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Abstract

This report is designed to provide a review of those data analysis

techniques that are most useful for fitting m-dimensional empirical

surfaces to very large sets of data. One issue explored is the improvement

of data (1) using estimates of the relative size of measurement errors and

(2) using known or assumed theoretical relationships. An apparently new

concept is developed, named robust weighting, which facilitates the

incorporation of a priori knowledge, based upon the values of input and

response variables, about the relative quality of different experiments.

This is a particularly useful technique for obtaining statistical

inferences from the most relevant portions of the data base, such as

concentrating on important ranges of variables or extrapolating off the

leading edge of the frontier of knowledge for an emerging technology. The

robust weightings are also useful for forcing a riori known asymptotic

behaviors, as well as for fighting biases due to shear size of conflicting

data clustersand for formulating separate models for conflicting clusters.

Another new development has evolved from the two very different objectives

of the empirical modeling in this project. The first objective is the

usual requirement for the best possible predictive mechanism, and standard

techniques are useful with their emphasis on model building, specifically

the successive separation of trend techniques. In addition, a second

objective involves the pursuit of high-dimensional, yet simple, models that

could provide insight into analytic gaps and scientific theories that might

govern the situation. For this second objective a new stepwise process was

developed for rapidly sweeping the data base and producing crude

quantitative measures of the next (or the first) most important m-tuple

relationship to incorporate into the empirical model. These quantitative
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guidelines have been named the fit improvement factors. Some of the

standard statistical techniques reviewed include: graphical displays,

resistant models, smoothing processes, nonlinear and nonparametric

regressions, stopping rules, and spline functions for model hypothesis; and

robust estimators and data splitting are reviewed as polishing and

validating procedures. The concepts of setting, depth and scope of the

validation process are described along with an array of about sixty

techniques for validating models. Actual data from the recent literature

about the performance of fluidized bed combustors is used as an example of

some of the methods presented. Also included is a bibliography of more

than 150 references on empirical model development and validation.
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I. INTRODUCTION AND CONCLUSIONS

A common problem in statistical analysis is the development of

empirical models that fit a set of data. There is more involved in this

problem than what may be considered an issue of surface fitting, in fact,

empirical modeling is a four-step process. Step one, described in

Chapter 2, The Data, encompasses the tasks of organizing the data,

improving the data on the basis of known or suspected relationships and

magnitudes of measurement errors, and focusing precisely on the crucial

areas of the data base, using robust weighting. Step two involves the

postulation of a model form and the rough fitting of model parameters and

is discussed in Chapter 3, Model Building. The next step, Chapter 4, Model

Calibration, requires choosing a measure of the quality of fit of the

model, such as with a robust estimator, hypothesis checking on the model

structure, and polishing of the model coefficients. Finally, Chapter 5,

Model Validation, is a discussion of various types and depths of validation

and the creation of probabilistic measures of the predictive quality of the

empirical model. An illustrative example is displayed in Chapter 6,

showing the use of these techniques on a emerging energy technology about

which there is a large amount of data. Chapter 7 is a discussion of the

various uses of empirical models.

1.1 Objectives

The goal of this research is to develop and demonstrate a methodology

that will be useful in representing the current state of knowledge by

fitting an m-dimensional, nonlinear, empirical model to a very large set of

information of uneven quality, varying completeness, and various degrees of

relevance to the current situation. Behind this immediate objective are a

number of indirect objectives which have underlying motivating factors that
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are related to the specific topic of this study, namely the area of

exploring advanced energy technology data. Some of these other objectives

include desires for:

1. a modeling mechanism that is fast and flexible enough to be

operated many times, accepting new assumptions and criteria with
relative ease;

2. the possibility of an automated, or at least a fairly systematic,

update procedure as new batches of data become available;

3. achieving the right balance between theoretical presumptions and
data implications, or optionally to develop models solely on
experimental data so discrepancies between theory and observations
can be defined for further research;

4. comparable measures of expected values and uncertainties
associated with the economic, efficiency and environmental
performance of several advanced energy sources;

5. the quantification of the risk that a particular technology or
design will not be able to meet threshold pollutant emission
standards, and related to this, a determination of what would be
the strictest standards that could reasonably be met;

6. the operating parameters for the next batch of experiments that
would have the greatest payoff in terms of reducing the most
critical uncertainties; and

7. the design and operating parameters for the next pilot plant or
commercial facility that would show the best performance.

1.2 Problem Formulation

As mentioned previously, there are several steps into which this

problem logically divides, and the first of these concerns the data itself.

The data consists of measurements of several different system performances

yj, j = 1,2...,J, which will be called response variables. In some of the

cases investigated here, it is possible to look separately at each

individual response and in these cases there will be no subscipt on y. The

other types of observations included in the data base are the inDut

variables, xi, which may include design parameters, operating conditions,

the facility used, and even the year and performer of the experiment.
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Although the example displayed in Chapter 6 uses only 14 different input

variables, in follow-on applications there may be as many as 200 different

categories of input variables (Louis, Tung, 1977). Such excessive

dimensionality of the data vectors is a recurring problem in multivariate

analysis (Hawkins, 1976). Experimenters, often properly, tend to measure

as many variables as possible so as to avoid omitting any that may later

prove to be relevant. The inclusion of irrelevant variables, however,

markedly reduces the effectiveness of most data analysis techniques,

including multiple regression (Allen, 1973). Furthermore, if

"capitalization on chance" effects are to be avoided (Finney, 1974) the

sample sizes must be extremely large to accommodate high dimensionality of

data vectors. For the example in Chapter 6, the number of experiments, N,

is 369, and this would have to increase sharply to accommodate explorations

of 200-dimensional data. Aggrevating the need for large sample sizes are

the additional "capitalization on chance" effects that are caused by the

sparsity of the data matrix. It would indeed be a hopeless problem if

there were not a number of theories that have helped guide the experiments

and that can help guide the data analysis. In any event, the definition

can be made that

data base = {(Yjn', xin) j=1,2,...,J; i=1,2,...,I; n =1,2...,N} (1.1)

The other concern with the data is that it is of very uneven quality.

Experiments performed in the 1950's, for example, may have little to

contribute to the current state of knowledge. A riori weightings have

been assumed and are used to highlight the most important ranges of the

xi's and y. These robust weightings are combined in several different

ways, but essentially result in fractional numbers of experiments, that is,

instead of all experiments being counted as "one" observation, some count

only as one-half, or some other fraction, of an observation.
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Given the robustly weighted observations, the model building involves

a stepwise process leading to the hypothesis of a simple model with

structure F(.) and parametric coefficients such that

n = F(Xin' D) + en, n = 1,2,...,N (1.2)

where en is the error, or residual, associated with the prediction of the

response of experiment n. F(.) is a point in the I-dimensional functional

space, that is, the space of all functions of I variables. The vector is

the set of coefficients, or constants, in the hypothesized model. Previous

scientific laws or intuitions about the structure of F(.) can be described

as limiting F(.) and to a subspace (Fo, Po).

1.3 Empirical Modeling

The model development process used in this research is aimed at the

goal of attempting to postulate actual cause-effect relationships, as

suggested in (Mandel, 1969, p.428), not just statistical inferences or high

quality predictions. The laws of nature tend to be simple, and if the

right variables are available, those laws rarely contain more than 4 or 5

variables in 2 or 3 separate terms. Thus, if 10 or 15 linear relationships

can be replaced by one 4-variable nonlinear term, then the single term is

greatly prefered for this type of expository empirical modeling.

With "exploration" thus being much more important than "building" a

stepwise process was developed that advances by determining at each

iteration which new term of m-tuple variables (xi, x,...,xr) is likely to

most improve the empirical model if added at that point. A crude measure,

called the fit improvement factor, FIF, is developed to direct the modeler

toward these high priority areas. The scheme for developing the

FIF (i,j,...,k) begins somewhat like the Hinich-Talwar procedure (Hinich,

Talwar, 1975). The (xi, xj,...,xk ) space is divided into a number of
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nonoverlapping cells. Statistics are developed for each cell which show

the means, or medians, which when viewed together as a series of step

functions, form a crude cellular model. The deviations, or H-spacings (see

Appendix C), of the data in each of these cells can be combined to act as a

lack-of-fit measure for this model. Dividing this lack-of-fit statistic

into the lack-of-fit statistic without this model yields a 1-to-= measure

of the potential improvement FIF(i,j,...,k) that results from using an

(xi, x ,...,xk) term in the empirical model.

The calibration of the model proceeds via a robust error penalty

function, which is used to fine-tune the coefficients . For a robust

function such as the minimum absolute deviation criterion, this calibration

requires determining a opt with the characteristic that

aopt = min {=1 lY - F(xn ,)1I} given F(.)eF (1.3)
all pc P

o

Minimum absolute deviation has received the most acclaim as a generally

useful one-step nonquadratic error penalty function. A two-step process

that is particularly promising for this particular application begins with

the least squares ]opt' that is

.pt 
= min { 1 [y - F(X ,' )]2} given F(.)eF (1.4)

opt all ].¢P n n (
0

Starting with the least squares opt a new search is begun with a

quadratic-constant error function (Handschin, Schweppe, Kohlas, Fiechter,

1975) that strictly limits the influence of the outlying data. A

quadratic-constant function by itself generally exhibits instability in the
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convergence procedure, which is overcome with the initial least squares

step. This two-step procedure is more appropriate for this application

where the bad data tends to cluster causing multi-modal distributions of

the residuals.

