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Abstract

This research develops a comprehensive approach to identify and deal with real options "in"
projects, that is, those real options (flexibility) that are integral parts of the technical design. It
represents a first attempt to specify analytically the design parameters that provide good
opportunities for flexibility for any specific engineering system.

It proposes a two-stage integrated process: options identification followed by options analysis.
Options identification includes a screening and a simulation model. Options analysis develops a
stochastic mixed-integer programming model to value options. This approach decreases the
complexity and size of the models at each stage and thus permits efficient computation even
though traditionally fixed design parameters are allowed to vary stochastically.

The options identification stage discovers the design elements most likely to provide worthwhile
flexibility. As there are often too many possible options for systems designers to consider, they
need a way to identify the most valuable options for further consideration, that is, a screening
model. This is a simplified, conceptual, low-fidelity model for the system that conceptualizes its
most important issues. As it can be easily run many times, it is used to test extensively designs
under dynamic conditions for robustness and reliability; and to validate and improve the details of
the preliminary design and set of possible options.

The options valuation stage uses stochastic mixed integer programming to analyze how
preliminary designs identified by the options identification stage should evolve over time as
uncertainties get resolved. Complex interdependencies among options are specified in the
constraints. This formulation enables designers to analyze complex and problem-specific
interdependencies that have been beyond the reach of standard tools for options analysis, to
develop explicit plans for the execution of projects according to the contingencies that arise.

The framework developed is generally applicable to engineering systems. The dissertation
explores two cases in river basin development and satellite communications. The framework
successfully attacks these cases, and shows significant value of real options "in" projects, in the
form of increased expected net benefit and/or lowered downside risk.
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Symbol Meaning
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Chapter 1 Introduction

Forecasts are "always wrong"!? That is, comparisons made between forecasts and the

actual realizations one or two decades later show wide discrepancies. Differences of a

factor of two, up or down, are typical. Moreover, the demand that does occur is frequently

substantially different from what was predicted. Only exceptionally do long-term

forecasts actually hit the mark, or actual demand exceeds expectations.

- In 1991, the forecasts for the US terrestrial cellular phone market were considered

optimistic. It expected up to 40 million subscribers by the year 2000 (Ciesluk et

al., 1992). The standardization of terrestrial cellular networks resulted in over 110

million subscribers in 2000, 275% of the projection.

- In 1991, forecasts for the satellite cellular phone market are similar to that of the

terrestrial cellular phone market. Initiatives like Iridium and Globalstar were

encouraged by the absence of common terrestrial cellular phone standards and

slow development of cellular networks at that time. Iridium was designed

according to the forecast of 3 million subscribers. It only aroused the interest of

50K initial subscribers and filed for bankruptcy in August 1999. Globalstar went

bankrupt on February 2002.
- "Heavier-than-air flying machines are impossible." (Lord Kelvin, British

mathematician, physicist, and President of the British Royal Society, c. 1895)
- "A severe depression like that of 1920-1921 is outside of the range of possibility."

(Harvard Economic Society - Weekly Letter, November 16, 1929)

As a general rule, we can expect that the actual long-term future will be different from

what was projected as the most likely scenario. Designers must expect that the

engineering system will have to serve any one of a range of possibilities, and manage

uncertainties proactively.
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1.1. The problem

With the recognition that design context is uncertain, how to manage uncertainties

proactively? Designing flexibility into engineering systems with real options! Real options

theory is a formal way to define flexibility. It models flexibility like financial options and

uses options theory to value flexibility quantitatively, and thus enable us to compare the

value of flexibility with the cost of acquiring such flexibility to decide if we want to design

the flexibility into the systems.

Since the options theory has not yet been extended to physical design as our literature

research suggests, several problems have to be solved before real options can be

applied in designing flexibility into physical systems. The most important two are:

- Where is the flexibility? Unlike financial options that are well-defined legal

contracts, real options in physical systems need to be defined before analysis.

The problem is not that real options "in" projects are impossible to find. The

difficulty lies in that there are too many variables, and thus too many possible real

options; however, less than a small fraction of the possible real options can be

considered. The designers need to identify the "best" opportunities, the real

options most likely to offer good flexibility in the uncertain environment.

- How to value highly interdependent/path-dependent/complex options? In physical

systems, we meet many kinds of technical dependency that are not present in the

finance world. Large-scale engineering systems feature a great number of

technical constraints. These constraints will force real options "in" them to

present highly interdependent and path-dependent characteristics that are not

typical in financial options. For example, the water flow continuity specifies how

the power generation capacity of a downstream dam will change when an

upstream dam is built. The standard financial options valuation techniques such

as Black-Scholes formula or binomial tree are impotent before such complex and
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special interdependent/path-dependent options. We need an innovative options

valuation approach to deal with technical interdependency/path-dependency.

1.2. Research opportunity

This work studies engineering design and real options from a unique perspective -

engineering systems. Engineering Systems Division (ESD) is a new organization at MIT

tackling the large-scale engineering challenges. The nature of ESD is interdisciplinary to

study the common traits across a wide range of engineering, for example, aeronautics,
astronautics, civil and environmental engineering, electrical and computer engineering,

etc.

This study integrates three threads of research - engineering systems with regard to

uncertainties, real options, and mathematical programming - to attack an area currently

known little by systems designers. The area is proactive management of uncertainties in

engineering systems. See Figure 1-1.

ID- - ,cgn o - c ' -,,Trend

Transportation systems

Water Resources

A Planning

D Satellite systems

Mathemati al Simulation Symstems Options
Programming Dynamics . Theory

Details see Figure 1-2

Figure 1-1 Overall Picture of Research



22

The first thread - engineering systems with regard to

uncertainties

The third thread is the major trend that engineering systems design develops from

deterministic to dynamic. See the horizontal arrow in Figure 1-1.

By deterministic, we mean the design practice based on design parameters that are not

sequences of probability functions at multiple points in time. A typical deterministic

design practice forecasts expected values of uncertain parameters, and uses those

expected values as inputs for further analysis and design. Optimization with such design

parameters often leads to economies of scale. To a first order, economies of scale are

common in industries where cost largely depends on the envelope to the structure (a

quantity expressed in terms of the square of the linear measure), and capacity depends

on the volume (a quantity expressed in terms of the cube of the linear measure). In such

situations, total cost grows approximately to the 2/3 power of capacity (de Neufville, 1990;

Chenery, 1952).

By dynamic, we mean the design practice taking into consideration the design

parameters that are sequences of probability functions at multiple points in time. For

example, in the design of a series of hydropower stations on a river, the dynamic nature

of water flow is considered. The water flow follows a certain distribution and is taken as a

family of random variables indexed by time. Using the dynamic thinking of design,

economies of scale resulted from deterministic design may disappear because of the

possibility of underutilization of the facility when the circumstances are unfavorable.

Dynamic thinking has a more accurate understanding of reality than deterministic thinking,

and thus provides better designs in a forever-changing world.

In practice, dynamic thinking is sometimes only applied to the technical part of the design,

while the economic or social perspectives are dealt with deterministically. For example,

people may design a series of hydropower stations on a river with the understanding that
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water flow is stochastic, but take another important uncertain variable, price of electricity,

as constant using the forecasted expected value. This kind of incomplete dynamic

thinking prevails if designers are solely focused on the engineering side while losing sight

of important economic and social uncertainties. The incomplete dynamic thinking without

sufficient attention to both technical and social stochasiticity will render inadequate, if not

misleading, results.

Moreover, in the reign of dynamic design, we are developing from passive recognition to

proactive management of uncertainties. Passive recognition of uncertainty leads people

to do something now to withstand the worst scenarios; proactive management of

uncertainty leads people to prepare to do something in the future to avoid downside

risks and take advantage of upside potential. In some sense, traditional robustness is a

way of passive recognition of uncertainty1 . Robustness is a property to withstand

unfavorable situations without actively changing a system. Proactive management of

uncertainty, however, requires the design can be reinforced in a timely manner when

unfavorable things happen, not necessary to do everything now. The non-traditional part

of proactive management of uncertainty is about taking advantage of upside potential.

We can be opportunist to benefit from a better-than-expected situation! In short, passive

recognition of uncertainty misses the part of reality that people can take actions when

reality unfolds.

Since engineering systems cover a broad range, the dissertation will study in-depth a

specific area of engineering systems - water resources systems - and develop a general

framework applicable to other systems, with a brief case example on satellite

communications systems to show the generalizability of the framework.

1 Here we do not intend to devalue the importance of robustness. In many cases, robustness is a
must in design.
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The second thread - options theory

After the modern options theory was founded by Black, Scholes, and Merton (1973)1,

options theory and thinking has been gradually extended to broader areas in both finance

and non-finance, from financial options to real options "on" projects to real options "in"

projects. See the rightmost arrow in Figure 1-1. Options theory yields insights into

uncertainty and flexibility that enhance the ability of human beings to deal with forever-

changing environment.

A real option is a right, but not obligation, to do something for a certain cost within or at a

specific period of time. The valuation of real options provides important insights into the

value of opportunity or flexibility. Real options are extension of financial options. While

financial options are traded on exchanges and over-the-counter markets, real options are

not traded. Real options is more a methodology for valuing investments or designing

flexibility.

Real options can be categorized as those that are either "on" or "in" projects (de Neufville,

2002). Real options "on" projects are financial options taken on technical things, treating

technology itself as a 'black box"'. Real options "in" projects are options created by

changing the actual design of the technical system. For example, de Weck et al (2004)

evaluated real options "in" satellite communications systems and determined that their

use could increase the value of satellite communications systems by 25% or more.

These options involve additional fuel for orbital maneuvering system (OMS) onborad

satellites in order to achieve a flexible design that can adjust capacity according to need.

One dimension of the general development of options theory is depicted in Figure 1-2.

With the development of the options theory (as the arrow represents passage of time),

the scope of application (as represented by the area of bubbles) is expanding, from

financial options to real options "on" projects to real options "in" projects. Real options

1 Their landmark Black-Scholes model (1973) won the Nobel Prize in 1997
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"in" projects further expand the options thinking into physical systems, adding flexibility

into physical systems systematically with full awareness of uncertainties. With the

success of the options theory and its key insights into uncertainty, it has bright prospects

to improve engineering systems design in meeting customer demands and regulatory

requirements as well as increasing its economical feasibility or profitability.

In general, real options "in" systems require a deep understanding of technology.

Because such knowledge is not readily available among current options analysts, there

have so far been few analyses of real options "in" projects, despite the important

opportunities available in this field. Moreover, the data available for real options "in"

project analysis is of much poorer quality than that of financial options or real options "on"

projects. Real options "in" projects are different and need an appropriate analysis

framework - existing options theory has to adapt to the new needs of real options "in"

projects.

Real Options "in" Projects

Real Options
"on" Projects

Financial
Options

Real Options....
"on" Projects ...-- .-

Financial .. .
Options ..- . -

... 'n s Tb eb*ry*
Financial ..- .--
Options ..- .'

Figure 1-2 Development of Options Theory
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The third thread - mathematical programming

Mathematical programming seeks to maximize or minimize a real or integer function

given certain constraints on the variables. Mathematical programming studies

mathematical properties of maximizing or minimizing problems, formulates real world

problems using mathematical terms, develops and implements algorithms to solve

problems. Sometimes mathematical programming is mentioned as optimization or

operations research. Mathematical programming has many topics. Some of the major

topics are linear programming, non-linear programming, and dynamic programming.

Mathematical programming has also developed from deterministic to dynamic, and

stochastic versions of the topics have been developing.

Mixed-integer programming is a useful tool for the purpose of options analysis. A 0-1

binary variable can neatly represent the options decision regarding whether to excise an

option or not. Stochastic programming is the method for modeling optimization problems

that involve uncertainty. The goal of the formulation is to find some policy that is feasible

for the data instances and maximizes the expectation of some function of the decisions

and the random variables. Combining stochastic programming and mixed-integer

programming is a promising tool to model real options.

The Intersection of the three threads

Overall, this study identifies a point where engineering systems design needs proactive

management of uncertainties, real options "in" projects need more development, and

stochastic mixed-integer programming provides an appropriate tool for the study (see

Figure 1-1). The intersection of several areas is often fertile soil to integrate existing

knowledge and generate innovative ideas inspired by the knowledge of distinctive areas.
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General applicability and case examples

As shown in Figure 1-3, the contribution of the work would be providing a general

approach that large-scale engineering systems can use for their specific systems to

design flexibility. Case examples will be drawn on two different large-scale engineering

systems, namely, water resources systems and satellite communications systems,

showing the generalizability of the approach as well as helping illustration of the

approach. The case examples also provide a foundation for water resources engineers

and satellite systems engineers to add more details and serve for actual application. The

core of the approach is a screening model to identify options and a mixed-integer

programming real options timing model to analyze options.

Rver Basin Satellite
velopment Systems ".

General This _work 71
IBM, More DetailsI

Figure 1-3 Contribution and generalizability of the work

1.3. Theme and Structure of the Dissertation

This dissertation proposes a two-stage options identification and analysis framework to

design flexibility (real options) into physical systems, with case examples on river basin

development and satellite communications systems.

The structure of the dissertation is as in Figure 1-4: Chapter 2 reviews literature on

engineering systems, water resources planning, mathematical programming, and options

theory. Chapter 3 introduces standard options theory. Its focus is on the options

valuation models and their key assumptions. Chapter 4 introduces real options,
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especially the difference between real options "on" and "in" projects. Chapter 5 develops

the general two-stage framework for options identification and analysis in engineering

systems. Chapter 6 presents a detailed case example on a river basin using the two-

stage framework. Chapter 7 develops some policy implications for the framework on

designing flexibility into physical systems. Chapter 8 summarizes and concludes the

dissertation.

Chapter 2 Literature review
- Engineering systems
- Water resources planning
- Mathematical Programming
- Options theory

Chapter 3 Standard options theory
Chapter 4 Real options

- Real options "on" projects
- Real options "in" projects
- Valuation techniques

Chapter 5 Valuation of real options in engineering systems
- Two-stage framework
- Options identification
- Options analysis
- Satellite communications systems case example

Chapter 6 Case example: river basin development

Chapter 7 Policy implications
Chapter 8 Summary and conclusion

Figure 1-4 Structure of dissertation
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Chapter 2 Literature Review

This study integrates three threads of research - engineering systems with regard to
uncertainties, real options and mathematical programming - to attack an area currently
known little by systems designers. The area is proactive management of uncertainties in
systems design. This chapter explores historical and intellectual developments in areas

related to the study in this dissertation.

2. 1. Engineering Systems and uncertainties

Engineering systems is a new discipline spawned by the development of modern
engineering science. As Roos [1998] noted:

"Engineering systems are increasing in size, scope, and complexity as a result of
globalization, new technological capabilities, rising consumer expectations, and
increasing social requirements. Engineering systems present difficult design

problems and require different problem solving frameworks than those of the
traditional engineering science paradigm: in particular, a more integrative
approach in which engineering systems professionals view technological systems

as part of a larger whole. Though engineering systems are very varied, they often
display similar behaviors. New approaches, frameworks, and theories need to be
developed to understand better engineering systems behavior and design."

In comparison to Engineering Systems, the other current paradigm in academic settings
is referred to as Engineering Science. We can study the development of Engineering

Science and Engineering Systems on a time line. The invention of computers in the
1940s' and the following development of computers push the development of engineering
studies. In one direction, it pushes the rapid development of Engineering Science on
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every area in a more and more detailed and thorough fashion. In the other direction,

starting with the development of system models - use of linear programming in major

engineering areas, the discipline of Engineering Systems grows gradually. In the 1970s',

the engineering education and research extends to the intersection of social factors and

engineering. Carnegie Mellon University established its Engineering and Public Policy

(EPP) program, and Prof Richard de Neufville founded the Technology and Policy

Program (TPP) at MIT. Increasingly, engineering research and practice are overlapping

more and more with each other, and with social sciences. In 2000, MIT started its

experiment on Engineering Systems Division (ESD) to address these interdisciplinary

needs and the formation of the new disciplinary area of Engineering Systems. For the

MIT ESD history, Roos [2004] had a good introduction. Hastings [2004] described the

plan for the future of MIT ESD. He said, "What is needed is the development of a holistic

view of these systems that takes into account all the issues associated with them."

Figure 2-1 depicts the time line. In short, Engineering Systems offer large strategic view,

while Engineering Science gives a specific technical view.

Establishment of

Use of Linear Programming MIT ESD
in maior areas Large Strategic view

Social Engineering Systems
- - factors

Invention of Systems ---
computers models New Program: MIT TPP, CMU EPP

1950 1970 2000

Time

More detailed Engineering Science

technical process

Specific Technical View

Figure 2-1 Development of Engineering Systems

While engineering systems face a lot of issues, two of the issues are most important:

uncertainty and complexity. The other key aspects of engineering systems are technical,

people/organization, and context. See Figure 2-2. Moses [2004] discussed fundamental
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issues associated with large-scale, complex engineering systems, such as complexity
and uncertainty, flexibility. This dissertation focused on one of the two important aspects
of uncertainty. De Neufville et al. [2004] discussed the particularly significant long-term
fundamental issue for planning, design and management of engineering systems -
uncertainty. Moses [2004] wrote "non-traditional system properties are of great interest in
Engineering Systems, partly because some of them, such as flexibility and sustainability,
have not been sufficiently studied."

Uncertainty

P opie/Organization

\iiijllllllilliililll~l1111111111 C o n te x t

Technical

Complexity

Figure 2-2 Three Dimensions of Engineering Systems Linked to Each Other and to Two
High Impact Aspects of All Such Systems [Source: MIT ESD Symposium Committee,

2002]

"Engineering systems designers have long recognized that design context is uncertain
and forecasts are 'always wrong,' as numerous observers have documented (such as
Ascher, 1978; Makridakis, 1979a, 1979b, 1984, 1987, 1989, 1990; US Office of
Technology Assessment, 1982; de Neufville and Odoni, 2003). That is, comparisons
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made between forecasts of the level of demand and the actual realizations one or two

decades later show wide discrepancies. Differences of a factor of two, up or down, are

typical. Moreover, the demand that does occur is frequently substantially different from

what was predicted. For example, the forecasts of the need for telephone services made

in the 1980s failed to anticipate the explosion in use (and need for infrastructure) caused

by the use of cell phones, and did not anticipate the change in the distribution of

connection times - longer as regards constantly on Internet connections, and shorter as

regards text messaging. Only exceptionally do long-term forecasts actually hit the mark.

As a general rule, we can expect that the actual long-term future demand for engineering

systems design will be different from what was projected as the most likely scenario.

Designers must expect that the engineering system will have to serve any one of a range

of possibilities, and manage uncertainties proactively." (de Neufville, Ramirez, and Wang,

2005).

Though people understood that the design context is uncertain, people still applied

deterministic tools to analyze the problem because the computational cost was not

affordable during the early years. With the development of computers and theories, the

trend of design enters into a dynamic reign. People study the uncertain context and

recognize the inherent uncertain world. Furthermore, people are exploring how to

manage the uncertainties proactively with smarter design.

2.2. Water Resource Planning

Engineering systems study covers a lot of different systems, for example transportation

systems, satellite communication systems, and water resources systems. One of the

systems focused in this dissertation is water resource planning, especially with regard to

facilities design, an area that came into maturity by 1980, though the prevailing

methodology does not consider the design issues in the full context of the changing and

uncertain world. This dissertation develops an analysis framework that in some way
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builds on the standard water resources planning, and extends the usage of the

framework to other engineering systems with a case example in satellite communications.

2.2.1. Historical development

After economic analysis was brought into water resource planning studies, research on

water resource planning with regard to facilities design can be divided into three phases:

mathematical programming, multiobjective analysis, and risk recognition.

Mathematical programming

Mathematical programming is the major tool used in water resource planning. Maass et

al. (1962) summarized the contributions of the Harvard Water Program (1955 - 1960).

They introduced the most advanced techniques at that time: such as linear programming,

mathematical synthesis of streamflow sequences, and computer simulation. This study

laid foundations for future development of water resource planning.

Hufschmidt and Fiering (1966) described a river basin computer simulation model

thoroughly. Before computers became generally available, the simulation models were

physical models scaled to maintain static or dynamic similitude. The simulation model of

Hufschmidt and Fiering dealt with a large number of randomly selected designs, included

generation of long hydrologic sequences, and measured outcomes in economic terms.

Their model was much more advanced than the then prevailing physical simulations.

They tested 20 randomly selected designs for 250 years (3000 months) of simulated

operations. The 3 designs with the highest net benefits were subjected to further

analysis using single-factor and marginal analysis methods. The model was written in

FORTRAN. The computer used was the IBM 7094 that had 32,768 directly addressable
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memory (whereas modern computers have memory measured in Gigabytes!) It took

about 7.5 minutes of computation for one single operation of simulation for 250 years.

Jacoby and Loucks (1974) developed an approach to the analysis of complex water

resource systems using both optimization and simulation, not as competing techniques

but as interacting and supplementing methods. They used preliminary screening models

to select several alternative design configurations; then they simulated the preferred

designs using the same annual benefit, loss, and cost functions. They estimated the

expected benefits for each state for each 5-year period from 1970 to 2010.

Major and Lenton (1979) edited a book on a study, led by David Marks, of the Rio

Colorado river basin development in Argentina. Their system of models consisted of a

screening model, a simulation model and a sequencing model. The screening model is a

mixed-integer programming model with about 900 decision variables, including 8 0-1

integer variables, and about 600 constraints. Objectives were incorporated either into the

objective function or as constraints on the system. Multiobjective criteria underlay the

whole formation of the model. The simulation model evaluated the most promising

configurations from the screening model in terms of net benefits and hydrological

reliability. The runs from the simulation model improved the configurations from the

screening model. The simulation model was operated with 50 years of seasonal (4-

month) flows. The sequencing model scheduled a candidate configuration optimally in 4

future time periods, taking into account benefits over time, budget constraints, constraints

on the number of farmers available, and project interrelationships. The mixed-integer

programming sequencing model had about 60 continuous variables, 120 integer

variables, and 110 constraints depending on the exact configuration being modeled.

Loucks, Stedinger, and Haith (1981) summarized the art of water resource planning until

then, such as evaluation of time streams of benefits and costs, plan formulation, objective

functions and constraint equations, Lagrange multipliers, Dynamic Programming, Linear

Programming, Simulation, probability and distribution of random events, stochastic

processes, and planning under uncertainty.
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After 1980, there are relatively fewer articles on the topic regarding facilities design and
planning of big river basins. The interests shift more to operating policies of reservoirs,
water supply, water quality, environmental issues. This trend is coherent with the trend in
the Western countries to stop building or even tear down dams, in favor of more
environmental considerations rather than short term gain on agricultural and hydropower
benefits of big water projects. It is also partly because the art had been pretty mature
that developments in water resource planning theory became less concerned with the
design of water resource facilities. Another reason for this is that most economical sites
for water projects have almost all been built in North America or Europe, the remaining
sites are marginal and economical benefits can not overweigh the environmental costs to
society. With the decrease of interest in the construction of big water river projects, the
literature on this topic has been less, correspondingly. William (1996) argued two basic
approaches of water resources planning - that of the Corps of Engineers and other
construction agencies and that of the U.S. Environmental Protection Agency (EPA) and
other regulatory agencies - are both incomplete. The requirements of the various
regulatory approaches are making it almost impossible to construct major facilities for any
purpose, and water resource analysts were reluctant to challenge them. A more
complete approach is needed to reach better results.

The development of big dams in developing countries has not slowed down. Sinha, Rao
and Lall (1999) presented a screening model for selecting and sizing potential reservoirs
and hydroplants on a river basin. A linked simulation-optimization framework is used. The
objective function is to meet annual irrigation and hydropower demands at prescribed
levels of reliability. Sizing of reservoirs and hydroplants, and evaluation of objective
function and constraints and their derivatives are done as part of simulation. The
formulation is applied to river basins in India. Sinha, Rao, and Bischof (1999) presented
an optimization model for selecting and sizing potential reservoir and hydropower plant
sites on river basins. The model used a behavior analysis algorithm that allows operation
of the reservoir system with realistic operating policies. The model is developed in the
context of river basins in India. Dahe and Srivastava (2002) extended the basic yield
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model and presented a multiple-yield model for a multiple-reservoir system consisting of

single-purpose and multipurpose reservoirs. They argued the model could act as a better

screening tool in planning by improving the efficiency and accuracy of detailed analysis

methods such as simulation. The model is applied to a system of eight reservoirs in India.

The application and development of simulation-optimization frameworks in the US has

never been stopped, though it is less on construction and more on management of

existing facilities. Nishikiwa (1998) used a similar simulation-optimization approach for

the optimal management of the city of Santa Barbara's water resources during a drought.

The objective is to minimize the cost of water supply subject to water demand constraints,

hydraulic head constraints to control seawater intrusion, and water capacity constraints.

The decision variables are monthly water deliveries from surface water and ground water.

Draper et al. (2003) presented an economic-engineering optimization model of

California's major water supply system. They argued that the economic-engineering

optimization model could suggest a variety of promising approaches for managing large

systems. The model is deterministic. Lefkoff and Kendall (1996) evaluated yields from a

proposed ground-water storage facility using a nonlinear optimization model of the

California State Water Project (SWP) and the Central Valley Project (CVP). Model

constraints include the major hydrologic, regulatory, and operational features of both

projects, including mass continuity, facility capacities, regulatory standards, and delivery

contracts.

Development of powerful computers and computer programs such as GAMS improved

the performance of previous methodologies and enabled the solution of much bigger

problems. Meanwhile, researchers have never stopped to search for better algorithms

for water resources optimization problems. Anderson and Al-Jamal (1995) used non-

linear programming to develop a methodology for simplification of complicated hydraulic

networks. Kim and Palmer (1997) presented a Bayesian Stochastic Dynamic

Programming model to investigate the value of seasonal flow forecasts in hydropower

generation. Watkins and McKinney (1997) introduced Robust Optimization (RO) as a

framework for evaluating these trade-offs and controlling the effects of uncertainty in
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water resources screening models. Sinha and Bischof (1998) observed that the
automatic differentiation method may greatly benefit the convergence of the optimization
algorithm of reservoir systems to determine optimal sizes for reservoirs.

Multiobjective analysis

There are many different objectives for water resource planning, such as national or
regional income maximization, income redistribution, environmental quality, social well-
being, national security, self-sufficiency, regional growth and stability, and preservation of
natural areas. Some objectives can be easily expressed in monetary terms, while some
cannot. Some (or all) objectives are conflicting and non-commensurable. Multiobjective
analysis does not yield a single optimal solution, but identifies the production possibility
frontier (or in other words, Pareto Frontior) and trade-offs among objectives.

Cohon and Marks (1974) discussed an application of multiobjective theory to the analysis
of development of river basin systems. Major (1974) provided a case of the application of
Multiobjective analysis to the redesign of the Big Walnut Dam and reservoir in Indiana.
Major and Lenton (1979) demonstrated the application of mathematical modeling and
multiobjective investment criteria to river basin development.

Risk recognition

The above-mentioned studies transformed technical parameters into expected total
annual net efficiency benefits (or the utility for human and society) and maximized the net
efficiency benefits (or utility) to obtain the "optimal design". They carefully considered
technical uncertainties, such as that of waterflow, and used dynamic models. However,
they did not take into account uncertainties in the human and social sphere. Ignoring the
human and social uncertainties, the methodology cannot reach the "optimal design" (if
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such designs exist) by simply recognizing the technical uncertainties. Any technical

systems are to serve human's needs.

Recent studies on water resource planning are more explicitly taking human, social,

environmental uncertainties into account. Morimoto and Hope (2001, 2002) applied

probabilistic cost-benefit analysis to hydroelectric projects in Sri Lanka, Malaysia, Nepal,

and Turkey. Their results were in the form of distributions of NPV. These studies

recognized the uncertainties from human, social, and environmental perspectives. But

they did not take into account the value of options, or the flexibility. Decision-makers do

not passively succumb to fate and they will respond to the uncertain environment.

Increasingly, the real options concept has been introduced to water resources planning

and management (US National Research Council, 2004).

2.2.2. Other important references

Based on Manne (1961, 1967), Hreisson (1990) dealt with the problem of obtaining the

"optimal design" of hydroelectric power systems regarding sizing and sequencing. The

conclusion was to make the current marginal value of each new project equal to the

discounted weighted average of the long-term marginal unit cost of all future projects. He

further investigated economies of scale and optimal selection of hydroelectric projects.

The tradeoff between large and small projects was studied by weighting the lost sales

during the period of excess capacity against the benefit of using larger projects due to the

economies of scale. All his studies were based on a deterministic view. If uncertainties

regarding the demand and supply are high, the rules Hreisson developed may be

misleading.

The fact that there is great uncertainty about the future loads on the infrastructure system

has two implications for design, as Mittal (2004) has documented: the optimal size of the

design should be smaller than that defined by Manne (1961, 1967), that is, planned for a
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shorter time horizon; yet the design should be easy to adjust for the range of possible

long-term futures.

Aberdein (1994) illustrated the case of excess electricity on the South Africa

interconnected grid resulted from the mismatch between planned capacity and actual

demand. He stressed the importance of incorporating risks into power station investment

decisions.

Cai, McKinney,and Lasdon (2003) argued that the interdisciplinary nature of water

resources problems requires the integration of technical, economic, environmental, social,

and legal aspects into a coherent analytical framework. Their paper presented the

development of a new integrated hydrologic-agronomic-economic model, with the ability

to reflect the interrelationships between essential hydrologic, agronomic, and economic

components, and to explore both economic and environmental consequences of various

policy choices.

Some papers available on the website of the World Commission on Dams

(http://www.dams.orq) are very helpful. For example, Fuggle and Smith (2000) prepared

a report presenting background information on China's dam building program, financing,

and policy development. Clarke (2000) reported the findings of a global dam survey

covering 52 countries and 125 large dams. This report provides data for the uncertain

factors, such as the project schedule performance data, actual-to-planned hydropower

energy out, and many others.

2.3. Mathematical Programming

Mathematical programming seeks to maximize or minimize a real or integer function

given certain constraints on the variables. Mathematical programming studies
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mathematical properties of maximizing or minimizing problems, formulates real world

problems using mathematical term, develops and implements algorithms to solve the

problems. Sometimes mathematical programming is mentioned as optimization or

operations research. As early as 1665, Newton developed his method of finding a

minimum solution of a function. The first book on mathematical programming - Methods

of Operations Research (Morse and Kimball) - was written in 1946, but it was classified

because of its extensive contribution in World War 11 - everything from how best to use

radar or hunt submarines to getting supplies to the troops efficiently. In 1951, the

unclassified version of Methods of Operations Research got published.

Fundamental mathematical programming topics

Mathematical programming has many topics. Some of the fundamental topics are linear

programming (first developed by Dantzig in 1948), non-linear programming (first

developed by Kuhn and Tucker in 1951), and dynamic programming (first developed by

Bellman in 1957).

A Linear Program (LP) is a problem that can be expressed as follows (the so-called

Standard Form):

Max cx

S.t. Ax 5 b

x 0

where x is the vector of variables to be solved for, A is a matrix of known coefficients,

and c and b are vectors of known coefficients.

A Nonlinear Program (NLP) is a problem that can be put into the form

Max F(x)

S.t. g(x) :5O for i =1, ..., n where n >= 0

hj(x) 0 for j =n+1, ..., m where m >= n
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That is, there is one scalar-valued function F, of several variables, that we seek to

maximize subject function F given the constraints. NLP is a difficult subject. The most

important challenge is how to find the global optimum, particularly when F(x) is non-

convex.

Dynamic Programming (DP) is an algorithmic technique in which an optimization problem

is solved by caching subproblem solutions rather than recomputing them. An intuitive

explanation of DP is to think what to do best at the last stage, and deduce the best

decisions at the second last stage, and back and back, so on and so on... finally reach

the first stage and obtain the optimal decisions for the first stage.

The previous section on water resources planning has examined mathematical

programming techniques used historically in water resources planning. It is the most

important tool in water resources planning, especially regarding physical water facilities

designs and planning.

Stochastic programminq

Stochastic programming is the method for modeling optimization problems that involve

uncertainty. It can be termed as optimization under uncertainty. In stochastic

programming, some data are random, whereas various parts of the problem can be

modeled as linear, non-linear, or dynamic programming. Stochastic programming has

been developing fast with the contribution from and important application in operations

research, economics, mathematics, probability, and statistics.

Sengupta (1972) published a book on methods and applications of stochastic

programming in its various aspects at that time, for example, chance-constrained

programming, two-stage programming under uncertainty, programming with recourse,

reliability programming.
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Archetti, DiPillo and Lucertini (1986) edited a collection of papers on stochastic

programming, in two main research areas: stochastic modeling and simulation and

stochastic programming. The papers cover algorithms and applications of stochastic

programming. Notably, there is a paper on stochastic programming - the distribution

problem (Rinnooy Kan, 1983).

Birge and Louveaux (1997) published a textbook on stochastic programming. It provides

examples on modeling stochastic programs and describes how a stochastic model is

formally built. It also covers mathematical properties, models, solution algorithms,
approximation and sampling methods, and refers readers to the original papers for details.

Mixed-integer Programming

A mixed-integer programming (often simply called integer programming) problem is the

same as the linear or non-linear problem except that some of the variables are restricted

to take integer values while other variables are continuous. Mixed-integer programming

is a powerful tool that can help formulating discrete optimization problems, e.g., our real

options "in" projects problem. Meanwhile, the mixed-integer programming is a much

more difficult problem than linear programming.

Bertsimas and Tsitsiklis (1997) have two chapters on mixed-integer programming. They

introduce mixed-integer programming formulations of discrete optimization problems and

provide a number of examples. They cover the major classes of integer programming

algorithms, including exact methods (branch and bound, cutting planes, dynamic

programming), approximation algorithms, and heuristic methods (local search and

simulated annealing). They also introduce a duality theory for integer programming.

Mixed-integer programming has been widely used in the water resources planning.

Besides the literature mentioned in the section for water resources planning, Srinivasan,
Neelakantan, Narayan, and Nagarajukumar (1999) presented a mixed-integer

programming model for the operation of a water supply reservoir during critical periods
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that incorporates important performance indicators, such as reliability, resilience, and

vulnerability. Draper et al. (2004) introduced the new California Water Resources

Simulation Model for the planning and management of the State Water Project and the

federal Central Valley Project. It is not for the design of water facilities, though a lot of

aspects of model are similar to those used for design of facilities. System description and

operational constraints are specified using a new water resources engineering simulation

language. A mixed integer linear programming solver efficiently routes water through the

system network given the user-defined priorities or weights. Simulation cycles at different

temporal scales allow for successive layering of constraints.

Stochastic mixed-integer programming

Stochastic mixed-integer programming is the most important tool this thesis suggests to

deal with the path-dependency problem of real options valuation. The goal of the

formulation is to find some policy that is feasible for the data instances and maximizes

the expectation of some function of the decisions and the random variables.

With integer decision variables representing different possible decisions and a scenario

tree approach to model uncertainty, a multi-stage stochastic integer programming can

deal with stochastic optimization. Ahmed, King, and Parija (2003) used stochastic mixed-

integer programming to formulate a capacity expansion problem, and outlined a branch

and bound algorithm to solve the problem of capacity expansion under uncertainty.

According to Birge and Louveaux (1997), mathematical properties to be exploited are

scarce for stochastic mixed-integer programming. There are few general efficient

methods. Some techniques have been developed to deal with specific problems or

particular properties, such as integer L-shaped method, simple integer recourse, binary

first-stage variables, extensive forms and decomposition, and asymptotic analysis. The

inadequacy in stochastic mixed-integer programming leads to the understanding that we

may not be able to find a global optimum for our real options "in" projects problem, and
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we should be more realistically expecting improvement over current decision practice

rather than reaching an optimal decision.

Software for mathematical programming

Because of the needs of mathematical programming application, software packages have

been well developed. Two widely used are CPLEX and GAMS. As far as mixed-integer

programming is concerned, GAMS offers a free trial version up to 300 discrete integer

variables. Its full version is much more powerful. CPLEX is well acclaimed for its

mathematical programming power. Its mixed-integer optimizer is deemed the best by

many practitioners It employs a branch-and-bound technique that takes advantage of

cutting-edge strategies and incorporates and expands on the latest results of worldwide

research in mixed integer programming.

2.4. Options Theory

According to Hull (1999), stock options "were first traded on an organized exchange in

1973". The land-mark Black-Scholes model that won Nobel Prize in 1997 was initially

developed for financial options in 1973 by Black, Scholes and Merton (Black and Scholes,

1973; Merton, 1973).

2.4.1. Development of real options method

Myers (1987) was one of the first to acknowledge that there are inherent limitations with

standard discounted cash flow (DCF) approaches when it comes to valuing investments

with significant operating or strategic options. He suggested that options pricing holds

the best promise for valuing such investments.
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Dixit and Pindyck (1994) stressed the important characteristic of irreversibility of most

investment decisions, and the ongoing uncertainty of the environment in which these

decisions are made. In so doing, they recognized the option value of waiting for better

(but never complete) information. The focus of their book was on understanding

investment behavior of firms, and developing the implications of this theory for industry

dynamics and government policy.

Trigeorgis (1996) brought together previously scattered knowledge about real options.

Comprehensively, he reviewed techniques of capital budgeting and detailed an approach

based on the pricing of options that provides a means of quantifying flexibility. He also

dealt with options interaction, the valuation of multiple options that are common in

projects involving real options, and the valuation of the impact of competitive interactions.

The methodology in this book was theoretical, and helped to shape more practical real

options valuation techniques later on.

Besides theoretical developments, applications of real options are growing fast in

business strategy, corporate finance, market valuation, contract valuation, security

analysis, portfolio management, risk management, to engineering design. Real options

methodology is applied in industries from natural resources development, real estate,

R&D, information technologies, pharmaceutical, manufacturing, venture capital,

government regulation, shipping, environmental pollution and global warming, to

infrastructure.

Amram and Kulatilaka (1999) wrote an introductory book on real options, including

financial options and applications of real options. But it does not provide a detailed

practical methodology to evaluate real options. It gives readers an idea how widely real

options can be applied.

The beginning of the twenty-first century sees a boom in the publication of books on real

options with more focus on applications. Copeland and Antikarov (2001) wrote a
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controversial yet influential book on real options. Their major claim in the book is called

""Market Asset Disclaimer (MAD)", or "the present value of the cash flows of the project

without flexibility (i.e., the traditional NPV) is the best unbiased estimate of the market

value of the project were it traded." Based on MAD, they established a procedure to value

real options that are commonly not market traded. Rogers (2002) describes his

framework and insights in applying real options gained as a consultant with

PricewaterhouseCoopers. The first half of the book brings together developments in

strategy, real options, risk management and game theory to aid general managers. The

second half of the book describes the tools and mathematical framework, in a broad

range of areas, necessary to help the application of real options by technical analysts.

Mun (2003) provides a qualitative and quantitative description of real options and multiple

business cases and real-life scenarios. He explains practical uses of real options,

minimizes coverage on replicating portfolios and focuses on risk neutral valuation. This

is a good introduction book for MBA and other general users of Real Options. Brach

(2003) explores how to apply real option valuation techniques on a regular basis from the

view of a corporate practitioner. The author is an MD who has worked as a medical

researcher for years. She has a first hand knowledge in health care and pharmaceutical

research, and builds on this wealth of experience to develop many interesting examples

of real options related to pharmaceutical drug development. Howell et al. (2001) offers a

comprehensive book for starters on real options with advanced technical knowledge.

The book tries to cover technical side with a transparent way to senior MBAs to advanced

practitioners. Boer (2002) aims more at illuminating non-numerate readers of real

options. He attempts to expose the reader in a nontechnical manner to the technique of

real options without resorting to mathematical methods. The book is basically expository

and attempts to build upon the readers' familiarity with financial options.

Although options thinking has been successfully applied to many areas, the application of

real options in engineering has been slow, especially regarding building flexibility into the

physical systems themselves. de Neufville (2002) suggested distinguishing between real

options "on projects" and "in projects". The real options "on projects" concern the project

but not system design, for example, the options imbedded in bidding for opening a mine.
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The real options "in projects" concern the design elements of system and require detailed

understanding of the system, for example, options for repositioning of constellations of

communication satellites.

Over around 20-year development of the methodology, a great number of articles have

been published on this topic. Another good information center of real options has been

made by Marco Dias at http://www.puc-rio.br/marco.ind/main.html#contents. Borison

(2003) offers an excellent overview on real options, and provides a critique of the major

proposed analytic approaches for applying real options by their applicability, assumptions,

and mechanics.

2.4.2. Application of real options

This dissertation values options imbedded in river basin development and satellite

communications systems. The literature review, thus, focuses more on the application of

the valuation methodology, rather than theory.

Valuation approaches

Arbitrage-enforced pricing is a fundamental part of traditional options valuation. However,

there are other ways to value options, which may be the only practical way if the no-

arbitrage concept is irrelevant or cannot be used.

Arbitrage-enforced Real Options Valuation

As Baxter and Rennie (1996) explain, if there is arbitrage, it will enforce a price for the

options. This price depends neither on the expected value nor on the particular

distribution of the underlying assets. There are three categories of arbitrage-enforced
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valuation methods: the partial differential equation (PDE) such as the Black-Scholes

formula, dynamic programming with binomial trees, and simulation.

The PDE method is standard and widely used in academic discussion because of the

mathematical insights of the method. McDonald and Siegel (1986) studied the value of

waiting to invest by PDEs. Siegel, Smith and Paddock (1987) valued offshore petroleum

leases using PDE equations. Pindyck (1993) established PDEs to model project cost

uncertainty, both technical and as regards input cost. Grenadier and Weiss (1997)

studied the options pricing for investment in technological innovations.

The binomial tree method is based on a simple representation of the evolution of the

underlying asset's value. It is a powerful yet flexible method to value real options. Cox,

Ross, and Rubinstein (1979) developed this widely adopted method. Luenberger (1998)
showed examples using binomial trees to value a real investment opportunity in a gold

mine. Copeland and Antikarov (2001) elaborated how to use binomial trees to value real

projects and proved this method, equivalent to PDE solution, is easy to use without losing

the insights of the PDE model. Alternative lattice models can also be used to evaluate

real options, such as the trinomial method used by Tseng and Zhao (2003). There are

numerous variant approaches such as that of Copeland and Antikarov whose relative

merit Borison (2003) discussed in detail.

On the other hand, these approaches assume path independence in the evolution of a

system, that is, that the value of a design option does not depend on whether some other

part of the system was or was not built. This assumption is often not correct, and

requires a special analysis to overcome, as Wang and de Neufville (2004) have shown.

Simulation

With development of computer technology, big simulation programs can be constructed

to value options that are very difficult to value by establishing/solving equations or

building up binomial trees. Simulation can be either arbitrage-enforced or not. In the
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1980s, Merck began to use simulation to value its R&D real options (Nichols, 1994).

Tufano and Moel (2000) showed an elegant way to use Crystal Ball© to simulate the

value of real options inherent in a bidding case for the Antamina Mine in Peru. Juan et al.

(2002) suggested a simulation methodology to calculate multiple interacting American

options on a harbor investment problem.

Expected value decision tree analysis

Decision Analysis (DA) has a long been used to value infrastructure investments (see for

example Keeney and de Neufville, 1972). It accounts for the value of flexibility by

structuring so that all uncertainties and possible future design decisions are explicitly

considered. DA uses a decision tree to organize the sequence of events that occur and

the contingent decisions. Once the tree has been laid out, DA finds the best possible

decisions at each time for all the possible scenarios of events. The decision rule in DA is

simple: choose the solution that offers the best expected value, a weighted average of

the outcomes by their probability of occurrence (de Neufville, 1990).

In general, the calculation of the financial outcome of each scenario is based on NPV.

Therefore, DA shares an important methodological weakness with NPV: it applies a fixed

discount rate to the analysis instead of adjusting the discount rate to the level of risk

associated with each scenario, as would be correct (Brealey and Myers, 2002). Strictly,

decision tree analysis (DTA) is an expected value approach that does not yield a

theoretically correct options value, unless the risk-adjusted discount rates and actual

probabilities are used. To find risk-adjusted discount rate for each branch of the decision

tree is difficult, if possible. However, people use DTA to illustrate the idea of real options

and approximate the value of flexibility.

Faulkner (1996) showed how DTA could do "options thinking" valuation. Though this

method does not provide a "correct" options value, it approximates the value, and more

importantly, provides insights into options thinking.
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Ramirez (2002) compared discounted cash flow methodology, decision tree analysis, and

arbitrage-enforced real options. She examined their theoretical advantages and

disadvantages, the assumptions, and information required. She also determined the

consequences of the application of each approach on the nature of infrastructure projects.

Although the real options methodology is theoretically superior in the pricing of flexibility,

its implementation requires information usually not available for infrastructure assets.

This makes the results of the analysis imprecise and complicates the process of

identifying an optimal strategy.

Hybrid Model

Hybrid real options valuation combines the best features of decision tree analysis and

real options analysis. Neely and de Neufville (2001) developed a hybrid real options

valuation model for risky product development projects. The traditional valuation

methods for risky product development are inadequate to recognize the value of flexibility

while the real options method meets with difficulties to obtain the data necessary for a

standard real options valuation. Their hybrid method analyzes market risks with real

options analysis and project risks with decision tree analysis.

Summary

Table 2-1 illustrates five major types of valuation approaches with some examples.

Figure 2-3 provides another way to categorize different methods in a 2-D space. Options

analysis is the best both in terms of modeling of uncertainty and valuation of uncertainty.

