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Abstract

Some engineering applications and physical phenomena involve multiple bodies that

undergo large displacements involving collisions between the bodies. Considering the dif-

ficulties and cost associated when conducting physical experiments of such systems, there

is a demand for numerical simulation capabilities. The discrete element methods (DEM)

are numerical techniques that have been specifically developed to facilitate simulations of

distinct bodies that interact with each other through contact forces. In DEM the simulated

bodies are typically assumed to be infinitely rigid. However, there are multibody systems

for which it is useful to take into account the deformability of the simulated bodies.

The objective of this research is to incorporate deformability in DEM, enabling the

evaluation of the stress and strain distributions within simulated bodies during simulation.

In order to achieve this goal, an Updated Lagrangian (UL) Finite Element (FE) formula-

tion and an explicit time integration scheme have been employed together with some sim-

plifiying assumptions to linearize this highly nonlinear contact problem and obtain

solutions with realistic computational cost.

An object-oriented extendable computational tool has been built specifically to allow

us to simulate multiple distinct bodies that interact through contact forces allowing

selected bodies to be deformable. Database technology has also been utilized in order to

efficiently handle the huge amounts of computed results.

Thesis Supervisor: John R. Williams
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Motivation

In many physical phenomena and engineering applications there are systems with large

numbers of distinct bodies that undergo large displacements and rotations involving con-

tacts between the bodies of the system. Examples range from particulate granular materi-

als, such as soil, to multibody systems, such as masonry structures. Such discontinuous

systems are characterized by the contacts that occur between the moving distinct bodies of

the system and the freedom of the individual bodies to move in space under the action of

the forces that are exerted on them.

A major category of discontinuous systems is granular materials, which can be found

in many applications. In engineering practice, the macroscopic behavior of granular, or

particulate in general, materials is defined assuming that the material is continuous. Bulk

material properties and empirical rules based on observations and experiments at the mac-

roscopic level are employed. Continuous idealizations of the behavior of granular materi-

als are used, assuming that local perturbations at the particle level have negligible effects

at the scale of length of interest. Essentially, the continuity assumption allows character-

ization of the macroscopic behavior of the system using bulk material properties by aver-

aging the interactions that occur at the particle level. This assumption may be justified in

some cases by considering that the microstructure length scale is much smaller than the
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dimensions of the problem under investigation and assuming that local perturbations at the

particle level have negligible effects at the scale of interest.

However, macroscopic behavior depends not only on bulk material properties but also

upon the properties and geometric information of the constituent bodies, such as the size

and shape of the particles, their distribution, packing density, interparticle friction, and

particle-to-particle interaction laws. In essence, the macroscopic behavior of particulate

materials depends on the properties of individual particles and their interactions. For gran-

ular materials, such as sand and gravel, the deformation and load transfer are mainly due

to rearrangements of the particles and interparticle contacts, respectively.

Therefore, it is useful to study particulate systems at the particle level, and not as a

continuum, to better understand the macroscopic behavior and how it is affected by parti-

cle-level characteristics. Besides the need for more accurate modeling of particulate sys-

tems, the understanding of the relationship between microscopic parameters and

macroscopic behavior is essential for the development of more rational constitutive mod-

els for granular materials. Physical experiments at the particle level are almost impossible

to be performed, since any instrument installations change the physical problem character-

istics. Therefore, computational tools that allow numerical simulations of such discontinu-

ous systems are required.

Discrete element methods (DEM) research is motivated and driven by the need to pro-

vide numerical means to simulate and study particulate and multibody systems (Cundall

[5], [6] and [7], and Williams et al [23]). The DEM provide alternative numerical means to

simulate multiple interacting bodies undergoing large motions in order to observe and

record detailed interactions occurring at the particulate level. Although DEM have been

introduced as a tool to study granular soils and rock masses, they can also be used to

model and study many other physical problems that involve large numbers of moving and
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colliding distinct bodies. Numerical simulations of multibody systems are useful, not only

for understanding the behavior of particulate systems, but also for making engineering

decisions that are necessary for the design and analysis of systems that process and trans-

port particulate systems.

In general, the DEM assume that the simulated bodies are infinitely rigid, which is a

reasonable assumption for many particulate systems. For example, the deformation of

granular materials is mainly due to the rearrangement of the particles (Rege [26]) and not

the particle deformations, and the stress distribution within a particle is not of interest.

However, there are multibody systems, such as masonry structures, for which it is

desirable to be able to obtain the stress and strain distributions within the bodies as they

collide with each other. The research presented in this thesis has been motivated and

driven by the need to provide numerical means to simulate and study multibody systems

that may be deformable, allowing the evaluation of the stresses and strains within the sim-

ulated bodies. In order to enable the consideration of deformability of simulated bodies

and the evaluation of their stresses and strains distributions, an Updated Lagrangian (UL)

Finite Element (FE) formulation and an explicit time integration scheme have been

employed together with some simplifying assumptions to linearize this highly nonlinear

contact problem and obtain solutions with realistic computational cost.

An extendable, object-oriented and portable computational tool has been built to

enable numerical simulations of multiple distinct bodies that interact through contact

forces while allowing selected bodies to be deformable. Since huge quantities of results

are computed, database technology has also been utilized in order to efficiently store,

search and manipulate them.

17



1.2 Discrete Element Methods

1.2.1 Description

The discrete element methods (DEM) are numerical techniques specifically developed to

simulate multiple distinct bodies that interact through contact forces (Cundall [5], [6] and

[7], and Williams et al [23]). The main capability of DEM is that they allow the simulation

of assemblages of multiple unrestrained distinct bodies that interact through contacts.

Each discrete element, i.e. body, has distinct boundaries, which physically separate it from

each other element in the analysis, and interacts with other bodies only with contact forces

whenever the bodies are identified to collide with each other.

A major characteristic of the DEM is that they allow fast and efficient automatic rec-

ognitions of new contacts as well as complete detachments of bodies, which were previ-

ously in touch, during simulations. Since the greatest difficulty in simulations of large

number of interacting bodies is the contact detection and the determination of the contact

forces, the DEM give priorities to these aspects and make some simplifying assumptions

so as to make the problem tractable.

The numbers of distinct bodies that are required to be used in such simulations range

from several bodies, in the case of multibody systems, to several thousands, or even mil-

lions, in the case of granular systems. The use of a large numbers of bodies is often

required when simulating a particulate system so as to have a representative sample of the

physical problem. In order to be able to model systems with large numbers of interacting,

through contact forces, discrete bodies, emphasis is put on the most computationally

intensive part of the problem is the contact detection.

A typical assumption of DEM is that the constituent bodies, or particles, are infinitely

rigid, which substantially reduces the computational cost. This assumption is made con-

sidering either that the deformations of each body are negligible under the expected load-
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ings, or, in the case of particulate systems, that the overall strains of particulate materials

are mainly due to the relative sliding and packing between particles and much less due to

deformation of individual particles. In the case of particulate systems, such as granular

soil, the individual particles are very stiff relative to the mineral skeleton of granular mate-

rials, which is usually deformable.

In addition, multibody systems are typically modeled in DEM using a very simple

geometric representation of each distinct body, such as spheres, to facilitate fast contact

detection algorithms. With these, and several other assumptions, close to real-time interac-

tive simulations can be performed with the current computing capabilities.

Other assumptions include simplified representations of contact effects, which are

used, often in the form of idealized springs, to decouple the problem. When two bodies

come in contact, forces must be applied to the bodies to push them apart. Two different

approaches are used: the hard contact approach and soft contact approach. The decision of

which contact representation to use depends on the nature of the problem and the quanti-

ties of interest.

When the hard contact approach is used, no interpenetration is allowed while displace-

ment compatibility in the normal directions as well as equilibrium and constitutive law

must be satisfied. No contact springs coefficients need to be defined, which is a major

problem in the soft contact approach. The collisions are usually assumed to be very brief

and they are typically modeled as instantaneous exchanges of momentum. However, this

approach is computationally very costly since iterations may be required, and it is difficult

to ensure displacement compatibility at all contacts while satisfying equilibrium, constitu-

tive laws, and conserving momentum and energy. In addition, considering the bodies to be

infinitely rigid while prohibiting contact overlapping is somehow unrealistic because in

reality the colliding bodies have some local deformations at the contact locations.
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According to the soft contact approach, which is used in this thesis, a finite normal

stiffness is assumed to exist and, in consideration of the actual deformability at the vicinity

of the contact, some overlapping of the bodies in contact is allowed. In physical problems

overlapping and interpenetrations of bodies do not take place, but surface deformations

instead allow these relative movements. The magnitude of the contact forces is assumed to

start from zero when the bodies first come in contact and increases as the bodies interpen-

etrate each other up to a maximum value and then starts decreasing and eventually

becomes equal to zero when the bodies detach from each other.

1.2.2 Advantages and limitations

Although standard numerical methods are available to model discontinuities to some

extent they are not specifically developed to solve, with reasonable computational cost,

assemblages of many interacting discrete bodies. In DEM emphasis is placed on the effi-

cient object representation and fast contact detection. Appropriate simplified assumptions

are made to allow simulation of many discrete bodies with sufficient geometric details.

However, for numerical simulations of systems with very large numbers of bodies, the

main limitation is still the computational cost for contact detection. That cost increases

with the number of discrete bodies and the complexity of the geometry of each individual

body.

Most discrete element (DE) algorithms make some simplifying assumptions, typically,

assuming infinitely rigid bodies with simple geometric shapes, such as spheres, and simple

representations of contact effects, to reduce the high computational cost. Although in

some cases these assumptions are reasonable and justified by the need to make the prob-

lem tractable, there are certain problems for which it would be useful if more accurate

mathematical models are used. This thesis addresses the cases in which the deformability

of the individual bodies needs to be taken into account. The consideration of the deform-
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ability of simulated bodies is achieved by employing a large-displacement finite element

methods (FEM) formulation, which is efficiently combined with the DEM.

1.2.3 Classes of DEM

The discrete element methods (DEM) have been introduced in the late '60s early '70s as

tools to simulate granular materials (Cundall [5], [6] and [7], and Williams et al [38]).

There has been a great interest in these numerical techniques in the past decade, especially

during the last few years. Substantial research has been done in the area of contact detec-

tion algorithms leading to significant reductions of the required computational time. There

are many different classes of DE formulations and computer programs. The main classes

of DE formulations are the following:

* Distinct (or discrete) Element Programs: Soft contacts are used, while the bodies

may be rigid or deformable, (Cundall [5], Williams et al [38]). This is the main DE formu-

lation and the one that is used in this thesis. Direct integration methods, such as explicit

numerical schemes, may be used to numerically solve the equations of motion.

. Modal Methods: Modal decomposition is employed in these methods to solve the

equations of motion (Williams and Pentland [39]). The rigid body motion and strain-dis-

placement equations for each distinct body may be decoupled. Then, the deformability of

each discrete body can be expressed in terms of its eigenvectors that correspond to the

non-zero frequency eigenmodes. Depending on the desired accuracy the number of

included modal contributions may be selected properly. The zero frequency eigenmodes

result in rigid body motion, i.e. the motion is decoupled into a rigid body motion and a rel-

ative motion that results in internal body deformations. These methods can be used to con-

sider the deformability of discrete bodies in loosely packed systems.

- Discontinuous Deformation Analysis: In this approach contacts are considered

rigid while bodies may be assumed infinitely rigid or considered deformable (Shi [29] and

[30]). Iterations are required to ensure that no interpenetrations between distinct bodies

occur. These methods use implicit integration algorithms and need large time steps to be
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able to simulate large numbers of interacting bodies. However, large time steps may result

in missing contacts or overlaps that may occur over the time step. In addition, in the case

of external load with high frequencies, the representation of the externally applied load

may be very inaccurate.

- Momentum Exchange Methods: These are the simplest methods in which both

contacts and bodies are assumed rigid. No penetration is allowed and the collisions are

assumed instantaneous. Motion is determined by momentum exchanged between two con-

tacting bodies during an instantaneous collision.

Numerical methods to model materials at finer level than that considered by DEM

have been developed and used, such as the cellular automata and the lattice gas methods.

These methods can simulate materials at a microscopic, or even molecular, level.

1.3 Applications

Although DEM have been initially developed to simulate fractured rock masses and gran-

ular soils, they can be used for many other applications that involve discontinuous, or, in

general, multibody systems that undergo large displacements and rotations as well as col-

lisions among the moving discrete bodies. Numerical simulations of multibody systems

with graphical visualization capabilities can provide valuable information and insight of

the behavior of such systems avoiding actual physical experiments, or costly manufactur-

ing and testing of prototypes. The following are some of the many potential applications

for which DEM can be used for numerical simulations.

1.3.1 Granular materials

A granular material is a collection of a large number of distinct particles that are not con-

nected with each other. Such particulate materials are very common in many different

areas of nature and engineering. Since there is no generally accepted theory for granular

materials, DEM can be used to study them at the particle level subject to external excita-
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tions, such as oscillations, providing very useful information about their behavior.

A major category of granular materials is that of granular soils, in geomechanics,

whose macroscopic behavior is heavily influenced by interactions between the constituent

particles, and particle-level properties, such as size, shape and distribution of individual

particles. DEM simulations allow the identification of the effects of microscopic proper-

ties to the overall macroscopic behavior, such as the effect of the particle shape on the

macroscopic behavior. Numerical simulations can also reveal phenomena that occur at the

particle level, but are difficult to be captured in actual physical experiments without dis-

turbing the samples (e.g. Rege [26]). More rational macroscopic constitutive behavior of

granular soils may be developed, based on the findings of numerical simulations at the

particle level, than those based on continuity assumptions. In addition, DEM may be used

to simulate and observe physical phenomena at the particle level, such as the failure pro-

cess in a slope stability analysis.

DEM can also be used to study the behavior of other granular materials. The manufac-

turing and transportation of granular materials, such as powders in manufacturing indus-

tries, cereal grains in food industries, and tablets in pharmaceutical industries may be

simulated with DEM. Phenomena such as the segregation, which often occurs during

vibrations of granular materials can also be studied with DEM. Segregation is observed

when mixtures containing different size particles are subjected to vibrations, which usu-

ally result in rising of large particles and falling of the small particles at the bottom. In

addition, flow of granular materials in industrial applications, e.g. through oscillating hop-

pers, which mainly depends on contacts between the constituent particles, can also be

modeled using DEM. Wave propagation through granular materials, which sometimes are

used as shock absorbers to isolate sensitive equipment, can also be studied using DEM.
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Finally, a defense-related application is the study of a projectile penetration of a mis-

sile into granular materials, e.g. sands. A similar application is the simulation of a footing

of a structure under dynamic loading. In particular, discrete elements can be employed to

model the soil below the footing enabling the simulation of the penetration of the footing

in the soil due to dynamic loadings, such as earthquake excitations.

1.3.2 Masonry structures

Analysis tools for masonry structures are very important for the maintenance and restora-

tion of historic structures. The dynamic analysis of masonry structures is a rather chal-

lenging problem due to the discontinuities of these structures. Masonry structures, such as

those built from stones and bricks, are typically analyzed with very crude empirical rules

using estimated static loads to take into account seismic effects. Considering the increas-

ing interest in studying old masonry structures, DEM analysis can capture the discrete

behavior of these structures providing a better understanding of their response and their

potential failure mechanisms under earthquake excitations. Old masonry buildings were,

typically, been built without any earthquake resistant design. In addition, the excessive

weight of masonry structures due to over dimensioned walls and high material densities,

results in high seismic loads. Finally, non-proper design, e.g. eccentricities and deteriora-

tion of the quality of the materials (stone, bricks and mortars) make these structures very

vulnerable to earthquake excitations. Therefore, a better understanding of the dynamic

behavior of these structures is very important. These structures exhibit a highly nonlinear

behavior when excited to earthquake excitations which is very difficult or even impossible

to capture with classical methods. Typically, limit analysis is used to perform stability

analysis using equivalent static loads.

Although some FEM (using smeared cracks or special "gap elements"), finite differ-

ence methods (FDM), and boundary element methods (BEM) models have been used for
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simulations of these discontinuous structures, certain difficulties arise mainly due to the

continuity approach of these methods. These methods are ineffective in modeling many

interacting bodies, especially for dynamic analysis, since they are based on continuity

assumptions. The "smeared cracking technique", and the "gap elements" or the "no-ten-

sion contact elements" that have been used in FEM have limited capabilities and the anal-

ysis often becomes unstable. For quasi-static problems the "limit analysis" has been used

for stability studies, but it is limited only for static problems and does not provide any

information for the collapse process.

However, equivalent static forces cannot adequately represent the earthquake excita-

tions and the resulting dynamic response of the masonry structures. DEM provide alterna-

tive numerical means to simulate masonry structures in order to obtain their dynamic

response and their failure mechanisms under extreme events, without the need of building

costly laboratory tests or using very simplified static analysis. The dynamic response of

these structures involves rocking and impact as well as sliding of the brick or stone blocks

which cannot be modeled by any other method.

The structure can be modeled as a system of many distinct bodies put together in the

same way that the structure had been physically constructed, and allowed to interact

through contact stresses with their adjacent bodies. Each distinct body can be modeled as

a single rigid, or deformable, discrete element, while element interactions are modeled

using idealized contact and cohesive springs. DEM can be used to more realistically simu-

late blocks, such as bricks or stones, separated by joints, as well as joint-mortar using

cohesion bonds. The opening and closure of joints, crack formations, sliding and rocking

can be modeled with the DEM, which is almost impossible with other standard numerical

methods. Phenomena such as cracking and separation of parts of the structure into various
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smaller parts that vibrate in different ways due to different frequencies, which result in fur-

ther destruction, can be studied using the DEM.

It is not only masonry buildings that can be analyzed using DEM, but also masonry

bridges as well as any kind of masonry structure. DEM can allow the dynamic simulation

of these structures under earthquake excitations allowing more accurate and realistic anal-

ysis and, in case of failure, the observation and recording of the initiation and progress of

the collapse pattern.

The dynamic response of such structures can be easily obtained for many different

earthquake excitations that can be applied to the foundations of the structure, providing

valuable information for the assessment of the seismic vulnerability of such structures. For

problems that are dominated by in-plane behavior, 2D DEM can be used. To consider the

flexibility of the individual blocks plane stress or plane strain FEM can be combined with

2D DEM, which is exactly the problem that is addressed in this thesis.

DEM can also used to perform quasi-static numerical simulations of masonry struc-

tures subjected to slowly applied lateral loads to get an estimation of the static lateral

forces that cause structural collapse. Although limit analysis may be used for static load-

ings to determine the collapse static load, using DEM more realistic and detail representa-

tion of a discontinuous structure can be made. The DEM results may be compared with

"limit analysis" results to verify the DEM model and the selected mechanical properties.

In addition to the large displacements and efficient contact effect representations of

DEM, the methods also allow a realistic modeling of the mortar joints using "cohesion"

bonds combined with certain strength and failure criteria. The degradation of mortars can

also be modeled by changing their mechanical properties according to certain criteria dur-

ing the simulation. Using flexible bodies, it is also possible to consider the stones' or

bricks' deformability or even strength allowing fracturing to occur. Finally, it may be pos-
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sible to take into account existing reinforcement by incorporating some special structural

elements in the simulation combined with failure criteria.

1.3.3 Rock masses

DEM can also be used for simulations of rock formations, such as those studied in rock

mechanics. Dynamic stability analysis to consider seismic excitations and other dynamic

loadings can be performed using DEM instead of the currently used equivalent static anal-

ysis. Then, the dynamic response, including the slip and separation of rocks at points of

contact, as well as the failure pattern can be simulated. If the DEM tool has deformable

bodies then the deformations and stress distribution of the individual rock bodies can also

be computed.

1.3.4 Fragmentation and blasting

One of the first applications of DEM was to study the impact effects of sea-ice flow on off-

shore structures (Williams et al [40]) and in general the fracture process of ice around the

structure. DE formulations have been developed (e.g. Munjiza [17]) that allow the discrete

bodies to undergo progressive fracturing resulting in automatic generation of more in

number and smaller in size bodies to model the fragmentation process. Fracture criteria

need to be defined so as to determine the fracturing of distinct bodies into more than one

new distinct bodies. Fragmentation phenomena, which are studied in fracture mechanics,

can be simulated using DEM.

Another area where DEM may be useful to perform numerical simulations is that of

explosions, blasting in mines (Taylor and Preece [29]), and controlled demolitions of

structures. It is very interesting to be able to model explosive fragmentation of an assem-

blage of bodies, which fracture and break into multiple bodies, and do particle tracking

studies. For this kind of problems the distinct bodies have not only large displacements
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and rotations, but also large strains and consequently non-linear material behavior, due to

the very high load pressures, making the problem much more difficult.

1.3.5 Realistic multibody animations

DEM may also be used to create more realistic multibody animations used in computer

graphics, virtual reality, video games and cartoons by incorporating mechanics into the

animations. In recent years there is an increased interest in developing realistic physical

animations in computer aided design and virtual reality environments, e.g. for educational

and training simulations. More realistic multibody animations and more meaningful

numerical simulations can be performed by combining engineering-oriented numerical

techniques with computer graphics algorithms supplemented with contact detection algo-

rithms.

1.3.6 Multibody dynamic and mechanical systems

There are practical applications that involve both mechanical systems, and large numbers

of particles interacting together. Simulations of such systems may be possible by incorpo-

rating in DEM simple mechanical system formulations, which allows optimization of the

design product prior to the actual manufacturing.

1.4 Literature Review

A detailed literature review of DEM and related procedures is provided by O'Connor [21].

Here, the research done and the contributions made specifically in the Intelligent Engi-

neering Systems Laboratory (IESL) at MIT are briefly described.

Rege [26] developed a computational materials laboratory, named Modeling Interact-

ing Engineering Systems (MIMES), which is a user-friendly two-dimensional discrete ele-

ment program. MIMES can be used as a simulation environment to perform numerical

experiments of planar problems with bodies of arbitrary shapes. Using MIMES, Rege was
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able to study granular material behavior in 2D from a particle perspective and to capture

detail information of individual particles during simulations. In particular, Rege performed

a series of biaxial compression tests in order to study the effect of different microscopic

parameters, such as particle size, shape, and distribution, as well as confining stress and

loading rates. These tests indicated the presence of coherent, vortex-like, structures,

named circulation cells, which may influence the global failure of the specimen. These

coherent structures, which essentially are groups of particles that instantaneously translate

and rotate as rigid bodies, grow forming eventually failure bands.

O'Connor [21] developed an efficient object representation and contact detection algo-

rithms. In particular, O'Connor developed a scheme, named Discrete Function Represen-

tation (DFR), to model complex 3D geometries and facilitate fast contact detection

algorithms. He also used parallel computing to distribute the computational work over a

number of processors.

Klosek [14] extended the 2D DE program developed by Rege incorporating fluid flow

using Finite Elements Methods (FEM) to approximately model the fluid and calculate

fluid pressures. Klosek also developed numerical techniques to calculate the fluid forces

on arbitrary shape bodies.

Chiou [3] used the Discrete Function Representation (DFR), which was originally

developed by O'Connor [21], to simulate large numbers of 3D infinitely rigid bodies. He

implemented a hashtable-based spatial reasoning algorithm for similar size bodies to fur-

ther reduce the computational time for contact detection. He also enhanced the original

sequential contact detection algorithm to enable parallel processing.

Cook [4] has studied the fluid flow through granular material using an extended ver-

sion of MIMES, in which he incorporated the lattice-Boltzmann numerical method in

order to be able to direct simulate solid-fluid systems at the grain level. In particular, Cook

29



has formulated and implemented an accurate, efficient, and robust modeling capability for

the direct simulation of solid-fluid systems. Cook used a highly efficient numerical

scheme based on the discrete-element (DEM) and the lattice-Boltzmann (LB) methods to

solve the coupled equations of motion governing both the fluid phase and the individual

particles comprising the solid phase. He used the coupled method, which he had incorpo-

rated into MIMES, for simulation and analysis of two-dimensional solid-fluid physics

demonstrating its accuracy and robustness over a wide range of dynamical regimes. He

was able to reproduce in simulations various fundamental phenomena, including drafting-

kissing-tumbling interactions between settling particles, and the saltating transport regime

of bed erosion.

1.5 Thesis Objectives

In DEM the constituent bodies of a system are, typically, assumed infinitely rigid in order

to reduce the computational cost. However, there are multibody systems for which it

would be useful to be able to consider the deformability of selected individual bodies in

the numerical simulations. The incorporation of flexibility of individual bodies in the sim-

ulation would allow the calculation of the stress distributions as well as the resulting

strains in the simulated bodies, which would be very useful in some applications. This is

the main issue that is addressed by this thesis.

The deformability of the individual bodies is taken into account using a large-displace-

ments finite element (FE) formulation coupled with the discrete element procedures. The

additional computational cost, which is a critical implication of the incorporation of FE

into a DE simulation tool, has been carefully addressed taking into account the available

computational resources and making proper simplifying assumptions.
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A spatial reasoning approach is used in this thesis to reduce the cost of the contact

detection and allow simulation of systems with large numbers of bodies of different sizes

moving within a non-limited simulation volume. An object representation scheme, which

directly extendable in 3D, is used to represent the simulated bodies.

The goal of this thesis and research is to develop and implement simplified efficient

numerical procedures that can simulate multibody systems taking into account the

deformability and the distribution of stresses within the individual bodies. The following

issues are addressed in the thesis:

- development of an efficient contact detection algorithm

- simulation of contact interaction

- efficient modeling of deformable discrete elements

- utilization of object-oriented programming and database technology

In addition, although the actual implementation of the software due to lack of comput-

ing resources is limited to the 2D case, the implementation has been done in an extendable

program that can be easily enhanced and used for 3D simulations. In particular, all the

architecture of the program, such as computer graphics, vectors, methods, have been

developed as 3D.

