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INVESTIGATION OF AN OPTIMALISING CONTROLLER 

.·. SYNOJ2SIS 

This dissertation presents a comprehensive investigation 
of an optimalising controller and its behaviour when 
controlling a simulated plant. In addition~ certain 
th~oretical aspects of optimalising control are presented. 
Design criteria and details of the circuitry of the 
experimental controller, built as part of this research 
project, are given. The necessity to deactivate the 
controller,for a certain period during each cycle of 
operation, is shown to be a result of measurement delay 
in the optimalising loop, and an expression for evaluating 
the deactive time is derived. Utilising describing­
function techniques, the steady-state response of the 
control system is predicted and the results are shown to 
be in good agreement with the experimental results. 
The adaptive response of the system is investigated and 
it is shown that the bandwidth of the adaptive response 

I 

may be.predicted from steady-state response characteristd.cs. 
The limitations imposed upon both the steady-state and 
adaptive response~by measurement delay,are shown • 

.. With respect to the theory of optimalising control, a 
framework for stability analysis is developed and stability 
criteria for the basic optimalising control loop are 
derived. 
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1.~ INTRODUC~ION 

1\he analysis and synth®sis of olassice,ll 

11inear, non-linear and stochastic control systems are 
unique in that a priori information of system p~rameters·· 
and inputs is required. On the basis of the knovvn system 
structure it becomes possible to design system controls 
which, in a defined sense, result in optimum system 
performance •. However, as is often the case in practice, 
information of the system structure is not readily 
available and operating conditions may be variable, 
resulting in a control system which performs optimally 
for one particular set of conditions ~d sub-optimally 
for all others. In an effort to overcome these basic 
problems, adaptive control systems have been proposed. 

An adaptive control system may be defined 
as a system which assesses its performance relative to 
some performance index and, by modifying one or more 
of its parameters, changes its structure to optimise its 
performance. In all·adaptive systems three essential 
processes are apparent, viz. : 

1. Identification 
2. Dec:lsion 
3. M0dification 

The general relationship of the three 
processes is shovvn in F.ig. 1.1 • 

·_+_ 
Re 
Inp puts 

f. Out uts Contr- Inputs 
oller Plant 
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: I State I 
I I vanables 

(Modif. 
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--' Ident. 

Decision . 

FIG. 1.1 GENERAL ADAPTIVE CONTROL SySTEM 
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The identification1process is basically a 
measurement process in that it results in a measure of 
the performance of the system - the performance index. 
Depending upon how the performance index for the system 

has been defined, the identification process can vary/ 

greatly from one adaptive system to another. In certain 
cases it may simply entail the measuremenrtt of- one of the 

input, output or state2 variables of the system, while 

in other cases some function of the measured variables 
must be formed; e.g. the integral of squared error. 
F-inally, it may involve identification in the usual 

sense,( i.e. the determination of the impulse response, 

or the transfer functionJ,of the dynamic process ) , as 

! 

well as the generatio~ of some function of the 'identified' 
parameters of the process. 

In the decision process, past and presentt 

values of the performan~e index are utilised to assess 

the performance of the system in relation to optimum 
·performance. On the basi~ of the assessment, a decision 

is made to modify the controlled parameters of the system, 

according to a prescribed strategy, to-achieve an optimum 
. I 

set of parameter values. 

The modification process may be implemented 

in two ways. Either the actual parameters of the plant 

are modified, or, wher~ the adaptive loop fonms part of 
a larger control system, parameters of a controller may 
be modified. Factors influencing the choice of modification 

process to be employed in a particular adaptive system 

are : 

a) The performance index must be sensitive to 
variations of the parameter undergoing 

1. The term 'identification', when applied to adaptive 
control- systems, is of a more general nature than 
its normal definition in control theory; i.e. the 
determination of a mathematical model which 
characterizes a dynamic process. 

2. 'State 'variables' are the minimum. set of variables 
required to describe the homogeneous (unforced) 
response of a dynamic process as a set of first 
order differential equations • 

. · :·. 

·' ~ 
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modification. The greater the sensitivity of 
the performance· index in the region of the 

optimum, the more precise will be the identi­

fication of ~he optim~. 

/ 

b) The feasibility and cost of modifying a 
particular parameter. ~his factor is particularly 

pertinent to plant parameter modification 
where limits may be imposed by the actuatingr 

devices necessary to effect the modification. 

In1recent years numerous adaptive control 

strategies have been proposed (1, 2·, 3); the simplest in 

both concept and instrumentation being that1:. of optimalising 

control. Lt is this form of adaptive control which is the 

subject of this research. 

1.2 PRINCIPLES OF OPTIMALISING CONTROL 

The foundations of optimalising control 
were laid by the American researchers, Draper & Li, whose 

work is mentioned in a number of standard texts ( 4,5 ). 
The basic requirement for the application of this form 
of control is that the dynamic process to be adaptively 
controlled must possess some measureable characterist:ii.c 

which is an indication of its performance, and which, as 

a function of one of the parameters of the process, 

possesses a distinct extremum (either a maximum or a 
minimum) at the point of optimum operation. Typically, 
the relationship between this' characteristic, (which serves 

as a performance index),and the controlled parameter is 
of an approximate parabolic nature, (F.ig. 1.2). 

Perfo rJl"lainc e 
Index 
. ( F) 

FIG. 1.2 TYPICAL 
INDEX 

I 
I 
I 
I 
I X opt. 

Par am e t e r ( x ) 
CURVE OF PERFORMANCE 

vs. CONTROLLED PARAMETER 
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The self-optimising control strategy is based 
upon this parabolic-type performance index and i~ is 
performed as follows. The controlled parameter is 
perturbated by a ramp signal, causing the value of the 
performance index to change in a direction which is 
either away from or towards the optimum. When the 

performance index has degraded by a set amount,called 
the threshold level,~ , in a direction which is away 

from the optimum, the direction of parameter perturba­

tion is reversed. In this manner,the extremum of the 
performance index is sought, independent of the initial 
direction of parameter perturbation, and the system 
settles down to steady-state hunting about the optimum~ 
This' extremum-seeking' mechanism is illustrated, for the. 
two possible directions of imLtiali·;parameter perturbatiom, 
in Fig. 1.3 • With reference to the diagrams below, the 

following symbols are defi:ined,: 

Pi = 

X = 

xn = 

FIG. 1.3 

initial value of performance index. 
initial direction of parameter perturbatio~. 
point of nth. reversal of parameter 
perturbation. 

p 

fi 
j __ 
!Y. I 

l I I I 
I I 
I 
I 

x1 X x1~ x'3 X -a X ..,.___ 

EXTREMUM SEEKING IN OPTIMALISING 

CONTROL SYSTEMS 

Ideally, the steady-state hunting about 
the optimum1 is fixed in amplitude by the threshold level 
since each reversal of direction of the parameter pert­
urbation occurs when the performance index has degraded 

/ 
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by the amount !J. · from the extremunr. However, if there 

there is delay associated with the measurement of the 
performance index, the actual amount the performance 

index degrades from the optimum value, termed the 

performance index degradation (D), will be greater than 

the thre$h01d leveJl. 1ik~wise, th~ period of ti.me between 
reversals of direction of the parameter perturbation, 

termed the hunting period (T), will be greater than the 

ideal hunting period (TiL when mea:s.u~ememt.,::.:delay is 

present. This is illustrated in Fig. 1.4 • 

X 

F 

• T;--\ I 
.....-T .. 

FIG. 1.4 STEADY- STATE 

I deal response 
Resp.onse w11-h me-asur~ment 
delo4 p<"'es.en\: 

time 

HUNTING IN 

OPTI MALI SING SYSTEMS 

Everleigh (2) has proposed a technique, 

base_d upon a describing-function1 analysis of the 

optimalising loop, whereby the limit-cycle2 amplitude 

and frequency may be predicted for the situation where 

the system is hunting in steady-state about the optimum. 
The major advantage of this technique is that it enables 
the measurement delay to be treated by well knovm 

1. The describing-function technique treats non­
linearities in terms of the gain and phase 
relationship between an impressed sinusoidal 
signal and the fundamental component of the 
non-linearity output, enabling frequency- · 
domain analysis techniques to be employed. 

2. Limit-cycles are periodic, non-sinusoidal 
oscillations ocurring in non-linear systems. 

.... ·· . 
. '· 
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frequency-domain techniques, e.g. Nyquist poi'ar plot. 

The describing-fu.n:Ction technique will be dealt wi th1 
in greater detail in a later section when it is applied 
.to the particular optimalising·loop under study. 

Tsien (4) defined a criterion, termed 
'hunting.loss', which is useful in assessing the 

efficiency of an adaptive control system. The humting" 

loss, H , of an adaptive systew is defined as : 

H = • • • • • • (1.1) 

where, performan~e index 

optimum value of performance index 
F (t) = 
F opt= 

T = period of one cycle of adaptive action. 
( Fo~ an optimalising system, T is the 

hunting pe~iod - see Fig. 1.4 ) 

As may be seen from the above equation, 

hunting loss is a measure of the average degradation 

of the performance index from the optimum and, when 

considered in rel~tio:r;t, to the control objective (i.e~ 

the optimisation of system performance), it is a direct 
measure.' of the efficiency of the adaptive strategy. 

REFERENCES 

1) Leondes C.T. (Editor): Modern control systems theory 
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/ 

2) Everleigh V.W. Adaptive control & optimisation 
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3) Ts!}Tpkin Ya.Z. Adaptation, Learning & Self-learning 
in control systems. Survey paper, 

3rd. IFAC Conf., London; 1966. 

4) TsiemH.S. :Engineering cybernetics. McGraw-Hill; 
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5) Gibson J. Nonlinear Automatic conJtrol. McGraw-Hill; 
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2. THE SIMULATED PLANIT'_' 

A plant was. simulated, for experimen ta] 
purposes, with one operating characteristic which, as­
a function of one of the plant parameters, exhibited 
an extremum (maximum) point. The plant consisted of 

an under-compensated metadyne: with dynamic loading­

a D.C. machine operating in the motoring region:. The 

metadyne was driven by a D.C. motor in Ward-Leonard 

with a motor-generator set and the load machine was 

driven by an induction mo:t;or. The plant configuration 
is shown in Fig. 2.1. 

The power delivered by the metadyne to 
the·loa.d machine-was a parabolic function of the 

metadyne terminal voltage.and it was, there~ore, of 

a suitable form to serve as the characteristic upom 
whi cl:i1 optimal ising control action was based-. Hence, 
the control objective for the system was the optimisation 
of the power delivered by the metadyne to the load·. 
The me.tadyne terminal voltage served as the plant 
parameter to be modified in the adaptive control 
strategy; modification being effected by variation of 

the excitation of the load machine. 

From- tests conducted on the metadyne with 

various values of diverter resistance in parallel with 

the compensating windings, a sui table under-compensat.ed 

load cha~acteristi~ was established. The choice of load 
characteristic was governed mainly by the magnitude of 
the metadyne armature current at optimum metadyne power, 

since it was undesirab1e-:·· that the load machine armature 
current exceed i:.ts rated value ( 2. 75 A) for any length 
of time. The chosen metadyne load characteristic, 
corresponding to a diverter resistance value of 40 ohms 

and a constant metadyne control fie]d excitation of 
95 rnA, is shown in Fig. 2.2. Superimposed on the metadyne 
characteristic are a family of load characteristics of 
the load machine, for various values of load machine 

field excitation voltage. ;£rror a given value of load· . 

I 
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· machine field exci tation1 voltage, the plant opera tin~ 
poin.rt is defined .as the intersection of the metadyne 
characteristic and the corresponding load machine 
characteristic. ~hus, iii the optimalising loop, mod­
ification of the metadyne terminal voltage (the cont­
rolled plant parameter) was achieved by a~plicat~qn of 

lih§ mefl:Lifyi11g eanti-ol §igha1 tb the field exci tatiom 
of the load machine. 

The field excitation of the load machine 
was originally compos~d of two seperate sets of wind-

.. I 

/ 

'• 

ings; each of four coils, one per pole, series connected. 

One set of windings, .the main :f;ieJ.d windings, were re ... 

connected with the coils in parallel!, in order to permit 
the use of lower excdtation voltages and, hence, the use 

. of a transistor power amplifier. to controli the fie]d' 
excitation-. 

~he possibility of util~sing the armature 
current of the D.C. mot0r driving the metadyne as an 

indication of metadyne power, i.e •. as a performance 
index for the plant, was investigated. Nietadyne power 
and drivingmotor armature current, as functions of the 
metadyne termiinal voltage, were obtainecfu from a load 
test performed on the plant. The results, plotted in 
Fig. 2.3, showed the dr±iving motor armature current to 
be a direct indication of metadyne power, with optimum 
motor current corresponding to optimum metadyne power. 
Zero power did not correspond to zero armature current. 
due to no-load losses in the machines. This no-lo.ad 
currenE component was off-set in the:measurement un~t 
of the controller (see next section), thereby limiting 
the range of variation of measured armature current 
(the performance index), to the cor~esponding range: 
of variation of metadyne pawer. 

