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ABSTRACT

When faced with environmental assaults, E. coli can take extreme measures to
survive. For example, starving bacteria consume their own proteins, and bacteria with
severe DNA damage introduce mutations into their genomes. These survival tactics
require restructuring of the bacterial proteomic landscape. To reshape the proteome,
bacteria alter both protein synthesis and protein degradation. For important regulatory
proteins and proteins potentially harmful to the cell under non-stress conditions, these
changes must be environmentally responsive and specific.

This thesis explores the role of the ClpXP protease in the response to DNA
damage. First, we determine how DNA damage affects substrate selection by ClpXP.
These experiments combine quantitative proteomics and use of an inactive variant of
ClpP to "trap" cellular ClpXP substrates and compare their relative levels with and
without DNA damage. Analysis of trapped substrates reveals that cellular stress can
result in dramatic changes in protease substrate selection. Next, we explore a specific
mechanism that allows coupling of an environmental signal to a change in proteolysis.
When the cell senses DNA damage, it triggers autocleavage of the LexA repressor.
Autocleavage creates new signals for ClpXP recognition, ensuring the timely degradation
of the LexA cleavage products. The mechanism of LexA recognition became a model for
cleavage-dependent recognition of other substrates. Finally, we determined the
mechanism of ClpX recognition of a known, damage-inducible substrate, UmuD'. We
find that UmuD directs UmuD' degradation in an SspB-like manner. These experiments
show how, with the right sequence motif, an interacting partner can become a ClpXP
delivery factor.

This thesis work contributes to the idea that the bacterial cell has an imperative to
degrade certain stress response proteins. Substrate priorities may change throughout the
stress response and cellular proteases have devised a variety of strategies to ensure
selection of the right substrate at the right time with respect to cellular conditions. This
allows the cell to put its best proteome forward as it meets repeated cycles of
environmental stress.

Thesis supervisor: Tania A. Baker
Title: Professor of Biology
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INTRODUCTION OVERVIEW

Escherichia coli is remarkably adaptable bacterium that can survive in a variety of

harsh environmental conditions. This adaptability is in part due to a number of specific

stress responses evolved to optimize survival in suboptimal circumstances. The E. coli

reaction to DNA damage, the "SOS" response, is a paradigm for environmental stress

responses. In the SOS response, recognition of damage to the genome is coupled to

upregulation of a specific set of genes with roles in repairing, and if necessary tolerating,

DNA damage.

Because environmental stresses perturb the cellular system, they present an

excellent opportunity to explore cellular regulation at multiple levels. Changes in cellular

mRNA levels following DNA damage are extensively characterized. However, it is

protein availability that ultimately affects cellular processes, so it is important to look

beyond the transcriptome. How does the cell fine-tune the proteome? Protein levels

depend on the balance between protein synthesis and degradation. Unlike eukaryotes

where post-translational addition of ubiquitin converts a protein to a protease substrate, in

E. coli protease substrates are generally recognized directly by built-in sequence motifs.

This makes coordinating degradation of specific substrate proteins with cellular or

environmental cues a challenge.

The work described in this thesis explores the role of proteolysis in the E. coli

response to DNA damage. This introduction first considers the challenges that damage to

the genome creates for the cell, and reviews the DNA damage response. Additionally, it

covers the energy dependent proteases in E. coli with a special emphasis on ClpXP.

Finally, some specific examples of regulatory mechanisms for the degradation of stress-

responsive proteins are given. These examples reveal the importance of proteolytic

control over protein levels during environmental stress responses. Furthermore, they

highlight the ingenious methods that E. coli utilizes to ensure degradation of the right

protein at the right time.
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THE DNA DAMAGE RESPONSE

DNA Damage and Repair Overview

Maintaining the structural and sequence integrity of its single chromosome is

essential for E. coli's survival. If not repaired, damage to DNA can result in replication

arrest and cell death. All biological macromolecules are chemically labile, and cellular

DNA damage is accelerated by challenges from a variety of exogenous and endogenous

sources. For example, cells growing in normal physiological conditions suffer from

hydrolytic base loss, base damage by hydroxyl radicals and damage by other endogenous

genotoxic agents (Lindahl, 1993). One of the best-studied exogenous sources of damage

to DNA is UV irradiation. Cells exposed to UV irradiation form a number of specific

photoproducts. Pyrimidine dimers constitute the major photoproduct upon exposure to

UV light (Ravanat et al., 2001). Less common photoproducts include adenine-containing

dimers, deaminated cytosines and oxidated guanines (Ravanat et al., 2001). Furthermore,

a large number of environmental toxins can result in a range of DNA lesions, from

double stranded breaks to base modification by bulky adducts (reviewed in Freidberg et

al., 1995).

To respond to these threats to the genome, organisms encode a number of proteins

that function to repair and tolerate DNA damage. Several repair processes, and in some

cases specific repair proteins, are conserved throughout the bacterial, archaeal, and

eukaryotic superkingdoms. For example, recombinational mechanisms for double-

stranded break repair are remarkably similar in these three superkingdoms (Cromie et al.,

2001). A central protein in this process, RecA (Rad5 1), has homologs from bacteria to

man (Bianco et al., 1998). The process of translesion synthesis, which allows strand

extension across template lesions, is present in prokaryotes and eukaryotes. Translesion

synthesis utilizes the Y-family of specialized, structurally similar polymerases (Yang,

2003). Although many repair and tolerance processes are similar in different organisms,

bacteria have a specific regulatory circuit to identify and counteract DNA damage called

the SOS response.

13



The SOS Response

The SOS response links a signal of DNA damage (exposed single stranded DNA)

to a multipronged attack aimed to repair damage and ensure cell survival. The SOS

model is clearest when laid out in full detail (Figure 1.1). Therefore, a brief overview of

the current model is presented prior to a review of the development of this model

(reviewed in Freidberg et al., 1995). In an undamaged cell, LexA, a dimeric transcription

factor, represses a set of about 30 genes (the SOS regulon) with roles in repairing and

tolerating damage (Table 1.1). LexA has two domains, a DNA binding and a

dimerization domain. Following DNA damage, exposed single stranded DNA activates

RecA. Activated RecA stimulates LexA autocleavage activity, resulting in separation of

the dimerization and DNA binding domains. This relieves repression and results in

upregulation of genes in the LexA regulon. As damage is repaired, less RecA is in the

active, ss-DNA bound form. LexA controls its own expression, so newly synthesized

LexA can restore repression of the SOS regulon.

Development of this model was complicated by several factors. First, given the

number and diversity of genes under lexA and recA control, mutations in either gene

cause pleotrophic phenotypes. Furthermore, several different classes of mutations for

both genes exist. For example, lexA mutations can be uninducible or constitutively

active. Mutants in recA can be completely defective for LexA activation, partially

defective, constitutively inducible or conditionally inducible. Additionally, recA has

roles in both activating LexA and in homologous recombination. Finally, both lexA and

recA are under lexA control.

14
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Figure 1.1: The SOS response

LexA is a dimeric transcription factor that normally represses expression of the SOS

regulon. Following DNA damage, LexA autocleavage activity separates its DNA

binding and dimerization domains to relieve transcriptional repression.
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Table 1.1: Known Members of the SOS Regulon

Function
cell division
Y family DNA polymerase
unknown
helicase
modulates RecA function
unknown
possible transposase
toxin
transcriptional repressor
molybdate regulator
SOS regulation/recombination
double strand break repair
Holliday junction branch migration
DNA gyrase inhibitor
ss-DNA binding protein
cell division inhibitor
SOS mutagenesis
SOS mutagenesis
nucleotide excision repair
nucleotide excision repair
nucleotide excision repair
unknown
unknown
UvrC like
unknown, chaperone like
unknown
possible restriction/alleviation
unknown

Reference
(Dorazi and Dewar, 2000)
(Goodman and Tippin, 2000)
(Kenyon and Walker, 1981)
(Voloshin et al., 2003)
(Lusetti et al., 2004)
(Fernandez De Henestrosa et al., 2000)
(Fernandez De Henestrosa et al., 2000)
(Fernandez De Henestrosa et al., 2000)
(Brent and Ptashne, 1980)
(Lee et al., 1990)
(Gudas and Mount, 1977)
(Kosa et al., 2004)
(Benson et al., 1988)
(Nakanishi et al., 2002)
(Brandsma et al., 1983)
(Lee et al., 1990)
(Bagg et al., 1981)
(Bagg et al., 1981)
(Kenyon and Walker, 1981)
(van den Berg et al., 1981)
(Finch and Emmerson, 1983)
(Fernandez De Henestrosa et al., 2000)
(Fernandez De Henestrosa et al., 2000)
(Fernandez De Henestrosa et al., 2000)
(Lomba et al., 1997)
(Van Dyk et al., 2001)
(Fernandez De Henestrosa et al., 2000)
(Fernandez De Henestrosa et al., 2000)
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fsK
dinB
dinD
dinG
dinI
dinQ
dinS
hokE
lexA
molR
recA
recN
ruvAB
sbmC
ssb
sulA
umuC
umuD
uvrA
uvrB
uvrD
ybfE
ydjM
ydjQ
yebG
yigN
yjiW
ysdAB
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Historical perspective

The "SOS" hypothesis postulated that E. coli has a set of diverse but coordinately

regulated functions that are induced in response to treatments that damage DNA

(Radman, 1974; Radman, 1975). This hypothesis brought together a number of

seemingly unrelated UV-associated phenomena (reviewed in Witkin, 1987). First, UV

exposure of host E. coli cells enhanced the survival of UV irradiated phage (Weigle

reactivation), and was necessary for phage mutagenesis (Weigle mutagenesis) (Weigle,

1953). This phage mutagenesis was proposed to be related to the mutagenic repair seen

in bacteria exposed to DNA damaging agents (Kondo, 1973; Radman, 1974; Radman,

1975). Additionally, treatments that damaged DNA resulted in prophage induction in

lysogenic bacteria (reviewed in Witkin, 1976). Furthermore, a number of parallels

between prophage induction and the filamentous growth observed in UV-induced

bacteria were previously noted (Witkin, 1967). One common factor linking these

functions was the involvement of lexA and recA (Radman, 1975).

Identification of a particular temperature sensitive mutant, tif-l, further linked

these phenomena (Kirby et al., 1967). At the nonpermissive temperature, these mutants

showed prophage induction, filamentous growth, Weigle reactivation and Weigle

mutagenesis without exposure to DNA damaging agents (Castellazzi et al., 1972a;

Castellazzi et al., 1972b). Additionally, mutagenesis of bacteria grown at the

nonpermissive temperature was higher in a tif-1 strain than in a wild-type strain (Witkin,

1974). Furthermore, following UV exposure, mutation frequency in the thermally

induced tif-1 strains had a linear relationship with UV dose while mutation frequency in a

wild-type strain showed a quadratic relationship with UV dose (Witkin, 1974). These

observations suggested the need for two independent events-one to induce the signal

and one to damage the DNA.

The tif-1 mutation mapped near recA, and was ultimately determined to be an

allele of recA by two-dimensional gel electrophoresis (Castellazzi et al., 1972b;

Emmerson and West, 1977; Gudas and Mount, 1977). Using a newly isolated

constitutively active allele of lexA, these experiments indicated that recA was under lexA

control (Gudas and Mount, 1977; Mount, 1977). From these and other experiments a

model for SOS regulation emerged: lexA is a repressor of recA, lexA and other DNA

17



repair genes (Brent and Ptashne, 1980; Gudas and Pardee, 1975). Important clues came

from the study of the repressor of bacteriophage B. These studies showed that the cause

of RecA-dependent induction of X phage is inactivation of X repressor by RecA-mediated

proteolytic cleavage (Roberts and Roberts, 1975; Roberts et al., 1978; Roberts et al.,

1977). These studies were extended to LexA, and ssDNA was shown to activate RecA to

induce LexA autocleavage (Little et al., 1980; Phizicky and Roberts, 1981).

Members of the LexA regulon were identified by a variety of methods. Initially,

derivatives of phage Mu containing promoterless lac genes were used to identify damage

inducible (din) genes (Kenyon and Walker, 1980). This study yielded a handful of

operon fusions that showed increased P-galactosidase activity following treatment with a

DNA damaging agent. Additional members of the LexA regulon were identified by

computational methods that search for consensus LexA binding sites (Fernandez De

Henestrosa et al., 2000; Lewis et al., 1994). More recently, microarray studies have been

used to understand lexA-depedent changes in transcription following DNA damage

(Courcelle et al., 2001).

The most comprehensive descriptions of the E. coli response to DNA damage are

at the transcriptional level. Three studies use DNA microarrays to describe changes in

transcript level following treatment with DNA damaging agents (Courcelle et al., 2001;

Khil and Camerini-Otero, 2002; Quillardet et al., 2003). Results from these studies do

not coincide perfectly. For example, some studies report changes in a very large (1000+)

number of the genes studied whereas others report more conservative (-300) changes

(Khil and Camerini-Otero, 2002; Quillardet et al., 2003). Furthermore only 5 of

approximately 30 known damage-inducible genes were identified in all three studies.

However, when taken individually, some experiments very accurately show damage-

inducible changes in known members of the SOS regulon (Courcelle et al., 2001). Most

discrepancies are likely due to the different strains, damaging treatments, array conditions

and statistical methods used in the three studies. Despite inconsistencies, these studies

provide a framework for exploring large-scale damage-induced transcriptional changes.

Further characterization of the response to DNA damage comes from a limited

number of proteomic studies using two-dimensional gel electrophoresis. These studies

were mainly used to confirm the identity of the protein responsible for a particular mutant

18
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phenotype (Gudas and Mount, 1977; McEntee, 1977). However, one proteomic study

aimed at larger scale identification of damage-induced proteins (Finch et al., 1985). The

difficulty of identifying proteins in specific gels spots impeded this effort, but a few

known damage inducible proteins were assigned to gel spots whose intensity changed as

a result of DNA damage (Finch et al., 1985). In general, characterization of the DNA

damage response at the proteomic level lags behind the relatively thorough

characterization at the transcriptional level. Because transcript levels are not always a

good indication of protein abundance (Griffin et al., 2002), further characterization of the

DNA damage response using proteomic techniques is an attractive opportunity.

One notable result from these transcriptional and proteomic studies is that, rather

than being an all-or-nothing switch, the response functions as a continuum. For example,

transcriptional profiles taken at various times after DNA damage reveal that some genes

are upregulated immediately while others are upregulated later in the response (Courcelle

et al., 2001). Furthermore, at the same dose of a DNA damaging agent, members of the

SOS regulon are induced to different extents (reviewed in Freidberg et al., 1995). These

differences are generally attributed to relative promoter strength and position and

strength, number and location of LexA binding sites (Schnarr et al., 1991). They allow

the cell to respond incrementally dependent on the severity of DNA damage.

The tight, environmentally responsive control that is maintained over transcription

is likely to be extended to protein levels. Studies of individual proteins provide anecdotal

evidence that this is the case. Furthermore, loss of specific proteases results in increased

sensitivity to DNA damage. A major goal of this thesis is to advance our understanding

of how proteolysis contributes to this stress response.

19



PROTEOLYSIS IN E. COLI

Protease Overview

Living cells and their components are in a constant state of turnover. In the cell,

proteolysis serves many purposes. Protein degradation eliminates damaged, incomplete

and misfolded proteins. Degradation of unnecessary proteins provides needed amino

acids during nutritional stress. Furthermore, protein degradation can regulate cellular

processes by terminating the activity of key substrates. Proteolysis of individual

substrates must be rapid, complete and specific. Examination of the proteases in E. coli

reveals how their structure and mode of action meet these mandates.

E. coli has five energy-dependent proteases: Lon, FtsH, HslUV, ClpXP and

ClpAP (reviewed in Gottesman, 1996). Each protease has distinct substrate preferences,

but certain substrates are degraded by more than one protease. Non-substrate proteins are

protected from degradation through the use of common architectural features that

sequester the protease active sites. Each protease has at least one ATPase that unfolds

substrates and allows entry to an otherwise inaccessible peptidase chamber where

degradation occurs. Lon and FtsH combine the protein unfoldase and peptidase activities

in a single polypeptide chain while ClpAP, ClpXP and HslUV divide the activities

between two subunits. An in-depth description of the focus of this thesis, ClpX, is

followed by a brief description of E. coli 's other ATP-dependent proteases.

The ClpXP protease

Studies using electron microscopy and crystallography reveal the basic

organization of the ClpXP complex (Figure 1.2). The ATPase subunit, ClpX, is a ring

shaped hexamer (Grimaud et al., 1998). ClpP is composed of two 7-membered rings that

stack together to make a barrel-shaped chamber (Flanagan et al., 1995; Kessel et al.,

1995; Wang et al., 1997). Its 14 proteolytic active sites face the inside of this chamber

(Wang et al., 1997). The ClpX hexamer stacks atop the ClpP barrel, and the two subunits

collaborate to destroy substrate proteins. ClpX recognizes, unfolds and translocates

substrate proteins into ClpP for degradation and release of resultling peptides (Kim et al.,

2000).

20
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A.

ClpX

ClpP

ClpX

B.

ClpX ClpP

N

Figure 1.2: Structure of CIpXP

A. Averaged electron microscopy image of ClpXP, and crystal structures giving side

views of the ClpP and modeled ClpX multimers (Grimaud et al., 1998; Kim and Kim,

2003; Wang et al., 1997).

B. Top view of ClpX and ClpP (Kim and Kim, 2003; Wang et al., 1997).
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Proteolysis is irreversible and energetically expensive (Kenniston et al., 2003b).

Therefore, the crucial step in protein degradation is substrate selection. In the ClpXP

protease, ClpX recognizes substrate proteins by short peptide motifs located at their N or

C-termini. Early indications of the importance of C-terminal residues for ClpX

recognition came from deletion mutants of the phage Mu transposase, MuA (Levchenko

et al., 1995). Variants lacking the last 4 or 8 amino acids were poor substrates for

ClpXP degradation. The identity of C-terminal residues also proved important in

destabilizing variants of the Mu repressor (Laachouch et al., 1996). Furthermore, the

discovery of the ssrA tagging system showed that destabilizing C-terminal residues can

be added cotranslationally to nascent polypeptides stalled on the ribosome (Keiler et al.,

1996; Tu et al., 1995). The extreme C-terminal residues of the 11 amino acid ssrA tag

(AANEDENYALAA) are especially important for targeting tagged proteins to ClpXP or

ClpAP for destruction (Flynn et al., 2001; Gottesman et al., 1998). ClpX can also

recognize sequence motifs located at the N-terminus. For example, deletion of the first

18 amino acids of XO protein dramatically slows its degradation by ClpXP (Gonciarz-

Swiatek et al., 1999).

Although this handful of known proteins provided clues about substrate selection,

identification of a large set of ClpXP substrates through use of a ClpP "trap" allowed

consensus N- and C-terminal recognition motifs to emerge (Flynn et al., 2003). Cellular

substrates are stably trapped, not degraded, when an active site mutant of ClpP (ClpPfraP)

is expressed in the cell (Figurel.3). The ClpPtraP and enclosed substrates are purified

using a tandem affinity tag and the substrates are identified by mass spectrometry.

Analysis of the sequence from over 50 trapped substrates revealed three classes of N-

terminal recognition motifs and 2 classes of C-terminal recognition motifs (Figure 1.4)

(Flynn et al., 2003).

In addition to intrinsic recognition of particular substrate sequences, use of

adaptor/delivery proteins can dramatically enhance the affinity of ClpX for a substrate.