1.6 Thesis Outline

In this chapter, an introduction to the problem that this thesis addresses is presented. First,

the motivation for the development and use of discrete element methods is discussed, fol-

lowed by a general description and some applications of these methods. Then, the research

work that has been previously conducted by our group here at MIT, is presented. Finally,

the thesis objectives and expected contribution are briefly stated.
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Chapter 2 discusses the object representation and modeling, which is selected to

enable an efficient contact detection procedure. The contact detection algorithms and pro-

cedures are presented in Chapter 3. After a brief introduction to contact detection methods

and related issues the selected procedure is discussed in detail. In particular, the spatial

reasoning and the contact resolution phases are presented. The chapter concludes with a

discussion about the contact forces that are applied during collisions and contacts between

the simulated bodies.

Chapter 4 presents the underlying physics of the numerically simulated problem. In

particular, the physical laws that govern the motion of the simulated bodies and the simpli-

fied assumptions in order to efficiently take into account the contact effects are described.

The major part of this research work is the incorporation of the deformability of the

individual bodies, which is discussed in Chapter 5. In particular, a large-displacements/

small strains finite element formulation is coupled with a discrete element procedure.

Some simplifications and assumptions were necessary in order to reduce the complexity of

the problem and be able to realistically execute numerical simulations with multiple bod-

ies considering the currently available computational resources.

Since the computational requirements are usually very high, it is desirable to use a

simple and efficient mesh generation procedure that facilitates fast FE meshing and analy-

sis. This issue is discussed in Chapter 6, which starts with an introduction to grid genera-

tion techniques, followed by a description of the main categories of grids. Then, the

selected mesh generator, in particular an algebraic mesh generator that generates structure

grids, is described in detail

The software design and implementation is presented in Chapter 7, beginning with an

overview of the design. The benefits of object-oriented programming are stressed, fol-

lowed by a description of the structure and the components of the simulation tool that has
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been developed. Then, a description of the technology that has been used to develop the

software is briefly described. A paragraph of this chapter discusses how database technol-

ogy can be utilized to efficiently manage the input data and output results.

Chapter 8 provides applications of the software that has been developed, which is

named DAFES (Discrete And Finite Element Simulator). Simple verification examples

that demonstrate simple phenomena, such as the exchange of momentum, the conservation

and dissipation of energy, and wave propagation are presented.

Finally, Chapter 9 provides a summary of the work that has been done, followed by

conclusions that have been made. Finally, this chapter concludes with some remarks and

suggestions regarding future work.

In addition, three appendices are provided at the end of the thesis with supplementary

material. In particular, Appendix A presents the graphical user interface of DAFES,

Appendix B discusses how large strains can be taken into account using FEM in a poten-

tial extension of this work towards that direction, and Appendix C presents the source

code that has been used to compare the performance of C++ and Java.
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Chapter 2

Object Representation and Modeling

2.1 Introduction

The selection of a suitable geometric object representation is very important for the simu-

lations under consideration, since it should facilitate both the computationally expensive

contact detection and the Finite Element (FE) meshing and analysis. The contact detection

process, which is used to identify the bodies that are in contact during simulation, is typi-

cally the major computational bottleneck in simulations of multiple infinitely rigid bodies.

Many object representation schemes have been developed and extensively used in

computational geometry and computer graphics, such as constructive solid geometry

(GSC), boundary representations (B-Rep.), and methods using explicit, implicit and para-

metric surface representations. GSC objects are described using intersections, unions or

subtractions of simpler objects. Implicit, explicit and parametric surfaces are defined by

mathematical functions. B-Rep explicitly lists boundary features of objects, such as faces,

loops, edges and vertices.

However, many of these representation methods are inefficient either for contact detec-

tion, or for FE meshing purposes. Therefore, the object representation should be selected

based on its suitability for efficient contact detection checks between the simulated bodies

and FE meshing. A compromise may be necessary as the most suitable representation for

contact detection may be very inefficient for FE meshing and analysis.
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In particular, the geometric object representation scheme should facilitate the contact

resolution phase of the contact detection. As it is explained in detail in the following chap-

ter the contact detection that has been selected consists of two phases, the spatial reason-

ing and the contact resolution. Since for the spatial reasoning module bounding boxes are

used, the selection of the object representation should be based on its suitability to facili-

tate the contact resolution module. The latter checks whether a pair of bodies that are

selected by the spatial reasoning are indeed in contact and in that case determines the con-

tact geometry. The contact geometry is used together with the history of the motion of the

bodies to compute the contact forces that need to be applied to the bodies in contact.

2.2 Review of previous work

The superquadratic geometric representation and the Discrete Function Representation

(DFR), which was originally developed by O'Connor [21], are presented here as an exam-

ple of an effective representation that has been used in DEM. Although it has not been

used in the coupled DE/FE simulation environment that has been developed, it can be used

in the future to extent the program in considering bodies with a general shape.

The currently developed software implements the classes and methods that refer to the

simple geometric shapes that have been selected, in particular rigid and deformable rect-

angular bodies. However, the class hierarchy as shown in Figure 2.1, allows easy exten-

sions of the program to consider any other shape as long as the associated methods that are

required for the simulation modules, such as the contact resolution, are implemented.

In this research effort, the DFR has not been utilized as the bodies that had been imple-

mented were of simple geometrical shape. However, the developed program is extendable

and the DFR is considered to be one of the most promising representation schemes to rep-
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resent bodies of more general shape. Therefore, it is presented here for completeness,

although more detail information is presented in O'Connor [21].

Figure 2.1: Body-related class hierarchy.

2.2.1 Superquadratic geometric representation

The superquadratic representation is an implicit function that can be used to describe the

geometry of the simulated bodies. An implicit function, such as the superquadratic, facili-

tates fast inside/outside tests, since it is easy to determine whether a point lies inside or

outside the boundary of the object that is expressed by the function. In addition, the major-

ity of solid geometric objects can be sufficiently well represented by a superquadratic

function.

A superquadratic function is an implicit analytical expression that geometrically defines

the boundary of a two dimensional (2D) body. Its general, 2D equation has the following

form:

F(x, y) = .X + 2- 1.0 = 0.0
CU C,

(2.1)
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where the coefficients CX and C specify the lengths of the principal axes of the geo-

metric object, and, the exponents px and p control the shape of the surface.

For example, the family of superquadratics with P= P = 2 corresponds to ellip-

soids, while the special case of equal coefficients, e.g. C = Cs,, corresponds to a circle.

Similarly, the three dimensional (3D) superquadratic function can be used to describe

the boundary of a 3D geometric object, and its general equation is:

xpx Py pzF(x, y, z) = - + 2-L + Z - 1.0 = 0.0 (2.2)
CX C, Cz

where the coefficients C,, C,, and Cz specify the principal axes of the geometric

object, and, the exponents pX, pY , and pz control the shape of the surface.

A point can easily be tested whether it lies inside, outside or on the boundary surface

of a geometric object. The following cases should be considered:

- if F(x, y, z) > 0.0, the point (x, y, z) is located outside the object's surface

- if F(x, y, z) = 0.0, the point (x, y, z) is located on the surface of the object

- if F(x, y, z) < 0.0, the point (x, y, z) is located inside the object's surface

2.2.2 Discrete function representation (DFR)

The Discrete Function Representation (DFR), which was originally developed by O'con-

nor [21], can be used to represent arbitrary geometric objects. It facilitates a very fast con-

tact detection procedure that requires only O(M) computations to perform contact

resolution between two bodies that may be in contact.

In particular, a grid of a certain resolution is imposed slicing the object's volume to

cubical voxels. Values are, then, assigned at each intersection of the grid using the equa-

tion that describes the object's geometry, e.g. the superquadratic equation.
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The following two dimensional example demonstrates the use of DFR to represent the

geometry of a 2D object. In order to use DFR to represent a 2D object, such as that in Fig-

ure 2.2.a, a 2D grid is used to slice the body into a set of squares, as it is shown in Figure

2.2.b. At the intersection points of the grid values of the function that describes the

object's geometry are computed and stored to represent the boundary of the object.

Fx0

HxJY >9
F x,J ) 0

a. Object to be represented with DFR b. Use of

Figure 2.2: Example of 2D DFR.

a 2D grid for DFR

The boundary of the object can be approximated using the values at the intersections

of the grid to compute with interpolation the intersection points of the object's boundary

with the squares of the grid.

The boundary of the object is treated as a pair of single-value functions, y = f I(x)

and y = f 2 (x). Values of these functions are sampled at a certain uniform resolution dx,

as shown in Figure 2.3, using the local coordinate system, and stored.
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X

y = fj(x)

Figure 2.3: Sampling of values for 2D DFR.

The values from the uniformly sampled boundary points are then stored in an array

using a direct mapping between the x-coordinate and the storage space, which enables fast

retrieval of values, Figure 2.4.

Figure 2.4: Physical-Storage mapping of sampled values.

Having an implicit function, f(x, y, z) = 0, a point (xi, yi, zi) corresponds to a value

f(xi, yi, zi) of the function. The values of the function can be considered as samples of a

scalar potential field that represents the volume of the shape that is defined by the implicit

function. This approach is similar to the technique that is used in the Magnetic Resonance

Imaging (MRI), where the scalar values measure the material density.
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The 3D DFR data structure provides an efficient way of enclosing a simulated body

with a set of cells, which is called discrete bounding hull (DBH), that intersect the 3D

body. The sampling grid is used as the local coordinate system for each body with unit the

cell size.

2.3 Selected Geometric Representation

In general, most DEM use spherical objects as they provide simplicity and efficiency dur-

ing contact detection. The typical use of spherical objects is also justified by the common

encounter of such shapes in simulations of very large numbers of discrete bodies. How-

ever, in simulations where there is interest for the stress and strain distributions within

individual simulated bodies and the number of bodies is relatively not very large, the most

typical shape is polyhedral. In particular, rectangular and box shape bodies are very com-

mon in 2D and 3D problems, respectively. Rectangular bodies are the ones selected to be

implemented using a essentially a B-Rep representation scheme.

2.3.1 Polyhedral representations: cuboids and rectangular shapes

Polyhedral representations are composed of polygons that have certain relationships and

constraints to one another forming solid objects. For example a rectangular shape object in

2D and a cuboidal-shape object in 3D can be represented by their bounding edges and

faces, respectively. The objects are described, according to the B-rep., in terms of their

bounding entities, such as faces, edges and vertices.

The bounding relations of the cube are based on the six faces, each of which is

bounded by four edges, and each of the latter is bounded by two vertices. Similarly, a rect-

angular object is bounded by the four edges, each of which is bounded by the correspond-

ing vertices.
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Figure 2.5: Boundaries of a cuboidal and a rectangle.

Geometrical information provides a complete specification of the shape of the object.

Some characteristics of the geometrical as well as the topological (such as adjacency rela-

tionships) information can be utilized to make the contact detection and resolution more

efficient.

Taking into account the type of analysis that is aimed, rectangular shapes have been

used in the actual software implementation, although the software is designed in a way

that is directly extendable to 3D polyhedral representations. The rectangular, in 2D, and

cuboidal, in 3D, shapes are very common in engineering practice. In addition, both shapes

represented as B-Rep are very suitable for FE analysis, although they are relatively diffi-

cult to be used in DE analysis, in particular during the contact resolution phase of the con-

tact detection. However, as the focus of this research is the coupling of DE and FE analysis

using this kind of shapes is a reasonable compromise.

A naive contact detection procedure requires the consideration of all combinations of

features, i.e. faces, edges and corners, of each body with every feature of every other

object. However, in reality at a specific time instant only a very small number of bodies

can be in contact taking into account adjacency relations among the simulated bodies. This

issue is considered in Chapter 3 in order to reduce the number of required computations

during contact detection.
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Chapter 3

Contact Detection and Forces

3.1 Introduction

The major computational bottleneck in simulations of multibody systems is usually the

contact detection, since it is the most computationally demanding process (Williams [39],

0' Connor [21]). Therefore, the selection of an efficient contact detection algorithm is

very critical to reduce the computational cost of a simulation, especially when dealing

with very large numbers of bodies. A naive way to perform contact detection is an exhaus-

tive checking of each body against all others without taking advantage of the available

information about the shape and spatial distribution of the bodies. This process is compu-

tationally very expensive when the number of bodies, N, is large, since it requires an order

O(N 2) checks. The cost of an individual pairwise contact detection and resolution

depends on the geometry of the bodies under consideration. However, even in the simple

case of contact detection between spheres, the O(N 2) required checks may be computa-

tionally too expensive when dealing with very large numbers of bodies. Only if an effi-

cient and fast contact detection algorithm is used, sufficiently large number of bodies, or

particles, can be simulated. This chapter describes ways that can be used to reduce the

computational cost of the contact detection process.

The computational time that is required for contact detection can be substantially

reduced if a spatial reasoning is used to avoid an exhaustive check of all possible pairs,

which require O(N 2) checks. The spatial reasoning identifies the bodies that may be in
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contact avoiding unnecessary pairwise contact detection checks between bodies that can-

not be in contact. During the pairwise contact detection, which follows the spatial reason-

ing, only adjacent bodies that may be in contact are considered. This approach saves a

significant amount of computational time reducing the computational cost below O(N2 )

Several methods have been developed to reduce the required operations for the contact

detection. These methods can be grouped into two categories, the grid subdivision and the

spatial sorting methods. With a grid subdivision algorithm the simulation volume is subdi-

vided into cells using either a uniform or an adaptive grid. For each discrete body the over-

lapping cells are identified and a pointer is used in each of them to keep track of the cells

that each body occupies. Each cell maintains a list of the bodies that fall within or across

its boundaries allowing fast determination of possible contacts for each body with its adja-

cent bodies looking in the cells in its immediate vicinity. However, methods based on this

idea have some certain restrictions and limitations. The other category of contact detection

methods is based on spatial reasoning of the simulated bodies. In particular, the geometric

boundaries of the bodies are used to sort them spatially in certain directions in the simula-

tion space in order to reduce the contact detection checks by excluding bodies that are so

far apart that cannot be in contact. This thesis uses the spatial sorting approach to allow

simulation of systems with bodies of different sizes moving within a non-limited simula-

tion volume.

3.2 Contact Detection Schemes

The development of efficient contact detection algorithms is useful not only in discrete

element simulations but also in many other applications and areas that involve contact

detection between parts of the system that is simulated. Examples include CAD/CAM sys-

tems, path planning in robotics and industrial processes, molecular dynamics, simulations
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of astrophysics phenomena, computational geometry, physically-based computer graphics

and virtual reality environments with collision detection capabilities. Several methods

have been developed to reduce the required operations for contact detection.

Many procedures that have been developed and used for contact detection are based on

a grid subdivision, also known as space, or cell, decomposition, where the simulation vol-

ume is subdivided into cells, using a uniform or, an adaptive, gridding. For each discrete

body the overlapping cells are identified and a pointer is used in each of them to keep track

of the cells that each body occupies. Therefore, each cell maintains a list of the bodies that

fall within, or across, its boundaries. This allows fast determination of all possible contacts

for each body with its adjacent bodies by considering all bodies that are marked in the

cells at its immediate vicinity. The grid subdivision scheme subdivides the simulation vol-

ume, or area, into uniform size cells as shown in Figure 3.1 .a for the case of a 2D problem.

Each cell may enclose zero or more bodies. The contact detection using cell subdivision

can be performed in O(N) operations under certain conditions and restrictions.

However, methods based on the subdivision idea have some limitations. First, the sim-

ulation volume must have finite dimensions since there are finite memory resources to

store the information about each cell. Therefore, bodies that happen to exit the simulation

volume cannot be tracked. In addition, the method performs well only if the simulated sys-

tem has uniform spatial distribution and the simulated bodies have similar sizes. If there

are very small bodies the cell resolution may be so small that the memory requirements

may be prohibitively high. The latter limitation may be addressed with an adaptive cell

subdivision, as shown in Figure 3.1.b for the 2D case. With this technique the simulation

volume is subdivided by planes, or lines, for the 3D and 2D cases, respectively, parallel to

the Cartesian axes, in a way that there is the same number of bodies on either side of the
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cutting plane, or line. However, adaptive cell subdivision has an additional overhead to

maintain information about the adaptive subdivisions and the multiple cell dimensions.

Other procedures that use octrees for 3D problems, or quadtrees for 2D problems (Fig-

ure 3.1.c), have been developed and used (Samet [33]). These methods subdivide the sim-

ulation volume in cells, which are stored in a tree structure. Only the cells that contain

bodies are maintained in the tree structure. However, there is a significant overhead of

rebuilding the associated trees at each timestep due to the dynamic nature of multibody

dynamics simulations.

a. Grid subdivision b. Adaptive subdivision c. Quadtree subdivision

Figure 3.1: 2D space subdivision schemes.

Considering the above mentioned disadvantages, in particular the substantial memory

requirements and overhead to manage and update the cell array at each step, and the usual

numbers and types of deformable bodies that need to be simulated in a combined DE/FE

analysis, a procedure that uses a spatial reasoning (O'Connor [21]) prior to the actual con-

tact detection resolution is preferred.

3.3 Selected Contact Detection Procedure

The contact detection scheme that has been developed and implemented consists of two

phases, the spatial reasoning and the pairwise checks phases. These two phases are illus-

trated in Figure 3.2.
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In particular, a spatial reasoning phase is used to exclude all bodies that cannot be in

contact, using a spatial sorting of the bodies, which is based on their bounds in a selected

direction, and a spatial searching to identify candidate pairs of bodies that may be in con-

tact. Essentially, the spatial reasoning phase identifies bodies that are good candidates to

be in contact. Having identified pairs of bodies that may be in contact, pairwise checks are

used to verify the contact between the two bodies and determine the contact geometry dur-

ing the contact resolution phase.

Spatial Reasoning Pairwise Checks

Spatial Bounding Spatial Contact
Sorting boxes Overlapping N- Resolution

(mergesort) overlap Test Phase
check

Figure 3.2: Contact detection phases.

The contact resolution phase makes detail contact checks for each selected pair of bod-

ies and determines whether the bodies under consideration are indeed in contact. When-

ever the bodies are found to be in contact, the overlapping region is identified and used for

the calculation of the contact forces that are applied during the formulation of the equa-

tions of motion. The contact resolution phase consists of the pairwise contact verification

and resolution phase, as shown in Figure 3.2.

The contact detection procedure must be performed at discrete time instances with a

sufficiently small time interval so as to avoid missing any contacts. The time interval

should be kept relatively very small to the speeds of the bodies and the dimensions of the

problem.
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3.4 Spatial Reasoning Phase

The spatial reasoning phase procedure that has been developed and implemented to iden-

tify bodies that may be in contact in order to avoid an exhaustive contact detection of

every individual body against every other body, consists of a spatial sorting followed by a

spatial searching in a selected Cartesian direction. The spatial reasoning reduces the com-

putational cost from O(N 2) to O(N -lgN)), which is the order of computations corre-

sponding to the mergesort algorithm that is used for the spatial sorting.

The spatial sorting reduces the number of pairs of bodies that need to be considered for

further investigation. The bounding boxes tests reduce even further the number of pairs of

bodies that may be in contact. However, there is an overhead associated with the bounding

boxes tests, in particular the need to maintain in a data structure the bounding box of each

body and the computing cost of sorting of the bounding boxes in each direction.

3.4.1 Spatial sorting: based on bounding boxes

During the spatial sorting phase a mergesort algorithm is used to sort the simulated bodies

in a selected direction based on the bounds of the bodies in that direction. The direction

that is used for the spatial reasoning can be selected either manually by the user, or auto-

matically by the program. The automatic selection takes into account the spatial dimen-

sions of the system that is simulated and selects the direction that corresponds to the

largest size of the bounding box that contains all bodies of the system. With this selection

it is more likely to have smaller lists with pairs of bodies that may be in contact during the

spatial reasoning phase.

In particular, bodies are sorted at the selected cartesian direction using the mergesort

algorithm, which has an O(N - lgN) worst case running time. The sorting is based on the

bounds of the body in that direction. Bounding boxes that have edges parallel to the three

cartesian axes are determined to facilitate the spatial reasoning phase. Therefore, the sort-
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ing of the bodies in the selected direction is done using the lower bound of the bounding

box of each body. The sorting process results in a sorted array of references to the simu-

lated bodies, which correspond to the selected cartesian axis.

The cost of sorting is O(N - lgN) in the worst case while in most cases it is much

lower since the bodies are almost sorted from the previous step which defers only a very

small time increment. Insertion sort, which has been embedded into the mergesort algo-

rithm, is used whenever the size of the set to be sorted is so small that insertion sort is

faster than mergesort due to the smaller constants of its computational cost. Although

insertion sort has a worst case computational time of O(N2 ), the fact that the bodies are

almost sorted from one time step to the next results in computational time that is even bet-

ter than the O(N - lgN) which corresponds the worst case for mergesort. In particular, the

computational time for insertion sort for sets that are almost sorted, especially those of

small size, that do not require many interchanges approaches from above O(N) computa-

tional time. In addition, the storage requirements for the sorting is O(N) since the merge-

sort algorithm sorts in place without any extra storage requirements.

3.4.2 Spatial searching: identification of potential pairs of bodies

Having sorted the bodies in the selected direction using their bounding boxes, a linear

search while identifying bodies that may be in contact is performed. In particular, for each

body, all bodies that have minimum bound that is greater than the minimum bound and

less than the maximum bound of the body under consideration, are identified. This selec-

tion is performed fast by stepping forward in the sorted array of references until a body

with a minimum bound that is larger than the maximum bound of the body under consid-

eration is found. For all the bodies from the beginning off the forward stepping until such

body is found checks in the other two cartesian directions are performed to exclude the

bodies that cannot be in contact.
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Therefore, the determination of the range in the sorted arrays that extends between the

minimum and the maximum of each body under consideration can be done with a constant

number of iterations, which on average is a small number. The whole procedure requires

computations of order O(N -lgN) for the spatial sorting, and an order O(N) number of

operations to check the projection of the bounds of the selected bodies in the other direc-

tion.

3.4.3 Example of 2D spatial reasoning

For simplicity a 2D example is considered to demonstrate the spatial reasoning procedure

in one direction. The following figure, which shows bodies in the X-Y plane, demonstrates

the spatial sorting and selection to identify bodies that may be in contact. In this case the

X-direction has been selected for sorting. First, a sorting based on the minimum boundary

of each body in the X direction is performed.

i min i max

Figure 3.3: Bodies in the 2D X-Y plane.
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The results of the sorting is a set of references to the simulated bodies with the

sequence that is presented in the following table. The sorting algorithm that has been

implemented tool uses mergesort with embedded insertion sort.

Body f a d i e b c

Table 3.1: Ordering of bodies in X-direction based on their minimum bounds.

Having sorted the bodies in the X-direction using their minimum bound in the X-

direction, the spatial search identifies the bodies that may be in contact taking into account

the extent of the body under consideration. Each body will be considered in sequence fol-

lowing the sorted order.

In this case, assuming that the body i is under consideration, the algorithm selects the

range of bodies, in the sorted bodies that may be in contact with i. The selection of a body

is done by comparing its minimum bound whether it lies within the extents of the projec-

tion of the body under consideration, body i, on the X-axis. Starting from the references

of body i each subsequent body is considered as long as its minimum bound is less than

the maximum bound of body i. As soon as a body is found to have a minimum bound

larger than the maximum bound of body i the search stops.

Considering the above example, the spatial searching for body i would select bodies e

and b, which are the ones that may overlap with i considering the X-direction. The projec-

tions of the bounding boxes of bodies a and d in the X-direction also overlap with that of

body i, but the pairwise selection of those two pairs is done when bodies a and d, respec-

tively, are considered. The indices i X and ix- keep track of the, intermediate bodies,

which in this case are b and e, that may be in contact with i.

The following figure shows the way bodies e and b are selected as candidates to be in

contact with body i.
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Figure 3.4: Spatial Sorting in the X-direction.

The following table shows the bodies that e and b are selected from the sorted array of

references to bodies, since their lower bound of their projections to the X-axis lies within

the bounds of the projection of body i on the X-axis.

Body f a d i e b c

Table 3.2: Selection of bodies that may be in contact with body i.

Then, the projections of the bounding boxes of the selected bodies on the other direc-

tion axis, i.e. the Y-direction here, have to be checked against the projection of the body

under consideration. In this case, the minimum and maximum projections of bodies b and

e on the Y-axis are compared with those of body i. This check will exclude body b since

its lower bound in the Y-direction is larger than the maximum bound of body i, which

means that bodies i and b cannot be in contact. The pair of bodies i and e is kept as a can-

didate pair to be in contact.

52



3.5 Pairwise Contact Detection Checks

Having selected candidate pairs of bodies that may be in contact pairwise contact detec-

tion checks are performed to verify that the selected bodies are indeed in contact and, in

that case, determine the contact geometry. These two operations are performed by the spa-

tial overlapping and the contact resolution phases, respectively, as explained in the follow-

ing two paragraphs. For each body all potential candidates for contact are identified by the

previously described phase, the spatial reasoning.

3.5.1 Spatial overlapping tests

The first phase of the pairwise checks tests whether the bodies are indeed in contact. For

the case of rectangular bodies this is performed easily using the local coordinate system of

each body to transform the vertices of the other body to its coordinate system and then test

whether any of the vertices is located inside the boundaries of the body, which happen to

coincide with its bounding box in local coordinates.

