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Abstract 

Nonlinear shear and extensional flow dynamics of rheological properties of a wormlike 
micellar solution based on erucyl bis (2-hydroxyethyl) methyl ammonium chloride, EHAC, 
are reported here. The influences of surfactant (EHAC) and salt (NH4Cl) concentrations on 
the linear viscoelastic parameters are determined using small amplitude oscillatory shear 
experiments. The steady and time-dependent shear rheology is determined in a double gap 
Couette cell, and transient extensional flow measurements are performed in a Capillary 
Breakup Extensional Rheometer (CABER). In the nonlinear shear flow experiments, the 
micellar fluid samples show strong hysteretic behavior upon increasing and decreasing the 
imposed shear stress due to the development of shear-banding instabilities. The non-monotone 
flow curves of stress vs. shear rate can be successfully modeled in a macroscopic sense by 
using the single-mode Giesekus constitutive equation. The temporal evolution of the flow 
structure of the surfactant solutions in the Couette flow geometry is analyzed by instantaneous 
shear-rate measurements for various values of controlled shear-stress, along with FFT 
analysis. The results indicate that the steady flow bifurcates to a global time-dependent state 
as soon as the shear banding/hysteresis regime is reached. Increasing the salt/surfactant ratio 
or the temperature is found to stabilize the flow, as also confirmed by the decreasing values of 
anisotropy factor in the Giesekus model. Finally we have investigated the dynamics of 
capillary breakup of the micellar fluid samples in uniaxial extensional flow. The filament 
thinning behavior of the micellar fluid samples is also accurately predicted by the Giesekus 
constitutive equation. Indeed quantitative agreement between the experimental and numerical 
results can be obtained providing that the relaxation time of the wormlike micellar solutions in 
extensional flows is a factor of three lower than in shear flows. 
 
……………………………………………………………………………………………………. 
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1. Introduction 

Surfactant molecules consist of a hydrophilic head group and a hydrophobic tail and 

under certain conditions they can spontaneously self-assemble into long, flexible wormlike 

micelles in aqueous solutions. The structure and rheology of these micelles are extremely 

sensitive to surfactant and counterion concentration as well as to temperature because the 

individual micelles are constantly being destroyed and recreated through Brownian 

fluctuations. Wormlike micellar systems are therefore widely used in industry as viscosity 

modifiers and enhancers [1, 2]. They also offer potential as drag-reduction additives in district 

heating systems [3]. Recently, wormlike micellar systems have been successfully used in 

separation of DNA fragments [4] and in forming templates for nanostructures [5]. They are 

also used as rheology and flow control agents in petroleum transport systems [6]. The main 

advantage of these liquids for enhanced oil recovery is their ability to undergo dramatic 

structural changes upon contacting hydrocarbons, leading to an important drop in “viscosity” 

(after completing its fracturing task, this liquid can be easily removed from the parts of the 

fracture contacting with hydrocarbon). The fracture cleanup is therefore greatly improved 

especially in production zones. The ability to easily formulate the fluid outdoors makes these 

liquids very attractive and commercially successful for oil extraction applications [7-10]. 

A cationic surfactant EHAC (erucyl bis (2-hydroxyethyl) methyl amomonium chloride) 

has very recently been used in several studies with different counterions (EHAC/NaSal/Water, 

EHAC/NaCl/Water, and EHAC/NaTos/Water [11-13]; EHAC/2-propanol/KCl/Water [14], 

EHAC/KCl/Water [15]). Raghavan and Kaler [11] have reported that EHAC-based solutions 

can form an entangled network of extremely long wormlike micellar chains and are highly 

viscoelastic or gel-like with increasing salt concentration. The ability of these surfactant 

systems to form long, polymerlike structures, but with the additional possibility of 

breakage and reformation at much lower scission energy, leads to the terminology of 
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“living” or “equilibrium” polymers (for recent reviews on the rheology of wormlike micelles 

see [16-18]). EHAC solutions show robust viscoelastic behavior even at high temperatures 

[11, 12] in comparison to other viscoelastic surfactant systems, which is important in oilfield 

application. 

The linear viscoelastic rheological properties of these viscoelastic wormlike micelles in 

brine solutions can usually be characterized, at least at low frequencies, with a single 

relaxation time λ and they are therefore well described by a simple Maxwell model. This 

narrowing of the viscoelastic spectrum is observed when the micellar breaking time λbr is 

short compared to the diffusion or reptation timescale λrep of the whole micelle [19]. 

Deviations from this monoexponential relaxation behavior are observed at high frequencies 

due to Rouse-like behaviour of the micellar segments [20-22]. 

The non-linear viscoelastic shear rheology of worm-like micelles shows a much more 

complex behavior as indicated schematically in Figure 1. The dimensionless shear stress (τ* = 

τxy/G0) is plotted as a function of dimensionless shear rate (γ* = λγ xy& ). The zero-shear-rate 

viscosity is given by η0=G0λ. The stress first rises with a slope of unity and then deviates 

at a shear rate of γ*
1. The stress falls with increasing shear rate after passing through a 

maximum stress τ*
max at a shear rate γ*

M. This maximum has been attributed by Cates and 

coworkers (within the scope of the reptation theory) to be the maximum stress that a micellar 

reptation tube segment can sustain [19, 23, 24]. An increasing destruction rate of the tube 

segments due to retraction of the worm like micelles with further increases in the shear rate 

results in a falling stress at shear rates γ*>γ*
M. However, the decreasing shear stress region 

cannot persist to infinite shear rates, and eventually an upturn in the shear stress curve is 

observed due to an increasing solvent contribution to the stress in the fluid sample until the 

stress τ*
max is reached again at a shear rate γ*

2. The separation of these two linear regions 

depends on βs=ηs/η0. 
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Cates and coworkers [19, 23, 24] also developed a constitutive equation for micellar 

solutions based on the reptation model for steady flows with a stress tensor τ  given by: 

0
15 1
4 3

G  = − 
 

τ W I  (1) 

where W is the second moment of the orientational distribution function [24]. Although this 

equation is able to predict the maximum behavior of the stress, it fails to capture the 

subsequent upturn of the stress from the solvent and disentangled chain segments. However, 

the nonlinear differential constitutive equation proposed by Giesekus [25, 26], originally 

developed from a network theory for entangled polymer systems, has proven to give a very 

good description of the first stress maximum as well as the upturn at high shear rates [27, 28]. 

The Giesekus model for a single relaxation mode can be written as:   

γτττI ppp . &p
p

ηλ
η
λα =+










+ )1(   

 (2) 
γτs &sη= .  

The symbol )1(pτ  denotes the upper convected derivative of the stress tensor and γ&  is 

the rate of strain tensor, τ  is the total stress given by sp τττ += . Although the single mode 

Giesekus model is a semi-empirical constitutive equation (incorporating an adjustable 

anisotropy factor α), its “spectacularly successful description of semidilute wormlike 

micelles” [1] in non-linear shear flow makes it a very useful tool in the description of the 

reported hysteresis behaviour of the flow curves in the present paper. Recent experiments 

using another gel-like surfactant system also show excellent agreement with the predictions of 

the Giesekus model in transient shear flow [29].  

If an applied shear rate lies in the regime γ*
1 < γ* < γ*

2, a homogenous flow can no 

longer be stable and the system evolves towards a new stationary state, in which the system 
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forms one or more "shear bands" [30-32]. Thus, a steady shear flow can only be supported by 

separate regions of fluid flowing at the high γ*
2 and low γ*

1 shear rate limits of the stress 

plateau region indicated by the dotted line in Figure 1. According to this picture, there is no 

constraint on the number of band configurations, and a set of multiple stationary flow states is 

possible in a shear-rate controlled situation. Still, the stress in this plateau regime is uniform 

throughout the shear bands and at the interface(s) between bands. In order to select the 

number and location of these bands a higher order theory is required which incorporates 

spatial fluctuations across the gap in the number of density or concentrations of the micellar 

species [31-33]. 

