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Abstract

This thesis develops a method to simulate and visualize the fields and energy flows
in electric circuits, using a simplified physical model based on an idealized geometry.
The physical models combine and extend previously proposed models, to produce
a rich array of interactive configurations of circuits. For example, both driven and
undriven series RLC circuits can be simulated. The computation underlying the sim-
ulations is primarily the numerical solution of several first order differential equations
and of a boundary value problem. The proposed visualization of these numerical re-
sults provide an appealing and physically meaningful representation of the fields and
electromagnetic energy flows in these circuits.
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Chapter 1

Introduction

1.1 Motivation

In traditional introductory physics courses to electromagnetism, students are intro-

duced to the concepts of electric charge, electric current, and electromagnetic fields

and potentials, together with the equations governing the interaction of these quanti-

ties and their evolution in time. Then, using a subset of this rich array of principles,

they are introduced to electric circuits. Certainly, the ability to analyze complex

networks of electromagnetic components without referring to the underlying fields is

useful, as the latter are often intractable by simple means. However, with this layer

of abstraction, electric circuits lose part of their connection to basic physics.

The motivation of this thesis has been to bring out the electromagnetic nature

of electric circuits and present it transparently to students in freshman electromag-

netism. The medium through which we set to accomplish this goal are the simulation

of simple electric circuits, and the visualization of the associated fields and the flow

of electromagnetic energy.

For such a task, it is imperative to consider physical configurations simple enough

to be amenable to analysis and interactive simulation, yet rich enough to provide

a vast spectrum of experimentation. In this light, our work can be thought of as

an extension of that by Heald [6, 7], the more rigorous analysis by Jackson [9], the

communication by Clark [2], and the brief treatment by Majcen et al. [11].
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The merit of the current work lies in the coherent amalgamation of some of the

techniques presented in the above literature, coupled with the systematic construction

of a physical model, the extension of existing physical models to include capacitance

in addition to emf, resistance and inductance, and, last but not least, the introduction

of a meaningful visualization method for the flow of electromagnetic energy.

It is worth noting that our simulation is implemented in a software package pre-

equipped with techniques for field visualization, such as streamlines and texture based

vector field representations in the style of line integral convolution (LIC)[1], [12].

These augment the educational value of the simulation and make it more appealing.

We hope that the tool we have developed will indeed help students perceive electric

circuits as true physical phenomena, rather than mere mathematical equations.

1.2 Scope and Organization

Chap. 2 defines and characterizes the circuit to be a thin cylindrical shell of infinite

height, with which physical properties are associated. The numerical computation of

circuit quantities is outlined. Chap. 3 studies the fields associated with the circuit.

The magnetic field and the electric field, in two components, are derived and their

numerical computation is detailed. Chap. 4 uses the field quantities to obtain the

electromagnetic energy density in space, as well as its flow in time. This flow is

quantized, and an effective visualization is obtained. Chap. 5 concludes the thesis

with some examples.
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Chapter 2

Circuit

In this chapter we describe the conceptual construction of an idealized geometry elec-

tric circuit. In Sec. 2.1 we define the geometrical setting of the problem as a cylindrical

shell of infinite height. In Sec. 2.2 we move on to ascribe physical properties to the

shell. In Sec. 2.3 we explain certain assumptions crucial for subsequent development.

Finally, in Sec. 2.4 we complete the description by coalescing the development into a

classical circuit model, directly amenable to simulation.

2.1 General Geometry

The choice of a geometry for the problem of analyzing and visualizing the fields and

the energy flow associated with an electric circuit is chiefly motivated by the potential

tractability of the problem in terms of both analysis and numerical computation. This

thesis adopts an infinite height cylindrical shell, of radius a and negligible thickness

5 < a, as the support of the electric circuit, as shown in Fig. 2-1(a). Chap. 3 provides

the bulk of justification for selecting this geometry. Infinite height, for instance,

together with only angularly varying physical properties, as presented in Sec. 2.2,

provide invariance under axial translation. This and cylindrical shape confine the

electric field to two dimensions and the magnetic field to one, rather than the usual

three. Cylindrical shape also allows us to conveniently specify the boundary condition

when solving the partial differential equation for the electrostatic potential.

13
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0r

(a) (b)

Figure 2-1: Our electric circuit is an infinite-height cylindrical shell, of radius a and
negligible thickness 8 < a (a), with which we associate a cylindrical coordinate system
(b).

With this geometry it is most convenient to work in a system of cylindrical co-

ordinates (r, 0, z), where the z-axis coincides with that of the cylindrical shell of the

circuit, as shown in Fig. 2-1(b).

2.2 Physical Properties

To construct the equivalent of an electric circuit on our cylindrical shell, we need to

attribute physical properties to the material. In this section, we study all properties

that will allow us to build resistors, batteries and capacitors. The cylinder itself will

act as an inductor. We start with some introductory analysis. This will introduce our

framework and demonstrate how the conventional notions of resistance and current

must be naturally replaced with normalized equivalents.

Without loss of generality, we first consider an isolated section of the cylindrical

shell, which we make of finite length h, and postpone studying the h - oo limiting

behavior and its consequences to later. The section extends between 0 = 0 and 0 = 0*,

which we refer to as the extremities of the section.

14



The cut surfaces at the extremities are planes normal to 6. We choose the resis-

tivity p(O) to be a function of angle, but uniform in the radial and axial directions.

Our task is to find the resistance R of this section. The whole configuration is shown

in Figure 2-2. We start by applying an external emf source, which gives V(0*) = -S,

if V(O) = 0 is our reference. This gives rise to a current I, from which we obtain the

resistance of the section Rs 7

Rs

p(0)
h . ...1.1

Figure 2-2: Configuration for the calculation of the resistance of a section of the
cylindrical shell of height h and arc length 0* and of resistivity p(9).

We restrict our consideration to the case of steady current, i.e. after the system

stabilizes and there is no charge accumulation or dispersion at any point in the con-

ductor. This state is reached very quickly, as we justify in Sec. 2.3. In this situation,

we can write the continuity equation as,

V J - "- 0, (2.1)
1t

where pv is the volume charge density. Notice that, by the divergence theorem, this

implies that the total current flowing out of a closed region encircling any part of the

section, and possibly empty space surrounding it, is zero. One consequence of this

is that the current I computed by integrating J over any complete cross-section will

be the same. This follows from taking a closed surface that contains both the given

cross-section and an extremity cut surface, and which closes outside of the conductor.

Since there is no current outside, the current through the arbitrary cross-section is

the same as the one going into, or out of, the extremity.
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Now, we need to find the electric field E inside the section, from which we can

obtain the current density J from Ohm's law,

E = pJ, (2.2)

we then integrate J over a cross-section to obtain I.

Other than the boundary conditions imposed on the potential at the extremities,

we require that no current flows across the conductor, except through the extremities

themselves. This can be translated into the following no-leak requirements:

6 h h
E r = Owhen r = a t-, 0<0<0*, and- < z < -

6 2 2 2 h (2.3)
E z = Owhen a - - < r < a + -, 0<0<0*, andz=± -.

2 2 2

However, the problem is an electrostatic one, and thus we can write E = -VV =

-r -- 5 - 2. The requirements in Eq. (2.3) transform into boundary condi-

tions on the potential: =,( =0 and - = 0, on the appropriate faces of the section.

However, if we can find a valid solution for the potential which satisfies the bound-

ary conditions at the extremities, and which is independent of the radial and axial

components everywhere within the section, then these no-leak requirements will be au-

tomatically satisfied, and we would have found the solution, based on the uniqueness

theorem.