As it is shown in Figure 3.5 the vertices of body (2) are transformed in the local coor-

dinate system of body (1), which is located in the center of the latter and aligned to its

edges. Therefore, it is very efficient to check whether any of the vertices of body (2) are

located within body (1), as it can be done with four inequality checks. If no vertex is found

to be located within body (1), then the exact same procedure is performed to check

whether any vertex of body (1) is located inside body (2).
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Figure 3.5: Spatial overlapping test between two rectangles.

As soon as any vertex of one body is found to be located within the other body then the

two bodies are definitely in contact and the contact detection proceeds to the next phase,

the contact resolution, which is described in the following paragraph.

In contrast, if after checking all vertices of the one body against the vertices of the

other body and vice-versa, no vertex is found to be within the other body, the two bodies

are not in contact and the contact detection between these two bodies terminates.

3.5.2 Contact resolution phase

The second phase of the pairwise checks is the contact resolution, which performs more

detail checks between all pairs of bodies that are found to be in contact. The checks in this

phase are done for each body using only a small number of adjacent bodies which are

selected during the spatial overlapping tests, which in turn use the only the selected by

spatial reasoning phase candidate for contact pairs.
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3.5.2.1 Contact resolution using sampling points

The contact resolution phase has been developed and implemented specifically for rectan-

gular bodies. Sampling points are used, as shown in Figure 3.6, to determine the overlap-

ping region between two bodies in contact. As in the spatial overlapping tests, presented in

paragraph 3.5.1, the local coordinate systems of the two bodies are used together with

interpolation functions to determine which sampling points of the one body are located

inside the other and vise-versa.

Figure 3.6: Sampling points used for contact resolution.

Whenever a sampling point of a body is found to be within another body a contact

point is either formed, when the contact-point is first encountered, or updated when it is a

preexisting contact point from previous time steps. At each time step a contact detection is

performed and any previous contact points that are not any more within the body-in-con-

tact cease to be contact points and are removed from the data structure that keeps track of

the contact points between the two bodies in contact.
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3.5.2.2 Normal vectors to contact points

In addition to the determination of the contact points for rectangular shape bodies, it is

necessary to determine the normal and tangential vectors to the contact line in order to be

able to apply the normal and tangential contact forces as well as to satisfy the Coulomb

law of friction. Similarly, in 3D the normal and tangential planes to the contact plane must

be determined. The details regarding the applied contact forces are discussed in the fol-

lowing chapter.

For a rectangular body the normal vector to a sampling point is defined as shown in

Figure 3.7. All sampling points that are located at the corners of the rectangular object

have normal vectors in directions that form 450 angles with extensions of their adjacent

edges. All other nodes have normal vectors that are normal to the corresponding edge.

450

900

Figure 3.7: Normal vectors at sampling points of a rectangular body.

This definition can be extended for 3D cuboidal objects as shown in Figure 3.8. All

sampling points that are located at the corners of the rectangular object have normal vec-

tors in a direction that forms a 450 angle with extensions of its adjacent edges. All sam-

pling points that are located on edges have normal vectors in a direction that forms a 45o

angles with extensions of their adjacent faces. All other nodes have normal vectors that are

normal to the corresponding face.
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Figure 3.8: Normal vectors at sampling points of a cuboidal body.

3.5.2.3 Normal vectors to contact points

The normal vectors of all sampling points of a body that are qualified to be contact points

are taken into account to determine the normal vector to the contact regarding the body

under consideration. The normal vector to the contact of a body in contact is determined

by summing the normal vectors of all contact points of the body involved in the specific

contact and then normalizing the vector. In special cases, such as a contact of an edge of a

rectangular body with another body the contribution of the corner sampling point is

ignored in order to avoid discrepancy of the normal to the edge.
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3.5.2.4 Contact plane

The contact plane must be determined in order to be able to define the normal and tangen-

tial directions and use the corresponding normal and tangential relative velocity compo-

nents and contact coefficients, Kn and Ks, respectively. The contact plane is the plane

which is theoretically tangential to the contact points. For rectangular bodies the contact

plane is a contact line. The orientation of the contact plane, or line, can be defined by a

unit normal vector to that plane, or line, respectively. The normal vector is determined by

the features of each of the two bodies that are in contact.

Depending on the points that are determined on a body to be within the area of the

other body, we can have one of the two cases:

- a corner contact, which happens when only a corner point is found to be in contact

with the other body;

- an edge contact, which happens when one, or more, points on an edge, other than the

corner point are found to be in contact with the other body;

Then, having determined for both bodies the kind of contact that each of them experi-

ence, there the following three different combinations:

- edge-edge

- edge-corner

- corner-corner

In all three cases the average of the two normal vectors to the contact line, one for each

body in contact, are added and then normalized to obtain the normal and tangential vectors

to the contact. The latter two vectors are normalized and stored in the contact object where

all information regarding the contact between the two bodies is stored. In the next chapter

we will discuss how this information is used to compute, or update, the contact forces at

each contact point.
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Similarly, in 3D problems which involve cuboids, we can have one of the three cases,

depending on the points that are determined on a body to be within the volume or area, of

the other body, we can have one of the three cases:

- a corner contact, which happens when only a corner point is found to be in contact

with the other body;

" an edge contact, which happens when one, or more, points on an edge, other than the

corner point are found to be in contact with the other body;

e a face contact, which is the case when one, or more, points on a face that do not

belong to any edge are found to be in contact.

Then, having determined for both bodies the kind of contact that each of them experi-

ence, there can be any of the following six different combinations:

- face-face

" face-edge

- face-corner

- edge-edge

- edge-corner

- corner-corner

Similar assumptions can be made in 3D for the averaging of the resultant normal and

tangential vectors from each body in contact to the contact plane. The computed normal

and tangential vectors are required in the calculation of the contact forces that should be

applied in the normal and the two tangential directions.

Although the implemented software has been designed and built considering rectangu-

lar bodies, it has been carefully designed to allow extension to handle objects of any other

shapes as long as the corresponding methods that are required to perform the contact reso-

lution are provided. The spatial reasoning algorithm can be used for objects of any shape
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since it uses bounding boxes, but in the contact resolution phase a body of a certain shape

can be used only if its corresponding contact resolution function is provided. Currently

only the contact resolution functions for simple primitives, rectangle-to-rectangle in par-

ticular, have been developed and implemented. Since an object-oriented programming lan-

guage and design is used, these shape specific functions are polymorphic and, therefore,

the program can easily be extended to allow to modelling of any other shape as long the

contact resolution function for that specific shapes against all other shapes used in the pro-

gram are provided.

3.6 Contact Data Structure

Having determined for first time a contact between two bodies, a contact object between

the two bodies is constructed. Links to that object are stored in linked lists of contacts that

each body preserve. The data structure that is used to store all information relevant to con-

tacts is shown in Figure 3.9.

In particular, as soon as a new contact is detected between two bodies, a contact object

is created where all the relevant information is stored, including the contact points of each

body, which are stored in two linked lists of contact points, the normal and tangential vec-

tors to the contact, the normal and tangential forces at the contact. Every contact object is

then referenced by the two contact lists of the bodies in contact. When a contact is not any

more valid it is removed from the corresponding contact lists. Contact lists have been

selected and used as they facilitate easy addition and removal of new contacts, which hap-

pen very frequently in the simulations under consideration.
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Figure 3.9: Contact storage data structure.
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Chapter 4

Physics of the Problem

The individual bodies in discrete element (DE) simulations are, typically, considered to be

infinitely rigid. The physics that are used in the simulations regarding contacts between

any body that is simulated and the equations of motion of infinitely rigid bodies, i.e. not

those directly related to the FE formulation, are described in this chapter.

The following chapter, Chapter 5, presents the methodology that is used to take into

account the deformability of at least some simulated bodies using finite element (FE) pro-

cedures combined with DEM.

4.1 Introduction

The mathematical model that is used is based on certain assumptions that allow realistic

solution of the problem taking into account the limited computing resources, while repre-

senting well enough the physical problem. The physical problem is idealized in a form that

can be mathematically modeled, as shown in Figure 4.1. Then, the governing equations of

the resulting mathematical model are solved providing results that are interpreted and

judged in order to draw some conclusions about the physical problem.

Solution of
Physical Matrobmatical -goverCocluion

Figure 4.1: Pipeline of analyzing a physical problem through idealizations.
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The choice of the mathematical model depends on the phenomena that are to be stud-

ied as well as to the provided computing resources. It was deemed necessary to make sev-

eral assumptions and simplifications due to the complexity of the problem. In this case, the

alternative to an attempt to have a more accurate answer would be a no answer. Therefore,

the objective is to build a reliable, robust and efficient simulation tool with realistic and

reasonable computational demands.

4.2 Contact Effects

4.2.1 Assumptions and simplifications

The contact interaction between colliding bodies is an extremely complicated phenome-

non that it would be unrealistic to attempt to simulate without significant simplifications

and assumptions. This phenomenon involves stress and strain distributions within the col-

liding bodies, thermal, acoustical and frictional dissipation of energy due to the contact, as

well as plastic deformations. It is evident that with the current state of art in computing

one can anticipate to solve only a simplified version of this problem after making certain

assumptions in order to make its solution feasible.

The contact effects could also have been taken into account formally as unknowns

coupled with the unknown displacements using methods like Langrange multiplier. How-

ever, this would have resulted in a huge system of coupled highly nonlinear equations that

cannot be solved in reasonable computational time for large numbers of bodies. The for-

mal way to solve contact problems, e.g. using FEM, is to keep the contact surface and

forces as unknowns together with the unknown displacements and using Langrange multi-

plier methods to impose the constraints that characterize the contact problem resulting in a

mixed FE formulation. However, such detail analysis which is highly nonlinear due to the
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changing contact forces and the large displacements, would have problems to deal with

large number of distinct bodies.

Replacing the unknown contact forces at each time step with an estimation based on

the previous known positions of each body, allows the decoupling of the equations of

motion which can be solved for each discrete body independently in order to compute its

new positions. For each time step all external forces including the contact forces according

to the current position of the bodies are used. In order to compute the new positions of the

bodies, the new contacts are detected and the corresponding contact forces are evaluated to

be used in the next time step.

4.2.2 Selected contact approach

The 'soft contact approach' (Goyal et al [12]), which allows the bodies to instantly overlap

assuming localized deformability of the colliding bodies, has been used to model the con-

tact effects. Each distinct body interacts with its adjacent bodies that is in contact with

interparticle contact forces that are modeled using equivalent normal and tangential

springs to simulate the contact effects and provide at each step estimations of the contact

forces. The interactions between bodies may involve new contacts, renewed contacts, slip-

pages and complete detachments from other bodies with which are in contact.

Contact forces need to be applied on colliding bodies to simulate the effects of con-

tacts and collisions and prevent interpenetrations of bodies that collide during simulation.

Several methods have been developed and used to simulate collisions and take into

account contact effects. A penalty function approach is employed here, as it is computa-

tionally less demanding than other methods. Having determined the relative motion of

bodies in contact during the contact detection procedure, the contact forces are computed,

using a penalty approach. The contact forces are applied to the bodies of the simulated

system together with the all surface and body forces. Then, a time integration numerical
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method, which is based on Newtonian mechanics, is used to determine the motion of the

simulated bodies under the action of all forces.

At each point that is identified to be a contact point, a pair of equal and opposite con-

tact forces are applied to the two bodies pushing them apart. The magnitude of the force is

determined by the relative velocities of the two bodies, the stiffness coefficients and the

time step.

4.2.3 Computation of contact force

Contact forces are computed from relative motion of the bodies in contact and the

assumed interaction relations, i.e. spring stiffness. These forces are added to the applied

external forces, such as the gravity forces. At each time step the contact forces in the nor-

mal and the two shear directions are computed using the corresponding stiffness and the

relative velocities between the two bodies that collide. The relative velocity between two

colliding bodies is determined using the normal and tangential vectors to the contact to

which the velocities of the two bodies are projected in order to determine the relative

velocities. The increments of the normal and tangential forces are computed, as shown in

Figure 4.2, by the product of the relative velocity of the two bodies in the relevant direc-

tion, i.e. normal or tangential, times the time step, times the corresponding contact stiff-

ness.

The multiplication of the relative velocity with the time step provides the increment or

decrement of the bodies overlap at the contact point. When the bodies first come in contact

normal and tangential contact forces are computed. In each subsequent step these normal

and tangential forces are updated considering the change of the penetration depth. The

bodies eventually are pushed apart due to the action of the contact forces and when there is

no overlap between the two bodies the corresponding contact data structure is removed

and no contact forces are applied between the two-previously in contact bodies.
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Figure 4.2: Computation of contact forces.

The normal and tangential contact forces between two bodies in contact are stored at

each time step with respect to the associated normal and tangential vectors to the contact,

as that is evaluated from the contact detection taking into account all contact points. This

is necessary in order to be able to correctly evaluate the contact forces when there is no

change in the interpenetration between the two bodies in contact while the bodies rotate.

In essence, the contact forces need to be computed and stored in a way that their magni-

tude is invariable to rigid body rotation of the pair of bodies that are in contact.

When damping is taken into account the increment of the contact forces consists of

two parts the elastic and the damping force increments. Therefore, the normal and shear

(i.e. the tangential to the contact) forces can be expressed in terms of the elastic (indicated

by the e superscript) and the damping (indicated by the d superscript) force components.

Normal force: t+F = F t+At"r t+At dc (4.1)
r Fn + F(4

Atc t+ At _e t+At dcShear force: t +tF,- = s+ ' (4.2)
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The magnitudes of the elastic forces are accumulating during simulation.

t+At ,7ec t ec rel
F = Fn +v'' -At-Kn (4.3)

t+AtFe F" + vc'At -K (4.4)

In contrast, the damping forces that lead to energy dissipation are equal to:

t + Atfdc rel (4.5)n vn Cn

t +Atf-dc rel * 46
n vS CS (4.6)

where C and CS are the damping coefficients in the normal and tangential direction

and which are computed using a user-selected damping ratio x the mass of the bodies and

their natural frequencies.

4.2.4 Contact stiffnesses, Coulomb friction and energy dissipation

The magnitudes of the contact forces are expressed as functions of the relative velocity of

the colliding bodies, using the corresponding contact stiffnesses. For the computation of

the contact forces the contact stiffness is approximately defined using the Hertzian theory.

This theory can be used to derive the normal stiffness for the contact between two deform-

able spheres. Similar measures can be used for the contact stiffness in the other directions.

Considering tangential contact forces, i.e. perpendicular to the normal contact direc-

tion, Coulomb friction can be used to limit these shear forces below a certain magnitude

taking into account the magnitude of the normal contact force and the coefficients of fric-

tion of the two bodies in contact.

Energy dissipation during simulations is considered using dashpots which are used in

parallel with the contact springs to simulate viscous damping. The ratio of damping, , is

selected by the user and used to derive the damping coefficient from the equation:
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= 2 =o - c = 2 km (4.7)

However, the selection of the damping ratio must be done very carefully because it

may affect not only the numerical stability of the time integration scheme, but also the

accuracy of the analysis due to overdamping of certain frequencies. Laboratory experi-

ments of single blocks may be performed to obtain realistic values for the contact stiff-

nesses and damping coefficients and properly calibrate the DEM model.

4.2.5 Application of contact forces on infinitely rigid bodies

Having determined the normal and tangential contact forces at each contact point of a

body the forces should be taken into account when forming the equations of motion in

order to determine the response of the body. In the case of infinitely rigid bodies the con-

tact forces from each contact point have to be transformed to the centroid of the body with

respect the equations of motion are written. As shown schematically in Figure 4.3, the

contact forces are evaluated at the centroid of each infinitely rigid body.

a. b. c.

Figure 4.3: Computation of the contact forces resultants.

The computed contact forces are added to all other external force tractions and body

forces. Then, the equations of motion for an infinitely rigid body are used to determine its

motion as it is described in the following paragraph.

Regarding deformable bodies, as it is described to the next chapter the contact forces

are transformed to equivalent nodal forces and the solution of the equations of motion is
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performed at the nodal level. Therefore, there is no need to transform the contact forces to

the centroid of a deformable body.

4.3 Equations of Motion

Each distinct body is, typically, subjected to gravity and contact forces. The motion of the

discrete bodies is based on physical laws, such as the Newtonean mechanics, and can be

computed using any of the many time stepping methods. The distinct bodies may undergo

large displacements and rotations. An explicit time stepping integration scheme may be

used to compute the motion of each body. Finally, the program must automatically and

efficiently identify new contacts and complete detachments of bodies that were previously

in contact.

Having automatically determine the bodies in contact, the contact forces are calcu-

lated, from the current positions and velocities of the bodies, and applied as external sur-

face tractions for the next time step of the solution. The motion of the discrete bodies is

governed by physical laws such as the Newton's laws. Then, the equations of motion are

solved by time stepping integration methods computing the displacements and, therefore,

the updated positions of all discrete bodies. Finally, new contacts between bodies are

detected and complete detachments of bodies that were previously in contact are identi-

fied, and the corresponding forces are evaluated and used for the next time step.

In particular, after determining the contact and any other external or body forces, the

motion of each individual body is computed using the central difference method (CDM),

which is an explicit time stepping integration method. The CDM is based on the following

approximations for the velocity and acceleration.

t+At/2 u and dii-Atn -ut - t -At (4.8)
At At
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at U+ A/2-Utt-At/2 _Ut +At -2u + t-At (9
At At

Considering the equation of motion in any translational degree of freedom an expres-

sion as the one below can be derived for the displacement at time (t+At).

F, = m - i = m U,+A, + UA - 2 - ut (4.10)
At 2

u,.A, = At2 Ft/m + 2 u, - U,_At (4.11)

2
u, = At F,/m + 2 -u, - u _A (4.12)

After computing the displacements and rotations of all bodies for each time step their

corresponding positions are determined. A new cycle of contact detection, contact resolu-

tion, application of forces and solution of equations of motion follows iteratively, based on

these new positions, until the end of the simulation.
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Chapter 5

Consideration of the Deformability of Simulated Bodies

5.1 Introduction

The aim of the research presented in this chapter is to enable the evaluation of the stress

and strain distributions within simulated deformable bodies. In essence, the objective is to

take into account the deformability of, at least some of, the simulated bodies, which is the

main goal of the research presented in this thesis. The difficulties involved in this research

effort are due to the nonlinearities of the problem regarding the contact interactions and

the large displacements and rotations of the simulated bodies. Certain simplifications and

assumptions are required in order to make the problem tractable for large numbers of sim-

ulated bodies.

The deformations of the bodies are assumed to be sufficiently small to permit a small

strains analysis. Therefore, according to this assumption, a large-displacements and small-

strains analysis can be used. The deformability of individual bodies is taken into account

using a displacement-based (DB) updated-Lagrangian (UL) finite element (FE) formula-

tion. An explicit time-integration scheme, specifically the central difference method

(CDM), is employed to perform the numerical direct integration of the equations of

motion during the dynamic analysis. The combination of the UL formulation with CDM

provides very significant simplifications of the problem as it allows the direct integration

of the equations of motion without a need for any iterative procedure for convergence,

regardless of the large displacements and rotations.
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In contrast, the total Lagrangian (TL) FE formulation, which should be used when the

strains are large, as described in Paragraph 5.3.1, leads to a coupled system of nonlinear

equations. The solution of the latter requires an iterative procedure for convergence at each

time step during simulation, rendering the method non-practical to be used for simulations

that involve large numbers of deformable bodies with the currently available computa-

tional resources.

In the next paragraphs of this section the traditional finite element approach for contact

problems is briefly discussed followed by a short outline of the simplified finite element

model and formulation that is employed. Then, Section 5.2 presents in more detail the lat-

ter. In particular, the relevant continuum mechanics equations, the corresponding FE

matrices and isoparametric formulation are presented. The application of the contact

forces, the numerical integration of the equations of motion, and issues related to the soft-

ware implementation of this FE formulation are also discussed. The chapter concludes

with a presentation of potential future extensions of this formulation. In particular, an

approach based on the TL formulation to enable the consideration of large strains is dis-

cussed. Although the formulation that is implemented for this research is based on a

small-strains assumption the last paragraph of this chapter and Appendix B briefly

describe the approach that can be used in the general case of large strains for a potential

extension of the current work.

5.1.1 Traditional finite element formulations for contact problems

The contact effects can be formally taken into account in very simple systems of bodies as

unknowns coupled with the unknown displacements using methods like Langrange multi-

pliers method. This is the formal way to solve contact problems using FEM, and it has

been applied only in very simple, usually 2D, systems with very few numbers of bodies.

The parts of the bodies that may come in contact, typically, have to be defined prior to the
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actual simulation, while in the problems under consideration no prior knowledge of the

upcoming contacts is available.

The problem is highly nonlinear not only because the simulated bodies may undergo

large displacements and rotations, which result in geometric nonlinearities, but also

because of the boundary conditions changes due to contact effects during simulations. The

contact effects are, typically, taken into account in traditional FE formulations by keeping

the contact surface and forces as unknowns coupled with the unknown displacements.

Langrange multipliers methods are often used to impose the constraints that characterize

the contact problem resulting in a mixed FE formulation with a system of highly nonlinear

coupled equations. This huge system of coupled highly nonlinear equations can not be

solved in reasonable computational time for large numbers of bodies. Considering the

excessive computational requirements, due to the huge number of degrees-of-freedom

(DOF), and the high nonlinearities of the coupled system of equations, it is unrealistic to

solve problems with many interacting bodies using such classical contact FE approach.

Therefore, some approximations to simplify the problem allowing a more efficient way to

incorporate FEM in order to enable the simulation of deformable bodies with reasonable

computational cost, have been sought.

5.1.2 Simplified finite element model and formulation

Considering the available computing resources and the extremely high complexity of the

problem, it is evident that certain simplifications and assumptions are necessary in order to

enable simulations of systems of multibody systems. Sometimes, obtaining a less accurate

solution is preferable than having no solution.

In particular, the governing equations are decoupled by considering the contact effects

through simplified contact springs and the overlapping of the bodies in contact, as it has
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been discussed in the previous chapter. This assumption greatly simplifies the problem

avoiding the need for solving huge systems of coupled nonlinear equations.

First, the contact forces using the positions of the simulated bodies from the previous

time step are determined and used as external surface traction loads. The motion of each

discrete body for a new time step is determined from the dynamic equilibrium equations.

The equations of motion are solved by an explicit time step integration method computing

the displacements as well as the deformations and stresses within each deformable body.

Having computed the motion of each discrete body at each new time step, the positions of

all discrete bodies are updated and a new contact detection process determines the new

contacts and evaluates the corresponding contact forces, which are used in the next time

step. In order to perform a FEA an efficient automatic mesh generation module is used, as

it is described in detail in Chapter 6, on page 99.

5.2 Finite Element Formulation

The Updated Lagrangian (UL) FE formulation is selected to be used in order to take into

account the large displacements and rotations. According to the UL formulation all quan-

tities and variables are referred to the latest computed configuration, rather than the origi-

nal configuration as in the Total Lagrangian (TL) formulation. Assuming that we know the

solution up to time t, we want to determine the solution for time t+At, i.e. the displace-

ments, strains and stresses and, in general, the state of the simulated bodies at the new time

instance. This is achieved by employing the UL FE formulation together with the CDM

for the time integration of the governing equations of motion that are formed at time t. A

lumped diagonal mass matrix and a mass proportional damping matrix are used to decou-

ple the resulting FE equations and further reduce the involved computational cost.
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A dynamic analysis provides the nodal displacements under the action of all external

forces including the contact forces. From the computed nodal displacements, the body

deformations and internal stresses can be computed. For the time integration, the central

difference method (CDM) is employed, although a strict stability criterion must be satis-

fied by its time step, as it substantially simplifies the solution when lumped diagonal mass

and damping matrices are used. Then, the system of equations can be solved without

matrix factorizations, only by doing simple multiplications. This allows the evaluation of

the effective load at each nodal DOF on the element level considering only the elements

associated with the specific node.

Therefore, no stiffness matrix of the complete element assemblage needs to be con-

structed and the solution can be carried out locally with very limited high speed memory

requirements. This is very important for systems that are typically analyzed with DEM

which may have large numbers of bodies. The shortcoming of an explicit method is that

the method is conditionally stable and a sufficiently small time step is required to ensure

stability. However, regardless of this requirement we need to use small time steps in order

to avoid errors during the contact detection part and the calculation of the contact forces.

In addition, decoupling the system of equations facilitates the use of parallel computing,

which is necessary in order to be able to simulate very large numbers of bodies with com-

plex shapes.

5.2.1 Continuum mechanics equations

According to the PVW: 'the internal virtual work, tf, is equal to the external virtual

work, t, for any arbitrary virtual displacements that satisfy the essential, i.e. the dis-

placement, boundary conditions":

tf = t i 
(5.1)
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The following figure shows a general body in its configuration at time 0 (original con-

figuration) and at time t. Writing the equations of motion at time t the displacements at

time t+At can be computed using an explicit direct integration scheme and stepping for-

ward in time. Figure 5.1 also shows the virtual displacements that can be applied on the

configuration at time t. Note that the cartesian coordinate axes are stationary, i.e. 0X,= X,.

x,
Virtual0
displacements 'xi = Xi + u

P( 0 
1,x 2 ,

0
X3 ) P(tX1 tX2 tX3 ) t _ = 0ui - x - x.

(2D: i = 1, 2)
Configuration (3D: i = 1, 2, 3)

Configuration at time tQ:i1 ,3
at time 0

x2

x1= x,

Figure 5.1: Configurations of a moving body at times 0 and t.

