
PCoord: A Decentralized Network Coordinate

System for Internet Distance Prediction

by

Li-wei H. Lehman

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in the Field of Information Technology

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2005

@ Massachusetts Institute of Technology 2005. All rights reserved.

Author............
Department of Civil and Environmental Engineering

March 16, 2005

Certified by

Class of 1922 Professor of
Steven Lerman

Civil & Environmental Engineering
Thesis Supervisor

/1Op I,

Accepted by........................vX 4 d w W t
"O'-4kdrew Whittle

Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

MAY 3 12005 BARKER

LIBRARIES

PCoord: A Decentralized Network Coordinate System for

Internet Distance Prediction

by

Li-wei H. Lehman

Submitted to the Department of Civil and Environmental Engineering
on March 16, 2005, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in the Field of Information Technology

Abstract

Several recently emerged Internet services make use of application-level or overlay
networks. Examples of such services include overlay multicast, structured peer-to-
peer lookup services, and peer-to-peer file sharing. Many of these services could
benefit from enabling participating end hosts to estimate their relative network loca-
tions within the overlay. In this thesis, we present PCoord, a peer-to-peer network
coordinate system for overlay topology discovery and distance prediction. The goal
of PCoord is to allow participating peer nodes in an overlay network to collabora-
tively construct an accurate geometric model of the overlay network topology in a
completely decentralized peer-to-peer fashion. We evaluate the PCoord approach
through extensive simulations using both real network measurements and simulated
topologies. Our simulation results indicate that PCoord can embed hosts in a low
dimensional Euclidean model with a small median prediction error.

Thesis Supervisor: Steven Lerman
Title: Class of 1922 Professor of Civil & Environmental Engineering

Acknowledgments

First and foremost, I would like to express my deepest appreciation to my advisor

Professor Steven Lerman for his mentoring and guidance over the years. I have been

extremely fortunate to be one of Steve's students. His technical guidance, constant

encouragement, support and incredible patience helped me through the most chal-

lenging times during graduate school. I would not have completed my Ph.D. program

without such a caring advisor. I thank Professor Hari Balakrishnan and Professor

Kevin Amaratunga for serving on my committee and for providing invaluable insights

to my work.

I am grateful for many people at CECI for their support and encouragement over

the years, in particular Jud Harward and Phil Bailey. I would also like to thank Kirky

for maintaining the computing and networking resources I use for my research.

I would like to thank my department for awarding me with the Schoettler Fellow-

ship during the first year of my graduate study. It has been a great honor to be part

of such a dynamic department, with so many exciting research projects that span so

many areas of studies.

I thank Dr. David Tennenhouse and Dr. David Wetherall for initiating me into the

field of networking research during the early stage of my graduate study. I would also

like to thank several others in the TNS/SDS and the ANA group, including Henry

Houh, David Murphy, Shankar Rahul, Suchitra Raman, Vanu Bose, Xiaowei Yang

and Dina Katabi for making graduate school a stimulating and enjoyable experience.

I would like to thank several others at LCS/CSAIL for their help and support. I

thank Frank Dabek and Dave Andersen for answering questions on the King and

RON data set. Thanks go to Mor Harchol-Balter for being a valued friend and an

excellent teacher.

I am grateful to be involved in 1.00 as a teaching assistant during my graduate

career. It has been a rewarding experience to interact with so many wonderful faculty

members, TAs, graders, and students in 1.00. I have enjoyed the company from

many 1.00 TAs, including Salal Humair, David Zhang, Bharath Krishnan, Shaomin

Wang, Petros Komodromos, Nicolas Aplincourt, Vinay Yadappanavar, Peilei Fan,

Anil Gupta, Wen Xiao, and many others.

In addition to people who are directly involved in my academic life, there are also

many others that have provided me with great support. In particular, I would like to

thank Dr. Yan for his support and guidance over the years. Many other people have

provided me with friendship and encouragement, including Ming Dao, Jianjuen Hu,

Xiaoyun Guo, Yuchun Guo, and Yajun Fang to just name a few.

My most important acknowledgment goes to my family who have been the source

of my resilience and comfort over the years. First and foremost, I would like to thank

my husband Brad for his love, support and care during the most challenging times of

my graduate career, for being such an incredibly dedicated husband and father, for

constantly encouraging me to pursue my graduate study, and for always believing in

me, even when I did not. Not only is he my best companion in life, but he also provides

insightful research and career advice which is criticial to the successful completion of

my Ph.D. study. I especially thank my two children, Ryan and Eric, for being so

wonderful and supportive during the long process of my Ph.D. study. Two of them

were the best cheer leading team that brought great joy and strength in my life, and

kept me motivated, especially during the final stage of my Ph.D. study. Last but not

least, I would like to thank my parents and my sisters Jackie and Jill for always being

there for me and for all their help and support over the years.

Li-wei H. Lehman

Boston, March 2005

Contents

1 Introduction

1.1 M otivation .

1.2 The Problem and the Challenges

1.3 Approach Overview .

1.3.1 System Overview

1.3.2 Network Measurement

1.3.3 Choice of the Geometric Model

1.3.4 The Coordinate Computation Method

1.4 Contributions .

1.5 Thesis Overview .

2 Related Work

2.1 Internet Distance Prediction and Location Estimation . . .

2.2 Decentralized Network Coordinate Systems

2.3 Location Systems in Wireless Networks

2.4 M etric Embeddings .

3 The PCoord Algorithm

3.1 A Simple Algorithm .

3.2 The PCoord Algorithm .

3.2.1 Weighted Error Function with a Resistance Factor .

3.2.2 Adjusting Amount of Coordinate Updates Based on

of-F it .

7

21

21

22

23

24

25

26

26

27

28

29

29

31

33

33

35

36

39

40

41

Goodness-

3.3 The Peer Discovery and Selection Process

3.3.1 Summary: the PCoord Algorithm

4 Evaluation of PCoord

4.1 Evaluation Methodology .

4.1.1 Performance Metrics

4.1.2 Data Collection .

4.1.3 Simulation Setup .

4.1.4 PCoord Parameter Settings

4.2 V ivaldi .

4.3 PCoord Results .

4.3.1 PCoord PlanetLab Results

4.3.2 PCoord Convergence Behavior Using King Data Set .

4.4 Comparison of PCoord, Vivaldi and FixedLM

4.4.1 Relative Error Distribution

4.4.2 Convergence Behavior

4.5 Effects of Including Nearby Neighbors in Reference Set . . .

4.6 Effectiveness of PCoord Near Neighbor Search

4.7 Compare PCoord and Vivaldi Using Random Peer Sampling

4.8 Discussion of PCoord Communication Cost

4.9 Performance of Newly Joined Nodes

4.10 PCoord Performance under Dynamic Join and Leave

4.11 Effects of Different PCoord Mechanisms

4.12 Robustness of PCoord against Faulty Information

4.13 Conclusions .

5 Effect of Triangle Inequality Violations

5.1 Sources of Error. .

5.2 Error Statistics by RTT Groups

5.2.1 Statistics by RTT Groups on PlanetLab Data Set . .

5.2.2 Statistics by RTT Groups on King Data Set

8

44

46

49

. 49

. 49

. 50

. 52

. 53

. 55

. 59

. 59

. 61

. 63

. 64

. 65

. 70

. 72

. 72

. 75

. 77

. 81

. 84

. 85

. 89

93

94

95

95

95

5.3 Triangle Inequality . 103

5.3.1 Violation Ratio of King and PlanetLab Data Set 105

5.3.2 Violation in Different RTT Groups 105

5.3.3 RTT and Violation Amount in Different Violation Ratio Groups 108

5.3.4 Prediction Accuracy as a Function of Path Violation Ratio . . 110

5.3.5 Prediction Accuracy as a Function of Mean Path Violation

A m ount . 112

5.4 Conclusions . 113

6 Exploring the PCoord Framework

6.1 PCoord Convergence Using RON Data Set

6.1.1 PCoord Convergence with Euclidean Distances .

6.2 PCoord Prediction Error by RTT Groups

6.3 Dimensionality of Euclidean Approximation

6.3.1 Effect of Dimensionality on King Data Set . . .

6.3.2 Effect of Dimensionality on Paths with High Vic

6.3.3 Effect of Dimensionality on RON2 Data Set . .

6.4 Conclusions .

7 Conclusions and Future Work

7.1 PCoord Conclusions

7.2 PALM Conclusions .

7.3 Future W ork .

A PALM

A.1 The PALM Approach

A .1.1 G N P .

A .1.2 PA LM .

A.2 Comparing RandPalm with the Fixed Landmark Schem

A.2.1 Performance Metrics

A.2.2 Network Topologies

lation Ratio

9

115

117

118

121

121

121

123

124

125

129

129

131

132

135

136

136

137

139

139

140

e

A.2.3 Effects of Number of Landmarks 141

A.2.4 Comparison of FixedLM and RandPalm with Different Number

of Landm arks . 143

A.2.5 Comparison of FixedLM and RandPalm by RTT Groups . . . 144

A.2.6 Dim ensionality . 146

A.3 Robustness in Landmark Placement 150

A.4 Intelligent Landmark Selection Using PALM Maps 153

A.5 Nearest Peer Node Selection and Proximity Clustering 157

A .6 Conclusion . 159

10

List of Figures

4-1 PlanetLab (127 nodes) and King (1740 nodes) 51

4-2 Cumulative RTT Distribution . 51

4-3 Vivaldi timestep effect. PlanetLab, N = 127, K = 16, D = 3. 57

4-4 Vivaldi, C, = 0.25. PlanetLab, N = 127, D = 3. Comparing three

different configurations. 58

4-5 Convergence behavior of Vivaldi, King, N = 1740, D = 5. 59

4-6 Compare PCoord and Vivaldi in terms of time and number of samples,

PlanetLab, N = 127. PCoord uses six reference points per coordinate

update. Vivaldi uses Half-Near-K neighbors configuration with K =

16 , D = 3. 60

4-7 PCoord convergence as a function of number of samples when 10, 20

and 30 reference points are used at each coordinate update. King, N

= 1740 , D = 5. 62

4-8 PCoord Convergence as a function of time when 10, 20 and 30 reference

points are used at each coordinate update. King, N = 1740, D = 5. 62

4-9 PCoord convergence as a function of number of coordinate updates

when 10, 20 and 30 reference points are used at each coordinate update.

King, N = 1740, D = 5. 63

4-10 Compare PCoord, Vivaldi and FixedLM in terms of relative error,

King, N = 1740, D = 5, M = 10. 66

4-11 Convergence of PCoord (10 reference points) and Vivaldi (Cc=0.25 and

1, Half-Near-K neighbors, K = 64) in terms of median error. King

data. 67

11

4-12 Convergence of PCoord (10 reference points) and Vivaldi in terms of

95th percentile error. King data. 68

4-13 Convergence of PCoord (10 reference points) and Vivaldi in terms of

5th percentile error. King data. 69

4-14 PCoord: compare near peer based sampling (default) vs. random

global sampling. King, N = 1740. 70

4-15 PCoord King data set. N=1740. 71

4-16 Compare PCoord and Vivaldi when both use Random Global sampling

strategy, PlanetLab, N=127, D = 5, M = 10. 73

4-17 Convergence of PCoord (10 reference points) and Vivaldi (Cc=0.25)

using Random-Global peer sampling. King data. 74

4-18 King data set. N = 1740. 75

4-19 King data set. N = 1740. 76

4-20 Compare convergence behavior of PCoord in two join scenarios: (1) All

N Simultaneous Join: all nodes join at the beginning of system start

time, and (2) Half N Incremental Join: when half the nodes join all

at once in the beginning and the other half starting to join 20 seconds

afterwards one at a time, in a 200 ms interval. King data set. N = 1740. 78

4-21 Convergence behavior of the Half N Incremental Join scenario. Plot

shows the convergence of the median node error as a function of time

since join. The curve for the "System Wide" represents the system

median error as a function of time, where the system consists of all

nodes currently in the system at that instance of time. The "New

Joined Nodes Only" curve is the median error of all newly joined nodes

as a function of time since their respective join time; the x-axis in this

case, represents the relative time with respective to each node's own

join time. King data set. N = 1740. 79

12

4-22 Convergence behavior of the Half N Incremental Join scenario. Plot

shows the convergence of the median node error as a function of num-

ber of updates performed by each node since join. The curve for the

"System Wide" represents the system median error, where the sys-

tem consists of all nodes currently in the system, and the number of

updates is the average number of updates done by all nodes in the

system at that instance of time. The "New Joined Nodes Only" curve

is the median error of all newly joined nodes as a function of number

of coordinates updates performed. King data set. N = 1740. 80

4-23 PCoord performance under dynamic join and leave. King, N = 1740,

M = 10, and D = 5. 82

4-24 PCoord prediction accuracy as a function of mean join/leave intervals.

King, N = 1740, M = 10, and D = 5. 83

4-25 PCoord performance under dynamic join and leave. Join/Leave mean

interval is 20 seconds. King data set. N = 1740, M = 10, D = 5. . . 85

4-26 Compare different PCoord's mechanisms under various fractions of

buggy nodes. King data set. N = 1740, M = 10, D = 5. 87

4-27 Compare different PCoord's mechanisms under various fractions of ma-

licious nodes. King data set. N = 1740, M = 10, D = 5. 87

5-1 PCoord, error statistics by RTT groups. PlanetLab, N = 127, D = 3,

M = 6. 96

5-2 Vivaldi, error statistics by RTT groups. Half-Near-K neighbors con-

figuration (K = 6), timestep constant C, = 0.25. PlanetLab, N = 127,

D=3........ 97

5-3 King data set. RTT group histogram. N = 1740. 99

5-4 King RTT error statistics by RTT groups before any coordinate up-

dates are performed by PCoord or Vivaldi, both of which initialize

coordinates to the origin. 99

13

5-5 PCoord Error statistics by RTT groups, 10 reference points. King, N

= 1740, D = 5. 100

5-6 PCoord Error statistics by RTT groups, 30 reference points. King, N

= 1740, D = 5. 101

5-7 Vivaldi Error statistics by RTT groups, Half Near-K neighbors config-

uration (K = 64). King, N = 1740, D = 5. 102

5-8 PCoord, Error statistics in terms of absolute prediction error ratio

(PER) by RTT groups after 20 seconds of running PCoord. King, N

= 1740, D = 5, M = 10. 103

5-9 Cumulative distribution of path violation ratio of King and PlanetLab

data 106

5-10 Summary statistics of path violation ratio in different RTT groups

(25ms group). King data, N = 1740. 107

5-11 Summary statistics of path violation ratio in different RTT groups

(25ms group). PlanetLab data, N = 127. 107

5-12 Summary statistics of path median violation amount in different RTT

groups (25ms group). King, N = 1740. 108

5-13 Summary statistics of RTTs of paths in each triangle inequality viola-

tion ratio group (violation ratio of 0.01 per group). King, N = 1740. 109

5-14 Median violation amount of paths in each triangle inequality violation

group (violation ratio of 0.01 per group). King data. 110

5-15 Directional prediction error ratio (DPER) as a function of degree of

violation (measured as path violation ratio). King, N = 1740, D = 5,

M = 10. .111

5-16 Summary statistics of directional prediction error (predicted - actual

RTT) as a function of path violation ratio. King, N = 1740, D = 5,

M = 10. 112

14

5-17 Summary statistics (95th, 50th, and 5th percentile) of absolute predic-

tion error ratio (PER) of PCoord as a function of mean path violation

amount. Mean path violation amount is classified into 25 ms per group.

King, N = 1740, D = 5, M = 10. The PCoord coordinates are gener-

ated after 50 seconds of running the algorithm. 113

6-1 RTT bin size distribution for RON2 Internet and latency optimized data. 116

6-2 A 15 node topology with 3x5 grid on a 2-D Euclidean plane. 117

6-3 PCoord error convergence in terms of number of samples for three

different RON2 data sets: Internet paths, RON2 latency optimized

paths, and the RON2 latency optimized paths RTT + 12 ms to remove

all triangle inequality violation. N = 15, M = 14 in all three data sets. 118

6-4 PCoord absolute prediction error ratio (PER) distribution for three

different RON2 data sets, N = 15, M = 14, D = 5. 119

6-5 PCoord error convergence when latencies are Euclidean distances among

15 (3x5) nodes from a 3x5 grid, N = 15, D = 2. 119

6-6 PCoord error convergence in the grid topology. The Simple algorithm

does not converge. M=3, D = 2. 120

6-7 PCoord error statistics by RTT groups in three different RON2-based

data sets, N = 15, D = 5, M = 14 in all three cases. 122

6-8 The effect of dimensionality. Plot shows PCoord median prediction

error with various dimensionalities when 10 reference points are used

at each coordinate update. King, N = 1740. 123

6-9 PCoord distribution of prediction error ratio for paths with low vio-

lation ratio (less than or equal to 0.3) vs. paths with high violation

ratio (more than 0.3). Plot shows the distribution of errors for 5 and

2 dimensional coordinates. King, N = 1740, M = 10. 124

6-10 PCoord prediction error as a function of dimensionality of the geomet-

ric space under three different RON-based topologies. N = 15, M =

14. 126

15

A-i AMP results. Cumulative distribution of relative error, FixedLM vs.

RandPalm. N = 110, 5-Dimensions. 142

A-2 GT-ITM results. Cumulative distribution of relative error, FixedLM

vs. RandPalm. N = 3492, 5-Dimensions. 142

A-3 Relative Error. Comparing FixedLM and RandPalm schemes with

summary statistics of relative error: GT-ITM,N = 3492. Dimension-

ality is 5. Number of landmarks: 6, 10, 15, 20, 25, 30. 144

A-4 Directional Relative Error. Comparing FixedLM and RandPalm schemes

with summary statistics of directional relative error: GT-ITM, N =

3492. Dimensionality is 5. Number of landmarks: 6, 10, 15, 20, 25, 30. 145

A-5 Bin size distribution by RTT groups: GT-ITM, N = 3492 146

A-6 FixedLM performance by RTT groups using 10 landmarks. GT-ITM,

N = 3492, 5 Dimensions. 147

A-7 RandPalm performance by RTT groups using 10 landmarks. GT-ITM,

N = 3492, 5 Dimensions. 147

A-8 FixedLM performance by RTT groups using 20 landmarks. GT-ITM,

N = 3492, 5 Dimensions. 148

A-9 RandPalm performance by RTT groups using 20 landmarks. GTITM,

N = 3492, 5 Dimensions. 148

A-10 FixedLM. Effect of dimensionality on performance. AMP, N = 110,

10 Landm arks. 149

A-11 RandPalm. Effect of dimensionality on performance. AMP, N = 110,

10 Landm arks. 149

A-12 Effect of clustered landmark placement on relative error of distance

prediction. AMP, N = 110, 10 Landmarks, G = 36. 151

A-13 Effect of clustered landmark placement. GT-ITM, N = 3492, 10 Land-

m arks. G = 30. 151

A-14 Summary statistics of directional relative error for the FixedLM scheme

under clustered landmark placement. N = 3492, 10 Landmarks. . . . 152

16

A-15 Summary statistics of RTT prediction error for the FixedLM scheme

under clustered landmark placement. N = 3492, 10 Landmarks. . . . 152

A-16 Effect of bad landmark placement on nearest neighbor selection. GT-

ITM, N = 3492, 10 Landmarks. 153

A-17 Island relative error distribution using randomly selected bootstrap

landmarks. GT-ITM, N = 3492, 10 landmarks. 156

A-18 Summary statistics of RTT prediction error for the Island scheme un-

der random bootstrap landmark placement. GT-ITM, N = 3492, 10

Landm arks. 156

A-19 Island relative error distribution using clustered bootstrap landmark

placement. GT-ITM, N = 3492, 10 Landmarks. 157

A-20 Summary statistics of RTT prediction error for the Island scheme under

clustered bootstrap landmark placement. GT-ITM, N = 3492, 10

Landmarks. 158

A-21 Performance of selecting nearest peer node. GT-ITM, N = 3492. . . . 159

A-22 Weighted Intra-Cluster RTT. Randomly selected bootstrap nodes. GT-

ITM, N = 3492, 10 landmarks. 160

17

18

List of Tables

4.1 Latency Data Statistics (in ms) . 50

4.2 PCoord mean and standard deviation of system prediction error (in

ms). Statistics from five different logical neighbor configurations, King,

M = 10. 63

19

20

Chapter 1

Introduction

1.1 Motivation

Several recently emerged Internet services make use of application-level or overlay

networks. Examples of such services include distributed content delivery services,

overlay multicast [7, 4, 25], structured peer-to-peer lookup services [48, 53, 44, 411,

and peer-to-peer file sharing. Topological information about the relative locations of

hosts within these overlay networks improve many of these services. To help with

the performance of these services, much research has been done to allow end hosts to

discover network topology and accurately predict network distances in a scalable and

timely fashion. The key challenge is to predict inter-host network distances with as

few measurements as possible.

This thesis is about the design and evaluation of a decentralized network coordi-

nate system for Internet distance prediction and location estimation. The idea of a

network coordinate system, first proposed by the GNP system [32], is to model the

Internet as a D-dimensional geometric space; hosts compute their coordinates in this

space to characterize their locations on the Internet. The goal is for each host to de-

rive a mapping of itself in the geometric space using a small set of sampled distances

so that the actual inter-host network distances can be estimated as a function of the

nodes' geometric distances.

There are many advantages and applications to a geometric model of the net-

21

work distances. One advantage is that coordinates efficiently summarize inter-host

distances: once a node computes its coordinates, it can estimate its distance to any

other nodes in the coordinate system without making explicit measurements to those

nodes. Instead of storing and communicating O(N 2) distances, N vectors, each with

D dimensions, suffice to summarize the topological relationships among hosts, where

N is the number of hosts in the system. Potential applications of such a network

coordinate system include:

" Peer-to-peer (P2P) file sharing: the coordinate information can be used to

enable a host to download a file from the "closest" peer node that has a copy

of the file.

" Content distribution: the coordinates can be used by a redirection service that

directs clients to the "closest" content server to reduce response latency.

" Efficient logical topology construction in P2P networks and application-level

multicast: in many of these applications, each host is logically connected to a

small number of other participating peers to form an overlay network. Com-

munication among peers usually follows the logical links, each of which could

traverse multiple physical IP hops. Coordinate information can help improve

the performance by avoiding logical links over high latency IP hops.

1.2 The Problem and the Challenges

Earlier network coordinate systems rely to some extent on distance measurements to a

common set of reference nodes. For example, the Global Network Positioning (GNP)

system [32] uses a host's distance measurements to a fixed set of landmarks to com-

pute absolute coordinates to characterize the host's location on the Internet. Using

fixed landmarks introduces potential bottlenecks. Additionally, the performance of

GNP is sensitive to landmark placement. More recently proposed coordinate-based

approaches allow a subset of end hosts to be used as landmarks [37, 49, 26, 313.

However, most of these schemes are not fully decentralized.

22

In contrast to the earlier landmark-based approaches, the goal of this research

is for participating peer nodes in an overlay network to collaboratively construct an

accurate geometric model of the overlay network topology in a fully decentralized,

peer-to-peer fashion. There are many challenges in designing such a decentralized

coordinate system for large-scale Internet applications:

" Scalability. The system must be able to support large-scale Internet distributed

applications. Our goal is for each host to estimate its coordinates by probing a

small number of other peers.

" Decentralization and fault tolerance. The system should operate without relying

on any common reference points, infrastructure support, or global information.

Each node must estimate its "global" network position based on a small samples

of distances.

" Adapting to dynamic network conditions and membership changes. Once the

coordinates have been generated, they must be continuously maintained and

updated to reflect changes in network conditions and peers joining and leaving.

" Timeliness and efficiency. One of the main applications of the coordinate system

is to improve on end-to-end response time based on the location information.

Thus, the coordinates must be computed in a timely fashion for them to be of

practical values.

1.3 Approach Overview

In this thesis, we present PCoord, a fully decentralized network coordinate system for

overlay topology discovery and distance prediction. In PCoord, there are no specially

designated landmark nodes; peers measure latencies to a small number of other peer

nodes to estimate their own network locations in the overlay.

Additionally, we present a proof-of-concept distributed coordinate framework named

PALM (or Peers as Landmarks). The PALM framework was proposed and evaluated

as a proof-of-concept for a decentralized coordinate system.

23

In this section, we briefly describe both frameworks below. We then describe the

network distance measurement and the geometric model we use for our coordinate

system, and provide some rationale for our choices.

1.3.1 System Overview

PALM

The focus of the PALM study is not to define a complete system, but rather to

investigate whether it is possible to build a network coordinate system in a peer-to-

peer fashion, and to help understand issues involved in building distributed network

coordinate systems. PALM (or Peers as Landmarks), is a direct extension of the

original GNP framework in a decentralized, peer-to-peer environment.

In PALM, any host which has already derived its coordinate can be selected by

another peer node as "landmarks". Within the PALM framework, we explore two

different peer sampling strategies: RandPalm and Island. In RandPalm, a peer node

randomly selects from existing peer nodes to function as its reference points. In Island,

each peer node selects its reference points by exploiting the topological information

derived based on existing peer nodes' coordinate values. We have simulated PALM

using both real network and simulated topologies. Details of PALM can be found in

Appendix A.

PCoord

PCoord is a fully decentralized network coordinate system with each host updating

its coordinate iteratively to refine the prediction accuracy of its estimated position.

Each host updates its coordinates to minimize a loss function that measures the

difference between the actual and the geometric distances between itself and a small

set of other hosts. PCoord does not require any special bootstrap process - each node

goes through an iterative calibration process to refine its coordinates. PCoord has

the following features and components:

e A weighted loss function to distinguish between nodes with high and low er-

24

rors and a "resistance" factor in the loss function that helps to stabilize the

convergence and avoid oscillation.