When acting as delivery factors, these proteins enhance the degradation of specific

substrate proteins but are not themselves degraded. Regulation of the presence or

absence of delivery proteins could allow conditional substrate degradation. ClpX has

three known delivery proteins: SspB, RssB, and UmuD (Gonzalez et al., 2000;

22
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Levchenko et al., 2000; Zhou et al., 2001, Neher et al., 2003b) The most thoroughly

characterized of these proteins, SspB, mediates the formation of a delivery complex

comprised of a SspB dimer, two molecules of ssrA-tagged substrate, and one ClpX

hexamer (Levchenko et al., 2000; Wah et al., 2002b). SspB uses its substrate binding

domain to interact with a specific sequence in the ssrA tag (Flynn et al., 2001; Wah et al.,

2002b). It then uses a peptide motif (the XB motif) in its flexible C-terminal region to

interact with the ClpX N-terminal domain and bring these substrates into proximity with

ClpX (Bolon et al., 2004; Dougan et al., 2003a; Wah et al., 2003b; Wojtyra et al., 2003a).

These multiple contacts between substrate, delivery protein and unfoldase work together

to enhance the degradation of ssrA-tagged substrates.

Once a substrate is selected, it must be unfolded before it can pass though the

narrow pore of ClpP for degradation (Wang et al., 1997). ClpX uses the energy of ATP

hydrolysis to denature even very stable substrates and translocate them into ClpP

(Kenniston et al., 2003b; Kim et al., 2000; Singh et al., 2000). Substrate unfolding begins

at the recognition tag, so the structure immediately adjacent to the tag affects degradation

(Lee et al., 2001). Studies on a series of variants of titin revealed that destabilization of

areas near the degradation tag reduced total ATP consumption and accelerated

degradation (Kenniston et al., 2003b). These studies also revealed that the rate of ATP

consumption was constant during denaturation regardless of substrate stability,

suggesting that ClpX repeatedly attempts substrate denaturation until it succeeds.

The unfolded proteins translocated into ClpP are substrates for degradation. In

the absence of an ATPase, ClpP can only act on small peptides (Woo et al., 1989). ClpP

is a serine protease that uses a conserved serine, histidine, aspartic acid catalytic triad to

cleave protein substrates (Maurizi et al., 1990a; Wang et al., 1997). ClpP seems to have a

preference for cleaving after nonpolar and hydrophobic residues and produces small (>20

amino acid) peptides (E. Oakes, unpublished, Thompson and Maurizi, 1994).
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substrates

> fi1 b by tandemmass spec-
trometry

Purify

Figure 1.3: Use of ClpPtraP for in vivo substrate capture

When an inactive, epitope tagged variant of ClpP is expressed in the cell, substrate

proteins are not degraded but are stably trapped. The trap and associated substrates can

be purified and identified by mass spectrometry (Flynn et al., 2003).
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Figure 1.4: N- and C-terminal CIpX substrate recognition signals

Three classes of N-terminal signals and two classes of C-terminal signals target

substrate proteins for ClpXP degradation (Flynn et al., 2003a).
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Other E. coli proteases

ClpAP and ClpXP use separate ATPases but share a common peptidase. Initially,

ClpAP was identified on the basis of its ability to degraded casein in an ATP dependent

manner in lon- cells (Katayama et al., 1988; Katayama-Fujimura et al., 1987). ClpA

forms 6-membered ring complexes structurally analogous to ClpX (Grimaud et al., 1998).

However, these ATPases are dissimilar in sequences, as ClpA has two ATPase motifs,

whereas ClpX has only one (Gottesman et al., 1990). In vitro, ClpAP degrades ssrA-

tagged substrates, but in the cell a modulator protein, ClpS, may prevent ClpA from

degrading ssrA-tagged substrates (Dougan et al., 2002; Gottesman et al., 1998).

Furthermore, in vitro ClpAP degrades denatured proteins in the absence of a recognition

tag, and ClpS enhances ClpAP-mediated disaggregation and degradation of denatured

substrates (Dougan et al., 2002; Hoskins et al., 2000).

Because the Lon protease degrades substrates involved in diverse cellular

processes lon- mutants are extremely pleiotrophic. Therefore Lon was identified

separately on the basis of several different phenotypes (reviewed in Gottesman, 1996).

As a protease, Lon was initially identified by its ability to suppress degradation of P-

galactosidase nonsense fragments (Bukhari and Zipser, 1973). In the cell, Lon degrades

specific substrates as well as abnormal and unfolded proteins (reviewed in Gottesman,

1996). A very physiologically important Lon substrate, SulA, is discussed in the next

section.

FtsH is a membrane-anchored protease comprised of an N-terminal

transmembrane domain and a large cytosolic domain containing AAA-ATPase and

protease motifs (Krzywda et al., 2002; Niwa et al., 2002). The N-terminal membrane-

associated portion is important for oligomerization and activity (Akiyama and Ito, 2000).

FtsH degrades membrane as well as cytoplasmic proteins (Akiyama et al., 1996; Herman

et al., 1995; Kihara et al., 1995). Degradation by FtsH is important in the heat shock

response and in controlling the lysis vs. lysogeny decision of phage lambda (Herman et

al., 1993; Herman et al., 1995).

Initially identified as a heat shock inducible operon, HslUV is the most recently

described ATPase/protease pair in E. coli (Chuang et al., 1993). HslV, the protease

component, is a bacterial homologue of the eukaryotic 20S proteosome (Missiakas et al.,
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1996). The ATPase component, HslU, is 50% identical to ClpX (Missiakas et al., 1996).

To date, the most physiologically relevant activity of HslUV is degradation of several

proteins also known to be substrates for the Lon protease (Wu et al., 1999). Interestingly,

HslUV transcription is upregulated following DNA damage (Courcelle et al., 2001).

Bulk Proteolysis

Estimates of the rate of bulk protein turnover in E. coli using a variety of methods

suggest that the majority of proteins are relatively stable. Studies measuring the release

of label from intact cells report that only 2-3% of cellular protein is degraded per hour

(Nath and Koch, 1971; Pine, 1970). A proteomic study following a selection of proteins

by 2-D electrophoresis after pulse-chase labeling classify 25% as "unstable" where

unstable proteins have half-lives of 2-23 hours (Mosteller et al., 1980). A similar study

described 3 of 250 proteins as unstable (Larrabee et al., 1980). In these studies, even

proteins classified as "unstable" will last for several cell generations. It is useful to

contrast this general stability with the extreme instability observed for some of the stress-

response proteins discussed later in this thesis.

What sort of a proteolytic load do these 5 proteases share? Using data from the

literature, one can make a "back of the envelope" estimate of the responsibilities of the

cellular proteases. If 2-3% of the 3 million molecules in each cell are degraded per hour,

1000-1200 protein molecules must be degraded per minute (Nath and Koch, 1971; Pine,

1970; Sauer et al., 2004). Some estimates suggest that 70-80% of the proteolysis in the

cell is accomplished by Lon and ClpXP, so 700-960 molecules must be degraded

between the two proteases per minute (Maurizi, 1992). Naturally, the accuracy of this

estimate depends on the correctness of the parameters used to make it. It is noteworthy

that the measurements of bulk protein degradation were made before the mechanisms and

proteases in E. coli were well understood. More informed choice of timepoints, strains

and conditions might yield a more rapid bulk proteolysis rate.
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LESSONS FROM PROTEOLYSIS DURING STRESS RESPONSES

Overview

The major goals of this thesis are to understand both how protein turnover is

dependent on DNA damage and the consequences of protein turnover during DNA

damage. The most relevant models for this work are detailed mechanisms describing the

degradation of other E. coli proteins during stress responses. The following section

outlines mechanisms of degradation for proteins involved in various environmental stress

responses. Although these substrates are degraded by different proteases, they have

something in common: they are important players in their respective stress response.

Some of these proteins are major regulators, while others are toxic if they persist after the

stress is resolved. These examples provide a major theme: stress-responsive proteins

with important regulatory roles are most likely to have interesting mechanisms to allow

control of degradation.

a32 : Extreme instability allows rapid change; Interacting partners affect stability

E. coli utilizes one standard sigma factor, a70, as well as 6 alternate sigma factors

that target RNA polymerase to transcribe genes required for adaptation to environmental

changes. The heat shock sigma factor, &2, upregulates the transcription of a number of

chaperones, proteases and regulatory factors following heat shock. Levels of 32 increase

transiently following a temperature upshift as a result of both increased protein synthesis

and stability (Morita et al., 1999; Straus et al., 1987). Synthesis increases dramatically

during the first 3-4 minutes of heat shock, but then drops off. This increase in synthesis

coincides with an increase in protein stability-the normal 1 minute half life is increased

at least 8 fold in this initial phase of the heat shock response (Straus et al., 1987). The

extremely short half-life of 32 permits the observed rapid changes in levels (Alberts et

al., 2002).

FtsH is the main protease responsible for 02 degradation, as 02 half life

increases up to 12 fold in cells lacking FtsH (Herman et al., 1995). What controls

differential 0 32 degradation under heat shock conditions? The DnaK chaperone network

(DnaK, DnaJ and GrpE) is involved in regulating 32 activity and stability (Straus et al.,

1990). GroEL/S is also involved in regulating o2 activity and stability (Guisbert et al.,
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2004). In fact, a decrease in the level of GroEl or DnaK results in increased &2 stability,

but it is not know precisely how these chaperones promote 02 degradation by FtsH

(Guisbert et al., 2004; Tomoyasu et al., 1998). Additionally, depletion of the available

GroEL/S or DnaK in the cell by induction of a chaperone substrate increases d2 levels

and activity (Guisbert et al., 2004; Tomoyasu et al., 1998). A working model for 32

control during the heat shock response is that during heat shock, unfolded proteins

compete with o32 for the chaperone network. As cells adapt, available chaperones

increase and can downregulate the availability and activity of 32.

SulA: Protein degradation rate dictates cell survival

Following UV irradiation, cells with mutations in the on gene exhibit a greatly

increased sensitivity and a characteristic long cell shape resulting from a defect in

septation (Howard-Flanders et al., 1964). A variety of post-irradiation treatments that

modulated the severity of this defect were proposed to change the relative rates of new

protein synthesis and DNA repair (Witkin, 1967). Screens for mutations suppressing the

UV sensitivity of lon- strains (or radiation sensitive E. coli B strains) identified a

suppressor that mapped to the SulA gene (Gayda et al., 1976; Johnson and Greenberg,

1975; Witkin, 1947). Subsequently, SulA was proposed to inhibit cell division, and

shown to be induced by DNA damage (George et al., 1975; Huisman and D'Ari, 1981).

In vivo degradation assays following the stability of SulA in wild-type and on-

cells confirmed this model. In wild-type cells, SulA has a half-life of less than 2 minutes

(Mizusawa and Gottesman, 1983). This half-life is increased to 19 minutes in lon- cells

(Mizusawa and Gottesman, 1983). SulA is also a substrate for HslUV, as SulA half-life

increases to over 90 minutes in cells lacking either protease subunit (Wu et al., 1999). It

is noteworthy that although HslUV contributes to SulA degradation, the rapid

degradation effected by Lon is necessary for normal resistance to UV irradiation. This

demonstrates that the rate of turnover for some stress-responsive proteins is important for

survival.
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a s : Use of an adaptor allows conditional proteolysis

The stationary phase sigma factor, &, regulates a network of genes that enhance

cell survival under starvation conditions. Multiple levels of regulation govern the activity

of as. These include control of transcription, translation, protein stability and activity

(reviewed in Ishihama, 2000). During exponential phase, os is very unstable with a half-

life of 1.4 minutes (Lange and Hengge-Aronis, 1994). Changes in oS stability occur at

the onset of starvation as as half life increases to about 10 minutes during stationary

phase (Lange and Hengge-Aronis, 1994). ClpXP is the protease responsible for aS

degradation, and the response regulator RssB governs its growth-phase responsive

turnover (Muffler et al., 1996; Pratt and Silhavy, 1996; Schweder et al., 1996).

In vitro experiments reveal that RssB can interact with both ClpX and s in order

to deliver as for ClpXP degradation (Zhou et al., 2001). RssB stimulates os degradation

more than 10 fold and this stimulation is not seen with unrelated ClpXP substrates (Zhou

et al., 2001). In vitro, amino acid D58 of RssB is phosphorylated by acetyl phosphate,

and this phosphorylation stimulates os degradation by 10 fold (Bouche et al., 1998; Zhou

et al., 2001). One model for growth-phase dependent as degradation is that during

exponential growth, phosphorylated RssB enhances os degradation but during starvation,

dephosphorlyated RssB allows o s accumulation. However, genetic screens have not

identified a specific kinase for RssB (Cunning and Elliott, 1999; Ruiz and Silhavy, 2003).

Furthermore, a nonphosphorylatable D58A mutation in RssB does not eliminate growth-

phase dependent changes in stability, although it does slow degradation during

exponential phase (Peterson et al., 2004). Therefore, RssB contributes to growth-phase

regulated o s degradation, but a precise mechanism remains to be determined.

RseA and LexA: A proteolytic cascade couples environmental signal to changes in

substrate stability

Degradation of two proteins, RseA and LexA, is dependent upon prior processing

events that create protease recognition signals. The mechanism of LexA degradation is

covered in detail in chapter 3, so this section focuses on RseA. E. coli has a distinct

pathway to recognize and respond to extracytoplasmic stress. Extracytoplasmic stress
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resulting from accumulation of unfolded outer membrane proteins in the periplasm is

communicated across the inner membrane to the cytoplasm and causes the activation of

oE (reviewed in Raivio and Silhavy, 2001). Activation of oE results in upregulation of

periplasmic proteases and protein folding factors (Dartigalongue et al., 2001).

In unstressed cells, an anti-sigma factor, RseA, controls oE activity (De Las

Penas et al., 1997; Missiakas et al., 1997). RseA has an N-terminal cytoplasmic domain

that binds oE , a domain that spans the inner membrane, and a C-terminal periplasmic

sensor domain (De Las Penas et al., 1997; Missiakas et al., 1997). Following induction

of extracytoplasmic stress, an inner membrane protease, DegS, cleaves RseA within its

periplasmic domain (Ades et al., 1999; Alba et al., 2002). RseA cleavage by DegS

activates cleavage by another protease, YaeL (Alba et al., 2002; Kanehara et al., 2002;

Walsh et al., 2003). YaeL cleaves RseA on the cytoplasmic side of the membrane and

releases RseA-bound cE into the cytoplasm (Figure 1.5).

The crystal structure of oE bound by the cytoplasmic domain of RseA reveals

that, until RseA is removed, RNA polymerase is sterically blocked from interacting with

oE (Campbell et al., 2003). Trapping experiments reveal that ClpXP and SspB work

together to recognize and degrade the N-terminal RseA fragment (Flynn et al., 2004).

Cleavage of RseA by YaeL occurs between amino acids 108 and 109, creating a ClpX-

recognition signal (VAA) at the new C-terminus (Flynn et al., 2004). Full induction of

the oE regulon requires both ClpX and SspB (Flynn et al., 2004). The response to

extracytoplasmic stress, therefore, requires the action of a proteolytic cascade. Three

proteases act sequentially, each creating a signal for the next, to transmit an

environmental cue into a stress response.
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Figure 1.5: A proteolytic cascade results in release of aE

This schematic shows the proteolytic cascade resulting in release of RseA from

the membrane and activation of the cE regulon (Flynn et al., 2004).
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Summary of lessons from stress response proteins:

Following an environmental stress, proteolysis is vital for optimizing cell

survival. The previous examples are a sampling of the important roles protein

degradation can play: it can allow full induction of a response, prevent toxic effects from

over abundant protein or regulate the duration of a response. These examples show how

E. coli relies on a variety of clever strategies to ensure that the right protein is degraded at

the right time. Some very toxic and transiently expressed proteins, such as SulA, are

naturally unstable. The stability of others, such as 32, depends on the availability of

interacting partners. Furthermore, the use of delivery proteins that are conditionally

expressed or active can allow temporal control of substrate degradation. Finally,

proteolytic cascades linked to an environmental signal, as in RseA, can create or expose

signals for protease recognition. In summary, these examples show that challenges to the

cellular system can provide rich opportunities for identifying new regulatory strategies

for proteolysis.

THESIS OVERVIEW:

This thesis presents an in-depth look at the role of ClpXP in one of the first

characterized bacterial stress responses, the SOS response. In chapter 2, quantitative

proteomics are used to identify new ClpXP substrates and illustrate how an

environmental stress alters protease substrate selection. Next, analysis of LexA

degradation provides a model for linking an environmental stress to a change in protein

degradation. Finally, elucidation of the mechanism of UmuD-mediated UmuD'

degradation by ClpXP shows how an interacting partner can become an accessory factor

to allow conditional degradation.
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CHAPTER 2:

REDEPLOYMENT OF THE E. COLI CLPXP PROTEASE

FOLLOWING DNA DAMAGE

This is a draft of a manuscript to be submitted. Dr. Judit Villet in Professor Steve Gygi's

lab at Harvard Medical School performed and analyzed the quantitative mass

spectrometry, and collected data for and prepared Figure 1B.
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Abstract:

In harsh environmental conditions bacteria exercise precise control over levels of

key proteins to enhance survival. Protein levels depend on the balance between synthesis

and degradation. Our previous studies revealed that a disproportionate number of CIpXP

substrates are stress response proteins. To investigate this observation, we analyzed the

role of ClpXP in one of the most thoroughly characterized environmental stress

responses, the SOS response. We used in vivo substrate trapping coupled with

quantitative mass spectrometry to compare levels of proteins captured with and without

DNA damage. Our results show that capture of about half of the identified proteins

changed more that three-fold in response to stress. Substrates with enhanced capture

include members of the SOS-regulon. CIpXP recognition of non-SOS regulated proteins

was also affected by DNA damage, including the known ClpXP substrates Dps and a'.

This dramatic redeployment of ClpXP suggests an active role for proteolytic control of

protein levels during environmental stress.
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Introduction

Following a switch to adverse environmental conditions, cells must be able to

rapidly adjust their proteome to optimize survival. Efforts to characterize these

adjustments have generally focused on the changes in transcript levels. However,

controlled degradation of specific proteins is also an important regulatory strategy. In

some cases, activation of transcriptional response to stress depends on proteolysis. For

example, induction of the extracytoplasmic stress response relies on release of oE from its

regulator, RseA (Campbell et al., 2003; Missiakas et al., 1997). This release requires two

membrane bound proteases, DegS and RseP (YaeL), as well as the cytoplasmic ClpXP

protease (Alba et al., 2002; Alba et al., 2001; Flynn et al., 2004). In other cases,

proteolysis aids in ensuring appropriate levels of stress-induced proteins. DNA damage

triggers the upregulation of the inhibitor of cell division, SulA. SulA is rapidly turned

over by Lon protease, and in the absence of Lon the accumulation of SulA results in

lethal inhibition of septation in UV-exposed cells (Mizusawa and Gottesman, 1983).

Although these examples illustrate the importance of proteolysis in the cellular response

to stress, the global impact of proteolysis on a stress response is unknown.

