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Abstract
Population balances describe a wide variety of processes in the chemical industry and environ-
ment ranging from crystallization to atmospheric aerosols, yet the dynamics of these processes are
poorly understood. A number of different mechanisms, including growth, nucleation, coagula-
tion, and fragmentation typically drive the dynamics of population balance systems. Measure-
ment methods are not capable of collecting data at resolutions which can explain the interactions
of these processes.

In order to better understand particle formation mechanisms, numerical solutions could be
employed, however current numerical solutions are generally restricted to a either a limited selec-
tion of growth laws or a limited solution range. This lack of modeling ability precludes the accu-
rate and/or fast solution of the entire class of problems involving simultaneous nucleation and
growth. Using insights into the numerical stability limits of the governing equations for growth, it
is possible to develop new methods which reduce solution times while expanding the solution
range to include many orders of magnitude in particle size.

Rigorous derivation of the representations and governing equations is presented for both single
and multi-component population balance systems involving growth, coagulation, fragmentation,
and nucleation sources. A survey of the representations used in numerical implementations is fol-
lowed by an analysis of model complexity as new components are added. The numerical imple-
mentation of a split composition distribution method for multicomponent systems is presented,
and the solution is verified against analytical results.

Numerical stability requirements under varying growth rate laws are used to develop new scaling
methods which enable the description of particles over many orders of magnitude in size. Numer-
ous examples are presented to illustrate the utility of these methods and to familiarize the reader
with the development and manipulations of the representations, governing equations, and numeri-
cal implementations of population balance systems.

Thesis Supervisor: Gregory J. McRae
Title: Bayer Professor of Chemical Engineering
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Chapter 1: Introduction to Population Balance Systems

1.1 Background

Population balance systems encompass a wide range of processes and natural phenomena and

are ubiquitous in the world around us - including everything from the aerosol processes of cloud

formation that help govern our climate to inhaled drug delivery systems as well as the powder and

crystallization processes used in the manufacture of pharmaceuticals.

Unfortunately, current understanding of these population balance processes is limited by the

ability to implement accurate and detailed models of these systems and compare them with exper-

imental data. In addition, analytical models describe only a very limited number of systems under

heavily restricted conditions. Although numerical models are necessary to solve population bal-

ance systems, a number of key modeling challenges exist, as detailed in the following sections,

starting off with some examples of population balance systems.

1,2 Population Balance Process Examples

There are so many natural and man-made examples of population balance processes that it

would be impossible to list even a tiny fraction of these processes. Similarly, these processes are

found in so many different types of physical systems that they defy categorization. However, in

order to demonstrate the wide variety of these systems, a few processes will be given as examples

in this section.

1.2.1 Aerosols

Aerosol processes are essentially present in all sprays and emissions. Aerosols are generated

from numerous sources ranging from hair spray and cigarette smoke to natural processes such as

cloud formation and spray from ocean waves. While many of the processes have obvious impact

on the environment and air quality, there are numerous important transport processes. To briefly

name just a few examples, aerosols are used to deliver medications to asthmatics who use inhal-

ers, to deliver paint to car bodies in automotive paint shops, and to deliver pesticides to crops by

crop dusting.
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1.2.2 Chemical and pharmaceutical processes

In the chemical industry, any process which deals with a powder, slurry, bubbles, or spray

falls under the umbrella of a population balance system. Because of their large surface-to-volume

ratio, particle systems are often used in mass transfer and separations operations. Examples of

this include purification by crystallization; scrubbers, where a liquid spray is used to remove gas-

phase vapors; and heterogeneous catalysis, wlhere the high surface area of the particles offers a

large number of reaction sites.

1.2.3 Powder and particulate processes

A number of industries largely unrelated to the chemical industry also use population balance

systems in their powder and particulate processes - which includes grinding, milling, and sinter-

ing operations. Relevant examples range from the production of toner for laser printers and copi-

ers to the milling and grinding operations used in the mining industry.

1.2.4 Other processes

Population processes have important functions in risk assessment and disaster scenarios.

Many experts consider the "sarcophagus" surrounding the destroyed Chernobyl reactor to be a

considerable risk - not because of the reactor but because of the amount of radioactive dust left in

the building. The potential impact of an event where the sarcophagus collapsed can be modeled

by a population balance problem describing the transport of radioactive dust particles in the atmo-

sphere. Similar risk assessment studies would be equally applicable to determining the potential

effects of aerosol-delivered biological weapons released over a city or against military targets.