With reference to Fig. 2.3, it may be seen 
that there is hysterisis present in the plant, mainly 
in the metadyne, which results in two distinct power 
curves and, hence, two distinct levels of optimum power, 
dependent upon whether the metadyne terminal voLtage· 
is increasing or decreasing. The effects of hysterisis 

. are also reflected in the driving motor armature current. 
I 

I 
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At a later stage in the research~ one of the 
additional field windings available on the metadyne was 
util:iised to simulate a plant with time-variable parameters •. 
This enabled an investigation of the adaptive response 

of the optimalising loop to be c~nducted. 
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J. THE OPTDIIALISING CONTROLLER:. 

The optimal1isi!ng c:ontroller, which was 
design-ed and buiJJt as part (j)f this research project, 

\ may be: d~vided into four basic units; viz., the measure­
ment, detect~@n, logic and parameter drive un±ts. The 

functional relationship between these units and the 

general adaptive controller descrihed in section 1.1, 
is as follows. Identificat~on is performed by the 

measurement unit, decision by the detection and logic 

units _and modification by the parameter drive unit. 

J.J. PRINCI;PLES OF OPERATION 

The performance index of the simulated 

plant; i.e. the armature current of the D.C. motor 
driving the metadyne, as measured by the voltage; across 
a shunt in the armature. circuit; is conti-nuously 
monitored by the measurement unit. ·when the measured 
perfprmance index signal is positive-going,a diode 
gate in the detect~on unit 6on.du_9ts·:and the, signaJJ .. 
is fed to a memory element. Once the performance index 
reaches its· maximum: value and begin'S to de·crease, the 

diode gate blocks, thereby resulting in the storage of 

the maximum value of the performance index in the memory 
element. With further decreases in the value of·· the 

performance index, the difference between the maximum 

and·.:.current values of the performance index is formed· 

in the detection unit. When this difference equals the 
set threshold level (see section 1.2 for the definition1 
of threshold level1), a threshold swi tch:iing device in 

the l~gic unit is operated. 

The logier unit consists, basicallyr, of a 

bistable switching device, the output of which changes 
state, alternately between ·--± lV, every time the 
threshold switching device is triggered. This± lV 
output from the logic tinit is fed to a ramp generator 
in the parameter modification unit which gemerates the 
ramp signal required for parameter modification. 

;· 
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The slope of the ramp is dependent upon the state ofl 

the bistable switch; being positive when the bistable 
iis in the -lV state and negative when the bistable is 
in the +lV state. This ramp signal is applied.to the 

input of w. power ampLifier which dri ve.s the field of 
the load machine in the simulated plant. 

A breakdown of the controller, in terms of 

the basic units, is shown diagramatically in Fig-;. 3.1 
below. 

P~ramet er dnve 
un1t 

put 
r-------------1 

I T I 

•. 

In 
fr 

·s 
om Measure De teet- Log1c 

~ 

Ramp Power I 

~ 
I --ment 1on 

hunt un1t I gen. amp. I 

UY'Ilt unrt I I 
I I 
L----- ----------..1 

FIG. 3.1 SECTIONAL BREAKOOWN OF THE 
CONTROLLER 

3.2 CIRCUIT DETAILS . 

3.2a Measurement unit 

The measurement unit consmsts of a differen­
tial input operational amplifier, acting as a high input 
impedance buffer stage, which is connected across the 

-

2 ohm current shunt in the armature circui;t of the motor 

·driving the .metadyne. The outpu~ of this buffer amplifier 
is a voltage proportional to the armature current of the 
driving motor; i.e. the. measured performance index of the 
plant. The gain of this amplifier ( A1 in Fig. 3.2 ) was 

set at the value 2.l,since, gain in the measuremenffi stage 
improves the sensitivity of the detection unit by;· amplify,o­
ing the variations of the.actual performance index (the 
voltage across the current shun~).: This value of gain 
was chosen because it gave a significantly larger 
variation of measured performance index at the output 
of the measurenient, unit and, at the same time, ensured 
that the output of the buffer amplifier did not saturate. 

The performance index signal obtained from 
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the current shunt waffi found to be very nnisy; the noise 

being attributed to a 50 Hz. mains component introduced 

by the demagnetising winding of the metadyne and components 

of a higher frequency due to tooth ripple and eccentricity 
of the rotating el1ements of the plant. Owing to the 

inherent sensi ti vi ty to_: noise of the threshold switching 

device in the logic unit,. fil tering,.~of the performance 

index signal was found to be necessary. A simple low-pass, 

balanced R-C filter was inserted between the current 

shumt and the input to the buffer amplifi.er, thi,s filter 

being incorporated as part of the measurement unit of 
the controller. Diode:limiters were provided at the input 
of the buffer amplifier to protect the amplifier against 

.. 

possible high input voltages resulting from surges in 

the armature current of the motor driving the metadyne, 

such as. might occur when a .l0ad is suddenly impo.sed 

upon the plant. 

Included in the measurement unit is an off­

set control which enables the output of the buffer ampli­

fier to be set to zero.when the metadyne is not deliverin~ 

power. This control is a variable voltage-divider network 

which provides,at the input of the buffer amplifier, a 
voltage of opposite polarity to the shurit voltage, thereby 

enabling the no-load armature current to be compensated­
for. 

.A double-pole, two-way toggle switch ( s1 ) i's~: 

connected at the summing junctions of the buffer amplifier 
in such a manner that, in oJie position (the Bi\L. position) 
the summing junctions ''•:are short-circuited and the input 
from the current shunt is totally disconnected, thus 
enabling the amplifier to be balanced by means of the 
external rheostat R1 • In the sec0nd position (the INPUT~· 

position) the summing junctions are~ connected to the 
input filtering and limiter circuhts of the measurement 

unit. 

3. 2b Detecti.on unit 

Detection of the performance index optimum 
is performed by a capacitor-type peak detector. The 
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output of the measurement unit is connected to a storage 

capacitor (C) through a diode gate (D) - see Fig. 3.2 • 

W~en the performance index is increasing the diode is 

forward biased: allowing charging of the capac'itor to 

/ 

take place. When, howeveT, the performance index decreases 

the diode becomes reversed biased and the gate blocks • 

.Assuming that there is negligible leakage of; stored 

charge from- the capacitor, the voltage stored by the 

capacitor,once the diode gate has blocked,will be that 

voltage corresponding to the optimum value of the 

performance index. 

A differential-input amplifier is connec:ted 

across the diode gate to amplify the differences in 
voltage occuring across the diode. When the storage 

capacitor is being< charged there is a small forward 
voltage drop across the diode which is amplified and 

inverted :and appears as a negative voltage at the 

ouput of the amplifier ((A2 ). This vol ta.ge, howevert has 

no effect on the logic unit since the threshold triggering 
device, which is conrrecte·d to the output of A~, operates 
when its input is some fixed positive value. Once the 
diode gate blocks,the voltage appearing•across the now 
revers(ed bjjased diode is equal to the difference. between 
the stored value of optimum performance index and the 

instantaneous value of! the perfi·ormance iJ;_ldex. The voltage 

drop across the reversed biased dlode corresponds to the 

performance index degradation~ and when it b.ecomes equall 
to the threshold leve~, ~ , the threshold switching device 
is triggered:. 

The threshold leve~, in terms of the gain 
o~ A2 and: the triggering voltage of the threshold 

·switching device (Vth)' is given by 

~i 
~:.:: vth = .•••••••• (3.1) 

Gh 
where, G:' 

d = gain of ;. amplifier 11: 2 • 

The above equation represents the ideal case where there;. 
is negligible leakage of stored charge from the storage 
capacitor. It'~· was found that, in practice, .the le~age 
could not be neglected and a modified equation for 
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the determination of the threshold levei1 is given later 

insection 3.3. 

The gaim of A~ was made variable in the range 

3 - 68 by the insertion of a doubled-ganged potentiometer 

in the input arms of the operational amplifier ~· This 
feature allows the selection of a wide range ·of values 

of threshold level for experimental purposes. 
. I 

I 

When. the logic unit is triggered:, a relay~ which 

is connected across the storage capacitor, is openated 

and the capacitor·is discharged to a lower voltage, thus 

resetting it for another cycle of peak detection. The 
. discharge relay contacts remain closed for a set time 

interval, termed the deactive time, which is determined 

by the logic unit and which is necessary to prevent 

spurious operation of the logic unit. 

A push-button switch (PBS) i§ connected to 

the summing junctions of the amplifier A2 which, when 
operated, short-circuits the summing junctions in order 

that balancing operations may be performed. 

The circuit diagram of the measurement and 

detection units is given in Fig. 3.2. 

3.2c Logic unit 

A1 block diagram of the logic unjjt showing 

· the interrelation of the major elements is given below 

in Fig. 3.3. 

In put 

I 

s.toro'J'" lo 
c Cl?Clcltor 

-

Schm1tl: 
tngger 

Relay 

R L 1 

J- K 
Mono fll p .. Relay 

1 I flop RL2 --+ 

Inhibit 

Mono 
2 

F1 G. 3.3 BLOCK DIAGRAM OF LOGIC UNIT 

To -pgrame.te..r 
ve ul"ll~ ell"" I 

~ 
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'The Scmitt trigger at the input of the unit 
acts' as a thresholo. triggering device. Every ti'me the 
input to the Schmitt trigger from the detection urufit, 

exceeds the threshold triggering-voltage (1.8V) of the 
Schmitt trigger its output goes from zero to some positive 
voltage (approximately 1. 5 V ) .,. This switching of the 
Schmitt tri'gger actuates a. monostable multivibrator. 
( Mon:o. 1') which, in turn, delivers a pulse of 5 msec • 

. pulsewid'th to the inputs o:D' a J-K flip-flop and· a 
second monostable multivibrator (Mono. 2). 

The J-K flip-flop is a binary-logic memory 
device having two stable~ output states; the '1' an-d 
'0' states which,in this case, correspond to 1.5V and 
OV respectively. It has three inputs, the set, reset 
and toggle inputs. PulJses applied to the toggle input 
cause the output of the flip-flop to switch alternatel:Y,.1 

between the '1' and the '0' state, and,when no pulses 
are applied, the· output of the filip-flop remains indef­

initely in the state it was switched to by the last 
applied input pulse. A pulse applied to the 'seit'. input 
results iJ:i the '1' state appearing at the output and, 

conversely, a pulse applied to the 'reset' input.results 
in the '0' state appearing at the output. This 'bistable 

device is, in essence, the heart of the logic unjjt since, 

b~rutilising the toggle -input, the switching sequence 
required for control of the parameter perturbatjj.on:s is 
implem~nted. 

The flip-flop drive-s a relay (RL2) through 

a transistor relay-driver stage, (see ~ig. 3.4). ~he 
contacts of this relay form a binary switch,(having the 

• 
st.ates +1 V and:J -1 V), which changes state every time the . 
output:. of the flip-flop changes state. This ±. 1 V binary· . 
signal! acts as the input to the ramp generator in the 
parameter drive unit and: control!s the slope (either 
positive or negative) of the generated ramp signal. 

'1\he second monostable multivibrat::or (:Mono. 2) 
determines the controller deactive time. It is actuated . 
by the first monostable andi drives, through a relay-
driver, the rela~ (RL1 ) which1 discharges the storage 
capacitor in the detec~tiion unit. As well as dri vfng this 
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relay, it appl'ies a signal to an il:lihibi t gate in the 
first moriostable which prevents the flip~flop beimg 

opera ted by any spurious signals which may trigger:. the 

Schmitt trigger. A short time delay, consist-ing of a 

low-pass RC circuit, is included betw~en the output of ' 
the ~irst monostable and the input of the second mono-. 
stable to prevent the i~hibit-pulse feedback causing 

erratic operation of the first monostable. 

Controller deactivation is achieved, there­
fore, by both discharging the storage capacitor in the 
detector unit and· inhibiting operation of the·first 
monostable in the logic-unit. (The necessity for de­
activating the controller for a certain length of time 
will be explained in section 3.4). The controller de­
active time is equal to the-pulsewidth of the second 
monostable,which may be varied in the range 0.5 - 3.0 
sec. by the external rheostat R4• 

The Schmitt trigger and monostable multi­
vib:i:'ator;!circui ts have been synthesised from readily 

available I. C •. modules ( pL 914 dual gates) and the 

flip-flop is a complete I.e. module ( p.L 923 J-K flip­

flop). The relay-d~iver circuits for relays RL1 & RL2 
consist of an emitter-follower stage, for input buffering·· 

purposes, coupled to a cownon-emitter stage driving the 

relays. Catching diodes and commutating capacitors are 

shunted across the relay coils to prevent the poss~ble 

destruction of the transistors by switching transients. 