" A threshold-based mechanism to dampen the amount a node moves toward

new coordinates based on the confidence associated with the current batch of

sampled coordinates and RTTs.

" A message exchange protocol that enables fast discovery of nearby peers.

We evaluate the prediction accuracy and convergence behavior of PCoord under

several factors, including peer distance distribution, dimensionality of the geometric

space, and the degree of triangle inequality violations in the data set. Through ex-

tensive simulations using both real network measurements and simulated topologies,

we compare the performance of PCoord with Vivaldi and the original GNP scheme

(referred to as the FixedLM scheme from now on).

1.3.2 Network Measurement

There are many different ways to measure network distances among hosts on the

Internet. Some of the measurements include: ping-based RTT probing, 10KB TCP

probing, bottleneck bandwidth probing, Internet administrative system (AS) hop

counts, IP-level router hop counts, and geographic distances [30, 16, 33].

Recent studies show that RTT-based latency measurement not only has the ad-

vantage of being relatively easy to obtain on an end-to-end basis, but it also translates

well into end-to-end performance such as throughput and response latency [30, 33].

In particular, Ng et al. have shown in [30] that round-trip ping time (RTT) can in

fact effectively identify peers with high TCP throughput for media file sharing. Their

results suggest that short RTTs often translate to high TCP throughput.

Since the goal of PCoord is primarily to provide location information to improve

end-to-end application performance, we use round-trip time (RTT) as our distance

measurement in this thesis. Our problem is then to find configuration of nodes in a

D-dimensional space so that the geometric distances between pairs of hosts match

their round-trip latency as closely as possible.

25

1.3.3 Choice of the Geometric Model

PCoord models the network as a D-dimensional Euclidean space, where the geometric

distance function is simply the L 2 norm. We chose the Euclidean space due to its

simplicity and accuracy. Other existing research has explored various options for ge-

ometric space, including spherical, cylindrical [32], and hyperbolic [47], and Vivaldi's

height vectors [10]. It has been shown that the Euclidean space does better than

the spherical or the cylindrical model [32, 10]. This is probably due to the fact that

Internet latencies are largely dominated by geographic distances, and the routing

paths through the Internet do not often "wrap around" the Earth as a spherical (or

cylindrical) model would assume [10]. While other models such as the hyperbolic

space [47] and the height vector [10] have been shown to model Internet distances

more accurately, it is not clear whether their performance improvement justifies the

additional complexity.

1.3.4 The Coordinate Computation Method

In PCoord, coordinates computation is cast as a non-linear optimization problem,

with each host computing its own coordinates that minimizes the total sum of squared

differences between the actual sampled distances and the node's Euclidean distances

to those sampled nodes. We use the Simplex Downhill method to solve the optimiza-

tion problem, since it has been shown to yield good prediction accuracy for Internet

distances with modest computation cost [32]. Many other works, some concurrent

to ours, have proposed other methods to compute coordinates [10, 46, 37]. Most

notably, Vivaldi solves the same minimization problem over a similar sum of squared

error function by minimizing the energy in a physical spring network. Neither spring

relaxation nor Simplex Downhill guarantees finding the global minimal solution.

While the Simplex algorithm has been criticized for its computational cost, our

experience in PCoord suggests that most coordinate updates using Simplex Downhill

to minimize a loss function involving 10 reference points can be done in less than 10

milliseconds on a 150 MHz Sun UltraSparc. Since each PCoord host computes its

26

own coordinates, we believe that such computation overhead is very modest.

1.4 Contributions

In this thesis, we have designed a fully-decentralized coordinate system PCoord, and

evaluated it using extensive simulations under various real and artificial network

topologies. We compared the performance of PCoord with another decentralized

network coordinate system Vivaldi, and the original GNP scheme using fixed land-

marks.

We have examined PCoord's convergence behavior using simulations in several

different scenarios: (1) the simultaneous-join scenario with all nodes joining the co-

ordinate system at approximately the same time, (2) the incremental join scenario,

in which we evaluate the number of samples required for a newly joined node to con-

verge to a low prediction error when the rest of the system has already converged, and

(3) the high churn scenario, in which the system experiences continuous membership

changes with dynamic node join and leave.

Our simulation results indicate that PCoord can achieve competitive prediction

accuracy in comparison to the GNP scheme without relying on a fixed set of landmark

nodes. Our results also suggest that, though PCoord incurs a higher computation

overhead in comparison to Vivaldi, it can converge to a lower prediction error using

fewer samples than Vivaldi. Our simulation results suggest that PCoord is robust

under high churn when the system experiences continuous membership changes, and

can effectively guard against faulty coordinate information.

PCoord fills in one of the missing pieces not addressed in Vivaldi - i.e., how a

peer discovers and samples other peers. While Vivaldi's simulations in [10] simply

assume that nodes will have access to a list of its nearest peers, we provide an efficient

peer discovery mechanism using triangulated distances. We believe PCoord provides

a competitive alternative to Vivaldi as a decentralized coordinate system due to the

following novel features:

9 A weighted loss function to distinguish between nodes with high and low er-

27

rors and a "resistance" factor in the loss function that helps to stabilize the

convergence and avoid oscillation.

" A threshold-based mechanism to dampen the amount a node moves toward new

coordinates based on the confidence on the current batch of samples.

* A message exchange protocol that enables fast discovery of nearby peers using

triangulated distances.

In addition to PCoord, we have proposed and evaluated a proof-of-concept co-

ordinate system named PALM, and demonstrated the feasibility of a decentralized

approach in building network coordinate systems by using distance measurements to

any subset of hosts. Through simulation-based evaluations, we show that the PALM

based approaches have rather different performance characteristics than the fixed

landmarks based approach, such as GNP. We believe that many of our findings with

respect to the performance characteristics of PALM provide valuable insights for de-

signers of decentralized network coordinate systems or peer-to-peer location systems

in general.

1.5 Thesis Overview

The rest of this thesis is organized as follows. In Chapter 2, we outline related

work. Chapter 3 describes the PCoord algorithm. We evaluate PCoord and compare

its performance with that of Vivaldi using simulations in Chapter 4. Chapter 5

studies the sources of prediction errors of PCoord in more details and examine the

impact of triangle inequality on prediction accuracy. Chapter 6 examines PCoord's

convergence behavior and error characteristics using variations of a small 15-node

topology. Finally, we present our conclusions and ideas for future work in Chapter 7.

We present the design and evaluation of the PALM-based schemes in Appendix A.

28

Chapter 2

Related Work

Much research has been done in Internet topology discovery and distance prediction.

Earlier approaches in this area place more emphasis on predictions based on infras-

tructure support [12, 32], which involves the use and deployment of dedicated nodes

in the Internet to provide for the distance prediction service. Later works, such as

PALM [24], PCoord [23], Vivaldi [9, 10], and PIC [8], focus more on a distributed

approach that work in a peer-to-peer overlay environment. In this chapter, we review

existing works in the area of Internet distance prediction, wireless network location

estimation, and theoretical work done in metric embeddings. We also discuss the

similarities and differences between PCoord and several other decentralized network

coordinates systems, such as Vivaldi [10] and PIC [8].

2.1 Internet Distance Prediction and Location Es-

timation

The IDMaps [12] and GNP [32] are both architectures for a global distance estimation

service. Both IDMaps [12] and GNP [32] rely on the deployment of infrastructure

nodes. King [36] proposes direct online measurements using the DNS infrastructure to

predict network latencies between arbitrary Internet end hosts. NPS [31] proposes a

hierarchical network position architecture that enables decentralized coordinate com-

29

putation. The goal of these systems is mainly to develop public infrastructure that

provides distance information between any two arbitrary points on the Internet. In

contrast, PCoord's goal is for peer nodes in an overlay network to estimate their

locations relative to other nodes in the same overlay; PCoord predicts network dis-

tances using purely peer-to-peer measurements without relying on the infrastructure

services.

Several works provide network proximity or location estimates using the distance

measurements to a set of well-known landmarks. For example, the GeoPing algorithm

[35] uses latency measurements to a set of well-known landmarks to determine end

hosts' geographic locations. In [15], Hotz proposes a triangulated heuristic to give a

bound on the network distance between any pair of hosts by using their distances to a

common set of base nodes. Internet Iso-bar [6] performs clustering on hosts based on

the similarity in their distance to a small set of sites. The distances between hosts are

estimated using inter- or intra-cluster distances. In CAN [41] and the binning scheme

[42], distance measurements to landmarks are used to support proximity routing in

a structured peer-to-peer network. The location of an end host in their scheme is

characterized by the ordering of landmarks in terms of their distances to the host.

These schemes, in contrast to ours, do not attempt to model Internet hosts using

absolute coordinates.

In [50], an approach that builds network distance maps is proposed. It clus-

ters hosts hierarchically into network regions. Cluster representatives measure and

maintain distance information among each other. Two hosts can then estimate their

inter-host distance as a function of the distance between their corresponding cluster

representatives. In contrast, our work does not require nodes to maintain any cluster

structure, which maybe difficult to implement in a peer-to-peer environment with

dynamic membership changes.

To avoid the fixed landmark problem in GNP, several schemes [37, 49, 26] have

been proposed that allow hosts to use different subsets of landmarks to construct a

local coordinate system, which are then transformed to a global coordinate system.

For example, the Lighthouse scheme [37] uses multiple local bases to allow a host to

30

determine its coordinates relative to any set of landmark nodes. Virtual Landmarks

(VLM) and Internet Coordinate System (ICS) both use principal component analysis

(PCA) to extract topological information. The above schemes, however, are not fully

decentralized in that they still require distance measurements to a common set of

nodes to compute coordinates.

Several other works focus on the modeling and coordinates computation issues.

For example, the Big Bang Simulation (BBS) [46] solves the embedding problem by

simulating an explosion of particles under a force field. Shavitt and Tankel [47] re-

cently proposed a hyperbolic coordinate space to model the Internet, which achieves

better accuracy than the Euclidean embedding. The focus of these two works, how-

ever, is on computation methods and geometric models that yield low embedding

error assuming global distance measurements are available. It is not clear how they

can be applied in a decentralized environment.

The Mithos [51] system also embeds the network into a multi-dimensional space;

it uses a spring relaxation technique for coordinate computation. The focus of their

work is more on overlay construction and efficient lookup forwarding and less on

network distance prediction.

Meridean [52] provides a framework for hosts to lookup their nearest peers in an

overlay network. Each Meridian node keeps track of a small, fixed number of other

hosts that are organized and maintained as a multi-resolution ring structure with

exponentially growing ring radii. A node's query for its nearest peer can then be

forwarded along the ring structure, which exponentially reduces the distance to the

target at each query hop. In contrast to our approach, Meridian builds many local

coordinate systems instead of an absolute coordinate system; their work focuses more

on overlay construction and lookups, rather than distance prediction.

2.2 Decentralized Network Coordinate Systems

Similar to our work, Vivaldi [9, 10] is a fully decentralized coordinate system. Com-

pared with Vivaldi, PCoord uses a more aggressive message exchange protocol for

31

fast near peer discovery. Vivaldi piggybacks the latency probes on application-level

traffic, and does not address the peer discovery issue. Vivaldi uses a spring relaxation

algorithm to solve for the coordinates. Spring relaxation is more efficient than the

Simplex algorithm in terms of computation overhead at each node. However, our

results suggest that the additional computation time incurred in PCoord due to the

Simplex algorithm does not significantly affect its overall system convergence time.

One major difference between PCoord and Vivaldi is that in PCoord a node com-

putes its coordinate by optimizing a loss function over a batch of samples, whereas in

Vivaldi a node adjusts its position to minimize the error one sample at a time. We

believe that PCoord's batch-based approach gives it a faster system convergence time

than Vivaldi in terms of number of samples needed for convergence.

Similar to our work, the PIC [8] system also proposes a distributed coordinate

system that uses the Simplex algorithm for coordinate computation. One of the main

differences is that PIC requires a set of peer nodes to compute the bootstrap coordi-

nates. In contrast, PCoord is fully decentralized and does not require a set of peer

nodes to carry out the bootstrap process. Additionally, in PIC, coordinates update

at a node is completely determined by current batch of sampled distances; it does not

provide mechanism to retain information learned from previous iterations. This could

result in a system that reacts too quickly to current measurements. Finally, PIC uses

a different strategy to locate nearby peer nodes: PIC uses estimated coordinates to

locate near peers, whereas PCoord uses triangulated distances to infer near peers. In

PIC [8], each peer node performs a greedy walk to locate a nearby peer using the

node's current coordinates to guide the walk. Although the strategy has been shown

to work well in an MSPastry framework where each node points to a mix of near

and far away nodes, it is unclear whether the strategy would be effective in an un-

structured overlay, where a node's logical neighbors may not have such a convenient

mix of near and far nodes. PCoord's near peer discovery mechanism does not make

assumptions about the types of logical connections maintained at each node.

32

2.3 Location Systems in Wireless Networks

There has been a large number of works in wireless, sensor network location sys-

tems [40, 11, 5, 1, 14]. In a sensor network environment, the location problem is

usually one in which a small fraction of network nodes have known locations, while

the rest of the nodes must estimate their locations using distance measurements to

these reference nodes. Many of the applications focus on estimating physical locations

of devices. Proximity measurements among nodes are measured using either received

signal strength or time-of-arrival between themselves and neighboring nodes. A fun-

damental difference between the wireless and the Internet environments is that, the

distances in the former are largely dominated by geographic proximity. Another dif-

ference is that the distance measurements in a wireless environment are limited by

the transmission range of the reference points, which is a problem not encountered in

the Internet environment.

2.4 Metric Embeddings

Embedding of arbitrary distance matrices into geometric spaces is a problem faced

in many applications, ranging from computer vision to protein sequence analysis in

bioinformatics. Much theoretical work has been done on metric embeddings [28, 29,

17, 27, 21, 3, 22, 18]. The emphasis is usually on embeddings of finite metric spaces

into normed spaces with the least possible distortion, which is a measure of how much

the geometric distance differs from the actual distance.

There are fundamental differences between the theoretical approaches to the em-

bedding problem and the Internet coordinate-based approaches. Works in metric

embeddings generally assume that distance matrices satisfy the triangle inequality,

which is often violated in Internet distances. Perhaps a more important difference

is that the goal of the metric embedding algorithms is to generate embeddings with

least possible distortions assuming knowledge of global pair-wise distances; in a de-

centralized network coordinate system, the goal is to estimate a node's position in

33

the geometric space using a small set of sampled distances.

Work by Kleinberg et al. [19] is perhaps the first to present a theoretical frame-

work that proves performance guarantees for Internet-based network coordinate sys-

tems. While general metrics cannot be embedded in Euclidean spaces with constant

distortions, by introducing the notion of a slack, Kleinberg et al. is able to prove

performance guarantees for the Internet coordinate-based embedding algorithms by

allowing a certain fraction of all distances to be arbitrarily distorted.

Kleinberg's work is complementary to ours in the sense that, the extensive simula-

tion results presented in this thesis can be used to support the theoretical framework

presented in [19]. Additionally, our work presents empirical data that quantifies the

impact of the degree of triangle inequality violations in Internet distances on predic-

tion accuracy of the embedding, which is an issue not addressed in [19].

34

Chapter 3

The PCoord Algorithm

In this chapter, we present PCoord, a fully decentralized network coordinate system

for overlay topology discovery and distance prediction. In PCoord, there are no spe-

cially designated landmark nodes; peers measure latencies to a small number of other

peer nodes to estimate their own network locations in the overlay. Nodes initialize

their coordinates to the origin, and go through an iterative calibration process to

refine their coordinates. In order to distinguish them from the GNP "landmarks",

which are fixed nodes embedded in the network, we call the set of peers selected by

a PCoord host for computing their coordinates reference points (RPs).

PCoord has the following features and components:

" A weighted loss function that allows sampled coordinates with higher prediction

accuracy to have a higher weight in the loss function.

" An additional weighted "resistance" factor in the loss function that helps to

stabilize the convergence process.

" A threshold-based mechanism to dampen the amount a node moves toward

new coordinates by a factor that is inversely proportional to the fit error of the

current batch of sampled peer nodes' coordinates and distances.

" A message exchange protocol that enables fast discovery of nearby peers using

triangulated distances, and a peer sampling strategy that includes both near

35

peers and randomly sampled nodes in each calibration step.

Our simulation results suggest that calibrating coordinates using samples that

span a wide range of nodes allows the algorithm to converge faster than always cal-

ibrating coordinates with the same set of nodes at each iteration. In order to allow

peers to calibrate their coordinates with a large set of peer nodes, PCoord uses a

gossip-based protocol to enable peer discovery. At each iteration, PCoord hosts dis-

cover other peers in the same overlay by exchanging a list of peers they know of with

their reference points.

To improve the coordinates' accuracy in modeling short distances, each PCoord

peer includes a mixture of near and far nodes in its reference set at each coordinate

update. PCoord includes a message exchange protocol that enables fast discovery of

nearby peers using triangulated distances.

In this chapter, we first present two PCoord based algorithms: a simple version

using an unweighted loss function for coordinate update, and the actual PCoord

algorithm with a weighted loss function and other additional mechanisms to ensure

convergence to a lower prediction error. Both versions of the PCoord algorithms use

the same message exchange protocol for fast discovery of nearby peers. We present

the message exchange protocol last to complete the algorithm description.

3.1 A Simple Algorithm

In PCoord, each node performs continuous update on its coordinate. Each of the co-

ordinate update consists of three phases: (1) the sampling and information exchange

phase in which a node selects M reference points, gathers distance measurements and

coordinates, and exchanges peer list information with those M reference points, (2)

the coordinate update phase, in which a new coordinate is computed to minimize

a loss function defined in terms of those M reference points, and (3) the near peer

probing phase in which each host refines its search for its nearby peers by probing

other hosts based on their triangulated distances.

36

We first summarize the notations below and then present the algorithm in more

detail. In the algorithm description, i indicates the node which is running the proce-

dure.

M Number of reference points for each coordinate update

R Peer list with known RTT

T = Triangulated peer list

P RUT

Y Set of peers selected as reference points

ci =Coordinates of host i

Cy Set of coordinates of hosts in Y

di= RTT between i and j
corigin = Coordinates at the origin of the D-dimensional geometric space

The simple form of the PCoord algorithm is as follows:

/i is the node that is running the procedure

SimplePCoord() {

Ci= Corigin

R=NIL

T =NIL

while (in the system) {
//SamplePeers() method selects and r

Samples = SamplePeers(R, T)

cnew = MinimizeError(Samples, ci)

ci = Cnew

ProbeNearNeighbors(R, T)

} /end while

}

eturns M samples from peer list R and T

37

//Samples consist of M sampled peer nodes

//Cguess is the initial guess for the coordinates

MinimizeError (Samples, Cguess) {
find Crew that minimizes E using cguess as an initial guess, where

E =Ejesamples(dij -c -nw 2

return cre'

}

At each update iteration, each host i measures its round trip latency to M other

peer nodes, and obtains those M nodes' current coordinates. Host i then updates

its coordinates to minimize the sum of squared differences between the measured

and computed distances with those M peer nodes. More specifically, let ci be the

coordinates currently assigned to node i, and Crew be the new coordinates node i

wishes to solve for using a new batch of samples. Let dij be the measured round trip

latency between nodes i and j. The computation of the coordinates for node i then

involves finding Caew that minimizes the following loss function.

j=M

E = E (dij - 1Iciew - cjjl)2

j=1

The global minimization problem can be approximately solved using many generic

multi-dimensional minimization algorithms, such as the Simplex Downhill method,

which we use in this thesis. The Simplex Downhill method solves the minimization

problem numerically by forming a simplex based on an initial guessed solution. In-

stead of the normal procedure of using randomly generated values as initial guess, we

use the current coordinate ci to form the initial simplex used to solve for coordinates

new

Vivaldi uses a more computationally efficient method to solve the minimization

problem by simulating the process of minimizing the potential energy of a network of

physical springs. Neither Simplex Downhill nor the spring simulation is guaranteed

to find the global minimum.

38

3.2 The PCoord Algorithm

There are several potential problems with the above simple version of the algorithm.

One problem is that it does not distinguish between nodes with coordinates that

have different prediction accuracy - it trusts the coordinates of newly joined nodes as

much as old coordinates with high prediction accuracy. To avoid reacting too quickly

to bad reference points, we propose a weighted loss function, in which the loss each

reference point contributes is weighted by the prediction accuracy of each reference

point's coordinates. The weight is computed based on the relative prediction accuracy

of each reference point so that the nodes with more accurate coordinates will have

more influence on the solution than the less accurate ones.

Another problem is that the algorithm determines the new coordinate entirely

based on measurements from the current batch of reference points. There is no

mechanism for the coordinates generated using previous samples to cast any vote on

the the position of the new coordinate in the current update. The simple scheme

thus tends to react too quickly based on the measurements of the current batch of

reference points, and leads to potential oscillation. This is in particular a problem

when the sample size of each batch is small relative to the dimensionality of the

geometric space.

In order to reduce oscillation, we introduce an additional "resistance" factor into

the loss function so that a node with highly accurate coordinates will not overly react

to reference points with less accurate coordinates. When computing ne, node i

adds itself as the (M + 1)th node in its reference points set, and thus introduces ci

into the loss function as a resistance factor that penalizes movement of cre" to a new

location. This term is weighted by the relative prediction accuracy (relative to other

reference points of i) of node i's coordinates, so that the more confident a node is

about the accuracy of its own coordinates, the more resistance the term introduces.

For a newly joined node, the weight to this resistance term is initialized to zero. Each

node continuously updates the confidence index of its own coordinates as a function

of the weighted moving average of its current and past prediction error.

39

3.2.1 Weighted Error Function with a Resistance Factor

More precisely, the weighted loss function with the resistance factor is as follows. Let

wi be the weight of node i. The coordinate update procedure now becomes a problem

of finding Crew that minimizes the weighted loss 8, where 8 is defined as follows.

j=M
C = wi(dii -||cvnw - ci||) 2 + Z wj(dij -|cew 1 - 2

j=1

where di = , O wi < 1, 0 wj < 1, andwi+ZE'= wyz 1.

As described earlier, the weight is computed as a relative confidence on the pre-

diction accuracy of each node's coordinates. The weighted loss function requires each

node to obtain a confidence index on the accuracy of its current coordinates. For this

purpose, each node maintains a weighted moving average of its relative prediction

error.

Update Prediction Error

The procedure for maintaining the weighted moving average of the relative prediction

error is described in this section. This procedure is invoked at each coordinate update

iteration after the sampling phase. Vivaldi nodes also use a similar procedure to

maintain a weighted moving average of prediction error, but use it in a different way

than PCoord in coordinate computation.

Z weighted moving average of relative prediction error at node i

eP =relative prediction error for distance between node i and j

a = weight for computing weighted moving average of prediction error

//i is this node

UpdatePredictionError(Samples) {

for each j in Samples {

(e)2jcj c jj de)j 2 d+i(

W e)2+(eP)2

newp - _ * *ei Z3 - e% *(-W)

40

ep = a * ep + (1-a) * ewp"

ei = MIN(1,eI

} //end for

}

The following pseudocode fragment describes how the weight is assigned based on

the relative prediction error. T is a small constant added to one to define ePoP for

weight computation. When T = 0, nodes with relative prediction error of one have

zero weight in the loss function. Setting T > 0 allows nodes with relative error of one

to have a non-zero weight. In this study, T is set to 0.05.

Weight Assignment

T = a small constant added to 1 for weight computation, T > 0

eTrO - 1+ T

//assign weight to each sample in Samples, which includes the "resistance" term

for each node j in Samples {

a, =eTOP --

a?

= kESamples ak

}

3.2.2 Adjusting Amount of Coordinate Updates Based on

Goodness-of-Fit

The idea of an Internet distance prediction scheme is based on the assumption that

measurements of distances to a few nodes on the Internet can be used to infer distances

to a significant fraction of other nodes on the Internet with some small error. To

achieve good prediction accuracy, ideally a node should position itself in the geometric

space using sampled distances that are "representative" of its distance relationships

41

to all other nodes in the Internet. Using samples with "non-representative" distances

to predict the position will likely lead to coordinates with high prediction error. For

example, inter-host distances that violate the triangle inequality constraint either

due to measurement error or Internet routing will likely bias the newly generated

coordinates toward the "un-representative" distances.

The weighted loss function described above helps to reduce the negative effect

of reference points with high prediction error. However, the prediction error is only

an estimate of the overall prediction accuracy of a node's coordinates; it does not

necessarily reflect whether a particular pair-wise distance between nodes i and j

serves as a good sample to predict the position of the two nodes. In particular, a

node i which has coordinates with high overall prediction accuracy may be connected

to another node j using a direct high-speed Internet link; if j were to use distance to

i as a sample in the above weighted loss function, j will be generate coordinates much

closer to i than it should, since i's high confidence index will put a heavy weight on

its corresponding term in the loss function.

In general, it is difficult to estimate the "predictive power" of a particular sample

on its own merit. The effectiveness of a sampled distance between node i and j can

be evaluated in the context of how well it matches the distance relationships between

node i and j to other nodes.

In this section, we introduce a mechanism that allows a node to adjust how much

it should move its coordinates in response to a particular batch of samples based on

the goodness-of-fit index. The goodness-of-fit is a confidence measurement associated

with an entire batch of samples. The idea is that a batch of samples containing "un-

representative" distances will likely yield higher residual error than good batches of

samples. To avoid reacting to a batch of samples with bad fit, each PCoord node

maintains a weighted moving average of the fit error over time. A node assigns a

weight to each batch of samples as a function of the ratio between the average and

current fit error, and then decides how much it should react to the current batch of

samples based on the weight. More precisely, if the fit error of the current batch of

samples exceeds the average fit error, then the node dampens the amount it moves

42

toward the new coordinate by a factor p which is the ratio between the average

and current fit error. We call this weight asssociated with each batch of samples,

the "batch" weight, to distinguish from the previously described "sample" weight

associated with each sample in the loss function.