What is the equation that the potential must satisfy within the section? If the

material had uniform resistivity, Laplace's equation would apply. However, that is

not the case, and we have instead the following:

V -E = V - (pJ)

-V 2V = PV~$ Vp
0 E/p

-V 2 V = VV - Vp (2.4)
p
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Let us now, as we mentioned, search for solutions where the potential is a function

of 0 alone. This restriction gives us V2V '2, VV = 12 and Vp =, and

we can write
o2V 1 aV op
02 p 00 00'

which admits solutions of the form 2 = Kp, or equivalently

0V(0) = K

(2.5)

p(0')d0' + V(O)

0

(2.6)

This equation satsifies the boundary condition at 0 = 0, and we can find a suitable

value for K to satisfy that at 0 = 0*:

-9

V(0*)

K O p(0')dO'

Since the resulting solution is in accord with all boundary conditions, be they the

potential at the extremities or the no-leak requirements, it is the only solution, by

the uniqueness theorem. The electric field and the current density are given by:

E = -VV
r 0

K-
J = Ep=- r.

r

Kp
r

(2.8)

(2.9)

To calculate the current, let us consider any cross-section normal to 0:

f= J -ds= h/2a
-h/2 a-S

rh/2 a+6/ 2 - Kdrdz
J-h/2 Ja-6/2

(a + 612)- Kh ln~a

6
-Kh-

a
Eh6

a fo* p(0')dO'

6/2

/2
J -Odrdz

(2.10)

17
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For the approximation step, we have used the first term of the Maclaurin expansion

In (}--) = 26 + IE3 + E +... valid for -1 < c < 1, which applies to c = 6/2a, since

we have taken 6 < a. Finally, the expression for the current gives us the resistance

of the section
S af* p(')dO'

Rs Q, (2.11)
I h6

which makes it clear that

lim Rs = 0,
h-+*oo

since, although 6 is small compared to a, the 1 ratio is still finite. Consequently,

for any non-zero potential difference the current is infinite, or alternatively any finite

current will result in a zero potential difference. This shows that we need to modify

the quantities we are to work with, in order to do some meaningful analysis.

2.2.1 Current and Charge

We first start by restricting the integration in Eq. (2.10) to a unit length. The

resulting quantity is the current per unit length, which we denote by r', expressed in

amperes per meter (A/m),

/ /1/2  a+6/2
]]fJ ds =]J f 6 drdz (2.12)

The current convention is implicitly defined in Eq. (2.12) to be positive in the

counterclockwise, or 0, direction. For the resistive case, we have

f 0  () A/m. (2.13)
a fo' p(O')dO'

Note that , is finite despite the fact that the total current in the ring is infinite.

Moreover, by virtue of the symmetry of the problem, we know that we obtain the

same value of r,, over any unit length integration interval. We will preserve this

symmetry in general, by making all properties of the cylindrical shell invariant under

axial translation.

18



The notion of current per unit length extends directly to charge, and we can define

the charge per unit length that passes through a cross-section during a time T, A,

expressed in coulombs per meter (C/m), based on the relationship:

A = jtdt C/m. (2.14)

We now attempt to relate the current density directly to the current. We write

J = J,(r, 0, z)r + Jo(r, 0, z)6 + Jz(r, 0, z)

First, we know that an axial component and axial dependence are prohibited by

symmetry, thus Jz = 0, and neither J, nor JO depend on z. Next, the fact that

the current is steady makes J a continuous and differentiable function within the

cylindrical shell. Now, since 6 is very small, we can argue that Jo(r, 0) has almost the

same value for any r, and thus drop that index completely. We can then write

/1/2 a+J/2JfJ~ -ds = ji/2 ja 2 J -0 drdz = Jo(9).

Notice that this is tantamount to invoking the mean value theorem, and taking the

limit when 6 - 0. Also, by Eq. (2.12), the above is simply K. Since the latter is not

a function of 9, JO cannot be a function of 9, and thus , = JJO.

This relates JO to r,, but we still have J, to deal with. However, when computing

current flow through an arbitrary unit height cut surface, the above tells us that J

will contribute exactly r,, as it is constant, and thus needs only to be multiplied by

the 0 projection of the surface, which is always 6. The component due to J, is zero,

and since this is valid for any such surface, we deduce that so is J, itself. We can now

state our approximation precisely:

J = 0. (2.15)

19



2.2.2 Resistance

We now modify the usual definition of resistance to obtain R, the resistance per unit

length, expressed in ohm-meters (Q M):

R a -p(0')dO' Qm.

= a p(O')d6' m. (2.16)
00

The reason why the distance unit is in the numerator is seen by analogy to resistors

in parallel. Indeed, since there is no current flowing axially, each unit-height strip

within the shell section shown in Fig. 2-2 acts as an independent resistor, in parallel

with all others. From this we can also see how the resistance of the section goes

to zero in the limit, as it becomes the inverse of a sum of infinitely many non-zero

inverses: Rs = 1/R+...+1/R* Finally, note that Eq. (2.16) makes explicit use of the

shell thickness 6. However, it is convenient to specify this quantity only implicitly.

This is the reason why we absorb it into the resistivity, and denote the resulting

quantity by p6(0), expressed in ohms (Q).

Using Ohm's law, Eq. (2.2) and the approximation of the current density, Eq.

(2.15), we can express the electric field in resistive sections of the shell as follows:

E = p(O)J

= P(O)-

= p3(0)K$. (2.17)

As the isomorphism with the regular quantities is close to perfect, we hereafter

refer to r as the current, to A as the charge and to R as the resistance, for brevity,

and revert to the exact terminology when clarity requires.

20



2.2.3 Electromotive Force

Thus far, we have taken all potential differences to be due to an external source

of emf. However, this alters our idealized geometry, and the analysis of fields and

energy flow is no longer tractable. As an alternative, we confer to the cylindrical

shell an inherent electromotive property, that exercises a force f per unit charge in

the angular direction, expressed in newtons per coulomb (N/C), or volts per meter

(V/m). Similarly to resistivity, we choose f to be a function of angle, uniform in the

radial and axial directions:

f = f(0)0 V/m. (2.18)

After a very short transient acceleration, an electric field E which exactly counters

f is established, for reasons we give in Sec. 2.3. The outcome is that all charges end

up moving at constant drift velocity, resulting in a steady current r'. We have,

E =-f()6. (2.19)

2.2.4 Capacitance

Capacitors are obtained by introducing a gap within the cylinderical shell, and placing

perfectly conducting plates across the gap. As illustrated in Fig. 2-3, the plates have

a finite width f, and a separation of d = aA6. By analogy to capacitance, which is

the geometric proportionality constant between potential difference and charge, we

define the per unit length capacitance C of the gap, expressed in farads per meter

(F/m), as follows:

C = F/m. (2.20)AV

In order not to distort the cylindrical geometry, we assume that f < a. Never-

theless, we impose 6 < f and d small enough. The first restriction means that charge

associated with the capacitor will be approximately evenly distributed over the plates,

+A on one and -A on the other.

21



AV=V -v_

C-
d v.O

AO

Figure 2-3: A capacitive gap, formed by infinite-height parallel plates of width f and
separation d.

The second restriction allows us to consider the plates themselves to be infinite

planes for the purpose of approximating the electric field between them with a con-

venient expression. We thus have:

(2.21)

(2.22)

C = -,
d

E =-0.E-O

Both expressions follow immediately from those of the regular parallel plate ca-

pacitor, which has capacitance cS/d and electric field magnitude Q/(CS). In order

to be consistent with our current convention, positive current deposits charges, thus

yields a positive rate of change, on the first plate, in the counterclockwise direction,

whence the +A label given to that plate in Fig. 2-3.

Note that Eq. (2.22) was derived in a static context. We now justify the fact

that subsequently we consider it to be the total electric field in capacitive regions, in

general. In Sec. 3.2 we show that the "nonstatic" component of the electric field is

in the angular direction. In this light, we can reverse the causality of the argument,

and start with an electric field E = EO in the angular direction. Then, as long as

field variations are not too fast, as assumed in Sec. 2.3, the charge closely follows its

otherwise electrostatic distribution, i.e. A = lE. This completes our justification.
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Sometimes it is desirable to have a capacitor that is not very localized, in order

to avoid an electrostatic potential that varies too rapidly with 0 (cf. Sec. 3.2.3,

discretization of the surface potential). To circumvent the requirement of d being

small, we can stack several capacitors back to back, as shown in Fig. 2-4. If the

resulting capacitive set is formed of n such gaps, and if all plates have width f and

separation d, then the electric field is still given by Eq. (2.22), the potential difference

over each gap is AV/n, and the capacitance is divided by n compared to Eq. (2.21):

C = . (2.23)
nd

AV=V.-v_=
C

0- 0

........ ..... . . ..

n

d

Figure 2-4: A capacitive set formed by n capacitive gaps placed back to back, acting
as capacitors in series.