An additional feature of the logic unit 

circuittry is a manually operated set/reset facility 

which connects -.and disconnects the input to the ramp 

generator in the parameter drive unit as well as pulsing 

the'set' input of the 'flip-flop; This circuit was included 

to facilitate the initial balancing and 'priming' adjust­
ments to he performed prior to the controller being set 
into the control mode. In the SET,' mode (part of the com-· 
plete control mode for the controller) an SCR relay latching:· 
circuit is engaged by depressing the pushbutton switch 

marked SET.~ The contacts <Dif relay RL3 connect the output 
of the logic unit to the ramp generator in the parameter. 
drive unit. The push-button switch, on. being depresse~, 
delivers a pulse to the !set' input of the flip-flop 
which ensures that the initial state of the flip-flop 
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) 

is such that when the controller begins its control 
action the initial direction of parameter perturbation 

will act to increase the field excitation of the load 
machine in the simulated plant. When the RESET push­
button switch is activated the supply to the relay 

latching circuit is disconnected, the SCR reverts to 

the non-conducting state and relay.RL
3 

drops out, dis­
connecting the input to ·the ramp generator. 

A circuit diagram of the logic unit is 

given in Fig. 3.4. 

3.2d Parameter drive unit 

T,he parameter drive unit is comprised of 

a ramp generator and a trans~mr power amplifier whicht 

excites the field of the load machine in the simulated· 

plant. The circuit diagram of this unit is given in 

Fig. 3.5. 

~he ramp signal required f.or parameter 
perturbation is generated by an integrating operational 

amplifier; the input to this amplifier being the ± lV 
binary signa;L derived from the logic unit. When the 

inpu~ signal is +lV the ramp has negative slope (due t~ 
the inverting property of the operational amplifier), 

and vice-versa when the input signal is -lV. The time 
constant of the integrator may be varied in the range 

o. 2 - 4·. 0 sec. by means of the rheostat R5 in th:e input 
arm. of the integratiing amplifier. This ad~justment enables 

the rate of parameter perturbation to be varied1 for 
experimental purposes. In later sections the term'integ-

.. ' . 

rator. constant'will be encountered. The integrator constant 
is defined as the reciprocal of the ·intergrator tiime 

constant, i.e. : 

Integrator constant,KL 1 sec.:~ •••••• ( 3.2 ) 
RC 

where, R = resistance in the input arm of the integrating 
amplifier. 

C = capacitance in the feedback loop of the inte­
grating amplifier. 

I 
I 
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The s~itch s2 , (see Fig. 3.5), sSlects the 
mode of the integrating amplifier; in the BAL. position 
the feedback capacitor is disconnected and discharged, .. 
~d a resistor (lOOK) is placed in the feedback loop, 

while in the INTEGRATE position the feedback capacitor 

·is placed in the feedback loop and·thelOOK resistor is 
disconnected. When·. initial balancing of the amplifier 

A3 is to be performed, s2 must be placed in the BAL. ~ode 

and relay RL3 must be in the RESET position, in whicl't 

position the input terminals of the amplifier are short­

circuited. 

The power amplifier driving the field Of the 

load machine consists of a simple two-stage, D.O. coupled 
transistor amplifier. The two transistors, the driver & 
power transistor, are connected in a simple Darlington 

pair configuration and have. ratings exceeding the maximum 
working values of voltage and power in the circuit. As 

well as being over-rated (especially so in the case of 

the power transistor), the transistors are solidly moumt.ed 

on a heat-sink in order to minimise thermal drift. A 
catcliing·diode is shunted across the field windings of 

the load machine in the collecton' of t~e power transisto~' 
to protect the transistor from possible destructive 

transients induced in the field windings. A switch,S4, is 
provided so that, if desired, the power amplifier input 
may be disconnecte.di·.from the output of the ramp generator. 

~his facility provides for possible: future situations 
. in';which the controller is to be integrated with other 
plants or simulated• plants and, in which, the power 
amplifier is not required as a final actuating·device 
for parameter modification. 

A. separate power supply for .the load machine 

field is incorporated with the power amplifier as shown 
in Fig. 3.5. The circuit diagram of the power supplies 
for the rest of the controller is given in Fig. 3.6. The 
~ 13.5V supplies for the operational amplifiers are 
series regulate& by zener-~iode-controlled transistors, 
while the +4V supply for the I.e. modules in the logic 

unit is regulated by a shunt connected zener diode. 
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.J.2e Additional qetails of controller 

A~useful feature of the controller is its 
compatabili tJ with modern lOV solid.:..state ·analog comp­

.uters. Both the input buffer amplifier in the measurement 
unit and the integrating amplifier in the parameter drive 

unit have a working voltage range of' 0 -±l:OV which allows .. 
them-to be directly integrated into a centro] system 
siimul'a-ted on an analog computer. 

'· 
A diagram of the front of the controller, 

showing the,position of the.various componenrts, switches 

and controls, is given in Rig. 3.7. 

3.3 Determination of the actual threshold level 

]t has been previously shawn that,in the 
ideal case, the thresholdlevel may be determineca! from 
equation 3.1. It was found, however, from preliminary 

tests on the controller, that the.actual va]ues of 

threshold l'eve1 did not coincide with those predicted· 
by· equation 3.1. In this section the· cause of thiis diver­
gence~is explained: and!. a modified equation fo-r the deter­
mination of the threshold level, with a fair degree of 
accuracy, is obtained. 

The differences between the predicted:. andi 
actual values of threshold leveTI were found to arise 
mainTiy from the non-ideal operation of the diode· (D) 
as a gating device. In an ideal gating device there 
should be no voltage drop across ~he device when it is 
conducting, whereas, in the case of the diode, there is 
a finite voltage drop across it when it is:forward­
biased' which results in values of threshold leveTI which 
are greater than the values predicted.by equation 3.1. 

In order to be able to determine,, the actual1 

threshold level, the effect of the forward voltage drop 
across the diode was evaluated in an approximate manner. 
Considering the case where the capacitor in the dete~:tion 
unit is being charged through the diode, the current 
through the diode is· conipose:.d of two major components; 

/ 
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the capacitor charging current (i ) and the· leakage c 
current (i1 ) through the resistances in the one arm 

of amplifier A2 (see Fig. 3.8 below). At any instant 
in time during the charging of the capacitor the 
v:o]tage across the capacitor (V:'

0
) is given by : 

where, 

1 
·v· I 
~ 

FIG. 3.8 

•• · ••••. ,.. ( 3. 3) 

V. = input voltage from measurement unit 
~. 

Vd = voltage drop across the diode. 

CAPACITOR-CHARGING IN DETECTION UNIT · 

When Vi reaches its maximum ... value, corres­

ponding to maximum performance index; the capacitor 

charging current tends to ~ero and the maximum voltage 
stored on the capacitor is given approximately by 

where, 

v ~ v. - vdl em ~m 
......... (3.4) 

V = maximum stored voltage on the capacitor em 
V. =maximum value of input voltage 
~m 

vdl = voltage drop across diode due to leakage 
current i 1 through resistances. 

The value of Vdl may be found graphically 
from the diode characteristic curve providing the value 
of i 1 is known., The ·leak~ge current may be. determined 
approximately from the equation , 

I 
il ~ vim I· 

•••••••• (3.5) 

where Ri & Rf are the gain-setting resistances of A2 
shown in Fig. 3.8. 

/ 
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Now, with reference to equation 3.4 it 
may be seen that,having reached its maximum value, V. 

~ 

must decrease by the amount Vdl before it becomes equal 

/ 

to the voltage stored on the capacitor, and it must then 
decrease by the further amount ~i , as given by equation 

3.1, before the Schmitt trigger in the logic unit operates. 
Therefore the actual threshold level may be· determined 

from the following equation 

~ 
.. vth +. vdl (3.6) = ........ 

Gd· 

( Note that Gd is given by the following expression 

G' Rf d.= - .·) 
R. 
~ 

The experimentally determine~ diode character­

istic curve ,from which v:alues of. V dl were obtaizred,is 
given in Fig. 3.9.-In Fig. 3.10 values of threshoid 
le!vel predicted by equation 3. 6, toge~her. with the actual 

value's determined fx-·om tests on the controller, have beem 
plotted as a function of the gain of amplifier· A2 in the 
detection unit. It may be seen that,despite the very 

approximate technique whereby V dl was det.ermined·, the 
values of threshold level predicted by the modified 

equation above are in close agreement with the actual 
values. Th~ small differences between the actual and 
predicted values may be attributed to leakage in the 
capacitor and leakage through the resistors Ri & Rf 
during the· time interval between the instant the· diode 
becomes reverse-biased and the instant the logic unit 

is triggered. Neither of these leakage components were:· 

considered in the determination of Vdl~ 

3.4 Controller deactive time 

Without the.: controller being deactivated for 
any length of time the possibility of spurious operation 
of the· logic unit exists at high rates of parameter pert­
urbation. This spurious triggering of the logic unit i---s 
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a direct consequence of measurement dela;w coupled1 with 

high rates of parameter perturbation and may be accounted 
for in the following manner. 

Considering:· an ideal case in which there is 

no measurement delay present in the op~imaliising loop, i.e •. 

t~e effect ?f_parameter perturbation on the performance 
index is instantly available at the m~asurement unit 

of the controller. Then for thi.s particular case, as soon 

as the. performance index degradation has attained the 
. . 

. value of the threshold level and the logic .unit has been 

triggered', the:reby reversing the direction of parameter 
perturbation, the performance index will immediately 

begin increasing. However, when measurement delay exists 

in the optimalising loop,the changes in measured perfor­

mance-index lag behindthe corresponding changes in para­

meter perturbation. Owing to this lag between cause and 

effect,. the performance index degradation tends to over­

shoot the threshold level before the reversal of the 

di~ection of-parameter perturbation beaomes effective, 

antt the performance index begins to increase. The higher 

the rate of,- parameter perturbation and the greater the 
measurement delay, the larger will be the amount the 
perflormance index degradatiom exceeds the threshold level. 

exists a 
the rate 

For a given value of measurement delay there 

value of the integrator constant (K.) for which 
' 1 

of parameter perturbation is such that the per-

formance index degrada~ion becomes greater than or equal 

to twice the threshold level; i.e. D ~ 2 ~ • When this 

occurs thee· first triggering. of the logic unit, which 
reverses the direction of parameter perturbation, will be­

followed by a second, spurious triggering o~ the logic 
unit which destroys the normal cycle of control and results 

in inferior adaptive response. The effect of spurious 
I 

triggering is illustrated in Eig. 3.11. 

The critical value of ·integrator constant, 
above which spurious .triggering of ·the logic unit will 
occur, is given approximately by the formul~ 

1 ----~----------······· (3.7) 
_,, .. G 

'·-· p 

- .";. .. 



Where, 

t 

FIG. 3.11 

1:2. 
K. 

1C 
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= funcbon of. rne~ure.meoc t~me ~o"slaob. (~ee Append1l( B) 
=,critical value of integrator constant. 

. '1:-i = sum of time constants of low-pass elements 
in the measurement portion of the· optim­
alisinjg loop. 

Gm =gain of measurement portion of op~imalising·· 
loop. 

Gp = gain of that portion of the optimalising 
loop between the ramp generator in the 

controller and the plant non-linearity. 

ol = parabola constant of plant non-linearity. 

Cont-roller de.ochvcd·-e.d 

I I 

I 

I 
I 

® 
I Measured 

Per(=orrno nee 
I ode.)(. 

S1<jna\ 
a~p.e..ann9 
acrce:.£. 
d1ocle. 

ILLUSTRATION OF SPURIOUS TRIGGERING 
& CONTROLLER DEACTIVATION 

If the controller is to be ·operated with 

values of integrator constant greater than Kic then the 
controller mu~t be deactivated for a period of time after 

_each operation of the logic unit to prevent further 
. . . . 

degradations of the performance index causing spurious 
triggerings of the logic unit. This is illustrated in 
Fig. 3.ll,above. The controller deactive time, Td , should 
be made approximately equal to the total time constant of 

the measurement portion of the. optima~ising loop, ~1 • 

A derivation of equation 3.7, together with a justification 
for the choice of T!d·( is· given in appendix Bi. 

I 

I 
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4 ... THEORETICAL ANALYiSIS OFt THE OPTIIVJALISI:NG· LOOP 

In this· section a mathematical. model of both 

the linear and non-linear portions of the simulated plant 
is derived and, subsequently, a describing-function for 

the combined plant:. and controller non-lineari ties is 
obtained. Descnibing-function analyses are conducted 

wh~ch yield the steady-state (hunting) response character­

istics of the 'Optimalising system, in terms of limit­

cycle amplitudes and frequencies, for different values of 

threshold leve] and integrator constant. 

4.1! IVIodell±nw the plant 

Ai f.undamental requirement for. the application 

of Everleigh's describing-function technique, is a 'static' 

mathematical modeTI relating the performance index to the 
controlled plant parameter. A\ 'static' model is one in 
which the perform~ce index is a !function only of the 
parameter itself,and<is independent of the time rate-of­
change of. the .. parameter. Therefore, a static model of 
the metadyne power as a _function of the load machine e.m.f. 

will be derived first. 