The internal virtual work, i.e. the work due to internal stresses, can be computed as:

f= ft - U - tdv (5.2)

where: t'ci are the Cauchy stress tensor components at time t;

6,si are the virtual strain tensor components corresponding to the virtual displace-

ments 6ui, which refer to configuration at time t;

6ui are virtual displacements, i.e. variations of the real displacements tu.;

xi are the Cartesian coordinates of a point at time t;

V is the volume of the simulated body at time t.
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The external virtual work '91 at time t is equal to:

= fi -f utf -dv + ff tjs- u - 'dS + X R - Sui (5.3)

'v '"'As,

- 'ftp -'i - 6 ui -tdv - f ta. Su, -tdv

V y

where: tf are the body force components, not including inertia and damping, (force

per unit volume);

tfs are the surface tractions (force per unit area);

R. are concentrated forces;

rV is the volume at time t;

Sf is the surface at time t, where surface tractions are applied;

tp is the mass density

t is a damping property parameter

ii, and iii are velocity and acceleration components, respectively, at time t;

Su1 , Sai and 6ai are virtual displacement, velocity and acceleration components,

respectively, imposed on configuration at time t.

The inertia and damping forces are formally computed using consistent mass and

damping matrices, as shown by the following equations. The consistent mass and damping

matrices can be constructed using the same approximations for accelerations and veloci-

ties as those that are used for displacements, requiring substantial computations.

TF = fp - ' -Su, - tdv: inertia forces, which resist any change of momentum

IV

'FD = 't . t i. u, tdv: damping forces, resisting motion by dissipating energy

V
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Substituting in the PVW the expressions for the internal and external virtual work we

get the following equation.

ft - 8,e - tdV = f .ui-V + f -"u -dS + (5.4)

V V I

R - u - t' -i6 -ui tdv 'C -'i - 6ui -tdv

tV 'V

Rearranging the terms, we get the familiar equations of dynamic equilibrium. These

equations express the equilibrium and compatibility requirements of any general body at

time t. In addition, assuming that the proper constitutive relations are used, the stress-

strain law is also satisfied.

ftp. tai. -ui, -dV + ft .'a -ui tdV + ft t 8tEij -'dV = (5.5)

'V 'V 'v

ff -S ui - dV + f t s -8ui-'dS+ R - 8u

V SI

Instead of consistent mass and damping matrices, using diagonal matrices significantly

simplifies the solution as there is no need, as it is shown in the following paragraphs, to

form any matrices, since the solution for each DOF can be done independently and very

efficiently. Therefore, considering the substantial efficiency that is gained, a lumped mass

matrix and a mass-proportional damping matrix, which are diagonal, are used instead of

the consistent ones.

8U T M.U+6U T -C + f tEij -c1 , tdV = (5.6)

tV

f - Sui - dV + f t-S u -dS + R . Su

IV tSI

where the first two terms, SU - M - U and SU . C U, which correspond to the iner-

tia and damping forces, are written directly in matrix form as the simpler lumped matrices

are used instead of the FE consistent mass and damping matrices.
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5.2.2 Finite element matrices

The expression of the PVW in Equation (5.6) can be expressed by the following equation,

in matrix form, where the superscript t is dropped since all quantities in this paragraph

refer at time t:

SUT -T MC.-0+j6E - T dV =
8U -MU+8u-c-(+ fV

S6U- FBdV +
V

SUsF[
SF

(5.7)

-FsFdS + I Ui Ric

The vector 6U contains the nodal virtual displacements. The vectors U and U are

vectors that contain the nodal velocities and accelerations at time t;

8 U = [6u 6v S are the virtual displacements at a point (x,y,z);

U = v W are the displacements of a point (x,y,z) at time t;

E = E 6F- S8zz 8 xy 8yz 8 xz are the virtual strains;

FB F FB B FB are the body forces, excluding the inertia and damping forces,

which are represented by the first two terms on the left-hand side of Equation (5.7).

Similarly, the FSF , and R?, are the surface, and concentrate forces, respectively, and

T = T TYY Tzz Txy Tyz T are the actual Cauchy stresses.

The above integrations must be performed over the deformed volume, V, and surface

areas, SF, of the body at time t, since the displacements are large, as shown in Figure 5.2.

The displacements U(x, y, z) = u v w] at time t are assumed known and the aim is

to compute the unknown displacements at time t+At. Here, we consider the general 3D

case, although the 2D plane-stress and plane-strain are actually implemented, as described
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in a following paragraph. The more general 3D case is presented as the general case for

the sake of generality.

X3
Configuration

node k at time t

node k
(0X1k, OX2kI OX3k)

Original Element e (tXIk 'X 2k, 'xk)

configuration
(time 0)

x2x 1 =1

Figure 5.2: Configuration of body at times 0 and t.

A 3D body is discretized into an assemblage of finite elements that are interconnected

at nodal points on the element boundaries. The displacements within an element, U', are

expressed in terms of interpolation functions, He, and the nodal point displacements, U.

[Ue(X, Y, Z)

U = Ve(X, y, Z) = He(x, y, z) U (5.8)

Lwe(x, y, Z)j

The displacements of a point inside an element depend only on the displacements of

the nodal points of the particular element. Therefore, the displacement interpolation

matrix He, has nonzero elements only in the columns that correspond to the DOFs associ-

ated with the nodal points of that particular element. This fact can be utilized so as to

reduce the storing and computing requirements.

The strains can be obtained by proper differentiation of the displacements in terms of a

strain-displacement matrix, B . However, since the displacements are large the usual rela-
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tions for infinitesimal strains cannot be used. Instead, the Almansi strains should be used

as they are the work-conjugate of the Cauchy stresses. The Almansi strains are given by

the following equation:

A 1 t t t t
tE - (= u, j + tuj, i ~ tk, i * tuk, j)

For example, the Almansi strain ,Ex, in a 3D problem is equal to:

A 1 au av au au av av aw aw)
X 2 aY a x a x aty at x aty aIx Ty)

Therefore, the Almansi strains can be expressed in terms of nodal displacements.

A e A e
E = fB - U (5.9)

The same assumptions can be used for the virtual displacements and strains:

8Ue = He -. U (5.10)

A e A e
8^Ee - - 8 U (5.11)

The stresses can then be computed using the material constitutive law as it is specified

by the elasticity matrix, Ce, which is the same as the one used for small displacements

when the material is isotropic and linear elastic.

eA e e
T = C - E + Ti (5.12)

where of are any initial stresses.

The stress-strain matrix, Ce, for a 3D element has the following form. The stress-

strain matrices, Ce, for plane-stress and plane-strain are presented in the Paragraph 5.2.7,

where the actually implemented FE formulation is described.
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(1-v) v v 0 0 0

v (1-v) v 0 0 0

v v (I-v) 0 0 0

Ce E 0 0 0 (1-2v) 0 0 (5.13)
(1 + v)(1 - 2v) 2

0 0 0 0 (1 -2V) 0
2

0 0 0 0 0 (1 2V)
2v)

The PVW, expressed by Equation (5.7), can be written as a summation of integrals

over the subdomains of the finite elements to which the body is discretized, as follows:

8U -M - U+SU -C. + if eA E -. T edV (5.14)

S8Ue - F B' dV + sF F - FSFedS + 8U* Ric
e e

These integrations can be performed using whatever coordinate system is most conve-

nient for each element. Again the inertia and damping terms have been added for com-

pleteness using the corresponding lumped matrices, which are directly assembled without

any integration performed to determine them in a consistent way. Using the assumptions

for the displacements the corresponding relations are substituted in the PVW:

8U -M U +6U -C -U4+ ve( -U) (C" -I e.U +e)dV = (5.15)

v(He. 6U) F BdV + sF(HsF -U) FsFedS + 8U - R c

e e

Taking the virtual displacements out of the integrals, the PVW can be written as:

U {M + C-+J v C' - 'BdV -U = (5.16)

8U T IfHeTFBdV + IfsFH FSFedS + Ric
~Je e i
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Applying the PVW as many times as the number of DOFs, using each time virtual dis-

placements that are all zero except one DOF at a time with a unit value we get the follow-

ing equation, where an identity matrix in front of each side of the equation is canceled out:

M- +C- Y+ ve tB C -tBdV -U= (5.17)

Ve + F F FFdS+ R"C
e ei

The third term on the LHS of the above equation, which represents the elastic forces,

can be written as a vector of nodal point forces, due to internal stresses, at time t:

Vector of internal forces: 'F = iJ' AT dV
e V

where T = t T2 2 t T t t  is the Cauchy stresses vector.

Defining the body, surface, and concentrate forces vectors as

Body forces: RB = JHeTFBedV
e

Surface forces: Rs = s HeSF F dS
e

Concentrate forces: Rc = R

The external forces, except the inertia and damping forces, can be expressed as:

tR = RB+Rs+Rc

Then, the governing equations of dynamic equilibrium, i.e. the equations of motion,

can be expressed in a more compact matrix form:

M- t U+C- t0+',F = tR (5.18)

Although the direct stiffness method could be employed to construct the FE equations

and matrices of the entire assemblage of elements, for memory efficiency purposes the

equations of motion are decoupled and solved working directly at the nodal level consider-
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ing only the interactions from the adjacent elements and avoiding the costly construction

and manipulation of matrices. The decoupling of the equations is achieved using the UL

FE formulation together with the CDM, while assuming diagonal mass and damping

matrices.

The PVW is valid even when there are no essential boundary conditions (BCs), i.e.

restrained DOF, which characterizes multibody unrestrained systems as the ones under

consideration. The latter systems do not have, in general, essential BCs, but only natural

BCs, i.e. prescribed boundary forces and moments due to contact effects. In these cases

the derived stiffness matrix, K, is singular and cannot be inverted to determine the result-

ing displacements, which is expected since the body is unsupported and unstable. There-

fore, it is impossible to use a method, such an implicit direct integration scheme, that

requires the inversion of the stiffness matrix, since it is singular, to compute the unknown

displacements. Therefore, an explicit integration method should be used as it does not

require the construction or inversion of the stiffness matrix.

Instead, the elastic nodal forces that correspond to the internal stresses and are equal to

the product of the stiffness matrix with the nodal displacements must be computed.

,F = K. U = vB r dV (5.19)

5.2.3 Application of contact forces

The contact forces are computed using the procedure described in Chapter 4 and applied

as externally applied forces. At each time step, t, the contact detection determines the bod-

ies in contact and then the contact forces are evaluated based on the positions, orientations

and geometries of the simulated bodies. These forces are imposed as externally applied

forces that are distributed according to the FE interpolation functions to the nodes of the

corresponding to the contact point FE of the body. Then, the equations of motion are
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solved and the displacements and new positions of the bodies at time t+At are computed

and used for the new contact detection.

Actually, simulating the contact effects with idealized contact springs that oppose

overlapping of colliding bodies is a very similar approach to the penalty methods that are

used in FEA to impose boundary conditions. In particular, an alternative way to impose

prescribed displacements using traditional finite element formulations is, instead of parti-

tioning the FE equations and removing the equations corresponding to the corresponding

DOF prior to their solution, to use the penalty method. In particular, constraint equations,

which physically correspond to very stiff springs, are added to the FE equations at the pre-

scribed DOFs together with specific loads so as to lead to the prescribed displacements.

5.2.4 Dynamic analysis and numerical integration of equations of motion

The motion of each discrete body for a new time step is determined from the dynamic

equilibrium equations. The equations of motion are solved by the central difference

method (CDM) an explicit time step integration method, computing the displacements. An

explicit integration scheme is selected because a discrete body typically is not fully con-

strained, in which case it has a singular stiffness matrix. Therefore, an implicit integration

method cannot be used as the stiffness matrix cannot be inverted.

In addition, if the mass and damping matrices are selected properly the system of

equations which govern the dynamic equilibrium of the body, using CDM, is decoupled

and can be solved very efficiently. The solution is substantially simplified when diagonal

mass and damping matrices are used, which is a reasonable assumption. Then, the system

of equations can be solved without matrix factorizations, but only doing matrix multiplica-

tions. This allows the evaluation of the effective load at each nodal displacement on the

element level considering only the elements associated with the specific node. Therefore,

no stiffness matrix of the complete element assemblage need to be constructed and the
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solution can be carried out locally with very limited high speed memory required. This is

very important for systems that are typically analyzed with DEM which may have large

numbers of bodies. The shortcoming of an explicit method is that the method is condition-

ally stable and a sufficiently small time step is required to ensure stability. However, a very

small time steps is required anyway by the contact detection algorithm in order to avoid

errors during the contact detection and the contact forces calculation.

According to Equation (5.18) the governing equations of motion for time t are:

'M. '0+'C -'[+'F = 'R

Using proper finite difference approximations for the velocities and accelerations, the

solution for time t+At can be obtained. The expressions for the velocities and accelera-

tions can be derived by expressing the displacements t AtU and t +AtU at times t-At and

t+At, respectively, using Taylor series about time t:

2 3

- U = U-At* V+ - o - - U +... (5.20)
2 6

2 3
t+AtU = U + At - ' + - O + - U +..- (5.21)

2 6

The expression for the velocities can be obtained by subtracting the first equation from

the second, while the expression for the accelerations can be obtained by adding the two

equations together. In both cases the higher order terms are neglected.

Approximation for velocities: = 2- 1At - ( U - 'U)

1 t +At t t-At
Approximation for accelerations: o = . ( U- 2 -U + U)

At

Substituting the above approximations into the governing equations we obtain an

expression with the displacements at time t+At, the only unknowns.

M t +sAU- 'U+~ U)+ 'C- t1 U ttU)+F = 'R
At 2 At
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Solving for the unknown displacements at time t+At:

-M +  -tU = R-'F(- -'M - 1 -'C - U (5.22)
(At2 2 -At C (At2 2 -At C)

Then, selecting a diagonal mass matrix, by lumping the mass on the nodes, and a

mass-proportional damping matrix, instead of using the consistent with the FE formula-

tion matrices, the equations are decoupled and the displacement of each DOF can be com-

puted as a simple fraction of two coefficients.

This time stepping method requires prior knowledge of the initial conditions 0U and

0 at time 0. Then, the acceleration at time 0 can be determined using the equation of

motion at that time:

"O = "R = OM~ . (0R-"F-"C -"0)

Also a procedure to determine the displacements at time t-At, AtU, is needed. Know-

ing 0U, 01, and 0 , we may use the approximate expressions derived previously to obtain

an expression for the displacements at time t-At.

O. = 1 At( U- U)=> U = 2At0+ UAt
2 -At

00 = - (A'U-2 - U+ U) => U = At2. og _ AtU +2 - U
At

2

AtU -At-OU+ -O (5.23)
2

The new coordinates, which are needed not only for the contact detection but also for

the FEA on the next time step, are obtained by adding to the current coordinates the com-

puted displacements.

5.2.5 Isoparametric FE formulation

In order to obtain the FE formulation we need to employe interpolation functions to

express the displacements of any point within a finite element e, in terms of the nodal
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point displacements. The isoparametric FE formulations use the same interpolation func-

tions for both the displacements and the coordinates within the element, i.e. relating the

original with the natural coordinates of the element.

n

Coordinate interpolations: at time 0: x = oh(r, s r

k= 1

n

and, at time t: '= hk(r, s, ) - 'k

k = I

n

Displacement interpolations: at time 0: u= hk(r, s, r) - "k

k = I

n

and, at time t: tui = thk(r,s, r -k'i

k = I

where: n is the number of nodes per element (which is 8 for an 8-node brick element)

i = 1, 2, 3 is the direction of the stationary coordinate system XYZ

r s, t are the axes of the natural coordinate system RST (with values from -1 to +1),

and hi = hi(r, s, t) are the interpolation functions. e.g. for an 8-node FE the following

interpolations are used, which can be, systematically, determined by inspection.

1 1
h, = -. (1+r)-(1+s)-(1+t) h2 = - -(1r)-(1+s)-(1+t)

8 8

1 1
h3 = -. (1+ r)-(1-s)-(1+t) h4 = -- (1-r)-(1-s)-(1+t)

8 8

1 1
h5= -- (1+r)-(1+s).(1-t) h6 = -- (1-r)-(1+s)- t)

8 8

h7 = -(I+r)-( --s)-(1-t) h8 = (1 -r)-(1-s)-(1-t)8 8
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The expressions in this paragraph refer to a general 3D FE, although the developed

software implements plane-stress and plane-strain FE. The expressions for the latter ele-

ments which are provided in Paragraph 5.2.7.

The displacements of a point, within an element e, can be expressed in matrix form, as

follows, in terms of the element nodal point displacements:

U(e)(X, y, z) = H(e)(r, s, t) -U(x, y, z) (5.24)

where H(e) = H(e)(r, s, t) is the interpolation matrix, (for the entire FE assemblage),

and has the following form:

0e.. hi0 0 h2 0 0 h3 0 0 h4 0 0 h5 0 0 h6 0 0 h7 0 0 h8 0 0 ..

H = 0 Ohi O 0 h2 0 0 h3 0 0 h4 0 h5 0 h6 0 0 h7 0 0 h8 0 .. 0
0 .. 0 0 h1 0 0 h2 0 0 h3 0 0 h4 0 0 h5 0 h6 0 0 h7 0h ..j

and, U are the nodal displacements: U = u U2 u3 . . . . . . . . N] (N is the total num-

ber of nodes).

The velocities and accelerations can also be interpolated differentiating the expression

for the displacement interpolations. The same interpolation functions are also employed

for the virtual displacements.

yU(x, y, z) = H(r, s, t) -8U (5.25)

Differentiating properly the displacements, as they are expressed in terms of the inter-

polation functions, we can obtain expressions for the incremental strains. The strains are

partial derivatives with respect to the local coordinate system, i.e. x, y, and z, of the dis-

placements, which are expressed in terms of the interpolation functions in terms of natural

coordinates, r, s, and t.

Therefore, the Jacobian, J, that relates the derivatives with respect to the natural coor-

dinates to the derivatives with respect to the local coordinates need top be established.
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ax ay az
r dr ar

J= x ay az (5.26)
as as as
ax ay az
at at at

The inverse relationships between the derivatives with respect to the local and natural

coordinates need to be established, as well.

ar ax ax ar
a = a -> . J~ a (5.27)
as ay ay as

a a a a

The Jacobian, can be inverted when all angles are less than 1800, i.e. if there is a

unique correspondence between the natural and local coordinate systems. This is always

true for the kind of elements used in this work.

The integrations over the actual volumes of the elements can be replaced by integra-

tions using the natural coordinates by changing the limits of integration from -1 to 1 and

the differential volume by: dV = dxdydz = |JI drdsdt.

5.2.6 Numerical integration

The integrations required in order to form the FE matrices are evaluated numerically. In

particular, the Gauss quadrature, which is based on sampling the values of the functions to

be integrated at certain points, is used. The positions and weights are selected in a way that

maximizes the accuracy of the numerical integration. A simple integral is numerically

evaluated as
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Xb

J'f(x) = wif(x 1) + w 2f(x 2 ) +... + wNf(xN) (5.28)

The Gauss quadrature with N function evaluations evaluates accurately a polynomial

of order (2N - 1). In contrast, Newton Codes, e.g. the Simpson's rule, with N function

evaluations can evaluates accurately a polynomial of order (N - 1). The positions and

weights for the Gauss quadrature are presented in the following table.

N Position Weight

1 0.0 2.2

2 ±0.57735027 = +1/Jf 1.0

3 ±0.77459667 0.555555555556
0.00 0.888888888889

Table 5.1: Sampling points and weights for Gauss Quadrature

This numerical integration method can be extended and applied in multidimensional

integrals. In particular, two points in each direction can be used to accurately evaluate the

integrals in order to form the FE matrices.

5.2.7 Implementation of the FE formulation

The FE formulation is implemented for the cases of plane-stress and plane-strain. How-

ever, the software has been designed and implemented according to an object-oriented

paradigm enabling its easy extension to other types of FEA. Here, the specific FE matrices

that correspond to the plane-stress and plane-strain are presented, assuming that we have

an FE, as the one shown in Figure 5.3.
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Figure 5.3: Isoparametric 2D FE.

The interpolation functions are presented below:

1h2 = 1
4

1
h -

h3 - - (I - r) -(I1+ s)
4

-(1+r)-(1-s) (5.29)

(5.30)
I

h4 = - -(I1+ r) -(+s)
4

Then, the displacements within an element e can be expressed in terms of the nodal

displacements.

U(e)(X, y) = H(e)(r, s) -U(x, y) (5.31)

The interpolation matrix for an element e has the following form:

H (e) h h2 0 h3 0 h4 0K h0 0 h2 0 h3 0 h4

(5.32)

The Almansi strains are provided by the following expressions:

A 1 au
xx 2 6

au

atx
au

+ X
au av

a'x atx

av
atx

A 1 (av av au
tEyy = +- - -

2 atY at, a y Y

A = Iau
Fx)' 2 aly

av
tx

au av av
a'y &ay y)

tu au av dv
3 x t y a'X 'y)

94



Therefore, the Almansi strains can be expressed in terms of nodal displacements and

the strain-displacement matrix.

A e A e
E = B U(5.33)

The strain-displacement matrix has the following form:

Af th,, = [th2,1 0 th3, O th 4,1 0
=B 0 t hl, 2 0 t h2, 2 0 th3, 2 0 th4, 2 (5.34)

t h, 2 th],I th2 , 2 th2 , 1  th 3, 2  th 3 , 1  th4 , 2 th4

The stress-strain, i.e. the elasticity, matrix is provided below for both cases:

1 V 0

Plane stress: Ce E v 1 0 (5.35)

0 0 2

1 -V

Plane strain: Ce E(1 - v) v 1 0 (5.36)
(I +v)(1-2v) -

0 0 1 -2v
2(1 -v)

Then, the stresses are expressed in terms of the Almansi strains.

T = = Ce (5.37)

The Jacobian matrix and its inverse for a 2D element have the following form.

J t a t

j =r X r (5.38)
a t a t

xa- XSyJ
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a t  a t

= . s (5.39)at at
-Sx -x

The derivatives with respect to the x and y coordinates can be expressed in terms of the

derivatives with respect to the r and s coordinates.

a x__ as ar . a r (5.40)
a lil at  at  a

Laxtyj LxaS X L-

The nodal forces due to internal stresses 'F at time t is computed using the above rela-

tions and a numerical integration to evaluate the following integral.

, tB" T dV = (5.41)

e Ve

A 2x2 Gauss quadrature is used for the numerical integration. Therefore, for each ele-

ment e, its contribution to the nodal forces tF is evaluated by the sum of the product of the

value of the quantity under the integral, ,Be T , at the specific integration point, (rg, sj),

times the corresponding weight W i.

2 2

t, e, te TT at (ri, sj) Wi (5.42)

i = 1 j = 1

At each time step t, the external nodal forces vector tR, including contact forces, is

formed. In particular, the contact forces that are computed at the contact points, which are

computed at the contact points, are converted to equivalent nodal forces that are added to

any other external forces, such as gravity forces, that are also lumped to the nodes of the

elements.
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The equations of motion have the following form

M-U +'C -'V = 'R -',F (5.43)

The solution is determined of the equations of motion is computed using the CDM, as

described in Paragraph 5.2.4. The displacements at time t+At are equal to:

'+A'U = 1 At -'F - 2 ' At j - U (5.44)
(',M+!< {At2F2J-MAt

(At2 M+2 -t .att

Some certain issues must be considered in order to achieve an efficient and robust

implementation of this formulation and simulation model. Special attention is required for

the use of memory in order to avoid swapping. Secondary storage memory access is sev-

eral orders slower than the RAM and it is a very potential bottleneck during simulation.

5.3 Potential Future Extensions

There are many potential extension that can be considered for future projects in this

research area. The main extensions are the consideration of large strains, which is a physi-

cal extension to this work, and the incorporation of fracturing and fragmentation capabili-

ties, which has many practical applications.

5.3.1 Large strains formulation

An issue of concern is whether the deformations would be considered large so that they

should be considered in the contact detection algorithms, or whether the initial geometry

would be used.

When large strains are expected the small stains assumption is not valid. Then, a dif-

ferent formulation and a much more computationally intensive nonlinear FEA are

required. The total Lagrangian formulation can be used to take into account the large

strains as well as the large displacements. The exact description of this formulation and
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procedure is provided in Bathe [1]. Appendix B provides a brief presentation of the total

Lagrangian approach that can potentially be used to take into account the case of large

strains in a future extension of this work is outlined for completeness.

5.3.2 Fracturing and fragmentation capabilities

Fracturing and fragmentation capabilities can be very useful for simulating many prob-

lems such as blasting. To incorporate progressive fracturing capabilities in the coupled

DE/FE model, some fracturing criteria must be defined according to which a discrete body

will be fractured when its stress state satisfies these criteria. An efficient remeshing algo-

rithm is required for the two or more new discrete bodies that a previously single distinct

body is fractured.
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Chapter 6

Mesh Generation

6.1 Introduction

The stress and strain distributions within the colliding multibody systems can be expressed

in terms of continuum mechanics partial differential equations that can be solved numeri-

cally using a finite element analysis (FEA) as it is described in the previous Chapter. FEA

can determine approximate values of the desired solutions at certain points, called nodes,

in the domain of interest. Then, values of the quantities of interest can be estimated using

interpolation functions.

The first step in a FEA is the generation of an appropriate mesh by discretizing the

domain under consideration. Mesh, or grid, generation is the process with which the phys-

ical domain of an engineering problem, is broken into smaller subdomains, by defining

nodes and their connectivity within the volume of a body that specify the finite elements.

A mesh provides the necessary framework in order to obtain a numerical solution of the

engineering problem doing a FEA of the discretized system.

Although the implemented software uses a very simple mesher, a brief discussion

regarding meshing is provided in this chapter for completeness as the implemented code

can be extended to consider other more geometrically complex objects.