1.3 Physical Processes

In the wide range of physical systems described by population balances the particles are sub-

jected to a number of different processes which create, destroy, and transform the particles. As a

result, population balance models must be able to describe these processes, including particle

growth, nucleation, coagulation, precipitation, fragmentation, and other mechanisms. Figure 1-1

illustrates a few of these mechanisms.

1.3.1 Growth

Particle growth is often dominated by condensation and evaporation in the case of atmo-
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Nucleation
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Figure 1-1: Population balance system physical processes.

spheric aerosols, although analogous mechanisms in other systems might include addition of

monomers to polymers in a condensation polymerization reaction, the growth of nanoparticles in

an emulsion, crystallization, or precipitation.

1.3.2 Nucleation and precipitation

Nucleation and precipitation act respectively to introduce and remove particles from a system.

In nucleation, new particles of a minimum size are formed while precipitation occurs when parti-

cles become so large that they no longer remain suspended. Nucleation is a critical mechanism for

both crystallization and atmospheric processes. In general, nucleation mechanisms are divided

into two categories: homogeneous and heterogeneous nucleation.

1.3.3 Coagulation and fragmentation

Coagulation is the process where two particles combine to form a larger particle, where frag-

mentation is the opposite process which occurs when a large particle breaks apart to form two or

more smaller particles. While coagulation could also include processes where three or more par-

ticles simultaneously collide to form a larger particle, in most Systems these events are so rare that

only two-particle (binary) collisions, are considered.

1.4 Challenges in Solving Population Balance Systems

In spite of the importance and prevalence of population balance processes, there is a notable

lack of effective computer simulations and process modeling tools. In fact, developing models

which describe the diversity of applications and physical processes of population balance systems
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is a formidable task. Several key challenges, outlined in the following sections, explain the lack

of effective population balance models.

1.4.1 Mathematical complexity of models

Typical chemical engineering process models involve the solution of a set of differential

equations (DE) or differential algebraic equations (DAE). Most numerical solution engines

(ABACUSS, DASSL) are specifically adapted for these classes of problems. Particle processes,

however, require the solution of partial integro-differential algebraic equations (PIDAEs). A con-

siderable body of algorithms are available to solve conventional systems of differential equations;

however, the solution of DAE systems is much more difficult and is a topic of ongoing research.

Partial integro-differential algebraic equation (PIDAE) systems, which result from population

balance models and are much more difficult o solve than DAE systems, have not yet been

addressed by any numerical algorithms.

1.4.2 Representations

The wide range of systems described by particle processes requires that a correspondingly

large number of representations must be used to describe the attributes of the particles in these

systems. Choosing the representation not only defines the model system and its resolution, but

also directly determines which solution methods may be used as well as the amount of time

required to solve the problem numerically. Typically, the representations used in these systems

suffer from either ) prohibitive solution times as more components are added to the system, or 2)

an incomplete representation of the system.

1.4.3 Lack of data from experimental systems

In general, particle systems are difficult to measure. Often, as with aerosols, key characteris-

tics such as particle size cannot be measured directly and must be inferred. Often, measuring

equipment cannot measure the large number of particles in a system rapidly enough and resolu-

tion is lost. Measurement systems are often also limited by their range and unable to measure data,

over the full range of interest. For example, the lower size detection limit for aerosol systems is

often much larger than the size of nucleating particles. In addition, many experimental systems

provide data that is too complex to analyze or was generated under poorly controlled conditions,

which limits efforts to properly bound the problem and validate assumptions.
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1.4.4 Competing physical processes

Often multiple physical processes which have a similar effect on particles occur at the same

time, making experimental and model results difficult to interpret. For example, both growth and

coagulation have the effect of increasing particle size, making the two processes difficult to dis-

tinguish when interpreting results. In addition, both nucleation and fragmentation create new par-

ticles, making it difficult to determine the relative contributions of these mechanisms to particle

generation.