Considering the metadyne seperately, the term­

inal vo~tage (vtm) is given by : 

where, iam(t) = armature current of the metadyne 
vc (t) = control field voltage 
~e = control fielq time constant 
K1 = metadyne constant 
w = metadyne speed (rad./sec.) 
r 1 

L 1 
p 

= armature resistance 
= armature inductance 
= differential operator d /dt. 

•••••• ( 4.1) 

Now, since the -control field voltage is kept constant, and 

' ' '~ ... ·· ' 
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making the assumptions that the speed of the metadyne 
remains constant and that the armature inductance can 
be neglected, equation 4.1 may be written as : 

where, 

= r i (t}" m am •••••• (4.2) 

V' 
0 

= open circuit terminal vol'tage of the 
metadyne (a constant) 

rm = 'effective' armature resistance 

= (rl, + nc) 
nc = armatura reaction constant (including· 

effect of the compensating·windings). 

Similarly, considering the load machine.and 
making the assumption:'·thai;l_; the armature inductance may be 
neglectett, the termina~ voltage of the machine is given1 
as : .... 

'Wtg(t) e g((t) + r iag'~ t) ....... (4.3) = g 

where, vtg(t) = terminal voltage of the load machin.e 
. ( t) = armature current of the"load machine· l.ag 
e ( t) = back e.m.f. of the load machine g 
rg = armature resistance 

With the two machines connected together the 

terminal voltages and armatu:i'e currents are equal; i.e. 
i = i , and the power delivered by the am ag wtm = vtg & 

metadyne to the load ma~hine, P(t), i~: 

P(t) • • • • • • • • ( 4 • .4) 

Substituting from equations 4. 2 & 4 •. .3 for vt 
and ia in equation 4.4 and simplifying, the metadyne power 
rna~ be expressed as 

'i, 

P(t) = 1 

( r )2 rm + g 
- r e (("tr;) 

2
} m g 

........ (t,4 •• 5) 

From variatioma~ calculus the optimum power 
of the metadyne occurs when, 

= 0 • 
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Applying this partial differential to equation 4 • .5, the 

load machine e • .m.f. corresponding to optimum power (e 0
) . g 

is found to be 

where 

4. 6; 

as a 

,i.e. 

1 ( rm- rg)W 
2 0 • •..••• .... (i.4. 6) 

r m. 

= '6w o· 

~=a constan~;= 1 (rm- rg) 

2 rm 

Substitut~ng the value for e0 given iTh equation1 
g 

equation 4.5, the optimum power P 0 may be expresse·a· 

+ • • • • ('4 •. 7) 

Rearranging 

expressed as a :ffunction 
equation 4.5, the power may be 

of P
0

, e~ and eg( t.). 

i.e •. P(t) [·~- eg<tl] 2 

..... ·~·· (t4 •. 8) 

Considering the field:excitation of the load 

machine. Assuming that .the speexl of the load machine is 
constant (a reasonable assumption since the load machine 
is driven by an induction motor), the relationship between 
the laad mach~e e.m.f. and the excitation voltage (vf) 
applied to the.field of the load machine is gd.vem by : 

where Kf = 

'l:'f = 
p = 

......... ( 4 •. 9) 

v.oltage gain constant of the load machine 
time constant· of the frield: 
the differential·operator, d /dtt. 

The load torq~e (TL)' in newton-metres, on 
the shaft of the D •. c •. motor 'driving the. metadyne is 
given by :: 
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= E..lU + 
w 

T-· 
0 

••••••• ((4.10) 

w = speed of the motor.and metadyne in rad./sec. 
T

0 
= 'loss torque', due to losses in the metadyne 

and g~~v~ng ~gtqr (ass~med ~pproxim~te~~ 

~oustttilt) 

The speed, as assumed earlier, is constant, 
therefore it may be seen from the above equation that the 
driving motor torque is directly proportional to the 

metadyne power. Now, the transfer .fwhlction for the dri'v:ti.ng 
.motor, relatin~ the armature current to the load torque, 
is given as (l): 

where 

r < t) = ......... (4.11) 

(l + P 't m) 

r ( t) = driving motor armature current (the plant; 
performance index) 

K = a motor constant 
~ = time constant of the combined inertia of 

. L m 
the rotors of the metadyne and driving 
motor. 

Substituting for T1 from equation 4.10, 

equation 4.11 becomes, 

r < t) = + ro 

where Km = _!_ , a constant of the motor 
w 

•••••• (4.12) 

p 
0 

= KT
0 

, the constant value of armature current 
resul t:img from losses in the metadyne andi 
driving motor. 

Considering the measured performance index, 
i.e •. the voltag~ appearing at the output of the measure­
ment unit of the controller, r m(t), this variable· is a 
function of the armature current of.the driving motor, and 
is given by the equation : 

(l) K~E. Fitzgerald and c. Kingsley, " Electric 
Machinery", McGraw-Hill Book Company, New York, 

1961:. 
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= r ( t) 
• • • • • • • • (4.13) 

(1 + p 1; ml) 

Ka = gain of the buffer amplifier in: the measure-

ment unit of the controller. 
Rs - resistance of the current shunt in the 

armature circuit of the driving motor. 

~ ml = time constant of the low-pass filter at the.· 
input to the controller. 

Now, from equation 4.12, remembering that Po 
is a constant, the measured performance index may be 
written in the form, 

+ Pmo • • • • (4.14) 

where 

From equation 4.14, above, it is seen that 
measurement delay in the optimalising loop is' introduced 
by the combined inertia~l of the rotors of the metadyne. 

· and its driving motor, and by the low-pass filtering 

at the input. of the controller. 
A block diagram of the simulated plant, which 

includes the measurement unit of the controller,.is given 

below. 

( )
2. 

Po o p = -ex. e3 -e':l 

e 3(0lf\ t--P_(t)~ 

e9. 

'"PLANT 

1 
w 

P(0 
-=w 

r oPTIM.I'ILISII,IG Cot-.fT"I'\o-;:;::_E.R -1 
I I 
II . ~-.o a' c &- p.W\(c). Ka R s II 

"PPIRI\MI:OT£~ 

+ + 

+ 

K 
(1 + p1:m) 

pC~:) 

L-..._ ___ .,__ ___ ___,if--1 ~~~~~ 14---i 6 1. p l:nu)f'lll~~--~ 

FIG. 4.1 

I I 
L_·- _j 

BLOCK· rnAGRAM OF MODEL OF THE 
SIMULATED PLANT 



- 37 -

The various constants of the plant were 
evaluated from tests performed on the plant. The constants 

rm & rg were calculated from the slopes of the metadyne 
.and load machine load characteristics, respectively, while 
the voltage gain constant of the load machine, Kf' was 

determined from the open circuit characteristic of the 

load machine; i.e. the excitation curve for the m~chine~ 

The field time constant of the load machine, l; f' was 
evaluated from an open-circuit,stap function response 

test performed1 on the load machine. The constant Km' of 

the D.c· •. motor driving the metadyne, was determined 

experimentally from the readings of metadyne power and 

driving motor armature current obJtained from a static 

load test performed on the plant. The.constant of the 

metadyne power parabola; 0::.. , was calculated from the 

obtained values of rm and rg,according to the formula of 

equation 4.8, 

i.e. 0( = r. 
m· 

The time constant of the inertia of the 

rotor·s of the metadyne and the driving·· motor, 'L m' was 

evaLuated from the formula : 

where 

'L = m 
......... (4.15) 

J = combined inertia of the rotors of the 

metadJ!in~ and driving motor. (Kg. m~·) 
R, = resistance in the armature circuit of the a 

driving-motor (ohms) 

Km = constant of the driving·motor 
w = speed of the metadyne and driving motor (rad./sec.): 

(i .. The inertia, J, was estimated by considering 

the rotors of the metadyne and driving motor, which are 

mechanicalLy coupled and. run at the same speed, to be 

solid iron cylinders.) The values of' the fiiixerir parameters 

of the plantr. are; tabulated below. 

rm = 
.r = g 

R = s 
R = a 

33.3 
2.5 
2.0 
2.75 

'effective' ohms 
ohms 
ohms 
ohms 
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Km = 0.005 amps/watt 

Kf = 4.8 volts/volt 
K = 2.1 volts/volt a 
'lf = 0.27 sec. 

't'm = 1.5 sec. 

'tml = 0.4 sec. 
0( = 0.026 watts/volt2 

J 1.00 2 = Kg.m. 
w = 143 rad./sec. 

Subst:i:tllting the numerical values: of the constants 
and regrouping the elements of the block diagram of the 

model of the plant (Fig. 4.1), a simplified block diagram 

of the optimalising loop, which facilitates the derivation 

of an equivalent describi~g-function for the plant and 
controller nonlinearities, is achieved (Fig. 4.2). With 

reference to the diagram below, the following symbols are· 
defined. 

s = Laplace transform operator 
K. = integrator constant (parameter 

l. 

GA = gain of power amplifier in the 
drive' unit. ( = 3 volts /volt) 

-

drive unit) 
parameter 

p- P0
- o·o~6 (eo e t 9- ~ Losses 

4·~ 
·, 

( 1 +0·27s 
' 

Load m/c 
~1eld 

P~rcame.t-er 
lJ(I It:· 

GAKi 
5 

/ 

FIG. 4.2 

b -t-
eg '? 1-- " 

y• 
e9 

~ 

0·021 

dr•ve (1 + 1·5s)(1 +0·4s) 

±1V 
'DETE<:110ij 

.... ~ 
C:O"JTROL. w 

" 
LoC"IC prf'l y 

BLOCK DIAGRAM MODEL OF 

0 P TIM A L ISIM G C 0 N T R 0 L L 00 P 

4.2 The describ~ng-function analysis. 

MeasuC"ernent-
c II''CU l 1:" 1-i'On<;) f:er 
~uf'\chon. 

Gm(s) 

The describing-function technique used in 

analysing. the stability or response characteristics of 

.. 
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nonlinear feedback control systems is a form of the more 
general 'series-expansion' techniques utilised in non­
linear analysis. Basic to the technique is the determina­
tion of the fundamental component of·a Fourier series 
expansion of the nonlinearity output. Considering the 
input to the nonlinearity to be a sinusoidal signal of 
the form, 

a( A,, tJ) = A sin!Jt 

the o.utput may be expressed as a Fourier series, 

where 

'C = c1 sin CJt + c2 cos t..rt + •••••••• 

= C sin(UJt + ~) 

C = j cf + cf 
p = tan-1 ~ :~ ) 

The describJiing-function of the nonlinearity 
is defined as the fundamental component of the Fourier 
series, normalised' with respect to the input; i.e.", the 
describing-:f'uncti·on, N-·k(A·, tJ), is, 

where 

N e ( A, ZAJ ) = c sin ( wt + p) 
A sin t.Jt 

-I Ne} e-j,ej 

= effective gain of the nonlinearity 
with respect to the input signal!. 

,ej · = phase shift of the fundamenta] c·omponent 
of the nonlinearity output relative to the 
input sinusoid. 

Having defined gain and phase relationships 
for the nonlinearity output, with. respect.to a single­
frequency input signal, Nyquist stabili tyy' analysis tech­
niques may be ap-plied by utilising the characteristic· 
equations for the control loop; i.e., 

1 + G~-w) Ne(A, w) = 0 (negative feedback) 

1 - G(Jw) Ne(A, t:J) = 0 (positive feedb~ck) 

or. G~r.u) = + 1 -
N e ((A, "t.J) 
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G(jcu') = transfer function of the linear portion 
of the control.loop. 

The locii of the inverted describing-functiom 

(i.e. + N;1 (A,.'CJ) ), :r;-eplace the ±. 1 point of conventional 
linear Nyquist theory. Since describing-function analysfu 

neglects the harmonic content of the nonlinearity output, 

its application is best suited to systems, in which there 

is low-pass filtering present in the control loop. The 

use of this technique for the analysis of the optimalising 

loop being studied,may be justified in terms of the low­

pass elements present in the measurement portion of the 
loop;. i.e., the driving motor transfer function and the 

filter at the input of the controller. 

4.2a Derivation of a describing-function for the plant 

and controller nonlinearities. 

With.reference to Fig. 4.2, a describing­

function is to be derived for the section of the optim­

alising loop between the pcdnts Y and Y'. The describing-
. function includes both the plant and controller nonlinearities 

as well as the linear elements between the nonlinearities, 

which act as low-pass filtering elements (the parameter 

drive and load machine field transfer functions). 

The input to the controller detection unit 

is assumed to be a sinusoidal signal, i.e. p m = A sin wt , 
as required for a describing-function analysis., Every 

time the input signal degrades by the threshold level, ~ , 

from the optimum,p~, the control logic is triggered, as 
shown by the waveforms of Fig. 4.3. (Note that the D.C. 
components of the signals occuring in the loop may be 
neglected as they are not transmitted directly around the 
loop due to the presence of the digital lo&ic unit. One 
of the requirements for the application of describing­
function techni~ues is that there must be no D.C. signals 
transmitted: around the loop- for classical analog control 
systems this requirement implies that .only autonomous 
systems may be treated by this technique.) The total 

variation of the ramp signal,from the parameter drive 
unit, during one period (T) of the control cyclle is 
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given by, 

Jt.:+T 
~ v f = to G AKi d t = 

. . 0 . 
,., = G·· K. 2TT 

A'~ 
UJ 

where tJ = frequency of the input signal to the controller. 