2.2.5 Inductance

We associate with a closed current loop C, the self-flux (D across its surface S, ex-

pressed in webers,

D =J B - ds Wb, (2.24)

where B is the magnetic field, in teslas (T). In Eq. (2.24), we can replace S by any

other surface S', bounded by C. To see this, we use the divergence theorem on the

closed surface formed by S and S':

23



B - ds =V x B dv

JjBds- B-ds = 0, (2.25)

where the changing surface normal is the reason behind the closed surface integral

being the difference of individual surface integrals.

In the general case, by the Biot-Savart law, the magnetic field of C at every point

is the product of the current with a vector function which is purely geometric in

nature. Let's write this as B = 1g. By integrating, we obtain ID = I ff g - ds. This

yields a simple proportionality relationship between the self-flux 4D and the current I.

The constant of proportionality is the self-inductance of C, expressed in henries (H),

Lc =D = g -ds H.

In our case, we treat the cylinder itself as a current loop. As we will see in Sec.

3.1, B is the product of the current per unit length K with a geometric vector function,

B = Kg'. By analogy to the current loop, we define the self-inductance of the cylinder

as follows, expressed in henry-meters,

L = = g'. ds Hm. (2.26)

2.3 Assumptions

One of the assumptions underlying most of the presentation is the fact that the

current is steady. When a current K flows through the cylinder, we assume that its

magnitude is the same everywhere. In general, the surface charge distribution, which

we see analytically in Sec. 3.2.2, has an important regulatory role - see for instance

[9]. Here we present intuitive arguments, justifying the assumption depending on the

physical properties of various sections of the cylinder.
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(a) Within perfectly conducting sections, if the current is not uniform, then charge

builds up in such a way that an electric field is induced that regulates the

current and makes it uniform For example, if more current flows into a given

closed region than out of it, then positive charge accumulates within that region.

The electric field is then outward from the region, which assists the outgoing

current and impedes the incoming. This effect persists until there is no electric

field, i.e. there is no net charge buildup. When K is a time variable, we assume

the speed of this stabilization to be much larger than any variation in r.

(b) Within electromotive sections, a force f is experienced per unit charge. This,

however, accelerates the charges, which yields non-uniform current, since the

velocity of a charge going out of a closed region is greater than its velcotiy when

going into the region. According to the same principle as in (a), charges assume

a distribution such as an electric field E, opposing f, is induced. However,

unlike (a), E does not eventually disappear, because it grows in magnitude

until it exactly balances f, and keeps that magintude since then there will be no

net force on charges, and hence no acceleration and no buildup. Note that since

charges move in the direction of f, E opposes current flow in these sections.

(c) Within resistive sections, charges effectively experience a force opposing their

direction of motion, and proportional to their drift velocity, or, equivalently, the

current density, say -pJ. As a result, similarly to (b), charges are distributed

in such a way that an electric field E, exactly opposing -pJ is induced. Here,

however, since the force itself is against the current flow, E is in the direction

of current flow.

(d) Within capacitive sections, there is no real current flow, because of the gaps.

However, it is possible to show that the displacement current within the gaps,

say Kd, is exactly equal to r. Since the effective current density in the Maxwell

equations is the sum of actual and displacement current densities, we can sim-

plify our notation by assuming that current does flow in capacitive sections, and

is equal to the displacement current, and by that token, to the actual current.
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To show the equivalence, we use Eq. (2.22) to get A = eE 0. This allows us

to write:

dA
K dt

at
'OE
1 8eE -dr

gap at

We will always neglect the displacement current everywhere, except within ca-

pacitive gaps, as we have seen above. The tacit assumption behind this is the mag-

netoquasistatics approximation. What we mean by this is that the variation in the

electric field are generally small enough to be neglected in the magnetic curl equation

1 DOE
-V x B = J+

p at

~J. (2.27)

This is another way of saying that the contribution of the actual current density

overshadows that of the displacement current density, which we can think of as an

"error") quantity. From this perspective, our assumption can be quantitavely justified

after a simulation, which amounts to a first approximation, by computing the error

and making sure that it remains small. Note that the assumption also effectively

decouples magnetic fields from electric fields, and thus forbids electromagnetic waves.

Therefore, for it to be a valid approximation, field changes must propagate fast enough

across the circuit, that is we must have

a
T

where r is the time scale of the operation of the circuit, and quantifies the rate of

change of the electromagnetic sources, i.e. charges and current.
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Finally we come to our last assumption. Recall how current flow in resistive

sections is made possible by a charge distribution which induces an electric field

exactly countering the resistive force. However, since charge experiences force due to

either an electric field or motion relative to a magnetic field, the latter can assist in

balancing out the resistive force -pJ, by contributing v x B per unit charge, based

on the force law. This means that a uniform current is obtained when E is induced

such that:

E + v x B = pJ. (2.28)

This can be thought of as a generalized Ohm's law, and is only needed when the

charges move at large velocities relative to the magnetic field. For our purpose, the

simple Ohm's law given by Eq. (2.2) is sufficient.

2.4 Analysis

2.4.1 Equivalent Circuit

Let us first combine the total electric field due to all properties of the cylindrical shell.

When a section of the shell has both resistive and electromotive properties, there will

be two components to the electric field, one that counters f and thus works to halt the

acceleration of charges, and another that works towards maintaining current in the

resistive medium. Therefore, we can combine Eq. (2.17) and Eq. (2.19) additively.

Capacitive sections do not overlap with these sections, and thus have their electric

field given by Eq. (2.22). Assume we have distinct capacitive sections indexed by i,

such as the width of the plates in each such section is a constant fi. For convenience

of expression, let Xj(0) be indicator functions that are 1 when 0 is within capacitive

section i, and 0 otherwise. Finally, uniform current implies that all capacitive regions

carry the same amount of charge, A.

All parts of the the circuit that do not have resistive, electromotive or capacitive

properties assumed to be perfect conductors. As such, the electric field is exactly zero

within these connective sections.
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The combination of these gives the electric field everywhere within the circuit:

[P6o (0 f (0) ++lo (2.29)

Using Stoke's theorem, we can write the circuit integral of the electric field, over

a path coinciding with a normal cross-section of the cylinder, as follows:

E - de

p(O)K - f (0) + f() a6i fj
pj(1)adp - f f(9)ad + E adO A

1
Ro - Eo + AC

- V x E - ds

=II
=- B - ds

d
dt

(2.30)

It is important to note that the extraction of the partial differentiation out of the

integral as ordinary differentiation, in the third step above, is only made possible due

to the stationarity and fixed geometry of the integration surface. If this were not

the case, we should have subtracted the components of d ff B -ds, which are due to

motion and geometric variation, in order to isolate ff ! - ds.

Using Eq.

the current K.

equation, as it

(2.14) and Eq. (2.26), we can write Eq. (2.30) solely in terms of

We refer to the resulting integro-differential equation as the circuit

governs the circuit's evolution in time:

1 f dcRot -E 0o+- CI K dt =-L--i. (2.31)

Notice how, by deriving Eq. (2.31), we have lumped all properties together as

properties of the circuit as a whole, rather than distributed properties, at every point

of the shell. These are circuit resistance:

RO = j p5 (0)adO Qm, (2.32)
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circuit emf,

8o= f(0)ado V. (2.33)

and circuit capacitance:

CO= Jz '() adO F m. (2.34)

At this point, we recognize that we can work with an equivalent circuit with

lumped components as illustrated in Fig. 2-5. Henceforth, we adopt this conceptual

picture.

CO RO

L

Figure 2-5: Lumped component circuit, equivalent to the actual circuit for the pur-
poses of analysis.

2.4.2 Discrete Component Model

In order to have a manageable simulation, it is convenient to specialize the largely

continuous model described so far to a situation more reminiscent of discrete com-

ponents. As we shall see in Sec. 3.2.2 and Sec. 4.2, this also allows us to perform

surface scalar potential and energy calculations in a straightforward manner.

