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Partition identity bijections
related to sign-balance and rank

by
Cilanne Emily Boulet

Submitted to the Department of Mathematics
on April 26, 2005, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis, we present bijections proving partitions identities.

In the first part, we generalize Dyson's definition of rank to partitions with successive
Durfee squares. We then present two symmetries for this new rank which we prove
using bijections generalizing conjugation and Dyson's map. Using these two sym-
metries we derive a version of Schur's identity for partitions with successive Durfee
squares and Andrews' generalization of the Rogers-Ramanujan identities. This gives
a new combinatorial proof of the first Rogers-Ramanujan identity. We also relate this
work to Garvan's generalization of rank.

In the second part, we prove a family of four-parameter partition identities which
generalize Andrews' product formula for the generating function for partitions with
respect number of odd parts and number of odd parts of the conjugate. The param-
eters which we use are related to Stanley's work on the sign-balance of a partition.

Thesis Supervisor: Richard P. Stanley
Title: Norman Levinson Professor of Applied Mathematics
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Chapter 1

Introduction

1.1 Basic definitions and notations

Before introducing the partition bijections which will be proved in this thesis, we
begin by giving the basic definitions that we will need. This section is meant simply
to familiarize the reader with the notation that will be used, rather than provide an
introduction to the subject. For such an introduction we recommend [And76, PakO5].

A partition A is a sequence of integers (A1, A2 , ... , Ae) such that A1 > A2 > ... > Ae > 0.
As a convention, we will say that Aj = 0 for j > e. For 1 < i < , we call each Ai a
part of A. We say that A is a partition of n, denoted A I n or IAI = n, if E Ai = n.
Let Pn denote the set of partitions of n and let p(n) = PnI. Also, let P = UPn
denote the set of all partitions.

We let t(A) = e denote the number of parts of A, let f(A) = A1 denote the
of A, and let e(A) = A(x) denote the smallest part of A. Finally, let O(A)
number of odd parts of A.

To every partition we associate a Young diagram as in Figure 1-1.

largest part
denote the

AISAl

Figure 1-1: Partition A = (5, 5, 4, 1) and conjugate partition A' = (4, 3, 3, 3, 2).

The conjugate A' of a partition A is obtained by reflection across the main diag-
onal (again see Figure 1-1). Alternatively, A' may be defined as follows: A' =
(A, A',.., , A(A)) where A' = I{j : Aj > i}l be the number of parts of A which are
greater than or equal to i.

9
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The Durfee square of a partition A is the largest square which fits in the Young
diagram of A. Note that conjugation preserves the Durfee square of a partition. See
Figure 1-2.

U A

Figure 1-2: Partition A = (5, 5, 4, 1) has a Durfee square of size 3.

For every pair of partitions, A and Al, we define two new partitions. The sum of A
and A, A + A, is the partition whose parts are (A1 + Al, A2 + A2, ... ). The union
of A and ,I, A U ,u, is the partition with parts {A1, A2, ... , l, 2, .. } arranged in non-
increasing order. Note that A U A = (A' + A')'. See Figure 1-3.

I I I II I I I 

Figure 1-3: Sum and union: A = (4,4,2, 1, 1), u = (3,2,2), A + I = (7,6,4, 1,1),
AU = (4,4,3,2,2,2, 1, 1).

We will use standard q-series notation to write the various generating functions in
which we are interested. Following [And76], let

k-1
(a)k = (a; q)k = (1 -a)(1 -aq) .. (1 -aqk - l ) = 1l(1 -aq )

j=o

and
00

(a)oo = (a; q)oo = limk- o(a; q)k = 1(1 - aq')-
j=0

The generating function for P, the set of all partitions, is

EP(n)qn - ) (1 q
n= (--0 k-1 q

Similarly, the generating function for the set of all partitions with parts of size at
most k is

1 1

(q)k (1 -q)( -q2) · · · (1- k) '

10



By conjugation, this is also the generating function for partitions with at most k
parts.

Finally, let [k+j]q denote the generating function for partitions with parts of size at
most k and at most j parts, i.e. partitions that fit into a j x k box. Then we have

[kTJ~q = j (1.1)
k q (q)k(q)j (.)

This fact can be established in a variety of ways but is not completely trivial to
establish by direct bijection. One bijective proof was found by Zeilberger [BZ89]. We
will explain this bijection in Appendix A. Another bijective proof of this identity was
found by Franklin [SF82] and will be useful in Chapter 5. We will explain Franklin's
proof in Appendix B.

1.2 The Rogers-Ramanujan identities

The Roger-Ramanujan identities are perhaps the most mysterious and celebrated
results in partition theory. They have a remarkable tenacity to appear in areas as
distinct as enumerative combinatorics, number theory, representation theory, group
theory, statistical physics, probability and complex analysis [And76, And86]. The
identities were discovered independently by Rogers, Schur, and Ramanujan (in this
order), but were named and publicized by Hardy [Har40]. Since then, the identities
have been greatly romanticized and have achieved nearly royal status in the field. By
now there are dozens of proofs known, of various degree of difficulty and depth. Still,
it seems that Hardy's famous comment remain valid: "None of the proofs of [the
Rogers-Ramanujan identities] can be called "simple" and "straightforward" [...]; and
no doubt it would be unreasonable to expect a really easy proof" [Har40].

Of the many proofs of Rogers-Ramanujan identities only a few can be honestly called
"combinatorial". We would like to single out [And75] as an interesting example.
Perhaps, the most important combinatorial proof was given by Schur in [Sch17] where
he deduced his identity by a direct involutive argument. The celebrated bijection
of Garsia and Milne [GM81] is based on this proof and the involution principle.
In [BZ82], Bressoud and Zeilberger obtained a different involution principle proof
(see also [BZ89]) based on a short proof of Bressoud [Bre83].

In the second chapter of this thesis we propose a new combinatorial proof of the first
Rogers-Ramanujan identity,

00 q k2 01
1+ (1-q)(1 - q...(1 - qk) (1 - q5i+l)(1 q5i+4)

with a minimum amount of algebraic manipulation (also see [BP04]). Almost com-

11



pletely bijective, our proof would not satisfy Hardy as it is neither "simple" nor
"straightforward". On the other hand, the heart of the proof is the analysis of two
bijections and their properties, each of them elementary and approachable. Our proof
gives new generating function formulas and can be modified to prove generalizations
of the Rogers-Ramanujan identities due to Andrews. These results appear in Chap-
ters 3 and 4.

The basic idea of our proof is to use a generalization of Dyson's rank to partitions
with successive Durfee squares and deduce the Rogers-Ramanujan identities using
symmetries for partitions that are related to this new rank. The heart of our proof
is the bijections which are used to establish these symmetries in Chapter 4.

We should mention that on the one hand, our proof is influenced by the works
of Bressoud and Zeilberger [Bre83, BZ82, BZ85, BZ89], and on the other hand by
Dyson's papers [Dys44, Dys69], which were further extended by Berkovich and Gar-
van [Gar94, BG02] (see also [PakO3]). The idea of using iterated Durfee squares
to study the Rogers-Ramanujan identities and their generalizations is due to An-
drews [And79]. We will explain the connections between our bijections and the work
listed above in Chapter 5.

Also, while our proof is mostly combinatorial it is by no means a direct bijection.
The quest for a direct bijective proof is still under way, and as recently as this year
Zeilberger lamented on the lack of such a proof [Zei05]. The results in [Pak] seem to
discourage any future work in this direction.

1.3 A four-parameter partition identity

In his study of the sign-balance of posets [StaO4], Stanley presented a simple generat-
ing function related to the statistic (9(A) - 9(A')). This also appears as an American
Mathematical Monthly problem [StaO2]. Motivated by this problem, Andrews gave a
simple product formula for the generating function for partitions with respect to size,
number of odd parts, and number of odd parts of the conjugate,

r0(\)s0(v)q1,1 _ (1 + rsq2j- 1) (12)
,re(A)s? (')ql'l = H1 (1 - q4j)(1 - r2q4j- 2 )(1 - S2q4j- 2) 

AE'7 j=l

and asked for a combinatorial proof.

In Chapter 6, we present a generalization of this identity which incorporates a fourth
parameter (see also [BouO5]). We also determine the corresponding generating func-
tions for other sets of partitions, including the set of partitions with distinct parts,
and we prove all of these identities by simple bijections. Other combinatorial proofs
of Andrews' result have been found by Sills [Si104] and Yee [YeeO4].

12
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Chapter 2

The first Rogers-Ramanujan
identity

In this chapter, we give a combinatorial proof of the first Rogers-Ramanujan identity.
This proof will be generalized in the following chapters. We include this chapter
because in the case of the first Rogers-Ramanujan identity the proof can be explained
more directly.

Let us say a few words about the structure of our proof. Our proof has two virtually
independent parts. In the first, the algebraic part, we use the Jacobi triple product
identity and some elementary algebraic manipulations to derive the identity. This
proof is based on two symmetry equations whose proofs are given in the combinatorial
part by direct bijections. Our presentation is completely self contained, except for
the use of the classical Jacobi triple product identity.

2.1 The algebraic part

We consider the first Rogers-Ramanujan identity:

qk2 (2.1)

1 (1- q)(1-q 2)... (1 qk) = l(1-q5i+)(1 - q5i+4) (2.1)

Our first step is standard. Recall the Jacobi triple product identity (see e.g. [And76]):

E kt = J(1 + Ztj) [J(1 + zlt j ) JJ(1- t).
k=-oo i=1 j=o i=l

Set t = q5, = (_q- 2 ), and rewrite the right hand side of (2.1) using the Jacobi triple

13



product identity as follows:

00 I 00 1 00 m(5m--1)

l (1- q5r+)(1 -q5r+4) (1 - qi) E (-1)m 2
r= i---(1 m=-00

This gives us Schur's identity, which is equivalent to (2.1):

qk2 \ 00 1 M(5m-1)

+ (1 -q)(l q2) (1-qk) (l i) ()m q 2 (2.2)k=-1 i(-1qi m=-oo

We will prove Schur's identity by considering the set of partitions not counted on the
left hand side of (2.2). We say that A is a Rogers-Ramanujan partition if e(A) > t(A).
Recall from the introduction that these denote the smallest part of A and the number
of parts of A. Therefore, Rogers-Ramanujan partitions are those with no parts below
its Durfee square. Denote by Qn the set of Rogers-Ramanujan partitions, and let
Q = UnQn, q(n) = IQ1I. Recall that the generating function for P is

00 n

1 + E p(n)ql- n =q'
n=l i=1

while the generating function for Q is

00 00 q k2

We1 consider a statistq() = 1 + E (1 - q)( q2 .. (1 - qk)

We consider a statistic on P Q which we call (2, 0)-rank of a partition, and denote
by r 2,o(A), for A E P x Q. Similarly, for m > 1 we consider a statistic on P which we
call (2, m)-rank of a partition, and denote by r2,m(A), for A E P. We formally define
and study these statistics in the next section. Denote by h(n, m, r) the number of
partitions A of n with r2,m(A) = r. Similarly, let h(n, m, < r) and h(n, m, > r) be the
number of partitions with the (2, m)-rank at most r and at least r, respectively. The
following is apparent from the definitions:

h(n, m, < r) + h(n, m, > r + 1) = p(n), and for m > 0,2.3
h(n, O, < r) + h(n, O, > r + 1) = p(n) - q(n),

for all r E Z and n > 1. The following two equations are the main ingredients of the
proof. If r > 0 or m = 0, we have:

(first symmetry) h(n, O, r) = h(n, 0, -r), and

(second symmetry) h(n, m, < -r) = h(n - r - 2m - 2, m + 2, > -r).

Both symmetry equations will be proved in the next section. For now, let us continue

14
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to prove Schur's identity. For every j > 0 let

aj = h (n-jr-2jm-j(5j-1)/2, m + 2j, <-r-j),

bj = h (n-jr- 2jm - j(5j- 1)/2, m + 2j, > -r-j + 1).

The equation (2.3) gives us aj + bj = p(n - jr - 2jm - j(5j - 1)/2), for all r, j > 0.
The second symmetry equation gives us aj = bj+l.

Applying these multiple times we get:

h(n, m, < -r) = ao = bl

= b + (al - b2) - (a2 - b3) + (a3- b4)-.

= (bl + al) - (b2 + a2) + (b3 + a3) - (b4 + a4) + ...

= p(n - r - 2m - 2) - p(n - 2r - 4m - 9) + p(n - 3r - 6m - 42) -...
00

= (-1)j-lp(n - jr - 2jm - j(5j - 1)/2).
j=1

In terms of the generating functions

00

Hm,<r(q) := h(n, m, < r)qn,
n=l

this gives (if r > 0 or m = 0)

Hm,<r(q) =

In particular, we have:

00 1

n= (1 - qn)

Ho,<o(q) =
00 1 00

i=1 (1 qi) j=1
i~~l j=1o

)jlq j(5-1) and
)Jlq 2 and

Ho,<_l (q) -

00
1

(1 - qi)

00

Z(-1)ji- q 2

j=1

From the first symmetry equation and (2.3)

Ho,<o(q) + Ho,<-1(q) = Ho,<o(q) + Ho,>i(q)

is the generating function for P x Q.

15
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We conclude:

(j)j qj(5-l) + E()--1 +l))

j=l j=ln= (1- qi)

°°0 qk 2
V ", __ - - _ 
Z_ (1 - q)(1 - q2)
k=1

N'

which implies (2.2) and completes the proof of (2.1).