The individual elements of a FE mesh must be well shaped without either very small

or obtuse angles, and conform to the boundary of the domain. The mesh should be fine

enough in order to achieve sufficient accuracy, while the number of elements should be
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limited to enable a FEA with a reasonable computational cost. A generated mesh should

be conformal. The conformity property is satisfied if the union of all elements is the

domain under consideration or a good approximation of it, the intersection of any two ele-

ments reduces to an empty set, a point, an edge, or a face, and, all elements have a non-

empty interior.

It is desirable to have an automatic and robust mesher that is able to generate a mesh of

sufficient quality with a reasonable computational cost. The latter increases with geometri-

cal complexity. The desired quality of a mesh depends upon the purpose of the application

of interest, the underlying physics, and the geometry of the body.

It is relatively easier to generate a mesh for a convex region, or volume. A region is

convex if when it contains two points it also contains the entire line segment that joins the

two points. In this thesis only convex bodies are considered.

There are two major classes of grids, the structured and the unstructured grids which

are described below. Then, the approach that has been used is described after a brief dis-

cussion to justify its selection.

6.2 Structured Grids

A structured grid is a logically cubical array of nodes, for a 3D problem, with a regular

and well defined relationship between each node and its neighbor nodes. The domain is

subdivided into regularly ordered elements that conform to the surface boundaries. The

major methods that can be used to generate a structured grid are grouped into elliptic and

non-elliptic grid generators.

The main category of non-elliptic generators is the algebraic methods which are, typi-

cally, based on interpolation. The latter enables fast generation of a mesh compared with

other methods and direct control over the grid point locations. Interpolation-based alge-
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braic grid generation methods are known as transfinite interpolation (TFI). They are based

on the mapping of a reference mesh, which corresponds to an elementary geometry, on the

real domain using a transformation function.

In the case of a 3D cuboid, a two-unit size cube, which is used as an elementary geom-

etry, is meshed by defining intermediate points on the edges in each direction and joining

them. Then, using a transformation function that maps any point of the reference cube to

the physical domain a mesh is generated. An isoparametric transformation, similar to the

one that is used in the FEA, can be employed to generate the mesh of each body that is

defined by eight nodes. Higher order polynomials can be used to enable the representation

of more complicated and curved geometries.

Elliptic grid generation methods are based on the solution of boundary value problems

for elliptic differential equations. They provide smoother grids but they are much slower

since they computationally much more involved than the algebraic equations. Taking into

account the computational demands, a non-elliptic generator, which is based on an alge-

braic method, is used for the mesh generation.

6.3 Unstructured Grids

In contrast, an unstructured grid has no logical or implied relationship between the nodes

and the elements of the grid. Therefore, an explicit relationship of each element and node

to its neighbors is necessary. An unstructured grid conforms easier to the geometric

domain allowing significant element size variations and geometric flexibility. A 3D

domain is, typically, subdivided into connected tetrahedral elements using triangulation.

The most widely used approaches for generating an unstructured mesh are point insertion

methods based on Delaunay triangulation, advancing front methods, and octree methods.
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Delaunay triangulation in 2D is a network that ensures that circles enclosing three

nodal points that form a triangle do not enclose any other points. It is based on the geomet-

ric concept that the perpendicular bisector of the line that join two points P1 and P2 subdi-

vides the plane into two regions R, and R2, as shown in Figure 6.1.a. The regions Ri can

be assigned to the closest point than to any other point of a set of already defined points,

resulting in a set of non-overlapping convex polygons called Voronoi regions, that cover

the entire domain. The Voronoi diagram, which is formed by the perpendicular bisectors

between adjacent nodes, subdivides the space where a set of nodes is defined into a set of

adjacent polygons, where each polygon encloses a node. Connecting nodes that have com-

mon Voronoi boundaries a triangulation is formed, as it is shown in Figure 6.1 .b.

ray that

P2 P5joins P,

F1P5and P2 P2

\ bisector of
the ray

R2 
R2

a. b. P4

Figure 6.1: Voronoi diagrams and Delaunay triangulation in a plane.

Similarly, in 3D surfaces can be defined to be equidistant from two points forming the

faces of Voronoi polyhedra. Connecting the point pairs that have common Voronoi faces a

set of tetrahedra is formed that cover the convex hull of the set of points. The convex hull

is the smallest possible polyhedron that completely encloses a set of points. Delaunay tri-

angulation connects a set of existing nodes in a way that no node can be contained within

the circumspshere of any tetrahedra of the mesh.
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Delaunay and Voronoi methods enable the connectivity of already defined nodes. The

nodes can be defined by iterative refinement of the initial triangulation which can be

obtained by connecting the boundary nodes. Methods to iteratively refine a triangulation

using a Delaunay triangulation usually add nodes either at element centroids, or along ele-

ment edges.

The advancing front method starts with an initial triangulation along the faces of the

domain and extends the meshes inward one layer at a time maintaining an active front

until the entire domain is meshed. Having initially a set of faces of the triangulated bound-

ary surface, a node is created from which an element is created. Repeating this process

moving from the boundary inwards the mesh is extended until the advancing front is

empty. The advancing front method allows the generation of elements that are aligned to

certain direction and have certain aspect ratios.

Octree methods subdivide a 3D domain into elements, along the three Cartesian axes,

using a recursive subdivision based on a spatial tree structure. For example a cube that

encloses the domain volume is subdivided into eight cubes, which are then individually

checked whether they sufficiently match the corresponding subdomains, and, whichever of

them necessary further subdivided. The recursive subdivisions continue until a desired res-

olution is achieved.

6.4 Selected Mesh Generator

The mesh generator that is selected and implemented is described in the following para-

graphs. In addition, its natural extension to 3D bodies is also presented.

6.4.1 Introduction

The selection of the mesh generation method depends on the usage of the mesh, the

required accuracy, and the available computational resources. Since computational cost is
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very important for our simulations the selection must put an emphasis into this factor even

at the expense of accuracy since the latter is already limited by other assumptions that

have been made. Structured meshes are simpler and can be used much more efficiently

than unstructured meshes. A structured mesh has much less memory requirements since

most of the mesh related data can be calculated rather than explicitly stored as it is

required for an unstructured mesh.

The error in the FE solution is affected by the quality of the meshing. In general, the

error is minimized when the grid is smooth and orthogonal. In addition, it should be finer

at regions where the FE solution varies rapidly. Therefore, it is important to be able to gen-

erate a solution-adapted mesh in order to reduce the error. However, for the purpose of this

thesis this issue has not been addressed because of high computational requirements and

the reduced accuracy due to the assumptions and simplifications that have already been

made to enable simulations of multibody colliding bodies. Future extensions may incorpo-

rate solution-adaptive mesh refining in order to improve the accuracy according to the

available computing resources.

6.4.2 Mesh description

Although the developed software implements only rectangular bodies, the procedure for

the mesh generation is identical with that of general quadrilateral bodies. Therefore, the

description of the mesh generation in this paragraph refer to quadrilaterals for the sake of

generality. A rectangular body is just the simplest form of a quadrilateral. Quadrilateral

elements, and specifically rectangular elements, have been selected due to their superior

performance and accuracy when compared to triangular shaped elements with the same

number of degrees of freedom.

The area of a 2D quadrilateral body is subdivided into a set of quadrilateral elements

using interpolation functions similar to the ones used in the FEA. The mapping that is
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used for the isoparametric finite element formulation, as shown in Figure 6.4, is used to

generate algebraically the FE mesh.

4
Logical 3
Domain se

transformation

3 s 4

1
2

r transformation Physical
Domain

1 2

Figure 6.2: Logical and physical domain mappings.

A quadrilateral body can be meshed by mapping to it a meshed two-unit size rectangle

using the coordinates of its four vertices. The two-unit size rectangle is meshed easily by

varying the logical coordinate in each direction from -1 to +1 using a specific number of

increments according to the desired number of nodes in that direction. The domain of

mapping of the logical space is the coordinate directions r, and s.

4 4

3 3- s=14 43 3

2 r 2

1 2=

Figure 6.3: Meshing of a 2D element.

Having meshed the reference rectangle a transformation function can map the gener-

ated nodes to any physical domain that is defined by four nodes, generating a mesh. The

Jacobian of the transformation must be non-singular so that the transformation has an

inverse. The transformation functions are used to determine from the logical-space coordi-
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nates, the coordinates X, and Y in the physical space are the same as the ones used for the

FEA.

Choosing a uniform mesh in the logical domain and transforming it into the physical

domain generates the desired mesh in the physical space. There should be one-to-one cor-

respondence between the points in the logical and the physical domain. The coordinate

map to transform from the logical to the physical domain has the following form.

x=x(r,s) = x = x(r, s) (6.1)
y=y(r,s)

The mapping functions between the natural and physical domain must be smooth. In

particular, the map should be continuous and have continuous derivatives. The Jacobian, J,

should be non-singular to allow the inverse transformation, and, therefore, the determinant

of the Jacobian should be positive.

j = (r r 6.2)

The interpolation functions are used to determine the coordinates of the intermediate

nodes from the vertices and the values of the logical coordinates, r and s, as follows:

4

xi= h (r, s) i (6.3)
k= 1

where:

i=1,2 is the direction of the stationary coordinate system XY

r s are the axes of the logical coordinate system RS, which take values

ranging from -1 to +1, and,

hi = hi(r, s) are the interpolation functions for a 4-node quadrilateral:
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hi = -(1--r)-(1-s) h2= I -(1+r)-(1-s) (6.4)

1 1
h3 = .(I-r)-(1+s) h4 -.(1+r)-(1+s) (6.5)

6.4.3 Extension of the mesh generator to 3D

This procedure is easily extended to mesh a 3D cuboidal body into hexahedral elements

and its surface into quadrilateral shapes. The hexahedral elements have superior perfor-

mance and accuracy when compared to tetrahedral shaped elements with the same number

of degrees of freedom.

Again, the mapping that is used for the isoparametric finite element formulation is

used to generate algebraically the FE mesh for cuboidal bodies. Having the coordinates of

the eight vertices that define the cuboidal body the mesh can be determined by mapping a

meshed two-unit size cube. The latter is meshed easily by varying the logical coordinate in

each direction from -1 to +1 using a specific number of increments according to the

desired number of nodes in that direction. The domain of mapping of the logical space is

the coordinate directions r s, and t. The boundary of the reference cube that is used in the

logical space E3 consists of 8 vertices, 12 line segments, and 6 open faces.

Having meshed the reference cube a transformation function can map the generated

nodes to any physical domain that is defined by eight nodes, generating a mesh. The Jaco-

bian of the transformation must be non-singular so that the transformation has an inverse.

The transformation functions are used to determine from the logical-space coordinates, the

coordinates X, Y, and Z (or, X 1 , X2 and X3) in the physical space as shown in Figure 6.4.
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Figure 6.4: Logical and physical domain.

Choosing a uniform mesh in the logical domain and transforming it into the physical

domain generates the desired mesh in the physical space. There should be one-to-one cor-

respondence between the points in the logical and the physical domain. The coordinate

map to transform from the logical to the physical domain has the following form.

x=x(r,s,t)

y=y(r,s,t) ~-> x = x(r, s, t) (6.6)

z=z(r,s,t)

The mapping functions between the natural and physical domain must be smooth. In

particular, the map should be continuous and have continuous derivatives.

The Jacobian, J, should be non-singular to allow the inverse transformation, and,

therefore, the determinant of the Jacobian should be positive.

ax ax ax
r as at

J= ax ay az (6.7)
ar as at
ax ay az
ar as at
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Figure 6.5 presents the reference cube in the logical domain that is meshed using a

desired refinement and then mapped to the physical domain to obtain the meshing of the

actual cuboidal element.

t

Logical Domain

-1 . 41

0.5 -

0 -s

0

Figure 6.5: Meshed reference cube in logical domain.

A grid is first defined in the logical space and then mapped to the physical space using

the corresponding mapping functions. The nodes in the logical space are generated by

subdividing the cube into smaller identical rectangular cubes. In this particular example,

the grid that is selected has five, four and four nodes in the r, s and, t directions, respec-

tively, of the logical coordinate system.

Then, the specified nodes in the logical space must be mapped into the physical

domain. The isoparametric transformation that is used for coordinate interpolations in

FEA, is used to determine the coordinates of the intermediate nodes from the vertices and

the values of the logical coordinates, r, s, and t, as follows:

8

x = hk(r, s,t) xi (6.8)
k = 1
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where:

i is the direction of the stationary coordinate system XYZ and takes the

values 1, 2, and 3, respectively

r, s, t are the axes of the logical coordinate system RST, which take values

ranging from -1 to +1, and,

hi = h,(r, s, t) are the interpolation functions for an eight-node cube:

hi = (1 + r) -(1 + s) -(1 + t)

h3 = (1 + r) (1 -s) (1 + t)

1
hy = - (1 + r) (1 +s) (1- t)

1
h2= 8(1-r)-(1+s)-(1+t)

1
h4 = (1-r) -(1-s) -(1 +t)

8

h6 = g (1-r)-(1 +s)-(1-t)

h8 =8 (1 - r) - (1 -s) - (1 - t)

Using the above interpolation functions the nodal points of the reference cube in the

logical domain are mapped into the physical domain defining the nodes as presented in the

Figure 6.6.
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Figure 6.6: Meshed cuboidal element in the physical domain.
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Chapter 7

Software Design and Implementation

7.1 Software Design Overview

An extensible and flexible computational tool for multibody simulations has been built

using the Java programming language and the Java3D graphics application programming

interface (API). Java technology we selected because it provides portability, architecture-

neutrality, and multithreading. In addition, using a pure object oriented programming

(OOP) language, like Java, more robust programs can be designed that allow easy future

modifications and incorporations of new algorithms without the need of rebuilding the

whole system.

In particular, for the computational part and the graphical user interface have been

implemented using core Java language. For the graphical part the Java3D API has been

used, while for the database access, which is used in both preprocessing and postprocess-

ing, the Java Database Connectivity (JDBC) API has been employed. The Java2D API has

also been used for the postprocessing to convey information of the results in the form of

2D graphs.

OOP is nowadays the dominating programming paradigm since it has certain advan-

tages over the Procedural-Oriented Programming (POP). OOP enables information hiding,

inheritance, encapsulation, dynamic memory allocation and polymorphism with which

robustness, efficiency, extensibility, and modularity can be achieved.
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7.2 Computational Considerations: Java vs C++

A decision had to be made concerning the language to be used. This is interrelated with

the decision of which computer graphics library to use for the rendering of the simulated

model. The latter is articulated in the next paragraph, "Computer Graphics Consider-

ations" on page 120.

The languages considered to be used were C++ and Java. C++ programs are compiled

into executable code, i.e. machine instructions, specifically for the underlying architecture

and operating system. In contrast, Java source code is compiled into bytecode that is trans-

lated into machine instructions during execution by the Java Virtual Machine (JVM).

Although this two-phase compilation-interpretation provides portability, it has some over-

head on the computational performance.

However, the latest JVM allows just-in-time (JIT) compilation which achieves perfor-

mance comparable to that of a compiled language. Although during compilation of Java

source code into bytecode only very limited or no optimization is used, during execution

profiling and recompilation enables run-time optimization. In particular, whenever a block

of code is encountered for first time, it is compiled into machine code by the Java HotSpot

performance engine and then executed. In addition to the JIT, blocks of frequently used

code are profiled and recompiled for optimization purposes, using profiling data from the

interpreted code. In contrast, using C++ any optimization is done during compilation

based on hints that may be provided by the programer and some fixed rules. The run-time,

i.e. dynamic, optimizations are more powerful since they can take advantage of the given

conditions during the execution of the program, while static compilation can take advan-

tage of only what the compiler can predict based on certain predefined rules.

Finally, the concept of virtual machines and run-time optimizations are rather recent

advances that can be greatly be improved. The differences between Java and C++ regard-
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ing performance are not very significant, as shown in the next example. Considering the

expected further future improvements of the JVM and language this difference should

decrease even more. Even within the last five years, since the birth of the Java language,

there have been great improvements in its performance and capabilities. The initial JVM

was interpreting and executing each instruction individually, which was as slow as inter-

preted languages. Later, the just-in-time (JIT) capabilities allowed the compilation of any

block of code as soon as it is first encountered into machine code followed by its execu-

tion. During execution a Java program is built by the JVM incrementally as needed and

not monolithically, according to the instructions of the corresponding bytecode. The latest

versions of the JVM allow not only JIT compilation but also run-time, i.e. dynamic, opti-

mization of frequently used blocks of code using relevant profiling data and taking advan-

tage of the given conditions during execution.

A sorting algorithm has been used to compare the C++ and Java programming lan-

guages. The following figure shows the time required to sort an N-size array with random

numbers, using the mergesort algorithm, implemented both in C++ and Java. A logarith-

mic scale was used for the axis of size, i.e. number N of elements.
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Size, N

Figure 7.1: Time required to sort an N-size array with randomly generated elements,
using the mergesort algorithm, implemented in C++ and Java.

Figure 7.1 shows that the performance of the Java implementation, although 35-50%

slower, is comparable to the C++ implementation. The GNU GCC compiler has been used
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for the C++ version with its optimization flag selected. Both programs were executed one

a Sun ULTRA 10, 333MHz, workstation with a 128MB DRAM. The For each size, N, of

the problem a set of executions were used to determine the statistical average times, T.

The following figure, Figure 7.2, shows clearly the difference between the C++ and

Java implementations. The horizontal axis represents the size of the array, N, while the

vertical axis represents the time, T, divided by the N.log(N). The time required by the Java

program was 35 to 50% more than that required by the C++ implementation. The differ-

ence in performance using Java instead of C++ is less than the difference of performance

that can be achieved by using a slightly faster machine. In addition, Java showed the same

scalability with C++ without any significant variation of the relative performance with the

size of the problem.
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Figure 7.2: Performance Comparison of C++ and Java using a mergesort algorithm to sort

an N-size array with randomly generated elements.

A second performance test that involves two dimensional arrays was performed to

compare the computing efficiency of C++ and Java. In particular, two square arrays of size

N x N, having elements randomly selected numbers of double precision, were multiplied

with each other resulting in an N x N array. For each size N the elements are set to ran-

dom numbers and then multiplied five times taking as required time the average of the five
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recorded times. The multiplication of the arrays requires an O(N 3) computational time.

The following figure, Figure 7.3 shows the required time for each implementation.

400
r--" Java

S200 ------------------------ -----------------
C++
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Size, N

Figure 7.3: Time required to perform multiplication of two NxN size arrays with random
double precision floating-point elements, using C++ and Java.

The above figure demonstrates that Java is not that much slower from C++. The same

machine, Sun ULTRA 10, 333MHz, workstation with a 128MB DRAM, has been used.

The C++ code has been compiled with the optimization flag on, while the just-in-time

compiler of the JVM has been used.

Although C++ is still faster the difference is not that much to overweigh the significant

advantages offered by the Java language and technology. In particular, the differences in

performance between Java and C++ vary from 26% to 59% and does not vary significantly

with the size N of the problem, as shown in Figure 7.4. The time T has been divided by the

corresponding N3, since the algorithm is O(N 3) in order to be normalized.
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Figure 7.4: Performance Comparison of C++ and Java using multiplication of two NxN
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size arrays with randomly generated elements. Time T is divided by the N3.

Similar results have been obtained for both performance tests, i.e. the mergesort algo-

rithm and the matrices multiplication, using Visual C++ and Visual J++. The relative dif-

ference was actually smaller, but it was preferred to present the results of using the GCC

compiler for C++, which is part of the GNU project, and the JVM provided by Sun for

Java, as these are not only according to the standards but also freely available.

A research report [37] that compared C, C++, Java and Ada against the Steelman

requirements have found that the latter were satisfied at 53%, 68%, 72% and 93%, respec-

tively, of the cases. The Steelman requirements [35] were set more than two decades ago

after widely reviewed research in an effort to set requirements for general-purpose lan-

guages concerning efficiency and reliability and do not reflect very well the performance

of real world object-oriented software. Java satisfies 72% of the Steelman requirements

although the latter do not take into account object-orientation which is a strength of Java.

Ada scores so high, 93%, because it was specifically designed to meet the Steelman

requirements and does not have other very useful capabilities that are provided by C++

and Java.

In this research work certain measures were taken to achieve the highest possible per-

formance with Java. However, there are only limited options that can be taken to achieve

higher performance with Java. This is not necessarily bad, since it makes things much sim-

pler and encourages the developer to focus in developing more efficient algorithms instead

of playing with optimization options that are usually machine dependent. Although the

handling of memory in Java is mostly performed automatically, there are certain issues

that can be controlled by the programmer or the user in order to enhance performance.

During execution of a Java application the user can specify the initial and maximum mem-
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ory settings using the -Xms and -Xmx flags, instead of using the default values of 2MB and

64MB, respectively, used by the HotSpot VM.

In addition, explicit invocations of the garbage collector can be used whenever appro-

priate to minimize its impact on the behavior of the application. The invocations of the

garbage collector can be monitored by using the flag -verbose:gc. The option -XX:NewS-

ize=200m can be used to set the initial nursery size to avoid unnecessary invocations of the

garbage collector. The HotSpot VM, as well as most other VMs, is, by default, genera-

tional, i.e. instead of collecting all the memory, it divides the memory into two or more

generations and when the younger generation, or nursery, is nearly full it performs a par-

tial garbage collection. This strategy takes advantage of the common situation when

young objects are more likely to be eligible for garbage collection to avoid full garbage

collections, which are very expensive in terms of performance. In general, generational

garbage collectors achieve reduction of both the duration and the frequency of full garbage

collections.

Finally, the HotSpot VM can run in incremental mode by using the -Xincgc flag during

execution of the program. Incremental garbage collection divides the set of objects into

small subsets which are processed incrementally, aiming to make smaller rather than

larger pauses. However, although the pauses may be smaller the overall cost of the garbage

collection tends to be higher, since incremental garbage collection does not run only when

the memory is almost full, but whenever it sees an opportunity to run in the background.

Therefore, the incremental garbage collection may be used when an application runs in an

interactive mode where response time to the graphical user interface interaction should be

guaranteed. Otherwise, the generational garbage collection should be preferred.

The HotSpot VM learns over time utilizing profiling data during execution to achieve

optimizations and better performance of the application. However, it is not trivial to tune
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the memory management of the HotSpot VM, for which run tests are required to provide

insight in its interactions with the code.

7.3 Computer Graphics Considerations

7.3.1 Selection of a graphics library

A computer graphics library had to be selected for the rendering part of the simulation.

The options included the Java3D API, the Open Inventor 3D toolkit, and the OpenGL

graphics library. Java3D and Open Inventor are much higher level graphics libraries than

OpenGL, on which their implementations are actually built. Java3D uses either OpenGL

or Direct3D as its underlying rendering system. The decision of which graphics engine to

use was based on several factors as explained below. The investigation of these factors has

been carried out in parallel to the investigation regarding which programming language to

use, C++ or Java. Naturally, both investigations influenced each other.

OpenGL is a set of graphic libraries implemented in C++. These libraries are opti-

mized to run fast on computers with special graphic boards which are specifically

designed to make matrix operations in parallel instead of sequentially on the CPU of the

workstation.

Java3D and Open Inventor have inferior performance to that of OpenGL and limited

access to the rendering pipeline details. Although Java3D and Open Inventor cannot

achieve peak performance, portability and rapid development advantages may overweigh

the slight performance penalty for many applications.

Considering that the focus of this research on the implementation of a simulation tool

that can be easily extended rather than dealing with fine rendering details it was decided to

use a higher rather than a lower level graphics library. Although use of OpenGL enables

more efficient rendering with regards to performance during simulation the time required
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to develop and maintain robust code using Open GL overweighs its potential benefits. The

high level Java3D and Open Inventor allow rapid application development. Although

OpenGL has very flexible low level control on rendering, it is not object-oriented, as it is

written in C, and does not have a high level interface resulting in very inefficient develop-

ment. In contrast, both Open Inventor and Java3D are high level and object-oriented

graphics libraries that enable rapid development of software.

Since the Open Inventor and Java3D are both very high level graphics libraries and

very similar, a decision which of the two is more appropriate, had to be made. The two

options were evaluated based on a pilot DEM program that was developed using both

Java3D and Open Inventor. In particular, a 3D discrete element program with infinitely

rigid spheres and boxes has been developed using C++ and Open Inventor, Figure 7.5.

Figure 7.5: Particle Collision Simulator (PACSIM): a 3D DEM program, with infinitely

rigid bodies, implemented using C++ and Open Inventor.

In particular, that program, named PACSIM (Particle Collision Simulator), was devel-

oped using the C++ programming language for the computational part of the simulations,
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the Tool Command Language and the Toolkit library (Tcl/Tk) for the user interface, and

the Open Inventor for the 3D computer graphics. The program has shown performance

similar to an identical program implemented in Java3D. Therefore, since the two programs

demonstrated similar performance, other factors, such as robustness and extensibility,

were considered to select Java3D as the most appropriate graphics library.

First and foremost, Java3D, as any Java technology, is freely available to anyone,

avoiding the licensing problems of other proprietary rendering libraries, such as Open

Inventor. In addition, Java3D enables portability and cross-platform support when com-

bined with other Java APIs, with which can be very well integrated and tightly coupled.

Finally, programs written in Java can be very easily well documented using the javadoc

automated document generation tool.