To obtain discrete resistors, we have to restrict ourselves to sections of homoge-

neous resistivity. Similarly, for discrete emf sources, which we refer to as batteries, we

need homogeneous emf in each section. Eq. (2.32) and Eq. (2.33) show that lumping

these results in the familiar additive series formulas. Let us denote by AOc the extent

of component C and by Oc its starting angle, and let us have a suitable index for each

type of component (IR, Ig and Ic for resitors, batteries and capacitors respectively).
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Using the component's name for its lumped property, we have, in summary:

ps ad6 = p3i(aAPR), with Ro== SRi
iGER

and (2.35)

i =

0 e*ie
fiad6 = (aA9SJfi,

As for capacitors, notice how our presentation of

us to treat them as discrete components. With Eq.

formula for capacitors:

C [ =- ad1 = (dfi)/(aAOc), wi
Co) 1 i .

with .6, Ei.
iElE

(2.36)

capacitive sections already allows

(2.34), we have the familiar series

th CO = z
IiElc C)-

(2.37)

Finally, within the extent of each component C in this discrete component model

the electric field is a constant of the form Ec = EcO. Using the lumped properties

for each type of component, given by Eq. (2.35), Eq. (2.36) and Eq. (2.37), we have

ERi = psji= Ri'i/(aAORi),

Eg, = -fi =-Si/(aAOF),

and Ec, A /(aAOc,).
Efi Ci

(2.38)

(2.39)

(2.40)

2.4.3 Numerical Computation

The circuit equation, Eq. (2.31), degenerates when one or more physical property is

missing. We treat each of the four cases (RLC, RL, RC, and R-only) independently,

in order to unambiguously define all quantities in these degenerate situations.

We assume that a solver for systems of first order differential equations, e.g. Euler

or Runge-Kutta, is available. The independent variable of all equations is time. As for

the dependent variables, we show that the RLC and LC cases integrate both charge

and current, the RL case integrates just current, the RC case just charge, and the R

case does not require integration.
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For each case, we also explain what quantity can be set by the simulation user,

and what cannot. The derivative of the current is a quantity we need when evaluating

electromagnetic fields in Chap. 3, even when not needed for integration. Therefore,

we explicitly express it in all cases.

RLC Case

In the general case, the circuit equation is second order. It can be split into two first

order equations in the natural way, one in charge and one in current:

ds1 o 1 A
dt L CO

and = K. (2.41)
dt

Physically, inductance allows specification of current, independently from charge,

whereas capacitance allows specification of charge, independently from current. Thus,

both quantities can be set by the user. Circuit resistance can be made zero in this

case, with no further loss of generality, to obtain an LC circuit.

RL Case

Eliminating capacitors can be thought of as the circuit capacitance made infinite.

The circuit equation degenerates to first order, in current:

ds1-= -- 1(Ro - So). (2.42)
dt L

In the context of our circuit analysis, charge is not well defined in the absence of

capacitors. Thus, the user can only set current. Circuit resistance can be reduced to

zero in this case too, without further alteration, to obtain an L-only circuit.

RC Case

Physically, the inductance of the proposed circuit is never exactly zero. However, we

allow zero inductance in the simulation, as an approximation.
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The circuit equation degenerates to first order, in charge. We thuis have

dA 1 1
= d Eo- A (2.43)

dt Ro CO '
ds 1 (d~o 1

and d- = - (- - (2.44)
dt Ro dt CO

In the abscence of inductance, current cannot be set independently from charge,

as seen above. Charge, being the physically adjustable quantity, is the one we allow

the user to set. The user is not allowed to set current directly.

In this situation, circuit resistance cannot be set to zero to obtain a C-only circuit,

unless the capacitive charge exactly counters circuit emf by having A = COO. The

current and the current derivative therefore become:

d80
K = CO d (2.45)

dt
d CO 2  

(2.46)
dt dt2

Due to the direct dependence on circuit emf, both charge and current cannot be set

by the user in the C-only case, and no integration is carried out.

R-Only Case

Finally, with resistance alone, the differential equation degenerates to an algebraic

one, which does not need integration:

-so = .(2.47)
RO

Here again, charge is not well defined. Furthermore, current cannot be set inde-

pendently from emf and resistance. Thus, the user can set neither charge nor current.

By differentiation, the derivative of the current can be evaluated as

dK- = -d-. (2.48)
dt Ro dt
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Chapter 3

Electromagnetic Fields

In this chapter we study the electric and magnetic fields associated with the idealized

circuit described in Chap. 2. We derive analytical expressions for the fields, and

present the numerical procedure used to implement them.

In Sec. 3.1 we study the magnetic field, and show that its analytical expression is

straightforward to evaluate. In Sec. 3.2, we identify and solve for the divergence-free

and curl-free components of the electric field. We write the divergence-free com-

ponent as a direct function of the magnetic field, and evaluate it accordingly. We

treat the curl-free component as an electrostatic problem, derive the associated po-

tential, and describe its numerical solution algorithmically. The analysis throughout

this chapter is consistent with the assumptions of Sec. 2.3, which place us in the

magnetoquasistatic approximation.

3.1 The Magnetic Field

The main simplifying assumption here is that we neglect the displacement current

(Sec. 2.3). We can then write the differential Ampere-Maxwell law simply as V x B =

pJ. However, since we have uniform current density in the cylinder, it follows that

the magnetic field should have cylindrical symmetry. Moreover, the invariance of the

geometry under axial translation requires the magnetic field to be independent from

the axial coordinate. Therefore, we must have B = B(r) = B,(r)r +Bo(r)6+B,(r)2.
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V p2  p1

p3

Figure 3-1: Paths and surfaces used to restrict the magnetic field expression.

We now further restrict the field expression by referring to the paths and surfaces

illustrated in Fig. 3-1. Since no current flows through loops P1 or Pj', applying the

integral Ampere-Maxwell law to P1 gives fp B - dl = f Bo(ro)rodO = pI = 0. The

same thing follows for P', and therefore Bo(r) = 0, Vr.

Next, we consider the outward magnetic flux for the closed surfaces S and S'.

The flux out of the left and right discs exactly counter each other since, taking Z to

be to the right, fet B -ds = - "f fr Bz(r)rdrd6 = - fight B -ds. Since there are no

isolated magnetic charges, the closed surface integral is zero, f B -ds = fe B .ds +

fright B - ds + fcylinder B -ds = 0. This gives fcylinder B ds= 5f f2 Br(ro)rodOdz = 0

and thus B,(r) = 0, Vr. Therefore, we have B = Bz(r)z.

We now consider the path integral along loops P2 and P2. Due to the axial

orientation of the field, the contribution is due entirely to the upper and lower strips.

However, since no current flows through the loop, we have f 2 B.dl upper B,(r)dz-

fower Bz(r')dz = Az(B,(r) - Bz(r')) = 0, and thus B2(r) = B,(r') = Bin Vr, r' < a

where a, as we recall, is the radus of the cylinder. Similarly, we have that Bz(r) =

Bz(r') = Bout Vr, r' > a. Thus B = (Bin,,r<O + Bouttr>o)^, where once again .0 is

an indicator function.

For loop P 3, there is a current I = A'ZV flowing through, and therefore, using

B - dl = pI, we obtain

Bi. - B = ou . (3.1)
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I=Kdz
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Figure 3-2: A differential strip contributes a differential amount to the inner magnetic
field, which is thus the integral of all such contributions.

To obtain Bin, we first find the contribution dBin(z) of a differential strip of width

dz and centered a distance z down the axis. The current in each such strip is I = rdz.

We define R to be the distance from the evaluation point to the strip, AR to be the

unit vector pointing from the strip to the evaluation point, and 4 to be the angle

between the axial direction and 0 x AR. The configuration is illustrated in Fig. 3-2.