Let ef be the weighted moving average of fit error of node i, and e"'ef be the

fit error after minimizing the weighted loss function using the new batch of samples.

When the new fit error enewf exceeds the average ef, PCoord only moves p fraction

of the way toward the new coordinates, where p = MIN(ef /eewf, 1), and 0 < p < 1.

The following pseudocode describes the procedure in more details.

ef = Weighted average of fit error of node i

e7w f = The fit error of the new batch of data

=Weight for computing weighted moving average of ef

p = Fraction of movement toward the new coordinates, 0 < p 1

Update Fit Error

The procedure for maintaining the weighted moving average of the fit error is as

follows. It is invoked at each iteration after the coordinate update phase.

//i is this node

UpdateFitError(en,,f) {
//update the weighted moving average of fit error

ef = 3 * ef + (1 - /)* eewf

}

Compute Fraction of Coordinate Movement

/ /e"'f is the residual error after the minimization step above

ei = EkESamples wk(dik - i - ck||)2

//figure out how much to move toward new coordinates based on goodness of fit

43

p = MIN(ef,,1
e."'

//now, only move p fraction of the way toward the new solution

Cnew = C, + (p * (Cnew - C,))

3.3 The Peer Discovery and Selection Process

In this section, we present the first and third phase of the PCoord algorithm, namely

the sampling and the near peer search phases.

In PCoord, each host selects its M reference points independently of other hosts.

These M peers can be any other peers in the system. We assume that each peer node

is initially connected to K logical neighbors in the overlay. In the initial iteration,

a host selects its reference points randomly from its K logical overlay neighbors. In

order to allow peers to calibrate their coordinates with a large set of peer nodes,

PCoord uses a gossip-based protocol to enable peer discovery. At each iteration,

PCoord hosts discover other peers in the same overlay by exchanging a list of peers

they know of with their reference points. Each node i maintains two lists: R, a

list of peers whose RTTs to i are known to i, and T, a list of peers which i has

triangulated distances for so far. To improve the coordinates' accuracy in modeling

short distances, each PCoord peer includes a mixture of near and far nodes: half of

the reference points are the nodes with shortest measured RTTs in a host's R list,

and the other half are randomly selected from the combined R and T lists.

SamplePeer

//select M samples from peer list R and T

SamplePeer(R, T) {

if (R == NIL) {

Samples = random M nodes from default logical neighbors

} else {

Y1 = numNN peers with shortest RTT to i in R

44

Y2 = Randomly select (M - numNN) peers from R U T

Samples = Y1 U Y2

}

//Ping for RTTs and exchange peer list R with reference points

for each j in Samples {

ping j to get dij

Senddesjt= (dij, Rj)

//for the Simple PCoord algorithm, j does not send ep

Receivesener=j (cj, Rj, ep)

R.add(j)

T.add(Rj)

} //end for each j
return Samples

}

Next, we describe PCoord's algorithm in discovering nearest peers based on tri-

angulated distances. A peer node i can compute its triangulated distance to another

peer j if they both have measured latency to a common node k. In particular, the

distance between i and j is lower bounded by L = |dik - dk I and upper bounded by

U = dik + djk. There are three ways to estimate two peers' triangulated distance:

upper bound U, lower bound L, and their average A (= L+U) [32]. A peer node

periodically probes nodes in its triangulated peer list T to discover its nearest peer

node. In particular, it probes the peers with minimum triangulated distances in its

peer list T. The probed nodes and their corresponding RTTs are then stored in the

peer list R. The following is the psuedocode used by each peer node to update its

peer list R at each iteration to find its nearest peer nodes.

ProbeNearNeighbors

ProbeNearNeighbors(R, T) {

45

3i = T.remove(peer with min upper bound U)

32 = T.remove(peer with min lower bound L)

3 = T.remove(peer with min average A)

ping(ji, 32, 13)

R.add(ji, J2, 33)

}

The ping(ji, 12, 33) operation involves measuring the round-trip ping times to

nodes Ji, 1J2 and 3.

3.3.1 Summary: the PCoord Algorithm

In this section, we pull the above pieces together and summarize the PCoord pseu-

docode below, which incorporates fragments of pseudocode from the three mecha-

nisms described above: (1) weighted loss function (2) a resistance factor in the loss

function (3) adjusting amount of coordinates updates based on goodness-of-fit of a

batch of samples. We will describe how to set some of the following parameters in

Chapter 4.

M = Number of reference points for each coordinate update

numNN = Number of nearest neighbors in a sample batch

a = weight for computing weighted moving average of prediction error

T = a small positive constant added to 1 for weight computation

1 = weight for computing weighted moving average of fit error

//i is this node

PCoord() {

Ci = Corigin

R=NIL

T=NIL

while (in the system) {

46

//select M samples from peer list R and T

Samples = SamplePeers(R, T)

UpdatePredictionError(Samples)

/add node i's own coordinates to the samples

Samples = Samples.add(i)

(Cnew, ewIf) MinimizeWeightedError (Samples, ci)

ci = ciew

UpdateFitError(eefi)
ProbeNearNeighbors(R, T)

}
}

MinimizeWeightedError (Samples, cguess) {
eP

for each node k in Samples {

/assign weight to each node in Samples
p pak eTop - ek

a
2

Wk k a2

jESamples .

} /end for

//now find new coordinate to minimize weighted sum of squared error

find Cnew that minimizes

EkESamples Wk(dik - HC ew - ck I)

//eenwf is the residual error found after the minimization step above

eefi E kESamples Wk(dik. -Ctew -- CkI2

//figure out how much to move toward new coordinates based on goodness-of-fit
f

p = MIN(f,,, 1)
e p

//now, only move p fraction of the way toward the new solution

47

new = ci +(p* (Cnew - C,))

return (C ne, e I)

} //end MinimizeWeightedError

The SamplePeer(and ProbeNearNeighbor(procedures are described in sec-

tion 3.3. They are the same procedures used by the Simple algorithm, with the

exception that, in PCoord, the SamplePeer(phase in the PCoord scheme requires

peers to exchange their relative prediction error for the purpose of weight computa-

tion.

48

Chapter 4

Evaluation of PCoord

4.1 Evaluation Methodology

We evaluate the PCoord approach extensively through simulations using both real

network measurements and simulated topologies. We compare the performance of

PCoord with the Vivaldi scheme in terms of pairwise distance prediction accuracy.

4.1.1 Performance Metrics

We define the prediction error (PE), or simply error, of a link as the absolute difference

between the predicted RTT and the actual RTT. More precisely, the link error between

node i and j is ci - c - di 1, where dij is the measured RTT between i and j, and ci

and c3 are the assigned coordinates of i and j respectively. Following the conventions

in Vivaldi [10], we define the error of a node as the median of the link errors for links

involving that node. The error of the system is defined as the median of the node

errors for all nodes in the system.

The directional prediction error (DPE) of a link between i and j is simply the

difference between the predicted RTT and the actual RTT, or (Ilci - cj l - dij). Thus,

a positive DPE value indicates an over-prediction, and a negative value indicates an

under-prediction of the actual distance.

We also use the prediction error ratio (PER) as our performance metric. The

49

Table 4.1: Latency Data Statistics (in ms)

Data Set N Mean Median Std Min Max

AMP 104 60.12 45 48.48 1 744

PlanetLab 127 108.18 95.79 74.30 0.069 382.84

King 1740 181.74 158.53 132.35 1.01 799.99

error ratio of a link is defined as dIc~"gI-dl. The directional prediction error ratio

(DPER) is defined as I .

Finally, we use the absolute relative error (RE) as our performance metric when

comparing with the GNP scheme. For each pair of nodes, their absolute relative error

is defined as MIc-cj 11c-c ID.
MIN(dij, 1ci -cj 11)

4.1.2 Data Collection

We evaluate our scheme using three data sets containing real network measurements.

* We use the AMP [13] data set on July 16, 2002 (110 nodes) and January 30,

2003 (104 nodes), which measure the round-trip ping time among 110 and 104

nodes respectively.

* We use the PlanetLab [38] all-pairs-ping data set collected on May 10, 2004.

After postprocessing to eliminate missing data, we derived end-to-end latency

data among 127 nodes.

* We use the King data set from Vivaldi [10], which involves the round-trip latency

among 1740 Internet DNS servers.

Table 4.1 lists the mean and median RTT for each data set. Figure 4-1 plots

the RTT distribution of the King and PlanetLab data sets. Figure 4-2 plots the

cumulative RTT distribution of the data set. We present only the results from the

King and PlanetLab data sets.

50

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0
0 100 200 300 400 500 600 700 800

RTT (ms)

Figure 4-1: PlanetLab (127 nodes) and King (1740 nodes)

1

0.9

200 400 600
RTT (ns)

800 1000 1200

Figure 4-2: Cumulative RTT Distribution

51

a)

as

0

cs
.2

Planet 127 nodes
King 1740 nodes -----

-

3

E

ca

-j

16

0ca
L-

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

Planet 127 nodes
King 1740 nodes -------
AMP 104 nodes --------

I-- -- -- --- -- -- i --- -- --- -- I

4.1.3 Simulation Setup

We have simulated the execution of PCoord using p2psim [34], an event-driven,

packet-level network simulator. We measure the processing cost of the simplex down-

hill operation on a Sun UltraSparc (with 150 MHz CPU and 4096 Megabytes of

memory), and use the measured median processing time in our PCoord simulation.

We ran the PCoord coordinate update procedure and measure the time it takes to run

the simplex downhill minimization using 10 reference points at each update process.

A total of 34,800 measurements (1,740 nodes running the coordinates updates for 20

iterations) were obtained. We repeated the measurements using 20 and 30 reference

points. The median processing time is 10 ms per coordinate update when 10 refer-

ence points are used, and 20 ms when 20 and 30 reference points are used in each

update. Our results are consistent with the measured Simplex algorithm processing

time in GNP [32], which reported that computing an ordinary host's coordinates us-

ing 15 landmarks takes on the order of ten milliseconds on a 866 MHz Pentium III.

The landmark operation, which minimizes loss function involving pair-wise distances

among landmarks, takes on the order of a second [32]. PCoord, however, does not

perform the more expensive landmark operation step.

In the simulation, the coordinate update of each PCoord node is a two-step pro-

cess. First, a node pings a set of peers using asynchronous (non-blocking) communi-

cation to gather the RTTs and current coordinates of its reference peer nodes. After

the node hears back from all the reference peers, it proceeds to the next step to com-

pute its updated coordinates using the RTTs and coordinates gathered in its current

period; it also performs the peer exchange protocol with each of the reference peers,

again using asynchronous (non-blocking) communication. After the node has com-

pleted the second step (and the simulated clock is advanced by the maximum time

it takes to update coordinate and time it takes to complete the message exchange

phase), it proceeds to the next coordinate update iteration. Each node proceeds in

its coordinate update independent of other nodes' update progress.

Our simulation assumes that the latencies among hosts are fixed throughout the

52

simulation period, and we do not consider packet loss. In practice, a node would need

to implement a timeout mechanism to deal with packet loss.

4.1.4 PCoord Parameter Settings

We ran the PCoord simulations with various sample batch size M to explore its effect

on convergence and prediction accuracy. The rest of the parameters are set as follows.

numNN = M2

a = 0.95

7 = 0.05

3 = 0.6

We set the number of nearest neighbors in a sample batch to be half the sample

batch size in order to generate a sample set with a mixture of both near and far

nodes. The parameter a is the weight (0 < a < 1) used for computing the weighted

moving average of prediction error in the weighted loss mechanism. Our results are

generated with a of 0.95.

The parameter / is the weight (0 < < 1) used for computing weighted moving

average of fit error in the damping mechanism. The fit errors of a new node tend to

be the highest in the initial iterations of coordinate updates, and drop to significantly

lower values after a small number of iterations. Setting 3 to a high value will cause

the weighted moving average to put more emphasis on past fit errors rather than

the more recent ones. As a result, a higher 13 implies a longer period of time (from

when the node first joins) before the damping mechanism takes effect, since it takes

more iterations for the initially high weighted moving average to catch up to the lower

instantaneous fit error. An extreme example is that when /3 is 1, the weighted moving

average e{ will always be the initial fit error, and thus the damping mechanism will

likely never take effect.

A low value of / places more weight on the more recent fit errors. An extreme

example is that when /3 is zero, the damping mechanism uses the instantaneous fit

53

error from the previous iteration as the threshold to determine whether to trigger the

damping mechanism in the current iteration.

We have experimented with PCoord using 7 in a range of values between 0.2

to 0.9 using the PlanetLab and King data set. Our results suggest that different

values of 3 in the above range do not change the overall system prediction accuracy

significantly. At steady state, the differences in median prediction error when using

different 3 values are less than 2 ms; a 3 of less than 0.7 performs slightly better.

The simulation results presented in this thesis is when 13 is set to 0.6.

At each coordinate update, a peer includes its nearest peer discovered so far (i.e.,

the peer with minimum RTT to itself in the peer list R) in its reference point set.

To refine its search for its nearest neighbor, each peer probes peers with shortest

triangulated distances in its T list at each calibration phase. Results presented here

are generated by having each peer probe six peers from its T list in each calibration

phase.

The default dimension of the geometric space used is five for the King data set

and three for the PlanetLab data set unless otherwise noted. We do not limit the

size of peer list T and R stored at each peer. However, the size of the peer list that

peers exchange is limited to five for the PlanetLab data and thirty for the King data

set. We use different parameter settings for King and PlanetLab in order to compare

PCoord's performance with that of Vivaldi's under different parameter settings that

reflect different cost/performance tradeoffs.

Simplex Downhill Settings

Our implementation of the Simplex algorithm is adapted from the GNP software

distribution, which is in turn based on the code in Numerical Recipes in C [39). In

order to obtain high quality solutions, the Simplex algorithm usually restarts the

minimization routine after it claims to have found a solution. For each restart, it uses

the claimed minimum from the previous run as the initial guess for the next run. We

use restart to indicate the number of times the minimization procedure is restarted

for each coordinate update step. Within each restart, the terminating criteria are

54

usually specified by some tolerance ftol and some threshold NMAX, which denotes

the maximum allowed function evaluations.

In GNP, the landmarks' coordinates were generated after repeating the minimiza-

tion procedure for 300 iterations, and the normal hosts' coordinates were computed

after repeating the procedure for 30 iterations [32]. The GNP [32] authors reported

that in general 3 iterations are sufficient to obtain a fairly robust estimate. The

default NMAX value in the GNP software distribution is 500,000.

In PCoord, the Simplex algorithm is run in a "light-weight" mode. In particular,

we skip the restart step (restart = 0) in the Simplex algorithm and limit the maxi-

mum function evaluations to 1000 (NMAX = 1000), and achieve similar prediction

accuracy in comparison to when using a more heavy-weight parameter settings, for

example, restart = 3 and NMAX = 500, 000. The PCoord results presented in this

thesis are generated using the light-weight parameter setting described above. More

specifically, within each coordinate update step, at most 1000 evaluations of the ob-

jective function are performed, and we do not restart of the minimization procedure

within each coordinate update step.

We believe PCoord is able to perform well using the light-weight Simplex pro-

cedure because PCoord itself maps the coordinates iteratively; at each coordinate

update, PCoord uses the "optimal" solution found in the previous iteration as its

initial guess for the minimization procedure in the next iteration. In some ways,

each coordinate update in PCoord is a way to perform the "restart". Unlike the

restart in the Simplex algorithm, however, each PCoord coordinate update attempts

to optimize the loss function using a different batch of samples each time.

4.2 Vivaldi

Vivaldi does not specify any peer discovery mechanism. The Vivaldi work [10] uses

various peer configurations for evaluations. We describe three of them here as a basis

for comparison with PCoord. The first two schemes assume that a node has a fixed

set of logical neighbors throughout the simulation period. Each time a node selects a

55

peer reference node from its fixed logical neighbor set to update its own coordinates.

The third scheme, Random Global, assumes that each node knows the identities of

all other nodes in the system; at each coordinate update, a node randomly selects a

peer from the global population for coordinate update.

A more precise definition for each of these three schemes is as follows:

" Random-K Neighbors: each node is initialized with K logical neighbors ran-

domly selected from the global peer population. A peer randomly selects from

its K logical neighbors to perform coordinate updates each time.

" Half-Near-K Neighbors: each node is initialized with K logical neighbors, half

of which are the node's actual nearest neighbors and the other half are randomly

selected from the global peer population. A peer randomly selects from among

its K logical neighbors to perform coordinate updates.

" Random Global: there is no notion of logical neighbors in this sampling setting;

a peer randomly selects from the global pool of peers each time it updates its

coordinates. Each node is assumed to have access to a list of all other nodes in

the system.

In this section, we present Vivaldi's performance generated using simulation code

in the p2psim [34]. All Vivaldi simulations presented in this work use the adaptive

time step mechanism described in [10]. The adaptive time step in Vivaldi is used to

adjust how much a node should move its own coordinates in response to a sampled

RTT and the corresponding peer's coordinates. A constant C, (0 < C, < 1) is used

to control how much a node reacts to each new sample.

Figure 4-3 presents the effect of time step constant C, on the rate of convergence

under the three different configurations described above. The number of logical neigh-

bors is sixteen for the Random-K and Half-Near-K configurations. The plot shows

the median prediction error as a function of time. We note that a C, value of 0.25

yields both quick error reduction and low oscillation for all three different sampling

strategies. When C, = 1, the system converges faster in some cases but to a higher

median error than when it is 0.25. This is consistent with the results reported in [10].

56

80
C = 0.01

70 C = 0.25 --

E C= 1.0 --------

8 60

w

30U-3-

10
0 10 20 30 40 50 60

Time (seconds)

(a) Random-K Neighbors

80
C = 0.01

70C = 0.25 --
7E C =1.0 -- -- -

0 60
w

50-

40
I.

30

20

10
0 10 20 30 40 50 60

Time (seconds)

(b) Half-Near-K Neighbors

80
C = 0.01
C = 0.25 -----

70 C =1.0 --------

2 60 -

50

40 -

CL

30-

10
0 10 20 30 40 50 60

Time (seconds)

(c) Random Global

Figure 4-3: Vivaldi timestep effect. PlanetLab, N = 127, K 16, D = 3.

57

40

35 -

30 -

E
25 - -

15 --

10

5 --

0
0 10 20 30 40 50 60

Time (seconds)

Figure 4-4: Vivaldi, Cc 0.25. PlanetLab, N 127, D = 3. Comparing three
different configurations.

Figure 4-4 compares the convergence behavior of all three different configurations

when the time step Cc is fixed at 0.25. The plot shows the median prediction error as a

function of time. The Half-Near-K-Neighbors and Random Global sampling perform

better than sampling from a fixed set of randomly selected neighbors. Additionally,

when sampling from a fixed set of logical neighbors, the prediction accuracy of Vivaldi

can be improved by including nearby nodes into the logical neighbor set.

Figure 4-5 shows the Vivaldi convergence for King data set using the three differ-

ent configurations mentioned above, where the number of logical neighbors is 64 for

the Random-K and Half-Near-K neighbors configurations. The Half-Near-K con-

figuration converges faster to low prediction error in comparison to the other two

configurations. For the rest of this thesis, we use the Half-Near-K neighbor configu-

ration with adaptive timestep constant Cc = 0.25 for all Vivaldi simulations, unless

otherwise noted.

58

Random-K (K=1 6)
Random Global ----

Half-Near-K (K=16) --- 4---

120
Random-K (K=64)

Random Global --
Half-Near-K (K=64) ----

100

E 80

0

0

0---

0 10 20 30 40 50 60

Time

Figure 4-5: Convergence behavior of Vivaldi, King, N = 1740, D = 5.

4.3 PCoord Results

In this section, we present the PCoord performance using the PlanetLab and the King

data set.

4.3.1 PCoord PlanetLab Results

In this section, we compare PCoord with Vivaldi using the PlanetLab data set. Fig-

ure 4-6 compare PCoord and Vivaldi convergence behavior in terms of average number

of samples and time. For PCoord, the sample batch size M is six. We use a conserva-

tive estimate of the Simplex Downhill processing cost of 10 ms, which is the median

processing cost for 5-dimensional coordinates with batch size ten. It is conservative in

the sense that the processing cost in general increases as the dimensionality and num-

ber of reference points increase. The Vivaldi results presented here use Half-Near-K

neighbors configuration with K = 16, and C, = 1 and 0.25. We note that PCoord

converges faster to a lower error both in terms of time and number of samples used.

59

PCoord (M=6)
Vivaldi (C=0.25)

Vivaldi (C=1)
35 -

30 -

E
25

w

10

5-

0
0 50 100 150 200 250 300

Average Number of Samples

(a) Compare PCoord and Vivaldi in terms of average number of samples

40
1PCoord (M=6)

Vivaldi (C=0.25) -- --
Vivaldi (C=1) ----

35

30

E
25

w
C
0
5 20

EL

15 ->-

10 -I -~

5 -

0
0 10 20 30 40 50 60

Time (seconds)

(b) Compare PCoord and Vivaldi in terms of time

Figure 4-6: Compare PCoord and Vivaldi in terms of time and number of samples,
PlanetLab, N - 127. PCoord uses six reference points per coordinate update. Vivaldi
uses Half-Near-K neighbors configuration with K = 16, D = 3.

60

40

4.3.2 PCoord Convergence Behavior Using King Data Set

In this section, we examine PCoord's convergence behavior with various sample batch

size using the King data set. Figures 4-7, 4-8, and 4-9 plot the convergence of PCoord

as a function of number of samples used, time, and number of coordinate updates.

The numbers of reference points used at each coordinate update are 10, 20 and 30.

The convergence time is 5 to 10 seconds in all three cases. Our observations are as

follow.

" PCoord converges to a low median prediction error (approximately 12 ms) in

about 100 to 120 samples, or equivalently, 10 to 12 coordinate updates when 10

reference points are used for each coordinate update.

" For PCoord, including larger numbers of reference points at each update step

yields slightly slower convergence in terms of number of samples used, but faster

convergence in terms of time and number of iterations of coordinates updates.

Overall, using 10 reference points at each update step yields quick convergence

to low error and achieves good tradeoff between communication and computation

overhead.

Variations Among Different Simulation Runs

In PCoord simulations, a node's logical neighbors are randomly drawn from the global

population in each simulation run. In order to test how PCoord's performance vary

under different initial logical neighbor assignments, we run PCoord with five different

logical neighbor configurations using the King data set. Each node is assigned 10 log-

ical neighbors randomly drawn from the 1740-nodes global population. In Table 4.2,

we present the mean and standard deviations of medium system errors across the

five different simulation runs at fixed time intervals. As a reference, we also show

the average number of samples used by each node at each sampled time interval. We

note that the largest standard deviation at the first second is less than 5 ms with

an average of about 45 ms. After the first second, the standard deviation is about

61

200 300

Number of Samples (avg)

Figure 4-7: PCoord convergence as a function of number of samples
30 reference points are used at each coordinate update. King, N =

Z5

-
0

120

100

80

60

40

20

01
0

10 RP
20 RP -
30 RP ----

10 15

Time (seconds)
20 255

when 10, 20 and
1740, D = 5.

30

Figure 4-8: PCoord Convergence as a function of
points are used at each coordinate update. King,

time when 10, 20
N = 1740, D = 5

and 30 reference

62

120

100

10 RP
20 RP ---- -
30 RP ---

80

60
0

Co

C
.-z

40

20

0 L-

0 100 400 500

-

10 RP
120 20 RP ----

30 RP --

100

o80--

0

~, 60

Ca
.as

S40

0 5 10 15 20
Average Number of Coordinate Updates

Figure 4-9: PCoord convergence as a function of number of coordinate updates when
10, 20 and 30 reference points are used at each coordinate update. King, N = 1740,
D = 5.

Time (Seconds) 1 2 3 4 5 10 20 30

Std PE (ms) 4.77 1.29 2.21 2.09 1.57 0.26 0.08 0.07

Mean PE (ms) 44.57 27.06 20.20 16.83 14.37 11.53 10.46 10.39

Mean Samples 18.26 35.73 52.13 67.57 90.81 164.72 319.74 471.96

Table 4.2: PCoord mean and standard deviation of system prediction error (in ms).
Statistics from five different logical neighbor configurations, King, M=10.

1 - 2 ms until after 10 seconds, the standard deviation drops to below 1 ms when

the mean error stays at the 10 ms range. This suggests that the variability of the

prediction error is rather small across different simulation runs under different initial

logical neighbor configurations.

4.4 Comparison of PCoord, Vivaldi and FixedLM

In this section, we compare the performance of PCoord with Vivaldi and the FixedLM

scheme. For the FixedLM scheme, we randomly select 10, 20 and 30 nodes as land-

marks using the King data set, with twenty different randomly generated landmark

63

configurations. The results with the lowest median prediction error are reported.

Using 10 and 20 landmarks, the lowest median prediction errors are 12.16 and 11.44

ms respectively. Using 30 fixed landmarks, the lowest median prediction error is

approximately 11 ms; the lowest 95th percentile prediction error is 32 ms.

4.4.1 Relative Error Distribution

Figure 4-10 shows the cumulative distribution of relative error of PCoord, Vivaldi, and

the FixedLM scheme. With the FixedLM scheme, each host uses 30 fixed landmarks;

the results shown in plot have the lowest median error of all 20 different randomly-

generated landmark configurations.

In Plot 4-10a, PCoord's relative error distribution are based on coordinates gener-

ated after five seconds of simulated time, with each host using on average 100 samples

in total. Plot 4-10b and 4-10c show PCoord results generated after 10 and 20 seconds

of simulated time, with each host using on average 165 and 320 samples respectively.