The processing power of computers experiences an exponential growth that permits

much more computationally intensive applications. As hardware becomes much faster and

cheaper, it is reasonable to aim at less complex and more reliable and robust software uti-

lizing the advantages of the state-of-the-art computers in research projects. in particular,

the difference in speed between OpenGL and Java3D and even more pronouncedly

between C++ and Java is much less than the difference of the workstation that has been

used for this research. In particular, I have used a Pentium II with a 450MHz processor,

128MB DRAM, 100MHz system bus, and 8MB VRAM was used, while Pentium IV, with

a 1.5GHz processor, 1GB Ram, 400MHz system bus, and 64MB VRAM is considered a

system that any serious programmer should have and use, nowadays. Since the computing

power could easily be increased by more than 400-500%, it would be meaningless to pre-

fer C++ over Java because of a 30-50% difference in performance, difference that

becomes narrower day by day.
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In essence, the speed depends much more heavily on the quality of the graphics hard-

ware, which Java3D can take advantage, than on the 3D programming API that is selected

to create the 3D graphics.

The decision to use Java3D was based on the software revolution of the recent few

years that leads to a Java-unified environment and supports Sun's motto "The network is

the Computer". Java3D, as any other 3D graphics library, requires sufficient CPU speed

and memory in order to perform the underlying mathematical operations. The technology

is available, thus, the selection of Java was evident. Software engineering should advance

and evolve parallel to the advances of the hardware technologies.

7.4 Graphical User Interface Considerations

7.4.1 Selection of GUI framework

The decision of which graphical user interface framework to use dependent on the deci-

sions of which language to use for the computationally intensive part and which computer

graphics library to use for the 3D graphics. As those decisions leaned towards Java it was

evident that either AWT (Abstract Window Toolkit), or Swing should have been used.

The AWT was provided by the initial version of Java to enable programmers develop

GUI's in Java. Later, AWT provided the foundation on which the Java Foundation Classes

(JFC) and Swing were built. The main difference between AWT and Swing is that the

components of the latter are implemented without any native code. Because of this, Swing

components are called lightweight, while AWT components, which use native code, are

called heavyweight components. Lightweight components are drawn entirely using Java,

while heavyweight components use native peers. Actually, AWT 1.1 also introduced some

lightweight components, while earlier versions were based solely on heavyweight compo-

nents. Swing components, in general, have much more capabilities than the AWT corre-
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sponding ones. For instance some Swing components, such as labels and buttons can

display icons, while the corresponding AWT components cannot. Swing provides a num-

ber of additional components that were not provided by AWT.

In this research the AWT was used initially as it was easier to couple it with Java3D as

the latter uses a heavyweight component, in particular the Canvas3D which extends the

heavyweight AWT class Canvas. The main problem is that there is one-to-one correspon-

dence between heavyweight components and their window system peers, i.e. native OS

window components. In contrast, a lightweight component expects to use the peer of its

enclosing container since it does not have a peer. However, taking certain measures Swing

can be used with Java3D as it was eventually decided to be used here. Swing and the pre-

cautions taken in order to couple it with Java3D are described in the Paragraph "Swing"

on page 149.

7.5 Utilization of Database Technology

7.5.1 Motivation for using database technology

Advances in computational technology enable an increasing level of complex engineering

analyses and simulations that often produce an enormous amount of data. In addition, an

increasing demand for complex computational analyses and simulations puts new

demands on the ability to provide computational support to efficiently manage all data

produced in this work flow. Large amounts of data that are generated by modem engineer-

ing applications can be efficiently managed using database technology. Database technol-

ogy is traditionally used for efficient management of data, of simpler form than data in

engineering analysis, usually found in administrative applications. However, the continu-

ing development of modem database technology makes efficient data management capa-

bilities more applicable to complex engineering data.
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Data management can be considerably improved in a database system compared to

conventional applications. The DBMS provides a better accessibility to the data and a

query language that can be used for retrieving and evaluating analysis results. The devel-

oped software generates huge amounts of output data that need to be efficiently managed.

This is accomplished by integrating a database system in the simulation program and tak-

ing advantage of the database technology. The data can be searched and compared using

an extensible query language that is provided by the database system and is, therefore,

integrated into the application.

In particular, a relational database management system is used through the Java data-

base connectivity (JDBC) application programming interface (API) that interfaces the

application with a conventional relational database management system (RDBMS), as

illustrated in Figure 7.6. The database connectivity accomplishes a high level of program

and data independence making the system design very flexible and change tolerant. Since

data is stored in the database, it is available from the query language that enables a variety

of capabilities to compose queries for retrieving, combining, constraining, and transform-

ing data. A drawback in this approach is the impedance mismatch between the relational

data model and the object-oriented host language, the Java language, used for implement-

ing the application.
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Figure 7.6: Architecture of DAFES

7.5.2 Potential future extension

These ideas can be further by directly embedding a main-memory (MM) DBMS within

the application. In that case, the integration can be made through a Java native interface

provided by the DBMS. An embedded DBMS avoids unnecessary data shipping between

a client application and a database server application. Furthermore, using an object-ori-

ented DBMS reduces the impedance mismatch and makes it possible to handle tailored

data representations and operators.

The Active Mediator Object System (AMOS), which is an object-oriented database

system that has a functional data model with a relationally complete object-oriented and

extensible query language (QL), has been considered for future extensions. The data man-

ager of AMOS-II is designed as a main-memory Database Management System (DBMS)

in order to achieve good performance. It is optimized for efficient execution when the

database fits in the main memory. The queries in AMOSQL are optimized before execu-
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tion. The AMOS-II is implemented in C and currently runs only under a Windows operat-

ing system.

AMOS-II provides the traditional DBMS facilities such as storage, transactions, and

recovery managers, and an object-oriented (00) relationally-complete query language

(QL), named AMOSQL. In addition, AMOS-II is a distributed mediator DBMS that

allows multiple AMOS-II mediator servers to communicate with each other over the inter-

net. Therefore, an application with an integrated AMOS-II can access data over the inter-

net from multiple distributed data sources through their corresponding AMOS-II servers.

AMOS-II provides client/server and inter-database communication facilities. AMOS

servers can communicate with each other over TCP/IP. External data sources, such as a

relational database, can be accessed using the appropriate wrapper, which is an AMOS-II

module with query processing and data translation facilities. AMOS-II provides a graphi-

cal user interface (GUI), named Goovi and implemented in Java, that enables multi-data-

base browsing and integration.

Work that has been done with AMOS-II demonstrated that it can be embedded easily

into DAFES. A combined DAFES-AMOS system can have database capabilities such as a

storage manager, a data model, a database query language and processor, remote access

and transactions to other data sources. In addition, the database supports, among others,

concurrency, data exchange and transformation, data sharing and distribution, and interop-

erability. It has been shown, Kjell [22], in a similar database integration that the DBMS

functionality can be supplied without any major performance cost. The following figure

shows a potential architecture of a combined AMOS-DAFES.
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Figure 7.7: Potential future DAFES architecture combined with AMOS-Il.

AMOS-II also provides an interface, named goovio, for a menu-driven interaction

with the database. In addition to the provided by AMOS object-oriented query language,

named AMOSQL, new data types and operators can be added to AMOSQL using a pro-

gramming language such as Java. Unlike traditional engineering applications, DAFES-

AMOS stores the input and output data in a database from where they can be efficiently

accessed and queried by the AMOS-II DBMS, which is part of the application.
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7.6 Structure of the Software Application

The simulation tool that has been developed consist of several modules as shown in the

following diagram, which provides the basic structure of the program:

Preprocessing Contact Detection -- 0> Physics

Spatial Contact Application UL-FEM Numerical

GUI Input Reasoning Resolution of Forces Solution

fx 2

DB Input body forces integration
contact forces of equation.

of motion

1 1

-N' - Data Storing -- -'- Visualization -1

DB output

Figure 7.8: Simulation pipeline.

7.6.1 Preprocessor module

The preprocessor is used to obtain from the user using a graphical user interface values of

simulation parameters and conditions, as well as specific information for the individual

bodies of the system to be simulated. In particular, the geometric information, boundary

conditions, and physical properties of each simulated body must be specified by the user.

A friendly graphical user interface component has been built to allow easy and visually

effective generation of the system to be simulated and parameters of the numerical simula-

tion. The graphical user interface, which is used for both preprocessing and postprocess-

ing, has been developed using the Swing API of Java.

The user can easily provide the geometry and layout of the simulated bodies, their

boundary conditions, i.e. constraints specifically determined by the user, and their material

properties. The user can specify or change simulation parameters, such as gravity, time
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step for the numerical integration, and desired output. Support for automatic generation of

3D bodies has also been provided. Finally, automatic experiment setup capabilities have

also been provided to enable easy generation of multiple bodies samples according to

some bulk characteristics provided by the user.

7.6.2 Computationally intensive part

An efficient contact detection module has been built to support the 3D DE/FE program.

The general idea of separating the contact detection in two phases the spatial sorting and

the contact resolution has been followed.

The physics of the problem are addressed in three faces. first, the forces on each body

are determined. Then, the equations of motion of the bodies are formulated and solved to

determine their motion. Finally, the stress and strain distributions of selected bodies are

computed.

An explicit integration scheme, e.g. central difference method, which is based on the

equilibrium conditions at time t is very efficient, Although a strict stability criterion must

be satisfied by the time step, an explicit integration algorithm simplifies the solution sub-

stantially when a lumped diagonal mass matrix is used while either no damping is consid-

ered or it is assumed mass proportional. Then, the system of equations can be solved

without matrix factorizations, but only doing matrix multiplications. This allows to evalu-

ate the effective load at each nodal displacement on the element level considering only the

elements associated with the specific node. Therefore, no stiffness matrix of the complete

element assemblage need to be constructed and the solution can be carried out locally with

very limited high speed memory required. This is very important for systems that are typi-

cally analyzed with DEM which may have millions of particles.

The shortcoming of an explicit method is that the method is conditionally stable and a

sufficiently small time step is required to ensure stability. However, in any way we need to
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use small time steps to avoid errors in the contact detection part and the contact forces cal-

culation.

Using instead an implicit method, i.e. Newmark method, would result in a huge system

of coupled nonlinear equations which would be probably impossible to be solved in rea-

sonable computational time.

The main loop will be an explicit time step integration scheme. Central difference time

stepping method may be used to perform the time integration of the equations of motion.

Using the contact forces from time step together with any other external load the displace-

ments at time (t+At) are determined and then the internal strains and stresses of each dis-

crete body are calculated. finally, a new contact detection identifies the new contacts and

determines the new contact forces that will be used for the next time step.

7.6.3 Postprocessor module

Analysis results of systems with multiple bodies require the support of powerful post-pro-

cessor so as to be presented in an effective visual way. The Java3D API which is a

graphic's library, similar to Open Inventor, has been used for the visual presentation of the

results. Effective visual presentation of the changes of the simulated system as the simula-

tion progress allows the capturing of animations of the particles which may reveal phe-

nomena that occur at the particle level.

For complicated simulations the computations can be separated from the graphics in

order to fully utilize the hardware resources by postponing the rendering of the simulated

bodies. A color-coding scheme is used to represent different physical states, such as mag-

nitude of stresses.

The output results are stored in a database from where they can be effectively accessed

by the user using the graphical user-friendly interface. Storing the results in a database

allows the manipulation of results and an output data analysis, which would be otherwise
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very difficult considering the amount of information that results from such kind of simula-

tions.The Java Database Connectivity (JDBC) has been used to access the database which

is used to store the results of simulations. Finally, graphs capabilities using the Java2D

API can be used to convey useful information to the user by plotting certain sets of values.

Furthermore, off-canvases are used to record snapshots of the simulations in order to

have either individual snapshots in the form of JPEG files, or a set of sequential JPEG files

that are put together constructing a movie of the simulation.

7.7 Software design

The Unified Modeling Language (UML) has been used to specify, visualize and document

the software design. UML facilitates the design process and the development of class

interfaces, while enhancing the reusability of the code and communication between pro-

grammers. It is suitable for an object-oriented programming language such as Java and

C++. UML is based on earlier Object-Oriented Analysis and Design (OOAD) methods

and has been standardize by the Object Management Group (OMG).

Considering the high complexity of the system and the limited development resources,

good modeling and abstraction techniques are required to be employed in order to focus

on relevant details, while neglecting others, since comprehension of such a system in its

entirety would be unrealistic. UML enables the systematic use of abstraction through a set

of different views of the system under development, such as use case, class, behavior, state

chart, activity, interaction, sequence, collaboration, implementation, component, and

deployment diagrams. Although UML provides may models and techniques only few of

them are required and used in this project.
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7.8 Software Implementation

7.8.1 Java language

After a very detail comparison of C++ and Java, taking into account the strengths and

weaknesses of each language, the latter was selected as more appropriate to be used as it

provides a more elegant software implementation. The performance concern of using Java

instead of a compiled language, such as C++, has already been discussed in the Paragraph

"Computational Considerations: Java vs C++" on page 114. Java was selected due to the

advantages of Java, compared to C++, in terms of modularity, robustness, portability,

security and superior memory management. Java is a pure object-oriented programming

(OOP) language combining the best concepts and mechanisms of C++ and other program-

ming languages, such as virtual functions and polymorphism, inheritance, function over-

loading, and exception handling, while removing mechanisms that complicate, in general

needlessly, the software development.

Java is a pure object-oriented programming language that enables the development of

very robust and dynamic, architecturally neutral and portable software with multithread-

ing and security capabilities. In particular, Java has key object-oriented characteristics and

mechanisms that allow efficient development of portable, robust and reusable programs

with graphics and graphical user interfaces. Dynamic memory allocation, which is typical

a source of mistakes and memory leaks in C and C++, is avoided since Java provides a

garbage collector. The latter removes the responsibility of the programmer to release

dynamically allocated memory from the heap using the delete operator. Furthermore,

destructors are not required in Java, although clean up of objects before being deallocated

can be done using finalizers. In addition, the complexity due to certain cases of multiple

inheritance are avoided, since Java supports single inheritance, while achieving the effects

of multiple inheritance without the associated problems through multiple interface inherit-
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ance. Java enables more general class initialization, while the class initialization capabili-

ties of C++ are very limited.

Java provides multithreading, which facilitates interactivity and concurrency of pro-

grams. A threat is a single sequence of steps executed one at a time, i.e. a sequential flow

of control, running within a program and taking advantage of the resources allocated for

that program and its environment. All threads of a multithreading Java program share the

same data and system resources, running at the same time and performing different tasks.

Since most computers have only one CPU, threads share the CPU with other threads. A

thread can be created in Java either by subclassing the Thread class and overriding its

run() method, or by providing a class that implements the Runnable interface, which

requires the implementation of the run() method. Synchronization capabilities of the Java

language allow a thread to lock an object in order to avoid data corruption. Multithreading

enables a program to perform several tasks, i.e. to use more than one flow of control, con-

currently. Concurrent programming is directly supported as threads of operations are

allowed to run concurrently taking advantage of multiprocessor systems. In contrast, mul-

tithreading and concurrent programming can be accomplished in C++ using operating sys-

tem calls and libraries, such as the Message Passing Interface (MPI) standard,

respectively.

More checks and verification tests are performed with in Java by both the Java com-

piler and the JVM. Unlike C++, Java performs index checks for arrays avoiding problems

with indices that are out of bounds. Security is also ensured by the bytecode verifications

performed by the Java Runtime in order to determine whether there was any modification

of the bytecode after ti was generated. Finally, Java provides access to compilation via the

java.lang.Compiler package, which enables a Java program to generate code, and, then,

compile, load and use it in a single session. Class information is accessible during execu-
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tion in Java through the Object and Class classes, while such information is not provided

in C++.

A very important characteristic of Java is portability, which is guaranteed at the byte-

code level. In contrast, C++ supports portability at source level with certain limitations

and depending heavily on the programmer. In order to achieve portability in Java, the com-

pilation generates JVM instructions in the form of architecturally neutral bytecode, which

are mapped to actual machine instructions at execution time. In addition, graphical user

interfaces and graphic components are mapped only at execution time to the native win-

dow environment and graphics libraries. Access to system functions is provided in a plat-

form independent way by the java.lang.System. Finally, any primitive data type is defined

in an architectural neutral way with a predefined size of memory associated to it.

Software development is much faster and efficient with Java due to the excellent and

consistent on-line documentation and certain mechanisms that avoid needless repetitive

tasks. For example, there is not need for class declarations, as in C++, which not only

require extra work, typically, by copying the header of the definitions of functions into the

corresponding header files with fine modifications, but also are sources of errors. In addi-

tion, Java, does not require recompilation of subclasses because of changes made to super-

classes, since linking occurs only at execution time. In contrast, recompilation is required

in C++, in order to take into account any changes in size, which has an overhead on the

compilation time. The Java compiler identifies and compiles the classes on which a pro-

gram depends automatically, without the need of a makefile. Finally, In addition, docu-

mentation of Java software is automatically generated using the javadoc tool of the Java

Development Kid (JDK). The javadoc parses the source code using certain comments in

the code to create an up to date Hypertext Markup Language (HTML) document as an API

reference for each class.
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However, a useful mechanism of C++ that is missing from the Java language is that of

operator overloading, which is used only by the + operator for string concatenation.

Another limitation of Java is that primitive data types can be passed only by value and all

other objects can be passed only by reference. Although, Java does not provide direct

access to memory locations since there are no pointers avoids problems due to pointer

arithmetic mistakes. Callbacks, which are implemented in C++ using pointers to func-

tions, can instead be implemented using interfaces. Finally, Java does not allow parame-

ters of methods to have default values, which is allowed in C++.

The Java platform consists essentially by the Java virtual machine (JVM), which takes

care of the compilation and interpretation issues, e.g. portability, and by the Java Applica-

tion Programming Interface (API), which provides a large collection of software compo-

nents that can be directly used by a Java programmer. The Java API provides several

classes that can be used to efficiently write programs with graphics content and graphical

user interfaces. The latter can be achieved with C++ only by combining it with graphic

libraries such as Open Inventor or OpenGL, and with toolkit libraries such as TCL and

TK. Furthermore, Java facilitates the development of programs that deal with networking,

security issues, databases, 3D graphics, and many other issues that a typical high level lan-

guage, such as C++, does not provide.

In addition, Java programs can be executed in any machine irrespectively of its archi-

tecture and operating system. The portability of Java programs is based on the JVM and

the intermediate compilation into bytecode. The bytecode can, then, be interpreted by the

Java VM, which translates the bytecode instructions into machine instructions that your

computer can understand and execute.

The software was implemented using the latest version of Java 2 platform, the Java 2

Standard Edition 1.3. The Java 2 platform offers enhanced performance through the Java
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Hot Spot process, which performs just-in-time (JIT) compilation and profiling, and the

Java Foundation Classes (JFC). The Java 2 standard Development Kit (SDK) provides

Forte, an integrated development environment (IDE), which facilitates software develop-

ment and debugging.

7.8.2 Java 3D API

Java3D is a general-purpose, platform-independent, object-oriented API for 3D-graphics

that enables high-level development of Java applications and applets with 3D interactive

rendering capabilities. With Java3D, 3D scenes can be built programmatically, or, alterna-

tively, 3D content can be loaded from VRML or other external files. Java3D, as a part of

the Java Media APIs, integrates well with the other Java technologies and APIs. For exam-

ple, Java2D API can be used to plot selected results, while the Java Media Framework

(JMF) API can be used to capture and stream audio and video.

7.8.2.1 Introduction

Java3D is based on a directed acyclic graph-based scene structure, known as scene graph,

that is used for representing and rendering the scene. The scene structure is a tree-like

hierarchical diagram that contains nodes with all the necessary information to create and

render the scene. In particular, the scene graph contains the nodes that are used to repre-

sent and transform all objects in the scene, and all viewing control parameters, i.e. all

objects with information related to the viewing of the scene. The scene graph can be

manipulated very easily and quickly allowing efficient rendering by following a certain

optimal order and bypassing hidden parts of objects in the scene.

Java 3D API has been developed under a joint collaboration between Intel, Silicon

Graphics, Apple, and Sun, combining the related knowledge of these companies. It has

been designed to be a platform-independent API concerning the host's operating system

(PC/Solaris/Irix/HPUX/Linux) and graphics (OpenGL/Direct3D) platform, as well as the
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input and output (display) devices. Java3D aims at achieving high performance by utiliz-

ing the available graphics libraries (OpenGL/Direct3D), using 3D-graphics acceleration

where available, and supporting some rendering optimizations (such as scene reorganiza-

tion and content culling). The current version of the Java 3D API is the Version 1.2, which

works together with the Java 2 Platform. Both APIs can be downloaded for free from the

Java products page of Sun.

7.8.2.2 Scene graph: content-view branches

A Java3D scene is created as a tree-like graph structure, which is traversed during render-

ing. The scene graph structure contains nodes that represent either the actual objects of the

scene, or, specifications that describe how to view the objects. Usually, there are two

branches in Java 3D, the content branch, which contains the nodes that describe the actual

objects in the scene, and the view branch, which contains nodes that specify viewing

related conditions. Usually, the content branch contains much larger number of nodes than

the view branch.

The image of Figure 7.9 shows a basic Java3D graph scene, where the content branch

is located on the left and the view branch on the right side of the graph.
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Content
Branch

Figure 7.9: Scenegraph example.

Java3D applications construct individual graphic components as separate objects,

called nodes, and connects them together into a tree-like scene graph, in which the objects

and the viewing of them can easily be manipulated. The scene graph structure contains the

description of the virtual universe, which represents the entire scene. All information con-

cerning geometric objects, their attributes, position and orientation, as well as the viewing

information are all contained into the scene graph.

The above scene graph consists of superstructure components, in particular a Virtu-

alUniverse and a Locale object, and a two BranchGroup objects, which are attached to the

superstructure. The one branch graph, rooted at the left BranchGroup node, is a content

branch, containing all the relevant to the contents of the scene objects. The other branch,

139



known as view branch, contains all the information related to the viewing and the render-

ing details of the scene.

The state of a shape node, or any other leaf node, is defined, during rendering, by the

nodes that lie in the direct path between that node and the root node, i.e. the VirtualUni-

verse. For example, a TransformGroup node in a path between a leaf node and the scene's

root can change the position, orientation, and scale of the object represented by the leaf

node.

7.8.2.3 SceneGraph Object hierarchy

The Java 3D node objects of a Java 3D scene graph, which are instances of the Node class,

may reference node component objects, which are instances of the class NodeComponent.

The Node and NodeComponent classes are subclasses of the SceneGraphObject abstract

class. Almost all objects that may be included in a scene graph are instances of subclasses

of the SceneGraphObject class. A scene graph object is constructed by instantiating the

corresponding class, and then, it can be accessed and manipulated using the provided set

and get methods. The following graph shows the class hierarchy of the major subclasses of

the SceneGraphObject class.

Figure 7.10: Class hierarchy of major subclasses of the SceneGraphObject class.
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7.8.2.4 Class Node and its subclasses

The abstract Class Node is the base class for almost all objects that constitute the scene

graph. It has two subclasses the Group, and Leaf classes, which have many useful sub-

classes. Class Group is a superclass of, among others, the classes BranchGroup and Trans-

formGroup. Class Leaf, which is used for nodes with no children, is a superclass of,

among others, the classes Behavior, Light, Shape3D, and ViewPlatform. The ViewPlat-

form node is used to define from where the scene is viewed. In particular, it can be used to

specify the location and the orientation of the point of view.

7.8.2.5 Class NodeComponent and its subclasses:

Class NodeComponent is the base class for classes that represent attributes associated with

the nodes of the scene graph. It is the superclass of all scene graph node component

classes, such as the Appearance, Geometry, PointAttributes, and PolygonAttributes

classes. NodeComponent objects are used to specify attributes for a node, such as the color

and geometry of a shape node, i.e. a Shape3D node. In particular, a Shape3D node uses an

Appearance and a Geometry objects, where the Appearance object is used to control how

the associated geometry should be rendered by Java 3D.

The geometry component information of a Shape3D node, i.e. its geometry and topol-

ogy, can be specified in an instance of a subclass of the abstract Geometry class. A Geom-

etry object is used as a component object of a Shape3D leaf node. Geometry objects

consist of the following four generic geometric types. Each of these geometric types

defines a visible object, or a set of objects.

" CompressedGeometry

" GeometryArray

" Raster

- Text3D
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For example, the GeometryArray is a subclass of the class Geometry, which itself

extends the NodeComponent class, that is extended to create the various primitive types

such as lines, triangle strips and quadrilaterals.

The IndexedGeometryArray object, shown in Figure 7.11, contains separate integer

arrays that index, among others, into arrays of positional coordinates specifying how verti-

ces are connected to form geometry primitives. This class is extended to create the various

indexed primitive types, such as IndexedLineArray, IndexedPointArray, and IndexedQua-

dArray.

NodeComponent

Geometry

GeometryArray

IndexedGeometryArray QuadArray

PointArra LineArray

IndexedQuadArra

IndexedPointArray .........

Figure 7.11: Class hierarchy of the IndexedGeometryArray class.

Vertex data may be passed to the geometry array either by copying the data into the

array using the existing methods, which is the default mode, or by passing a reference to

the data.

The methods for setting positional coordinates, colors, normals, and texture coordi-

nates, such as the method setCoordinates(), copy the data into the GeometryArray, which

offers much flexibility in organizing the data.
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Another set of methods allows data to be passed and accessed by reference, such as the

setCoordRef3d() method, set a reference to user-supplied data, e.g. coordinate arrays. In

order to enable the passing of data by reference, the BYREFERENCE bit in the vertex-

Format field of the constructor for the corresponding GeometryArray must be set accord-

ingly. Data in any array that is referenced by a live or compiled GeometryArray object

may only be modified using the updateData() method assuming that the

ALLOWREFDATAWRITE capability bit is set accordingly, which can be done using

the setCapability() method.

The Appearance object defines all rendering state that control the way the associated

geometry should be rendered. The rendering state consists of the following:

- Point attributes: a PointAttributes object defines attributes used to define points, such

as the size to be used

- Line attributes: using a LineAttributes object attributes used to define lines, such as

the width and pattern, can be defined

- Polygon attributes: using a PolygonAttributes object the attributes used to define

polygons, such as rasterization mode (i.e. filled, lines, or points) are defined

* Coloring attributes: a ColoringAttributes object is used to defines attributes used in

color selection and shading.