Rapid protein turnover might be especially important for the DNA damage

response because many damage-regulated genes encode proteins potentially detrimental

to cells during normal growth. The LexA repressor controls induction of the damage-

response proteins. LexA binds to specific promoter sequences to inhibit expression of

more than 30 members of the SOS regulon (Fernandez De Henestrosa et al., 2000). Upon

DNA damage, exposed single stranded DNA activates RecA, which in turn triggers

autocleavage of LexA. This cleavage results in relief of LexA repression. Genome-wide

transcriptional profiling following DNA damage reveals changes in transcript level for a

number of genes in addition to those directly under LexA control (Courcelle et al., 2001;

Khil and Camerini-Otero, 2002; Quillardet et al., 2003). However, there is little

information about how these changes in gene expression correlate to changes in protein

levels. For a few well-studied proteins, proteolysis has also been shown to play a critical

role. For example, the LexA autocleavage fragments are degraded by both ClpXP and

Lon proteases (Little, 1983a; Neher et al., 2003a). Additionally, components of the
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translession polymerase, DNA pol V, are substrates for the Lon and ClpXP proteases

(Frank et al., 1996; Gonzalez et al., 1998b).

Protein degradation by the ClpXP protease contributes to fitness, as, at high doses

of UV irradiation, loss of ClpX decreases cell survival (Neher et al., 2003b). ClpX is an

ATPase that recognizes substrate proteins, generally by short sequence motifs located

near the N- or C-terminus of the protein. ClpX actively unfolds these substrate proteins

and translocates them into an associated serine peptidase, ClpP (Kim et al., 2000). ClpP

is comprised of two 7-membered rings that stack to make a cylindrically shaped chamber

(Flanagan et al., 1995; Wang et al., 1997). Its serine active sites face the inside of this

cylinder, and when these active sites are mutated, CIpP can function as a substrate trap

(ClpPtra ) inside the cell (Flynn et al., 2003). Using the ClpPtraP, we previously identified

over 50 in vivo ClpXP substrates during normal cell growth (Flynn et al., 2003).

An emerging biological conclusion from this work on substrate identification is

that many stress-response proteins appear to be substrates. These substrates include aS,

Dps, Fnr, RseA, and LexA. Therefore, we were interested in the extent to which ClpXP is

involved in a specific response, and how substrate choice changes with changes in

environmental conditions. Stable isotope labeling with amino acids in culture (SILAC)

allows comparison of relative levels of proteins from two samples by mass spectrometry

(Ong et al., 2002). Use of SILAC in combination with the ClpPraP allowed us to compare

ClpXP substrates captured during normal growth with those captured following DNA

damage. These experiments reveal dramatic changes in substrate capture following

environmental stress. Degradation experiments reveal that many of the identified

proteins are unstable in vivo. Thus, we conclude that a common feature of many proteins

whose gene expression is regulated by stress is that they are intrinsic protease substrates,

allowing their levels to rapidly respond to environmental change.
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Results

Quantitative proteomics reveals a large shift in ClpXP substrate selection in

response to DNA damage.

To measure the changes in ClpXP substrate selection following DNA damage, we

adapted a method for quantitative mass spectrometry (SILAC) to use with our in vivo

trapping system. Briefly, half of a population of cells expressing the ClpPraP grew in

media containing light leucine with the DNA damaging agent nalidixic acid (NA), and

half grew without NA treatment in media containing heavy leucine. We subsequently

mixed equal amounts of the two populations, isolated the ClpPtraP and associated

substrates and determined relative protein ratios by mass spectrometry (Figure 2. 1A). E.

coli are not auxotrophic for leucine. Therefore, to ensure that incorporation of heavy

leucine was complete, we inactivated leuB, an essential enzyme in the leucine

biosynthesis pathway. Cells lacking leuB grew on minimal media only when

supplemented with leucine. Examination of peptides from a sample grown in heavy

leucine revealed only the presence of the heavy isotope with the expected +6 mass units

for each leucine present in the sequence (Figure 2. 1B). Thus, ratio of heavy peptide, to

the identical peptides containing light leucine in the experimental sample is an accurate

means of determining the abundance of a specific protein in the ClpPtraP in the two growth

conditions.

To ensure capture of only ClpXP substrates, trapping was carried out in a clpA-,

smpB- strain. ClpA is an alternate ATPase that can work with ClpP. Loss of smpB

eliminates inactivates SsrA tagging (Karzai et al., 1999). SsrA tags are added

cotranslationally to poplypeptides stalled on the ribosome, and target these incomplete

proteins for ClpXP degradation (Gottesman et al., 1998; Keiler et al., 1996).

Additionally, to ensure that co-purification with ClpPtraP was dependent upon interaction

with ClpX, as expected for ClpXP substrates, we repeated the trapping experiment under

both sets of environmental conditions in cells lacking both clpX and clpA. In the absence

of the ClpX ATPase, 20 proteins reproducibly copurified with ClpP (Table S1). Some of

these proteins also interact/co-purify with proteolytically competent ClpP using a

different purification scheme (Butland et al., 2005).
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Figure 2.1: SILAC allows comparison of substrate trapping with and without DNA

damage. A: An overview of the experimental design. B. Analysis of peptides from a

sample grown in heavy media reveals no incorporation of light leucine. C. The

distribution of ratios of heavy/light (untreated/treated) proteins captured correlates well

with transcriptional changes. D. Trapped substrates were assigned to one of 5 classes.
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We identified at least two peptides from over 100 proteins in the ClpPaP (Table 2.1). The

SILAC ratio changed by more than three-fold for about half of these proteins. About

15% of these substrates overlap with substrates previously trapped in the absence of

DNA damage (Flynn et al., 2003a). The distribution of SILAC ratios (Figure 2. 1C) for

the identified substrates reveals that ClpXP recognizes numerous proteins more

frequently after damage (low SILAC ratio). This analysis also demonstrates that some

proteins are significantly underrepresented in ClpXPtraP in response to DNA damage.

To determine the effect of DNA-damaged induced changes in transcription on the

substrate profile, we used available microarray data to determine for each identified

protein how transcription changes following DNA damage. Transcriptional changes

were considered significant if mRNA levels changed more than 1.5-fold as published in

either of two sources (Courcelle et al., 2001; Quillardet et al., 2003). In general, changes

in transcription correlated well with changes in trapping (Figure 2.1C). However,

transcriptional changes could not account for all of the observed changes in trapping. To

understand these changes in substrate choice, we divided the trapped proteins into 5

classes and studied representative proteins from several of these classes. The fraction of

total trapped protein represented by each of these classes is shown in figure 2.1 D.

Proteins were assigned to classes based on how their trapping changed and how

these changes correlated to transcriptional changes reported by microarray analysis

(Courcelle et al., 2001; Quillardet et al., 2003). For these classifications, we used a cut-

off of three-fold or more in the ratio of proteins trapped with and without DNA damage.

Proteins in class I were overrepresented by three fold or more in the trap following DNA

damage and also showed induced transcription. Similarly, proteins in class II were

underrepresented by three fold or more in the trap following DNA damage and had

decreased transcript levels. Members of classes III and IV had no reported transcriptional

change but were significantly under- and overrepresented, respectively, following DNA

damage. Finally, proteins in class V increased or decreased less than three fold.
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Class I substrates: increased expression leads to increased recognition.

Representative proteins from the Class I include two members of the LexA

regulon, RecN and UvrA. RecN is involved in double strand break repair, and UvrA

functions in nucleotide excision repair (Kidane et al., 2004; Kosa et al., 2004; Sancar,

1996). A simple model for their increased trapping in the light (NA-treated) culture is

that they are more highly expressed. To test this idea, epitope tagged versions of the

genes were expressed using an exogenous promoter and the stability of these proteins

was determined in the presence and absence of NA treatment. Both proteins showed

ClpXP-dependent degradation in vivo, and DNA damage had little or no effect on

degradation (Figure 2.2A). These experiments used N-terminally epitope tagged versions

of RecN and UvrA (see experimental procedures). A N-terminally affixed epitope tag

did not targeted a control protein (Arc-stl 1) for CIpXP degradation (data not shown).

The residual degradation observed in the clpX' strain is not uncommon in bacteria, where

a single substrate is often the target for multiple proteases.

The extreme C-terminal residues of RecN, LAA, are identical to the last three

residues of the SsrA tag (LAA) that are used for ClpX recognition (Flynn et al., 2001;

Gottesman et al., 1998). To determine if these residues direct RecN degradation we

mutated both alanines to aspartic acids. This version of RecN was greatly stabilized

relative to wild-type RecN (Figure 2.2A). Therefore, the RecN's C-terminal alanines are

important determinants for ClpX recognition. Given that ClpXP degrades both UvrA and

RecN in the absence of DNA damage, it is most likely that their increased presence in the

trap following DNA damage is due to increased synthesis. Other Class I members are

listed in Figure 2.2B.

To identify new substrates following DNA damage we initially used conventional

proteomics to identify trapped substrates. Because these trapping experiments did not

utilize SILAC, they can't quantitatively describe changes in substrate capture. However,

these experiments identified several potential new ClpXP substrates that are induced at

the level of transcription after DNA damage (Figure 2.2B). These proteins were not

identified in trapping experiments without a DNA damaging treatment (Flynn et al.,

2003) and therefore are conceptually most similar to class I substrates. Some of these

substrates probably weren't identified by SILAC because they are very small proteins
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Figure 2.2: Characteristics of Class I substrates

A: The ClpX-dependence of in vivo RecN degradation was determined using a N-

terminally epitope tagged version of the protein, as shown at right. Induction of DNA

damage by addition of nalidixic acid did not affect the rate of degradation. The C-

terminal alanines are important, as a variant with alanines mutated to aspartic acids is

stabilized. UvrA is also a stabilized by loss of clpX.

B. Class I substrates identified by SILAC are listed. Additionally, Class I-like substrates

identified by conventional mass spec are listed.

C. Degradation of the ClassI-like substates YebG and DinD is slowed by loss of clpX.

Additionally, SulA and DinI are captured in the ClpPP in greater amounts in cells treated

with nalidixic acid.
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(<100 amino acids) with few leucine-containing tryptic peptides. Indeed, western blots

of trapped proteins show that DinI and SulA are overrepresented in a damage-induced

trap relative to a wild type trap (Figure 2.2C). When N-terminally epitope tagged and

expressed from an exogenous promoter, YebG and DinD show robust ClpX-dependent in

vivo degradation (Figure 2.2C). Interestingly, the C-terminal residues of YebG (HAA)

were again similar to the ClpX-recognition signal from the ssrA tag. YebG levels are

difficult to detect in wild-type cells because degradation of YebG is so rapid. Thus, a

number of DNA-damaged induced proteins are targets for ClpXP degradation. This

analysis suggests that one hallmark of stress response proteins may be mechanisms to

ensure their rapid degradation such that they are only present as long as the signal

responsible for inducing their expression remains.

Class II substrates: decreased expression leads to decreased trapping.

Following DNA damage, some genes show reduced transcript levels, although

this is a much smaller class of genes than those that are induced (Courcelle et al., 2001;

Quillardet et al., 2003). Therefore it follows that there are fewer Class II than Class I

substrates among the trapped proteins. This class, composed of proteins with both a

decrease in transcript level and a decrease in trapping following DNA damage, contains

only two members, MinD and GlgA. One of these, MinD, is involved in cell division site

selection (reviewed in Lutkenhaus, 2002). Quantification of MinD protein level with and

without a DNA damaging treatment revealed that, like transcript levels, protein levels

decrease when DNA damage occurs (Figure 2.3A). In vivo degradation experiments

show that MinD is degraded in a ClpX-dependent manner (Figure 2.3B). However, DNA

damage did not alter the rate of degradation (Figure 2.3B). Therefore, decreased MinD

trapping after DNA damage is likely a reflection of the decreased cellular levels.
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Figure 2.3: MinD degradation

A. Cellular MinD levels, as assayed by Western Blot, are decreased following DNA

damage.

B. MinD is stabilized in vivo in clpX- cells relative to wild-type cells. The degradation

rate is not affected by DNA damage.
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Class III and IV substrates: differential trapping without changes in gene expression.

Many of the ClpXP captured proteins that were differentially trapped in the

presence and absence of DNA damage are not regulated at the transcriptional level during

the damage response. These proteins included substrates that were preferentially trapped

in undamaged cells (Class III) as well as proteins preferentially trapped after damage

(Class IV). Several possible mechanisms could underlie the changes in ClpXP-

recognition of individual proteins in these classes. First, constant transcript levels may

not reflect constant protein levels; alterations in translation or susceptibility to other

proteases may change the cellular levels of the Class III and IV substrates after DNA

damage. Furthermore, changes in interacting partners could either protect potential

substrates from degradation or target specific proteins to ClpXP. Finally, a large number

of potential ClpXP substrates compete for a small pool of the protease (Ortega et al.,

2004) (Farrell et al., submitted). A rapid influx of new substrates following

environmental stress could compete with the substrates recognized under non-stressed

conditions for ClpXP recognition.

Two well-characterized ClpXP substrates, Dps and oc, are clearly under-

represented (-4.5-fold and 7-fold respectively) in ClpXPraP after DNA damage (Figure

2.4) and are therefore members of Class III. Dps is the major DNA-binding protein in

stationary phase cells and is though to protect DNA from oxidative damage (Ali Azam et

al., 1999; Martinez and Kolter, 1997). a' is the stationary phase sigma factor, and a key

transcriptional regulator of many stress-response genes (Hengge-Aronis, 1999). Cellular

levels of both &oand Dps are regulated in part by regulated proteolysis by ClpXP

(Schweder et al., 1996; Stephani et al., 2003). For example, both proteins are rapidly

degraded during exponential growth and then stabilized as cells enter stationary phase

(Almiron et al., 1992; Lange and Hengge-Aronis, 1994). Regulated degradation of o

(but not Dps) requires the adaptor protein RssB (Muffler et al., 1996; Zhou et al., 2001).

To test whether changes in Dps and os protein levels after DNA damage were

responsible for their under-representation in ClpXPtraP, we determined the intracellular

protein levels by Western blotting. Levels were measured in cells lacking ClpP, as the

trapping strain is clpP-. The amount of Dps and as did not change after treatment with a

DNA-damaging agent, nalidixic acid (Figure 2.4). Therefore, the observed change in
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trapping was not due to a change in protein levels, but rather reflects a redirection of

ClpXP away from these two substrates (see Discussion).

In contrast to the behavior of Dps and oY, other ClpXP substrates were over-

represented in ClpXPt rP' in the damaged culture (Class IV). This class included three

ribosomal proteins: L10O (rplJ), S7 (rpsG) and L15 (rplO). We noticed that two of these

proteins, L10 and S7, function as translational repressors for their respective ribosomal

protein operons (Keener and Nomura, 1996). L10 is also rapidly degraded in vivo when

overproduced in the absence of its binding partners (L7/L12) (Petersen, 1990).

Furthermore, L1 0 has a C-terminal AA sequence, and is rapidly degraded by ClpXP in

vitro (J. Flynn personal communication). Translational repression by free ribosomal

subunits occurs to allow cells to synthesize ribosomal components in balance as well as

to down-regulate the synthesis of these components when growth rate slows. Therefore,

we considered the possibility that L10 and S7 (and perhaps other proteins) were over-

represented in the ClpXPaP in the DNA-damaged culture as an indirect result of the

expected decreased growth rate of cells after DNA damage. In the original experiment,

trapping in both cultures was done for 3 hours, and as a result of the different growth

rates, the untreated cells were harvested at a higher OD60 (1.7 compared to 1.0) and

thus were likely entering stationary phase at the time of harvest.

To test whether growth-phase regulation was responsible for the differential

trapping of some substrates, the SILAC experiment was repeated. Parallel cultures were

again grown with either heavy or light leucine, and the light leucine culture was treated

with NA. However, in this experiment, both cultures were harvested after trapping for

different amounts of time but at the identical OD600 of 1.0. As expected for growth-phase

regulators, L10 and S7 were trapped much more similarly in these two cultures, having

SILAC ratios near one (Figure 2.5A). Thus, we suggest that these proteins are efficiently

recognized and degraded by ClpXP when cells are in log phase, but that upon entry into

stationary phase, CIpXP degradation is repressed to allow the proteins to accumulate and

assume the function as repressors of translation. Five proteins of the approximately 20

class IV substrates showed significant growth-phase specific change in SILAC ratio: L10,

S7, L15 and two RNA helicases, Rho and DeaD (Figure 2.5A). The majority of proteins

in this class, such as CarA, did not change greatly (Figure 2.5A).
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Figure 2.5: Effects of growth phase on trapping

A. The decreased trapping observed for 5 substrates from class IV was not seen when the

treated and untreated samples were harvest at an equal OD. However, trapping for many

substrates, such as CarA, was unaffected by OD.

B. Increased trapping in the undamaged sample for two substrates from Class III was not

observed when the samples were harvested at equal ODs.
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Interesting, two of the approximately 20 Class III substrates also showed

significant changes in SILAC ratios when the cultures where harvested at the same OD

(Figure 2.5B). These proteins included an enzyme involved in peptidoglycan synthesis,

dacC, [penicillin-binding protein 6], as well as a protein of unknown function (ydaM).

The implication is that these proteins may be stable in log phase cultures, but become

ClpXP substrates as cell growth slows in stationary phase. In contrast, other class III

substrates such as CysA did not show significant growth dependent changes (Figure 5B).

Furthermore, the SILAC ratios of the Class I substrates were not dramatically different in

the two experiments.

Non-degradable RecN affects cell survival

Among members of the SOS regulon, RecN is distinguished by extremely rapid

transcriptional induction, as mRNA levels increase approximately 20-fold within the first

5 minutes of DNA damage (Courcelle et al., 2001). Intriguingly, our experiments indicate

that RecN has a very short half-life. Why should the cell invest so heavily in production

of this short-lived protein? Studies in B. subtillus suggest that RecN localizes to repair

complexes following DNA damage and may help to recruit other repair proteins (Kidane

et al., 2004). Furthermore, in vitro experiments using B. subtillus proteins show that

RecN forms multimeric complexes on ssDNA that RecA can disassemble (Sanchez and

Alonso, 2005).

These results led us to ask if persistence of RecN is harmful. Cells lacking RecN

are extremely sensitive to agents such as bleomycin that cause double-stranded breaks

(Kosa et al., 2004; Picksley et al., 1984). Therefore, we tested the effects of expressing

plasmid-borne RecN or the stable version of RecN, RecN-DD, on bleomycin sensitivity.

In a wild-type strain, induction of both RecN and RecN-DD increased bleomycin

sensitivity relative to an empty plasmid (Figure 2.6A). However, this effect was more

pronounced with RecN-DD. In clpP- or clpX- strains, cells expressing RecN and RecN-

DD were equally sensitive to bleomycin (Figures 2.6B,C). Western blots showed that

RecN-DD is about 4-fold more abundant than RecN in a wild-type strain, but protein

levels are approximately equal in the protease deficient strains. Therefore, the cell might

need RecN in a very specific quantity for a very limited time, and proteolysis helps to

ensure this balance and timing.
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Figure 2.6: RecN degradation affects cell survival

A. When exposed to the DNA damaging agent bleomycin, cells expressing plasmid-

borne degradable recN (RecN-AA) had greater survival than those expressing non-

degradable RecN (RecN-DD).

B, C. This effect was not seen in cells lacking ClpX or ClpP.
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Discussion

E. coli must reshape its proteome to respond to environmental challenges. New

protein synthesis and protein degradation are partners in this restructuring. Our results

indicate that substrate selection by the ClpXP protease is a dynamic, environmentally

responsive process. DNA damage results in increased capture of not only damage-

induced substrates, but also of proteins with no known damage-dependent regulation.

Interestingly, our results also reveal a damage-dependent, transcription-independent

decrease in the capture of several known ClpXP substrates. Examination of substrates

did not reveal a specific unifying feature or peptide motif to upregulate or downregulate

degradation following DNA damage. Rather, we expect that unique factors may

contribute to the observed changes in trapping for individual or small groups of proteins.