2.2 The combinatorial part

2.2.1 Definition of rank

Define an m-rectangle to be a rectangle whose height minus its width is m. Define
the first m-Durfee rectangle to be the largest m-rectangle which fits in the diagram
of A. Denote by Sm(A) the height of the first m-Durfee rectangle. Define the second
m-Durfee rectangle to be the largest m-rectangle which fits in the diagram of A below
the first m-Durfee rectangle, and let t(A) be its height. We will allow an m-Durfee
rectangle to have width 0 but never height 0. Finally, denote by a, 3, and y the three
partitions to the right of, in the middle of, and below the two m-Durfee rectangles
(see Figure 2-1).

L

: 
A

Figure 2-1: Partition A = (10, 10, 9, 9, 7, 6, 5, 4, 4, 2, 2, 1, 1, 1), the first Durfee square

of height so(A) = 6, and the second Durfee square of height to(A) = 3. Here the
remaining partitions are a = (4, 4, 3, 3, 1), 3 = (2, 1, 1), and y = (2, 2, 1, 1,1).

We define (2, m)-rank, r 2,m(A), of a partition A by the formula:

r2,m(A) := 1 + as()-t,(>f)- 1 +1 - y1 1

For example, r2,0(A) = 31 + a 2 - '= 2 + 4 - 5 = 1 for A as in Figure 2-1.
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Note that (2, 0)-rank is only defined for non-Rogers-Ramanujan partitions because
otherwise ,31 does not exist, while (2, m)-rank is defined for all partitions for all m > 0.

Let 7/n,m,r to be the set of partitions of n with (2, m)-rank r. In the notation above,
h(n, m, r) = VI'n,m,r . Also let 'Hn,m,<r be the set of partitions of n with (2, m)-rank
less than or equal to r and let 7

Hn,m,>r be the set of partitions of n with (2, m)-rank
greater than or equal to r, so that h(n,m, < r) = 1'Hn,,<r[ and h(n,m, > r) =

IlHn,m,>r I -

2.2.2 Proof of the first symmetry

In order to prove the first symmetry we present an involution c on P X Q which
preserves the size of partitions as well as their Durfee squares, but changes the sign
of the rank:

C : l'n,O,r '- 
7"n,O,-r.

Let A be a partition with two Durfee square and partitions a, 3, and y to the right of,
in the middle of, and below the Durfee squares. This map c will preserve the Durfee
squares of A whose sizes we denote by

s = so(A) and t = to(A).

We will describe the action of c : A '- A by first mapping (a, 3, y) to a 5-tuple of parti-
tions (, v, 7r, p, a), and subsequently mapping that 5-tuple to different triple (, y, )
which goes to the right of, in the middle of, and below of the Durfee squares in A.

1. First, let i =,3.
Second, remove the following parts from a: a-tp-,+ for 1 < j < t. Let v
be the partition comprising of parts removed from a, and 7r be the partition
comprised of the parts which were not removed.
Third, for 1 < j < t, let

kj = max{k < s - t y - k > 71r-t-k+l} 

Let p be the partition with parts pj = kj and a be the partition with parts
o = , - kj-

2. First, let = v + .
Second, let a = a U r.
Third, let = p.

Figure 2-2 shows an example of c and the relation between these two steps.

17



Remark 2.2.1. The key to understanding the map c is the definition of kj. By
considering k = 0, we see that kj is defined for all 1 < j < t. Moreover, one can check
that kj is the unique integer k which satisfies

r9-t-k+l < ' -k K< r8-t-k- (2.5)

(We assume ro = oo and hence disregard the upper bound for s - t = k. This simply
says that the first part of a partition does not have a part above it bounding it above
in size.) This characterization of kj can also be taken as its definition. Equation (2.5)
is used repeatedly in our proof of the next lemma.

c

_ I_ ly

4
+L-

r'

V

U a
rV-
LJL

Figure 2-2: An example of the first symmetry involution c: A - A, where A E 7 ,,0n,,r
and A E 7,n,o,-r for n = 71, and r = 1. The maps are defined by the following
rules: = , a! = v U r, ' = a + p, while = p, -= r U a, = + v. Also,
A = (10, 10, 9,9,7,6,5,4,4,2,2, 1, 1, 1) and = (10, 9,9,7,6,6,5,4,3,3,3,2,2, 1,1).

Lemma 2.2.2. The map c defined above is an involution.

18
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Proof. Our proof is divided into five parts; we prove that

(1) p is a partition,
(2) oa is a partition,
(3) A = c(A) is a partition,
(4) c2 is the identity map, and
(5) r2,o(A) = -r2,o(A).

(1) Considering the bounds (2.5) for j and j + 1, note that if kj < kj+1, then

7rs-t-kj+l + kj < 7rs-tkj+l+l + kj+1 +l < 1rs-t-k + kj

This gives us
7rst-kj+l < )j+l - kj < 7s-t-kj

and uniqueness therefore implies that kj = kj+1 . We conclude that kj > kj+1 for all
j, so p is a partition.

(2) If k > kj+,1, then we have s - t- kj + 1 < s-t- k+ and therefore

7rs-t-k+l < 7rs-t-kj+l-

Again, by considering (2.5) for j and j + 1, we conclude that

7g - kj > +1 - kj+1

If kj = kj+, then we simply need to recall that -y' is a partition to see that

-j >k - + -kj+

This implies that a is a partition.

(3) By their definitions, it is clear that , v, and 7r are partitions. Since we just
showed that p and a are all partitions, it follows that c, /3, and y are also partitions.
Moreover, by their definitions, we see that u, v, and have at most t parts, r has at
most s - t parts, and p has at most t parts each of which is less than or equal to s - t.
This implies that has at most s parts, has at most t parts each of which is less
than or equal to s - t, and ' has parts of size at most t. Therefore, a, ,3, and y fit to
the right of, in the middle of, and below Durfee squares of sizes s and t and so c(A)
is a partition.

(4) We will apply c twice to a Rogers-Ramanujan partition A with a, /3, and y to the
right of, in the middle of, and below its two Durfee squares. As usual, let u, v, 7r, p, 
be the partitions occurring in the intermediate stage of the first application of c to A
and let , , y be the partitions to the right of, in the middle of, and below the
Durfee squares of A = c(A). Similarly, let p, v', wr, p, a be the partitions occurring
in the intermediate stage of the second application of c and let a*, 3*, and y* be

19



the partitions to the right of, in the middle of, and below the Durfee squares of
c2 (,) = c(A).

First, note that 7 = / = p. Second, by (2.5) we have:

7rs-t-k+l < y' -kj = aj < 7r-t-kj,

Since a is a partition, this implies that a-_tkj+j = aj. On the other hand, since j =
pj = kj, the map c removes the rows a-t_-k+j = aj from a. From here we conclude
that = a and = 7r. Third, define

kj = max(k < s - t I yj - k > rs-t_+}

By Remark 2.2.1, we know that kj as above is the unique integer k which satisfies:

r"-t-+l -- < - k < rs-t- -

On the other hand, recall that = j + vj and 3j = pj. This implies j - j = j.
Also, by the definition of v, we have vj = °a-t-pj+j. Therefore, by the definition of Ir,
we have:

sr,-t-j+1 < as-t-pj+j = vj = j - j < rr--t-,j .
Since F = r, by the uniqueness in Remark 2.2.1 we have kj = ,j = j. This implies
that p= and a = v.

Finally, the second step of our bijection gives a* = vUr = a, * = = , and (*)' =
p + a = y'. This implies that c2 is the identity map.

(5) Using the results from (4), we have:

r2,0() = 1 + as-t-p+l1 - y= 11 + 1- - P l - 1.

On the other hand,

r2,0(A) = 1 + &8-t-,+1 - = Pi + 01 - 11 -

We conclude that r2,0(A) = -r2,0(A). 0

2.2.3 Proof of the second symmetry

In order to prove the second symmetry we present a bijection

Dm,r : 7'n,m,<-r -+ 7'n-r-2m-2,m+2,>-r-

This map will only be defined if r > 0 or m = 0, in which case the first and second
m-Durfee rectangles of a partition A E ?Ln,m,<-r have non-zero width.
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We describe the action of D := m,r by giving the sizes of the Durfee rectangles
of A := 0m,r(A) = D(A) and the partitions a, 3, and - which go to the right of, in the
middle of, and below those Durfee rectangles in A.

1. If A has two m-Durfee rectangle of height

s := Sm(A) and t := tm(A)

then has two (m + 2)-Durfee rectangle of height

':= Sm+2(A) = S + 1 and t' := tm+2() = t + 1 .

2. Let
k = max{k < s - t I fy - r - k > a s-t-k+l} 

Obtain a from a by adding a new part of size y' - r - kl, from /3 by adding
a new part of size kl, and y from -y by removing its first column.

Figure 2-2 shows an example of the bijection D = Dm,,.

s

t

17

SI

ti

A

/ -r-k

Figure 2-3: An example of the second symmetry bijection Dm,r, : A A, where

A E /Hn,m,<-r, A E 1Hn',m+2,>-r, for m = 0, r = 2, n = 92, and n' =
n-r- 2m-2 = 88. Here r2,o(A) = 2 + 2-9 = -5 < -2 and r2,2(A) =
3 + 4 - 6 = 1 > -2, where A = (14,10,9,9,8,7,7,5, 4, 3, 3, 2, 2, 2, 2, 2,1, 1,1) and
A = (13,10,9,8,8,7,6,6, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1). Also, s = 7, s' = s + 1 = 8,
s" = s'- m-2 = 6, t = 3,t'=4,t"=2, = 9, kl = 3, and y'-r- kl = 4.

Remark 2.2.3. As in Remark 2.2.1, by considering k = /1 we see that k is defined
and indeed we have k > /31. Moreover, it follows from its definition that k is the
unique k such that

as-t-k+l < y - r- k < as-t-k - (2.6)
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(We assume a0 = oo and hence disregard the upper bound for s- t = k. This simply
says that the first part of a partition does not have a part above it bounding it above
in size.)

Lemma 2.2.4. The map ) = m,r defined above is a bijection.

Proof. Our proof has four parts:

(1) we prove that A = Di(A) is a partition,

(2) we prove that the size of A = D(A) is n- r- 2m- 2,
(3) we prove that r2,m+2(A) > -r, and
(4) we present the inverse map D- 1.

(1) To see that A is a partition we simply have to note that since A has m-Durfee

rectangles of non-zero width, A may have (m + 2)-Durfee rectangles of width s - 1 and
t - 1. Also, the partitions a and 3 have at most s + 1 and t + 1 parts, respectively,
while the partitions /3 and a have parts of size at most s - t and t - 1, respectively.
This means that they can sit to the right of, in the middle of, and below the two
(m + 2)-Durfee rectangles of A.

(2) To prove that the above construction gives a partition A of size n-r - 2m-2 note
that the sum of the sizes of the rows added to a and P is r less than the size of the
column removed from y, and that both the first and second (m + 2)-Durfee rectangles
of A have size m + 1 less than the size of the corresponding m-Durfee rectangle of A.

(3) By Remark 2.2.3, the part we inserted into /3 will be the largest part of the
resulting partition, i.e. /31 = kl. By equation (2.6) we have:

as-t-kl+l < 'Y - r - k< as-t-kl -

Therefore, we must have:

a,,-t,-&+l = as-t-kl+1 = 'Y- r - k.

Indeed, we have chosen kl in the unique way so that the rows we insert into a and /3
are 81 ,_t,_+l and /3i respectively.

The above two equations now allow us to bound the (2, m + 2)-rank of A:

-,_,_ + -(e(A) -s'- t') = (y - --k) + k -(e() -s' - t') -r,
where the last inequality follows from

y4 - 'y > e(A) - s' - t'.

(4) The above characterization of kl also shows us that to recover a, /3, and y

22



from , ,3 and , we remove part a,-t,-~p+l from c~, remove part 31 from ,, and add

a column of height ,_t,_l+ 1 + f1 + r to . Since we can also easily recover the
sizes of the previous m-Durfee rectangles, we conclude that D is a bijection between
the desired sets. El
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Chapter 3

Generalized Rogers-Ramanujan
identities: preliminaries and
definitions

In the following chapters we will establish the following generalized Rogers-Ramanujan
identities due to Andrews [And74], for k > 1:

00 °° qN +N +-+Nk_1 1

E'" E (q)- ( )-2 ()k- 1qn (3.1)
n---0 nk-1--0 n 1

n $ 0, ±k (mod 2k + 1)

where Nj = nj + nj+l + + nk-1.

The proof of these identities follows roughly the same steps as the proof of the first
Rogers-Ramanujan identity presented in Chapter 2. First, by using the Jacobi triple
product identity, we show that the generalized Rogers-Ramanujan identities above
are equivalent to an identity of the same form as Schur's identity (2.2). Next, we
introduce the notion of (k, m)-rank of a partition and using symmetries related to
this new rank, we derive the generalizations of Schur's identity by simple algebraic
manipulations. Bijective proofs of these symmetries appear in Chapter 4.

3.1 First step: Schur's identity

The first step of our proof of the generalized Rogers-Ramanujan identities is the
application of the Jacobi triple product identity,

Zkt = 1-(1 + zt') J(1i + z-lt) I( - ti)
k=-oo i=1 j=0 i=1
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to the right hand side of (3.1).