Lattice etc (including decision trees) is better than DCF in terms of modeling uncertainty,

though both DCF and Lattice etc are inadequate with regard to valuation of uncertainty.

Borison (2003) described, contrasted, and critiqued the major proposed analytic

approaches for applying real options. He observed relative strengths and weaknesses of

the approaches and recommended which ones to use in what circumstance. He thought
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that the integrated approach (the hybrid model) provides the most accurate and

consistent theoretical and empirical foundation, as does de Neufville and Neely (2001).

Table 2-1: Different Valuation Approaches with Examples

Arbitrage-enforced Real

Examples DTA Hybrid Model Options Valuation
PDE Binomial Simulation

Tree

Automobile R&D Management

(Neely and de Neufville, 2001)

Bogota Water Supply Expansion

(Ramirez, 2002)

Merck (Nichols, 1994) X X

Kodak (Faulker, 1996) X

Modeling of Uncertainty

E INone

Lattice Etc

Options
Analysis

Valuation of Uncertainty

Figure 2-3 2-D View of Evaluation Practices [Source: Richard de Neufeille's class slides

for MIT course ESD. 71 developed in 2004]



52

Several important issues regarding real options valuation

Underlying

Financial options are based on underlying assets such as stocks, stock indices, foreign

currencies, debt instruments, commodities, and futures contracts. They are traded in

markets. Despite the fact that real options are not traded in markets, Mason and Merton

(1985), and Kasanen and Trigeorgis (1993) maintained that real options may be valued

similarly to financial options. The existence of a traded portfolio that has the same risk

characteristics (i.e., is perfectly correlated) as a non-traded real asset is sufficient for real

options valuation. Kulatilaka (1993) used the relative price of oil over gas to value the

flexibility of a dual-fuel industrial steam boiler. Luenberger (1998) showed an example

using the gold price as the underlying assets to value a real investment opportunity in a

gold mine. Similarly, as shown in this thesis, it is possible to use energy price as the

underlying asset to value a hydropower project under the assumption of a complete

energy market.

However, in many cases, it is hard to find a priced portfolio whose cash payouts are

perfectly correlated with those of the project, or in other words, to find market-priced

underlying assets.

Is it possible to relax the definition of underlying to an agent that determines the value of

a project, not necessarily market-traded? Copeland and Antikarov (2001) developed the

assumption of "market asset disclaimer" and used the NPV of the underlying project as

the underlying asset to build event trees to value real options. "Instead of searching in

financial market," they recommended, "that you use the present value of the project itself,

without flexibility, as the underlying risky asset-the twin security." (pp. 94) This method

has the key disadvantages that it makes it impossible to identify the optimal strategy and
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blurs the exercise condition, because the NPV of a project is not readily market

observable. How to find an appropriate underlying is an interesting question.

Volatility

Volatility is a measure of uncertainty, a key input of the options valuation. How to find the

volatility is one of the key difficulties of application of real options if there is no market-

traded underlying. Luehrman (1998) described three approaches: an educated guess by

information such as industry or market as a whole, historical data such as record of

investment returns and implied volatility of traded relevant options, and simulation of

projected cash flow. He was among the first to present real options valuation techniques

to a technically less advanced audience (Harvard Business Review) and appears to have

a big impact on general managers. Copeland and Antikarov (2001) suggested, by first

estimating the stochastic properties of variables that drive volatility, using Monte Carlo

simulation to estimate it.

The estimate of volatility is often one of the weakest points of a real options valuation,

since the valuation is usually sensitive to the volatility. Because volatility is distilled from

a lot of information, it is practically impossible to estimate it for some real options

valuation simply due to lack of data. Sometimes, therefore, the insights provided by a

real options analysis are more important than a specific quantitative result.

Compound options and parallel options

Most real options are not well-defined simple options. They can be compound or parallel.

They are often options on options (compound options) and the interactions between

options are significant. For example, the opportunity to take a new product into mass

production is an option on the R&D investment, whose value depends on the opportunity

to proceed with R&D if the latter is exercised and successful. The methodology for

valuing compound options is very important for the applicability of real options

methodology in the real world. Parallel options are different options built on the same



54

project, where those options interact. They are not necessarily mutually exclusive. For

example, several possible applications of a new technology or several possible target

markets of a new product. Oueslati (1999) described three parallel options for fuel cell

development as automotive applications, stationary power, and portable power.

Geske (1979) developed approaches to the valuation of compound options. Trigeorgis

(1993a and 1993b) focused on the nature of the interactions of real options. The

combined value of a collection of options usually differs from the sum of their separate

values. The incremental value of an additional option, in the presence of other options, is

generally less than its value in isolation, and declines as more options are present.

Oueslati (1999) explored the evaluation of compound and parallel real options in Ford's

investment in fuel cell technology.

With all the developments in the application of the real options, the author is confident in

applying the methodology on the river basin problem in this thesis. However, a lot of

problems still await solutions. Without a market-observable underlying, the parameters

used for the valuation are based on models that must be subjective, to a certain extent.

So the model risks are not negligible in the method presented in this thesis.

Real Options applied in Energy and Natural Resources

The real options concept has been successfully applied in the energy industry. Siegel,

Smith, and Paddock (1987) valued offshore petroleum leases using options, and

provided empirical evidence that options values are better than actual DCF-based bids.

Since then, research on real options on energy has been a hot topic. Miltersen (1997)

presented methods to value natural resource investment with stochastic convenience

yield and interest rates. Cortazar and Casassus (1997) suggested a compound option

model for evaluating multistage natural resource investment. Cherian, Patel, and Khripko

(2000) studied the optimal extraction of nonrenewable resources when costs accumulate.
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Goldberg and Read (2000) found that a simple modification to the Black-Scholes model

provides better estimates of prices for electricity options. Their modification combines the

lognormal distribution with a spike distribution to describe the electricity dynamics. Bodily

and Del Buono (2002) examined different models for electricity price dynamics, and

proposed a new mean-reverting proportional volatility model. Dias (2002) gave a

comprehensive overview of real options in petroleum.

Pindyck (1993) studied the uncertain cost of investment in nuclear power plants. He

derived a decision rule for irreversible investments subject to technical uncertainty and

input uncertainty. The rule is to invest if the expected cost of completing the project is

below a critical number. The critical expected cost to completion depends on the type

and level of uncertainty. Pindyck's work focused on finance issues of the project, the

engineering model was not included in his research.

Koekebakker and Sodal (2002) developed an equilibrium-based real options model of an

operating electricity production unit whose supply is given by a stochastic mean-reverting

process. Hlouskova et al. (2002) implemented a real options model for the unit

commitment problem of a single turbine in a liberalized market. Price uncertainty was

captured by a mean-reverting process with jumps and time-varying means to account for

seasonality. Rocha, Moreira, and David (2002) studied the competitiveness of

thermopower generation in Brazil under current regulations and used real options to

assess how to motivate private investment in thermopower.

Wang (2003) applied NPV, NPV with simulation, and binomial options pricing model to

study a case on Yalongjiang River basin development. More specifically, a deferral

option of Project 1 is studied. When doing the real options analysis, the thesis compared

the usage of NPV and electricity price as the underlying, and found that the electricity

price is a more appropriate underlying for the options analysis. The thesis concluded that

real options analysis using the electricity price as underlying is an appropriate method for

valuing the deferral options of Project 1 and similar hydropower projects.
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Other real options applications

Nichols (1994) interviewed Merck CFO Judy Lewent to unravel the secrets of Merck's

successful risk management of its R&D portfolios, and the crux of the success is real

options. Faulkner (1996) warns R&D managers that traditional DCF valuation could miss

important sources of value of R&D projects, and real options valuation can fix such a bias.

Childs and Triantis (1999) examined dynamic R&D policies and the valuation of R&D

projects in a real options framework. Neely and de Neufville (2001) proposed using

hybrid real options valuation method that combines the best features of decision analysis

and real options to value risky product development projects.

2.4.3. Real Options "in" and "on" projects

Real options can be categorized as those that are either "on" or "in" projects (de Neufville,

2002). Real options "on" projects are financial options taken on technical things, treating

technology itself as a 'black box"'. Real options "in" projects are options created by

changing the actual design of the technical system. For example, de Weck et al (2004)

evaluated real options "in" satellite communication systems and determined that their use

could increase the value of satellite communications systems by 25% or more. These

options involve additional fuel on satellites in order to achieve a flexible design that can

adjust capacity according to need.

One dimension of the general development of options is depicted in Figure 1-2. With the

development of options theory, the scope of application is expanding, from financial

options to real options "on" projects to real options "in" projects. Real options "in" projects

further expand the options thinking into physical systems, adding flexibility systematically

with awareness. With the success of options theory and its key insights into uncertainty,

it has bright prospects to improve engineering systems design in meeting customer

demands, economical feasibility or profitability, and regulatory requirements.



57

In general, real options "in" systems require a deep understanding of technology.

Because such knowledge is not readily available among options analysts, there have so

far been few analyses of real options "in" projects, despite the important opportunities

available in this field. Moreover, because the data available for real options "in" project

analysis is of much poorer quality than that of financial options or real options "on"

projects, real options "in" projects are different and need an appropriate analysis

framework - existing options theory has to adapt to the new needs of real options "in"

projects.

The real options discussed in previous sections were all real options "on" projects. There

is much less literature on real options "in" projects. The following is a discussion of

literature on real options "in" projects from de Neufville, Sholtes, and Wang (2005):

"Zhao and Tseng (2003) discussed the value of flexibility in infrastructure facilities.

Enhancing the foundation requires extra up-front cost, but has a return for future

expansion when uncertain elements are realized to be good. This trade-off can be

viewed as an option in which a premium has to be paid first and the option can be

exercised later. They used an example of construction of a public garage to illustrate the

class of problem. Trinomial lattice and stochastic dynamic programming were used to

model the demand and optimal expansion process. A model with flexibility is compared

with that without flexibility, and the difference of the optimal value from the two models is

the value of flexibility. This value of flexibility is significant in the case. Zhao,

Sundararajan, and Tseng (2004) presented a multistage stochastic model for decision

making in highway development that incorporated real options in both the development

and operations phase. A simulation algorithm based on the Monte Carlo simulation and

least- squares regression is developed. Ho and Liu (2003) presented a quantitative

valuation method based on options pricing theory for evaluating major investments in

emerging architecture/engineering/construction (A/E/C) technology investments. The

framework took into account technology investment risks and managerial options.

Leviakangas and Lahesmaa (2002) discussed the application of real options in evaluation

of intelligent transportation system and pointed out the shortcoming of traditional cost-
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benefit analysis that may discard the value of real options. Kumar (1995) presented the

real options approach to value expansion flexibility and illustrated its use through an

example on flexible manufacturing systems. Ford, Lander, and Voyer (2002) proposed a
real options approach for proactively using strategic flexibility to recognize and capture

project values hidden in dynamic uncertainties. An example for a toll road project is

employed in their work.

The existing literature on real options "in" projects does not provide a generic framework

for real options "in" projects, but on single specific projects or issues. They do not attack

the general issues facing real options "in" projects, for example, the path-dependency

issue or the identification of real options. This area needs a lot of creative work.

The author searched the literature extensively, and mentioned all real options "in"

projects papers he found in this section. Compared to the abundance of sections 2.4.1.

and 2.4.2. that treat real options "on" projects, the conclusion is that existing work on real

options "in" projects is very limited.

2.5. Conclusions from the literature search

Following the three threads in Figure 1-1, extensive literature search reveals conclusions

regarding each of the three threads:

- It is an important yet underdeveloped subject to design engineering systems with

proactive management of uncertainties;

- Real options "in" projects is an important new area to explore where limited work

exists;
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- And, mathematical programming, especially mixed integer programming, has
interesting prospects to deal with water resources planning problems and
stochastic problems (options analysis is a stochastic problem).
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Chapter 3 Standard Options Theory

The modern options theory was founded by Black, Scholes, and Merton (1973).

Gradually, options methodology and thinking has been gradually extended to broader

areas in finance and non-finance. Its insights into uncertainty and flexibility enhance the

ability of human beings to deal with forever-changing environments.

3.1. Financial Options

There are two basic types of options: calls and puts. A call option gives the holder the

right to buy an underlying asset for a specified exercise price within or at a specified time.

A put option gives the holder the right to sell the underlying under similar circumstances.

Expiration date is also called maturity. Exercise price is also called strike price.

Financial options are also categorized by the time when they can be exercised.

American options can be exercised at any time up to the expiration date. European

options can be exercised only on the expiration date.

The underlying assets for financial options include stocks, stock indices, foreign

currencies, debt instruments, commodities, and futures contracts. Besides the real

options, this thesis is only discussing the financial options built on underlying assets of

stocks, or stock options.
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Example of a stock call option:

John buys one European stock call option contract on Lucent stock with a strike price of

$1.50. Suppose the current price of Lucent is $1.30, the expiration date is in three

months. Because the option is European, John can exercise the option only on the

expiration date. If the stock price on the expiration date is less than $1.50, John will

choose not to exercise. If the stock price on the expiration date is greater than $1.50,

John will choose to exercise. For instance, if the stock price on the expiration date is

$1.45, John will not exercise the option, he can buy a share of stock directly on the

market for $1.45, $0.05 less than the exercise price of $1.50. If the stock price on the

expiration date is $1.60, John will exercise the option and earn $0.10 because he can

immediately sell the stock that he buys for $1.50.

Key Property of an Option

The holder of an option has the right to exercise the option, but no obligation to exercise

the option. The key property of an option is the asymmetry of the payoff, an option holder

can avoid downside risks and limit the loss to the price of getting the option, while she

can take advantage of the upside risks and the possible gain is unlimited. See Figure 3-1

for the example of a stock option.

Payoff

Stock Price
Strike Price (Exercise Price)

Figure 3-1 Payoff Diagram for a Stock Call Option
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For the above stock call option in Figure 3-1, if the current stock price is lower than the

strike price, people would not exercise it, the loss is limited to the price to get the option;

if the current stock price is higher than the strike price, people would exercise it, and the

payoff is the current stock price minus the strike price. There is no upper bound of the

payoff but the lower bound of the payoff is zero, so asymmetry exhibits. The maximum

loss is equivalent to the original purchase price of the option.

3.2. Cornerstones for Options Valuation

The value of an option is not straightforward, and it is an interesting question how to

value an option objectively. The cornerstones for the modern stock options valuation

models are two assumptions: no arbitrage and Brownian motion of stock price.

3.2.1. No Arbitrage

Arbitrage involves getting profit by simultaneously entering into transactions in 2 or more

markets. See the following example: Considering a stock that is traded on both the New

York Stock Exchange and the London Stock Exchange. If the stock price is $17.7 in New

York and E10 in London when the exchange rate is $1.8000 per pound. An arbitrager

could simultaneously buy 1000 shares of the stock in New York and sell them in London

to obtain a risk-free profit of

1000 x [($1.8 x 10) - $17.7]
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or $300. Arbitrage opportunities such as the one just described cannot last for long. As

arbitrageurs buy the stock in New York, the forces of supply and demand will cause the

stock price to rise. Similarly, as arbitrageurs sell the stock in London, the forces of supply

and demand will cause the stock price to drop. Very quickly, the two prices will be

equivalent at the current exchange rate. Indeed, the existence of profit hungry

arbitrageurs makes it unlikely that a major price disparity could ever exist in the first place.

If no arbitrage opportunity exists, a portfolio of the stock and the stock option can be set

up in such a way that there is no uncertainty about the value of the portfolio. Because

the portfolio has no risk, the return earned on it must equal the risk-free interest rate.

A riskless portfolio consisting of a position in the option and a position in the underlying

stock is created. In the absence of arbitrage opportunities, the return from the portfolio

must be the risk-free interest rate. The reason why a riskless portfolio can be created is

the stock price and the option price are both affected by the same courses of uncertainty:

stock price changes. In a short period of time, when an appropriate portfolio is

established, the gain or loss from the stock option is always offset by the loss or gain

from the stock position so that the value of the portfolio is known with certainty at the end

of the short period of time to earn a risk-free rate of interest. For that short period of time,

the price of a call option is perfectly positively correlated with the price of the underlying

stock, and the price of a put option is perfectly negatively correlated with the underlying

stock.

For a simple example: A stock price is currently $10, and it is known that at the end of a

period of y months the stock price will be either $11 or $9. There is a European call

option to buy the stock for $10.5 at the end of y months. This option will have one of two

values at the end of the y months. If the stock price turns out to be $11, the value of the

option will be $0.5; if the stock option turns out to be $9, the value of the option will be 0.

The situation is illustrated in Figure 3-2:
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Stock Price = $10

Stock price = $11
Option value = $0.5

Stock price = $9
Option value = $0

Figure 3-2 Stock Price Movement in Numerical Example

Consider a portfolio consisting of a long position' in x shares of the stock and a short

position2 in one call option. How to calculate the value of x that makes the portfolio

riskless? If the stock price moves up from $10 to $11, the value of the share is 11x and

the value of the call option for purchasing a single share at $10.5 is $0.5, so that the total

value of the portfolio is 11x - 0.5. If the stock price moves down from $10 to $9, the

value of the shares is 9x and the value of the option is 0, so that the total value of the

portfolio is 9x. The portfolio is riskless if the value of x is chosen so that the final value of

the portfolio is the same for both cases. This means:

Ilx - 0.5 = 9x

or

x = 0.25

If the stock price moves up to $11, the value of the portfolio is

11 x 0.25 - 0.5 = 2.25

If the stock price moves down to $9, the value of the portfolio is

1 A long position is to buy the underlying asset on a certain specified future date for a certain
specified price.
2 A short position is to sell the underlying asset on a certain specified future date for a certain
specified price.
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9 x 0.25 = 2.25

Regardless of whether the stock price moves up or down, the value of the portfolio is

always $2.25 after y months.

A riskless portfolio must, in the absence of arbitrage opportunities, earn the risk-free rate

of interest of r. It follows that the value of the portfolio today must be equivalent to the

continuously compounded present value of 2.25, or

2.25e 12

The value of the stock price today is known to be $10. Suppose the option price is f. The

value of the portfolio is

ry

10 x 0.25 -- f = 2.25e 12

or

ry

f =2.5 -2.25e 12

3.2.2. Brownian motion and Wiener Processes

The standard model for stock prices is a geometric Brownian motion with constant

volatility. Standard Brownian motion is one of the most important basic notions of

stochastic processes, and in particular, is the basis of modern options theory.

To develop a sound theory of option pricing, one should describe the stock price

evolution using a dynamic model with a reasonable agreement with reality. The exact
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formulation of the model for stock price evolution was a subject of debates for over a

century.

Brownian motion originally refers to the random motion observed under microscope of a

pollen immersed in water. Albert Einstein pointed out that this motion is caused by

random bombardment of heat-excited water molecules on the pollen. More precisely,

each of the pollen's steps (in both x- and y- directions) is an independent normal random

variable.

Albert Einstein developed the notions of Brownian motion in the beginning of the 20th

century. In 1905 he defended his Ph.D. thesis on the subject of the separation of two

large particles experiencing random hits from surrounding small molecules. For this work

he received the Nobel Prize (Ironically, he did not receive the Nobel Price for the Theory

of Relativity). Although he himself considered his work not particularly important, this

work laid the ground for the theoretical understandings and beginnings of stochastic

processes altogether. Further contributors to the subject were Markov, Uhlenbeck,

Khintchine, Wiener, Smoluchowski, Ito, and Stratonovich. It was only in the 1960s that

the theory of Brownian motion was applied to modeling stock prices.

Stock prices are influenced by an astronomical number of independent random factors

together. Each factor is trivial in the total influence. This kind of random variables, stock

prices in this case, usually follows normal distribution approximately. The reason why a

normal distribution is not used to describe stock prices is because stock prices cannot be

negative. A lognormal distribution describes the rate of change of stock prices

(expressed using continuous compounding) to be normal. The change of a stock price

can be negative, which means the effective market price is decreasing while it is still

positive.

Consider the following discrete construction. Let Zto be the position of a particle at time to.

Let at time to + At the position of the particle be Zto + AZ, where the increments are

related:
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AZ = .,rit

where F denotes a random sample from a standard normal distribution (mean 0 and

standard deviation 1).

Z, = Z, +±e
n n-i +

tn -tn- 1 =At

Compounding n such increments, one can get for a finitely large interval of time T=nA t:

n

Z(to + T) = Zo+ 6[

Here e, are all independent samplings from a standard normal distribution. Considering

the limit of At -> 0+, it may be shown that the resulting process converges to a limit,

which is called standard Brownian motion, and is also referred to as a Wiener process.

Brownian Motion

8

4 - -- -- - - - - -

2

0

-2

-4 VI V

-6

Time

Figure 3-3 One Path of Brownian Motion (At = 1)
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Figure 3-3 exhibits a single path of a standard Brownian motion with initial condition ZO =

0.

Figure 3-4 Two Hundred Paths of Brownian Motion

Figure 3-4, in turn, shows two hundred paths of the standard Brownian motion.

The basic Wiener process, dz, has a drift rate (i.e. average change per unit of time) of

zero and a variance of 1.0. The drift rate of zero means that the expected value of z at

any future time is equal to its current value. The variance rate of 1.0 means that the

variance of the change in z in a time interval of length T equals T.

A generalized Wiener process for a variable x can be defined in terms of dz as follows:

dx = adt + bdz Equation 3-1

where a and b are constants, dz is the basic Wiener process. The adt term implies that x

has an expected drift rate of a per unit of time. This means that, without the bdz term, in

a period of time of length T, x increases by an amount of aT. The bdz term can be

regarded as adding noise or variability to the path followed by x. The amount of this

noise or variability is b times a basic Wiener process. A basic Wiener process has a

7!! M
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standard deviation of 1.0. It follows that b times a Wiener process has a standard

deviation of b.

In a small time interval At, the change in the value of x, Ax, is

Ax = aAt + be-At

Since e is a random number drawing from a standard normal distribution. Thus, Ax has

a normal distribution with

Mean of Ax = aAt

Standard deviation of Ax = b AI

Variance of Ax = b2

Stock Price Process Model

It is usually assumed that asset prices follow Geometric Brownian Motion where the

logarithm of the underlying variable follows a generalized Wiener process.

If the price of a non dividend paying stock, S, follows geometric Brownian motion:

dS = pSdt + -Sdz Equation 3-2

where S is the stock price, p is the expected return on the stock, and o is the volatility of

the stock price. The volatility of a stock price can be defined as the standard deviation of

the return provided by the stock in one year when the return is expressed using

continuous compounding. The volatility is also the standard deviation of the natural
logarithm of the stock price at the end of one year. Both definitions are equivalent.
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Then, using Ito's lemma (see Appendix 3A) to get:

2

dIn S =(--)dtc+ dz
2

Equation 3-3

From this equation, the variable InS follows a generalized Wiener process, the change in

InS between 0 and t is normally distributed, so that S has a lognormal distribution.

Lognormal Properties of stock price

In general, a lognormal distribution probability density function is as follows:

-(Inx-p)2

f(x) =. e 2.2 t Equation 3-4
x o-2O'z

but the following will show a more intuitive explanation of the lognormal distribution of the

stock prices. See Figure 3-5 for the shape of lognormal density function.

The lognormal distribution of price means the logarithm of the price has a normal

distribution. To illustrate, if a stock is priced at $100 per share and prices have a normal

distribution, the distribution of prices is the familiar bell-shaped curve centered at $100,

but if the prices have a lognormal distribution, then it is the logarithm of the price which

has a bell-shaped distribution about ln(100) = 4.605. The logarithm of the prices is

equally likely to be 5.298 or 3.912, i.e., 4.605 ± 0.693 corresponding to prices of $200 and

$50, respectively. If the lognormal probability density curve is plotted as a function of
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price rather than as a function of the logarithm of price, the curve will appear positively

skewed with tails more nearly depicting the observed behavior of stock prices.

Figure 3-5 Lognormal Density

Lognormality arises from the process of return compounding, in other words, the

lognormal property of stock prices applies when the return rate earned on a stock

between time 0 and t is continuously compounded. It is important to distinguish the

continuously compounded rate of return and the annualized return with no compounding

1 s, -so
as -( ).

t so

3.3. Options Valuation Tools

The first model to calculate options value is the Black-Scholes formula, which is

sometimes regarded as arcane. Interests in option pricing, however, has picked up in

recent years as more powerful computers can aid very sophisticated model building.

Lognormal Density
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With simulation methods available easily as Excel add-ins or more professional

alternatives such as @Risk or Crystal Ball, people are able to do a hundred thousand

simulations easily and get the payoff distribution as well as the value of real options'.

Besides, the binomial model proves very successful in option pricing and decision

analysis is sometimes another approach to value options approximately 2.

Five inputs are needed for an options valuation (if considering the simplest situation when

there is no dividend):

- strike price

- risk-free interest rate

- time to expiration

- current stock price

- uncertainty (with volatility as the measurement)

Among the five inputs of an options model, the first four inputs are relatively easier to get,

while the last one uncertainty, which is estimated by volatility in most cases, is more

difficult to estimate. With a lot of historical data available on the stock market, it is

relatively trivial to get a for a stock option. However, for a real option, lack of historical

data is a common problem except a few specific industries, such as pharmaceutical

industry. Because of the lack of historical data, it is very hard to justify the choice of

volatility. This is one of the practical difficulties facing real options valuation methods.

3.3.1. The Black-Scholes Model

The Black-Scholes-Merton analysis is based on the no-arbitrage condition.

1 Simulation generates values of uncertain variables according to the probability distribution of the
variables, uses those values as inputs, and predicts the output. With a great number of repetitions,
the probability distribution of the output is established.
2 The valuation by decision analysis is not real options valuation strictly because it does not use
the risk-neutral valuation (refer to 3.4. ).
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The stock price process is the one as we developed in the last section as Equation 3-2:

dS = pSdt + oSdz

Suppose f(S,t) is the price of a call option, which is some function of the stock price of S

and time of t. Hence from Ito's Lemma (see Appendix 3A):

df = (f uS
as

atf
at

1 a 2 f
+ 2 2 2 S 2 )dt +

2 as2 '- Sdz
as

Equation 3-5

The Wiener processes dz underlying f and S are the same. It follows that by choosing a
portfolio of the stock and the stock option, the Wiener process can be eliminated. The

appropriate portfolio is short one call option and long an amount af/S of shares.

Define J7 as the value of the portfolio. By definition

f= -f + Sas Equation 3-6

Note the portfolio is riskless only for an infinitesimally short period of time. As S and t

change, af/aS also changes. To keep the portfolio riskless, it is necessary to constantly

change the composition of the portfolio.

Because the discrete version of equations Equation 3-5 and Equation 3-2 are

Af =(af US +
as

af
at

Ia 2
02)At

2 as 2
+ f-SAz

as
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and

AS = pSt + uSAz

Then the change A H in the time interval At is given by

AlH = -Af + AS
as

+ I 2f 2 S2)At
2 aS 2

IL-YSAz + I'LpSAt + f o-SAz
as as as

Equation 3-7

af 1 a2 2S2)At
as 2 as 2

The equation does not involve Az, the portfolio must be riskless during time At under the

assumption of no arbitrage. It follows that

AHJ = r HAt

where r is the risk-free interest rate.

Equation 3-7, this becomes

(L + a 2 f 2 S 2

at 2aS 2

Equation 3-8

Substituting from equations Equation 3-6 and

)At = r(f - S)At
as

So that

+rS +. S
at as 2

a2f
as2 = rf

(af P
as

af+
at

Equation 3-9
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Equation 3-9 is the Black-Scholes-Merton differential equation. Its solution depends on

the boundary conditions used. In case of a European call option, the key boundary

condition is

f = max[S - X,O] when t = T

Solving the differential equation subject to the boundary conditions to get the Black-

Scholes formulas for the prices at time zero of a European call option on a non-dividend-

paying stock:

c = SON(d) _ Xe-rT N(d2)

where

d = In(SO / X)+(r +U2 / 2)T

ln(SO / X)+(r -_ 2 / 2)T

Equation 3-10

=di -oWY

and N(x) is the cumulative probability distribution function for a variable that that is

normally distributed with a mean of zero and a standard deviation of 1.0.

In case of a European put option, the key boundary condition is

f = max[X - S,O] when t = T

solving the differential equation to get the Black-Scholes formula for the prices at time

zero of a European put option on a non-dividend-paying stock

p = Xe-rN(-d 2 )- SO N(-d)
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After going through all the derivation of the Black-Scholes formula, the two most

important assumptions under the options pricing are stressed again here:

* no arbitrage, and

" geometric Brownian motion.

It is key to understand the role of these two assumptions in real options valuation. And

thus understand the applicability for real options in different scenarios.

3.3.2. Valuation by Simulation

Simulation models compute typically thousands of possible paths of the evolution of the

value of the underlying from today to the final day studied. With options decision rule

imbedded in each of the paths, the expected value on the final day is discounted back to

today to obtain the options value.

For example, the current price of a stock is $20, volatility is 30% per year, risk-free rate is

5% per year. A European stock call option is built on such a stock with time to expiration

of 3 months and strike price of $22.

Simulating the stock price 3 months later to get the distribution of the stock price yields

Figure 3-6. With the European call option imbedded, the distribution of prices less than

$22 is cut because people won't exercise it in such a case. See Figure 3-7. The

expected of the chunk of the distribution greater than $22 minus $22 is the future value of

the option. The future value of the option is then discounted to get the option value.

One of the advantages of the simulation model is that it can handle path-dependent

options, in which the value of options depends not only on the value of the underlying, but

also on the particular path followed by the underlying.
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Figure 3-6 Distribution of Stock Price for Valuation by Simulation
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Figure 3-7 Distribution of Exercise of Option for Valuation by Simulation

With the fast development of computer hardware and software technologies, simulation

models have been more and more powerful and easy-to-use. A normal laptop can run

thousands of simulations in seconds, and software programs such as Crystal Ball make

the simulation method accessible to everybody.

An example of options valuation by simulation is provided in section 3.3.4.
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3.3.3. Binomial Real Options Valuation

Considering a stock whose price is initially So and an option on the stock whose current

price is f . Suppose that the option lasts for time T. During the life of the option, the

stock price can either move up from So to a new level, Sou, or down from So to a new

level Sod . The proportional increase in the stock price when there is an up movement is

u - 1; the proportional decrease when there is a down movement is 1- d . If the stock

price moves up to Sou, the payoff from the option is assumed to be fu; if the stock price

moves down to Sod , the payoff from the option is assumed to be fd . Figure 3-8

illustrates the situation:

SS

S f U
f

Sd

fd

Figure 3-8 Stock and Option Price in a One-step Binomial Tree

Considering a portfolio consisting of a long position of x shares and a short position in

one option. If there is an up movement in the stock price, the value of the portfolio at the

end of the life of the option is

Soux - fu

If there is a down movement in the stock price, the value becomes

Sodx -fd
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The two are equal when

Soux - fu = Sodx - fd

or

Equation 3-11

In this case, the portfolio is riskless. Due to the no arbitrage condition, the

earn risk-free interest rate. x is the ratio of the change in the option price to

the stock price.

The present value of the portfolio is

portfolio must

the change in

(Soux - fu)e-T

where r is the risk-free interest rate. The cost of establishing the portfolio is

Sox - f

It follows that

Sox - f = (Soux - fu)e-rT

or

f = Sox -(Soux - fu)e-T

f - fd

Sou - Sod
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Substituting x from Equation 3-11, this equation reduces to

f=e-" [puf +Pdfd ] Equation 3-12

Equation 3-13

Equation 3-14

One way to match volatility with u and d is

Equation 3-15

Equation 3-16

One more step can be added to the binomial tree as Figure 3-9.

Repeated application of Equation 3-12 gives

fu = e~(pfUd +(1-p)fdd]

fd =e-r [Pf,, + ( - Pyfdd ]

And finally get:

f =e-"(pfu +(1- p)fd]

where

rT -d
u- d

Pd 1 u

u e

d e~a-
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SUU
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f

Sdud

dd

f dd

Figure 3-9 A Two-Step Binomial Tree

3.3.4. Options Valuation and Decision Tree Analysis

Options analysis is continuous, but decision trees are discrete. Normally, the decision

tree analysis will not give the correct value for options because it is not a risk neutral

analysis. Decision tree analysis does not refer to arbitrage-enforced price, and uses the

actual probabilities of the price movement of the underlying assets. If using risk-neutral

evaluation and simulation, however, the decision tree analysis will give the exactly same

answer as Black-Scholes.

To a certain extent, what the options theory offers is an understanding of the stock prices

that are lognormally distributed. From today's stock price and the volatility of the stock

price, the distribution of a stock price at a future date can be derived. With the

understanding of the stock price distribution, decision tree analysis can be applied.
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An Example of Option Valuation

Assume that there is a stock, where stock price So is $20 now, the volatility a is 30%,

risk-free interest rate r is 5%. A call option is built on this stock, the strike price X is $22,

and the time to maturity T is 1 year.

Applying two methods to get the value of this call option.

Method 1: Black-Scholes Formula

The Black-Scholes Formula is as Equation 3-10

C = SON(dj) Xe- N(d 2)

where

d = In(So /X) +(r +. 2I2)T

d = ln(So /X) +(r -2 /2)T
2U

and N(x) is the cumulative probability distribution function for a variable that that is

normally distributed with a mean of zero and a standard deviation of 1.0.

Substitute the actual value of So, o-, r , X, and T into the formula, and the value of this

call option is $1.994.

Method 2: Decision Tree Analvsis usinci Monte Carlo Simulation

The basic structure of the tree is as Figure 3-10:
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Exercise or Not < STOCKPRICE - $22

No
< 0

Figure 3-10 Decision Tree for Options Valuation

The rectangle is a decision point at the expiration day, at which there are two possible

decisions: exercise the option, and the value of the option is the stock price then minus

the strike price of $22; do not exercise the option, the value of the option is 0 in this case.

Now the key of the above decision tree analysis is the stock price. The stock price is a

stochastic process. It has a specific distribution on the expiration day that can be derived

from the current stock price, volatility, risk-free rate, and time to expiration. The

assumptions needed for that deduction are the cornerstones of modern finance theory,

i.e. the geometric Brownian motion of the stock price and the no-arbitrage assumption.

These two assumptions also lead to the Black-Scholes formula.

The two assumptions lead to the stock price on the expiration day following a lognormal

distribution with an expected value as Equation 3-18

E(ST) = Soe'T

where T is time to expiration and r is the risk-free rate.

Substitute the actual value of So, r, and T into Equation 3-18 to get the expected value of

the stock price on the expiration day after a year:

E(ST) = $21.025
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Two parameters, i.e. p and a, are needed to specify the lognormal distribution of the

stock price on the expiration day. Please refer to Equation 3-4. In this example, a is 0.3.

p is the expected value of the annual return expressed using continuous compounding,

and

p # ln[E(S)],

but

p = E[In(S / So)] = 1n[E(S)] - a.2 /2 Equation 3-17

p = ln(21) - (0.3) 2 /2 = 3.001.

With the value of p and cy, the distribution of the stock price on the expiration day is

specified. The last important thing is that the option is to expire a year later, but the value

of the option as of today needs to be calculated. So the expected value obtained by the

decision tree needs to be discounted.

Finally, Monte Carlo simulation is applied to get the value of the option c. The software

used is Crystal Ball. The relative precision of the simulation of the mean is set to be 1 %.

It means that the software will stop simulation after the mean of the simulated results is

within ±1 % range of true expected mean.

The software simulates 249,500 times before it stops and reaches the relative precision

of 1 %. Please see the output from Crystal Ball as Table 3-1:

The result of Table 3-1 shows the true expected value or the value of the call option

should be in the range $2.00082 ± 1% x $2.00082, or ($1.981, $2.021). The result from

or
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the Black-Scholes formula is $1.994, exactly in the range. This test shows that the

expected value of the tree (after discounting) is the call option value and it is the same as

the result from Black-Scholes formula. The precision of the simulation can be improved,

even though the mean of the simulated results is fluctuating around the expected value.

Table 3-1 Option Valuation by Decision Tree Results

Statistic Value Precision

Trials 249,500

Mean 2.00082 1.00%

Median 0.00000

Mode 0.00000

Standard Deviation 3.87972 0.88%

Variance 15.05222

Skewness 2.72981

Kurtosis 12.53695

Coeff. of Variability 1.93906

Range Minimum 0.00000

Range Maximum 50.71999

Range Width 50.71999

Mean Std. Error 0.00777

This example shows an interesting result that options can be valued by decision tree

analysis with simulation. In some sense, modern finance theory helps people to get the

distribution of the stock price at any future day with the observable parameters of the

current stock price, the risk-free rate, and the volatility of the stock price.
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3.4. Risk-neutral Valuation

Note in the Black-Scholes formula (Equation 3-10), the value of an option does not

depend on discount rate or other variables that are affected by the risk preferences of

investors. The variables presented in the formula - current stock price, time, stock price

volatility, and the risk-free rate of interest - are all independent of risk preferences. This

leads to the most important tool for the analysis of options and other derivatives, risk

neutral valuation.

By risk-neutral valuation, we assume all investors are risk-neutral and do not need

compensation for taking risks. In this risk neutral world, the expected return from the

underlying asset is equal to the risk-free interest rate, and the discount rate to discount

the expected payoff is risk-free interest rate. However, the solutions obtained in a risk-

neutral world are valid in all world, not just where investors do not request risk-premium,

To illustrate risk-neutral valuation further, we refer to a simple binomial model structure

as Figure 3-8, the expect stock price at time T, E(ST), is given by

E(ST) =pSou +(1 - p)Sod

or

E(S) =puS 0 (u -d)+ Sod

Substituting from Equation 3-13, this reduces to

E(ST)= Soe T Equation 3-18
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The expected growth of the stock price is the risk-free rate. Setting the probability of the

up movement equal to pu is to assume that the expected return on the stock is the risk-

free rate.

In a risk-neutral world, all individuals are expected value maximizers and require no

compensation for risk, and the expected return on all securities is the risk-free rate.

Equation 3-12 shows that the value of an option is its expected payoff in a risk-neutral

world discounted at the risk-free rate. The risk-neutral valuation principle states that it is

valid to assume the world is risk neutral when pricing options. The result is correct for all

worlds, not only in the risk-neutral world.

3.5. Exotic options

Exotic options are derivatives with more complicated payoffs than the standard European

or American options. Exotic options valuation techniques are of special interests to real

options researchers because real options usually possess more a complicated payoff

structure than standard European or American options.

In this section we will first introduce a number of exotic options, and then describe briefly

the current valuation techniques for several exotic options that are relevant to this

dissertation.

3.5.1. Types of exotic options

The categorization of exotic options presented in this dissertation follows Hull [1999].
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Packages

A package is a portfolio of standard European options, forward contracts, cash, and the

underlying asset itself. There are different types of packages, such as bull spreads, bear

spreads, butterfly spreads, calendar spreads, straddles, and strangles. For details of the

packages, refer to Hull (1999).

Nonstandard American Options

For a standard American option, exercise can take place at any time during the life of the

option and the exercise price is the same. For a nonstandard option, the exercise may

be restricted to a certain period of time or the strike price can be changing. For example,

Bermudan option restricts its early exercise to certain dates during the life of the option.

A bond option that can be exercised only on coupon payment dates is a Bermudan option.

Another example, a warranty issued by a company on its own stock sometimes can only

be exercised during only part of its life, and sometimes the strike price increases as time

passes.

Forward Start Options

Forward start options are options that will start at some time in the future. They are

sometimes used in incentive options. The terms of the options will usually specify when it

starts it will be at the money.

Compound options

Compound options are options on options. There are four main types of compound

options: a call on a call, a put on a call, a call on a put, and a put on a put. Considering a

call on a call, on the first the exercise date, the holder has the right not the obligation to

buy the second call option at a first exercise price, and if the holder buys the second call
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option, the holder has the right not obligation to buy the underlying asset at the second

exercise date for a second exercise price. Many real options have the compound options

features.

Chooser options

A chooser option allows the holder to choose whether the option is a call or a put after a

predetermined period of time. The value of the chooser option at the time of choice is

max(call, put)

Barrier options

Barrier options are options where the payoff depends on whether the underlying asset's

price reaches a certain level during a certain period of time. Barrier options can be

categorized as knock-out options or knock-in options. A knock-out option stops to exist

when the underlying asset price reaches a certain barrier; a knock-in option begins to

exist when the underlying asset price reaches a certain barrier. For example, a down-

and-out call is a regular call option that stops to exist when the underlying asset price

reaches a certain lower bound. Another example, a down-and-in call option is a regular

option that comes into existence only if the stock price reaches a certain lower bound.

Barrier options are path-dependent, and how to value path-dependent options is

especially interesting to real options researchers.

Binary options

Binary options have discontinuous payoffs. For example, a cash-or-nothing call pays off

nothing if the stock price ends up below the strike price at the expiration, and pays a fixed

amount if the stock price ends up above the strike price. A asset-or-nothing call pays off

nothing if the stock price ends up below the strike price at the expiration, and pays off an

amount equal to the stock price if it ends up above the strike price. A European option
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can be thought of as equivalent to a long position in an asset-or-nothing call and a short

position in a cash-or-nothing call, where the cash payoff of the cash-or-nothing call is

equal to the strike price.

Lookback options

Lookback options are another kind of path-dependent options. The payoffs of lookback

options are the maximum or minimum stock price reached during the life the option. A

lookback call can help the holder buy the underlying asset at the lowest price achieved

during the life of the option; and a lookback put can help the holder sell the underlying

asset at the highest price achieved during the life of the option.

Shout options

A shout option holder can "shout" at one time during the life of the option, and the holder

gets the maximum of the usual payoff from an ordinary European option or the value at

the time of the shout. For example, the strike price is $30 and the holder of a call when

the price of the underlying asset is $40. If the final asset price is less than $40 then the

holder receives $10; if the final asset price is greater than $40 then the holder receives

the excess of the asset price over $30.

Asian options

Asian options are options where the payoff depends on the average price of the

underlying asset during part or all life of the option. The payoff from an average price call

is max(0, Saverage - X), that from an average price put is max(0, X - Saverage), that from an

average strike call is max(0, ST - Saverage), and that from an average strike put is max(0,

Saverage - ST), where Saverageis the average value of the underlying asset calculated over a

period of time, X is the strike price, and ST is the stock price at maturity. Asian options are

less expensive than regular options and are arguable more appropriate to meet the

needs of corporate treasurers. Suppose a multinational corporation headquartered in
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Boston expects to receive a cash flow in Euros spread in the next year, the treasurer is

probably more interested in guaranteeing the average exchange rate realized during the

next year is above some minimum level. Asian options are among the most difficult path-

dependent financial options in terms of valuation.

Options involving several assets

Options involving two or more risky assets are sometimes called rainbow options as well.

For example, the bond futures contract traded on the Chicago Board of Trade allows the

seller to choose between a large number of different bonds when delivering.

Basket options

A basket option depends on the underlying of a portfolio of assets. The assets are

usually stocks, stock indices, or currencies.

3.5.2. Some valuation techniques of exotic options relevant to

the dissertation

Among all the options introduced in the last section, two aspects are especially important

to our study of real options in large-scale engineering systems - compound options and

path-dependency. This section will introduce the standard valuation techniques on

compound options and path-dependency in the financial derivatives literature.

Compound options

For exotic options, one way to estimating value that is always available is Monte Carlo

simulation, but European compound options can be valued analytically in terms of
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integrals of the bivariate normal distribution (Geske, 1979; Rubinstein, 1991). The value

at time zero of a European call on a European call is

SOe T2M(al ,bl; 1 / T2 )-X 2e 2M(a2 ,b 2 ; T1 / T2)~er' X 1N(a2 )

where

In(SO /S* +(r -q+ .2 2)T,
a1 =

a 2 =a, -o

ln(SO / X 2 )+(r -q+a. 2 /2)T2

b2 =bl -a-T2

The function M is the bivariate normal distribution function and N is the normal

distribution function (the same as the N function in Black-Scholes Formula). So is the

current stock price, q is the dividend yield, T, is the first exercise date, T2 is the second

exercise date, X, is the first strike price, X2 is the second strike price, r is the risk-free

interest rate, and S* is the stock price at time T, for which the options price at time T,

equals X1. If the stock price is above S* at time TI, the first option will be exercised;

otherwise, the option expires worthless.

With similar notation, the value of a European put on a call is

X2e rT2 M(-a 2, b2;-J / T2 So e -o qT2M(-aj,bj;-j TI/T2 ) + e-rT XIN(-a2)

the value of a European call on a put is

X 2 e T2M(-a 2 ,-b 2 ; 1 2 ) - SOe T2M (-a,-b; T1 / T2 ) - er' XIN(-a 2 )
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the value of a European put on a put is

Soe-T M(a1,-b 1;-T1/T 2 )-X 2e rT 2M(a 2 ,-b 2 ; /T2 )+e~'IXN(a2 )

Path-dependent options

If the payoff of a derivative depends not only on the final value of the underlying asset,

but also on the path followed by the price of the underlying asset, for example, several of

the exotic options introduced in the previous section such as Asian options, lookback

options, barrier options, then such derivative presents path-dependent features.