One feature that emerges from these trapping experiments is that stress-inducible

proteins may be unusually labile to proteolysis. In E. coli, bulk proteolysis proceeds at a

very modest 2-3% degraded per hour, and some experiments indicate that the majority of

proteins have half-lives longer than a cell generation (Mosteller et al., 1980; Nath and

Koch, 1971; Pine, 1970). Furthermore, a number of E. coli proteins are so stable that

their degradation is virtually undetectable (Kirschbaum et al., 1975; Powell et al., 1973).

In contrast, our results and previous results show that 8 of the approximately 30 proteins

in the E. coli SOS regulon are captured or degraded by ClpXP (Frank et al., 1996; Neher

et al., 2003b). Additionally, UmuC and SulA are known substrates for the Lon protease

(Frank et al., 1996; Mizusawa and Gottesman, 1983). In several cases (RecN, LexA

fragments, SulA, YebG), degradation is very rapid with protein half lives of only a few

minutes.

Strong proteolytic regulation of the levels of stress-responsive proteins could

allow the cell to maintain precise control over the duration of the stress response. Our

experiments and others suggest that in many cases instability is directly encoded in these

stress-responsive proteins by protease-recognition motifs. For example the C-terminal

residues of SulA directly interact with Lon, and autocleavage of LexA reveals an encoded

ClpX-recognition motif (Ishii and Amano, 2001; Ishii et al., 2000; Neher et al., 2003b). If

stress-responsive proteins are naturally unstable, then their levels will fall rapidly after

loss of the inducing signal ensuring a rapid return to a more normal physiological state.
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A potential implication of this work is that instability may be a general feature of

members of other stress-inducible regulons.

In addition to these damage-inducible, intrinsically recognized substrates,

trapping also increased for a number of proteins with no known damage-dependent

transcriptional induction. One Class III substrate, GyrB, is a good candidate for a

damage-dependent change in accessibility to ClpXP. Two subunits of GyrB associate

with two subunits of GyrA to make DNA gyrase, an enzyme that introduces negative

supercoils into DNA. It is the cellular target of nalidixic acid, which causes DNA

damage by trapping the DNA-gyrase complex after DNA cleavage and prior to DNA

reunion (reviewed in Drlica and Zhao, 1997). Studies using oxolinic acid (a drug in same

4-quinolone family as nalidixic acid) suggest that following drug treatment, gyrase can be

released to generate free DNA ends (Chen et al., 1996). However this release, like

naldixic acid toxicity, is dependent on new protein synthesis (Chen et al., 1996; Deitz et

al., 1966). These results suggest a possible model for the increase in GyrB trapping

following nalidixic acid treatment. When DNA gyrase is bound to DNA, it may be

inaccessible to ClpXP. However, following treatment the trapped gyrase complex could

be released resulting in increased protease susceptibility.

In contrast, DNA damage may decrease ClpX access to some substrates resulting

in a reduction in trapping. We suspect that this may explain the reduction in DPS and oc

trapping. Degradation of both proteins is regulated by very specific stress signals. For

oS, this regulation relies on the adaptor protein RssB (Muffler et al., 1996). RssB does

not regulate DPS degradation, but the highly regulated nature of DPS degradation

suggests that a similar, as yet unknown factor may (Stephani et al., 2003).

Overexpression of the adaptor protein SspB decreases trapping of both DPS and oS, as

assayed by 2-D gel electrophoresis (J. Flynn, unpublished). However, we did not observe

a DNA-damage dependent change in SspB levels. This suggests the existence of a

damage-inducible factor that blocks DPS and os recognition in a SspB-like manner.

Importantly, trapping of approximately half of the identified substrates does not

change dramatically. One known ClpXP substrate, Fnr, falls into Class V. Fnr, is a

transcriptional regulator controlling the physiological switch between aerobic and

anaerobic growth conditions (Khoroshilova et al., 1997). It is a CIpXP substrate both in
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vivo and in vitro (P. Kiley/E. Merrett personal communication). These results indicate

that some substrates are consistently degraded with high priority, despite a damage-

dependent influx of new substrates.

Following environmental stress, a cell must use all of its regulatory tools to

optimize survival. By utilizing quantitative proteomics to compare ClpXP substrate

selection with and without DNA damage, our studies reveal the dynamic nature of

protease substrate selection. Rather than identifying a single degradation signal we find

that substrates and proteases use versatile strategies to ensure degradation of the right

protein at the right time. The multiple changes that we observe suggest new strategies for

proteolytic regulation.
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Materials and Methods

Strains and plasmids

The strain used for trapping was generated by deleting the leuB gene as described

(Datsenko and Wanner, 2000) from W3110 ASmpB-1 (Karzai et al., 1999). Additional

protease mutants (clpX::Kan, clpP::Cm) were introduced by P1 transduction. A plasmid

expressing the ClpPtr P was derived from pJF105 (Flynn et al., 2003). The Myc affinity

tag was replaced with a streptavidin affinity tag by digesting pJF105 with SpeI and

HinDIII and inserting an oligo cassette encoding the streptavidin tag. The final C-

terminal appended tag is: DSILTHRNRSHHHHHGGENLYFQGAYTSWSHPHFEK.

For expression of epitope-tagged substrates, Invitrogen pBAD plasmids were used. N-

terminally epitope tagged constructs were amplified from genomic DNA and cloned in to

pBAD His A to give a native C-terminus. N-terminally tagged substrates were cloned

into the following sites: YebG: EcoRI and BglII, RecN: SacI and HinDIII, DinD: Bgl II

and KpnI, UvrA: Xho I and HindIII, arc-stl 1 control: XhoI and KpnI. The C-terminal

AA to DD variant of RecN was generated using Quickchange.

In vivo trapping/metabolic labelling

EZ rich defined media lacking leucine (Teknova) containing 100 [tg/mL

ampicillin was used for trapping. For heavy and light media, respectively, U13C leucine

(Cambridge Isotopes) or light leucine (Sigma) was added at a final concentration of 0.8

mM. Overnight cultures grown in light defined media were pelleted, washed,

resuspended in the appropriate media and used 1:1000 to inoculate trapping cultures.

Cells were grown to an OD600 of 0.2 at 30°C, and nalidixic acid (Sigma) was added to 50

,tM to the light culture. At ODo 0.4, cells were induced with 0.2 mM IPTG and grown

for an additional 3 hours. Cells were harvested by centrifugation, resuspended in 3

mL/gram buffer N1 (50 mM sodium phosphate pH 8, 300 mM NaCl, 10% glycerol, 5

mM Imidizole), mixed and lysed by French press. To mix an equal number of cells,

OD600 prior to harvesting, OD600 of resuspended cells and weight of cell pellet for heavy

and light cultures were measured. These measurements were in good agreement, and so

the OD6o of resuspended cells was used. Lysate was cleared by centrifugation, and .8

mL/L starting culture Ni-NTA beads (Quiagen) were added to the supernatent. After
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incubation at 40C with rocking for 2 hours, beads were poured in a column and washed

with 400 mL N , 200 mL N1 with 20 mM imidizole, and eluted with 6 mL N1 with 500

mM imidizole. Eluate was added to 4 mL streptactin superflow beads (IBA) and

incubated at 40C with rocking for 4 hours. Beads were poured in a column and washed

with 200 mL S1 (50 mM sodium phosphate pH 8, 1 M NaCI, 10% glycerol). The beads

were batch eluted using S2 (50 mM sodium phosphate pH 8, 300 mM NaCl, 10%

glycerol, 5mM biotin), and eluate was concentrate using an Amicon ultra spin column

(Millapore). For in vivo trapping without metabolic labeling, samples were prepared

essentially as described, except that nalidixic acid was added prior to induction of the

ClpPraP (Flynn et al., 2003a).

Mass Spectrometry

Samples for quantitative mass spectrometry were separated by 12.5% SDS-PAGE

and trypsinized out of the gel using trypsin gold (Promega) according to the

manufacture's protocol. Quantitative mass spectrometry was performed essentially as

described (Everley et al., 2004). For non-quantitative mass spectrometry, sample

preparation and identification are as described (Flynn et al., 2003).

In vivo degradation and Western blotting

For In vivo protein degradation using plasmids, proteins synthesis was induced

with .01% arabinose 30 minutes prior to the start of the timecourse. To test the effects of

DNA damage, nalidixic acid was added to 50 M for 30 minutes prior to the start of the

timecourse. Protein synthesis in exponentially growing W3110 and W3110 clpX::Kan

cells was stopped with 100 mg/mL chloramphenicol. Timepoints were sampled on ice

cold TCA for a final concentration of 5%. Samples were pelleted, washed with 100%

acetone and resuspended in SDS loading buffer. Following separation by SDS-PAGE,

samples were transferred to PVDF (Millapore), and Western blots were performed

according to the manufacture's protocol for ECF substrate (Amersham). Degradation of

N-terminally epitope tagged substrates (RecN, YebG, DinD, Arc-stl 1) was followed

using a-express antibody (Invitrogen). Degradation of C-terminally epitope tagged

substrates (UvrA, Arc-stl 1) was followed using a-Myc antibody. Antibodies for DinI,

59



DPS, SulA, and MinD were kindly provided by Daniel Camerini-Otero, Regina Hengge,

Mike Maurizi and Lawrence Rothfield, respectively.

Bleomycin sensitivity

Bleomycin was obtained from Sigma, and assays were performed essentially as described

(Kosa et al., 2004). Induction of plasmid borne RecN, RecN-DD or the empty pBAD-

His-A plasmid was achieved by addition of .1% arabinose at OD60 0.1. Assays were

started with the addition of Bleomycin at OD 0.3. All assays were done at least in

triplicate.
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Table 1: SILAC ratios of captured ClpXP substrates
gene class PeDtides H/L ratio STDEV Array function
asnA 1 2 0.04 0.02 2.8 (1) Asparagine synthetase A
rplM 3 2 0.07 0.02 no 50S ribosomal subunit L13
ydbK 3 2 0.08 0.01 no Probable oxidoreductase
hslV 3 2 0.09 0.05 no protease subunit
recN 1 7 0.10 0.02 20 (2) DS break repair
fabG 3 2 0.11 0.03 no 3-Ketoacyl-ACP reductase
deaD 1 9 0.11 0.06 1.92 (1) RNA helicase
murA 3 2 0.12 0.04 no peptidoglycan synthesis
cysk 3 2 0.13 0.06 no Cysteine synthase
rplE 3 4 0.14 0.01 no 50S ribosomal subunit L5
uvrA 1 4 0.14 0.04 7.0 (1) Excision nuclease subunit A
cysJ 3 3 0.14 0.03 no Beta-subunit cystine synthesis
rpsG 3 2 0.15 0.02 no 30S ribosomal subunit protein S7
rplD 3 2 0.17 0.01 no 50S ribosomal subunit protein L4A
pta 3 2 0.17 0.05 no Conversion of acetate to acetyl-CoA
gyrb 3 8 0.18 0.03 no DNA gyrase, subunit B
rpoD 1 2 0.19 0.03 2 (2) sigma 70
rfaE 3 3 0.19 0.01 no Inner core lipopolysaccharide synthesis
rplJ 3 3 0.20 0.02 no 50S ribosomal subunit L10
rho 3 3 0.21 0.04 no Transcription termination factor
glyA 3 2 0.22 0.02 no Serine hydroxymethyltransferase
lepA 3 5 0.26 0.03 no GTPase like
bioC 3 2 0.28 0.01 no Biotin biosynthesis
carA 3 2 0.29 0.02 no arginine biosynthesis
rapA 1 2 0.30 0.01 2 (2) RNA polymerase recycling
yfgB 1 3 0.30 0.05 2.1 (2) unknown
sucC 3 3 0.30 0.09 no Succinyl-CoA synthetase beta-subunit
rplB 3 3 0.32 0.04 no 50S ribosomal subunit protein L2
sthA 3 2 0.33 0.04 no pyridine nucleotide transhydrogenase
rplO 1 2 0.34 0.01 1.84 (1) 50S ribosomal subunit protein L15
tig 5 2 0.37 0.01 no trigger factor
dcrB 5 4 0.37 0.05 no phage absorbtion factor
yefl 5 2 0.38 0.19 no unknown,glycosyltransferase like
acnB 5 5 0.38 0.07 no Aconitase
yibN 5 3 0.38 0.05 no unknown
rpsA 5 4 0.40 0.05 no 30S ribosomal subunit protein SI
rpoA 5 3 0.40 0.05 2.6 (1) RNA Pol A subunit
yciW 5 3 0.41 0.00 no unknown, oxidoreductase-like
yaeT 5 3 0.42 0.02 1.7 (1) unknown
clpx 5 3 0.45 0.05 no Protease subunit, ATPase
oxaA 5 2 0.46 0.04 no helps insert proteins into membrane
metk 5 2 0.47 0.03 no Methionine adenosyltransferase
fur 5 2 0.49 0.04 no Ferric uptake regulation
prs 5 2 0.49 0.06 no Phosphoribosylpyrophosphate synthetase
fir 5 2 0.50 0.03 no Fumarate-nitrate-reductase
pnp 5 3 0.52 0.10 no Polynucleotide phosphorylase
hslU 5 3 0.53 0.06 1.7 (2) Protease subunit, ATPase
rfbc 5 2 0.53 0.04 no dTDP-4-deoxyrhamnose-3,5-epimerase
lpdA 5 4 0.53 0.07 no Lipoamide dehydrogenase
sdhA 5 2 0.54 0.02 no Succinate dehydrogenase subunit
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gene class PeDtides H/L ratio
bfr 5 3 0.55
fusA 5 6 0.55
aceF 5 2 0.57
infB 5 6 0.58
ffh 5 2 0.62
yrbD 5 2 0.63
thrS 5 4 0.66
sucA 5 4 0.66
yefG 5 3 0.67
rne 5 4 0.69
yjjk 5 7 0.72

mreB 5 4 0.72
nuoG 5 2 0.72
dnaJ 5 3 0.73
yaeQ 5 2 0.74
yqaB 5 2 0.79
atpB 5 5 0.79
ribD 5 2 0.83
exbb 5 3 0.83
ndh 5 13 0.86
purD 5 2 0.93
purA 5 2 0.94
secD 5 2 0.95
eno 5 2 1.01
ahpF 5 2 1.02
hisB 5 4 1.06
znuA 5 6 1.06
clpP 5 8 1.14
yrbH 5 5 1.14
arcA 5 4 1.14
yhbJ 5 4 1.29
dacA 5 4 1.43
xerd 5 3 1.50
guaA 5 5 1.53
cyoA 5 3 1.74
acrB 5 3 1.78
znuc 5 2 1.85
cysD 5 3 2.01
metQ 5 6 2.10
ydgA 5 2 2.22
rsd 5 2 2.53
purM 4 3 3.22
pflB 4 2 3.34
minD 2 2 3.63
pykA 4 4 3.78
cysA 4 6 4.14
dps 4 5 4.30
cysC 4 2 4.40
adhE 4 2 4.82
yfbG 4 2 5.46
ftsA 4 2 5.48
oppF 4 3 6.48

STDEV
0.04
0.07
0.02
0.12
0.12
0.02
0.01
0.04
0.05
0.02
0.08
0.07
0.00
0.12
0.01
0.09
0.07
0.19
0.04
0.10
0.01
0.01
0.08
0.07
0.05
0.09
0.05
0.12
0.09
0.11
0.17
0.08
0.07
0.14
0.11
0.13
0.27
0.24
0.30
0.47
0.07
0.12
0.38
0.35
0.37
0.48
0.28
0.25
0.53
3.26
0.50
1.61

Array
no
no
1,95 (1)

no
no
no
no
no
no
no
no

no

no
no
no
no
no
no
no
1.7 (1)

1.62(1)
1.8 (1)

no
no
no
no
no
no
no
no
no
no
no
1.8 (2)
1.8 (1)

no
no
no
no
no
1.7 (2)
no
no
.45 (2)
no
no
no
no
no
no
no
no

function
iron storage
translation elongation factor
Pyruvate dehydrogenase
initiation factor
4.5S-RNP protein, SRP
unknown
threonyl-tRNA synthetase
alpha keto gluterate dehydrogenase
possible glycosyltransferase
mRNA trunover, processing
unknown,, ABC transporter binding?
chromosome movement/segregation?
NADH:ubiquinone oxidoreductase
chaperone
unknown
putative phosphatase
membrane bound ATPase
riboflavin biosynthesis
iron uptake
NADH dehydrogenase
Phosphoribosylglycinamide synthetase
Adenylosuccinate synthetase
membrane component of protein export
glycolytic enzyme
Alkyl hydroperoxide
IGP dehydratase, histidinol phosphatase
ABC zinc transporter
protease
Arabinose 5-phosphate isomerase
2-component redox response regulator
unknown
Peptidoglycan synthesis
recombinase
GMP syntahase
Cytochrome oxidase
drug eflux pump
ABC transporter for zinc
Sulfate adenylyltransferase
D-methionine transport
unknown
regulates sigma 70
Phosphoribosylaminoimidazole synthetase
Pyruvate formate-lyase
membrane ATPase activated minC
pyruvate kinase
Sulfate permease
stationary phase DNA binding
Adenylylsulfate kinase
alcohol dehydrogenase
associated w/ ssra/smpb comples
septation at Z ring
component of peptide transporter
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gene class Peptides H/L ratio
ydam 4 3 7.04

rpoS 4 14 7.48
putA 4 2 8.07
cysN 4 2 8.58
gldA 4 2 8.77
metE 4 3 12.32
adhP 4 2 13.29
gadA 4 3 15.69
sip 4 2 16.16
ycbW 4 2 22.79

glgA 2 3 24.25
dacC 4 2 24.38
argM 4 8 26.19

STDEV Array Function
1.37

1.10
1.25
1.82
1.59
5.14
0.92
8.28
7.69
2.48

6.00
1.01

20.30

no

no
no
no
no
no
no
no
no
no

.39 (2)
no

unknown

Stationary phase sigma
proline dehydrogenase
ATP sulfurylase
glycerol dehydrogenase
methyltransferase
alcohol dehydrogenase
glutamate decarboxylase
carbon starvatin outer membrane
unknown

glycogen biosynthesis
Peptidoglycan synthesis

no amino acid catabolism

Table 1: SILAC rations of captured substrates. The Peptides column indicates the
number of unique peptides used in determining the SILAC ratios. H/L is the ratio of
heavy (untreated) to light (treated) peptides for each sample. The array column gives
information about transcriptional changes from two published sources: Courcelle et al.
(1) and Quillard et al. (2).
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Table S1: ClpP interactors from clpX, clpA- cells

gene GI P-interactor?*
atpA 399079 no
atpD 16131600 no
carB 16132067 no
crp 16131236 no
dnaK 16128008 yes
ftsZ 16128088 no
glmS 1790167 no
groL 16131968 yes
lacZ 114939 no
ion 16128424 no
ompA 49176370 no

recA 16130606 yes

rplP 16131192 no

rpoB 16131817 no

rpoC 16131818 yes

rpsJ 16131200 yes
slyD 16131228 no
trkA 16131169 no

tufAIB 1789737 yes

yeiE 49176192 no

* From Butland et al., Nature 433(7025):531-7
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CHAPTER 3:

LATENT CLPX-RECOGNITION SIGNALS ENSURE

LExA DESTRUCTION AFTER DNA DAMAGE.

This chapter was originally published in Genes and Development 17: 1084-9

(2003) as Neher, S.B., Flynn, J.M. Sauer, R.T., and Baker, T.A. J.M. Flynn originally

identified LexA as one of the substrates captured by ClpPtraP during normal growth. R.T.