Therefore, with respect to the mean value of 

the parameter drive signal, the generated ramp may be 

described by the equation, 
. r 

vf(t) = ~ GAKi [~ ••• (4 •. 15) 

~he response of the load machine to this 

triangular ramp signal, which excites the fiel!d of the load 

machine, is obtained by considering only the fundamental 

frequency component of the triangtilar signal. This is 

a simpl1ifying assumption which has to be made if the 
· effects of the load machine field are to be included· in 

the analysis,and which may be justified in terms of the 

low-pass filtering effect of the field circuit. As may be 
seen from the waveforms of Fig. 4.3, the fundamental 
frequency of the ramp signal is hal.:f<' the frequenc~r of 

the input signal, 'CJ. . 

Applying- Fourier analysis, andi noting·· that the 

triangular ramp signal possesses quarter wave symmetry, 

the amplitude of the fundamentaTI is determined £rom the 

equation, 

where T·'"= period of the triangular ramp signal. 

= 4 Tr 
'C.J 

Therefore, 

y.:ff = 

= 

2W -Tf 

8K ... G:'A: 
~-

t.J1T 

[% -- vj cos t~t) dt 

........ ,. .. ( 4.16 ) 

The time-variant portion of the signal applied 
to the field of the load machine (i •. e. neglecting· the D.C. 
component of the ramp signal) may, theref.ore be represented 
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by the fundamenta~ comporrent~sinuso~da~ signal, 

sin t.J t 

2 
• • • • * • • • 

The response of the load machine to the 
fundamenta~ frequency signal given above is, 

where load machine field time constant/ 

= load machine gain constant. 

= phase lag introduced by the 

=-tan-rr;f) 
field circuit. 

Now, considering the complete representation 

. of the load machine e. m. f., ('e ( t) ) ; i.e. including the g . 
D.C. component of the signal. The e.m.£. is given1 by, 

eg( t) ~:j~G~~~~/in cr: t + ~f) + e~ •••• (4.18) 

where e 0 = D.C. component of the load machine e.m.f. g 
~ . . ' ~ 

Owing to the symmetry of,the parabolic non­
linearity of the plant, the iriean (D.C.) value of the e.m.f:. 
is· identical to the optimum value of the e.m.f;. Now, 

rearranging the equatiom describing the plant nonlinearity, 

equation 4.8, the metadyne power parabola becomes, 

P 0
- P(t) = ex. (e 0

- e (t) ) 2 
g g 

and from equation 4~18, we get, 
. '2. 

P 0
- P(t) -::=ci..(BKiGAKf ) stn2 ~t' 

\Tr~ J 1 +(~211 Y' . . 2 

where t' = retarded time due to lag ~f. 

= t + 2~f 
r.J 

••••• (4.19) 

c:onsidering the fundamental frequency component . 
of the power degradat±ion (equation 4.19). As shown: by the 
last waveform of Fig. 4.3, the fundamental frequency of 
the power degradation is equal to the frequency of the 
input to the controller. The'·'ampli tude of the fundamental 
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component is given by, 

dt' 

•••••••• (4.20) 

I 
I 

Considering the phase shift of the fundamental 
frequency component of the. power degradation with respect 
to the input to the controller,~t may be s~eh from the 

.waveforms of Rig. 4.3 that the fundamental component of 

the power degradation lags by the amount ~t • This total 

]ag is a result of the lag introduced by the load machine 

field, ~f' and a lag, ~l, which lis due to the ''dead-time' 
between each operation of the logic unit in the controller. 

(Effectively, the controller only exerts control effort 

at the instants at which the logic unit operates to 

reverse the direction of parame~er perturbation. During 

the period between each operation of the logic unit, the 

intergrator in the parameter drive is free-rU:nn±ng'and 

the plant is, in a sense, uncontrolled, since no effort 

is b~ing applied to constrain the perturbation of the 
parameter.) The dead-time lag is a function of the 

amplitude of the input to the· controller, A, and the 

threshol'd level, b., and is given by the equation, 

,01 = -21T + - sin -
1 

( 6 :, kl ) 

= ,( 3~ +Sin-
1 

(6 :A)) 
phase lag &ue to the load machine field is given by, The 

Hence, the total phase. lag is, 

~t = ~1 + ~f 

= - (3: + 
sin-1 ( ll - A) + tan -1 t~ 2~,)) A 

I 

•••• (4.2J2) 
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The describing function for the combined 
plant and controller nonlinearities is, therefore, 

From equations 4.20 and 4.21 we get, 

N ((A CiT) = 0( ~ ~Ki GAKf j2. -j 13]" + 
e ' --- e [2 

2A lTtJ j 1 T (T..U2.'T:~2.' . ' ' 

.......... (4.22) 

4.2b Prediction of steady-state limit-cyc~e conditions 

for the optimalising system. 

The normal operating response of the optim­

alising system is a nonlinear.oscilla.tion, or limit-cycle, 

which is a resu]t of the system continously 'seeking' the 

optimum of the performance in~ex. Utilising tlte describing­

function, previously derived, the amplitude and: frequency 

of these limit-cycles, for different sets of values of 

~and K., are derived. The limit-cycle·amplitudes 
' ~ 

obtained are those relating to the measured performance 

index, p m' which was used as the 'input signal in the 
derivation of the describing-function. 

Sets of values of N;1 (A,ts) for A= 0.14 volts 
and K. = 0.25, 0.5, 1.25 & 2.8 sec71 , respectively, were 

~ 

calculFJ.ted in polar form on the University ICT 1301 
computer. (The computer pr9gram used is given in appendix 

A). For each ~et of the co~stants (~ ,K.) locii of ~1 (A,~) -- ~ . e 
were calculated; each locus corresponding to a different 

J . ' 

value of A. For each value of A, th±irty points on the locus 
were evaluated; each point corresponding to a different 

. value of (JJ • Thirty values of A· were used, starti;ng ait 

A.= 0. 08 ·and increasing in increments. of 0. 01 up to k = 0. 27. 
The values of vs used started with 'C.J = 0.10 and increased 
in increments of 0.10 up to UJ = 3. oo. 

The locus of the frequency transfer function 
of the measurement circuit of the optimalising:loop, 

i. e. G m ( j u.r ) = ___ o.;;...;.... 0;;.;;2;;.:;1=-------­
(1 + j 1.5c.J)(l + j 0.4w) 
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was also evaluated by the computer, using the same values 

for w as in the preceding calculations of N-1 (A,tJ). The 
Gm(\j w) locus and selected locii of N~1 (A, L..J) are plotted 

in polar form,for~the four different sets of constants 

( !1 ,Ki)' ·in Figs. 4 • .4, 4.5, 4.6) & 4.7 • The locii of 
N-1 (A, UJ) may be considered as a set of two dependent e . 
locii; i.e. locii of amplitude A and locii of frequency 

U5 • The limit-cycle conditions for the stearil.'y-state 
response of the optimalising system are obtained at the 

point of intersection of one of the family of N~1 (A, w) 

locii with the G ( j VJ) locus, at which the value of CJ 

for the N-1 (A, OJ) locus coincides with the value of u.J e . 
for the G ( j tJ) 11ocus. The solutions for limit-cycle m 
amplitude, A., and frequency,~, are shovm by the boxed 

vat;ues .;· in Figs. 4. 4 - 4. 7 , and' are tabulated below :Dor 

ease of reference. 

Threshold level, ~= 0.14 volts 
' 

Integrator Limit-cycle Limit-cycle 

constant amplitude frequency 

K. A LJ 
1 

(sec.-1 ) (volts} ((rad./sec.) 

0.25 0.682 0.43 
o. 50 0.102 o. 70 

. ' 

1.25 0.]52 1.19 
2.80 o. 245 1.73 

TABLE 4.1 Predicted values of limit-cycle amplitude 
and frequency. 

In the next section the predicted values of 
limit-cycle amplitude and frequency will be correlated 
with the 7actual, experimentally oh}iained v:alues for the 
system. 
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5. EXPERIJVJENTAL RESULTS 

A series of tests were cond.ucted upon the 
optimalising· system to assess, 1) the steady-state 

re_sponse, (i.e •. the response when th~ plant· is time-

invariant), and 2) the adaptive response, (i.e. the 

response when the plant is time-variant). The relation­

ship between the steady-state system response and the 

controller parameters 6. and Ki will developed and it 

will be shown.'' that, for a set of controller parameters, 

limits are imposed upon the adaptive ability of the 

system,. which may be predicted from the steady-state 

response. 

5~1 Steady-state response 

In optimalising systems which incorporate 

modification of a plant. parameter, a, time-invariant 
plant is one in which all plant parameters, other than 

the parameter being perturbated, r-~main constant; for 

the plant being studied this entails maintaining constant 

t:he field excitation of all the machines, other than the 

load machine, and maintaining the metadyne diverter 
resistance at a cons:tant value. The reponse of the optim­

alising system, with a time-imvariant simulated plant, 

was investigated initially. 

Traces of the terminal voltage and armature 
current of the metadyne, as well as the measured perfor­
mance index (the output of the measurement unit of the 
controller) and the J-K flip-flop output signal, were 
recorded b~ an SE 2005 U~V recorder. From the traces of 
metadyne terminal voltage and armature current, curves 
of metadyne power,as a function of time, were calculated. 
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.A-representative set of calculated curves of metadyne 
·. power, together with the recorded traces of measured 

performance index, for different values of the controller 

constants b. and Ki' are given in Fig. 5.1. It may be 
seen from these traces that, with increasing rate of 

parameter perturbation (i.e-. increasing integrator constant, 

Ki),there is an increase of both the frequency of oscill­

ation in the system and an increase in the degradation of 

the metadyne power and measured performance index from 

the optimum values. The increased hunting frequency is 

· simply due to the fact that the parameter is being pert­

urbated at a faster rate, while the increase of power and 
measured 'performance index degradations is due to effects 

of measurement delay, which become more noticeable at 

higher rates of parameter perturbation, as explained in 

section 3.4. 

What is most noticeable from the traces in 

Fig. 5.1 is that there is a basic dissymmetry between the 
metadyne power curve :c·for when the parameter is increasing 

and for when it is decreasing, and that this dissymmetry 

is accentuated at the higher rates of parameter perturba~ 
tion. The dissymmetry is also reflected i~ the measured 
perfo·rmanoe index trace. A tentative explanation of this 
effect will be given later in this section. 

The degradation of the measured performance 
index from the optimum, D, was obtained, for different 

values of /:i and Ki' from the recorded traces. Owing to 
the unsymmetrical nature of the performance; index traces,. 
two values of degradation w·ere obtained from each tra;ce~; 

one for the increasing parameter case and the other for 
the decreasing·parameter case. The average degradation, 
D, was obtained by evaluating the mean of the two values 
of degradation. The results aie given in Figs.5.2a & b, 
where performance index degradation is plotted as a 
function of integrator constant for two values of threshold 

level, i.e. 6 = 0.14 & .b.= 0.44 • F~om the plotted 
results it may be seen that the difference between the 

performance index degradation for increasing and decreasing 
parameter values becomes greater with increasing values 

. . 
of integrator constant; this is due to the fact that,at 
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higher rates of parameter perturbation,the measurement 

delay causes the performance j.ndex degradation to over­
shoot the threshold level by larger amounts. There is, 

( 

however, an approximately linear relationship between the 
average performance index degradation and the integnator 

constant. As is to be expected, the performance index 

degradation,for a particular value of integrator constant,. 

increases with increasing value of threshold level. 

The hunting period, T' was determined. from 
the traces of the J-K flip-flop output, for the same 

values of and Ki used previously. The hunting period 

was able to be determined very precisely from the traces, 
since each operation of the controller logic was marked 

by an abrupt switching of the flip-flop output. As before, 
two values of hunting period were determined· from each 

trace and the average hunting period, .T, was evaluated 
from 'these two values. The results are plotted in Figs. 

5.3a & b. As may be seen from the curves, hunting period 

decreases with increasing values of integrator constant 

and increases with increasing values of threshold level. 

/ 

The actual limit-cycle amplitudes and frequencies 

for the optimalising system were calculated as average 
yalues from the average.perfor.mance index degradation 
and hunting pe·riod values, since there were no distinct, 
single limit-cycle conditions owing to the unsymmetrical 

' ' ~ 

nature of the metadyne power. The average actual limit- · 
cycle amplitude, A, and frequency, (3 , were evaluated 

from the.formulae 

A 1 - (5.1) = 2 D . . . . . . . . 
w = 21T . . . . . . . . ( 5 •. 2) -

T 

where D = average performance index degradation. 

T = average hunting period. 