The validation procedure operates with respect to a specific, fixed

model structure and a specific set of coefficients. To a great extent, the

validity of a well-built regression model will depend upon the source of

the data. Designed data, that is, developed from an experiment designed to

produce parameteric data for the model (Snee, 1977), will generally result

in a close fitting model, but it is difficult to predict that model's

performance on a new batch of data. Historical data, on the other hand, is

uncontrolled, with large sparse areas in the variable space, and is thus

difficult to model. These models are, however, then relatively good

predictors of new data. The empirical data from the emerging energy

technologies lies between the extremes of designed and historical data.

For this type of data, the four validation techniques recently presented in

(Snee, 1977) are expanded to more than sixty techniques in Chapter 5. Also

included are comments about the possible variations in scope and depth of

the validation procedure that have resulted from research at the M.I.T.

Model Assessment Laboratory.

The illustrative example presented in Chapter 6 is the beginning of an

extensive empirical modeling of fluidized bed combustors that is on-going

within the M.I.T. Energy Laboratory. As such, the results that have been

displayed should be viewed as means of exercising some of the methodologies

discussed, and at most may be considered first attempts at empirical

models. For additional factual information about fluidized bed combustors

(Gruhl, Teare, 1978) is a recent source that may be of interest.

10



Chapter 7 contains a short discussion on the uses of empirical

modeling and Chapter 8 is an important bibliography of literature related

to this research.
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II. THE DATA

As mentioned previously, the data base is comprised of several

response variables, y, several input variables xi, and both sets of

variables are measured for a number of experiments N:

data base = {(Yjnxin);=l,2,...,J;i=1,2,...,I;n=l,2,... ,N} (2.1)

It is possible that for the majority of datum positions in this (J+I) times

N data matrix there will not be any measurements available and this lack of

information will be assumed recorded, such as with an "NA", "-", or "-1".

An example of a data matrix is displayed in Appendix A; in this example

J=6, I=14, and N=369 which thus creates a 20 by 369 data matrix.

2.1 Data Improvement

Without any additional information, of course, it is not possible to

enhance the quality of the data. There are, fortunately, a surprising

variety of types of information that can be useful for data base

improvement. One of these involves the use of estimates of the relative

size of the measurement errors that were likely to have been made while

observing the various categories of variables. If n and xnare the

measured response and input vectors and n and A are the actual

(unobservable) values, then u and v can be defined as the measurement

errors with:

A (2.2)
Az n = n + u , (2.2)-n

En = Xn~~~~~~~~ +~. V(2.3)xn= + Zn'

While it is not possible to precisely reconstruct the values of the

individual measurement errors, un and yn, it is often possible to make

well-founded speculations about the statistics of these errors. For

example, if temperatures appear only as multiples of 50 0F, or carbon

monoxide is known to be particularly difficult to measure, then estimates
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of the standard deviation of measurement errors for those variables is to

some extent possible. On the other hand, cross-sectional areas of

combustors, coal sources, and a number of other variables may, for

practical purposes, be presumed to have been measured quite exactly.

For purposes of mathematical formulation, suppose the variances of the

measurement errors can be estimated:

N
2 1 2 2

E(u. ) 1 Z u2 - o (2.4)
J= N n=1

N
2 1 N 2 2

E(vi ) 1 vj P J (2.5)
n=1

These 's and 's can now be useful in dividing up the

responsibilities for discrepancies among the measurements. The size of

such discrepancies can be determined by checking the known

interrelationships among the various variables. These a priori known

relationships, previously defined as the structural and parametric set (Fo,

Po) could include:

1. physical laws, such as mass or energy balances;

2. presumed scientific theories, such as thermodynamic theories or
analytic hypotheses;

3. intuitive insight;

4. speculations resulting from dimensional analysis; and

5. other plausibility checks, possibly including consistency checks
where all influencing factors are presumed know.
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If discrepancies are uncovered within the data base, and the

measurement errors are assumed to tend toward Gaussian distributions, then

the optimal relegation of those discrepancies among the potentially

contributing measurement errors is accomplished by distributing the

discrepancies in proportion to the variances of the measurement errors.

These genuine improvements in the quality of the data base can be

performed as an initial step in each separate modeling session. It is

advisable, however, to carry out any improvements using indisputable

interrelationships, such as mass balances, as a matter of course before

entering new batches of data into the archival copy of the data base.

Speculative interrelationships should not, of course, be allowed to alter

the data base archives (See Figure 2-1).

2.2 Robust Weightings

As can be seen in Figure 2-1, there is one more task involved in

making the data base ready for modeling, and this is the addition of the

robust weightings. Data is generally known a riori to be of widely

varying quality, and this is particularly true concerning the data

available about emerging technologies. There is generally a progressive

improvement in the importance of this kind of historical data: designs

mature, sizes increase, appropriate operating ranges come into sharper

focus, and so on. Thus, one would like to build a model that could

extrapolate off the leading edge of the frontier of knowledge. The

statistician, or rather the model builder, should be made aware of which

are the more important regions of the data base.

For these maturing systems, the experimenters can generally convey

information on the ranges of input variables that are still under active

consideration for the eventual (perhaps commercial) design. Likewise,
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procedures
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response variables such as pollutant emissions can be expected to settle

out at, or below, the threshold emission standards. The weighting

functions that indicate whatever is known or supposed a riori about the

relative value of information are here called robust weightings, and can

generally be written as functions of the input and response variables for

the nth experiment and will usually be different depending upon the

response variables being modeled:

Wyn = w(i n, xn). (2.6)

Now, instead of each experiment having a weight of one, experiments would

(usually) be tagged with a zero-to-one factor w that indicates whether

the experiment is not to be considered, w = 0, is to be fully considered,
yn

wyn = 1, or fractionally considered, O<w n<1. It appears that the mostyn yn

appropriate manner for generating the weighting functions would be through

a composite of several zero-to-one weightings that were functions of single

variables, wsyj (yj) or wryi(xi). Some examples of possible separable

weighting functions are shown in Figure 2.2.

The manner in which the separate weightings are combined to form a

single function for the relative weighting of individual experiments is a

matter for some judgment. Conceivable composites of the separate weights

could include (the first type is the one used in the illustrative example

in Chapter 6):

J I

yn = w(Y-n , X n) ws. (Y Jn) i wr (Xin) (2.7)yn n n j~ y jn iil yi a

w = min [Ws ~~~~~~~~~~~~(2.8)yn all= m i [wyj (Yn)' wyi (Xin)] (2.8)
all i ,j y +

J I
1 m m

w [-r [ZWs .(y. ) + wrZ . (X. )] for any m,k (2.9)
yn kj= yj jn i

+ y1 inj~~= 1
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Figure 2-2 Various examples of a priori specified robust weighting

functions for fluidized bed modeling
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m~ m 1/k
Wyn [ ws Y (yin) wr Yi(xin)] for any m,k (2.10)j=l i=1

with arithmetic and geometric means being important special cases of types

(2.9) and (2.10) (where m=1, k=j+1). In any of these cases, if the

separate weighting functions are chosen as combinations of binary step

functions, the entire weighting procedure degenerates to the standard

technique of hatcheting out experiments where any of the variables is

outside its range to be considered. Aside from automating the standard

hatchet technique the robust weights allow for a full range of degrees of

importance of experiments.

Aside from the issues concerning the development of these weightings,

there is another notable issue regarding the choice of which portions of

the modeling procedure these weights should be used in. The easiest tactic

would be to initially develop the weight of each experiment, wyn, and carry

those weightings right through the entire modeling process. Again, this

would be analogous to the standard data hatcheting technique. It is

conceivable, however, that if one of the yj's or one of the x.'s is not

taking part in the modeling that it should not exert influence on the data

to be studied. It is also conceivable that individual weightings might

best be temporarily relaxed to get a fuller display of the spectrum of

data. For example, with robust weightings forcing the modeling to focus on

designs that are near or better than the SO2 emission standard for

fluidized bed data, a density scatterplot shown in Figure 2-3 results, and

perhaps suggests a linear model. Temporarily recalling the data that was

weighted out, as shown in Figure 2-4, may lead the modeler to an

exponential model. Experience with the particular data base in Appendix A
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suggests that in the model building and validating procedures the robustly

removed data should be differentiated but displayed. In the model

calibration process it was helpful to leave in all weightings. Every case

is, however, likely to be different and in the absence of contrary

information, consistency would appear to be the best policy.

Two other utilizations of the robust weighting technique have proved

useful in examples. New data can be generated that reflect known

asymptotic behaviors, (a' xa), and it is then quite easy to force the

modeling and calibration to incorporate these data by assigning to these

points very large robust weights, such as w=1000. Also, the robust
ya

weighting concept was very effectual in temporarily disregarding certain

clusters of data during the process of developing models for conflicting

data clusters. This particular application required the use of

nonseparable weighting functions and is described further in section 3.3.
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III. MODEL BUILDING

The free-form model hypothesis described in this chapter involves a

graphically aided, quite systematic, investigation of the general

functional types that are most compatible with the data. The standard

model building strategies in the literature involve gradually

particularizing the model (Mandel, 1969) by adding new structural

components until the residuals have been reduced to a specific size or

distribution. The method presented here is principally exDloratorv with

building occuring only as a last step. Preconceived models, such as linear

or polynomial, are not used, instead the internal structure of the data is

explored to uncover possible cause-effect relationships by searching for

the simplest model that will do justice to the data. Keeping down the

number of variables in the model facilitates interaction with analytic

modeling research, and may even increase the accuracy of the model (Das

Gupta, Perlman, 1974).