We now invoke the Biot-Savart law. We restrict ourselves to the axial component,

which we know is the only survivor. Using dl = adO$, we write

pI d_ x AR tI f 2 ad6
dBin(z) = -- zJ= cosI 2

47 R2 47 0 R2
Ia 2  pa 2 dz. (3.2)
2R 3  2(a2 + z2)

By integrating these contributions, we obtain

00/z--oo foo a2

Bin= 2 dBin(z) = a 3 0 dz =IL ( z
z=0 fo (a2 + Z2 )2 (a2 + Z2)2

= r (3.3)

Eq. (3.3), together with Eq. (3.1), implies that

Bout = 0. (3.4)
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Therefore, we can write a simple expression for the magnetic field:

B = Bi = Prn. (3.5)

Finally, we now can give an expression for the circuit inductance L, as defined in

Eq. (2.26)
4P 7 ra 2 2

L =- = =,.ra2. (3.6)

3.2 The Electric Field

We can decompose any vector field, and in particular the electric field E, into a curl-

free component EO (divergence-only, irrotational) and a divergence-free component

E& (curl-only, solenoidal). By definition: V x ED = 0, V -E& = 0 and E = E@ + E&.

Such a decomposition is unique only up to gauge transformations [5], [10].

It then follows from Maxwell's electric field equations that V - ED = p/e and

V x E& = -&B/&t. We first obtain an explicit expression for the latter.

3.2.1 The Divergence-Free Component

By the usual symmetry argument, ED is invariant under axial translation. Since its

source is B, E® must also be cylindrically symmetric. Thus, so far, E& = Eor(r)r +

Ego(r) 0+ E®z(r)Z.

Next, we invoke Stoke's theorem to loop P in Fig. 3-1:

E - ds 2d2
-7rrot d

S27rroEgo(r (3.7)

A similar invokation For the outer loop P' gives:

E - ds OB -7ra 2/_
-t dt

=27rr'E,&oO(r')
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These two equations determine the angular component everywhere. However, we now

go a step further and claim that the curl-only field is well defined with this component

alone, i.e.

-r/2 for r < a d

-a 2 /2r for r > a 1 dt6  (3.9)

Indeed, based on Eq. (3.5), we have that V x E,&= y!r!2 = -3, verifying

this Maxwell's equation. Moreover, V Es = 1(EO) = 0, thus E® is indeed

divergence-free, as we expect.

As a consequence of the fact that V - B = 0, the total electric field can always

be written, again up to gauge transformations, as a function of the magnetic vector

potential A, defined by B = V x A, and a scalar potential V, as follows:

E = -VV - OA (3.10)
at

We can now make the identification E& = -A by the following choice of mag-

netic vector potential:

-r/2 for r < a (

-a 2 /2r for r > a

3.2.2 The Curl-Free Component

We now consider ED. The choice of magnetic vector potential, Eq. (3.11) above,

simplifies our analysis considerably. In fact, the problem is reduced to an equivalent

electrostatic one, since

E® = E - E& = -VV. (3.12)

Just as in electrostatics, ED is completely determined once the scalar potential is

defined everywhere in space. Furthermore, we have V -A = 0. As a result, V satisfies

Poisson's equation, and the electrostatic analogy is made complete:

2V - - (V -A) = V -E =p/.(3.13)
at
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Again, the problem is invariant under axial translation, which implies that the

scalar potential is independent of the axial component, z. Hence, we denote it by

V(r, 0).

General Solution for the Potential

As there are no charges anywhere except for the surface of the cylinder, Poisson's

equation reduces to Laplace's equation, and V(r, 0), Vr = a, is a solution of V 2V = 0.

Since this is a linear equation, the general solution will be a linear combination of

all possible special solutions. To find the special solutions, we apply the separation

V1(r)V2(0), to write the Laplacian as follows:

V 1=2  ( 0v1 N 1 02V2I I 2 I aViV2Vr r V2 + - V (3.14)r Or Or r2 g

Setting this to zero, we obtain:

1 02 V2 r 0 OV-- V = --- ( r = K. (3.15)V2 002 V1 Or Or

The first equation embedded in Eq. (3.15) is

02V + KV2 = 0. (3.16)
a02

Solutions to Eq. (3.16) must be of the form ej\/'kO. Several restrictions will shape

the solution space. First, V2 must be single valued, and thus the solution needs to

be periodic, of period 27r. This means that VK must be a real integer: v'k = n,

where n E Z. Second, solutions defined as such will be complex, thus only real

linear combinations for the general solution will eventually be admitted. This will be

satisfied by imposing the boundary condition on the surface of the cylinder.

The second equation in Eq. (3.15) is

02 V1 Ov1
Or2 + r - n2 V1 =0. (3.17)

r2 Or
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The solutions to Eq. (3.17) must be of the form r'. By substituting this form in

the equation, we see that m = ±n. This links the solutions for V and V2 to yield

rmeino as all possible special solutions to Laplace's equation. Thus, using linearity,

the general solution is

V(r, 0) = Aar'ejnO. (3.18)
n=-oo

Surface Potential

Before proceeding, we express the scalar potential on the surface of the cylindrical

shell in terms of the circuit quantities developed in Chap. 2. For the sake of notation,

we drop the r dependence, and denote this surface potential by V(0) = V(a, 0).

Scalar potentials that differ by a constant are equivalent in terms of the field they

represent. Therefore, we start by specifying a "ground" angle to be our reference

point. We choose V(O) = 0, for convenience. In these terms, we have (without

bothering to introduce an auxiliary integration variable):

V(0) = Eo- dl

0
= Ej E- OadO. (3.19)

We recall the expression of the total electric field from Eq. (2.29) to be

E = - f()+ J(0) 0.

However, we have that EO = E - E&, and we know from Eq. (3.9) that the curl-free

component evaluates to -p! -'6 on the surface.

Thus,

V(0) = E- ad6 -ji-+do

Pj(0) - f (0)+ (0) adO - pa d 0. (3.20)
fo cf 2 i
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The last term in the above expression is of special interest. Using Eq. (3.6),

i.e. L = p7ra 2, we see that its total contribution to the scalar potential is -L .

This is nothing but familiar induced emf, associated with the circuit inductance. Its

pointwise contribution is a steady ramp, whose effect is to remove the discontinuity

that would have otherwise resulted had we just treated the problem as an electrostatic

one, and integrated the total electric field E.

As we have seen in Sec. 2.4.2, we typically want to work with discrete components

(resistors, batteries and capacitors), which correspond to sections with uniform prop-

erties. Recall that within the extent of each component C in this discrete component

model the electric field is a constant of the form Ec = EcO. From this fact and Eq.

(3.20), we see that each such component would contribute to the total scalar potential

a ramp-step function V(0) of slope aEc. Considering the circuit inductance a com-

ponent as well, as it contributes a similar ramp, we will have V(0) = EC Vc(O). For

example, a resistor Ri with extent AOR, and starting angle 0*g has ER, ='i(aAXRJ)

by Eq. (2.38), and thus its contribution is:

0 0 < 0 < 0*

VRi(O) = i Ri(0 - 0* )/OR 0* < 0 < 0* + As . (3.21)

KRi i0+A0R<0<27r

For batteries and for capacitors we use Eq. (2.39) and Eq. (2.40) respectively to

obtain similar expressions. Combining these with the ramp due to circuit inductance,

we now have a practical scheme to evaluate V(0) numerically:

I - 0*
V(O) = R { 60

\ZORi 
0 x< 0

(0 - (0*)
_____ )where (x) x 0 < x < 1 . (3.22)

A (O-*) ds 0 1 X>1

Ci 'OCi dt 27r'
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Boundary Condition

The surface scalar potential is now specified as a continuous function V(O) of the 0

coordinate. Naturally, it is single valued and is thus periodic, of period 27r, and can

be Fourier-expanded as follows:

00

V(0) = V(r, ),r = C[n]es0 , (3.23)
n=-oo

where C[n] is the Fourier series of V(0), given by

C[in] = V()e-j"0 dO. (3.24)
27r fo

Eq. (3.23) is a convenient form for the boundary condition imposed on Eq. (3.18),

since by direct comparison we obtain the condition Anam = C[n], and thus An =

a C[nj. This allows us to write:

V(r, 0) = [ 3C[-e . (3.25)
n=-0o

The final detail to settle is to determine m, as it can be n or -n. Since we require

the potential to be well behaved, it is necessary for the power term to die out. This

dictates the following conditions: if (r < a) and (n > 0) then m = n, if (r < a) and

(n < 0) then m = -n, if (r > a) and (n > 0) then m = -n, and if (r > a) and (n < 0)

then m = n.

