervals the unavailability can be reduced to less than

what has been obtained by the Jacobs method. Therefore, it is

concluded that the system unavailability, while being determined



-122-

by individual component unavailabilities is not optimized by

utilizing test intervals that are determined as optimum for the

individual components.

By increasing the redundancy of a system, the optimum test

intervals of the component decrease from their optimum test

interval when a component is considered individually. This

occurs because while one component is being tested, the other

redundant components are available to provide the required

function. Therefore, for identical trains, the test interval for

a one-out-of-two system is smaller than the test interval for a

one-out-of-one while a one-out-of-three system would allow for

smaller optimum test intervals than a one-out-of-two system.

The results shown in this chapter are for components where

only failure rate, testing time, repair time, test interval and

test procedure are considered. More complexity can be brought

into the picture by including the additional effects of

override unavailability, test induced failure, and test inefficiency.

However, it cannot be overemphasized enough that the main problem

with implementing these last three parameters is the lack of real

plant data. For this reason, the results for very small test

intervals should be taken with caution because they do not reflect

the possible degrading effects of too frequent testing.
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5. Test Interval Optimization Study for the Emergency Power System

5.1 Introduction

Upon agreement of the sponsors, the Emergency Power System

of the Maine Yankee power plant was chosen for this study. The

one-line diagram of the emergency busses as shown in Figure 5.1

has been extracted from the more elaborate electrical system

diagram.

The Emergency Power System (EPS)' consists of:

1. Two sources of off-site AC power.

2. Two sources of on-site AC power consisting of two diesel

generator sets called DGA and DGB in Figure 5.1 and in

what follows.

3. Four sources of DC power.

4. Auxiliary equipment including transformers, busses and

cables for the distribution of power to the Engineered

Safety Features (ESF) loads.

The principal function of the EPS is to provide power to the

ESF systems in case of accidents and loss of off-site AC power.

The undesirable event for the development of the fault tree

has been defined as "Insufficient Power to Engineered Safety

Features", and is used in the following sections. This definition

of the top event includes all states of the EPS which inhibit

perfect operation of the Engineered Safety Features (ESF).

Insufficient power is, in general, the coincident loss of two

mutually redundant bus trains.
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Figure 5.1: One Line Diagram of Maine Yankee Emergency Buses
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The EPS, as studied in the following, originates at the high

voltage substation and terminates at the distribution busses

which serve the ESF levels.

Each of the two redundant trains consists of five different

busses which lead to 25 different combinations resulting in the

top event. Figure 5.2 shows the major failure events which

contribute to the top event. The complexity of the tree is

quite apparent from this figure. Fortunately, it is sufficient

to evaluate only one train for the analysis of the tree, because

of the redundancy in each of the available components.

5.2 Collection and Analysis of Diesel Generator Failure Data

A literature survey on operational data of D.G. and related

systems turned up 96 failures in the United States with respect

to start and assuming power of the minimum number of 3208 starts

over the three-year period 1975 to 1977. These data and

their analysis are summarized in Appendix A and the results of

this study for failure rate and unavailability per demand were

already used in Chapter 3.

The results of the literature survey are compared to the

values used in the Reactor Safety Study [7] in Table 5.1. The

RSS had obviously used data available up to 1973 [271. As can

be seen from Table 5.1, the differences between both data sources

are negligible for most cases. For the present study, the most

conservative data as resulting from both data sources are

displayed in the last column of this table and are used for the

following fault tree evaluation.
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Odd No. refer to Emergency train related to Bus 5
Even No. refer to Emergency train related to Bus 6.

Figure 5 2 Maine Yankee Emergency Power System Fault Tree
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It should be noticed that the gathering of data as described

above faces several difficulties. This is especially due to the

fact that the D.G. units examined differ substantially with

respect to design and power rating. Thus, each category should

be analyzed separately and would certainly result in

different failure rates. However, there are not enough data

available which would allow the consistent analysis described

above. Therefore, despite recognition of the special need for

more consistency, it has been decided to use the overall failure

frequency for the analysis of the literature survey. This seems

to be a conservative assumption, especially in light of the fact

that no malfunctioning has been reported for Maine Yankee thus far.

All other component data needed to complete the fault tree

evaluation were taken from WASH-1400. In cases where no data

were available, conservative estimates have been made with

respect to the failure rates and repair times.

