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INVESTIGATION OF AN OPTIMALISING CONTROLLER
. SYNOPSIS

This dissertation presents a comprehensive investigation

of an optimalising controller and its behaviour when
contrbllihg a simulated plant. In addition; certain

~ theoretical aspects of optimalising control are presented.
. Design criteria and details of the circuitry of the
experimental controller, built as part of this research
project, are given. The necessity to deactivate the

- controller,for a certain period during each cycle of
operation, is shown to be & result of measurement delay

in the optimalising loop, and an expression for evaluating
the deactive time is derived. Utilising describing-
function techniques, the steady-state response of the
control system is predicted and the results are shown to

be in good agreement with the:eXperimental results,

The adaptive response of the system is investigated and

it is shown that the bandwidth of the adaptive response

may be predicted from steady-state response characteristics.
The limitations imposed upon both the steady-state and
_adaptive response.by measurement delay,are shown.

- With respect to the theory of optimalising control, a
framework for stability anmalysis is developed and stability
criteria for the basic optimalising control loop are
derived. - '
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1.0 INTRODUCTION

The analysis and synthesis of classicall
linear, non-linear and stochastic control systems are
unique in that a priori information of system parameters:
and inputs is required. On the basis of the known system
structure it becomes possible to design systém controls
‘which, in a defined sense, result in optimum system. ,
performance. However, as is often the case in practice,
information of the system structure is not readily |
available and operating conditions may be variable,
resulting in a control system which performs optimally
for one particular set of conditions and sub-optimally
for all others. In an effort to overcome these basic
problems, adaptive control systems have been proposed.

An adaptive control system may be defined
as a system which assesses its performance relative to
some performance index and, by modifying one or more

of its parameters, changes its structure to optimise its
performance. In all adaptive systems three essential
processes are apparent, viz. ¢

1. Identification
2. Decision
3. Modification
The general relationship of the three
processes is shown in Fig. 1.1 .
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FIG. 11 GENERAL ADAPTIVE CONTROL SYSTEM
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The identificationlprocess is basically a
measurement process in that it results in a measure of
the performance of the system - the performance index.
Depending upon how the performance index for the system
has been defined, the identification process can vary
greatly from one adaptive system to another. In: certain
cases 1t may simply entail the measurement:; of one of the
input, output or state2 variables of the system, while
in other cases some function of the measured variables
must be formed; e.g. the integral of squared er;é;.
Finally, it may involve identification in the usual
sense,( i.e. the determination of the impulse response,
or the transfer functiom,of the dynamic process ), as
well as the generatiornj of some function of the 'idéntified!
parameters of the process. N

In the decision process, past and present:
values of the performanee index are utilised to assess
the performance of the system in relation to optimum
"performance. On the basis of the assessment, a decision
is made to modify the controlled parameters of the system,
accbrdﬁng’to a prescribed strategy, to.achieve an optimum

-t
set of parameter values.,

The modification process may be implemented
in two ways. Either the actual parameters_of the plant
are modified, or, where: the adaptive loop forms part of
a larger control system, parameters of a controller may
"be modified. Factors influencing the choice of modification
process to be employed in a particular adaptive system '

are

a) The performanée index must be sensitive to
variations of the parameter undergoing

1. The term 'identification', when applied to adaptive
control. systems, is of a more general nature than '
. its normal definition in control theory; i.e. the
determination of a mathematical model which
characterizes a dynamic process.

2. 'State variables' are the minimum set of variables
_required to describe the homogeneous (unforced)

response of a dynamic process &8s a set of first
order differential equatiomns.

[
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modification. The greater the sensitivity of
the performance index in the region of the
optimum, the more precise will be the identi-
fication of the optimum.

b) The feasibility and cost of modifying a
particuiar parametér. This factor is particularly
pertinent to plant parameter modifiecation
where limits may be imposed by the actuating-
devices necessary to effect the modification.

Im recent years numerous adaptive -control
strategies have been proposed (1,2,3); the simplest in
both concept and instrumentation being that: of optimalising
control. It is this form of adaptive control which is the

subject of +this research.

1.2 PRINCIPLES OF OPTIMALISING CONTROL

The foundations of optimalising control
were laid by the American researchers, Draper & Li, whose
. work is mentioned in a number of standard texts ( 4,5 ).
The basic requirement for the application of this form
of control is that the dynamicbprocess to be adaptively
~controlled must possess some measureable characteristic
which is an indication of its performance, and which, as
a function of one of the parameters of the process,
possesses a distinct extremum (either a maximum or a
mﬂnimum) at the point of optimum operation. Typically,
the rélationship between this characteristic,(which serves
as a performance index),and the controlled parameter is
of an approximate parabolic nature, (Fig. 1.2).

Performance ,
Index beooioo

(P

XQPE

o

| | - | Parameter [ x)
FIG. 1.2  TYPICAL CURVE OF PERFORMANCE
INDEX vs. CONTROLLED PARAMETER
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 The self-optimising contrcl strategy is based
upon this parabolic-type performance index and i#% is
performed as follows. The controlled parameter is
perturbated by a ramp signal, causing the value of the
performance index to change in a direction which is
either away from or towards the optimum., When the
performance inhdex has degraded by a set amount,called
the threshold level, A , in a direction which is away
from the optimum, the direction of parameter perturba-
tion is reversed. In this manner, the extremum of the
~performance index is sought, independent of the ‘initial
- direction of parameter perturbation, and the system
settles down to steady-state hunting about the optimum.,
- This'extremum~-seeking' mechanism is illustrated,for the
two possible directions of inditial':parameter perturbatiom,
in Fig. 1.3 . With reference to the diagrams below, the
following symbols are defined.: ‘

P

initial value of performance index.

initial direction of parameter perturbatiom.

X
n

point of nth. reversal of parameter
perturbation.

FIG. 13 EXTREMUM SEEKING IN OPTIMALISING
"~ CONTROL SYSTEMS | -

Ideally, the steady-state hunting about
the optimum is fixed in amplitude by the threshold level
since each reversal of direction of the parameter pert—'
urbation occurs when the performance index has degradedA"ii
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by the amount A from the extremum. However, if there
there is delay associated with the measurement of the
performance index, the actual amount the performanée
index degrades from the optimum value, termed the

- performance index degradation (D), will be greater than

- the threshold levell. Likewise, the périgd, of time between
reversals of direction of the parameter perturbation,
termed the hunting period (T), will be greater than the
idéallhunting period (Ti)fwhen neaswvremento-delay is
present. This is illustrated in Fig. 1.4 .

—T '\ -~~~ ldeal response . ' :
‘ ' Response with measurement
deloy present

time

FIG. 1.4 STEADY-STATE  HUNTING IN
| OPTIMALISING SYSTEMS

Everleigh (2) has proposed a technique,

lonalysis of the

- based upon a describing-function
- optimalising loop, whereby the 1imit—cycle2 amplitude
and frequericy may be pfedicted for the situation where
the system is hunting in steady-state about the optimum.
The major advantage of this technique is that it enables

the measurement delay to be treated by well known

1. The describing-function technique treats non-
linearities in terms of the gain and phase
relationship between an impressed sinusoidal
signal and the fundamental component of the
non-linearity output, enabling frequency-
domain analysis techniques to be employed.

2. Limit-cycles are periodic, non-sinusoidal
oscillations ocurring in non-linear systems.
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frequency-domain techniques, e.g. Nyquist polar plot.

The describing-funmction technique will be dealt with

in greater detail in a later section when it is applied
to thé particular optimalising loop under study.

‘ Tsien (4) defined a criterion, termed
'hunting:loss', which is useful in assessing the
efficiency of an adaptive control system. The humting
loss, H , of an adaptive syétemlis defined as :

‘fto+®f . | |
H = '%f' ', ( fDopt - F)(t) ) at ..:....(1.1)

performance index

=
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period of one cycle of adaptive action.
( For an optimalising system, T is the
hunting period - see Fig, 1.4 )

As may be seen from the above equation,
hunting loss is a measure of the average degradation
of the performance index from the optimum and, when
considered in relagtion: to the control objective (i.e.
the opfimisation of system performance), it is a direct
measure: of the efficiency of the adaptive strategy.
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2. THE SIMULATED PLANT:

A plant was simulated, for experimental
purposes, with one operating characteristic which, as-
a function of one of the plant parameters, exhibited
- an extremum (maximum) point. The plant consisted of
an under-compensated metadyne with dynamic loading -
a D.C. machine operating in thé motoring region. The
- metadyne was driven by a D.C. motor in Ward-Leonard
.with a motor-generator set and the load machine was
v@riven by an induction mdtor. The plant configuration

is shown in Fig. 2.1. ' -

o The power delivered by the metadyne to

the load machine was a parabolic function of the
metadyne terminal voltage.and it was, therefore, of

'a suitable form to serve as the characteristic upom

whiChzoptimalising control action was based, Hence,

-~ the control objective for the system was the optimisation
.of the power delivered by the metadyne to the load. '

.The'metadyne terminal voltage served as the plant

parameter't5.be modified in the adaptive control

Strategyj modification being effected by variation of

the excitation of the load machine.

From tests conducted on the metadyne with
various values of diverter resistance in parallel with
the compensating windings, a suitable under-compensated
load characteristic was established. The choice of load
chéracteristic was governed mainly by the magnitude of
the metadyne armature current at optimum metadyne power,
since it was. undesirable:that the load machine armature
current exceed its rated value (2.75 A) for any length
of time. The chosen metadyne load characteristic,
corresponding to a diverter resistance value of 40 ohms
and a constant metadyne control field excitation of

95 mA,.is shown in Pig., 2.2, Superimposed on the metadyne

characteristic are a family of load characteristics of
‘the load machine, for various values of load machine

field excitation voltage. ﬁe‘or a given value -of load

!

S
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- machine field excitatiom voltage, the plant‘opefatingr
point is defined .as the intersection of the metadyne
characteristic and the corresponding load machine
characterlstlc. Thus, in the optimalising- loop, mod-
ification of the metadyne terminal voltage (the cont-
‘rolled plant parameter) was achieved by application of
the modifying eontrol signal to the field excitatiom
of the load machine,
The field excitation of the load machine
was originally composéd of two seperate sets of wind-
ings; each of four coils, one. per pole, series éonnected.
connected with the coils in parallem, in order to permit
the use of lower execitation voltages and hence, the use

.of a transistor power ampllfler to control the field:
excltatlonm

. The possibility of utiliising the armature
.cufrent of the D.C. motor driving the metadyne as an
indication of metadyne power, i.e. as a performance
index for the plant, was investigated. Metadyne power
and driving motor armature current, as functions of the
metadyne terminal voltage, were obtaine& from a load
-test performed on the plant. The results, plotted in
Fig. 2.3, showed the driving motor armature current to
be a direct indication of metadyne power, with optimum -
motor current corresponding to optimum metadyne power.
Zero power did not correspond to zero armature current.
due to no-load losses in the machines. This no-load
 current component was off-set in the measurement uniit
of the controller (see next section), thereby limitiﬁg
the range of variation of measured armature current
(the performance index), to the correspdnding range:
of variation of metadyne power.

With reference to Fig. 2.3, it may be seen
‘that there is hysterisis present in the plant, mainly
in -the mefadyne, which results in two disfinct power
curves and, hence, two distinct levels of optimum power,
dependent upon'whefher the metadyne terminal voltage

Cis increasing or decreasing, The effects of hysterisis

.are also reflected in the driving motor armature current.

7
/
/
'
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At a later stage in the research: one of the
additional field windings} available on the metadyne was
utilised to simulate a plant with time-variable parémeters. ,
This enabled an investigation of the adaptive response '
of the optimaliéihg loop to be conducted. |
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3. THE OPTIMALISING CONTROLLER:

The optimalising controller, which was
designed and built as part of this research project,
may be: diivided into four basic units; viz., the measure-
ment, detectiion, logic and parameter drive uniits. The
" functional relationship between these units and the
general adaptive controller described in section 1.1,
is as follows. Identificatiion is performed by the
- measurement unit, decision by the detection and logic
units and modification by the parameter drive unit..