- Rendering attributes: defines rendering operations, such as whether invisible objects

are rendered, using a RenderingAttributes object.

- Transparency attributes: a TransparencyAttributes defines the attributes that affect

transparency of the object

. Material: a Material object defines the appearance of an object under illumination,

such as the ambient color, specular color, diffuse color, emissive color, and shininess.

It is used to control the color of the shape.

- Texture: the texture image and filtering parameters used, when texture mapping is
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enabled, can be defined in a Texture object.

- Texture attributes: a TextureAttributes object can be used to define the attributes that

apply to texture mapping, such as the texture mode, texture transform, blend color,

and perspective correction mode.

* Texture coordinate generation: the attributes that apply to texture coordinate genera-

tion can be defined in a TexCoordGeneration object.

- Texture unit state: array that defines texture state for each of N separate texture units

allowing multiple textures to be applied to geometry. Each Texture UnitState object

contains a Texture object, TextureAttributes, and TexCoordGeneration object for one

texture unit.

7.8.2.6 Superstructure components: VirtualUniverse and Locale

A scenegraph consists of the superstructure components, in particular a VirtualUniverse

and one or more Locale objects, and a set of branch graphs that are attached to the Locale

object(s). After constructing a subgraph, it can be attached to a VirtualUniverse object

through a high-resolution Locale object, which is itself attached to the virtual universe.

The VirtualUniverse is the root of all Java 3D scenes, while Locale objects are used for

basic spatial placement. The attachment to a Locale object makes all objects in the

attached subgraph live (i.e. drawable), while removing it from the locale reverses the

effect. Any node added to a live scene graph becomes live. However, in order to be able to

modify a live node the corresponding capability bits should be set accordingly.

Typically, a Java3D program has only one VirtualUniverse which consists of one, or

more, Locale objects that may contain collections of subgraphs of the scene graph that are

rooted by BranchGroup nodes, i.e. a large number of branch graphs. Although a Locale

has no explicit children, it may reference an arbitrary number of BranchGroup nodes. The

subgraphs contain all the scene graph nodes that exist in the universe. A Locale node is

used to accurately position a branch graph in a universe specifying a location within the
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virtual universe using high-resolution coordinates (HiResCoord), which represent 768 bits

of floating point values. A Locale is positioned in a single VirtualUniverse node using one

of its constructors.

The VirtualUniverse and Locale classes, as well as the View class, are subclasses of the

basic superclass Object, as shown in Figure 7.12.

Objct

Locale View

VirtualUniverse

Figure 7.12: VirtualUniverse, Locale and View classes.

7.8.2.7 Branch graphs

A branch graph is a scene graph rooted in a BranchGroup node and can be used to point to

the root of a scene graph branch. A graph branch can be added to the list of branch graphs

of a Locale node using its addBranchGraph(BranchGroup bg) method. BranchGroup

objects are the only objects that can be inserted into a Locale's list of objects.

A BranchGroup may be compiled by calling its compile method, which causes the

entire subgraph to be compiled including any BranchGroup nodes that may be contained

within the subgraph. A graph branch, rooted by a BranchGroup node, becomes live when

inserted into a virtual universe by attaching it to a Locale. However, if a BranchGroup is

contained in another subgraph as a child of some other group node, it may not be attached

to a Locale node.

7.8.2.8 Capability bits, making live and compiling:

Certain optimizations can be done to achieve better performance by compiling a subgraph

into an optimized internal format, prior to its attachment to a virtual universe. However,

many set and get methods of objects that are part of a live or compiled scene graph cannot
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be accessed. In general, the set and get methods can be used only during the creation of a

scene graph, except where explicitly allowed, in order to allow certain optimizations dur-

ing rendering. The set and get methods that can be used when the object is live or com-

piled should be specified using a set of capability bits, which by default are disabled, prior

to compiling or making live the object. The methods isCompiled() and isLive() can be

used to find out whether a scene graph object is compiled or live. The methods setCapabil-

ity() and getCapability() can be used to set properly the capability bits to allow access to

the object's methods. However, the less the capability bits that are enabled, the more opti-

mizations can be performed during rendering.

7.8.2.9 Viewing branch: ViewPlatform, View, Canvas3D, and Screen3D

The view branch has usually the structure shown in Figure 7.9, consisting of nodes that

control the viewing of the scene. The view branch contains some scene graph viewing

objects that can be used to define the viewing parameters and details, such as the View-

Platform, View, Canvas3D, Screen3D, PhysicalBody, and PhysicalEnvironment classes.

Java 3D uses a viewing model that can be used to transform the position and direction

of the viewing while the content branch remains unmodified. This is achieved with the use

of the ViewPlatform and the View classes, to specify from where and how, respectively, the

scene is being viewed.

The ViewPlatform node controls the position, orientation and scale of the viewer. A

viewer can navigate through the virtual universe by changing the transformation in the

scene graph hierarchy above the ViewPlatform node. The location of the viewer can be set

using a TransformGroup node above the ViewPlatform node. The ViewPlatform node has

an activation radius that is used together with the bounding volumes of Behavior, Back-

ground and other nodes in order to determine whether the latter nodes should be sched-
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uled, or turned on, respectively. The method setActivationRadius() can be used to set the

activation radius.

A View object connects to the ViewPlatform node in the scene graph, and specifies all

viewing parameters of the rendering process of a 3D scene. Although it exists outside of

the scene graph, it attaches to a ViewPlatform leaf node in the scene graph, using the

method attach ViewPlatform(ViewPlatform vp). A View object contains references to a

PhysicalBody and a PhysicalEnvironment object, which can be set using the methods set-

PhysicalBody() and setPhysicalEnvironment(, respectively.

A View object contains a list of Canvas3D objects where rendering of the view is

done. The method addCanvas3D(Canvas3D c) of the class View can be used to add the

provided Canvas3D object to the list of canvases of the View object. Class Canvas3D

extends the heavyweight class Canvas in order to achieve hardware acceleration, since a

low rendering library, such as OpenGL, requires the rendering to be done in a native win-

dow to enable hardware acceleration.

Finally, all Canvas3D objects on the same physical display device refer to a Screen3D

object, which contains all information about that particular display device. Screen3D can

be obtained from the Canvas3D using the getScreen3D() method.

7.8.2.10 Default coordinate system

The default coordinate system is a right-handed Cartesian coordinate system centered on

the screen with the x and y-axes directed towards the right and top of the screen, respec-

tively. The z-axis is, by default directed out of the screen towards the viewer, as shown

below. The default distances are in meter and the angles in radians.
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Figure 7.13: Default coordinate system of Java3D

7.8.2.11 Transformations

Class TransformGroup which extends the class Group can be used to set a spatial transfor-

mation, such as positioning, orientation, and scaling of its children through the use of a

Transform3D object. A TransformGroup node enables the setting and use of a coordinate

system relative to its parent coordinate system.

The Transform3D object of a TransformGroup object can be set using the method set-

Transform(Transform3D t), which is used to set the transformation components of the

Transform3D object to the ones of the passed parameter.

A Transform3D object is a 4x4 double-precision matrix that is used to determine the

transformations of a TransformGroup node, as shown in the following equation. The ele-

ments TOO, TO1, T02, T10, T11, T12,T20, T21, and T22 are used to set the rotation and

scaling, and the T03, T13, and T23 are used to set the translation.

x Too To1 T 02 Too x

y' T10 Tin T12 T 13  Y (7.1)
z' T20 T21 T 22 T23  z

_W'_ _Tso T3s1 T3s2 T3 a _W
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As the scene graph is traversed by the Java 3D renderer, the transformations specified

by any transformation nodes accumulate. The transformations closer to the geometry

nodes executed prior to the ones closer to the virtual universe node

7.8.3 Swing

7.8.3.1 Description of Swing

Java Foundation Classes (JFC) provide features to facilitate the development of Graphical

User Interfaces (GUIs). Among other, JFC provides Swing, which includes several com-

ponents that can be used for the development of GUIs, support for a choice on the look

and feel that a program uses, and provides Java2D for high quality 2D graphics. Finally,

swing allows the specification which look and feel a program should use. This is done

with the setLookAndFeel() method of the UIManager class. Swing is built on top of the

AWT (Abstract Window Toolkit) using the AWT infrastructure. However, Swing provides

its own graphical user interface (GUI) components, many of which have a close relation or

correspondence to the AWT components. Essentially, Swing is an extension and improve-

ment to the AWT.

Swing provides several standard components (e.g. buttons, checkbuttons, radiobuttons,

menus, lists, labels, and text areas) to create a program's GUI using one or more contain-

ers (e.g. frames, dialogs, windows and tool bars). Most Swing components that begin with

J, except the top-level containers, are subclasses of the JComponent class. The letter J is

used to differentiate the actual extra user interface classes provided by Swing from the

support classes that it provides. Swing components inherit many features from the JCom-

ponent class, such as a configurable look and feel, borders, and tool tips, as well as many

methods. In addition, some Swing components can display images on them. The JCompo-

nent class extends the Container class (provides support for adding and laying out compo-
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nents), which itself extends the Component class (provides support for painting, events,

layout etc.).

JComponent is the base class for almost all lightweight components. Therefore, all

Swing lightweight components (derived from the JComponent class) are subclasses of the

Container class of AWT.

Every program with a Swing GUI contains at least one top-level Swing container, i.e.,

in general, an instance of a JApplet, JFrame, or JDialog, which enables the painting and

event handling of the Swing components. The JApplet, JFrame, or JDialog, are considered

top-level containers because they are used to provide an area in which the other containers

and components can appear. Other containers, such as the JPanel, are used to facilitate the

positioning and sizing of other containers and components.

Between a top-level container and an intermediate container, a content pane (JRoot-

Pane), which is also an intermediate container, is indirectly provided. The content pane

contains all of visible components of its GUI, except a menu bar. One of the addO meth-

ods of a container can be used to add a component to it. The component to be added is

used as argument to the add method. In some cases another argument, which has to do

with the layout, is used with the addO method.

Besides the top-level containers (JApplet, JFrame, JDialog, and JWindow) there are

special-purpose containers (such as the JInternalFrame, JLayeredPane, and JRootPane)

that are used for special purposes, and general-purpose containers (such as JPanel, JScroll

Pane, JSplitPane, JTabbedPane, and JToolBar) that are used for other any general pur-

pose.

The JApplet and JFrame classes should be used to implement Swing applets or appli-

cations, respectively. Both JApplet and JFrame classes are containers that contain an

instance of the JRootPane class. the latter contains the content pane, which is a container,
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that contains all the components contained in the applet or application. Therefore, compo-

nents should be added and layout managers should be set to the content pane.

Most Swing components that begin with J, except the top-level containers, are sub-

classes of the JComponent class. The letter J is used to differentiate the actual extra user

interface classes provided by Swing from the support classes that it provides. Swing com-

ponents inherit many features from the JComponent class, such as a configurable look and

feel, borders, and tool tips, as well as many methods. In addition, some Swing components

can display images on them. The JComponent class is the base class for almost all light-

weight J-components of Swing. The JComponent class extends the Container class (pro-

vides support for adding and laying out components), which in turn extends the

Component class (provides support for painting, events, layout etc.). Therefore, all Swing

J-components are AWT containers and inherit all methods from the Container and Com-

ponent classes. Any instance of a JComponent subclass can contain both AWT and Swing

components, since JComponent extends the java.awt. Container class.

For the rendering of lightweight Swing components, the painto method of the JCom-

ponent class is used. In particular, a Graphics object is passed to the painto method in

which it draws the component, the component's border, and the component's children in

order. When the component has a UI delegate, the delegate's painto method is invoked,

which clears the background in case of an opaque component, and, then, paints the com-

ponent. For double buffered components it paints the component into an offscreen buffer

and then copies it into the component's onscreen area. Since double buffered is provided

by Swing there is no need to override the painto method, as it is for AWT to achieve avoid

flickering. To redefine the way a component is painted the paintComponent() method of

the JComponent class should be overwritten, which usually needs to invoke the

super paintComponent() method.
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In contrast to AWT components, it is not necessary to override the updateo method,

which erases the background of a component and then invokes paintO, to avoid flickering.

The JComponent class overrides the updateo method invoking directly the paint() method,

while the UI delegate is responsible for erasing the background. The flickering is avoided

since double buffering is used by the Swing components, i.e. the components are repainted

first in an offscreen buffer and, then, copied to the screen. Only JRootPane and JPanel of

the Swing lightweight components are by default double buffered. Components that reside

in a double buffered container are automatically double buffered. The method setDouble-

Buffered() of the JComponent class can be used to set whether the receiving component

should use a buffer to paint. The offscreen buffer used for the double buffering can be

obtained using the method RepaintManager getOffscreenBuffer(.

7.8.3.2 Mixing Java3D and Swing:

Care should be taken when using Swing together with Java3D as the latter uses the

Canvas3D, a heavyweight component. In particular, when lightweight components over-

lap with heavyweight components, the heavyweight components are always painted on

top. This is caused because of the way "depth" at which components are displayed in a

container is represented by the Z-order. The latter is determined by the order with which

each component is added to the container, i.e. the first component to be added to a con-

tainer has the highest Z-order which means that it is displayed in front of all other compo-

nents added to that container. When lightweight and heavyweight components are mixed,

the lightweight components, which need to reside in a heavyweight container, have the

same Z-order of their container, and within it the order of each of the lightweight compo-

nents is determined by the order in which they are added to the container.

The heavyweight Canvas3D of Java 3D can be kept apart from lightweight Swing

components using different containers to avoid such problems. Furthermore, to avoid

152



heavyweight components overlapping Swing popup menus, which are lightweight, the

popup menus are forced to be heavyweight using the method setLightWeightPopupEn-

abled() of the JPopupMenu class. Similarly, problems with tooltips can be avoided by

invoking the following method: ToolTipManagersharedInstanceo.setLightWeightPopu-

pEnabled(false).

7.8.3.3 Swing and multithreading

Swing, in general, is not thread safe, because a Swing component can be accessed by only

one thread at a time, which, in general, is the event-dispatching thread. Because Swing is

not thread safe, Swing components, in general, should be accessed only from the event-

dispatching thread. The event-dispatching thread is the thread that invokes callback meth-

ods, e.g. the paint() and update() functions, and event handler methods. Swing has been

designed to be not thread safe in order to avoid the overhead of multithreading (e.g.

obtaining and releasing locks) and to simplify the subclassing of its component. It is not

allowed to access Swing components from any thread other than the event-dispatching

thread.

However, some Swing components support multithreaded access. Actually after the

realization of a Swing component code that might affect or depend on the state of that

component should be executed in the event-dispatching thread. Realization of a compo-

nent means after the component is available for painting on screen, after it is painted or

become ready to be painted using one of the methods: setVisible(true), show(), or pack().

The access only through the event-dispatching thread is not required in the following

cases:

* when dealing with thread safe methods (as specified in the Swing API documenta-

tion) to construct and show a GUI in the main thread of an application, as long as no

components have been realized in the current runtime environment
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- constructing and manipulating the GUI in an applet's init() method, as long as the

components have not been made visible, i.e. the method show() or setVisible(true) has

never been called on the actual applet object

- methods repaint() and revalidate() are safe to call from any thread

In general, Swing it is not safe to access Swing components from any thread other than

the event-dispatching thread. However, there are times that it is preferable to update Swing

components from another thread, or perform time-consuming operations on a separate

thread, and not use the event-dispatching thread. In those cases, Swing provides the meth-

ods invokeLater() and invokeAndWait() in the SwingUtilitiesclass, which can be used to

queue a runnable object on the event dispatch thread. They essentially allow a block of

code from another thread to be invoked and executed by the event-dispatching thread.

Both methods can be used to access Swing components from a thread other than the event-

dispatching thread. Method invokeLater() queues the runnable object and returns immedi-

ately, while invokeAndWait() waits until the runnable object's run() method has started

before returning. Only the invokeLater() (and not invokeAndWait() method can be called

from the event dispatching thread.

7.8.4 Java2D API

The Java2D API provides 2D graphics capabilities and image manipulation. It is part of

the Java Foundation Classes (JFC).

It uses an object of the class Graphics2D, which is an extension of the class Graphics,

as its rendering machine. A Graphics2D reference can be used by casting a Graphics ref-

erence to a Graphics2D reference
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Chapter 8

Applications

8.1 Introduction

A series of simple examples have been performed in order to demonstrate the correctness

of the solution, within some acceptable numerical errors. Since theoretical solutions are

available, or can be derived, only for simple problems involving a pair of bodies, such sim-

ulations are considered. As long as a solution for a pair of bodies is sufficiently accurate, it

is evident that the solution of the corresponding problem involving multiple bodies should

also be sufficiently accurate.

The usefulness of the simulations is better demonstrated through either an actual exe-

cution of the simulation or a movie created during a prior simulation. However, that way

of qualitatively testing the correctness of the simulation cannot be presented in the context

of a document. However, snapshots of simulations have been taken and presented in the

following examples.

8.2 Verification Examples

8.2.1 Exchange of momentum

A body such as the one shown on the left of Figure 8.1.a (infinitely rigid case) and Figure

8.1.b (deformable bodies case) with an initial velocity of im/sec collides with a motion-

less body (on the right side of these figures. Other than the deformability, which only the

right pair of bodies (Figure 8.1.b) posses both bodies in both cases have the same geomet-
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ric and material properties.

In the case of the infinitely rigid bodies, when the left body collides with the second

they two bodies exchange momentum, the right body moves to the right with a velocity

equal to that that the left body had prior to the collision, while the latter remains still at the

point where the collision took place.

a. b.

Figure 8.1: A body with an initial velocity colliding centrically with another still body.

In contrast, in the case of the deformable bodies, when the left body collides with the

second, the two bodies also begin vibrating. However, the bodies exchange most of the

momentum, as the second body moves with a velocity slightly less than the initial velocity

of the right body, while the right body does not come to a complete still position. The fol-

lowing figure shows the velocities of all bodies.

left deformable body
0.12 ------------ - ------------ ---------------- righ infinitely

0.1 ------ - - ---- -- ---- -- - - =

0.08 --------------- --- -- - - --rigi -- bo
,/left Infinitely / I

initely right deformable body
0.06 ------------- ------ :----------

U.04 --- --- -Z --- ---rightlinfinitely_ - - - - --- - - - - -

0.02 .---- -------------- --- --- ------ --------- ---------
-0-- -----------------------

0 0.05 0.1 0.15 0.2 0.25

Time, [sec].

Figure 8.2: Displacements of the centroid of the bodies.
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Figure 8.3 presents the kinetic energies of the system of infinitely rigid bodies. It is

evident that there is conservation of energy as the kinetic energy prior and after the colli-

sion is the same. Note, that the kinetic energy during collision is less than the overall

energy due to the action of the contact springs which deform possessing elastic energy,

which has not been drawn in this figure.
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Figure 8.3: Kinetic energy of the two infinitely rigid bodies (without considering the

energy of the contact springs) during simulation.

Figure 8.4 illustrates the kinetic and elastic energy of the two deformable bodies.

Again the energy of the contact springs is not drawn as it is approximately the difference

2
between the total energy, i.e. 0.5 mvinitial = 0.6, and the sum of the kinetic and the elas-

tic energy of the deformable bodies. The elastic energy is the one that keeps the bodies

vibrating, which results in the stress and strain distributions within the bodies, after the

collision.
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Figure 8.4: Energy of the two deformable bodies (excluding the deformation energy of the

contact springs during collision) during simulation.

8.2.2 Wave propagation

A body with a shape of a rod (shown on the left of Figure 8.5) is driven with an initial

velocity against an infinitely rigid body (shown on the right of Figure 8.5) that is station-

ary and fixed.
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Figure 8.5: Rod-shape deformable body colliding to a fixed infinitely rigid body.

As the deformable body collides with the rigid fixed body it compressively deforms

generating compression stresses that propagate from right to left. Then, as the rod bounces

off the wall, under the action of the contact forces, the compressive stresses are bounced

off the other end and a wave propagates back and forth from the one end of the rod to the

other. This results in compression and tension within the body as the stress wave propa-

gate through it and vibration of the body according to its natural frequency.
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Figure 8.6: Stresses Txx at a center node of the deformable body.
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At time t=0.15 sec damping is activated, resulting in dissipation of elastic energy,

which causes the vibration of the body and the propagation of the stress wave. Soon after

the activation of damping the stress wave and the vibration of the body are dissipated as

shown in Figure 8.6.c.

The stresses tXX at a node at the right end, i.e. at the contact point, of the rod are shown

in Figure 8.7.a. Comparing the stresses at the node at the center of the body (Figure 8.6.a)

and at the node at the right end of the body (Figure 8.7.a) we notice, as expected, a delay

in the initiation of the stress pulse. This delay is presented in the graphs b and c of Figure

8.7, which are zooms of the stress histories of both nodes during the time interval when

the first stress increment is initiated.
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Figure 8.7: Stresses t~at an edge node of the deformable body.

The time of delay between the node at the right end of the rod and the node the center,

i.e the out-of-phase, time, agrees well with the theoretical time that is required to travel

this distance using the wave propagation speed of the particular material that is used. In

particular, the modulus of elasticity, Poisson ratio and density of the body have been con-

sidered to be equal to:
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E =20 GPa
V = 0.1
p = 2000 Kg/m3
length = 2.4m

Therefore, the stress wave speed, in the longitudinal direction, is equal to CL

C = E.(1-v) = 2558 (8.1)
L p-(1+v)-(1-2v) s

which means that the stress wave to travel a distance equal to the half length of the rod,

which is equal to 2.4 m, requires time equal to:

trequired - 2 = 0.00047 seconds

8.2.3 Rigid body colliding on a constrained deformable body

A square infinitely rigid body is driven with an initial velocity into a constrained deform-

able body, as shown in Figure 8.9. The body on the left is an infinitely rigid body that

moves to the right towards the constrained body. The latter is modeled using FEM as a

plane stress body that is supported on its two ends, as shown in the following figure.

Figure 8.8: Rigid body (left) moving towards a constrained deformable body.
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Figure 8.9 shows snapshots taken during the simulation as the rigid body on the left

moves, with an initial velocity, towards the restrained deformable body, collides with it

and is bounced back with a velocity that has magnitude close to that of its initial velocity

but in the opposite direction.

a. b.

d. e

c.

f.

Figure 8.9: Snapshots from a rigid body collision with a constrained deformable body.

Simulations as this one are better presented either interactively or through movies that

are created during simulation, which is impossible to show in the context of a thesis docu-

ment.

8.2.4 Energy dissipation during contact

Two deformable bodies are left to fall under gravity on two other restrained deformable

bodies, as shown in Figure 8.10.
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Figure 8.10: Deformable bodies falling under gravity on restrained deformable bodies.
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The contacts of the left pair of bodies has damping taken into account, while for the

right pair of bodies no dampers are considered during collisions. For both pairs of bodies

no damping within the bodies, i.e. damping associated with the dissipation of strain energy

inside the bodies was taken into account. The graphs Figure 8.10.a-Figure 8.10.f are sub-

sequent timely snapshots taken during simulation.

As it is shown in the following graph, Figure 8.11, the falling body of the damped sys-

tem eventually comes to a stationary position over the restrained body, while the falling

body of the undamped system continues the bouncing off the restrained body.
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Figure 8.11: Displacements of falling bodies under gravity on restrained bodies.
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Chapter 9

Concluding Remarks

9.1 Summary

The major objective of this thesis was to extend the capabilities of DEM to enable the effi-

cient consideration of deformable bodies. This has been achieved by the combination of

FEM and DEM as it is described in one of the main chapters of this thesis. However, there

are many more enhancements to this work that can be implemented as described in a fol-

lowing paragraph.

The first chapter of this thesis provides a brief introduction to the DEM, the motivation

to develop and use these methods, and applications of these methods. The limitations of

DEM, regarding the rigidity of the simulated bodies, are presented as a motivation for the

research described in this thesis. The chapter concludes with the objectives of this thesis

work.

Chapter 2 discusses briefly the various object representation schemes and presents the

specific object representation that has been selected to be used in the development of the

combined DEM/FEM formulation and the implementation of the corresponding software.

Chapter 3 presents the major categories of contact detections algorithms followed by

the selected contact detection scheme. A spatial reasoning algorithm using bounding

boxes is used to identify pairs of bodies that may be in contact, followed by pairwise con-

tact detection tests, which first verify the existence of contact and then determine the con-

tact point using a contact resolution phase.
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The following chapter, Chapter 4 describes the physics related to the contact effects. A

soft contact approach is used, allowing the simulated bodies to overlap assuming local

deformations, in order to evaluate the contact forces. The problem is significantly simpli-

fied by modeling the contact effects using idealized contact springs to remove the associ-

ated with contacts nonlinearities from the problem. These simplified contact springs

provide equivalent contact forces to avoid overlapping between the colliding bodies. The

contact forces are determined, using the positions and velocities of the previous time step

according to the specified spring properties, and applied as external surface tractions.

Chapter 5 presents the major issue that is addressed in this thesis, the incorporation of

a simplified FE formulation in the DEM in order to enable the consideration of deform-

ability of certain simulated bodies and the computation of stress and strain distributions.

The mesh generation is described in Chapter 6.