One approach that can always be tried to value path-dependent options when analytic

results are not available is Monte Carlo simulation. A sample value can be calculated by

drawing a realization of the path for the underlying asset. An estimate of the value of the

derivative is obtained by the mean of a great number of realization paths. The main

problem with the Monte Carlo simulation is that the computational cost to achieve the

required level of accuracy can be prohibitively high, since the convergence rate of

standard deviation is the square root of number of simulations. Another big problem with

the Monte Carlo simulation is how to handle American options. Monte Carlo simulation is

a forward looking algorithm while American options valuation needs backward deduction

for optimal decision-making. Combining forward and backward algorithms together can

be computationally too expensive to handle. A third problem with Monte Carlo simulation

is that we can get the value but cannot understand the major drivers deciding the value of

the derivative (like analytical solutions can provide). Despite the above mentioned

problems with Monte Carlo simulation, Monte Carlo simulation is still probably the most

widely applicable method to value path-dependent derivatives.
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In many cases, we can also use binomial trees to cope with path-dependent options. For

example, the shout option introduced in the previous section is a path-dependent

derivative. We can value it by constructing a binomial tree for the underlying asset in the

usual way. When we roll back the tree, we calculate the value of "shouting" and that of

"not shouting" on each node. The value of the derivative on each node is the greater of

the two. Hull and White [1993] suggested an extended binomial tree procedure to value

path-dependent options. They gave examples using this procedure to value lookback

options and barrier options.

For some path-dependent derivatives, we can also get analytic solution approximately.

For example, we have approximate analytic valuation for Asian options. If the underlying

asset S is assumed to follow a lognormal distribution and Sverage is taken to be a

geometric average, Saverage is also lognormally distributed. And Saverage can be treated like

a usual stock price and Asian options can be valued. However, Asian options are not

defined in terms of geometric averages, but in arithmetic averages. Exact analytic pricing

formulas are not available because the arithmetic average of a set of lognormal

distribution does not have analytically tractable properties. But the distribution of

arithmetic averages of a set of lognormal distribution is approximately lognormal and this

leads to a good approximation for valuation of Asian options. We calculate the first two

moments of the distribution of the arithmetic average and assume the distribution is

lognormal with the two moments, then we can use standard valuation formulas.
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Chapter 4 Real Options

"The classic way to value businesses is to compute the discounted present value of their

future cash payouts. Not good enough, says Michael Mauboussin, the chief U.S.

investment strategist at Credit Suisse First Boston. You should also throw in something

for the company's 'real options"'. (Schoenberger, 2000)

An article published in McKinsey Quarterly argued, "Real Options are especially valuable

for projects that involve both a high level of uncertainty and opportunities to dispel it as

new information becomes available". (Leslie and Michaels, 1997)

MIT professor Stewart Myers (1984) first coined the term "real options":

"Strategic planning needs finance. Present value calculations are needed as a

check on strategic analysis and vice versa. However, standard discounted cash

flow techniques will tend to understate the option value attached to growing

profitable lines of business. Corporate finance theory requires extension to deal

with real options." (pp. 136)

Not until recently, the distinction between real options "in" and "on" projects has been

drawn. Real options come in two basic flavors: those that are "on" systems and treat the

technology as a black box, and those that are "in" systems and provide the flexibility and

the option through the details of the design (de Neufville et al, 2004). This chapter will

discuss real options "on" and "in" projects and some implications for the real options

method.



96

4. 1. Definition of Real Options

Before we start a detailed discussion, we need to define "real options" clearly. A real

option is a right, but not obligation, to do something for a certain cost within or at a

specific period of time. Compare the definition of real options with that of financial

options on page 60: a financial option is restricted to buying or selling an underlying asset,

and a real option refers more broadly to "do something", while the other aspects of

financial and real options are similar.

The valuation of real options provides important insights into the value of opportunity or

flexibility. Applying real options methodology, people can actively manage risks and

uncertainties, not merely passively perceive the value of flexibility vaguely as before.

People can systematically identify and establish options into a project, increasing the

value of the project, appreciating the value of the project wholly, and taking advantage of

upside potentials while avoiding downside risks.

Appreciating that a project is like a financial call option (or a put option) can help people

recognize the crucial role that uncertainty plays in the investment decisions. For a

financial call option, the more volatile the price of the stock in which the option is

established, the more valuable is the option and the greater incentive to keep the option

open. This is true because of the asymmetry in the option - the higher the price rises, the

higher the payoff is; however, if the stock price falls, one can lose only what was the price

of the option at the time of purchase.

The same goes for project investment decisions. The greater the uncertainty of a project,

the greater the value of the opportunity and the greater incentive to wait and keep the

opportunity alive rather that exercise it immediately. Of course, the traditional NPV

method also considers uncertainty by way of the choice of discount rate. But in real

options thinking, uncertainty is far more important and fundamental.
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In addition to understanding the role of uncertainty, real options thinking helps companies
to think systematically and actively to obtain options by their technological knowledge,
reputation, managerial resources, market position, and possible scale. People need to
understand options and get opportunities in hand first.

With some data, the real options approach can add quantitative rigor to the valuation of
the flexibility. Flexibility comes with cost. Using quantitative real options valuation,
people can calculate the net value of an option, i.e., the value of an option minus cost,
given a certain amount of investment budget. With binomial and simulation valuation,
moreover, people can get the possibility distribution of a project's payoffs with/without
options. In this way, people can have a more holistic understanding of the project than if
only the expected value of payoffs is given as in the traditional NPV method.

4.2. Real Options "on" Projects

Existing real options studies are mostly on real options "on" projects. There has been
tremendous progress in the understanding of real options "on" projects since around
1995. This dissertation stresses the difference between real options "on" and "in"
projects. What is called real options "on" projects in this dissertation are simply referred to
as real options in the standard literature. We would like to contrast those two kinds of
real options and stress the focus and contribution of this dissertation on real options "in"
projects.

4.2.1. What are Real Options "on" projects?

An opportunity is like a call option because the company has the right, not the obligation,
to invest in a project. In the case of real options "on" projects, the company treats the
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engineering design of the project as a black box and values the black box. It is possible

to find a call option sufficiently similar to the investment opportunity. The value of the

option would tell us something about the value of the opportunity. Although most projects

are unique and the likelihood of finding a similar option on the market is low, people can

reliably find a similar option by constructing one.

Before the formalization of the options theory, people had intuitively knew the benefit of

options, such as the ancient Chinese proverbs " a cunning rabbit has three caves" and

"never put all the eggs in one basket". With the development of options theory, people

can now estimate the value of opportunities more precisely, which enables them to

compare the value of an option with its cost. A more scientific decision can be reached -

people shouldn't spend more for an option than it's worth.

Example 1: Petroleum chemical company

Paraphrasing an example from Amram and Kulatilaka (1999), a petroleum chemical

company might begin to invest in a new capacity, but is worried about the size of the

market opportunity and whether the manufacturing process could meet the government

regulations regarding environmental protection. Traditional Net Present Value (NPV)

analysis suggested that the project should not be pursued. Real options "on" projects

analysis, however, valued the exit option held by the company - the option that the

company could walk away if there were bad news about the market or the government

regulation. Although there would be a loss of initial investment if the project were

cancelled, including the exit option, the project value increased and the company began

to construct new capacity.

Example 2: Oil exploring

Paraphrasing an example from Leslie and Michaels (1997), a North Sea oil company

accumulated a portfolio of license blocks - five-year rights to explore and produce oil and
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gas. The development was unsuccessful and left it with unwanted blocks that were
consuming cash. The company decided to sell the blocks initially. During the divestment
program, it was suggested, however, instead of calculating what the block would be
worth if the company started developing them immediately, the company should value its
opportunity as an option to develop if, at sometime in the future, recoverable reserves
could be increased through new technologies. A simple financial model was developed
to show how to price the blocks at their option value over 5 years, incorporating
uncertainty about the size of the reserve, the oil prices, and room for flexible response to
the outcome. The managers reevaluated the company's portfolio, and instead of letting
blocks go, they held on to those with high option value and sold the rest at the revised
values.

4.2.2. Comparison of Real options "on" projects Method and
Traditional NPV Method

Often, although the NPV proves to be negative, the management team decides to go
ahead anyway; or the NPV is positive, but intuition warns people not to proceed. It is not
the intuition that is wrong, but the time-honored NPV decision-making tool. As a practical
matter, many managers seem to understand there is something wrong with the simple
NPV rules, i.e., there is a value to waiting for more information and this value is not
reflected in the standard NPV calculation.

Traditional NPV valuation tools ignore an important value of a project - the value of
flexibility. The traditional NPV method assumes, if an investment is irreversible, the
investment is now-or-never, or in other words, if the company does not make the
investment now, it will lose the opportunity forever. The traditional NPV method does not
take into account an important reality: business decisions in many industries and
situations can be implemented flexibly through deferral, abandonment, expansion, or in a
series of stages that in effect constitute real options "on" projects.
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See the following example based on Prof. de Neufville's class notes (2002): Suppose a

project can be started for $100, and $1100 more will be required to complete. We must

decide whether or not to continue after observing the initial result. And the commercial

feasibility is decided by the initial result and the market condition then. Our final objective

is to license the technology to a bidder who offers the highest price. The revenue

estimate is shown in Table 4-1.

Table 4-1 Revenue Estimate for Technology Development

Revenue Chance

License for $2000 50%

License for $100 50%

Assuming the discount rate is 10%, the question is: do we fund the project?

Table 4-2 shows traditional discounted cash flow (DCF) and net present value (NPV)

valuation:

Table 4-2 NPV Valuation of Technology Development

Year 0 Year 1 Year 3

Initial cost -$100

Development -$1100

License revenues 0.5x$2000 + 0.5x$100

Present Value -$100 -$1000 $868

The traditional NPV valuation is -$232, so the project should be rejected.
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But if we employ Real Options thinking, we understand that we have the option to

develop only if the $2000 license is expected. Now the analysis is as Table 4-3. And the

new NPV is $226, so we should accept the project'. Thinking of options is always natural

and intuitive for managers even without the formal option valuation tools. However, we

were not able to valuate options rigorously before we had option valuation models. Now,

with those option valuation tools, options thinking can be transitioned from the state of

qualitative intuition to the state of quantitative rigor.

Table 4-3 Approximate Options Valuation of Technology Development

Year 0 Year 1 Year2

Initial cost -$100

Development 0.5x$1 100

License revenues 0.5x$2000 + 0.5x$0

Present Value -$100 -$500 $826

In addition, there is another key difference between Real options "on" projects valuation

and NPV. NPV needs an appropriate discount rate to bring the future cash flows back

into present dollars, while real options "on" projects models are attractive because they

eliminate the need to resolve this issue. The Black Scholes Formula (Equation 3-10)
shows that options pricing does not require a discount rate. The question regarding how

to decide an appropriate discount rates generates a lot of debate. There is no consensus

or natural way to get an appropriate discount rate for a project. The Real Options

approach can circumvent the ambiguity of discount rate choice.

1 Note this $226 is not the options value. It is only an approximation of the options value because
it is not a risk-neutral valuation.
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4.2.3. Types of Real options "on" projects

Some options occur naturally (e.g., to defer, contract, shut down or abandon), while

others may be planned and built-in with extra cost (e.g. to expand growth options, to

default when investment is staged sequentially, or to switch between alternative inputs or

outputs). Table 4-4 describes briefly the most common categories of real options "on"

projects.

Table 4-4 Types of Real options "on" projects

Category Description Important In

Option to defer Management holds a lease on (or an All natural resource extraction industries;

option to buy) valuable land or resources. real estate development; farming; paper

It can wait (x years) to see if output prices products

justify constructing a building or plant, or

developing a field.

Time to build option staging investment as a series of outlays All R&D intensive industries, especially

(staged investment) creates the option to abandon the pharmaceuticals; long-development

enterprise in midstream if new information capital-intensive projects, e.g., large-scale

is unfavorable. Each stage can be viewed construction or energy-generating plants;

as an option on the value of subsequent start-up ventures

stages, and valued as a compound option.

Scaling Option (e.g., to If market conditions are more favorable Natural resource industries such as mine

expand; to contract; to shut than expected, the firm can expand the operations; facilities planning and

down or restart) scale of production or accelerate resource construction in cyclical industries; fashion

utilization. Conversely, if conditions are apparel; consumer goods; commercial real

less favorable than expected, it can reduce estate.

the scale of operations. In extreme cases,

production may halt or start up again.

Option to abandon If market conditions decline severely, Capital-intensive industries, such as

management can abandon current airlines and railroads; financial services;

operations permanently and realize the new product introductions in uncertain

resale value of capital equipment and other markets.

assets in secondhand markets.
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Option to switch (e.g., If price or demand change, management Output shifts:

outputs or inputs) can change the output mix of the facility Any goods sought in small batches or

("product flexibility"). Alternatively, the subject to volatile demand, e.g., consumer

same outputs can be produced using electronics; toys; specialty paper; machine

different types of inputs ("process parts; autos; Input shifts:

flexibility") All feedstock-dependent facilities, e.g., oil;

electric power; chemicals; crop switching;

sourcing

Growth option As early investment (e.g., R&D, lease on All infrastructure-based or strategic

undeveloped land or oil reserves, strategic

acquisition, information

network/infrastructure) is a prerequisite or

link in a chain or interrelated projects,

opening up future growth opportunities

(e.g., new generation product or process,

oil reserves, access to new market,

strengthening of core capabilities). Like

interproject compound options.

industries, especially high-tech, R&D, or

industries with multiple product

generations or applications (e.g.

computers, pharmaceuticals);

multinational operations; strategic

acquisitions.

Multiple interacting Real-life projects often involve a Real-life projects in most industries

options "collection" of various options, both discussed above.

upward-potential enhancing calls and

downward-protection put options present in

combination. Their combined option value

may differ from the sum of separate option

values, i.e., they interact. They may also

interact with financial flexibility options.

(Source: Lenos Trigeorgis, 1993. Real Options and Interactions with Financial Flexibility. Financial Management.

Autumn.)

4.2.4. Framework of Real options "on" projects Valuation

Before using real options "on" projects to evaluate a project, we first need to understand

clearly what decisions need to be made and check if it is advantageous to use this

approach over the traditional NPV method. If so, the valuation can be divided into six

steps, as shown in Figure 4-1:
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Step 1: find out the most important
uncertainties Step 3: analyze available real

Step 2: approximate the probability options

distribution of the uncertainties

Step 4: valuate real options

Step 5: select and purchase the real
options with the highest values

Step 6: monitor uncertainties and
exercise real options when
appropriate

Figure 4-1 Framework of Real options "on" projects Method

As a first step, most important drivers and uncertainties of the project should be found out.

Usually uncertainties include market risk (such as the market demand, price of the

product, economic cycle), technical risk (such as if the project can be finished on time, if

the project can achieve its technical objectives).

The second step, an approximate probability distribution should be assigned to each

uncertainty. In many cases, a lognormal distribution is used for market risk. If there are

other project-specific risks (private risks) associated with the project, their probability

distributions should be studied case by case.

In the third step, interesting options should be identified. Possible options practical to the

project studied can be identified with reference to Table 4-4 for the types of real options

"on" projects.

The fourth step, appropriate method among Black-Scholes formula, binomial model, and

simulation is identified and applied to obtain the value of the options.
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The fifth step, by comparing the value of the options and cost to obtain options, most

worthwhile options are selected and purchased or implemented.

The sixth step, the key uncertainties are closely monitored, and the purchased or

implemented real options will be exercised when appropriate.

Analysts and managers need to be careful of the false precision of the value of an option,

because the value is established on many approximations and assumptions. This is why

a sensitivity analysis is sometimes needed. Nevertheless, the mind-set to value the

flexibility is one of the major gains of this thesis.

4.2.5. Real options "on" projects versus Financial Options

To use the methodology originally developed for financial options, there should be an

appropriate underlying. For the most talked-about stock options, the underlying is the

stock price. For real options "on" projects study, however, a generalized concept of

underlying is needed. An underlying is the agent that determines the value of a project or

an investment. An underlying can be assets, but it also can be other agents such as

market size or utility price. To use Black-Scholes or the binomial model, the underlying

should follow the Geometric Brownian motion like stock prices.

If the underlying is not following a geometric Brownian motion, the options thinking can

still be applied. The reason is that the key for options thinking does not necessarily have

to resemble financial options exactly. The essence is the right not the obligation for a

property or project. If appropriate stochastic processes for underlying can be found,

people can use mathematical deduction to get the valuation (like Black-Scholes formula

to get option value based on the assumption of geometric Brownian motion), or can just

use Monte Carlo simulation to get the option value.
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There are a number of difficulties to apply real options "on" projects to fields beyond

exchanges and over-the-counter markets where options were originally developed. The

key problem is that often no efficient market exists for the object studied, so the most

powerful characteristics of financial options theory are mostly gone. For financial options

theory, the power originates from the assumption, close to reality, that stock prices in a

an efficient market contain all the information.

Often, the real options "on" projects approach is hard to be applied because of the

absence of justifiable value of volatility, the key variable for real options analysis. One of

the ways to circumvent this problem is to use the hybrid real options "on" projects method

(Neely and de Neufville, 2001) that uses decision analysis for the part of analysis where

historical data is not sufficient, e.g., the R&D stage for a new product.

4.3. Real Options "in" Projects

Real options "in" projects is the latest extension of real options work into physical

systems. See Figure 4-2. The concept is new and the methodology needs to be further

developed. A lot of the following text is from a paper by the author and de Neufville

(2005).

4.3.1. What are real options "in" projects?

Again we describe the two basic flavors of real options: those that are "on" systems and

treat the technology as a black box, and those that are "in" systems, and provide the

flexibility and the option through the details of the design (de Neufville et al, 2004). A

simple example of a real option "in" a system is a spare tire on a car: it gives the driver

the "right, but not the obligation" to change a tire at any time, but this right will only

rationally be used when the car has a flat tire.
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Rea Options "in" Projects

Real Options
"on" Projects

Financial
Options

Real Options t.... n
"on" Projects...-'' .-

Financial
Optionsc e h.t - .. rg.ut

are ypinsca.roy
Financial .- '' .- '
Options .. -'

Figure 4-2 Development of Options Theory

Real options "in" projects are of special interest to the study of engineering systems.

Large-scale engineering projects share three major features. As Roos (2004) has

indicated, they

- Last a long time, which means they need to be designed with the demands of a

distant future in mind;

- Often exhibit economies of scale, which motivates particularly large construction;

- Yet have highly uncertain future requirements, since forecasts of the distant future

are typically wrong.

This context defines the desirability of creating designs that can be easily adjusted over

time to meet the actual needs as they develop. System leaders need to build "real

options" into their designs. Engineers increasingly recognize the great value of real

options in addressing intrinsic uncertainties facing large-scale engineering systems and,

more importantly, are learning to manage the uncertainties proactively (de Neufville et al,

2004).
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Note the difference between real options "in" projects and the engineering concept of

"redundancy". Both real options "in" projects and redundancy refer to some components

should not have been designed if the design were optimized given the assumption that

things are not going to change. Redundancy refers to duplication of design elements

serving to increase the reliability of the system in case of components failures, while real

options "in" projects may not serve the same functions as some currently existing

components (though such real options may not prove necessary given the current

situation).

Real options "in" systems are those that are most interesting to designers, and are the

focus of this dissertation. Following are several examples of real options "in" projects for

engineering systems.

Example 1: "Bridge in bridge"

The design of the original bridge over the Tagus River at Lisbon provides a good

example of a real option "in" a major infrastructure system. In that case, the original

designers built the bridge stronger than originally needed, strong enough so that it could

carry a second level, in case that was ever desired. The Portuguese government

exercised the option in the mid 1990s, building on a second deck for a suburban railroad

line (Gesner and Jardim, 1998).

Example 2: Satellite systems

In the late 1980s, Motorola and Qualcomm planned the Iridium and Globalstar systems to

serve their best estimates of the future demand for space-based telephone services.

Their forecasts were wrong by an order of magnitude (in particular because land-based

cell phones became the dominant technology). The companies were unable to adjust

their systems to the actual situation as it developed and lost almost all their investments -
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- 5 and 3.5 billion dollars respectively. However, if the companies had designed

evolutionary configurations that had the capability to expand capacity, it would have been

possible both to increase the expected value of the system by around 25%, as well as to

cut the maximum losses by about 60% (de Weck et al, 2004). Such evolutionary

configurations can be realized by designing real options for the room of future capacity

expansion. For example, a smaller system with smaller capacity can be established first.

For a smaller system, there could be fewer satellites with a higher orbit. One possible

real option is to carry extra fuel on each satellite. When demand proves big, the satellites

can move to lower orbits with the existing orbital maneuvering system (OMS). With

additional satellites launched to lower orbits, a bigger system is accomplished to serve

the big demand. The extra fuel carried in the satellites are real options. They can be

exercised when the circumstances turn favorable. There is cost to acquire such real

options - the cost of designing larger tanks and launching extra fuel. Decision makers

have the right to exercise the options, but not the obligation - they can leave the extra

fuel on board. The key point is that we have to put some provisions in the initial system

that enable the system to respond to some uncertainties.

Example 3: Parking garage design

This example is based on a technical note by de Neufville, Sholtes, and Wang (2005),

and more details of this example follows in this section. A car parking garage for a

commercial center is planned in a region that is growing as population expands.

Economic analysis recognizes that actual demand is uncertain, given the long time

horizon. If the owners design a big parking garage, there is possibility that the demand is

smaller and the cost of a big garage cannot be recovered; however, if the owners design

a small parking garage, they may miss the opportunity if the demand grows rapidly. To

deal with this dilemma, the owners can design real options into the design by

strengthening the footings and columns of the original building so that they can add

additional levels of parking easily. This premium is the price to get the real option for

future expansion, a right but not an obligation to do so.
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4.3.2. Comparison of real options "on" and "in" projects

Real options "on" projects are mostly concerned with valuation of investment

opportunities, while real options "in" projects are mostly concerned with design of

flexibility. The classic cases of real options "on" projects are on valuation of oil fields,

mines, and pharmaceutical research projects, where the key question is to value such

projects as a whole and decide if it is worth to invest in the projects. The examples of

real options "in" projects are extra fuel on satellites, strengthened footings and columns of

a multi-level parking garage, or the "bridge in bridge".

Real options "on" projects are mostly concerned with an accurate value to assist sound

investment decisions, while real options "in" projects are mostly concerned with "go" or

"no go" decisions and an exact value is less important. For real options "on" projects,

analysts need to get the value of options, but for real options "in" projects, analysts do not

have to provide the exact value of the options and simply provide what real options

(flexibility) to design into the physical systems.

Real options "on" projects are relatively easy to define (Table 4-4 lists seven kinds of

most common real options "on" projects and this covers most of the cases), while real

options "in" projects are difficult to define in physical systems. For an engineering system,

there are a great number of design variables, and each design variable can lead to real

options "in" projects. It is hard to find out where the flexibility can be and where is the

most worthy place to design real options "in" project. Identification of options is an

important issue for real options "in" projects.

Real options "on" projects do not require knowledge on technological issues, and

interdependency/path-dependency is not frequently an issue. However, real options "in"

projects need careful consideration of technological issues. Complex technological

constraints often lead to complex interdependency/path-dependency among projects.

We will further discuss this issue in the dissertation.
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Real options "on" projects Real options "in" projects

Value opportunities Design flexibility

Valuation important Decision important (go or no go)

Relatively easy to define Difficult to define

Interdependency/Path-dependency less an Interdependency/Path-dependency an

issue important issue

Table 4-5 Comparison between real options "on" and "in" projects

Table 4-5 summarizes the comparison between real options "on" and "in" projects.

4.3.3. Difficulties facing the analysis of real options "in" projects

- Options Identification and Path-dependency

Besides knowledge of technology, there are more difficulties facing the analysis of real

options "in" projects:

1. Financial options are well-defined contracts that are traded and that need to be

valued individually. But real options "in" projects are fuzzy, complex, and

interdependent: To what extent is there a predetermined exercise price? What is

the time to expire? Moreover, it is not obvious that is is useful to value every

element that provides flexibility.

2. Real options "in" projects are likely to be path-dependent - they depend not only

on the final value of the underlying, but also on the path followed by the evolution

of the underlying. For example, the capacity of a thermal power system at some

future date may depend on the evolutionary path of electricity use. If the
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demands on the system have been high in preceding periods, the electric utility

may have been forced to expand to meet that need, as it might not have done if

the demand had been low. Real options "in" projects may thus differ

fundamentally from stock options, whose current value only depends on the price

at that time except in some of the exotic options. The evolutionary path of a stock

price does not matter. Its option value is path-independent. This is not true for

many real options.

Real options "in" projects are also likely to be highly interdependent, compound options.

Their interactions need to be studied carefully as they may have major consequences for

important decisions about the design of the engineering system. The associated

interdependency rapidly increases the complexity and size of the computational burden.

To develop a method for building real options "in" physical projects, the dissertation offers

suggestions for addressing the above difficulties:

1. It proposes to identify candidate real options "in" projects by screening and

simulation models. This is important because, in an interdependent system, it

may not be obvious where flexibility in the system may be most valuable. The

dissertation focuses on developing the most appropriate designs of flexibility and

building up suitable contingency plans for dealing with future uncertainties.

2. To simplify highly complicated path-dependent problem, the dissertation proposes

to divide the decision time horizon into a small number of periods, then solve the

path-dependent problem by a timing model using stochastic mixed-integer

programming. This process also deals with compound options difficulty

mentioned above as well.
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4.3.4. A Case Example on analysis of Real Options "in" Projects

- Parking Garage

The case example of the design of a parking garage is inspired and extrapolated from the

Bluewater development in England (http://www.bluewater.co.uk/). This case example

has been developed into a technical note by de Neufville, Scholtes, and the author of the

dissertation (2005). The remainder of this section is cited from the technical note.

The case deals with a multi-level car park for a commercial center in a region that is

growing as population expands. The basic data are that:

- The deterministic point forecast is that demand on opening day is for 750 spaces,

and rises exponentially at the rate of 750 spaces per decade;

- Average annual revenue for each space used is $10,000, and the average annual

operating cost for each space available (often more than the spaces used) is

$2,000;

- The lease of the land costs $3.6 Million annually;

- The construction will cost $16,000 per space for pre-cast construction, with a 10%

increase for every level above the ground level;

- The site is large enough to accommodate 200 cars per level; and

- The discount rate is taken to be 12%.

Additionally, economic analysis needs to recognize that actual demand is uncertain,

given the long time horizon. The case assumes that future demand could be 50% off the

projection, either way, and that the annual volatility for growth is 15%.

Real options (flexibility): The owners can design the footings and columns of the original

building so that they can add additional levels of parking easily, as was the case for the

Bluewater development. The case assumes that doing so adds 5% to the total initial
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construction cost. This premium is the price to get the real option for future expansion, a

right but not an obligation to do so.

We use an Excel spreadsheet simulation model to analyze the real options embedded in

the design of the parking garage. The real options analysis using spreadsheets involves

3 steps:

1. Set up the spreadsheet representing the most likely projections of future costs

and revenues of the project, and calculate its standard engineering economic

value. The design that maximizes the NPV is the base case against which

flexible solutions are compared, so as to derive the value of these alternative

designs.

2. Explore the implications of uncertainty by simulating possible scenarios. Each

scenario leads to a different NPV, and the collection of scenarios provides both an

"expected net present value" (ENPV) and the distribution of possible outcomes for

a project. These are usefully plotted as cumulative distribution functions that

document the Value at Risk (VaR), that is, the probabilities that worse cases

could occur. This documentation motivates the search for the flexibility, for the

real options, that will enable the managers of the infrastructure to avoid these

losses.

3. Analyze the effects of various ways to provide real options by changing the costs

and revenues to reflect these design alternatives. The difference between the

resulting best ENPV and that of the base case is the value of real options.

Moreover, the VaR curve for the flexible design intuitively explains how real

options allow system operators to avoid downside losses and take advantage of

upside opportunities. This information can be a key factor in decisions about the

design of major projects.

Following the three steps, we analyze the case example:
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Step 1: Table 4-6 illustrates the basic spreadsheet for calculating the NPV of the parking

garage, assuming that the demand for spaces grows as projected. Note that the project

cannot benefit from addition demand when it exceeds the capacity of the facility.

The designer can use the spreadsheet to calculate the NPV for any number of levels for

the car park (Figure 4-3) and thus determine the size that maximizes NPV. The optimal

design for this base case, that unrealistically assumes that demand is known in advance,

is to build 6 floors. Its apparent NPV is $6.24 million. This estimate is however wrong:

actual demand will vary from the deterministic forecast, so that the ENPV of this design

will also be different, as Step 2 documents.

Step 2: Recognizes the uncertainty in the forecast demand by simulating possible

scenarios, S. This example analysis ran 2000 scenarios according to random draws from

the stochastic process for the uncertain demand, which took about 1 minute on a

standard PC. Each scenario implies a different NPV. The set of scenarios thus

represents the probability distribution of the NPV that might occur. As Figure 4-3

indicates, the actual expected NPV for the deterministic design under probabilistic

scenarios is less than that estimated from a deterministic analysis. It is only $2.87 million.

In fact, the smaller 5-level design provides greater expected NPV ($ 2.94 million) since it

lessens the possibility of big losses from overbuilding capacity that might not be used.

The analysis considering uncertainty provides useful insights that should motivate

designers and decision-makers to use real options "in" projects. It shows that:

- Uncertainty can lead to asymmetric returns. In this case, although the case

assumes that the chance of higher and lower demands are equal, the upside

value of the project is limited (because the fixed capacity cannot take advantage

of higher demands) while the downside risks are substantial and can lead to great

losses.

- The actual expected value of a project P over all the scenarios in general is not

equal to the value of a project for an average scenario, as Figure 4-3 indicates.

This is the "Flaw of Averages" or Jensen's Inequality (Savage, 2000):
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EV P(S) # P [EV(S)]

- The cumulative distribution gives the Value at Risk (VaR). It shows the probability

that an NPV might be less or equal to a threshold. Thus Figure 4-4 shows that

there is about 10% chance that the losses from the 5-level parking garage would

exceed $4 million

Year

Category Type Units 0 1 2 3 ... 20

Demand Spaces 750 893 1,015 ... 1,696

Capacity Initial 1,200 1,200 1,200 1,200

Revenue 7.50 8.93 10.15 12.00

Initial

22.74
Cost -

Annual $ 6.00 6.00 6.00 6.00

Millions 3.60

Cash -
Actual 1.50 2.93 4.15 6.00

Flow 26.34

NPV 6.24

Table 4-6 Spreadsheet for Design with Deterministic Point Forecast of Demand

(Case of 6 level garage)

Step 3: Explore ways to limit the downside risk and take advantage of upside potential.

For example, designers can reduce losses by creating smaller designs that lower the

chance that demand will not fill the facility. In this case, the smaller design eliminates the

chance of really big losses, but at the cost of never making any substantial profit. Thus,

as is frequently the case, simply providing good insurance against losses is not sufficient

to make a project attractive.
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to deterministic estimate

Designers can take advantage of possible growth by building expansion options into the

design. As was done in the parking structures for the Bluewater development, this case

considered the possibility of making the columns big enough to support additional levels,

should demand justify expansion of the parking garage in later years. Table 4-7 shows

3 4 5 6 7

I
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the spreadsheet to explore this expansion option, with appropriate modifications in bold

type. It incorporates additional rows for "Extra capacity", and "Expansion cost". For this

case, the decision to construct an extra floor or 200 spaces was made if the capacity was

less than the demand for two consecutive years. Other criteria and rules could be

programmed in.

The graphical interpretation is that the designer shifts the VaR curve to the right by

reducing the extent of the lower tail into losses, and pushing the upper tail into gains.

Figure 4-5 shows the joint VaR of building small with the option to expand if demand is

favorable. The initial design of only 4 levels greatly decreases the maximum loss (from

24.68 to 12.62 million). The capability to add capacity increases both the maximum value

of the project (from 13.78 to 14.80 million) and its expected value. The estimated value

of the options embedded in the flexible design is the difference between the expected

value with the options ($5.12 million) and the base case design defined in the standard

deterministic way (2.87 million), that is $2.25 million in this case.

Year
Category Type Units

0 1 2 3 ... 20

Demand 1055 1141 1234 ... 1598

Initial Spaces 800 800 1,000 1,800
Capacity

Added 200 200

Revenue 8.00 8.00 10.00 15.98

Initial 14.48

Cost Later 4.26 4.68

Annual Millions 3.60 5.20 5.20 5.60 7.20

Cash
Actual -18.08 2.80 -1.46 -0.28 8.78

Flow

NPV 7.57

Table 4-7 Spreadsheet for Design with One Scenario of Demand and Option to Expand

(Case of 4 level garage)
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Perspective Step of Simulation Has Design ENPV

Analysis Used? Option? Levels $,

Millions

Deterministic 1 No No 6 2.87

Recognizing 2 Yes No 5 2.94
Uncertainty

Incorporating 4, with

Real options 3 Yes Yes strong 5.12

"in" projects columns

Table 4-8 Comparison of 3 Steps of Analysis

The flexibility provided by building small initially with the option to expand has several

advantages beyond increasing the expected value of the project. The spreadsheet

approach to the real options analysis generates the data that bring out these features, as

the financial approaches do not. Table 4-9 presents this information and provides a

-20 -15 -10 -5 0 5

EXPECTED NPV ($, MILLIONS)

--
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multi-faceted analysis and justification of the flexible approach to design. In this case the

analysis documents that the flexible design of the multi-level garage:

- Reduces the maximum possible loss, that is the Value at Risk;

- Increases the maximum possible and the expected gain;

- While maintaining the initial investment costs low.

Metric Design

$, Millions No Real With Real Comparison

Options Options

Initial 22.74 14.48 Real Options

Investment Better

Expected NPV 2.87 5.12 Real Options

Better

Minimum NPV -24.68 -12.62 Real Options

Better

Maximum NPV 13.78 14.80 Real Options

Better

Table 4-9 Performance Improvements achieved with Flexible Design

(Maxima and Minima of simulation taken at 0.05 and 99.5 percentile)

4.4. Possible valuation techniques for real

options

In this section, we will examine the applicability of the three most important options

valuation techniques to real options. The three techniques are the Black-Scholes formula,

simulation, and the binomial lattice method.
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4.4.1. Black-Scholes Formula

As derived in Section 3.3.1. , the Black-Scholes formula for the prices at time zero of a

European call option on a non-dividend-paying stock':

c = SON(d 1) - Xe~T N(d 2)

where

d = In(SO/ X )+(r +2 /2)T

ln(SO / X) + (r -_2 2)T - -

and N(x) is the cumulative probability distribution function for a variable that that is

normally distributed with a mean of zero and a standard deviation of 1.0.

The formula is the result of solving a Partial Differential Equation (PDE), seemingly

opaque and incomprehensible to those not familiar with financial mathematics or physics.

Moreover, lacking an understanding of the underlying assumptions for the Black-Scholes

formula, it is very easy to apply the formula blindly and lead to useless and misleading

precise value of "value of real options". The major assumptions underlying Black-

Scholes approach are:

1. There are prices for the asset;

2. Efficient market for the asset with no riskless arbitrage opportunities, and some

special conditions for the market:

o the short selling of securities has no limitation,

1 Similar formulas can be derived for European put options, and European call or put options with
dividend paying.
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o no transaction costs or taxes,

o all securities are perfectly divisible,

o security trading is continuous,

o the risk free rate of interest is constant and the same for all securities;

3. The price of the underlying asset follows Geometric Brownian Motion with p and a

constant.

For the big picture of this study on real options and for simplicity, we can regard that the

special conditions for the market in the above point 2 are approximately satisfied or, even

if it is not perfectly satisfied, they are secondary in comparison to the three major points

and have a much smaller impact on the valuation. Now let us examine the three most

important assumptions:

1. The price assumption for Black-Scholes approach is not discussed in finance

literature, since you must have prices then have a financial market, stocks,

derivatives, and theories. But for real options, it is sometimes not the case that

the analyst has a market price for the object studied. However, there may be

market prices for the final products and the dynamics for the prices may be well

understood, for example, oil field or copper mine. For some other cases, it may

not be easy to decide the dynamics of market price for the products of a system,

for example, computers. For still some other cases, it may not even be possible

to decide market price for the product of a system, for example, national defense,

space exploration.

2. The no arbitrage condition is often hard to satisfy for real options. If people can

construct a replicating portfolio PERFECTLY to match the payoff of the real

options under all possible situation, then an arbitrageur can take advantage of the

mismatch of the price between the portfolio and the real options, and earn profit

RISKLESSLY. If the price for the real options is too high, arbitrageurs could sell

the real options and buy the replicating portfolio to earn riskless profit; else if the

price for the real options is too low, arbitrageurs could sell the replicating portfolio
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and buy the real options to earn a riskless profit. Since such activities of

arbitrageurs will change the demand and supply of the real options on the market,

and finally drive the price of the real options to equal that of the replicating

portfolio. Such "no arbitrage" is usually hard to prove valid for a real option. The

payoff of a stock option can be perfectly matched by a portfolio of stocks and loan,

but how can we match a real option? Sometimes, we can assume a reasonable

approximation for the replicating portfolio, for example, purchase of an oil field

with the option to postpone development can be replicated by a portfolio of long

position in oil futures and borrow money for the position. Often, however, it is not

possible to find replicating portfolio for real options. For example, the real options

of strengthened footings and columns in the parking garage cases, how to

replicate the real options?

3. The Geometric Brownian motion assumption has the property that the price grows

forever. For some underlying assets, it is an acceptable assumption, for example,

the stock price because of continuous inflation and investment. For some

underlying assets, however, the Geometric Brownian motion is not a best

assumption. For example, the case study in this dissertation is about river basin

development with the purpose of power generation, the underlying for the case

study is electricity price. Empirical evidence shows that Geometric Brownian

motion is not the best model to describe the stochastic movement of electricity

price, and MRPV process is a better model (Bodily and Buono, 2002). Constant p

and a is needed for Black-Scholes approach even if Geometric Brownian motion

assumption is validated. Fortunately, if p or a vary with respect to time, we have

means to deal with such relaxation of assumption in finance theory.

With the above discussion of assumptions for Black-Scholes, we can conclude Black-

Scholes approach may be valid for real options "on" projects, but it hardly works for real

options "in" projects where replicating portfolios are almost impossible to define.



124

4.4.2. Simulation

Monte Carlo simulation does not require a myriad of assumptions as the Black-Scholes

formula. If only we can specify the stochastic processes for the underlying uncertainties,

and we can understand the function between the input uncertain variables and the output

payoff, we can just let computers do the "brute force" work. Plausibly, simulation can

obtain any valuation that Black-Scholes can get at any specified level of accuracy, and it

can tackle problems with complex and non-standard payoffs that Black-Scholes cannot

deal with. However, we have to understand several issues before using the Monte Carlo

simulation:

1. We have to have sound stochastic models for the underlying uncertain variables,

especially the parameters in the stochastic models. If we use the wrong model or

wrong parameters, the simulation model can give erroneous results. If the analyst

uses the common geometric Brownian motion blindly in the simulation without

checking its validity in the special context, the results are not only useless but also

misleading.

2. The computational cost could be expensive for simulation methods. To get the

required accuracy, the convergence could be slow and be very time consuming.

In this context, variance reduction procedures are very important in the application

of simulation. The important variance reduction procedures include antithetic

variable technique, control variate technique, importance sampling, stratified

sampling, moment matching, quasi-random sequences, representative sampling

through a tree. A brief introduction of applications of variance reduction

procedures in finance can be found in Hull (1999).

3. Simulation is not a panacea; there are cases where simulation is impotent. The

"Curse of Dimensionality" refers to the case where the number of samples per

variable increase exponentially with the number of variables to maintain a given

level of accuracy. If there are multiple sources of uncertainty, then it could be
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computationally prohibitive to calculate the option value at the required accuracy.

Also, simulation needs an analytic form of the exercise condition for the options.

If there are no closed-form analytical exercise conditions, for example American

options, the simulation technique could not work without special treatment. If the

backward looking optimality criterion for American options is used, it excludes the

possibility of straightforward use of implicitly forward looking simulation technique.

4. Simulation can only provide a value, but does not shed light on the intrinsic

relationship between variables and does not provide insights into what and how

are the key drivers for the valuation. Black-Scholes formula provides a closed-

form analytic solution, which allowed people for the first time to understand the

important role of volatility in options pricing, and allowed people to calculate

sensitivity measures such as Greek letters easily to gain insights into hedging.

Simulation provides much less such critical insights.

With the understanding of the issues and limitation of simulation technique, we can

unleash the power of the simulation in valuation of real options because of its versatility

and low requirement on assumptions.

4.4.3. Binomial Tree

The binomial tree is a dynamic programming algorithm. It is not necessary binomial, and

it could be trinomial or more. But whatever multinomial is, the essence is the same as

the binomial lattice method - they allow the recombination of states to decrease the

computational burden. With the number of nodes grows at only one for each additional

stage considered, we can improve the precision of binomial tree method to a very high

level by dividing the life span of an option into more stages.

Binomial trees work with both risk-neutral valuation and actual valuation. Risk-neutral

valuation uses risk-neutral probabilities and discounts at the risk-free interest rate; actual
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valuation uses actual probabilities and discounts at a risk-adjusted discount rate. When

risk-neutral valuation is possible, i.e. no arbitrage condition holds, and applied correctly,

risk-neutral valuation and actual valuation will give the same result. Black-Scholes

approach is risk-neutral valuation; if it is applied in the case where the "no arbitrage"

condition does not hold, Black-Scholes will simply render useless and misleading results.

For real options, often the no arbitrage condition does not hold, we should not naively use

the Black-Scholes formula, but we can still use binomial tree.

The tree structure actually can deal with more than Geometric Brownian Motion implied

by standard binomial tree. We can establish different trees for different stochastic

processes. The recombination structure of the binomial tree implies path-independency.

If the new process has path-dependent features, we can break the recombination

structure of the tree. Although with the recombination structure broken, the number of

nodes increases exponentially rather than arithmetically when the number of periods

increases, for a small number of stages, it is still maneuverable. The standard binomial

tree implies path-independency, while many real options present path-dependent

features. We need to break the recombination structure to deal with the path-

dependency.

Finally, we should point out that Black-Scholes, simulation, and binomial tree techniques

should give exactly the same answer for the same valuation problem. However,

depending on the circumstances, some techniques may be more effective or accurate

than the other. To summarize,

- Black-Scholes approach should be used with great care when applied to real

options, we have to justify its assumptions;

- Simulation is very useful but we need to understand its limitation and apply

variance reduction techniques;

- The binomial tree method is versatile and powerful, but keep in mind if path-

dependency presents (as it is common for real options "in" projects), we have to

break the recombination structure of the tree and limit the number of periods

considered.
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4.5. Some Implications of Real Options Method

With the real options methodology, we can value opportunities or design flexibility to

enhance our ability to manage uncertainties proactively in a fast-changing environment.

In this section, we present some implications of the real options method

4.5.1. Investment with Options Thinking

In an uncertain world, several kinds of strategic investments can be analyzed from a real

option perspective:

Irreversible investments

Irreversible investment requires more careful analysis because, once the investment

takes place, the investment cannot be recouped without a significant loss of value. With

the real options analysis, it is understood that irreversible investments, for most of the

cases, should be delayed until a significant amount of the uncertainty is resolved, or the

investments should be broken into stages.

Flexibility investments

Flexibility investment builds options into the initial design. Flexible design allows a

production line to be easily switched across products. The option to switch is part of the

capital investment.

Insurance investments

Insurance investments reduce exposure to uncertainty. Investment in excess capacity

ensures against demand surges, but with a cost or "insurance premium". Decision-
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makers using real options approach are able to value the flexibility and check to see

whether the value exceeds the cost.

Platform investments

Platform investments create valuable follow-on contingent investment opportunities.

Using Real Options approach, managers can create a portfolio of projects, maximizing

the value of the portfolio, balancing the portfolio with high-risk-high-return and low-risk-

low-return projects, and aligning the projects tightly with the corporate strategy.

Growth investments

Growth investments are made to obtain information that is otherwise unavailable. For

example, oil exploration is a growth investment because it generates geological

information.

4.5.2. Value of Real options Method in Different Situations

Real options valuation is important in situations with high uncertainty and people have

many options when new information is received. If the uncertainty is low and the

available practical options are few, the Real Options approach will not add much insight

beyond the traditional NPV method. This is because the flexibility value is near zero.

Please see Figure 4-6.

For the case of high uncertainty and abundant available options, the flexible strategy and

the real options approach are most valuable. And the Real Options approach will provide

a much better result than NPV method.
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Figure 4-6: Applicability of Real Options Method

4.6. Attack and defense of real options method

Some people doubt the theory of real options. They believe the essence and beauty of

financial options theory lies in arbitrage enforced pricing or contingent claims analysis.

However, it is hard to see that arbitrage enforced pricing is relevant in many cases of real

options. In many cases, using the real options method is hard to avoid the problem of

decision on the risk adjusted discount rate and decision maker's subjective valuation of

risk. This implies that real options analysis cannot obtain an objective valuation based on

market observable prices, and people can maneuver the real options analysis.

Everybody can reach a different result from his/her own real options analysis and there is

no possibility to prove who is correct and who is wrong, because the subjective valuation

of risk enters the analysis.

Despite all the doubts, real options theory is popular and developing fast... The great

German philosopher Hegel said, "Whatever is reasonable is true, and whatever is true is

reasonable." The author has an explanation on why real options theory is popular and

highly useful.
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4.6.1. Arbitrage-enforced pricing and real options

For arbitrage enforced pricing to work, we must understand how arbitrage opportunities

are removed. The crux most relevant to real options lies in two points:

- There is some traded asset that has stochastic components that obey the same

probability law and are perfectly correlated with the real options, and

- Arbitrageurs are able to short sell the real options'.