Sauer and T.A. Baker assisted in preparation of the manuscript.
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Abstract

The DNA-damage response genes in bacteria are upregulated when LexA

repressor undergoes autocatalytic cleavage stimulated by activated RecA protein. Intact

LexA is stable to intracellular degradation but its auto-cleavage fragments are degraded

rapidly. Here, both fragments of LexA are shown to be substrates for the ClpXP

protease. ClpXP recognizes these fragments using sequence motifs that flank the auto-

cleavage site but are dormant in intact LexA. Furthermore, we find that ClpXP

degradation of the LexA-DNA binding fragment is important to cell survival after DNA-

damage. These results demonstrate how one protein-processing event can activate latent

protease-recognition signals, triggering a cascade of protein turnover in response to

environmental stress.
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INTRODUCTION

Protein degradation plays a critical role in allowing cells to adjust to changing

conditions. Intracellular proteolysis is an essential component of many response

pathways that permit bacteria to survive or recover from DNA damage, heat shock, or

attack by reactive oxygen species (Gerth et al., 1998; Mizusawa and Gottesman, 1983;

Robertson et al., 2002). In addition to stress-related regulatory functions, proteases serve

to degrade damaged proteins as well as undamaged proteins that the cell no longer needs

under a new set of environmental conditions. In each of these examples, one can ask the

same question: what mechanisms allow intracellular proteases to degrade the appropriate

substrates at the right time?

In bacteria, many intracellular proteases (e.g., ClpXP, ClpAP, and HslUV) divide

the tasks of substrate recognition and proteolysis between a hexameric AAA+ ATPase

and a multi-subunit peptidase with an internal degradation chamber (reviewed in

Gottesman, 1996). The ATPase (ClpX, ClpA or HslU) recognizes specific substrates,

unfolds these proteins, and translocates the denatured polypeptide into the peptidase

(ClpP or HslV) chamber for degradation (Kim et al., 2000). In many instances, the

ATPase components recognize substrates via specific peptide motifs, often at their N- or

C-termini (Flynn et al., 2003a; Gonciarz-Swiatek et al., 1999; Levchenko et al., 1995).

For example, the ssrA degradation tag, an 11-residue C-terminal peptide sequence,

targets proteins for degradation by ClpXP and ClpAP (Gottesman et al., 1998). For some

substrates, such as the stationary-phase sigma factor ('), accessory proteins are needed

for efficient degradation, allowing regulation of proteolysis through the synthesis or

modification of these factors (Becker et al., 1999; Zhou et al., 2001). Here we provide

evidence for an alternative mechanism of regulated degradation: We find that complete

degradation of the LexA repressor requires an initiating cleavage event that is regulated

in response to DNA damage.

The SOS regulatory system in E. coli controls the cellular response to DNA

damage (reviewed in Freidberg et al., 1995). Under normal conditions, LexA repressor

dimers negatively regulate the expression of genes involved in DNA repair, replication,

and cell division. After DNA damage, single-stranded DNA is exposed and is bound by
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the RecA protein. This event activates RecA, which then stimulates the auto-cleavage of

LexA at a site between its N-terminal DNA binding domain and its C-terminal

dimerization domain (Little, 1984; Phizicky and Roberts, 1981). The resulting N- and C-

terminal fragments are then degraded rapidly (Little, 1983a). The C-terminal fragment is

stabilized approximately 10-fold in Lon-defective cells (Little, 1983b), but the protease

that degrades the N-terminal fragment has not previously been identified.

In recent proteomic experiments, we identified tryptic fragments from E. coli

proteins that were trapped in vivo within a proteolytically inactive ClpP variant (ClpPuP)

and found that some peptides originated from LexA (Flynn et al., 2003). Western blots

of the undigested trapped proteins indicated that the two auto-cleavage fragments of

LexA represented the dominant captured forms. This result suggested that these

autocleavage fragments might be CIpXP substrates. Here, we show that ClpXP degrades

the autocleavage fragments of LexA, but not full-length LexA, both in vivo and in vitro.

Recognition of these fragments for destruction occurs via peptide signals created or

exposed by the initial auto-cleavage event. The use of these latent recognition signals

allows specific recognition and degradation of the LexA fragments by ClpXP at the

biologically appropriate time-after LexA has undergone RecA-stimulated self-cleavage in

response to DNA damage.
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RESULTS AND DISCUSSION

The LexA auto-cleavage fragments are ClpXP substrates.

Capture experiments using ClpPtraP were performed in E. coli exposed to the

DNA-damaging agent nalidixic acid. The ClpPtraP is an inactive (S97A) affinity tagged

variant of ClpP that, when expressed in cells, allows the capture and purification of

physiological ClpXP substrates (Flynn et al., 2003). A western blot of the trapped

material revealed two bands that cross reacted with anti-LexA antibodies and had the

same electrophoretic mobilities as the LexA'84 and LexA8s 202 fragments generated by

autocleavage of purified LexA (Figure 3.1A). No full-length LexA was detected in the

trapped material although we observed approximately 20 ng of each cleavage fragment

and could detect as little as 1 ng of LexA protein. Furthermore, when purified LexA was

added to a sample of the trapped material and prepared for western blotting, this protein

was efficiently detected, indicating that full-length LexA could have survived this

procedure. Trapping required ClpX as the LexA fragments were not detected in material

isolated from clpX cells (Flynn et al., 2003). We conclude that ClpX recognizes the two

auto-cleavage fragments but not full-length LexA.

To determine the stability of the various forms of LexA in vivo, we induced the

DNA-damage response with nalidixic acid, blocked protein synthesis, and measured the

half-lives of intact LexA and the two cleavage fragments. The N-terminal LexA1 -84

fragment was rapidly degraded in a wild-type strain (half-life 2-5 min) but was not

degraded to any detectable extent in an otherwise isogenic clpX strain (Figure 3. 1B).

The C-terminal LexA 85 202 fragment was also unstable in wild-type cells (half-life -1 min)

but was only stabilized modestly in the clpX- cells (half life -2 min), presumably because

Lon protease also contributes to its degradation. Full-length LexA appeared to be

reasonably stable to degradation in the wild-type and clpX' strains, although it was

susceptible to continued auto-cleavage (Figure 3. 1B).

To determine if the LexA fragments were indeed ClpXP substrates, we assayed

for degradation in vitro. Purified LexA, LexA -84 and LexA8 202 were incubated with

ClpXP and an ATP regenerating system, and degradation was assayed by SDS-PAGE
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Figure 3.1. LexA auto-cleavage fragments are captured and degraded by ClpXP.

A. Western blot using anti-LexA antibodies of the LexA species captured by the ClpP"P

and generated by auto-cleavage in vitro.

B. The proteolytic stability of LexA, LexA' -84 and LexA8 5 -202 in vivo was determined in

clpX+ (MC4100) and clpX- (SG22101) strains bearing plasmid pJL42. DNA damage was

induced using nalidixic acid, and stability was measured after stopping protein synthesis.

LexA was detected using anti-LexA antibody. LexA, LexA 1' 84 and LexA 8 202 were

identified by comparison with autocleaved LexA (lane S). It is difficult to see the

continued disappearence of LexA, as expected due to auto-processing because the

western blots are mildly overexposed to allow observation of the low levels of LexA8 5 22 .

C. Stability of purified LexA, LexA'-84 and LexA85-202 was measured using purified

substrate, ClpX and ClpP. The band marked ATP-RS is creatine kinase, which has been

added as part of the ATP-regenerating system. More complete time courses are presented

in figures 3.2 and 3.4.
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(Figure 3.1C). ClpXP degraded both fragments but not LexA in ATP-dependent

reactions. Hence, both auto-cleavage fragments of LexA are ClpXP substrates, whereas

the full-length protein is not.

The new C-terminal sequence of LexA' s' targets it to ClpXP

RecA-stimulated auto-cleavage of LexA creates a Val82-Ala83-Ala84-COOH

sequence at the end of the N-terminal fragment, which is very similar to the Leu-Ala-Ala-

COOH sequence at the end of the ssrA degradation tag (Keiler et al., 1996; Tu et al.,

1995). These residues of the ssrA tag are the principal determinants of recognition by

ClpX (Flynn et al., 2001). To test the importance of the C-terminal residues of LexA M4

for ClpXP degradation, we constructed a variant (LexAl -8 4DD) with aspartic acids

replacing both alanines. In ClpXP degradation assays in vitro (Figure 3.2A), LexAl84DD

was not degraded to any detectable extent, whereas LexA1 -84 was degraded with a half-

life of approximately 10 minutes. Thus, these alanines play a major role in targeting the

N-terminal LexA fragment for degradation by ClpXP.

To test whether these alanines need to be at the C-terminus for recognition we

constructed and purified a variant, LexA` 87 , extended by the next three residues (Gly85-

Glu86 -Pro87 ) of intact LexA. ClpXP did not degrade this variant (Figure 3.2A), revealing

that the Val82-Ala3-Ala84 sequence must be at the C-terminal end for efficient

degradation. LexA1-84 also inhibited degradation of another ClpXP substrate, GFP bearing

an ssrA degradation tag, suggesting that LexA'-84 and ssrA-tagged proteins compete for

ClpX recognition or other processes involved in degradation (Figure 3.2B). By contrast,

LexAl84DD, LexA1 -87, and full-length LexA failed to inhibit GFP-ssrA degradation.

Together, these results demonstrate that LexA'-84 carries a functional ClpX-recognition

signal, whereas LexAl -84DD, LexA 1-87, and the full-length protein lack an accessible or

functional signal.

The Val82-Ala83-Ala84 sequence is within a folded region in the LexA crystal

structure, and the side chain of Val82 is buried and packs against residues in the C-

terminal domain (figure 3.3, Luo et al., 2001). As a consequence, it seems likely that

auto-cleavage results in exposure and increased flexibility of the Val82-Ala8-Ala84

sequence, allowing unimpeded interactions with ClpX. However, as the LexA 1-87
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Figure 3.2. The new C-terminus of LexAt' directs its degradation.

A. A time course of ClpXP degradation of LexA 1-84, LexA' -87 and LexA'84DD was

quantified after SDS-PAGE. B. ClpXP degradation of GFP-ssrA was measured by loss

of fluorescence at 511 nm in the presence of various forms of LexA at 20OM. An

effective inhibitor of GFP-ssrA degradation, the ssrA peptide (20/MM), is included for

comparison.
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fragment is not a ClpXP substrate, improved accessibility of ClpX to the Val82-Ala3-

Ala84 sequence is not sufficient to explain how auto-cleavage activates proteolysis of this

domain. Based on peptide studies, the a-COOH group of the ssrA degradation tag has

been shown to be an important determinant for ClpX recognition (Kim et al., 2000). The

resistance of LexA'-87 to degradation strongly suggests that the a-COOH group of Ala84 is

similarly important for recognition of LexA'-84. Thus, our results indicate that auto-

cleavage of the LexA Ala84-Gly85 peptide bond directly creates an essential portion of the

degradation signal for the resulting N-terminal fragment.

Sequences that target the C-terminal LexA fragment to ClpXP

Although most LexA8520 2 molecules seem to be degraded by Lon protease in vivo

(Little, 1983b) our experiments show that LexA85202 is also degraded by CIpXP (Figures

3.1B, 3.1C). To search for peptide sequences within LexA85-202 that might mediate ClpX

recognition we tested which regions of this fragment bound to ClpX (Figure 3.4A). We

prepared a covalent array of synthetic 12-residue peptides of the LexA 85-2 2 fragment,

each sharing a 10-residue overlap with its sequence neighbors. The peptide filter was

incubated with ClpX, washed, and bound ClpX was detected using an anti-ClpX

antibody. Peptides corresponding to the first 26 amino acids of LexA8 202 bound ClpX

poorly. In contrast, a cluster of adjacent peptides containing sequences from 103-126

bound ClpX reasonably well. Hence, this region of the LexA sequence may contain a

ClpX-recognition signal.

To investigate the function of this sequence, we constructed two fusion proteins

consisting of LexA residues 85-103 or 85-126 attached to the Arc-stl 1 protein, a variant

of the Arc repressor with a stabilizing C-terminal sequence (Milla et al., 1993). ClpXP

degraded the LexA8512 6 fusion protein with a half-life (50+9 minutes) similar to the half-

life for LexA 85-202 (60±3 minutes, Figure 3.4B). This result shows that sequence

information between residues 85 and 126 of LexA is sufficient to target a protein to

ClpXP for degradation. In contrast, the LexA8 °'03 fusion protein was degraded

substantially more slowly (t, 2=184+24 minutes), indicating that the most important

determinants for ClpXP degradation are located between residues 104 and 126, and not

between residues 85 and 103.
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Figure 3.3. Location of latent ClpX-recognition signals in the structure of full-

length LexA

The N-terminal domain is green, and the C-terminal domain is blue. Residues 82-84 are

highlighted in light green and labeled. The proposed ClpX recognition site in the C-

terminal domain is highlighted in light blue and labeled. The cleavage site is indicated by

an arrow (Structure from Luo et al., 2001).
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The 104-126 region contains a sequence (Leu1'2-Leu 13-Arg' 4 -Val''5-Ser'1 6) with

some similarity to a peptide motif proposed to function as a ClpX recognition sequence

(Flynn et al., 2003). To test the importance of the LexA sequence motif, we constructed

LexA8 51 26 fusion proteins containing the Argl 14-Asp or Vail 15--Asp mutations and

found that both slowed ClpXP degradation (tl,2= 118+22 and 122+30 minutes,

respectively, Figure 3.4B). Taken together, these data support the conclusion that ClpX

recognizes a region of the polypeptide chain about 30 residues distal from the new N-

terminus of LexA8 5202. Other sequences, however, may also contribute to ClpX

recognition of LexA85- 20 2.

Unlike LexA1-84, the ClpX-targeting signal on the C-terminal domain is not

directly adjacent to the site of auto-cleavage. To account for the fact that intact LexA,

which contains the same peptide sequences as LexA8 5-20 2, does not interact with ClpX, we

propose that auto-cleavage disrupts the structure of the C-terminal domain in some

fashion, helping to expose the 112-116 peptide signal. Although we do not know the

structure of the isolated C-terminal domain, it is reasonable to propose that the 112-116

region will be more flexible and exposed after cleavage. In the structure of the full-

length protein, a P-strand (3) from the N-terminal domain forms an integral part of the

C-terminal domain and contacts the proposed recognition signal. The loss of these

contacts following cleavage may result in exposure of this signal to ClpXP (Figure 3.3).

ClpX helps cells survive DNA damage

To test the importance of ClpX in the overall cellular response to DNA damage,

we assayed cell survival after exposure to increasing doses of UV irradiation (Figure

3.5A). These experiments showed that clpX- cells were more sensitive to UV irradiation

than their wild-type counterparts, with the effect being most pronounced at the highest

UV doses. When exposed to a UV dose of 200 J/m2, clpX cells had a roughly 10-fold

lower survival frequency than wild-type cells. Because the N-terminal DNA-binding

domain of LexA can function as a repressor on its own (Schmidt-Dorr et al., 1991), one

interpretation of this result is that ClpXP degradation of this fragment may be required to

allow maximal expression of one or more DNA-damage inducible gene products, thereby

improving survival following near-lethal UV doses. Alternatively, the loss of ClpX could
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Figure 3.4. Identification of residues in LexA8 5 202 important for C1pXP recognition.
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ClpX binding to individual sequences. The starting amino acid positions of the 12-

residue peptides are listed below the chart. The signal intensity of the peptide beginning
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signals from different peptides with the same three initial residues (VSG).

B. Degradation of LexA85-202 and LexA-Arc-stl 1 fusion proteins by ClpXP in vitro.
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perturb the levels of proteins other than the LexA1-84 (e.g. UmuD', a known ClpXP

substrate) thus affecting survival (Gonzalez et al., 2000).

To determine if excess levels of LexA'-84 causes increased UV sensitivity, we

tested the effect of expressing LexA 1-84 and LexAl 84DD on the percentage of cells

surviving a fixed UV dose. We assayed survival of wild-type cells containing plasmid-

born genes for either LexA'8 4 or LexA -84DD under the control of the native LexA

promoter (Figure 3.5B); western analysis revealed that these fragments were modestly

overexpressed (2-4 fold, with LexAl84DD accumulating to higher levels than LexA'-84)

compared to the chromosomal encoded LexA (data not shown). Cells expressing LexA' -

84DD had approximately 10-fold lower survival than those with the LexA' -84 producing

plasmid. Furthermore, both strains were more sensitive to UV-irradiation than cells

bearing the empty plasmid. Thus, accumulation of the LexA DNA-binding domain is

deleterious to cell survival after DNA damage.

These data reveal that timely destruction of LexA'-84 following damage-induced

auto-cleavage is likely to play an important biological role. We suggest that failure to

degrade the LexA'-84 fragment following DNA damage results in the retention of some

repressor activity and a consequent failure to fully induce one or more DNA-damage

genes. This residual repressor activity, in turn, may account for our finding that ClpX

improves bacterial survival following near-lethal UV doses. Our observation that cells

expressing even modest levels of the nondegradable LexA '4DD are more sensitive to UV

irradiation than those expressing LexA' -84 supports this theory, although we can't

currently rule out more indirect explanations. In preliminary work, we did not detect

reproducible differences in expression of the LexA-controlled sulA, recA and uvrA genes

following DNA-damage in wild-type versus clpX defective cells (data not shown), but

there are more than 20 genes under LexA control and some may be more sensitive than

others to repression mediated by the LexA'-84 fragment.

Changes in environmental conditions often result in the modification of regulatory

proteins by phosphorylation or proteolytic cleavage. Similarly, protein-binding partners

often change during the progression of a biochemical pathway. The results presented

here show that the ClpXP degrades the two LexA cleavage fragments, but not the intact

protein. By mapping recognition signals in LexA' -84 and LexA85-202 we show that auto-
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Figure 3.5. Cells accumulating LexA'84 are UV-sensitive.

A. Survival after UV irradiation of clpX+ (MC4100) and clpX- (SG22101) cells. The

percentage of surviving cells is plotted against UV dose. Each point is the average (-SD)

of three trials.

B. Survival of MC4100 cells, SG22101 cells and MC4100 cells containing the empty

parent vector or plasmids directing expression of LexA -'84 or LexAl-84DD was compared at

a UV dose of 100 J/m2.
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cleavage activates otherwise dormant protease recognition signals in both fragments. Our

analysis of the mechanisms used to target LexA to ClpXP thus highlights how changes in

protein primary or tertiary structure can be coupled to the exposure of recognition signals

for a destructive protease, thereby triggering a cascade of protein turnover in response to

environmental change.

LexA is a member of a protein family that includes several phage repressors that

also undergo RecA-mediated auto-cleavage (Eguchi et al., 1988; Little, 1984; Sauer et

al., 1982). It will be interesting to see if ClpXP plays a role in degrading the auto-

cleavage fragments of these proteins. The fragments of unrelated proteins that undergo

proteolytic processing events may also be targeted for processive degradation by a similar

mechanism. For example, RseA is an anti-sigma factor that is sequentially cleaved by

two membrane proteases in response to periplasmic stress (Alba et al., 2002). The N-

terminal cytoplasmic domain of RseA released by cleavage is captured by ClpXPaP

(Flynn et al., 2003) and has been proposed to contain a Val-Ala-Ala-COOH sequence

identical to the signal that targets LexA1 84 for ClpXP degradation (Alba et al., 2002).

Thus, we suspect that dormant degradation signals like those we have characterized in

LexA will be used to couple the destruction of other proteins to changes that occur in the

intracellular or extracellular environment.