We can summarize these conditions in the following compact expression:

V(r, 6) = C[n] e .nO (3.26)
n=-o0

Cv [n]
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Here s = sgn(a - r), where sgn(.) stands for the signum function,

-1 X < 0

sgn(x) { 0 x=O

+1 X > 0

Thus, s is +1 inside the cylinder, and -1 outside of it. By convention, s is zero

for a zero argument, i.e. on the surface of the cylinder. This is of no consequence,

since when r = a, we have a unity exponentiation.

Electric Field and Surface Charge Density

To obtain the electric field we write the gradient equation in cylindrical coordinates:

E = EOr + EoO + E2 = -VV,

Dv
Dr

00

E>3 -(- Cv n] e j

00 L-J ''"sn'

I: - () rIa C[n] e jn, (3.27)
n=-oo00.4

CE.) [n]

1 DV
0010(r D /

-0 Cv n] e n

00 i~~I'SfI

=> (jb (') C[n] jnO, (3.28)
n=-oo,

CEO0 [n]

and

E D V -0. (3.29)
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Finally, the surface charge density can be obtained by applying Gauss's law on

a thin Gaussian angular box surrounding a portion of the shell, and of cylindrical

dimensions (Ar, AO, Az), where Ar is negligible compared to the other dimensions.

The area of the face of the box along the shell is AS = aA6Zz. At the limit when

A\O-* 0:

H E -ds = Elr=R+ - (AS) + Elr=R- - (-AS) = U(O)ASE/, (3.30)

from which we obtain

O-(O) = E (Eerjr=R+ - Eer|r=R-)

=a e 2 n )C [n] e .nO (3.31)
n=-oo,

C, [n]

3.2.3 Numerical Computation

One of the obstacles in the numerical computation of the analytical solutions is the

fact that the surface scalar potential V(9) is defined as a continuous function. This,

for instance, entails the numerical evaluation of a continuous integral, as given by Eq.

(3.24). In the subsequent sections we show how it is possible to define and operate

on only discrete quantities from the beginning. The approach parallels well-known

techniques in discrete-time signal processing.

Discretization of the Surface Potential

Let us assume that the surface potential is such that the Fourier series coefficients

satisfy the following condition:

VE > 0 3N : JC[n] I < c, Vn V [- - N, [-N - 1 ,(3.32)
. 2 2 1

in other words, we assume they are effectively zero beyond a block of length N around

0, with the centering perfect or not, based on whether N is odd or even.
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This is a reasonable requirement, which will be violated only if there are sharp

discontinuities, such as Dirac delta functions or steps, in V(O). This finite length

property allows us to extend C[n] by introducing periodic images of itself every N

samples, as follows:

O[n] = C[n - mN]. (3.33)
m=-oo

Since no non-zero coefficients overlap, we can extract the original coefficients

perfectly from this periodic extension. Specifically, indices n E [0, N - 1] con-

tain all the original non-zero coefficients in the following fashion: C[n] = C[n] for

n C [0, F~j1 - 1], and 0[n] = C[n - N] for n E [FL], N - 1].

The reason we introduced 0[n] is that it admits a discrete inverse' Fourier series

expansion. The discreteness of this inverse Fourier series is due to the periodicity of

C[n], in contrast to C[n], which has a continuous inverse Fourier transform, V(O).

The forward and inverse discrete Fourier series equations, respectively, are:

N-1

C[n] = +2 V 7[kreJ2 nk/N, (334)
k=O

and
N-1

V~k] = E C[n]ej2rnk/N. (335)
n=O

As can be seen, V[k] is itself periodic, of period N, and only the Ndistinct samples

are needed to reconstruct 0[n] in Eq. (3.34). As our notation suggests, our new goal

is to relate V[k] to V(O), which we will do in a series of manipulations. First, let

us split the summation in a way such that we can use the extraction scheme we

mentioned above, to replace 0[n] by C[n] in the first part, and by C[n - N] in the

second:
F?]-1 N-1

V [k] = ( C[n]ej2rnk/N + E C[n - N]ej27nk/N. (3.36)
n=O =N

'We have used the term "inverse" to indicate the negative signs in the harmonics, i.e. here
we are thinking of k V[k] as a harmonic expansion of 0[n], but there is a negative sign in all the
exponentials in Eq. (3.34).
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Now, let's define 1 = n - N, and proceed to remerge the two summations:

F{-1-1 -1

V[k] = 3 C[n]ej2 rnk/N + C[l] ej27(l+N)k/N

n=0 =[ 41-N ej2,rlk/N

= Y C[n]ej
2 rnk/N

n=441]-N

00

=C[n]ej27rnk/N
fl -00(3.37)n=-oo

In the last equality, we have used the fact that C[n] is effectively zero beyond

n E [[~] - N, F:] - 1], to extend the summation to [-oc, o], by including the zero

coefficients. The final manipulation is to replace C[n] with its expression in terms of

V(6) as given by Eq. (3.24), to obtain:

V [k] = E [ j 27r V(6)e-indO] ei 2 ,rnk/N

2r V(9) e jn(O-27rk/N) dO

=- 27ir(-27rk/N-27rm)

= V(27rk/N). (3.38)

For the last substitution, we have used the fact that _ _0 e--n( 2 7rk/N) is the

expression for the discrete-time Fourier transform of ei2 7rnk/N, which can be shown

to be the periodic impulse train EM-- 2w6(9 - 2rk/N - 2wm), of period 2r. Of

these impulses, only one lies in the [0, 27r] integration interval, the one at 0 = 27rk/N,

which sifts out V(27rk/N).

From Eq. (3.38), we can see that V[k] is a discretized, i.e. sampled, version of the

continuous V(O), with N samples taken starting from 0 = 0, at sampling intervals of

2wr/N.
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Discretization of Derived Quantities

The discretization thus far allows us to define the surface potential by N of its samples.

From these, 0[n] can be computed using the discrete summation in Eq. (3.34). Then,

C[n] is immediately obtained by extraction, thus avoiding continuous integration as

required by Eq. (3.24). Once C[n] is known, all the derived quantities, i.e. the

potential everywhere, the electric field components, and the surface charge density

can be computed, since they all can be written in the following general form [cf.

equations Eq. (3.26), Eq. (3.27), Eq. (3.28), and Eq. (3.31)]:

00 00

F S CF[r]ejnl = E F[n]C[n] e 3 . (3.39)
n=-oo n=--oo

We now would like to express these quantities in the discrete context, by writing

them in terms of 0[n] directly. This allows us to completely avoid using C[n], which

in turn streamlines the computation. For this, we assume that CF[n] satisfies the

property established in Eq. (3.32), despite the multiplicative factor of aF[-]. Thus,

we can proceed in the reverse order as we did before:

112 1-1

F = E aF[n]C[n]e3

n=-F[11-N

- aF F [n]C[nle'+ aFHC[iiel
n= n=[1-N

2F'1-1 N-i

= aFn]CI n]en + F aF [14l- N]C[ -N
n=O 1=FN]2

2[L-1 N-i

- x cFIn]C0[n] jn + S: dF [l1[l~j1eN). (3.40)
n=O 

_=~i

In Eq. (3.40), dF[n] is the periodic extension of aF[n], after it is limited to

n E[|L] - N, F$] - 1]:
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aF[n] ; n E [0 [N

dF n] aF[n - N] ; n E N, N - 1] .(3.41)

dF[n - mN] ;V(n, m)E Z2

At this point, it is desirable to merge the two summations in Eq. (3.40) into one

that extends over n E [0, N]. That requires eliminating the e--jNO factor in the second

summation, which can be done only if 6 is an integer multiple of 27r/N. However,

we can always express an arbitrary angle as 6 = 27m/N + #, where m E Z, and

0 < # < 27r/N. With this notation, we can write:

F = &F[n][n] exp [jn(27wk/N + 0)
n=O

N-1

+ E cF[l]C[1] exp [j(l - N)(27rk/N + 0)]