An even more complex rheological response is expected for the case of a shear 

induced structure (SIS) formation (such as gelation [34] or liquid crystalline phases [35, 36]) 

which can occur in a micellar solution. Such dynamical transitions have been theoretically 

described by Olmstedt and coworkers [33, 37] and also monitored experimentally by Fuller 

and co-workers [38, 39]. 

In the following report we will focus on a relatively new surfactant system with a 

pronounced viscosity (several orders of magnitude higher than that for comparable systems) 

and with unusually rich equilibrium phase behavior. The corresponding surfactants exhibit 

both shear-induced phase separation (SIPS) and nonzero dichroism signal under shear [13]. In 

these systems, a slowly increasing shear rate ramp is expected to result in a stable flow up to 

the maximum stress τ*
max in the plateau level as indicated by the dashed line in Figure 1 [24, 

40] and this typical stress behavior of an up-ramp shear rate profile has been reported by 

several authors [41, 42]. However, beyond the critical shear rate, the stress level 

corresponding to the plateau region can lie between the maximum stress τ*
max and the stress 

τ*
min at the local minimum in Figure 1. Fischer and coworkers [38, 43, 44] demonstrated that 

the dynamics of the inhomogeneous shear band layers coexisting at such stress levels can also 



Submitted to Journal of Non-Newtonian Fluid Mechanics, Revised manuscript 

6 

lead to periodic oscillatory fluctuations of the stress around this average plateau level. Very 

recent studies [39, 45-48] have also confirmed that many shear banding systems display 

periodic oscillations and time-chaotic fluctuations in their bulk rheology, rheo-optics or 

velocimetry. It may thus be anticipated that the final stationary stress state of the flow in the 

plateau regime is strongly history-dependent and a hysteresis between the measured 

macroscopic behavior upon increasing and decreasing the shear rate is expected [49, 50].  

However, there have been no detailed experiments reported of such phenomena. We will 

examine this hysteretic behavior under controlled stress conditions, for EHAC-based 

wormlike micellar fluid samples.  

The extensional flow behavior of viscoelastic wormlike micelles has received far less 

attention than studies of the shear rheology in the past. However, recent reports on flow 

phenomena occurring in wormlike micellar solutions, such as rising bubbles in micellar 

solutions [51], falling spheres and flow past spheres [52, 53] or filament rupture [54, 55] of 

wormlike micellar solutions have to take into account not only the shear flow properties, but 

also steady and transient elongational viscoelastic properties of the solution.  

The first investigations of the apparent extensional viscosity of wormlike micellar 

solutions were conducted by Prud’homme and Warr [56], Walker et al. [57], Fischer et al. [58] 

and Lu et al. [59], using the opposed jet device. They reported a general thickening of 

wormlike micellar solutions with imposed extension rate in contrast to the reported shear 

thinning behaviour. An observed drop of the extensional viscosity at high extension rates was 

explained by Chen and Warr [60] by micellar scission at high rates and backed up with 

measurements of the radius of gyration in the extensional flow field of the opposed jet device. 

However, severe problems in the quantitative correlation of the material functions determined 

with the opposed jet device [61] have led to other methods for studying extensional flows. 

Kato et al. [62] used rheo-optical studies in a four roller mill, and Müller et al. [63] 
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investigated the flow through porous media to measure steady uniaxial elongational 

viscosities. For robust determination of the transient elongational viscosity, wormlike micellar 

solutions were investigated recently with a capillary break-up rheometer by Anderson et al. 

[64], using the EHAC system reported on in the current paper, and with a filament stretching 

rheometer by Rothstein [65], who was able to calculate a scission energy for wormlike 

micelles in strong extensional flows, supporting the hypothesis of Chen and Warr [60] for the 

drop in the extensional viscosity at high rates.  

In the present study, we examine the hysteretic behavior of wormlike micellar fluid 

solutions in non-linear shear experiments upon increasing and decreasing the deformation rate 

under controlled shear stress conditions for different temperatures and salt concentrations. We 

compare these results with the theoretical predictions of the single-mode Giesekus model 

using parameters that are independently determined from linear viscoelastic data obtained 

using small amplitude oscillatory flow experiments. The Giesekus equation is then used to 

simulate the behaviour of wormlike micellar solutions in a uniaxial extensional flow field. 

These theoretical results are then compared to experimental measurements of the transient 

extensional response of wormlike micellar solutions determined using the capillary break-up 

extensional rheometer (CABER). 

2. Experimental 

2.1  Apparatus  

The oscillatory and steady shear flow measurements were performed with an AR 2000 

stress controlled rheometer (T.A. Instruments, Newcastle DE, USA) in a double gap 

concentric cylinder fixture (rotor outer radius: 21.96 mm, rotor inner radius: 20.38 mm, gap: 

0.5 mm, approximate sample volume: 6.48 ml, cylinder immersed height: 59.5 mm). 

Extensional flow measurements were conducted in a Capillary Breakup Extensional 

Rheometer (CABER) developed in collaboration with the Cambridge Polymer Group 
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(Cambridge MA, USA). The device holds a fluid sample between circular plates (with radius 

of 3 mm, initial plate separation of 2.2 mm). An axial step strain is imposed by seperating the 

plates rapidly within 50 ms to a final separation of 6.6 mm. The midpoint diameter of the fluid 

filament is monitored using a laser micrometer with a calibrated minimum resolution of 20 

µm. The global evolution of the column profile is also recorded with a standard CCD camera. 

More detailed description about the CABER device is given elsewhere [66-68]. 

2.2  Fluid Samples 

The surfactant solution, a mixture of erucyl bis (2-hydroxyethyl) methyl ammonium 

chloride (EHAC) and iso-propanol (25 wt%), is obtained from Schlumberger Cambridge 

Research. The fluid samples to be studied are diluted with an appropriate amount of brine 

solution (ammonium chloride in deionized water) and stirred to homogeneity for 72 hours. 

The samples are then kept at rest for a time-period of 7 days prior to the measurements.  

Two sets of fluid samples were prepared to investigate the effects of EHAC 

concentration (Csurf) and the molar concentration ratio of NH4Cl/EHAC (C*= Csalt/Csurf). For 

the first set of six samples the EHAC concentration (54 mM or 2.25 wt%) was held constant 

while NH4Cl concentrations were varied from 143 mM (0.75 wt%) to 858 mM (4.5 wt%) with 

increments of 143 mM (0.75 wt%). For the second set of five samples, the molar 

concentration ratio of NH4Cl/EHAC was kept constant (C*=10.6) and the surfactant 

concentration was varied from 18 mM (0.75 wt%) to 90 mM (3.75 wt%) with an increment of 

18 mM (0.75 wt%). 

3. Results and Discussion 

3.1  Linear Viscoelastic Behaviors of Micellar Solutions  

It is now well known that viscoelastic surfactant solutions can behave, under certain 

conditions, like an ideal Maxwell material with a single characteristic relaxation time, λ, for 
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the whole system. However, the linear rheological properties of wormlike micellar solutions 

depend on the ratio of breaking and reptation times, denoted  

br

rep

λζ
λ

=   (3) 

where the weak micellar structures break and recombine on an individual time scale denoted λbr. 