Materials and Methods

Strains and Plasmids

Strains MC4100 and SG22101 (MC4100 clpX::kan) were used in UV survival

assays. The pBR322 based plasmid pJWL42 contains wild-type lexA under the control of

its native promoter (Markham et al., 1981). Plasmid pJWL228 was a construct for

overexpression of LexA and consisted of wild type lexA under the control of the T7

promoter (Shepley and Little, 1996). Plasmids pSBN15 and pSBN24 were used for

overexpression of LexA 1-84 and LexA ' 87 respectively, and were derivatives of pJWL228.

Stop codons were inserted in the coding sequence after LexA residue 84 or 87,

respectively, using a Quickchange kit (Stratagene). Plasmid pSBN16 was derived from

pJWL228 for overexpression of the N-terminal fragment of LexA with aspartates
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replacing the two terminal alanines (LexAl 84DD) using Quickchange. The plasmid for the

expression of LexA85202 (pSBN17) was constructed by PCR amplification of the

sequence coding for amino acids 85-202 from pJWL228. The resulting PCR product was

digested with BamHI and Ndel and ligated into BamHI/Ndel digested pET1 la. Plasmid

pSBN19 was created for the expression of a fusion of LexA amino acids 85-126 to Arc-

stl 1 (LexA8S-126-Arc). It was made by amplifying the region of LexA coding for amino

acids 85-126, digesting with Ndel and Nhel, and ligating into Ndel/Nhel digested

pET 1 la-arc-stl 1 (Flynn et al., 2003a). The resulting N-terminal sequence was

MGEPLLAQQHIEGHYQVDPSLFKPNADFLLRVSGMSMKDIGIMASMGK (LexA in

italics, Arc in bold). Plasmid pSBN20 consisted of LexA residues 85-103 fused to Arc-

stl 1 using an oligonucleotide cassette. The N-terminal sequence of this fusion was:

MGEPLLAQQHIEGHYQVDPSMGK. Plasmids pSBN21 and pSBN22 were R114D and

V115D variants, respectively, of the LexA portion of pSBN19 and were constructed

using the Quickchange kit. Plasmids pSBN22 and pSBN23 are variants of pJL42 for the

expression of LexA1-4 and LexA1-84DD, respectively, under the control of the native

promoter and were constructed as per pSBN15 and pSBN16. All constructs were verified

by DNA sequencing.

Proteins

Purification of ClpP (Kim et al., 2000), GFP-ssrA (Yakhnin et al., 1998), ClpX

(Flynn et al., 2003) and Arc-stl 1 (Robinson and Sauer, 1996b) have been described.

LexA, LexA 1-84 and LexA' 84 DD were purified from over-producing strains essentially as

described for LexA (Little et al., 1994). LexA8 5-202 was similarly purified except that a

superdex 75 column was added as a final step (Little et al., 1994). After purification,

LexA and the LexA fragments were dialyzed extensively into LexA storage buffer (20

mM KH2PO4/K2HPO4 pH 7.2, 2 mM EDTA, 80 mM NaCl, 5% glycerol). Molecular

weights for LexA-4, LexAl-84DD, LexA8S' 03 -Arc and LexA8S1 26-Arc were confirmed by

mass spectrometry.

TrappinglDetection of LexA
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Trapping was carried out essentially as described using strain JF162 except that

cultures were treated with 50 ug/mL of nalidixic acid for 2 hours before expression of the

ClpPaP was induced. ClpP cross-reacts with the LexA antibody and therefore was

removed before western blotting. Samples were dialyzed against 8 M urea for 6 hours,

then incubated with Ni-NTA beads (Quiagen) with rocking for 1 hour. Supernatant was

removed, dialyzed against LexA storage buffer, concentrated using a centricon YM-3

concentrator (Microcon) and used for western blotting (see below). In a control

experiment, this treatment did not affect our ability to detect full length LexA, indicating

that the protein is stable under these conditions.

Peptide array

A LexA peptide array was prepared by the MIT biopolymers facility using an

Abimed instrument. The LexA sequence was spotted as twelve residue peptides, with

each successive peptide offset by two residues. Peptides contained two additional C-

terminal -alanine residues and were attached to a cellulose filter via polyethylene glycol

linkage at their C-terminus. Peptides interacting with ClpX were detected as described

(Flynn et al., 2003).

In vitro degradation

ClpX6 (0.3 m), ClpP14 (0.8 gm), and an ATP regenerating system (4 mM ATP,

50 mg/mL creatine kinase and 2.5 mM creatine phosphate) were incubated in buffer NB

(50 mM Tris-HCI, 100 mM KCI, 10 mM MgCl2, 1 mM DTT) at 30° for 2 minutes.

Substrate (10 mm) was added, and samples were removed at specific times, added to SDS

loading buffer, and frozen on liquid nitrogen. After heating at 1000 C for 5 minutes,

samples were analyzed by 15% (N-LexA, C-LexA, Arc fusions) or 12.5% (LexA) SDS-

PAGE. Gels were visualized by staining with Sypro orange (Molecular Probes) and

scanning on a Molecular Dynamics Fluorimager 595. Imagequant (Molecular dynamics)

was used to quantify degradation.

To measure inhibition of GFP-ssrA degradation, ClpX6 (0.3 m), ClpP14 (0.8 tm),

and an ATP regenerating system were mixed in PD buffer (25 mM Hepes-KOH pH 7.6, 5
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mM MgCl2, 5 mM KCl, 15 mM NaCl, .032% v/v Nonidet P-40, 10% v/v glycerol) and

incubated for 2 minutes at 300 C. GPF-ssrA (0.5 [tm) and inhibitor (20 [rm) were then

added, the mixture was transferred to a prewarmed cuvette, and fluorescence readings

were begun immediately. Loss of GPF-fluorescence was monitored on a Fluoro-Max 2

fluorimeter (ISA, Inc. Jobin Yvon/Spex). The excitation and emission wavelengths were

467 and 511, respectively.

In vivo degradation

Samples were prepared from MC4100 and SG22101 cells containing plasmid

pJL42. Cultures at OD 0.2 were treated with 50 mg/mL nalidixic acid (Sigma) and

incubated with shaking at 37° C for 30 minutes, then chloramphenicol (Sigma) was

added to 100 mg/mL to stop protein synthesis. For each timepoint, cells were harvested

by centrifugation, resuspended in SDS loading buffer and rapidly frozen on liquid

nitrogen. Cells were lysed by boiling, centrifuged in a microfuge at top speed for 5

minutes and the resulting extract was separated by 15% SDS-PAGE. Western blots were

performed with an ECF western blotting kit in accordance with the manufactures

guidelines (Amersham) using rabbit polyclonal LexA antibody at a 1:5000 dilution (John

Little). Blots were imaged using a Molecular Dynamics Fluorimager 595. LexA

fragments were prepared from purified LexA as described (Little et al., 1994).

UV survival assays

Cells were grown to an OD60 of 0.5 in LB, gently pelleted, washed once and then

resuspended in an equal volume of 0.85% saline. Suspensions were irradiated at a UV

dose of 1.5 J/m2 /s for set times using a 15W G15T8 germicidal lamp (GE). The UV

intensity was measured using a UVX radiometer (UVP Inc). Appropriate dilutions were

plated on LB agar plates (or LB agar plus 100 mg/mL ampicillin, as appropriate) and

colonies were counted after 24 hours. The decreased plating efficiency of cells carrying

the pBR322 plasmid, compared to the non-plasmid containing cells, was attributed to

need to maintain selection for the plasmid, based on parallel platings on media lacking

antibiotic. Each assay was done at least in triplicate.
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Abstract

The E. coli UmuD' protein is a component of DNA polymerase V, an error-prone

polymerase that carries out translesion synthesis on damaged DNA templates. The

intracellular concentration of UmuD' is strictly controlled by regulated transcription, by

post-translational processing of UmuD to UmuD', and by ClpXP degradation. UmuD' is

a substrate for the ClpXP protease, but must form a heterodimer with its unabbreviated

precursor, UmuD, for efficient degradation to occur. Here, we show that UmuD

functions as a UmuD'-delivery protein for ClpXP. UmuD can also deliver a UmuD

partner for degradation. UmuD resembles SspB, a well-characterized substrate-delivery

protein for ClpX, in that both proteins use related peptide motifs to bind to the N-terminal

domain of ClpX, thereby tethering substrate complexes to ClpXP. The combined use of a

weak substrate recognition signal and a delivery factor that tethers the substrate to the

protease allows regulated proteolysis of UmuD/D' in the cell. Dual recognition strategies

of this type may be a relatively common feature of intracellular protein turnover.
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Introduction

Regulation of protein levels by proteolysis is an integral part of stress responses in

all cells. In Escherichia coli, for example, the ClpXP protease degrades transcription

factors that control responses to starvation and DNA damage as well as specific proteins

induced by these stresses (Damerau and St John, 1993; Weichart et al., 2003). ClpXP is

composed of a ATP-dependent protein unfoldase, the ClpX6 hexamer, and a double-ring

serine protease, ClpP14 (Gottesman et al., 1993; Maurizi et al., 1990b). ClpX selects

substrates for degradation, unfolds them, and translocates the unfolded polypeptide into a

chamber within ClpP, where degradation occurs (Kim et al., 2000; Singh et al., 2000;

Wang et al., 1997). Importantly, ClpXP degrades different substrate proteins at different

times, depending on growth or environmental conditions. Therefore, it is critical to

understand the mechanisms that permit the proper substrates to be selected for

degradation in a regulated and coordinated fashion.

One fundamental mode of substrate recognition involves the binding of a

substrate-processing site on ClpX to a peptide degradation signal, which is often at or

near the N- or C-terminus of the target protein (Flynn et al., 2003b; Gonciarz-Swiatek et

al., 1999; Gottesman et al., 1998). Peptide degradation sequences may be constitutively

recognized or only become accessible to ClpX after cleavage by another protease or

following a conformational change (Marshall-Batty and Nakai, 2003; Neher et al.,

2003a). After recognition of the peptide degradation signal by the ClpX processing site,

ATP-dependent conformational changes in ClpX are thought to generate a transient

"pulling" force that destabilizes the attached native protein (Kenniston et al., 2003a;

Singh et al., 2000). Using repeated cycles of ATP hydrolysis, ClpX unfolds the protein

substrate and translocates it into ClpP for degradation. Some peptide degradation signals

are sufficient to cause virtually any attached protein to be efficiently proteolyzed by

ClpXP. For example, addition of the ssrA tag-a peptide added cotranslationally to

nascent polypeptides when bacterial ribosomes stall (Keiler et al., 1996; Tu et al.,

1995)-will target even hyperstable proteins for ClpXP degradation (Burton et al.,

2001a; Kim et al., 2000; Singh et al., 2000).
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A second mode of substrate recognition by ClpX involves tethering sites that

interact with substrate-delivery or adaptor proteins. These accessory molecules enhance

the degradation of specific ClpXP substrates without themselves being degraded. For

example, the response regulator RssB forms a complex with the starvation sigma factor,

os, and accelerates its degradation by ClpXP (Zhou et al., 2001). Likewise, SspB binds

specifically to ssrA-tagged proteins, helping deliver them to ClpXP for degradation

(Levchenko et al., 2000). Although os and ssrA-tagged proteins carry ClpX-degradation

signals (Gottesman et al., 1998; Studemann et al., 2003), RssB and SspB improve the

efficiency of their degradation at low substrate concentrations by tethering them to

ClpXP (Levchenko et al., 2000; Wah et al., 2003; Zhou et al., 2001). This mechanism

has been most clearly demonstrated for SspB-mediated degradation of ssrA-tagged

proteins. One part of the SspB protein binds to the ssrA-degradation tag, while another

part interacts with a tethering site on ClpX (Wah et al., 2003). When ClpX, SspB, and an

ssrA-tagged substrate are all present, a stable ternary delivery complex is efficiently

formed at concentrations lower than those that would support stable binding of ClpX

directly to the ssrA-tagged protein (Wah et al., 2002).

The DNA-damage inducible UmuD' protein is an important ClpXP substrate in

vivo. An essential subunit of the error-prone translesion DNA polymerase (polV),

UmuD' is synthesized as a precursor, UmuD. Following DNA damage, UmuD cleaves

itself between residues 24 and 25 in a RecA-mediated reaction to generate UmuD'

(Burckhardt et al., 1988; Shinagawa et al., 1988). Both UmuD and UmuD' form

homodimers, but UmuD/D' heterodimers form preferentially (Battista et al., 1990).

Importantly, UmuD' only appears to be degraded by ClpXP when it is bound to UmuD

(Gonzalez et al., 2000). Although residues within the precursor region of UmuD (and

thus unique to UmuD) are essential for UmuD' degradation in UmuD/D' heterodimers,

the UmuD subunit is not degraded. Moreover, homodimers of UmuD have been reported

to be resistant to ClpXP degradation (Gonzalez et al., 2000). Hence, in this trans-

targeting reaction, the UmuD subunit of a UmuD/D' heterodimer appears to provide

sequence information essential for the ClpXP degradation of the UmuD' subunit, even

though neither subunit seems to be degraded on its own.
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Here, we show that ClpXP degradation of the UmuD' subunit of a UmuD/D'

heterodimer occurs in a manner similar to SspB-mediated degradation of ssrA-tagged

substrates. A peptide motif in the precursor region of UmuD resembles a motif used by

SspB to tether itself to the N-terminal domain of ClpX (Wah et al., 2003). This peptide

sequence in UmuD has previously been shown to be important for degradation of UmuD'

(Gonzalez et al., 2000). We show that UmuD-dependent degradation of UmuD' by

ClpXP can be blocked by the SspB tethering peptide and that the SspB tethering-motif

can replace the sequence in UmuD. Furthermore, we demonstrate that the N-terminal

domain of ClpX, which mediates interactions with SspB (Dougan et al., 2003; Wojtyra et

al., 2003), is also essential for efficient UmuD-dependent degradation of UmuD'. Thus,

UmuD behaves like a ClpX delivery factor; it carries a peptide motif essential for

tethering itself and its dimeric partner to ClpX. In fact, we find that UmuD can also

deliver another UmuD subunit for ClpXP degradation. Additional peptide signals

recognized by ClpX are present in the UmuD' protein sequence, at least one of which

appears to function as a primary degradation signal. The joint use of tethering peptides

and low-affinity primary degradation signals permits combinatorial control in regulated

protein turnover.
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Results

UmuD binds ClpX in a similar manner to SspB

We initially noticed that a sequence near the N-terminus of UmuD (L9R' 0E"ZlI2 ),

which had been implicated previously in mediating interactions between UmuD and

ClpX (Gonzalez et al., 2000), resembled a peptide motif near the C-terminus of SspB

(L161R'62 63 V164) that tethers this delivery factor to ClpX (Wah et al., 2003). A peptide

(XB for ClpX-Binding) carrying this SspB sequence binds ClpX and inhibits SspB-

stimulated degradation (Wah et al., 2003). Moreover, variants of SspB with L161A or

V164A mutations are defective in substrate delivery (Wah et al., 2003).

We investigated the significance of the similarity between the UmuD and SspB

peptide sequences by testing the effect of the XB peptide on UmuD-supported ClpXP

degradation of UmuD'. The XB peptide inhibited ClpXP degradation of 35 S-labeled

UmuD' in UmuD/D' heterodimers (Fig. 4. 1A), with half-maximal inhibition at an XB

peptide concentration of approximately 50 rM. This inhibition was specific, as high

concentrations of the XB peptide did not inhibit ClpXP degradation of Arc-ssrA, a

substrate unrelated to UmuD/D' (Fig. 4. 1A). These data support a model in which the

XB peptide competes with UmuD for binding to ClpX, thereby inhibiting UmuD'

degradation. We also found that a UmuD peptide carrying the LREI motif inhibited

UmuD-dependent degradation of UmuD', albeit about 10-fold less efficiently than the

SspB XB peptide (data not shown).

Previous experiments have shown that changing the LREI sequence of UmuD to

AAAA results in a variant that is ineffective in supporting degradation of UmuD'

(Gonzalez et al., 2000). We reasoned that replacing the UmuD sequence with the SspB

sequence might improve the ability of UmuD to support ClpXP degradation of UmuD' in

heterodimers. This outcome was observed (Fig. 4.1B). A UmuD mutant (UmuDX B) with

El1I2V 13 replaced by Vl"Vt 2K'3 (resulting in the same LRWKsequence found at the C-

terminus of E. coli SspB) supported ClpXP degradation of UmuD'. Importantly,

UmuDXB (KM = 15 gM) was more effective than UmuD (KM = 32 gM) at promoting

ClpXP degradation of UmuD' (Fig. 4. 1B). These data suggest that the XB region
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Figure 4.1. A. ClpXP degradation of 35 S-labeled UmuD' in UmuD/D' heterodimers (10

pM) or 3 5S-labeled Arc-ssrA (10 gM) was measured after 30 min in the presence of 0, 50,

or 500 gM SspB XB peptide. B. ClpXP degradation of 35S-labeled UmuD' (10 ,M) was

measured as a function of the concentration of UmuD (KM = 31.8 ± 8.9 [tM; Vmax = 2.1 ±

0.3 min-' ClpX6-1) or UmuDXB (KM = 15.4 ± 3.4 M; Vmax = 2.1 ± 0.4 min'l ClpX6-').

Steady-state kinetic parameters were obtained by fits to the Michaelis-Menten equation.
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from SspB and the LREI motif from UmuD serve equivalent functions in ClpXP-

mediated degradation.

We next investigated whether the function of UmuD in degradation of UmuD'

was compromised when the N-terminal domain of ClpX was deleted in the ClpXA' 46

variant. The N-terminal domain of ClpX binds the XB peptide of SspB (D. Wah, G.

Hersch, & I. Levchenko, personal communication) and is essential for SspB stimulation

but not for degradation of ssrA-tagged substrates (Dougan et al., 2003b). UmuD-

supported degradation of UmuD' by ClpXal'46P was severely diminished (Fig. 2A).

After a two-hour incubation of UmuD/D' with ClpXal'4 6P, only minimal degradation of

UmuD' was observed under conditions where degradation by wild-type ClpXP was

robust. As expected, Arc-ssrA was degraded efficiently both by ClpXAl'46P and ClpXP

(Fig. 4.2B). These results show that UmuD-dependent delivery of UmuD' to ClpXP

requires the first 46 amino acids of ClpX.

UmuD is also a ClpXP substrate

Because UmuD has all the sequence information present in UmuD' but has been

reported to be resistant to ClpXP degradation (Gonzalez et al., 2000), we were interested

in potential mechanisms by which ClpXP might discriminate between these proteins.

However, control experiments indicated that 35 S-labeled UmuD2 homodimers were

degraded by ClpXP in vitro (Fig. 4.3A), in a reaction dependent upon ClpX and ATP

(Fig. 4.3A; data not shown). Indeed, the steady-state kinetic parameters for ClpXP

degradation of UmuD2 (KM 26 jM; Vma, 1 min' ClpX6-1) indicate that UmuD2

homodimers are degraded with an efficiency similar to the UmuD' subunit of the

UmuD/D' heterodimer (Figs. 4. l1B & 4.3B). We considered that the apparent degradation

of UmuD2 by ClpXP might actually result from degradation of UmuD/D' molecules

generated by autocleavage during the reaction. However, MS/MS analysis of the

fragments resulting from ClpXP degradation of UmuD2 revealed peptides overlapping the

Cys-Gly peptide bond where UmuD is cleaved to generate UmuD' (Fig. 4.3C). This

result shows that unprocessed UmuD is a substrate for ClpXP degradation.
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Figure 4.2. Degradation of 35S-labeled UmuD' in UmuD/D' heterodimers (upper panel)

or Arc-ssrA (lower panel) by ClpXP and ClpX'1-4 6P. In all experiments, ClpX6 or

ClpX 1'-46 was present at 0.3 iM, ClpP14 was present at 0.8 !tM, and substrates were

present at 10 gM.
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Figure 4.3. A. ClpXP degradation of 10 ,M 3 5S-labeled UmuD 2 or UmuD'2.