[ j]-1

= 5 F[f l1[n] exp (j27rnk/N) - exp jn#1
n=O

N-1

+ 5 dFin] 0f[n] exp (J27rnk/N) - exp [j(n - N)#]. (3.42)
n=FN21

Now, when # is zero, F is defined only at N samples around the circumference

of radius r, as k varies from 0 to N. This allows for the introduction of a discrete

version of the derived quantity, say F[k], analogously to V[k], the discrete surface

potential. In this case, the expression becomes [cf. Eq. (3.35)]:

N

F[k] = 5 &F [n] ej 27rnk/N. (343)

SCF [n]

In this light, it is clear that the ejnc and ej(-N) factors in Eq. (3.42) perform

an interpolation between the N samples, at a shift of # from the original discrete

angles. In fact, en"O represents the discretized transfer function of a fractional sample

advance, as referred to in the discrete-time signal processing literature.
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Finally, Eq. (3.43) can be readily identified as an inverse discrete Fourier series

and we can write the forward equation [c.f. Eq. (3.34)] as:

N

CF[n] = N F[k]e-j2,rnk/N. (3.44)
k=O

Numerical Computation

As we have see in Sec. 3.2.2, once the circuit quantities are obtained according

to the description in Chap. 2, Sec. 2.4, we can evaluate V(O) at any 6 on the

surface of the cylinder. With this information, the computation of all quantities,

F E {V, EGr, Eo, o}, at position (r, 0), takes the following algorithmic form:

A. Discrete Surface Potential

Obtain the samples V[k] by evaluating V(27rk/N), for k = 0, , N - 1.

B. Surface Potential Coefficients

Compute the DFT of V[k] to obtain 0[n], for n = 0, - , N - 1.

C. dF Factors

Compute the F[n] factors for n = 0, - , N - 1, using the r coordinate,

according to the appropriate equation, Eq. (3.26), Eq. (3.27), Eq. (3.28),

or Eq. (3.31), and the extension equation, Eq. (3.41).

D. Derived Coefficients

Compute the OF[n] coefficients as dF[fn][n], according to Eq. (3.43).

E. Derived Quantity

Evaluate the interpolated inverse DFT according to Eq. (3.42), using

the 0 coordinate to find 0, such as 6 = 2irm/N + #, where m E Z, and

0 < # < 27r/N.
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The discrete Fourier transform (DFT) acronym that we have used in steps B and

E above, is directly related to the discrete Fourier series (DFS), given by the forward

and inverse equations in Eq. (3.34) [or Eq. (3.44)] and Eq. (3.35) [or Eq. (3.43)],

respectively. As we have seen, both C[n] and V[k] are periodic, of period N, and the

same applies to OF[n] and F[k], for all derived quantities. The DFT formalism extends

the DFS to finite-length, and thus aperiodic, sequences. The N samples of such a

sequence are treated as the distinct samples of a hypothetical periodic extension. In

this sense, and since the DFS equations only operate on these N distinct samples the

defining equations of the DFT are exactly the same. In fact, for the purpose of the

current discussion, there is no need to introduce the DFT, since our sequences are

indeed periodic. The only reason we do so is that the fast Fourier transform (FFT)

algorithm is usually introduced in the DFT context, rather than that of the DFS.

Gauss was probably the first to have obtained an FFT-like algorithm [4]. However,

in its modern incarnation, FFT is due to Cooley and Tukey [3]. The algorithm

computes the complete DFT, or inverse DFT, of a sequence, i.e. all N transfrom

values, in only O(N log N) arithemtic operations, by exploiting redundancies in the

structure of the problem, which if done directly using Eq. (3.34) or Eq. (3.35) would

require N complex multiplications and N - 1 complex additions per transform value,

for a total of O(N 2 ) operations. It is to emphasize that when only one transform

value is to be computed, we need to revert back to direct computation, consuming

thus O(N) operations. Clearly, the FFT applies only to step B above, where all

values of 0[n] are computed. In step E, F is evaluated at a single point, and direct

summation needs to be used.
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Chapter 4

Energy Flow

In this chapter we proceed to study and visualize the electromagnetic energy carried

by the electromagnetic fields derived in Chap. 3, and associated with the idealized

electric circuit described in Chap. 2.

In Sec. 4.1, we present the notion of electromagnetic energy density and give the

energy conservation equation. We interpret this as a continuous flow equation and, in

Sec. 4.2, we implement this interpretation as the flow of quantized energy particles,

by describing their evolution, creation and destruction. This gives us a meaningful

way to visualize the flow of energy in our electric circuit.

4.1 Electromagnetic Energy

We adopt the view that electromagnetic energy is stored in the field [5], and described

by the energy density

u(r, 6) = -E2 + !B2, (4.1)
2 2p

where E and B are the magnitudes of the electric and magnetic fields respectively.

Eq. (4.1) is a volume differentiated version of the total electric and magnetic

energies associated with the respective fields. Electric energy is the work required

to start with charges spread out at infinity and configure them, against the electric

force, into a charge density that establishes the given electric field.
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Magnetic energy, on the other hand, is the work required to start with no current

and obtain, against back emf, a curent density that establishes the given magnetic

field. From Maxwell's equation, one can directly derive the following conservation

equation:
aU+ V -1P = -J - E, (4.2)at

where
1

= -E x B (4.3)

is the Poynting vector field.

We can identify Eq. (4.2) with a flow equation

a
--u + V - (uv) = (4.4)at

by defining the velocity field v and the source-sink field , as follows:

1 E xB
V = -1 2 , (4.5)

U PEE2 + B 2

and =-J-E. (4.6)

When applied to our problem, the first observation we can make about this flow

interpretation is that all energy sources and sinks are on the surface of the shell, since

the current density J is zero everywhere else.

Next, recall from Eq. (3.4) that there is no magnetic field outside the cylinder,

therefore v is zero there, and there is no energy flow there. How, then, does u vary

there, since based on Eq. (4.1) and the variation of E, it clearly does? The answer

to that lies in the magnetoquasistatic approximation from Sec. 2.3 and the fact that

the displacement current, which is proportional to the time variation of the electric

field, is negligible, Eq. (2.27). Therefore, to conclude, if we are to visualize energy

flow, it is enough to consider only the inside of the cylinder.
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4.2 Flow Visualization

4.2.1 Discretization of Energy Flow

In this section we propose a straightforward discretization of the continuous flow of

electromagnetic energy of Sec. 4.1. We think of continuous flow as a discrete flow

of energy particles carrying a fixed energy quantum E. The simulation then has to

manage a particle system. Assuming the distribution of these particles is consistent

with the underlying energy density, it suffices to evolve them according to the velocity

v to obtain a crude approximation to the actual flow in regions of no sources or sinks,

i.e. strictly inside the cylinder.

As in Sec. 2.4.3, we assume the availability of a solver for systems of first order

differential equations. Since we have already shown how to numerically obtain the

electromagnetic fields in Chap. 3, and since v is a function of E and B, the description

of the evolution of energy particles is complete.

Before we proceed, note that since there are two components to the total energy

density, we can visualize the energy balance between electric and magnetic fields

by coloring the particle. Let C indicate the particle color vector. An appealing

visualization is to specify a characteristic color for each field type, say CE and CB

for the electric and magnetic colors respectively, then interpolate the particle color

between these based on the energy ratio:

EE 2
C = aCE + (I - O)CB, where a = 2 (4.7)

EE + 1 B22M

4.2.2 Particle Destruction and Creation

We now have to deal with sinks and sources: particles should be created and de-

stroyed appropriately on the surface of the cylinder, at a rate governed by (. Particle

destruction is easy, we simply remove particles flowing into the surface. We study

particle creation more carefully. To simplify both management and computation, we

consider exclusively the discrete component model of Sec. 2.4.2 and Sec. 3.2.2.
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We know that each component C, in this case, has an electric field that is constant

within its extent Ec = EC$. Connective sections have zero electric field, as noted in

Sec. 2.4.1. The current density being constant everywhere, this means that the rate

of energy production or dissipation is uniform over the extent of the component. The

total rate per unit length along the cylinder axis and over the extent of a component

gives us the power per unit length associated with that component:

C* +AOc a+6/2

Pc = / f -J -E rdrdO = (aAOc)Ecn W/m (4.8)
J J a-6/2

The power expressions for each type of component can be obtained using Eq.