According to Cates and coworkers [19, 20, 23, 69] a single exponential relaxation is only 

observed if λbr << λ rep. In this case the breaking time (the average lifetime) of the micelles is 

much smaller than the reptation time (the diffusion time). Numerous breaking and re-formation 

processes occur within the time scale of the overall relaxation and consequently average out the 

relaxation process leading to a pure, monoexponential stress decay. On the basis of reptation 

theory [70], Cates [23] developed an expression for this single relaxation time depending on 

the break-up and reptation time: 

( )0.5

br repλ λ λ= ⋅ .  (4) 

The linear viscoelastic behavior of complex fluids can be described in terms of the complex 

relaxation modulus G* 

)()()( '''* ωωω iGGG +=  (5) 

where the storage modulus, )(' ωG , and the loss modulus, )('' ωG , are expressed for an ideal 

Maxwell model with a single relaxation time by 

2 2

0 2 2
'( )

1
G G ω λω

ω λ
=

+
   (6) 

0 2 2
''( )

1
G G ωλω

ω λ
=

+
.  (7) 

In Figure 2, we show the remarkable agreement of the experimental data (T = 25 ºC) 

at low and medium frequencies with this single relaxation time Maxwell model. The 

deviations from Maxwellian behavior in general start at higher frequencies for larger values of 
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Csurf (for constant C*) and larger values of C* (for constant Csurf). The relaxation time λ and the 

plateau modulus G0 were determined from a least squares fit of the Maxwell model (Equations 

6 and 7) to the measured LVE data. This was done using a Cole-Cole representation of the 

storage and loss moduli as shown in Figure 3. In these plots, the loss modulus is plotted as a 

function of the storage modulus, and this enables a more precise determination of the 

relaxation behavior of samples than simple frequency sweeps [20]. Semicircular profiles are 

obtained from the Maxwell model and represent the pure mono-exponential stress relaxation 

behavior at T = 25 ºC. Figure 3(a) shows the effect of the surfactant concentration (Csurf) on the 

linear viscoelastic behavior for a constant salt-surfactant concentration ratio of C* = 10.6, 

whereas Figure 3(b) shows the effects of varying salt concentration at a constant surfactant 

concentration of Csurf  = 54 mM. The diameter of the semicircular shape is a measure of G0 and 

is greatly affected by variation in Csurf. A monotonic decrease in the diameter is obtained with 

lower values of Csurf, rapidly dropping to the lowest value of 0.45 Pa for the fluid sample of 

Csurf = 18 mM. We use an inset to Figure 3(a) in order to more clearly illustrate the 

semicircular shape for this sample. The fit results (T = 25 ºC) are given in Table 1 and shown 

in Figure 4.  

In the absence of any solvent contribution to the stress, the zero shear viscosities of the 

samples are calculated by 

0p Gη λ= .  (8) 

The dashed lines in Figure 4(a) and 4(b) are best fits from regression analysis and are shown 

here to qualitatively illustrate the general trend of the fitted rheological parameters with 

increasing Csalt. In both cases, increasing salt concentration results in a monotonic increase in 

G0. The variation of plateau modulus exhibits a power law type behavior, which is expected 

from theoretical predictions for polymers and micellar solutions [23, 69]. The 

corresponding relations are, respectively, G0 ~ (Csalt)2.49 for C* = 10.6 held constant (Figure 
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4(a)) and G0 ~ (Csalt)0.73 for Csurf  = 54mM held constant (Figure 4(b)). Because the ratio of 

surfactant to salt (or equivalently the salinity conditions) are kept constant in Figure 

4(a) for a wormlike micellar solution with C* = 10.6, the data actually corresponds to an 

increasing surfactant concentration. The observed scaling of G0 ~ (Csalt)2.49 indicates that 

the rheological behavior of these EHAC surfactant systems in this concentration regime 

is in good agreement with the theoretically predicted power-law exponent of 2.3 obtained 

from scaling theory for micellar solutions [69]. Similar scaling has also been observed for 

other micellar systems [71]. Raghavan and Kaler [11] have performed similar analyses for 

their EHAC-based solutions. Their measurements were made for a constant molar 

concentration ratio of C* = 0.5 and for a constant surfactant concentration of Csurf  = 60 mM at 

temperature of 60 ºC. Their reported values of the power-law exponents for these two cases 

(respectively 2.27 and ~1) appear to be close to the ones obtained in the present study.  

Figure 4(b) shows the variation of the linear viscoelastic properties with salt 

concentration at a constant surfactant concentration. In this case, a ratio of G0 ~ (Csalt)0.77 

is observed, suggesting a rather salinity-insensitive dependence of the plateau modulus. 

This is in accordance with the suggestion that an increasing salt concentration does not 

lead to strong changes in the structural composition of the wormlike micelles at this 

salinity level; as a consequence, the modulus varies only weakly. However, as Safran et 

al. [72] have noted, the screening  effect of the salt counterions with rising concentration 

may lead to an alteration of the scission energy of the micelles and therefore significant 

variation in the relaxation time as shown in Figure 4(d).  

At high salinities, Candau et al. [73] describe the formation of a dynamic 3-

dimensional network of wormlike micelles that results in a local maximum in the 

relaxation time and in the resulting viscosity of the solution (see Eq. 8). We observe a 

similar behavior in Figure 4(d) for the relaxation time and in Figure 4(b) for the 
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viscosity. This pronounced maximum is again in agreement with the viscosity 

measurements by Raghavan and Kaler for an EHAC/sodium salicylate solution [11]. 

However, it should be noted that with the smaller Cl- ions utilized in our study, the 

critical concentrations required for the maxima in the viscosity and relaxation time to be 

observed are nearly a decade higher. A possible explanation for this shift is that, in 

contrast to salicylate, the nonbinding character of the Cl- ions limits the penetration 

between the head groups of the EHAC molecules that comprise the micelles, so that this 

screening effect requires much higher salt concentrations.  The critical concentrations of the 

samples that correspond to maximum values of η0 are Csalt = 762 mM (or Csurf  = 72 mM) for C* = 

10.6 and Csalt = 332 mM (or C *= 8) for Csurf  = 54 mM.  

We notice in Figure 4(b) that for C* ≥ 8 the relationship between Csalt and η0 becomes 

almost linear on this log-log plot with a powerlaw exponent, η0 ~ (Csalt) –3.37. This value of a 

powerlaw exponent is slightly lower than the powerlaw exponent of -5 quoted by Larson [1] 

and Shikata & Kotaka [74] for some gel-like surfactant systems. Clausse et al. [75] describe 

electron microscopy imaging studies of micelles in this region of decreasing relaxation 

time that demonstrate that the length of the micelles (and thus the modulus) remains 

fairly constant, indicating that it is indeed the screening by the increased salt 

concentration that accelerates the micellar reformation processes.  

For clarity in the discussion of the non-linear rheology in the following section we will 

focus on the three fluid samples (denoting them by E1, E2, and E3) on the power-law curve of 

Figure 4(b) to examine the effects of salt-surfactant ratio on nonlinear shear and extensional 

flow behavior. The composition of E1, E2, and E3 fluids along with other micellar fluid samples 

used in this work are given in Table 1.  