5.3 Unavailability Calculation of the 4160V Emergency Busses

5.3.1 Fault Tree Reduction

The availability of the power to the Engineered Safety

Features is governed by the availability of the 4160V busses

because the loss of these busses, 5 and 6, would immediately

result in the loss of AC power to the ESF. Therefore, the

analysis of the unavailability of the 4160V bus has been selected

as being the most important issue for this study.
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Figure 5.3 shows the fault tree diagram of Bus 5. This tree

can be equally applied for Bus 6 if the manual circuit breaker

5R, which connects to Bus 5 from the reserve station transformer

X-16, is neglected.

By using well-known principles of fault tree analysis, the

fault tree diagram as shown in Figure 5.3 can be further reduced

as depicted in Figure 5 .4. This reduction is deemed to have no

major impact upon the evaluation of the probability of occurrence

of the top event. It is desirable from the point of view of a

parametric study, and it is necessary in order to come up with a

reasonably simple system whose system function, needed as input

to FRANTIC, can be found without great difficulty.

Table 5.2 summarizes the data used for the primary events in

this study.

5.3.2 Results

Figures 5.5 and 5.6 show the results of the study as obtained

by the FRANTIC code for the point unavailability and the mean and

peak unavailabilities of the system, respectively.

Figure 5.5 displays the point unavailability of Bus 5 over

one full period, whereas Mean A and Max A are shown in Figure 5.6

as function of D.G. test interval.

As Figure 5.5 shows, for (EDG)=3xlO -5hr- 1, the point

unavailability displays the familiar characteristics, namely that

during the test itself the unavailability increases, drops to a

low level at repair and decreases further after repair beyond which

it starts to increase again due to random failure.
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Figure 5.3 Bus 5 Fault Tree Diagram
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Figure 5.4: Reduced Fault Tree for 4160V Bus 5
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Table 5.2: Component and Event Data Used in this Study

Component 1 6 T2 T1 TC TR Pf QD

hr x 10 days days hour hour

1. D.G. 30(3000)* 50+ 25+ 1.5 21 10 4 0

2. D.G.I. Con. 250 -- -- -- 1.0 -- --

3. Oper. Error -- -- -- -- - 10-

4. Net Con. 11 -- -- -- 1.0 -- --

5. Net 30 -- -- -- 3.0 -- --

6. B. 5 LBF 2 -- -- -- 1.0 -- --

*No. in parentheses represents the

+T2 and T1 vary from 50 and 25, to
2 1

A(EDG) for conservative run.

25 and 12 days.
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Figure 5.6: Effect of D.G. Test Interval

on Unavailability of 4160V
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By increasing the failure rate to (EDG)=3xlO-3hr- 1,

Figure 5.5 shows a different point unavailability behavior, where

obviously the contribution due to the test results in a lower

unavailability than what is contributed by repair and random

failure. This is certainly wrong and shows the inherent

limitations of the FRANTIC code as a result of the various

approximations employed. At this point, it should be recalled

that for T0.01 the FRANTIC results become more and more

questionable. Moreover, it should be noticed that the unavaila-

bility of the system for the very conservative estimate of

X(EDG)=3xlO-3hr- 1 is primarily the result of the contribution of

the loss of off-site power, because for a 50-day test interval

the D.G. is already in the failed state. This can be clearly

demonstrated by examining the approximation for the unavailability

as applied in FRANTIC, i.e.,

T + TR
q XT2 + q T2 2 T2

By neglecting the two last terms, the D.G. unavailability

becomes q=l.8 and is thus already unrealistically larger than

unity for T2=50d. In fact, the calculations show that for the data

chosen, the D.G. fails after 26.5 days.

The foregoing example clearly demonstrates that results

generated by codes such as FRANTIC have to be taken with care.

This is especially important because as Figure 5.6 reveals,

nothing peculiar can be noticed from the curves for Mean A and

Max A.
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As can be seen from Figure 5.6, the mean unavailability of

the system ranges from 3.24x10- 6 to 3.92x10- 6 when the test

interval of the D.G.s is changed from 25 to 50 days for the case

of X(EDG)=3xlO-hr - . The maximum unavailability, i.e., the

value of A during test, stays constant at a value of 1.03x10 4

over the whole range.

At this point it should be remembered that these results

are generated for a set of failure rates which must be considered

conservative when compared to actual experience.

When the D.G. failure rate would assume the overly conservative

value of (EDG)=3xlO 3hrI, the mean unavailability increases

by an order of magnitude and changes from 9.7x10- 5 to 1.79x10- 4

whereas the maximum unavailability changes from 1.84x0 - 4 to

3.65x10- 4 over the range of test intervals from 25 days to 50 days.