(2.38), Eq. (2.39) and Eq. (2.40):

PR =Ri, (4.9)

Pei= -Sis, r(4.10)

Pc = -A. (4.11)
Ci

By integrating power, using the differential equation solver, we obtain the instanta-

neous amount of energy Wc produced or dissipated by any given component.

In this discrete flow setting, it is reasonable to create particles in batches. For

a batch size of N, this scheme consists of waiting until the increment of Wc reaches

EN, as compared to when the last batch was released, and then creating Ne new

energy particles. To keep track of such increments, we maintain at each component

a quantized version of energy, say Wc, which is always a multiple of eN. Whenever

a batch is released, we increment Wc by eN,. Whenever Wc drops by about eN,

we decrement Wc by EN, (this, we assume, is accompanied by the destruction of

N, particles, something we don't necessarily monitor). As for the placement of the

N, particles, we space them uniformly at the centers of N, equal adjacent partitions

of the AOc arc, in view of the uniformity of energy production over the component

extent, as we remarked above.
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4.2.3 Initialization of the Particle System

It is possible to start the flow visualization using no initially placed particles, which

is equivalent to ignoring the initial energy transfers until the first batch of particles

is released. However, it is often desirable to initialize the system of particles, in such

a way that the distribution is consistent with the initial energy density.

A simple initialization scheme is to uniformly place Nilit particles, where Nii =

f 2 fo u(r, O)rdrd6) /e. Although there is no unique definition of "uniform place-

ment", when u(r, 6) is indeed uniform, e.g. an LC circuit with an initially charged

inductor and discharged capacitor, this is the best we expect to do. When that is not

the case, this is still a simple initialization that one can adopt. Instead of uniform

placement, it is also possible to have random placement of the Ninit particles.

In the more general case, one solution we considered is to place particles by pre-

evolving the system in a steady state exactly equal to the initial state of the circuit.

For example, an RC circuit with a battery and an initially discharged capacitor has

a resistor-battery type initial state. By evolving that state starting with no particles,

the battery releases several batches of particles until they permeate the entire area,

at which point (say when the first batch of particles is absorbed by the resistor) the

pre-evolution is stopped, and the actual simulation is started.
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Chapter 5

Conclusion

5.1 Examples

We conclude with three examples: an RC circuit with a battery switched on and

off, an LC oscillator circuit, and a two-resistor circuit with a battery. Through these

examples, we both illustrate the development of this thesis and convey some final re-

marks concerning the rough edges remaining for future investigation. In what follows,

the characteristic colors CE and CB for the electric and magnetic fields are light gray

and black respectively.

RC Circuit

Fig. 5-1 illustrates the energy flow in an RC circuit1 . In the first row, a battery

is initially connected, and the capacitor charges up: notice how the energy flow

is gradually deflected from the resistor to the capacitor. Once the capacitor is half

charged, we remove the battery, thus connecting the capacitor directly to the resistor.

The outcome is depicted in the second row. Note that the existing particles at this

point no longer reflect the true energy density, since the electric field due to the

battery has been removed. After the short transient, these overflow particles are

eliminated, and energy then flows from the capacitor to the resistor in batches.

'Circuit diagrams are overlaid manually on the simulation.
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We can complement this experiment with various measurements, such as particle

counts. We can show for example that, in the charging scenario, the energy released by

the battery is always divided evenly between dissipation in the resistor and absorption

by the capacitor, regardless of component values. Fig. 5-2 is a texture representation

of the electric field when the capacitor is half charged, which explains the symmetry.

The texture is generated by integrating streamlines at randomized positions, and then

drawing them on an empty canvas using a randomized color [12].

Figure 5-1: RC Circuit: Energy flow for a charging capacitor (top), which then
discharges (bottom) through the resistor, once the battery is removed.

Figure 5-2: RC Circuit: Circuit electric field when the capacitor is half charged, and
the battery is still in the circuit.
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LC Oscillator

Fig. 5-3 illustrates the energy flow in an LC oscillator, with an initially charged

inductor and a discharged capacitor. As we remarked in Sec. 4.2.3, we start with a

uniform distribution. The alternation between electric and magnetic energy is evident:

initially all energy is magnetic (black), but when the capacitor is fully charged it

becomes entirely electric (light gray). The mismatch of spacing between the energy

particles flowing out of the capacitor, as compared to the initial configuration, is due

to the fact that we initialize particles on a lattice, whereas the released batches are

placed on the arc corresponding to the capacitor and then propagate. However, the

number of particles and overall coverage of the cylinder's interior is still the same.

. . . . .

*:i;K::s** *:

a...

*:: :::::
I .

.

I *~ . . ... ..

* . .. eO
*.

a. .~ ~
.

.

.
. .

((iu

.
... ~

ego.....
.. OC.

.0* .

. C..

. . .

.

00

Figure 5-3: LC Oscillator: Energy flow with an initial current in the inductor and
an initially discharged capacitor. The capacitor fully charges (top), then discharges
(bottom) and the cycle restarts.

It is worth remarking that since neglecting the displacement current is not a

good approximation near the capacitor in this case, an excess of energy particles are

absorbed by the capacitor. Therefore, when re-releasing energy, we release a certain

fraction more than what we've obtained in Chap. 4, to compensate. This issue is

worth investigating in the future. Fig. 5-4 illustrates the electric field of the circuit

when the capacitor carries some charge.
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Figure 5-4: LC Oscillator: Circuit electric field when the capacitor carries some
charge. Only the field magnitude is affected by charge, not the depicted direction.

Two Resistors

Fig. 5-5 and Fig. 5-6 illustrate two configurations with one battery and two resistors.

We only give a snapshot of the energy flow, as this is a steady-state situation, and

the directions of flow do not change. In Fig. 5-5 both resistors have equal resistance,

whereas in Fig. 5-6 the resistance of the left resistor is twice that of the right one, but

their sum is kept the same. Naturally, everything is symmetric in the first case. For

the second case, notice how the resistor with the larger resistance dissipates twice as

much energy, as evidenced by twice as many energy particle streams flowing into it.

Figure 5-5: Two Resistors: Energy flow (left), electric field (middle), and electrostatic
potential isocontours (right). Both resistances are equal.
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Figure 5-6: Two Resistors: Energy flow (left), electric field (middle), and electrostatic
potential isocontours (right). The left resistance is twice the right resistance, with
the sum the same as that in Fig. 5-5.

In Fig. 5-5 and Fig. 5-6, we also show the electric field, together with the isocon-

tours of the electrostatic potential. The isocontours texture is efficiently generated by

first computing an image of the potential, by following Chap. 3, and then randomiz-

ing the color map used to display it. This scheme has not been published previously.

It allows one not only to visualize the isocontours, but also to efficiently generate

a texture representation of any vector field that can be written as normal to the

gradient of a scalar field.

The reason why we want to see the isocontours is to observe that, in the electro-

static case, energy flows along them, since both these and the Poynting vector are

normal to the electric field everywhere. This is not true in the general case, since

while the Poynting vector continues to be normal to the total electric field, the scalar

potential's isocontour becomes normal only to the curl-free component.

5.2 Summary

To summarize, in this thesis we addressed the problem of simulating and visualizing

electric and magnetic fields and energy flows in electric circuits with idealized ge-

ometries. Our motivation was primarily educational: to bridge the gap between the

teaching of electricity and magnetism and that of electric circuits.
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To simplify analysis and computation, we adopted an infinite-height cylindrical

geometry. We then defined physical properties that allowed us to specify a spectrum

of possible circuit configurations. With these, we obtained expressions for the electro-

magnetic fields. We then described energy flow in this circuit as a function of these

fields, and proposed a meaningful visualization thereof. Finally, we illustrated our

development with some examples, which we also used to indicate areas where we plan

to do future work.

What remains is to adapt our tool to the curriculum of introductory physics

courses, by making it part of both qualitative and quantitative exercises. We believe

that by experimenting with these simulations and visualizations after covering basic

electromagnetism, students will become more aware of the physical nature of electric

circuits.
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