If these two conditions and some other conditions are true, an arbitrageur can construct a

portfolio to replicate the options perfectly and remove all risk. The arbitrageur then earns

the risk-free rate since there is no risk involved. If the arbitrageur earns more than the

risk-free rate, there is arbitrage opportunity, and the arbitrageurs' activities will eliminate

such opportunities quickly. If arbitrage-enforced pricing works, we can prove that there is

a market price of risk, which is the same for all derivatives that are dependent on the

same risk at the same time. With the market price of risk, we can link the risk-free rate

and risk-adjusted discount rate and helps us move from a world with risk preference to a

risk neutral world. The valuation obtained from the risk neutral world is valid in the worlds

with risk preference. With the validity of risk neutral valuation, we can obtain an objective

value of options independent of individual risk preference - a very difficult part of analysis.

For real options, it is hard to find a traded asset that has stochastic components perfectly

correlated with the real options. If it is possible for some real options "on" projects, it is

almost never the case for real options "in" projects. Moreover, many real options are

large-scale projects, so that short selling of the real options is not realistic. If arbitrage-

enforced pricing does not work for a real options project, the Black-Scholes formula or

risk-neutral valuation do not apply.

If short selling of the real options is not possible, then arbitrageurs cannot earn profit by short the
real options and long the replicating portfolio, though they can earn profit by long real options and
short the replicating portfolio. This will make the price of the real options greater than or equal to
the price for the replicating portfolio, rather than equal to the price of the replicating portfolio, and
thus the arbitrage-enforced price does not hold.
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4.6.2. What is the definition of real options?

People have different definitions of real options. To some extent, we do not even have a

consensus of what are real options. Following is a partial list of different definitions:

- "In a narrow sense, the real options approach is the extension of financial option

theory to options on real (nonfinancial) assets." (Amram and Kulatilaka, 1999)
- "Similar to options on financial securities, real options involve discretionary

decisions or rights, with no obligations, to acquire or exchange an asset for a

specified alternative price." (Trigeorgis, 1996)

- "Opportunities are options - right but not obligation to take some action in the

future." (Dixit and Pindyck, 1995)
- "A real option is the right, but not the obligation, to take an action (e.g. deferring,

expanding, contracting, or abandoning) at a predetermined cost called the

exercise price, for a predetermined period of time - the life of the option."

(Copeland and Antikarov, 2001)

- "In fact, it is possible to view almost any process that allows control as a process

with a series of operational options. These operational options are often termed

real options to emphasize that they involve real activities or real commodities, as

opposed to purely financial commodities, as in the case, for instance, of stock

options." (Luenberger, 1998)

Above definitions agree that options are rights not obligations. The key difference among

the definitions lies in the scope of real options, from assets in a narrow sense to actions

in a broad sense. If we insist that real options are application of financial options theory

to nonfinanical assets, real options theory cannot be applied beyond the boundary where

the "no arbitrage" assumption is valid. As designers of engineering systems, we think of

real options in a broad sense that is close to Luenberger's definition - focusing on the

trait of right not obligation and extending the real options concept in a more abstract way.

And thus physical flexible design in an engineering systems can be thought of as real

options, not only the engineering project as an investment opportunity as a whole.
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Following the narrow and broad senses of definition of real options, there are two ways to

understand the key contributions of real options concept:

- The nice theory of "no arbitrage" and risk-neutral valuation of assets that avoids

the trouble to find out the correct risk-adjusted discount rate; or

- Defining the basic unit of flexibility analysis for any action or asset, that is, options

(right not obligation)

We have proven the first contribution hardly stands for many real options "in" projects

cases, if not most. Now let us examine closely the second argument of the contribution.

4.6.3. Options define flexibility

What is flexibility? How should it be measured? How should it be valued? Without a

clearly defined basic unit of flexibility, it is hard to study it in an organized fashion.

Options concept neatly defines the basic unit of flexibility. The concept of real options is

a right, but not obligation, to do something for a certain cost within or at a specific period

of time. This concept models flexibility as an asymmetric right and obligation structure for

a cost within a time frame. This is the basic structure of human decision making - take

advantage of upside potential or opportunities and avoid downside risks. We can

construct complex flexibility using the basic unit of real options.

Does Decision Analysis provide a means to structure flexibility? See the decision tree in

Figure 4-7. The tree structure represents the flexibility to choose among Project 1,

Project 2, Project 3 and Do Nothing. To a certain extent, a decision tree defines

flexibility', but it has some inadequacy:

1 Trigeorgis (1996) points out that decision tree analysis is "practically useful in dealing with
uncertainty and with the modeling of interdependent variables and decisions, but they stumble on
the problem of the appropriate discount rate."
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- It aims at an expected value of the projects. This is over simplified with respect to

the study of flexibility and human initiatives in risk management. It does not

analyze each separate option and lose sight of the intricacy of flexibility.

- It could easily grow messy, and make analysts lose sight of the most important

issues and choices.

- Decision tree discretize possibilities, but options analysis works with a continuous

distribution and obtain more accurate and convincing results.

Project A

Project B

Project C

Do nothing

Figure 4-7 Decision Tree Analysis

Instead, a real option can serve as a basic unit to model flexibility. Real options can be

stacked together to describe complex flexibility. For example, the decision tree in Figure

4-7 can be defined as a portfolio of three mutually exclusive call options on Project 1, 2, 3.

Flexibility is a portfolio of real options.

Moreover, in comparison with decision tree analysis, real options analysis compares the

value with and without options to get the value of options, helps people keep focus on the

most important options, and values projects based on a continuous probability distribution

of events.

Is real options "in" projects analysis is merely a fancy name for decision analysis?

Doesn't it catch the essence of financial options theory that circumvents the problem of
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deciding appropriate discount rates? This argument looks plausible, but real options and

decision analysis are different. Real options are building blocks to describe flexibility, and

can be thought of as a formal way to define flexibility. Decision analysis is a way to

organize different decision alternatives and possible outcomes to assist decision.

Decision analysis is merely a tool and real options analysis is a way of thinking to

understand, organize, summarize, and quantify flexibility.

In practice, real options theory has been extended into many areas where arbitrage-

enforced pricing does not hold. The issue is not whether it is a correct real options

valuation; there are some merits in such extension. Options definition has nothing to do

with arbitrage-enforced pricing. It is broader. If they are financial options, we can use

arbitrage-enforced pricing; if they cannot be valued by arbitrage-enforced pricing, they

are still options, and they are still an interesting and useful way to define flexibility. This

is the reason why real options grow more and more popular, despite the fact that some

ingenious part of financial options theory is sometimes not valid in real options.
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Chapter 5 Valuation of Real Options

"in" Projects

Engineers increasingly recognize the great value of real options in addressing intrinsic
uncertainties facing large-scale engineering systems and, more importantly, are learning
to manage the uncertainties proactively. This dissertation explores how to build real
options analysis into the physical design of engineering systems, or real options "in"

projects, which requires us to adapt financial real options theory and develop new tools.

Besides knowledge of technology, there are more difficulties facing the analysis of real
options "in" projects: Financial options are well-defined contracts that are traded and that
need to be valued individually. But real options "in" projects are fuzzy, complex, and
interdependent: To what extent is there a predetermined exercise price? What is the
time to expire? Moreover, it is not obvious the usefulness to value each element that
provides flexibility. Real options "in" projects are likely to be path-dependent. For
example, the capacity of a thermal power system at some future date may depend on the
evolutionary path of electricity use. If the demands on the system have been high in
preceding periods, the electric utility may have been forced to expand to meet that need,
as it might not have done if the demand had been low. Real options for public services
may thus differ fundamentally from stock options, whose current value only depends on
the prices at that time. The evolutionary path of a stock price does not matter. Its option
value is path-independent. This is not true for many real options.

Real options "in" projects are likely to be highly interdependent, compound options. Their
interactions need to be studied carefully as they may have major consequences for
important decisions about the design of the engineering system. The associated
interdependency rapidly increases the complexity and size of the computational burden.
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To develop a method for building real options "in" physical projects, the dissertation offers

suggestions for addressing the above difficulties:

It proposes to identify candidate real options "in" projects by screening and simulation

models. This is important because, in an interdependent system, it may not be obvious

where flexibility in the system may be most valuable. The dissertation focuses on

developing the most appropriate designs of flexibility and building up suitable contingency

plans for dealing with future uncertainties.

To simplify the highly complicated path-dependent problem, it divides the decision time

horizon into a small number of periods, then solves the path-dependent problem by a

timing model using stochastic mixed-integer programming. This process also deals with

the compound options difficulty.

5.1. Analysis framework

The analysis of real options "in" projects is inspired by the standard procedures for water

resources planning described by Major and Lenton (1979). The standard procedures

embody a series of models to generate satisfactory solution for the plan. Because of the

size of the problem, both in terms of number of parameters and number of uncertain

variables, a single model giving the optimal solution is too complex to establish. So

people divide the modeling into a series of models and get a satisfactory solution rather

than search the best plan among all possible plans. As Herbert Simon pointed out:

because of the astronomical amount of extrinsic information and human's limited intrinsic

information process capacity, in real decision making, people do not search for an

optimal decision, instead, people stop looking for better decisions once reaching a

satisfactory decision. The process - that divides the decision process into several

consecutive models and search for a satisfactory solution rather than an optimal solution

- is in accordance with the nature of human decision-making in a very complex and
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uncertain environment. Specifically, the standard water resources planning procedures

divide the process into: a deterministic screening model that identifies the possible

elements of the system that seem most desirable; a simulation model that explores the

performance of candidate designs under stochastic loads; and a timing model that

defines an optimal sequence of projects.

The process of analysis for real options "in" projects modifies these traditional elements.

At a higher level, it divides the analysis into 2 phases as indicated in Figure 5-1: options

identification, and options analysis.

Options Identification

Screening Simulation
Model Model

Execute and
redesign when new
information arrives

Figure 5-1: Process for Analysis of Real Options "in" Projects

5.2. Options identification

For real options "in" projects, the first task is to define the options. This is in contrast with

financial options, whose terms (exercise price, expiration day, and type such European,

American or Asian) are clearly defined. For financial options, the main task is to value

the option and develop a plan for its exercise. For real options "in" projects, it is only

possible to analyze the options to show their value and develop a contingency plan for

Options Analysis

Timing Model
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the management of the projects, after the options have been identified. This first task for

real options "in" projects is not trivial.

5.2.1. Screening model

The options "in" projects for an engineering system are complex. It is not obvious how to

decide their exercise price, expiration day, current price, or even to identify the options

themselves. An engineering system involves a great many choices about the date to

build, capacity, and location, etc. The question is: which options are most important and

justify the resources needed for further study?

The screening model is established to screen out the most important variables and

interesting real options (flexibility). The screening model is a simplified, conceptual, low-

fidelity model for the system. Without losing the most important issues, it can be easily

run many times to explore an issue, while the full, complete, high-fidelity model is hard to

establish and costly to run many times. From another perspective on the screening

model, we can think of it as the first step of a process to reduce the design space of the

system. The design space is extremely big and the possibility for future realization of

exogenous uncertain factors is also extremely big. Therefore, we cut the design space

smaller and smaller in steps, rather than using a holistic model to accomplish all the

results in one run. The screening model is the first cut that focuses on the important

issues and is low fidelity in nature, like looking at the system at the 30,000 feet height for

an overview. The screening model may be simplified in a number of ways. If an aspect

simplified is important in nature, we should design follow-on models to the screening

model to study that aspect in depth. Note when feedback exists in the system, the

screening model has to carefully take care of the feedback; otherwise, it may produce

misleading or erroneous conclusions.

For example, in our case example of water resources planning (details see Chapter 6),
the screening model is a non-linear programming model that optimizes the system
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assuming steady state, i.e. all projects are built all at once. We also simplify the problem

by regarding it as a deterministic problem, i.e., taking out the stochasticity of the water

flow and electricity price. The screening model does not consider all the complexities of

the system; it considers a large numbers of possibilities, screens out most of them, and

focuses attention on the promising designs. With such simplifications, we are able to

focus our attention on identifying the most interesting flexibility, and leave the scrutiny of

the aspects in the following models and studies.

Specifically, a screening model can be a linear (or nonlinear) programming model:

Max: ( Y, -C Y) Equation 5-1

s.t. TY t Equation 5-2

EY e Equation 5-3

Y are the design parameters. The objective function ( Equation 5-1 ) calculates the net

benefit, or the difference between the benefits and costs, where #3 and c; are the benefit

and cost coefficients. Usually we measure benefits in money terms, though sometimes

we do so in other measures, e.g. species saved, people employed, etc. Constraints

(Equation 5-2) and ( Equation 5-3) represent technical and economic limits on the

engineering systems, respectively.

Any parameter in the formulation could be uncertain. There are economic uncertainties

in E, e, 8j, or cjand technical uncertainties in T or t. After identifying the key economic

uncertainties, we can use them as underlying to build up real options analysis as

illustrated in the case example in Chapter 6.

To identify the elements of the system that seem most promising for options, we execute

a form of sensitivity analysis as follows: run the screening model using a range of values

for key underlying uncertain parameters, such as the price of electricity; compare the

resulting sets of projects that constitute optimal designs for each set of parameters used;
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and the design elements that vary across the sets are these that may or may not be good

real options; conversely, the design elements that are included for all sets, that are

insensitive to uncertainty, or design elements where settings are always constant do not

present interesting real options.

The resulted options have two sources of flexibility value:

- Value of timing. Some part of the project may be deferred. These represent timing

options. Its implementation depends on the realized uncertain variables. Since it

can catch upside of the uncertainties by implementation, and avoid downside of

the uncertainties by holding implementation. Such timing options have significant

value by themselves.

- Value of flexible design. Some part of the project may present distinct designs

given various realization of uncertainties, compared to the timing options whose

design are the same whenever they are built.

An option can contain one or both sources of flexibility value.

5.2.2. Simulation model

The simulation model tests several candidate designs from runs of the screening model.

It is a high fidelity model. Its main purpose is to examine, under technical and economic

uncertainties, the robustness and reliability of the designs, as well as their expected

benefits. Such extensive testing is hard to do using the screening model. After using the

simulation model, we find a most satisfactory configuration with design parameters

(y, 2 ...,y) in preparation for the options analysis.

In standard water resources planning, the simulation model involves many years of

simulated stochastic variation of the water flows, generated on the basis of historical

records. This process leads to a refinement of the designs identified by the screening

model. For the analysis of real options "in" water resources systems, we propose to
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modify this standard simulation process. Specifically, we will simulate the combined
effect of stochastic variation of hydrologic and economic uncertain parameters.

If the time series of the water flow consisted of the seasonal means repeating themselves
year after year (no shortages with regard to the design obtained by the screening model)
and the price of electricity were not changing, the simulation model should provide the
same results as the screening model. But the natural variability of water flow and
electricity price will make the result (net benefit) of each run different, and the average
net benefit is not going to be the same as the result from the screening model. The
simulated results should be lower because the designs are not going to benefit from
excess water when water is more than the reservoir can store. Thus occasional high
levels of water do not provide compensation for lost revenues by occasional low levels of
water. Due to these uncertainties, the economies of scale seemingly apparent under
deterministic schemes are reduced.

5.3. Options analysis

After identifying the most promising real options "in" projects, designers need a model
that enables them to value the set of options and develop a contingency strategy for their
exercise. In contrast to standard financial options analysis, more characteristics are
required for the analysis of real options "in" projects, such as technical details and
interdependency/path-dependency among options.

This dissertation proposes a model based on the scenarios established by a binomial
lattice. In essence, it proposes a new way to look at the binomial tree, recasting it in the
form of a stochastic mixed-integer programming model. The idea is to:



142

Maximize: binomial tree

Subject to: constraints consisting of 0-1 integer variables representing the

exercise of the options (= 0 if not exercised, =1 if exercised)

5.3.1. Using integer programming to solve a binomial tree

By simple examples on financial options, we would illustrate the basic idea of using

stochastic mixed-integer programming model to value options.

Important variables for options valuation are as follows

S: Stock Price

K: Exercise Price

T: Time to Expiration

r Risk free interest rate

o: Volatility

AT: Time interval between nodes

Important Formulas for Binomial Tree Model include:

u =e

d =e

rATd

u - d

At each node of a binomial tree, the calculation is as Table 5-1. Note this is for the

valuation of American options, and p is the risk-neutral probability, the same as p, in

Section 3.3.3.
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Table 5-1: Decision on each node of a binomial lattice

Stock Price S

Exercise Value S - K (for call); K - S (for put)

Hold Value Option_ Value if _price_ up -p, +Option Valueif price down -Pd
r-ATe

Options Value Max (Exercise Value, Hold Value) (0 for the last period since no

options value at expiration)

Now we will compare an ordinary binomial tree and an integer programming binomial tree.
The interesting part is to compare the option value from the binomial tree and the optimal
value from the integer programming, as well as the "exercise or not" result for each node
of the binomial tree and the value of 0-1 integer variables in the optimal solution of the
integer program. The American option is of special interest because we want to examine
if the integer program can correctly identify the case of early exercise before the last
period.

For example, the parameters for an American call option are S = $20, K = $21, T = 3
years, r = 5% per year, o = 30%, AT = 1 year. The binomial tree is as Table 5-2, and the
value of the option is $5.19.

Now let us use Integer programming to value this binomial tree. The node im on a
binomial tree is indexed in the following way: i represents the ith stage, m represents the
mth node for a specific stage. Because of the nice feature of recombination of a binomial
tree when there is path independence, the number of nodes at ith time point is exactly i,
so m takes the number from 1 to i. Please refer to Figure 5-2.

At node im, let Sim denote the stock price, Eim denote the exercise value, Him denote

the hold value, VT,, denote the option value, Rim be a 0-1 integer variable denoting
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whether the option is exercised at node im, where 0 is not exercise and 1 is exercise.

The number of stages is n.

Table 5-2: Binomial tree for the American call option

Period 1 Period 2 Period 3 Period 4
Stock Price 20.00 27.00 36.44 49.19
Exercise Value -1.00 6.00 15.44 28.19
Hold Value 5.19 9.34 16.47 0.00
Option Value 5.19 9.34 16.47 28.19
Exercise or not? No No No Yes

Stock Price 14.82 20.00 27.00
Exercise Value -6.18 -1.00 6.00
Hold Value 1.41 2.91 0.00
Option Value 1.41 2.91 6.00
Exercise or not? No No Yes

Stock Price 10.98 14.82
Exercise Value -10.02 -6.18
Hold Value 0.00 0.00
Option Value 0.00 0.00
Exercise or not? No No

Stock Price 8.13
Exercise Value -12.87
Hold Value 0.00
Option Value 0.00
Exercise or not? No

NN e 31

Node 21

Node 11 Node 32
Node 

22

Figure 5-2: Node representation for a binomial tree
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The objective function is to get the maximum value of V11 at the beginning node. The
option value Vim is specified by

V.,. = E,,, .Rm + Him .(1 - R,,,,)

Since the programming maximizes the value, its final result will satisfy that V,,, is the

maximum of Eim and Him

The exercise value Eim for a call options is

Eim =Si, -K

The hold value for the last time point is 0, or Hnm= 0. For i < n,

Him =

the hold value

' * P+V -(1- p)
r-AT

We are using continuous compounding here.

The stock price Sim at node im is defined by the following formula

Si, = S,1e (i+1-2m)a U

where S,, is the current stock price.

Complete formulation of the integer programming problem is as follows:
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VI

VE,, = Ei,- Ri, + Hi, .(I - Rm)

Ei,, = Sim -K

Him =

Hnm, = 0

Sim = S1 e (i+1-2m)a-I

V i; m= 1,..., i

Solve the integer program using GAMS or any other Mixed-Integer Programming solver

(see GAMS source code in Appendix 5A), the maximum value of the objective function is

5.19. The values for 0-1 integer variables are as Table 5-3: 1 means exercise. The

result of option value and contingent exercise decisions correspond exactly to the

ordinary binomial tree as Table 5-2.

Table 5-3: Result of the stochastic programming for the American call option

Rij i=1 i=2 i=3 i=4

j=1 0 0 0 1

j=2 0 0 1

j=3 0 0

j=4 0

Such formulation seems unnecessarily complicated for a simple financial option. But for

complex and highly interdependent real options "in" projects, we can specify the

relationship of options using the 0-1 integer variable constraints. Without integer

programming, a binomial tree for a path-dependent real option "in" projects may be too

messy to build. With technical, budget, and real options constraints, a stochastic mixed-

integer programming model accounts for highly complex and interdependent issues, and

delivers both a valuation of the options and a contingency strategy. Details see the

coming sections.

Maximize

Subject to

'"~m + p +, ,, -(1 - p)
r-AT

Vm

Vi; m = i
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5.3.2. Stochastic mixed-integer programming and real options

constraints

This section develops a general formulation for the analysis of real options "in" projects,
especially those with path-dependency.

The stochastic mixed-integer programming assumes that the economic uncertain
parameters in E, e, 8;, or cjin objective function Equation 5-1 and constraints Equation
5-2 and Equation 5-3 evolve as discrete time stochastic processes with a finite probability
space. A scenario tree is used to represent the evolution of an uncertain parameter
(Ahmed, King, and Parija, 2003). Figure 5-3 illustrates the notation. The nodes k, in all

time stages i constitute the states of the world. 5, denotes the set of nodes

corresponding to time stage i. The path from the root node 0 at the first stage to a node k
is denoted by P(k). Any node k in the last stage n is a terminal node. The path D(k) to a

terminal node represents a scenario, a realization over all periods from 1 to the last stage
n. The number of terminal nodes Q corresponds to all Q scenarios. Note there is no
recombination structure in this tree representation (each node except the root has a
unique parent node). For example, we will break a binomial tree structure as in Figure
5-4, where S is the value of the underlying asset, u is the up factor, and d is the down
factor.

A joint realization of the problem parameters corresponding to scenario q is denoted by

q

Note that here we use a single dimension to represent a node, rather than two dimensions in
Figure 5-2 where nodes are represented by 11, 21, 22, 31, 32, 33.
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Terminal nodes

q =J

~I~iIZ 
I%- q-

A path ;D(k),....---- k q =2

0

Sscenario

Q q=Q

i=1 i=n-1 i=n

Figure 5-3: Scenario tree

SU ,,Suu S Suu
Su Su
Sud

S rather than S Sud

Sdd2Sdu Sd
Sdd Sdd

Figure 5-4: Breaking path-independence of a binomial tree

where &o is the vector consisting of all the uncertain parameters for time stage i in

scenario q. pq denotes the probability for a scenario q. The real options decision

variables corresponding to scenario q is denoted by
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R q

R q

where Rq is the decision on the option at time stage i in scenario q. 0 denotes no

exercise and 1 denotes exercise.

At any intermediate stage i, the decision maker cannot distinguish between any scenario
passing through the same node and proceeding on to different terminal node, because
the state can only be distinguished by information available up to that time stage.

Consequently, the feasible solution R,'q must satisfy:

Rf"q = Rfq2
1 1

V(q 1,q 2 )through node k, Vk e ig , Vi =1,..., n

where q, and q2 represent two different scenarios that share the same
k. These constraints are known as non-anticipativity constraints.

To illustrate the use of the above approach, we apply it to some
options. The formulation is:

n

Max Ip- (q E Rf -e-r -R)
q i=I

path through node

standard financial

Equation 5-4

s.t. E" = Sq - K (American call) Vi, q

Vq

V(q, q2) through node k, Vk e 8,, Vi = I,., n

Vi, q

Equation 5-5

Equation 5-6

Equation 5-7

Equation 5-8

Ri q = R 2

Ri q {= 0,1}
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where S is the value of the underlying asset at time stage i in scenario q, K is the

exercise price, r is the risk-free interest rate, and AT is the time interval between two

consecutive stages.

The objective function ( Equation 5-4 ) is the expected value of the option across all

scenarios. Constraint ( Equation 5-5 ) can be any equation that specifies the exercise

condition. Constraint ( Equation 5-6 ) makes sure that any option can only be exercised

at most once in any scenario. Constraint (Equation 5-7) is the non-anticipativity

constraints. We call constraints (Equation 5-6) and (Equation 5-7) real options

constraints. Equation 5-8 enforces a binary decision on exercise, e.g. R1" = 0.5 (partial

exercise) in not allowed.

To illustrate and validate the above formulation, consider an example of an American put

option without dividend payment. For this case, unlike similar call options, it may be

optimal to exercise before the last period. The variables for this example are S = $20, K

= $18, r = 5% per year, o = 30%, AT = 1 year, and time to maturity T = 3 years. Up factor

u = 1.35, down factor d = 0.74. A standard binomial lattice gives the value of the put

option as $2.20 as in Table 5-5.

Now considering the reformulated problem according to equations (Equation 5-4) to

( Equation 5-8 ). Solve it using GAMS@ (GAMS source code can be found in Appendix

5B. Note the difference between formulations in Appendix 5A and 5B. They are two

different formulations to value options using stochastic mixed-integer programming), the

maximum value of the objective function is also 2.20. The optimal solution of 0-1

variables is shown in Table 5-4. Since 1 means exercise, the result exactly corresponds

to that of the ordinary binomial tree (Table 5-5). Note there is an exercise in scenarios 7

and 8 that is not at the last time point. This means the formulation can successfully find

out early exercise points and define contingency plans for decision makers.
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Table 5-4: Stochastic programming result for the example American put

Stock Price Realization Decision
Scenario i=1 i=2 i=3 i=4 Probability i=1 i=2 i=3 i=4

q = 1 S Su Suu Suuu 0.132 0 0 0 020.00 27.00 36.44 49.19

= 2 S Su Suu Suud 0127 0 0 0 0q 20.00 27.00 36.44 27.00 0

= 3 S Su Sud Sudu 0.127 0 0 0 0
q 20.00 27.00 20.00 27.00

= 4 S Su Sud Sudd 0.123 0 0 0 1
4 20.00 27.00 20.00 14.82

q = 5 S Sd Sdu Sduu 0.127 0 0 0 020.00 14.82 20.00 27.00

q = 6 S Sd Sdu Sdud 0.123 0 0 0 1
20.00 14.82 20.00 14.82

q = 7 S Sd Sdd Sddu 0.123 0 0 1 020.00 14.82 10.98 14.82

q= 8 S Ds Sdd Sddd 0.118 0 0 1 0
20.00 14.82 10.98 8.13

Table 5-5: Binomial tree for the example American put

Period 1 Period 2 Period 3 Period 4
Stock Price 20.00 27.00 36.44 49.19
Exercise Value -2.00 -9.00 -18.44 -31.19
Hold Value 2.20 0.69 0.00 0.00
Option Value 1 2.20 0.69 0.00 0.00
Exercise or not? No No No No

Stock Price 14.82 20.00 27.00
Exercise Value 3.18 -2.00 -9.00
Hold Value 4.00 1.48 0.00
Option Value 4.00 1.48 0.00
Exercise or not? No No No

Stock Price 10.98 14.82
Exercise Value 7.02 3.18
Hold Value 6.15 0.00
Option Value 7.02 3.18
Exercise or not? Yes Yes

Stock Price 8.13
Exercise Value 9.87
Hold Value 0.00
Option Value 9.87
Exercise or not? Yes



152

5.3.3. Formulation for the real options timing model

The stochastic mixed-integer programming reformulation is much more complicated than

a simple binomial lattice. But such a reformulations empowers analysis of complex path-

dependent real options "in" projects for engineering systems.

Technical constraints in the screening model are modified in the real options timing

model. Since the screening and simulation models have identified the configuration of

design parameters, these are no longer treated as decision variables. On the other hand,

the timing model relaxes the assumption of the screening model that the projects are built

together all at once. It decides the possible sequence of the construction of each project

in the most satisfactory designs for the actual evolution of the uncertain future.

Y is the most satisfactory configuration of design parameters obtained by the "options

identification" stage, it is a vector (Y,Y2,..., Y) corresponding to j design parameters.

The real options decision variable corresponding to scenario q is expanded to a matrix:

R q, ... R q

R4 = : : , R E 10,11

R q ... R q

R denotes the decision on whether to build the feature according to ]th design

parameter for ith time stage in scenario q. The objective function Equation 5-4

corresponding to scenario q is denoted by f q (.) . pq and f" () are derived from the

specific scenario tree based on the appropriate stochastic process for the subject under

study. The real options constraints Equation 5-6 to Equation 5-7 are concisely denoted

by 9p. Most importantly, the objective function is modified to get the expected value along

all scenarios.
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The real options timing model formulation is as follows:

Max Ypq-fq(Rq,Y)

Y, R q

L ils.t. T : 2t

[,R j

FR
and E : e

[YRYJ

Rq eq P

Y {0,1}

In short, the formulation has an objective function averaged over all the scenarios,

subject to three kinds of constraints: technical, economic, and real options. By specifying

the interdependencies by constraints, we can take into account highly complex

relationship among projects.

Some integer programming model running considerations

A key consideration in solving a stochastic mixed-integer programming is whether a

result is a global or local optimum. Because it is a integer programming problem, it is not

often a simple task to prove that the result is a global optimum.

One way to prove a global optimum, when we are extremely lucky, is to use the relaxed

mixed integer program to solve the problem, if the decision variables Xij in the optimal

design take value exactly either 0 or 1, we can confidently say that the optimal value of

the objective function is the global optimum (for more discussion, see Bertsimas and

Tsitsiklis, 1997). Please note that all the constraints in the formulations are linear. So

the local optimum found is also the global optimum. Because the decision variable Xij in

the relaxed form takes 0 or 1, it satisfies the requirements of mixed integer programming.

Vq, i

Vq, i, j
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In practice, however, it is rarely straightforward to prove that the result is a global

optimum. This is one of the reasons why people would not use this way to value financial

options (but this formulation provides significant advantages for real options "in" projects

where special path-dependency presents). Of course, system designers should run

many times of optimization with different initial conditions when they cannot be sure of

the global optimum. By doing do, designers can endeavor to make the result as close as

possible to the global solution, given resources limitations.

It may be hard to find a general solution for the real options timing model because of the

special structure of the technical and economic constraints. Nevertheless, integer

programming improves solutions to highly complex and interdependent real options that

cannot be solved by ordinary binomial trees. Ordinary binomial trees depend on simple

human observations. Here simple human observations mean, when there is no

dependency between nodes, people can do simple math to optimize on the node. When

there is no dependency among nodes, it is possible to optimize on each node and roll

back to get the option value. When dependency exists, this simple approach no longer

works. A stochastic mixed-integer programming at least provides a local optimum better

than the results from conventional approaches or human intuition.

When the optimization returns an infeasible solution, we should try with different initial

values of XU, especially try some Xij at the last period of time to be 1's. Besides, when it

is hard to find a feasible solution, we can use relaxed form of the problem to see what

happens.
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5.4. A case example on satellite communications

system

This is a case example to show how the models developed can deal with the

valuation/design of flexibility in large-scale engineering systems, especially in path-

dependent/interdependent cases. The case is drawn from the paper of "Staged

Deployment of Communications Satellite Constellations in Low Earth Orbit" by de Weck,

de Neufville, and Chaize (2004).

The case discusses Low Earth Orbit (LEO) constellations of communications satellites.

The size of the market is close to what Iridium system originally expected, about 3 million

subscribers. The most important architectural design decisions for the system are

captured by a design vector Y=[h,8,P,,DA,ISL] 1, where h is the orbital altitude in

Kilometers, c is the minimum elevation angle in Degrees, Pt is the satellite transmit

power in Watts, DA is the antenna diameter in meters, and ISL is the use of inter satellite

links, a binary variable, 0 or 1.

In a design space that relates life cycle cost and capacity of architectures, we can find the

Pareto frontier that represents non-dominated architectures. With the target capacity, we

can find the corresponding architecture on the Pareto frontier. This is the traditional way

to decide the best architecture. The best traditional architecture for this case
- trad
V =[800,5,600,2.5,1], or 800 Kilometers orbital altitude, 5 degrees minimum elevation

angle, 600 Watts satellite transmit power, 2.5 meters antenna diameter, and with the use

of inter satellite links. It has a discounted life circle cost of LCC = $2.01 Billion. This

architecture can serve up to 2.82 million subscribers. Note this constellation is quite

similar to Iridium, V Iridium =[780,8.2,400,1.5,1] with a market capacity of 3 million subscribers.

1 All the notations here follow the original paper by de Weck, de Neufville, and Chaize (2004).
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5.4.1. Market demand uncertainty

The constellation is assumed to have the same life time designed as Iridium, 10 years.

The initial demand Dntia, is set to be 0.5 million subscribers. A geometric Brownian

motion is assumed for the demand growth. The drift rate p is taken to be 20% per year,

and the volatility o is taken to be 70%. Because of the path-dependent nature of the

problem, the binomial tree recombination structure is broken as in Figure 5-4. We

consider the same number of stages as in the original paper by de Weck, de Neufville,

and Chaize (2004), or 5 time stages, so the time step A T is set to be 2.5 years.

Up and down factors are respectively:

u e = 3.02

d = e-' T= 0.33

The probabilities for moving up and down are respectively:

e* -- d
P- u d = 0.489

Pd =i-pu = 0.511

We use D," (in million subscribers) to denote the demand for stage i under scenario q.

Pq is the probability for scenario q to happen. The different scenarios are as Table 5-6.
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Table 5-6 Evolution of demand for satellite system

Demand (in million subscribers)
Year 0 Year 2.5 Year 5 Year 7.5 Year 10 Probability
(i= 1) (i= 2) (i= 3) (i= 4) (i= 5) (pq)

q = 1 0.50 1.51 4.57 13.84 41.85 0.057
q = 2 0.50 1.51 4.57 13.84 4.57 0.060
q = 3 0.50 1.51 4.57 1.51 4.57 0.060
g = 4 0.50 1.51 4.57 1.51 0.50 0.062
q = 5 0.50 1.51 0.50 1.51 4.57 0.060
q = 6 0.50 1.51 0.50 1.51 0.50 0.062
q= 7 0.50 1.51 0.50 0.17 0.50 0.062
q= 8 0.50 1.51 0.50 0.17 0.05 0.065
q = 9 0.50 0.17 0.50 1.51 4.57 0.060

q = 10 0.50 0.17 0.50 1.51 0.50 0.062
g = 11 0.50 0.17 0.50 0.17 0.50 0.062
q= 12 0.50 0.17 0.50 0.17 0.05 0.065
q = 13 0.50 0.17 0.05 0.17 0.50 0.062
q = 14 0.50 0.17 0.05 0.17 0.05 0.065
q = 15 0.50 0.17 0.05 0.02 0.05 0.065
q = 16 0.50 0.17 0.05 0.02 0.01 0.068

5.4.2. Formulation of the problem

Ri is a 0-1 variable indicating whether or not architecture s is built for time period i under

scenario q. In this satellite technology, changes of capacity imply change of architectures.

In this case, we consider i = 5, q = 16, and s = 5. With 5 stages, the problem is not trial

so that it cannot be calculated back-of-the-envelope.

The problem can be formulated as

Min 1PiZ(YCR,{1+r) -(1+a-a.( R, s
q i s s

Equation 5-9St. J(Cap, -Rq )> D q
s j=1
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R is Vi; Vs = 2,3,4,5 Equation 5-10

R q <1 Vs, q Equation 5-11

= R q2 V(q1 , q 2 ) through node k, Vk e 35, Vi 1 Equation 5-12

Re {O,1} Vq,i, j

The objective function describes the expected cost for the flexible strategy to meet the

demand under various scenarios. We want to minimize the expected cost given that we

can meet the demand. Cs is the cost coefficient for architecture s. The term

(1+a-a-( R )b) describes economies of scale. If two or more architectures are
S

deployed together, there will be cost saving over the sum of the costs for the two or more

separate architectures.

The constraint Equation 5-9 makes sure that the capacity always meets the demand.

Caps represents the incremental capacity an evolutionary architecture design s adds over

the previous design. The demand in some scenario is greater than the maximum total

capacity considered (7.8 million subscribers, see Section 5.4.3. ), e.g. when q = 1 and i =

5 in Table 5-6. To make the problem feasible to solve, we will have to make the demand

D to be the maximum of the capacity if it is bigger than the maximum possible capacity

and thus make the problem infeasible.

The constraint Equation 5-10 makes sure that a bigger architectural design can only build

on smaller architectural designs. This constraint forbids skipping of stages, such as Al to

A3 directly. It allows two more consecutive architectures to be implemented together at

the same time, for example Al and A2 together.

The constraints Equation 5-11 and Equation 5-12 are the real options constraints we

have developed.
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5.4.3. Parameters

We consider three architecture designs as Table 5-7:

Table 5-7 Candidate architecture design for satellite system

Design Architecture Incremental Capacity Incremental
ID (Subscribers) Cost (B $)
Al 28 satellites, 4 planes, 1600 0.4 Million 0.25

km altitude, 5 degrees
A2 32 satellites, 4 planes, 1200 0.1 Million 0.15 over

km altitude, 5 degrees Design Al
A3 84 satellites, 7 planes, 1200 0.8 Million 0.7 over

km altitude, 20 degrees Design A2
A4 144 satellites, 9 planes, 800 1.4 Million 0.8 over

km altitude, 20 degrees Design A3
A5 364 satellites, 14 planes, 800 5.1 Million 4.9 over

km altitude, 35 degrees Design A4

As an approximation, the economies of scale factor a and b are taken to be 0.03 and 1.5,

respectively.

5.4.4. The results

Using GAMS (the code see Appendix 5C), the resulting optimum cost is $1.90 Billion,

$0.11 Billion less than the best traditional architecture. It is not the most important

improvement of the staged deployment that it has a smaller expected cost than that of

the best traditional architecture. The best improvement is it can take advantage of upside

potential, while cut downside risks. The plan can serve up 7.8 million subscribers readily,

compared to the best traditional architecture that can only serve up to 2.82 million

subscribers. Meanwhile, we would first invest $0.25 Billion to test the market and, if the

market is not rosy, we could only lose $0.25 Billion rather than $2.01 Billion as of

investment for the best traditional architecture. The downside can be significantly cut. In
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comparison to what happened to Iridium and Globalstar, this way of analysis deserves

serious attention.

With the GAMS results, we develop a contingency plan for the development of the

satellite system as Figure 5-5. Note that architectures Al and A3 are not in the plan.

This is because of the considerations of economies of scale. Building a bigger system,

the benefit of economies of scale sometimes overweighs the benefit of postponement of

construction (because of the time value of money, investment later has a smaller present

value).

Computational efficiency

A natural question is: how efficient is the mixed-integer programming method? One

possible way to illustrate its computational efficiency is to compare it with the "brute

force" method, the most readily available alternative algorithm to the mixed-integer

programming method. The "brute force" model lists all possibilities and calculates values

of each. The "brute force" approach would

1) list all combinations

2) check feasibility of each, discarding the infeasible ones

3) evaluate remaining set.

Note we are not deciding in advance which combinations are "infeasible".

We estimate the computational implications of such an approach by estimating the

number of combinations. Suppose the number of decision stages is i, the number of

potential design choices is ( s + 1 ), 1 and there are 2 possible scenarios following each

decision based on the binomial layout of scenarios. For the satellite communication

system case example, there are 5 stages and 6 potential choices. So the possible

number of combinations for the satellite communication case example is:

1 The number of candidate designs is s, but there is also a choice to do nothing.



161

Year 2.5 Year 5 Year 7.5 Year 10

Demand = 41.85
Do nothing

Demand = 13.84 D
Do nothing Demand =4.57

Do nothing
Demand = 4.57

Deploy*A5 Demand = 4.57
~vDo nothing

Demand = 1.51
Do nothing Demand = 0.5

Do nothingaDemand 
=01.51

MM MT" * * S Demand = 4.57

Demand = 1.51
Do nothing Demand = 0.5

Do nothing
Demand 00.50.

Do nothing Demand = 0.5
Do nothing

Do nothing <Demnand = 0.05
Do nothing

Demand = 0.
*IL *- 9 A

Demand = 1.51

Demand = 0.50
Do nothing

Demand = 0.17
Do nothing

Demand = 0.17
Do nothing

Demand = 0.17
Do nothing

Demand = 0.05
Do nothing

Demand = 0.02
Do nothing

Demand = 4.57

Demand = 0.5
Do nothing

Demand = 0.5
Do nothing

Demand = 0.05
Do nothing

Demand = 0.5
Do nothing

Demand = 0.05
Do nothing

Demand = 0.05
Do nothing

Demand = 0.01
Do nothing

Figure 5-5: Contingency development plan for satellite system

Year 0

I
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6' x 2' = 248832

We can put all 248832 combinations into the "brute force" model, then check feasibility of

each given the path-dependency constraints (such as order of deployments) and other

technical and market constraints, and finally evaluate all feasible combinations by

calculating expected costs and taking the one with the lowest expected cost.

Another possible way to enumerate is to consider the order of deployments in the first

place, and thus we can cut the number of combinations fed into the feasibility check. For

example, Architecture A2 cannot be built before Al; and once Al is built, we cannot build

it again. So the number of possible decision choices varies on each path and node,

though the number is less than or equal to 6. Given the fact that, in this case,

architectures can be built together and nothing being built can be a choice, such

enumeration is very messy and it is easy to make mistakes.

Compared the mixed-integer programming of the problem that is solved on my laptop

(CPU Pentium I1 650 MHz, RAM 384M) in less than 2 minutes. It is a bigger effort to list

all the possible combinations, check the feasibility of each combination, and evaluate the

expected cost for each combination and find the one with the minimum expected cost

5.4.5. Discussion

The above analysis is crude yet renders important results, especially the possibility to

avoid big loss compared to the best traditional architecture - we can abandon future

expansion plans if things turn sour. In real decision making, we can refine the model with

smaller time intervals between stages, AT, and refine the scenario tree for the uncertain

variables (though the basic formulation is the same). The Geometric Brownian motion

may not the best stochastic model for the demand growth, and we may build alternative
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scenario trees based on better stochastic models. Moreover, the supply of services may

impact the demand, and we can add feedback loop onto scenario trees to take into

account the impact of supply on demand.

The model presented does not dig into the technology itself deeply. If we want to include

in-depth technical considerations, the above model is readily expandable to deal with

technical details. We can change the cost coefficient C, to a function

C(h, e,Pt, DA,ISL,...)of the important architectural variables, and add a group of technical

constraints:

g(h, c, P , DA , ISL,...) s 0

So the general formulation with more technical details for the satellite communications

system problem is:

Min p ( C(h,6, P,,DAISL,...)R,(1+ r) (AT-iAT)-a-(z R)b))
q i s s

S.t. g(h,e,P,, ,ISL,...):! 0

(Caps . Rq)>D
S j=1

R_ 1  isR Vi; Vs 2,3,4,5
j=1

ZRq <-1 Vs, q

R'= R 2 V(q, q2) through node k, Vk e zg , Vi

R e {0,1} Vq,i, j

This case example together with the case example of a river basin development problem

(details in the next chapter) show the framework developed in the dissertation can tackle

the design of flexibility in a broad range of engineering systems.
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Chapter 6 Case example: River Basin

Development

A hypothetical river basin illustrates the central ideas in this dissertation about real

options "in" projects. It involves a set of possible hydropower station sites, reservoir

capacities, and installed capacity alternatives. The first phase of options identification

uses screening and simulation models to identify real options "in" projects, a subset of

projects (with specified locations, reservoir capacities, and installed capacities), for

consideration in the real options analysis. The second phase of options analysis

addresses the options for timing and choice of projects over 30 years given the uncertain

development of energy prices, and of course subject to budget constraints and costs.

The issue of whether to build any particular project in a certain period is considered an

option - it is a right but not an obligation to build the project in the period. The model for

the analysis of these real options readily examines the set of compound options "in"

projects. The final products of the analysis include a contingent developing strategy for

the river basin development that provides significant improvement in performance (thanks

to the use of flexible design and an implementation process that responds to actual

situations) and a much-improved valuation of the projects important for investors

interested in the projects.

6.1. Case introduction

The case example concerns the development of a hypothetical river basin involving

decisions to build dams and hydropower stations. The developmental objective is mainly

for hydro-electricity production. Irrigation and other considerations are secondary

because the river basin is in a remote and barren place.
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The total length of the river is 1570 km. A notable characteristic of the river basin is that

it turns 180 degrees around a mountain, forming a 150 km bend-over (See a schematic

of the river basin as Figure 6-1). Another important characteristic of the river is that it

drops quickly, from the origin at an elevation of 5400 m to the end of 980 m. Total drop is

4420m. The gross theoretical power generation capacity of the river is around 22,000

MW. This hypothetical river is in China, and we use Chinese currency (RMB) to value

the projects.

Project 3
A

Project 1

Mountain

L

A major tributary

River

Project 2

Figure 6-1 Schematic of the hypothetical river basin

There are 3 major projects under consideration for further development. Each project

consists of mainly a dam and a hydropower plant. See the schematic of the river as

Figure 6-1. The three projects are Project 1, Project 2, and Project 3 as described below.
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Project I

The considered design alternatives for Project 1 are described in Table 6-1:

Table 6-1: Project 1 Design Alternatives

Alternative 1 Alternative 2 Alternative 3 Alternative 4

Normal Water Storage Level m 1870 1880 1890 1900

Dead Water Level m 1790 1800 1810 1820

Reservoir Capacity Billion m3 6.97 7.76 8.62 9.64

Adjustable Capacity Billion m3 4.52 4.91 5.32 5.75

Installed Power

Generation Capacity MW 3060 3240 3420 3600

The stream flow data for Project 1 is provided in Table 6-2.

Table 6-2: Stream flow for Project 1

Unit: m3/s Stream Flow
Average
Average p=10% p=50% p=90%

Yearly 1200 1510 1180 904

Dry season (Dec - May) 437 505 435 371

Project 2

As the schematic of the river shows in Figure 6-1, the River has a very big turn-around.

Project 1 is built at the beginning of the turn-around. Project 2 will dig an 18 km long

tunnel that bypasses 123 km of the river. It also has a much smaller dam compared to
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Project 1 or 3. A shallow gradient river section is bypassed and approximately 300m

head' can be captured.