5.3.3 Discussion and Conclusion

From the results presented in the foregoing section, it

becomes apparent that the lack of reliable data forces the analyst

to make conservative and possibly nonrealistic assumptions which

may lead to results which are in fact not representative for the

system under consideration. Hence, a consistent and realistic

analysis is only possible to the extent to which reliable data

are available.

The results of Figures 5.5 and 5.6 suggest that the failure

rate of the D.G. should not be higher than 10 hr- 1 according to

the following arguments. As depicted by the individual point in
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Figure 5.6 characterized as U.S.N.P.P., the U.S. nuclear power

plant experience indicates an unavailability of both on-site and

-10off-site AC power at the same time not greater than 9x10 . For

the assumption of (EDG)=3x10 5hr 1 and simultaneous D.G. test,

the maximum unavailability is 10 , whereas this is reduced to

4x10 10 for a perfect staggered test procedure.
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5.4 Study of the Additional Effect of D.G. Unavailability per
Demand Upon the Unavailability of Bus 5

In order to study the additional effect of variations in the

component data, the single bus failure has been reexamined by

assuming that the D.G. not only fails randomly as was assumed in

the previous section, but that it is characterized by a constant

unavailability per demand in addition.

Table 5.3 summarizes the input data for this study which used

the same reduced fault tree as shown in Figure 5.3. Two cases

were studied with these data. The first one considered the D.G.

as being perfectly available, i.e., q =O, whereas the second one

-2
assumed q=10 /demand.

Figure 5.7 shows the results for both cases as a function of

D.G. test interval. As can be seen, the additional impact of a

constant unavailability per demand is to increase the mean

unavailability of the bus by about a factor of two, whereas the

peak unavailability remains unaffected.
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Table 5.3: Input Data for Single Bus Failure Study with
Additional D.G. Unavailability (See Figure 5.3
for the underlying fault tree)

-1Component - Tc TR q0 qDhr hr hr -- -

1. D.G. 3 x 10 - 5 1.5 21 1.0 2 x 10 - 2

2. D.G. Intercon. 2.5 x 10 4 - 1.0 -- --

3. Operator -- -- -- -- 1 x 10

4. G.N.C. 1.1 x 10- 5 -- 1.0 -- --

5. Net 3 x 10- 5 - 3.0 -- -

6. Single bus 2.4 x 10-6 -- 1.0 -- --

T2 changes from 50 to 20 days

T1 changes from 25 to 10 days
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5.5 Station Blackout Study

5.5.1 Introduction

For illustrative purposes, a station blackout study was per-

formed. The reasoning underlying this effort is as follows.

In case, that Buses 5 and 6 and their respective prior inter-

connections as well as grid transmission lines can be considered

as perfectly independent, the unavailability of both buses would

be just the square of the unavailabilities reported in the

previous chapters, i.e. it would fall in the range of about

10- 8 > A > 1010 However, a closer look at the system reveals

that both buses are connected to the same grid. Thus it is

deemed to be more appropriate to reconstruct the fault tree for

the top event "Insufficient Power on Both Buses 5 and 6" by

considering the loss of the grid due to a common mode of event

such as forest fire, snow storm, icing, or the like. As a

result, it is expected that the unavailability of station power

will increase compared to the value which is obtained with the

assumption of complete independence.

5.5.2 Fault Tree and Data

Fig. 5.8 shows the fault tree for the analysis of station

blackout whereas Table 5.4 summarizes the data which are used

in this study. In order to comprehend the differences introduced

into the blackout prediction, the reader is urged to compare

Figs. 5.4 and 5.8.

As with respect to the data, two cases are examined. In
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Table 5.4:

Data for Station Blackout Study

(Perfect Staggered Testing of D.G.s)

Component A

hr-'
T
r Pf

hr

1. D.G.A. 3 x 10-5 21 1 2 x 10-2 (Case 1)
0 (Case 2)

-42. D.G.A. 2.6x 10
Conn.

3 x 10

-4
4. D.G.B. 2.6x 10

Conn.

-55. Net 3 x 10

6. Net
Conn. -51. lx 10

Test Interval, T2:

First Test,T1:

Test Time, T:
C

21

1

3

1

1

0

0

0

0

0

0

-2
2 x 10 (Case 1)

0 (Case 2)

0

0

0

50 days to 20 days

25 days to 10 days

1.5 hr for D.G.A. and D.G.B.