The representation of the storage and loss moduli for the investigated solutions in the 

form of Cole-Cole plots (Figure 3) shows that in all cases Maxwell-like behavior is obtained in 
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the low- and medium-frequency regimes. However, in Figure 3(b), significant deviations from 

Maxwell behavior are present at high frequencies. These deviations are expected since at high 

frequencies, Rouse-like behavior of the individual entangled segments and an additional solvent 

stress are present. Consequently there is an upturn of G" as a function of G' as noted by 

Fischer and Rehage [27]. The addition of a Newtonian ‘solvent-like’ contribution to Eq. (7) 

with λη 0Gs << , allows a better agreement at high frequency regimes while the low-

frequency regime remains unaffected: 

''
0 2 2( )
1sG G ωλω η ω

ω λ
= +

+
.  (9) 

A quantitative determination of λbr is possible by fitting simulations [21] or 

numerical calculations [20], including the ratio ζ (from Eq. (3)) as a fitting parameter, to the 

experimental Cole-Cole plots. Combining Eq. (3) with Eq. (4) results in the expression 

brλ λ ζ= ⋅   (10) 

and enables the calculation of λbr from the relaxation time and the ratio ζ. A more accessible 

method to extract λbr from the measured deviation of G"  from the single-mode Maxwell 

model was introduced by Kern and coworkers [21, 22, 76]. According to the method and Eq. 

(9), a departure from the semicircular shape at high frequencies must be represented with a 

‘dip’ and a ‘tail’ indicating Rouse-like behavior. The dip corresponds to a local minimum of 

loss modulus ( ''
minG ) and the ratio of 0

''
min / GG  is directly correlated to the entanglement 

length and average contour length of the micelle. Thus, the critical frequency ω∗ at which the 

minimum value of the loss modulus is obtained provides a much better measure for micellar 

break-up time [27]. This approach was used in this report to extract the micellar break-up 

timescale λbr from the linear viscoelastic data. The results as well as the value of the 

parameter ζ calculated from Eq. (10) are listed in Table 1. As mentioned before, the zero-
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shear-rate viscosities of the fluids E1, E2, E3 change in a power-law fashion with salt 

concentration (see the log-log plot shown in Figure 4(b)). 

Table 1 

The values of λbr and ζ  further support the expected monoexponential behavior since 

ζ<<1 and therefore the approximation br repλ λ<<  holds for almost all of the fluid samples 

studied. The departures from semicircular response on a Cole-Cole plot occurs at 

progressively higher frequencies with decreasing values of ζ as can be seen in Figure 3. The 

evolutions of λ  and brλ  with increasing salinity are quite similar as shown in Figure 4(c) and 

4(d). Both time constants monotonically decrease with the surfactant concentrations (Csurf) for 

a constant salt-surfactant concentration ratio of C*= 10.6. However, the effect of salt 

concentration on λ and λbr at a constant surfactant concentration is more complex. Both the 

relaxation and micellar break-up times exhibit a maximum at Csalt = 286 mM (or C* = 5.2) and 

then rapidly decrease at higher salinity. On the other hand, the reptation time repλ  remains 

initially unaffected by salt-variation, but then sharply decreases with increasing salt 

concentration. This complex dependence appears to be associated with shear-induced 

morphology change or phase separation (SIPS) of micellar fluid samples, as previously 

observed by Raghavan and co-workers [12, 13]. 

3.2  Steady and Transient Shear Flows of Micellar Solutions 

3.2.1  Steady Shear Flow   

The non-linear shear rheology of the micellar solution denoted E1 (see Table 1) was 

determined under controlled shear stress conditions, the results are given in Figure 5 in the 

form of a flow curve and the corresponding stress-shear rate curve. Dimensionless shear-

stress, shear-rate, and viscosity are respectively defined as τ* = τ/G0, γ* = γ& λ, and η* = η/η0. 

The symbols correspond to discrete stresses in a continuous stepped stress ramp experiment 
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(no rest between steps). The stress-increment of each step is equal in log-space (ten equally 

spaced points per decade). All experimental points displayed here were measured for an 

overall time of 300s and represent the averaged signal. The top branch (hollow circles) 

corresponds to increasing increments in τ* and the lower branch (hollow diamonds) to 

decreasing increments. Both figures show a distinct hysteresis between the increasing and 

decreasing stress ramp. At low stresses the fluid shows a nearly Newtonian flow behavior. 

However, above a critical stress τ*
 ~ O(1) for an increasing stress ramp the shear rate 

increases rapidly and leads to a second Newtonian regime at high stresses. The huge drop 

(5000 fold) in the viscosity at this stress level as shown in Figure 5(a) is commonly associated 

with a yielding process, or micro-structural breakdown [77]. However, the nature of this 

structural transition cannot simply be derived from a single steady stress experiment. As 

already pointed out by Cates and coworkers [40] it is expected for a wormlike micellar system 

that an increasing stress ramp experiment will show a monotone increasing shear rate, albeit 

with a rapid increase of the shear rate at τ* > τ*
max. However, the simple reptation theory 

suggests that there will be a maximum of the stress-rate curve as pointed out in the discussion 

of Figure 1 and expected from the constitutive equation of Eq. (1). For an up ramp stress 

experiment the critical stress τ*
max for the onset of the plateau is determined by the top-jump 

condition  

0
*
max 67.0 G≅τ  (11) 

as deduced from reptation theory [24]. A marginally smaller value of 0
*
max 54.0 G≅τ  is 

predicted for non uniform flow fields [78]. The critical stress τ*
min of a down ramp experiment 

should follow a bottom jump condition and result in a hysteresis between the up and down 

ramp stress plateau as theoretically proposed by Porte et al. [49].   
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The resulting non-monotonic stress vs. shear rate curve leads for a certain range of 

stresses τ1
* < τ* <τ2

* to a bifurcation in the flow and the occurrence of non-homogeneous 

behavior in the form of shear bands. This formation of local spatially-inhomogeneous shear 

bands has been experimentally observed by NMR imaging [79, 80], neutron scattering [81, 

82] and other flow imaging diagnostics [38, 83-89].  

The occurrence of an underlying non-monotonic constitutive relationship between the 

steady shear stress and shear rate can also be directly inferred from the ‘up’ and ‘down’ ramp 

experiments shown in Figure 5. The microstructural composition for the shear-banded states 

are highly degenerate and at a stress level of τ*
max individual regions may be associated with 

any deformation rate *
2

** γγγ ≤≤M  indicated in Figure 1. Theories which incorporate a 

coupling between stress and microstructure are required in order to provide a selection 

mechanism for these bands [31]. 

An increase in the externally-imposed driving stress and/or the time of imposed 

shearing leads to progressive destruction of a larger fraction of the wormy micellar 

(equilibrium) state and formation of an increasing percentage of the shear-distrupted micellar 

segments. These segments contribute to the second low-viscosity mode that provides the 

upper Newtonian contribution to the stress. The final stationary flow state can also strongly 

depend on the flow history of the micellar solution, as reported by Radulescu et al. [90]. As 

the stress is decreased from the second Newtonian flow regime, which is dominated by the 

solvent-like contribution to the total stress, the structural buildup of the worm-like micelles 

starts at the stress minimum τ*
min indicated in Figure 1.  

The Johnson-Segalman (JS) equation [91] has been commonly used to model the 

non-monotonic material instability and formation of shear banding. Greco and Ball [92] 

suggested a selection criterion for the symmetry breaking of the band distribution, based on 

the stress distribution in a circular Couette flow. Lu et al. [93] considered planar shear for a 



Submitted to Journal of Non-Newtonian Fluid Mechanics, Revised manuscript 

17 

JS-model with additional diffusive terms. However, preliminary attempts to fit the present 

shear-flow experiments indicated that the JS-model overpredicts the value of (τ*
max - τ*

min) 

within a reasonable shear-rate range of *
2

**
1 γγγ ≤≤ . A rederivation of the JS model from 

microstructural considerations in order to obtain a full set of equations with higher order 

derivative terms and including a conservation equation for the local number density of 

micelles coupled to the stress equations may improve the predictions [31]. 