If we let t = q 2k+l and z = q-k we get:

o 00ZE (- j(j+l)(2k+l)kj 1_ qn

j=-o n = 1
n O, k (mod 2k + 1)

This gives us

°° 0 N0+No2+....+N _ 1 00

.n.O flk~E O (E()n1(q)n2*.* (2) (q) Z (-1)q 2 ~ (3.2)
'" n= (q)n,~q.n2 ... ()-k_l (q)oo j=-oo

with Nj = nj + nj+l + + nk-1, which we will refer to as the generalized Schur
identities. We have chosen this name because the first step of Schur's combinatorial
proof of the Rogers-Ramanujan identities [Sch17] was also the application of the
Jacobi triple product identity in this manner and gave the case k = 2. This step has
since become classical and is used in many Rogers-Ramanujan proofs.

We note that the Jacobi triple product identity has a combinatorial proof due to
Sylvester (see [PakO5, Wri65]) and so its application does not change the combinatorial
nature of our proof.

3.2 Successive Durfee rectangles

Andrews introduced the idea of successive Durfee squares to study his generalized
Rogers-Ramanujan identities [And79]. He interpreted the left hand sides of equa-
tions (3.1) and (3.2) as follows:

Definition 3.2.1. The first Durfee square of a partition A is the largest square that
fits in the upper left hand corner of the diagram of A. The second Durfee square is
the largest square that fit in the diagram of A below the first Durfee square of A. In
general, the kth Durfee square is the largest square that fits below the (k - 1)st Durfee
square of A.

See Figure 3-1 for an example.

Let qk-l(n) denoted the number of partitions with at most k- 1 Durfee squares. Now
the generating function for partitions with Durfee squares of size N 1, N2, ..., Nk-1
and no part below the k - 1st Durfee square is

qN2+N2++Nk2_

(q)nl(q)n(q)2 ...''' (q)nk- 1

where nj = Nj-Nj+l so that Nj = nj+nj+l+- * +nk-1. This can be seem by a simple
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A

I

Figure 3-1: The first three successive Durfee squares and 1-Durfee rectangles of A =
(7, 7, 6, 6, 5, 4, 3, 3, 3, 2,, 1, 1, 1, 1). On the left we see that A has successive Durfee
squares of size 5, 3, and 2. On the right we see that A has successive 1-Durfee
rectangles of width 4, 2, and 1.

counting argument as is done by Andrews [And79]. Alternatively, in Appendix A we
show this bijectively using a map defined in Chapter 4.

Therefore the generating function of partitions with at most k - 1 Durfee squares is

00 00 00 qNoo 2 0 00

1 + E qk1(n) qn = E (q) l(E2
ni=0 nk- 00... (q)n 1

with Nj = nj + n+l + - + nk-1 which is indeed the left hand side of (3.1).

Since the right hand side of the generalized Rogers-Ramanujan identities (3.1) can be
interpreted as enumerating partitions into parts not congruent to 0, +k (mod 2k+ 1),
this identity is equivalent to the following theorem.

Theorem 3.2.2 (Andrews, [And79]). The number of partitions of n with at most
k - 1 successive Durfee squares equals the number of partitions of n into parts not
congruent to 0, ±k (mod 2k + 1).

Of course, the generalized Schur identities also have the following interpretation using
Andrews' successive Durfee squares:

Theorem 3.2.3. The number of partitions of n with at most k- 1 successive Durfee
squares is

(00 )p(n_ (ij(j + 1)(2k + 1) k
=-00 2

Recall that p(n) is the number of partitions of n and therefore, when n < 0, p(n) = 0
which makes this a finite sum.
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In order to prove the generalized Schur identities, we extend the notion of successive
Durfee squares.

Definition 3.2.4. For any integer m, define an m-rectangle to be a rectangle whose
height exceeds its width by exactly m. We require m-rectangles to have non-zero height
though they may have width zero.

In particular, notice that 0-rectangles are simply squares. The technical detail about
non-zero height will be needed to obtain Observation 3.4.2.

We define successive m-Durfee rectangles in the same manner as Andrews' successive
Durfee squares.

Definition 3.2.5. The first m-Durfee rectangle of a partition A is the largest m-
rectangle that fits in the upper left hand corner of the diagram of A. The second
m-Durfee rectangle is the largest m-rectangle that fits in the diagram of A below the
first Durfee square of A. In general, the kth successive m-Durfee rectangle is the
largest m-rectangle that fits below the (k - 1)st Durfee square of A.

Again, see Figure 3-1.

Note that the possibility of width zero m-rectangles means that, for m > 0, all
partitions (including the empty partition) have arbitrarily many successive m-Durfee
rectangles.

3.3 Definition of (k, m)-rank

In Chapter 2, we introduced the notion of (2, m)-rank for partitions with at least two
successive m-Durfee rectangles. Here we present the more general notion of (k, m)-
rank for partitions with at least k successive m-Durfee rectangles.

First, given a partition A with k successive m-Durfee rectangles, denote by Ai the
partition to the right of the ith m-Durfee rectangle and denote by a the partition
below the kth m-Durfee rectangle. Moreover, let N1, N2, ..., Nk denote the widths of
the first k successive m-Durfee rectangles. Note that, for all i, Ai has at most Ni + m
parts and, for i > 2, the largest part of Ai is at most Ni_l - Ni. See Figure 3-2.

To define rank, we want to select one part from each of the partitions Al , A2, ..., Ak .

These parts will be selected recursively starting from the partition Ak and moving up
to Al.
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A1

A 2

A3

Figure 3-2: Successive Durfee rectangles of width N1, N 2, and N3 and names for the
partitions to the right, A, A2, and A3, and below, a, those Durfee rectangles.

See Figure 3-3 for two examples of this selection process. On the left hand side, we
consider A with 3 successive Durfee squares. First we select the first part of A3. Next
we calculate d = (3 - 2) - 1 = 0 and select the 1 + 0 = 1st part of A2. Finally we
calculate d = (5 - 3) - 1 = 1 and select the 1 + 1 = 2nd part of Al.

For this selection procedure to be well-defined, it suffices to show that the following
lemma holds.

Lemma 3.3.1. If the jth part of Ai has been selected, then j _ Ni + m.

This lemma says that the selected part of the partition Al is never below the bottom
row of the m-Durfee rectangle sitting to its left.

Proof. We will prove the stronger statement that if the jth part of Ai has been selected
then j < 1 + Ni- Nk.

29

Selection of parts from A

Let Al, A2, ... , Ak be the partitions to the right of the first k successive m-Durfee
rectangles of A.

* Select the first (that is, largest) part from Ak.

* Suppose you have selected the jth part Alj from Ai.

Let d = (Ni- - Ni) - Aij. This is the difference between the maximal
possible size of a part of Ai and the selected part of Ai.
Select the (j + d)th part of Ai.

N



selected parts

Figure 3-3: For partition A = (7, 7, 6, 6, 5, 4, 3, 3, 3, 2, 1, 1, , 1, 1), we have a3,o(A) =

2 + 1 + 1 = 4, b3,0(A) = 5, and r3,0(A) = 4 - 5 = -1, while a3,l(A) = 2 + 1 + 0 = 3,
b3,1(A) = 2, and r3,1(A) = 3 - 2 = 1.

If m < 0, the kth successive m-Durfee square has non-zero
is Nk > 1 + m, which gives us

height, and so its width

1+Ni- Nk < Ni+m.

If m > 0, we get Nk > 0 so

1+ N - Nk < Ni + 1 < N +m.

Therefore the statement in the lemma follows from j < 1 + Ni - Nk.

To show that j 1 + Ni - Nk, we proceed by induction, starting with Ak and moving
up to A'.

Since we select the first part of Ak and the height of an m-Durfee rectangle is always
non-zero, we have 1 < Nk + m.

If the jth part of Ai has been selected, we select the (j + d) = (j + (Nil - Ni) - Aij)th
part of Ai -l. Now our inductive hypothesis says that then j 1 + Ni - Nk. Hence
we see that

j + (Ni-1 - Ni) - A'j < 1+ Ni - Nk + Ni-1 - Ni - A'j

0as desired.

Finally, we can give the definition of (k, m)-rank, rk,m(A).

Definition 3.3.2. For k > O, let

e ak,m(A) be the sum of the parts selected from A1, A2,..., Ak,
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* bk,m(A) = e(a), and

* rk,m(A) = ak,m(A) - bk,m(A)

See Figure 3-3 for examples.

3.4 Symmetries

Let h(n, k, m, r) be the number of partitions of n with (k, m)-rank equal to r. Sim-
ilarly, let h(n, k, m, < r) be the number of partitions of n with (k, m)-rank less than
or equal to r and let h(n, k, m, > r) be the number of partitions of n with (k, m)-rank
greater than or equal to r.

As was the case for (2, m)-rank, we can establish relationships between these numbers
by combinatorial means. In the following section these relationships will be used to
establish the generalized Schur identities by simple algebraic manipulation.

Recall that qk- (n) denotes the number of partitions with at most k-1 Durfee squares,
so that p(n) - qk- (n) is the number of partitions with at least k Durfee squares.

The following two observations follow directly from our definitions since (k, 0)-rank
is only defined for the set of partitions with k non-empty Durfee squares, whereas
(k, m)-rank is defined for the set of all partitions when m > 0.

Observation 3.4.1 (First observation). For m = 0,

h(n, k, O, < r) + h(n, k, O, > r + 1) = p(n) - qk-l(n) .

Observation 3.4.2 (Second observation). For m > 0,

h(n, k, m, < r) + h(n, k, m, > r + 1) = p(n).

There are also more complicated relations between these numbers. Here we will give
only the version needed to complete the proof of the generalized Schur identities.
General versions of these symmetries will be given in the next chapter.

Corollary 3.4.3 (First symmetry). For r E Z and m = 0,

h(n, k, 0, r) = h(n, k, 0, -r).

Proof. Follows from Theorem 4.2.1. [1

Corollary 3.4.4 (Second symmetry). For m, r E Z, if r > 0 or if m = r = 0,

h(n, k, m, < -r) = h(n -r - k(m + 1),k, m + 2, > -r).

Proof. Follows from Theorem 4.3.1. El
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3.5 Algebraic derivation of Schur's identity

We can now complete the proof of the generalized Schur identities. We proceed in a
fashion similar to the case k = 2 in the previous chapter.

For every j > 0 let

aj - h (n- jr j(j - 1)
2

j(j- 1)
2

bj= h n

- k(jm + j2 ), k, m + 2j,

- k(jm + j2), k, m + 2j,> -r-j+

In this notation, the second observation, 3.4.2, gives us

aj +bj =p(n-jr - 2 k(jm + j2)),

for all j > 0. For j, r > 0, the second symmetry, 3.4.4, gives us

aj = bj+l.

Applying these multiple times we get (for r > 0 and for m = r = 0):

h(n, k, m, < -r) = ao = bl

= bl + (a - b2) - (a - b3) + (a3 - b4) -...

= (bl + al)-(b2 + a2) + (b3+ a3) -(b4+ a4 ) + ...
00 JU - 1) + j2)) = Z(-1)J-lp(n - jr-j(j - 1) k(jm + j2))

2j=l

In terms of the generating functions

Hk,m,<r(q) :=

Hk,m,>r(q) :=

n=O

h(n, k, m, < r) q, and

h(n, k, m, > r) q,
n=O

this gives (for r > 0 and for m = r = 0)

1 00 Iim
Hk,m,<r(q) - (q) _1 )-1 qir+j)+k(m+1

j=1
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In particular, we have:

Hk,o,<o(q) =

Hk,o,<1-(q) =

1

(q)00

1

00

j=l
qj() +kj2 and

00

E(_l)j-1 qj(j+k)+j2
j=l

From the first symmetry 3.4.3 and the first observation 3.4.1 we note that

Hk,o,<O(q) + Hk,o,<_l(q) = Hk,o,<o(q) + Hk,o,>(q)

is the generating function for partitions with at least k successive Durfee squares. We
conclude:

1

(q)0 0

00

E (-1) q 2- 1+kj +
j=1

1 E(l)j 1 qjj+kj2
j=1

100 001 N+N22+--+Nk2 _

(q)O l- n (q)n(q)n 2 ... (q)nk-l

which implies the generalized Schur identities and completes the proof of the gener-
alized Rogers-Ramanujan identities.
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Chapter 4

Symmetries for (k, m)-rank

The heart of this new proof is the combinatorial proof of the first and second symme-
tries. We will prove both by direct bijections between the set of partitions counted
on both sides. Our bijections are based on an insertion procedure which is closely
related to the procedure used to select parts in the definition of (k, m)-rank in the
previous chapter.

4.1 Selection and insertion

First, we generalize the selection procedure found in the previous chapter.

Definition 4.1.1. Let A()A', A2, ..., Ak; p2 , p3 , ...,Pk) be the sum of the selected parts.

35

Selection of parts from a sequence of partitions A, A2, ..., Ak

Given a sequence of k partitions,

A1, A2 , ...,Ai ,

and k - 1 nonnegative integers,

P2, P3, , Pk,

such that
f(A 2) < P2, f(A 3) < P3, ..., f(A k) < Pk,

we select one row from each partition as follows:

* Select the first (that is, the largest) part of Ak.