The choices for the installed capacity are 1,500 MW, 1,600 MW, and 1,700 MW. The

choices for tunnel water speed are 4.Om/s, 4.5m/s, and 5.0m/s. The tunnel diameter can

be calculated from the tunnel water speed. The choices for tunnel/turbine combination

are 3 tunnels 3 turbines, 2 tunnels 4 turbines, and 2 tunnels 6 turbines. The important

engineering parameter choices can be shown in Figure 6-2:

Installed 1,500MW Tunnel 4.0m/s Corresponding
Istacitd 1,60MW Water 4.5m/s Tunnel
Capacity 1,700MW Speed 5.0m/s Diameters

[unl T Tunrb3Trbies
Tunnel!Turbine23Tunnels43TurbinesI

Combination 2Tunnels6Turbines

Figure 6-2: Project 2 Tunnel Parameters

Project 3

The design alternatives for Project 3 are shown in Table 6-3. Project 3 hydropower

station has adjustable capability over year. Project 3 will add considerable power

generating capacity to downstream stations, because of its excellent capability to store

water during the wet season and release water during the dry season. See Table 6-4:

Project 3 Adding Capacity to Downstream Stations. The stream flow data for Project 3 is

provided in Table 6-5.

Since the major purpose of the development of the river basin is for power generation,

the key uncertain economic parameter here is the price of electricity, which may vary

1 In hydropower generation, head measures the difference of elevation of water the generator can
exploit.
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dramatically as China develops economically and moves toward market determination of

prices. We should account carefully for this critical uncertain element in planning. If we

optimize using an expected electricity price alone, the optimization usually leads to

economies of scale arguments indicating that bigger is better. Unfortunately, given the

uncertain economic elements, in many cases it does not pay to build as big as possible

by exploiting economies of scale, since the demand is often insufficient to justify the big

capacity. If the demand is insufficient for a while, it may be difficult for the project to repay

loans and it will incur extra loans and extra interest burden. This may be a significant

financial loss considering the huge investment nature of water projects. In some cases, it

will affect the financial feasibility of a project (see Wang, 2003). It may well be more

attractive to build smaller projects with options thinking (Mittal, 2004). This reality is a

prime motive for studying real options in large-scale engineering systems.

Table 6-3: Project 3 Design Alternatives

Alternative 1 Alternative 2

Normal Water Storage Level m 2840 2880

Dead Water Level m 2760 2800

Reservoir Capacity Billion m 7.68 12.03

Adjustable Capacity Billion m3 5.28 7.49

Installed Capacity MW 2500 3000

Table 6-4: Project 3 Adding Capacity to Downstream Stations

Alternative 1 Alternative 2

Increased Dry Season Power rMW 3109 2841
Generating Capacity I 3109 2841

Increased Yearly Power
TkWh 8.906 10.642

Generation I_______ ______________________
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Table 6-5: Stream flow for Project 3

Unit: m3/s Average QP
p=10% p=50% p=90%

Yearly 657 836 657 502

Dry season (Dec - May) 283 344 283 229

6.2. Options identification

We analyze the case example using the analysis framework developed in Chapter 5.
The first step is to identify options started with a screening model.

6.2.1. Screening model

The screening model identifies initial configurations of design parameters for the river
basin development, which are sites, reservoir storage capacity, and installed electricity
generation capacity. The objective function is to maximize the net present value (NPV) of
the river basin development. The constraints include water continuity, reservoir storage
capacity, hydropower production, and budget constraints.

The model

Before developing the objective function and constraints for the screening model, first let
us define site indices and season indices as in Table 6-6 and Table 6-7.
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Table 6-6: Site index "s"

1 2 3

Project 1 Project 2 Project 3

Table 6-7: Season index "t"

1 2

Wet season (June to November) Dry season (December to May)

Objective Function

The objective function is to maximize net benefit, or

Max Benefit - Cost

Benefit = PP,
S t

Cost = crf(E a (V)+,s(H))

Where Pst is hydroelectric power produced at site s for season t, Ip is the hydropower

benefit coefficient, as(V,) is the reservoir cost at site s, 5,(Hs) is the power plant cost at

site s, crf is the capital recovery factor:

r(1+±r)N
crf = l+rN

(1+r)N _

where N is the number of years of life of the project and r is the discount rate.
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The reservoir cost coefficient are as follow:

a,(V) = FC, +VC, -V,

where Vs is the reservoir storage capacity for site s, FC, is the fixed cost for the reservoir

at site s, and VCs is the variable cost for the reservoir at site s. The cost curves for each

dam are estimated on the basis of the studies of Sichuan Hydrology and Hydropower

Institute (2002) as described in the section of "estimation of parameters".

The hydropower cost coefficients is as follow

4(H,) = 9, -H,

where Hs is the installed electricity generation capacity for site s, 5s is the variable cost

for a power plant at site s. Here a linear relationship between the installed capacity and

the cost is assumed. Though it is crude, this linear cost relationship is a good

approximation for the purpose of this dissertation.

Constraints

There are four groups of constraints: continuity constraints, reservoir storage and

capacity constraints, hydropower constraints, and interdependence constraint.

[Continuity constraints]

Continuity constraints are those constraints ensuring conservation of mass. The water

that enters a point on the river stream must leave that point if it has not been stored.

Because the evaporation loss is only a very small fraction of the water, evaporation is not

considered here.
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S32 -S 31 (Q,, - X31 )k,

S31 - S32 = (Qi, 2 - X3)k,

E11 3 1 +AF3 1

E12 = X 32+ AF32

S1 -Su =(El - XI )k,

- 22 X 12

S22 -S2 =(E 21 -X 21 )k,

S -S22 = (E22 - X 22 )k,

where Sst is the storage at site s during season t, Xt is the average flow from site s for

season t, Est is the average flow entering site s for season t, Qi,,tis inflow from upstream

for season t, kt is the number of seconds in season t (unit is million seconds), AFst is the

increment to flow between site s and the next site. Please refer to the schematic of the

river basin as Figure 6-3.

The model is run for one typical year with mean water flow for a season, implying all

years are the same, the same for each dry season, the same for each wet season. The

model sets the initial storage of season 1 equal to the final storage of season 2. The

model does not allow variance over years, so it is a deterministic model. The model

neither allows us to consider the uncertainty in the water flow nor to study the overyear

storage. Once the screening model has determined candidate designs of the system,

and reduced the number of variables, the subsequent simulation and timing models

introduce the stochastic elements. This strategy allocates computational effort to where it

is most productive.
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Qin,t

Proiect C

Site 3 AF3,t

X3,t

E1,t

Proiect A

Site 1

X1,

Proiect B

E2,t 
Site 2X2

Figure 6-3 Potential projects on the hypothetical river

[Reservoir storage and capacity constraints]

We require that the storage in a reservoir cannot exceed the storage capacity V, during

any season t or at any site s,
s-v <0

Here a 0-1 integer variable yrs is introduced. If the integer variable is 0, the dam at site s

is not built; if the integer variable is 1, the dam at site s is built. If the dam at site s is not
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built, the storage capacity at any time at s cannot be bigger than 0; if the dam at site s is

built, the storage can be bigger than 0, but

V, - yr, -CAPD, < 0

where CAPDs is the storage capacity of the largest physically feasible dam that can be

built. CAPD, = 9600 (106 M3), CAPD 2 = 25 (106 M3), CAPD 3 = 12500 (106 M3).

Another constraint is the storage-head relationship needed for hydroelectric production,

because the energy produced is proportional to the head. The constraint relates the

head, Ast, with the storage:

S,, - U, (A,,) = 0

realistically, or should be nonlinear. But such representation also results in non-convex

feasible region and local optima, a difficulty. When solving the problem, we should check

if we have enough confidence that the result is a global optimum.

[Hydropower constraints]

The production of hydropower obeys relatively straightforward defined physics law and

relatively well-defined technical process. Three decision variables are considered in the

formulation: the flow, the head, and the installed capacity.

The first hydropower constraint is the physical law for energy conversion:

PJ, - 2.73 -e .k, * X,, -A,, 0 Equation 6-1

where Pst is the hydroelectric energy produced at site s during season t in MWH, kt is the

number of seconds in season t, e, is the power plant efficiency factor.
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k, = (60Sec / Min) x (60Min / Hour) x (24Hour / Day) x (30Day / Month) x (6Month / Season)

= 15.552 x 106 Sec / Season

e, is approximately taken to be 0.7.

The unit conversion factor 2.73 is calculated as follows: since 1 Joule = 1 N-m (or
m 2-kg/s 2 ), 1 W = 1 Joule/s, per m3 of water weighs 103 Kg, and per m3 of water can

generate 103_g power (where g is the acceleration of gravity, equal to 9.81 m/s 2). One

more issue to think about is that in Equation 6-1, the time unit considered in million
seconds. So we need a conversion factor:

101kgI/M-9. 8IM / s2 = 2.73 kg -hour

60 min/ hour -60s / min m 2 s 3

Let us check the units of this conversion factor. Since es has no unit, Xst has a unit of
m3/s, Ast has a unit of m, kt has a unit of million s, so the term 2.73-e, -k, -Xs, -As, in

Equation 6-1 has a unit of million kg-m 2-hour/s3, or MWH.

The other variable to be accounted for in the process of energy production is the plant
capacity, an upper bound on energy production. ht is the number of hours in season t,
and Hs is the capacity of the power plant in MW. Since the power plant is not going to
produce at full capacity all of the time, a factor ep is defined as the ratio of the average
daily production to the daily peak production. It is taken as 0.35 in this study. An implicit
assumption in the screening model is that the production pattern does not vary day to day
in a season. For a detailed study, we need to include the daily variation in production
pattern in the simulation model.

Ps, - ephHS 0
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Solutions of the model frequently showed wide seasonal variation of storage and heads.

But marked head variation results in inefficiency. The following three constraints are

added to limit the magnitude of head variation (Major and Lenton, 1979)

AMINS - As, 0

A,, - AMAX, 5 0

AMAX, - 2AMINS < 0

Another constraint is that the capacity of power plant at site s has an upper bound.

H, - CAPP, < 0

According to the data from Sichuan Hydrology

MW, CAPP 2 is 1700 MW, CAPP3 is 3200 MW.

and Hydropower Institute, CAPP, is 3600

Estimation of Parameters

This section provides explanations for the methods used to derive the principle economic

parameters for the screening model.

The price of electricity is taken to be 0.25 RMB /KWH as of 2001. All the benefit and cost

estimates in this study are indexed to 2001 as a base year.

For each of the projects we need to get the following three functions and all their

parameters:
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Reservoir cost: a, (Vi) = FC, + VC, -

Power plant cost: 3(H,) = 5, -H,

Volume-head curve: S,, = U- (As,)

All the data and curves are derived or estimated from a report of Sichuan Hydrology and

Hydropower Institute (2002).

Project 1

[Reservoir cost]

Reservoir Capital Cost Curve

U)
0

(U

0i

15.6
15.4
15.2

15
14.8
14.6
14.4
14.2

14
7000 7500 8000 8500 9000 9500

Storage Capacity (106 M)

Figure 6-4 Reservoir cost curve for Project 1

Reservoir cost curve for Project 1 is as Figure 6-4, where FC, = 11.19 B RMB, VC, =

4.49x10-4 B RMB/10 6 m3 . The parameters are calculated using the least square criteria.

[Power plant cost)

6 is approximately 7.65 x10-4 B RMB/MW
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[Volume-head curve]

The volume-head curve is as Figure 6-5. The relation between head and volume is

approximately expressed by

C, (Alt) = 0.14A'

Note that reservoir volume and head cannot be chosen independently. The relationship

between them is decided by the shape of the reservoir.

Volume-head Curve

10000
0 9500 -
E 9000 - - -- -_

8500
8000 -- - -

E
.2 7500
0
> 7000 --

6500 - - -
225 230 235 240 245 250 255 260

Head (m)

Figure 6-5 Volume-head curve for Project 1

Project 2

The parameters for Project 2 are special, because Project 2 constructs several tunnels to

bypass a section of shallow-gradient river.

[Reservoir cost]

The capacity of the reservoir for Project 2 is only around 10 to 20 million M3 , the cost of

the reservoir is negligible compared to the scale of the tunnel and power plant cost.
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[Power plant cost curve]

6 is approximately 1.85 x10-3 B RMB/MW

[Volume-head curve]

Head is fixed at 280m. Though the head is changing with respect to the capacity of the

reservoir, the reservoir is too small and the change is within 1Cm, the head is assumed to

be fixed.

The constraint S2, - (7s (A2,)= 0 should be replaced by A2 = 280

Project 3

[Reservoir cost]

Reservoir Capital Cost Curve
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Figure 6-6 Reservoir cost curve for Project 3
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The reservoir cost curve for Project 3 is as Figure 6-6, where FC3 = 8.41 B RMB, VC3 =

6.68x10-4 B RMB/10 6 M3 . The parameters are calculated using the least square criteria.

[Power plant cost]

63 is approximately 8.80 x10-4 B RMB/MW

[Volume-head curve]

The volume-head curve for Project 3 is as

volume is approximately expressed by

Figure 6-7. The relation between head and

Figure 6-7 Volume-head curve for Project 3

Volume-head Curve
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Complete formulation of the screening model

Objective function:

Max Benefit - Cost

Benefit = p'P,
S t

Cost = crf (I:as (V) + 9s (H,))

Continuity constraints:

S32 -S 31 = (Qi, 1 - X31 )k,

S31 -S32 =(Qi,,2 - X 32 )k,

E11  X 3 1 +AF 3 1

E 12 = X 32 +AF 32

S12 -S 1 =(El - X-I)k,

Sl - Sl = (E12 - X12)k,

E21 < X11

E22  X 12

S22 -S21 = (E21 -X 21)k,

S21 -S22 = (E 22 - X22)k,

Reservoir storage and capacity constraints:

Sst -V, 0

V, - yr, CAPD, < 0
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S,, - o- (A,,) 0 1

Hydropower constraints:

P,, - 2.7A3 -es -k, * X,,- A,, < 0

Ps, - e htHs < 0

AMIN - As, 0

A,, - AMAXS 0

AMAXS - 2AMIN, < 0

HS - CAPP 0

Table 6-8 List of Variables for the screening model

Variable Definition Units

yrs Integer variable indicating whether or not the reservoir is

constructed at site s

Sst Storage at site s for season t

Xst Average flow from site s for season t

Est Average flow entering site s for season t m3/S

Pst Hydroelectric power produced at site s for season t MwH

Ast Head at site s for season t m

Hs Capacity of power plant at site s MW

Vs Capacity of reservoir at site s

AMAXs Maximum head at site s m

AMINs Minimum head at site s m

1 Except for Project B, the constraint is replaced by A 2 , =280.
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Table 6-9 List of Parameters for the screening model

Parameter Definition Units Value

Qin,t Upstream inflow for season t m3/s (374,283)

CAPDs Maximum feasible storage capacity at site 10 6m3  (9600, 25,

s 12500)

CAPPs Upper bound for power plant capacity at MW ( 3600, 1700,

site s 3200)

AFst Increment to flow between sites s and the m3/s (389, 154) for

next site for season t site 3, others

are 0

es Power plant efficiency at site s 0.7

kt Number of seconds in a season Million 15.552

Seconds

ht Number of hours in a season Hours 4320

Yst Power factor at site s for season t 0.35

AP Hydropower benefit coefficient 103  RMB 0.25

/MWH *

FCs Fixed cost for reservoir at site s B RMB (11.19,0,8.41)

VCs Variable cost for reservoir at site s B RMB/10 6 m3  (4.49x10-4, 0,

6.68 x10~4)

5s Variable cost for power plant at site s B RMB/MW (7.65x10-4,

1.85x10-,

8.80 x10-4)

r Discount rate 0.086

crf Capital recovery factor for 60 years 0.087

* All RMB in the study is indexed to 2001 as a base year.
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Applying screening model to sort out most interesting

flexibility

This example screening model involves 46 variables and 58 constraints. It contains only

the most important considerations, yet has a fair amount of technical detail.

After the screening model is established, some detailed consideration and care should be

taken when applying it. What uncertain parameters should be examined? What levels of

the uncertain variables should be placed into the screening model? After establishing the

screening model, we suggest the following steps to use the screening model

systematically to search for the interesting real options (flexibility):

Step 1.list key uncertain variables. The uncertain variables could be exogenous or

endogenuous. They could be market uncertainty, cost uncertainty, productivity

uncertainty, technological uncertainty, etc.

Step 2.find out the standard deviations or volatilities for the uncertain variables. This can

be computed by historical data, implied by experts' estimation', or using the data from

comparable projects.

Step 3. perform sensitivity analysis on the uncertain variables to pick out the several most

important uncertain variables for further analysis. Tornado diagram is a useful tool for

such sensitivity analysis.

Step 4. list different levels of the important uncertain variables as inputs for the

established screening model to identify where the most interesting real options

(flexibility) are.

To demonstrate the procedure, we use the case example of the river basin development.

1 The experts give their most likely estimation, pessimistic estimation (better than 5% of cases),
and optimistic estimation (better than 95% of cases). Since 5% and 95% represent the range of
±1.65a, we can estimate a from the experts' opinion.
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Step 1. The important uncertain variables for the river basin development are identified to

be the price of electricity, fixed cost of reservoir, uncertain variable cost of reservoir,

uncertain variable cost of power plant, and the variable water flow.

Step 2.For the purpose of illustration, we pick out three important uncertain variables for

further scrutiny: electricity price, fixed cost of reservoir, and variable water flow. This

is only for illustration purpose, and real studies should examine more uncertain

variables - the most important uncertain variables may be outside people's

expectation or intuition.

The volatility of the electricity price is derived by experts' estimation. The author

interviewed two Chinese experts on China energy market in the China Development

Bank to get their pessimistic, most likely, and optimistic estimate of the electricity

price in three years after 2002. The experts reached the optimistic price estimate of

0.315RMB/kWh and pessimistic estimation of 0.18RMB/kWh both with 95%

confidence, which corresponds to a volatility of 6.96% per year (for details see Wang,

2003, pp.101).

The standard deviation of the construction cost is estimated from the standard

deviation for the cost of megaprojects (Flyvbjerg, et al., 2003, pp. 16). The standard

deviation is 39%.

Table 6-10 Parameters for distribution of water flows (Adjusted for 60-years span)

Mean Annual s.d. 60-year s.d

Qin,,Y 374 87.7 11.3

Qin,2y 283 45.4 5.9

AF31y 389 89.8 11.6

AF 3 2y 154 9.7 1.3
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The standard deviations of water flow are calculated from historical data. It is listed in

Table 6-16. Note, since we consider the project for a life span of 60 years, the annual

standard deviation should be translated to a 60-year average standard deviation by

dividing the annual standard deviation by v0 (see Table 6-10)

Step 3.With the understanding of volatility or standard deviation of the three uncertain

parameters. We can draw a tornado diagram regarding the change of net benefit due

to one standard deviation/volatility change of one of the important uncertain variables,

with other uncertain variables keep at the expected value. To do so, we just change

one variable at a time (with 1 standard deviation or volatility) in the screening model,

run the optimization and get the corresponding optimal net benefit' to be drawn in the

tornado diagram. The resulted tornado diagram is as Figure 6-8.

Change of Net Benefit (in M RMB) Due to 1 S.D.
Change of Important Uncertain Variables

2196 (Million RMB)

Fixed cost
for resenuir -118 596

Electricity -325 332
price

Waterfiow -8d 18

1 The corresponding optimal design changes given different level of uncertain variables.

Figure 6-8 Tornado chart for screening model
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From the tornado diagram, we understand the uncertainties on fixed cost of reservoir and

electricity price are the most important uncertainties. This dissertation studies in-depth

the uncertainty of electricity, however, for the following considerations:

- this study expands the application of options theory to engineering design, so

the initial interest leans to that related to financial market. Electricity is market

traded and its market risk are relatively well understood;

- costs are more complicated than electricity price. Electricity price is readily

market observable, while the fixed cost has a lot of components and hard to

know exactly when the project is being constructed. Moreover, the dynamics

of uncertainty of reservoir fixed cost is less understood. Despite the

importance of study on uncertainty of fixed cost, the purpose of this

dissertation is to lay out a general framework for designing flexibility into

engineering systems to deal with uncertainties. So we treat the easier

electricity uncertainty as a first step to demonstrate the general framework,

and call for further work to study the peculiarity of uncertainty of fixed cost in

depth.

Step 4.The current electricity price is 0.25 RMB/KWH, but we study the conditions when

the electricity price is 0.10, 0.13, 0.16, 0.19, 022, 0.28, 0.31 RMB/KWH. The levels

cover most of the range of the experts' pessimistic (0.18 RMB/KWH) to optimistic

estimate (0.31 RMB/KMB). To be conservative, we also screen at very low electricity

prices as a stress test to see what could happen in the worse case.

Results

Given the 8 levels of electricity price, we get 8 preliminary configurations of the projects.

Each configuration has been optimized for a particular price level. The optimization

model was written in GAMS@ (the GAMS code can be found in Appendix 6A), and the

results are shown in Table 6-11. The "Optimal value" represents the maximum net
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benefit calculated by the objective function. We find that the designs of (H1 = 3600 MW,

V, = 9.6 X 109 M3) and (H2 = 1700 MW, V2 = 2.5 X 107 M3) are robust with regard to the

uncertainty of the electricity price1 . But for the project at site 3, the optimal design

changes when the price of electricity changes, and this is the place in which we should

study further to design flexibility.

Note that for case 1, no projects are built; for cases 2 and 3, site 3 is not built. In a real

application considering many more sites, there may be a great number of sites entered

the screening models and most of them are screened out. Although the current electricity

price is 0.25 RMB/KWH, we cannot assume that the design corresponding to this price is

optimal, because the screening model does not consider the uncertainty of electricity

price. Follow-on analysis is needed.

Table 6-11: Results from the screening model

Case Electricity Price H1  V1  H2  V2  H3  V3  Optimal Value
(RMB/KWH) (10 6m3) (MW) (10 6m3) (MW) (10 6m3 ) (1 6RMB)

1 0.10 0 0 0 0 0 0 0

2 0.13 3600 9600 1700 25 0 0 367

3 0.16 3600 9600 1700 25 0 0 796
4 0.19 3600 9600 1700 25 1564 6593 853

5 0.22 3600 9600 1700 25 1723 9593 1607

6 0.25 3600 9600 1700 25 1946 12242 2196

7 0.28 3600 9600 1700 25 1966 12500 2796

8 0.31 3600 9600 1700 25 1966 12500 3396

Each design for site 1, 2 and 3 represents an option,

subtly different: all options present timing feature, but

though the sources of them are

only option at site 3 has flexible

1 The only case that designs of (H1 = 3600 MW, V, = 9.6 X 10 m 3) and (H2 = 1700 MW, V2 = 2.5 X
107 M3 ) are not optimal is when the price of electricity is extremely low - where we do the stress
test and if is out of the range of experts' estimation.
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design feature where we consider different reservoir capacity and power plant capacity

design. See Table 6-12. Although the features of options have been understood, the

final options specification will not be reached until the test of simulation model.

Table 6-12 Sources of options value for designs

Sources of option value
Value of timing Value of flexible design

Design at site 1 Yes No
Design at site 2 Yes No
Design at site 3 Yes Yes

6.2.2. Simulation model

The example simulation model introduces stochastic considerations, both in electricity

price and in seasonal flows. The simulation model is operated with 60 years of 6-month

seasonal flows. The simulation model takes into account the aspects of over year storage

that is hard to consider in the screening model. By using the simulation model, more

aspects of the configurations chosen by the screening model are revealed, especially the

hydrologic reliability. The simulation model in this dissertation does not look into the

hydrologic reliability issue deeply, because the main purpose of the dissertation is about

real options "in" projects and the model established here is for illustration of that purpose.

A detailed real study, however, should carefully test the plan's hydrologic reliability.

If the time series of the water flow is set to consist of the seasonal means repeating

themselves year after year (no shortages with regard to the plan obtained by the

screening model) and the price of electricity is not changing, the simulation model should

get the same result as of the optimal value of the screening model. But the natural

variability of water flow and electricity price will make the result (net benefit) of each run

of the simulation different, and the average of the net benefit is not going to be the same

as the result from the screening model. The simulated results should be lower because



190

the configurations are not going to benefit from excess water when water is more than

the reservoir can store, and losses during droughts will be completely suffered.

Using the simulation model, the several configurations from the screening model are

tested. The optimal configuration by the screening model given the electricity price as of

the current price of 0.25 RMB/KWH is not necessarily the best configuration after

stochasticity of the uncertain parameters is taken into account.

Node 1

Qin,t

Node 2

SA3, t AF3,t

X3,t

Node 3
E -------

S1 -

----- - '-------Node7
Node-5 -Node6

z 

Ji'

Figure 6-9 River Basin as network of nodes



191

Table 6-13 List of design variables

Variable Definition Unit

H1  Capacity of power plant at site 1 MW

H2  Capacity of power plant at site 2 MW

H3  Capacity of power plant at site 3 MW

V1 Capacity of reservoir at site 1 106m3

V2 Capacity of reservoir at site s 10 6 m3

V3 Capacity of reservoir at site s 10 6m3

The river basin as a Network of Nodes

In the simulation model, the river basin is described as a network of nodes. The nodes

can be categorized as "start node", "reservoir node", "confluence node", and "terminal

node" in this case example. Nodes could also include "irrigation node", "import/export

node", and "continuation node". Figure 6-9 shows such a network, where node 1 is a

start node, node 2 is a reservoir node, node 3 is a confluence node, node 4 is a reservoir

node, node 5 is a confluence node even though the water stream is split in two at this

point, node 6 is a reservoir node, and node 7 is a terminal node.

Associated with those nodes that represent structural components are design variables.

Design variables define system configurations and are chosen as the input to the

simulation model by the analyst. The design variables in the simulation model are

decided by the results of the screening model, specifically the values of certain decision

variables of the screening model. The list of design variables can be found in Table 6-13.

Simulation calculations

Besides the design variables defined in Table 6-13, the other variables and parameters

are as the Table 6-14 and Table 6-15.
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Basically almost all the relationships in the simulation model are the same as those in the

screening model. Only several differences:

- The subscript y in the simulation model is not used in the screening model that

optimize over an average year without considering the variation of water and

storage over a number of years.

- Several equations are added or modified to take into account the operating rules

and average heads. Details follow.

Dynamics of the uncertain inputs

The water inflows are uncertain, including the flow Qi,,ty (Upstream inflow into site 1 for

season t for year y) entering the river basin and the increment AF 3ty (Increment to flow

between sites 3 and 1 for season t year y) to flow between site 3 and site 1, as well as

the changing electricity power price.

Table 6-14 List of Variables for the simulation model

Variable Definition Unit

Ssty Storage at site s for season t year y 10 m3

Xsty Average flow from site s for season t year y m3/s

Esty Average flow entering site s for season t year y m3/s

Psty Hydroelectric power produced at site s for season t MwH

year y

Asty Head at site s for season t year y m

The best fit to the water flow data is a lognormal distribution if the water flow does not dry

up during the year. We used river flow data from the National Weather Service

(http://waterdata.usgs.gov/nwis/sw). The best fit is the lognormal distribution.
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Table 6-15 List of Parameters for the simulation model

The parameters for the lognormal distribution (refer to equation Equation 3-4) of water

flows are as Table 6-16:

The price of electricity power price is assumed to follow a Geometric Brownian motion

d3P' = peIpdt + cpdz

where p, is the drift rate for the electricity price, -, is the volatility for the electricity price,

and dz is a basic Wiener process (See Section 3.2.2. ) In this analysis, consistent with

the parameters used in the author's master's thesis (Wang, 2003), p, is taken to be -

0.33% per year, o-e is taken to be 6.96%.

Parameter Definition Unit Value

es Power plant efficiency at site s 0.7

Tst Target release at site s for season 10 6m3  (4490, 0, 3920)

t

kt Number of seconds in a season Million Seconds 15.552

ht Number of hours in a season Hours 4320

ep Power factor 0.35

PP Hydropower benefit coefficient 10 RMB /MwH 0.25

FCs Fixed cost for reservoir at site s B RMB (11.19,0,8.41)

VCs Variable cost for reservoir at site s B RMB/10 6m3  (4.49x10,-4 0, 6.68 x10-4)

5s Variable cost for power plant atB RMB/MW (7.65x10-4, 1.85x10,

site s 8.80 x10-4)

r Discount rate 0.086

crf Capital recovery factor for 60 0.087

years
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Table 6-16 Parameters for the distribution of water flows

Mean Standard Deviation

Qin, i,y 374 87.7

Qin,2,y 283 45.4

AF31y 389 89.8

AF3 2y 154 9.7

To set up the simulation, the process is discretized yearly:

= p_ -eAt+ Tesn

where 8,6 is the price of electricity for year n, At here is 1 (year), en is a random draw

from a standardized normal distribution, $(0,1)

A sample realization path of the electricity price for 60 years is shown in Figure 6-10.

The simulation is built using Crystal Ball@.

For the example analysis, the movement of the electricity price is assumed to follow a

geometric Brownian motion (GBM). This is not necessarily the best model for electricity

price: a mean-reverting proportional volatility model might improve the quality of analysis

(Bodily and Del Buono, 2002). However, GBM is sufficient to illustrate the analysis

framework and stochastic mixed-integer programming methodology. To use a different

stochastic process, we need to generate an appropriate scenario tree, and the analysis

framework remains valid.
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A Realization Path of Electricity Price

0.3 -_-

0.25 - - - -

S0.2
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Year

Figure 6-10 A realization path of electricity price

Continuity equations

The flow continuity relationships in the simulation model are the same as those of the

screening model. This is true for many of the other relationships as well, such as the

hydropower relations. The simulation model evaluates the effect of water flow

stochasiticity and electricity uncertainty on the system's net benefits. The simulation

model enables the study of the effect of the over-year storage on the system

performance, which cannot be evaluated by the screening model. In the screening model,

the concept of shortages does not exist - a project is feasible if all the constraints are

satisfied, and infeasible if they are not. The concept of shortage, however, is a key part

of the simulation model.

The continuity equations are as follows:

For season 1

At node 2: S31, = (Qi, - X32y k + S3y

At node 3: En, =_X , + AF31
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At node 4: S11 ,a+j = (E12 y - X12,)k, + S12,

At node 5: E 1, Xiv

At node 6: S2,1 =(E2,2,y+! - X ±)k, + S2,

For season 2

At node 2: S = (Q,, 1~ - Xy)k,+ S,

At node 3: E12 = X32 , +AF 32 ,

At node 4: S12, (El1 , - X, )kt + S,1

At node 5: E22y, X12 ,

At node 6: S22= (E21, - X 21,)k, + S,

Operating rules

One of the most important characteristics of the simulation model is the consequence of

the consideration of shortages: a distinction must be made between actual releases and

target releases. In the simulation model, the target releases must be prespecified and

the actual releases are determined during a simulation run by means of an operating rule.

Reservoir releases are determined by operating rules for each reservoir. The basic

tradeoff of an operating rule is whether to release water in times of shortage to meet the

current downstream demands, or keep some of the water in order to reduce future

potential shortages.

This dissertation uses a set of simple operating rules as proposed by Fiering (1967).

Although more complicated and better rules can be studied, the rule by Fiering is good

enough for the purpose of this research. The actual release Xt at site s for season t is a

function both of target release Tt and of water availability. Three cases are considered

(see Figure 6-11):

Case I: there is not enough water to meet the target release. The reservoir will be

emptied in order to meet the downstream demands.
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Case Il: there is enough water to meet downstream demands. Water exceeding

downstream demands is kept in storage.

Case Ill: the available water minus the downstream demands exceeds maximum

storage. All water that cannot be kept must be spilled.

Xst A
Case I Case I Case IIl

Tst - - - - - - - - - .

I i
i I
Tst Tst + Vs Sst + Est'kt

Figure 6-11 Operating rule

The three cases lead to the following equations for Xst:

S 5, / k, + E,,,; S,,,+ E,,, -k, < T,

Xsty T, kt; t St, sty - Sk, T, +V,

(S,,, -V )/ k,+ E; S,,,+ E,,, -k, > T,,+V,

Thus, the storage S,,t+ at the beginning of the following season can be represented by:

0; Ss,,- + Es,,- * k, < T,

S,,,Y= Ss,,_ + E .k - T, T,, < Ss,, + E,,2,y-I -k, T,, +V,

VS ;S +E -k, > T<S, , Ek 1 Ti-I ± +VV
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0; SA, + Es, -k, < T,

Ss2 ,= SA, + EI V' k -T,; T, < Ss, + Es, -k, Tt + VS

V ; sly + E, * k, > T +V,

The target release in this research is calculated on the basis of a seasonal energy target
that is meant to ensure the supply for anticipated energy demand for different seasons.
Without losing insights into the real options topic in this thesis, the seasonal energy target
is simplified to be a constant for all seasons. The seasonal energy target is set to be
1800 MW, 0 MW, and 1000MW for Project 1, Project 2, and Project 3, respectively.
Since the storage capacity for Project 2, V2, is virtually zero compared to the storage
capacities for Project 1 and 3, all the water will be consumed to produce energy without
storage at site 2 (Project 2) regardless of the target release or energy target. Given the
average heads for Project 1 and Project 3 are taken to be 210m and 240m respectively

and equation (A* is the average head defined in Equation 6-2 and Equation 6-3)

P
sty

S 2.73-e, -A,

the corresponding target releases are 4.49x10 9 m3 and 3.92x10 9 m3 for Project 1 and 3,
respectively.

Hydropower equations

The total energy produced in season t at site s is calculated by

P, =2.73 -e, -k, -X,,, - A*sty
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where the average head A* is calculated by

A * As y +As 2y
sly 2

A * As21, +AsIY+
s2y 2

Another constraints we need to think about is the plant capacity, an upper

power production:

Equation 6-2

Equation 6-3

bound of the

where ht is the number of hours in season t, and Hs is the capacity of power plant in MW,

ep is the ratio of the average daily production to the daily peak production.

Volume-head curves

In order to get the head, we need the information of volume-head curves, they are:

S, = 0.14A,

A2,, = 280

S,,, = 0.15A 2
3 ty

Objective function

The simulation model contains an objective function for analysts to pick the best

configurations under test. The form of the objective function is

Net Benefit = Benefit - Cost
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where benefit is the discounted cash flow of revenue from the simulated hydropower

energy produced (it is assumed that all power produced can be sold), and the cost of

building the reservoir and the power plants are given by:

Cost = crf( a,(V,)+(,(H,))
S

where crf is the capital recovery factor,

r(1+±r)N
crf = (+rN

(1+ r)N _1

N is the number of years of life of the project. a, (Vs) and 5, (Hs) are the same as defined

in the screening model.

Initial conditions of the simulation

Since the screening model assumes an average yearly situation, which implies that the

circumstances are under steady state. It does not consider the transition state when a

dam has just been built and is storing water. Similarly, the simulation model does not

relax the assumption that all projects in a configuration are already built all together (the

traditional sequencing model or real options timing model will relax this assumption to

study the transient state when projects are built one by one). Also, the initial state of the

storage of reservoir is taken to be fully stored.

Simulation model run results

The simulation model tested the 8 configurations chosen by the screening model as

shown in Table 6-11. The simulation model was constructed using Excel@ and Crystal
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Ball@. All designs from the screening model in Table 6-11 were tested. The optimal

design predicted by the screening model that corresponds to the current electricity price

of 0.25 RMB/KWH is not necessarily the best design after various uncertainties, shortage

(droughts) and overyear water storage are taken into account.

For cases 5 and 6 (electricity price = 0.22 RMB/KWH and 0.25 RMB/KWH), the

simulation results are as Figure 6-12. The runs for the other cases have lower values

than either case 5 or 6. Note that the expected NPV in both cases are substantially below

those indicated in Table 6-11 (1138 vs. 1607 for case 5; 1098 vs. 2196 for case 6). As

indicated before, this result is not unexpected since the capacity often cannot be fully

used due to lower flows. Note, also that the lower capacity design (case 5) provides

higher expected NPV than the higher capacity design (case 6) that appeared better in the

deterministic design. After considering the price uncertainty and water uncertainty, the

seemingly optimal configuration with current electricity price as input performs worse than

the configurations with electricity prices lower than actual current price. This is a

common, though not necessary, result. This result shows how strong the impact of

uncertainty is.

Figure 6-12a: Simulation result for electricity price = 0.22 RMBIKWH (case 5)

Forecast: Net Benefits
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.037 93
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Figure 6-12b: Simulation result for electricity price = 0.25 RMBIKWH (case 6)

Table 6-17 Portfolio of options for water resources case

Design specifications Exercise time

Option at Site 1 H, = 3600 MW, V, = 9.6 X 109 m3  Any time

Option at Site 2 H2 = 1700 MW, V2 = 2.5 X 107 m3  Any time

Option at Site 3 H3 = 1564 MW, V3 = 6.93 X 109 m3  Any time

One of H3 = 1723 MW, V3 = 9.593 X 109 m3

H3 = 1946 MW, V3 = 12.242 X 10 9 m3

Satisfying the requirements of various technical considerations such as robustness and

reliability, the design with the highest expected benefit from the simulation is those

corresponding to the electricity of 0.22 RMB/KWH (Case 5). So the timing options for site

1 and 2 are (H1 = 3600 MW, V, = 9.6 X 109 M3) and (H2 = 1700 MW, V2 = 2.5 X 107 M3),

we have the right to build a project as the specifications, but we do not have the

obligation to build them and have the room to observe what happens and decide where

to build a project. The option for site 3 contains both timing option and variable design

option. We choose 3 design centered Case 5, or (H3 = 1564 MW, V3 = 6.93 X 109 M3),

(H3 = 1723 MW, V3 = 9.593 X 109 M3), or (H3 = 1946 MW, V3 = 12.242 X 109 M3). Each

design is an option, in that we have the right but not obligation to exercise the option, and

the three options are mutually exclusive - only one can be built. A summary for the

00O
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options sees Table 6-17. This is a portfolio of options. Each option stands for a basic

element of flexibility in the project. The next stage will analyze this portfolio of options.

6.3 Options analysis

After successfully identifying the real options "in" projects, we now will analyze the

options using the stochastic mixed-integer programming model developed in Chapter 5.

The key issues in the real options timing model is the order and timing of the construction

of the projects, given various constraints.

6.3.1. Traditional sequencing model

Before establishing the real options timing model, we need to first establish a traditional

sequencing model. The real options timing model builds on top of a traditional

sequencing model.

From the screening and simulation models, we have obtained a plan of satisfactory

design of projects, sizes and locations, under steady state. The next step is to relax the

assumption of the previous analysis that all the projects are built at once, and study the

transitory construction process from no dams to all planned projects built. The key issue

in the question is the order of projects to be built given various constraints in order to

maximize the net benefit when taking into account the building process and the water

storage from zero to full, as well as the variability of electricity price. The question for the

traditional sequencing model is during which time period which project should be built.

The traditional sequencing model assumes that the projects are constructed during 3

time periods, each of equal length of 10 years. The calculation considers 60 years of life
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for each project (construction time included in the 60 years of life). Different time span

can be used, but the difference on results would be small'.

The traditional sequencing model has almost all 0-1 integer variables except for the flow

variables representing stream flow at different points of the river basin and the energy

variables representing the energy production, while the screening model has most

continuous variables to decide reservoir capacity and power plant sizes that can take any

real value within the constraints. In the sequencing model, the sizes of the projects have

been decided. The remaining decisions are whether to construct a particular project

within a specific period of time. Such decisions are appropriately represented by integer

variables.

Constraints of the model

Continuity constraints

The continuity constraints in the sequencing model act as an accounting system for the

water use in the river basin. They maintain the links of time and space for water used by

different projects, among the most important interdependency between hydropower

projects on the river. The continuity constraints in the sequencing model are a little

different from what would have been formulated in the screening model: the inclusion of

reservoir yield ( , which is obtained from the results of the screening model run)

replaces explicit consideration of storage. The continuity constraints are:

1 If we extend the number of years considered, the extra value is very small. For example, if we
extend the number of years considered to 70, and assuming every year the benefit is CF and a

60discount rate of 8.6%. The present value of benefits from year 1 to 60 is CF -I =11.55CF
= (I + 0.086 )'

while the present value of benefits from you 61 to 70 is CF 0 = 0.046CF, or 0.4% of the
j=61(1 + 0.086)'

value of the first 60 years.
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Xi3 =Qingl +Y R3 -1 R

Xi 32 Qin,2 +Y3 2 ZR 3 C32 Ri 3
j=I

Xi1 2 = Xi3 2 +MF3 2 + Y R1 -C12R I
j=1

i21 - ill

Xi22 Xi12

where subscript i denotes the number of the time period, Ris denotes if the project at site

s is built in period i (1 means built, 0 not). An additional factor that must be taken into

account is the filling of a dam when it is just built and flow is required to accumulate

storage. The parameter c represents the part of flow to be used during the

construction period to ensure a full reservoir of the next period.

Construction constraints

The construction constraints specify the important interdependency between projects

besides the continuity constraints. The following construction constraint is introduced to

extend the continuity constraint to take into account all periods all together. The

constraint guarantees that a project will be constructed at most once (only one term at

most can be 1), or not constructed at all (all terms are O's).

Z R,, 1 Ri, e {0,1}
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Hydropower constraints

The screening model has decided the capacity of the power plant. Although the power
generated each year was also an output from the screening model, the result of the
screening model cannot be used as a parameter for the sequencing model because,
during the construction period, the flow and head are different from the steady state in the
screening model. Therefore a hydropower constraint is needed:

Pit =2.73-es .k, -Xist 'Ast Rs
j=1

where Pit is the hydroelectric energy produced at site s during season t for time period i

in MWH, A,, is the average head during season t at site s for time period i, kt is the

number of seconds in season t, es is the power plant efficiency factor.

Meanwhile, the production of power is capped by the capacity of the plant:

Pis, - ep ht HS < 0

where ep is defined as the average daily production to the daily peak production, ht is the
number of hours in a season.

Budget constraints

The budget available is the most important scare resource that determines an upper
bound on potential projects that can be built in a period. In this case study, it is assumed
the budget available will only allow one project built during any period:

JR,, <1
S
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Objective function

The objective function is to maximize the net benefit over the planning time horizon. The

benefit and cost in a future time period need to be discounted back to present value

dependent on how far it is from today.

Z11 ,8/J i[ZR, -(1- f)R,]PV +JJY[ 8P,,PVOiR]
Max i S t j=1 S t i Equation 6-4

-ZZ{[a,(V)+,(H,)]R, -.PVCi}

When the project is built, water needs to be stored to the specific volume and the water

released from the reservoir is different. The term [ Rj - (1- f)Rs, ] will make sure the
j=1

power production is a fraction of f for the period that the dam is built and needs to be

filled up. a,() and 6s) are the same as defined in the screening model.

PV; is the factor to bring the ten-year annuity of benefit back to the present value as of

today.
10i 1

P V = I
]=10(i-1)+1 (1 + r)'

PVO1 is the factor to bring the annuity after the 3 10-year periods till the end of 60 year

life span of a project. If the project is built in the first 10-year period, the value of the

project needs to be considered from year 31 to 60; if the project is built in period 2, the

value of the project needs to be considered from year 31 to year 70; if the project is built

in period 3, the value of the project needs to be considered from year 31 to year 80.

60+10(1-1)

j=3 (1 + r)j
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PVC is the factor to bring the cost, which is presented as the value at the beginning of

the period when it is built, back to the present value as of today. The costs obtained form

a,(V,) and 5, (H,) are the total present value of costs for the project as of the beginning

of the period when the project is constructed. Since the length of the each time period is

10 years, the cost needs to be discounted by a factor of PVCi because period 1 starts

now, period 2 begins at year 11, and period 3 begins at year 21.

PVC. = 0i1
(1+ r)

Variables and Parameters

Some of the parameters are written with bars over letters. Most of them were decision

variables in the screening model (except reservoir yields Ys ) and take the values

resulting from the screening model run. As the result of the study of the screening model,

the best design configurations are those results optimized for the electricity price of 0.22

RMB/KWh. The value of parameters H, , V, , As,,, yr, , and Ys, are obtained from that

run. The value can be found in Table 6-19.

How to get Y,,

According to the screening model run, if there is no reservoir at site 3, X31 and X 32 are

just Qi,' and Q,,2, or 374 and 283, respectively; if there is a reservoir at site 3, X3 , and

X32 are 310.4 and 346.6, respectively. Therefore, Y, and Y32 are -63.6 and 63.6,

respectively.
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According to the screening model run, if there is no reservoir at site 1, X*I and X2 are

just Qi,, + AF31 and Qi,2 ± AF or 763 and 437, respectively; if there is a reservoir at

site 1, X11 and X 12 are 699.4 and 500.6, respectively. The change of flow after the

construction of reservoirs is exactly as Y3, and Y32 , or -63.6 and 63.6, which is the

change caused by the upstream Project 3 at site 3. So Y and Y12 should be 0.

Since the storage capacity at site 2 is very small compared to those at site 1 and site 3,

the storage capacity at site 2 is virtually taken as 0 in the formulation. So Y21 and Y22

should be 0 as well.

How to get f

Following is the calculation of parameter f in Equation 6-4. Assuming, during the period

when a project is built, the benefit each year follows Figure 6-13. For the first 5 years,

there is no power produced, between the 5th and 10 th year, the production grows linearly

until reaching the full capacity in the 10 th year.