A simple way to capture this behavior is given by a number of semi-empirical 

constitutive equations comparable to the Johnson-Segalman equation which incorporate the 

linear Maxwell model under small strains or strain rates and are expanded to incorporate 

additional nonlinearities. Examples of appropriate nonlinear constitutive equations include the 

Phan-Thien and Tanner model [94], the Giesekus model [25, 26], the White-Metzner [95] or 

the Bird-deAiguiar model [96]. These models may all exhibit nonmonotonic shear stress – 

rate behavior depending on the values of the relevant nonlinear parameters and the 

background solvent viscosity. 

In the following we will use the single mode Giesekus constitutive equation (Eq. (2)) 

to model the hysteresis of the shear-banding phenomenon since this equation has already been 

demonstrated to model the nonlinear properties of worm-like micellar solution in start-up of 

steady shear flows quite well [28]. The dimensionless viscosity (η*=τ*/γ*) computed from the 

single-mode Giesekus equation is given by: 

2
* (1 )

1 (1 2 ) s
f

f
η β

α
−

= +
+ −

, (12) 

1 2

1 2

1 ( 1) /
1 (1 2 ) ( 1) /

f
κ κ

α κ κ
− −

=
+ − −

, (13) 

* 2
1 1 16 (1 )( )κ α α γ= + − ,  (14) 

* 2
2 8 (1 )( )κ α α γ= − ,  (15) 
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where α and βs are respectively an anisotropy factor and the dimensionless solvent viscosity 

that dominates the viscosity of the solution at high shear rates. The solid lines in Figure 5(a) 

and (b) represent the predictions of the model with fitting parameters of α = 0.93 and ηs =0.1 

Pa s (or βs = 4.18x10-4). The parameter βs has been chosen as an adjustable parameter since 

the viscosity in the high shear rate regime includes not only the Newtonian solvent but also 

the additional, undefined contributions of the surfactant molecules in a non-micellar state. 

Small deviations of the solution viscosity at high shear rates from the expected complex 

viscosity (Eq. (9)) of the Rouse-like regime have also been reported by Manero et al. [14]. 

The linear viscoelastic rheological parameters given for the E1 solution in Table 1 were used 

in the calculations as starting values for a best fit of the model to the experimental data. 

The maximum deviation between experimental values of the linear viscoelastic 

parameters and the best fit of the model is only 0.32%, as seen in Table 2 below. The 

agreement between the plateau values of the experimental data and the local minima and 

maxima of the theoretical curve is very good, especially in predicting the local minimum of 

the stress during the down ramp of the stress sweep. 

Table 2 

The effect of salt-surfactant concentration ratio, C*, on the hysteresis/shear-band 

structure can be seen for C* = 13.2 and C* = 16 (fluid samples E2 and E3) in Figure 6(a) and 

(b). The qualitative features of the flow curves for both fluids are similar to the E1 fluid. 

However, the distance between the upper and lower branch (τ*
max - τ*

min) decreases as C* 

increases. Indeed, the magnitude of the anisotropy factor in the Giesekus model provides a 

direct measure of the width of the hysteresis gap; α decreases from 0.93 for the E1 fluid to 

0.89 and 0.85 for the E2 and E3 fluids respectively (see Table 2). The stabilizing effect of 

increasing the salt-surfactant concentration C* on the micellar fluid structure was also noted 

by [11] and was interpreted as a promotion of the level of micellar branching. The specific 
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details of the range of salt-surfactant concentration required for phase-stabilization is 

expected to vary with the nature of the counterion (e.g. whether it is binding or 

nonbinding).  However, there is at present no reported microstructural analysis and phase 

behavior data for the current samples to confirm this hypothesis. 

The observable range of the Newtonian regime after the second upturn in the shear 

stress also becomes smaller with increasing C* due to a fast transition of the micellar solution 

to a foamy thixotropic state that shows a strong increase of the shear stress at a nearly 

constant rate. The stress sweep experiments cannot proceed further since irreversible 

structural changes occur at higher stresses. This stress-jump behaviour at the transition to a 

shear induced structure (SIS) [34, 44] limits the ability of the single-mode Giesekus equation 

to model the macroscopic stress beyond the shear banding regime because the solution is no 

longer a single homogeneous phase. All of our experiments are truncated at this SIS 

transition.  

 The effects of temperature on the dynamics of shear-banding were also investigated 

for the E1 fluid over a temperature range of 25 °C-70 °C. The required zero shear viscosities 

for evaluation of the Giesekus model predictions were obtained from time-temperature 

superposition. The temperature dependent shift factor aT (T ; T0) was determined from a series 

of ten viscosity measurements over low shear rates ( *
1

* γγ ≤ ) in a temperature range of 

25°C ≤  T ≤ 70°C and aT follows a simple activated rate process of Arrhenius form 

 ( )
( )

( )
( )

0 0

0 0

, 1 1( ) exp
,T

T T T Ha T
T T T R T T

η γ ρ
η γ ρ

 ⋅  ∆
= ⋅ ≈ −  ⋅   

&

&
 (16) 

where aT is the temperature shift function and the density ratio )(/)( 0 TT ρρ  for the aqueous 

micellar solution is assumed to be approximately equal to unity over the investigated 

temperature range. For the investigated system with T0 = 25 °C the activation energy ratio 

∆H/R was found to be 11500 K. The thermal variations of the background solvent viscosity 
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)(Tsη  and anisotropy factor )(Tα  were determined by an independent fitting procedure. The 

variation of these parameters with temperature is also found to be nearly exponential. The 

experimental and model results are given in Figure 7. The hysteretic behavior becomes 

progressively weaker at elevated temperatures and finally disappears at 70 °C. The anisotropy 

factor α in the Giesekus model clearly confirms this trend and decreases from 0.93 at T = 25 

°C to 0.50 at 70 °C. The value α = 0.5 corresponds to the Leonov model and is the limiting 

value between a monotone rise of the stress (with the absence of the hysteresis behavior) and 

the development of a shear banding region [97]. 

Visual analysis also shows that the fluid sample remains homogeneous and rheological 

data can be measured up to 90 °C. The stabilizing effect of a moderate level of temperature 

rise has previously been observed for viscoelastic flow instabilities [98, 99]. There are also 

computational studies in the context of elastic instabilities to confirm this observation. For 

EHAC based solutions, the effect of temperature on the degree of micellar branching is 

shown to be analogous to increases in salt concentration [12], and hence such a stabilization 

effect with increasing temperature is to be expected. 

3.2.2  Transient Shear Flow  

The temporal characteristics of the nonmonotone stress-shear rate relation and the 

hysteresis behavior of the viscoelastic surfactant solution in circular Couette flow can be 

monitored by following the transient shear rate evolution at various values of a constant 

controlled shear-stress.  