* Suppose we have selected the jth part, A/j, of Ai, then select the
(j + pi - Aj)th part of Ai- '.



When P2,P3, ...,Pk are clear from the context, we will write A(A l , A2, ... , Ak).

See Figure 4-1 for examples of this selection procedure. On the left hand side we
select the first part of A4. Then we select the 1 + (3 - 2) = 2nd part from A3,

the 2 + (2 - 2) = 2nd part from A2, and the 2 + (4 - 2) = 4th part from Al. This
gives A(A', 2, A3, 4) = 1 + 2 + 2 + 2 = 7.

A 2
] 1

m~4
>4 5A!

Figure 4-1: Selection of rows from Al, A2, A3, and A4 with P2 = 4, p3 = 2, and p4 = 3
to get A(A, A2, A3, A4) = 7. Selection of rows from pL, p2, A3, I4 , and p5 with p2 = 2,
p3 = 0, p4 = 2, and p5 = 6 to get A(1,l , /12, 3, 4, 5 ) = 7. Selected parts are shown
in grey.

Notice that this procedure resembles the procedure used in the previous chapter to
define ak,m(A). In fact, given a partition A with k successive m-Durfee rectangles of
widths N1, N2, ..., Nk, let Al, 2, ... , Ak be the partitions to the right of the first k
m-Durfee rectangles. Then we have

f(X 2) < N1 - N2, f( 3) < N2 - N3 , ..., f(Ak) < Nk -Nk

and, by definition,

ak,m(A) = A(Al, A2, ...,Xk; N - N,N 2 - N3,...,Nk-_l- Nk) 

Based on this definition of selection from a sequence of partitions, we can define an
insertion algorithm on which our two symmetries are based. The following proposition
describes the result of insertion.

Proposition 4.1.2. Given a sequence of k partitions

A1, A2 , ... , A

with I' + IA21 + ... + Ak = ,,
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k - 1 nonnegative integers
P2, P3, **, Pk

such that
f(A 2) < P2, f(A 3) < P3, ... , f(Ak) < Pk,

and an integer a > A(A1, A2 ,...,Ak;p 2,p3, ,pk),

there exists a unique sequence of k partitions,

1 2 k

obtained by inserting one (possibly empty) part to each of the original partitions,

A1 , A2 , ... , Ak

such that

1_ 111 + 121 + ... + Ikl = n + a,

2. f ( 2) < P2 f (p3) < p3 , ..., f (k) < pk,

3. A(l 1, A 2 ,..., ik; P2, P3,- -, Pk) = a.

Moreover, the inserted parts have the same length as those which are selected when
calculating A(uL1, , ... , k; P2, p3, ... , Pk).

We will prove this lemma by induction on a. The two following lemmas are the
required base case and inductive step.

Lemma 4.1.3. Proposition 4.1.2 (without uniqueness) is true for

a = A(A, A 2, ..., Ak; P2, 3 , .. , k).

Proof. For each A', consider the size of the part selected from that partition. Insert an
additional part in A' of the same size as the selected part to obtain li. See Figure 4-2.

We have inserted parts totaling a = A(A l, A2, ..., Ak;p2, ps, ..., Pk) since the sum of the
selected parts of A1, A2, ..., Ak is a. This implies condition (1).

Note that, for each A', since we are inserting a part of the same size as the selected
part, it can be inserted directly above the selected row in Ai. Again since we are
inserting parts of the same size and P2, P3, ... , Pk remain constant, when we select rows
from ~1, /2, ..., Ik we will select the rows we have just added. Moreover, this gives

A(1l, 2, ..., Ok; P2, 3, ..-,Pk) = a, condition (3).

Finally, condition (2) is satisfied since f(A i) < pi and the part selected from Ai is at
most f(Ai). [

37



2\ 1 1 1

Ai
X 2

A2 2
A3

A4!

Figure 4-2: Inserting 7 =
4P.

,,2 f1 -- i

..3 =rl
1A

l I 

A(A1, A2, A3, A4) into A1, A2, A3, and A4 gives 1', p2, IL3, and

Lemma 4.1.4. If Proposition 4.1.2 (without uniqueness) is true for a = b, then it is
true for a = b + 1.

Proof. Suppose vl , v2, ..., vk are the partitions obtained by inserting b into Al , A2, ..., Ak

as in Proposition 4.1.2. To insert b + 1 into Al, A2, ..., Ak we need to determine which
partition Ai gets a part that is larger than it did when we inserted b into A1 , A2, ..., A.

If the selected part of each of v1, v2, ..., vk is the first part of that partition, then we
let /p2 = V2, I 3 = 3 , ..., Ik = vk and we let p1 be vl except with first part one larger,
i.e. mul = vl + (1). See Figure 4-3.

vi

p1'

IL2 A2

A3 ~

Lt

Figure 4-3: Consider Al , A2, and
If vu, v2, and v3 are obtained by
are obtained by inserting 10 into

A3 with P2 = 4 and p3 = 2 so that A(A1, A2, A3) - 4.
inserting 9 into Al, A2, and A3, then p1, 2, and p3

1 , A 2 , and A3
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Otherwise consider the smallest i such that the selected part
part above it or Pi if it is the first part of vi. Add 1 to this
The rest are defined by t3 J = VJ. See Figures 4-4 and 4-5.

A1 1" 1 1

IIII

A3

..2 i 1 . I..
v

Ii'

,,2 F T..
-j

4

of vi is not equal to the
part in vi to obtain pi.

2 r1 I
P

-.. Ir-T
V-

ll

-. rI--

L 

A4

Ii

L L 

p4

U

Figure 4-4: Consider A1, A2, A3 , and
into A1, 2, A3, and A4 to get v1, v2,
get pl, p2, p3, and p4.

A4 with

v3, and

1 -- _-

A2

v3

L J I LI I

P2 = 4, p3 = 2, and p4 = 3. We insert 7
/4, 8 to get p1, p2, A3, and p4, and 9 to

a1

a272

mmml

p3

L . . .-. .

Figure 4-5: Consider A1, A2, and A3 with P2 = 4 and p3 = 4. We insert 5 into A1, A2,
and A3 to get v, v2, and 3, 6 to get p1, p2, and p3, 7 to get pl, p2, and p3, and 8 to
get al, a2, and a3.

Condition (1) follows immediately from either case since we have only added 1 to one
part. Also note that we never add 1 to a row that already has length pi which implies
condition (2).
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Now, consider the selected part of I1', 2, ..., k. Let i be as found above. For partitions
i x, ~...,z k we select the same part as in v i+ , ., v. In Ai we select the part to which

we added 1. For partitions 1, ..., ui-l we select the part directly above the selected
part of v, ..., vi-l but because of our choice of i these selected parts are equal to
the selected parts of v,..., vi - l. Therefore A(vl , V2,..., vk) = A(pl, t 2, ..., k) + 1,
implying condition (3). 0

Proof of Proposition 4.1.2. To complete the proof of Proposition 4.1.2, we simply
need to check uniqueness.

Suppose I, p2, ..., Ak and v, 2,..., v are both sequences satisfying the theorem for
some particular sequence Al, A2, ..., Ak and integer a > A(A1, A2, ..., Ak).

Since removing the selected parts of each sequence gives Al, A2, ..., Ak, the sequences
IL, 12, ..., Ik and v1, V2, ..., 1k must differ in a selected part. Let i be the largest index
so that the selected part of pLi and vi are not equal. Since i is the largest index where
this happens, the selected parts of pi and 1i must sit in the same row, say j. Without
loss of generality, 'j > vij.

Our selection procedure now forces the selected part of s8 to be greater than or equal

to the selected part of v8 for s < i, which gives us

A(p1, 2 , -...,/Ak) > A(vl, v 2, ..., Vk).

However, both of these are equal to a and so we have reached a contradiction.
There cannot be a difference between the sequence 1, /2, .. , /k and the sequence
vl, 2, ... , vk. 

Note that together, the two lemmas give an effective recursive algorithm for finding
1 2 k

This lemma will be used repeatedly to establish the bijections proving the first and
second symmetries. For convenience, we will use the following notation. Let

{Pp..,k} (a; Al, A2 , ... , Ak)= (,/1, I2, ..k)

where x1, 2,., IL k are the partitions uniquely defined by Proposition 4.1.2. When
P2,..., Pk are clearly given by the context we will also write

0{P2, (a; A, 2.. , k}k)= ((a; A', A, ..., , ..., k).

Of course, 0 is only defined for Al, A2,..., Ak and a such that A(A, A2, ..., Ak) < a.

Equivalently, the proof of Proposition 4.1.2 tells us that we can describe 0 as follows:
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Description of 0: Insertion

This could be used as a definition for 0, and in this context Proposition 4.1.2 would
show that is well-defined.

Proposition 4.1.2 also shows that 0 is reversible since the rows added by 0 are those
selected when calculating A(1 , 12, , ., k) and a = A(/ 1 , 1p2, .,k). We will also use
the inverse maps which we will call ?b. If b(a; Al, A2, ..., Ak) = (,1, 2, ... , ,k), let

.PfP2,-Pk}('l, , 2 Ik) = (1, 2, .-., /~k) = (a; Al , A2, ..., Ak),

and
O1 (clo, 2, g k) = a,
0 (1, t2 Ak) = (1, 2, ... k)

Of course, the algorithm for evaluating is simple.
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Let A1, A2,..., Ak and a be such that A(Al,2, ...,Ak) < a.

First insert a part of the same length as the part selected from Ai when calcu-
lating A(Al, A2, ..., Ak) to Ai to obtain vi.

Now we proceed recursively, adding one square at a time to vl, 2, ..., Vk until
we have inserted parts whose sum is a.

To add one more box to the sequence of partitions:
If the selected part of vl is the first part, add one to this part.
Otherwise, find the partition vi with smallest index i such that the selected
part of vi is strictly less than the part above it or is strictly less than pi if it
is the first part, and add one to this part.

When we have added a total of a boxes, let _1,/ 2, ... ,k be the resulting
partitions. We have

0(a; Al, A2 , ..., Ak) = ( 1,/ 2 .. zk)

Description of P

Let /1, 2 , -- , /k be a sequence of partitions such that

(2) < P2, f (3) < P3 , f (k) < Pk 

We have _(k,), ...,) = (1; , 2) where

* ~1 = ~1(/L1 /2, ']k) = A(/1 _2, ... k), and

· 2 = 0 2 (IL1, .2, /k) = (A1, A2 , ... , Ak) where Al, A2, ... , Ak are found by
removing the parts of 1l , 2, ..., pk selected while calculating b1.



Finally, we note that we can apply V) to any sequence of k partitions i1', 2, ... , k

such that
f( 2) < P2, f (3) < P3, ..., f (k) < Pk 

It will be useful to formally note the following two consequences of Proposition 4.1.2:

Corollary 4.1.5. 1. For any sequence of k partitions Al , A2, ..., Ak such that

f(A2) < p, f(A3) •< P3, ..., f (k) < pk

and integer a such that A(A), A2, ... , Ak; P 2, ... ,pk) < a we have

V)(O(a; A', A2, , Ak)) = (a; ' A2, ..., Ak

2. For any sequence of k partitions ul, ,2, ... , k such that

f( 2) < p2, f (L3) < P3, ... f (Pk) < Pk

we have

(l(8, C, .., Ak)) = (, M, ..., Mk).

As a final remark, we note that if 0b2 (M 2, ., k) = (A1, A2 , ... , Ak), then

f(A2) < p2, f ( 3) < p3, ..., f (k) < pk.

Therefore we can apply !i01 or 0 2 to Al, A2,..., Ak and in general we can reapply 2 any
number of times. The following lemma describes what happens when ?t2 is applied
repeatedly. See Figure 4-6.

Lemma 4.1.6. For any sequence of k partitions , I2, ... , Ak such that

f( 2) < P2, f(p 3) < P3, ...- f(Ik) < pk

the selected rows of 0 2 (1, _i2 , ... 7 ]k) are rows that sit strictly below the selected rows
of l, 1-2, ..., pk in _1, 2,.., k

In particular we have

A(0f2(P ,, _., Pk); P2, P3, -,Pk) < A(p1, p2,.../ A; P2, P3, Pk), p )

Proof. This follows by a simple inductive argument.

Let _12(1 ,/2 , k...,,) = (V1, V2, ..., k). In both k and vk we select the first part.
However, the first part of vk is the second part of pk and so the result holds for Pk

and vk.

Moreover if the result is true for pi and v i, and if we selected the hth row of pi

and the jth row of vi, then we have h < j. This implies ih > v"j. Then the
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V1

y 2

7,W 

UL

Figure 4-6: For P2 = 4, P3 = 2, and p4 = 3, we see that for 2(p1 , p2 , L 3
, 

4 ) =

(V1, y2, y3, y 4). Also note that A(, 2, 3, M4) = 8 > A(vl, V2, V3, 4) = 4.

selected rows of i-x and vi-l are h + (Pi - ih) and j + (Pi - vij) respectively and
h + (pi - ih) < j + (Pi - ij) as desired. O

The insertion procedure presented here is the central tool needed to prove the first
and second symmetries as will be done in the following sections. The procedure can
also be used to obtain other bijections as is shown in Appendix A.