3.1 Mathematical Formulation

Reviewing the previous definitions:

n = 1,2,...,N label of observation or experiment number;

Yn = a specific response y measured in experiment n;

xin = the ith input variable measured in experiment n;
iln

xn = the vector with xn as entries;--n ~~~~~in
D = the vector of coefficients or constants that represent the

magnitude of the functional forms;

F(.) = a hypothetical model relating the xi to y and

e = the error or residual in the prediction of the nth
experiment due to unobservable experimental or measurement
errors; so

Yn = F(Xn ) +en, n = 1,2,...,N. (3.1)
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In addition, a set of robust weights, wyn, are available as

quantifications of the importance or believability of the various

experiments from the point of view of the yth response. The variances of

the measurement errors on y and x. it will be recalled were defined in
1

equations (2.4) and (2.5).

As formulated this problem is not in a classic linear regression

category, as nonlinear forms are definitely to be considered. Nonlinear

regression (Gallant, 1975) and group methods of data handling, GMDH,

algorithms (Ivakhmenko, Todua, Fomicheu, 1974) require prespecified

functional forms. In addition the GMDH algorithms and the best subset

methods of multivariate analysis of variance, MANOVA, (Hawkins, 1976), are

severely hampered by very large dimensionality. Multiple regression

(Allen, 1974), stepwise regression (Efroymson, 1960) and Mahalanobis

distance techniques (Rao, 1965, p.482), as well as the transformation

methods such as principal component analysis, factor analysis, and

canonical variate analysis are all hampered by excessive dimensionality,

particularly the inclusion of irrelevant variables, distributional

problems, and "capitalization on chance" effects (Hawkins, 1976).

Reduction of dimensionality can be accomplished using the technique of

interdependence analysis (Beale, Kendall, Mann, 1967), but this involves

elimination of highly correlated variables and this elimination may be

undesirable for this application. For example, combustor cross-sectional

area may be eliminated because it correlates closely with the group of

experimenters. One method geared for handling high dimensionality

(Hawkins, 1976) involves a stepwise procedure for testing and eliminating

irrelevant variables but apparently also requires an explicit assumption of

a model functional form. The non-parametric estimation techniques (Clark,
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1977), (Benedetti, 1977), and spline function methods do not require

prespecified functional forms (except perhaps the family of convoluted

forms of chosen kernels), yet have some difficulty with high dimensionality

and are definitely not conducive to the development of simple functional

models.

To solve the problem as formulated, a method is described whose

motivation and algorithmic aspects are allied closely to data sweeping

techniques. The procedure is approximate, in that it is not guaranteed

that a globally optimal model will be found. Its advantages are

computational simplicity, ease of modeler interaction, and applicability to

large batches of data of high dimensionality.

3.2 Fit Improvement Factors

The process described here is a method of quantifying the probable

importance to the empirical model of various m-tuple relationships. This

is accomplished by building very crude models, sometimes called pseudo-

models, and comparing the tightness of fit with and without the pseudo-

model.

The first step in this procedure is much like the Hinich-Talwar method

(Hinich, Talwar, 1975); given the particular one, two-,or m-tuple

relationship to be investigated, the range of the data in that m-space is

divided into k nonoverlapping subsamples, or cells. A cellular

pseudo-model, or just cellular modeliis then developed from the statistics

of the samples in each cell. Some of the possible cellular models could be

based upon:

1. ordinary means;

2. robust means, that is using the weights wn to count the weight of
each sample;

3. partially robust means, here using the robust weightings only for
the variables being examined;
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4. alpha trimmed means;

5. ordinary medians;

6. robust or partially robust medians;

7. ordinary least squares estimates using relative measurement
errors;

8. non-quadratic criteria estimates; or

9. robust estimates based upon median statistics, such as the
Andrews' estimator (Andrews, 1974).

The final step in the development of the cellular model involves the

possibility of smoothing the cell statistics. Keeping in mind the

automation and rapidity that is desired, the blurring, or eye smoothing,

and complex estimation techniques must be ruled out. Two powerful

techniques that appear appropriate and useful are:

1. running methods, that is, either taking medians of overlapping
cells, or more commonly taking the n-at-a-time median of the
statistics of all neighboring cells; and

2. hanning methods, either the means of overlapping cells; or more
commonly, the average of the statistics of neighboring cells
(Tukey, 1977).

These techniques are often used repeatedly or alternately. Figure 3-1

shows some median rehanning and rerunning median-of-three statistics.

Once this cellular model has been developed it is a relatively easy

task to measure the lack of fit with and without this model. The fit

improvement factor for making (or improving) a model using the

xi, x,...,xk m-tuple is then:

FIF(i,j,...,k) = (lack of fit without model)/(lack of fit with

model) (3.2)

The FIF is then a statistic that is greater than one by the extent of

importance of the m-tuple as a modeling component. Some of the obvious

lack of fit measures include [most are available on TROLL (NBER, 1974)]:
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1. ordinary variances or standard deviations;

2. robust or partially robust variances or standard deviations;

3. H-spreads or steps, see Appendix C;

4. robust or partially robust H-spreads or steps;

5. F-statistics or t-statistics;

6. squared partial correlation coefficients (Bendel, Afifi, 1977),
and

7. the C statistic (Mallow, 1973).
P

Although the median statistics are more resistant to the effects of data of

uneven quality, the mean statistics are easier to compute and more

conveniently adapted to multivariate problems.

An issue that was not addressed earlier, but that is of paramount

importance, is the choice of the number and shape of those nonoverlapping

cells for the cellular model. It would seem obvious that the cells either

have equal dimensions or contain equal numbers of samples. These two

techniques are somehow related to the statistical philosophies of the mean,

for the former, and the median, for he latter; but this need not constrain

the choice. Equal cell dimensions is the scheme used in the examples of

this report.

The number of cells to be used still remains an unresolved issue.

There does not appear to be much statistical literature related to this

topic. In grouping together normal data into cells for frequency

distributions, the classical suggestion is that 10 to 20 occupied cells

provide adequate detail for most purposes. A suggestion of Hinich and

Talwar is that the number of cells be set equal to N/m where N is the

number of observations and m the number of input variables x being

studied. This formula, obviously, is intended for a very different

application and would not work well here. There appear to be just a few
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considerations that should be recognized in selecting the appropriate

number of cells:

1. for discrete variables, it would be desirable to have cells for
each discrete point, or equal numbers of discrete points in each
cell;

2. if the cellular model is to be displayed to the modeler,

convenience should be considered, that is, display of hundreds or
thousands of occupied cells would be expensive and relatively
indigestible;

3. smoothness should be a consideration, for example if all data

points had their own cell the fit would look perfect but hardly be
indicative of the fit of a smooth model; and finally,

4. detail must be included, that is, enough cells to give the cellular

model a chance to pick out important fluctuations in the m-tuple
interrelationships that may be present.

Some of the pieces of information that are available for making the

decision about number of cells are:

1. the number of observations, N,

2. the number of xi's being studied, m,

3. the sparsity of the data as meassured by the fraction of

unoccupied cells (given a trial number and configuration of
cells),

4. the smoothness of the cellular model, measured by, for example,
the mean or median of the residuals (again given a trial number of
cells).

This is a very difficult issue and one that is not pretended to be fully

treated or resolved here. One additional complexity that should be

mentioned is that there is obviously no reason why all dimensions x. should
a

be divided into the same number of intervals.

To close this discussion, a suggestion for the choice of the number of

cells k, in the form of a strategy for splitting up the ranges of the xi,

is given. If N is the number (robust or ordinary) of observations, and the

relationship to be studied is the m-tuple (xi, xj,...,xk) with respect to

y, then the range of each of the xixj ... ,xk is broken up into h parts,
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where

h = 1 + IFIX(N1/m+ 1 (33)

where IFIX is a function that extracts the integer position of its

argument. The number of cells k is thus

k = hm (3.4)

Table 3-1 shows an example of the manner in which these formulas are

carried out.

Table 3-1. Example of the Choice of Number of Cells for

N=369 Observations

Number of Input Number of Intervals
Variables in Range of Each Total Number of

x. = m x. = j Cells = k
1 1 _ _ _ _ _ _ _ _J~~~~~~~~~~~~~~~~~~~~~~~

33 729

Just one comment on this example: there is little that can be gained

by divisions of ranges of xi into only h=3 intervals (suggested for the

5-tuple relationship for 369 observations). It is felt, however, that this

limitation, which results from the small number of observations, is

reasonable so as to avoid entrapments of "capitalization on chance".