3.l PRINCIPLES OF OPERATION

‘The performance index of the simulated
plaht? i.e. the armature current of the D.C. motor
driv1ng the metadyne, as measured by the voltage: across
- a shunt in the armature circuit; is continuously:

.. monitored by the measurement unit. When the measured

-performance index signal is positive~-going,a diode

gété in”the'deteétﬁon unit confucts-and the signall

is fed to ‘a memory element. Once the performance index
reaches its maximum value.and begins to decrease, the

- -diode gate blocks, thereby resulting in the storage of
the maximum value of the performance index in the memory
element, With further decreases in the value of the
performance index, the difference between the maximum
and current values of the performance index is formed
in the detection unit. When this difference equals the
set threshold level (see section 1.2 for the definitiom
of threshold lever), a threshold switching device in
the lﬁglc unit is operated.

The logie unit consists,basicallyg of a
bistable switching device, the output of which changes
state, alternately between -+ 1V, every time the
threshold-switching device is triggered., This + 1V
output from the logic unit is fed to a ramp generator
in the parameter modification unit which genmerates the
famp signal required for parameter modification,

;-
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The slope of the ramp is dependent upon the state of

the bistable switch; being positive when the bistable

iis 'in the -1V state and negative when the bistable is

in the +1V state. This ramp signal is applied‘to the
input of & power amplifier which drives the field of

the load machine. in the simulated plant. | .

A breakdown of the controller, in terms of
- the basic units, is shown diagramatically in Fig. 3.1

below.
| Parameter drive
| unit
“Input _ S e 7
from [Measur Detect-| | Logic | !|Ramp Fower |
chpmtiment 7on i ) i
shunt | ¢ unrt 9”” :‘gen amp. |
|yt sp— "

 FIG.31 SECTIONAL BREAKDOWN OF THE
o CONTROLLER ~

3,2 CIRCUIT DETAILS

‘3.2a Measurement unit

The measurement unit consists of a differen-
tial input operational amplifier, acting as a high input
Aimpedance buffer stage, which is connected across the
2 ohm current shunt in the armature circuit of the motor
driving the metadyne. The output of this buffer amplifier
is a voltage proportional to the armature current of the
driving motor; i.e. the measured performance index of the
plent. The gain of this amplifier ( A, in Fig. 3.2 ) was
set at the value 2.l,since gain in the measurement stage
improves the senéitivity of the detection unit by amplify~
ing the-variations of the actual performance index (the
voltage across the current shuntﬂ.:This value of gain
was chosen because it gave a significantly larger
variation of measured performance index at the output
of the measurenent. unit and, at the same time, ensured
that the output of the buffer amplifier did not saturate.

The performance index Signal obtained from
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the current shunt was: found to be very noisy; the noise
being attributed to a 50 Hz. mains component introduced

by the demagnetising winding.of the metadyne and componenits
of a higher frequency due to tooth ripple and eccentricity
of the rotating elements of the plant. Owing to the
inherent sensitivity to:noise of the threshold switching
device in the logic unit;,filtering%ofvthe performance
index signal was found to be necessary. A simple low-pass,
balanced R-C filter was inserted between the current

shunt and the input to the buffer amplifier, this filter
being incorporated as part of the measurement unit-of

the controller. Diode: limiters were provided ét the input
of the buffer amplifier to protect the amplifier against
poésible high input voltages resulting from'surges in

the armature current of the motor driving the metadyne,
such as might occur when a load is suddenly imposed

upon the plant.

" Included in the measurement unit is an off-
set control which enables the output of the buffer ampli-
fier to be set to zero when the metadyne is not delivering-
power. This control is a variable voltage-divider network
which provides,at the input of the buffer amplifier, a
voltage of opposite polarity to thé shunt voltage, thereby
enabling the no-load armature current to be éompensated~

for.

| A double-pole, two—way toggle switeh (§y) is
connected at the summing junctions of the buffer amplifier
in such a manner that, in oxe position (the BAL. position).
the summing junctiohs ware short-circuited and the input
from the current shunt is totally disconnected, thus
enabling the amplifier to be balanced by means of the
external rheostat R,. In the second position (the INPUT:
position) the summing junctions are: connected to the -
'input.filtering and limiter circuiits of the measurement |

unit.,

3.2b Detection unit

. Detection of the performance index optimum
is performed by a capacitor-type peak detector. The

/
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output of the measurement unit is connected to a stofage
capacitor (C) through a diode gate (D) - see Fig. 3.2 .
th$n the performance index is increasing the diode is
forward biased& allowing charging of the capacitor to

take place. When, however, the performance index decreases
the diode becomes reversed biased and the gate blocks,
Assuming that there is negligible leakage of stored

charge from the capacitor, the voltage stored by the
capacitor, once the diode gate has blocked,will be that
voltage corresponding to the optimum value of the' ”

performance index,

_ A differential~input amplifier is connected
across the diode gate to amplify the differences in
Voltage occuring across the diode. When the storage
capacitor is being’ charged theré is a small forward
voltage drop across the diode which is amplified and
inverted :and appears aé a hegative voltage at the
ouput of the amplifier «A2). This voltage, however, has
no effect on the logic unit since the threshold triggering
device, which is connected to the output of Hb, operates
when its input is some fixed positive value. Once the
" diode gate blocks, the voltage appearing-across the now
reveféed-bﬁaéed diode is equal to the difference between
the stored valﬁe of optimum performance index and the
, _instantaneous value of the_pérﬁbrmance index. The voltage
drop across the reversed biaged &iode corresponds to the
performance index degradatiom,and when it becomes egual
to the threshold level, A , the threshold switching device
is triggeréd. _

The threshold level, in terms of the gain
oﬁ'Ab and the triggering voltage of the threshold
“switching device (Vth)’ is given by : '

A 2 _Ven o ceeenne. (3.1)

where, G, = gain of ~amplifier A, .

The above equation represents the ideal case where there:
is negligible leakage of stored charge from the storage
capacitor. It was found that, in practice, the leakage
éould not be neglected and a modified equafion for
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the determination of the threshold level is given later
in. section 3.3.

_ The gaim of Aé was made variable in the range

3 - 68 by the insertion of a doubled-ganged potentiometer

in the input arms of the operational amplifier A@. This
feature allows the selection of a wide range of values

of threshold level for experimental purposes. i

3
When. the logic unit is triggered,a relay,which

is connected across the storage capacitor, is operated
and the capaecitor is discharged to a lower voltége, thus
 resetting it for another Cyéle of peak detection. The
. discharge relay contacts remain closed for a set time
interval, termed the deactive time, which is determined
by the logi¢ unit and which is necessary to prevent
spurious operation of the logic unit.

A push-button switch (PBS) i§ connected to
the sﬁmming junctions of the amplifier Aé which, when
operated, short-circuits the summing junctions in order
- that balancing operations may be performed.

The circuit diagram of the measurement and

detection units is given in Fig. 3.2.

\

3.2¢ Logic unit

A block diagram of the 1ogic'unﬁt showing
" the interrelation of the major elements is given: below

in Fig. 3.3.

To paramete.r‘

Input

. J-K ' drwve umit
) Schmitt Mono flip - Relay |
" |trigger (0 flop RL2
Inhibit
.T'o storagg
c@mmerelay Mono
RL1 |

FIG.3.3  BLOCK DIAGRAM OF LOGIC UNIT



‘The Scmitt trigger at the input of the unit
acts as a threshold triggerimg device. Every time the
input to the Schmitt trigger from the detection undt.
exceeds the threshold triggering  voltage (1.8V) of the
Schmitt tfigger its output goes from zero to some positive
voltage (approximately 1.5 V ).. This switching of the
Sehmitt trigger actuates a monostable multivibrator
(Mono. 1) which,in turn, delivers a pulse of 5 msec.
_pulsewidth to the inputs of a J-K flip~flop and a
" second monostable multivibrator (Mono. 2).

The J-K flip-flop is a binary—logic'memory._
device having two stabler output states; the 'l' and
'0' states which,in this case, correspond to 1.5V and
OV respectively. It has three inputs, the set, reset
and toggle inputs. Pulilses applied to the toggle input
‘cause the output of the flip-flop to switch alternately
betwéen the '1' and the '0' state, and,when no pulses
are applied, the output of the flip-flop remains indef-
initely in the state it was switched to by the last
‘applied input pulse., A pulse applied to the 'set' input
results in the 'l' state appearing at the output and,
bonversely, a pulse applied to the 'reset' input. results
in the '0' state appearing at the output. This bistable
device is, in essence, the heart of the logic uniit since,
by utilising the toggle -input, the switching sequence
required for control of the parameter perpturbations is
implemented.

The flip-flop drives a relay‘(RLz) through
a trensistor relay-driver stage, (see Fig. 3.4). The
contacts of this relay form a binary switch,(having the
- states +1V and;-lV),which changes state every time the
butpuﬁ;of the flip-flop changes state. This + 1V binary
signal acts as the inputAto fhe ramp generator in the
péramefer drive unit and' control's the slope (either
positiVe or negative) of the generated ramp signal.

The second monostable multivibrator (Monoe. 2)
determines the controller deactive time. It is actuated
by the first monostable and drives, through a relay-
-driver, the relamr(RLl) whiehidischarges the storage
capacitor in the detection unit. As well as driving this
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relay, it applies a signal to an imhibit gate in the
first monostable which prevents the flip~flop being
operated by any spurious signals which may trigger:thé
Schmitt trigger. A éhorf time delay, consisting of a
low-pass RC circuit, is included between the output of
the first monostable and the input of the second mono-
stable to prévent the inhibit-pulse‘feédback causing
erratic operation of the first monostable. o

Controller deactivation is achieved, there-
fore, by both discharging the storage capacitor in the
detector unit and inhibiting operation of the first
monostable in the logic unit. (The necessity for de-
activating the controller for a certain length of time
will be expleined in section 3.4). The controller de-
active time is equal to the pulsewidth of the sécond
monostable,which may be varied in the range 0.5 - 3.0
sec., by the external rheostat R4.

The Schmitt trigger and monostable multi-
vibratori:circuits have been synthesised from readily
available I.C. modules ( uL 914 dual gates) and the
flip-flop is a éomplete I.C. module ( ML 923 J-K flip-
flop). The relay-driver circuits for relays RL, & RL2'
consist of an emitter-follower stage, for input buffering:
purposes, coupled to a common-emitter stage driving the
relays. Catching diodes and commutating capacitors are
shunted across the relay coils to'prevent the possible
destruction of the transistors by switching transients.

An additional feature of the logic unit
circuitry is a manually operated set/reset facility
which connects .and disconnects the input to the ramp
- generator in the parameter drive unit as well as pulsing
the'set! input of the flip-flop. This eircuit was included
to facilitate the initial balancing and 'priming' adjust-
ments to be performed prior to the controller being set
into the control mode. In.the SET' mode (part of the com-"
plete control mode for the controller) an SCR relay latching:
circuit is engaged by depressing the pushbutton switch
marked‘SET; The contacts af relay RL3 connect the dutput
of the logic unit to the ramp generator in the parameter
drive unit. The push-button switch, on being depresse@,.
delivers a pulse to the !set!' input of the flip-flop
which ensures that the initial state of the flip-flop

|
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is such that when the controller begins its control

action the initial direction of parameter perturbation
will act to increase the field excitation of the load
machiné in fhe simulated plant. When the RESET push-
button switch is activated the supply to the relay
latching circuit is disconnected, the SCR reverts to
the non-conducting state and relay.RL3 drops out, dis-—
connecting the input %o the ramp generator.