1.5 Numerical Simulation of Chemical Engineering Systems

1.5.1 Differential equations

Often, simple mixed or uniform systems are modeled by a set of differential equations

describing the states of the system. An elementary example of this might be a kinetic model

describing the set of reactions gi en in Equation ( 1.1)

A+B- k >C

C+C k2 ; D
(1.1)

This system would be modeled by a system of ordinary differential equations (ODEs) and solved

using a traditional numerical integration algorithm.

d[A] --k,[A][B]
di

d[B] = k [A][B]d[B] -

(1.2)
d[C]_ k[A][B]-2k2[C]

dlD]_ k2[C]2

Before this ODE system can be numerically integrated, two sets of specifications must be made.

1. parameter values (k, and k2).

2. initial values completely describing the state of the system ([A], [B], [C], [D]).

The problem of stiffness arises when kl << k2 (Shampine and Gear, 1979). From a physical

standpoint, this means that the processes occuring in the system occur at very different rates.
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Mathematically, this means that the Jacobian matrix representing the derivative of the linearized

system around its current state vector has eigenvalues which are orders of magnitude apart.

d[A]
d[A = -k 1 [A][B]

d[B]dB]= -k[AI[B]
d k[A][B] 2= f(Y, t) (1.3)

d[C] = k[A][B]-2k2[C]2 dt

d[D] = k2[C]2

Equation (1.3) gives an example of how the equations in an ODE system can be expressed in

matrix form, using the sample system given in Equation (1.2). Note thatflY,t) is a vector function

with four components in this example. The Jacobian matrix, J, is calculated by taking the deriva-

tive ofAY,t) with respect to Y, as shown in Equations (1.4) and (1.5).

f,(Y) = -k,[A][B]

f2(Y) = -k[A[B ] df(Yt)
(Y, =) 2 + J (1.4)

f3(Y) = k[A[B]-2k2 C]2 J (1.4)

f4 (Y) = k2[CJ2

-kl[BJ -k-k[A] 0 0

ij dyij k,[BI k,[A] -4k 2[C] 0

0 0 2k 2 [C] 0

The Jacobian matrix now represents the linearization of the system around a specific state of the

system. Table 1-1 summarizes one set of initial conditions and values for the reaction rate param-
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eters with the corresponding eigenvalues, Xi, of the system.

Table 1-1: Eigenvalue calculation example

Variable Value Units

kl 10 cm3/mol s

k2 0.01 cm3/mot s

[A] 10 mol/cm 3

[B] 100 mol/cm 3

[C] 1 mol/cm 3

[D] 1 mol/cm 3

Xi -1100 eigenvalue #1

Xhk2 -0.04 eigenvalue #2

13 0 eigenvalue #3

X4 0 eigenvalue #4

Note that the nonzero eigenvalues in this system are roughly 5 orders of magnitude apart,

leading to a difficult solution for the system of differential equations.

1.5.2 Partial differential equations

Unlike well-mixed systems, the solution of distributed systems is typically described by a par-

tial differential equation (PDE). The convection-diffusion equation is a classic example of a

PDE, given in its one-dimensional form here:

a = V . DVc-(V .uc) + R
at

(1.6)

Numerical PDEs solutions are implemented by some method which converts the PDEs into a

system of simultaneous ordinary differential equations (see Appendix B). Common methods for

implementing PDE systems include the method of lines, finite differences (FDM), finite element

method (FEM), and finite volume method. Please refer to Villadsen and Michelsen (1978) or Fin-

layson (1972) for more information on the implementation of these methods. Essentially all of

these methods utilize an interpolation scheme to create a representation of the solution over the
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domain of the system based on values at a specific set of node points in the solution domain.

Depending on the method, various techniques are then used to both determine node point place-

ment and a linear combination of values at these node points which reproduces the original PDE.

Writing all of the node point equations together, the ODE conversion of the PDE system might

can be written in matrix form, as shown in FTation (1.7).

dM_ uBA- I. M+DCA *M (1.7)dt

The converted system of ODEs is solved using one of the widely available numerical ODE

algorithms, such as the popular DASSL (Petzold, 1982) solver. Like most ODE solvers, DASSL

provides a convenient interface for the user through a residual function which is given the values

of dM/dt and M and returns the difference between the right and left hand sides of Equation (1.7).

residual = right hand side - left hand side

IM+ I dM (1.8)
= (- vBA- M + DCA- M)-

The vector M is generally referred to as the state vector of the system because its members

completely specify the system at any given point in time. The ODE solver uses the initial values

of the state vector and the residual function to numerically solve the model. Use of an ODE

solver, however, does not guarantee accurate solution of the system. In addition to the usual prob-

lem of stiffness, PDE systems have additional requirements which are necessary to reach a stable

and accurate solution. These requirements are dependent on many factors, including:

* the class of PDE being solved (hyperbolic, parabolic, etc.)