Vivaldi results shown use about the same number of samples per host after 10, 15,

and 30 seconds of simulated time. Vivaldi uses Half-Near-K neighbors configuration,

where K = 64 and Cc=0.25.

Note that the number of samples reported in the PCoord and Vivaldi are non-

unique samples; i.e., if a node uses the coordinates and distances sampled from the

same node twice at different iterations, it is counted as two distinct samples.

We note that PCoord's prediction accuracy can in fact come fairly close to that

of the FixedLM scheme after 100 samples. The FixedLM scheme's median and 75th

percentile relative error are approximately 10% and 22% respectively. After 100

samples, PCoord's median relative error is approximately 12% which is only 2% more

than that of the FixedLM scheme with 30 landmarks. The 75th percentile relative

error is approximate 33% after 100 samples. At 165 samples, PCoord can do as well as

FixedLM with 30 landmarks. Beyond 250 samples, PCoord performs slightly better

than the FixedLM scheme in terms of relative error distributions.

Vivaldi (C, = 0.25) takes about 320 samples to achieve 12% median relative

error. After 100 samples, Vivaldi's median relative error is 24%, which is about twice

64

as much as that of PCoord's using the same number of samples. After 165 samples,

the median relative error is approximately 16%.

In summary, our results indicate that PCoord can achieve comparable perfor-

mance as the FixedLM scheme when "sufficient" number of samples are used. For

PCoord, it takes approximately 100 - 165 samples to achieve comparable accuracy as

the FixedLM scheme. For Vivaldi, it takes over 300 samples to achieve comparable

performance as the FixedLM scheme.

4.4.2 Convergence Behavior

In this section, we compare PCoord and Vivaldi in terms of time and number of

samples required for convergence. We note that the Vivaldi simulation updates co-

ordinates using one sample at a time. PCoord has faster convergence in terms of

time (or number of seconds) due to the fact that we use asynchronous communica-

tion to sample a batch of distances at a time. Vivaldi could potentially speed up

the convergence time by sampling nodes' distances and coordinates in a batch mode.

However, it is unclear how that might impact its prediction accuracy. We show PCo-

ord's convergence in terms of time to illustrate that PCoord can converge within a

reasonable time frame despite the additional computational overhead from the Sim-

plex algorithm. For comparison purposes between PCoord and Vivaldi, we focus on

the number of samples required to converge to a low prediction error.

Figures 4-11, 4-12, and 4-13 compare the convergence behavior of PCoord and

Vivaldi in terms of 5th, 50th, and 95th percentile system error as a function of time

and number of samples used. Our results indicate that PCoord converges faster than

Vivaldi across all three error measurements. Using 10 reference points, the median

prediction error of PCoord decreases to 13 ms range with each host using on average

80 to 100 sample, and 12 ms range using 100 to 120 samples. It takes Vivaldi twice

as many samples on average to reach the same level of median error.

We also observe that, in comparison to the median error, the 95th percentile error

takes longer to converge for both PCoord and Vivaldi. The lowest 95th percentile

prediction error is 32 ms for the FixedLM scheme using 30 fixed landmarks. For

65

S0.8
0

.20

0.6

>

0.4

E

0.2 PCoord 10 RP - ~
Vivaldi Half Near Neighbors -----

FixedLM (30LM) --------
0-

0 0.2 0.4 0.6 0.8 1
Relative Error

(a) After 100 Samples

S0.8

0.6

is 0.4 - --

E

PCoord 10 RP + ~
Vivaldi Half Near Neighbors ----

FixedLM (30LM) --------
0 -

0 0.2 0.4 0.6 0.8 1
Relative Error

(b) After 165 Samples

0.8

0.6

0.4

0.2 PCoord 10 RP -- ~
Vivaldi Half Near Neighbors -------

FixedLM (30LM) --------
01

0 0.2 0.4 0.6 0.8 1
Relative Error

(c) After 320 Samples

Figure 4-10: Compare PCoord, Vivaldi and FixedLM in terms of relative error, King,
N = 1740, D = 5, M = 10.

66

120
Vivaldi (C=0.25)

Vivaldi (C=1) --
PCoord --- ----

100

E 80

0

60

40

20
---------------- -----

0
0 50 100 150 200 250 300

Number of Samples

(a) Median error in terms of number of samples

120 .

Vivaldi (C=0.25)
Vivaldi (C=1) -------

PCoord --- +-..

100

E 80,-
0 0

4S 0 -;

0
20

0 1
0 10 20 30 40 50

Time (s)

(b) Median Error in terms of time

Figure 4-11: Convergence of PCoord (10 reference points) and Vivaldi (Cc=0.25 and
1, Half-Near-K neighbors, K = 64) in terms of median error. King data.

67

Vivaldi (C=0.25)
Vivaldi (C=1) ------

PCoord -+

++ ~ - -+++++-+-- - - +4+ ++ 4- - -- + + +-++ -+ + + *+ 4+

0 100 200 300 400 500

Number of Samples

(a) 95th percentile error in terms of Sample

Vivaldi title (C=0.25)
Vivaldi (C=1) ------

PCoord -------

+

0 1'0 20 30 40 50

Time (s)

(b) 95th percentile error in terms of time

Figure 4-12: Convergence of PCoord (10 reference points) and Vivaldi in terms of

95th percentile error. King data.

68

E

1

0

w

a.

(*
aE-

200

150

100

50

0

300

250

200

150

100

w
0

a)

a)

IL

LO

50

0

80

70

60
E

0
wu 50
0

1 40

10~~~~Vvld C 1 ------------- ------

60
-

40-

20 -

0 100 200 300 400 500
Number of Samples

(a) 5th percentile error in terms of Sample

80
Vivaldi (0=0.25)

Vivaldi (C=1) ----
PCoord ----- ---

70

60

0

3 0

LO

20

10 ----- -------------- '--------- ---------- ----------

+ 4444 -14++++I+H+ - -+I---H--s-- 1-H-I---+-- 4I! 44-44I-+4H "1H*-H++H-4 1-++4H -++Ill

0 - L I

0 10 20 30 40 50
Time (s)

(b) 5th percentile error in terms of time

Figure 4-13: Convergence of PCoord (10 reference points) and Vivaldi in terms of 5th
percentile error. King data.

69

Vivaldi (C=0.25)
Vivaldi (C=1) --

PCoord --- ---

50

40

E

0 30-
.0

20 -

C

0
0

0

0 100 200 300 400 500
Average Number of Samples

Figure 4-14: PCoord: compare near peer based sampling (default) vs. random global

sampling. King, N = 1740.

PCoord, it takes approximately 180 to 200 samples to converge to 32 ms for 95th

percentile error, and it takes Vivaldi approximately 500 samples to converge to the

same 95th percentile error range.

4.5 Effects of Including Nearby Neighbors in Ref-

erence Set

In the previous sections, PCoord uses an active peer discovery mechanism that allows

peers to discover each other by exchanging messages. Each node includes the nearest

peers discovered so far in its reference set for coordinate update. In this section,

we ask the question whether and by how much including nearby neighbors in the

reference set help to improve prediction accuracy?

To answer the above question, we run PCoord using 10 reference points in two

different sampling strategies: (1) the PCoord default strategy, i.e., the near-peer based

PCoord sampling strategy described earlier which includes both nearby and random

70

PCoord Random Global (M=10)
PCoord Half Near Peer (M=1 0) --- +--

0.8 -

0.6 -
0
z

0
CIO .04

0.2

--X ------ : , (

0 2 4 6 8 10 12 14
Average Number of Coordinate Updates

Figure 4-15: PCoord King data set. N=1740.

peers from a node's peer list, and (2) the Random Global strategy which assumes that

each node has access to a list of all other nodes in the system; at each update round,

a node randomly sample M nodes from the global peer list for coordinate update.

Figure 4-14 plots the median error of PCoord when using the default near-peer

based sampling vs. the Random Global strategy. The number of reference points

M is 10 for both cases. For the default PCoord strategy, numNN = 5. Our results

indicate that after approximately 100 samples, the median errors of both options drop

to the 13 ms range, but the near-peer based sampling strategy can converge further to

lower median error: its median error is in the 10 ms range after 200 samples; whereas

the median error of the Global Random strategy stays above 12 ms. This suggests

that including nearby neighbors in the reference set improves the distance prediction

accuracy.

71

P - I - F NProbe-NN-On - Found NN -+---

Probe-NN-Off - Found NN --- x---
Probe-NN-On - RList Size --- --
Probe-NN-Off - RList Size . - ...-

1

4.6 Effectiveness of PCoord Near Neighbor Search

Next, we turn to the question of how effective PCoord is in discovering nearby peers.

To answer this question, we run PCoord using 10 reference points in two different

modes: with the probe nearest neighbor option turned on (probe-NN-on) and off

(probe-NN-off). The probe-NN-on option is the default PCoord algorithm. In the

probe-NN-off option, each node randomly selects 10 peers from its peer list as its

reference points for coordinate update, and it does not probe its triangulated list for

nearest neighbors.

Figure 4-15 shows the fraction of peers that found its actual nearest neighbor, the

average fraction of nodes probed by each node and the average RTT peer list as a

function of average number of coordinate updates performed. Our results indicate

that the triangulated distance based nearest neighbor search scheme is very effective

in discovering nearby peers: using the probe-NN-on option, approximately 80% of the

hosts found their nearest peers by probing less than 10% of the peer population; with

the probe-NN-off option, less than 15% of the hosts found their nearest neighbors

with similar probing cost.

4.7 Compare PCoord and Vivaldi Using Random

Peer Sampling

Our results so far indicate that PCoord outperforms Vivaldi in that it can converge

to lower prediction error than Vivaldi using fewer number of samples. In this section,

we ask how much of PCoord's performance advantage over Vivaldi is due to its peer

discovery and sampling strategy.

To answer this question, we compare PCoord and Vivaldi using the same sam-

pling strategy. We turn off PCoord's near-peer based sampling strategy and compare

PCoord and Vivaldi when both schemes use the Random Global sampling strategy.

Figure 4-16 plots the median, 95th and 5th percentile error of PCoord and Vivaldi

using the PlanetLab data set with the Random Global sampling strategy. In figure 4-

72

40
PCoord (M=10)

35 Vivaldi (C=0.25) ------- -

E
30 -

W 25
C0 -

10 -20

15 -10

Z> 5

0
0 50 100 150 200 250 300

Average Number of Samples

(a) Median Error

0

PCoord (M= 10)
Vivaldi (C=0.25) ---

50

-o 40

Lb

C

0 "V

20

10 -

0
0 50 100 150 200 250 300

Average Number of Samples

(b) 95th Percentile Error

40
PCoord (M=10)

35 ' Vivaldi (C=0.25) ------- -

E
30

25,-
0

20

t5 5 -
C 1

10-D

5

0 50 100 150 200 250 300
Average Number of Samples

(c) 5th Percentile Error

Figure 4-16: Compare PCoord and Vivaldi when both use Random Global sampling
strategy, PlanetLab, N=127, D = 5, M = 10.

73

50
Vivaldi Random Global(C=0.25)
PCoord Random Global (M=10) --- +---

40

0

w
30 -

22 20-

10 - -.0

0 50 100 150 200 250 300 350

Number of Samples

(a) Median error

120
Vivaldi Random Global(C=0.25)
PCoord Random Global (M=1 0) --- +---

(D 100

800

80

0 50 100 150 200 250 300 350

Number of Samples

(b) M5hPe tnerr r

Vivaldi Random Global(C=0.25)
PCoord Random Global (M=1 0)--+-

0
0 -

060

20

0 50 100 150 200 250 300 350
Number of Samples

(b) 95th Percentile Error

e fVivaldi Random Global(C=0.25) a
PCoord Random Global (M=10) ------

E 40

w 30

.CU
22 20 \

0~

0 50 100 150 200 250 300 350
Number of Samples

(c) 5th Percentile Error

Figure 4-17: Convergence of PCoord (10 reference points) and Vivaldi (C,=0.25)
using Random-Global peer sampling. King data.

74

Found NN (10 RP) iI
Found NN (20 RP) --- x--- * -- X - ----)-
Found NN (30 RP) -- ------ ..---- - ~

Probed (10 RP) ------ a-
Probed (20 RP) -- a -

0.8 Probed (30 RP) - -o- -'

0.6
0z

Ca

0.

E1 1

................ fBa . .0.

B.0

0 5 10 15 20
Average Number of Coordinate Updates

Figure 4-18: King data set. N = 1740.

17, we perform the same comparison between PCoord and Vivaldi using the King

data set with the Random Global sampling strategy.

Our results indicate that PCoord is able to converge faster than Vivaldi when

both schemes use the Global-Random sampling strategy. Using the PlanetLab data,

PCoord has lower median prediction error when the number of samples used is 150

or less. Using the King data set, Vivaldi's 95th percentile error drops to 35 ms

after approximately 100 samples. After the same number of samples, PCoord's 95th

percentile prediction error is 25 ms, which is 40% less than that of Vivaldi's.

4.8 Discussion of PCoord Communication Cost

In this section, we examine the storage and communication cost of PCoord. Figure 4-

18 illustrates the effectiveness of PCoord peer discovery mechanism when 10, 20

and 30 reference points are used and the associated communication cost measured

as fraction of nodes each host probed as the coordinate update process progresses.

The plot shows the fraction of nodes that found their nearest neighbors and the

75

1

1
10 RP RList -
20 RP RList --- x---
30 RP RList --- E--

10 RP TList.
20 RP TList --- -

0.8 30 RP TList - -

(n,. * Ar -i,. - O .(...

0.6 - 8.

0

5 151 2

Z

0

CO)
S0.4

0 0

0101520

Average Number of Coordinate Updates

Figure 4-19: King data set. N = 1740.

fraction of nodes probed as a function of the average number of coordinate updates

with different number of reference points. We note that, using 10 reference points,

after five coordinate update iterations, 50% of the nodes found their actual nearest

neighbor by probing only 3.8% of the global peer population; after 10 coordinate

update iterations, over 80% of the hosts found their nearest neighbors by probing 7%

of the total peer population.

Figure 4-19 shows the average R list and T list size as the coordinate update

progresses when 10, 20 and 30 reference points are used. The number of RTT entries

that each host exchanges with each of its reference points is limited to 30 entries in

all three cases. As expected, the higher the number of reference points used at each

iteration, the faster a host discovers other peers in the system. Recall that PCoord

converges in about 5 to 10 coordinate updates when 20 and 30 reference points are

used, and 10 to 15 coordinate updates when 10 reference points are used. The R

list represents a list of peers that a host has communicated with directly. The T list

represents a list of peers that a host has not communicated with directly, but has

triangulated information for. We note that, after 5 coordinate updates, on average,

76

each peer has directly communicated with approximately 5%, 9%, 13% of the peer

population, and obtained triangulated information for 49%, 69%, and 72% of the

peers when 10, 20 and 30 reference points are used respectively.

4.9 Performance of Newly Joined Nodes

In the previous sections, we evaluated PCoord's convergence behavior when all nodes

join at approximately the same time. Our results suggest that, in a 1740 nodes peer-

to-peer system, PCoord can converge within 10 seconds to low median prediction

error, where each node performs less than ten coordinates updates using 10 reference

points per update.

In practice, however, it is not likely that thousands of nodes all start at the same

time. It is more likely that nodes join incrementally as the system evolves. Intuitively,

a node joining a system that has already converged should take much less time and

number of samples to converge to coordinates with low prediction error.

In this section, we evaluate the performance of PCoord for newly joined nodes. We

divide the 1740 nodes in the King data set in half: 870 nodes join at approximately

the same time in the beginning; the other 870 nodes start joining the system after the

initially joined nodes' coordinates have converged; the new nodes join incrementally,

one at a time. We call this joining scenario, Half N Incremental Join, in contrast

to the joining scenario in previous sections, which we call All N Simultaneous Join,

where all N nodes join in the beginning at the same time.

We simulated the incremental join case for 225 seconds in total, where 870 nodes

start at approximately the same time in the beginning, and the other 870 nodes start

joining 20 seconds afterwards, in a 200 ms interval. In both the simultaneous and

incremental join cases, each host samples RTT and coordinates from ten peers at each

coordinate update. The dimensionality of the Euclidean mapping is five. Each of the

newly joined node is initialized with ten logical neighbors, randomly drawn from nodes

that are in the system at the time. The new node samples RTT and coordinates from

its randomly assigned logical neighbors for its first coordinate update, and runs the

77

140

120 -

100 -

E 80
0

C
.cu,

40

20

0 1
0 50 100 150 200

Time (seconds)

Figure 4-20: Compare convergence behavior of PCoord in two join scenarios: (1)
All N Simultaneous Join: all nodes join at the beginning of system start time, and
(2) Half N Incremental Join: when half the nodes join all at once in the beginning
and the other half starting to join 20 seconds afterwards one at a time, in a 200 ms
interval. King data set. N = 1740.

PCoord peer information exchange protocol.

Figure 4-20 compares the convergence of system-wide median error of the two

joining scenarios: All N Simultaneous Join vs. Half N Incremental Join. The x-axis

is the absolute time, i.e., time since the beginning of system start time. The y-axis is

the median error across all nodes in the system at the time. For the simultaneous join

case, we only show the error for the initial 60 seconds. We note that the incremental

join, starting at time 20 (seconds), does not change the system-wide median error

significantly, suggesting that the newly joined nodes introduce very little disturbances

to the existing nodes.

Figures 4-21 and 4-22 evaluate the error convergence of the newly joined nodes as

a function of time in system and number of coordinate updates. We also show the

system-wide statistics in the same plot as a comparison. The system-wide statistics

is taken as a snapshot of the system error at some instance in time, i.e., the system

78

Simultaneous Join -

Incremental Join -------

120

100

E

0

0

0
*0

0

80

60

40

20

0

New Joined Nodes Only
System Wide -------

0 10 20 30
Time Since Join (s)

40 50

Figure 4-21: Convergence behavior of the Half N Incremental Join scenario. Plot
shows the convergence of the median node error as a function of time since join. The
curve for the "System Wide" represents the system median error as a function of
time, where the system consists of all nodes currently in the system at that instance
of time. The "New Joined Nodes Only" curve is the median error of all newly joined
nodes as a function of time since their respective join time; the x-axis in this case,
represents the relative time with respective to each node's own join time. King data
set. N = 1740.

79

New Joined Nodes Only
System Wide -----

20 30
Number of Updates

Figure 4-22: Convergence behavior of the Half N Incremental Join scenario. Plot
shows the convergence of the median node error as a function of number of updates
performed by each node since join. The curve for the "System Wide" represents
the system median error, where the system consists of all nodes currently in the
system, and the number of updates is the average number of updates done by all
nodes in the system at that instance of time. The "New Joined Nodes Only" curve
is the median error of all newly joined nodes as a function of number of coordinates
updates performed. King data set. N = 1740.

80

120

100

80E

C
0

'0
a)

02

60

40

20

0
0 10 40 50

-

-- ----

median error is the median of the median errors of all nodes that are in the system

at the time of the snapshot.

In Figure 4-21, the "New Joined Nodes Only" curve is the median error of all

newly joined nodes as a function of time since their respective join time; the x-axis

in this case, represents the relative time with respective to each node's own join

time. The plot confirms our intuition that newly joined nodes take much less time

to converge to a reasonably low median error than in the simultaneous join case: the

median error of the newly joined nodes (the median of all new node's median error

after t seconds since its initial join time) is 12.13 ms after merely one second.

In Figure 4-22, the "New Joined Nodes Only" curve is the median error of all

870 newly joined nodes as a function of number of coordinates update performed by

each newly joined node so far. Our results indicate that after one coordinate update

(using the randomly assigned ten logical neighbors), the median error of the newly

joined nodes is 15.3 ms; after the second update, the median error drops to 12.56 ms.

Within five updates, the median system error is 11.88 ms. As a reference, the 870

nodes that joined in the beginning have performed on average about 30 coordinate

updates by the time the first new node joins at time 20 (seconds).

4.10 PCoord Performance under Dynamic Join and

Leave

In the previous section, we examined PCoord's prediction accuracy when new nodes

join the system in an incremental fashion. In this section, we examine PCoord's

performance under churn, i.e., when the system experiences continuous membership

changes as a result of nodes joining and leaving. We examine the following questions.

How robust is PCoord under high churn? At what point do we begin to observe

significant performance degradation as the join/leave rate increases?

We examine PCoord's performance under churn using the King data set. Under

the dynamic join and leave mode, each node alternately leaves and re-joins the system.

81

30

25

Et

C
0

0 5 0 5

C-L

C

10
0 50 100 150 200

Time (seconds)

Figure 4-23: PCoord performance under dynamic join and leave. King, N = 1740,
M = 10, and D = 5.

The time interval a node stays in and out of the system is exponentially distributed

with a mean t. Recent studies suggest that the median session duration of hosts in

peer-to-peer systems is approximately one hour [45]. We have chosen to use shorter

time intervals, and thus higher churn rates, in our simulations in order to examine

PCoord's performance under extreme conditions. We have experimented with t equal

to 2, 5, 10, 20, 30 and 40 seconds, with a total simulated time of 300 seconds. When

a node re-joins the system, its coordinates are re-initialized to the origin. Each

node uses random peer sampling with a default sample batch size of ten samples per

coordinate update.

Figure 4-23 plots the median prediction accuracy of PCoord as a function of time

when t is 2, 5 and 20 seconds. As a comparison, we also plot prediction accuracy of

PCoord when there is no churn, i.e., when all nodes join simultaneously in the begin-

ning and none subsequently leave. Figure 4-24 plots the average median prediction

accuracy (averaged over time) as a function of the mean host session life time, t. The

average median prediction accuracy represents the steady-state prediction error of

82

Churn (mean = 2s)
Churn (mean = 5s) ----

Churn (mean = 20s) -
No Churn (Simultaneous Join) .+.

18

17

E 16

0

13 --

0 5 10 15 20 25 30 35 40 45

Mean Join/Leave Interval (seconds)

Figure 4-24: PCoord prediction accuracy as a function of mean join/leave intervals.

King, N = 1740, M = 10, and D = 5.

the system averaged over time using statistics gathered after 60 seconds of simulated

time.

Figure 4-23 shows that when the system has no churn, the steady-state system

prediction error is in the 12 ms range. As expected, the system prediction error

increases under high churn: Figure 4-24 shows that when the mean join/leave time

interval is 2 seconds, the prediction error is approximately 40% higher than when

there is no churn. However, the performance degrades very modestly when the mean

join/leave interval is 5 seconds or longer: the average median prediction error of

PCoord with a t of 5 seconds is approximately 13.9 ms, which is only 2 ms worse

than the no churn case. When join/leave interval t is 10 seconds or greater, the

median prediction error stays in the range of 12 ms, indicating that the churn has

very little effect on the prediction accuracy of PCoord.

In conclusion, PCoord can achieve low prediction error even under high churn.

In this section, we have shown that dynamic join and leave have minimal effects

on PCoord's prediction accuracy when the dynamic join/leave time interval (or host

83

mean session life time) is 10 seconds or longer. This suggests that PCoord can do

well under the dynamic membership changes of existing peer-to-peer systems, which

have a median session duration on the order of 60 minutes [45].

4.11 Effects of Different PCoord Mechanisms

In this section, we examine the effects of different PCoord mechanisms under churn.

In particular, we would like to answer the following questions. How much better

is PCoord in comparison to the Simple algorithm? How much added benefit does

damping provide? Is the damping mechanism alone sufficient to yield good prediction

accuracy?

To answer the above questions, we have simulated PCoord's performance with

different combinations of the mechanisms:

" Simple: this is the Simple algorithm without weighted loss, resistance, or damp-

ing.

" WLoss + Resistance: this is a version of PCoord that implements weighted loss

function and the resistance mechanism. Damping is turned off in this version.

" Damp: this version only implements the damping mechanism without the

weighted loss and resistance mechanisms.

" PCoord (WLoss + Resistance + Damp): this is the default PCoord algorithm

with all three mechanisms turned on.

We examine performance of the above PCoord options using the King data set with

a dynamic join/leave interval of 20 seconds. Each node uses random peer sampling

with a default sample batch size of ten samples per coordinate update. The results

are presented in Figure 4-25. We observe that the default PCoord mechanism has

the best prediction accuracy, with median system prediction error in the 12 ms range.

The prediction error of the Simple algorithm is approximately 60% higher than that

of PCoord.

84

30
Simple

WLoss + Resistance ---
Damp

PCoord (WLoss + Resistance + Damp) .

25

E

0
w
0
t 20

CU

10
0 10 20 30 40 50 60

Time (seconds)

Figure 4-25: PCoord performance under dynamic join and leave. Join/Leave mean
interval is 20 seconds. King data set. N = 1740, M = 10, D = 5.

Damping alone decreases the prediction error the Simple algorithm by about 10

to 15%. A combination of weighted loss and resistance out-performs the Simple

algorithm by almost 30%. Adding damping further decreases the prediction error by

20%.

4.12 Robustness of PCoord against Faulty Infor-

mation

In this section, we examine PCoord's robustness against faulty information. We are

interested in understanding how PCoord behaves under increasing amount of faulty or

corrupted information. Such studies will provide insights in designing further security

mechanisms that guard against faulty information.

We study the effects of faults by randomly selecting some fraction of nodes as

"faulty" nodes that provide incorrect information to the other nodes. We then mea-

sure the prediction accuracy among non-faulty nodes as a function of the fraction

85

of faulty nodes in the system. We model two types of faulty information: faulty

information due to (1) buggy implementations and (2) malicious attempts to confuse

other nodes.

" Buggy implementations. A buggy implementation of PCoord may cause a host

to report a variety of corrupted information, including its current coordinate

values, its confidence index on the accuracy of its current coordinates, and its

peer list information. In this study, we focus on buggy implementations that

cause a host to provide faulty coordinate values when queried by other nodes.