4.2 First symmetry

Theorem 4.2.1. For any integers k,n, s, t > 0, the number of partitions A of n
with k successive Durfee squares of widths N 1, N2, ..., Nk such that ak,O(A) = s and
bk,o(A) = t is equal to the number of partitions IL of n with k successive Durfee squares
of widths N1, N2, ..., Nk such that ak,o(I) = t and bk,0(p) = s.

The following two corollaries follow immediately from the previous theorem.

Corollary 4.2.2. For any integers k, n, r such that k, n > 0, the number of partitions
A of n with k successive Durfee squares of widths N1, N2, ..., Nk such that rk,O(A) = r
is equal to the number of partitions p of n with k successive Durfee squares of widths
N 1, N 2, ..., Nk such that rk,O(P) = -r.

Corollary 4.2.3. For any integers k, n, r such that k, n > 0, the number of partitions
A of n with k successive Durfee squares and rk,O(A) = r is equal to the number of
partitions L of n with k successive Durfee squares and rk,O(I) = -r.
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Note that Corollary 4.2.3 is exactly Corollary 3.4.3, the first symmetry.

To prove Theorem 4.2.1 and its corollaries, we present a map,

k p - Qk-1 -- P \ Qk-1 -

Recall that

Qk-l = {partitions with at most k - 1 Durfee squares},

and so
P7 \ Qk-l = {partitions with at least k Durfee squares}.

Definition of Ck

Let A be a partition with at least k Durfee squares.

Let a be the partition below the kth Durfee square of A and Al, A2, ... , Ak be
the partitions to the right of these squares.

Let N1, N 2, ..., Nk be the size of the k successive Durfee squares and let

p2
= N1- N2, p3 = N2 - N3 , ., Pk = Nk-l- Nk-

Let 3 be defined as follows by giving its conjugate. We remove selected rows
from 1, A2, ... , Ak by using to obtain:

,B3 = (, A2, ..., Ak),

2 _ 1(+2(x~ , , Xk)), 

Pk- = 1(2Nk-2 (1, A2 ... , Xk))

,N =01(02Nk-l(Al, 2, ..., Ak)).

We apply the map b2 Nk times to the partitions Al, A2,..., Ak. This gives us

2 N (l 2, ... Ak) = (iV, V2 , ..., Vk).

Next we insert a', a , ..., I' into v, v2, ..., vk in that order giving us

((ac; 2 , next ... ).) = (pag... , ... k).

(continued on next page...)
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We will also write e for k.

We will give two examples of applications of before giving the proof that ( is
well-defined and is an involution on P X Qk-l such that ak,m(A) = bk,m(C(A)) and
bk,m(A) = ak,m(((A)). These are found in figures 4-7 and 4-8.

A 2(A)

a'

/3'

Figure 4-7: Applying T2 to the partition
termediate steps give vl , v2, a', and /3' as

A = (9, 8, 8, 6, 5, 4, 3, 2, 2, 2, 1,1, 1, 1, 1). In-
shown.

Proof of Theorem 4.2.1. Let A be a partition with

ak,m() = s and

bk,m() = t.

First we want to show that (: is well-defined.

For each 2 < i < k, Ai fits to the right of the
the (i - 1)st Durfee rectangle. As a consequence,
Ni- Ni-1 = pi.

ith Durfee rectangle and below
its largest part satisfies f(A i) <

Therefore, we may select parts from and apply the maps )1, and 0b2 to Al , A2, ... , Ak.
Moreover, as we remarked at the end of the previous section, the iterated applications
we do here are also fine.
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Let be a new partition defined by having

* k successive Durfee squares of widths N1, N2, ..., Nk,

* l, 2..., k to the right of these squares, and

* below the kth Durfee square.

Then Ik (A) = .

. . . . .

VIB~



A vl f Q4(A

v2 E]

V

V4
1,

p

Figure 4-8: Applying t4 to A = (9, 8, 8, 7, 7, 6, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1). Inter-
mediate steps give vl, v2, a, V4, and /3' as shown.

Next we want to check the/3 is a partition. To do this we need to show that

O > 2 . > .> N

This follows from Lemma 4.1.6 which tells us that

4'1 ('2(t l , A2, *', k)) < _1 (t, t2, *-, tk)

for any p, Al2, ..., pk. Since p Ž P2 > ... > pk, we see that P a partition. Also ' has
at most Nk parts which implies that f (P) < Nk. Therefore, we can place P below the
kth Durfee square whose size is Nk.

Now consider
4/2 Nk(1, A2 , ... , Ak) = (1/, 2 ... k).

First we note that, since we have simply removed parts, we have

f(/2) < P2, f (3) p3, ..., f (Vk) < Pk-

Moreover, for 1 < i < k, vl has at most Ni - Nk parts. (In particular, vk is empty.)
This means that when we select parts from vl, 2, ..., Vk, we select the (1 + Ni -Nk)th
part of vi which is always empty. As a consequence, A(vl, v2,..., vk;p2, p3, ... ,Pk) = 0.

Therefore we can insert a'k > 0 into vl, v2,.., vk. As well, since A((a'i; ...)) =a'
and oc'i < o'i-l we can insert a'i- 1 into (oa'; ...O(o(k- ; I( ..; , ..., k)).)

Finally, each of these insertions adds at most one part to each partition and does not
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give partitions whose largest parts are greater than Pi. Therefore

f(V 2 ) < P2, f(v 3 ) < p3, *--, f(vk) < Pk

and, for 1 < i < k, vi has at most (Ni - Nk) + Nk = Ni parts. Each vl , v2 ,..., vk can
be inserted to the right of each of the first k Durfee squares and t is well-defined.

To see that e is an involution, we simply use the relationship between X and 1P sum-
marized in Corollary 4.1.5. Say 2(A) = p with a, , (Al, A2, ..., Ak), and ( 1 l, p 2, M., k)

as in the boxed definition. We will apply X to .

Applying I undoes the insertions done by , and we get

1(M1, 2, ...,k) = ((a;/ .. )) = a' and
(2 (I', _2, k)) = 1(c2 (O(a; (a;...)))) 2= .

Similarly,

1()N2 (k-2(, , ... k)) = aNk
1(~N2 (~ X, 8 X k)) Nk

and
V2 Nk (1, 2, .., k)) = (l, 2, ..,Vk)

Next we insert Pvk, P -, ... , , into vA, v2, .., vk. Since these are the parts originally
removed by ?b from A, A2, ... , Ak to give l, v2, .., vk, we have

Op('; V1,(.V;)) ... (l,; (; , ..., Ak).

This shows that a and are exchanged by ¢ as are (Al, A2,..., Ak) and (p1, / 2, ... ,/ k)

and indeed e is an involution.

Finally, we note that

ak,m(/) = A(p, / L2, ...,k; P2, P3, p-,Pk ) = 1,,, (A) = t

and since e: is an involution bk,m(/I) = ak,m(A) = s. [

4.3 Second symmetry

We also use our insertion lemma to establish the following theorem:

Theorem 4.3.1. For any integers k, m, n, r, t such that k, n, t > 0, the number of par-
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titions A of n with k successive m-Durfee rectangles, of non-zero widths N1, N2, ..., Nk,
with bk,m(A) = t and rk,m(A) < -r is equal to the number of partitions it of n - r -
k(m + 1) with k successive (m + 2)-Durfee rectangles, of widths N1 - 1, N2 - 1, ...,
Nk - 1, with ak,m+2(/L) = t - r and bk,m+2(/) t.

Before proving out theorem, note that the following two corollaries follow immediately
from the previous theorem.

Corollary 4.3.2. For any integers k, m, n, r such that k, n > 0, the number of par-
titions A of n with k successive m-Durfee rectangles, of non-zero widths N1, N2, ... ,

Nk, with rk,m(A) < -r is equal to the number of partitions pu of n - r - k(m + 1)
with k successive (m + 2)-Durfee rectangles, of widths N 1 - 1, N2 - 1, ... , Nk - 1,
with rk,m+2(P) > -r.

There are two situations in which the widths of the k successive m-Durfee rectangles
must be non-zero.

First, since we require m-Durfee rectangles to have non-zero height, if m < 0 then
the width of the rectangles is at least 1 - m > 0.

Second, if r > 0 and rk,m(A) < -r, then we must have bk,m(A) > r > O. Since bk,m(A)

is the size of the first column of a the partition which sits below the kth successive
m-Durfee rectangle, notice that this m-Durfee rectangle must have non-zero width.

In the previous chapter, we only use this second symmetry when either m = 0 or
r > 0.

Corollary 4.3.3. For any integers k, m, n, r such that k, n > 0 and such that m < O0
or r > 0, the number of partitions A of n with rk,m(A) < -r is equal to the number
of partitions I of n - r - k with rk,m+2(l/) > -r.

Note that Corollary 4.3.3 covers the cases in Corollary 3.4.4, the second symmetry.

To prove Theorem 4.3.1 and its corollaries, we present a family of maps,

vk,m.4- B

between the following two sets:

A = {partitions with k successive m-Durfee rectangles of non-zero
width with (k, m)-rank at most -r},

B = {partitions with (k, m + 2)-rank at least -r}.
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Definition of Ok,mr

When k and m are clear from context we will write Dr.

We will give three examples of applications of Dr before giving the proof that Or is
well-defined and gives a bijection between A and B that has the desired properties.
See Figures 4-9, 4-10, and 4-11.

A So(A)

Figure 4-9: Applying O2'
0 to A = (10, 8, 8, 6, 5, 3, 3, 2, 2, 2,1, 1, 1).
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Let A be a partition with rk,m(A) <_ -r.

Let a be the partition below the kth m-Durfee rectangle and Al, A2, ..., Ak be
the partitions to the right of the rectangles.

Let N1, N2, ..., Nk be the widths of the k successive m-Durfee rectangles and
let

p2 = N1 - N2, 3 = N2 - N3, ..., pk = Nk- - Nk-

Say (a) = t. Then we obtain k new partitions ul, /2,..., Ak by applying the
insertion lemma so that

1()1, ..., k; t-r) - (1 .k)

Remove the first column from a (or equivalently subtract 1 from each part)
to get a partition .

Let t be a new partition defined by having

* k successive (m+ 2)-Durfee rectangles of widths N, - 1, N2 -1, ..., Nk- 1,

* 1, I 2 ..., I k to the right of these rectangles, and

* /3 below the kth rectangle.

Then O)km(A) = 



A

Figure 4-10: Applying 3',-3 to A = (11, 10, 9, 8, 6, 6, 5, 4, 3, 3, 3, 2, 2, 1, 1).

A

Figure 4-11: Applying 02,2 to A = (8, 7, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 2,, 1, 1, 1).

Proof. Consider a partition A with rk,,(A) < -r.

Say
ak,m(A) = s,
bk,m(A) t.

First, we note that IL may have (m+2)-Durfee squares of width N1-1, N2 -1, ..., Nk-1
since none of these integers are negative.

Next we want to apply our insertion procedure and so we must verify that the condi-
tions of Proposition 4.1.2 are satisfied. For each 2 < i < k, Ai fits to the right of the
ith Durfee rectangle and below the (i - 1)st Durfee rectangle. As a consequence, its
largest part satisfies f(A') < Ni - Ni = Pi.

Moreover, we want to insert t-r into Al , A2, ..., Ak. Since rk,m(A) = s-t < -r, we get
A(A', A2, ..., Ak; p2, p3, ...,Pk) = ak,m(A) = s < t - r which is the required condition.
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Now applying the lemma gives partitions 1~, /12,-..., uk by adding one part to each
of A1, A2, ... , Ak. Since we also get f(Ii) < pi = (Ni - 1) - (Ni- - 1) we see that

1,IL2, .... , k will fit to the right of the first k successive (m + 2)-Durfee squares of
width N - 1, N 2 - 1, ..., Nk- 1.

Finally, the largest part of is at least one less that the largest part of c and so 
fits under the kth successive (m + 2)-Durfee rectangle of .

We may conclude that L is a well-defined partition.

Consider the properties of i. We note that:

* by definition /s is a partition with k successive (m + 2)-Durfee rectangles of
widths N1- 1, N2 - 1, ..., Nk- 1,

* since we inserted t - r into Al, A2, ..., Ak we get

ak,m(l) = A(Il, I2, ., t; ;P2,P3, ., Pk) = t-r,

* since e(a) = t we get

bk,m(I) = e(p) < e(a) = t, and

* if A is a partition of n, is a partition of n - r since we remove a column of
height t from a to get and insert t - r into Al, A2, ..., Ak to get A1, 12, ..., /k.

For the two corollaries we note that rk,m+2(Ip) = ak,m+2(l) -bk,m+2(L) > t-r-t = -r.

To finish we must show that Dr is a bijection. Notice that ,Dr is reversible since

1/ (, 2,- ... (Lk) = t-r, and
/)(, /.2,. . ILk)= (1, 2 ...,Ak)

From this we can also recover a since we know ,3 and e(a) t = t - r + r.

To show that Dr is surjective, consider any partition /s with k successive (m+2)-Durfee
rectangles of widths N, - 1, N2 - 1, ..., Nk - 1 with rk,m+2(I) _> -r. Equivalently, we
may say that, for some t, tu has ak,m+2(~) = t- r and bk,m+2(Il) < t. Let 1, tZ2, ..., lI
be the partitions to the right of the k successive (m + 2)-Durfee rectangles and let 3
be the partition below the kth successive (m + 2)-Durfee rectangle.