* parameter values of the PDE

* the representation of the solution

Depending on these factors, the difficulty of solving the PDE and the resulting accuracty vary

widely. Often, meticulous analysis of numerical error must be performed to ensure that an algo-

rithm will result in an accurate, stable answer (Morton, 1996).

1.5.3 Differential algebraic equations

Many systems are not entirely described by ordinary differential equations but also a set of

algebraic equations which govern the system. When an additional set of algebraic constraints is
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applied to a system of ordinary differential equations, a set of differential algebraic equations

(DAEs) results. Just as with ODEs, DAEs often describe a well-mixed or uniform system. In the

case where both a PDE and a set of algebraic equations define a model, a set of partial differential

algebraic equations (PDAEs) result. These PDAE systems are much more versatile and powerful

than either PDEs or DAEs and can be employed to model multi-unit systems in multiple dimen-

sions.

An example of a PDAE system is presented in the pressure swing adsorption (PSA) model

given in Appendix A. Just as with ODE systems, DAEs require specification of parameters and

initial conditions. However, the initialization of these systems is not arbitrary as with ODEs.

Subtle issues regarding the index of the system restrain the set of initial conditions that may be

used for some DAE systems. Specifically, systems of index 1 or more require special treatment

of initial conditions. In addition, DAE systems are affected by the same problems regarding stiff-

ness as are PDEs and ODEs.

In order to address the specific demands in solving DAE systems, new algorithms are being

developed (Tolsma and Barton, 2000) which ensure proper initialization of the DAE systems. Of

course, systems involving PDAEs are subject to stiffness and index initialization problems of

DAEs in addition to the error analysis requirements of PDE systems.

1.5.4 Partial integro-differential equations

As in the PDE example given above, population balances typically also describe distributed

systems. However, in population balance systems the distributed values are generally some char-

acteristics of the particles in the system - mass, diameter, composition, etc. Unlike PDE systems

commonly found in transport problems, the population balance formulation often includes an

integral term. For example, the model describing the population of particles in a system undergo-

ing coagulation is:

m/2 oo

an() (m - x, x)n(m -x)n(x)dx - n(m) Jp(m, x)n(x)dx (1.9)
o o0 0

These partial integro-differential equations (PIDEs) add a considerable amount of computa-

tional overhead to the residual evaluation required for the numerical integration algorithm.

Instead of merely multiplying two matrices by the state vector to evaluate the residual as in Equa-

33



Introduction to Population Balance Systems

tion (1.8), the algorithm now requires evaluation of two integrals for each member of the state

vector. In many population balance systems, the limits of these integrals may be evaluated over a

domain stretching over several orders of magnitude, which adds even more computational cost to

solving the PIDE system. PIDE systems which are also subject to a set of algebraic constraints

belong to a larger class of problems known as PIDAEs (partial integro-differential algebraic equa-

tions). While current research on the numerical solution of mathematical models is focused pri-

marily on PDAEs and similar systems, scant work has been made on PIDAEs, which represent

the most diffucult and challenging class of problems. The key challenges in solving PIDAEs

include:

a computational intensity of evaluating integral terms

* lack of available numerical solution packages

* poor understanding of requirements for stability and accuracy of solution

* stiffness and index problems.

Figure 1-2 attempts to summarize some of the characteristics, applications and solution pack-

Problem Systems Solver

RODE *.well-mixed -ode45 *Matlab
Ordinary Differential Equation *uniform -Maple *DASSL
-stiffness

PDE
Partial Differential Equation -distributed *ABACUSS
-stiffness .multiple dimensions *FLUENT
-stability and accuracy

PDAE
Partial Differential Algebraic Equation -distributed
-stiffness .multiple dimensions *DAEPACK
-stability and accuracy .multiple subsystems
-index/consistent initialization

PIDAE
Partial Integro-Differential Algebraic Equation *distributed
-stiffness -multiple dimensions
-stability and accuracy -multiple subsystems *none
-index/consistent initialization *population balance processes
-integral evaluation

Figure 1-2: Numerical solution methods summary.

ages available for the various classes of mathematical problems.
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1.6 Applications of Population Balance Models

The general lack of understanding of population balance processes coupled with their preva-

lence provides a rich area for research. In particular, there are several key areas where the devel-

opment of population balance models will have significant impact.