So, at the beginning of the period, the value of the benefit flow during the period when the

project is constructed, Vt, can be written as:

1_ 1(]-5)

, = P (1 + r) Equation 6-5
j5 5(1 + r)I

Vt can also be expressed as an annuity fPeti:

10 1
(1 ± Equation 6-6

j= (1 + r)j
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According to Equation 6-5 and Equation 6-6, f can be expressed as

10 (j 15) 0 1

j=5 5(1 + r)' j (1 + r)j

For r = 8.6%, f = 0.226.

How to get c

The parameter c represents the part of flow to be used during the construction period

to ensure a full reservoir of the next period. According to the simulation model, a dam

could be filled up within 5 years, because we take that the power benefit beginning after 5
years from the onset of the construction, the water fill-up for a dam has little effect on the

energy benefits that we are interested in. We can safely take cS to be O's and have

small impact on the final results.

Figure 6-13 Benefit in time periods

Benefit in a Time Period

Psti[

1 2 3 4 5 6 7 8 9 10

Year
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The hydropower benefit coefficient - the price of electricity

In the screening model, the electricity price we used is the current price of 0.25

RMB/KWH. However, with the refinement of the simulation, we have understood the

uncertainty in the electricity - it follows a Brownian motion with a drift rate p of -0.33%

per year and a volatility a of 6.96%. In the sequencing model, we have to adjust the

hydropower benefit coefficient to reflect this understanding of electricity price dynamics.

The expected value of the electricity price after considering its dynamics will be changed

to:
60

E(1- p -2 / 2)'

E(gp)=0.25 -1 6 = 0.21
60

We should use 0.21 RMB/KWH as the hydropower benefit coefficient for the calculation

of the sequencing model.

Complete formulation of the traditional sequencing model

Objective function:

ZZ/hPzs[ Rj, -(1- f )R,]PV + ZZZ[/3 P,5 tPVR,]
Max St j1 S

{[a, (V)+ J, (H)]R,, -PVC}
1 S

Wii 1

Where j=1(i-1)+(1 +r)

60+10(1-1)

j=3 (1+r)

PVC =
(I +r~
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Continuity constraints:

X = QI + Y Ri 3 - Ri3
j=1

Xi32 = Qin,2 +( 32Rj3 - C3Ri3
j=I

Xi12 - Xi32

Construction constraint:

+ A32 + 12
j=

Xz21 - Xfl

Xi22 Xi12

Y R,, 1

Hydropower constraints:

Pi, =2.73-es k -Xis,. A- Z R1s
j='

Pis, -ep h, HS < 0

Budget constraint:

Y Ri <1

Table 6-18 List of variables for the traditional sequencing model

Variable Definition Units

Xist Average flow from site s for season t for time period i m3/S

Pist Hydroelectric power produced at site s for season t for time MwH

period I

Ris 0-1 variable indicating whether or not the project is built at site s

for time period i

- c12Ri
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Table 6-19 List of parameters for the traditional sequencing model

Parameter Definition Units Value

Qin,t Upstream inflow for season t m3/s (374,283)

AFI Increment to flow between sites s and m3/s (389, 154) for

the next site for season t site 3, others

are 0

es Power plant efficiency at site s 0.7

kt Number of seconds in a season Million 15.552

Seconds

ht Number of hours in a season Hours 4320

ep Power factor 0.35

#8 Hydropower benefit coefficient 103 RMB 0.25

/MwH *

FCs Fixed cost for reservoir at site s B RMB (11.19,0,8.41)

VCs Variable cost for reservoir at site s B (4.49x10-4, 0,

RMB/10 6m3  6.68 x10-4)

H- Capacity of power plant at site s MW (3600, 1700,

1723)

~ Capacity of reservoir at site s 10 6m3  (9600, 0, 9593)

~ Head at site s for season t M (262, 262; 280,

280; 240, 253)

p~ Reservoir yield at site s for season t m3/s (0, 0; 0, 0;

(the change of the flow if a reservoir is -63.6, 63.6)
built)

Part of flow at site s season t to be used m3/s 0

in the construction period to ensure a

full reservoir of the next period

f The ratio of average yearly power 0.226

production during the construction

period over the normal production level
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5s Variable cost for power plant at site s B RMB/MW (7.65x10-4,

1.85x10-3,

8.80 x10-4)

PVi Factor to bring 10-year annuity of (6.532, 2.863,

benefit back to the present value as of 1.254)

year 0 (now)

PVOi Factor to bring the annuity from year 31 (0.896, 0.943,

to year 70 back to year 0 0.963)

PVCi Factor to bring cost in the ith period (1, 0.438,

back to year 0 0.192)

r Discount rate 0.086

- Indicating whether or not the project is (1, 1, 1)

built at site s

crf Capital recovery factor 0.087

Results

Using GAMS (code see Appendix 6B), we get the result is

R1= 0, R21 = 0, R31 = 0

R12= 1, R22 = 0, R32 = 0

R 13 = 0, R 23 = 0, R33 = 0

The optimal net benefit is 3861 Million RMB.

The result means that

build Project 1 and 3.

simulation model. It is

the transition process:

we are only going to build Project 2 in the first period and do not

The result is different from those of the screening model or the

understandable because the sequencing model takes into account

reservoirs take time to build and to be filled up; power plants take
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time to build and gradually increase the production to full capacity. Unfortunately, this

transition process is close to present and has a huge impact on the NPV. For the

screening model and simulation model, steady state is considered and the huge impact

of the transition process is ignored. Using the traditional sequencing model taking into

account the transition process (without thinking of flexiblity in the future), we find only one

project is worthwhile to build.

If we force to build all projects by demanding R,5 =1, the result is we should build

Project 2 in the first period, Project 1 in the second period, and Project 3 in the third

period. But the optimal net benefit is 2008.58 Million RMB, about half of the plan that we

only build Project 2 in the first period.

Are we really going to build only Project 2 and discard all the other projects? No!

Remember that the power price is uncertain and may rise above a point so that it is

worthwhile to build one or more other projects. The next section will study how to build

price uncertainty systematically into the traditional sequencing model and solve the real

options timing model.

Even though we only get the result to build Project 2 in period 1 with this traditional

sequencing model, it is a useful model. It gives us an immediate action plan to build

Project 2. We will have time to wait for more information to plan sensibly for other

projects. Even if we have a good plan for future projects, we still need to adjust the future

projects based on how reality unfolds. Any plan for longer future should be dealt with

more caution. If there is time to wait for more information and there is no opportunity cost

for waiting, early commitment is not only unnecessary but also unwise.

As a baseline, we consider the traditional sequencing model where the electricity price is

deterministic, in other words, we do not consider the real options. The sequencing model

takes into account the transition process that projects, once built, gradually increase the

production to full capacity. It recognizes that time is needed to build reservoirs and
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power plants and to fill up reservoirs. This deferral of benefits over a number of years

has a huge impact on the NPV for large, capital-intensive projects. Thus, projects that

appeared good in the screening or simulation model analyses may turn out to be less

attractive when sequencing issues are considered.

In short, the above traditional sequencing model has already given us the important

information about which project to build first, and further improvement of the sequencing

model will be found in the next chapter.

6.3.2. Real options timing model

The real options timing model is the combination of the traditional sequencing model and

real options tree lattice algorithm. It is a stochastic mixed-integer programming

formulation. We will study the key interesting aspect in this study compared to the

previous study, that is, we are going to consider the hydropower benefit coefficient

(energy price) uncertainty in the future. And the contingency plan given the realization of

actual energy prices will also result from the model. So, the result from the model is a

dynamic plan as well as the optimized objective function value.

Path-dependency and breaking of the recombination

structure of the binomial tree

The electricity price movements can be described in the tree as Figure 6-14, where #P is

the electricity price, u is the up factor, and d is the down factor.

But the key difference of the formulation of the real options timing model based on this

binomial tree and that of financial option is the path-dependent/path-independent feature.

In the binomial tree for financial options, the valuation of an option on each node is path-

independent, which means it does not matter how the price moves into that state. For
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example, at year 20, if the price is #3ud, the valuation of the option on that node is the

same for any path leading into that state, wether AP -> #pu -> fud or #' -> #3d -> #3ud.

In the real options timing model based on the tree, the path-independency feature does

not hold any more. It does matter, at node #f3ud, how the price evolved in the past. If it

went through fu, a dam might have been built, and that dam will be producing power

and generating electricity during the period; however, if it went through #3d, no dam might

have been built, the expected revenue in that period being different.

So, in the real options timing model, we do need to consider all the paths that lead into

final states as in Table 6-20. Where p is the risk-neutral probability. It is defined by:

en-e~

e I -e-

where p is the drift rate, AT is the time interval between periods. In the river basin

development case example, p is -0.33% per year, and AT is 10 years.

Year 0 Year 10 Year 20 Year 30

PUP
13 uuu

f"uud

P~u dudd

P "dd

13" Pddd)

Figure 6-14 Electricity price movement (with recombination)
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Table 6-20: Paths of electricity price movement

Year 0 Year 10 Year 20 Year 30 Probability of path

Path 1 f6 Pu [3uu #3uu- p

Path 2 PP 'T Hu P7uud p2(1-p)

Path3 /3 flu 3"ud PPudu p2(1_p)

Path 4 P3 flu /3ud fudd p(1-p)2

Path 5 '8 O'd __du dUduu p2(1_p)

Path 6 8 1 7d pdu Idud p(1-p)
2

Path 7 P3 P d pdd fddu p(1-p)2

Path 8 P3 Ppd dd ddd (1-p)3

Formulation

The real options timing model incorporates uncertainty in the hydropower benefit
coefficient (energy price). It gives a contingency plan in reaction to the actual realization
of energy price. In this connection, we would again like to point out the path-dependent
feature of this problem. Refer to Figure 6-14. For example, in the second stage, if
electricity price goes up, a project is built; but if it goes down, no project is built.
According to the formula for binomial tree, the middle point of the third stage has a price
of #3Fud or #pdu, numerically the same, however, it is different for the following two paths
leading into the point because of the hydrological conditions: first path, the price goes up
in the second stage, and goes down the third stage with a project changing the water flow;
the second path, the price goes down in the second stage, and goes up in the third stage
with no project and the natural water flow.

The key differences of the definition of variables/parameters of this sequencing model
with the traditional model are as follow: Ri,, 0-1 variable indicating whether or not the

project is built at site s for time period i, is replaced by R , a new 0-1 integer variable for

which the subscript s and i have the same meaning and q represents the scenario index
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from 1 to 8. The hydropower benefit coefficient, #P, is not a constant any more. It will

fluctuate according to the time period i and scenario index q, or it can be written as P,.

Objective function

Compared to the traditional sequencing model without real options considerations, the

objective of the real options timing model is changed to:

P P,,[ R ' -(1 -f)Ri]PV + PTPVQRi
Max 5 q i t j-1 s q i '

-[a E *{a(V + 5, (Hs)]R q pVrC,}
s q i

where

10i 1
P V = E

j=10(i-1)+1 (1+ r)'

60+10(1-1)

1(1 +)
PVCi =

(1+ r)100'~)

Technical constraints

The technical constraints are the same as the traditional sequencing model, including

continuity constraints, construction constraint, hydropower constraints, hydropower

constraints, and budget constraint. The only difference is due to the change of

specification of Ris into R . Actually, we can view each path of the electricity price as a

run for the traditional sequencing model.
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Real options constraints

Moreover, the constraints differ because this formulation adds the real options constraints:

R q<1 Vs,q

R= Rq2 V(q,, q2) through node k, Vk e i = , Vi n Equation 6-7

Specifically, in our case example, Equation 6-7 are as follow: For i = 1, there is only one

decision (refer to Figure 6-15, at year 0, the decision maker has only the information up

to that time, and cannot distiguish which path the electricity price will follow), or

I I=R' ,, Vqw1

For i = 2, there are two different decisions (refer to Figure 6-15), or

2 =Rs =R2s 2s

R2s r2f =r2s = r2s

For i =3, there are 4 different decisions (refer to Figure 6-15), or

= R$s

= R$,

= R~s

Rs

3

R7

Rs
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Our planning horizon is three stages (30 years) though each project is assumed to have

a life time of 60 years. At the last time stage, there is no decision (refer to Figure 6-15)

and the realization of electricity price is used to calculate the net benefit of projects.

Year 0 Year 10 Year20 Year30

P~uud

d ddu

d dd ddd

1 Decision 2 Different Decisions 4 Different Decisions No decision

Figure 6-15 Illustration of Nonanticipativity Constraints in the River Basin Case

Complete formulation of the problem

Objective function:

R , -(1- f)R iP +I l 1 pqrs PVO±
Max S q i t l s q i '

-- ['s (Vs )+ 5,(H,)]R .PVCi}
s q i

where
10

PV j== (
j=1Oti-1)+ (1 + r)'
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60+10(1-1)

j=31 (1+r)j

PVCi =
=(1± r1 (~

Constraints:

Technical constraints:

x -q Rfi\ q _Ci31 = Qin,1l + 31 j3 31R i3
j=1

i32 in,2 + R32 L 3 3 i3
j=1

i12 = i32 +L132 + R R q
j=l

i2l - ill

i22 - i12

ist = 2.73 - te * k t, X
j=l

Rfti e tS <0Z <1
S

Real options constraints:

Ri RIS , Vq 1

Ris =R 2s = Rs = R s
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R 25 R$ 6

R'

R$ 5

R 7

=R 7 R= 2s = 2s

6

= R

Table 6-21 List of variables for the real options timing model

Variable Definition Units

Xq Average flow from site s for season t for time period i for scenario m/Fs

q

pit Hydroelectric power produced at site s for season t for time MwH

period i for scenario q

Rg q 0-1 variable indicating whether or not the project is built at site s

for time period i for scenario q

Table 6-22 List of parameters for the real options timing model

Parameter Definition Units Value

Qin,t Upstream inflow for season t m3/s (374,283)
AFs I Increment to flow between sites s and m3/s (389, 154) for

the next site for season t site 3, others

are 0

es Power plant efficiency at site s 0.7

kt Number of seconds in a season Million 15.552

Seconds

ht Number of hours in a season Hours 4320

ep Power factor 0.35

,6 Hydropower benefit coefficient for 103  RMB

period i and scenario q /MwH
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FCs Fixed cost for reservoir at site s B RMB (11.19,0,8.41)

VCs Variable cost for reservoir at site s B (4.49x10-4, 0,
RMB/10 6m3  6.68 x10-4)

- Capacity of power plant at site s MW (3600, 1700,

1723)

Capacity of reservoir at site s 10 6m3  (9600, 0, 9593)

-s Head at site s for season t m (262, 262; 280,

280; 240, 253)

yst Reservoir yield at site s for season t m3/s (0, 0; 0, 0;
(the change of the flow if a reservoir is -63.6, 63.6)
built)

-~ Part of flow at site s season t to be used m3/s 0
in the construction period to ensure a

full reservoir of the next period

f The ratio of average yearly power 0.226
production during the construction

period over the normal production level

6s Variable cost for power plant at site s B RMB/MW (7.65x10-4,

1.85x10-3,

8.80 x10-4)

PVi Factor to bring 10-year annuity of (6.532, 2.863,
benefit back to the present value as of 1.254)

year 0 (now)

PVOi Factor to bring the annuity after the 3 (0.896, 0.943,

10-year periods till the end of 60 year 0.963)

life span of a project

PVCi Factor to bring cost in the ith period (1, 0.438,
back to year 0 0.192)

r Discount rate 0.086
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Indicating whether or not the project is (1, 1, 1)

built at site s

crf Capital recovery factor 0.087

o Volatility for power price

A T Number of years between two periods Year

List of variables and parameters are repeated three times for the screening model, the

simulation model, and the real options timing model. Note the subtle differences of

variables and parameters in the three models. Each model studies the same problem

with different focus, and thus the variables and parameters may be defined in a slightly

different way. Such differences are critical and reflect the purposes that each model

serves.

6.3.3. Options analysis results

Using GAMS@, we obtain the results for the real options timing model (code see

Appendix 6C) as Table 6-23. For example, for the first scenario q = 1 that occurs with

probability = 0.138: the electricity prices for the first, second, and third 10-year time

period (i = 1, 2, and 3) are 0.250, 0.312, and 0.388 RMB/KWH, respectively. The real

options decision variables for Project 2 in the first period and Project 1 in the third period

are 1's, and the other 7 real options decision variables are O's (we have 9 real options

decision variables for each scenario, 3 projects times 3 periods each). Therefore, for

scenario 1, the decision is to build Project 2 in the first period and Project 1 in the third

period. The rest of Table 6-23 can be read in the same way. In summary, as in Figure

6-16, the optimal strategy or contingency plan is to build Project 2 in the first time stage

whatever the electricity price is. And build nothing in the second stage. In the last stage,

we only build Project 1 in the case that price is up for the second stage and up again for

the third stage, for other cases, we build nothing.
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M Price = 0.25 RMB/KwH
Project 1 no build

Project 3 no build

IPrice = 0.312 RMB/KwH
Project 1 no build
Project 3 no build I

I

Price = 0.201 RMB/KwH
Project 1 no build
Project 3 no build

Price = 0.250 RMB/KwH

Project 1 no build
Project 3 no build

Price = 0.250 RMB/KwH
Project 1 no build
Project 3 no build

Figure 6-16: Contingency plan

Table 6-23: Results for real options "in" projects timing model (Current electricity price

0.25 RMB/KWH)

Electricity Price
Decision

Realization

Scenario J= 1 i= 2 i= 3 Prob i = 1 i = 2 i = 3

Project 1 0 0 1

q = 1 0.250 0.312 0.388 0.138 Project 2 1 0 0

Project 3 0 0 0

Project 1 0 0 0

q = 2 0.250 0.312 0.250 0.233 Project 2 1 0 0

Project 3 0 0 0

Project 1 0 0 0

q = 3 0.250 0.201 0.250 0.233 Project 2 1 0 0

Project 3 0 0 0

Project 1 0 0 0

q = 4 0.250 0.201 0.161 0.395 Project 2 1 0 0

Project 3 0 0 0

Price = 0.388 RMB/KwH

Price = 0.250 RMB/KwH
Project 1 no build

Project 3 no build

I Project 3 no build
j
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The overall expected net benefit is 4345 million RMB. As a comparison, the traditional

sequening model suggests that only Project 2 should be built in the first time period and

that Projects 1 and 3 should never be built, with an overall expected net benefit of 3861

million RMB. Real options add additional value by building Project 1 in favorable

situation (electricity price high) and avoiding it in an unfavorable situation (electricity price

low). Refer to Figure 6-16. In this example, the added value is not enormous, but the

principle is established.

There are three important notes regarding the results:

- This real options timing model provides a contingency plan (as Figure 6-16)

depending on how events unfold, as well as the value of projects with real options.

Using the real options timing model, we learn to build Project 2 in the first stage,

and build Project 1 in the third stage given certain electricity price condition; if

using the traditional sequencing model, the decision is to build Project 2 in the first

stage, and then build nothing else, surely missing something compared to the real

options timing model.

- This contingency plan takes into account the complex interdependencies among

projects, in this case, through the water flows (for example, one dam in the

upstream will store water and help downstream stations to produce more in dry

season). Using conventional options analysis, it is hard to deal with such

interdependencies. This example is simpler than real water resources planning;

nevertheless, we can use exactly the same methodology, with more computation

and other resources, to tackle much more complex real water resources planning

problem.

- The value of options is the difference between the optimal benefits from the real

options timing model and the traditional sequencing model, 484 million RMB, or

12.5% of the result of traditional sequencing model without real options

consideration. Note the valuation of real options "in" projects looks not for an

exact numeric result as valuation of financial options, but assesses whether

flexible designs are worthwhile. This process about real options valuation is more
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about the process of designing flexibility itself than a specific value of optimal

benefit.

Finally, a few words about the computational costs: for the example river basin
development problem, the number of variables is 187, of which 36 are 0-1 discrete

variables, and the number of constraints is 261. It takes a laptop (Pill 650, 192M RAM)
less than 2 seconds to use GAMS@ to figure out a solution.

6.3.4. Extension of real options timing model to consider

multiple designs at a site

In the previous analysis, we have an implicit assumption that all designs are fixed now.

Actually we do not do this in reality, and the design will change with regard to how reality

unfolds. Considering this aspect of flexibility, we should further add value to the real

options timing model developed in the previous section.

Before we start studying multiple designs. We want to see a case that exhibits more

optionality. For the current price of 0.25 RMB/KWH, it is too low to have Project 3
entering the picture, while the designs of Project 1 and 2 do not vary a lot with respect to
electricity price as shown in Table 6-11.

The case with current electricity price of 0.30 RMB/KWH

The optionality of the plan can be more significant if the current electricity price is higher.

If we take the current electricity price as 0.30 RMB, the result is as Table 6-24. The

optimal expected net benefit is 6899 million RMB. The corresponding optimal expected

net benefit is 5195 million RMB for the traditional sequencing model with a current

electricity price of 0.30 RMB/KWH. The options value is 1704 Million RMB, or 32.8% of
the result of the traditional sequencing model without real options consideration. The
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contingency plan is to build Project 2 in the first stage, build Project 1 in the second stage

if the price goes up, build Project 3 in the third stage if the price goes up both in the

second and third stage. Refer to Figure 6-17. Note the path-dependent feature: in the

third stage, for the same electricity price of 0.30 RMB/KWH, Project 1 can have been built

or not, depending whether the electricity price in the second stage was high or low.

Price = 0.300 RMB/KwH
Project 1 no build

Price = 0.466 RMB/KwH

Price = 0.374 RMB/KwH
I ec bl Price = 0.300 RMB/KwH

Project 3 no build I Project 3 no build I

Figure 6-17: Contingency plan (if current electricity price = 0.30 RMBIKWH)

Table 6-24: Results for real options "in" projects timing model (Current electricity price

taken to be 0.30 RMB/KWH)

Electricity Price Realization Decision
Scenario i=1 i=2 i=3 Prob i = 1 i = 2 i = 3

Project 1 0 1 0
q = 1 0.300 0.374 0.466 0.138 Project 2 1 0 0

Project 3 0 0 1
Project 1 0 1 0

q = 2 0.300 0.374 0.300 0.233 Project 2 1 0 0
Project 3 0 0 0
Project 1 0 0 0

q = 3 0.300 0.241 0.300 0.233 Project 2 1 0 0
Project 3 0 0 0
Project 1 0 0 0

q = 4 0.300 0.241 0.193 0.395 Project 2 1 0 0
Project 3 0 0 0

Project 3 no build Price = 0.241 RMB/KwH
Project 1 no build
Project 3 no build

Price = 0.300 RMB/KwH
Project 1 no build
Project 3 no build

Price = 0.193 RMBIKwH
Project 1 no build
Project 3 no build

I
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Multiple designs for Project 3 when current electricity price

is 0.30 RMB/KWH

To verify this idea, we study multiple designs for Project 3. As Table 6-11 shows, the
design of Project 3 varies significantly with regard to the power price, and this is the place

of focus point for designing flexibility. We are now considering adjusting the design for

Project 3 according to the unfolded electricity price, as well as the decision whether to

build Project 3 based on the electricity price.

We designated 3 sets of potential designs from Table 6-11 corresponding to the cases

that the electricity prices are 0.22, 0.25, 0.28 RMB/KWH, respectively. And the
optimization can choose among the sets to find the optimal one. The 0-1 variable z(n)

defines which design is chosen, if set n is chosen then z(n) = 1, otherwise z(n) = 0. Since

only one set can be chosen, so

Yz(n)=1
n

The 3 sets of design for the case are as Table 6-25. Corresponding to each design, the
water flow parameters are different as Table 6-26.

Table 6-25 Three sets of design for multiple height choice

Design 1 Design 2 Design 3

H1 3600 3600 3600

H2 1700 1700 1700

H3 1723 1946 1966

V1 9600 9600 9600

V2 25 25 25

V3 9593 12242 12500
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Table 6-26 Different water flow corresponding to different height

I Prima = 06A6 RMB/KwH I

Price = 0.374 RMB/KwH

Project 3 no build

Project 3 no build Price = 0.241 RMB/KwH
Project 1 no build
Project 3 no build

Figure 6-18 Contingency plan for current electricity

Price = 0.300 RMB/KwH
Project 3 no build

Price = 0.300 RMB/KwH
Project 1 no build
Project 3 no build I

Price = 0.193 RMB/KwH
Project 1 no build

Project 3 no build

price of 0.30 KWH/RMB

Using GAMS to solve the formulation (GAMS code is as Appendix 6D). The optimal

benefit raised to 7129 million RMB, compared to the result of 6899 million RMB using

only the design of H3 = 1723 and V3 = 9593. Compared with the result of the traditional

sequencing model without real options consideration, 5195 Million RMB, the options

value is 1934 Million RMB, or 37.2% of the result of the traditional sequencing model

without real options consideration. The new result is to go with Project 2 in the first

Design 1 Design 2 Design 3

Y 1 262 262 262

Y2 262 262 262

280 280 280

Y280 280 280

Y 240 274 277

Y - 253 286 289

Price = 0.300 RMB/KwH
Project 1 no build

N
I
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period, and go with Project 1 in the second period if price goes up, and go with Project 3

with the design of H3 = 1966 and V3 = 12500 if the price goes up again in the third period.

In this way, we further expand the power of the method to consider more flexibility. See

the contingency plan as Figure 6-18.
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Chapter 7 Policy Implications -

Options in Practice

Before studying how to apply options thinking in practice, we have to first make sure that

policy makers would use it. This means that options analysis has to make a substantial

improvement over previous analysis tools. Two substantial improvements must be

presented to and understood by policy makers. The two improvements from options

thinking are value of options (better mean) and/or change of distribution (desirable

distribution)

Better mean: It is often the case1 , once options are imbedded in the systems planning

process, that there is an improvement in the value of the project. We have estimated the

options value for case example of river basin is 484 million RMB as described in Section

6.3.3. The value is substantial when uncertainty is higher, which is measured by a higher

volatility.

Desirable distribution: With options on hand, the distribution of the value of a project is

changed. Some extreme values are avoided for the downside, and/or some more

favorable upside potential is obtained. Smaller downside risk is very important for many

policy makers. The more risk averse a policy maker, the more important a smaller

downside risk is. For some cases, even if the mean of the value of a project is smaller

than another project, the project may be still be preferred by policy makers because of a

smaller downside risk. An options analysis will provide a plan with a smaller downside

and/or bigger upside. The case example of parking garage development (Section 4.3.4. )

provides a good illustration of manipulation of distribution by options, especially the VAR

curves in Figure 4-5.

1 Under some circumstances, people may use an option that actually decreases the mean, e.g.
insurance.
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After showing policy makers of the significance of options thinking, we are going to
further clarify the relationship between flexibility and economies of scale, and then some
application tactics is very important in making real impact on options thinking. Meanwhile,
we should be aware that options analysis is not a panacea, sometimes it works,
sometime it does not. So it is important to understand the uncertain reality and choice of
appropriate methodology.

7. 1. Flexibility vs. Economies of Scale

Big engineering projects often exhibit significant economies of scale. Economies of scale
are common in industries where cost largely depends on the envelope to the structure (a
quantity expressed in terms of the square of the linear measure), and capacity depends
on the volume (a quantity expressed in terms of the cube of the linear measure). In such
situations, total cost grows approximately to the 2/3 power of capacity.(de Neufville, 1990;
Chenery, 1952). The desire to take advantage of economies of scale has been a prime
motivation for building large facilities such as ships, aircraft, chemical plants, thermal
power stations, and many other kinds of manufacturing. Most pertinently for civil
engineering, it characterizes tunnels, pipelines, dams, hydro plants, and water treatment
facilities (de Neufville, 1970). A typical deterministic design practice forecasts expected
values of uncertain parameters, and uses those expected values as inputs for further
analysis and design. Optimization with such design parameters often leads to economies
of scale.

However, when plants are only operating at some fraction of full capacity, larger and
supposedly more economical facilities may in fact be relatively uneconomical, compared
to smaller facilities, when capacity is not fully used. For example, in our case example of
river basin development, the actual benefit from the simulation model is lower than what
the screening model suggests. This is because the projects are not going to benefit from
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excess water when water is more than the reservoir can store, but on the downside, they

are fully exposed to drought conditions. Thus occasional high levels of water do not

compensate for lost revenues due to occasional low levels of water. Due to these

uncertainties, the economies of scale seemingly apparent under the deterministic

screening model are reduced.

An important trade-off exists between economies of scale and flexibility. The economies

of scale are only fully achieved when demand catches up to the size of the facility.

Meanwhile, the facility has to be built and paid for in advance, and interest or other

opportunity costs are incurred. Larger facilities offer more economies of scale, but also

need more time to achieve them. Smaller facilities offer more flexibility to meet the actual

realization of demand with less unused capacity, and need less time and lower cost to

build. There is an economically optimum size of construction for each phase of

expansion. As Manne (1961, 1967) has shown, this sweet spot can be calculated

precisely - assuming that one knows the economies of scale factor, the discount rate

over the period, and the rate of growth of demand. All his studies were based on a

deterministic view. If uncertainties regarding the demand and supply are high, the rules

Manne developed may be misleading.

Only exceptionally do long-term forecasts actually hit the mark. As a general rule, we

can expect that the actual long-term future demand will be different from what was

projected as the most likely scenario. Designers must expect that big engineering

systems will have to serve any one of a range of possibilities.

The fact that there is great uncertainty about the future loads has two implications for

design, as Mittal (2004) has documented:

* the optimal size of the design should be smaller than that defined by Manne (1961,

1967), that is, planned for a shorter time horizon; yet

" the design should be easy to adjust for the range of possible long-term futures, or

in other words, flexible.
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Note the two design implications have important implications on Economies of Scale:
basically, one of the statements brings forward the idea that optimal size may be one
planned for a shorter time horizon, thus we are implicitly saying Economies of Scale may
not be that "real".

In short, the reality of great long-term uncertainty means that system designers need to
adopt a strategy of development whose evolution depends on the future as it unfolds.
Specifically, they should insure their project against downturns and utilize upturns

potential in anticipated requirements (by building smaller facilities and thus paying an
insurance premium by sacrificing potential economies of scale), while designing in the
capability to expand aggressively if future growth demands larger capacity. In other
words, system designers need to build in "real options".

7.2. Making Real Impact of the Options Thinking

The author spent 4 months in the China Development Bank in Beijing to help the bank
study the real options method and implement real options thinking in their project
evaluation process. The China Development Bank is the major investor of China public
projects in energy, transportation, and other public areas where other investors are
unwilling or unable to invest.

To use options thinking in a developing country like China, there are more difficulties than
using the methodology in a developed country like the US. In the US, there are still many
problems need to be solved before real options method can be applied maturely and
widely. The major difficulties of the real options method in developing countries are how
to make decision-makers understand the method and obtain the quality data necessary
for options valuation models.
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The options methodology develops a proactive and analytical view of uncertainty and

flexibility. Despite the difficulties mentioned above, it has a good possibility to make a

real impact in a developing country such as China. Besides the methodology itself, the

organizational tactics and skills to make people accept new ideas are also among the

keys to make real impact of the method.

This section discusses the two aspects of promoting the real options method in China,

and more generally, in developing countries. The first aspect is the intrinsic difficulties in

promoting real options method in developing countries, and the second is the

organizational wisdom to advocate new thinking.

7.2.1. Intrinsic Difficulties in Promoting Real Options

methodology

First of all, it should be stressed the real options method has a lot of room to grow in

developing countries, despite the difficulties discussed in this section. In other words,

these difficulties do not make the method inapplicable in developing countries.

Understanding the method

The options theories and models always seem arcane to people, the partial differential

equations... the dynamic processes... people usually think options are the work of rocket

scientists.

In China, what makes things even worse is that, since China is afraid that the trading of

options is easy to foster fraudulence in its weak legal system, financial options are not

traded in local financial markets.. So Chinese people do not know what options are

intuitively like people in developed countries.
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If a person does not establish an understanding of financial options, he/she will find it
very hard to develop the idea of what the real options are and to have confidence in the
method. For example, in the China Development Bank where the author worked, a
manager heard that the real options method overvalues projects, then he had deep
misunderstanding and mistrust of the method because the real options method seems
like a black box and hard to comprehend.

After all, a manager is not going use a method if he/she does not understand it.

Data

Options analysis needs a lot of historical data to do objective analysis. In developed
countries, the abundant historical data on financial market provides the power of options
analysis - there is little subjective element in the analysis, and the magic of market tells
all. However, in developing countries, there is no complete financial market, and
consequently, the data is incomplete. Even with some data, the financial market is
decided by too much government interference so the information is highly distorted.
China is such an example. So, even if there is data, people must be very cautious when
using it. Also, because China has been undergoing tremendous reform for a long time,
there has been several major system changes in the past years. The state changes
imply that the available data does not reflect the current situation.

A way to circumvent the data problem is to use simulation to obtain important parameters
such as the volatility. In this way, the model risk is huge because the model includes of
subjective assumptions of the model-makers.

Although the difficulties in helping managers understand the methodology and the
availability of data problems, the real options method will be able to spread fast in
developing countries because of its insights into uncertainty and flexibility. The thinking
is invaluable, nevertheless.
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7.2.2. Organizational Wisdom to Advocate New Thinking

In this section, the author's personal experience in specific settings is introduced.

Readers please judge if it works in the specific organization and specific country you are

working in.

During the work in the China Development Bank, the author realized the tremendous

difficulties in promoting new thinking, especially in some big institutions that have a rigid

bureaucracy and highly risk-averse. After working in the bank for months, the author

figured out some tactics to quicken the process of adoption of new ideas. Although any

good ideas will be used in the end, the process is very slow and painful. For example, it

took 20 years for people to use the NPV method widely. However, a smart way will make

the process of adoption of real options methodology faster.

Humans do not like changes. They would like to follow the old way that they are familiar

with. Because of the efforts and pains to, unless people do not face threats or other

pressures, they will not take the efforts to change. Change is difficult and we must be

patient and know how to make things happen tactically.

After working in the China Development Bank. The author understands the following 4

elements are the keys for the success of letting people accept the options thinking. They

are

- support from the top management;

- identify the needs of the organization;

- from simple to complex;

- perfect communication with grass-root people in the organization.

The support from the top management is key to success. Basically, in most big

organizations, one of the most important motivations of people is promotion. If the top
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management would like to promote something, people will have enough motivation to
take the endeavor to study the new ideas. When the author did the real options study
and promotion in the China Development Bank, one of the top managers gave me full
support on the project.

Another important tactic is to identify the needs of the organization, and firstly show them
that the method can be used to deal with the questions that they are most interested in.
A bank does not care too much about the value of a project, because what they can get
at most is the principal plus interest. If the project earns more, or has more upside, it has
nothing to do with the bank. On the other hand, the bank bears the risk of losing the big
chunk of the principal (while the interest they can earn is only a small part compared to
the principal). So they are more interested in the risk management rather than valuation.
So when the author presented the real options to the Bank during the first several weeks,
the author did not mention many classical benefits of the options valuation, such as
valuation of the flexibility. Instead, the author used simple simulation showing the idea of
right not obligation of options can be designed into a contract and reduce the default risk.
By focusing on the needs of the bank rather than the traditional stressed benefits of real
options, people in the Bank are getting interested in the method and understand the
method gradually.

The real options method is not a simple method, though it looks transparent to experts
who study the method everyday. It does take a while for those that have never heard
about it to understand the method. So it is important to show the thinking and method
from simple to complex step by step. In the bank, when the author showed people there
how to evaluate the options, firstly the author did not show them the profound options
valuation formula or even binomial tree. the author just showed them the idea of cut
probability density function to value an option which is much more intuitive with the
presentation of a software like Crystal ball.

A perfect communication with the bank people is the key to success, especially the
grass-roots people. Their trust in the author is one of the necessary conditions to
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success. In the bank, the author had to do a successful case to show the method

workable. Though the author know the real options method, the author does not know

the intricacy of project evaluation. For example, the author did a project valuation on a

hydropower project study, but the author is not an expert on the China hydropower

industry. So my real options analysis might have made no sense to the experts in the

bank who have studied the industry for decades. So the author has to make sure that my

reports were collaborated with experts in the bank. In the bank, the author made two

very good friends, one is an expert in China energy industry and another is the people

who the bank designated to cooperate with me. With friendly and perfect communication

with these two grass-roots people, the author was able to understand the bank faster and

avoid many stupid mistakes.

7.3. Uncertain Reality and Appropriate Method

Nature is inherently unknown. People can handle the situation with known risks with

known distributions, but people just cannot deal with the situations where the uncertain

factor is unknown, or the uncertain factor is known but the distribution of the uncertain

factor is unknown. Anticipatable risks should be managed, but less can be done about

other system risks. When people have to enter into the domains that are ultimately

unknown, they need to invest in information to the best capacity possible. If you have

done what you can do and still fail in the end, no one is to blame.

Several common quantitative tools for decision making are listed below:

- Discounted cash flow (DCF)

- Decision tree analysis (DTA)

- Real Options
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A useful classification of uncertainty helps people to understand the environment better,
and identify the best quantitative tools for decision making to deal with the specific
uncertainty. And most importantly, people need to understand that the right decision and
method do not necessarily lead to a happy outcome.

Suppose the outcome, denoted n, is a function of N influence parameters:

1 = r(w, w 2,..., WN)

Usually, the project payoff n cannot be predicted with certainty.

Complexity: Many of the parameters are not random, and they could be under the
influence of the decision-makers - for example, engineering designs. Interdependencies

among influence parameters may make the optimization a significant task. Thus,
complexity is the centerpiece of much of deterministic analysis tools, such as the NPV
method and Linear Programming. Complexity increases with the number of
nonseparable variables in n. There is no uncertainty involved in complexity, actually.
Another example of complexity is scheduling classes in a big university.

Risk: Some influence parameters are not deterministic but dynamic. There is payoff
variation of n associated with those parameters. There are two kinds of situation: the
distributions of an influence parameter can be known or unknown. If the distribution is
known, and the influence parameter is market-traded assets, the standard real options
approaches apply, such as the Black-Scholes formula, binomial tree, and simulation
methods. If the distribution is known, and the influence parameter is not marketed traded,
people may use the decision tree analysis and binomial tree to design contingent plan
and value the project. However, if the influence parameter is known while the distribution

is unknown, both decision analysis and real options have no ground to work, and the
focus should be put on understanding the distribution of the influence parameter. Or a
decision tree analysis with the probability as an unknown parameter x is a possible
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method. Sensitivity analysis with respect the unknown parameter x can be done to get

important insights into the problem.

Ambiguity: The decision-makers may not be aware of some the influence parameters at

all. The decision-makers explicitly ignore the payoff impact of those influence parameters,

but implicitly takes "default" value for those influence parameters. The past is

extrapolated subject to changes in known parameters in the category of complexity and

risk. For any real decision, it is hard to avoid ambiguity, or in other words, not to miss

any influence variable. This is the key reason why forecast is almost certainly to be

wrong. For the case in an ambiguous environment, the best method is to invest in

information carefully, learning by trial and error. It is like entering a room without light to

find a way out. After bumping onto the table, the pain tells you that there is a table... In

such situation, people should avoid betting too much and do not put all the eggs in a

single basket.

The above analysis of uncertainty types can be summarized in Table 7-1.

Table 7-1 Uncertain Reality and Appropriate Method

Risk
Distribution Known

Complexity underlyingmarket underlying not market Distribution Unknown Ambiguity

traded traded
Financial Options DTA DTA (with probability as Trial and error

Methods Deterministic Valuation valuation formula an unknown to do
(NPV, LP, etc) Binomial Tree Simulation aensitivity analysis)

Simulation

Energy Project valuation River basin development Whether China energy New technology

Examples Scheduling classes in a with underlying of energy with waterflow distribution arket will be markrnent aimed at

unversi y price known allocation regime unkonwn market

With the understanding of uncertainty types, decision-makers can

- Decide when different analysis techniques are most suitable, when to use real

options method, when to apply decision tree analysis, and when to employ the

mathematical programming method;
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- Understand that there are cases where the analysis techniques do not help much

if a lot of ambiguity exists, and the best strategy is to carefully learn by trial and

error, and do not make life-or-death bet;

Because of the ambiguity is ubiquitous in real life, sometimes a decision has been

optimized given the information available, but the results may not be happy. However. In

such case, decision-makers should understand the decision is correct and not blame the

methodology, and gather information for future decisions.
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Chapter 8 Summary and Conclusion

In uncertain environments, flexibility has great value for project design, which usually

means to design smaller and design spare features initially, wait for further information,

and prepare for different kinds of happenings. This dissertation proposes a

comprehensive framework to identify and deal with strategic flexibility as an integral part

of project design.

8.1. Background

Options concept is a way to define the basic element of flexibility. The concept of options

is a right, but not obligation, to do something for a certain cost within or at a specific

period of time. This concept models flexibility as an asymmetric right and obligation

structure for a cost within a time frame. This is a basic structure of human decision

making - taking advantage of upside potential or opportunities and avoiding downside

risks. We can construct complex flexibility using the basic unit of options.

In financial terms, a typical example for options is a "call option" that gives the holder the

right to buy an underlying asset for a specified exercise price within or at a specified time.

The holder of the call option will exercise this right only if the value of the asset rises

above this price, but not otherwise. The key property of an option is the asymmetry of

the payoff, an option holder can avoid downside risks and limit the loss to the price of

getting the option, while she can take advantage of the upside risks and the possible gain

is unlimited. Usually, there is a price or cost to obtain an "option". The groundbreaking

Black-Scholes formula is the first work to value a financial option and its developers -

Black, Scholes, and Merton - won Nobel Prize in 1997 for the achievement.
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"Real options" are termed to emphasize those options involve real activities or real
commodities, as opposed to purely financial commodities, as in the case, for instance, of
stock options. For example, they may be associated with the valuation of an offshore
oilfield, the development of a new drug, the timing of the construction of a highway, or the
design of a satellite communications system. Since Myers (1984) coined the term of "real
options", researchers have been developing a variety of means to evaluate real options
(see for example: Dixit and Pindyck, 1994; Trigeorgis, 1996; Luenberger, 1998; Copeland
and Antikarov, 2001).

The common techniques to value real options are: the Black-Scholes formula, simulation,
and binomial tree. The Black-Scholes formula is the solution to a differential equation,
the major assumptions to derive the differential equation are no-arbitrage and geometric
Brownian motion of the price of underlying asset. With the value of parameters, we can
use the Black-Scholes to calculate the option value. However, if lack of understanding of
the underlying assumptions for Black-Scholes formula, it is very easy to apply the formula
blindly and obtain a useless and misleadingly precise "value of real options". Monte
Carlo simulation does not have as many assumptions as the Black-Scholes formula. If it
is possible to specify the stochastic processes for the underlying uncertainties, and to
describe the function between the input uncertain variables and the output payoff,
computers can do the "brute force" work. Plausibly, simulation can obtain any valuation
that Black-Scholes can get at any specified level of accuracy, and it can tackle problems
with complex and non-standard payoffs that Black-Scholes cannot deal with. Binomial
tree provides the basis for a dynamic programming algorithm. It is based on a simple
representation of the evolution of the value of the underlying asset of an option, and
calculates by rolling back from the last time stage to the first stage to get the value of the
option. The approach allows the recombination of states to decrease the computational
burden. It can also represent various stochastic processes of the underlying asset and
various options exercise conditions, so it is powerful and flexible.
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8.2. Real options "in" projects

Real options can be categorized as those that are either "on" or "in" projects (de Neufville,

2002). Real options "on" projects are financial options taken on technical things, treating

technology itself as a 'black box"'. Most classical studies on real options are for those

"on" projects, for example, a real investment opportunity in a gold mine (Luenberger,

1998) or investment in capacity expansion for a petroleum chemical company (Amram

and Kulatilaka, 1999). Real options "in" projects are options created by changing the

actual design of the technical system. Following are three examples of real options "in"

projects:

Example 1: "Bridge in bridge"

The design of the original bridge over the Tagus River at Lisbon provides a good

example of a real option "in" projects. The original designers built the bridge stronger

than originally needed, strong enough so that it could carry a second level, in case that

was ever desired. The second level of bridge was an option "in" projects, and the

Portuguese government exercised the option in the mid 1990s, building on a second

deck for a suburban railroad line (Gesner and Jardim, 1998).

Example 2: Satellite systems

In the late 1980s, Motorola and Qualcomm planned the Iridium and Globalstar systems to

serve their best estimates of the future demand for space-based telephone services.

Their forecasts were wrong by an order of magnitude (in particular because land-based

cell phones became the dominant technology). The companies were unable to adjust

their systems to the actual situation as it developed and lost almost all their investments -

- 5 and 3.5 billion dollars respectively. However, if the companies had designed
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evolutionary configurations that had the capability to expand capacity, it would have been

possible both to increase the expected value of the system by around 25%, as well as to

cut the maximum losses by about 60% (de Weck et al, 2004). Such evolutionary

configurations can be realized by designing real options for the room of future capacity

expansion. For example, a smaller system with smaller capacity can be established first.

For a smaller system, there could be fewer satellites with a higher orbit. One possible

real option is to carry extra fuel on each satellite. When demand proves big, the satellites

can move to lower orbits with the existing orbital maneuvering system (OMS). With

additional satellites launched to lower orbits, a bigger system is accomplished to serve

the big demand. The extra fuel carried in the satellites are real options. They can be

exercised when the circumstances turn favorable. There is cost to acquire such real

options - the cost of designing larger tanks and launching extra fuel. Decision makers

have the right to exercise the options, but not the obligation - they can leave the extra

fuel on board.