A circuit diagram of the logic unit is

~

given in Fig. 3.4.

3.2d Parameter drive unit

The parameter drive unit is comprised of
a ramp generator and a transkxor power amplifier whichk
~excites the field of the load machine in the simulated
plant. The circuit diagram:of this unit is given in
Fig. 3.5. |

The ramp signal requiréd for parameter
perturbation is generated by an integrating operational
amplifier; the input to this amplifier being the + 1V
binary signal derived from the logic unit. When the
input, signal is +1V the ramp has negative_slope (due to
the'ihverting property of the operational amplifier),
and vice-versa when the input signal is -1V, The time
constant of the integrator may be varied in the range
0.2 - 4.0 sec, by means of the rheostat RB in the input
arm of the integratﬁng‘amplifier. This adjustment enables
ythe rate of parameter perturbation to be varied for
‘éxperimental purposes. Inllater sections the term'integ-
natoriédﬁstant'wiil be encountered. The integrator constant
is defined as the reciprocal of the -intergrator time

constant, i.e.

Integrator constantﬂﬂ; 1 sec.Tl...f..( 3.2 )
RC

where, R = resistance in the input arm of the integrating
| ‘amplifier. _ '
C = capacitarnce in the feedback loop of the inte-
grating ‘amplifier.
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The switeh S,, (see Fig. 3.5), selects the
mode of the integrating amplifier; in the BAL. position
the feedback capacitor is disconnected and discharged..
and a resistor (100K) is placed in the feedback loop,
while in the INTEGRATE position the feedback capacitor
-1s plaéed in the feedback loop and the 100K resistor is
disconnected. When:'initial balancing of the amplifier
-A3 is to be performed, S2~must be placed in the BAL. @ode
and relay RL3 must be in the RESET position, in which:
position the input terminals of the amplifier are short-

circuited.
|

The power amplifier driving the field of the
"load machine consists of a Simple two-stage, D.C., coupled
transistor amplifier. The two transistors, the driver &
powér transistor, are connected in a simple Darlington
‘pair configuration and have ratings exceeding the maximum
working values of voltage and power in the circuit. As
well as being over-rated (especialiy so in the case of

the power transistor), the transistors are solidly moumted
on a heat-sink in order to minimise thermal drift., A
catching  diode is shunted across the fiéld windings of

. the load machine in the collector of the power transistor

to protect the transistor from possible destructive
transients induced in the field windings. A switch,S4, is
provided so that, if desired, the power amplifier input

. may be disconnected .from the output of the ramp generator.

- This facility provides for possible: future situations
. inwwhich the controller is to be integrated with other
'4planms or simulated: plants and, in which, the power
‘ampliﬁiér;is not required as a final actuating device
for parameter'modificationl

A seperate power supply for the load machine
.‘fleld is 1ncorporated with the power amplifier as shovn
in Fig. 3.5. The circuit diagram of the power supplies
for the rest of the controller is given in Fig. 3.6. The
+ 13.5V supplies for the operational amplifiers are
series regulated by zener-diode-controlled transistors,
while the +4V supply for the I.C. modules:in the logic
unit is regulated by a shunt connected zener diode.

B
’
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‘,j.2e‘ Additional details of controller

| . Aouseful feature of the controller is its
compatability with modern 10V solid-state analog comp-
‘uters. Both the input buffer amplifier in the measurement
unit and the integrating amplifier in the parameter drive
‘unit have a working voltage range of O -#10V which allows
them -to be directly integrated into a control system ‘
sﬁmuI&fed on an analog computer.

A diagram of the front of the controller,
showing the-position of the various components, switches

and controls, is given ih Fig. 3.7.

3.3 Determination of the actual threshold level

. It has been previously shown that,in the

- 1deal case, the threshold:level may be determined from
equation 3.1. It was found, however, from preliminary
tests on the controller, that the actual values of
threshold level did not coincide with those\predicte&

' by equation 3.1l. In this section the cause of this diver=
gence :is explained and a modified equatibn for the deter-
mination of the threshold level, with a fair degree of

accuracy, 1is obtained.

The differences between the predicted and
actual values of threshold levell were found to arise
mainlly from the non-ideal operation of the diode (D)
as a gating device. In an ideal gating device there
should be no voltage drop across the device when it is
conducting, whereas, in the case of the diode, there is
a finite voltage drop across it.when it is :forward-
biased which results in values of threshold level which
are greater than the values predicted by equation 3.1l.

In order to be able to determine.the actual
threshold level, the effect of the forward voltage drop
'across the diode was evaluated in an approximate manner.
Considering the case where the capacitor in the detedtion
‘unit is being charged through the diode, the current
through the diode is‘compoSed of two major components;
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the capacitor charging current (ic) and the leakage
current (i ) through the resistances in the one arm
of ampllfler A (see Fig. 3.8 below). At any instant
in time durlng the charging of the capacitor the
voltage across the capacitor (Vé) is given by :

V,'c = . Vi -— Vd - ® o 0 0 0 0i0- ( 303)
where, Vi = input voltage from measurement unit
'Vd = voltage drop across the diode.

Ra "Rf

FIG. 3.8 CAPACITOR- CHARGING IN DETECTION UNIT

When V reaches its maximum . value, corres-
pondlng to maximum nerformance index; the capacitor
charging current tends to gero and the maximum voltage
stored on the capacitor is given approximately by :

ch=vim"'vdl vseeve oo (3.4)
where, ch = maximum stored voltage on the capacitor
Vim = maximum value of input voltage:
_le = voltage'drop across diode due to leakage

current il through resistances.

_ The value of V, may be found graphicallly
from the diode characteristic curve providing the value
of il is known. The lehdkage current may be_determlned
approximately from the equati?n ’

| |
e 1 F® Vg eeeeees (3.5)
‘ Rj_+Rf

. l , : .
where R, &’Rf are the gain-setting resistances of 4,

shown in Fig. 3.8.
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Now, with reference to equation 3.4 it
may be seen that,having reached its maximum value, Vi
must decrease by the amount le before it becomes equal
to the voltage stored on the capacitor, and it must then
decrease by the further amount A; , as given by equation
3.1, before the Schmitt trigger in the logic unit operates.
Therefore the actual threshold level may be determined
from the following equation :

A = Vth ks Vd.]. ‘oooooo-o (306)

Gq.

( Note that Gy is given by the following expression :

- The experimentally determined diode character-
istic curve,from-whieh Yalues Of‘vdl were obtaihed,is'
given in Fig. 3.9. In Fig. 3.10 values of threshold
level predicted by equatibn 3.6, together:with'the actual
values determined from tests on the controller, have beem
plotted as a function of the gain of amplifier‘ A2 in the
detection unit. It may be seen that,despite the very
approximate‘technique whereby le was determined, the
values of threshold level predicted by the modified
equation above are in close agreement with the actual
" values. The small differences between the actual and
predicted values may be‘attributed to leakage in the
capacitor and leakage through the resistors Ri & Rf
during the- time interval between the instant the diode
becomes reverse~biased and the instant the logic unit
is triggeredQ Neither of these leakage components were:
considered in the determination of Vai e '

3.4 Controller deactive time

Without the controller being deactivated for
any length of time the possibility of spurieus operation
of the logic unit exists at high rates of parameter pert-
urbation. This spurious triggering of the logic unit is
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a direct consequence of measurement delay coupled with
high rates of parameter perturbation and may be accounted
for in the following manner. |

Cons1der1ng an ideal case in which there is
no measurement delay present in the optimaliising loop, i.e.
the effect of parameter perturbation on the performance
1ndex is 1nstant1y available at the measurement unit
of the controller. Then for this particular case, as soon
as the performance index degradation has attained the
~value of the threshold level and the logic unit has been
triggéred; thereby reversing the direction of parameter
‘perturbation, the performance index will immediately
bégin increasing. However, when measurement delay exists
in the optimalising loop,the changes in measured perfor-
mance - index lag behind the corresponding changes in para~
meter perturbation. Owing to this lag between cause and
effect, the performance index degradation tends to over-—
shoot the threshold level before the reversal of the
direction of parameter perturbation becomes effective,
and the performance index begins to increase. The higher
the rate off parameter perturbation and the greater the
measurement delay, the larger will be the amount the
performance index degradatiom exceeds the threshold level.

For a given value of measurement delay there
exists a value of the integrator constant (Ki) for which
the rate of parameter perturbation is such that the per-
formance index degradation becomes greater than or equal
to twice the threshold level; i.e. D= 2A . When this
occurs the: first triggering.of the logic unit, which
reverses the direction of parameter perturbation, will be
followed by a second, spurious trlggerlng of the logic
unit which destroys the normal cycle of control and results
in 1pfer10r adaptive response. The effect of spurious
triggering is illustrated in Fig. 3.11.

The éritical value of 'integrator constant,
above which spurious triggering of ‘the 1og1c unit will
occur, is given approximately by the formula :

Kie = _1 . A ceesees (3.7)
Gy o G (T -27,)
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| T, = functon of measurement time constants (see Append ik B)
Where, Kic =,critical value of integrator constant.
'ﬂjt = sum of time constants of low=pass elements

in the measurement portion of the optim-
alisi@g‘loop.
Gm = .gain of measurement portion of opmimalising"':
loop.
G = éain of that portion of the optimalising
loop betweenlthe ramp generator in the
controller and the plant non~linearity.
A = parabola constant of plant non;linearity,

Spumous \‘ngg ering

Controller deackvated

Parameter
s\qnat

| Measured
Performance
, Index.

|

|

I

I

|
o
|
l.
l

Signal
. appearing
across

~ | _ 1 o | ' ] ' diode
FIG. 3.11  [LLUSTRATION OF SPURIOUS TRIGGERING
| & CONTROLLER DEACTIVATION

If the controller is to be operated with

values of integrator constant greater than Kic then the
controller mumt be deactivated for a period of time after
.each operation of the lqgic unit to prevent further
‘dégfadé%ioné of the perfarmance index causing spurious
triggerings of the logic unit. This is illustrated in

Fig. 3.11,above. The controller deactive time, T, , should -
be made approximately equal to the total time constant of
the measurement portion of the optimalising loopy, Tj .

A derivation of equation 3.7, together with a justification
for the choice of mam is given in appendix B?
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4;WTHEORETICAL ANALYSIS OF THE OPTINMALISING I.00P

In this section a mathematical model of both

. the linear and non-linear portions of the simulated plant

is derived and, subsequently, a describing-function for
the combined plant: and controller non-linearities is
obtained, Describing~function analyses are conducted

which yield the steady-state (hunting) response character-
istics of the-optimalising system, in terms of limit-
v'cyele amplitudes and frequencies, for different values of
threshold level and integrator constant.

4,1 Modelling- the plant

Ai fundamental requirement for the application
of Everleigh's describing-function technique, is a 'static'
mathematical model relating the performance index to the
- controlled plant pqrameter. A 'static' model is one in
which the perfbrmance index is a function only of the
parameter itself,andﬁis‘independent of the time rate-—of-
change of the -parameter. Therefore, & static model of
the metadyne power as a function of the load machine e.m.f.
will be derived first.

\ Considering the metadyne éeperately, the term-
inal voltage (Vtm) is given by : '

9 :
vtm(t) = Klw vc(t) - (r1 +n_ + PLl)‘iam(t) ......( 4.1)

(o]
(L + pTe)

~ where, ‘iam(t)‘= armature current of the metadyne

v, (t) = control field voltage .
T. = control field time constant
Kl = metadyne constant
w = metadyne speed (rad./sec.)
Tl - = armature resistance
Ll = armature inductance
P = differential operator 4 /dt.

Now, since the .control field voltage is kept constant, and
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making the assumptions that the speed of the metadyne
remains constant and that the armature inductance can
be neglected, equation 4.1 may be written as :

Ven(®) Vo = rpion(eks ol (4.2) .
where, V, = open circuit terminal voltage of the
metadyne (a constant) '
| r, = 'effective' armature resistance
= (ry + n)) | |
n, = armature reaction constant (including

effect of the compensating windings).