1.6.1 Insight into physical processes

As mentioned before, many population balance processes include competing mechanisms -

such as coagulation and growth or nucleation and fragmentation. Experimental data often pro-

duces little insight as to which of these mechanisms are dominant, however models have the

advantage of transparency. Unlike experimental results where only the collected data is available,

models are transparent in the sense that any and all of the intermediate data can be observed. This

provides a great tool for interpreting the results of the model by comparing the relative contribu-

tions of nucleation, fragmentation, coagulation, and growth under varying conditions. Further-

more, these results form the basis for understanding the results of experiments and guide the

design of new experiments.

1.6.2 Development of measurement systems

The nature of population balance processes makes it virtually impossible to tabulate direct

measurements of population balance systems. Several challenges exist which prohibit instanta-

neous measurement of all population characteristics:

1. large number ofparticles to measure - by nature, population balance systems include a

large number of population members or particles. Individually counting and measuring each pop-

ulation member is impossible; thus inference methods must be employed to estimate the popula-

tion characteristics. Even using sampling methods, it is often impossible to make sampling-based

population measurements fast enough to track the evolution of a dynamic system.

2. simultaneous measurement ofpopulation characteristics - in systems where more than one

population characteristic is of interest, it is often difficult to obtain simultaneous measurements of

these characteristics. For instance, measuring both aerosol size and composition can be accom-

plished by first passing the aerosol through a differential mobility analyzer (DMA) and then a

mass spectrometer. However, when sampling a system with a large number of particles, it is dif-

ficult to determine the pairing between DMA and mass spectrometer measurements.
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3. scaling ofparticle characteristics - even accurately measuring a single population charac-

teristic can present significant challenges. For instance, particle mass typically varies over sev-

eral orders of magnitude in an aerosol system, requiring that the measurement system be able to

quickly measure both very tiny and very large particles with high accuracy.

In order to test the accuracy of the measurement systems, there must be some way of accu-

rately determining what data the measurement systems should produce as the result of a given

particle input. Implementing population balance models to reproduce the internal physics of the

measurement systems provides test data against which the measurement process itself can be ver-

ified, tested, and calibrated.

1.6.3 Model discrimination and refinement

Model discrimination is a tool which enables the evaluation of a number of models against

experimental data to determine which model most accurately represents the system. The ability to

incorporate different physical mechanisms into a model enables comparison and testing of these

mechanisms against one another. For instance, several different coagulation mechanisms exist

which describe the coagulation process over different particle size ranges and operating condi-

tions. The data generated by population balance models based on different coagulation mecha-

nisms can be used with experimental data to determine which coagulation mechanism is active in

a given system.

By varying the operating conditions and observing which mechanisms have increased and

diminished effects, it is possible to begin establishing common standards and rules of thumb for

population balance systems - and add to the general body of knowledge for these systems. Fur-

thermore, model discrimination will reveal ranges where none of the current mechanisms work

particularly well. In this way model discrimination will also provide motivation for refinement in

areas where current models have failed to adequately describe the physics of the system.

1.6.4 Parameter estimation

Parameter estimation is the complement of model discrimination. While model discrimina-

tion answers the question, "Which model do I use?" parameter estimation answers the question,

"What are the parameter values for this model?" Both of these processes are necessary to provide

an accurate and optimized model for a given system.
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The parameter values currently used in population balance models are derived from the theory

of the underlying physical mechanisms of coagulation, growth, nucleation, fragmentation, etc.

Parameter estimation determines experimental values of these parameters by data assimilation. In

this way, experimental parameter values can be compared with theoretical parameter values. For

instance, in an application where detailed experimental data is available in the form of n*(m) for a

system governed by Equation (1.9), the population parameter esimation problem would seek to

reduce the error norm between the model results and experimental results by varying the parame-

ter 3.

min = I[n(m)-n(m)ll (1.10)

This may require many model iterations to produce reliable results, and therefore a fast and

accurate solution of the population balance model is needed. For more on advanced techniques

for parameter estimation and data assimilation, please refer to Papoulis (1991).