A series of measurements of the evolution in the transient dimensionless shear rate of 

γ*(t) is shown (for E1 fluid) in Figure 8 for various values of the dimensionless shear stress, 

τ*. The dimensionless shear rate γ*(t) is normalized by its time-averaged nominal value 

(<γ*(t)>) to illustrate the relative magnitude of the fluctuations around unity. For low values 

of τ*, the instantaneous shear-rate is essentially constant in time (t), as shown in Figure 8(a) 
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and (b) with r.m.s. fluctuations of less than 4.2 % and 4.1 %, respectively. For τ* < 0.48 the 

shear flow of the micellar solution is steady. The flow becomes strongly time dependent as the 

dimensionless stress is increased to τ* = 0.48, as depicted in Figure 8(c). The shear rate 

monotonically increases with time over the time range of the experiment. The experimental 

timescale is restricted to about 600 seconds at each stress to minimize the effect of 

evaporation of the sample in a longer time period. Grand et al. [78] noted that at the onset of 

the plateau region the timescale for equilibration into the final steady state can be up to two 

orders of magnitude higher than the linear viscoelastic relaxation time. This monotonic 

increase of the shear rate with time continues even at higher values of τ* (see Figure 8(d)) in 

the nearly horizontal plateau regime of the τ*-γ* plot. Eventually this transient increase of the 

shear rate saturates into a strongly time-periodic flow around an average shear rate as seen in 

Figure 8(e)-(f) at the upper end of the plateau regime. The amplitude of the shear-rate 

fluctuations in this time-periodic flow state can reach up to 50 % with respect to the nominal 

value (or up to 14.8 % in terms of r.m.s. fluctuations). At the highest stresses (τ* ≈ 1), on the 

upper branch of the flow curve corresponding to Figure 8(g)-(h), the fluctuations decrease 

again and are less than respectively 15 % and 10 % (or 9 % and 6 % in r.m.s. fluctuations) of 

the nominal signal.  

The characteristic frequencies of the shear rate oscillations can be quantitatively 

identified by Fourier analysis of the time series measurements. Power spectral-densities of 

γ*(t) are shown in Figure 9 for selected values of τ*. Figure 9 (a)-(d) respectively correspond 

to power spectral densities of the signals γ*(t) / <γ*(t)> given in Figure 8(e)-(h). The power 

spectrum obtained from FFT analysis are also normalized by a nominal component of the 

spectrum for each τ*, in order to provide consistency in comparison, as suggested by Yesilata 

et al. [100]. For τ*=0.72, the power spectrum shows a peak at f1 = 0.032 Hz (Figure 9 (a)), 

corresponding to a dimensionless frequency value of 11
*

1 ≈= ff λ  since the characteristic 
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relaxation time of the fluid is λ=28.4 s. The nominal steady rotation rate of the Couette 

fixture is 6.2/ =Λ>=< γω &c  rad/s, where dR /1=Λ  is the ratio of inner rotor radius to the 

gap [101]. The nominal rotation rate is thus nearly one order higher than the value of 

2.0 2 11 == fπω  in rad/s. Wheeler et al. [38] performed similar experiments using a 

controlled stress device at a nominally constant deformation rate between ***
mM γγγ ≤≤ . In 

their experiments, strongly periodic oscillations were observed above a critical stress with a 

frequency that was dependent on the moment of inertia of the test (Couette) fixture and the 

characteristics of the instrument feedback loop. We see no such coupled instrument/fluid 

oscillations with the present rheometer (probably due to a tighter feedback control loop). The 

periodic frequency identified in Figure 9(a) corresponds purely to the fluctuating material 

response since the dimensionless frequency is nearly equal to unity ( 1*
1 ≈f ).  

For stresses above the critical value for onset of time-periodic flow, the dominant 

frequency of oscillations increases and multiple peaks are discernable (Figure 9(b)). The 

appearance of these new peaks in the power spectrum can be considered as the first sign of the 

onset of a more complex chaotic-like flow. In the strongly fluctuating regimes shown in 

Figure 9(c)-(d) the shear rate oscillates with multiple incommensurate frequencies as 

determined by the FFT analysis. However, the intensity of the oscillations decreases, as the 

linear relationship between τ* and <γ*(t)> is re-established and the stress-shear rate curve 

approaches the second upper linear flow regime. 

The time-dependent fluctuations leading to inhomogeneous and banded structures 

were noted recently by Lee et al. [39] in the middle of the gap of a Couette cell using 

pointwise flow-induced birefringence (FIB) measurements. Recent studies have shown that 

transient oscillations also occur in more complex flows of micellar fluids with shearing and 

extensional kinematics [52, 53]. It does appear that these fluctuations are not specific to a 
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single kinematic field but are common to all flows in which the characteristic deformation 

rate and micellar time scale are on the same order.  

3.3  Transient Extensional Flow of Micellar Solutions  

The transient extensional response of three micellar fluids (E1, E2, and E3) was also 

investigated with a Capillary Breakup Extensional Rheometer (CABER). The experimental 

device utilizes plates of radius 0R  = 3.0 mm separated by an initial distance 0L  = 2.2 mm so 

that the initial aspect ratio is 0Λ = 0L / 0R =  0.733. The plates are separated rapidly (within 50 

ms) to a final separation of 1L  = 6.6 mm.  

Figure 10 shows a sequence of images of the test fluids at T = 24.5 ˚C. The first 

images show that the initial filament configurations for all samples are axially non-uniform. 

For convenience, time is referenced to the instant when stretching is halted (i.e. we set t1 = 0). 

The subsequent images show the progressive elasto-capillary drainage and ultimate breakup 

of the filament at a critical time after the cessation of stretching. The temporal resolution of 

the breakup event is limited by the framing rate of the video camera to 30 frames/second. 

The filaments of all three samples shown in Figure 10 neck and break in a quantitatively 

different manner. Both the axial profiles of the filaments and the time evolution in the 

midfilament diameter are significantly different for each type of fluid. The axial profile of the 

E1 fluid filament is nearly homogeneous, and the minimum diameter is always close to the 

midplane (although gravitational effects cause the actual minimum to be slightly above the 

midplane at initial stages). The effect of gravity at early times becomes more pronounced for 

the E2 sample, and especially for the E3 fluid. However at later stages, the axial profile of the 

filament rapidly evolves into an axially uniform cylindrical filament. The time to breakup for the 

E1 fluid is significantly longer than those of E2 and E3. 

Transient midfilament diameters measured for the three fluids are shown in Figure 11(a). 

Notice that measurements from three separate experiments for each fluid agree extremely well 
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and we obtain excellent experimental reproducibility. Measurements of the filament evolution 

for the fluids decay approximately exponentially with time as shown by the solid lines. Prior to 

the breakup, significant deviation from the initial exponential curve occurs caused by the finite 

extensibility of the micellar structures.  

Entov and Hinch [67] have shown that the exponential behavior of the midfilament 

thinning at intermediate times is related to a balance of the capillary and elastic forces in the thread 

and allows for the calculation of a relaxation time λE in the elongational flow, 

( )( ) ~ exp[ / 3 ]mid ED t t λ− . (17) 

For Boger fluids, Anna and McKinley [66] confirmed (in accordance with the theoretical 

predictions from Entov and Hinch [67]) that Eλ λ≈ where λ is the longest relaxation time of the 

polymer solution determined from linear viscoelastic measurements. However, in these 

micellar fluids, the characteristic relaxation times for transient elongation, extracted 

from the linear regimes in the semilogarithmic plots in Figure 11(a) according to Equation 

(17) and shown in Table 3, are substantially lower (by almost a factor of three) than the 

relaxation times obtained from oscillatory shear flow. We are not aware of any other 

reports of the characteristic time constant for extensional flow of micellar solutions; 

however, Rothstein [65] noted that the apparent nonlinearity of a micellar network is 

also characterized by very different values of the relevant rheological parameter in 

shear and extension (in this case the finite extensibility parameter). This factor of three 

difference in the characteristic relaxation time must be associated with the different 

dynamics of micelle creation and destruction in the elongated and aligned state that is 

associated with extensional flow in a thinning filament as compared to the fully-

entangled three-dimensional structure that exists under equilibrium conditions. Thus the 

transient extensional behavior of the wormlike micelles studied here appears to be more complex 

than that expected for a simple viscoelastic fluid of Maxwell-Oldroyd type.  
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We now use the simple zero-dimensional formulation proposed by Entov and Hinch [67] 

to predict the filament thinning behavior of the micellar fluid samples using the single-mode 

Giesekus constitutive equation. Ignoring axial curvature effects, the temporal evolution of the 

filament mid-diameter Dmid is given by a balance of the viscous, elastic, and capillary forces (see 

Anna and McKinley [66]): 

1 [( ) 2 ]
6

mid
zz rr mid

s

dD D
dt

τ τ σ
η

= − −  (18) 

where σ denotes the surface tension of the fluid and τzz and τrr are the additional micellar 

contributions to the axial and radial tensile stress components of the total stress tensor τ. 