In Figs. 5.4a & b the average actua~. values 
of limit-cycle amplitude. and frequency, together with 

the values theoretically predicted in the previous 

section, have been plotted as fu~ctions of .the integrator 

constant, for the threshold level value, A= 0.14 volts.,.: 

·, 
'·' 
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It may be seen from Fig. 5. 4a that the average actual' 

and predicted l~mit-cycle frequencies are in close 

agreement for values of integrator constant less than 
-1 

/ 

1.75 sec •• For values of integrator constant greater 

than J...75 sec71 , the average actual and predicted limit­

cycle frequencies tend to diverge; th~ divergence becoming 

greater with increasing values of integrator constant. 

This divergence may be attributed to the increasing 

dissymmetrJr of the power characteristic, which ~s apparent 
at larger values of integrator constant, (see Fig.5.1). 
Similarly, the aver~ge ·actual and predicted l:i.mi t-cycle 
amplitudes are in reasonably close agreement for small 

·values of integrator constant and tend to diverge with 

increasing values of integrator constant. It must be noted, 

however, that the predicted amplitudes are. constantly 

less than the average. actual amp~itu~es.of the limit-­

cycles. However, considering the fact that the theoretical 

limit-cycle conditions were obtained by using an approx­

imated, static model for the metadyne power characteristic 
in the analysis, and that this model became a progressively 

worse one at greater rates of parameter perturbation, the 

actual degree of correlation obtained between theory 

and practice is. evidence of the v:ali.di ty of the theoretical 
technique. 

The efficiency of the control, in relation-to 

the control objectiiVe, (i.e •. the optimi.sation of the 

metadyne power), was assessed by evaluating-the steady­

state hunting loss of the system for different values of 

~ and K .• Owing to the unsymmetrica~ nature of the power 
J. 

characteristic, the hunting loss was evaluated about the 

mean optimum power level, P0
, for two consecutive cycles 

of operation. The mean optimum power;level was evaluated 
I 

as the mean of the optimum power when the parameter is 
increasing and the optimum power when .the parameter is 
decreasing. (It was found that, despite the variations 
of optimum power levels occuring with different :.values of 
the controller constants, 6 and K., the mean optimum 
power level remained approximatel~ cons~ant with,~= 249 
watts). 

'The actual hunting loss of the .. ·optimal ising 
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system, Ha' was evaluated from the curves of metadyne 
power by applying the summation .equation (the discrete 
form of the continuous integral in equation 1.1), 

N 
Ha = _L 2; (j?O"- P(i llt) ) • • • • • • • (5.3) 

N i=O. 

Where, P(illt) = value of the power at the ith. sampling 
interval. 

llt = sampling interval 
N = total number of sampling intervals 

and N6t == period of two consecutive cycles Of 

·control· operation. 

The measured hunting loss was evaluated from 

the traces of measured performance index in exactly the 

same manner as above. The measured hunting loss, Hm' when· 

used in conjunction with the· corresponding values of H~, 
enabJ::ie the effectiveness of the chosen performance index 
to be assessed; i.e. under what conditions and to what 

degree is the measured performance index a direct indication 

of the actual system performance. 

The actual and measured hunting losses, as 

functions of the iirl:Jtegrator constant, Ki' have been plotted 

for two values of threshold level, ~ , in Fig. 5.5. The 

actual hunting loss increases linearly with increasing 

values of integrator constant, which implies that at 

greater rates of parameter perturbation the efficiency 

of the control system decreasee. The actual hunting loss 

is a functimn of both the integrator constant and the 

threshold level and,for the particular system being 

studied·, was found to ·be a linear function of the two 

controller parameters, 

i.e •. H1 ~ 28. 0 6. + 6K. a 1 
(watts) ••••• (5.4). 

where 6. has the dimensions, (volts) , and Ki the dimen­
sions, ( sec71 ). 

The relative efficiency of the control system, 
( relative to the me~ optimum pow~r level, po ) , is given 
by, 

.. ~ . .. · .... 
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I 
/ 

Relative efficiency, Er = [1 - ;~ J x 100 % ••••.•.•.• (5.5) 

Values of the relative efficiency, for various values· 

of b. and K., are tabulated bel1ow. (Note that the relative 
1 . . 

efficiency has significance only when it is related' to 

some constant value of power; in this case th~ mean optimum 

power level of the steady state response of the system.) 

~ 0 •. 25 

0.14 98 

0.44 94.4 

'R'AB1E . 5 • 1 

Relative efficiency (~) 

o. 50 1.25 2.80 

97.5 96 92.8 

93.6 91.6 87 • .5 

Relative efficiency of the control as 

obtained from the steady-state response 
of th~ systemr (P0 = 249 watts) 

The measured hunting loss is se.en to be a 

nonlinear function of the integrat:<I>r constant; the hunting· 
··loss tends to increase less ra.pidly with increasing 

.values of the integrator constant. Ideally, the measured 
hunting loss. should be a linear function of integrator 

constant with the same ··.slope as the .actual .hunting loss 

graph, if the measured performance index is a direct 
indication of the actual plant performance. However, for 
the actual system being studied,the measured performance 
index becomes a less effective indication of the actual 
plant performance at higher rates of parameter perturbation, 
owing to the increasing attenuation which ocaurs in the 
low-pass elements of the measurement section of the optimal­
ising loop. 

Considering,"now, the unsymmetrical' nature of 
the dynamic power characteristics of the metadyne. It was 
found that at low rates of parameter perturbation the 
dissymmetry between the power characteristi,c when the 
load machine fiel.d was increasing and that ·~hen the 
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field was decreasing may be attributed, simply, to the 

effect of metadyne hysterisis. At higher rates of para­
meter perturbation, the dynamic intGraot1on of the 
machines comprising the plant results, it is felt·, in 
energy;r transferences between the machines which serve to 
accentuate the fundamental hysterisis dissymmetr~. 

Ittwas found that the speed of the motor 
drj_ving the metadyne did not remain constant, as had 

been assumed earlier, and varied with chanee of metadJ~e 

power. The speed variations were of a similar nature to 
the variations.;of metadyne power, but l.a.gged the power 

variations~.due to the inert:ia of the metadyne and driving: 

motor rotors. It is maintained that power regeneration 

from the load machine (the speed of which remains very 

nearl1y constant) to the metadyne and driving motor occurs 

when the.- speed of the driving,.motor increases by the 

largest amount; i.e •. when the metadyne power is decreasing 

from the highest power level resulting from the hysterisis 

dissymmetry. Owing to the fairly long inertia time constant 

of the metadyne and driving motor rotors (1.5 sec.), the 

regenerated power will tend to oppose the increase of 

metadyne power along the lower hysterisis power curve 

(i.e. curve (li} of the power traces in Fig. 5.1·). 'l\he 

regenerated power is stored as kinetic energy in the 

rotors of the metadyne and driving motor and is subsequently 

dissipated when the metadyne delivers power to the load 
• 

machine along the upper power-hysterisis curve (curve ~ 

of the power traces in Fig. 5.1). 

Therefore~- an oscillating energyT transference 
between the metadyne and the load machine is set up, with 

a frequency of oscillation equal to the fundamental 
frequency of parameter perturbation and which, owing'1;o 
the phase lag introduced by the inerti~ time constant, has 
the effect of accentuating the dissymmetry of the power­
hysterisis curves. Furthermore, the greater the rate of 
parameter perturbation, the more rapid are the speed 
variations of the driving motor and, hence, the greater 
the regenerated power becomes, and, a.lso, the greater 
the phase lag becomes -resulting _in even further 

· accentuation of the power-hysterisis curves. This energy;r 
transference effect is illustrated in Fig. ,5. 6. 

. ·' 
•.. "> •. .... ·\·:· 



F1G. 5.6 

- 63 -

f!ir"dfl'\e.ter­
R<2rturb3 bo"' 
!"'amp !!>19nal 

drtvtnc,s 
tnot.-or 
spe~a 
var1abons 

("e.generated · 
______ power 

osc\lbbon 

..r'r--t--+---'-::::;::t..- Stctbc poWt.C"­

phase La13 due 
to 1nerha. time coosb\nl: 

hysi:"enSIC:. 
curves 
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by energy transference mechanism 

The speed v,ariations of the motor driving the 

metadyne will also result in variationsof the generated 

e.m.f. of the metadyne, (a function of speed squared), 

which, in turn, could affect the power delivered by the 
me·tadyne. The effect of variations of metadyne e.m.f. 

on the power delivered by the metadyne was investigated 

by simulating the control system on an analog computer. 

The results obtained from tests on the simulated system 
indicated that the metadyne power was not significantly 
affected· by variations of metadyne e.m.f., and that., the 
increasing dissymmetry of the metadyne power characteristic, 
with increasing rates of parameter perturbation, could not 

be attributed to variations of the metadyne e.m.f. alone. 
However, it is conceivable that' the relatively small 
variations of metadyne e.m.f. are a contributory cause 
of power regeneration from the load machine to the metadyne. 

Details of the analog simulation, toge~her 
with the results obtained, are given in appendix c. 

I 

I 

,• ..... 
·, 
'<' 
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5· •. 2 ~he adaptjjve response 

The adaptive response of the optimalising 
control system was investigated; by disturbing one of 

the paramet.ers of the plant in a knowm fashion, thereby~ 

causing known1 variations of optimum planrt·: po.wer, and 

observing the variat:Uons of the measured· perfcY:rmance 

index.as the controller 'seeks' the -time-variant optimum 

po:iint. 

The operating conditionE of the simulated 

plant were- made time-variant by applying a low-frequency., 

sinusoidal signal to one of the additional control fierd 

windings availabTe on the metadyne. The sinusoida~ 

disturbance signal was obtained from a Muirhead low~ 

frequency' decade oscillator whli.ch drove the control 

field through a 1.5K series resistance. 

Wi t:rt' the signal V sin urdt applied to the c . 
control field, the generated e.m.f. of the metadyne is 

given' by, 

where 

........ (5.6) 

K = metadyne gain constant 

.Q = phase lag introduced by C((l>ntrol field 

and quadrature winding time constant:s. 

V 
0

· = steady-state metadyne e.m.f •. 

Substituting equation 5.16 into equati~on 4 •. 7, 
the time-variant optimum power is given by, 

pO(t) = ~ [vo + V psin(cJdt + .Q )] 
2 •••••• (5.7) 

where (S' = rg + (rm- rg)2 

(rm + rg)2 4rm(rm + :ng) 
2 

= o. 0077 watts/volt2 

·"·· 
.. ~ ·, 

. '. ·• 
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.The value of V was_ set at 10 volts and wi t·h 
v;o = 180 volts, the optimumppower is giveniby, 

P0
( t). = o. 0077. [1ao + lOsin(tJdt + oD 2 

= 250 + 28sin('tVclt + 0) + 0.77sin2(tJdt + 0) 

~ 250 + 28sin( ~t + .Q) watts 

The variations of the optimum measured 

performance index, for a given value of ~' are··, __ 

where 

p~(t) f;' IG~(ju.a)j~~·~250 + 281Gm(j~)J sin(-cJdt + Q~) 
= 5_. 0 + 28jG~( j ~) r·sin( v.1dt + 0') volts 

Gm(j~) =frequency transfer function of the 

measurement section of the optimalising 

loop ( see equation 4.14). 

0 ' = 0 + f&m( j c.Jo) 

For values of wd <o.llf.-/s the attenuation of 
the low-pass measurement elements is small and the expected 

variations of the measured performance inde·x optimum is 

given by, 

~ 5.0 + 0.56 sin(UJ~ + 0') volts 

With the sinusoidal disturbance signal applied 
to the control field of the metadyne, traces of the perfor­

_mance index and the disturbance~· signal were recorded. A· 

representative set of traces for a number of values of 
integrator constant and a disturbance signal frequency 
of 0.02 c/s, are shown in Fig. 5.7. These traces demonstrate 

the ability of the controller to optimise the plant perfor­

mance when plant operating conditions are· varying at a 
rate which is slow f:n relation to the steady-st<ate 'hunting' 
oscillat~ons of the optimalising system. 

A:t higher disturbance signal frequencies the 
adaptive response tends to degrade and the system becomes 
l'ess able to follow the variations of the optimum operat­
ing point-.. This effect may be seen in Fig. 5. 8, in which' 
traces of the measured performance inQ;ex are shown for 
higher disturbance signal frequencies. 
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From the traces of Fig. 5.8 it may be seen 

that, for an integrator constant of 1.25 sec71 , t:q.e 
amplitude of the sinusoidal variations of the mean 

optimum performance index signal begins decreasing in1 

the region of a disturbance signal frequency;' of 0.07 c/s. 

When the disturbance signal' frequency is 0.1 c/s the 
system. response is very erratic ando adaptive action can 

be said to have ceased. The, limitations imposed upon 

the adaptive response of the system by both the low-pass 
filtering· elements associated with the performance ind.ex 

. measurement and the rate of .parameter perturbation wi thin1 
·.the adaptive system are investigated below. 

In order to obtain a relative measure of the 
adaptive response bandwidth a disturbance signal 'break­
frequ.ency:~" was defined. This break-frequency is defined 

to be the frequency of the disturbance signal at whicm 

the amplitude of the mean performance-index-optimum 
variations (shown by dashed lines in the traces.of Figs. 