Similarly, considering the load machine and
making the assumption”that: the armature inductance may be
neglected, the terminal voltage of the machine is givem
as ... '

w

et o e )+ rp i (%) e (823)

g ag

where, vtg(t) = terminal voltage of the load machine

iag(t)'= armature current of the  load machine-
eg(t) = back e.m.f. of the load machine
rg = armature resistance

With the two machines connected together the
terminal voltages and armature currents are equal; i.e,
Vim = Vig & am = lag?
metadyne to the load machine, P(t), is :

and the power delivered by the

P(t) = v () 1_(%) cieveens (4.4)

Substituting from equations 4.2 & 4.3 for vy

- and ia in equation 4.4 and simplifying, the metadyne power

mayy be expressed as !
P(t) = 1l 2 : LN
} Y;T—:—; )2 {:rg Ve o+ (rm - rg)Voeg(t) - rmegﬂtﬁ }
m & ; C
l'...." (1\4."5)

From variatiomall calculus the optimum power
of the metadyne occurs when,

0P = 0. ,
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Applying this partial differential to equation 4.5, the
load’ machine e.m.f. corresponding to optimum power (eg)
is found to be : ‘

o .
e r - A " .
g - %’ ( m : gy)v{O O EEESS (\4.6)
T |
= & VJO .
where ¥ = a constanti= 1 (r, - rg)
2 T

Substituting the value for e° given im equatiom

4.6, into equation 4.5, the optimum power P° may be CxpreSSed”f”'

“as a function of Vi

. 2 -
] v o _ r (r —-1r_)° 2
loe. P - g + m g Vo o e oo (i40*7)

2 . 2
(rmz+ rg) 4rm0rm + rg) _

Rearranging equation 4.5, the power may be

expressed as a function of P°, eg and’eg(t).
Le€e p(t) =P~ T [}O -e (t)J 2
- > | 87 e
. (rm + rg) : ‘
o 0 . 2 .
=20 - [6f we (1)) ceernen (4.8)

_ Considering the field:excitation of the load
machine., Assuming that;the speed of the load machine is
constant (a reasonable assumption since the load machine
is driven by an induetion motor}, the relationship between
the load machine e.m.f. and the excitation voltage (ve)
applied to the.field of the load machine is givem by :

-

e (1) = _ Kevelt®) ceeseee (4.9)
g . .
(1+ 57Ty
where Kf = voltage gain constant of the load machine
7:f = time constant of the fiield:
P = the differential operator, 4 /dt.

o The load torque (Ti); in newton-metfes, on
the shaft of the D.C. motor ‘driving the metadyne is

/

given by =
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TL(t) P(t + T‘O o0 oo e o0 ((4010)
, w
where w = speed of the motor and metadyne in rad./sec.
T = 'loss torque', due to losses in the metadyne
and driving motor (assumed approximately

soastant )

The speed, as assumed earlier,_is constant,
therefore it may be seen from the above equation that the
driving motor torque is directly proportional to the
metadyne power. Now, the transfer fumction for the driving
motor, relating the armature current to the load torque,

'is given as (1 :

3 { |

P (t) = KTL<\t) ‘ ) e e 00 0000 (4.11)

(L+pT)) |

where P (%) = driving motor armature current (the plant
' performance index)
K = a motor constant
T n = time constant of the combined inertia of

the rotors of the metadyne and driving
motor. '
Substituting for T, from equation 4.10,
equation 4.11 becomes,

P (%) K, P(%t) o opg eeeees (4012)
(L+p7T))
where X = X , a constant of the motor
W , -
'P 0 = KTO y, the constant value of armature current

resulting from losses in the metadyne and
driving motor.

. Considering the measuréd performancé index,
‘i.e. the voltage: appearing at the output of the measure-
ment unit of the controller, p m(t), this variable is a
function of the armature current of the driving motor, and

is given by the equation :

(1) k.E. Fitzgerald and C. Kingsley, " Electric
Machinery ", McGraw-Hill Book Company, New York,
1961, f
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R
Pm(t) = Ka S P(t) ®eo e v v (4.13)
L+p»T ;) |
where Ka = gain of the buffer amplifier in the measure-
ment unit of the controller. _
RS = resistance of the current shunt in the

armature circuit of the driving motor.
q:H&' = time constant of the low-pass filter at the
input to the controller.

Now, from equation 4.12, remembering that Po
is'a constant, the measured performance index may be
written in the form,

P o(t)= Kialls P (%) +

(1 + pTﬁM1-+pT}&)L

Pmo tv (4.14)

=K Ry p, » @ constant.

where Pmo a

, From equation 4.14, above, it is seen that
measurement delay in the optimalising loop is introduced
by the combined inertiae of the rotors of the metadyne
" and its driving motor, and by the low-pass filtering
‘at the input. of the controller.
o A block diagram of the simulated plant, which
includes the measurement unit of the controller, is given

_below.

2
P= Pofa.(eg -eg)

D P(t)k‘

€48

LoGIC &
PARAMETER]

DRIVE
UNITS

FIG. 41  BLOCK DIAGRAM OF MODEL OF THE
SIMULATED PLANT |
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The various constants of the plant were

_ evaluated from tests performed on the plant. The constants
r, & o were calculated from the slopes of the metadyne
.and load machine load characteristics, respectively, while
the voltage gain constant of the load machine, Kf, was
determined from the open circuit characteristic of the
load machine; i.e..the excitation curve for the mgchine.
The field time constant of the load machine, ij,
evaluated from an open-circuit,step function response

was

‘test performed: on the load machine. The constant Km’ of
the D.C. motor driving the metadyne, was determined
~experimentally from the readings of metadyne power and
driving motor armature current obtained from a static
ioad test performed on the plant. Thelconstant of the
metadyne power parabola, X, was calculated from the
obtained values of r_and rg,according te the formula of

m
_equatlon 4,8,

ie. X = Tm .

(rm + ng).
A The time constant of the inertia of the
rotors of the'metadyne and the driving"motor,’Fm, was
evaluated from the formula :

T = BJI(KW? | e (4015)

where J. = combined inertia of the rotors of the
metadyne and driving motor.(Kg. mg)

Ré = resistance in the armature circuit of the
driving motor (ohms) |
K = constant of the driving motor _ |
w = speed of the metadyne and driving motor (rad./SeeJ]

(i(The inertia, J, was estimated by considering
the rotors of the metadyne and driving motor, which are
mechanically coupled and run at the same speed, to be
solid iron eylinders,) The values of the fiixed parameters
of the plant. are: tabulated below.

= 33.3 reffective' ohms

= _2.75 ohms

Tn
,rg = 2.5 ohms
RS = 2.0  ohms
R

a
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0.005 amps/watt

Km =

Ke = 4,8 + volts/volt
K, = 2.1 volts/volt
Te = 0.27  sec.

Ty = 1.5 sec.

Ty = 0.4 sec,

X = 0.026  watts/volt?
J = 1.00 Ke.m

w o= 143 rad./sec.

Sﬁbstﬂuting the numerical values/ of the constants
and regrouping the elements of the block diagram of the
model of the plant (Fig. 4.1), a simplified block diagram

.0of the optimalising loop, which facilitates the derivation

of an equivalent describing-function for the plant and
controller nonlinearities, is achieved (Fig. 4.2). With
reference to the diagram below, the following symbols are

defined. ,
s = Laplace transform operator
K, = integrator constant (parameter drive unit)
G, = gain of power amplifier in the parameter
drive:unit. (‘—' 3 volks /volt ) ‘
L po_ . o _
| T ‘;026(83 ) Losses + noise
4% eg - P . + | |
(1 +0-27s) Y
lead m/fe
field A ] Measutement
0021 CF,\V‘CUlt‘ frang fer
- unckion.
Gy orer e | (18s)ivoas)| g (q)
- GAK
S X
Y
s

FI1G. 42 - BLOCK DIAGRAM MODEL OF
OPTIMALBING CONTROL LOOP

4.2 The describing-function analysis.

The describing-function technique used in

analysing. the stability or response characteristics of
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nonlinear feedback control systems is a form of the more
general 'series-—expansion' techniques utilised in non-
linear analysis. Basic to the technique is the determina-—
tion of the fundamental component of a Fourier series
expansion of the nonlinearity output. Considering fhe
input to the nonlinearity to be a sinusoidal signal of
the form, ' '

a(A,TWJ) = A sinoit
the output may be expressed as a Fourier series,

‘e = ¢y sin Ut + c, cosUTL + ;;....,.
C sin(wt + @)

, _ 2 2
where C = cl + 92

# = ten™ [ %1 )
| =

The.describmngnfunctiOn of the nonlinearity

is defined as the fundamental component of the Fourier
"series, normalised with respect to the input; i.e.., the
describing-~function, N%(A,ZJ), is,

N(4,w) =¢C sin( tst + £)
A sinwt

Y.

where lNel= C = effective gain of the nonlinearity

E
e.

A  with respect to the input :signali.

f = phase shift of the fundamental component
of the nonlinearity output relative to the
input sinusoid.

Having defined gain and phase relationships
for the nonlinearity output, with respect.to a single—
frequency input signal, Nyquist stabilityy analysis tech-
hiques may be applied by utilising.the characteristic:
equations for the control loop; i.e.,

0 (negative feedback)
0 (positive feedback)

|

1l + qu) Ne(A,w)
1l - G.(F‘J) N'e(.Av w)

Sor . Gw) = + 1
) Ne((A,'CJ)
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‘where G(jw) = transfer function of the linear portion
e of the control .loop.

The locii of the inverted describing-functiom
(di.es N;l(A,tJ) ), replace the + 1 point of conventional
linear Nyquist theory. Since describing-function analysis
neglects the harmonic content of the nonlinearity output,
its application is best suited to systems, in which there
vis low—-pass filtering present in the control loop. The

use of this technique for the analysis of the optimalising
loop being studiéd,may be jusfified in terms of the low-
pasé elements present in the measurement portion of the
loop; i.e., the driving motor transfer function and the
 filter at the input of the controller. |

4,2a Derivation of a describing-function for the plant

and controller nonlinearities.

_ With reference to Fig. 4.2, a describingé
function is to be derived for the section of the optim-
alising lodp between the points Y and Y'. The describing-
.-function includes both the plant and controller nonlinearities
as well as the linear elements between the nonlinearities,
which act as low-pass filtering elements (the parameter
drive and load machine field transfer functions).

The input to the controller detection unit
is assumed to be a sinusoidal signal, i.e.f)m = A sinwt ,
as_required for a describing-function analysis.. Every
time the input signal degrades by the threshold level, A ,
from the optimum,f); » the control logic is triggered, as .
shown by the waveforms of Fig. 4.3. (Note that the D.C.
components of the signals occuring in the loop may be
neglected as. they are not transmitted directly around the
loop due to the presence of the digital logic unit. One
of the requiremehts for the application of describing-
function technigues is that there must be no D.C. éignals
transmitted around the loop - for classical analog control
systems this requirement implies that only autonomous
systems may be treated by this teclinique.) The total
variation of the ramp signal,from the parameter drive .
unit, during one period (T) of the bqptrolicycﬂe is
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given by,

: t5+T _
Avf = . G-AKi dt = GA.KiT"‘
o}

= G,k 270
1%

where W = frequency of the input signal to the controller.

Therefore, with respect to the mean value of
the parameter drive signal, the generated ramp may be
described by the‘eqqation, :

ve(t) = + G,K; [T_[_ - t‘J 0<t<T ... (4.15)
w

The response of the load machine to this
triangular ramp signal, which excites the field of the load
machine, is obtained by considering only the fundamental
frequency component of the triangular signal. This is

a simpllifying assumption which has to be made if the

“effects of the load machime field are to be included in

the analysis,and which may be justified in terms of the

' low-pass filtering effect of the field circuit. As may be

seen from the waveforms of Fig. 4.3, the fundamental

’frequency of the ramp signal is halfe the frequency of

‘

the input signal, wr.