3. D.G.B.

1 0 0 0



the first case (Case 1), it is assumed that the diesel generators

do not only fail randomly but that they are also subject to a

constant unavailability per demand (2 x 10 2). In the second

case (Case 2), it is assumed that the diesel-generators are per-

fectly available upon demand (qD=O). All other data are kept

the same. It should be noticed that only the case of perfect

staggered testing is examined.

5.5.3 Results and Discussion

Again, the impact of the D.G. test interval on the unavail-

ability of both buses has been studied and the results for the

two cases discussed above are displayed in Fig. 5.9. As can be

seen from this figure the mean and peak unavailabilities are

rather strongly affected by the assumptions made for the diesel-

generator failure. Thus, if only random failures are considered,

A mean ranges from 8 x 10 to 4 x 10 for the range of test

intervals considered. If in addition, a constant unavailability

-8
upon demand is accounted for, Amean increases from 8 x 10

to 1.5 x 10-7, i.e. an increase by a factor of 10 or 4, at

the end points of the spectrum for the test interval, respectively.

The same trend is apparent for the peak unavailabilities, Amax

with the only difference that these values are by one to two

orders of magnitude higher than the mean unavailabilities. A

comparison of the respective pairs of curves for A and Amean max

reveals that for increasing test intervals the differences in

the unavalabilities decreases which is the result of the

fact that with an increased test interval the effect of random

failures increases.
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It is interesting to compare the predictions of the blackout

study with the squares of the previously obtained unavailabilities

of one bus (see Chapters 5.3.3 and 5.4). Naturally, as indicated

before, the latter values are only valid for perfectly independent

buses including the grid. With this assumption and the data shown

in Fig. 5.7 Amean would result as about 2.5 x 10 11 for both

buses being unavailable at the same time for Case 1, whereas for

-12
Case 2 Aean would be even smaller, namely Amean '-9 x 10 . The

respective values for the modified fault tree are about 10 7 and

-8
10 respectively and show as Fig. 5.9 reveals,a much higher

sensitivity with respect to the test interval. The differences

are not as pronounced for the peak unavailabilities, which become

~ 10 8 for independent buses and are 10- 6 for the modified

tree.

In addition to the main part of this study, two individual

cases were run whose results are also displayed in Fig. 5.9 as

individual points in order to demonstrate at least the trend of

these effects. The first of the additional cases considers the

effect of a 50% probability for override during test. As can be

seen from the figure, A remains nearly unaffected, where Amean max

can be reduced by a factor of 3 by this option, thereby nearly

offsetting the impact of constant unavailability upon demand.

The second additional case includes a reduction in repair time

down to 14 hours from 21 hours originally and an increase in test

time to 3 hours up from originally 1.5 hours. Again, A ismean

unaffected, whereas A can be reduced by a factor of 3 by thesemax



measures. The last example demonstrates clearly that the repair

time is obviously of more importance to Ama x than the test time,

at least within the limits studied here.



STUDY OF TEST CAUSED FAILURES AND DETECTION INEFFICIENCY

6.1 Introduction

All of the previous examples were evaluated under the assump-

tions that the tests performed on components of the system

as well as the detection of faults are perfect. However, it is

a well-known fact that these actions are certainly not free of

errors either induced by human failure or test actions. Unfor-

tunately, FRANTIC is not able to simulate these effects by de-

tailed models. In fact, models of these kind are even not avail-

able for general use. What remains then is to study test caused

failures and detection inefficiencies on a parametric basis.

For this purpose the FRANTIC code contains the two parameters,

Pf and P where the former is the probability for test caused

failures and the latter the probability for detection inefficiencies.

In what follows, a parametric study is presented for the

unavailability of both D.G.s at the same time.

6.2 Fault Tree and Data

Fig. 6.1 shows the simplified fault tree used in this study.

As can be seen from this tree, an event called operational error

has been introduced which is connected to both D.G. failure

gates in order to account for imperfect testing procedure and/or

inefficient maintenance. The data which are held constant during

this study are summarized in Table 6.1.

6.
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TABLE 6.1

Component Data

Component

1 D.G.

2 DC Conn.

x

hr- 

3 x 10-5

These data are the same for events 4 and 5.