Having dealt with the difficult task of number of cells, it is now

appropriate to mention some potential fine-tunings of the lack-of-fit

measures used in FIF(i,j,...,k). If an unsmoothed cellular model is used

there is some compensation that can be made to avoid apparent good fits

that will show up due to large numbers of sparsely populated cells. For a
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normal distribution the standard error of the mean that is due to lack of a

large number of samples is:

CM = a/' (3.5)

where a is the standard deviation of the ideal (infinite sample)

distribution, and n is the number of samples. It would be possible to

penalize the inappropriately good fit of cells with few samples by this

1//" measure.n

An example of just such a penalty factor has been tested on a set of

data. The standard deviation computed for a particular cell was penalized

by adding directly to the standard deviation a term of that standard

deviation times 1//-. This is obviously a crude measure, and counts on the
n

cell standard deviation underestimating the ideal deviation by about the

same amount as the direct addition of deviations overstates the square root

of sum of squared deviations. The exact formula for this FIF example

involved using only those cells with more than three entries (or a

collected robust weight greater than three):

SDt SD t
+_

FIF = (3.7)
.1t l zy[W. (SD + )]

1

where FIF = fit improvement factor,

SDt = standard deviation of total sample,

SD. = standard deviation of cell i,
i

NW. = number of observations in cell i, or total robust

weight in cell i, and
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NWt = NW i (3.8)

all
cells
with

N1Wi > 3

Figure 3-2 shows how this particular FIF worked in practice. As can be

seen the majority of variables do not show potential for usefulness for the

modeling. Some variables show marginal usefulness, and two of the

variables show very strong potential for one-dimensional models. (These

two variables in the example are superficial velocity and bed area, with

the response variable being dust loading in lb/hour. Complete details

about this example are shown in Chapter 6 and Appendix B.)

In this type of interactive data exploration the next step is to

display FIF's for two-at-a-time sets of input variables versus the response

variable. If there are I different input variables, then there are

Ix(I-1) two-at-a-time relationships. This may or may not be a manageable

number of FIF's to display. Looking ahead, however, to the number of all

possible sextuplets, namely I!/(I-6)!, it is clear that some kind of

reduction of this number of FIF's will be required. What is proposed here

is a guided search, and the case of I=20 is used as an example. It would

not be impossible to consider the 20x19=380 different FIF's for all

possible pairs of input variables. Examining 20x19x18=6840 triplets,

however, would seem unreasonable, so at the time of examining all the FIF's

of all pairs, those pairs must be separated into three possible categories:

1. those variables (or m-tuple relationships) that definitely will
not play a part in the eventual empirical model;

2. those variables (or m-tuples) that definitely will play an
eventual role; and
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3. those variables (or m-tuples) that cannot definitely be ruled in
or out of the model at this time.

(Some more complex categories, such as multiple choice from sets, mutual

exclusion, and so on are also possible.) These decisions can be made on

the basis of the FIF's, displayed statistics, displayed scatterplots,

intuition, analytic information, or other grounds. Back to the example of

I=20, if just one variable can be excluded from the model, then there are

about 15% fewer triplets to consider; or if just one variable x must be

included, the 6840 FIF's drop to 342; or if two variables are required to

be included, this reduces the number of triplets to 18. It is easy to

compute at each stage of the process how many decisions must be made in

order to keep the size of the problem tractable. In general, if I equals

the number of variables xi, p the number of variables that necessarily must

be included, and q the number excluded, then the number of different

m-tuples, Nm , is

N = (I-p-q)! (3.9)
m (I-m-q)!

This process can be viewed as a guided search toward the most

important m-tuple relation(s), and is principally an exploratory scheme.

It is equally possible to use these fit improvement measures in successive

separation and modeling of trends. For example, all one-at-a-time

relationships judged to be significant could be modeled. Then the

residuals could be examined for further trends in one-, and new trends in

two-, at-a-time data, and these can be added to the model. This process

can proceed iteratively until a desired quality-of-fit level is reached.

In this same vein, although it is difficult to envision a fully-automated

modeling strategy that is largely exploratory, it is quite conceivable that
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the FIF's could be used in a fully-automated successive separation and

modeling of trends. In linear and canonical regression, measures of fit

such as the standard F test (Draper, Smith, 1966) or Hotelling's T2 test of

additional information of an extra variable (Rao, 1965) and (Subrahmaniam,

1971) have been used in automated procedures. What would be required to

automate the FIF procedure would be an FIF threshold that would identify a

level of significance for including a new hypothesized m-tuple of

variables. Similar thresholds, such as using C statistics (Mallows,
p

1973), have worked well in stepwise regression techniques, (Christensen,

1973), (Bendel, Afifi, 1977), (Draper, _t al., 1971), and (Hawkins, 1976).

Some branch-and-bound techniques, possibly applicable here, have been

developed (Furnival, Wilson, 1974) that could be used to guide the search

for important relationships.

3.3 Robust WeightinRs

A number of uses of robust weightings have been presented previously.

There are two final uses that can arise during an interactive model

building session. One use is to handle systematic biases or inaccuracies

correlated with some variable that may be identified by examining the

residuals during the modeling effort. Less emphasis could then be put on

those experiments by using robust weightings. For example, if x. is a
1

discrete variable signifying the group of experimenters that performed the

observations, biases on a particular output y due to apparent inaccuracies

or biases due to shear numbers of observations performed by that particular

group, can be eliminated by altering the robust weights w in the data
yn

base (wyn, yn, xn). This technique is somewhat similar to standard robust

estimation methods.
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Another possible application occurs when the cellular models

demonstrate definite bi-modal or multi-modal behavior. In these cases, as

mentioned briefly at the end of Chapter 2, functions g1 (y,Sx), g2 (,x),...,

gi(y,i) can be formulated to yield values of "one" in the region of the

data cluster i and "zero" elsewhere. Thus i separate data bases,

corresponding to the i clusters, are then readily available for the

separate exploration:

data base of cluster i = (wyn gi (n xn), , xn) (3-6)yn i Lyn' -n' n in)

3.4 Surface Fitting

It is not actually possible to separate the development of the fit

improvement factors from the development of the model; some iteration and

rechecking are advantageous. Likewise, it is not possible to separate the

model calibration from the model development, fine-tuning of parameters

along the way can help expose new structural possibilities. To show how

the surface fitting stage thus assumes a central role in empirical modeling

a flow chart of the process is shown in Figure 3-3. This figure begins

where Figure 2-1 stops, with the improved and weighted data base, and

includes several steps described in the preceding sections.

In the terminology previously presented, the general area of

statistics known as surface fitting involves estimating the model

structural form F(.) and the inital trial parameters . It should be

recalled that formerly discussed conditions restrict those estimates to the

subspace (Fo, P). At this point there is a particularly strong

distinction between models that are to be essentially redictive and those

also intended to be exDositorv, that is, those intended to offer analytic

insight. One possibility for building redictive empirical models is to

draw their structure from many terms in a polynomial, trigonometric,
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logarithmic, or other functional selection lists. Alternately, predictive

models can use surfaces fitted automatically by nonparametric regressions

or spline functions which can be structurally quite complex yet make no

assumptions except those concerning the bandwidth, or smoothness, of the

functions; these are the so-called "fully automated French curve

techniques" (Benedetti, 1977), (Clark, 1977), (Gallant, Fuller, 1973),

(Greville, 1969), (Priestley, Chao, 1972), (Reinsch, 1971), (Woodford,

1970), and particularly (Wahba, Wold, 1975).

On the other hand, exDository empirical modeling should, whenever

possible, be performed interactively as it relies heavily upon matters of

good judgment and experience. It appears appropriate thus to avoid the use

of those previously described sophisticated, structural identification

computer algorithms for this energy technology problem which does not have

unfathomable dynamics and which does not have the pressures of real-time,

instantaneous modeling requirements. Clues for the choice of surfaces for

the expository structure should come from examination of the input-to-

response statistics and from graphical displays. An enormous number of

summary statistics and graphs, intended to foster perception and

appreciation of broad features as well as details, are available from any

number of statistical computer packages, see (NBER, 1974) for example.

Some of the more useful displays include density scatterplots, frequency

scatterplots (see Figure 3-4), triple scatterplots where symbols or numbers

show a third variable on the scatterplot, and rotating data cloud programs

(NBER, 1974) that make possible the display of four variables. Graphical

displays are easily obtained and their importance to the model building

process cannot be overstated.
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It is, unfortunately, not easy to enlarge the experience of the

modeler in concocting the simplest functional forms that fit the displays.

The natural laws that are to be mimicked are, however, generally composed

of simple relationships: powers, exponentials, and sometimes trigonometric

functions. Even when using natural laws, it is not uncommon, though, to

have to treat one portion of the data with one curve while the remainder

demands another. Under these conditions particular care should be taken to

preserve continuity at the joints so that singularities or instabilities

are not introduced into the model calibration or uses.

3.5 Stoppine Rules

In Figure 3-3 of the modeling procedure, there are several points

shown which require choices such as between:

1. more exploration or more modeling,

2. more modeling or calibration, and

3. examinations of higher dimensions or lower dimensions.

These decisions are all closely related to the criteria in statistics known

as regression stopping rules (Bendel, Afifi, 1977). In all cases these

rules involve considering one or more lack-of-fit, or quality, measures,

such as those listed in section 3.2, and comparing them against a

threshold either directly or indirectly (as through hypothesis testing).