Applying Fourier analysis, andi noting that the
triangular ramp signal possesses quarter wave symmetry,
the amplitude of the fundamental is determined from the

equation,

™/4 ‘ '
Vep = _8_ K, Gy [lT_ - t} cos(g_t)dt
T 0 S W 2

. where T"s period of the triangular ramp signal.

= 47T
[€%)

‘Therefore, ' T/or - ) ' :
t — » — - T T_*.)...
Ve = 2% f K,G, [m :\ cos<2t> at
T Jo .

= BK;Gy vevevons ( 4.16 )

! U ']T'
The time-variant portion of the signal applied
to the field of the load machine (i.e. neglecting the D.C.
component of the ramp signal) may, therefore be represented
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by the fundamental compoment,sinusoidal signal,

8K:Gh  sin wt

Vf ('\t) =

!C.....QO ({‘4‘-1‘7)
The response of the load machine to tlie
‘fundamentaﬂ frequency signal given above is,
eg = OK, & K, sin ( 5t + ﬂf)
. 'WQJJ1.+<n;TOz‘ 2
‘ 2
load machine field time constant.,

=
=g
®
H
®
Nkﬁ
1} H]

load machine gain constant.
B = phase lag introduced by the field circuit.
2

Now, considering the complete representafion
~of the load machine'e.m.f.,Ceg(t) ) 3 i.e. including the
D.C. component of the signal. The e.m.f. is givem by,

aKe sizlﬁgg;t + ﬂf) + eg eees (4.18)
-2

where eg = D,C, component of the load machine e.m.f.

v Owing to the symmetry of ,the parabolic non-
linearity of the plant, the miean (D.C.) value of the e.m.f.
is identical %o the optimum value of the e.m.f. Now,
rearranging the equatiom describing the plant nonlinearity,
equation 4.8, the metadyne power parabola becomes,

P° - P(%) = o((eg - o (%) )2

and from equation 4;18, we get,
2

PO = B(t) =, [Ki%¥s | sin® witr .....(4.29)
TI'UJ 4...{ng?- . 2
v 2 } .
where t' = retarded time due to lag ﬁf.
=t + 2ﬂf
w

Considering the fundamental frequency component
of the power degradatﬁbn (equation 4.19). As showm by the
last waveform of Fig. 4.3, the fundamental frequency of
the power degradation is equal to the frequency of the
input to the controller. Thecamplitude of the fundamental

I
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component is given by,

2 (3T
Fr= | PG 2} sin2<_U_Lt'>cos t' dt
’ﬂ'wm TJ 4T \2
)
2

=_.g.-c_. 8K1GAKf ,~ secoveece (4020)

'Considering the phase shift of the fundamental

fréquency component of-the.powér degradation with respect
to the input to the controller,it may be seen from the

- .waveforms &f Fig. 4.3 that the fundamental component of

the power degradation iags by the amount ﬁt . This total
lag is a result of the lag introduced by the load machine
field, f;, and a lag, £y, which,is due to the "dead-time'
between each operation of the logic unit in the controller.
(Effectively, the controller only exerts control effort |
at the instants at which the logic unit operates to |
reverse the direcfion of parameter perturbation. During
the peridd bétween each operation of the logic unit, the
intergrator in the parameter drive is free-running and

the plant is, in a sense, uncontrolled, since no effort

- 1s being applied to constrain the perturbation of the
parameter.) The dead-time lag is a function of the
amplitude of the input to the controller, A, and the
threshold level, A, and is given by the equation,

g = =2T + (_Tr_ - sint (A - a) >

2 . At
=‘-— ‘3_11_ + Sln—l(A-A)> )
i\ 2 | A

The phase lag aue to the load machine field is given by,

' 2
Hence; the totai phase. lag is,
= - (__3Tr + sin™t (A — &) + tan™? (w’%)) veeo(4.21)

2 _ A ;2

/
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‘The describing function for the combined'
plant and controller nonlinearities is, therefore,

N (4,07) = Pt e~ify
e

From equations 4.20 and 4.21 we get,

2
- . -1 . -1
Ne((A,’dr)- = o 8K1GAKf e‘J %T.T'" sin” (L~ &) + tan E%B]

24 (T[4 ( Z.SP K

eaneea(4.22)

4,2b Prediction of steady-state limit—cycle conditions
for the optimalising system. ‘

The normal operating response of the optim-
alising system is & nonlinear.oscillation, or limit-cycle,
which is a result of the system continously 'seeking' the
optimum of the performance index. Utilising the describing-
function, previously derived, the amplitude and freguency
of these limit-cycles, for different sets of values of
D and K are derived, The limit-cycle amplitudes
obtalned are those relating to the measured performance
1ndex,F)m, which was used as the 'input signal in the
derivation of the describing-function. '

Sets of values of N;I(A,cﬂzfor A= 0.14 volts
and K, = 0.25, 0.5, 1.25 & 2.8 secs™
calculated in polar form on the University ICT 1301

, respectively, were

| " computer, (The computer program used is given in appendix
A). For each set of the constants (A , K ) locii of N_l(A , )
were calculated; each locu§ correspondlnd to a dlfferent
value of A._For'each value of A,thirty points on the locus -
were evaluated; each point corresponding to a different

- value onJ Thirty values of A were used, starting at:

A = 0.08 and increasing in increments. of 0.01 up to A = 0.27.
The values of & used started with ©wr = 0.10 and increased
in increments of 0.10 up to w= 3,00.

The locus of the frequency transfer function
of the measurement circuit of the optimalisingfloop,

i.e. G (ju7) = 0.021
| | | (L + 3 1.50)(1 + j o 4oJ)
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was also evaluated by the computer, using the same values-
for w as in the preceding calculations of N (A w ). The.
G QJCJ) locus and selected locii of N 1(A GJ) are plotted
in polar form,for,the four different sets of constants
(ALK, ), in Figs. 4.4, 4.5, 4.6:& 4.7 . The locii of
1(A w) may be considered as a set of two dependent
10011, i.e. locii of amplitude A and locii of frequency
@ . The limit-cycle conditions for the steady-state
résponse of the optimalising system are obtained at the
point of intersection of one of the family of N—l(A»CJ)
locii w1th the G (JIJ) locus, at which the value of w
for the N (A GJ) locus coincides with the value of &
for the Gm(JzJ) Jlocus. The solutions for limit-cycle
amplitude, A, and frequency,®, are shown by the boxed
values: in Pigs. 4.4 - 4.7 , and are tabulated below for
ease of reference.

7 | Threshold level, A = 0.14 volts
IhtegraﬁorA Limit-cycle Limit-cycle
constant ' amplitude frequency

Ki : A : w
(sec."l) - (volts) | (rad./sec.)
0.25 0. 082 ‘ 0.43
0.50 0.102 0.70
1.25 0,152 1.19
2.80 o 0.245 1.73

TABLE 4.1 Predicted values of limit-cycle amplitude
' and frequency.

In the next section the predicted values of
limit-cycle amplitude and frequency will be correlated
with the ~actual, experimentally obtained wvalues for the
system.
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2. EXPERIMENTAL RESULTS

_ A series of tests were conducted upon the
optimalising system to assess, 1) the steady-state
respbnse;(i.e. the response when the plant is time-
‘invariant), and 2) the adaptive response, (i.e.‘thev
fesponse when the plaht is time-variant). The relation-
ship between the steady-state system response and the
controller parameters A ana Ki-will developed and it
will be shown-that, for a set of controller parameters,
limits are imposed upon the adaptive ability of the
system, which may be predicted from the steady-state

response.

5.1l Steady-state response

In optimalising systems which incorporate
modification of a plant parameter, a time-invariant
plant is one in which all plant parameters, other than
the parameter being perturbated, remain constant; for
the plant being studied this entails maintaining constant
the field excitation of all the machines, other than the
load machine, and maintaining the metadyne diverter
resistance at a constant value. The reponse of the optim-
alising system, with a time-imvariant simulated plant,

was investigated initially.

Traces of the terminal voltage and armature
current. of the metadyﬁe, as well as the measured perfor-
mande index (the output of the measurement unit of the
controller) and the J-K flip-flop output signal, were
recorded by an SE 2005 U=V recorder. From the traces of

-metadyne terminal voltage and armature current, curves
of metadyne power,as a function of time, were calculated.
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A representative set of calculated curves of metadyne

- power, together with the recorded traces of measured
performance index, for different values of the contrbller

. constants A and K;, are given in Fig. 5.1. It may be

seen from these traces that, with increasing rate of
parameter perturbation (i.e. increasing integrator constant,
Ki),there is an increase of both the frequency of oscill—
ation in the system and an increase in the degradation of
the metadyne power and measured performance index from

the optimum values. The increased hunting frequency is

" simply due to the fact that the parameter is being pert-
urbated at a faster rate, while the increase of power and
measuredfperformance index degradations is due to effects

of measurement delay, which become more noticeable at
vhigher rates of paremeter perturbation, as explained in
section 3.4. g

What is most noticeable from the fraces in
Fig. 5.1 is that there is a basic dissymmetry'between the
metadyne power curve:for when the parameter is increasing
and for when it is decreasing, and that this dissymmetry
is accentuated at the higher rates of parameter perturba-
tion. The diesymmetry is also reflected in the measured
performance index trace. A tentative explanation of this
effect will be given later in this section.

The degradation of the measured performance
index from the optimum, D, was obtained, for different
values of A and Ki’ from the recorded traces. Owing to
the unsymmetricai nature of the performance: index traces, 
”two values of degradation were obtained from each trace;
one for the increasing parameter case and the other for .
the decreasing parameter case. The average degradation,

D, was obtained by evaluating the mean of the two values

of degradation. The results are given in Figs.5.2a & b;
where performance indeéx degradation is plotted as a
function of integrator constant for two values of threshold
level, i.e. A = 0.14 & A = 0.44 . From the plotted
results it may be seen that the difference between the
performance index degradation for increasing and decfeasing
parameter values becomes greater with increasing values

of integrator constant; this is due to the fact that,at
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higher rates of parameter perturbation, the measurement
delay causes the performance index degradation to over—
shoot the threshold leveél by larger amounts. There is,
however,ran approximately linear relationship between the
‘average performance index degradation and the integpvator -
constant. As is to be expected, the performance index
degradation,for a particular value of integrator constant,
increases with increasing value of threshold level.

: The hunting period, T, was determined. from

' the traces of the J-K flip-flop output, for the same
values of and Ki used previously. The hunting period
was able to be determined very precisely from the traces,
since each operation of the controller logic was marked
by an abrupt switching of the flip-flop output. As before,
two values of huntiﬁg périod were determined from each
trace and the average hunting period,_T, was evaluated
from these two values. The results are plotted in Figs.
5.3a2 & b. As may be seen from the curvés, hunting period
decreases with increasing values of integrator constant
and increases with increasing values of thresh¢ld level.

The actual limit-cycle amplitudes and frequencies
for the optimalising system were calculated as average
values from the average performance index degradation
and hunting period values, since there were no distinct,
single limit-cycle conditions owing to the uﬁsymmetgical
nature of the metadyne power. The average actual limit- -
cycle amplitude, &, and frequency, ¢J , were evaluated

from the formulae :

I = %-D— .o.-a-oooo (501)
5 = 2_-[_2—__ -o_-.....l(5'..2)
T
where D =.average performance index degradation.
T =

average hunting period.