Chapter 7 discusses the software design and implementation. In particular, after an

overview of the software design, computational, graphical-user interface and computed

graphics issues are presented. Then, the utilization of database technology and its advan-

tages are discussed. Finally, the structure of the implemented software and certain issues

related to the technologies that have been used are described in detail. Portability and

machine architecture independence has been achieved using solely Java technology in the

implementation allowing the developed program to run on any platform that supports the

Java technology. Visualization is very important for this kind of simulations of multibody

systems since it enables the user to observe, investigate and record the interactions

between the discrete bodies. Java3D has been used and certain recording modules have

been developed allowing the user to create movies as a series of successive snapshots

taken at user-selected and controlled frame rates during simulation.
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Examples using the developed software are presented in Chapter 8. These applications

demonstrate basic physics concepts that can be captured by the software, such as exchange

of momentum, wave propagation, collisions of deformable and infinitely rigid bodies with

restrained ones, and energy dissipation.

The current chapter provides an outline of this thesis, presents the main contributions

of this research effort and discusses its potential future extensions.

The three appendices of the thesis provide a description of the graphical-user interface

of the developed program, the formulation that should be used in case of an extension to

large strains, and the source code that has been used for the performance comparison of

C++ with Java, respectively.

9.2 Contributions and Conclusions

Clearly the main contribution of this thesis is the incorporation of deformability in DEM,

using FEM, allowing the computation of stresses and strains distributions. The updated-

Lagrangian formulation and an explicit time integration scheme are used together with

some simplifying assumptions in order to render the simulation of multibody systems real-

istic with the current computational resources.

In particular, the equations of motion are considered at time t, taking into account large

displacements and using the configuration at time t. The masses are lumped into nodal

masses and the damping is considered mass proportional, resulting in diagonal mass and

damping matrices. This greatly simplifies the solution of the problem as the equations of

motion can be solved uncoupled without the need of any matrices inversion or multiplica-

tions.

The unknown displacements at time t+At are computed using an explicit integration

scheme, the central difference method, which can handle unconstrained systems such as
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the ones under consideration. Having determined the new displacements, the new posi-

tions and orientations of the simulated bodies are determined and used for the contact

detection. The latter is performed in the same way as it is applied when infinitely rigid

bodies are under consideration. Having computed and applied the contact forces on the

bodies in contact, as well as any other kind of external forces, the next step of the integra-

tion takes place computing the new displacements.

In addition, database technology has been utilized in order to efficiently store, search

and manipulate the input and output data. The latter are typically stored in flat files, which

can be used only by the users of the program that are familiar with the application's spe-

cific file format.

Finally, Java technology has been used to develop an architecturally neutral, platform

independent, robust object-oriented software that can be easily extended. Potential exten-

sions of the currently developed software are discussed in the following paragraph.

9.3 Future Work

There are many potential future extensions of this research. Some of them are discussed in

this paragraph. The developed simulation tool has been designed and implemented to be

easily extended using a pure object-oriented programming language and an easily extend-

able class hierarchy.

First, the developed software can be extended to 3D, which is conceptually easy as

everything in the current version of DAFES is defined as 3D. Although the current imple-

mentation can be used to perform only 2D simulations, all vectors and matrices that are

used, the underlying computed graphics and, in general, the overall simulation flow are the

same as the ones that need to be used in 3D simulations. Only certain methods, such as the
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contact resolution, and certain data, such as the 3D elasticity matrix need to be provided in

order to extend the program to 3D.

A natural extension of this software regarding the continuum mechanics part that takes

into account the deformability of simulated bodies, is the consideration of large strains. In

addition, nonlinear material may be considered by using the proper FE formulation, some-

thing that cannot be done with the current formulation, which assumes linear elastic and

isotropic material. Both large-strains and material nonlinearity can be taken into account

using a total Lagrangian formulation. The latter requires use of new stress and strain mea-

sures, in particular the second Piola-Kirchhoff stresses and the Green Lagrange strains,

which are briefly described in Appendix B. In addition, there are many potential applica-

tions if fracturing and fragmentation capabilities are also incorporated.

It would be also useful to compare DEM simulations with solutions provided by tradi-

tional FEM programs that allow simulations of systems with multiple unrestrained bodies,

such as DYNA3D, in order to verify the correct behavior. FEM contact simulations can

also be used to determine proper values for the stiffness used for the normal and tangential

contact springs, which are currently selected arbitrarily.

Each DEM tool available has a single contact detection algorithm which is usually

efficient only for the kind of problems that have been addressed with the specific code. It

would be useful to have different contact detection algorithms and allow the user to select

according to the nature of the problem under consideration the most efficient approach.

Both grid subdivision and spatial sorting approaches will be implemented and used

according to the input problem characteristics.

Another extension of this work is regarding the utilization of the database technology.

A very simple relational database has been used as it was readily available. A better

approach is to use an object-oriented database system, which is more powerful and offers

169



a natural correspondence between the objects of the simulation and the objects of the data-

base.

Finally, the incorporation of simple mechanical constraints to allow simulations that

also involve mechanical system is another potential area for future research work. Incor-

poration of mechanical system capabilities in DEM programs will allow simulations of

systems of bodies together with mechanical parts that may move during simulation, such

as moving or vibrating hoppers. Vibration of multibody systems can then be studied in a

more realistic way with capabilities to observe and record the state of the simulated bod-

ies.
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Appendix A

DAFES Graphical User Interface (GUI)

The following figure shows a snapshot of the developed application, named DAFES (dis-

crete and finite element simulator) during a simulation.

Figure A.1: DAFES.
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The following paragraphs describe the main elements of the GUI of the program and

their functionality. The user interface consists of two main components the menu bar and

the controller, a set of buttons on the left site of the program's main window.First, the

menubar and its submenus, File, Parameters, Options, Tools, View, Rendering, Printout,

and Help, are described, followed by a description of the functionality of the controller.

Several factors have been considered in order to design a user-friendly GUI that

enables an intuitive use of the software. These factors include:

- Learnability: the GUI has been designed to be intuitive in order to enable easy famil-

iarization. An on-line help system has been provided as well.

- Readability: The text messages and icons used by the GUI have carefully been

selected so as to provide more information and control to the user.

- Efficiency: Toolbar and buttons for frequently-used functionalities have been pro-

vided to achieve efficient use of the program. Default options have been set and can

be used or modified according to the needs of the simulation.

- Autonomy: The user is provided with sufficient status information at any time so as

to have full control of the program.

- Consistency: Buttons with related functionalities have been grouped together. Simi-

larly, the menubar has been divided into groups of menu items with related function-

alities. The buttons are enabled and disabled according to whether their functionalities

are accessible or non-accessible, respectively.

- Explorability: The design of the GUI enables the user to explore it with the provision

of warning messages and verification dialogs in case of potentially irrational selec-

tions. Tooltips are used to indicate the functionality of each button.
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A.1 DAFES Menu

A.1.1 File submenu

The File submenu (Figure A.2.a) has options to import the input data from a database

(Figure A.2.b), to export user-selected results to a database (Figure A.2.c), or to a file (Fig-

ure A.2.d), to print the screen (Figure A.2.e), and exit the program(Figure A.2.f).

(b) ...... (c)

(a)AODin fSiwel ssplacemnts
A1 Saet elocnes

(f) be"' ''''"*eFEt y
RESULTS T BE AVEDSame Tan stresses

(e) """'"*'""""sse
Pont Save Tity stresses

Figure A.2: Options of File submenu.

A.1.2 Parameters submenu

The Parameters submenu (Figure A.3.a) enables the setting of the time step (Figure

A.3.b), which should be used in the simulation, the selection of whether gravity or/and

damping should be taken into account during simulation, the specification of the FE type

(Figure A.3.c), when deformable bodies are used, and the imposition of constraints on

user selected degrees of freedom.
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(a)

Figure A.3: Options of Parameters submenu.

A.1.3 Options submenu

The user can use the Options submenu (Figure A.4.a) to start, stop and continue the

simulation, to specify the maximum stress value that should be used to calibrate the plot-

ted stress distribution (Figure A.4.b). In addition, the user can enable, or disable, the abil-

ity to translate, rotate and zoom the rendered scene.

(a) (b)

Figure A.4: Options submenu.

A.1.4 Tools submenu

The Tools submenu (Figure A.5.a) enables the plotting of a user-selected quantity

(Figure A.5.a) during simulation, the grabbing of snapshots during simulations (Figure

A.5.b) and the recording (Figure A.5.c) of the simulation in a form of a series of JPEG
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files. In addition, the user can explicitly sort the bodies in any direction, and perform a

contact detection in order to identify bodies that are in contact.

(a) (b).....

(C) images
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(d) Output

- Process

Recordingi
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Figure A.5: Tools submenu.

A.1.5 View submenu

The user can use the View submenu (Figure A.6.a) to zoom in and out of the scene-

graph add or remove the coordinate system from the scene, and defined the background

color (Figure A.6.b) of the canvas(es). Furthermore, the user can specify the polygon

attributes (Figure A.6.c) of the simulated bodies, in particular whether the bodies should

be drawn filling up their faces, or painting only their edges or corners. In addition, there is

an option to define the viewing aspect, i.e. the number of canvas to render in and the view-

ing location and direction, and an option to minimize the program.

175



(a)

| (c)

(d)

Figure A.6: View submenu.

A.1.6 Rendering submenu

The Rendering submenu (Figure A.7.a) allows the selection of the thread priority (Fig-

ure A.7.b) for the Java3D renderer during simulation, and the number of time steps per

rendering (Figure A.7.c).

(a) (b) (c)

Figure A.7: Rendering submenu.
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A.1.7 Printout submenu

The Printout submenu (Figure A.8) can be used to printout the simulated bodies,

either sorted in a user-selected direction or unsorted, and any contacts between the simu-

lated bodies.

Figure A.8 Printout submenu.

A.2 DAFES controller: control buttons

The DAFES has a set of buttons, named DAFES controller, on its left side (Figure

A.1) with which the simulation can be controlled. The buttons are presented in more detail

in Figure A.9, which makes their purpose self-evident. In particular, the following buttons

are available:

- Simulation type buttons (Figure A.9.b), which control the type (2D/3D) of simula-

tion to be performed.

- View selection buttons (Figure A.9.c) to specify the view to be used for rendering.

- Rendering mode buttons (Figure A.9.d) to select the type of polygon attributes.

- Zooming buttons (Figure A.9.e) for zooming in or out.

- A button to indicate the presence of a coordinate system (Figure A.9.f)

- A button to specify the color of the background of the canvas(es) (Figure A.9.f)

- A button to take a single snapshot of the simulation (Figure A.9.g, left)

- A button to specify that the simulation should be recorded (Figure A.9.g, right)

- A slider to select the number of time steps (Figure A.9.h)
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- A button to read in the input data from a user-specified database (Figure A.9.i, left)

- A button to print the current simulation data and results (Figure A.9.i, right)

- A button to apply gravity on the simulated bodies (Figure A.9.k, left)

- A button to select whether damping should be taken into account (Figure A.9.k,

right)

- A button to specify the simulation time step (Figure A.9.i, left)

- A button to specify the number of steps between successive renderings (Figure A.9.i,

right)

- Four buttons, namely the start, stop, continue and exit buttons, that can be used to

control the progress of a simulation (Figure A.9.i, left)
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(a) (b)

(d)

(g)

(j)

f

(1)

Figure A.9: Controller, i.e. a set of buttons to control the simulation, of DAFES.
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Appendix B

Large Strain Considerations

B.1 Introduction

When the strains are large the UL FE formulation cannot be used. A much more computa-

tionally intensive nonlinear FEA is required using the Total Lagrangian FE formulation

should be employed using different stresses and strains measures. A detail description of

this approach is provided in Bathe [1]. Here, a brief description of these stresses and

strains measures is presented.

B.2 Total Lagrangian Formulation

Assuming that we know the solution up to time t, we want to determine the solution for

time t+At, i.e. the displacements, strains and stresses and, in general, the state of the simu-

lated bodies at the new time instant. The governing equations of dynamic equilibrium at

time t+At are of the form:

F,+'*+'F D At' FE - 'F+'R (B.1)

where: t+AF 1 : inertia forces, due to dynamic effects

t+AtFD: damping forces, due to energy dissipation

+ AtFE: nodal point forces corresponding to the internal element stresses, and,

f+AIR = t+AtRB + ' 'R, + t+ARe: externally applied loads, other than inertia and damp-

ing forces. In particular, t+AtRB are the body forces, + ̂ R, are the surface tractions, and,

Rc are externally applied concentrate forces.
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The above governing equations can be derived using the PVW which states that: 'the

internal virtual work (LHS of the following equation) is equal to the external virtual work

(RHS) for any arbitrary virtual displacements that satisfy the displacement boundary con-

ditions:

t+ Atf +(B.2)

The following figure shows a general body in its configuration at time 0 (original con-

figuration), at time t, and, at time t+At. It also shows the virtual displacements that are

applied on the latter configuration. Note that the cartesian coordinate axes are stationary,

i.e. OX, tX1 =t+A'X,.

-t 0 t

X3  
Virtual displacements xi xi+Ui

t a ti m t+At
P(txI , 't+At + A2 s

P(0XI,"x2,OX3) t t+At t
/Configuration AU i-X

-- at time t+At

Configuration At tUi = t-U
Configuration at time t

at time 0 t + At t t
x= x +A ui

(for i = 1, 2, 3)
x 2

xj= t t+AtX

Figure B.1: Configurations at time 0, t and t+At.

The internal virtual work, i.e. the work due to the internal stresses, can be computed

as:

f+-j S=+AteiJ d+^tV (B.3)

t+At V
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where: : Cauchy stress tensor components, actual stresses which we want to com-

pute

1 __ a
t Atei = 8ui + Suj): infinitesimal virtual strain tensor components corre-2 at+A xj a t+txj

sponding to the virtual displacements 6u, which refer to configuration at time t+At

8u : virtual displacements, i.e. variations of the real displacements "^ui

t +Atx: Cartesian coordinates of a point at time t+At

V: Volume of the simulated body at time t+At

The external virtual work t + At91 at time t+At is equal to:

At9 = + AttfB Su d + AtV + f ' 'fl -8sui -dt + tS + R-S (B.4)
f f

f t+A'p .+^ii . . d +AtV - 'f t+At t + Atd -Sui - d'AtV
t + AtV t + At

where: + : body force components, not including inertia and damping, (force per

unit volume)

t + At S: surface tractions (force per unit area)

R : concentrate forces

t + AtV: volume at time t+At

t + AtS: surface at time t+At, where surface tractions are applied

" +p: mass density

+ At: damping property parameter

i , and iii: (unknown) velocity, and, acceleration components, respectively, at t+At

Su, 8ag, and S5g: virtual displacement, velocity, and, acceleration components,

respectively, imposed on configuration at time t+At
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The inertia and damping forces, which are formally given by the following expres-

sions, are essentially body forces. However, in the analysis, instead of using these expres-

sions to derive, according to the FE formulation, the consistent mass and damping

matrices, a diagonal mass matrix is selected, and the damping is assumed to be mass pro-

portional which significantly simplifies the solution.

+At F = p t +At' t+ At-j . d+AtV : inertia forces, resisting any change of momen-

tum

tF+At = ' - 'A t'ai -Su, -d''V : damping forces, resisting motion by dissipating

energy

Substituting in the PVW the expressions for the internal and external virtual work we

get the following equation:

ft+At~ *6 .d+A t + tfB 6 8U + AtV i Aejd V B5
S*' - 6+ AIe% d*' = f u '*V+(B.5)

t+AtV t + At

f -t 8sui - d + R - uit + JRt

t+t+AV
ft + A.t + Atji. i. C+ AtV f t+At. t + At .i -8jt*+At V

t+At V t +t A

Rearranging the terms we get the familiar equations of dynamic equilibrium. These

equations express the equilibrium and compatibility requirements of any general body at

time t+At. In addition, assuming that the proper constitutive relations are used the stress-

strain law is also satisfied.
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Stt+At + ii. +At+ f t+At t+Atai - 8ui - ±d+^V + (B.6)

f+A V +AttTi t + Ati *dt + At

+^fj 
6

,+AeyJ - di+aV =
t + AtV

I + AtjB - ui - dt + AtV + t + Atf 'Sui - dt + AtS + >jR - 8ui
AtV t + AtS

f

However, is difficult to use the above expression of the PVW, because the integration

is over the unknown and deformed volume at time t+At. The PVW can be rewritten the in

a more convenient way, by using proper stress and strain measures. In particular, the Sec-

ond Piola-Kirchhoff stresses, '+A,S, and the Green-Lagrange strains, t+At, are employed to

express the internal virtual work in terms of an integral over a known volume. In addition,

these stress and strain measures can be very effectively decomposed into known and

unknown parts leading to an incremental formulation that facilitates an efficient nonlinear

analysis. Then, the total Lagrangian formulation, in which all variables are referred to the

initial configuration can be used.

The Second Piola-Kirchhoff stresses t+AtS are stresses at time t+At referring, i.e. mea-

sured with respect, to configuration at time t. They are given, in tensor notation1 , and in

matrix form, by the following equations:

t

tensor notation: s = P + t ' t t + At T t (B.7)tij=t+At t +AtCi, m tmn*t +AtXI1 n

1. A left superscript indicates at which time the quantity occurs and a left subscript indicates the
configuration with respect to which the quantity is measured in case its different from the former.
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t+At P t

tlij t+ At pt+Atxi
t+At a tx+11t+ At ~

a 31 J

a t t+At

t+At Xia xj

a t

a t+At 
X i

at

+ At
t+At X3

a t a t +At

't+At J t+At i T13.
a X2 a El1

t+ At t t
21' t X + at Xi

t+At a t

t2+3At at

T.3 X

a t

+ t
+ At xa X3

a t x. +
t+At Ja X3

t+At a t +
22 t+At

a X2

t+ At a t

T31 t+ At

t+ At t+t

a33' X

matrix form: tS -t

The Cauchy stress tensor

t
p

t+ At
p

t T t+At t
t + At t + At

t+ At t + At
T at time t+At, whose components Tm,,

(B.9)

are used

above, can be expressed, in matrix form, as:

t + At
t + At 

tP
t
p

t+At T t+At t At
I s . tx

X is the inverse of the deformation gradient, i.e. tA X = (+ AX)

(B.10)

. The defor-

mation gradient, is given below, is a measure of the deformation of the body. In particular,

it measures how much a material fiber has been rotated and stretched.

The deformation gradient tensor: describes the deformations (stretches) and rotations

of material fibers from time t to time t+At

a t+At t+At
x1

atx ax 2

a t+At

t X2

a t+At

tX1

t+A

a X2

a t+A

X
2

at+At

t X3

t t+At

Xt X3

t t+ At
X3 t X3 X
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t+At
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As shown in the following figure, the deformation gradient t+AttX relates the differen-

tial fiber vector dt+AtX at time t+At, with the differential fiber at time t, d'X, according to

the chain rule of differentiation.

d" X= 1sX-dtX
dtX d dtAt X = ' t X d X

Att

t + I A t

Another~~~~~~~~~ imotn prpe= othdermingaintstat t alay be

46 Lt+Atxx = x,= x,

Figure B.2: Physical interpretation of the deformation gradient.

It can be proved that mass densities at time t and time t+dt, 'p and t+Atp, respectively,

are related through the deformation gradient t + AtX:

tp = 't ' tp -det(' +AtX)

Another important property of the deformation gradient is that it can always be

decomposed into a symmetric stretch matrix ' +AtU, and an orthogonal rotation matrix,

t R . This is called polar decomposition of the deformation gradient:

t+AtX = t+AtR - t+AtU (B.12)t t t

The Green-Lagrange strains, '+AtE, are strains at time t+At referring to configuration at

t +At
time t. The Green-Lagrange strain tensor t , is a symmetric matrix which measures the

stretching deformations of material fibers, and is given in terms of the stretch matrix

U as:

t +At 1 t+At T t+At
- ( U - tU - I) (B. 13)

The product of the transpose of the deformation gradient with itself is equal to the

Cauchy-Green deformation tensor, which is invariant under rigid body rotation.

t+At C t+At T t+At (B.14)t (B.14)

187



For a rigid body motion, i.e. without any fiber stretching or change of the angle

between two fibers starting from the same point, the Cauchy-Green deformation tensor is

equal to the identity matrix I.

Considering the orthogonality of the rotation matrix, the Green-Lagrange strain tensor

can be expressed as:

t +sAt t+At T t+At RtAt=l2 1X - t +At t+A 1 - AtR - tX-I) = 2 ( P-I)

Both the Cauchy-Green deformation tensor and the Green-Lagrange strain tensor are
t t
1 12

symmetric. For a rigid body motion between times ti and t2: = oE, while for a general

rigid body motion (all the way from the time 0): tE = 0

The components of the Green-Lagrange strain tensor can also be expressed in terms of

displacement derivatives, by substituting the expressions for "txi = tx + Atu, as:

t+At t+At +At t+At t+ At

t AE + A j A i t + nI

a tA U1
tx

(B. 16)

(B.17)t+ t tj a t tu +t+AE..Ate.. +At~i !j Aui+ A u.+

it 2 t  a t at
a --1  a t - aA + -- A tU3 a -

a x i +atxi A x2 a x 2a 3X xiAU

t + At
where: , + = _

a x1

t+ At t
ui - u)

= A Utis a
atx

spatial derivative of the incre-

mental displacement,

and, the strain at time t with respect to the configuration at time t is equal to zero,

= , since =i U = 0
t t Xd

Note, that the differentiations are with respect to the known configuration at time t.
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The strain increment can be decomposed into a linear and a nonlinear part, which

facilitates the linearization that has to be done to solve this nonlinear problem:

Linear strain increment: Ateij = 1 (" ug+ tu+A )

Nonlinear strain increment: A t = , - t+Atu )

Considering virtual displacements Sui, applied on the configuration at time t+At, there

t + At
should be corresponding variations of the Green-Lagrange strain tensor , , and the

infinitesimally small strain tensor , +Ae . It can be shown that these variations are related

as follows:

t J t tA + At

8 tE = tX - St +Ate - *X , (B. 18)

where: 6 e e = -a+ + at
a ;a x1)

Both the Second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor

are symmetric matrices, and, most importantly, they do not change under rigid body

motion. Furthermore, using these stress and strain measures we can rewrite the internal

virtual work as follows, where the integration is over a known volume:

v f 0+AJ +A t +Me a t = 0 **&i '*3 t (B.19)
t+AtV 0

The PVW, which expresses the equilibrium and compatibility requirements, as well as

the stress-strain law assuming that proper constitutive relations have been employed, can

be written as:

ft+Atsaj.8t+ AtE~ = ~ AtB .8,.d /+ Atv + f. t +At S j+ AtS
j *^ss S'3%-d'V = f+ - u -d V+f-sui S +

f ~f s

JR - Su - f t+Atp - - u -d'y - J *^ -'A - u. d+ AtV
i t+AtV t+ AtV
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Since the problem is nonlinear, at least due to the large displacements and rotations,

we need to linearize the governing equations and use iterations to determine within suffi-

cient accuracy the solution for each individual time instant.

A linearization of the unknown terms that are nonlinear in displacements is required in

order to be able to determine an approximate displacement increment. Then, from the cal-

culated displacements we can determine the corresponding strains, and stresses. The cor-

responding to the internal stresses nodal point forces can then be computed and used for

the new iteration. This procedure continues until convergence within an allowable toler-

ance is reached. Therefore, we need to linearize the terms which are nonlinear in terms of

the unknown displacement increments:

The resulting system of nonlinear equations is solved using a Newton-Raphson proce-

dure where an approximation for the solution at the new time step is obtained by doing

some linearizations. Iterations need to be used to improve the approximation and satisfy

the equilibrium equations within some allowable tolerance, before proceeding to the next

time step. The iterations continue until the out-of-balance load and the associated dis-

placement increments are sufficiently small. Having determine the displacements for each

time step, the deformations and stresses of each deformable body can also be computed.

The motion of each discrete body during each new time step is determined, and updating

the positions of all discrete bodies a new contact detection procedure defines the new con-

tacts and evaluates the corresponding forces to be used in the next time step.
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Appendix C

Source Code

C.1 Mergesort algorithm to sort an N-Size array

The same sorting algorithm, mergesort, was implemented both in C++ and Java in order to

evaluate the relative performance of the two languages, see Paragraph 8.3.

C.1.1 C++ version

void sortArray(double data[], double tmp[], int start, int end)

if(start < end)

int length = end - start + 1;

int split start + length/2;

sortArray(data, tmp, start, split-1);

sortArray(data, tmp, split, end);

merge(data, tmp, start, split, end);

void merge(double data[], double tmp[], int start, int split, int end)

int length, i, j, a, b;

i=j=O;
length = end - start + 1;

a = start;

b = split;

while(a < split && b <= end)

{
if(data[a] > data[b])

I
tmnp[i] = data[b];
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}

else

tmp[i] = data[a];

a++;

}
i++;

if(a >= split)

for( ;b <= end;b++,i++)

tmp[i] = data[b];

else

for( ;a <split;a++,i++)

tmp[i] = data[a];

for(i=start;i<=end;i++,j++)

data[i] = tmpj];

C.1.2 Java version

void sortArray(double data[], int start, int end)

if(start < end)

int length = end - start + 1;

int split = start + length/2;

sortArray(data, start, split-1);

sortArray(data, split, end);

merge(data, start, split, end);

}

void merge(double data[], int start, int split, int end)

{
int length, i, j, a, b;

i=j=O;

length = end - start + 1;

a = start;

b = split;
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while(a < split && b <= end)

if(data[a] > data[b])

tmp[i] = data[b];

I
else

{
tmp[i] = data[a];

a++;

I

}

if( a >= split)

for( ;b <= end;b++,i++)

tmp[i] = data[b];

else

for( ;a <split;a++,i++)
tmp[i] = data[a];

for(i=start;i<=end;i++,j++)

data[i] = tmpU];

I
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