B. Michaelis-Menten plot of ClpXP-mediated degradation of increasing concentrations of

UmuD 2 (KM = 26.4 + 2.3 RM; Vmax = 1.2 ± 0.1 min-' ClpX6-').

C. Sequences of peptides that overlap the site of autocleavage between Cys2 4 and Gly25

were identified by tandem mass-spectrometry following ClpXP-mediated degradation of

UmuD 2.
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Two-site modelfor ClpXP interaction

As UmuD in a UmuD2 homodimer can be degraded by ClpXP, we revisited the

question of ClpXP sensitivity of UmuD in a UmuD/D' heterodimer. Previous work

established that the UmuD subunit of the heterodimer is not degraded and that UmuD can

in fact catalytically target excess UmuD' for ClpXP degradation (Gonzalez et al., 2000).

In agreement with these studies, we found that a four-fold excess of unlabeled UmuD'

almost completely inhibited ClpXP degradation of 35 S-labeled UmuD (Fig. 4.4A).

Because UmuD'2 homodimers are poor substrates for ClpXP and the unlabeled UmuD'

was efficiently degraded in this experiment (data not shown), the most likely mechanism

of inhibition is that the addition of UmuD' leads to a decrease in the population of

UmuD2 homodimers as UmuD/D' heterodimers are formed. Thus, as expected from

previous studies (Gonzalez et al., 2000), we conclude that only the UmuD' subunit in a

UmuD/D' heterodimer is degraded; this degradation releases the UmuD subunit to form

dimers with a new UmuD' partner.

To explain why UmuD is degraded when present as a homodimer, but only

UmuD' is degraded within the heterodimer, we propose the following two-site

recognition model. When ClpXP recognizes a UmuD/D' heterodimer or a UmuD2

homodimer, only one of the two subunits can be degraded efficiently because one subunit

interacts with a "tethering" site on ClpX, whereas the second subunit is presented to the

"substrate processing" site on ClpX. By this model, UmuD' would be the only subunit

degraded in a UmuD/D' heterodimer because it lacks the sequence motif required to

interact with the tethering site on ClpX. A cartoon representation of this model is shown

in Fig. 4.4B. In a UmuD homodimer, by contrast, either subunit could bind to the

tethering site or to the substrate-processing site and thus either subunit could be a

substrate. However, for each round of binding of the homodimer to ClpXP, only the

subunit bound to the "substrate processing" site will be degraded (see Discussion).

Sequence information in UmuD 'contributes to its recognition by ClpXP.

We also tested ClpXP degradation of 35 S-labeled UmuD'2 homodimers and found

that they were degraded by ClpXP, albeit slowly compared to UmuD2 homodimers or
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Figure 4.4. A. ClpXP degradation of 35 S-labeled UmuD (5 gtM) is inhibited by increasing

concentrations of UmuD'.

B. Cartoon representation of trans-targeting. A tethering motif (shown as an oval) on the

UmuD subunit of the UmuD/D' heterodimer binds to the N-terminal domain of ClpX,

thereby leashing its UmuD' partner to the enzyme and allowing a weak degradation tag

(shown as a square) to interact with the central protein-processing pore.
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UmuD' in a UmuD/D' heterodimer. Only a small fraction of the UmuD' homodimer was

converted to acid-soluble peptides in a two-hour incubation (Fig. 4.3A). However, this

low level of degradation was consistently higher than that detected in reactions lacking

ClpX or ATP (Fig. 4.3A), indicating it is in fact due to the activity of the ClpXP enzyme.

To search for potential degradation signals in UmuD or UmuD' that might

interact with the "substrate-processing" site of ClpX, we probed a peptide array for

sequences that bind ClpX. This array consisted of a set of 12-residue UmuD peptides

covalently linked to a nitrocellulose filter, with each peptide sharing a 10-residue overlap

with its neighbors. ClpX-interacting regions were identified in far-western blotting using

ClpX and an anti-ClpX antibody. Three regions present in both UmuD and UmuD'

(residues -33-37, 41-51 and 85-109) interacted most strongly with ClpX (Fig. 4.5A).

Based on the structure of UmuD' (Ferentz et al., 2001), these sequences all contain

residues exposed on the protein surface. None, however, showed strong similarity to

other ClpX-targeting motifs that have been reported (Flynn et al., 2003).

We tested the importance of the most N-terminal of these ClpX-binding regions

by constructing variants of UmuD and UmuD' with an R37A mutation (numbering

relative to the UmuD sequence). This arginine was chosen for mutagenesis because

positively-charged amino acids appear to be important in ClpX recognition of many

substrate degradation signals (Flynn et al., 2003). When present in the UmuD' subunit of

a UmuD/D' heterodimer, the R37A mutation caused this subunit to be degraded

substantially more slowly that its wild-type counterpart (compare lanes 1-3 and 4-6; Fig.

4.5B). In contrast, when the mutation was present on the UmuD subunit of a

UmuDR37A/D' heterodimer, degradation of the UmuD' subunit occurred as efficiently as

with wild-type UmuD (lanes 7-9; Fig. 4.4B). Control experiments demonstrated that

both mutant proteins retained the ability to form dimers (data not shown). Thus, although

the R37A mutation fails to completely block degradation of UmuD', these experiments

reveal that sequence information within UmuD' can influence the efficiency of its

recognition/degradation by ClpXP. These data support the idea that UmuD' (and UmuD)

contain one or more weak primary degradation signals that are recognized by the

substrate-processing site on ClpX and are therefore important for ClpXP degradation.
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Figure 4.5. A. Overlapping 12-residue peptides from the UmuD sequence were arrayed

by covalent attachment to a membrane, incubated with ClpX, washed, and bound ClpX

was detected by far-western blotting using an anti-ClpX antibody and quantified by spot

intensity. The sequence position of the N-terminal residue in the UmuD sequence for

every other peptide is listed.

B. The R37A mutation reduces ClpXP degradation of the UmuD' subunit of the

heterodimer when it is present in the UmuD' but not the UmuD subunit.
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Discussion

The results presented here support a model in which the UmuD/D' complex must

interact with ClpX at distinct "tethering" and "substrate-processing" sites for efficient

ClpXP degradation to occur. UmuD carries a specific peptide motif that interacts with

ClpX at the tethering site, whereas its UmuD' partner has one or more weak degradation

signals recognized by the substrate-processing site. UmuD therefore functions in a

manner analogous to SspB to deliver a bound protein-partner to ClpXP for degradation.

In fact, UmuD and SspB carry related sequence motifs (LREI in UmuD, LRVV in SspB)

that are important for tethering to ClpX, and both occur within inherently flexible regions

of each protein. In each case, these tethering interactions would enhance degradation by

increasing the effective concentration of the degradation signal(s) on the partner molecule

relative to the substrate-processing site of ClpX. Because the ClpX N-terminal domain is

required for both SspB- and UmuD-mediated delivery, we assume that the tethering site

is located within the N-terminal domain. The substrate-processing site, by contrast, must

be part of the AAA+ core of ClpX, as this portion of ClpX is fully active in the

degradation of certain substrates (Singh et al., 2001).

It is important to note that delivery or trans-targeting for ClpXP degradation is

not a general property of any oligomeric complex in which one subunit contains a ClpX

degradation tag or a tethering motif. For example, ClpXP unfolds and degrades only the

subunit(s) bearing a degradation tag in hetero-multimers containing tagged and untagged

subunits (Burton et al., 2001a; Burton et al., 2001b). Similarly, SspB binds to but fails to

stimulate ClpXP degradation of a substrate in which the ClpX-interaction residues of the

ssrA degradation tag have been mutated (Levchenko et al., 2000). These observations

emphasize the dual requirement for a degradation signal and a tethering sequence for

trans-targeting. Bipartite peptide signals required for ClpXP degradation have also been

documented for crs and CtrA (Ryan et al., 2002; Studemann et al., 2003), substrates for

which delivery factors are known or suspected to be involved in ClpXP degradation. In

these cases, one signal is likely to mediate interaction with the delivery factor and its

tethering motif and the other with ClpX. In principle, a single protein could also interact

with ClpX via a tethering motif and a degradation tag if these sequences were far enough
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apart and positioned in a way that allowed simultaneous contacts with their respective

interaction sites in ClpX. This model, for example, could explain why the determinants

of ClpXP degradation of the X O protein are complex and involve multiple peptide

sequences (Gonciarz-Swiatek et al., 1999).

The experiments presented here demonstrate that the UmuD2 and UmuD'2

homodimers can be degraded by ClpXP. UmuD2 homodimers are degraded by ClpXP

with a Km similar to that for degradation of UmuD/D' heterodimers (Figs. B and 3B),

whereas UmuD'2 homodimers are much poorer substrates. By contrast, previous studies

reported that the UmuD' subunit of a UmuD/D' heterodimer was the only form of the

protein degraded by ClpXP, suggesting that ClpX recognition required a unique signal

present only in the heterodimer (Gonzalez et al., 2000). Our results support a different

model. Namely, that UmuD and UmuD' contain low-affinity signals for ClpXP

degradation, which are only recognized efficiently when the substrate is tethered to ClpX

via a UmuD partner subunit. Peptide-binding studies and mutagenesis suggest that a

sequence around Arg37 in UmuD may serve as one such degradation signal.

Importantly, our results are in complete agreement with the previous conclusion

of Woodgate and colleagues that UmuD can catalytically target UmuD' for degradation

(Gonzalez et al., 2000). Consistent with this model, we find that excess UmuD' inhibits

UmuD degradation. This result supports our model that one subunit of the dimer must be

"tethered" to ClpX for the other subunit to be efficiently recognized and degraded.

Because the LREI tethering motif is absent from UmuD', only UmuD can make the

tethering interaction. With the additional assumption that a single subunit of UmuD

cannot simultaneously contact the tethering and substrate processing sites on ClpX, this

model explains why the UmuD' molecule in the UmuD/D' heterodimer is always the

subunit degraded.

This hierarchy of UmuD and UmuD' interactions with ClpX is undoubtedly

important in regulating proteolysis in the cell. As noted previously (Gonzalez et al.,

2000), the trans-targeting of UmuD' to ClpXP by UmuD provides a mechanism to limit

UmuD' availability and therefore to reduce error-prone DNA synthesis, which is

catalyzed by a complex of UmuC with a UmuD'2 homodimer (Tang et al., 1998; Tang et

al., 1999). Because UmuD/D' heterodimers form preferentially (Battista et al., 1990),
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UmuD' will be degraded by ClpXP whenever UmuD is also present at a concentration

sufficient to support heterodimer formation, with proteolysis then releasing the UmuD

subunit to target additional molecules of UmuD' for destruction. As a consequence,

UmuD'2 homodimers will accumulate only when the vast majority of UmuD has been

converted via DNA-damage/RecA-mediated autocleavage to UmuD'. ClpXP control of

the relative levels of UmuD and UmuD' may have additional importance because UmuD

has been suggested to play a separate role in cell cycle control (Opperman et al., 1999).

It is unclear whether ClpXP degradation of UmuD2 homodimers plays any significant

intracellular role, as Lon protease degrades these molecules efficiently (Gonzalez et al.,

1998).

In principle, tethering sites could occur at many positions on ClpX as long as the

binding of the delivery protein did not prevent substrate binding and/or processing. In

this regard, it is interesting that SspB and UmuD appear to use a common tethering site.

Both delivery proteins contain similar tethering motifs and have a common need for the

N-terminal domain of ClpX for these interactions. Moreover, the tethering motif of SspB

substitutes for that of UmuD and blocks the UmuD interaction when added in trans as a

peptide. The use by multiple delivery proteins of a common tethering site on ClpX could

permit an additional layer of cellular regulation. By competition for this site, the

synthesis of a new delivery factor in response to environmental cues could alter the

"prioritization" of substrates for ClpXP degradation.
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Materials and Methods

Proteins and Peptides

Purifications for ClpP (Kim et al., 2000) and Arc (Robinson and Sauer, 1996)

used established procedures. ClpXAl' 46 was a gift from Samia Siddiqui. E. coli BL21

transformed with pAG99 or pAG98 (Sutton et al., 2002) was used for the purification of

UmuD2 (Lee et al., 1994) or UmuD' 2 (Ferentz et al., 1997). To generate 35 S-labeled

UmuD and UmuD', cells were grown in M9 minimal media lacking methionine to an

OD600 of 0.4 and induced with 0.4 mM IPTG for 80 min. Express 35S-protein labeling

mix (NEN) was added to 20 RCi/mL of culture and cells were grown for an additional 30

min before harvesting. 35S-labeled UmuD and UmuD' were then purified by the

procedures for unlabeled proteins. Plasmids for the expression of UmuDR37 A, UmuDX B

and UmuD' R37A were generated from pAG98 and pAG99 using the Stratagene quick-

change kit, and the mutant proteins were purified like their wild-type counterparts. The

SspB XB peptide had the sequence NH2-CRGGRPALRVVK-COOH (Wah et al., 2003).

A UmuD peptide with the sequence NH2-WKPADLREIVT-COOH was synthesized for

inhibition studies.

ClpX was purified from 10 L of WM53/pTB9 cells grown at 37 °C in 25.5 g/L

Bacto tryptone, 15.5 g/L yeast extract, 4 g/L NaCl and 100 mg/L ampicillin in a Bio Flo

IV fermenter (New Brunswick Scientific) to an OD600 of 8, shifted to 25 °C and induced

with 0.25 mM IPTG. After 3 hours, cells were harvested, resuspended in 4 mL buffer A

(50 mM Tris-HCL [pH 8.2 at 4 °C], 100 mM KCl, 1 mM MgCI2, 5 mM DTT, 10%

glycerol) per gram cell paste, and set III protease inhibitors (Calbiochem) were added to

0.17 [iL/mL of suspension. Following lysis by French press at 10,000 psi, insoluble

material was removed by centrifugation, AmSO4 was added to 35% saturation, and

precipitated material was collected and dissolved in buffer A to 10 mg/mL. The

conductivity was matched to that of buffer PSA (50 mM Tris-HCL [pH 8.2 at 4 °C], 0.5

M AmSO 4, 0.5 mM DTT, 10% glycerol) and the protein concentration was adjusted to 5

mg/mL. Following centrifugation, the supernatant was loaded onto a phenyl sepharose

HR column (Amersham) at 3-4 mgs protein/mL resin. ClpX eluted approximately 80%

through a linear gradient to buffer A and was precipitated with 35% AmSO4, redissolved

and desalted into buffer A using a HiPrep 26/10 column (Amersham). Protein was
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loaded onto Q-Sepharose (3 mgs protein/mL resin) and eluted with a gradient to buffer A

plus 300 mM KC1. Peak fractions containing ClpX were loaded onto a Bio-gel HTP

hydroxyapatite (Biorad) column (4 mgs protein/mL resin) and eluted with a linear

gradient to 260 mM K2HPO4/KH2PO4 (pH 7.2), 5 mM DTT, 10% glycerol. Peak

fractions were pooled, precipitated with 35% AmSO4, and redissolved and desalted into

buffer A plus 20 mM AmSO4 for storage.

Degradation Assays

Buffer NB (50 mM Tris-Cl [pH 8.0], 100 mM KCl, 10 mM MgCl2, 1 mM DTT)

was used for ClpXP degradation of UmuD/D', UmuD2 and UmuD' 2. PD buffer (Kim et

al., 2000) was used for Arc-ssrA degradation. An ATP regeneration system (16 mM

creatine phosphate, 0.32 mg/mL creatine kinase, 5 mM ATP) was included in all ClpXP

degradation reactions. Degradation reactions were preformed at 30 °C and contained 0.3

[M ClpX6, 0.8 M ClpPi4 and the indicated concentration of substrate. When

monitoring the release of acid-soluble peptides, reactions were stopped by adding TCA to

10%, samples were placed on ice for 20 min, and insoluble material was removed by

centrifugation at 4 C in a microcentrifuge (13,000 rpm). Radioactivity in the

supernatant was assayed by scintillation counting. Proteolysis of UmuD and UmuD' is

reported as the number of pmoles degraded in a reaction volume of 2.4 gL. For

degradation monitored by SDS-PAGE, reactions were stopped by adding SDS sample

buffer and freezing in liquid nitrogen. Samples were electrophoresed on 15%

polyacrylamide gels, stained using SYPROe orange (Molecular Probes), and visualized

using a Molecular Dynamics model 595 fluorimager.

For identification of UmuD degradation products by mass spectrometry, UmuD2

(10 [tM) was digested with ClpXP for 2 hours at 30 C. The resulting peptides were

separated by reverse-phase chromatography on a Vydac C18 Mass Spec HPLC column,

using a 1 hour gradient from 5% to 95% buffer B (Buffer A is 5% acetonitrile, 0. 1%

formic acid; Buffer B is 90% acetonitrile, 0.1% formic acid, 10% isopropanol). Peptides

were identified on a LCQ electrospray ion-trap mass spectrometer (Thermofinnigan).

Sequence analysis was achieved by collision-induced fragmentation within the ion trap;

peptides reported had a Sequest cross-correlation value of 2.5 or higher.
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Peptide array

A peptide array containing UmuD peptide sequences was prepared by the MIT

Biopolymers facility using an Abimed instrument. Each UmuD peptide sequence

contained twelve residues and was offset by two residues from the succeeding peptide.

Peptides interacting with ClpX were detected by indirect Western blotting using an anti-

ClpX antibody as described (Flynn et al., 2003), and the intensity of the interaction was

quantified using Imagequant (Molecular Dynamics).
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1. Initial trapping trapping and characterization of ClpXP substrates after DNA

damage

Identification of ClpXP substrates under a variety of environmental conditions

will be necessary in order to realize the full spectrum of proteins degraded by ClpXP.

Our first attempt to identify ClpXP substrates following DNA damage yielded a set of

approximately 50 proteins not previously identified without the addition of a DNA

damaging agent to the growth media (Flynn et al., 2003). Our ability to determine the

damage-dependence of trapping was limited in that substrates were identified by mass

spectrometry only once for each environmental condition. In some cases identification

relied on only one peptide, making low-abundance substrates especially sensitive to

sampling error. Therefore substrate trapping could not unequivocally be attributed to

DNA damage, and we used a quantitative method of mass spectrometry, as described in

chapter 1.

Despite its limitations, this first data set did yield about 50 potential new ClpXP

substrates (Table A. 1). Among these substrates are known damage-inducible proteins

such as SulA, DinD, DinI and YebG. The substrates also included a number of proteins

not known to be induced by DNA damage. To validate members of this list, we set out to

determine the ClpX-dependence of in vivo degradation. Antibodies were available for

some substrates, and others were tested using epitope tags as described below.

Because antibodies were not available for many of the trapped proteins, we

developed a method to test the ClpX-dependence of in vivo degradation using epitope

tags. This method took advantage of commercially available vectors (Invitrogen pBAD

system) with a choice of N or C-terminal epitiope tags and an arabinose inducible

promoter. An important control was to confirmed that neither the N or C-terminal

epitope tag conferred ClpXP sensitivity onto an stable reporter protein, the Arc repressor

(Figure A. 1). Additionally, we tested degradation of both a substrate with a good C-

terminal ClpX recognition signal (YbaQ) using an N-terminal epitope tag, and a substrate

with a good N-terminal recognition signal (lambda O) using a C-terminal epitope tag.