In Figs., 5.4a & b the aVerage actual values
of limit-cycle amplitude and frequency, together with
the values theoretically predicted in the previous
'section, have been plotted as - furdctions of the integrator
constant, for the threshold level value, A= 0.14 voltss«
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It may be seen from Fig., 5.4a that the avefage actusl
- and predicted limit-cycle freguencies are in close

agreement for values of integrator constant less than
1.75 secTt
than 1.75 sec?
cycle_frequencies tend to diverge; the divergence becoming

. For values of integrator constant greater

l, the average actual and predicted 1limit-

greater with increasing values of integrator constant.
This divergence may be attributed to the increasing
dissymmetry of the power characteristic, which is apparent
at larger values of integrator constant, (see Fig.S.l).
Similarly, the avergge actual and predicted limit-cycle

o amplitudes are in reasonably close agreement for small

- values of integrator constant and tend to diverge with
incréaSihg values of integrator constant. It must be noted,
- however, that the predicted amplitudes are constantly

Aless than the average. actual amplitudes of the limit-
'cycles. However, considering the fact that the theoretical
limit-cycle conditions were obtained by using an approx-
imated, static model for the metadyne power characteristic
in the analysié, and that this model became a progressively
worse one at greater rates of parameter perturbation, the
actual degree of correlation obtained between theory

and practice is evidence of the validity of the theoretical

technique.

The efficiency of the contrbl, in relation -to
the control objective, (i.e. the optimisation of the
metadyne power), was assessed by evaluating  the steady-
state hunting loss of the system for different values of

A ana Ki' Owing to the unsymmetrical nature of the power
characteristic, the hunting loss was evaluated about the
mean optimum power level, 53, for two consecutive cycles
of operation..The mean optimum power:level was evaluated
- as the mean of the optimum power when the parameter is
increasing and the optimum power when .the parameter is
decreasing. (It was found that, despite the variations
of optimum power levels occuring with different ivalues of
the controller constants, A and K;, the mean optimum
power level remained approximately constant with,-iﬁ; 249

watts).

The actual hunting loss of the.optimalising
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system, Ha’ was evaluated from the curves of metadyne
power by applying the summation equation (the discrete
~form of the continuous integral in equation 1.1),

_ . |
E:(FQPMAﬂ) R C )
i=0 ‘ : ' .

’ Ha = 1
N

Where, P(iAt)

value of the power at the ith. sampling

interval. ,
At = sampling interval.
N = total number of sampling intervals
and Naot = period of two consecutive cycles of

-econtrol operation.

The measured hunting loss was evaluated from
the traces of.measured performance index in exactly the
same manner as above. The measured hunting loss, Hm’ when "
‘used in conjunction with the-corresponding values of Hé,
enable the effectiveness of the chosen performance index -
to be assessed; i.e. under what conditions and to what
degree is the measured performance index a direct indication
of the actual system performance.

The actual and‘meaéured hunting losses, as
functions of the ittegrator constant, Ki’ have been plotted
for two values of threshold level, A , in Fig., 5.5. The .
actual hunting loss increases linearly with increasing
values of integrator constant, which implies that at
greater rates of parameter perturbation the efficiency
of the control system decreases. The actual hunting loss
is a function of both the integrator constant and the
threshold level and,for the particular system being
studied, was found to be a linear function of the two
controller parameters,

ice. H, = 28,00 + 6K;  (watts) ..... (5.4)

"where A has the dimensions, (volts) , and Ki the dimen-
sions, (secTt).
The relatlve efficiency of the control system,

( relatlve to the mean optimum power level, 53 ), is given
by, . ' ’ ’ ’ :
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. Relative efficiency, E.= [ -
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w" s
(@]

 } x 100 % .eeanee (5.5)

are tabulated below. (Note that the relative

some constant value of power; in this case the mean optimum

power level of the steady state respoﬁse of the systemn.)

Relative efficiency (%)
X l
A , 0.25 . 0.50 1.25 2.80
O.l4A 98 97.5 96 92.8
0.44 - 94.4 93.6 91.6 87.5
“V%ABLE 5.1 Relative efficiency of the control as

obtained from the steadyv-state response
of the system. (P° = 249 watts)

- The measured hunting loss is seen to be a
‘nonlinear function of the integrator constant; the hunting:
**1oss tends to increase less rapidly with increasing
values of the integrator constant. Ideally, the measured
hunting 1st_shou1d be a linear function of 1ntegrator
Qonstant with the same-slope as the actuallhﬁnting loss
graph, if the measured performance index is a direct
» indication of the actual plant perfbrmance.'However, for
- the actual system being studied, the measured performanée
index becomes a less effective indication of the actual
plant performance at higher rates of parameter perturbation,
owing to the increasing attenuation which occiirs in the
low;pass elements of the measurement section of the optimal-
‘ising loop.

Considering,now, the'unsymmetrical nature of
the dynémic power characteristics of the metadyne. It was
found that at low rates of parameter perturbation the
dlssymmetry between the power characterlstlc when the
load machlne field was 1ncrea51ng and that when the
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field was decreasing may be attributed, éimply, to the
effect of metadyne hysterisis. At higher rates of para-
metar perturbation, the dynmmiec intermetion of the
machines comprising the plant results, it is felt, in
energy transferences between the machines which serve to
accentuate the fundamental hysterisis dissymmetry.

It was found that the speed of the motor
driving the metadyne did not remain constant, as had _
been assumed earlier, and varied with change of metadyne  
power. The speed variations were of a similar nature to
the variations:of metadyne power, but lagged the power .
variations.due to the inertia of the metadyne and driving
motor rotors. It is maintained that power regeneration
from the load méchine (the speed of which remains very
nearly constant) to the metadyne and driving motor occurs
when the: speed of the driving motor increases by the
largest amount; i.e.. when the metadyne power is deéreasﬁngj
from the highest power level reéulting from the hysterisis
dissymmetry. Owing to the fairly long inertia time constant
of the metadyne and driving motor rotors (1.5 sec.), the
regenerated power will tend to oppose the increase of
metadyne power along the lower hysterisis power curve
(i.e. curve (b) of the power traces in Fig. 5.1). The
regenerated power is stored as kinetic energy in the
rotors of the metadyne and driving motor and is subsequently
dissipated when the metadyne delivers power to the load
' machine along ‘Ehe upper power—hysterisis curve (curve
of the power traces in Fig. 5.1).

.Th&refore; an oscillating energy; transference
between the metadyne and the load machine is set up, with
a frequency of oscillation equal to the fundamental
frequency of parameter perturbation and which, owing- to
the phase lag introduced by the inertié time constant, has
the effect of accentuating the dissymmetry of the power-
hysterisis curves. Furthermore, the greater the rate of
parameter perturbation, the more rapid are the speed
variations of the driving motor and, hence, the greater
the regenerated power becomes,and, also, the greater
'theiphase lag becomes - resulting in even further
-accentuation of the power-hysterisis curVest,This energyy
transference effect is illustrated in Fig./5.6.
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FI1G. 5.6 Accentuation of power - hysterisis dissymmetry
by energy transference mechanism

The speed variations of the motor driving the
metadyne will also result in variations of the generated
e.m,f. of the metadyne, (a function of speed squared),
which, in turn, could affect the power delivered by the
metadyne. The effect of variations of metadyne e.m.f.
on the power delivered by the metadyne'was investigated
by simulating the control system on an analog computer.

The results obtained from tests on the simulated system
indicated that the metadyne power was not significantly
affected by variations of metadyne e.m.f., and that. the v
increasing dissymmetry of the metadyne power characteristic,
~with increasing rates of parameter perturbation, could not
be attributed to variations of the metadyne e.m.f. alone.
However, it is conceivable that the relatively small
variations of metadyne e.m.f. are a contributory cause

of power regeneration from the load machine to the metadyne.

Details of the analog simulation, together
with the results obtained, are given in appendix C.

i

/
¢
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502 The adaptive response

The addptive response of the optimalising
control system was investigated by disturbing one of
the parameters of the plant in a knowm fashion, thereby:
causing known: variations of optimum plant. power, and
observing the variatiions of the measured performance
index-as the controller 'seeks!' the-time-variant‘optimum

point.

The operating conditions of the simulated
plant were made time-variant by applying a low-frequency:
- sinusoidal signal fo one of the additional control field
windings available on the metadyne. The sinusoidal
disturbance signal was obtained from a Muirhead low-~
frequency: decade oscillator which drove the control
field through a 1.5K series resistance. '

With: the signal V sinujt applied to the
control field, the generatéd e.m,f, of the metadyne is

- given by, ‘
v (t) = ¥ + KV sin(uwst + 0) ceeeiea(5.6)
; = Vg + Vpsin(wdt + 9) |
where K = metadyne gain constant
O = phase lag introduced by control field
' and quadrature winding time constants.
\ '= steady-state metadyne e.m.f..

Substituting equation 5q6’into equation 4.7,
the time-variant optimum power is given by, ‘

. Po(t) = X VO + VpSin(Udt + O)]2 oo‘oot"(5¢7‘).
. Ty - r . (r. -1 )2
where ¥ = g + m -~ g A
(rm + r'g)2 4rm(rm + ng)z,
2

= 0.0077 watts/volt



.The value of Vp was.set at 10 volts and with
Vi 180 volts, the optlmum power is glven by,

0.0077. [180 + 10sin(wyt + QJ 2
250 + 28s1n(u%¢ + 8) + O, 77s1n (th + 9)

PO(+4).

]

250 + 2851n(t%t + @) watts

‘ ll?

The variations of the optimum measured
performance index, for a given value of n), are;

Po(t) = |6 (329250 + 286 (jug)| sin(egt + @1)
; |
= 5.0 + 28,Gﬁ(jc%)rSin(ch + 9') volts

where Gm(j&g) = frequency transfer function of the
measurement section of the ont1ma11s1ng
loop ( see equation 4. 14),
Q' = 9 + me(JCO) ‘

For wvalues oftug<(O.IW¢/s the attenuation of
the low-pass measurement'elements is small and the expected
variations of the measured performance index optimum is
given by,

p;(t) ¥ 5.0 + 0.56 sin(wg + o) volts

» With the sinusoidal disturbance signal applied

to the control field of the metadyne, traces of the perfor-
mance index and the disturbance: signal were recorded. A.
representative set of traces for a number of values of
integrator constant and a disturbance signal frequency
of 0.02 c/s, are shown in Fig. 5.7. These traces demonstrate
the ability of thé controller to optimise the plant perfor-
mance when plant operating conditions are varying at a

rate which is slow in relation to the steady-state 'huntlng
030111atmons of the optimalising system.

At higher disturbance signal frequencies the
adaptlve response tends to degrade and the:system beches
less able to follow thelvarlatlons of the optimum operat-
ing point. This effect may be seen in Fig. 5.8,in which
traces of the measured performance index aré'shown‘for
higher disturbance signal frequencies. :
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-From tHe traces of Fig. 5.8 it may be seen
that, for an integrator constant of 1.25 sec?l, the
'amplitudevof the éinusoidallvariations of the mean

optimum performance index signal begins decreasing im

the region of a disturbance signal frequencys of 0.07 c/s.
When the disturbance signal frequency is 0.1 c¢/s the
system.fesponse is very erratic andfadaptive action can
be said to have ceased. The limitations imnosed upon

the adaptive response of the system by both the low-pass
filtering elements associated with the performaﬁbe index
.measurement and the rate of:parameter perturbation within:
7*the adaptive system are investigated below.

nIn order to obtain a relative measure of the
adaptifé'response bandwidth a disturbance signal 'break-
frequency’ was defined. This break4frequen¢y is defined
to be the frequency of the disturbance signal at_whicH
- the amplitude of the mean:performance—index—optimum
veriations (shown by dashed lines in ‘the traces of Figs.
5.7 & 5.8) is down to half of its low frequency value.
The break frequencies,at different values of integrator
constant,for a threshold level of 0.14 volts were obtained
from recorded traces of the measured verformance index.and
are tabulated below. (It must be noted that the oscillator
only enabled the frequency to be determined to within
% 0.0l ¢/s). |

Integrator ; ~ Disturbance signal
constant (Ki) break frequency (fb)
(secTt) ‘ (c/s)
0.25 0.03
0.50 ' . 0.05
1.25 0.08
2.80 0.12
TABLE 5.2 Disturbance signal break frequencies

for different values of integrator
coristant. ' ( A = 0.14 volts)
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In Figs. 5.9 (a) & (b) the disturbance signal
break-freguencies have been plotted as a function of the
integrator constant: and the corresponding steady-state
limit~cycle frequency, respectively. It is evident that
increasing the integrator constant'(i.ev increasing the
rate of ba?ameter iefturbatiéh) increases the adaptive
response bandwidth. This result was expected sincesat
- larger values of integrator:constant, the more rapidly the
- control seeks the optimom and, therefore, the more readily’
it will follow.variations of plant operating conditions.
At disturbance signal freouencies above 0.1 c/s the
: break—frequency increases less rapldly with increasing
1ntegrator constant,which is due to increasing attenuation
~in the low-pass measurement elements. It would appear
significant that the break-point of the major low-pass
measurement element (the inertia of the rotors of the
metadyne and driving motor) is 0.106 ¢/s.