In fully automated procedures good stopping rules can mean the difference

between excellent models or infinite loops within the computerized modeling

process. In interactive modeling schemes, such as the one outlined in this

report, automated stopping rules are not used, instead the strategy is to

display one or more quality measures to the modeler who then is responsible

for the decision at each branch point.
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IV. MODEL CALIBRATION

Calibration of a model is a standard operation that aims at developing

a set of parameters that is optimum with respect to a specific quality

measure, such as an error penalty function J(.). Recall from equation

(3.1) that the arithmatic error, or residual, is

e = n - F(xin', ) n = 1,2,, ... ,N. (4.1)n n -i

The geometric error is also often of interest:

en = Yn/F(xin, ) n = 1,2,...,N. (4.2)

Calibration can involve finding a that minimizes

N

R = mn Z J(e ) given F(.)eF(
all pep n=1 n

this J(.), and in fact all J(.)'s, make possible a scalar measure with

which the desirability or performance of alternative 's, or even

alternative F(.)'s, can be quantified. The J(.)'s based upon the error

measures in equations (4.1) and (4.2) lead to the usual mean-type of error

functions, and these are the types discussed in the following sections.

One should, however, not rule out the possibility of error functions based

upon median statistics which could lead to calibrations, for example, that

would be based upon

.Popt = min H-spread(e.) given F(.)cF (4.4)
all pep(

4.1 Ordinary Least Suares

The least squares best estimate of is based upon equation (4.3) with

the error function:

J(e n) = en 2 (4.5)
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This penalty function has many desirable characteristics that have led to

its great popularity:

1. it gives equal weight to positive errors and negative errors,

2. small errors are relatively unimportant compared to larger errors,
and

3. it is a quite simple function.

Solutions for the D0pt generally proceed through solution of the necessary,

but not sufficient, optimality conditions:

d- 0 (4.6)

-=Popt

d2j
>0 (4.7)

d; = Popt

Other times, and particularly in the event of discontinuous functions, the

solution for _opt results from a standard gradient search using:

1. a fixed set of step sizes,

2. Gauss-Newton gradient-calculated step sizes, or

3. Fibinocci step sizes, or for nonlinear problems

4. Hartley's modified Gauss-Newton method (Hartley, 1961), or

5. Marquardt's algorithm (Marquardt, 1963).

Given a set of robust weights wyn that are to be used to focus the

calibration effort, the ordinary least squares procedure becomes a search

for -opt such that

N 2

Popt = m X w yne given F(.)eF0 (4.8)
all 2 P n=1 yn 

0

In other words, this is equation 4.3 with

2
J(e ) = w e2 . (4.9)

n yn n
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When using a gradient search procedure, it is probably desirable, in order

to avoid to some extent local optimums, to use a two-step process where

2opt is first determined for unweighted ordinary least squares and this

-opt is then used as the initial guess for the robustly weighted search

using equation (4.8). It is common practice (Mandel, 1969) to take the

iteratively generated optimum parameter values Ropt and round them off

according to the rule that the rounding errors should not affect the

calculated value of the response by more than 1/10 of the observation

error. This rounding technique prevents the number of significant digits

in the final answer from reflecting undue accuracy.

4.2 Robust Estimators

There are a great number of penalty functions J(.) and lack-of-fit

statistics (Bendel, Afifi, 1977) that could, in fact, be used to calibrate

the parameters p of the empirical model. It is even conceivable that the

inverse of the FIF could be used as a quality measure, where

(lack of fit with model F(.) and trial parameter p)

FIF 1 = (4.10)

(lack of fit without model)

This section will concentrate on the so-called robust estimators, including

particularly the non-quadratic error penalty functions J(en).

Robust estimation is the general practice of estimating parameters of

a model while giving different weights to the observations based upon the

apparent quality of those observations. Whereas in robust weighting the

"quality" is determined as a riori functions of the input and response

variables, in robust estimation "quality" is determined as an a Dosteriori

function of the error. To a certain extent, robust estimation has long
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been a practice in statistics, since the standard practice upon observing

large errors has generally been to:

1. check the data,

2. set aside these points for special study, and

3. weight these points out of the process.

Elegant robust estimation schemes have only recently been developed. The

first of these included ordered residual searches and grouped residual

searches (Schweppe, Wildes, 1970), (Schweppe, Rom, 1970), (Schweppe,

1970), (Masiello, Schweppe, 1971), (Dopazo, Klitin, VanSlyck, 1972), and

(Handschin, Schweppe, Kohlas, Fiechter, 1975). These techniques were aimed

particularly at the detection of whether electric power system datum points

were "good" or "bad". They involved searching the errors either in

descending order of magnitude, or ascending order within a group of large

residuals, to check against the hypothesized structure of the power system

whether each datum was consistent or inconsistent with that structure.

Robust techniques based upon non-quadratic error penalty functions are

more appropriate for empirical modeling where the data is not either good

or bad but has all degrees of quality. Non-quadratic measures that have

been used are shown in Figure 4-1, formulas for some of these can be found

in (Handschin, Schweppe, Kohlas, Fiechter, 1975). Examples of the use of

these types of criteria include: quadratic-square root (Merrill, Schweppe,

1971), quadratic-constant (Handschin, Glavitsch, Kohlas, 1973), quadratic-

straight and quadratic-multiple segment (Andrews, et. al., 1972), and

quadratic-discard (Hinich, Talwar, 1975). Some other specific proposals

for robust methods can be found in (Huber, 1973), (Schlossmacher, 1973),

(Beaton, Tukey, 1974), (Andrews, 1974) with reviews in (Huber, 1972),

(Hampel, 1973), (Hill, Holland, 1977), and (Harvey, 1977).
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For a number of applications, the minimum absolute deviation estimator

has been judged (Harvey, 1977) to be superior to many other of the robust

criteria, including some of the median statistic techniques and

particularly including other one-step estimators of . This minimum

absolute deviation, or MAD, estimator produces a opt such that

{N
-opt = in { Z wlYn - F(Xn , )1 given F(.)eFo (4.11)alloeP lyn

Techniques such as the quadratic-constant and the quadratic-discard

are inclined to be unstable at worst and at best largely dependent upon the

starting conditions. To avoid these tendencies toward local optimums, it

is generally recommended that non-quadratic criteria be used from the

starting position o, that is the optimum parameter selection from the

ordinary least squares estimator. This then represents a two-step

procedure.
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V. MODEL VALIDATION

The process of model validation has been described (Wood, 1978) as the

formulation and resolution or evaluation of questions and hypotheses about

appropriateness of the model's logical structure and the validity of its

implementation. As pointed out in (Snee, 1977) there is general agreement

that validation of a model is a most important procedure, however, there is

almost no literature available to explain validation techniques, and

individual modeling efforts rarely explain which, if any, validation

schemes have been used. This chapter will summarize the validation

terminology and the methods available, a great deal of which is new to this

report. Some of these ideas have evolved from initial, and not generally

consistent, ideas from the parallel experience of the authors with dynamic

models validation at the MIT Model Assessment Laboratory. The most

important expressions characterized in this chapter are:

1. setting of the validation,

2. assessment deDth,

3. scope of the verification,

4. validation techniques, and

5. measures of the uality of predictions.

For each of these concepts, there are several available procedures and

ideally one would follow all paths for all concepts. The time and resource

constraints of reality, however, necessitate the evaluation of only the

most cost-effective of the various possible schemes. Generally such an

evaluation will depend upon size, structure, complexity, cost per run, and

maturity of the model.
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5.1 Setting. DeDth. and ScoDe

As determined during the course of previous research at the MIT Model

Assessment Laboratory (MIT, 1978), it has become apparent that it is

initially most important to define the categories of setting and depth of

the validation. Setting is defined as the combination of the model or set

of models to be accessed along with the group or groups to perform the

validation. There are particularly great differences in the expectations

and potentials of the validation process depending upon the relation of the

validator to the model, with different advantages to each of these

different settings. The various possibilities for the setting of

valiidation include one or several models being investigated by one or

several:

1. model builders,

2. model sponsors or users, or

3. independent third parties.

Table 5-1 shows the more important of these settings in an array with

different important depths. (It should be noted that each of the levels of

depth include the previous categories.) For regression models that are

quite simple, independent model audits are probably unnecessary and the

ideal validation depth, examination of alternative methodologies, is quite

possible. For very complex models it has been determined (MIT, 1978) that

the independent audit may be perhaps the most cost-effective validation

scheme and that examining alternative methodologies may well be

impracticable. Thus, the appropriate, that is to say, cost-effective depth

is inversely proportional to the complexity of the model. In other words,

more complexity suggests less depth.
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Table 5-1 Different important model assessment categories

ASSESSMENT SETTING --

Overview Evaluate documents
for model results

.__

Evaluate documents
for model struct.

Examine comp. code

Audit Hands-off model
exercising

In-Depth Hands-on model
exercising

Component struct-

ural changes

Recoding computer
program

Alternate model-
ing methodologies

Model
Builder

self-
audit

classicl
valid.

h <~~~~~~~~~~~~~~~~~~~~,

Model
Sponsor

Third
Party

nterchaneinterchange
and peer

review
through

publication.

classkical independ.
valid. audit

-7
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Next, it must be determined exactly what there is that should be part

of the model assessment process. This bounding of the cases and asDects of

the investigation is called the scoDe. There have been some studies of

possible scopes of assessment, including (MIT, 1978), (Greenberger, 1977),

and particularly (Gass, 1976). The ideas about scope presented in

Table 5-2 are somewhat differently organized but essentially include all of

those previous concepts. The most noteworthy of these concepts of scope is

the specification of cases of interest, that is that it emphatically must

be defined exactly what ranges and types of cases are to be studied. For

empirical regression models, this scope would differentiate, for example,

between interpolating and extrapolating uses over certain ranges of

operating and design variables.