1.6.5 Parametric uncertainty analysis

In many respects, parametric uncertainty analysis is the opposite process of parameter estima-

tion. Parameter estimation take noisy data and predicts the values of the model parameters, while

parametric uncertainty analysis takes a select subset of model parameters and projects the varia-

tion expected in the output (see Figure 1-3). Chapter 11 presents an example of parametric uncer-

1'(K1 ) 

P(kr

uncertain inputs uncertain uutput

k.netal Inp uts P(Y)
itAD _ "1 Se - S.- r 

jt�

: I I I

Y = f(k1 ,k 2, km)k 

km y(k)

Figure 1-3: Parametric uncertainty analysis problem summary.

tainty analysis performed by the Deterministic Equivalent Modeling Method (DEMM) developed

by Tatang (1994) on a population balance model with coagulation and growth.
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Uncertainty analysis aids the development and understanding of population balance models in

three key ways:

1. uncertainty analysis reveals which parameters have the largest and smallest affect on the

solution.

2. by comparing the uncertainty in the input parameters and the resulting uncertainty in the

solution, uncertainty analysis gives an estimate of how accurately model par meters can be deter-

mined based on experimental data.

3. performing uncertainty analysis at different time points in a dynamic system provides

insight into which stages of the process are most sensitive to the system parameters.

1.7 Summary

In summary, the current understanding of population balances is very limited due to the lack

of available experimental data and viable models to describe these processes. Experimental data

is difficult to gather because a large number of indirect measurements must made very rapidly by

different instruments in order to estimate population properties. Modeling these systems has suf-

fered from the lack of ability to develop fast and accurate models, and results of existing models

has been left with scant experimental data for verification.

1.8 Structure and Outline of This Work

This work starts off by introducing the concept of a number density distribution (Chapter 2),

drawing analogies with probability density functions. Chapter 3 uses the definition of number

density functions to derive the transformations between the various forms of the number density

distribution. Using the number density function as the underlying representation of the popula-

tion, Chapters 4 and 5 derive single- and multi-component forms of the population balance equa-

tion for the mechanisms of coagulation, fragmentation, growth, and sources/sinks. Chapter 6

performs an analysis of the growth rate under the varying mechanisms for particle growth, gener-

ating insights into the solution of the population balance. Chapters 7 and 8 develop the methods

for solving multicomponent systems, while Chapters 9 and 10 present a case study of a physical

system, illustrating how optimal scaling methods can be used to drastically reduce solution times.

Finally, Chapter 11 presents conclusions as well as a discussion of directions for future research.
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Chapter 2: Representation of Populations

2.1 Distribution Functions Introduction

In order to implement models of particle systems, some framework is needed to describe how

all the particles in the system are distributed over the properties of interest. To accomplish this,

we use distribution functions which take the form n(~), where ~ represents some attribute of the

particles in the system. Table 2-1 summarizes some of the common attributes used as 4.

Table 2-1: Common distributionfunctions n()

- symbol ( - meaning n(4)

Dp particle diameter n(Dp)

m particle mass n(m)

I crystal length n(l)

v particle volume n(v)

Distribution functions describing populations act much like probability density functions, and are

similar in the fact that they can be either discrete or continuous.

2.2 Discrete Representations of Discrete Systems

If we wanted to calculate the probabilities of the outcome of rolling two dice at a time and

recording the sum, we might start by writing out all of the possible outcomes in a 2x2 matrix.

Table 2-2: Listing of outcomes from the sum of rolling two dice

Re 1 2 3 4 5 6Result

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12
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Representation of Populations

By counting the number of outcomes that lead to each given result, we obtain the frequency of

results among the outcomes. In Table 2-2, the sums 2 and 12 are the least frequent with only one

outcome each, while the sum 7 is the most frequent occurring in 6 outcomes. For this problem,

tabulating the frequency of outcomes is a trivial task, as summarized in Table 2-3.