From Fig. 5.9 (b) it may be seen that, for
smaller values of steady-state limit-cy¢le frequencies,
an approximately linear relationship exists between the
limit-cycle frequency and the break-frequency of the
disturbance signal. In this linear region the disturbance
' sighal break-frequency, fb, is given,as a function Qf
"the steady-state limitfcycle frequency, fs’ by,

£ = 0.4 f (£, =w/2T)

This approaches the hypothetical limitation (i.e..fb = O.5fs)
in which the plant optimum is detected once for:every
crest and trough of the disturbance sinusoid.

From the above observations. it may be concluded
that for time-variant plant operating condltlons, an
upper limit is imposed upon the rate at which the operatlng
conditions vary; the upper limit being determined by the
measurement delay in the optimalising loop. BeIow this
upper limit, the adaptive response of the system is
~dependent upon the rate of controlled parameter pertur-
‘bationAan&ﬂcontroller threshold level alone.
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.6 CONCLUSIONS

The ability of the optimalising controller
'?%o maintain the simulated plant in the region of optimum
~_ plant performance, despite variations of plant operating
. conditions, has been demonstrated. The rate at which the
‘plant operating conditions may vary is limited by both
the measurement delay present in the optimalising loop
and the controller threshold level and integrator constant
7‘(wh1ch determlne the steady—state limit-cycle frequenoy
of the system).

Inrgeneral, the presence of measurement
delay in the optimalising loop serves to degrade the
overall performance of the system in that it limits
adaptive ability and decreases the efficiency of the
control as the rate of controlled parameter perturbatlon
is increased,(i.e. hunting losses increase with increasing
rates of parameter perturbation).*

The analysis of the steady-state response of
the system, using the describing-function technique,
Yielded results which were im reasonable agreement with
the actual response of the system - despite deviations of
“the performance index characteristic from the static’
parabolic characteristic used in deriving the describing-
function. (It is to be noted that the describing-function
" derived in this study is an extension of the basic method
- proposed by Everleigh 1, in that the effects of dynamic
elements present in the optimalising loop between the
contrdller output and the plant performance index non-
linearity have been included by incorporatingrthe linear
transfer functions of these elements in the describing-

- function. For the sucessful application of the modified
describing function propose& in this study, it is essentisal’
that the above-mentioneé& dynamic elements be of a low-pass
nature in order that the harmonics of the ramp drive-signal

1 Everleigh V.W. : Adaptive control & optimisation
techniques, pp 227 - 229. McGraw-Hill; ‘1967,
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may be disregarded. This requirement is not unduly
restrictive since,in practice, low-pass plants or
actuating devices are more likely to be encountered.)

, The describing-function technique may also

- be applied to the design of optimalising systems. The
design problem is centred upon the selection of suitable
‘values of cdntrollér parameters, A & K;y which will yield
acceptable values for system hunting loss and adaptive
'responée bandwidth., A general design procedure is given
-in appendix D. (It must be noted that the design procedure
" is not complete in that system stability has not been
-considered. In genefal, the lack of stability analysis
techniqués is.a deficiency common to all forms of
adaptive cbntrol systems. In appendix E, an elementary

- consideration of the stabirity of optimalising control
'systems,.using Liapunov's second method, is presented,
which may possibly serve as a basis for a more detailed
stability analysis.) '

As a form of adaptive control, optimalising
control has its advantages and disadvantages. One of the
major advantages is the simplicity and low cost of
instrumenting an optimalising controller, while the fact
that it ié essentially a single-barameter adaptive procedure
limits its possible applications. '

i



APPENDIX A

- MAC program for the computatlon of the locii of G (Jta)

and N"l(A wI) in polar form.'

Wlth reference to the equatlons for G (J'LJ)
and N (A W); 4.14 and 4.22 respectively; the follow1ng
'symbols where used in the computer program to represent

the various constants and variables,

.

=Eo@m QW EYaw
!

MAC program

CHAPTER 1

Y « 30
X"'30l

1) I=1(1)30
W=0,1T .
X=WC

Y=WD
VzﬂRADIUS(l X)

ﬁﬁARCTAN(l x)
A RADIUS(1,Y)
z 1/7

7'=fARCTAN(1, Y),

XI=BVZ
CYI=V'42Z _
YI=-180YI/\
BEPEAT
K=1(1)20
A=0.5U+0.01K
ACR6SS1/0
2)I=1(1)30
X=0.5WF
V=fRADIUS(1,X)

A ﬁARCTAN(l X)

Y—8/v
Y=Y/W.
Y=Y/"

Y=EY .

l......)

Calculation of,Gm(j&J)

in polar form.

hﬂjwﬂ

/6 (3 e)

Calculation of Nzl(A;to)
in polar form

Y=HY //’f...‘.o'



Y=HY

Y=YV
Y=0.5GY/A:
Z=U=A
Z':ﬁMOD(Zg
7=BSIGN(Z
X'=2 AU-UU’

- X'=fMOD(X")
X'=g8QRT(X')
X'=gMOD(X') .
X'=0ARCTAN(X"', z')
X1=ZX"
Xt=X"+V"!
X'=180X" /"
Y'=X'-90
ACR0SS2/0

3 )REPEAT
END

CLOSE
CHAPTERO
VARIABLES1

PRINT' (10) LIMIT @ CYOLE @ CALCULATIENS"

NEWLINEZ2
PRINT!'CONSTANTS!
NEWLINE
READ(B)
PRINT(BY)2,3
NEWLINE
READ(C)
PRINT(C)2,3
NEWLINE
READ(D)
PRINT(D)2,3 .
NEWLINE
"READ(E)
PRINT(E)2,3
NEWLINE
READ(F) -
PRINT(F)2,3
NEWLINE
READ(G)
PRINT(G)2,3

- NEWLINE

READ(H)
PRINT(H)2,3
NEWLINE .
READ(U)
PRINT(U)2, 3
NEWLINE
ACROSS1/1

1)PRINT' VALUE @ oF @ A¢

SPACE4
PRINT(A)2,4
NEWLINE2
ACROSS2/1.

2 )PRINT(W)1,2
SPACE4
PRINT(XI)2,4
SPACE4 _
PRINT(YI)3,2,
SPACE4
PRINT(Y)3, 4
SPACE4
PRINT(X')3,2
SPACE4
PRINT(Y")3,2
- NEWLINE .
‘ACR0OSS3/1
CLOSE

|N (4, cJ)l

i

\

l

Input and
Formaet instructions

te
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APPENDIX B

Derivation of the controller'deactive—time and an
expression for the critical integrator constant,

The equation for the metadyne power degradation
is, from 4.8,

S A(8) = Pop() mec(eg-e (6) )T .....(B.1)

Defining the power to be optimum af time t=0 we get,

a(0) = 0  and e° =6,(0) |

g
Therefore  e° = e ,, ’
Thererom g~ e(t) = + K.KG, ¢
| _ 2 . 2 |
and . a(t) = gdt y (Kd-oc(KinGA) ) e...(B.2)

The measured performance index degradation

is given by,
’ 2
D(t) = Cufg® (¢ =K. K R_)

moom e s
(1+p Tm) (1+p Ty

o Teking the Laplace transform of the above
equation and assuming that the sysfem has been in. operation
long enough prior to the defined time, t=0, for the
transients due to initial conditions to have become

neglible, we get,

D(s) = 2K - ceeooeee(BL3)
s3(l+sT;)(l+sTﬁ0 '

Simplifying (B.3) by the partial fractions
expansion method and taking the inverse Laplace transform
of the simplified expression, the time-domain solution for

D(it) is,
. 2 . 2 ' -y A
D(t) = Kt~ 2K Tyt + 2K(T] = T,) + 2K(}1(T5'Th1)e' T
. "
o  £y(T, T )e” )

— . '..,....._..(B.q')
whgre Ty= Tﬁ'+itml oo |
’t‘2= 'tm Tm

As stated previously, the power is optimum
at time t=0. The measured performance index reaches v
its optimum value at some later time, due to the measure— .
ment delays T & Tﬁi' At the optimum we have, ﬁ(t)'= O;~
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therefore differentiating (B 4) with respect to time
and neglecting the exponentlal terms (which die away
relatlvely_rapldly and may be neglected in order to

 9implify the expression), we have at ‘the optimum,

D(t) & 2Kt ~2K T, = 0 veeses(Ba5)
therefore, "‘ tls'tl 9 when the measured performance index
is at its optimum value. The interp?etation of this result

' 'is that the measured rerformance index lage the power

by a time,approximately equal to the sum:of the time
constants of the low-pass measurement elements. -

Now, considering the degradation of the
measured performancel index. When it reaches the value
of the controller threshold 1eve1,A , the controller
1ogic operates, changing the direction of parameter
perturbétion; thus causing the power to increase. However,
‘due to the. measurement delay, the performance index does
not follow the change of direction of power variation
immediately, but continues' decreasing for a time after
the controller logic has operated. If at time tl the
the measured performance index degradation equals the
- threshold level, then for % >’t1 we have, from (B.4),

D(+) = A + K(t - )% 2k(T (4 = 1) - (€5 - T,) )

vereeersnes(B.6)

Now; at some‘\fime‘t2 (t >1 ) the performance
index degradatiou reaches a maximum value. At the maximum
we have, D(t ) = 0, therefore from (B. 6),

D(tz)"é' - (2K§t2 - t) -2kT; ) =0

al’ld * t2=tl+ Tl oooocaooouo(Bo7)

i.e. the performance index continues degrading for a time
’tl after it has reached the threshold level. Substituting
for t,,in (B.6),and simplifying, the maximum performance
index degradation is given by,
- = A + k(T2 2 2T
. Dmax—D(tz = A +K(’t1“‘2 2) . oouoolou(Bo8)
Now, it is possible that - for certaln values

of the integrator constant K (whlch determines the value
of the constant K), the max;mum performance index degradaskion



will exceed twice the value of the threshold level, in
which case the control logic will operate for a second
time. This second triggering of the control logic is '
a spurious one, since the controller has not yet begun
the next cycle of optimum detection (see Flg. 3.11 -

page 31 ). Therefore for, A

Ki>.Kic ’ Dmax = 24
~where Kic = critical value of integrator constant at
“~which D < = 2A

Therefore for K; = K; , we get from (B. 8),
2h T A 4K (T2 -27,) veseess(B.O)
whare = o (K,

ic f A?_'KmKaRs

" From (B.9) thé critical integrator constant is,

k. x 1 A _.;...(B.lo)

ic , >
KfGA' dKﬁKaRS( Tl =2 Té)

Hence, when the system operates with values
of integrator constant greater than Kic’ the controller
must be deactivated for a time T‘ after each operation
of the controller logic. From (B 7) the - controller deactive
time is, - '

Td= Tl . | V.oooooo'o(Boll)

-Extension to the general case

In general for an nth order measurement
transfer function of the form,

Gm(s) ) Gm-

(1+sT 1)(1+sT 2)....(1+sT’ )

equations (B 10) & (B. ll) still hold if the factors
'f and T, are replaced by the general forms,

T o=
l = E_}l Tmi o.._ooooo(Bolz)
n . .
Tpo= | 20 Twi Tmi (445, §=1,2,..%,n
(i=3)  eeeee.(B.13)

- 4 O
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The correlation between theory and practice

i i

Values of critical integrator constant
were calculated from B.10 for the two cases, A = 0.14 volts
and A = 0.44 volts. The values of the constants in '

[

Qquation~B.DO are (see section 4.1),

G = KKR

m’ meats = 0-021
X = 0.026

| The theoretical values of K;,» together
with the actual experimental values obtained when the
controller was not deactivated, are shown in table C.1l.