We model a buggy node as follows. Instead of computing its coordinates at

each iteration, a buggy node draws its coordinates randomly from some fixed

range at each coordinate update step. We assume that the confidence index

reported by each node is bug-free: i.e., it maintains its weighted moving average

of prediction error correctly using the randomly generated coordinates. As a

result, buggy nodes will generally report low confidence on their coordinates.

" Malicious nodes. A malicious node may intentionally provide faulty information

to confuse or mislead other nodes. In this study, we model a rather naive form of

malicious attack: a malicious node reports a randomly generated coordinates to

other nodes and claims that the coordinates have low prediction error (i.e., high

confidence index). This will cause the other nodes to put high weights on the

faulty coordinates. In reality, there may be different levels of malicious attacks;

a malicious node may intentionally pick an arbitrary sequence of coordinates to

report to other nodes to cause even greater system instability than randomly

generated coordinates. The effects of more sophisticated malicious attacks are

left for future work.

We vary the fraction of faulty nodes in the system from 0 up to 80%. Figures 4-26

and 4-27 present PCoord's prediction accuracy as a function of the fraction of buggy

and malicious nodes respectively. Each node uses random peer sampling with a de-

fault sample batch size of ten samples per coordinate update. The average median

86

801
Simple

PCoord (Resistance + Damp) -- x
PCoord (WLoss + Resistance + Damp)--

70

o 60
w
0

50

C:

0

30

20

0 10 20 30 40 50 60 70 80
Percentage of Buggy Nodes

Figure 4-26: Compare different PCoord's mechanisms under various fractions of
buggy nodes. King data set. N = 1740, M = 10, D = 5.

80 1 1 Simple
PCoord (Resistance + Damp) --- x---

PCoord (WLoss + Resistance + Damp) -- - -

70

- 60

- ;0
S5Q

00

CL

40 2

0)
cz

<30

20

0 10 20 30 40 50 60 70 80
Percentage of Malicious Nodes

Figure 4-27: Compare different PCoord's mechanisms under various fractions of ma-
licious nodes. King data set. N = 1740, M = 10, D = 5.

87

prediction accuracy represents the steady-state prediction error of the system aver-

aged over time using statistics gathered after 10 seconds of simulated time, with a

total simulated time of 20 seconds.

In order to understand how different PCoord mechanisms are affected by faulty

information, we present PCoord's performance with different combinations of the

mechanisms:

" Simple: this is the Simple algorithm without weighted loss, resistance, or damp-

ing.

" Resistance + Damp: this is a version of PCoord that implements the resistance

and damping mechanisms.

" PCoord (WLoss + Resistance + Damp): this is the default PCoord algorithm

with all three mechanisms turned on.

Since the Simple algorithm does not associate weights with samples, Simple's

performance is the same under buggy and malicious modes. The same is true for

PCoord when the weighted loss function is turned off.

We first examine PCoord's performance under the buggy mode. We observe that

the Simple algorithm's prediction error rises rapidly as the percentage of faulty nodes

increases. When 30% of the nodes are faulty, Simple's prediction error doubles from

20 to 40 ms. In contrast, it takes 60% faulty nodes for PCoord's prediction error to

double. When 30% of the nodes are faulty, PCoord's prediction error increases by

less than 40%. Both versions of PCoord (with or without the weighted loss function)

are significantly more robust than the Simple algorithm in the face of high percentage

of buggy nodes.

Under the malicious model, faulty nodes always report zero prediction error (and

thus a perfect confidence index) on its randomly generated coordinates. This causes

the non-faulty nodes to place a high weight on faulty coordinates. Our results indicate

that when 10% of the population are malicious, PCoord with weighted loss only

does slightly worse than when weighted loss is turned off. However, the prediction

88

accuracy of PCoord with the weighted loss turned on can degrade quickly under

heavy malicious attacks. In particular, when the fraction of malicious nodes are up

to 50% of the total population, PCoord does more than 40% better by turning off

the weighted loss mechanism. In general, the combination of damping and resistance

provides a fairly robust mechanism in coping with both buggy and malicious nodes.

This suggests that, in a real-world deployment, a good engineering choice may be to

turn off the weighted loss function if a large number of malicious nodes is expected.

4.13 Conclusions

In this section, we have evaluated PCoord using simulations, and compared its per-

formance with that of Vivaldi and the FixedLM scheme. Our primary focus is to

evaluate the number of samples it takes for the system to converge to a low predic-

tion error. In particular, we have examined PCoord's convergence behavior in several

different scenarios: (1) the simultaneous-join scenario involving a 1740-node network

with all nodes joining the coordinate system at approximately the same time, (2)

the incremental join scenario, in which we evaluate the number of samples required

for a newly joined node to converge to a low prediction error when the rest of the

system has already converged, and (3) the high churn scenario, in which the system

experiences continuous membership changes with dynamic node join and leave.

We summarize our findings for the simultaneous join scenario as follow.

" Under the simultaneous join scenario in the King data set, PCoord can achieve

comparable performance as the FixedLM scheme after each host updates its

coordinates using approximately 100 to 120 samples. In particular, it takes

PCoord 100 to 120 samples, or approximately 10 to 12 coordinate updates,

for the system median prediction error to decrease to the 12 ms range, which

is competitive with the FixedLM's median prediction error at 12.16 ms when

using 10 landmarks.

" Under the simultaneous join scenario, we have compared PCoord with Vivaldi

89

using various sampling strategies. In general, Vivaldi takes more samples to

converge. It takes Vivaldi over 300 samples to reach the 12 ms range using

both the Half-Near-K neighbors and Random-Global configurations. After 100

samples, Vivaldi's median prediction errors are 24.6 ms and 15.8 ms respectively

when setting C, to be 0.25 and 1.0 respectively in the Half-Near-K neighbor

configuration.

* It takes more samples for both PCoord and Vivaldi to reach the same 95th

percentile prediction error range comparable to that of the FixedLM scheme.

The 95th percentile prediction error of the FixedLM scheme is 32 ms. For

PCoord, it takes approximately 180 to 200 samples to converge to 32 ms for

95th percentile prediction error, and it takes Vivaldi approximately 500 samples

to converge to the same 95th percentile error range.

We have also demonstrated in this chapter that, it takes significantly fewer samples

for a newly joined node to converge to low prediction error when the rest of the

system has already converged. In particular, with the King data set, we observe

that, on average, the median prediction error of a newly joined node can decrease to

the 12 ms range within two coordinate updates using 10 reference points per update

(i.e., within 20 samples). In comparison, the median prediction error of the FixedLM

scheme using fixed 20 landmarks is 11.4 ms.

Further, we have demonstrated that PCoord is robust under high churn. In par-

ticular, we have examined PCoord's prediction accuracy when nodes join and leave

continuously with exponentially distributed mean host session life times of 2 to 40 sec-

onds. We have shown that dynamic join and leave have minimal effects on PCoord's

prediction accuracy when the host's mean session life time is 10 seconds or longer.

This suggests that PCoord can do well under the dynamic membership changes of

existing peer-to-peer systems, which were reported to have a median session duration

on the order of 60 minutes [45].

Finally, we have examined PCoord's robustness against faulty information. We

model two types of faults: buggy implementations that report randomly-generated

90

coordinates, and malicious nodes which report random coordinates with misleadingly

high confidence index on those coordinates. Our results suggest that PCoord cope

with buggy implementations effectively. We have also observed that the weighted loss

function is helpful in guarding against buggy implementations; however, its perfor-

mance is very sensitive to false information due to malicious nodes. In general, the

combination of damping and resistance provides a fairly robust mechanism in coping

with both buggy and malicious nodes. Our results suggest that, in a real-world de-

ployment, a good engineering choice may be to turn off the weighted loss function if

a large number of malicious nodes is expected.

In conclusion, PCoord is able to achieve prediction accuracy comparable to the

FixedLM scheme while providing better scalability, flexibility and fault tolerance.

PCoord does not rely on fixed landmark nodes, and allows hosts to sample any

other peers in the system to construct their coordinates. Under a scenario where

nodes join incrementally, PCoord is able to achieve competitive prediction accuracy

as the FixedLM scheme using the same number of samples. Under a more challeng-

ing scenario when all nodes join simultaneously, we have demonstrated that using a

1740-node real Internet measurements PCoord can achieve the same level of accuracy

as the FixedLM scheme with approximately 100 - 165 samples per host, which is

half as many samples as what Vivaldi would require to converge to the same level of

prediction accuracy.

91

92

Chapter 5

Effect of Triangle Inequality

Violations

In the previous chapter, we have demonstrated that PCoord can achieve low predic-

tion error. In this chapter, we ask the following questions.

" What are the sources of error in a decentralized coordinate system such as

PCoord?

" How does the prediction error of PCoord vary as a function of the actual path

length? Does PCoord tend to over- or under-predict the path length?

" How does triangle inequality violation affect prediction accuracy of decentralized

coordinate systems such as PCoord?

The rest of this chapter is organized as follows. We first present a taxonomy of

the sources of error in a decentralized coordinate system. We then study the error

characteristics of PCoord and Vivaldi as a function of the path lengths. Finally, we

examine prediction accuracy of PCoord and Vivaldi as a function of the degree of

triangle inequality violations in the data set.

93

5.1 Sources of Error

In order to facilitate our discussions of where errors come from, we break down the

types of errors in a decentralized coordinate system into the following categories.

" Structural error: this type of error is due to the mismatch between the host

space (which we would like to model) and the geometric space used to model

it. In the Internet distance prediction context, if we use distances to all pairs of

nodes to build our geometric model, the structural error is the difference between

the actual and the geometric distances using an optimal embedding with global

knowledge. Example factors that determine the structural error of a geometric

model include the distance function, dimensionalities of the geometric space,

and properties of the host space.

" Prediction or Sampling error: this is due to the fact that we do not have perfect

global distance information. In particular, each node uses a small set of sampled

distances to embed itself in the geometric space.

" Algorithmic error: The algorithmic error is due to limitations of the algorithms

we use to derive the embedding. For example, the algorithmic error in PCo-

ord could be due to the parameter settings in the Simplex Downhill algorithm

used for embedding. Example parameters include the tolerance value and max-

imum number of function evaluations used to define the stopping criteria in the

Simplex Downhill minimization procedure.

" Distributed error: Another source of error is due to the fact that the embedding

is done in a decentralized fashion; each node computes its own coordinates

that minimize the error relative to other nodes' coordinates. Since all nodes

update their own coordinates in a parallel, independent fashion, the resulting

coordinates will likely have a higher prediction error than if the coordinates

were generated in a centralized fashion.

" Other error: examples in this category include errors due to noise, latency

94

measurements, and faulty information from buggy implementations or malicious

attacks.

In Chapter 4, we focused on the sampling error, and examined how the prediction

error of PCoord and Vivaldi decreases as the number of samples increases. In this

chapter, we put more focus on the structural error. In particular, we examine how

violations of the triangle inequality property affect the overall prediction accuracy of

PCoord and Vivaldi.

5.2 Error Statistics by RTT Groups

In this section, we investigate the performance properties of both Vivaldi and PCoord

by classifying the evaluated paths into groups of 25 ms each (i.e., groups of [0,25),

[25,50), [50,75) ms, etc.).

5.2.1 Statistics by RTT Groups on PlanetLab Data Set

Figures 5-1 and 5-2 show the error statistics of PCoord and Vivaldi respectively with

the PlanetLab data set. We observe that for both PCoord and Vivaldi, the errors

are "symmetrical" for smaller RTT groups (below 150 ms) in that the distribution of

errors due to over- and under-predictions are approximately the same. However, for

larger RTT groups, both schemes tend to under-predict long distances.

We have also experimented with embedding the PlanetLab data set using a 5-

dimensional coordinate space with M = 10 (results not shown). Our results suggest

that while increasing the dimensionality and the batch size M improve the prediction

accuracy, they do not qualitatively change the error characteristics among these RTT

groups.

5.2.2 Statistics by RTT Groups on King Data Set

Next, we show the error statistics by RTT groups of both schemes using the King data

set. Figure 5-3 shows the histogram of King distances in 25 ms groups. Figure 5-4

95

0 50 100 150 200 250 300 350 4

RTT Groups (25 ms)

(a) One second

100

00

100

50

0

-50

-100

-150

-200

-250

-300

100

50

0

-50

-100

-150

-200

-250

-300

100

50

0

-50

-100

-150

-200

-250

-300
0 50 100 150 200 250 300

RTT Groups (25 ms)

"0

w0

--- ---- -.....

5th percentile
S 25th percentie
50th percentile -------
75th percentile
95th percentile

0 50 100 150 200 250 300 350 4

RTT Groups (25 ms)

(b) Three seconds

350 400 0 50 100 150 200 250
RTT Groups (25 ms)

50

0

-50

-100

-150

-200

-250

-300

100

50

0

-50

-100

-150

-200

-250

-300

100

50

-50
-10c

-200

-250

-300
300 350 400

(e) Fifteen seconds (f) Twenty Seconds

Figure 5-1: PCoord, error statistics by RTT groups. PlanetLab, N = 127, D = 3,
M = 6.

96

0 50 100 150 200 250 300 350 40

RTT Groups (25 ms)

(d) Ten seconds

0 50 100 150 200 250 300 350 4

RTT Groups (25 ms)

(c) Five seconds

.-- .---- --

------ --------

5th percentile
25th percentie -------

50th percentile .-....--
75th percentile
95th percentile

-- -.- -

5th percentile
25th percentie -------
50th percentile ------
75th percentile
95th percentile

r - -- --- --- ---- -

5th percentile
25th percentie -----
50th percentile
75th percentile
95th percentile

~-- - -- --- -- -

5th percentile
25th percentie -
50th percentile -----
75th percentile
95th percentile - --

00 0

-- -----------

5th percentile
25th percentie ---50th percentile ----
75th percentile --

95th percentile - -

00

5th percentile
25th percentie ---
50th percentile ----
75th percentile
95th percentile -

0 50 100 150 200 250 300 350 400

RTT Groups (25 ms)

(a) One second

- '. - -- ..
-.- - -.....
-- -- --- -.

25th percentie
5th percentile ----

50th percentile -------

0 50 100 150 200 250 300 350 4
RTT Groups (25 ms)

(c) Five seconds

0 50 100 150 200 250
RTT Groups (25 ms)

(e) Fifteen seconds

300

Cz

-0(

.w

100

50

0

-50

-100

-150

-200

-250

-300

50

S 0

-50

-100

-150

2- -200

-250

-300

75

--
2>
wo

100

50

0

-50

-100

-150

-200

-250

-3Irv
350 400

100

50

0

-50

-100

-150

-200

-250

-300

- -------

50th-perc-entil
5th percentile

-25th percentie -- ---
50th percentile -----
75th percentile
95th percentile-

3 50 100 150 200 250 300 350 400
RTT Groups (25 ms)

(d) Ten seconds

- ------------

.. ---- -

5th percentile
25th percentie ------
50th percentile -.--

- 75th percentile ---
95th percentile-

0 50 100 150 200 250
RTT Groups (25 ms)

300 350 400

(f) Twenty seconds

Figure 5-2: Vivaldi, error statistics by RTT groups. Half-Near-K neighbors configu-
ration (K = 6), timestep constant C, = 0.25. PlanetLab, N = 127, D 3.

97

5th percentie ----

-~ ~ ~ -25hprete- -----

5th percentile
5th percentile -------

95th percentile 7
0 50 100 150 200 250 300 350 4

RTT Groups (25 ms)

(b) Three seconds

100

50

0

-50

-100

-150

-200

-250

-300

100

50

0

-50

-100

-150

-200

-250

300

95th percente --
95th percentile - -

------- ~----

-~~~~~~- -

5th percentile
25th percentie -------
50th percentile --------
75th percentile -

95th percentile ----

.

00

)0

100

-

shows the RTT error statistics before any coordinate updates are performed. Since

all nodes initialize their coordinates to the origin, the predicted distance among all

nodes is zero initially. As a result, the under-prediction of distance between a pair

of nodes equals the RTT exactly. This applies to both PCoord and Vivaldi, as both

schemes initialize nodes' coordinates to the origin in the beginning.

Figure 5-5 and 5-6 show the error statistics of PCoord when 10 and 30 reference

points are used respectively with the King data set. Figure 5-7 shows the Vivaldi

error statistics with the King data set. We make the following observations.

" Consistent with our observations in the PlanetLab data set, both PCoord and

Vivaldi have large under-prediction errors for some fraction of large RTT paths

in the King data set.

" The worst under-prediction errors for PCoord (10 reference points) appear in

the 525 ms and 800 ms groups, with median prediction errors of -143.3 and

-89.3 ms respectively (see ten seconds scenario in Figure 5-5). For Vivaldi, the

worst median errors after 20 seconds of running Vivaldi also appear in the 525

ms and 800 ms groups with median error of -152 and -182 ms respectively. We

will seek possible explanation of this phenomena in a later section.

" Further, increasing the number of samples in both PCoord and Vivaldi does

not seem to rectify the under-prediction problem. PCoord's error distribution

among different RTT bins does not change significantly after 5 seconds of sim-

ulated time. We thus speculate that the large under-prediction errors for these

long latency paths are mostly due to structural error, for example, from triangle

inequality violations. We will explore this issue further in Section 5.3.

" Finally, increasing the batch size M in PCoord from 10 to 30 (see Figure 5-6)

does not significantly change the error characteristics among these RTT bins.

In particular, the 525ms and 800 ms groups remain to be the most problematic

RTT groups when 30 reference points are used.

98

180000

160000

140000 -

0 100 200 300 400 500 600 700 800
RTT Groups (25 ms)

Figure 5-3: King data set. RTT group histogram. N = 1740.

0 100 200 300 400 500 600 700 800
RTT Groups (25 ms)

Figure 5-4: King RTT error statistics by RTT groups before any coordinate updates

are performed by PCoord or Vivaldi, both of which initialize coordinates to the origin.

99

Ca

.U)

E
z

120000

100000

80000

60000

40000

20000

0

0

-ia

C

-J

0

0

0

-100

-200

-300

-400

-500

-600

-700

-800

5th percentile
25th percentile ----- .
50th percentile-
75th percentile --
95th percentile ------

18

200

0

-200

-400

-600

-800
0 100 200 300 400 500 600 700 80

RTT Groups (25 ins)

(a) One second

-200 -

-400 -

-
-600 -

-

-800

200

0

0 100 200 300 400 500 600 700 8

RTT Groups (25 ms)

(c) Five seconds

0 100 200 300 400 500
RTT Groups (25 ms)

200

0

-i

-200

-400

*--
-600

2

-800

200

0

0U

-200

-400

-600

-800

200

0
C:

0

Z'

600 700 800

-200

-400

-600

-800

.... - --- - --- -

-- - --- --- --
5th percentile

25hpercente ------- -
50th percentile ------
75th percentile
95th percentile

50th percentile --
75th percentile -
95th percentile -

D 100 200 300 400 500 600 700 80

RTT Groups (25 ms)

(d) Ten seconds

0 100 200 300 400 500
RTT Groups (25 ms)

0

0

600 700 800

(e) Fifteen seconds (f) Twenty seconds

Figure 5-5: PCoord Error statistics by RTT groups, 10 reference points. King, N =

1740, D = 5.

100

200

0

*- -

5th percentile
- 25th percentie ------

50th percentile ------
75th percentile --
95th percentile - --

*18 ------- ----- -------------- -

5th percentile
25th percentie -------
50th percentile -----
75th percentile
95th percentile

-200

-400

-600
2-

W

---- ----- ~ -- -'---

5th percentile
25th percentie -------
50th percentile ---- ---
75th percentile.
95th percentile

-800

5th percentile
25th percentie ----

50th percentile ------
75th percentile.
95th percentile -

.

- 1 1 1 1 1 -- -

0 100 200 300 400 500 600 700 80

RTT Groups (25 ins)

(b) Three seconds

-- ----- - -..

5th percentile-
25th percente -----

00

,.. ,.,.,.,.,.,

- ---- -- - 2

5th percentile
- 25th percentie ------- -;I

0

'0

2
wC-0

W

-200

-400

-600

-800

200

C:

.

wo

0

-200 -

-400 -

-600 -

-800
0 100 200 300 400 500 600 700 8

RTT Groups (25 ms)

(c) Five seconds

0 100 200 300 400 500
RTT Groups (25 ms)

600

200

2
W

700 800

0

-200

-400

-600

-800

(e) Fifteen seconds

75th percentile
95th percentile - - -

0 100 200 300 400 500 600 700 800
RTT Groups (25 ms)

(b) Three seconds

0 100 200 300 400 500 600 700 800
RTT Groups (25 ms)

(d) Ten seconds

0 100 200 300 400 500
RTT Groups (25 ms)

600 700 800

(f) Twenty seconds

Figure 5-6: PCoord Error statistics by RTT groups, 30 reference points. King, N =

1740, D = 5.

101

0

-200

-400

-600
50hpercent e ----75th percentile

95th percentile ---

0 100 200 300 400 500 600 700 8
RTT Groups (25 ms)

(a) One second

7 '- - - -percen

5th percentile
- 25th percentie -----

5th percentile
- 25th percentie -------

50lth percentile--

-800

200

0

-200

-400

-6000

wU
50th percentile --------
75th percentile . -
95th percentile --

5th percentile
25th percentie --
50th percentile -----
75th percentile
95th percentile ----

-800

200

is 0
76

Li -200

-400

-- 600

-800

-

5th percentile

5th percentile
25th percentie ------
50th percentile --------
75th percentile
95th percentile ----

5th percentile
25th percentie ------
50th percentile -------
75th percentile -.--
95th percentile ----

200 200

00

00

k-

200

a)- 0

200

400

5th percenti e
25th percent e --------

-600 -50th percenti e --------

W75th percenti e -

9.5th percenti e- --- -
00 1

0 100 200 300 400 500 600 700 800

RTT Groups (25 ins)

(a) One second

20 .

200

-400--

0 t p1 c n l - - --

25th percentie-
-600 - 50th percentile -------

75th percentile ----.----
95th percentile - --

-00 1 1 1
0 100 200 300 400 500 600 700 800

RTT Groups (25 ms)

(c) Five seconds

200 r - I I

ci 0

S-200

i5 -400

0.

2ipercentie-25th percentile ----
-600 5th percentile

5th percenti e --. --
95th percentile -

0 100 200 300 400 500 600 700 800

RTT Groups (25 ms)

(e) Fifteen seconds

200

a) 0

-200

-400

-600

800

0 100 200 300 400 500 600 700 800

RTT Groups (25 ms)

(b) Three seconds

200

CD 0
1

S-200

-400

. -600
2
w

-0011,
0 100 200 300 400 500 600 700 800

RTT Groups (25 ms)

(d) Ten seconds

200

-2 -- -- -- -- - ------ --- - - -- --

-400 -

5th percentile-- -
600 25th percentie ----

50th percentile --------
75th percentile .95th percentile - -

0 100 200 300 400 500 600 700 800

RTT Groups (25 ms)

(f) Twenty seconds

Figure 5-7: Vivaldi Error statistics by RTT groups, Half Near-K neighbors configu-

ration (K = 64). King, N = 1740, D = 5.

102

5th percentile
- 25th percentie ------

50th percentile -----75th percentile -
95th percentile - --

-- --- -

5th percentile-25th percentie----
50th percentile ------
75th percentile
95th percentile ----

---- --------- ------------ ---

--- _-
- ...

I

-

0.51
0.5 I 25th percentile-+ -

50th percentile -.-- x-
0.45 75th percentile ---- -

0.4

0.35 -

0.2

0.3 -.

0.25

00

0 100 200 300 400 500 600 700 800

RTT Groups (25 ins)

Figure 5-8: PCoord, Error statistics in terms of absolute prediction error ratio (PER)
by RTT groups after 20 seconds of running PCoord. King, N = 1740, D= 5, M =
10.

While we present errors in terms of the difference between the actual and the

predicted distances, the relative errors in each RTT groups can be easily inferred as

the ratio between the errors shown and the RTT bounds for that RTT group. In

Figure 5-8, we present the error statistics in terms of absolute prediction error ratio

(PER) by RTT groups after 20 seconds of running PCoord when M is ten. Short

RTTs tend to have slightly higher error ratio due to the smaller denominator in the

ratio. The error ratios of paths in the 525 ms or longer RTT groups are higher than

the other RTT groups. This is consistent with results in previous figures which involve

error statistics by RTT groups in terms of directional prediction error.

5.3 Triangle Inequality

Previously, we have seen that both PCoord and Vivaldi have high prediction error for

distances with larger RTTs. In particular, PCoord and Vivaldi tend to under-predict

large RTTs, and increasing the number of samples used for prediction does not seem

to rectify this under-prediction problem. We speculate that the high prediction error

103

in the RTT groups with long latencies is due to structural error, for example from

triangle inequality violation. To validate this intuition, we examine the degree of

triangle inequality violation for both the King and the PlanetLab data set, and its

implications for the prediction accuracy of decentralized network coordinate systems.

Similar to the Vivaldi work [10], we declare that the path between a node pair i and

j violates the triangle inequality if it violates the constraint RTT(i, k) + RTT(j, k) >

RTT(i, j) -6 , where k is another node in the data set (k # i,j), and E is a constant

used to avoid counting marginal violations due to measurement errors. The Vivaldi

work [10] reported that 4.5% of the triples in the King data set violate triangle

inequality when c is 5 ms. However, it remains unclear how violation of the triangle

inequality impacts the accuracy of the geometric mapping. Here, instead of reporting

triangle inequality violations across all triples, we examine the triangle inequality

on a per path basis to examine how the degree of violation impacts the accuracy of

geometric mapping.

We use the violation ratio and violation amount as two representative indicators of

the degree to which a path violates triangle inequality. The path triangle inequality

violation ratio and amount measure how frequently and by how much a path between

two nodes violate the triangle inequality relative to another node in the data set. We

define the two metrics more precisely below.