If we apply Vb as above, we obtain partitions Al, A2, ..., Ak of the appropriate size to
put to the right of m-Durfee rectangles of width N1, N2, ..., Nk. We can put a column
to height t = ak,m+2(L) + r in front of since bk,m+2 (/Il) < t This partition a fits below
the kth m-Durfee rectangle of width Nk. This gives a partition A.
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If we apply 'Jk to A we are simply reversing the steps described above and so we
get 0r(A) = . This shows that SDk is surjective onto the set of partitions with k
successive (m + 2)-Durfee rectangles. O
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Chapter 5

Connections to other work and
further questions

5.1 Dyson's rank and proof of Euler's pentagonal
number theorem

The primary inspiration for the Rogers-Ramanujan proof of the previous two chapters
is Dyson's proof of Euler's pentagonal number theorem:

j=-00

In [Dys44, Dyson defined the rank of a partition in
interpretation of Ramanujan's famous congruences:

order to find a combinatorial

p(5n + 4) O(mod 5),

p(7n + 5) O(mod 7).

His definition is remarkably simple.

Definition 5.1.1. The rank of a partition A is

r(A) = f(A) - e(A).

Recall that f(A) is the length of the first part of A and (A) is the number of parts
of A.

Dyson conjectured that rank subdivided the partitions of 5n + 4 into 5 equinumerous
classes so that the number of partitions of 5n+4 with rank congruent to i (mod 5) was
p(5n+4) for all 0 < i 4. Dyson made an analogous conjecture for partitions of 7n+ 5.

5
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Both of these conjectures were proved by Atkin and Swinnerton-Dyer in [ASD52].

Subsequently, Dyson used this rank to obtain a simple combinatorial proof of Euler's
pentagonal theorem in [Dys69] (see also [Dys88]). It was shown in [PakO3] that this
proof can be converted into a direct involutive proof, and such a proof in fact coincides
with the involution obtained by Bressoud and Zeilberger [BZ85].

Dyson's argument can be presented as follows. (In addition to Dyson's papers,
see [BG02] and [PakO3] for additional descriptions.) Let h(n,r), h(n, < r), and
h(n, > r) denote the number of partitions of n with rank equal to r, less than or
equal to r, and greater than or equal to r respectively. Clearly, for n > 0, we observe
that

p(n) = h(n, r) + h(n, r + 1)

and Dyson noticed two symmetries,

h(n, r) = h(n, -r) and
h(n, < r) = h(n + r - 1, r - 2).

The first of these symmetries is a simple consequence of conjugation. The second
symmetry, the "new symmetry" from the title of [Dys69], follows from a bijection, dr,
which we call Dyson's map. Dyson's map dr takes a partition A of n with r(A) r
and returns a partition IL of n + r - 1 with r(p) > r - 2 by removing the first column
of A, which has (A) squares, and adding a part of size e(A) + r - 1. This new part
will be the first row of ,. See figure 5-1 for an example.

AF) d !2(\) dl(X)

r _T~

Figure 5-1: Applying Dyson's map to A = (4,3,3,2,2,1) with r(A) = 4 - 6 = -2
gives d_2(A) = (3,3,2,2, 1, 1) and d(A) = (6,3,2,2, 1, 1).

Let
00

H<r(q) = E h(n, < r)q and
n=l

H,(q) = Z h(n, > r)qn
n=l

be the generating functions for partitions with rank at most r and at least r. Then

H<r(q) = q H>r-2(q) = qlr ( I H<r-3(q))

where the first equality follows from Dyson's "new symmetry" and the second equality
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follows from the observation. Applying this equation repeatedly gives

-r 1 ()

H =r(q) ( q- ( H<5-r -3(q -

1ql-r( 1 ) q5-2r ( ) + q12-3r 1 )( q'- -4 (q- - Hr-_.(q)
'1 ko(q)o (q)

- /O E(kJ).j-lq 2 -jr

Finally, the first symmetry (conjugation) gives us

1
= 1 + H<O(q) + H>l(q) = 1 + H<o(q) + H<_l(q)

and substituting gives Euler's pentagonal number theorem.

Roughly speaking, our proof of Schur's identity and its generalization to multiple
Durfee squares is a Dyson-style proof with a modified Dyson's rank. We general-
ized Dyson's rank by defining (k, m)-rank. The algebraic steps used to deduce the
generalized Schur identities are the same as those used to deduce Euler's pentagonal
number theorem. Moreover, the bijections, k and DkI,m which we use to prove our
first and second symmetries generalize conjugation and Dyson's map.

More precisely, in the case k = 1, we have:

rl,m(A) = r(A) -m,

( = conjugation, and

Zl,m = d-r-m

This is not the first generalization of Dyson's rank that has been used to prove the
Rogers-Ramanujan identities. The notion of successive rank can also be used to give a
combinatorial proof of the Rogers-Ramanujan identities and their generalizations by
a sieve argument (see [And72, ABB+87, Bre80b]). However, this proof does not use
the notion of successive Durfee squares but rather involves a different combinatorial
description of the partitions on the left hand side of the Rogers-Ramanujan identities.
This generalization of Dyson's rank was kindly brought to our attention by George
Andrews.
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5.2 Garvan and Berkovich

Garvan [Gar94] has also defined a generalized notion of rank for partitions with
multiple Durfee squares. This definition is different from the one given in Chapter 3.
However, his definition leads to same generating function as that for partitions with
(k, 0)-rank at most -r, equation (3.3):

00

Hko~r()1= (_l)j-l qjr+jk+j(i~)
(q)0 j=1

Based on this generating function, in [BG02], Berkovich and Garvan deduced that
a symmetry similar to Dyson's "new symmetry" must exist for Garvan's generalized
rank and asked for a Dyson-style proof but noted that it "turned out to be very
difficult to prove in a combinatorial fashion."

In this section we will explain the relationship between our generalization of rank and
Garvan's definition, and the two symmetries associated with both definitions. We
will also be able to show why the Dyson-style proof sought by Berkovich and Garvan
turns out to be difficult to find.

5.2.1 Equidistribution of rk, and grk

Definition 5.2.1 (Garvan, [Gar94]). Let A be a partition with at least k successive
Durfee squares, where the kth Durfee square has size Nk. Define

the number of columns in the diagram of A which lie to the
grk) right of the first Durfee square and whose length < Nk

grk() minus

the number of parts of A that lie below the kth Durfee square.

Garvan called grk(A) the (k + 1)-rank of A. See Figure 5-2.

A

Figure 5-2: Partition A = (12,10, 8, 7,6, 5,4,3,3,3, 1, 1) has ga2(A) = 5, gb2(A) = 4,
and gr2(A) = 5 - 4 = 1.
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One first theorem tells us that grk and rk, have the same distribution on partitions
of n.

Theorem 5.2.2. For any integers n > 0 and r, the number of partitions A of n with
rk,O(A) = r is equal to the number of partitions Ip of n with grk(i) = r.

To give an even more precise relationship consider the following two definitions. Recall
that for a partition A with k successive Durfee squares, we denote the partitions to the
right of these Durfee squares by Al, A2, ..., Ak and the partition below the kth Durfee
square by c.

Definition 5.2.3. Let A be a partition with at least k successive Durfee squares, where
the kth Durfee square has size Nk. Define

gak(A) = the number of columns of Al whose length < Nk, and

gbk(A)= e(a).

These definitions give us grk(A) = gak(A) - gbk(A) and we have a revised theorem
which implies Theorem 5.2.2.

Theorem 5.2.4. For any integers n, s, t > 0, the number of partitions A of n with k
successive Durfee squares, of size N1, N2, ..., Nk, with ak,(A) = s and bk,o(A) = t is
equal to the number of partitions of n with k successive Durfee squares, of size
N1, N2, ..., Nk, with gak(p) = s and gbk(Iz) = t.

The proof of this theorem will use the following lemma and the maps 0 and 'b from
Chapter 4.

Let J be the set of partitions with k successive Durfee squares of size N1, N2 , ..., Nk
that have

* no part below the kth Durfee square and

* no part to the right of the bottom Nk rows of each Durfee square.

Let K be the set of partitions with k successive Durfee squares of size N1, N2, ..., Nk
that have

* no part below the kth Durfee square and

* no column to the right of the first Durfee square whose length is < Nk.

See Figure 5-3 for an example of these types of partitions.

Lemma 5.2.5. The number of partitions of n in J is equal to the number of partitions
n inKC.
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A ILHll

Figure 5-3: Consider partitions A = (19, 14, 13, 10, 10,8, 8, 8, 8, 6, 5, 5, 5, 3, 3, 3) and
p = (11, 11, 11, 11, 10, 10, 9, 9, 8, 8, 6, 6, 6, 5, 4, 3) with Durfee squares of size 8, 5, and
3. Partition A E J has no part to the right of the bottom 3 rows of each Durfee
square. Partition p E K has no column of length < 3 to the right of its first Durfee
square.

Proof. This follows from a simple counting argument. Consider the generating func-
tion for both sets, J and K, with respect to the size of the partition.

The first set, J, is the set of partitions with Durfee squares of size N1, N2, ..., Nk and
Al, 2 ..., Ak such that

e(xl) < N1 - Nk,

e(x2) < N2- Nk, f(X 2) < N1 - N2 ,

t(xk- l) < Nk - Nk, f(Ax-l) < Nk-2 - Nk-1,

(XAk) < Nk - Nk = 0, f(Ak) < Nk-l - Nk.

This gives the following generating function:

qN?+N2N - Nkq N 2 Nk] _[Nk- Jq[-1 - N 0(q)N__-____ (q)N-Nk ) L N-N ()N- 2-N q

(qNl2+N+ (+Nk (q)N-N ()NN(q)N 2-N 3 (q)N -Nk

(q)N,-Nk (q)N2-Nk (q)Nj-N2 (q)Ns-Nk (q)N2-Na ' (q)Nk_--Nk (q)Nk-2-Nk_~

(q)N 1-N 2 (q)N 2-N3 ... (q)Nk_l-Nk
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On the other hand, the second set of partitions, K, consists of those with Durfee
squares of size N1, N 2, ..., Nk and A1, A2, ..., Ak such that

e(A1) < N1,

e(A2 ) < N2, f(X 2 ) < N, - N2,

£(XAk - ) < Nk-_, f(X k -l) < Nk-2- Nk-1,

e(xk) Nk, f(A) < , f( ) < - Nk.

and such that A1 has no column of length < Nk.

This gives the following generating function:

N2,l+ 2..+N1] [N2] rNk-2 [Nk,1]
(q)N N2 q N 3 q Nk-1 q NkJ q

_ qN+N2+...+N2 (q)N, (q)N, (q)N2 (q)Nk 1-
(q)N (q)N 2 (q)N-N 2 (q)N 3 (q)N 2-N3 (q)Nk(q)Nk_l-Nk

qN2+N2+...+Nk

(q)N1-N2 (q)N2-N3... (q)Nk-l-Nk

Since the generating functions are equal, the lemma follows. O

Proof of Theorem 5.2.4. Let a be a partition with parts of size at most Nk with
t(a) = t, and let 3 be a partition with at most Nk parts with f(A) = s. Say a - a
and 3 - b.

To prove the theorem, we will show how to insert a and p into a partition p of size
n - a - b in J to obtain a partition A of n with k successive Durfee squares of sizes
N1, N2 , ..., Nk with ak,0(A) = s and bk,o(A) = t, and we will show how to insert a and
p into a partition v of size n - a - b in KC to obtain a partition L of n with k successive
Durfee squares of sizes N1, N2, ..., Nk with gak(l) = s and gbk(l1 ) = t.

In both cases, inserting a is simple and is done in the same way. We append a to the
bottom of the kth Durfee square. Appending a will give bk,o(A) = t or gbk(,) = t.

To insert 3 into v E C is similar. It simply gets appended to the right of the rightmost
column of v. Since this column must have length greater than Nk, this can be done.
This, of course, gives a partition A with gak (A) = s. Moreover, this action is reversible
since (3) < Nk.

To insert p into p E J we use the map 0 from Chapter 4. Let pl, p2, .. , pk be the
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partitions to the right of the first k successive Durfee squares of p.

We use 0 to insert 3 Nk, PNk-I, .. , l 1 into pl, p2, ..., pk in that order giving us

(]1; (~2; '".)(]~Nk-l; O( Nk; pl, *-', pk)) ..)) = (A1 2, '... k).

As before, this will give us a partition A with ak,(A) = s and this action can be
undone using %b.

Figure 5-3 shows an example with a and , inserted into each type of partition.

A A~

0

Figure 5-4: Inserting a = (3, 3, 1, 1) and 3 = (8, 6, 2) into A and i from Figure 5-3.

This gives us bijections

J x {alf(a) < Nk,e(a) = t} x {/Plt() < Nk, f(A) = s} -

{A a partition with Durfee squares of size N1 , N2, ..., NkIak,O(A) = s, bk,O(A) = t}

and

K x {alf(a) < Nk, t(a) = t} x {(Pt(/3) < Nk, f(X) = s} 

{A a partition with Durfee squares of size N1 , N2, ..., Nklgak(A) = s, gbk(A) = t}.

for both bijections, the sum of the sizes of the partitions on the left hand side equals
the size of the partition on the right hand side.
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Together with the previous lemma, this establishes our theorem.

Note that for any bijection w : -KC, this proof shows how to obtain a bijection
Q: Qk -+ Qk such that rk,o(A) = grk(Q(A)). We give such a bijection w, based on a
map due to Franklin, in Appendix B.