5.7 & 5.8) is dovm to half of its low frequency value. 

The break frequencies,at different values of integrator 

constant,for a threshold level of 0.14 volts were obtained 

from recorded traces of the measured performance index .. a.nd 
are tabulated below. (It must be noted that the oscillator 

only enabled the frequency to be· determined to within 

+ o. 01 c/s). -
Integrator Disturbance signa] 

constant (Ki) break frequency ( fb) 
. (sec71 ) (c/s) 

. 
0.25 0.03 
o. 50 o. 05 
1.25 o. 08 
2.80 0.12 

TABLE 5.2 Disturpance signal break frequencies 
for different values of inteY.rator 
c6ristari't. : ( ll = 0.14 volts)· 

/ 
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0.1 fb Ccjs) . 

0.10 

0·02 

0 to 2.0 

FIG 5.9(a) ADAPTIVE RESPONSE BANDWIDTH 

vs .. INTEGRATOR CONSTANT 

0.14 fb (c/s) 

. 0.10 

0.02.. 

1.o. '2..o ( I ) w :rgd .sec. 

FIG. 5.9(b) ADAPTIVE RESPONSE BANDWIDTH vs. 
STEADY-STATE LIMIT- CVC LE 

FREQUENCY 

3.0 

3.0 
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In Figs. 5.9 (a) & (b) the disturbance signal 

break-frequencies have been plotted as a function of the 

in-pegrat.or constant and the corresponding steady-state 

limit-cycle frequency, respectively. It. is evident that 

increasing the integrator constant (i.e •. increasing the 

nate of parameter perturbati(m) increases the adaptive 

response bandwidth. This result was expected since,at 

larger values of integrator .. constant, the more rapidly the 

control seeks the optimum and, . therefore, the more readily.r 

it will follow.variations of plant operating conditions. 
At disturb:ance signal frequencies above 0.1 c/s the 

break-frequency increases less rapidly with increasing 

integrator constant, which is due to increasing·· attenuation 

iri the low-pass measurement elements. It would appear 

significant that the break-point of the major low-pass 
measurement element (the inert:ia of the rotors of the 

metadyne and driving··motor) is 0.106 c/s. 

From Fig. 5.9 (b) it may be seen that, for 

smaller values of steady-state limit-cycle frequencies, 
an approximately linear relationship exists between the 

limit-cycle frequency and the break-frequency of the 

disturbance signal. In this linear region the disturbance 

signal break-frequency, fb' is given,as a function of 

the steady-state limit-cycle frequency, fs' by, 

f . = 
b 

( f = V-1" /21T ) . s . 

Thi:s approaches the hypothetical limitation (i.e. fb = 0.5fs) 
in which the plant optimum is detected once for1 every 

I 

crest and trough of the disturbance sinusoid. 

From the above observations it may be concluded 

that, for time-variant plant operating conditions, an 
upper limit is imposed upon the rate at which the operating 
conditions vary; the upper limit being determined by the 
measurement delay in the optimalising loop. ~el'ow this 
upper limit, the adaptive response of the system is 
dependent upo~ the rate of controlled parameter pertur­
bation ·a:nd··' .c.ontroller threshold level alone. 

,• ,,., 
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·6 CONCLUSIONS 

The ability of the optimalising controller 
':to maintain the simulated plant in the region of' optimum 
. plant performance, despite variations of plant operating 
conditions, has been d'emonstrated-. The rate at which the 
plant operating conditions may vary is limited by both 
the measurement delay present in the optimalising loop 
and the controller threshold level1 and integrator constant 
(which determine the steady-state limit-cycle frequency 
of the system). 

In general, the presence of measurement 
delay in the ·optimalising loop serves to degrade the 
overall performance of the system in that it limits 
adaptive ability and decreases the efficiency of the 
control as the rate of controlled parameter perturbation 
is increased,(i.e. hunting losses increase with increasing 
rate~ of .parameter pe~turbation~~~ 

The analysis of the steady-state response of 
the system,· using the describing-function technique, 

yielded re:sul ts which were im reasonable agreement with 
the actual response of the system- despite deviations of 

'the performan.ce inde.x characteristic from the static· 
parabolic characteristic used in deriving the describing~ 
function. (It is to be noted that the describing-function 
derived in this study is an extension of the basic method 
proposed by Everleigh 1 , in that the effects of dynamic 
elements present in the optimalising loop between the 
controller output and the plant performance index non­
linearity have been included by incorporating~ the linear 
transfer functions of these elements in the describing­
function. For the sucessful application of the modified 
describing function propose~ in this study, it is essential 
that the above-mentioned dynamic elements be of a low-pass 
nature in order that the harmonics of the ramp drive-signal 

1 Everleigh v.w. : Adaptive control & optimisation 
; 

techniques, pp 227- 229. McGraw-Hill;'l967. 
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may be disregarded. This requirement is not undul~ 
restrictive since.,in practice, low-pass plants or 
actuating devices are more likely to be encountered.) 

The describing-functi'on technique may also 
be applied to the design of optimalising systems. The 
design problem is centred upon the selection of suitable 

values of controller parameters, ~ & Ki' which will yield 
acceptable values, for system hunting loss and adaptive 
response bandwidth. A general design procedure is given 

·in appendix D. (It must be noted that the design procedure 
·.is not complete in that system stability has not been 
.·considered. In general, the lack of stability analysis 
techniques is.a deficiency common to all forms of 
adaptive control systems. In appendix E, ar;t elementary 
consideration of the stabil:ity of optimalising control 
systems, using Liapunov' s second method··, is presented, 
which may possibly serve as a basis for a more detailed 
stability anaLysis.) 

As a form of adaptive control, optimalising 
control has its advantages and disadvantages. One of the 
major advantages is the simplicity.· and low cost of 
instrumenting an optimalising controller, while the fact 
that it is essentially a single-parameter adaptive procedure 
limits its possible applicatio.ns;. 

I ' 
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APPENDIX A 

lVIAC program for the computation of the locii of Gm(j"'t~J) 

and ~1(A,~) in polar form.· 

With reference to the tJiuat-ions for G. ( j w) 
-- m 

and N~{A,"GJ); 4.14 and 4.22 respectively; the following 
symbols where used in the computer program to represent 
the various constants.and variables, 

A= A 

B = K K R
6
, m a . 

c =- t' m 
D='rml 
E = KfGA 
F.= Tf 
G'= o<. 

H = K. 
].;: 

U =A ... 

lVIAC program 

CHAPTER 1 
y ... 30 
X+ 30t 
1) 1=1(1)30 
W=O.li 
X=WC 

w = 'tJ 

Y=WD 
V=}1RADIUS(l,X) 
V=l/V . 

. V'=}1ARCTAN(l,X) 
.. Z=,e5RADIUS ( 1, Y) 
Z=l/Z . 
Z '=}1ARCTAN( 1, Y), 
XI=BVZ 
YI=V'+Z' 

. YI=-180YI/1 
REPEAT 
1{;::1(1)20 
A=O. 5U+0. OlK 
ACR6SS1/0 
2 )I=l(l )30 

· W=0.1I 
' X=O. 5WF 

. V=}1RADIUS:;( 1, X) 
V 'r=}1ARCTAN( 1, X.) 
Y=8/V . : .. 
Y=Y/W· 
Y=Y/'1 
Y=EY. 

•••••• 

•••••• 

Calculation of .Gm( jcu) 

in polar form. 

jGm( j w >I 

/Gm(j-c..r) 

1 . 
Calculation of N; (A, "C.>) 

in polar form 

Y=IlY }1 •••••• 



Y::::HYT 
Y=YY! 
Y=O. 5GY/ /t.: 
Z=U-A 
Z '=f11'110D ( Z.) 
Z=~SI.GN( Z) 
X'=2Au.:.uu 
X'=~MOD(X') 
X' =~.SQRT (X.' ) 
X'=~MOD(X.') . 
X'=~ARCTAN(X',Z') 
X'=ZX' 
X'=X'+V' 
X'±l80X' /t 
Y'=X'-90 
ACROSS2/0 
3)REPEAT 
END 
CLOSE 
CHAPTERO 

A.2. 

• • • • • • 

• • • • • • 

VARIABLESl 
PRINT' @ LIMIT 
NEWLINE2 
PRJNT'C~NSTANTS' 
NEWLINE 

@ CYCLE @) CALCULATI -eNS' 
I 

I 

READ(B) 
PRINT(R02, 3 
NEWLINE 
READ( C) 
PRINT(C)2,3 
NEWLINE 
READ(D) 
PRINT ( D ) 2 , 3 . 
NEWLINE 
READ(E) 
PRINT(E)2,3 
NEWLINE 
READ(F) · Input and 

I 

PRINT(F)2,3 
NEWLINE Format instructions 
READ( G) 
PRINT(G)2,3 
NEWLINE. 
READ(H) 
PRINT(H)2,3 
NEWLINE , 
READ(U) 
PRINT(U)2,3 
NEWLINE 
ACROSSl/1 
l)PRINT'VALUE @) -6-F @) A\.1 

SPACE4 
PRINT(A)2,4 
NEWLINE2 
ACROSS2/l 
2)PRINT(W)l,2 
SPACE4 
PRINT(XI)2,4 
SPACE4 
PRLNT(YI)3,2. 
SPACE4 
PRINT(\Y) 3, 4 
SPACE4 
PRINT(X')3,2 
SPACE4 . 
PRINT ( Y' ) 3 , 2 
NEWLINE 
·ACROSS3/l 
CLOSE 

·,, 

J 
I . 
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APPENDIX B 

Derivation of the controller deactive-time and an 
expression for the critical integrator constant. 

/ 

T.he equation for the metadyne power degradation 
is , from 4. 8 , · 

d(t) •••.••• ( B .1) 

Defining the power to be optimum at time t=O we get, 

d( 0) = 0 

'., 

0 

eg - eg(t) = ± KiKfGAt Therefore 

and 2 2 d(t) = Kd.t , (Kd= oc(KiKfGA) ) •••• (B.2) 

The measured performance index degradation 
is given by, 

.D(t) = 
G K t 2 

. m d 

Takfng the Laplace transform of the above 
equation and assuming that the system has been in, operation 

long enough prior to the defined time, t=O, for the 
transients due to ini t.ial! conditions to have become 
neglible.:, we get, 

••••••.•• (B.3) 

Simplifying·(B.3) by the partial fractions 
expansion method and taking the inverse Laplace transform 
of the simplified expression, the time-domain solution for 

I 

D((t) is, 

D(t) 2 
= Kt - 2K T1 t + 

K = KdGm 
where T 1 = Tm. + Tml 

't' 2= 'tm T ml 

t 
2K("ti - 't2 ) + 2K(f1 ( 'lm, '[ml )e~ 'LWI 

. + f 2 ( Tm, Tml) e- ~i"l-~ 
••••••••••(B.4) 

As stated1 previou~ly, the power is o-ptimum 
at time t=O. The measured performance index reaches 
its optimum value at some later time, due to the measure- . 

• 
ment delays 'L~ & 'rml· At the optimum we have, D( t) = O, 

' I. 



B.2 

therefore differentiating (B.4) with respect to time 
I 

and neglecting the exponential,terms (which die away 
relatively rapidly and may be neglected in order to 
simplify the expression), we have at the optimum, 

• 
D(t) ~ 2Kt -2X ~l ~ 0 

/ 

therefore, t.:: 't1 , when the ~easured performance index 
is at its ·optimum value. The interpretation of this result 
is that the measured performance index lags the power· 
by a time. approximately equal to the sum 1-of the time 
constants of the low-pass measurement elements. 