Path Triangle Inequality Violation Ratio

We define the path triangle inequality violation ratio as follows: for each pair of nodes

i and j in the data set, we check how often the RTT between i and j violates the

triangle inequality when using another node k (k # i, j) to form a triangle. More

specifically, for each path formed by a node pair i and j, we count the number of

times the path violates the constraint RTT(i, k) + RTT(j, k) > RTT(i, j) - E, where

k is another node in the data set and (k z i, j). The path violation ratio of the path

formed by i and j is the number of violations divided by the total number of triples

formed by i, j, and a third node in the data set.

104

Path Triangle Inequality Violation Amount

The path triangle inequality violation amount measures by how much a path between

two nodes violates the triangle inequality relative to another node in the data set.

More specifically, the violation amount of a node pair i and j relative to a third node

k is RTT(i, k)+RTT(j, k)-RTT(ij)| when the constraint RTT(i, k)+RTT(j, k) >

RTT(i, j) - c is violated, and is zero otherwise.

5.3.1 Violation Ratio of King and PlanetLab Data Set

Figure 5-9 plots the path triangle inequality violation ratio for both the King and

PlanetLab data set when 6 = 5ms. Our data suggests that approximately 65% of the

paths in the King data set has a zero violation ratio when c = 5ms, indicating that

most of the paths satisfy the triangle inequality at all times with respect to triangles

formed by using all other nodes in the data set. We also note that 95% of the King

paths have path violation ratio of 0.15 or less.

For the PlanetLab data set, only 40% of the paths have zero violation ratio.

Approximately 95% of the paths have violation ratio of 0.41 or less. For both King

and PlanetLab data set, there are approximately 2-3% of the paths that violate the

triangle inequality over half the time - for these paths, more than half the times,

an indirect path going through another intermediate node in the system would have

provided lower RTT than the direct path.

5.3.2 Violation in Different RTT Groups

In Section 5.2, we observed that both Vivaldi and PCoord heavily under-predict

distances in the 525 ms RTT group (i.e., RTTs between 500 to 525 ms). In this

section, we examine the relationship between the degree of violation of a path and

its length. Figures 5-10 and 5-11 plot the summary statistics of path violation ratio

in different RTT groups in the King and PlanetLab data respectively. We divide

the paths into groups of 25 ms each, and plot the 5th, 25th, 50th, 75th, and 95th

percentile path violation ratio in each RTT group. We note that in general the paths

105

----- ---- King
1 -- --- PlanetLab

0.8

E 0.6

040.4 --

0.2

0
0 0.2 0.4 0.6 0.8 1

Path Violation Ratio

Figure 5-9: Cumulative distribution of path violation ratio of King and PlanetLab
data.

with small RTTs have low violation ratio. The median violation ratio is close to 0 for

paths that are less than 300 ms. Median violation ratio is in fact rather low across

all RTT groups, except for the paths between 450 to 600 ms range. In particular, the

525 ms RTT group has the highest path violation in comparison to all other RTT

groups - more than half the paths in that group have violation ratio greater than

0.2. This suggests that the high prediction error of both PCoord and Vivaldi in the

525 ms RTT group are mostly due to triangle inequality violations. We also observe

that the 95th percentile path violation increases rapidly as RTTs increase. For the

PlanetLab data, the paths with the highest violation fraction fall in the 250 ms and

375 ms RTT groups.

Figure 5-12 plots the violation amount as a function of the path's RTT. For each

path, we define the (conditional) median path violation amount of path (i, j) to be

the median of all non-zero violation amounts of (i, J) in all the triples formed by the

path. A path in a triple that does not violate triangle inequality has zero violation

amount, which is not included in the statistics, so that we get a better understanding

of the distribution of violation amount when a violation does occur. We observe

a very similar pattern for the distribution of the violation amount across the RTT

106

1

0.9

0.8

0.7

.2

0

CL

0.6

0.5

0.4

0.3

0.2

0.1

0
0 100 200 300 400 500 600 700 800

RTT (25 ms group)

Figure 5-10: Summary statistics of path violation ratio in different RTT groups (25ms
group). King data, N = 1740.

5th percentile -

25th percentile -x-
50th percentile ---
75th percentile - -.
95th percentile ----

..)K.

/X~

-.

0 50 100 150 200 250 300 350 400
RTT (25 ms group)

Figure 5-11: Summary statistics of path violation ratio in different RTT groups (25ms
group). PlanetLab data, N = 127.

107

5th percentile '+I--
25th percentile -- x---
50th percentile --- Wr-
75th percentile.
95th percentile

- -u

- -

- -O

- -U

- -~ICE ~ >

0.8

0.7

0.6

0.5 -.2

0
0.4

0.3

0.2

0.1

0

E
250

0
E

200
0

150
_F

100

50

0
00 600 700 800

Figure 5-12: Summary statistics of path median violation amount in different RTT
groups (25ms group). King, N = 1740.

groups as the violation ratio distribution. Median violation amount is in fact rather

modest (less than 30 ms) across all RTT groups, except for the paths between 450 to

600 ms range. Further, by comparing Figures 5-12 and 5-5, we note that the under-

predictions by PCoord in each RTT category is proportional to the violation amount

in the corresponding RTT group.

5.3.3 RTT and Violation Amount in Different Violation Ra-

tio Groups

Violation ratio only captures one aspect of the degree of violation of a path. Intu-

itively, paths with high violation ratios can still have accurate Euclidean mappings,

if most of the violations are small. Similarly, paths with high violation amounts

may not impact prediction accuracy too much, if such violation happens very rarely.

Therefore, the accuracy of the Euclidean mapping is likely affected by the combined

effect of violation ratio and amount. In this section, we classify the paths in the

King data set based on their violation ratio into groups of 0.01 each (i.e., groups

of [0,0.01), [0.01,0.02), [0.02,0.03), ..., etc), and present the RTT distribution and

108

400

350

300

0 100 200 300 400 5
RTT (25 ms per group)

95th percentile-+ -

75th percentile --- x---
50th percentile - --
25th percentile.

- -

- -C

x1
-~-

- -.. 3 OE f

.. -1 .- -

W

800

700

600

20-

100-
C *I

5th percentile

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Path Violation Ratio

Figure 5-13: Summary statistics of RTTs of paths in each triangle inequality violation
ratio group (violation ratio of 0.01 per group). King, N = 1740.

violation amount in each group.

Figure 5-13 plots the minimum, maximum, median, 5th and 95th percentile RTT

of paths in each violation group. In general, we observe that short RTTs tend to

have low path violation ratios, and long RTTs tend to have high violation ratios. We

observe that almost all paths with zero or small violation ratio (less than 0.01) are

less than 300 ins. We also note that the minimum RTT of paths with violation ratio

greater than 0.8 is 300 ins. This means that high violation paths are strictly for paths

with large RTTs. This should not come as a surprise, since the longer the path is, the

more probable it is for an indirect path through a third node on the Internet shortcut

the direct path.

Figure 5-14 plots the violation amount as a function of the path's violation ratio.

Again, the violation ratio is divided into groups of 0.01 each. We then plot the 95th

and 50th percentile path median violation amount in each violation group. We note

that for paths with violation ratio of 0.4 or less, the median violation amount is rather

small (less than 43 ins). However, beyond violation of 0.4, the violation amount

doubles for every 0.2 increment in the violation ratio: e.g., the median violation

amount is 77 ms for the 0.5 violation ratio groups; whereas the violation amount is

109

800 - 50th percentile
95th percentile -----

700 -

600 -

500

0

400 -

Co

300 -

200 -

100 -

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Path Violation Ratio

Figure 5-14: Median violation amount of paths in each triangle inequality violation

group (violation ratio of 0.01 per group). King data.

more than doubled (158 ms) for paths in the 0.7 violation ratio group.

5.3.4 Prediction Accuracy as a Function of Path Violation

Ratio

Next, we examine the effect of triangle inequality violation on PCoord and Vivaldi

prediction accuracy. We take the coordinates generated by PCoord and Vivaldi after

convergence (after approximately 50 seconds of running the algorithms), and compute

the directional prediction error (DPE) and directional prediction error ratio (DPER)

for each path. These metrics were defined in Chapter 4. A DPE or DPER of zero

indicate perfect prediction. A negative and positive DPE/DPER indicates under-

prediction and over-prediction respectively.

Figure 5-15 plots the directional prediction error ratio (DPER) as a function of

degree of violation. Figure 5-16 plots the directional prediction error (DPE). We

classify all paths based on their triangle inequality violation ratio into groups of 0.01

each, and plot the 5th, 95th percentile, and median DPE/DPER in each violation

group. We note that PCoord and Vivaldi have nearly identical error distribution

110

0.4
PCoord 95th percentile --

Vivaldi 95 percentile -
PCoord 50th percentile .
Vivaldi 50th percentile ----0.2 - PCoord 5th percentile ----
Vivaldi 5th percentile.

.0

-0.2

CL -0.4

-0.8

0 0.2 0.4 0.6 0.8 1
Degree of Violation (Path Violation Ratio)

Figure 5-15: Directional prediction error ratio (DPER) as a function of degree of
violation (measured as path violation ratio). King, N = 1740, D = 5, M = 10.

in each group, as their 5th, 95th, and median errors nearly overlap. We make the

following observations, which apply to both PCoord and Vivaldi.

" When the violation ratio is less than 0.01, both PCoord and Vivaldi have a

small positive median DPER near zero for paths in this group, and the errors

are evenly distributed among over- and under-predictions for both PCoord and

Vivaldi. We recall that about 75% of the paths have violation ratio less than

0.01. This suggests that for a majority of the paths in the King data set, PCoord

and Vivaldi have a chance to embed these paths in the Euclidean space with

relatively low error.

" As the violation ratio increases, errors due to under-prediction start to domi-

nate. For paths with violation ratio greater than 0.15, the 95th percentile error

becomes negative, indicating that almost all errors are due to under-predictions.

" The prediction accuracy of both PCoord and Vivaldi drops significantly as the

violation ratio rises.

111

100

0

-100

2 -200 . - .- -

"5-300--
00

6 -400 .

-600 -
PCoord 95th percentile --- -

Vivaldi 95 percentile - -
-700 PCoord 50th percentile .

Vivaldi 50th percentile - ---
PCoord 5th percentile -- -- -
Vivaldi 5th percentile

-00 hpretl
0 0.2 0.4 0.6 0.8 1

Degree of Violation (Path Violation Ratio)

Figure 5-16: Summary statistics of directional prediction error (predicted - actual
RTT) as a function of path violation ratio. King, N = 1740, D = 5, M = 10.

5.3.5 Prediction Accuracy as a Function of Mean Path Vio-

lation Amount

In this section, we examine PCoord prediction accuracy as a function of a path's

mean violation amount. In contrast to the median path violation amount defined

in an earlier section, the mean path violation amount we present here includes zero

violation amount when computing the mean. We believe that the mean, instead of

the conditional mean, of a path's violation amount has more impact on the prediction

accuracy of the Euclidean mapping. (We have plotted the prediction accuracy as a

function of conditional mean, and the correlation between the two seems to be some-

what more erratic: paths with large conditional mean can have very small prediction

error.)

Figure 5-17 plots the the 95th, 50th, and 5th percentile prediction error ratio of

PCoord as a function of mean path violation amount. The coordinates are generated

after 50 seconds of running the PCoord algorithm, where each node uses ten reference

points in each coordinate update. As expected, the prediction error ratio increases

as the mean violation amount increases.

112

0.8

0.6 M -'-

.0

D 0.4

0.2

Median ------

0 100 200 300 400 500 600
Mean Violation Amount (ms)

Figure 5-17: Summary statistics (95th, 50th, and 5th percentile) of absolute pre-
diction error ratio (PER) of PCoord as a function of mean path violation amount.
Mean path violation amount is classified into 25 ms per group. King, N = 1740, D
= 5, M = 10. The PCoord coordinates are generated after 50 seconds of running the
algorithm.

5.4 Conclusions

In this chapter, we presented a taxonomy of the sources of prediction errors in a

decentralized network coordinate system. We then study the error characteristics

of PCoord and Vivaldi as a function of the path lengths. We observed that both

PCoord and Vivaldi tend to under-predict distances with large RTTs in the King and

PlanetLab data sets.

We examined how the degree of triangle inequality violations in network distances

impacts the prediction accuracy of PCoord and Vivaldi. Our results suggest that the

under-predictions of large RTTs in the King and PlanetLab data sets are primarily

due to violations of the triangle inequality property in the network distances. Our

results suggest that increasing the number of samples in both PCoord and Vivaldi

does not seem to rectify the under-prediction problem of these paths. We argue that

these mis-predictions are mostly due to structural errors stemming from inherent mis-

matches between the host space (which we would like to model) and the geometric

113

space used to model it. As a result, increasing the number of samples is not likely to

improve the under-predictions of these large RTTs.

114

Chapter 6

Exploring the PCoord Framework

In previous chapters, we have evaluated PCoord using real, large-scale Internet la-

tency data, which in general does not satisfy the triangle inequality property. In

this chapter, we ask whether PCoord can do significantly better when the under-

lying distance measurements among nodes have no triangle inequality violations or

when the underlying distances are in fact Euclidean distances. We examine PCoord's

convergence behavior and error characteristics for latencies with little or no triangle

inequality violations. We focus on the following questions:

" How low is the system error and how many samples does it take for PCoord to

converge when the actual network distances have no triangle inequality viola-

tions?

" If the underlying metric space is Euclidean, can PCoord recover the topology?

If so, how many samples does it take for PCoord to converge?

Another related issue of interest is how the dimensionality of the geometric space

affects the structural error (i.e., the error due to the mismatch between the geometric

space and the general metric space modeled) for topologies with varying degrees

of triangle inequality violations. Does increased dimensionality improve prediction

accuracy when the degree of triangle violation is high?

To answer the above questions, we use the RON2 data set collected as part of the

RON (Resilient Overlay Network) project [43, 2] to test the performance of PCoord.

115

Internet -i-----

RON (latency optirzied) ---

50

40

Ca
30 --

E
z

20

10

0
0 50 100 150 200 250

Path RTT (25ms group)

Figure 6-1: RTT bin size distribution for RON2 Internet and latency optimized data.

RON2 data set measures the RTTs among 15 Internet hosts between May 5th to May

11th in 2001. A total of over 3 million latency samples were gathered. For each pair

of nodes, we use the minimum latency value in the sampling period as its inter-node

distance. RON2 collects latency data using two different routing schemes: the default

Internet routes and the latency-optimized paths that use RON nodes in the overlay

to forward packets. Since the latency optimized RON paths have noticeably less

triangle inequality violations than the default Internet paths, examining PCoord's

performance using the two data sets will give us a good idea on how the degree of

triangle inequality violations impacts performance.

The median RTTs of the Internet and latency-optimized RON2 data are 77.25 ms

and 71.69 ms respectively. Figure 6-1 plots the latency distribution of the two data

sets. We note that the two data sets have nearly identical RTT distributions - the

latency-optimized data has slightly more shorter RTTs than the Internet data.

We construct four different 15x15 latency matrices, three of which are based on

the RON measurements:

e Internet RON: about 40% of the paths violate triangle inequality. The maximum

violation amount is 93.30 ms.

116

60

100 -+ + +

80 -

60 -

40 -

20 -

0 + + +
I IIII

-10 0 10 20 30 40 50 60
X

Figure 6-2: A 15 node topology with 3x5 grid on a 2-D Euclidean plane.

" Latency Optimized RON: about 27.6% of the paths violate triangle inequality.

The maximum violation amount is 9.68 ms.

* Perfect RON: we add 12 ms to each path in the latency-optimized RON2 data

to generate an artificial latency matrix with no triangle inequality violations.

" 15-node Grid: we generate a 15-node topology with a 3 by 5 grid on a 2-D

plane, where the inter-node latencies are simply their Euclidean distances on

the plane.

6.1 PCoord Convergence Using RON Data Set

Figure 6-3 shows the convergence of PCoord using the three RON-based data sets. To

eliminate the effect of sampling error, each node uses latencies to all other 14 nodes to

construct coordinates at each coordinate iteration. The lowest error after convergence

is primarily from the structural error. We note that the number of samples required

for convergence is approximately the same for all three data sets. As expected, the

latency-optimized and perfect RON data sets can achieve lower system prediction

error than the Internet RON data set.

117

I I I

.0

80

70

60

50

40

30

20

10

0
0 50 100

Number of Samples (AVG)
150 200

Figure 6-3: PCoord error convergence in terms of number of samples for three different
RON2 data sets: Internet paths, RON2 latency optimized paths, and the RON2
latency optimized paths RTT + 12 ms to remove all triangle inequality violation. N

15, M = 14 in all three data sets.

Figure 6-4 presents the prediction error ratio distribution of the three data sets

after 20 seconds of running PCoord. We note that PCoord is able to predict the

latency-optimized and perfect RON data sets significantly better than the Internet

RON data set.

6.1.1 PCoord Convergence with Euclidean Distances

So far we have demonstrated that PCoord can converge to a low prediction error using

real Internet measurements with varying degrees of triangle inequality violation. In

this section, we present PCoord's convergence behavior when the underlying distances

are in fact Euclidean distances using the 3x5 grid topology we described earlier.

Figure 6-5 shows the convergence of PCoord when the node latencies in fact form a

Euclidean metric space. We present Vivaldi's performance as a comparison. We note

that both PCoord and Vivaldi are able to reconstruct the grid topology. However,

the convergence of the 15-node grid requires approximately 60-70 samples, which is

no better than the Internet RON measurements involving the same number of nodes.

118

Internet
RON --- x-

RON + 12ms ---

-2

0 0.2 0.4 0.6 0.8
PER

Figure 6-4: PCoord
ferent RON2 data sE

absolute prediction error ratio (PER) distribution for three dif-
ts, N = 15, M = 14, D = 5.

2
a~

CDa

60

50

40

30

20

10

0
0 20 40 60 80 100

Number of Samples

Figure 6-5: PCoord error convergence when latencies are Euclidean distances among
15 (3x5) nodes from a 3x5 grid, N = 15, D = 2.

119

E

0
0

0z

a

0.8

06

0.4

0.2

0

- -

Internet
RON -------

RON + 12ms --

1.2 1.4

PCoord (M=6) -+-
Vivaldi (C=1) ----

- -

60

50

40

30CD

20

10

0
0 100 200 300 400 500 600

Number of Samples

Figure 6-6: PCoord error convergence in the grid topology. The Simple algorithm
does not converge. M=-3, D = 2.

Next, we compare PCoord's performance with the Simple algorithm and show that

the "resistance" factor added in the weighted loss function is in fact critical for con-

vergence in some cases. Figure 6-6 shows the median prediction error of PCoord and

the Simple algorithm. Both algorithms use three reference points for each coordinate

update. For the PCoord algorithm, we have turned off the damping effect using the

fit error, so that the only difference between PCoord and simple is the weighted loss

function with the added resistance term. Figure 6-6 shows that PCoord converges in

60-70 samples; however, the Simple algorithm, without the resistance factor, tends to

oscillate and never converges for the entire simulation period with each node doing

the updates using over 1000 samples. Increasing the batch size M for the simple

algorithm solves the convergence problem. However, in general, the system tends to

oscillate for the Simple algorithm when the number of reference points used per batch

is small relative to the dimensionality of the geometric space.

120

I I ISimple

PCoord -- --

6.2 PCoord Prediction Error by RTT Groups

In a previous chapter, we presented PCoord's error statistics across different RTT

groups. We observed large under-prediction errors for larger RTTs, and presented

evidence that these under-predictions are due to triangle inequality violations in the

data set, instead of a general performance characteristics of the PCoord algorithm.

In order to validate this claim, we present the error statistics of PCoord using the

three RON-based data set in figure 6-7.

For the Internet RON2 data set, we again observe large under-prediction error

for large RTTs due to triangle inequality violation. There is also over-prediction of

shorter RTTs. By reducing the degree of triangle inequality violation, both under-

and over-predictions are greatly attenuated in the latency-optimized case. The perfect

RON2 data set incurs very small prediction error, symmetrical around zero, across

all RTT groups.

6.3 Dimensionality of Euclidean Approximation

In this section, we examine the effect of dimensionality of Euclidean approximation

on the prediction accuracy of the PCoord scheme.

6.3.1 Effect of Dimensionality on King Data Set

Figure 6-8 plots the error convergence for the PCoord scheme using varying dimen-

sionalities. The number of reference points is fixed at ten. Our results indicate that

significant performance improvement can be observed as the dimensionality increases

from one to five. The incremental performance improvement beyond five dimensions,

however, is very small.

121

80

60

40

20

0

-20

-40

-60

-80

-100

80

60

40

20

0

-20

-40

-60

-80

-100

80

60

40

20

0

-20

-40

-60

-80

-100
50 100

RTT Groups (25 ns)

0

-....... .-.-- -------------- - --- -- ---

5th percentile ---
25th percentie ------
50th percentile ---
75th percentile.
95th percentile -------

0 50 100 150 20
RTT Groups (25 ins)

(a) Internet RON2

5th percentile
25th percentie -------

50th percentile -----
75th percentile . -
95th percentile - -----

0 50 100 150 20
RTT Groups (25 ns)

(b) Latency-Optimized RON2

150 200

(c) Perfect RON2

Figure 6-7: PCoord error statistics by RTT groups in three different RON2-based
data sets, N = 15, D = 5, M = 14 in all three cases.

122

0t

-

5th percentile
25th percentie -------
50th percentile --------
75th percentile .-.--.
95th percentile -------

0

120O
2D
3D --
5D .----
7D

100 -

E 80

0
40 -

0
0

0~

0 5 10 15 20

Time (seconds)

Figure 6-8: The effect of dimensionality. Plot shows PCoord median prediction error
with various dimensionalities when 10 reference points are used at each coordinate
update. King, N = 1740.

6.3.2 Effect of Dimensionality on Paths with High Violation

Ratio

Next, we examine the effect of dimensionality of the Euclidean mapping on PCoord's

prediction accuracy of paths with high triangle inequality violations. Figure 6-9 shows

PCoord's distribution of prediction error ratio for paths with low violation ratio (less

than or equal to 0.3) vs. paths with high violation ratio (more than 0.3). We show

the cumulative distribution of prediction error ratio for these two groups for both 2

and 5 dimensional PCoord coordinates. We make the following two observations.

" The prediction accuracy of paths in the low violation group is significantly

better than those in the high violation group. Using 5 dimensional coordinates,

more than 83% of the paths in the low violation group have prediction error

less than 0.25; whereas, in the high violation group, only 30% of the paths have

prediction error less than 0.25.

" The 80th percentile prediction error for the 5 and 2 dimensional coordinates in

the low violation group are 0.22 and 0.32 respectively. So, increasing the dimen-

123

0.8

C

.0

0

-3
E

0.6

0.4

0.2

0
0 0.2 0.4 0.6

Absolute Error Ratio
0.8

Figure 6-9: PCoord distribution of prediction error ratio for paths with low violation
ratio (less than or equal to 0.3) vs. paths with high violation ratio (more than 0.3).
Plot shows the distribution of errors for 5 and 2 dimensional coordinates. King, N =
1740, M = 10.

sionality from 2 to 5 helps improve the prediction accuracy by more than 30%

for paths in the low violation group. However, there is no obvious improvement

in prediction accuracy in using higher dimensional coordinates when the paths

have triangle inequality violation ratio of 0.3 or higher.

Upon closer examination, the 5-dimensional embedding improves the absolute

prediction error over the 2-dimensional embedding by about the same amount across

all violation groups. We recall that the median RTTs in paths with low violation

ratios are below 300 ms in the King data set. The larger improvement in terms of

relative errors in the smaller violation group is probably due to the smaller RTTs

used as the denominator in computing relative error.

6.3.3 Effect of Dimensionality on RON2 Data Set

In this section, we examine the effect of dimensionality on structural error of PCoord

when the underlying distances have varying degrees of triangle inequality. We are

interested in understanding how increased dimensionality helps in improving predic-

124

1

5D violation ratio <= 0
2D violation ratio <= 0

5D violation ratio > 0
2D violation ratio > 0 3

.3 -
-3 --- -

.3 -- --

1

tion accuracy. In particular, we ask whether increased dimensionality helps improve

prediction accuracy when the degree of triangle violation is high? Again, to eliminate

the effect of sampling error, each node uses latencies to all other 14 nodes to construct

coordinates at each coordinate iteration.

Figure 6-10 shows the PCoord's prediction error as a function of dimensionality

of the geometric space under three different RON-based topologies. We note that for

topologies with some level of triangle inequality violations, increasing the dimension-

ality beyond 3 or 4 does not help to reduce the prediction error. Interestingly, we

note that the latency-optimized and perfect RON data sets respond to the effect of

dimensionality rather differently, even though the only difference between the two is

12 ms for each pair of distance. For the perfect RON data set without any triangle

inequality violation, the effect of dimensionality does not saturate until it increases

beyond 8 dimensions.

6.4 Conclusions

In this chapter, we have examined PCoord's prediction accuracy and error charac-

teristics under several network topologies with varying degrees of triangle inequality

violations. We have shown that by reducing the degree of triangle inequality viola-

tions in the data set, both under- and over-predictions are greatly attenuated.

Using an artificial grid topology, we have demonstrated that PCoord is able to

reconstruct distances from a 2-D Euclidean space. Additionally, we showed that the

"resistance" factor in the weighted loss function in the PCoord algorithm is in fact

critical for convergence in some cases. One somewhat surprising result is that the

number of samples required to reconstruct a 15-node grid in a 2-D plane is about

the same as those required for convergence using less "well-behaved" real Internet

measurements from network of the same size.