5.2.2 Conjugation

There is a very natural definition of conjugation for Garvan's rank [Gar94].

Recall the notation from the previous section. For any partition A with k successive
Durfee squares of size N1, N2 , ..., Nk, let

* a be the partition below the kth Durfee square, and

* /I be the partition consisting of columns sitting to the right of the first Durfee
square of A whose length is < Nk.

The conjugate is obtained by replacing
that conjugation is clearly an involution
negative. See Figure 5-5.

A

Figure 5-5: Partition A = (12,10,8,7,6,5,4,3,
p= (11,9,9,7,6,5,4,3,3,2,2,1,1).

a and by ' and a', respectively. Note
sends the Garvan rank of a partition to its

IL

3,3,1, 1) and its Garvan conjugate

The generalized version of conjugation Ek presented in Chapter 4 can be thought of
in the same way except that we find 3 by removing parts from Al, A2, ..., Ak using 0
and insert a' by repeatedly applying Vb.

Note that if w is any bijection w : J -+ C, for instance the bijection given in Ap-
pendix B, and : Qk - Qk is the corresponding bijection given by the proof of
Theorem 5.2.4, then the two conjugations and commute in the following way.
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k I I1Garvan's conjugation

Qk ' Qk

5.2.3 Dyson's map

In order to find a combinatorial proof that the generating function of partitions with
grk(A) < -r < 0 is

00

(q)ooj=l

Berkovich and Garvan asked for a generalization of Dyson's map that sends partitions
of n with grk(A) < -r to partitions A of n - k - r such that either A does not have
k successive Durfee squares or grk(A) > -r - 2k. See equation (6.3) of [BG02].

As they remarked, this map is difficult to find. One of the reasons for this is that no
such bijection can maintain the Durfee square structure of the partitions.

Considering the relationship between Ck and Garvan's conjugation, it is natural to ask
how our second symmetry and, in particular, the bijection k,m relate to Garvan's
definition. First note that such a relationship requires an expanded definition of
Garvan's rank since Mr relates (k, m)-rank and (k, m + 2)-rank while Garvan's rank,
grk, corresponds only to (k, 0)-rank.

One solutions is to generalize Garvan's rank to partitions with k successive m-Durfee
rectangles by considering the number of columns to the right of the first m-Durfee
rectangle whose length is < Nk + m where Nk is the width of the kth successive
m-Durfee rectangle and the number of parts of the partition that sits below the kth
successive m-Durfee rectangle. The calculation in Lemma 5.2.5 and the bijections
used to prove Theorem 5.2.4 work in this case and this allows us to generalize Garvan's
definition of rank as desired. Moreover, the work in Appendix B can also be used to
give a bijection that sends rk,m(A) to this generalized version of Garvan's rank.

This allows us to use ok,m to give a generalization of Dyson's map that applies to
Garvan's definition. Unfortunately, this map does not have a very nice description
which is independent of the bijection from Appendix B and 5k,m

5.3 Bressoud and Zeilberger

Finally, a list of work connected to this proof is not complete without mentioning
the bijective Rogers-Ramanujan proof of Bressoud and Zeilberger. In [BZ82, BZ89],
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they give a bijection proving Andrews' generalization of the Rogers-Ramanujan iden-
tities (3.1) based on the involution principle and Bressoud's short Rogers-Ramanujan
proof [Bre83]. One of their maps, 0 in [BZ89], acts similarly to our maps Sk,m for
certain k, m, and r. Unfortunately, due to the complexity of their proofs we do
not give a formal connection. The fact that these maps are somewhat similar does
however have consequences for the questions in the next section.

5.4 Further questions

Andrews generalized the Rogers-Ramanujan identities further. For 1 < a < k, he
proved that:

oo oo qN?+N2+ ..+N~l+Na+..+Nk-1 eo
1

O E (q)(nk=Oq) ... (q)n 11 1 - q (5.1)
n 0O, a (mod 2k + 1)

and provided a combinatorial interpretation of the left hand side as a Durfee dis-
section using both Durfee squares and 1-Durfee rectangles [And74, And79]. Further
generalizations that lend themselves to similar interpretations have been given by
Bressoud as well [Bre79, Bre80a] and by Garrett, Ismail, and Stanton [GIS99].

Question 5.4.1. Can our proof be extended to prove these identities?

It is fairly simple to extend our definition of (k, m)-rank and obtain bijections proving
a first and second symmetry for these partitions in Andrews' identity. However, in
this case, the second symmetry is not enough to determine the generating function
for partitions with rank at most -r. In order to complete the proof, a new idea is
required.

On the other hand, there is evidence that our proof will not extend. The Rogers-
Ramanujan bijection given by Bressoud and Zeilberger [BZ82, BZ89] is a combina-
torialization of a short proof of Bressoud [Bre83] in which he proves the following
generalization of Schur's identity:

00 00 q82+S2+...+s2

$1=0 k=O (q)N-91 (q)91-92 (q)9_ -9k (q)2' ' (

1 X00 (2k+)p2 +li r 2N (5.2)
() E xq 2 N-m]q

3---00

However, this generalization is quite different from Andrews' generalization given
above. Since our map i)'km acts similarly to one of Bressoud and Zeilberger's maps,
it may be that our proof is more likely to extend to this generalization rather than
equation (5.1).
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If our proof were extended to either case, this would also give a proof of the second
Rogers-Ramanujan identity.

As mentioned earlier, Dyson introduced rank and conjectured that it would provide
a combinatorial explanation for Ramanujan's congruence results. It is natural to ask
if (k, m)-rank can lead to other congruence of this type. For example,

Question 5.4.2. Are there some n and j such that the partitions of n with at least k
successive Durfee square are divided into equinumerous classes (mod j) by (k, O)-rank?

Bijections for ordinary partitions can sometimes be extended to various classes of
weighted Young diagrams. See [BY03] for numerous examples. In [BG02], Berkovich
and Garvan define a version of Dyson's map for 2-modular diagrams of partitions
whose odd parts are distinct and use it to prove Gauss' identity. It would be inter-
esting to extend our bijections in this way.

Question 5.4.3. Can we find versions of k and Vk,m for weighted Young diagrams,
and what identities could we prove with these maps?

Finally, in [PakO3], Pak shows that an iterated version of Dyson's map gives a bijection
between partitions into distinct parts and partitions into odd parts.

Question 5.4.4. Can we iterate our second bijection to find an analogue of this result
for partitions with at least k Durfee squares?

Note that in a sense, our generalization of conjugation ek is defined using an iterated
version of an extended Dyson's map since it uses iterations of b and A. Similarly,
Zeilberger's proof of the binomial theorem, in Appendix A, can be thought of as an
iteration of 0 for k = 2. It is quite likely that there are other ways of iterating 0 (or
perhaps Okm) that give interesting results.pe~~~rhp m
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Chapter 6

A four-parameter partition identity

In [AndO5], Andrews considers partitions with respect to size, number of odd parts,
and number of odd parts of the conjugate. He derives the following generating func-
tion

0\ 0v m= (1+ rsq2j- l )

Er s )q (1 - q4i)(1 -r2q-2)(1 - 2q4-) (6.1)AEP j=l

Recall that P denotes the set of all partitions, IAI denotes the size (sum of the parts)
of A, (A) denotes the number of odd parts in the partition A, and 9(A') denotes the
number of odd parts in the conjugate of A.

In this chapter, we generalize this result and provide a bijective proof of our generaliza-
tion (see also [BouO5]). This provides a simple combinatorial proof of Andrews' result.
As mentioned in the introduction, Stanley's work on sign-balance in posets [StaO4]
and, in particular, a problem which also appeared in [StaO2] are the motivation for
Andrews' identity (6.1) and for the statistics that we will use in the next section.
Other combinatorial proofs of (6.1) have been found by Sills in [Si104] and Yee in
[YeeO4].

6.1 Main result

Consider the following weight functions on the set of all partitions:

a(A) = EA2i.-1/21,

p(A) = ELLA2i1/2],

'y(A) = ErA2i/21, and

a(A) = ELA2i/2J-
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Let a, b, c, d be (commuting) indeterminates, and define

w(A) = a( x)b ( x)c (x)d6(x ) .

For instance, if A = (5,4,4,3,2) then a(A) is the number of a's in the following
diagram for A, 3(A) is the number of b's in the diagram, -y(A) is the number of c's
in the diagram, and 6(A) is the number of d's in the diagram. Moreover, w(A) is the
product of the entries of the diagram.

a
C

a
C

a

b

d
b

d
b

a
C

a
C

dH

These weights were first suggested by Stanley in [StaO4].

Let 'D(a, b, c, d) = E w(A), where the sum is over all partitions A, and let I(a, b, c, d) =
Ew(A), where the sum is over all partitions A with distinct parts. We obtain the
following product formulas for '((a, b, c, d) and (a, b, c, d):

Theorem 6.1.1.

a c =(1 + aJ- cJ1 -l-')(1 + aJbicidj - l)
(a, b, C d) (1 - abicidi)(1 - abcj-ld-')(1 - aJb-lJdJ-l)

j=l

Corollary 6.1.2.

'·(a, b, c, d) = (1 + ab)(1 + abd-

Andrews' result follows easily from Theorem 6.1.1. Note that we can express the
number of odd parts of A, number of odd parts of A' and size of A in terms of the
number of a's, b's, c's, and d's in the diagram for A as follows:

0(x) = a() -3() + (A ) - (A)
9(A') = a(A) + 3(A) - y(A) - 6(A)

Ix = a(A)+3(A) + (A) +(A).

Thus we transform (a,b,c,d) by sending a - rsq, b * r-lsq, c - rs-lq, and
d - r-1 s-1 q. A straightforward computation gives (6.1).

Our main result is a generalization of Theorem 6.1.1 and Corollary 6.1.2. It is the
corresponding product formula in the case where we restrict the parts to some con-
gruence class (mod k) and we restrict the number of times those parts can occur.
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Let R be a subset of positive integers congruent to i(mod k) and let p be a map
from R to the even positive integers. Let P(i, k; R, p) be the set of all partitions with
all parts congruent to i(mod k) such that if r E R, then r appears as a part less
than p(r) times. Let 4 )i,k;R,p(a, b, c, d) = x w(A) where the sum is over all partitions
in P(i, k; R, p).

For example, P(O, 1; 0, p) is P, the set of all partitions. Also, if we let R be the set of
all positive integers and p map every positive integer to 2, then P(O, 1; Z+, p) is the set
of all partitions with distinct parts. These are the two cases found in Theorem 6.1.1
and Corollary 6.1.2.

Theorem 6.1.3.
:'(i,k;R,p(a, b, c, d) = ST

where 00 __-_ + r'+ 1
S (1 + a l ibL(+l)k+i l dLAJ)

j=(1 - ar2 l bL 2 cr 2i dlki ]) (1- akb(j-l)kcjkd(j-l)k)

and
T = I(1-.., r p(r) cr

rER

6.2 Bijective proof of Theorem 6.1.3

The proof of Theorem 6.1.3 is a slight modification of the proofs of Theorem 6.1.1
and Corollary 6.1.2. For clarity, we will first give the argument in the special cases
where we consider all partitions or partitions with distinct parts, and then we will
describe how the proof can be modified to work in general.

Proof of Theorem 6.1.1. Consider the following class of partitions:

1Z= {A e P: A2i-1 - A2i < 1}.

We are restricting the difference between a part of A which is at an odd level and the
following part of A to be at most 1.

To find the generating function for partitions in 1? under weight w(A), we decompose
A E R7 into blocks of height 2, {(A1 , A2), (A3 , A4 ), ... }. If we have an odd number of
non-zero parts, add one part equal to 0. Since the difference of parts is restricted to
either 0 or 1 at odd levels, we can only get two types of blocks. For any k > 1, we
can have a block with two parts of length k, i.e. (k, k). Call this Type I. In addition,
for any k > 1, we can have a block with one part of length k and the other of length
k - 1, i.e. (k, k - 1). Call this Type II.

In fact, partitions in R correspond uniquely to a multiset of blocks of Types I and II
with at most one block of Type II for each length k. Figure 6-1 shows an example of
such a decomposition.
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A FFI
I. I 

(6, 5)

(5,5)

(5,5)

(9,9)

(2,1)
(1, 0)

Figure 6-1: A = (9, 9, 6, 5, 5, 5, 5, 5, 2, 1, 1)

{(9, 9), (6, 5), (5, 5), (5, 5), (2, 1), (1, 0)}

To calculate the generation function for Z, it remains to
blocks. Blocks of Type I are filled as follows:

a b a b

c|dcd [albj

decomposes into blocks

calculate the weights of our

or lb albor cldced

depending on the length of the blocks.
aJbi-lcidi-'.

Therefore they have weights ab&cid or

Blocks of Type II are filled as follows:

ab ab ab a
Ic |~c d| c d

or cldced ali

depending on the length of the blocks. Therefore they have weights aJb-l1cj-ld- 1 or
ajbicidi-l.