As expected, these substrates showed robust ClpX-dependent degradation, so addition of
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Appendix A.I: Use of Epitope tags to test degradation of putative ClpXP substrates

A. Diagram of promoters and epitope tags. B. Addition of epitope tags do not target Arc-

stl 1 for ClpXP degradation. Furthermore, epitope tags do not interfere with the

degradation of known ClpXP substrates. C. Results from epitope tagging test substrates.
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the epitope tags did not inhibit degradation of these test substrates (Figure A.1). We

selected 11 potential substrates for in vivo testing. Table A.2 lists these substrates, details

of their construction, optimal conditions for degradation and observed results.

In vivo degradation experiments revealed that about half the substrates showed

ClpX-dependent degradation (Figure A. 1). It is possible that proteins for which we did

not observe degradation are still ClpXP substrates, however, conditions may not be

optimal to observe their degradation. Some rapidly degraded substrates are YebG, a

damage inducible protein of unknown function, YefM, part of a two-component

toxin/antitoxin system, and ZntR, a MerR family transcriptional regulator. One

potentially informative result was that degradation of some substrates, such as DinD, was

more robust with the epitope tag at one termini than the other. This preference could

indicate which termini contains a signal for ClpX, as an epitope tag on this termini might

mask the ClpX-recognition signal. Degradation of others, such as YebG, occurred with

either tag. These substrates may have recognition tags at both termini.

This study demonstrates the effectiveness of using epitope tags to test potential

ClpXP substrates. It also reveals that about half of a semi-random assortment of trapped

proteins show robust ClpX-dependent degradation in vivo. Furthermore, available clones

and prior confirmation of ClpXP dependent degradation make these substrates attractive

targets for future studies. Indeed, ClpXP degradation of one identified substrate, ZntR, is

likely to be modulated by DNA or cofactor binding (M. Pruteanu, unpublished).

Table A.I: Proteins captured by the ClpPrP only after DNA damage

This table includes only those proteins identified after treatment of cells with nalidixic

acid. Gel slice refers to the region of the gel where peptides from each protein were

identified, with 1 being the highest molecular weight slice and 5 being the lowest.

Additionally the number of unique peptides used for identification of each peptide is

listed.
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Table A.1: Proteins Unique to DNA damaging conditions
gene gi # function Gel slice # peDtides
15 137940 phage phi-80 protein 15 1,2,5 4,3,16
ackA 16130231 acetate kinase 1 1
acpP 15801211 acyl carrier protein 1 2
Atp-6 15640957 ATP synthase alpha subunit 1 2
AtpF 15804336 FO ATPase, subunit B 1 17
cdd 7449917 cytidine deaminase 2 1
CII 133360 phage phi-80 regulatory protein 1 4
dapD 15799848 lysine biosynthisis 1 2
dinD 1790076 DNA damage inducible D 1,3,5 1,2,2
dinl 16129024 RecA inhibitor damage ind. 3 1
eno 147479 CTP synthase (enolase) 1 2
gdn 16129970 6-phosphogluconate dehydrogenase 1 1
glpK 16131764 glycerol kinase 1,3,4,5 1,3,2,4
GreA 15803721 Trxn. Elongation factor 1 1
hemL 16128147 aminomutase 3,5 1,4
mioC 16131610 biotin biosynthesis 2 1
mopB 15804734 GroES chaperone 2,3 3,4
mrp 12230998 methionyl-tRNA syntase 1 2
N 132275 phage phi 80 3 3
nuoB 16130222 NADH dehydrogenase chainB 4 3
nuoE 15802832 NADH dehydrogenase 1 2
pepQ 16131693 proline dipeptidase 5 5
pfs 21239015 MTA/SAH nucleosidase 2 1
phoP 15801327 2 component Mg regulator 1 2
rblB 1503844 50S ribosomal subunit L2 5 2
recA 16130606 recombination/co-protease 3 2
rfbC 16129978 epimerase 1 2
rho 16131639 trxn termination factor 3,5 4,3
riml 1361224 acetylates rib. Prot. S18 S5 1 2
rnK 16128593 regulator nucleotide interconv. 1 4
rplP 15803840 50S L16 1 1
rplF 15803832 ribosomal subunit 1 2
rplU 16131076 50S L21 3 2
rplY 15802741 50 S ribosomal L25 3 2
RpsG 1583344 ribosomal subunit 1 2
rpsJ 15803848 30S S10 3 6
rpsK 133720 ribosomal protein S 11 3 2
rpsL 15803855 30 S S12 2 1
rpsO 133794 ribosomal protein S15 3 3
sdhA 1786942 succinate dehydrogenase 5 1
secB 16131480 protein export 3 1
sodA 16131748 superoxide dismutase 1 4
speB 16130838 agmatinase polyamine synthesis 5 2
sulA 15800817 cell division inhibitor 1,2,3 12,4,4
trxA 16131637 thioredoxin reductase 3 6
ybeD 16128614 unknown 3 2
ydhD 16129612 unknown 3 1
yebC 16129817 in operon with RuvC 5 9
yebG 16129801 unknown/damage inducible 3 3
yefM 16129958 unknown function 3 5
yheA 16131216 unknown 3 1
yhgl 1176270 unknown 1 4
zntR 16131171 zinc responsive trxn. Reg. 2 2
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Materials and Methods:

Substrate trapping and identification by mass spec were essentially as described,

except that cultures were treated with 50 [tM nalidixic acid for 30 minutes before

induction of the trap (Flynn et al., 2003).

Test of in vivo degradation

Substrates were amplified from genomic DNA by PCR and separately cloned

into pBAD HisA and pBAD His-mycA (Invitrogen). pBAD His-myc A was altered by

substitution of an AvrII site for the NcoI site using Quickchange kit as per the

manufacturer's instructions (Invitrogen). In vivo degradation was tested in W3 110 and

W3 110 clpX: :Kan strains by growing cells to an OD600 of .2 and inducing substrate

production with the indicated amount of arabinose. Cells were allowed to double to

OD6 00 .4, and protein synthesis was stopped with 100[tg/mL chloramphenicol. Samples

were frozen on liquid nitrogen, separated by SDS-PAGE and transferred to PVDF.

Membranes were probed with Anti-express antibody (N-terminal tag) or Anti-Myc

antibody (C-terminal tag), developed with ECF and scanned on a Molecular dynamics

595 Fluorimager.

Table A.2: Characteristics of test substrates
C-tag N-tae

ClDX ODtimal CIDX ODtimal
gene Cloned w/ T112 dependent? Arabinose 'Clonedw T1/2 nt? Arabinose
sulA AvrII EcoRI 5 min No 0.0500% EcoRI BglII fast ? >.2%

dinD AvrII KpnI 20 min Perhaps 0.0010% BglII Kpn I15min yes 0.010%
secB AvrII EcoRI no deg No 0.0010% EcoRI BglII no deg no 0.001%
yefM AvrII EcoRI 5 min Perhaps 0.0001% EcoRI BglII 10 min yes 0.010%
sodA AvrII EcoRI no deg No 0.0100% EcoRI BglII no deg no 0.200%
yebC AvrII EcoRI 10 min Perhaps 0.0010% EcoRI BglII 10 min perhaps 0.010%
yebG AvrII EcoRI <5min Yes 0.1000% EcoRI BglII <5 min yes 0.200%
rnk AvrII EcoRI no deg No 0.0010% EcoRI BglII 5 min yes 0.001%
rfbC AvrII EcoRI no deg No 0.0100% EcoRI BglII fast ? 0.200%
mrp AvrII EcoRI nd Nd nd EcoRI BglII 10 min perhaps 0.010%
zntR AvrII EcoRI <5 min Yes 0.1000% EcoRI BglII <5 min yes 0.200%

Table A.2: Results from test substrates selected for confirmation of in vivo ClpX-
dependent degradation. The table lists restriction enzymes used for cloning, the
approximate substrate half life, the ClpX-dependence of degradation and optimal
concentration of arabinose used for induction for both N and C tagged substrates.
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2. Preliminary characterization of DinD

Despite many decades of intense study, nearly 17% of the genes in the E. coli

genome have no assigned function (Serres et al., 2004). Although their function is

unknown, the majority of these genes are likely to be biologically relevant. Studies of the

loneliest of the unknowns, the so-called "orphan genes" (whose ORF have no similarity

to known proteins) indicate that over 90% of these genes are expressed (Alimi et al.,

2000; Tao et al., 1999). Some of these genes may remain uncharacterized due to either

redundancy or loss that results in a subtle or conditional phenotype. Despite potential

difficulties, investigators continue to elucidate the functions of unknown genes to good

effect. One relevant example is din, originally identified computationally as a LexA-

controlled gene and shown ten years later to be a modulator of RecA function (Lewis et

al., 1994; Lusetti et al., 2004; Yasuda et al., 1998).

About 13% of the proteins trapped by ClpP have no known function. One protein

of unknown function, DinD, was among the trapped substrates selected for in vivo

confirmation of degradation (see Appendix 1). DinD proved to be a ClpXP substrate

both in vivo and in vitro (figure A.2). In order to fully understand the biological role of

DinD, and determine the significance ClpXP-mediated degradation to this role, we set out

to further characterized DinD's function.

Although the focus of several previous studies, DinD's precise function has

proved to be elusive. Initially named pscA-68, DinD was identified as a cold sensitive

mutant in chromosome segregation that resulted in filamentous cells with large, central

nucleoid masses (Kudo et al., 1977). A later study searching for damage inducible loci

showed that DinD was a member of the LexA regulon (Kenyon and Walker, 1980).

These two studies converged when pcsA-68 was shown to be a specific mutation

(V239M) in the DinD gene (Ohmori et al., 1995). The cold sensitive cell division

phenotype appeared to be specific to the V239M allele, as neither loss nor overexpression

of DinD caused any apparent defect in cell growth (Ohmori et al., 1995). When

expressed from a high copy number plasmid, DinI, RecA and DinG suppressed the DinD

V239M cold sensitive phenotype (Yasuda et al., 1996). Additionally, DinD was

identified as a host factor that increased the frequency of TnlO and IS903 transposition
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(Derbyshire, personal communication). Although all these studies provide important

clues about DinD's function, none proposes a concrete role for DinD in the cell.

When taken together, these data suggest that DinD may have a role in the

processing or repair of recombination junctions. By this model, the DinD V239M

mutation may have altered affinity for recombination intermediates, preventing product

release and resulting in the filamentous cell morphology. This cell morphology is

reminiscent of certain alleles of recA and of deletion of recG. These alleles of recA were

identified on the basis of their toxicity and improper chromosome segregation (Campbell

and Davis, 1999). One example mutant, E96D, bound DNA more tightly and dissociated

more slowly than the wild type, resulting in reduced recovery of recombination products.

A similar morphological defect is also observed in UV exposed cells lacking recG, a

helicase involved in the rescue of blocked replication forks (Ishioka et al., 1997).

Disruption of RecG results in a defect in homologous recombination (Lloyd and

Buckman, 1991). The dinD V239M mutation, like the recA and recG defects, may block

the efficient resolution of replication repair intermediates required for normal

chromosome segregation.

Identification of dinD in a screen for transposition-modifying host factor provides

further support for this model (K. Derbyshire. personal communication). dinD was

identified in a screen based on transposon mutagenesis for host factors that modulate the

frequency of transposition. A mutation in the promoter region of DinD resulted in an

increase in IS903 and TnlO transposition. This mutation is suspected to increase DinD

levels. A host factor that behaved similarly to dinD in this screen was radA (sms). RadA

was identified on the basis of its sensitivity to DNA damaging agents, and genetic

experiments suggest that it is involved in the processing of branched DNA structures

(Beam et al., 2002; Diver et al., 1982). These results suggest that DinD may interact with

recombination junctions, and a change in its cellular level can affect the resolution of

these junctions and progression of transposition.

An expected property of a protein that interacts with recombination intermediates

is the ability to bind DNA. Filter binding and gel shift experiments showed that DinD

bound sequence-nonspecifically to double stranded DNA with a KD of 20 3 nM (Figure

A.3). This binding was not dependant on magnesium. DinD also bound single stranded

113



Time, Min 0 15 30 45 60 0 15 30

WT c,X

B

25

'-4

'-401090

r,
0%

20

15

10

5'

0

0

I

K

50 100 150

time, min

Appendix A.2: DinD degradation
A. DinD degradation in vivo was followed by western blot after stopping protein
synthesis with chloramphenical.
B. ClpXP mediated degradation of labelled DinD [10 IMI was followed in vitro by
release of TCA soluable counts.

114

A.

45 60

40b 0- II ' Ib-~~~~~~~ , at * 4

-



A.

Bound

Free

DinD] 0 10 25 50 75 100 500 1 5

PMnM

B. C.

0.4 

0

0.3-

0.2-

0.1,

0inD M
DinD, M] sIo-6 4.10-6 610-6 8.0-6

'0
0
0

W.)-G,O4

PinD, M] 0 210-
6 4.10-6 610-

5
6 810-6 1.10-5 1.2.10-5

Appendix A.3: DinD is a DNA-binding protein
A. DinD binds to double-stranded DNA as shown by gel shift assay.
B. DinD binds to double-stranded DNA with a KD of 20 nM.
C. DinD binds to single-stranded DNA with a KD of 45 [tM.
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DNA with a KD of 45 tM and could bind a double stranded segment as small as 22 base

pairs. A smeary pattern observed from gel shifts, as well as the propensity of the DinD to

stick in the wells, suggested that multiple molecules of DinD might bind to each

molecule of DNA. Intrigued by the general DNA binding characteristics of DinD, we set

out to determine its oligomeric state and cellular protein level. Analytical

ultracentrifugation suggested that DinD was a dimer in solution. This result was in good

agreement with results obtained from gel filtration (figure A.4). We raised antibodies

against DinD and found that it was present at about 1000 copies per cell after DNA

damage, and was difficult to detect prior to DNA damage. DinD is limited in comparison

to HU or DPS (60,000 and 180,000 copies per cell, respectively) suggesting that the

DinD might be reserved for binding to more specialized structures (Ali Azam et al.,

1999).

Although I believe a role for DinD in interacting with recombination

intermediates is most consistent with the majority of the data, some of our own

observations as well as some from the literature should be addressed. First, DinD must

have a non-essential role in the response to DNA damage, as its deletion does not result

in increased sensitivity to DNA damage (Kenyon and Walker, 1980; Ohmori et al.,

1995). Additionally, the effect on transposition might be specific to certain transposases,

as our observations suggest that phage Mu can form plaques with similar frequency in a

DinD deletion and wild-type host. However, we do not know the precise nature of the

mutant identified in the Derbyshire screen.

Another point to consider is that a region of DinD reported as a multicopy

suppressor of the cold-sensitive phenotype is not required for DNA binding. Ohmari et

al. report that a region of DinD from the BsshII site to the RsaI site can function as a

multicopy suppressor (Ohmori et al., 1995). However, our Southwestern blots using

partially trypsinized DinD showed that the first 76 amino acids (which included this

region) were not necessary for DNA binding. One might predict that a wild type DNA

binding region would suppress the effect of the mutant region when present in multiple

copies. A possible explanation for the activity of the region reported by Ohmari is that it

could be the dimerization region. If the active form of DinD is a dimer, then a fragment
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B. Analysis of ultracentrifugation from two concentrations and speeds returned a reduced
mass expected for a dimer.
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that blocks dimerization with a full-length molecule could suppress its toxic activity. Our

results do suggest, though, that the V239M mutation is in the DNA binding region.

Several experiments are necessary to further characterize DinD. First, it would be

useful to determine the affinity of the DinD V239M mutant for DNA. These studies

should be extended to a variety of DNA molecules representing recombination

intermediates. If DinD or the mutant had an increased affinity for any of these structures

it would provide clues to a molecular mechanism. A plasmid for production of the

V239M protein was constructed as part of this work. Genetic information could also be

very useful in determining a more precise function for DinD. One possibility would be

to combine the DinD deletion with a series of deletions of genes with known roles in

recombination. These double mutants could be tested for sensitivity to DNA damaging

agents, with the hopes of finding a protein of known function with which DinD is

redundant.

Methods

Purification of DinD and production of antibodies

DinD was cloned into pET1 5b with an N-terminal His-tag and expressed from

ER2256 cells. Cells were resuspended in buffer N1 (50 mM NaPhos pH8, 200mM NaCl,

10% glycerol) and lysed by two passes in a French press. The lysate was cleared by

centrifugation and applied to Ni-NTA beads. Beads were washed with 200 mL bufferl,

100 mL buffer N1 + 20 mM imidizole and eluted with buffer N1 + 500 mM imidizole.

Peak fractions were dialyzed into S1 (200 mmNacl, 50 mM NaPhos pH 6.8, 10%

glycerol) and applied to a MonoS column. The column was washed extensively with

buffer S1 and then eluted with a linear gradient over 20 mL to buffer S2 (500 mM Nacl,

50 mM NaPhos pH 6.8, 10% glycerol). Peak fractions were dialyzed into storage buffer

(200 mmNacl, 50 mM NaPhos pH 8, 10% glycerol) and stored at -80 °. DinD was easy to

work with, also bound to HAP and could be purified in native form if necessary.

Antibodies against the purified DinD protein were produced from rabbits by Covance. To

generate 35S-labeled DinD, cells were grown in M9 minimal media lacking methionine

to an OD600 of 0.4 and induced with 0.4 mM isopropyl -D-thiogalactoside for 80 min.
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Express 35S protein-labeling mix (NEN) was added to 20 Ci/ml (1 Ci = 37 GBq) of

culture, and cells were grown for an additional 30 min before harvesting. 35S-labeled

DinD was then purified by the procedures for unlabeled protein.

Production of a DinD deletion: The DinD gene was replaced with a Kanamycin cassette

as described (Datsenko and Wanner, 2000). The deletion was confirmed by PCR of

genomic DNA and western blot.

Filter binding, gel shift andfar Western analysis

A variety of PCR products and oligo cassettes available in the lab were annealed

and kinased according to standard protocols. A 280 BP yefM PCR product (filter

binding) and a 90 bp oligo cassette composed of TB 1472 and TB 1473 (band shifts) were

used for results shown here. For filter binding, DinD and DNA were preincubated in 50

mM HEPES pH 7.6, 100 mM KCl, 10% glycerol for 10 minutes, then applied to a filter

binding apparatus containing 4 mL of the same buffer and rapidly filtered onto

nitrocellulose filters prepared by prewashing with .5M KOH. Gels shifts were most likely

to be well shifts, but the best results were obtained using 2% Metaphor Agarose gels in

.5x TBE at 4°.

Determination of oligomeric state

Gel filtration was performed on a SMART system using a Superdex 75 column in

50 mM HEPES pH 7.6, 100 mM KCl, 10% glycerol. DinD's elution volume was

compared to a standard calibration mix. For analytical ultracentrifugation, protein

samples were centrifuged in an Optima XL-A centrifuge (Beckman-Coulter, Fullerton,

California) using a 60 Ti rotor. DinD at 5, 15, and 24 [LM in storage buffer was

centrifuged at 40 at 8,000, 15,000, and 20,000 rpm. A reduced mass was calculated using

SEDNTERP (http://www.rasmb.bbri.org/) and fit to the transport equation using Sedfit

(http://www.analyticalultracentrifugation.com).

In vitro and in vivo degradation were carried out as described in chapter 2 and appendix

1.
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