Finally, our results suggest that increasing the dimensionality of the geometric

space from two to five does not significantly improve the relative error of paths with

high triangle inequality violation ratio in the King data set. However, relative error

125

7

2 4 6 8
Dimensionality

10 12

(b) 95th Percentile Prediction Error

Figure 6-10: PCoord prediction error as a function of dimensionality of the geometric
space under three different RON-based topologies. N = 15, M = 14.

126

0

w~
0

Ii) 3

2-

0

35

30 -

25 -

20 -
0

LU

0

C) 15

Internet I
RON --- x---

RON+12ms ---

)K

Internet -
RON ----

RON+12ms -------

K -- ------ (- - -

2 4 6 8 10 12 1
Dimensionality

(a) Medium Prediction Error

14

10 |

5

0

4

distribution for the low violation ratio paths improve substantially with increased

dimensionality.

127

128

Chapter 7

Conclusions and Future Work

7.1 PCoord Conclusions

In this thesis, we have designed and evaluated a fully-decentralized coordinate system

called PCoord. Through extensive simulations using both real network measurements

and simulated topologies, we compared the performance of PCoord with another

decentralized network coordinate system Vivaldi, and the original GNP scheme using

fixed landmarks. Our simulation results indicate that PCoord can achieve competitive

prediction accuracy in comparison to the FixedLM scheme without relying on a fixed

set of landmark nodes. Our results also suggest that, though PCoord incurs a higher

computation overhead in comparison to Vivaldi, it can converge to a lower prediction

error using fewer samples of round-trip network times than Vivaldi.

PCoord also fills in one of the missing pieces not addressed in Vivaldi - i.e., how

a peer discovers and samples other peers. While Vivaldi's simulations in [10] simply

assume that nodes will have access to a list of its nearest peers, we provide an efficient

peer discovery mechanism using triangulated distances. We believe PCoord provides

a competitive alternative to Vivaldi as a decentralized coordinate system due to the

following novel features:

* A weighted loss function to distinguish between nodes with high and low er-

rors and a "resistance" factor in the loss function that helps to stabilize the

129

convergence and avoid oscillation.

" A threshold-based mechanism to dampen the amount a node moves toward new

coordinates based on the confidence on current batch of samples.

" A message exchange protocol that enables fast discovery of nearby peers using

triangulated distances.

We have examined PCoord's convergence behavior using simulations based on

measurements among 1740 Internet hosts in three different scenarios: (1) the simul-

taneous join scenario with all nodes joining the coordinate system at approximately

the same time, (2) the incremental join scenario, in which we evaluate the number

of samples required for a newly joined node to converge to a low prediction error

when the rest of the system has already converged, and (3) the high churn scenario,

in which the system experiences continuous membership changes with dynamic node

join and leave.

Our results indicate that, under the simultaneous join scenario, PCoord can con-

verge to a lower median system prediction error with less number of samples than

Vivaldi. In particular, after each host updates its coordinates using 100 - 120 samples,

PCoord's median system prediction error reduces to the 12 ms range, which is com-

parable to FixedLM scheme's performance using 10 fixed landmarks. It takes Vivaldi

twice as many samples to achieve the same level of accuracy under the simultaneous

join scenario.

We have also demonstrated that it takes a small number of samples for a newly

joined node in PCoord to converge to a low prediction error when the rest of the

system has already converged. In particular, in simulations based on measurements

among 1740 nodes, we observe that on average the median prediction error of a newly

joined node can decrease to the 12 ms range within two coordinate updates using 10

reference points per update (i.e., within 20 samples).

Our simulation results suggest that PCoord is robust under high churn when the

system experiences continuous membership changes, and can effectively guard against

faulty coordinate information due to buggy implementations of the algorithm. We

130

have also examined PCoord's performance under malicious attacks. Our results sug-

gest that the weighted loss function's performance can be sensitive to false information

due to malicious nodes. In a real-world deployment, a good engineering choice may be

to turn off the weighted loss function if a large number of malicious nodes is expected.

7.2 PALM Conclusions

Another contribution of this thesis is the design and evaluation of a proof-of-concept

coordinate system named PALM. Our work (see Appendix A) demonstrates the fea-

sibility of a decentralized approach in building coordinates systems by using distance

measurements to any subset of hosts. Through simulation-based evaluations, we show

that the PALM based approaches have rather different performance characteristics

than the fixed landmarks based approach, such as GNP. We believe that many of

our findings with respect to the performance characteristics of PALM provide valu-

able insights for designers of decentralized network coordinate systems or peer-to-peer

location systems in general. Some of our findings are:

" Overall, PALM can achieve competitive prediction accuracy in comparison to

that of the FixedLM scheme for a significant fraction of the distances. When a

random peer sampling strategy is used, PALM achieves comparable prediction

accuracy as the FixedLM scheme when a reasonably large number of reference

points is used. When the number of reference points used is small, PALM

achieves performance comparable to that of the FixedLM scheme by using a

sampling strategy that exploits the topological information in the coordinates

of existing nodes.

" The PALM based approaches have rather different performance characteristics

than the fixed landmarks based approach. The PALM-based approaches tend

to over-predict small RTTs. The FixedLM scheme, in contrast, tends to under-

predict large RTTs. The performance implication is that PALM coordinates do

not provide quite enough resolution needed for nearest peer selection; however,

131

PALM coordinates have comparable performance to FixedLM in clustering peer

nodes based on their proximity relationships.

e The performance of the FixedLM approach can be very sensitive to the land-

mark placement. PALM nodes have the advantage of being able to exploit the

coordinates information of the existing nodes and select well-distributed sets of

peers as their reference point set. Another important observation is that the

performance of PALM seems to be unaffected by the bootstrap nodes locations.

Unlike the GNP landmarks whose placement greatly impacts the system per-

formance, bootstrap nodes that are clustered in network do not perform worse

than a well-distributed set of bootstrap nodes.

7.3 Future Work

There are several issues that we did not address in this thesis work. Some of these

issues include:

" How does PCoord respond to changing network conditions? Although we have

demonstrated that PCoord adapts to dynamic node join, we did not explore its

performance under dynamic Internet route changes.

" Can PCoord converge with less number of samples? What are the theoretical

bounds on the number of samples it takes for PCoord to converge? In this

thesis, we demonstrated that PCoord can converge to low prediction error by

sampling a mixture of near and far peers. One interesting question is whether

there exists a peer sampling strategy that can significantly decrease the number

of samples it takes for PCoord to converge to a low prediction error.

" Are there better geometric models for Internet distances? In this thesis, we have

chosen the Euclidean space to model Internet distances. One future direction

is to explore alternative models to better capture Internet distances.

132

Finally, as part of our future work, we would like to explore whether it is possible to

extend the PCoord framework to model "distance" measurements other than Internet

latencies. For example, the distance measurement can be a metric that measures

the similarity between the content of web documents. One interesting direction is

to extend the PCoord framework to implement a decentralized semantic overlay to

support distributed searching of data objects.

133

134

Appendix A

PALM

The landmark-based architecture has been commonly adopted in the networking com-

munity as a mechanism to measure and characterize a host's location on the Internet

[32, 35, 41, 42, 37, 15]. In most existing landmark based approaches, end hosts use the

distance measurements to a common, fixed set of hosts to derive location estimations

on the Internet. The Global Network Positioning (GNP) system [32], for example,

uses a host's distance measurements to a fixed set of infrastructure nodes to compute

absolute coordinates to characterize the host's location on the Internet.

However, using a fixed set of landmarks presents a potential performance bottle-

neck. More importantly, the accuracy of the fixed landmark schemes often depends

highly on the strategic placement of the landmarks. Although the developers of GNP

reported good prediction accuracy with a careful selection of landmarks when hosts

are globally distributed, in practice, it will be difficult to pre-determine the strategic

placement of landmarks without some prior knowledge of the topological distribution

of the participating hosts.

In this study, we investigate the performance of a coordinate-based scheme, PALM,

which uses peers as landmarks. We extend the absolute coordinates framework from

GNP and apply it in a decentralized, peer-to-peer environment. More specifically,

instead of using a fixed set of nodes as landmarks, any peer node which has already

derived its coordinates can be selected by another peer node to function as a landmark.

We call such a peer-to-peer based approach in topology discovery PALM (_Peers as

135

Landmarks).

The focus of this study is to evaluate the performance characteristics of such

a decentralized coordinates-based approach under several factors, including the di-

mensionality of the coordinate space, peer distance distribution, and the number of

peer-to-peer distance measurements used. We evaluate two PALM-based schemes:

RandPalm and Island. In RandPalm, a peer node randomly selects from existing

peer nodes as its landmarks. In Island (Intelligent Selection of Landmarks), each

peer node selects its landmarks by exploiting the topological information derived

based on existing peer nodes' coordinates values.

Through simulations using both real network measurements and simulated topolo-

gies, we compare the performance of RandPalm and Island with the original GNP

scheme (referred to as the FixedLM scheme from now on). The rest of this Appendix

is organized as follows. We first briefly describe the FixedLM and the PALM ap-

proach. We then evaluate the PALM approach through simulations using both real

network measurements and simulated topologies. We compare the performance of

RandPalm and Island with that of the FixedLM scheme in terms of errors in network

distance prediction and their effectiveness in selecting nearest peer nodes.

A.1 The PALM Approach

Before we describe the PALM approach, we first briefly introduce the GNP[32] frame-

work as background information.

A.1.1 GNP

In GNP, the Internet is modeled as a D-dimensional geometric space. End hosts

maintain absolute coordinates in this geometric space to characterize their locations

on the Internet. Network distances are predicted by evaluating a distance function

over hosts' coordinates. A small distributed set of hosts known as landmarks provide

a set of reference coordinates. Hosts measure their latencies to a fixed set of land-

mark nodes in order to compute their coordinates. While the absolute coordinates

136

provide a scalable mechanism to exchange location information in a peer-to-peer en-

vironment, the GNP scheme presented so far used distance measurements to a fixed

set of landmarks to build the geometric model.

A.1.2 PALM

In PALM, there is no specially designated landmark nodes; any peer node can poten-

tially be selected as a landmark by another node. As part of the bootstrap process,

we assume that an arbitrary set of initial peer nodes function as bootstrap landmarks

to provide reference coordinates to other nodes. The PALM bootstrap nodes compute

their coordinates the same way that the GNP landmarks compute their coordinates.

The main difference between PALM and GNP lies in how regular hosts compute their

coordinates. In the rest of this section, we first define notations. We then present the

PALM scheme in two parts: bootstrap operation and regular host operation.

Let:

B = Set of bootstrap nodes

M = Number of reference points for each coordinate update

Y = Set of peers selected as reference points

ci = Coordinates of host i

dij= Measured RTT between hosts i and j

Bootstrap Operation

The bootstrap nodes measure the inter-node round-trip ping times to produce a

JBIxIBI distance matrix, where JBI is the number of bootstrap nodes. A set of

coordinates are computed for the JBI bootstrap nodes to minimize the overall error

between the measured distances and the computed distances as follows. Let ci and

c2 be the coordinates of node i and j respectively, where i, j E B. The coordinates of

the bootstrap nodes can be computed by minimizing the following loss function:

137

> f(dij, |ci - cjf|)
i,jEB

where f(9) denotes an error measurement function, and denotes the norm.

The GNP work used several error functions, including the squared-error function:

f(dij, 1lci - cj|1) = (dij - 1lci - cj l) 2

Another error function used in [32] is the relative squared-error:

f(dij, fci - cj3 |) = (dii - 1jCj - Cd .) 2

In comparison to the squared loss function, the relative squared error function

puts more "weight" on shorter RTTs. In this study, we use the relative squared error

function when evaluating PALM.

The global minimization problem can be approximately solved using many generic

multi-dimensional minimization algorithms, such as Simplex Downhill method, which

we use in this thesis.

Once the bootstrap nodes have been mapped, their coordinates along with the

description of the geometric space and possibly the distance function used can be

made available for other peer nodes to compute their own coordinates. A peer node

is said to have been mapped once it has computed its absolute coordinates.

Regular Host Operation

In PALM, any peer node which has already derived its absolute coordinates can be

selected by another peer node to serve as one of its landmarks. In order for a host i

to compute its coordinates, it selects any M existing mapped peer nodes to function

as its landmarks (D + 1 <= M <= JB|). Let Y be the set of peers selected by host

i. Using the coordinates of those M peer nodes and the distance between i and each

of the M selected peer nodes, host i can compute its coordinates ci to minimize the

overall error between the measured and the computed distances to the selected M

138

peers. More specifically, host i computes its coordinates by finding ci that minimizes

the following loss function:

Sf (di, ||ci - cjfl)
jGY

Again, we use the relative error function described above as our error measurement

function.

We previously proposed RandPalm and Island in [24], independent of PIC [8].

Although one of the PIC strategies (namely, the random strategy) has the same basic

algorithm as RandPalm, PIC [8] did not explore the behavior of the random strategy

in depth. Further, it did not address the issue of selecting well-distributed peers

as reference points. In this work, we examine the performance of RandPalm as a

function of the number of reference points used, and explore the effect of bootstrap

nodes placement.

A.2 Comparing RandPalm with the Fixed Land-

mark Scheme

We evaluate the PALM approach through simulations using both real network mea-

surements and simulated topologies. We compare the performance of PALM with the

FixedLM scheme in terms of errors in network distance prediction and their effective-

ness in selecting nearest peer nodes.

A.2.1 Performance Metrics

Pairwise Distance Prediction

As in GNP [32], we use the absolute relative error (RE) as our performance metric.

For each pair of nodes, their absolute relative error is defined as IEA, wheremin(E,A)'

E is the predicted Euclidean distance, and A is the actual measured RTT (round

trip time) between the two nodes. The directional relative error (DRE) is miEA)

139

Additionally, we define directional prediction error (DPE) as E - A, and prediction

error (PE) as IE - AI.

Nearest Neighbor Selection

We use the stretch metric to evaluate the the effectiveness of the proposed schemes

in selecting nearest neighbor. Let RTT(i, j) denote the mesaured round-trip latency

between node i and j. Given a Euclidean mapping of a set of peer nodes, the stretch of

a node i is computed as RTT(i,p) where p is the node with minimal Euclidean distanceRTT(i,q) I

to i, and q is the closest neighbor to i according to the actual latency measurement.

A.2.2 Network Topologies

We evaluate our scheme using both real network measurements and simulated topolo-

gies:

" The Active Measurement Project (AMP) at the National Laboratory for Ap-

plied Network Research (NLANR) collects network measurements between over

100 active monitors distributed over the Internet [13]. We use the RTT mea-

surements between 110 of such monitors on July 16, 2002 for our experiments.

The RTTs are the round trip ping time between each pair of hosts measured

at a frequency of once every minute over a 24 hour period (i.e., total of 1440

round trip times reported between each pair of hosts).

" The GT-ITM Internet Topology Generator is used to generate transit stub

topologies of a 10,000 node network. We then randomly select 3492 out of the

10,000 nodes as peer nodes of our test overlay network. The latency between

two nodes is defined as the sum of the links on the shortest path between the

two nodes using the weighted graph generated by ITM.

The GNP paper evaluated their scheme using distance measured between 19 land-

mark nodes and 869 hosts. However, since no inter-hosts distances between the 869

140

hosts are available, we used other network measurements and simulated topologies to

test our approach.

For the RandPalm and Island schemes, ten experiments with different selection of

bootstrap nodes are performed for each topology. For each experiment, the same set

of hosts that serve as bootstrap nodes in the RandPalm and Island are also used as

the fixed landmarks in the FixedLM scheme. Unless otherwise noted, the FixedLM

landmark nodes and the PALM bootstrap nodes are randomly selected hosts from

the peer population. In a later section, we examine the effect of biased selection of

landmarks on PALM's performance. The default dimension of the geometric space,

D, used is five, unless otherwise noted.

A.2.3 Effects of Number of Landmarks

In this section, we compare the distance prediction performance of the FixedLM

scheme with that of the RandPalm scheme when different number of landmarks are

used.

In Figures A-1 and A-2, we compare the cumulative distribution of the absolute

relative error of FixedLM scheme vs. the RandPalm scheme when different numbers

of landmarks are used. Figure A-1 shows the results from the AMP measurements

for 6, 10 and 15 landmarks. Figure A-2 compares the relative error distribition of

the two schemes using the GT-ITM topology when 10, 20 and 30 landmarks are used

respectively. In both schemes, the performance improves as the number of landmarks

increases.

We note that the performance of the two schemes are very similar. In both

schemes, the performance monotonically improves as the number of landmarks in-

creases. The performance of the 20 landmarks case is much better than that of the 10

landmarks under both schemes. Further, the gap between the distributed landmark

selection scheme and the fixed landmark selection scheme is even smaller when the

number of landmarks is increased to 20.

141

E

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

Relative Error
1.2 1.4

Figure A-1: AMP results. Cumulative distribution of relative error, FixedLM vs.
RandPalm. N = 110, 5-Dimensions.

c
0

E

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8

Relative Error

Figure A-2: GT-ITM results. Cumulative distribution of relative error, FixedLM vs.
RandPalm. N = 3492, 5-Dimensions.

142

1

-- ----- - -- -- ~

.- --------- - -

-Rand-alm-------------

Y -
tI -ac~l 1i

FixedLM 10LM ---
RandPalm 2LM -

FixedL-M 20LM
RandPalm 30LMV ----

FixeLM 3L -

- -;

-

-

15 LM RandPalm
15 LM FixedLM -------

10 LM RandPalm --------
10 LM FixedLM .

6 LM RandPalm ----
- 6 LM FixedLM ----

1

A.2.4 Comparison of FixedLM and RandPalm with Different

Number of Landmarks

To better understand the performance characteristics of the RandPalm vs. the

FixedLM scheme, we plot the summary statistics that describe the distance pre-

diction error of both schemes as a function of the number of landmarks used. Figures

A-3 and A-4 plot the median, 5th, 25th, 75th, and 95th percentile relative error (RE)

and directional relative error (DRE) respectively of both schemes as a function of the

number of landmarks.

We note that a zero value in RE and DRE indicates a perfect prediction in the

network distance. RE expresses the prediction error as an absolute value, and there-

fore is always positive. A positive DRE value indicates an over prediction in network

distance, while a negative DRE value indicates an underestimation of actual network

distance.

We note that RandPalm performs worse than FixedLM when the number of land-

marks is low. In particular, when six and ten landmarks are used, RandPalm has a

tendency to over predict network distances between hosts, as can be observed from

the large positive 95th percentile DRE value in Figure A-3. The FixedLM scheme, on

the other hand, has a tendency to under-predict inter-hosts distances when the num-

ber of landmarks is low. This can be observed from the large negative 5th percentile

DRE values in Figure A-4.

We note that for both schemes, the RE and DRE values improve monotonically

with increasing the number of landmarks. For RandPalm, the performance improve-

ment is especially significant when the number of landmarks is increased from 6 to

15. The performance of both schemes tends to flatten beyond 25 landmarks.

An important observation is that the performance of RandPalm eventually catches

up to that of the FixedLM scheme when increasingly large numbers of landmarks are

used. We also observe that the 5th percentile DRE value of the FixedLM scheme

is consistently lower than that of the RandPalm scheme across all landmark values,

indicating a large under-prediction problem in the FixedLM scheme. This is consistent

143

* RandPalm Median -i----
RandPalm Median

FixedLM Median ---x---
At RandPalm 5th percentile ---

1.4 - Fixed LM 5th percentile ... -o
RandPalm 25th percentile -- +--

Fixed LM 25th percentile -- o--
RandPalm 75th percentile -

1.2 Fixed LM 75th percentile -
RandPalm 95th percentile ----

Fixed LM 95th percentile -

0.8

0.6

0.4

0.2 --

---- ---- -----------
0 .2-------------------

5 10 15 20 25 30
Number of Landmarks

Figure A-3: Relative Error. Comparing FixedLM and RandPalm schemes with sum-
mary statistics of relative error: GT-ITM,N = 3492. Dimensionality is 5. Number of
landmarks: 6, 10, 15, 20, 25, 30.

with the original GNP results in [32], which reported a large under-prediction error

using their data set when predicting large RTT measurements.

A.2.5 Comparison of FixedLM and RandPalm by RTT Groups

From the previous section, we observe that the FixedLM scheme tends to under-

predict while the RandPalm scheme tends to over-predict. To understand the sources

of these under- and over-predictions, we further investigate the performance properties

of both schemes by classifying the evaluated paths into groups of 50 ms each.

Figure A-5 shows the RTT group size distribution of our GT-ITM topology. We

show the summary statistics of the directional prediction error, defined as (predicted

RTT - actual RTT), for each RTT group. Figures A-6 and A-7 show the median,

mean, 5th, 25th, 75th and 95th percentile prediction error of each RTT group us-

ing FixedLM and RandPalm respectively. Ten landmarks are used for both figures.

Figures A-8 and A-9 show the same statistics when 20 landmarks are used.