Tc

hr

1.5

TR

hr

21

1 0 -4

. __
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6.3 Study of Test Caused Failures

It is assumed that both D.G.'s are tested on a perfect staggered

basis. The contribution by operational errors is specified as

being constant for a given test interval. This constant, qD, is

increased with increased test frequency in order to account for

the fact that increased testing may lead to a higher contribution

by operational errors. For each test interval, T2, and associated

constant operator unavailability, qD, the probability of test

caused failures, Pf, changed parametrically as shown in Table

6.2. This table also summarizes the results for peak and mean

unavailabilities. As can be seen from these results, the peak

unavailability, Amax , remains completely unaffected by changes

in Pf. The mean unavailability, Amean , slightly increases

with an increase of Pf at constant T2, These trends are summarized

in Fig. 6.2.

6.4 Study of Detection Inefficiency

The effect of the inefficiency in the detection of failures

is studied for the same test intervals. Table 6.3 summarizes

the variations of the parameters considered in this analysis

as well as the results for the mean and peak unavailabilities.

For a given test interval, the probability for test caused failures

is held constant. This constant decreases with increased test

interval. The probability for detection inefficiency as well

as qD are changed parametrically for each T2. Again, for increased

test interval, qD has been chosen to decrease.
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TABLE 6.2

Data and Results of the Parametric Study of Test Caused Failures
(Perfect Staggered Testing)

5 x 10-3

5 x 10 - 4

10-4

5 x 10-3

Amean

1.914 x 10-4

1.99 x 10- 4

5 x 10-2 12.686 x 10- 4

10-4 1.145 x 10- 4

5 x 10- 4 11.148 x 10-4

5 x 10-2

10-4

10-3

1.151 x 10- 4

1.490 x 10- 4

1.615 x 10- 4

1.620 x 10- 4

5 x 10-3 1.646 x 10- 4

Amax

8.74 x 10-3

8.74 x 10-3

8.74 x 10-3

7.856 x 10-3

7.856 x 10-3

7.856 x 10-3

7.856 x 10-3

1.106 x 10 -'2

1.106 x 10-2

1.106 x 10-2

1.678 x 10- 4

days

10

20

30

1.10 x 10-210-2
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TABLE 6.3

Data and Results of the Parametric Study
of Detection Inefficiencies
(Perfect Staggered Testing)

qD

5 x 10-3

5 x 10-3

10-2

5 x 10 - 4

5 x 10 - 4

5 x 10 - 4

5 x 10-3

10-

10-

10-4

10-4
.o 

Pf

10-3

10-3

10-3

5 x 10 - 4

5 x 10 - 4

5 x 10 - 4

5 x 10 - 4

10-4
10-4

10-4

P

5 x 10 - 3

5 x 10 - 3

10-3

5 x 10- 3

10-2

5 x 10-3

10-3

10-2

5 x 10 - 2

Amean

2.136

1.968

3.977

x 10 - 4

x 10- 4

x 10-4

1.177 x 10-4

1.296 x 10- 4

1.45 x 10- 4

2.567 x 10-4

1.31 x 10-2

1.357 x 10-2

2.378 x 10-2

1.106 x 10-2

Amax

1.004

8.99

1.5

x 10 - 2

x 10- 3

x 10 - 3

8.11 x 10-3

9.127 x 10- 3

1.04 x 10-2

1.36 x 10-2

1.65 x 10- 4

1.968 x 10- 4

3.78 x 10- 4

1.615 x 10- 4

T2
days

10

20

30
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The various trends observed in the results of Table 6.3

are more easily displayed in graphs. For example, Fig. 6.3

shows the effect of detection inefficiency upon Amean and Amax

for T2 = 20 days, Pf = 5 x 10- 4 and qD = 5 x 10- 4. Both unavail-

abilities increase slightly when P is changed by an order of

magnitude from 10-3 to 10-2. When qD is increased by a factor

of 10 both unavailabilities increase by about 3 and 1.5 respectively

for P = 5 x 10-3.

The same trends can be observed in Fig. 6.4 for T2 = 30 days,

Pf = 10- 4 and qD = 10-4.

6.5 Conclusion and Discussion

As a result of both studies the following conclusions can

be drawn.

- For large test intervals and their associated lower opera-

tional errors the effect of Pf is rather negligible.

- The peak unavailability remains unaffected by Pf in the range

of values considered in this study.

- If P is smaller than 10-3, its effect upon the unavailability

is negligible.

- If P is in the order of 10/0, i.e. 10-2 its effect becomes

more pronounced.