Table 5-2. Outline of Information Necessary for Defining the

Scope of the Assessment

1. Secific Cases of Interest

- particular issues or problems for which the model(s) is to be
accessed for applicability and adequacy; requires specification
of ranges of variables, degree of aggregation required, absolute
value versus perturbation studies, and so on.

2. Aspect(s) to be Assessed with ResDect to Those Cases

2.1 Documentation

- of the structure, validations performedpast uses, and
applicability of the model; and of the computer code (if any).

2.2 Verifiability
- extent to which model can be validated, specifically raising
issues of other comparable models, other data, complexity,
size, and cost difficulties.

2.3 Validity

2.3.1 Data or Input Validity
- empirical implementation; quality of updating procedure

2.3.2 Logical or Structural Validity
- behavioral and technical structure
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2.3.3 Predictive or Output Validity

2.4 Operational Characteristics
- flexibility, extensibility, training required, and other ease
of use measures; program efficiency, in terms of time and cost
per simulation.

5.2 Validation Techniques

The choice of suitable validation techniques should be directed by the

type of assessment. These choices should generally be obvious upon

recognizing the limitations and emphases denoted in the setting, depth, and

scope of the evaluation. Concerning the various types of regression

validation techniques the November 1977 article by R.D. Snee (Snee, 1977)

is probably the definitive document-to-date, listing four different

methods. Using these four as a start, a number of additions are made to

this list by drawing upon similar dynamic validation lists, (Boshier,

Schweppe, Gruhl, 1978) and (M.I.T. 1978), computerized literature surveys,

and the suggestions offered by the symmetric framework into which these

techniques have been fit. Table 5-3 thus contains a descriptive listing of

these different evaluation schemes. It should be remarked that validity in

its true sense is an absolute term, and can only be approached to a greater

or lesser degree. The extent to which absolute validity can be achieved

will depend primarily upon whether the data is historical or designed,

designed in that variable ranges have been filled parametrically by

replicable experiments. To a reduced, but still important extent, the

degree of validity can be increased by the breadth and quality of the

evaluation processes that are conducted. These validation techniques

involve two steps - first some piece of the model is examined or changed -

then this action is evaluated with repect to some basis for comDarison.
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Although Table 53 outlines 18 possible actions times 6 possible

comparisons, only a little more than half of these 6x18=108 combinations

seem to be of interest (Boshier, Schweppe, Gruhl, 1978). Observed data is

historical or other data used to build the model; inDut and outDut are

those data associated with a particular predictive use of the completed

model.

Table 5-3 Outline of various evaluation schemes that may be useful

1. Actions: examinations or changes
OBSERVED DATA:
1.1 Examinations of the observed, historical, or estimation data
OBSERVATIONS-TO-STRUCTURAL:
1.2 Observed data perturbation effects on structure and

parameters
1.3 Propagation of estimation error on structure and parameters
1.4 Measures of fit of structure and parameters to observed data
1.5 Effect of correlated or irrelevant observed or estimation

data on structure and parameters
1.6 Sensitivity analysis: quality of fit of structure and

parameters to observed data for altered structure and
parameters (includes ridge regression)

OBSERVATION-TO-OUTPUT:
1.7 Effects of correlated or irrelevant observed data on outputs
INPUT:
1.8 Base case or recommended input data examinations
INPUT-TO-OUTPUT:
1.9 Examine outputs with respect to base case input data
1.10 Simplify, e.g. linearize, this relationship to provide

understanding
1.11 Develop confidence measures on outputs by propagating input

error distributions through structural error distributions
STRUCTURE:
1.12 Structural form and parameter examinations
1.13 Simplify, e.g. linearize, structural form analytically, or

group parameters to provide better understanding
1.14 Decompose structure physically or graphically
STRUCTURAL-TO-OUTPUT:
1.15 Examination of outputs for various structural and parametric

perturbations and error distributions
OUTPUT:
1.16 Examination of outputs
OUTPUT-TO-INPUT:
1.17 Examination of optimal inputs (controls) to reach target

outputs
1.18 Contribution analysis, percentage changes in outputs due to

changes in inputs
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2. Bases for ComDarison
2.1 Comparison with other empirical models
2.2 Comparison with theoretic or analytic models, or hand

computations
2.3 Data splitting on observed data, by time or region
2.4 Obtain new estimation/prediction data with time, new

experiments, or in simulated environments
2.5 Examination of reasonableness and accuracy
2.6 Examination of appropriateness and detail

5.3 Quality of Predictions

There is an obvious need for a probabilistic measure of the quality of

predictions from the model. A first attempt at developing such a measure

could come from any of the lack-of-fit statistics listed in section 3.2.

This proposal, however, means that the data used to validate the model will

be the same as that used to build the model and as such, it is suggested

here that that statistic will represent an upper bound on the uality of

new predictions. Data splitting techniques (Snee, 1977), (Simon, 1953),

(Savage, 1962), (Ezekiel, Fox, 1959), (Marquardt, Snee, 1975), (McCarthy,

1976), (Novick, et. al., 1972), (Stone, 1974), (Draper, Smith, 1966),

(Welsch, 1974), can be viewed as a means of obtaining a more realistic

estimate of the quality of prediction of new situations. It has seemed to

puzzle some investigators that these more elegant data splitting schemes

result in models that fit the data more "poorly". It is suggested here

that these apparently "poorer" quality measures are just truer measures of

qualitv than the previous upper limits. This concept has been illustrated

in (Snee, 1977), where the quality measure is 25% to 100% "poorer" with

data splitting but these models predict more accurately on new data. A

method described in (Welsch, 1974) results in a large number of data splits

and it is proposed here that the worst of the resulting quality measures

may be very close to the actual predictive quality of the model.
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One final issue should be noted and that is the effect of model

smoothness on the measure of predictive quality. It has been discussed in

several places in the literature (Clark, 1977) that model building requires

a conscious or unconscious tradeoff between smoothness and fidelity to

data. Measures of predictive quality that are developed from the

estimation data will tend to discourage smoothness and encourage contrived

roughness. To a certain extent, this effect may be recognized through data

splitting, but in the final analysis, a personal judgment of the

reasonableness with respect to smoothness of the model's functional forms

must be made.
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VI. EXAMPLE OF FLUIDIZED BED COMBUSTORS

Although the data from (Strom, et al., 1976) does contain 369

experimental observations, this is only a very small sample of the

extensive data base that is currently being developed on fluidized bed

combustion (Louis, Tung, 1977). Thus, the example of modeling in this

chapter, using the 369 observations, should be viewed as a small

methodological exercise. The small number of input variables, 14, that are

carried for this example is another limitation that has been made to

facilitate the exploration of statistical techniques. Despite these

restrictions, this example may be to-date the most complete fluidized bed

empirical modeling effort. Appendixes A and B should be consulted for more

complete information on the data base and statistical exercises.

6.1 EmDirical Models of Emissions

In developing these empirical models there was a certain amount of

guidance that could be received from published parametric series of

experiments. The functional forms intimated by these parametric results

were of limited usefulness, however, as none displayed relationships that

were universally consistent with data from other experiments. The primary

usefulness of these studies was to highlight the operating and design

parameters that could exert influence on particular outputs. The use of

Fit Improvement Factors, however, not only highlighted the important

variables but to a certain extent provided quantification of the relative

magnitude of their importance.

Atmospheric fluidized bed combustors, FBC,are being actively developed

because aside from potential cost and efficiency advantages, they offer

built-in opportunities for controlling SO2 emissions. Empirical modeling

of SO2 is thus of interest for:
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(1) defining the SO2 removal capabilities of FBC's

(2) pointing toward improvements in designs, and

(3) directing the search toward more desirable operating conditions.

The dominant term that starts up the modeling exercise is the

calcium-to-sulfur ratio (see Figure B-1, Appendix B) which shows a Fit

Improvement Factor, FIF, of 1.778 (next best initial term is calcium top

particle size with FIF = 1.167). The cellular statistics for calcium-

to-sulfur versus SO2 removal were displayed (see Appendix B) and the effect

of this term was removed. At first the residuals were checked for the

possibility of an additive term, however, the maximum FIF of 1.324 (for

calcium top size) showed this avenue to be unspectacular. Considering the

possibility of a multiplicative term1 showed excellent potential with FIF =

1.932 for fluidizing velocity. After the entire process of adding single

terms was completed, modeled, and finetuned the nonlinear combinations of

terms were explored with the FIF techniques. No FIF's were developed for

3-tuples, although this should certainly be done once the large data base

is available (Louis, Tung, 1977).

The best model for SO2 removal fit only with the disappointingly large

standard deviation of 13.2%. Using robust weighting techniques to focus

modeling on 80%, or higher SO2 removals resulted in much closer, 3.46%,

fit, with equations shown in Table 6.1-1 and scatterplot in Figure 6.1-1.