Example 3: Parking garage design

This example is extrapolated from the Bluewater development in England of a multi-level

parking garage. A car-parking garage for a commercial center is planned in a region that

is growing as population expands. Economic analysis recognizes that actual demand is

uncertain, given the long time horizon. If the owners design a big parking garage, there

is a possibility that the demand will be smaller and the cost of a big garage cannot be

recovered; however, if the owners design a small parking garage, they may miss the

opportunity if the demand grows rapidly. To deal with this dilemma, the owners can

design a real option into the design by strengthening the footings and columns of the

original building so that they can add additional levels of parking easily. This premium is

the price to get the real option for future expansion, a right but not an obligation to do so.

(de Neufville, Scholtes, and Wang, 2005)
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Note the difference between real options "in" projects and the engineering concept of

"redundancy". Both real options "in" projects and redundancy refer to the idea that some

components should not have been designed if the design were optimized given the

assumption that things are not going to change. Redundancy refers to more than enough

design elements to serve the same function, while real options "in" projects may not

serve the same functions as some currently existing components (though such real

options do not prove necessary given the current situation).

Comparison of real options "on" and "in" projects

Real options "on" projects are mostly concerned with the valuation of investment

opportunities, while real options "in" projects are mostly concerned with design of

flexibility. Some classic cases of real options "on" projects are on valuation of oil fields,

mines, and pharmaceutical research projects, where the key question is to value such

projects and decide if it is worthwhile to invest in them. The examples of real options "in"

projects are extra small rockets on satellites, strengthened footings and columns of a

multi-level parking garage, or "bridge in bridge".

Real options "on" projects are mostly concerned with an accurate value to assist sound

investment decisions, while real options "in" projects are mostly concerned with "go" or

"no go" decisions and an accurate value is less important. For real options "on" projects,

analysts need to get the value of options, but for real options "in" projects, analysts do not

have to provide the exact value of the options but simply provide what real options

(flexibility) to design into the physical systems.

Real options "on" projects are relatively easy to define (a categorization of real options

can be found in Trigeorgis, 1993), while real options "in" projects are difficult to define in

physical systems. For an engineering system, there are a great number of design

variables, and each design variable can lead to real options "in" projects. It is hard to find
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out where the flexibility can be and where is the most worthy place to design real options

"in" project. Identification of options is an important issue for real options "in" projects.

Real options "on" projects do not require knowledge of technological issues, and

interdependency/path-dependency is not frequently a salient issue. However, real

options "in" projects need careful consideration of technological issues. Complex

technological constraints often lead to complex interdependency/path-dependency

among projects. Table 8-1 summarizes the comparison between real options "on" and

"in" projects.

Real options "on" projects Real options "in" projects

Value opportunities Design flexibility

Valuation important Decision important (go or no go)

Relatively easy to define Difficult to define

Interdependency/Path-dependency less an Interdependency/Path-dependency an

issue important issue

Table 8-1 Comparison between real options "on" and "in" projects

There is much less literature on real options "in" projects than that on real options "on"

projects. Zhao and Tseng (2003) discussed the value of flexibility in multistory parking

garages. Zhao, Sundararajan, and Tseng (2004) presented a multistage stochastic

model for decision making in highway development that incorporating real options in both

development and operation phase. Leviakangas and Lahesmaa (2002) discussed the

application of real options in evaluation of intelligent transportation system and pointed

out the shortcoming of traditional cost-benefit analysis that may discard the value of real

options. Kumar (1995) presented the real options approach to value expansion flexibility

and illustrated its use through an example on flexible manufacturing systems. Ford,

Lander, and Voyer (2002) proposed a real options approach for proactively using

strategic flexibility to recognize and capture project values hidden in dynamic

uncertainties. de Neufville, Scholtes, and Wang (2005) developed a spreadsheet Monte
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Carlo simulation model to value real options in the design of a multistory park garage and

gained insights into real options "in" projects, especially the key trait of real options taking

advantage of upside potential while cutting downside risk.

Real options "in" projects are those that are most interesting to project designers. In

general, real options "in" projects require a deep understanding of technology. Because

such knowledge is not readily available among options analysts, there have so far been

few analyses of real options "in" projects, despite the important opportunities available in

this field.

There are two key difficulties facing the analyses of real options "in" projects. The first is

that while financial options are well-defined contracts and real options "on" projects are

easy to construct via different financial arrangements, it is much harder to identify real

options "in" projects where there are myriads of design variables and parameters. The

second difficulty is that real options "in" projects often exhibit complex path-

dependency/interdependency that standard options theory does not deal with. Real

options "in" projects are different and need an appropriate analysis framework - existing

options analysis has to adapt to the special features of real options "in" projects.

8.3. Analysis framework for real options "in"

projects

The analysis of real options "in" projects is in part inspired by the standard procedures for

water resources planning described by Major and Lenton (1979). These embody a series

of models to generate satisfactory solution for the plan. Because of the size of the

problem, in terms of number of parameters and uncertain variables, a single model giving

the optimal solution is too complex to establish. So people divide the modeling into a

series of models and get a satisfactory solution rather than search the best plan among
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all possible plans. As Herbert Simon (1957) pointed out: because of the astronomical

amount of extrinsic information and human's limited intrinsic information process capacity,

in real decision making, people do not search for an optimal decision, instead, they stop

looking for better decisions once reaching a satisfactory decision. The process - that

divides the decision process into several consecutive models and search for a

satisfactory solution rather than an optimal solution - is in accordance with the nature of

human decision-making in a very complex and uncertain environment. Specifically, the

standard water resources planning procedures divide the process into a:

- deterministic screening model that identifies the possible elements of the system

that seem most desirable;

- simulation model that explores the performance of candidate designs under

stochastic loads; and

- timing model that defines an optimal sequence of projects.

The process of analysis for real options "in" projects modifies these traditional elements.

At a higher level, it divides the analysis into 2 phases as indicated in Figure 8-1: options

identification and options analysis.

Options Identification Options Analysis

Execute and
redesign when new

Screening Simulation Timing Model information arrives

Model Model

Figure 8-1: Process for Analysis of Real Options "in" Projects



253

8.3.1. Options identification

For real options "in" projects, the first task is to define the options. This is in contrast with

financial options, whose terms (exercise price, expiration day, and type such European,

American or Asian) are clearly defined. For real options "in" projects, it is not obvious

how to decide their exercise price, expiration day, current price, or even to identify the

options themselves. A project design involves a great many decision variables, such as

the date to build, capacity, and location, etc. Each of these could place options in. The

question is: which options are most important and justify the resources needed for further

study? it is only possible, after the options have been identified, to analyze the options

to show their value and develop a contingency plan for the management of the projects.

This first task for real options "in" projects is not trivial.

Screening model

The screening model is a simplified, conceptual, low-fidelity model for the system.

Without losing the most important issues, it can be easily run many times to explore an

issue, while the full, complete, high-fidelity model is hard to establish and costly to run

many times. The screening model is established to finding out most important variables

and interesting real options. From another perspective to look at the screening model,

we can think it as the first step of a process to cut small the design space of the system.

The design space is extremely big and the possibility for future realization of exogenous

uncertain factors is also extremely big. Therefore, we cut design space smaller and

smaller in steps, rather than using a holistic model to accomplish all the results in one run.

Specifically, a screening model can be a linear (or nonlinear) programming model:
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Max: (p,8Y -cY 1 ) Equation 8-1

s.t. TY t Equation 8-2
EY e Equation 8-3

Y are the design parameters. The objective function (Equation 8-1) calculates the net
benefit, or the difference between the benefits and costs, where #j and c; are the benefit
and cost coefficients. Usually we measure benefits in money terms, though sometimes
we do so in other measures, e.g. species saved, people employed, etc. Constraints
(Equation 8-2) and (Equation 8-3) represent technical and economic limits on the
engineering systems, respectively. Note when feedback exists in the system, the
screening model has to carefully take care of the feedback; otherwise, it may produce
misleading or erroneous conclusions.

Any parameter in the formulation could be uncertain. There are economic uncertainties
in E, e, 13j, or c; and technical uncertainties in T or t. After identifying the uncertain
variables, we perform sensitivity analysis on those uncertain variables to pick out several
most important uncertain variables for further analysis, and then run the screening model
with inputs of a range of values for the most important underlying uncertain variables in a
systematic way, and then compare the resulting sets of projects that constitute optimal
designs for each set of inputs used. If the resulted design for a facility does not change
with respect to the uncertain variables, the design for this facility is robust with respect to
the uncertain variables (note such design still could represent timing options if we
consider the sequence of implementation); however, if the resulted design varies
considerably with respect to different levels of the uncertain variables, this design can be
the focus point to place design options.

The resulted options have two sources of flexibility value:

- Value of timing. Some part of the project may be deferred. These represent timing
options. Its implementation depends on the realized uncertain variables. Since it
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can catch upside of the uncertainties by implementation, and avoid downside of

the uncertainties by holding implementation. Such timing options have significant

value by themselves.

- Value of flexible design. Some part of the project may present distinct designs

given various realization of uncertainties, compared to the timing options whose

design are the same whenever they are built.

An option can contain one or both sources of flexibility value.

The screening model does not consider all the complexities of the system; it considers a

large number of possibilities, screens out most of them, and focuses attention on the

promising designs. With such simplifications, we are able to focus our attention on

identifying the most interesting flexibility, and leave the scrutiny of other aspects to the

following models and studies.

Simulation model

The simulation model tests several candidate designs from runs of the screening model.

It is a high fidelity model. Its main purpose is to examine, under technical and economic

uncertainties, the robustness and reliability of the designs, as well as their expected

benefits from the designs. Such extensive testing is hard to do using the screening

model. After using the simulation model, we find the most satisfactory candidate design

with parameters (-,,-y2j-7) as well as the real options in preparation for the next stage of

options analysis.

8.3.2. Options analysis

After identifying the most promising real options "in" projects, designers need a model

that enables them to value the portfolio of options and develop a contingency strategy for
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their exercise. In contrast to standard financial options analysis, more characteristics are
required for the analysis of real options "in" projects, such as technical details and
interdependency/path-dependency among options.

The standard binomial options valuation model is based on a simple representation of the
evolution of the value of the underlying asset of an option. In each time period, the
underlying asset can take one of the two values Su or Sd determined by the volatility of
the underlying asset, S is the current asset price, and u and d are the up and down
factors respectively. For many periods, the binomial tree is shown in Figure 8-2.

PU Suu
P SU

Pd~u
P d Sd Pd

Sdd

Pu Suuu
d

Pu Suud

d

Pu Sudd
Pd

Sddd

Figure 8-2 Binomial tree

The up factor (u), down factor (d), move-up probability

are decided by:

u =e

d = e-"'

e -- d
1U = u-d

(pu) and move-down probability (Pd)

Equation 8-4

Equation 8-5

Equation 8-6

Equation 8-7Pd = -Pu
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where r is the drift rate (in the case of stock price, it is risk-free interest rate), a is the

volatility, T is time to expiration, and AT is the time interval between two consecutive

stages.

Option value at each node is the maximum of the two possible choices: value for

immediate exercise and value for holding for another period. Applying valuation at each

node by working back from the last to the first period, and we can get the value of the

option. Table 8-2 presents a binomial tree.

This dissertation proposes a model based on the scenarios established by a binomial

tree lattice. In essence, it proposes a new way to look at the binomial tree, recasting it in

the form of a stochastic mixed-integer programming model. The idea is to:

Maximize: Expected value on the first node of binomial tree

Subject to: constraints consisting of 0-1 integer variables representing the

exercise of the options on each node (= 0 if not exercised, =1 if

exercised)

Stochastic mixed-integer programming and real options

constraints

The stochastic mixed-integer programming assumes that the economic uncertain

parameters in E, e, f4, or cj in objective function (Equation 8-1) and constraints (Equation

8-2) and (Equation 8-3) evolve as discrete time stochastic processes with a finite

probability space. A scenario tree is used to represent the evolution of an uncertain

parameter [Ahmed, King, and Parija, 2003]. Figure 8-3 illustrates the notation. The

nodes k in all time stages i constitute the states of the world. 5, denotes the set of nodes

corresponding to time stage i. The path from the root node 0 at the first stage to a node

k is denoted by P(k). Any node k in the last stage n is a terminal node. The path P(k) to
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a terminal node represents a scenario, a realization over all periods from 1 to the last
stage n. The number of terminal nodes Q corresponds to all Q scenarios. Note there is

no recombination structure in this tree representation (each node except the root has a

unique parent node). For example, we will break a binomial tree structure as in Figure

8-4, where S is the value of the underlying asset, u is up factor, and d is the down factor.

Terminal nodes

q 
=I

A path D(k ) - -.. - - - - k q =2

0

Sscenario

i=n ... i=n-1 i=n

Figure 8-3: Scenario tree

SU J Suu Suu

Su Su
Sud

S rather than S Sud

Sd SdSdd
SddSd

Figure 8-4: Breaking path-independence of a binomial tree



259

A joint realization of the problem parameters corresponding to scenario q is denoted by

q

T)

where &o is the vector consisting of all the uncertain parameters for time stage i in

scenario q. pq denotes the probability for a scenario q. The real options decision

variables corresponding to scenario q is denoted by

RI '

R q = ... ,

R q

where Rq is the decision on the option at time stage i in scenario q. 0 denotes no

exercise and 1 denotes exercise.

At any intermediate stage i, the decision maker cannot distinguish between any scenario

passing through the same node and proceeding on to different terminal node, because

the state can only be distinguished by information available up to time stage.

Consequently, the feasible solution R" must satisfy:

R=' =Rq2 V(ql, q2 )through node k,Vk e, Vi = 1,..., n

where q, and q2 represent two different scenarios. These constraints are known as non-

anticipativity constraints.

To illustrate the use of the above approach, we apply it to a standard financial American

put option. The formulation is:
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Max p - (Y E -Rf - e-"-AT(i)) Equation 8-8
q i=1

S.t. Eq =Sq - K Equation 8-9

Ri q 1 Vq Equation 8-10

R q = Rq2 V(ql, q2 ) through node k, Vk E ,, Vi =1,...,n Equation 8-11

Ri e {0,1} Vi, q Equation 8-12

where Sq is the value of underlying asset at time stage i in scenario q, K is the exercise

price.

The objective function Equation 8-8 is the expected value of the option along all

scenarios. Equation 8-9 can be any equations that specify the exercise condition.

Equation 8-10 makes sure that any option can only be exercised at most once in any

scenario. Equation 8-11 are the non-anticipativity constraints. We call Equation 8-10

and Equation 8-11 real options constraints.

To illustrate and validate the above formulation, consider an example of an American put

option without dividend payment. The variables for this example are current stock price S

= $20, exercise price K = $18, risk-free interest rate r = 5% per year, volatility u = 30%,

time interval between consecutive states AT = 1 year, and time to maturity T = 3 years.

So up factor u = 1.35, down factor d = 0.74, move-up probability pu = 0.51 and move-

down probability Pd = 0.49 according to Equation 8-4 to Equation 8-7. A standard

binomial lattice gives the value of the options as $2.20 as in Table 8-2.

Now considering the reformulated problem according to equations Equation 8-8 to

Equation 8-12. Solve it using GAMS@, the maximum value of the objective function is

also 2.20. The optimal solution of 0-1 variables is shown in Table 8-3, and 1 means

exercise. The result exactly correspond to that of the ordinary binomial tree (Table 8-2).
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Note there is an exercise in scenarios 7 and 8 that is not at the last time point. This

proves the formulation can successfully find out early exercise points and define

contingency plans for decision makers.

Table 8-2: Binomial tree for the example American put

Period 1 Period 2 Period 3 Period 4
Stock Price 20.00 27.00 36.44 49.19
Exercise Value -2.00 -9.00 -18.44 -31.19
Hold Value 2.20 0.69 0.00 0.00
Option Value 2.20 0.69 0.00 0.00
Exercise or not? No No No No

Stock Price 14.82 20.00 27.00
Exercise Value 3.18 -2.00 -9.00
Hold Value 4.00 1.48 0.00
Option Value 4.00 1.48 0.00
Exercise or not? No No No

Stock Price 10.98 14.82
Exercise Value 7.02 3.18
Hold Value 6.15 0.00
Option Value 7.02 3.18
Exercise or not? Yes Yes

Stock Price 8.13
Exercise Value 9.87
Hold Value 0.00
Option Value 9.87
Exercise or not? Yes

Table 8-3: Stochastic programming result for the example American put

Stock Price Realization Decision

Scenario i=1 i=2 i=3 i=4 Probability i=1 i=2 i=3 i=4

q=1 S Su Suu Suuu 0.132 0 0 0 0

q=2 S Su Suu Suud 0.127 0 0 0 0

q=3 S Su Sud Sudu 0.127 0 0 0 0

q=4 S Su Sud Sudd 0.123 0 0 0 1

q=5 S Sd Sdu Sduu 0.127 0 0 0 0

q=6 S Sd Sdu Sdud 0.123 0 0 0 1

q=7 S Sd Sdd Sddu 0.123 0 0 1 0

q=8 S Sd Sdd Sddd 0.118 0 0 1 0
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Formulation for the real options timing model

The stochastic mixed-integer programming reformulation is much more complicated than

a simple binomial lattice. It is like using a missile to hit a mosquito to value ordinary

financial options. But such reformulations empower analysis of complex path-dependent

/interdependent real options "in" projects.

The real options timing model decides the possible sequences of implementation of the

project design dependent on the actual evolution of the uncertain future. Technical

constraints in the screening model are modified in the real options timing model. Since

the screening and simulation models have identified the configuration of design, decision

variables in the screening model are treated as parameters now in the options timing

model, using their respective value in optimal solution from the screening model.

Y is the set for satisfactory configurations of design parameters obtained by the "options

identification" stage,

Y =: :

-Ynl ... Yn

A vector (Yn 1, Yn2 . Y--, Yn) corresponding to j design parameters (in the screening model,

they are j decision variables) in the nth satisfacroty configuration. To describe the fact

that only at most one configuration can be implemented, a vector z is introduced:

z = [z Z2 ... Z , IIz, e {0,1}, and z, <1,

So zY appropriately represents final configuration.



263

The real options decision variable corresponding to scenario q is expanded to:

R q, ... R q,

q= : ], R e{0,1}

RX .. R q

R denotes the decision on whether to build the feature according to jth design
ii

parameter for ith time stage in scenario q. The objective function Equation 8-8

corresponding to scenario q is denoted by fq (_) . p and f (-) are derived from the

specific scenario tree based on the appropriate stochastic process for the subject under

study. The real options constraints Equation 8-10 to Equation 8-11 are concisely

denoted by 9p. Most importantly, the objective function is modified to get the expected

value along all scenarios.

The real options timing model formulation is as follows.

Max p q fq (Rq,zy)
q

(zY), R 1
s.t. T : t and

(zY). R]

R q E=

, n 1

R q E= 0,11, Zn E {0,1}1

Equation 8-13

(zY)I R 1
E : e Vq, >

(zY) Rj

Equation 8-14

Equation 8-15

Equation 8-16

Equation 8-17Vq,i, j,n

where (zY)j represents ]th element in the vestor of zY. In short, the formulation has an

objective function averaged over all the scenarios, subject to three kinds of constraints:
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technical, economic, and real options. By specifying the interdependencies by

constraints, we can take into account highly complex relationship among projects.

This formulation has important application in real options "in" projects because the real

options constraints can be readily added onto the screening model. This formulation can

deal with complex interdependency/path-dependency among options by specifying the

interdependency/path-dependency in the technical and economic constraints.

8.4. Application of the framework - illustrated by

development of strategies for a series of

hydropower dams

This section illustrates the application of the framework by an example on the strategy of

a river basin development. The case example concerns the development of a

hypothetical river basin involving decisions to build dams and hydropower stations in

China. The developmental objective is mainly for hydro-electricity production. Irrigation

and other considerations are secondary because the river basin is in a remote and barren

place.

8.4.1. Screening model to identify options

The screening model is the first cut of the design space that focuses on the important

issues and low fidelity in nature, like looking at the system at a 30,000 feet height for an

overview. The screening model may be simplified in a number of ways. In the river basin
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development case example, we simplified the problem by regarding it as a deterministic

problem, taking out the stochasticity of the water flow and electricity price. Another

simplification is that we regard all the projects are built together at once and neglecting

the fact that the projects have to be built in a sequence over a long period of time, in

other words, assuming steady state. With such simplifications, we are able to focus our

attention on identifying the most interesting flexibility, and leave the scrutiny of the

aspects in the following models and studies. The resulted screening model is a non-linear

programming model. The sketch of the model is:

Maximize: Net benefit

Subject to: Water continuity constraints

Reservoir storage constraints

Hydropower constraints

Budget constraints

After the screening model established, some detailed consideration and care should be

taken when applying it. What uncertain parameters should be examined? What levels of

the uncertain variables should be placed into the screening model? After establishing the

screening model, we suggest the following steps to use the screening model

systematically to search for the interesting real options:

Step 1. List uncertain variables. These could be exogenous or endogenous. They could

be market uncertainty, cost uncertainty, productivity uncertainty, technological

uncertainty, etc.

Step 2. Find out the standard deviations or volatilities for the uncertain variables. This

can be computed by historical data, implied by experts' estimation', or estimated from

comparable projects.

For example, if experts give their most likely estimation, pessimistic estimation (better than 5% of
cases) and optimistic estimation (better than 95% of cases), then since 5% and 95% represent the
range of ±1.65a, we can estimate a from the experts' opinion.
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Step 3. Perform sensitivity analysis on the uncertain variables to pick out the several most

important uncertain variables for further analysis. Tornado diagram is a useful tool for

such sensitivity analysis.

Step 4. List different levels of the important uncertain variable as inputs for the

established screening model to identify where the most interesting real options are.

Step 1

The uncertain variables for the river basin development include the price of electricity,

fixed cost of reservoir, variable cost of reservoir, variable cost of power plant, and water

flow, etc.

For the purpose of illustration, we pick out three important uncertain variables for further

scrutiny: electricity price, fixed cost of reservoir, and variable water flow. This is only for

illustration purposes, and real studies should examine more uncertain variables - the

most important uncertain variables may be out of people's expectation or intuition.

Step 2

The volatility of electricity price is derived by experts' estimation. The author interviewed

two Chinese experts on China energy market to get their pessimistic, most likely, and

optimistic estimate of the electricity price for 3 years later. The experts reached the

optimistic price estimate of 0.315 RMB/kWh (RMB is Chinese currency) and pessimistic

estimation of 0.18 RMB/kWh both with 95% confidence', which corresponds to a volatility

of 6.96% per year (for details see Wang, 2003, pp.101).

1 Note the optimistic estimate of 0.315 RMB/kWh and the pessimistic estimate of 0.21 RMB/kWh
imply a mean other than 0.25 RMB/kWh as of the current electricity price. Human's perception
does not conform to mathematical rigor.
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The standard deviation of the construction cost was estimated from the standard

deviation for cost of megaprojects (Flyvbjerg, et al., 2003, pp. 16). The standard

deviation is 39%.

The standard deviations of water flow were calculated from historical data. Note since

we consider the project for a life span of 60 years, the annual standard deviation should

be translate to 60-year average standard deviation by dividing the annual standard

deviation by J (see Table 8-4). Qin,,,y and Qin,zy represent upstream inflow for season

1 and 2, respectively, for year y. AF31y and AF 32y represent the incremental inflow

between site 3 and site 1 for season 1 and 2, respectively, for year y (there are no other

incremental inflows in this river basin).

Table 8-4 Parameters for distribution of water flows (Adjusted for 60-years span)

Mean Annual s.d. 60-year s.d

Qin,1,y 374 87.7 11.3

Qin,ZY 283 45.4 5.9

AF31y 389 89.8 11.6

AF3 2y 154 9.7 1.3

Step 3

With the understanding of volatility or standard deviation of the three uncertain

parameters, we calculate sensitivity and then draw a tornado diagram regarding the

change of net benefit due to 1 standard deviation/volatility change of one of the important

uncertain variables, with other uncertain variables kept at the expected value. To do so,

we just change one variable a time (with 1 standard deviation or volatility) in the

screening model, run the optimization and get the corresponding optimal net benefit to

draw the tornado diagram. The resulting tornado diagram is as Figure 8-5. Note the

skewness for fixed cost for reservoir and waterflow, that is, the change of net benefit is
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asymmetric if the uncertain variables change positive and negative one volatility or

standard deviation. For the fixed cost for reservoir, if cost is about positive one standard

deviation, site 3 is not in the solution, and the loss is limited; while if cost is about

negative one standard deviation, site 3 is in the solution, and may generate more

electricity revenue. For waterflow, the projects are not going to benefit much from

overflow and may have to spill overflow water, while the projects have to take the whole

loss if water is less than enough.

Change of Net Benefit (in M RMB) Due to I S.D.
Change of Important Uncertain Variables

2196 (Million RMB)

Fixed cost
for reseroir

Electricity
price

Waterflow

Figure 8-5 Tornado chart for screening model

From the tornado diagram, we understand the uncertainties on fixed cost of reservoir and

electricity price are the most important uncertainties. This dissertation studies in-depth

only the uncertainty of electricity, however, for the following considerations: This study

expands the application of options theory to project design, so the initial interest leans to

that related to financial market. Electricity is market traded and its market risk is relatively

well understood. Costs are more complicated than electricity price. Electricity price is

readily market observable, while the fixed cost has a lot of components and hard to know

exactly when the project is being constructed. Moreover, the dynamics of uncertainty of

.18 596

-325 332

-8OW18

-80 N 18:
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reservoir fixed cost is less understood. Despite the importance of study on uncertainty of

fixed cost, the purpose of this dissertation is to lay out a general framework for designing

flexibility into projects to deal with uncertainties. So we treat the easier electricity

uncertainty as a first step to demonstrate the general framework, and call for further work

to study the peculiarity of uncertainty of fixed cost in depth1 .

Step 4

The current electricity price is 0.25 RMB/KWH, but we study the conditions when the

electricity price is 0.10, 0.13, 0.16, 0.19, 022, 0.28, 0.31 RMB/KWH. The levels cover

most of the range of the experts' pessimistic (0.18 RMB/KWH) to optimistic estimate

(0.315 RMB/KMB). To be conservative, we also screen at very low electricity prices as a

stress test to see what could happen in the case worse than we would imagine.

Given the 8 levels of electricity price, we get 8 preliminary configurations of the projects.

The optimization model is written in GAMS@, and the results are as in Table 8-5. Hs

represents the capacity of power plant at site s; Vs represents the capacity of reservoir at

site s. "Optimal value" represents the maximum net benefit calculated by the objective

function. Note that for case 1, no projects are built; for cases 2 and 3, site 3 is screened

out. In a real application considering many more sites, there may be a great number of

sites entered the screening models and most of them are screened out. We find that the

designs of (H1 = 3600 MW, V, = 9.6 X 109 M3) and (H2 = 1700 MW, V2 = 2.5 X 107 M3)

are robust with regard to the uncertainty of the electricity price 2. But for the project at site

3, the optimal design changes when the price of electricity changes, and this is the place

on which we should focus designing flexibility.

1 For real application, the analysis should at least be based on both uncertainties of electricity
price and fixed cost for reservoir jointly, if there are no other important uncertain variables
overlooked.
2 The only case that these designs are not optimal is when the price of electricity is extremely low -
where we do the stress test and is out of the range of experts' estimation.
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Table 8-5: Results from the screening model

Case Electricity Price H1  V1 H2  V2  H3  V 3  Optimal Value

(RMB/KWH) (MW) (10 6m3) (MW) (10 6m3) (MW) (10 6m3) (106RMB)

1 0.09 0 0 0 0 0 0 0

2 0.12 3600 9600 1700 25 0 0 367

3 0.15 3600 9600 1700 25 0 0 796

4 0.18 3600 9600 1700 25 1564 6593 853

5 0.22 3600 9600 1700 25 1723 9593 1607

6 0.25 3600 9600 1700 25 1946 12242 2196

7 0.28 3600 9600 1700 25 1966 12500 2796

8 0.31 3600 9600 1700 25 1966 12500 3396

Each design for site 1, 2 and 3 represents an option,

subtly different: all options present timing feature, but

though the sources of them are

only option at site 3 has flexible

design feature where we consider different reservoir capacity and power plant capacity

design. See Table 8-6. Although the features of options have been understood, the final

options specification will not be reached until the test of simulation model.

Table 8-6 Sources of options value for designs

Sources of option value

Value of timing Value of flexible design

Design at site 1 Yes No

Design at site 2 Yes No

Design at site 3 Yes Yes

8.4.2. Simulation model to test other considerations

For the analysis of real options "in" water resources systems, we simulate the combined

effect of stochastic variation of hydrologic and economic uncertain parameters. If the
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time series of the water flow consisted of the seasonal means repeating themselves year

after year (no shortages) and the price of electricity were not changing, the simulation

model should provide the same results as the screening model. But the natural variability

of water flow and electricity price will make the result (net benefit) of each run different,

and the average net benefit is not going to be the same as the result from the screening

model. The simulated results should be lower. The designs are not going to benefit from

excess water when water is more than the reservoir can store. Thus occasional high

levels of water do not provide compensation for lost revenues by occasional low levels of

water. Due to these uncertainties, the economies of scale apparent under deterministic

schemes are reduced.

Satisfying the requirements of various technical considerations such as robustness and

reliability, the design with the highest expected benefit from the simulation is those

corresponding to the electricity of 0.22 RMB/KWH (Case 5). Note due to the

uncertainties in electricity price and water flows, it is not the design corresponding to

current electricity of 0.25 RMB/KWH. So the timing options for site 1 and 2 are (H =

3600 MW, V, = 9.6 X 109 M3) and (H2 = 1700 MW, V2 = 2.5 X 107 M3), we have the right

to build a project as the specifications, but we do not have the obligation to build them

and have the room to observe what happens and decide where to build a project. The

option for site 3 contains both timing option and variable design option. We choose 3

design centered Case 5, or (H3 = 1564 MW, V3 = 6.93 X 109 M3), (H3 = 1723 MW, V3 =

9.593 X 109 M3), or (H3 = 1946 MW, V3 = 12.242 X 109 M3). Each design is an option, in

that we have the right but not obligation to exercise the option, and the three options are

mutually exclusive - only one can be built. A summary for the options sees Table 8-7.

This is a portfolio of options. Each option stands for a basic element of flexibility in the

project. The next stage will analyze this portfolio of options.
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Table 8-7 Portfolio of options for water resources case

8.4.3. Real options timing model to analyze real options "in"

projects

The general steps to develop and apply a real options timing model (a stochastic mixed-

integer programming model) are:

Step 1. Specify real options decision variables, the scenario tree, and the configurations

set Y for design parameters. The real options decision variables are binary

variables corresponding to every option in the portfolio identified. The scenario tree is

based the stochastic process that the uncertain variables follow. In the case example,

we assume the electricity price follows a Geometric Brownian Motion (GBM) and

establish a corresponding scenario tree for the electricity price. This is not

necessarily the best model for electricity price: a mean-reverting proportional volatility

model might improve the quality of analysis (Bodily and Del Buono, 2002). However,

GBM is sufficient to illustrate the analysis framework and the stochastic mixed-integer

programming methodology. Configurations set Y is as Table 8-8:

Design specifications Exercise time

Option at Site 1 H, = 3600 MW, V, = 9.6 X 109 m3  Any time

Option at Site 2 H2 = 1700 MW, V2 = 2.5 X 107 m3  Any time

Option at Site 3 H3 =1564 MW, V3 = 6.93 X 10 9 m3  Any time

One of H3 = 1723 MW, V3 = 9.593 X 109 m3

H3 = 1946 MW, V3 = 12.242 X 109 m3
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Table 8-8 Configurations set Y for the river basin case

n Hi(MW) ( H2(MW) V2(m3) H3(MW) V3(m3)

1 3600 9.6 X 10Y 1700 2.5 X 10 7  1564 6.93 X 10 9

2 3600 9.6 X 1 1700 2.5 X 10 7  1723 9.593 X 10 9

3 3600 9.6 X 10' 1700 2.5 X 107 1946 12.242 X 10 9

Step 2. Formulation of the stochastic mixed-integer programming. We add real options

constraints onto the existing technical and economic constraints, besides the real

options constraints stated as Equation 8-10 and Equation 8-11, one constraint needs

to force that at most only one design can be built at Site 3, since they are mutually

exclusive options. The objective function will also be changed to get the expected

value of the scenario tree at the root node. The formulation is as Equation 8-13 to

Equation 8-17. The sketch of the formulation is:

Maximize:

Subject to:

Expected net benefits

Technical and economic constraints

Real options constraints

Step 3. Establish computer model, find out feasible initial solutions, and run the model.

Results for the case of current electricity price = 0.25

RMB/KWH

Using GAMS@, we obtain the results for the real options timing model as Table 8-9. For

example, for the first scenario q = 1 that occurs with probability = 0.138: the electricity

prices for the first, second, and third 10-year time period (i = 1, 2, and 3) are 0.250, 0.312,

and 0.388 RMB/KWH, respectively. The real options decision variables for Project 2 in

the first period and Project 1 in the third period are 1's, and the other 7 real options
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decision variables are O's (we have 9 real options decision variables for each scenario, 3

projects times 3 periods each). Therefore, for scenario 1, the decision is to build Project

2 in the first period and Project 1 in the third period. The rest of Table 8-9 can be read in

the same way. In summary, as in Figure 8-6 the optimal strategy or contingency plan is

to build Project 2 in the first time stage. And build nothing in the second stage. In the

last stage, we only build Project 1 in the case that price is up for the second stage and up

again for the third stage, for other cases, we build nothing. Since Project 3 is not in the

solution, the configuration index n can be any of the three as in Table 8-8.

The overall expected net benefit is 4345 million RMB. As a comparison, the timing model

without real options considerations (no scenario tree and assume electricity price does

not change) suggests that only project 2 should be built in the first time period and that

projects 1 and 3 should never be built, with an overall expected net benefit of 4239 million

RMB. The value of options is the difference between the optimal benefits from the timing

model with and without real options considerations, 106 million RMB. This value is small

because of the low electricity of 0.25 RMB/kWh that is also high enough to introduce

Project 3 in the contingency plan. Note the valuation of real options "in" projects looks

not for an exact numeric result as valuation of financial options, but assesses whether

flexible designs are worth. This process about real options valuation is more about the

process of designing flexibility itself rather than a specific value of optimal benefit.

Price = 0.388 RMB/KwH

Project 3 no build

Price = 0.312 RMB/KwH Price = 0.250 RMB/KwH
Project 1 no build Project 1 no build

Price = 0.25 RMB/KwH Project 3 no build Project 3 no build
Project 1 no build 1 0

Prjc 2 - ul e q Price = 0.250 RMB/KwH
Project 3 no build Price = 0.201 RMB/KwH Project 1 no build

Project 1 no build Project 3 no build
Project 3 no build

Price = 0.250 RMB/KwH
Project 1 no build
Project 3 no build

Figure 8-6: Contingency plan for current electricity price of 0.25 KWH/RMB
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Table 8-9: Results for real options "in" projects timing model (Current electricity price

0.25 RMB/KWH)

Electricity Price Realization Decision

Scenario i=1 i=2 i=3 Prob i=1i=2i=3

Project 1 0 0 1

q = 1 0.250 0.312 0.388 0.138 Project 2 1 0 0

Project 3 0 0 0

Project 1 0 0 0

q = 2 0.250 0.312 0.250 0.233 Project 2 1 0 0

Project 3 0 0 0

Project 1 0 0 0

q = 3 0.250 0.201 0.250 0.233 Project 2 1 0 0

Project 3 0 0 0

Project 1 0 0 0

q = 4 0.250 0.201 0.161 0.395 Project 2 1 0 0

Project 3 0 0 0

Results for the case of current electricity price = 0.30

RMB/KWH

Note when the current price of electricity is 0.25 RMB/KWH as the case example

suggests, Project 3 does not enter the solution. In order to test our formulation to see if it

is capable of determining best choice among multiple design options for one project, we

run the model again at the electricity price of 0.30 RMB/KWH. Now Project 3 enters the

solution, and the computer chooses configuration index n = 3 with (H = 3600 MW, V, =

9.6 X 109 M3 , H2 = 1700 MW, V2 = 2.5 X 107 m3 ,H3 = 1564 MW, V3 = 6.93 X 109 M3). The

resulted contingency plan is as Figure 8-7.
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The optimal benefit raised to 7129 million RMB, compared with the result of the timing

model without real options considerations, 5195 Million RMB, the options value is 1934

Million RMB, or 37.2% of the result of the the timing model without real options

considerations. This option value is much more significant than that in the case of current

electricity price of 0.25 RMB/KWh.

Price = 0.466 RMB/KwH7I
Project 3 build

(H3 =1564 MW, V3 =6.93 X1 19 m3)

Price = 0.374 RM B/KwH
Project 3 -o.id Price = 0.300 RMB/KwH

Price = 0.300 RMB/KwH Project 3 no build Project 3 no build

Project 1 no build
Projc . - u.Price = 0.300 RMB/KwH

Project 3 no build [- Price = 0.241 RMB/KwH Project 1 no build

Project 1 no build Project 3 no build

Project 3 no build
Price = 0.193 RMB/KwH

Project 1 no build
Project 3 no build

Figure 8-7 Contingency plan for current electricity price of 0.30 KWH/RMB

8.5. Generalizability of framework

The framework proposed in this dissertation is generally applicable to designing flexibility

(real options) into other projects. Here we show the application of the framework to

another case example on a satellite communications system. The case example builds

on the analysis of a satellite system similar to that of Iridium system (de Weck et al.,

2004). In 1991, forecasts for the satellite cellular phone market expected up to 3 million

subscribers by the year 2000. Initiatives like Iridium and Globalstar were encouraged by

the absence of common terrestrial cellular phone standards and slow development of

cellular networks at that time. Iridium was designed according to the forecast of 3 million

subscribers. However, the rapid success of terrestrial cellular networks and the
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inconvenient features and high costs of satellite cellular phones soon appeared to doom

the two ventures. Iridium only aroused the interest of 50K initial subscribers and filed for

bankruptcy in August 1999. Globalstar went bankrupt on February 2002.

Using the framework developed, we analyze the real options of staged deployment of

satellites for a system similar to that of Iridium system.

Architectur*
Path \*,*

V Front
*

A2*

Al

System Capacity

Figure 8-8 Example of a path in trade space [Source: de Weck et al. 2004]

Screening model for satellite system case

Chaize (2003) and de Weck et al. (2004) developed a design space for the satellite

communications system by optimization and numerical experiment. The design space is

a enumeration of points of system cost and system capacity given various designs based

on selection of parameters of orbital altitude, minimum elevation angle, transmit power,

antenna diameter, an the use of inter satellite links. After plotting around 1,500 such

points, the Pareto Frontier for design is reached. Based on the demand growth scenario,

possible staged development path can be recognized. Note that a path is not on the

Pareto frontier any more (refer to Figure 8-8), because the staged design sacrifice some
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benefits of economies of scale, though staged development may prove better in an

uncertain environment as shown in the next section. The way to decide each design

stage is to decide the capacity requirement for each stage and find the point closest to

the Pareto frontier. The major flexibility in the satellite case is repositioning satellite to

lower orbit and launching additional satellite to increase the capacity of the system. This

model and process is a screening model in effect.

Options analysis for satellite system case

Using the real options - each deployment stage, Al through A5 - identified by de Weck

el al (2004), the authors of this dissertation implemented the real options analysis using

the stochastic mixed-integer programming formulation. The result is that the staged

deployment has a $0.11 Billion smaller expected cost than that of the best traditional

architecture, but the best improvement is that it can take advantage of upside potential,

while cut downside risks. The plan can serve up 7.8 million subscribers readily, compared

to the best traditional architecture that can only serve up to 2.82 million subscribers.

Meanwhile, we would first invest $0.25 Billion to test the market and, if the market is not

rosy, we will lose $0.25 Billion rather than $2.01 Billion, the required investment in the

best traditional architecture. The downside can be significantly cut. In comparison to

what happened to Iridium and Globalstar, this way of project design deserves serious

attention.

Similar to the water resources case example, we develop a contingency plan for the

development of the satellite communications system as Figure 8-9. Note that

architecture Al and A3 is not built separately in the plan. This is because of the

considerations of economies of scale. Building a bigger system, the benefit of economies

of scale sometimes overweighs the benefit of postponement of construction (option value

and time value of money, investment later has a smaller present value).
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Year 0 Year 2.5 Year 5 Year 7.5 Year 10

Demand = 41.85
Do nothing

Demand = 13.84
Do nothing Demand = 4.57

Do nothing
Demand = 4.57

De- . *Demand = 4.57

Do nothingDemand = 1.51 Dnh
Do nothing Demand = 0.5

Do nothing
Demand = 1.51D

-e * *Demand 4.57

Demand = 1.51
Do nothing Demand = 0.5

Do nothing
Demand = 0.50

Do nothing Demand = 0.5
Do nothing

Demand = 0.17
Do nothing Demand = 0.05

Do nothing
Demand = 0.

a-M * Demand 4.57

Demand = 1 51
Demand = 0.5

// Do nothing
Demand = 0.50

Do nothing Demand = 0.5
Do nothing

Demand = 0.17
Do nothing Demand = 0.05

Do nothing
Demand = 0.1

Do nothing

I

I

7
Demand = 0.5
Do nothing

Demand = 0.17
Do nothing Demand = 0.05

Do nothing
Demand = 0.05

Do nothing Demand = 0.05

Demand = 0.02
Do nothing

Do nothing

Demand = 0.01
Do nothing

Figure 8-9: Contingency development plan for satellite system
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Compared to the work of de Weck et al. (2004), there are two notable differences:

- The saving of expected cost of $ 0.11 B is less than the result in de Weck of $

0.55 B. This is because this study calculates the expected cost of deployment up

to the capacity of 7.8 million users, while de Weck's result was the expected cost

of deployment up to the capacity of traditional design, or 2.82 million users.

- This study develops a contingency plan that is not offered by de Weck's study.

This contingency plan solves path-dependency problem.

8.6. Discussion

8.6.1. Computational issue

A key consideration in solving a stochastic mixed-integer programming is whether a

result is a global or local optimum. It is not simple to prove the result of an mixed-integer

programming problem is a global optimum. And it may be hard to find a general solution

for the real options timing model because of the special structure of the technical and

economic constraints for different projects. Nevertheless, integer programming improves

solutions to highly complex and interdependent real options that cannot be solved by

ordinary binomial trees. When there is no dependency among nodes, it is possible to

optimize on each node and roll back to get the option value. When dependency exists,

this simple approach no longer works. A stochastic mixed-integer programming at least

provides a local optimum better than the results from conventional approaches or human

intuition.
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Following is a report on the computational costs: for the river basin development problem,

the number of variables is 187, of which 36 are 0-1 discrete variables, and the number of

constraints is 261. It takes a laptop (Pill 650, 192M RAM) less than 2 seconds to use

GAMS@ to figure out a solution. For the satellite case example, the number of variables

is 806, of which 400 are 0-1 discrete variables, and the number of constraints is 1131. It

takes the laptop (CPU Pentium 111 650 MHz, RAM 384M) less than 2 minutes to use

GAMS@ to figure out a solution.

A natural question is: how efficient is the stochastic mixed-integer programming method?

Let us compare it with two alternatives to the stochastic mixed-integer programming

method to do options analysis: 1, "brute force" full factorial enumeration method to list all

combinations of 0-1 binary decisions, check feasibility of each, discard the infeasible

ones, and evaluate remaining set to obtain the optimal combination; 2, the dynamic

programming algorithm to analyze options. Several observations on comparison of

methods:

1, the algorithm of stochastic mixed-integer programming is highly complex and

difficult subject, the solvability of the problem and efficiency of solution is highly

dependent on the structure of the problem. Since for every project the technical

and economic constraints are different, it is hard to tell if a specific problem can

be solved by the stochastic mixed-integer programming efficiently, though the two

case examples in this dissertation are solved very smoothly.

2, the framework proposed in this dissertation is a coherent process. The options

analysis stochastic mixed-integer programming model adds real options

constraints onto the screening model. So once the screening model is developed,

it is of minimal effort to extend it into a stochastic mixed-integer programming

options analysis model. The computation effort includes modeling effort and

machine effort. Since the stochastic mixed-integer programming model is a

natural extension of the screening model, the modeling effort is small, though

sometimes the machine effort is uncertain.
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3, the "brute force" and especially the dynamic programming algorithm serves as

good alternatives to the stochastic mixed-integer programming model in case it

cannot handle the problem. With more possible algorithm available, the chance

of complete solution of the framework is bigger, and the objective of designing

flexibility into projects can be better fulfilled.

When the problem becomes extremely large because the combinatorial nature of the

problem, we have to limit the stages and get a strategically sound but details less precise

analysis.

8.6.2. Insights for different audiences

This research is valuable for the research on engineering systems, real options, and

water resources planning. And the method may be thought-provoking for other areas.

Engineering Systems

The framework proposed in this dissertation is generally applicable to designing

flexibility (real options) into various large-scale engineering systems. It proposes an

options identification stage based on optimization and simulation. If only an engineering

system of interest can fit the optimization and simulation methodology, the framework

developed in this dissertation can be applied. Once screening optimization model and

simulation model identify the options, it must be able to develop the real options timing

model because the real options timing model is a revision of the screening model with

real options constraints added.

This dissertation applies the framework to two examples of engineering systems and

demonstrates its applicability. A detailed case example on water resources development
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can be found in Chapter 6, whose key results are summarized in Section 8.4. Another

case example on a satellite communications system as in Chapter 5 also shows the

power of the framework.

There may be two major possible complications to apply this framework to a specific

engineering system, as we can think of now:

1, If the optimization screening model is not suitable for an engineering system?