It should be noticed that although this study revealed certain

trends it does not claim that the data selected for qD, Pf and P

are by any means realistic. As already briefly mentioned in the

introduction of this chapter, no models exist which would allow

consistent calculations of human reliability and wear out charac-



-156-

DG Test int. 20 days (perfect
Test cause failure 5 x 10-4
operation Error 5 x 10-

staggering)

O max mean A when operation error
M is 5 x 10-3

0

Max

- -t-~~~~~~~~~~r

Mean

3 6 10- 2

3

10-3

2

P, Detection Inefficiency

The Effect of Detection Inefficiency

4

3 3

6 

or

cy

o
D0

O

E-
HH
C

H

z
I

3

10-4

6

Iii - -
6 i6-3

10-2
P

4

I I

b

A

'Fig. 6-3:



-157-

D.G. Test interval 30 (days (Perfect stapgernr ~Test causri a' a.. 

I, S

I )- 3

Detection Inefficiency
Iig. 6.4: Variation of Unavailability 

due to Detection Inefficien{Iy

6

CD

03

I

C;

rl

Tr

E

Z

10, -

8



-158-

teristics of too frequent tests. Therefore, parametric studies

of the kind used in this chapter remain the only option to assess

the effect of test caused failures and the probability of undetected

failures.

It is quite obvious, that in these areas much work remains

to be done. In the meantime, engineering judgement is the only

way to overcome the apparent lack of models.
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7. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions can be drawn from the results of

this study.

Analytical methods are available which allow the explicit

determination of optimum test intervals for single component systems

and k-out-of-n systems. Their applications to systems of technical

interest are limited however. Despite these short comings, the

analytical methods offer a comprehensible way to study major effects

and parameters which influence the system unavailability. For

this reason, they are recommended as a starting point for test

interval optimization studies. Jacob's methodology seems to be

the easiest method. The formulation by Colemand and Abrams offers

the highest flexibility in terms of additional parameters considered.

However, by accounting for these parameters, such as detection

inefficiency, imperfect test,and the like, the optimum test interval

can be only obtained implicitly by iterative methods.

The only reliable method for determining optimum test inter-

vals for complex technical systems is by computer code. For this

purpose, the code FRANTIC has been implemented and benchmarked

at MIT against analytical methods as well as other more sophis-

ticated codes such as PL-MODT. The results of these studies clearly

show that FRANTIC can be recommended for practical engineering day-

to-day work. All of the approximations employed in the code render

it conservative compared to more elaborate methods.

Several simplified engineered safety systems have been studied



with FRANTIC. These studies indicated the importance of the test

strategies for redundant systems as well as the need for the deter-

mination of point unavailabilities which are provided by FRANTIC.

The comparison of optimum test intervals determined by analytic

means and those derived from FRANTIC showed that the former do

not provide the minimum unavailabilities for more complex systems.

Due to the existence of several components in those systems which

are tested at different times and for different periods the func-

tional dependence of the system unavailability versus the test

interval of one component, say the D.G., of this system does not

necessarily display the unique curve which is obtained for a single

component. One additional reason for this is the lack of appro-

priate wearout models in codes like FRANTIC.

Despite the successful application of FRANTIC for the small

systems studied during this research, some of its shortcomings

are worth mentioning. These are summarized below.

- The reason that only small systems were analyzed lies

in the inconvenience for the user to derive the system

unavailability function for input into FRANTIC. This

function is difficult to obtain for complex systems.

In order to avoid the derivation and possible errors

which may occur during this process, FRANTIC should be

coupled to a code which automatically determines the

minimal cut sets.
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The code does not account for wearout and its impact

upon failure rates.

No reliable information is available for detection in-

efficiency. This problem is closely related to human

reliability which is an area not well understood thus

far.

There exists a substantial uncertainty in most of the

input data. However, FRANTIC does not allow the pro-

pagation of these uncertainties to the top event. It

is recommended therefore, that FRANTIC should be coupled

to a Monte-Carlo simulation package which allows for

a broad spectrum of possible distributions.

Notwithstanding the aforementioned drawbacks, it is thought that

the methodology developed during this research project provides

a good basis for the technical assessment of optimum test interval.