A Kic‘(sec.-l)
(volts) Theoretical | Experimental
0.14 ‘ 0.715 0.70

0.44 ‘1.265 1l.25

TABLE C.1 Theofetical’& experimental values of Kic

It is evident that the critical integrator
constant may be_predicted very accurately using equation
B.10. ‘ o

In accordance with équation B.1l, the controller

deactive time was set at,
Ty = Ti ='1.9 sec.l
‘and the”controller was found to operate.satisfactorily

‘at higher values of integrator constant, with no further
spurious triggering of the controller logic occurring.
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APPENDIX C

Analog simulation study

The primary aim of the study was to investi-
‘gate the effect of driving motor speed variations on the
generated e.m.f., and hence the power, of the metadyne.
The.plaht was simulated,as if for open loop operation,
«ahd, by applying a triangular ramp signal to the simulated
plant, the closed loop opefation:of the control system
~was simulated. The equations describing the plant are
given below, (refer to section 4) |

Metadyne power, P(t)
CP(t) = po fl0.026(eg-eg(t))2 (watts)

Optimum power, pO

o | r. (r_-r_)2 2
. P7 o= £ + m =g Vo
(rm+rg- | 4rm(rm+rg)
= 0.0076 V2 (watts)
.eo:
Optimum load machine e.m.f., e
el = (r - ) o
g ______g_ = 0. 46 V (volts)
r : ‘
m

Metadyne e.m.f., v,

Vo = 0.008 w2 (volts),  (w = spéed, red/sec.)

Driving motor armature current, R(t)

P<f)'= kK p(t) (aﬁPS)

(T+p T )
Load torque, TL(t)
TL(t) = P(t) : (newton-metres)

w

The Ward-Leonard'driVe armature current -
load torque relationship may be broken down to the block-
diagram representation shown in- Fig. C 1, whlch is more
‘suitable for 51mulation purposes' ’ '
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Es
r +’% J P - Ra -

'Ed'='generator terminal voitagé (ﬁ{constant) = 200 volts

FIG, C. 1 " Block diagram of Ward—Leonard drive for the
' metadxne. ‘ |
. KE': 1.00 Kgmf—mz; K = 1.35 volts/rad/sec.; R, = 2.75 ohms)

The plant was simulated in real-time on. the
Engineering Faculty TR-48 analog computer and the simulated
load machine perturbations (the triangular ramp signal)
was obtained from a Feedback TWG200 waveform generétor.
Provision was made,in the analog program,to include the
hysterisis of the metadyne. The computer program, with -the.
relevant values of potentiometer settings and scaled
variables, is given in Fig. C.2.

The traces of the metadyne power & e.,m,f, and
the driving motor armature current & speed, as obtained
from an SE2005 U=V recorder; are given in Fig. C.3.

As may be seen from the traces, the variations of metadyne
- e.m.T. are small and the power dissymmetry is not
significantly changed at the higher rates of parameter
perturbation. These résults would suggest that the
variations 'of metadyne e.m.f. are not, alone, sufficient
to cause accentuation of the power dissymmetry at higher
rates of parameter perturbation. The power-regeneration
hypothesis proposed in section 5.1 would appear to be

a more valid explanation of the phenomenon.
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APPENDIX D

A general des1gn‘procedure for optimalising control
systems. ' ‘ '

System requirements

The reqniréments of the control system are
formulated in terms of acceptable values of hunting loss
and adaptiive response bandwidth,

i.e. H<X
fb;aY

Design procedure

1) Defive a model of the plant ( i.e. determine performance
index parabola constant'd. and transfer functions of
measurement elements <G (s)) and parameter drive
elements (G (s)) ) '

2) Evaluate steady-state limit cycle frequency, &, and
~amplitude, A, using the describing-function method.
Depending updn the form of the optimalising loop,
the descrlblng—functlon ‘used is as follows,

.'(a) Everleigh's formt |
ks - _ -i#
x Lﬁ P N (4,w) = INJe e
. . 2
G’m(‘S} !N l= ﬂ( l]
== — ——=~=n " _A w .o
] o | B = 3Tr+ sin l(A ~A)
LS - e
b e - e . 2 ! ' A

(b) Modified form

N = X G(J'CJ)
e 2[“3‘ ”
. E?I+ sin™T(A =4) + iGp(jwﬂ

T ™
]

A

3) Dvaluate hunting loss fromz,

Actual hunting loss, H = 2A
B‘G (JCI)I

4) Evaluate adaptive response bandwidth,

i

f, = 0.4 w

o 27T
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'5) Check, H<X & £,>Y

6) If the requirements of (5) are met, then the values
of controller parameters A & K are the desired
results of the design analys1s. ‘

NOTE.

(e) We must always have Y < break frequency(lower) of
the measurement elements, ' |

1. Everleigh V.W. "Adaptive'control & optimisation'
| techniques", p. 229. '

2. * The measured performance index degradation is, Apm=
D = 2A, therefore the degradation of P is,

A P = 24 = D!
exe=Tl
Now P= axz,'therefore,
‘ : i
= - = 2
*max = “*pin © (D'/C‘)u ’

- since, by deflnltion, X = Q when F)ls optlmum.

- Over one period T, of optlma11s1ng action, x 1s given

-by;s" | R
x(t) "'"(D /o()2 [l - _2_‘_l7_] , where % (o) = S

_ ' - N . '

and thevhunting loss by,

H ;J?dx(t)zdt;
T/0

-.:vPL: 2A
3 3l‘Gm(jGJ)].




E.1 | .

APPENDIX E

The stability of optimalising control systems

' Consider the optimalising control system .
‘" ghown in Fig. E.1, in which the operating conditions
ere time-varient and the optimum value of plant
pa.;‘ame'tef (xz' = x:cL)) drifts at a rate + B .

The 'equations describing
% u ,
= pde -2 the system are,

= Kul (U_l:'-_l-_l), K>O

("4)"2\ - ’ :
f__lj P ié=@u2 (u2= :_*‘_1), ?>O

2
ConvROLLER .P(Xl’x2) = d(xl-XZ)' ) x7 o

- - —— - - - -

-
: det - Lbﬁtﬂ"L,—‘-‘ . o= & X?
{ 1

= ~ where X = (Xl-XZ)
FIG. E.2 :

and the control logic is described by,
U, =.1u Cfor XX L0
1 1 .
XX >0 & p<5&

\
»
[

' . " = == JaN
U o= =Uy for X >0 & (3 A (f.e. X if;)

Define a Liapunov function, V, by,
+fE

v(x) =ox?+ | («x?) ax ceeeess(ELL)

(o}
i.,e. for all X, V(X)>» O
From (E.1l) we get, .
‘ ' X
V(X) = 20XX + 20 Jha:x ax
| 5 0t

Now, JX = X =(X1— Xé) = Ku; -Bu, (i.e. independent of X),

therefore, \.f(x) = 2 X(X ig) | ceseeee(E.2)

For stability we require V(X) L O
From (E.2) we get, '
‘Case 1 X270

Therefore, for V(X) [z( + %] &
 Hence, X [& ,with a switchlng boundary_a# X = \[g.

Case 2 X <0
Thereforey; .for V(X) o, [X + E]
Hence, X > F ,w1th a switching boundary at X = -{Z_A;,
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- [a +[Z=
o< X’- o4
o o ?
The stability regions and , / unstable
switching boundaries are X?O / X»0
~shown in Fig. E.2, opposite. SR ///
| L4
s // °C oy *
uns@abLe/ P:S £0
X<0 ? |
w ‘ /\sthchng/

_ boundaries
Now, considering the inequalities for X , we

have,

1) X =(Kuy ~Puy) >0

For, u, = +1, X:(K-@)
| +{3)>‘O

]
N
il
i
i
o]
I
~

Therefore, i) 0 if K> (3
(b) w, = =1

For, u, =+l, X= (=K ;(5)<o
u2 = —l, X = ((-K +{3 )

Therefore, X > 0 if Kgp & sgn(uq) = sgn(u,)

2) X = (Xu -Buy) €0

(av),‘; u) = +1 |
For, u, = +1, X = (X _@)
u2=-l,’e X:(K+@)>O
Therefore, X 0 if KL R & sgn(ug) = sgn(uz)

(b) ul = -1

Por, u, =+, X=(-K-g)<0 | -i
u2‘=—1,' )'(=(-K'+F)

Therefore, X L 0 if K>/[3,

From the requirements of 1(a) & 2(b), above,
it is pbvious thatvthe'system will be stable if K:>@, and
the inequality conditions for X are maintained. Since the
contfoller threshold logic ensures the maintenance of the
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conditions imposed upon X by the inequalities of Cases 1 & 2,
the system will exhibit stable limit-cycles in a region

i‘% about the optimum ( X = 0 ) for K>(3 Stable sysem
operation is shown below (Fig. E.3).

Vé?. APQ ﬂﬁ:

/
) Liii_}o- -r‘—-*-(.K:‘E).---/
‘U =+ XO‘I 4K
| vieed 4 e

- Xl /)
7777 = ety 1
R ‘ = -
/ oy :&—K i } Xi‘*‘_(ﬂz: +1 Ui .
o fek-g) )l
// | . Xon = Starting poinis

of tragectories
(arbitra ralcj d«osen)

Y

FIG. E.3'~ Stable limit-cycles for K>B

, When K<<F>V the constraints imposed upon
X in Cases 1 & 2 conflict with the constraint sgn(ul) = sgn(u2)
derived in l(b) and 2(a) and the system is unstable. Unstable

control system operation is shown in Fig. E.4.
' - J[a P A
U= +1 \/0:; A +f;: @ 59\'\(U1) = 3gn (U;_}

Ua=-=1 (K*@’)
Sl IS A gl —*7;>.—_.._ (b) sgn(u,)= - sgnu,)
: i/ Unstable

W Ka | @k [/, o
el 11177771
/1444—~_~0— —— —_7~ // /%
e A k) U= +1
Unstable = +1

— e - —

MO N
)
»

U7_=+1

- FiG. B4 Unstable trajectories for K< <

. Stability for bounded 'control parameter (xi)

In most practical systems the variations of
'the controlled parameter, Xy, are limited by upper and
lower bounds, Mﬁ‘and Mi, respectively. These limits
. impose bounds upon the range of variation of the optimum
value of the plant parameter, Xpy &S follows, '
g

s



X = (xl.- xz)Eéfg;

Therefore, (Nh - xzﬁ) = J%g

| | | 4'X2u' =(M, -/%g)

5(40‘ X=(xl;x2)>-\/§
Tﬁerefore, '(Mi - ng) = -/%g |
Xo1, =(ML+/'<;AE) ,

Hence, the general conditions for stébility_

X 20

I

of the optimalising system are,

1) K> g3 |
2)  (p + [B) S xp < (Y -[2)
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