We may still try to figure out another suitable screening model for that system in

order to sort out interesting real options.

2, If there are few robust design parameters from the results of the screening

model run - few design parameters proven optimal or near optimal under almost

all conditions - and most parameters vary greatly under different conditions? We

may have to calculate the sensitivity of the design parameters with regard to the

value of the project, pick several most important parameters that affect the value

of project greatly, and study carefully the flexibility corresponding to those

parameters.

From the results of the case examples on river basin development and satellite

communications systems, there is an important insight for engineering systems designers:

flexibility has great value, which usually means to design smaller and design spare

features initially, wait for further information, and prepare for different kinds of

happenings. The traditional practice is to predict the value of important parameters such

as future price and demand and optimize over the expected value of those parameters.

Such way tends to lead to false economies of scale. Such economies of scale may

actually be suboptimal because the environment is uncertain. If the demand is

insufficient, a large design may lead to considerable losses.

Another note for engineering systems design: because of the huge size of the problem

for designing large-scale engineering systems in an uncertain environment, both in terms

of number of parameters and number of uncertain variables, sometimes, a single model
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providing the optimal solution is very costly, if not prohibitive, to establish. Instead, we

can divide the modeling into a series of models and get a satisfactory solution rather than

searching for the best plan among all possibilities. As Herbert Simon pointed out:

because of the astronomical amount of extrinsic information and human's limited intrinsic

information process capacity, people have only "bounded rationality" and are forced to

make decisions not by optimization but by "satisficing". Even though today's computer

technologies are tremendously improved, decision problems are still often too big for

human beings, especially when high uncertainty is involved. In real decision making,

people often do not search for an optimal decision; instead, people stop looking for better

decisions once reaching a satisfactory decision. The process - that divides the decision

process into several consecutive models and search for a satisfactory solution rather

than an optimal solution - is in accordance with the nature of human decision-making in a

highly uncertain and complex environment.

Real Options Theory

This research formally attacks the methodology for analyzing real options "in" projects

quantitatively. Little work has been done for real options "in" projects. Real options

developed from financial options. Most current literature is about real options "on"

projects, and based on standard financial theory that depends on the "no arbitrage" and

"geometric Brownian motion" assumptions. There are three key difficulties facing the

analysis of real options "in" projects, the first is how to deal with options in systems where

"no arbitrage" condition is not relevant. The second difficulty: while financial options are

well-defined contracts and real options "on" projects are easy to construct via different

financial arrangements, it is much harder to identify real options "in" projects where there

are myriads of design variables and parameters. The third difficulty: real options "in"

projects often exhibit complex path-dependency/interdependency that standard options

theory does not dealt with.
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This dissertation has successfully dealt with the key difficulties facing real options "in"

projects. One of the contributions of this research lies in formally proposing a stage to

identify real options "in" projects using screening models, and suggesting the optimization

model as one possible screening model to identify real options "in" projects. Another

contribution is the new algorithm to calculate options value by stochastic mixed-integer

programming and real options constraints. Although such algorithm seems too

complicated and costly for usual financial options, it proves a highly useful tool for real

options "in" projects where special interdependency/path-dependency is rampant and

strategy is a more important issue than a precise valuation.

We hope this study can significantly help other explorers in the new area of real options

in" projects.

Water Resources Planning

This research is valuable for water resources planners in stressing the uncertain nature

of the world and pointing out the flexibility that can be employed to manage uncertainties.

The change of economic variables not only affects the value of water resources projects

but also significantly affects the ability of the projects to finance themselves and repay

loans successfully. The real options framework carefully accounts for these uncertain

aspects, and increases the economic feasibility of projects and the possibility of ultimate

success of projects.

The framework proposed is built on the standard approach for water resources planning,

and there is no significant additional cost needed to apply the framework. No technical

considerations are lost or overweighed by the real options analysis - real options analysis

is only a useful addition on the basis of technically sound designs. The options

identification stage needs a number of extra runs of screening and simulation models, but

does not need to change the models themselves. The options analysis stage adds real

options constraints onto the standard sequencing model, no need to change anything in
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the sequencing model itself. If the number of time stages considered is small, as we

shown previously, the computational cost for the real options timing model is well

affordable. In short, once the standard models for water resources planning are

established, not much effort is needed to upgrade the models to real options versions.

8.6.3. Further work

Following are several important follow-on research directions:

- How to improve screening models and define a systematic way to identify

parameters to vary in screening models;

- How to apply the framework to other projects, especially to see how to deal with a

project where optimization is not a possible or relevant design method, and figure

out an alternative screening model to identify real options;

- Improve understanding of the nature of the stochastic mixed-integer real options

model better and develop better algorithm to solve various problems;

- Better connection between the low fidelity screening model and follow-on high

fidelity models;

- It is also interesting to design for a real project with more technical details as well

as more economic/social considerations, and study how to describe

mathematically the uncertainties of economic/social considerations other than

those well studied by finance science; and

- The expansion of the model to base on several important uncertain variables

jointly.
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8.7. Contributions and Conclusion:

This research develops a comprehensive approach to identify and deal with real options

"in" projects, that is, those real options (flexibility) that are integral parts of the technical

design. It represents a first attempt to specify analytically the design parameters that

provide good opportunities for flexibility for any specific engineering system.

It proposes a two-stage integrated process: options identification followed by options

analysis. Options identification includes a screening and a simulation model. Options

analysis develops a stochastic mixed-integer programming model to value options. This

approach decreases the complexity and size of the models at each stage and thus

permits efficient computation even though traditionally fixed design parameters are

allowed to vary stochastically.

The options identification stage discovers the design elements most likely to provide

worthwhile flexibility. As are often too many possible options for systems designers to

consider, they need a way to identify the most valuable options for further consideration,

that is, a screening model. This is a simplified, conceptual, low-fidelity model for the

system that conceptualizes its most important issues. As it can be easily run many times,

it is used to extensively test designs under dynamic conditions for robustness and

reliability; and to validate and improve the details of the preliminary design and set of

possible options.

The options valuation stage uses stochastic mixed integer programming to analyze how

preliminary design identified by the options identification stage should evolve over time as

uncertainties get resolved. Complex interdependencies among options are specified in

the constraints. This formulation enables designers to analyze complex and problem-

specific interdependencies that have been beyond the reach of standard tools for options

analysis, to develop explicit plans for the execution of projects according to the

contingencies that arise.
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The framework developed is generally applicable to engineering systems. The

dissertation explores two cases in river basin development and satellite communications.

The framework successfully attacks these cases, and shows significant value of real

options "in" projects, in the form of increased expected net benefit and/or lowered

downside risk.

At the end of this dissertation, the author would point out again that our framework adds

significant value to big engineering projects featuring high capital investment - 2 Billion

RMB for the river basin example if the electricity price is 0.30 RMB/KWH; and it can help

dramatically cut loss if reality is not as good as expected - $0.25 Billion loss instead of

$2.01 Billion for the satellite system example! It is my deepest hope that this research

can spread, arouse interest, and get tested by practical engineering design!
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Appendices

Appendix 3A: Ito's Lemma

Ito's lemma was discovered by a mathematician, K. Ito, in 1951. Suppose that the value

of a variable x follows an Ito process:

dx = a(x, t)dt + b(x, t)dz

where dz is a Wiener process. A function G(x,t) follows the process

aGdG =( a+
ax

aG a 2 G 2

at 2 ax
2

)dt + bdz
ax

where the dz is the same Wiener process. Thus, G also follows an Ito process.
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Appendix 5A: GAMS code for American Call

Options

$title integer programming to solve a binomial tree by Tao Wang on 10/19/2003

$offupper

$offlisting

$offsymxref

$offsymlist

option

limrow=0

limcol=0;

Sets

i nodes /1*4/

j scenario /1*4/;

scalar deltaT Delta T /1/

sigma Sigma /0.3/

r risk-free rate /0.05/

Scur Current Stock Price /20/

K Striking price /21/;

Variables

S(ij) stock price at node ij

E(ij) exercise value at node ij

H(ij) holding value at node ij

V(i,j) option value at node ij

X(ij) whether the option exercised at node ij

OptVal
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Binary variables

X(i,j);

X.l('4','1') =

X.l('4','2') =

X.l('4','3') =

X.I('4','4') =

S.l(i,j) = 0;

V.I(i,j) = 0;

1;

1;

1;

1;

Equations

Obj

Opt

Exe

Hid1

Hld2l

HIM2

Hld3l

Hld32

Hld33

Hld4

Prb

Sto

Obj..

Hid1l..

Hld2l..

objective funtion

option value on each node

exercise value on each node

holding value on node 11

holding value on node 21

holding value on node 22

holding value on node 31

holding value on node 32

holding value on node 33

holding value on the last time point

risk neutral probabilty

stock price on each node except the initial stock price

OptVal =e= V('1','1');

H('1','1') =e= (V('2','1')*p + V('2,'2')*(1-p))/(exp(r*deltaT));

H('2','1') =e= (V('3','1')*p + V('3','2')*(1 -p))/(exp(r*deltaT));
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Hld22.. H('2','2') =e= (V('3','2')*p + V('3','3')*(1-p))/(exp(r*deltaT));

Hld31.. H('3','1') =e= (V('4','1 I)*p + V('4','2')*(1-p))/(exp(r*deltaT));

Hld32.. H('3','2') =e= (V('4','2')*p + V('4','3')*(1-p))/(exp(r*deltaT));

Hld33.. H('3','3') =e= (V('4','3')*p + V('4','4')*(1-p))/(exp(r*deltaT));

Opt(i,j).. V(i,j) =e= E(i,j)*X(i,j) + H(i,j)*(1 - X(i,j));

Exe(i,j).. S(ij) - K =e= E(ij);

Hld4(j).. H('4',j) =e= 0;

Prb.. p =e= (exp(r*deltaT) - exp(-sigma*(deltaT**0.5)))/(exp(sigma*(deltaT**0.5)) -

exp(-sigma*(deltaT**0.5)));

Sto(i,j).. S(ij) =e= Scur*exp((ord(i)+1-2*ord(j))*sigma*(deltaT**0.5))

Model tamade /all/;

solve tamade using minlp maximizing OptVal;

display V.1, X.l;
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Appendix 5B: GAMS Code for American Put

Options

$title integer programming to solve a binomial tree by Tao Wang on 10/19/2003

$offupper

$offlisting

$offsymxref

$offsymlist

option

limrow=0

limcol=0;

Sets

m stages /1*4/

s scenario /1*8/;

scalar deltaT Delta T /1/

sigma Sigma /0.3/

r risk-free rate /0.05/

Scur Current Stock Price /20/

K Striking price /18/;

Table St(s,m) stock prices in scenarios

1 2 3 4

1 20 26.997 36.442 49.192

2 20 26.997 36.442 26.997

3 20 26.997 20 26.997

4 20 26.997 20 14.816

5 20 14.816 20 26.997

6 20 14.816 20 14.816
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7 20 14.816 10.976

8 20 14.816 10.976

Parameters P(s) probability

/1 0.132

2 0.127

3 0.127

4 0.123

5 0.127

6 0.123

7 0.123

8 0.118 I;

Variables

E(s,m)

X(s,m)

OptVal

con;

14.816

8.131

associated with scenarios

exercise value

whether the option exercised

Binary variables

X(s,m);

X.l('8','4') = 0;

Equations

Obj

Exe

Opt

n1

n2

n3

n4

objective funtion

exercise value on each node

option can only be exercises once

non-antipativity constraint 1

non-antipativity constraint 2

non-antipativity constraint 3

non-antipativity constraint 4
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n5 non-antipativity constraint 5

n6 non-antipativity constraint 6

n7 non-antipativity constraint 7

n8 non-antipativity constraint 8

n9 non-antipativity constraint 9

n1O non-antipativity constraint 10

n11 non-antipativity constraint 11

Obj.. OptVal =e= sum(s, sum(m, P(s)*E(sm)*X(sm)/exp(r*deltaT*(ord(m)-1))));

Exe(s,m).. E(s,m) =e= K - St(s,m);

Opt(s).. sum(m, X(s,m)) =1= 1;

n1(s).. X(s, '1') =e= con;

n2.. X('1','2') =e= X('2','2');

n3.. X('2','2') =e= X('3','2');

n4.. X('3','2') =e= X('4','2');

n5.. X('5','2') =e= X('6','2');

n6.. X('6','2') =e= X('7','2');

n7.. X('7','2') =e= X('8','2');

n8.. X('1 ','3') =e= X('2','3');

n9.. X('3','3') =e= X('4','3');

n10.. X('5','3') =e= X('6','3');

n11.. X('7','3') =e= X('8','3');

Model tamade /all/;

solve tamade using minlp maximizing OptVal;
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Appendix 5C: GAMS Code for analysis of a

satellite communications system

$title satellite constellation problem by Tao Wang on 03/06/2005

$offupper

$offlisting

$offsymxref

$offsymlist

option

limrow=0

limcol=0;

Sets

q

i

s

alias(i,j)

scalar

a

Table

1

1 0

scenario

stages

architecture

/1*16/

/1*5/

/1*5/;

dr discount rate /0.1/

economies of scale factore /0.03/;

D(q,i) stock prices in scenarios

2 3 4 5

1.51 4.57 7.5 7.5.50
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2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

Parameters

1

2

3

4

5

6

7

1.51

1.51

1.51

1.51

1.51

1.51

1.51

0.17

0.17

0.17

0.17

0.17

0.17

0.17

0.17

4.57

4.57

4.57

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.05

0.05

0.05

0.05

7.5

1.51

1.51

1.51

1.51

0.17

0.17

1.51

1.51

0.17

0.17

0.17

0.17

0.02

0.02

4.57

4.57

0.50

4.57

0.50

0.50

0.05

4.57

0.50

0.50

0.05

0.50

0.05

0.05

0.01

P(q) probability associated with scenarios

0.057

0.060

0.060

0.062

0.060

0.062

0.062
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8 0.065

9 0.060

10 0.062

11 0.062

12 0.065

13 0.062

14 0.065

15 0.065

16 0.068

I;

Parameters C(s) Cost for architecture

/1 0.25

2 0.15

3 0.7

4 0.8

5 4.9!;

Parameters Cap(s) Incremental capacity for architecture

/1 0.4

2 0.1

3 0.8

4 1.4

5 5.1!;

Variables

OptVal

con(s)
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R(q,i,s)

RTD(q,i,s)

P1 (q,i)

P2(q,i);

Binary variables

R(q,i,s);

R.I(q,i,s) = 0;

Equations

Obj objective funtion

capacity

tech1

tech2

tech3

tech4

tech5

tech6

tech7

tech8

tech9

ro

nal

na2
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na3

na4

na5

na6

na7

na8

na9

nal 0

na1l

nal 2

nal 3

na14

nal 5

nal 6

nal 7

nal 8

nal9

na20

na2l

na22

na23

na24

na25

na26

na27
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na28

na29

na30

na3l

na32

na33

na34

na35

Obj.. OptVal =e= sum(q, P(q)*sum(i, sum(s, C(s)*R(q,i,s)*(1+dr)**(-

ord(i)*2.5+2.5)*(1-a*((R(q,i,'1')+R(q,i,'2')+R(q,i,'3')+R(q,i,'4')+R(q,i,'5'))**1.5)

capacity(q,i).. sum(s, Cap(s)*RTD(q,i,s)) =g= D(q,i);

tech I (q,s)..

tech2(q,s)..

tech3(q,s)..

tech4(q,s)..

tech5(q,s)..

tech6(q,i)..

tech7(q,i)..

tech8(q,i)..

tech9(q,i)..

ro(q,s)..

na1 (q,s)..

RTD(q,'1',s)

RTD(q,'2',s)

RTD(q,'3',s)

RTD(q,'4',s)

RTD(q,'5',s)

R(q,i,'2') =1=

R(q,i,'3') =1=

R(q,i,'4') =1=

=e= R(q,'1',s);

=e= R(q,'1',s) + R(q,'2',s);

=e= R(q,'1',s) + R(q,'2',s) + R(q,'3',s);

=e= R(q,'1',s) + R(q,'2',s) + R(q,'3',s) + R(q,'4',s);

=e= R(q,'1',s) + R(q,'2',s) + R(q,'3',s) + R(q,'4',s) + R(q,'5',s);

RTD(q,i,'1');

RTD(q,i,'2');

RTD(q,i,'3');

R(q,i,'5') =1= RTD(q,i,'4');

sum(i, R(q,i,s)) =1= 1;

R(q,'1',s) =e= con(s);



na2(s)..

na3(s)..

na4(s)..

na5(s)..

na6(s)..

na7(s)..

na8(s)..

na9(s)..

nal 0(s)..

na11(s)..

nal 2(s)..

nal 3(s)..

nal4(s)..

nal 5(s)..

*

nal6(s)..

nal 7(s)..

nal 8(s)..

nal9(s)..

na20(s)..

na2l (s)..

na22(s)..

na23(s)..

na24(s)..

na25(s)..
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R('1''2',s) =e=R

R('2','2',s) =e= R('3','2',s);

R('3','2',s) =e= R('4','2',s);

R('4','2',s) =e= R('5','2',s);

R('5','2',s) =e= R('6','2',s);

R('6','2',s) =e= R('7','2',s);

R('7','2',s) =e= R('8','2',s);

R('9','2',s) =e= R('1','2',s);

R('10','2',s) =e= R('11','2',s);

R('l ','2',s) =e= R('12','2',s);

R('12','2',s) =e= R('13','2',s);

R('13','2',s) =e= R('14','2',s);

R('14','2',s) =e= R('15','2',s);

R('15','2',s) =e= R('16','2',s);

R('1','3',s) =e= R('2','3',s);

R('2','3',s) =e= R('3','3',s);

R('3','3',s) =e= R('4','3',s);

R('5','3',s) =e= R('6','3',s);

R('6','3',s) =e= R(7','3',s);

R('7','3',s) =e= R('8','3',s);

R('9','3',s) =e= R('10','3',s);

R('10','3',s) =e= R('1 1','3',s);

R('11','3',s) =e= R('12','3',s);

R('1 3','3',s) =e= R('14','3',s);
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R('14','3',s) =e= R('15','3',s);

R('15','3',s) =e= R('16','3',s);

R('1','4',s) =e= R('2','4',s);

R('3','4',s) =e= R('4','4',s);

R('5','4',s) =e= R('6','4',s);

R('7','4',s) =e= R('8','4',s);

R('9','4',s) =e= R('1O','4',s);

R('11','4',s) =e= R('12','4',s);

R('13','4',s) =e= R('14','4',s);

R('15','4',s) =e= R('16','4',s);

Model tamade /all/;

solve tamade using minip minimizing OptVal;

na26(s)..

na27(s)..

*

na28(s)..

na29(s)..

na3O(s)..

na31(s)..

na32(s)..

na33(s)..

na34(s)..

na35(s)..
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Appendix 6A: GAMS code for the screening model

$title screen model by Tao Wang on 10/19/2003

$offupper

$offlisting

$offsymxref

$offsymlist

option

limrow=0

limcol=0;

*The site and season indices are as follow

Sets

s /1,2,3/

t /1, 2/;

*The following defintion of parameters are based on List of Parameters.

*The order and the unit are strictly folloiwng the List of Parameters.

Parameters

INFL(t) /1 374

2 283/;

Parameters

CAPD(s)

2

3

Parameters

CAPP(s)

2

3

/1 9600

25

12500/;

/1 3600

1700

3200/;
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Table DeltaF(s,t)

1 2

1 0 0

2 0 0

3 212 105;

Scalars es /0.7/;
Scalars Kt /15.552/;
Scalars ht /4320/;

Scalars Yst /0.35/;
Scalars BetaP /0.25/;
Parameters

FC(s) /1 11.19

2 0

3 8.41/;

Parameters

VC(s)

2

3

Parameters

Cheta(s

2

3

Scalars

Scalars

r

crf

/1 0.000449

0

0.000668/;

)/1 0.000765

0.00185

0.00088/;

/0.086/;

/0.087/;

*The following defintion of variables are based on List of Variable.

*The order and the unit are strictly folloiwng the List of Variables.

Variables

yr(s)

Sst(s,t)

Xst(s,t)
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Est(s,t)

Pst(s,t)

Ast(s,t)

H(s)

V(s)

AMAX(s)

AMIN(s)

B

C

NIB;

Positive variable

Sst(s,t)

Xst(s,t)

Est(s,t)

Pst(s,t)

Ast(s,t)

H(s)

V(s)

AMAX(s)

AMIN(s);

Binary variables

yr(s);

yr.l('1') = 1;

yr.l('2') 1;

yr.l('3') = 1;

*The following defintion of equation are based on Complete formulation of the

*mixed-integer screening model
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Equations

Obj

Bene

Cost

Cont1

Cont2

Cont3

Cont4

Cont5

Cont6

Cont7

Cont8

Cont9

Contl 0

rese1

rese2

rese3

rese4

rese5

Hydrol

Hydro2

Hydro3

Hydro4

Hydro5

Hydro6

Inter1

*costs and benefits are all in the unit of million RMB

Bene.. B =e= sum( s, (sum(t, BetaP*Pst(s,t))))*0.001;
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C =e= crf*(sum( s, (FC(s)*yr(s) + VC(s)*V(s)*yr(s)))*1000);

NIB =e= B - C;

Cost..

Obj..

Cont1..

Cont2..

Cont3..

Cont4..

Cont5..

Cont6..

Cont7..

Cont8..

Cont9..

Contl 0..

- Sst('3','1') =e= (INFL('1') - Xst('3','1'))*kt;

- Sst('3','2') =e= (INFL('2') - Xst(3','2'))*kt;

=e= Xst('3','1') + DeltaF('3','1');

=e= Xst('3','2') + DeltaF('3','2');

- Sst('1','1') =e= (Est('1','1') - Xst('1','1'))*kt;

- Sst('1','2') =e= (Est('1','2') - Xst('1','2'))*kt;

=I= Xst('1','1');

=1= Xst('1','2');

- Sst('2','1') =e= (Est('2','1') - Xst('2','1'))*kt;

Sst('2','1') - Sst('2','2') =e= (Est('2','2') - Xst('2','2'))*kt ;

resel (s,t).. Sst(s,t) - V(s) =I= 0;

rese2(s).. V(s) - CAPD(s)*yr(s) =1= 0;

rese3(t).. Sst('l',t) - 0.14*Ast('1',t)**2 =e= 0;

rese4(t).. Ast('2',t) =e= 280;

rese5(t).. Sst('3',t) - 0.15*Ast('3',t)**2 =e= 0;

Hydro1 (s,t).. Pst(s,t) - 2.73*es*Kt*Xst(s,t)*Ast(s,t) =1= 0;

Hydro2(s,t).. Pst(s,t) - Yst*ht*H(s) =1= 0;

Hydro3(s,t).. AMIN(s) - Ast(s,t) =1= 0;

Hydro4(s,t).. Ast(s,t) - AMAX(s) =1= 0;

Hydro5(s).. AMAX(s) - 2*AMIN(s) =1= 0;

Hydro6(s).. H(s) - CAPP(s)*yr(s) =1= 0;

Inter1.. yr('2') =1= yr('1);

Model tamade /all/;

solve tamade using minip maximizing NIB;

display yr.I, H.A, V.A, NIB.l;

Sst('3','2')

Sst('3','1')

Est('1','1')

Est('1 ','2')

Sst('1 ','2')

Sst(' 1','"1')

Est('2','1')

Est('2','2')

Sst('2','2')
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Appendix 6B: GAMS code for the traditional

sequencing model

$title sequencing model by Tao Wang on 11/29/2003

$offupper

$offlisting

$offsymxref

$offsymlist

option

limrow=0

limcol=0;

*The site and season indices are as follow

Sets

s /1,2,3/

t /1,2/

i /1, 2, 3/;

alias(i,j);

*The following defintion of parameters are based on List of Parameters.

*The order and the unit are strictly folloiwng the List of Parameters.

Parameters

INFL(t) /1 374

2 283/;

Table DeltaF(s,t)

1 2

1 0 0

2 0 0



3 389 154;

Scalars es /0.7/;

Scalars Kt /15.552/;

Scalars ht /4320/;

Scalars Fst /0.35/;

Scalars BetaP /0.21/;

Parameters

FC(s) /1 11.19

2 0

3 8.41/;

Parameters

VC(s) /1 0.000

2 0

3 0.00066

Parameters

HBar(s) /1 3600

2 1700

3 1732/;

Parameters

449

8/;

VBar(s) /1 9600

2 0

3 9593/;

Table ABar(s,t)

1 2

1 262 262

2 280 280

3 240 253;

Table YBar(s,t)

1 2

1 0 0

2 0 0

320
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3 -63.6 63.6;
Scalars f /0.226/;

Parameters

Cheta(s)/1 0.000765

2 0.00185

3 0.00088/;
Scalars r /0.086/;

Parameters

PV(i) /1 6.532

2 2.863

3 1.254/;

Parameters

PVO(i) /1 0.896

2 0.943

3 0.963/;

Parameters

PVC(i) /1 1

2 0.438

3 0.192/;
Scalars crf /0.087/;

*The following defintion of variables are based on List of Variable.
*The order and the unit are strictly folloiwng the List of Variables.
Variables

Xsti(s,t,i)

Psti(s,t,i)

Rsi(s,i)

B

C

NIB;
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Positive variable

Xsti(s,t,i)

Psti(s,t,i);

Binary variables

Rsi(s,i);

Rsi.l('1','1') = 0;

Rsi.l('1','2') = 0;
Rsi.l('1','3') = 0;

Rsi.l('2','1') = 0;
Rsi.l('2','2') = 0;

Rsi.l('2','3') = 0;

Rsi. 1('3','1' ) =0;

Rsi.l('3','2') =0;

Rsi.l('3','3') = ;

*The following defintion of equation are based on Complete formulation of the

*mixed-integer sequencing model

Equations

Obj

Bene

Cost

Cont1

Cont2

Cont3

Cont4

Cont5

Cont6

Constr
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Hydrol

Hydro2

Budget

*costs and benefits are all in the unit of million RMB

Bene.. B =e= sum( s, (sum(t, sum(i, PV(i)*BetaP*Psti(s,t,i)*(sum(j$(ord(j) It
(ord(i)+1)),Rsi(s,j))-(1 -f)*Rsi(si) ))*0001 + sum(s, sum(t, sum(i,
PVO(i)*BetaP*Psti(s,t,i)*Rsi(s,i))))*O.001;

Cost.. C =e= 1000*sum( i, sum(s, Rsi(s,i)*PVC(i)*(FC(s) + VC(s)*VBar(s) +
Cheta(s)*HBar(s))));

Obj.. NIB =e= B - C;

Conti (i).. Xsti('3','1',i) =e= INFL(1') + YBar('3','1')*sum(j$(ord(j) It (ord(i)+1)),Rsi('3',j));
Cont2(i).. Xsti('3','2',i) =e= INFL('2') + YBar('3','2')*sum(j$(ord(j) It (ord(i)+1)),Rsi('3',j));
Cont3(i).. Xsti('1' ,'1 ',i) =e= Xsti('3','1',i) + DeltaF('3','1')+ YBar('1','1')*sum(j$(ord(j) It
(ord(i)+1)),Rsi('1 ',j));
Cont4(i).. Xsti('1','2',i) =e= Xsti('3','2',i) + DeltaF('3','2')+ YBar('1','2')*sum(j$(ord(j) It
(ord(i)+1)),Rsi('1',j));

Cont5(i).. Xsti('2','1 ,i) =I= Xsti('1 ','1 ',i);
Cont6(i).. Xsti('2','2',i) =1= Xsti('1','2',i);

Constr(s).. sum(i, Rsi(s,i)) =1= 1;
Hydrol (s,t,i).. Psti(s,t,i) =1= 2.73*es*Kt*Xsti(s,t,i)*ABar(s,t)*sum(j$(ord(j) It
(ord(i)+1)),Rsi(s,j)) ;

Hydro2(s,t,i).. Psti(s,t,i) - Fst*ht*HBar(s) =1= 0;
Budget(i).. sum(s, Rsi(s,i)) =1= 1;

Model tamade /all/;

solve tamade using minlp maximizing NIB;
display Rsi.l, NIB.1;
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Appendix 6C: GAMS code for the real options

timing model

$title sequencing model by Tao Wang on 11/29/2003

$offupper

$offlisting

$offsymxref

$offsymlist

option

limrow=0

limcol=0;

*The

Sets

site and season indices are as follow

s

t

i

q

alias(i,j);

/1,2,3/

/1,2/

/1,2,3/

scenarios /1, 2, 3, 4/;

*The following defintion

*The order and the unit

Parameters

INFL(t) /1 374

2 283/;

Table DeltaF(s,t)

1 2

1 0 0

2 0 0

3 389 154;

of parameters are based on List of Parameters.

are strictly folloiwng the List of Parameters.
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Scalars es /0.7/;

Scalars Kt /15.552/;

Scalars

Scalars

Table

1

2

3

Parame

/

ht /4320/;

Fst /0.35/;

BetaP(i,q) electricity prices in scenatios

1 2 3 4

0.310 0.310 0.310 0.310

0.498 0.498 0.193 0.193

0.801 0.310 0.310 0.120;

ters P(q) probability associated with scenarios

1 0.178

2 0.244

3 0.244

4 0.335 /;

Parameters

FC(s)

2

3

/1 11.19

0

8.41/;

Parameters

VC(s) /

2

3

Parameters

HBar(s)

2

3

Parameters

VBar(s)

1 0.000449

0

0.000668/;

/1 3600

1700

1732/;

/1 9600

2 0

3 9593/;

Table ABar(s,t)



1 2

262 262

280 280

240 253;

YBar(s,t)

1 2

1 0

2 0

3 -6

Scalars f

Parameters

Cheta(s

2

3

Scalars r

Parameters

PV(i) /

2

3

Parameters

PVO(i)

2

3

Parameters

PVC(i)

2

3

Scalars crf

0

0

3.6 63.6;

/0.226/;

)/1 0.000765

0.00185

0.00088/;

/0.086/;

1 6.532

2.863

1.254/;

/1 0.896

0.943

0.963/;

1 1

0.438

0.192/;

/0.087/;

*The following defintion

*The order and the unit

of variables are based on List of Variable.

are strictly folloiwng the List of Variables.

326

1

2

3

Table
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Variables

Xstiq(s,t,i,q)

Pstiq(s,t,i,q)

Rsiq(s,i,q)

B1

B2

C

NIB

con(s);

Positive variable

Xstiq(s,t,i,q)

Pstiq(s,t,i,q);

Binary variables

Rsiq(s,i,q);

Rsiq.l(' ','2','1') = 1;

Rsiq.i('1 ','2','3') = 0;

Rsiq.l('1','3','1') = 0;

Rsiq.l('1','3','2') = 0;
Rsiq.l('1','3','3') = 0;

Rsiq.l('1 ','3','4') = 0;

Rsiq.I('2','1','1') = 1;

Rsiq.l('3','2','1') = 0;

Rsiq.l('3','2','3') = 0;

Rsiq.l('3','3','1') = 1;

Rsiq.l('3','3','2') = 0;

Rsiq.l('3','3','3') = 0;

Rsiq.l('3','3','4') = 0;
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*The following defintion of equation are based on Complete formulation of the
*mixed-integer sequencing model

Equations

Obj

Benel

Bene2

Cost

Cont1

Cont2

Cont3

Cont4

Cont5

Cont6

Hydrol

Hydro2

Budget

opt option can be exercised only once

n1 non-antipicativity 1

n2 non-antipicativity 2

n3 non-antipicativity 3

forcel

force2

force3

force4

* force5

*costs and benefits are all in the unit of million RMB

Benel.. B1 =e= P('1')*sum( s, (sum(t, sum(i,

PV(i)*BetaP(i,'l')*Pstiq(s,t,i,'1')*(sum(j$(ord(j) It (ord(i)+1)),Rsiq(s,j,'1'))-(l-
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f)*Rsiq(s,i,'1') )))))*0.001 + P('2')*sum( s, (sum(t, sum(i,

PV(i)*BetaP(i,'2')*Pstiq(s,t,i,'2')*(sum(j$(ord(j) It (ord(i)+1)),Rsiq(s,j,'2'))-(1-

f)*Rsiq(s,i,'2') )))))*0.001 + P('3')*sum( s, (sum(t, sum(i,

PV(i)*BetaP(i,'3')*Pstiq(s,t,i,'3')*(sum(j$(ord(j) It (ord(i)+1)), Rsiq(s,j,'3'))-(1-

f)*Rsiq(s,i,'3') )))))*0.001 + P('4')*sum( s, (sum(t, sum(i,

PV(i)*BetaP(i,'4')*Pstiq(s,t,i,'4')*(sum(j$(ord(j) It (ord(i)+1)),Rsiq(s,j,'4'))-(1-

f)*Rsiq(s,i,'4') )))))*0.001;

Bene2.. B2 =e= P('1')*sum(s, sum(t, sum(i,

PVO(i)*BetaP(i,'1')*Pstiq(s,t, i,'l')*Rsiq(s,i,'1'))))*0.001 + P('2')*sum(s, sum(t, sum(i,

PVO(i)*BetaP(i,'2')*Pstiq(s,t,i,'2')*Rsiq(s,i,'2'))))*O.001 + P('3')*sum(s, sum(t, sum(i,

PVO(i)*BetaP(i,'3')*Pstiq(s,t,i,'3')*Rsiq(s,i,'3'))))*O.001 + P('4')*sum(s, sum(t, sum(i,

PVO (i)* Beta P(i,'4')* Psti q(s,t, i,'4')* Rs iq(s, i,'4'))))*O. 001;

Cost.. C =e= P('1')*1000*sum( i, sum(s, Rsiq(s,i,'')*PVC(i)*(FC(s) + VC(s)*VBar(s)

+ Cheta(s)*HBar(s)))) + P('2')*1000*sum( i, sum(s, Rsiq(s,i,'2)*PVC(i)*(FC(s) +

VC(s)*VBar(s) + Cheta(s)*HBar(s))))+ P('3')*1000*sum( i, sum(s,

Rsiq(s,i,'3')*PVC(i)*(FC(s) + VC(s)*VBar(s) + Cheta(s)*HBar(s)))) + P('4')*1000*sum( i,

sum(s, Rsiq(s,i,'4')*PVC(i)*(FC(s) + VC(s)*VBar(s) + Cheta(s)*HBar(s))));

Obj.. NIB =e= B1 + B2 - C;

Contl(i,q).. Xstiq('3','1',i,q) =e= INFL('1') + YBar('3','1)*sum(j$(ord(j) It

(ord(i)+1)),Rsiq('3',j,q));

Cont2(i,q).. Xstiq('3','2',i,q) =e= INFL('2') + YBar('3','2')*sum(j$(ord(j) It

(ord(i)+1)),Rsiq('3',j,q));

Cont3(i,q).. Xstiq('1','1',i,q) =e= Xstiq('3','1',i,q) + DeltaF('3','1')+

YBar('1''1')*sum(j$(ord(j) It (ord(i)+1)),Rsiq('1',j,q));

Cont4(i,q).. Xstiq('1','2',i,q) =e= Xstiq('3','2',i,q) + DeltaF('3','2')+

YBar('1 ,'2')*sum(j$(ord(j) It (ord(i)+1)),Rsiq('1',j,q));

Cont5(i,q).. Xstiq('2','1',i,q) =1= Xstiq('1','1',i,q);

Cont6(i,q).. Xstiq('2','2',i,q) =1= Xstiq('1','2',i,q);

Hydrol(s,t,i,q).. Pstiq(s,t,i,q) =1= 2.73*es*Kt*Xstiq(s,t,i,q)*ABar(s,t)*sum(j$(ord(j) It

(ord(i)+1)),Rsiq(s,j,q)) ;
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Hydro2(s,t,i,q).. Pstiq(s,t,i,q) - Fst*ht*HBar(s) =1= 0;

Budget(i,q).. sum(s, Rsiq(s,i,q)) =1= 1;

opt(s,q).. sum(i, Rsiq(s,i,q)) =1= 1;

n1 (s,q).. Rsiq(s,'1',q) =e= con(s);

n2(s).. Rsiq(s,'2','1') =e= Rsiq(s,'2','2');

n3(s).. Rsiq(s,'2','3') =e= Rsiq(s,'2','4');

force1.. Rsiq('1','2','1') =e= 1;

force2.. Rsiq('2','1','1') =e= 1;

force3.. Rsiq('3','3','1') =e= 1;

force4.. Rsiq('3','3','2') =e= 0;

*force5.. Rsiq('1','3','3') =e= 1;

Model tamade /all/;

solve tamade using minIp maximizing NIB;
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Appendix 6D: GAMS code for real options timing

model considering multiple designs

$title sequencing model by Tao Wang on 11/29/2003

$offupper

$offlisting

$offsymxref

$offsymlist

option

limrow=0

limcol=0;

*The site and season indices are as follow

Sets

s /1,2,3/

t /1,2/

i /1,2,3/

n designs /1, 2, 3/

q scenarios /1, 2, 3, 4/;

alias(i,j);

*The following defintion of parameters are based on List of Parameters.

*The order and the unit are strictly folloiwng the List of Parameters.

Parameters

INFL(t) /1 374

2 283/;

Table DeltaF(s,t)

1 2
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1

2

3

Scalars

Scalars

Scalars

Scalars

Table

0 0
0 0

389 154;

es /0.7/;

Kt /15.552/;

ht /4320/;

Fst /0.35/;

BetaP(i,q) electricity prices in scenatios

1 2 3 4

1 0.300 0.300 0.300

2 0.374 0.374 0.241

3 0.466 0.300 0.300

Parameters P(q) probability

/ 1 0.147

2 0.236

3 0.236

4 0.380 /;

Parameters

FC(s) /1 11.19

2 0

3 8.41/;

Parameters

VC(s) /1 0.000449

2 0

3 0.000668/;

Table HBar(s, n)

1

2

3

Table

1 2 3

3600 3600

1700 1700

1723 1946

VBar(s, n)

0.300

0.241

0.193;

associated with scenarios

3600

1700

1966;
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1 9600

2 3

9600

2 0 0 0

3 9593 12242

Table ABar(s,t,n)

1 2 3

1.1 262 262

1.2 262 262

2.1 280 280

2.2 280 280

3.1 240 274

3.2 253 286

Table YBar(s,t)

1 2

1 0 0

2 0 0

3 -63.6 63.6;

Scalars f /0.226/;

Parameters

Cheta(s

2

3

Scalars r

Parameters

PV(i) I

2

3

Parameters

PVO(i)

2

3

)/1 0.000765

0.00185

0.00088/;

/0.086/;

1 6.532

2.863

1.254/;

/1 0.896

0.943

0.963/;

333

9600

12500;

262

263

280

280

277

289;
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Parameters

PVC(i) /1 1

2 0.438

3 0.192/;

Scalars crf /0.087/;

*The following defintion of variables are based on List of Variable.

*The order and the unit are strictly folloiwng the List of Variables.

Variables

Xstiq(s,t,i,q)

Pstiq(s,t,i,q)

Rsiq(s,i,q)

B1

B2

C

NIB

con(s);

Positive variable

Xstiq(s,t,i,q)

Pstiq(s,t,i,q);

Binary variables

Rsiq(s,i,q)

Z(n);

Rsiq.l('1','2''') = ;

Rsiq.l('1','2','3') = 0;

Rsiq.l('1 ','3','1') = 0;

Rsiq.l('1','3','2') = 0;

Rsiq.l('1','3','3') = 0;
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Rsiq.l('1','3','4') = 0;

Rsiq.l('2','1' ') = 0;

Rsiq.l('3','2','3') = 0;

Rsiq.l('3','2','3') = 0;

Rsiq.l('3','3','1') = 0;

Rsiq.l('3','3','2') = 0;

Rsiq.l('3','3','3') = 0;

Rsiq.l('3','3','4') = 0;

*The following defintion of equation are based on Complete formulation of the
*mixed-integer sequencing model

Equations

Obj

Benel

Bene2

Cost

Cont1

Cont2

Cont3

Cont4

Cont5

Cont6

Hydro1

Hydro2

Budget

opt option can be exercised only once

n1 non-antipicativity 1

n2 non-antipicativity 2

n3 non-antipicativity 3

design
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force1

force2

force3

force4

* force5

*costs and benefits are all in the unit of million RMB

Benel.. B1 =e= P('1')*sum( s, (sum(t, sum(i,

PV(i)*BetaP(i,'1')*Pstiq(s,t,i,'l')*(sum(j$(ord(j) It (ord(i)+1)),Rsiq(s,j,'1'))-(1-

f)*Rsiq(s,i,'1') )))))*0.001 + P('2')*sum( s, (sum(t, sum(i,

PV(i)*BetaP(i,'2')*Pstiq(s,t,i,'2')*(sum(j$(ord(j) It (ord(i)+1)),Rsiq(s,j,'2'))-(1-

f)*Rsiq(s,i,'2') )))))*0.001 + P('3')*sum( s, (sum(t, sum(i,

PV(i)*BetaP(i,'3')*Pstiq(s,t,i,'3')*(sum(j$(ord(J) It (ord(i)+1)),Rsiq(s,j,'3'))-(1-

f)*Rsiq(s,i,'3') )))))*0.001 + P('4')*sum( s, (sum(t, sum(i,

PV(i)*BetaP(i,'4')*Pstiq(s,t,i,'4')*(sum(j$(ord(J) It (ord(i)+1)),Rsiq(s,j,'4'))-(1-

f)*Rsiq(s,i,'4') )))))*0.001;

Bene2.. B2 =e= P('1')*sum(s, sum(t, sum(i,

PVO(i)*BetaP(i,'1')*Pstiq(s,t,i,'1')*Rsiq(s,i,'1'))))*0.001 + P('2')*sum(s, sum(t, sum(i,

PVO(i)*BetaP(i,'2')*Pstiq(s,t,i,'2')*Rsiq(s,i,'2'))))*O.001 + P('3')*sum(s, sum(t, sum(i,

PVO(i)*BetaP(i,'3')*Pstiq(s,t,i,'3')*Rsiq(s,i,'3'))))*O.001 + P('4')*sum(s, sum(t, sum(i,

PVO(i)* Beta P(i,'4')* Pstiq (s,t, i,'4')* Rsiq(s, i,'4'))))*O. 001;

Cost.. C =e= P('1')*1000*sum( i, sum(s, Rsiq(s,i,'1')*PVC(i)*(FC(s) +

VC(s)*sum(n,VBar(s,n)*z(n)) + Cheta(s)*sum(n ,HBar(s,n)*z(n))))) + P('2')*1000*sum( i,

sum(s, Rsiq(s,i,'2')*PVC(i)*(FC(s) + VC(s)*sum(n,VBar(s,n)*z(n)) +

Cheta(s)*sum(n,HBar(s,n)*z(n)))))+ P('3)*1000*sum( i, sum(s, Rsiq(s,i,'3')*PVC(i)*(FC(s)

+ VC(s)*sum(n,VBar(s,n)*z(n)) + Cheta(s)*sum(n,HBar(s,n)*z(n))))) + P('4')*1000*sum( i,

sum(s, Rsiq(s,i,'4')*PVC(i)*(FC(s) + VC(s)*sum(n,VBar(s,n)*z(n)) +

Cheta(s)*sum(n, HBar(s,n)*z(n)))));

Obj.. NIB =e= B1 + B2 - C;
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Conti (i,q).. Xstiq('3','1',i,q) =e= INFL(1') + YBar('3','1')*sum(j$(ord(j) It

(ord(i)+1)),Rsiq('3',j,q));

Cont2(i,q).. Xstiq('3','2',i,q) =e= INFL('2') + YBar(3','2')*sum(j$(ord(j) It

(ord(i)+1)),Rsiq('3',j,q));

Cont3(i,q).. Xstiq('1','1',i,q) =e= Xstiq('3','1',i,q) + DeltaF('3','1')+

YBar('1','1')*sum(j$(ord(j) It (ord(i)+1)),Rsiq('1',j,q));

Cont4(i,q).. Xstiq('1','2',i,q) =e= Xstiq('3','2',i,q) + DeltaF('3','2')+

YBar('1','2')*sum(j$(ord(j) It (ord(i)+1)),Rsiq('1',j,q));

Cont5(i,q).. Xstiq('2','1',i,q) =1= Xstiq('l1','1',i,q);

Cont6(i,q).. Xstiq('2','2',i,q) =1= Xstiq('1','2',i,q);

Hydrol(s,t,i,q).. Pstiq(s,t,i,q) =1=

2.73*es*Kt*Xstiq(s,t,i,q)*sum(n,ABar(s,t,n)*z(n))*sum(j$(ord(j) It (ord(i)+1)),Rsiq(s,j,q));

Hydro2(s,t,i,q).. Pstiq(s,t,i,q) - Fst*ht*sum(n,HBar(s,n)*z(n)) =I= 0;

Budget(i,q).. sum(s, Rsiq(s,i,q)) =1= 1;

opt(s,q).. sum(i, Rsiq(s,i,q)) =1= 1;

n1(s,q).. Rsiq(s,'1',q) =e= con(s);

n2(s).. Rsiq(s,'2','1') =e= Rsiq(s,'2','2');

n3(s).. Rsiq(s,'2','3') =e= Rsiq(s,'2','4');

design.. sum(n, z(n)) =e= 1;

forcel.. Rsiq('1','2','1') =e= 1;

force2.. Rsiq('2','1 ','1') =e= 1;

force3.. Rsiq('3','3','1') =e= 1;

force4.. Rsiq('3','3','2') =e= 0;

*force5.. Rsiq('1','3','3') =e= 1;

Model tamade /all/;

solve tamade using minip maximizing NIB;