Mean calcium size contributed very little to the fit and was not very

frequently measured by experimenters. So mean calcium size was dropped

from the model, increasing the number of experiments that could be modeled

from 41 to 62, and the new (probably more reliable) model is shown in Table

6.1-2 with scatterplot in Figure 6.1-2. The original, 13.2% deviation,

model over all of the data is shown in Table 6.1-3, with scatterplot in
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Table 6.1-1 Empirical models of sulfur removal for observations where
removal equalled or exceeded 80%

Symbols:
S = sulfur removed, as percent

C = calcium to sulfur mole ratio
V = fluidizing velocity, in m/sec

T = bed temperature in degrees centigrade

D = static bed depth, in cm

A = bed area, in square meters

M = calcium mean size, in microns
P = parameter for effect of coal source
Q = parameter for effect of calcium source
R = number of times sorbent reused, l+number of recycles

Model from a limited number of parametric experiments:

[2.24(2. 4)- 25] (R- 5 )P

[fit=arithmetic standard dev. 5.43%]

Model on data base where all experiments with these parameters and S over 80%:

= (100.- 41.4 )(.923+.0762V 1 )(.997+.0247A)[1.23-.00015(1l8T+32)]*
S = .(100. C+ 414.

(1.0058-.000013M)(.99337 P Q)

[fit=arithmetic standard dev.

on 41 experiments

3.46%]

Tables of parameters:

coal source Pparam Pdata base calcium source data

Pitt seam 8 washed 0.48 1.05 BCR1337 dolom 0.98
Pitt seam 8 unwashed 0.83 1.00 BCR1360 limes 1.00
Peabody Coal Co. 0.80 1.01 BCR1359 limes 0.99
Pitt seam unspecified 0.92 1.00 BCR1359H hyd lm 1.01
Commonw. Edison supplied 0.97 0.98 Tymochtee dolom 1.04
Park Hill coal 1.04 1.00 US limestone 18 1.02
Illinois coal unspec. 1.13 1.00 UK limestone 1.02
Welbeck coal unspec. 1.28 0.975 Stow-on-Kent 0.92
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Table 6.1-2 Empirical model of sulfur removal for observations exceeding
80% removal, eliminating calcium mean as a variable to
increase the number of applicable experiments where all
variables were reported
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Symbols:
S = sulfur removed, as percent

C = calcium to sulfur mole ratio
V = fluidizing velocity, in m/sec
T = bed temperature, in degrees centigrade
A = bed area, in square meters
F = 1 or 0 for fines recycled or not

G = MgO/CaO in sorbent
P = parameter for effect of coal sources
Q = parameter for effect of calcium sources

Model on data base where all experiments with these variables reported and
with S over 80%:

S = (101.- 3097 )(1.208+ V+.762+.0151V 2)(l.+.0095A)[l.-.00022(l.8T+32.)]
C+.3097 V.6

*(1.-.0012F)(1.-.00476G)[1.-.00000246(18T+1500.) 2 ] 1002 P Q

[fit=arithmetic stand dev 3.976%]
on 62 experiments

Table of parameters:

coal source Pdata base calcium source Qdata base

Pitt seam 8 washed 0.993 BCR1337 dolom 0.995
Pitt seam 8 unwashed 1.000 BCR1360 limes 0.991
Peabody Coal Co. 1.015 BCR1359 limes 0.992
Pitt seam unspecified 1.002 BCR1359H hyd lm 1.023
Commonw. Edison supplied 0.998 Tymochtee dolom 1.031
Park Hill coal 0.974 US limestone 18 1.007
Illinois coal unspec. 0.991 UK limestone 1.014
Welbeck coal unspec. 0.959 Stow-on-Kent 0.925
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Figure 6.1-2 Scatterplot of SO removal as observed versus predicted based
on data base developed model, not using calcium mean as a
variable only because it is not often measured and thus
reduces the number of experiments that can be applied
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Table 6.1-3 Empirical model of sulfur removal for all observations for
which values of all parameters were available

Symbols:

sulfur removed, as percent
calcium to sulfur mole ratio
fluidizing velocity, in m/sec
bed area, in square meters
calcium particle mean size, in microns
sulfur content of coal, in percent
excess air, in percent
parameter for effect of coal source
parameter for effect of sorbent source

Model on data base for all experiments:

S : (100- 209___5~

S = (10C+20.96)(1.-.0912V)(1.+.0108A)(1.-.OOOll00011M)*

(1.-.0000117L)(1.-.000516X) P Q

(fit=arithmetic stand dev 13.2%]
on 296 experiments

Tables of parameters:

coal source Pdata base calcium source data base
Pdata base Qdata base

Pitt seam 8 washed 1i.789 BCR1337 dolom.
Pitt seam 8 unwashed 1.688 BCR1360 limes 1.160
Peabody Coal Co. 1.615 BCR1359 limes 0.971
Pitt seam unspecified 1.721 BCR1359H hyd 1m 1.228
Commonwealth Edison 1.404 Tyrnochtee dolom 1.230
Park Hill coal 1.712 US limestone 18 1.065
Illinois coal unspec. 1.535 UK limestone 1.000
Welbeck coal unspec. 1.693 Stow-on-Kent 1.000
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Figure 6.1-3. The disappointment with this amount of deviation is apparent

when one considers the risk involved in designing a combustor to meet a

specific emissions threshold, see Figure 6.1-4.

The most important initial term in the modeling of NO emissions is
x

the fluidizing velocity, with FIF = 1.315. To show the conflicting nature

of the NO data, which is evident from the reports in the literature, thex

next most important term for modeling is the reference number! Again,

once a first term is removed, arithmetic, that is additive, termSshowed

very little potential) FIF = 1.148, and multiplicative terms were explored.

Some important cross-terms were identified and to facilitate the modeling

of these, the multiplicative terms were expanded into polynomial form, see

Table 6.1-4. Figure 6.1-5 shows the disappointing fit, which can be

significantly improved by separate modeling of the results from the

different experiments.

An example of this type of separate modeling is shown in the CO

predictions. Reference number shows the best initial FIF = 1.509, but is

suppressed in favor of bed area. After the other modeling is completed

there are a number of terms that are off by a factor of 10 to 15, see

Figure 6.1-6. These two clusters were finally isolated using excess air,m Gik-e.

i -,bat rChub
was useful in modeling this effect. The best model without this step

function is shown in Table 6.1-5 with scatterplot in Figure 6.1-8.

Hydrocarbon modeling was shown to be impossible without accounting for

enormous differences between different experimenters, FIF = 1.479, with

coal top size next at FIF = 1.299 but this fit was essentially motivated by

correlation with experimenters. The best final model is shown in Table

6.1-6 with scatterplot in Figure 6.1-9.
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Figure 6.1-4 Using this model to design a combustor to meet the SO2 standard
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more appropriate-designs (false alarms) than it would include,

one might conclude that.there is currently too much uncertainty
to make it appropriate to design an environmentally acceptable
combustor.
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Table 6.1-4 Empirical model of NOx at outlet based on data base
experiments

N

C

V

T
X

Q

Symbols:

NO equivalent of NO at outlet, in ppm
calcium to sulfur mofe ratio
fluidizing velocity, in m/sec
bed temperature, in degrees centigrade
excess air, in percent

parameter for effect of sorbent source

variablesModel on all data base experiments for which the above
were available:

N=(-5818+82.41C+ 6.43CV + 362.V + 6.9(1.8T+32.) - 267V(1.8T+32.)

-.065C(1.8T+32.) - .00182(1.8T+32.)2 ) (1.106-.0074X) 1.053 Q

[fit=arithmetic stand dev 91ppm]
on 198 experiments

Table of parameters:

calcium source Qdata base

BCR1337 dolom 0.90
BCR1360 limes 0.85
BCR1359 limes 1.00

BCR1359H hyd m 0.70
Tymochtee dolom 0.85
US limestone 18 1.00

UK limestone 1.00
Stow-on-Kent 0.85
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Figure 6.1-5 Scatterplot of NOx predictions versus observations,
showing general lack of good fit to data due

possibly to unmeasured variables or differences in

position or techniques of measurement
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values, thus initiating cluster analysis with separate
modeling.
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Table 6.1-5 Empirical model of CO concentrations at outlet

68

Symbols:

0 = CO concentration at outlet, in ppm
A = bed area, in square meters
Z = coal top particle diameter, in microns

X = excess air, in percent

F = 1 or 0 variable if fines recycled or not
L = sulfur content of coal, in percent

V = fluidizing velocity, in m/sec

Model based on least squares best fit to all available data:

0 = max[ 50., (-303+149.A- 1-2.6A-2)(1.-.00008Z)(-22.276+.199[X+15]

+98.12X+153- 1 )(1l.+l1.087F)(1.-.04116L)(1.--0 3 7 7V) 

[fit=arithmetic stand dev 1010 ppm]
on 124 experiments
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Table 6.1-6 Empirical model of CH4 equivalent of the hydrocarbon

at the outlet

70

Symbols:

H = CH4 equivalent of hydrocarbon concentrations at
outlet, in ppm

A = bed area, in square meter
N = number of the reference from which the data was

collected
C = calcium to sulfur ratio in bed, molar ratio
Z = coal top particle diameter in microns

X = excess air, in percent

Model based on all data in base:

H = 146.(1.+10.65A)(0 if N greater than 4.5 else 1.)(1.-.2249C)*

(1.-.000125Z)(1. if X less than 0. else 11.98/(X+.15))

[fit=arithmetic stand dev 11.1l
over 196 experiments
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Dust loading at outlet showed FIF = 2.666 for fluidizing velocity and

FIF = 2.551 for bed area. This shows that there might be an opportunity

for a really close model for dust loadingsand Table 6.1-7 and Figure 6.1-10

show this is the case.