144

1 6

1.5

1 - RandPalm 25th percentile ---
Fixed LM 25th percentile - -- --

RandPalm 75th percentile -
Fixed LM 75th percentile -- --

RandPalm 95th percentile -
Fixed LM 95th percentile v

0c 05 -
-. -

-

I -

~~~~~~..................... ............................ 
.........

-1.5
5 10 15 20 25 30

Number of Landmarks

Figure A-4: Directional Relative Error. Comparing FixedLM and RandPalm schemes
with summary statistics of directional relative error: GT-ITM, N = 3492. Dimen-
sionality is 5. Number of landmarks: 6, 10, 15, 20, 25, 30.

For the ten landmark case, Figure A-6 shows that the FixedLM scheme is very

accurate in predicting distances less than 50 ms, but tends to under-predict distances

that are beyond 250ms.

Figure A-7 shows that the RandPalm scheme has the most trouble in predicting

short distances when ten landmarks are used. The 95th and 75th percentile prediction

errors are as high as 694 and 385 ms respectively, showing a gross over-estimation

of distances less than 50 ms. The RandPalm scheme also tends to under-estimate

distances over 700 ms, although the extent of the under-estimation is not nearly as

severe as the over-estimation for the 50 ms group case.

Increasing the number of landmarks to 20 helps both schemes in narrowing down

the extent of their prediction errors across all RTT groups. We note that increasing

the number of landmarks from 10 (see Figure A-7) to 20 (see Figure A-9) significantly

reduces the extent of over-prediction in the short RTT groups for RandPalm: there

is a 40-50% reduction in the 95th and 75th percentile prediction errors in the 50 ms

RTT group. Though the RandPalm prediction errors in the 20 landmark scenario are

145

RandPalm Median -

FixedLM Median --- x---
RandPalm 5th percentile - --

Fixed LM 5th percentile -E-



0.14

0.12 -

0.1 -
CL

0

. 0.08
-c

0

c 0.06
0

U_

0.04

0.02

0
0 200 400 600 800 1000 1200 1400

Path Distances (50ms per group)

Figure A-5: Bin size distribution by RTT groups: GT-ITM, N 3492

distributed fairly evenly between over- and under-predictions, the mis-predictions in

the 50 ms RTT group are still dominated by over-predictions.

A.2.6 Dimensionality

In this section, we examine the effect of dimensionality on the prediction accuracy of

the RandPalm scheme. Figures A-10 and A-11 plot the relative error distribution for

the FixedLM and RandPalm schemes respectively using varying number of dimen-

sionalities. The number of landmarks is fixed at ten in both schemes. Due to space

constraints, we only show the AMP results. The GT-ITM results are qualitatively

similar.

From both figures, significant performance improvement can be observed as the di-

mensionality increase from one to five in both schemes. The incremental performance

improvement beyond five dimension, however, is very small.

146



median -
mean ---x---

25th percentile -- *---
600 75th percentile l-

5th percentile - -w-
95th percentile - -o-.-

400

0

w

0
200

I- - 0-

0

.x---.- a

-200 -

o 200 400 600 800 1000 1200 1400
Path Distances (50ms per group)

Figure A-6: FixedLM performance by RTT groups using 10 landmarks. GT-ITM,
N = 3492, 5 Dimensions.

median -
mean ---x---

25th percentile --- --
600 75th percentile .. -

5th percentile -.-.---
95th percentile --

400

0

wX
C

0

200 - -

0 -

=a
-- .-- =--- .. 1 --E--E -- s

0 200 400 600 800 1000 1200 1400
Path Distances (50ms per group)

Figure A-7: RandPalm performance by RTT groups using 10 landmarks. GT-ITM,
N = 3492, 5 Dimensions.

147



600 |

400

200 1

0

-200 1

0 200 400 600 800
Path Distances (50ms per group)

1000 1200 1400

Figure A-8: FixedLM performance by RTT groups using 20 landmarks. GT-ITM,
N = 3492, 5 Dimensions.

600

400 P

0

w
C
0

CD)

CL

200 1-

0

-200

0 200 400 600 800
Path Distances (50ms per group)

1000 1200 1400

Figure A-9: RandPalm performance by RTT groups using 20 landmarks. GTITM,
N = 3492, 5 Dimensions.

148

0

w
C
0

IL
c

median i
mean ---x---

25th percentile ----
75th percentile .E

5th percentile --.--
95th percentile --- o---

--e ->-G E 0

-
-G-

--
I - x - -

-I Imedian -

mean ---x---
25th percentile --- -* --
75th percentile .. -

5th percentile ----
95th percentile --- o---

x

E B---
0 .  

B -- -- - B

3-. EI C U-l E . - C -_C



1

0.9

0.8

0.7

0.6

0 0.5

0.4

0.3

0.2

0.1

r
0 0.2 0.4 0.6 0.8 1

Relative Error

Figure A-10: FixedLM. Effect of dimensionality on performance.
Landmarks.

1.2

AMP, N = 110, 10

Dimensionality Comparison, AMP, 110 nodes, 1 OLM

1D
2D-
3D .----

7D ----
9D ----

0 0.2 0.4 0.6 0.8 1 1.2
Relative Error

Figure A-11: RandPalm. Effect of dimensionality on performance. AMP, N = 110,
10 Landmarks.

149

Dimensionality Comparison, AMP, 110 nodes, 10LM

......... ..............................------- ---

----------- - ----- - - -

1 -

-2D-

D --

D -----

- D| -- -

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

A



A.3 Robustness in Landmark Placement

The results we have presented so far randomly select from a global pool of peer nodes

to function as landmarks. In the FixedLM scheme, this randomly selected set of peer

nodes are used by all other peer nodes to construct their solution coordinates. In the

RandPalm scheme, this randomly selected set of peer nodes function as the bootstrap

nodes that provide a set of reference coordinates to other peer nodes.

In this section, we compare the performance of RandPalm with the FixedLM

scheme when the landmark placement is not well distributed. We generate ten differ-

ent sets of badly placed landmarks, which tend to be clustered in network topology,

and compare the performance of FixedLM and RandPalm. Figure A-12 and A-13

plot the cumulative relative error distribution with poorly placed landmarks in AMP

and GT-ITM respectively.

We use the following procedure to generate ten different sets of badly placed

bootstrap nodes, which tend to be clustered in network topology. First, a hierarchical

clustering algorithm is used to cluster peer nodes into G clusters based on their actual

RTT measurements. Let G' be the number of clusters with no less than BI nodes in

them. We then randomly pick a cluster from the G' clusters. Finally, randomly pick

BI nodes from the above cluster. Ten different sets of clustered landmark selections

are generated for each topology, and the cumulative results are presented here.

Figures A-14 and A-15 show the summary statistics of the FixedLM scheme when a

clustered landmark set is used. Comparing the summary statistics in Figure A-6 using

randomly selected landmarks, we note that the FixedLM scheme has the tendency to

grossly underestimate RTT groups larger than 50ms when clustered landmarks are

used. A sharp dip of the 5th percentile DRE value around the 200 ms RTT group in

Figure A-14 is caused by under-predicting some 200 ms paths by almost 100%. This

causes the DRE value to dip dramatically around the 200ms RTT group, because the

DRE metric divides the prediction error by the minimum of the measured and the

computed RTT values. Similar levels of mis-predictions at higher RTT groups do not

have as low of a DRE value, because of the larger denominators.

150



0 0.2 0.4 0.6 0.8 1 1.2 1.4
Relative Error

Effect of clustered landmark placement on relative error of distance
prediction. AMP, N = 110, 10 Landmarks, G = 36.

0:

.0

E

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.5 1.5 2.5

Absolute Relative Error

Figure A-13: Effect of clustered landmark placement. GT-ITM, N
marks. G = 30.

3492, 10 Land-

151

0.9

0.8

0.7

0.6

0.5

0.4

0.3

C:
0

.0

E

0.2

0.1

0

Figure A- 12:

1

Rand Palm with Clustered Bootstrap LMV
Rand Palm with Random Bootstrap LM ----

FixedLM with Clustered LM-
FixedL-M with Rand LMI.........

- -

RandPalm ClusteredLMV
FixedLM ClusteredLM - -

RandPalm Rand Bootstrap LM-
FixedLM Rand LM ..

SI I

1



15
Mean 

Median --- x---
105th Percentiie --- *-. - .

25th Percentile e -
75th Percentile ---.-

5 -95th Percentile -.-o-.-

0 -100

-15 -

- -1 -,

>

Cc0

51

-20

-25

-30

-35
0 200 400 600 800 1000 1200 1400

Path Distances (50ms per group)

Figure A-14: Summary statistics of directional relative error for the FixedLM scheme
under clustered landmark placement. N = 3492, 10 Landmarks.

600 Mean -+
t' I Median --- x---

5th Percentile - --- - -

400 25th Percentile .--.. -
75th Percentile ---

0- 0' 95th Percentile --- e-.-

200 -

ZW 0

- -200 - -..
C

040

-600 -Bx,

-800

-1000
0 200 400 600 800 1000 1200 1400

Path Distances (50ms per group)

Figure A-15: Summary statistics of RTT prediction error for the FixedLM scheme
under clustered landmark placement. N = 3492, 10 Landmarks.

152



0.8

E 0.4

0.2

Rand Palm with Clustered Bootstrap LM
Rand Palm with Random Bootstrap LM -------

FixedLM with Clustered LM --------
FixedLM with Rand LM .

011
0 5 10 15 20

Stretch

Figure A-16: Effect of bad landmark placement on nearest neighbor selection. GT-
ITM, N = 3492, 10 Landmarks.

Figure A-16 show the effect of clustered landmark placement on nearest neighbor

selection performance for both FixedLM and RandPalm. Although the overall pre-

diction accuracy of the FixedLM scheme suffers when landmarks are poorly placed,

we note interestingly that its nearest neighbor selection performance does not seem

to be affected as much. Even with bad landmark placement, the FixedLM scheme

still outperforms the RandPalm scheme in nearest neighbor prediction.

A.4 Intelligent Landmark Selection Using PALM

Maps

In the previous section, we presented some interesting performance properties of

RandPalm. As the number of landmarks increases, the overall distance prediction

performance of RandPalm converges to that of the FixedLM case. However, unlike

the FixedLM scheme, it is very robust against suboptimal bootstrap nodes placement.

In this section, we describe an approach called Island (Intelligent Selection of

153



Landmarks using PALM Maps) to improve on the performance of the RandPalm

scheme. Our goal is to achieve network distance prediction accuracy of the FixedLM

scheme with fewer landmark nodes while preserving the robustness of the RandPalm

scheme. The idea of Island is to have each peer node intelligently select its landmarks

by exploiting the topological information contained in the PALM map. The PALM

map contains the IP addresses of existing peer nodes, and their coordinates values

in the geometric space. We assume that each existing peer node in the system has

access to a copy of the current PALM map. Note that Island does not require each

peer node to have a global PALM map that contains all of the peer nodes in the

system. A partial PALM map is sufficient, provided that it contains a reasonably

well-represented set of peer nodes in terms of network topology. The dissemination

of the PALM map is beyond the scope of this work, and will be left as future work.

In Island, each peer node uses the following heuristic to select landmarks.

" Upon joining, a peer node i contacts any existing peer node j in the system to

obtain a copy of the existing PALM map. The map contains the IP addresses

of existing peer nodes known to node j, and their coordinate values.

" The existing peer nodes are classified into clusters based on their coordinates

in the geometric space. The results presented in this section use the Euclidean

distance between nodes' position in the geometric space to cluster the existing

peer nodes. We will experiment with other distance functions in future work.

" Node i then randomly picks M clusters from the clusters formed above, and

then randomly picks a node in each cluster as its landmarks. By picking each

landmark node from a different cluster, we attempt to achieve a well-dispersed

landmark set, and avoid the degenerate case where all landmarks are from the

same network region.

The clustering can be done offline by existing peer nodes in the system, so that

a newly joined peer node can quickly select a set of landmark nodes based on the

clustered PALM map.

154



We have examined the performance of the Island scheme with simulation using

both the GT-ITM and AMP topology. We present only the GT-ITM results here,

since the AMP results are similar. We compare the performance of Island, RandPalm

and the FixedLM schemes under the following scenarios.

" Random bootstrap landmarks. The JBI bootstrap nodes are randomly selected

from the N nodes.

" Clustered bootstrap landmarks. The bootstrap landmarks are all from the same

cluster.

" Dispersed bootstrap landmarks. The boostrap landmarks are from different

clusters. The performance of this scenario is not shown as it does not differ

significantly from the random bootstrap landmarks case for all three schemes.

For each scenario, IBI nodes are selected to function as the bootstrap landmarks.

In the FixedLM case, these JBj nodes are the landmark nodes that are used by all

peer nodes to generate their coordinates. In the RandPalm and Island case, these IBI
nodes function as the bootstrap nodes. The difference between the RandPalm scheme

and Island is that, in RandPalm, peer nodes randomly select M nodes from the PALM

map; whereas Island selects the M nodes by exploiting the cluster information in the

PALM map. For simplicity, the simulations in this section set M equal to JBI.

Figure A-17 compares Island with RandPalm and FixedLM schemes using the

GT-ITM topology. The performance of Island is better than the RandPalm and

FixedLM schemes when ten landmarks are used by all schemes. Further, we note

that the performance of Island using 10 landmarks is comparable to the performance

of the FixedLM scheme when 15 landmarks are used. Finally, when the bootstrap

landmarks are clustered (Figure A-19) both Island and RandPalm greatly outperforms

the FixedLM scheme.

Figure A-18 shows the summary statistics of the Island scheme under random

bootstrap node placement. Note that the performance of the Island scheme is much

better than the RandPalm summary statistics presented in Figure A-7.

155



0.9

0.8

0.7

0

0.6

0.5
E, 054

030.3 - /

0.2

Island Random Bootstrap 10 LM0.1 RandPalm Random Bootstrap 10 LM ------- -
FixedLM Random 10 LM -
FixedLM 15 Random LM .

011
0 0.2 0.4 0.6 0.8 1 1.2

Relative Error

Figure A-17: Island relative error distribution using randomly selected bootstrap
landmarks. GT-ITM, N = 3492, 10 landmarks.

500
Mean -

Median --- x---
5th Percentile -- *

400 - 25th Percentile -.. -
75th Percentile - -*.- "
95th Percentile --- 0--

300 -

05 200--

100
C

II))

-100

-2001300

0 200 400 600 800 1000 1200 1400
Path Distances (50ms per group)

Figure A-18: Summary statistics of RTT prediction error for the Island scheme under
random bootstrap landmark placement. GT-ITM, N = 3492, 10 Landmarks.

156



0.9 -

0.8 -

0.7 -

0 .6 -

0.5 -

E 0.4 -

0.3

0.2

0.1 Island Clustered Bootstrap LM
RandPalm Clustered Bootstrap LM -------

FixedLM Clustered LM .--------
0 1

0 0.2 0.4 0.6 0.8 1 1.2
Relative Error

Figure A-19: Island relative error distribution using clustered bootstrap landmark
placement. GT-ITM, N = 3492, 10 Landmarks.

Figure A-20 shows the summary statistics of the Island scheme when a clustered

landmark set is used ( compare with Figure A-15).

A.5 Nearest Peer Node Selection and Proximity

Clustering

The ability to select the nearest node from a set of peer nodes is important to many

applications, including nearest server/proxy selection, proximity routing in peer-to-

peer networks and neighbor selection in overlay network construction. We use the

stretch metric as our performance metric.

Figure A-21 shows the cumulative distribution of the stretch. We note that both

RandPalm and Island perform worse than the FixedLM scheme in the nearest neigh-

bor selection. This result should not come as a surprise. As discussed in the earlier

section, the RandPalm scheme tends to grossly over-estimate RTT distances that are

between 0 and 50ms, which negatively affects the nearest node selection performance

157

------------------------
1



500n 5,00 Mean -
Median -- x--

5th Percentile - - x --
400 25th Percentile .a. -

75th Percentile ----
95th Percentile ---o--

300 -

0 200 -

100 -

0.. U - .... 0 UU U .3 .U E

-200 -

-300 L
0 200 400 600 800 1000 1200 1400

Path Distances (50ms per group)

Figure A-20: Summary statistics of RTT prediction error for the Island scheme under
clustered bootstrap landmark placement. GT-ITM, N = 3492, 10 Landmarks.

of the RandPalm scheme.

In order to further understand how well each scheme captures the network prox-

imity relationships among hosts, we apply the KMeans clustering algorithm [20} on

the coordinates generated by each scheme. The clustering criterion is the inter-host

Euclidean distances defined by the coordinates. We then compute the weighted intra-

cluster RTT averages for each clustering assignment, where the weight is the number

of peers in each cluster, and the averages are computed using actual RTTs among

hosts assigned to the same cluster. Figure A-22 shows the results of clustering per-

formance when 10 and 30 landmarks are used. The RandPalm performs significantly

worse than the other schemes when the number of landmarks used is small. We note

that Island with the same number of landmarks yields cluster averages that are ap-

proximately 25% less than that of the RandPalm. When the number of landmarks

is increased to thirty both RandPalm and Island yield cluster averages that are close

to those of the FixedLM schemes.

158



0.7

0.6

0.5

0

0.4

0.3
E

0.2

0.1

FixedLM 10 LM
RandPalm 10 LM --

Island 10 LM -----
01

1 1.5 2 2.5 3 3.5 4 4.5 5
Stretch

Figure A-21: Performance of selecting nearest peer node. GT-ITM, N = 3492.

A.6 Conclusion

In this Appendix, we examined the performance characteristics of a peer-to-peer ap-

proach in network topology modeling and distance prediction, named PALM. Similar

to GNP[32], PALM models the Internet as a geometric space. End hosts compute

their absolute coordinates to characterize their network locations based on distance

measurements to a set of landmarks. In contrast to the GNP approach, which used

a fixed set of landmarks, the goal of PALM is to allow peer nodes to construct their

coordinates by using distance measurements to any participating peer nodes. We

present two PALM-based schemes: RandPalm and Island. In RandPalm, a peer node

randomly selects from existing peer nodes as its landmarks. In Island, each peer node

intelligently selects its landmarks by exploiting the topological information contained

in the PALM map (which contains coordinates of the existing peer nodes).

Through simulations using both real network measurements and simulated topolo-

gies, we compare the performance of RandPalm and Island with the original GNP

scheme using fixed landmarks. We conclude with the following observations.

159



400

350

a>

aI)

I-

300

a)

.) 250 ----- ------ - --- --- * -X----

~~-- - X ------- f1* - - ~ 1

. . . .. ....... B...... ...... E .... .1 ... . . . 8...0...... ...... ...... 0......

200

0 10 20 30 40 50 60 70 80
Number of Clusters

Figure A-22: Weighted Intra-Cluster RTT. Randomly selected bootstrap nodes. GT-
ITM, N = 3492, 10 landmarks.

* Overall, PALM can achieve competitive prediction accuracy comparable to that

of the FixedLM scheme for a significant fraction of the distances. When a

random peer sampling strategy is used, PALM achieves comparable prediction

accuracy to the FixedLM scheme when a reasonably large number of reference

points, for example 30, is used. When the number of reference points used is

small, PALM achieves performance comparable to that of the FixedLM scheme

by using a sampling strategy that exploits the topological information in the

coordinates of existing nodes.

* The PALM based approaches have rather different performance characteristics

than the fixed landmarks based approach. The PALM-based approaches tend

to over-predict small RTTs. The FixedLM scheme, in contrast, tends to under-

predict large RTTs. The performance implication is that PALM coordinates do

not provide quite enough resolution needed for nearest peer selection; however,

PALM coordinates have comparable performance to FixedLM in clustering peer

nodes based on their proximity relationships.

160

RandPalm 10 LM
RandPalm 30 LM --- x---

Island 10 LM --- *
Island 30 LM -..... u.

FixedLM 10 LM ---- --
FixedLM 30 LM -.----



* The performance of the FixedLM approach can be very sensitive to the land-

mark placement. In contrast, PALM nodes have the advantage of being able to

exploit the information about the coordinates of the existing nodes and select

well-distributed sets of peers as their reference point set. Another important

observation is that the performance of the PALM approaches are robust even

in the face of suboptimal placement of the bootstrap nodes. Unlike the GNP

landmarks whose placement greatly impacts the system performance, bootstrap

nodes that are clustered in network do not perform worse than a well-distributed

set of bootstrap nodes.

Besides the above observations, some interesting insights about the FixedLM

scheme have also been presented in this Appendix. Our results show that although the

overall distance prediction performance of the FixedLM scheme can suffer substan-

tially when landmarks are misplaced, FixedLM is, however, very robust in predicting

short network distances across all landmark configurations that we have tried.

In summary, our results indicate that RandPalm and Island yield good pair-wise

distance prediction accuracy for a substantial fraction of distances. However, they

are of limited value in predicting short distances. Additionally, there are several

important issues that were not addressed. For example, we did not specify how boot-

strap nodes are selected, and how new nodes find the coordinates of existing mapped

nodes. Another important issue we did not address is whether and by how much

error accumulate for later joining nodes. In a dynamic peer-to-peer environment,

where both the membership and the underlying network conditions can change on a

rather short time scale, there needs to be a mechanism for continuous re-calibration.

Finally, there is a need to evaluate the scheme using larger-scale real Internet distance

measurements.

161



162



Bibliography

[1] Joe Albowicz, Alvin Chen, and Lixia Zhang. Recursive position estimation in

sensor networks. In Proceedings of the Ninth International Conference on Net-

work Protocols. IEEE Computer Society, November 2001.

[2] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Re-

silient overlay networks. In Proceedings of the 18th ACM Symp. on Operating

Systems Principles (SOSP), Banff, Canada, October 2001.

[3] Mihai Badoiu. Approximation algorithm for embedding metrics into a two-

dimensional space. In Proceedings of the Fourteenth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, Baltimore, Maryland, 2003.

[4] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scalable

application layer multicast. In Proceedings of ACM SIGCOMM'02, Pittsburgh,

Pennsylvania, August 2002.

[5] Nirupama Bulusu, John Heidemann, and Deborah Estrin. GPS-less low cost

outdoor localization for very small devices. IEEE Personal Communications,

7(5):28-34, October 2000. Special Issue on Smart Spaces and Environments.

[6] Yan Chen, Khian Hao Lim, Randy H. Katz, and Chris Overton. On the stability

of network distance estimation. In ACM SIGMETRICS Performance Evaluation

Review (PER), September 2002.

[7] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast. In Proceedings

of ACM Sigmetrics, June 2000.

163



[8] Manuel Costa, Miguel Castro, Antony Rowstron, and Peter Key. PIC: Practical

Internet coordinates for distance estimation. In Proceedings of the 24th Interna-

tional Conference on Distributed Computing Systems (ICDCS'04), Tokyo, Japan,

March 2004.

[9] Russ Cox, Frank Dabek, Frans Kaashoek, Jinyang Li, and Robert Morris. Prac-

tical, distributed network coordinates. In Proceedings of HotNets-II, November

2003.

[10] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A de-

centralized network coordinate system. In Proceedings of SIGCOMM'04, August

2004.

[11] Lance Doherty, Kristofer Pister, and Laurent El Ghaoui. Convex position esti-

mation in wireless sensor networks. In Proceedings of IEEE INFOCOM, pages

1655-1663. IEEE Computer Society, April 2001.

[12] P. Francis, S. Jamin, C. Jin, Y. Jin, V. Paxson, D. Raz, Y. Shavitt, and L. Zhang.

IDMaps: A global Internet host distance estimation service. In Proceedings of

IEEE INFOCOM'99, New York, NY, March 1999.

[13] Todd Hansen, Jose Otero, Tony Mcgregor, and Hans-Werner Braun. Active

measurement data analysis techniques. http://amp.nlanr.net/, 2002.

[14] Jeffrey Hightower and Gaetano Borriello. A survey and taxonomy of location

systems for ubiquitous computing. IEEE Computer, 34(8):57-66, August 2001.

[15] S.M. Hotz. Routing Information Organization to Support Scalable Interdomain

Routing with Heterogeneous Path Requirements. PhD thesis, University of South-

ern California, 1994.

[16] Bradley Huffaker, Marina Fomenkov, Daniel J. Plummer, David Moore, and

K Claffy. Distance metrics in the Internet. In Proceedings of IEEE International

Telecommunications Symposium, 2002.

164



[17] Piotr Indyk. Algorithmic applications of low-distortion geometric embeddings. In

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science

(FOCS'01), 2001.

[18] Piotr Indyk and Jiri Matousek. Low distortion embeddings of finite metric spaces.

In J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Compu-

tational Geometry (2nd edition). CRC Press LLC, to appear.

[19] Jon Kleinberg, Aleksandrs Slivkins, and Tom Wexler. Triangulation and em-

bedding using small sets of beacons. In Proceedings of the 45th Annual IEEE

Symposium on Foundations of Computer Science (FOCS'04), pages 444-453,

October 2004.

[20] MatLab statistics toolbox. http://www.mathworks.com/.

[21] R. Krauthgamer and J. R. Lee. The intrinsic dimensionality of graphs. In

Proceedings of the 35th ACM Symposium on Theory of Computing, pages 438-

447, jun 2003.

[22] R. Krauthgamer, N. Linial, and A. Magen. Metric embeddings-beyond one-

dimensional distortion. Discrete Computational Geometry, 31(3):339-356, 2004.

[23] Liwei Lehman and Steven Lerman. PCoord: Network position estimation using

peer-to-peer measurements. In Proceedings of IEEE International Symposium

on Network Computing and Applications (NCA'04), pages 15-24, Boston, MA,

August 2004.

[24] Liwei Lehman and Steven Lerman. Predicting Internet network distances us-

ing peer-to-peer measurements. Internal technical report, appeared in Annual

Singapore-MIT Alliance Symposium, January 2004.

[25] Jorg Liebeherr, Michael Nahas, and Weisheng Si. Application-layer multicas-

ting with delaunay triangulation overlays. IEEE Journal on Selected Areas in

Communications, 20(8):1472-1488, October 2002.

165



[26] Hyuk Lim, Jennifer Hou, and Chong-Ho Choi. Constructing Internet coordinate

system based on delay measurement. In Proceedings of Internet Measurement

Conference (IMC'03), October 2003.

[27] Nathan Linial. Finite metric spaces - combinatorics, geometry and algorithms.

In Proceedings of International Congress on Mathematicians, pages 573-586,

Beijing, August 2002.

[28] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and

some of its algorithmic applications. In Proceedings of the 35th Annual IEEE

Symposium on Foundations of Computer Science, pages 557-591, 1994.

[29] Nathan Linial and Avner Magen. Least-distortion euclidean embeddings of

graphs: Products of cycles and expanders. Journal of Combinatorial Theory,

79(157-171), 2000.

[30] T. S. Eugene Ng, Yang hua Chu, Sanjay G. Rao, Kunwadee Sripanidkulchai,

and Hui Zhang. Measurement-based optimization techniques for bandwidth-

demanding peer-to-peer systems. In Proceedings of IEEE INFOCOM, 2003.

[31] T.E. Ng and H. Zhang. A network positioning system for the Internet. In Pro-

ceedings of USENIX 2004 Annual Technical Conference, pages 141-154, Boston,

MA, June 2004.

[32] T.S. Eugene Ng and Hui Zhang. Predicting Internet network distance with

coordinates-based approaches. In Proceedings of INFOCOM, 2002.

[33] Katia Obraczka and Fabio Silva. Network latency metrics for server proximity.

In Proceedings of IEEE Globecom, 2000.

[34] p2psim. http://www.pdos.lcs.mit.edu/p2psim/.

[35] Venkata N. Padmanabhan and Lakshminarayanan Subramanian. An investiga-

tion of geographic mapping techniques for Internet hosts. In Proceedings of A CM

SIGCOMM'01, San Diego, CA, August 2001.

166



[36] Krishna P.Gummadi, Stefan Saroiu, and Steven D. Gribble. King: Estimating

latency between arbitrary Internet end hosts. In Proceedings of A CM SIGCOMM

Internet Measurement Workshop(IMW'02), November 2002.

[37] Marcelo Pias, John Crowcroft, Steven Wilbur, Tim Harris, and Saleem Bhatti.

Lighthouses for scalable distributed location. In Proceedings of the 2nd Interna-

tional Workshop on Peer-to-Peer Systems (IPTPS'03), Berkeley, CA, February

2003.

[38] PlanetLab. http://www.planet-lab.org.

[39] William Press, Saul Teukolsky, William Vetterling, and Brian Flannery. Numer-

ical Recipes in C. Cambridge Press, 1988.

[40] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The cricket

location-support system. In Proceedings of the Sixth Annual A CM International

Conference on Mobile Computing and Networking, August 2000.

[41] Sylvia Ratnasamy, Paul Francis, Mark Handley, and Richard Karp. A scalable

content-addressable network. In Proceedings of SIGCOMM'01, San Diego, CA,

2001.

[42] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker.

Topologically-aware overlay construction and server selection. In Proceedings

of INFOCOM'02, New York, 2002.

[43] Resilient overlay networks. http://nms.les.mit.edu/ron/.

[44] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object lo-

cation and routing for large-scale peer-to-peer systems. In Proceedings of the

International Conference on Distributed Systems Platforms, November 2001.

[45] Stefan Saroiu, Krishna P. Gummadi, and Steven Gribble. Measuring and an-

alyzing the characteristics of Napster and Gnutella hosts. Multimedia Systems

Journal, 9(2):170-184, August 2003.

167



[46] Y. Shavitt and T. Tankel. Big-bang simulation for embedding network distances

in Euclidean space. In Proceedings of IEEE INFOCOM'03, April 2003.

[47] Y. Shavitt and T. Tankel. On the curvature of the Internet and its usage for over-

lay construction and distance estimation. In Proceedings of IEEE INFOCOM'04,

April 2004.

[48] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrish-

nan. Chord: A scalable peer-to-peer lookup service for Internet applications. In

Proceedings of SIGCOMM'01, 2001.

[49] Liying Tang and Mark Crovella. Virtual landmarks for the Internet. In Proceed-

ings of Internet Measurement Conference(IMC'03), October 2003.

[50] Wolfgang Theilmann and Kurt Rothermel. Dynamic distance maps of the Inter-

net. In Proceedings of IEEE INFOCOM'00, New York, June 2000.

[51] M. Waldvogel and R. Rinaldi. Efficient topology-aware overlay network. In Pro-

ceedings of the First Workshop on Hot Topics in Networks (Hotnets-I), Prince-

ton, NJ, October 2002.

[52] Bernard Wong and Emin Gun Sirer. A lightweight approach to network po-

sitioning. Technical Report TR2004-1949, Cornell University, Department of

Computer Science, 2004.

[53] Ben Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An in-

frastructure for fault-resilient wide-area location and routing. Technical Report

UCB/CSD-01-1141, UCB/CSD, April 2001.

168