For an ideal uniaxial extensional flow, these stress components are evaluated from the 

Giesekus constitutive equation (Eq. (2)) which becomes 

2
0

0

(1 2 ) 2zz
E E zz zz E

d G
dt G
τ αλ ελ τ τ λ ε+ − + =& &  (19) 

2
0

0

(1 )rr
E E rr rr E

d G
dt G
τ αλ ελ τ τ λ ε+ + + = −& &  (20) 

where the rate of strain is expressed by 

2 mid

mid

dD
D dt

ε = −& . (21) 

Combining Eq. (18) with equations (19-21) gives a coupled set of ordinary differential 

equations (ODEs) for Dmid, τzz and τrr. The equations (18)-(20) can be integrated using 

standard routines for stiff ODEs under appropriate initial conditions. The corresponding initial 

conditions when the stretching is halted are given by [66] :  

1 1( 0)midD t D= = ,  (22) 

1
1

22( 0) s
zz

E

t a
D

ηστ
λ

= ≅ − , (23) 

1( 0) 0rr tτ = = . (24) 
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The parameter a in equation (23) has been introduced by Anna and McKinley 

[66] to correctly account for the initial deformation. The results of simulations (the solid 

lines), using a and α as adjusting parameters, along with experimental measurements (the 

symbols) are depicted in Figure 11(b). The time and diameter are scaled with λE and D1, 

respectively, and the parameters used in the calculations are listed in Table 3. It can be seen 

from the figure that quantitative agreement between experiments and theoretical predictions 

can be obtained, provided that the model parameters are not forced to be the same as the 

values obtained in shear flow. The anisotropy factor α for extensional flows obtained 

from the fits is more than a decade smaller than the value for shear experiments (see 

Table 2). Most interestingly, the relaxation times λE obtained from best fits to 

Equation (17) are a factor of almost three smaller than the value expected in shear flow. 

This suggests that the arguments leading to equation (4) for λ need to be modified for 

an elongated micellar chain reptating and breaking/reforming in an extensional flow.  

Table 3 

It is also desirable to re-express the midfilament diameter data in a more intuitive 

format, i.e., as a transient tensile stress or extensional viscosity. The thinning dynamics of the 

elastic fluid filaments result from an interplay between the fluid rheology and the effects of 

capillarity. We have demonstrated that the observed evolution of the midfilament diameter as 

the fluid thread necks down and breaks can be well described using a single-mode Giesekus 

model and an appropriate force balance on the fluid filament, provided that the initial 

deformation is correctly accounted for. The transient extensional rheology of the fluid is 

encoded in this evolution and we can obtain an apparent extensional viscosity that is related 

directly to the midfilament diameter by using the same approach described by Anna and 

McKinley [66]. An appropriate apparent extensional viscosity calculated from the 

surfactant and solvent contributions is given by 
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This relation combined with Eq. (18) and (21) gives a direct dependence of the 

apparent extensional viscosity from the midfilament diameter evolution 

dt
dDmid

E
ση −=  (26) 

and we thus differentiate the experimental diameter data to obtain the transient extensional 

viscosity. The results are presented in Figure 12 and show the apparent extensional viscosity 

in terms of a dimensionless Trouton ratio (ηE/η0) as a function of the total Hencky strain ε 









=

)(
ln2 1

tD
D

mid
ε . (27) 

The experimental diameter data obtained from Eq. (26) are shown as symbols and the 

Giesekus simulation are indicated by solid lines. In general, the experimental and theoretical 

values for the apparent extensional viscosities extracted from elasto-capillary thinning agree well 

for all three samples. The extensional viscosity at time t1 is a factor of approximately three higher 

than the expected extensional viscosity of 3η0 from the Trouton ratio due to the initial stretch that 

is imposed by the rapid extension to the final plate separation prior to the surface tension driven 

filament thinning. The extensional viscosity asymptotically reaches a steady state value when the 

strain becomes large. However, the final approach to break-up falls below the calibrated 

minimum resolution of 20 µm of the CABER device. The observed Trouton ratios 

approaching this steady state are on the order of 100.  Rothstein [65] obtained a similar 

magnitude increase in the Trouton ratio for a wormlike micellar solution system 

(CTAB/NaSal) in a constant rate filament stretching experiment at constant deformation 

rate of ε& ~1.55. 
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4. Conclusions 

In the present study, we have examined the linear viscoelasticity, nonlinear shear and 

extensional flow dynamics for the ternary system of EHAC/NH4Cl in salt-free water. EHAC 

based wormlike micellar solutions are relatively new materials in the context of wormlike 

micellar structures and the linear viscoelastic properties have recently been investigated [11, 12] 

in the presence of different counterions (NaSal, NaCl, and NaTos). The present experiments 

confirm the earlier observations that EHAC-based solutions are highly viscoelastic and their 

structure and rheology delicately depend on the chemical structure and the amount of salt used as 

counterion and on the surfactant concentration and temperature. Although the zero-shear rate 

viscosities of our solutions at room temperature can be two to three orders of magnitude lower 

than those studied previously using different salts, similar non-monotonic trends in the linear 

viscoelastic properties are obtained. As shown in Figures 2 and 3, the solutions are well-described 

by a single-mode Maxwell response at low frequencies ( 1/ω λ<
%

), but some significant 

deviations from this behavior at intermediate and high frequency regimes are observed for 5.2 ≤ 

C* ≤ 8. The variation of the zero-shear viscosity and relaxation time as a function of salt 

concentration are non-monotonic as indicated in Figure 4. These non-monotonic rheological 

responses are not observed in all micellar fluids and have been attributed to the long, 

unsaturated chains and complex headgroups of EHAC-based surfactants [11].  

Stepped shear flow experiments reveal the hysteretic behavior of these wormlike micellar 

fluid samples upon increasing and decreasing shear stress. This hysteresis can be interpreted 

as an indication of a non-monotonic underlying flow curve and the onset of shear-banding 

at intermediate shear rates. At low and high shear rates outside this shear-banding regime, the 

flow curves measured upon increasing and decreasing shear stress coincide. The non-

monotonic hysteretic behavior can be modeled with a single-mode Giesekus constitutive 

equation, provided that the anisotropy factor α is greater than 0.5. The hysteretic behavior 
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was investigated under a number of different conditions; increasing values of salt 

concentration narrows the hysteresis region as does an increase in the solution temperature.  

The transient evolution of the viscoelastic surfactant solution in steady Couette flow 

under controlled stress conditions was explored by conducting a series of instantaneous shear-

rate measurements over a wide range of shear-stresses. The critical conditions for the onset of 

time-dependent flow were determined quantitatively from these measurements and coincide 

with the range of stresses for which hysteretic behavior in the flow curve is observed.  