This gives the following generating function:

w(A) =
AER

f- (1 + aW'c1 dj-')(1 + ad + a dj- l )

i11 (1 - aJbcJid)(1 - aibi-lcid-1)

Notice that xERz w(A) contains all the factors in P(a, b, c, d) except for

00 1

I - aJbc-j- l
j=1

Let S be the set of partitions whose conjugates have only odd parts each of which is
repeated an even number of times. We give a bijection h : P - R x S, such that S
contributes exactly the missing factors.
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Given a partition A, let v be the partition with A2i- - A2i parts equal to 2i - 1 if
2i/-1 - 2i is even and A2 i-1 - A2i - 1 parts equal to 2i - 1 if A2i-1 - A2i is odd. Also,

let p be the partition defined by Li = Ai - vi. Let h(A) = (, v'). In other words,
the map h removes as many blocks of width 2 and odd height as possible from A.
Call these blocks of Type III. These blocks are joined together to give v'. The boxes
which are left behind form M. By definition, v has only odd parts, each repeated an
even number of times, which implies that v' E S. Moreover, since we are removing
as many pairs of columns of identical odd height as possible from A, p must have
A2i- - A2i < 1. To see that h is a bijection, note that its inverse is simply taking the
sum of p and v' since Ai = Ii + vi. An example is shown in Figure 6-2.

A IL V'

Figure 6-2: A = (14,11,11,6,3,3,3,1) and f(A) = (IL,v') where v =
(7, 7, 3, 3, 3, 3, 1, 1) and pL = (6, 5, 5, 4,1,1, 1,1).

Now we examine the relationship between w(A), w(Au), and w(v'). Consider the blocks
of Type III in A. They always have weight aJbi-lcdj-1 regardless of whether their
first column contains a's and c's or b's and d's. This is also the weight of the blocks
when they are placed in v'. Hence w(v') is the product of the entries in the diagram
of A which are removed to get p.

Moreover, since we are removing columns of width 2, the entries in the squares of the
diagram of A that correspond to squares in the diagram on pI do not change when v'
is removed. This implies that w(A) = w(p)w(v') and the result follows. 0

Proof of Corollary 6.1.2. Let D denote the set of partitions with distinct parts and
let E denote the set of partitions whose parts appear an even number of times. Then
we define the following map g : P -Z Z x £. Suppose A has k parts equal to i. If k is
even then v has k parts equal to i, and if k is odd then v has k - 1 parts equal to i.
The parts of A which are not removed to form v, at most one of each length, give pl.
Let g(A) = (, v). An example is shown in Figure 6-3. The map g is a bijection since
its inverse is taking the union of the parts of p and v. Similarly to the situation in
the proof of Theorem 6.1.1, we are removing an even number of rows of each length,
so w(A) = w(jz)w(v).

Now using the decomposition from the proof of Theorem 6.1.1, partitions in £ have
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V II II yA 1 - I I I I

Figure 6-3: A = (9,8, 7, 7, 5, 5, 5, 3, 1, 1,1) and g(A) = (, v) where p = (9,8,5,3, 1)
and v = (7, 7, 5, 5, 1, 1)

a decomposition which only uses blocks of Type I. Hence

(a, b, c, d) = (a, b, c, d) aibic(d()( - aib-i ) '

and the result follows. []

The proof of our main result follows by the same argument with a modification to
the sizes of the blocks.

Proof of Theorem 6.1.3. First we find the generation function S = i,k;0,p(a, b, c, d)
without any restriction on the number of times each part may occur. This is done
by using Type I blocks with two parts each of length jk + i for j > 1, Type II blocks
with one part of length jk + i and one of length (j - 1)k + i for j > 1, and Type III
blocks which are rectangular with width 2k and odd height.

There is a bijection, analogous to the one in the proof of Corollary 6.1.2, between
P(i, k; 0, p) and P(i, k; R, p) x T where T is the set of all partitions whose parts are
in the set R and occur a multiple of p(r) times. Since the generating function for T
is

1
T-' = I 1

ER 1- a t2 bL2J ec2l p(r dl J p(r

we see that S = i,k;R,p(a, b, c, d)T - l and the result follows. C
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Appendix A

Other applications of insertion

In Chapter 4 we define an insertion procedure used to describe the bijections tk and
)k,"m which generalized conjugation and Dyson's map for partitions with k succes-

sive m-Durfee rectangles. Here we present two other applications of our insertion
procedure.

Neither of these applications is complicated, however they are useful examples for
understand the insertion procedure and show that insertion is a natural operation on
partitions.

A.1 Formula for the q-binomial coefficient

As mentioned in the introduction, equation (1.1), the generating function for parti-
tions at most k parts of size at most j is

[k + j] = (q)k+j
k q (q)k(q)j

Equivalently, we can write,

1 _ 1 [k+j]
(q)k(q)j (q)k+j k q

To prove this, we give a bijection 9 between pairs of partitions (A, p) such that A has
at most j parts and p has at most k parts, and pairs of partitions (v, p), such that v
has at most k +j parts and p has at most k parts of size at most j. The bijection is
exactly the same as a bijection given by Zeilberger in [BZ89], though explained using
different language.
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Definition of 9

Since A(Al , A2;p 2) = 0 insertion is defined in this case. Also the definition of 0 gives v
with at most k + j parts and p with at most k parts of size at most j. Finally, 0b can
be used to give the inverse maps showing that ~8 is indeed a bijection.

In Figure A-1 we see an example of this bijection.

I W P

P

Figure A-i:
partitions v

Bijection B inserts 1t = (8, 6, 5, 3, 2) into A = (5, 4, 2) with P2 = 3 to give
= (5, 5, 4, 4, 4, 2, 2, 2) and p= (3, 2, 2, 1).

A.2 Generating function for partitions with suc-
cessive Durfee squares

In Chapter 3, we state that the generating function for partitions with Durfee squares
of size N1, N 2, ..., Nk and no part below the kth Durfee square is

qN12+N +...+Nk2_1

(q)n (q)n2 ... (q)nk

where nk = Nk and nj = Nj - Nj+l for 1 < j < k- 1. As shown by Andrews [And79],
this follows by a simple counting argument using the q-binomial coefficient and plenty
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Suppose A is a partition with at most j parts and p is a partition with at most
k parts.

Let A1 = A and A2 be the empty partition. Also, let P2 = j.

Using 0, insert pk,. k-1, ,-, 2,1l into A1, A2 in that order giving

O(Pl; 0(L1 2; ... O(Pk-1; k(k; A1, A2))...)) = (, p)

Let 3(A, ) = (v, p).

. 5

VEEE
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of cancellation.

We can also use b to establish this fact directly without cancellation using a procedure
that shows from where each of the terms (-i comes. The bijection we use to do this
is the following map A.

The basic idea is to insert Al to the right of the first Durfee square, insert A2 to the
right of the first and second Durfee squares, A3 to the right of the first three Durfee
square, and so forth, until we have inserted Ak to the right of the k successive Durfee
squares giving a partition with no part below the kth Durfee square.

It is simple to check that each insertion can be done and that we get partitions
l,/2, .../k f the desired dimentions. The proof follows from the same argument

that was used to show that repeated insertions gave a well-defined k. This being
done, Ob can be used to define the inverse of A and show that it is a bijection.

Figure A-2 shows an example of PA.
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Definition of A

Given the sizes of the Durfee squares, N1, N2,..., Nk, and k partitions,
A1, A2 , ... , Ak such that Ai has at most ni parts.

Let fil = Al and let / 2, /3, ..., k be empty partitions.
Let pi = Ni1 - Ni = ni- 1.

For i from 2 to k repeat the following steps:

* Using O{P2,,Pi} insert Ani, ..., A', A' into 1 , 2, ..., pi in that order giving

(1; 0(2; .. (Ahi-1; ('ni 1, ~2, .. , ai))) = (/1,2 vi)

· Let IL1 = v1, 2 = 2 , ..., i = Vi and let pi+1, ..., be empty partitions.

After the insertion of Ak, let A(N1, N2, ..., Nk; Al, A2, ...,Ak) be the partition
with Durfee squares of size N1, N2, ..., Nk and partitions 1, 2, ... k to the
right of these Durfee squares.



IA

'1 A2 A3

Figure A-2: Starting with three Durfee square of size N1 = 6, N2 = 3, and N3 = 2.

The following three steps are shown. First, we insert Al = (4, 3, 1) next to the first

Durfee square. Second, we insert A2 = (5) next to the first two Durfee squares.

Third, we insert A3 = (6,3) next to the first three Durfee squares. This gives

Q(N,, N2, N3; A, A2, A3) = = (10,9,9,9,8,7,5,5,4,3,2).
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Appendix B

Franklin's bijection

We note that
[k + j _ (q)k+j

k q (q)k(q)j

can be written as
1 [k+j] 1

(qk; q)j j q (q )

Consider the following interpretation of this identity. The right hand side is the set
of all partitions with at most j parts. The left hand side the the set of all pairs of
partitions, one only has parts of size between k + 1 and k + j and the other has at
most j parts and parts of size at most k. In [SF82], Franklin gives a bijection proving
this identity which we will use to define a map needed in Chapter 5.

Definition B.0.1 (Franklin, [SF82]). The ith excess of a partition A is the A1 - Ai-,.

We note if a partition has at most j parts then it has parts of size at most k if and
only if its jth excess is at most k.
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Definition of Franklin's bijection aj,k

Suppose A is a partition with at most j parts.
Let p = A and let v be the empty partition.
Repeat until the jth excess p is less than or equal to k:

* Let i be such that the first through (i - 1)st excess of p is less than or
equal to k but the ith excess is at least k.

* Subtract k + 1 from p, and 1 from P2, P3, ... , i

* Rearrange the parts to give a new partition p and add one part of size
k+i to v.

When the jth excess of p is less than or equal to k, let Wj,k(A) = (p, V).



Franklin's bijection works by successively reducing the first excess until it is less than
or equal to k, then reducing the second excess until it is less than or equal to k, and
continuing in this fashion until the jth excess is less than or equal to k.

The proof of that aj,k is a bijection is in section 20 on page 268 of [SF82].

Figures B-2 and B-1, show two examples of this bijection.

I I I I I I I I I I
A I I I I I

I I IIlll a5.3 1
1/

EEE

I

I

I

Figure B-1: Let j = 5 and k = 3. Applying Franklin's
A = (11,6,5,2,2) gives partitions u = (3,2,1, 1,1) and
steps are shown with p on the left and v on the right.

bijection, 35,3, to partition
v = (8,6,4). Intermediate

In Chapter 5 we need a bijection, w, between partitions in the sets J and KC where
J is the set of partitions with k successive Durfee squares of size N 1, N 2, ..., Nk that
have

* no part below the kth Durfee square and

* no part to the right of the bottom Nk rows of each Durfee square
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and K is the set of partitions with k successive Durfee squares of size N 1, N2, ..., Nk
that have

* no part below the kth Durfee square and

* no column to the right of the first Durfee square whose length is < Nk.

Figure 5-3 shows an example of these types of partitions. We can use Franklin's
bijection to define such a bijection w.

Figure B-3 shows an example of this bijection.

The proof that w is a well-defined bijection follows from the same arguments that
were used to prove that Lk is well-defined. There is only one new condition that must
be verified. Namely, T 2 must fit to the right of the second and below the first Durfee
square and therefore we must have f( 2 ) < N1 - N2 .

Since f(a 2 ) < N1 - N2, we must simply check that if one of the insert parts of 'r2 is
its first part then it is at most N1 - N2 . By Lemma 4.1.6, we note that the only the
last application of 0 can insert a part at the top of r2. Consequently, consider the
selected parts of T2 , r 3 , ... , Tk and suppose the selected part of r2 is its first part. To
select the first part of - 2, we must also have selected the first parts of r3 ,T 4 ,..., Tk

and they must have size P3,p4, . ,Pk, respectively. Therefore the selected part of T 2

has size -p 3 -p 4- ... - Pk = - N2 + Nk. Since p' < Nl - Nk we see that the
selected part of r 2 has size at most N 1 - N2 as desired.
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Definition of w: - K

Suppose p E J.

Let A be the partition to the right of the first Durfee square of p.
Remove A from p to get a partition a.

Let N,-Nk,Nk(A) ( , ).

Let 2 , , a..., k be the partitions to the right of the second though kth Durfee
squares of a and let Pi = Ni_ - Ni for 3 i < k.

Insert Pki', vk-L', .- , 1 into the partitions a 2, a3 , ... , ok using 0(3,,...., as
follows

0(11O1 t(p; -( 1; 0(, 2,3,...,ak)) ... (72, r3, ... ,rk)

Let r be the partition obtained from a be replacing a2, a3, ..., ak by r2 , 3 , ..., rk
and appending v' to the right of the first Durfee square.

Let w(p) = r.



A I I II
I I I I Il 
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Figure B-2: Let j = 8 and k = 2. Applying Franklin's bijection, 38,2, to partition A =
(11, 8, 8, 4, 2, 2) gives partitions = (2, 2, 2, 1, 1) and v = (8, 6, 5, 5, 3). Intermediate
steps are shown with p on the left and v on the right.
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p

A

w(p)

1

Figure B-3: Let p = (19, 14, 13, 10, 10, 8, 8, 8, 6, 5, 5, 5, 3, 3, 3) and let be the partition
to the right of the first Durfee square. Remove from p. As in Figure B-1, we
get 35,3(A) = (, ). Therefore we insert ' to the right of the second though kth
Durfee squares and append v' to the right of the first Durfee square to obtain w(p) =
(11, 11, 11, 11, 10, 10,9,9,8,8,6,6,6,5,4,3).
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