6.2 EmDirical Model of Efficiency

The best initial term for the modeling of combustion efficiency is the

coal source with FIF = 1.427, see Table B-13 in Appendix B. Reference

number is also high on the list. It was felt, and perhaps after later

reflection improperly, that coal source should be considered a last-resort

correction factor so it was avoided. It is probably legitimate to model

these correction factors and then go after, for example, properties or

constituent levels in the coals that correlate with the correction factors

and could reasonably be responsible for these effects, such as BTU content.

With fluidizing velocity removed the next best arithmetic FIF was 1.151 so

multiplicative factors were explored. The final model is shown in

Table 6.2-1 with scatterplot in Figure 6.2-1.
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Table 6.1-7 Empirical model of outlet dust loading for all observations
for which values of all variables were published

Symbols:
U = outlet dust loading, in tonnes/day
V = fluidizing velocity, in m/sec

A = bed area, in square meters
X = excess air, in percent

C = calcium to sulfur mole ratio
Z = coal top particle diameter, in microns

F = 1 or 0 indicator of fines recycled or not
G = MgO to CaO ratio in sorbent

T = bed temperature in degrees centigrade
P = parameter for effect of coal source
Q = parameter for effect of calcium source

Model based on data base for all experiments:

U = .1576(l.+min[0.,{-16.774+24.56V-3.54V 2 ]) (1.+3.53A) (.-.0055X)*

(1.+.2124C+.00627C2 )(1.+.000097Z)(1.+.2165F)(1.-.014G)*

(1.+.0000122[l.8T-1555.] 2 ) P Q

[fit=arithmetic stand dev 2.94]
on 118 experiments

Tables of parameters:

coal source Pdata base calcium source Qdata base

Pitt sea 8 washed 0.783 BCR1337 dolom 3.090
Pitt seam 8 unwashed 0.927 BCR1360 limes 1.720
Peabody Coal Co. 0.067 BCR1359 limes 3.713
Pitt seam unspecified 1.000 BCR1359H hyd lm 2.674
Commonwealth Edison 0.117 Tymochtee dolom 3.707
Park Hill coal 0.328 US limestone 18 0.143

Illinois coal unspec. 0.063 UK limestone 2.785
Welbeck coal unspec. 2.794 Stow-on-Kent 1.000
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Table 6.2-1 Empirical models of combustion efficiencies for which values
of all modeling parameters were available

75

Symbol s:

E = combustion efficiency, in percent

V = superficial velocity, in m/sec
D = static bed depth, in cm

X= excess air, in percent
A = bed area, in square meters
C = calcium to sulfur mole ratio
F = 1 or 0 indicator of fines recycled or not
M = calcium particle mean size, in microns

Model based upon parametric experiments and examination of trends:

E=96.[l.-.036V][l.+.Ollmax(-4.,[4.-.787D])](.972+. 0035D)*

(.97+.008abs[min(7.,X)] )

Model based on data base for all experiments and least squares, rather than
main trend, modeling:

E = 77.79 + 14.11(1.- .1434V)(1.+.02433max[-4.,(4.-.787D)])(1.+.0746*

abs[min(7.,X)])(1.-.215A)(1l.-.038C)(l.+.231F)(.-.00016M)

[fit=arithmetic stand dev 2.95%]
on 144 experiments
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VII. MODEL USES

Despite the fact that this is the final chapter of this report, the

consideration of model uses should really be the first task of any modeling

effort. Referring to the list of objectives set down in Section 1.1, the

uses for the empirical models of an emerging, advanced energy technology

can broadly be categorized as for:

1. guidance: toward the next best experiment or the next best design
for analytic modeling; or for the setting of emission standards,
and

2. assessment: of the expected performance and uncertainty of that
performance measure; of the uncertainty or risk associated with
the above guidelines; or of the gap between theoretical and
empirical understandings.

Beginning this discussion with the category of guidance toward the

next best experiment, there are several separate issues of importance.

First, "best" must be uniquely defined. Surveys of the R & D literature,

(Chen, Kirkwood, Lathrop, Pollock, 1977) and (Gruhl, et al., 1976), show

that there are seven broad categories of objectives that might be used to

define "best":

1. economics, in terms of cost of unit energy output, investment and
operating costs;

2. timeliness, availability for commercial use and fit into
energy-economic context;

3. resource consumption, including unpolluted air and water,
materials, fuels, manpower, and capital;

4. environmental, safety, and health characteristics;

5. basic research, meaning those contributions that will also apply
to other processes;

6. institutional factors such as public image and government-industry
interference and cooperation; and

7. national security, primarily in aiming at replacing or avoiding
cartel-vulnerable products, such as oil or imported metals, and
avoiding disruptions that could affect the survival of the
establishment.
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A quick look at this list points out the strict limitation of most

empirical models, which can at most be used to tune in on best designs with

respect to cost, efficiency, and emission performance measures. There is,

however, no reason why some of those other performance measures could not

be modeled and thus considered in the design of experiments. It must also

be noted that empirical models that focus only upon expected values will be

very much limited in applicability because decision makers are generally

very risk averse with regard to many of the important performance indexes.

Measures of uncertainty are required for these instances where a lower risk

region such as a broadly level hill of high performance is much preferred

compared to the absolute optimum performance that may be closely surrounded

by disastrous chasms. The standard gradient search procedures for

identifying optimum designs can easily be modified for consideration of

risk aversion by using average or minimum performance over a range of

uncertainty.

Aside from experiments aimed at best performance there are also

experiments that are aimed at making the greatest reduction in the

uncertainties in our knowledge about a technology. It is highly unlikely

that the experiment that will provide the best performance will also reduce

the most important uncertainties, and thus this is a classic dual control

problem where the designer must divide, by relative weightings, his

interest between performance and information. As a technology matures and

becomes better understood, that weighting will slowly shift from entirely

informational to entirely beneficial.

Aside from the easy cases where measurement errors are known to be

responsible, the designing of experiments to most reduce the key

uncertainties requires a very difficult procedure that involves:

78



1. prespecified priorities or weightings on the relative importance
of the different types of uncertainties, a weighting that will
usually vary over the range of the variables, that is, have
regions where the uncertainty is more critical;

2. measures of the difficulties (including absolute constraints),
such as costs, involved in changing the various variables (for
example it may be less costly to change temperature than design),
both for the specific experiment and for any subsequent final
design, and

3. obtaining all of the available validation information about the
empirical model, as the validation procedure is very similar to
the process of reducing uncertainty.

With these pieces of information, some simple directions toward key data

can be made, such as: (1) resolving discrepancies by repeating experiments,

(2) performing tests on the experiments with the largest residuals,

(3) interpolating between experiments, (4) aiming at reducing measurement

errors with parametric investigations, and (5) developing correction

factors that can be traced to new variables. Reducing widespread,

persistent uncertainty is, however, still a formidable problem, and a

well-constructed empirical model will generally, by definition, not be able

to offer clues for reducing that type of uncertainty, because the modeler

should previously have followed through on, and factored out, all these

clues. Such widespread uncertainty may point toward missing, unmeasured

variables which, of course, can only be identified by validation procedures

and not by any other hints from the model. Aside from validation

approaches, perhaps the only avenue left for exploring persistent

uncertainty is through the highlighting of the most sensitive variables.

One possible method is to trace the errors back through the model to find

the minimum weighted distance change in inputs that could account for the

error. Indications of which input variables may be responsible for the

errors might then come from examinations of the correlations on input

variables that seem to be most persistently accountable for the errors.
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This procedure involves the study of the minimum compensating change in x ,

called Axn, using weights of the certainty with which its effects are felt

to have been modeled W (a diagonal matrix of weights that may be composed

of robust, measurement, or other confidence indicators), where A n is such

that

Yn = F(Xn + n ,) (7.1)

with A WAx minimized. Although this is not a panacea for the problem of

persistent uncertainties, it will show in some sense where the

responsibility for the uncertainties can be most easily relegated.

Going back to the list of potential model uses, the design of the next

best facility is completely analogous to the design of the next best

experiment. For the next best experiment, the design parameters are

generally fixed, and the optimization takes place in the operating variable

space; for the next best facility the optimization takes place over design

and operating variable space; the situations are otherwise identical.

The comparison of empirical models with analytic results has been

extensively discussed. If the empirical model is simple enough, then

direct structural comparisons will be possible. If either the analytic or

the empirical model is complex, then side by side parametric investigations

may be necessary. Such comparison of models in many respects is quite

similar to some of the comparative validation procedures, and Table 5-2

contains a list of possible comparison methodologies.

The assessment categories of model uses are the most easily

accomplished. In these cases the situation is identical to the guidance

uses that were initially described except that there is no interest here in

the uncertainty reduction aspects of that use. Models built for

assessment, and the assessments themselves, should be more diligently
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validated and scrutinized as it is quite common for these products to show

biases that are favorable to the technology. These biases are unconscious,

but to be expected, whenever modelers and investigators, being experts in

an emerging technology, naturally have a stake in favorable outcomes.
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