Continued efforts in this field are strongly recommended because

reliability and availability allocations will certainly be inte-

gral parts of system design in the near future.
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APPENDIX A

Collection and Analysis of
Diesel Generator Performance Data

and Related Equipment
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A literature survey on operational data of diesel genera-

tors and related equipment turned up 96 failures in the U.S.

with respect to start and assuming load over the minimum number

of 3208 starts in the three years period from 1975-1977. Table A-i

summarizes the whole data set. These data were the basis from

which failure rate and unavailability per demand were derived.

It is worth mentioning here that the diesel generators covered

in the review differ substantially with respect to design and

power rating. Therefore, each category would result in differ-

ent failure rates. Despite of recognizing this fundamental dif-

ference, it has been decided to use the overall failures for the

analysis. This seems to be a conservative assumption although

it should be realized that larger sized units may be subject

to more failures especially when those units are newly introduced

on themarket. Another conservatism has been introduced into the

analysis by considering both PWR and BWR systems. The data have

been analyzed in accordance with the formulation used in the

Reactor Safety Study. Thus, the failure rate follows from

nf

NpNcT

where:

n : number of failures observed

Np : number of plants

N : average number of components per plant

T : observed (standby) time period (8760 hrs)
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TABLE A-1

Diesel Generator Failure Data for the Period
1975-1977 U.S. Nuclear Power Plants

Diesel Generator Failure

Plants Units Min. No. of starts Category A Category B

Calvert Cliffs 1
Calvert Cliffs 2
Pilgrim 1

Conn. Yankee
Indian Point 1
Indian Point 2
Indian Point 3
Beaver Valley
Oyster Creck
Maine Yankee
Three Mile Island
Nine Mile Island:.
Fitzpatrick
Millstone 1

Millstone 2

Peach Bottom 2
Peach Bottom 3
Ginna
Vermont Yankee 2
Dresden 1

Dresden 2

Dresden 3

Zion 1

Zion 2

Quad Cities 1
Quad Cities 2
Cook 1

Arnold
Cooper
Monticello
Prairie Island 1
Prairie Island 2
Fort Calboun
Point Beach 1
Point Beach 2
Kewannee
Arkansas
Brunswick 2

Turkey Point 3
Turkey Point 4
St. Lucie
Crystal River
Hatch 1

Browns Ferry 1
Browns Ferry 2
Browns Ferry 3
Surry 1

2

1

2

2

3

2

2

2

2

2

2

1

2

2

1

2

2

1

2

1

3

2

2

1

2

2

3

2

2

2

2

2

2

2

2

2

2

2

3

3

2

31

8

72

72

108

16

72
' 72

72

72

48
36

216

72

36

72

72

36

72

36

188

72

72

36
72

72

108
72

72

72

72

72

72

56

72

24

18
48
84
63

2

2

2

1(F.T.C.)

1(F.T.C.)3

1

11

3
1 (Fire)

1 (F.T.C.)

I(F.T.C.)

1

7

2

2,1
21

1

1

2

1

1

1

3
1

3

(F.T.C.)

1 (F.T.C.)

1

1 (F.T.C.)

72
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Diesel Generator
Min. No. of starts Category A

Failure
Category B

Surry 2

Humbolt Bay
Trojan
Rondo Seco
San Onofre 1
Yankee Rowe
Big Rock Point
Palisades
La Crosse

Total

Notation: Category A:

Category B:

Diesel Generator failed to start

Diesel Generator failed to run continuously

Diesel Generator Circuit Breaker failed to close

Plants Units

1

1

2

2

2

3

1

2

1

95

36

36

38

64
72

108
36

72
36

3208

3

2
1

42 26

-_ 

F.T.C.:
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From Table A-1 the following value result for the parameters nf

and NpNc,

nf

NpNc

= 42 + 26 = 68

= 95

Thus,

68

95 x 3yr x 8760 hryr

= 3 x 10- 5 hr - 1

The formula for the unavailability per demand from the RSS reads

nf
Qd = NpNcNT

where:

: number of plants

: average number of components per plant

average number of tests (demands) performed

per component per year

From Table A-1 the following values result for the parameters

nf and NpNcNT

nf

NPNcNT

= 68

= 3208

Thus,

Qd = 68 = 2 x 10 2

As the Table A-1 indicates the diesel generator circuit breaker

failed to close 8 times. thus,

8 -6 hr-1X(CCT BKR) = - x = 3.2 x 10 hr

NC

NT
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It is interesting to note that if only diesel generator failures

of category A, i.e., failure to start are considered, Qd decreases

to the following value

42 =
Qd = 3208 - 1.3 x 10-2

which is more than a factor 2 lower than the value used by the RSS.