Now,considering the degra~ation of the 
measured performance!- index. When it reaches the value 
of the controller threshold level' /J. ' the controller 
logic operates, changing the direction of parameter 
perturbation, thus causing the power to increase. However, 

·due to the measurement delay, t~·e performance index does 
not follow the change of direction of power variation 
immediately,but continues·decreasing for a time after 
the controller logic has operated. If at time t 1 the 
the measured performance index degradation equals the 

. threshold level, then for t > t 1 we have, from (E.4), 

••••••••••• (B.6) 

Now, at some ·'time ,t2 ( t 2> t 1 ) the performance 

index degradatio~ reaches a maximum value. At the maximum . . 

we have, D(t2)· = o, therefore from (B.6), 

and •••••••••••(B.?) 

i.e. the performance index continues degrading for a time 
~l after it has reached the threshold level. Substituting 
for t 2 ,in (B.6),and simplifying, the maximum performance 
index degradation ·is given by, 

of the 
of the 

••••••• (B.8) 

Now, it is possible that for certain values 
integrator constant K., (which determines the value 

1 . . . 
constant K), the maximum performance· index degrada~il)n 



B.3 

will exceed· twice the value of the threshold level, in 

which case the control logic will operate for a second 
time. This second triggering of the control logic is 
a spurious one, since the controller has not yet begun 
the nex~ cycle of optimum detection (see Fig. ·3.11. 
page 31 ). Therefore for, 

K. ~ K. 
~ ~c 

where Kic = critical value of integrator constant at 
··which Dmax·= 2 ~.' : 1 

• 

Therefore for Ki = Kic' we get from (B.8), 

,., •••• (B.9) 

whare 
.. 
' 

From (B.g) the critical integrator constant is, 

K. ~ 
~c 

1 ~ 

KfG A CX.KmKa Rs ( -ri -2 'r 2) 

••••• (B.lO) 

Hence, when the system operates with values 
of integrator constant greater than Kic' the controller 
must be deactivated for a time Td after each operation 

. i 

of the controller logic. From (B.7) the·contrdller deactive 
time is, 

•••••••• (B.ll) 

Extension to the general case 

In general for an rith order measurement 
transfer function of the form, 

G 
Gm ( s) = _____ m_. ------

(l+s1m1)(l+sTm2)~ ••• (l+stmn) 

equations (B.lO) & (B.ll) still hold if the factors 
'r1 and' T2 are replaced by the general forms, 

1:2 = 

n 
2. 'tmi 
i=l 

0 

•••••••• (B.l2) 

(i~j), j=l,2, •• ~,n 

(i=j) •••••• (B.l3) 
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The correlation between theorY and practice 

Values of critical integrator constant 
were calculated from B.lO for the two cases, ~ = 0.14 volts 
and ~ = 0.44 volts. The values of the constants in 
equation B.]O are (see section 4.1), 1 

· 

Gm e!! K K R m a s ~ o. 021 

Gp = KfGA = 14.4 

ex 0.026 

"tl = 'Tm+ Tml 1.9 . I 
= 

't2 = rm 'rmi = 0.6 

The theoretical values of Kic' together 
with the actual experimental values obtained when the 
controller was not deactivated, are shown in table C.l. 

.tJ Kic ·(sec. -l) 

(volts) Theoretical Experimental 

0.14 0.715 o. 70 
0.44 1.265 1.25' 

TABLE C.l Theoretical & experimental values of Kic 

It: is evident that the critical integrator 
' constant may be pred:lcted very accurately using· equation 

B.lO. 

In accordance with equation B.ll, the controller 
deactive. time was set at, 

Td = T1 = 1.9 sec. 

and the controller was found to operate satisfactorily 
at higher values of integrator constant, with no further 

I 

spurious triggering of the controller·logic occurring. 
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APPENDIX 0 

Analog simulation study 

The primary aim of the study was to investi-

. gate the effect of driving motor speed variations on the 
generated e.m.f., and hence the power, of the metadyne. 

The plant was simulated,as if for open loop operation, 
and, by applying a triangular ramp signal to the simulated 
plant, the closed loop operation.of the·control system 
was simulated. The equations describing the plant are 

given below, (refer to section 4) 

Metadyne power, P(t) 

(watts) 

O;Etimum 12ower 1 
pO 

pO = + v2 
2 } f rg 

(rm-rg) 
2 

4rm(rm+rg)
2 0 

(rm+r g) 

= o. 0076 v2 
0 

0 

O;Etimum l·oad machine e. m. f., e g 

e~ = 

MetadYne e.m.f., V
0 

(watts) 

V
0 

= 0.008 w
2 (volts), 

Driving motor armature current, r(t) 

(volts) 

((w = speed, :nad/sec.) 

p ( t ) = , K, . TL ( t ) ( amps ) 

(l,+p 't' m) 

Load torque, T1 (t) 

(newton-metres) 

The Ward-Leonard drtve armature current -

load torque relationsh~p may be broken down to the block­
diagram representation shown in-Fig. 0.1, which is more 
suitable for simulation purposes 

.· ·.· 



C.2. 

'' 

(t) 
EG 

- 1 w em ,{ 1 r't) 
,/ K J p ..: Ra + 

T 

, 

K 
., 

·Ea. =generator terminal' voltage ("-'constant)= 200 volts 

FIG. C.l · Block diagram of Ward-Leonard drive for the 
metadyne. 

'' 2 
(~ = 1.00 Kgm.~m; K = 1.35 volts/rad/sec.; R = 2.75 ohms) .a 

The plant was simulated in real-time OTh the 
Engineering Faculty TR-48 analog computer and the simulated 
load machine perturbations (the triangular ramp signal) 
was obtained from a Feedback TWG200 waveform generator. 
Provision was made,in the analog·program,to include the 
hysterisis of the metadyne." The computer program, with.the: 
relevant values of potentiometer settings and scaled 

variables, is given in Fig. 0.2. 

The traces of the metadyne power & e.m.f. and 
the driving motor armature current & speed, as obtained 
from an SE2005 U-V rec·order, are given in Fig. 0.3. 
As may be seen from the traces, the variations of metadyne 
e.m.f.: ~re small and the power dissymmetry is not 
significantly changed at the higher rates of parameter 
perturbation. These results would suggest that the 

; variations· 10f metadyne e.m.f. are not, alone, sufficient 
to cause accentuation of the power dissymmetry at higher 
rates of parameter perturbation. The power-regeneration 
hypothesis proposed in section 5.1 would appear to be 
a more valid explanation of the phenomenon. 
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C.4 

p 

w 

'-'~P 

~-------------------------------~ 

f 

~----------------------~-------~ 

10 2.0 30 40 

FIG. C. 3 TRACES OBTAI NED ON 

ANALOG COMPUTER 

·Scales: P d1crn.: 45wath) 

W : (1cm. = 42 watts) 

p : ( 1 em. ::::. 5 Amps) 

Vo: ( 1 em. = 12. Volts) 
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APPENDIX D 

A general design procedure for optimalising control 
systems. 

System requirements 

The requirements of the control system are 
formulated in terms of acceptable values of hunting loss 
and adapt:ii.ve response bandwidth,. 

i.e •. H<X 
fb~y 

Design procedure 

1) 

2) 

Derive a model of the plant ( i.e. determine performance 
index parabola constant; 0( , and trans:fler functions of 

(Gm(s)) ~d parameter drive measurement elements 
. I 

el~ments (GP(s)).) 

Evaluate steady-state limit cycle frequency, tJ, and 
amplitude, A, using the describing-function method. 
Depending upon the form of the optimali;sing loop, 
the describing-function used is as follows, 

(a) Everleigh's form1 

{?).Modified form 

3) 

Actual hunting loss, H = 2A 

3jGm( jor·)l 

4) Evaluate adaptive response bandwidth, 



I. 

0.2. 

5) Check, 

6) If the requirements of (5) are met, then the values 
of controller parameters ~ & K. are the desired 

~ 

-results of the design analysis. - · 

NOTE. 

(a) We must always have Y < break frequency( lower) of · 
the measurement elements. 

1. Everleigh V.W. "Adaptive control & optimisation 
techniques", p~ 229. 

2. The measured performance index degradation is, 6pm-= 

D = 2A, therefore the degradation of p is, 

D.p = 2A. =D' 

IGm(ju.r)j 

2 Now f = d.x , therefore, 
1 

x = -x . = ( D '/ex ) 2 
max m~n - · _ ' 

.. 
since, by definition, x = 0 when p is optimum. 
Over one period, T, of optimalising action, x is given 
-by~ 

x( t) =-(D' / ot-)t, ll --;: J where. )(..(o) :. )C.. rn•n 

and the hunting loss by, 

H = 1. fT eX. x( t) 2 dt~ 
T 0 · · · 

= D' = 2A 

3 31Gm(jcu)J 
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APPENDIX. E 

The stability of optimalising control systems 

Consi.der the optimalising" control system 

·shown in Fig. E.l, in whilchthe operating conditions 
are time~variant and the optimum value of plant 

p~ameter (x2 = x~) drifts at a rate .:!:. f3 • 
The ·equations describing 

the system are, 
• 

X, ( u1 ~ .:t.l ) , K )" 0 

( U2= .:!:.1) J ~ > 0 
•· 
x2 = f3 u2 

.P ( xl' x2) 
.2 

= o<. ( x1 -x2 ) , ex? 0 

2 
= o(.X. 

where X= (x1-x2 ) 
Fi.G. "E..2 

and the control logic is described by, 

ul =.Ul for [~ ~0 
p <D.. XX 7 0 & 

ul = -ul for 
• ±m> XX> 0 & p=~ (i.e. X= 

Define a Liapunov function, V, by, 
+$: 

V(X) = \1. x2 + 1- 5( o<.X
2

) . OX 

o 'dx 

i.e. for all X, V(X.) ~ 0 

From (E.l) we get, ±!§. 

+ 2cxJ·~ • • 
V(X) = 2 cxXX 

. at 
. 0 . 

dX 

••••••• (E.l) 

• • • 
Now, Cl X = X =(x1- x 2 ) = Ku1 - !B u 2 

«i.e. independent of X), 
dt' 

therefore, 
• • 
V(X) = 2 0( X( X + f£) - rc;: . . 

For stability we require 

From (E.2) we get, 

V(X) -<- 0 

• 
x~o 

••••••• (E. 2) 

Therefore, for V(X) ~ 0 , ~ .:!:. ~] (. 0 
Henc~., X ( JI , with a switching boundary at X = J ~ . . 
Case 2 X.~ 0 
Therefore;· for V(X) ~ 0 
Hence, X ·~ -rK' , with a voz . 

, [x.:t./F]~o 
switching boundary at X= 



..... 

t 

E.2. 

The stability regions and 
swi~ching boundaries are 
shown in Fig. E.2, opposite. 

u, stable 

x~o 

FIG. E.2 

-[§ 

• 
Now, considering the inequalities for X , we 

have, .. 
:. . 

1 ) · X = ( Ku1 - j?> u2 ) > 0 

(a) u1 = +1 

• 
For, u2 = +1, X= (K - ra > 

• 
u2 = -1, X. = (K + ~) > 0 

• 
Therefore, x~o if K~ (3 
(b) ul = -1 

For, u2 = +1, 
• 
X= (-K ..;. (0) < 0 
• 

u2 = -1, X.= ((-K + (3 ) 
• 

Therefore, x,~ o if K~ ~ & sgn(u1 ) = sgn(u2 ) 

• 
( Ku1 - (3 u2 ) {. 0 2) X= 

(a) ·~ ul = +1 

. t • 
For, u2 = +1, X.= (K - (0) .. 

u2 = --1, <> X= (K + (3) > 0 
• 

Therefore, JC~O if K~ (?> & sgn(u1 ) = sgn(u2 ) 

(b) ul = -1. 

• 
For, u2 = +1, X= (-K -ra·) <o 

• 
u2 = -1, X= (-K +f) 

• 
Therefore, X ~ 0 if K ~ (3 

From the requirements of l(a) & 2(b), above, 
it is obvious that the system will be stable if K>(3 and 
the inequality conditions for X are maintained. Since the 
controller threshold logic ensures the maintenance of the 

.. _., .. 
.-.. '; 

' 
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·conditions imposed upon X by the inequalities of Cases 1 & 2, 

the system will 'exhibit stable limit-cycles in 

.:!:. ~ about the optimum ( X.= 0 ) for K /~ • 

operation is shown below (Fig. E.3). 
-If i. +ff 

a region 

Stable. sy.tem 

-1 

Xon == starbn<3 point's 
of I;:.I"OJector-•es 

FIG. E.3 K > t:l (arbitf·or-•l'j chosen) 
_S_t_a_b_l_e~l_i_m_i_t_-_c~y~cl __ e_s __ f_o_r _______ ,v __ 

When K < f' , the constraints -imposed upon 
X in Cases 1 & 2 conflict with the constraint sgn(u1 ) = sgn(u2 ) 

derived in l(b) and 2(a) and the system is ,unstable. Unstable 

control system operation is shown in Fig. E.4. 

U,: +i 
u~:.-1 

U 1 =--i ....r 
u~· -.1 · ho1 

-m_ 

ta} fK-tP) 
-- - - ----t-__.,-+-__;.-.....t,t.-1 

0 

(K- (3 ) 
Unstable 

~ 

f~-<-~) 

FH?r. E.. 4 

(b) 
(a) !lqn(ut) = 5qn lll2.) 

(b) '~>gn {u1) = - sgo (u1i 

Un-;>ta.ble 

X 

---
u,-=- -ti 
W1.:=- +1 

Xo2. 
u. ::: -1 
u~~+1 

Stability for bounded.'control parameter (~) 

In most practical systems the variations of 
·the controlled parameter, x1 , are limited by upper and 
lower bounds, ~·and n\, respectively. These limits 
impose bounds upon the range of variation of the optimum 
value of the plant parameter, x2 , as follows, 

. I 
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. 
X ~ 0 X = ( x1 - x2 ) ~ J ~' 
Therefore, (~ - x2~) = ~ 

x2u = (Mu -jf:) 
. 
X ~ 0 · X = ( x1 - x2 ) ~ -/F 
Therefore, (ML - x21 ) = -~ 

x2L ~ (M.L + /£) 
Hence, the general conditions for stability 

of the optimalising system are, 

1) K > (3 

2) . ( ~ + ~) ~ x2 <. ( Mu - ~) , 

' I 

. ·", 
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