Experimental observations of the extensional flow behavior of the micellar fluid 

samples in capillary break-up experiments show strong extensional thickening of the samples 

with the apparent Trouton ratios increasing by up to two orders of magnitude. The 

characteristic relaxation times of the fluids determined from extensional flow experiments are 

consistently lower than expected from oscillatory shear flow experiments. A comparison of the 

extensional experiments with predictions computed using the  single-mode Giesekus model show 

good quantitative agreement, however much lower anisotropy factors (α) are required. 

It is thus clear that although a simple nonlinear network model such as the Giesekus model 

captures many of the global features of wormlike micellar rheology it is not (presently) capable of 

accurately reflecting the changes in micelle structure that arise when the kinematics are changed. 

A more detailed microscopic analysis of the network creation and destruction processes thus 

appears warranted. We hope to report on this in the future.  
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Table 1. Description of the wormlike micellar fluid samples used in linear rheology 
              experiments at T=25 °C (C*= Csalt/Csurf). 

 

 
 

 

Table 2. Giesekus Model parameters in shear flow (T=25 °C) 

  E1 E2 E3 
λ (s) 28.4            (0.07)* 11.6               (6.6) 4.97             (-0.6) 
Go (Pa) 8.42            (0.24) 12.3               (6.2) 12.6              (6.4) 
ηo (Pa s) 239             (0.32) 143               (13.2) 62.4              (5.7) 
α - 0.93 0.89 0.85 
ηS (Pa s) 0.10 0.085 0.025 

* The numbers in parentheses show deviation (in percentage) from linear rheology 
experiments 

 

Table 3. Giesekus Model parameters in extensional flow (T=25 °C) 
  E1 E2 E3 

λE (s) 9.03            3.63             1.65             
Go (Pa) 7.98           (-5.0)* 11.5            (-0.52) 11.9            (1.62) 
ηo (Pa s) 215            (-9.71) 125             (-0.71) 59.5            (0.97) 
ηS (Pa s) 0.10 0.085 0.025 
α - 0.02 0.031 0.003 
a - 0.229 0.241 0.227 

* The numbers in parentheses show deviation (in percentage) from linear rheology 
experiments 

 

Csurf=54 mmol/l 
 E1 E2 E3 

C* - 2.65 5.3 8.0 10.6 13.3 16 
Csalt (mmol/l) 143 286 432 572 718 864 

λ (s) 60.6 171 103 28.4 10.9 5 
Go (Pa) 4.7 2.07 8.7 8.4 11.6 11.8 
ηo (Pa s) 284 355 903 238 126 59 
''

minG  (Pa) 0.474 0.096 0.246 0.48 0.599 0.681 
λbr  x 102 (s) 11.2 112.4 50.2 19.9 12.6 7.9 
ζ  x 104 - 0.034 0.428 0.233 0.494 1.344 2.567 

C*=10.6 
 E1  

Csurf (mmol/l) 18 36 54 72 90 
Csalt (mmol/l) 191 382 572 763 954 

λ (s) 115 48.7 28.4 23.7 2.9 
Go (Pa) 0.45 3.6 8.4 12.6 30.2 
ηo (Pa s) 51.9 175 238 298 87.6 
''
minG  (Pa) 0.055 0.166 0.48 0.34 1.37 

λbr x 102
 (s) 158 31.7 19.9 15.9 3.9 

ζ x 104 - 1.886 0.424 0.494 0.450 1.951 
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Figure Captions 

Figure 1 A representative nonmonotonic dimensionless stress-deformation rate relation 

in shear flow of a wormlike micellar solution.  

Figure 2 The storage moduli, G'(ω), and the loss moduli, G"(ω), determined in a 

frequency range of 0.01-100 rad/s with a constant shear strain of 10% for the 

EHAC solutions of (a) Csurf  = 90 mM; C* = 10.6, (b) Csurf = 72 mM; C* = 10.6,    

(c) Csurf = 54 mM; C* = 10.6,  and (d) Csurf = 54 mM; C* = 16 (experiments 

were performed at T = 25°C).   

Figure 3 Cole-Cole plots of EHAC solutions (a) for various surfactant concentrations 

(Csurf) and (b) for various salt-surfactant concentration ratios (C*). The inset to 

(a) is the plot for Csurf = 18mM. The storage modulus, G'(ω), and the loss 

modulus, G"(ω), are determined in a frequency range of 0.01-100 rad/s with a 

constant shear strain of 10% (experiments were performed at T = 25°C). 

Figure 4 Linear viscoelastic (LVE) parameters and time scales of EHAC solutions; a) 

LVE parameters for various Csurf, b) LVE parameters for various C*, c) time 

scales for various Csurf, d) time scales for various C* (experiments were 

performed at T = 25°C). 

Figure 5 The results of up and down ramp controlled stress experiments for the E1 fluid. 

a) dimensionless viscosity (η* = η/η0) as function of the dimensionless shear 

rate (γ* = γ& λ), b) dimensionless stress (τ* = τ/G0) as a function of the 

dimensionless shear rate. The top branch (hollow circles) corresponds to 

increasing increments in τ* and the lower branch (hollow diamonds) to 

decreasing increments. Solid lines represent results of the single-mode 

Giesekus constitutive equation (experiments were performed at T = 25°C).    

Figure 6 The results of up and down ramp controlled stress experiments; a) for the E2 

fluid (C* = 13.2) and b) for the E3 fluid (C* = 16). Solid lines represent the 

Giesekus model predictions (experiments were performed at T = 25°C).    

Figure 7 Influence of the temperature on hysteresis/shear-band structure for the E1 fluid; 

(a) T = 30°C, (b) T = 35°C, (c) T = 55°C, and (d) T = 70°C. Solid lines 

represent the Giesekus model fits at each temperature. 
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Figure 8 Measurements of temporal fluctuations in the shear-rate for various values of 

the dimensionless shear stress for the E1 fluid. Each transient shear rate γ*(t) at 

a given τ* is normalized by the corresponding time-averaged nominal value, 

(<γ*(t)>). (i) location of the transient experiments on the qualitative stress-shear 

rate curve. (ii) transient shear-rates for various values of (τ* ; <γ*(t)>). a) (0.36 ; 

0.95) b) (0.42 ; 1.37), c) (0.48 ; 81), d) (0.60 ; 1382), e) (0.72 ; 3318), f) (0.84 ; 

3719), g) (1.2 ; 4778), and h) (1.68 ; 5514), (experiments were performed at 

T = 25°C). 

Figure 9 Fast Fourier transforms (FFT) of γ*(t) in the time-periodic and the time-chaotic 

regions for E1 fluid. The corresponding dimensionless stresses are given as; a) 

τ* = 0.72, b) τ* = 0.84, c) τ* = 1.20, and d) τ* = 1.68. The spectra are normalized 

with the nominal value of the spectrum for each case. 

Figure 10 Time-sequences of flow images in the CABER experiments for (a) E1 fluid (C* 

= 10.6), (b) E2 fluid (C* = 13.2), and (c) E3 fluid (C* = 16), (experiments were 

performed at T = 25°C). 

Figure 11 a) Transient midfilament diameter profiles of the E1, E2, and E3 fluids. 

Different symbols correspond to separate CABER experiments for each fluid. 

Solid lines show best exponential fit of the curves. b) Comparison of measured 

midfilament diameter profiles (symbols) for micellar fluid filaments with 

predictions from the single mode Giesekus model (solid lines). The diameter 

and time are scaled with D1 and λE (experiments were performed at T = 

25°C).    

Figure 12 Comparison of apparent extensional viscosities computed from midfilament 

diameter profiles of E1 (●), E2 (□), and E3 (∆) fluids, along with 

predictions from the single mode Giesekus model (solid lines); (a) in log-

scale, (b) in linear-scale.  
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