The result of the literature survey is compared to the values

used in the RSS [7] which had obviously employed data available

up to 1973. Table A-2 summarizes the comparison. As can be

seen from the table, the differences between both data sources

are negligible for most cases. A set of recommended conservative

values is included in the last column of Table A-2 which summarizes

the most conservative ones from each of the data sources.
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TABLE A-2

Comparison of Results of a Literature Survey
for the Period 1975-77 with the Results Used

in WASH-1400

Lite eRecommended
Component Quantity Literatur WASH-1400 Conservative

Survey Valve

D.G. fail to start X(EDG) 3x10- 5 hr-l 3x10-5 hr -l 3x10-5
and assume power

unavailability Qd(EDG) 2x10-2/d 3x10-2/d 3x10-2/d
upon demand

BAT. failure rate X(BAT) 1.14x10-5 hr-l 10-6 hr-l 1.14x10-5 hr-l
(degraded)

unavailability Qd(BAT) 1.14x0-4/d 10-3/d 10-3/d
upon demand

NET failure rate X(NET) lx10-5 hr-l 2x10-5 hr-1 2x10- 5 hr -1

unavailability
upon demand Qd(NET) 2xl0-4/d 10-3/d 10-3/d



APPENDIX B

Statistical Analysis of Maine Yankee Experience

with Diesel Generators
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This appendix discusses the estimation of parameters and

the confidence intervals placed on those parameters. A confidence

interval is defined as being a range of values to include the

particular values of the parameters being estimated with. a pre-

assigned degree of confidence. Such an exercise will normally

define a range of values within which the true value is believed to

lie for a particular 'confidence level.' The estimated range or

interval for the parameter is termed the confidence interval and

the end points of the interval are called confidence limits. It

is a well-known fact a9] that the best way of finding these

confidence level estimates is to use the X distribution test.

For an exponential probability density function of

f(t) = e

where 0 is the true failure rate per unit time.

t is the time range

the true failure rate, , can be found from the estimated

failure rate, , from the sample population within the confidence

level of p by the following expression .89].
^ 2 ^ 2

0e2, X1e< e02,2

f f

where,
f = 2(n) degrees of freedom

n = NO of failure during the testing period T

n
0 

2 = lower confidence limit of N test with probability
X2,.1

of 1 -p and degrees of freedom of f
2

X2 = upper confidence limit of test with probability

of l+p and degrees of freedom of f.
2
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NOTE: For the case of no failure during the testing period T,

obviously, the straightforward estimate of the mean failure

rate would be zero. However, there is always a possibility

that the last failure will not occur before the termination

of the testing period. Therefore, in practice, one failure

will be considered for the test.

In our situation, Main Yankee, there was no failure after

five years of operation. Therefore

T = 5 x 8760 = 4380 hr

n = 1

f = 2

and considering three diferent confidence levels of 50, 90,

and 99%, the true failure rates will have the following ranges:

confidence level% 50 90 99

upper limit 1.58 6.84 12.1

o (1 hr) x 105

lower limit 1.58 0.1175 0.0114

lower limit <0 < upper limit

Comparison of the above results and the results from the Appendix A

suggests that our analysis with = 3 x 10- 5 is quite consistent

with that of Main Yankee with 90% confidence. It is also worth

mentioning that with the aforementioned confidence level the mean

unavailability will be

Q .t t = 720hr (one month)

4.23 x 10- <O < 2.46 x 10-2

which is again consistent with our goal unavailability which was

discussed in the text of the report.



APPENDIX C

Description of the Remainder of the

Fault Tree Appearing in Fig. 5.2



-173-

For complete drawing of the Fig. 5.2, a thorough

knowledge of the emergency power system was required, and

since we were only interested in the 4160 V emergency

buses the expanded fault tree of these buses, 5 and 6,

which in fact are the same was given in Fig. 5.3. For

the rest of the numbers referred to in Fig. 5.2 the top

event failures are given here only.

Numbers Failure Events

11 & 12 I.P. on Buses (4160 V) 5 and 6

13 & 14 I.P. on Buses (480 V) 7 and 8

15 & 16 I.P. on Buses (480 V) MCC-7A & 8A

17 & 18 I.P. on Buses (480 V) MCC-7B & 8B

19 & 20 I.P. on Buses (125 VC) DC-A & DC-B

21 & 22 DC Buses of Train A or B Shorted

I.P. is Insufficient Power
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