Table 2-3: Frequency of outcomesfrom rolling two dice

Sum
(outcome) Frequency

2 1

3 2

4 3

5 4

6 5

7 6

8 5

9 4

10 3

11 2

12 1

Figure 2-1 plots the number of outcomes as a function of the sum. If the outcomes are considered

as a population, then Figure 2-1 can be interpreted as a representation for the population of out-

comes. Simply changing the axes reveals that this representation is equally well-suited for repre-

senting the number of crystals in a population as a function of the number of defects. Figure 2-2

tells us that this population contains three crystals with no defects, four crystals with one defect,
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Figure 2-1: Discrete frequency plot describing the number of outcomes for each possible sum
of rolling two dice.

v)

10

a
Ina

U

Z0aEz

8

6

4

2

n - T
0 2 6 8

r
10 12

Crystal Defects

Figure 2-2: Discrete frequency plot describing the number of crystals as
ber of defects on each crystal.
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Representation of Populations

two crystals with two defects each, etc., as shown in Table 2-9.

Table 2-4: Crystalpopulation as afunction of defects

Number of
Crystals

0 3

1 4

2 2

3 5

4 7

5 8

6 12

7 11

8 8

9 6

10 3

11 1

12 0

Note that both of these processes are inherently discrete - it is impossible to have a crystal with

2.3 defects, just as it is impossible for a die roll to yield a non-integer result. Likewise, the graphs

representing these two populations are presented as discrete graphs where the points are delta

functions of varying magnitude. Thus, integrating the appropriate distribution function over the

entire domain in both systems will result in the total number of outcomes and particles, respec-
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tively.

Table 2-5: Comparison of probability outcomes and particle populations

Property Probability Particles

System Two dice Crystals

Attribute Sum of outcomes from Number of defects
rolling

Defining Function Probability mass function Discrete population dis-
tribution

Total number 36 70

Note one distinct difference between probabilistic systems and particle processes: frequency of

outcomes is not the standard notation for expressing probability mass functions. Rather, the rela-

tive frequency compared to the other outcomes is used to represent the probability pi of that indi-

vidual outcome.

Outcomes of i
Total outcomes (2.1)

Calculating the probability mass function requires dividing the number of outcomes at each point

by the total number of possible outcomes. This procedure normalizes the sum of all probabilities

to one; for particle systems no such normalizing procedure is used or desired.

2.3 Bins: Discrete Representations of Continuous Systems

Often, practical limitations produce discrete data sets of continuous processes. A classic

example of this occurs when sieves are used to sort objects by size or differential mobility analyz-

ers are used to classify aerosol particles. As an example, an intermediate step in the production of

pharmaceutical tablets involves the granulation of a recipe including starch and the active ingredi-

ent. The resulting granules may be classified by size using sieves. This sieve data typically

records the amount of granules caught between sieves; mesh opening sizes in the sieves dictate

the bounds of the "bins" in which these particles are classified, as shown in Figure 2-3.
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Opening Size

0.5 mm

1.0 mm

1.2 mm

1.5 mm· i-· ~ TA 

0
0
0

Bins
0.0-0.5 mm

0.5-1.0 mm

1.0-1.2 mm

1.2-1.5 mm

1.5+ mm

0

Figure 2-3: Arrangement of sieves and the resulting "bins" into which particles are collected.

Sample data for this system could be expected to as given in Table 2-6.

Table 2-6: Sample sieve data

Lower Bin Upper Bin Size Mass in Bin (g)
Size (mm) (mm)

0 0.5 0.22

0.5 1.0 0.40

1.0 1.2 0.23

1.2 1.5 0.31

1.5 1.7 0.24

1.7 2.0 0.32

2.0 2.5 0.47

2.5 3.0 0.32

3.0 3.2 0.084

3.2 3.5 0.071

3.5 4.0 0.053

46

Sieve

- -

--
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Note that the mass in each bin is no longer centered at one point within the bin, but rather spread

across the entire range of the bin. Plotting the mass contained in each bin over the bin ranges

yields Figure 2-4.

0.4

O.
0

1 0.2

0.1

e 1 2 3 4
Granule Size (mm)

Figure 2-4: Bin plot of granule data gathered by sieves.

Just as with the systems in the previous examples, integrating this distribution function over the

domain should yield the total mass of the system, 2.72 g. However, there are two problems:

• the integral of the distribution (sum of the areas of all the columns) is equal to 1.05, not 2.72

* the area of each column - and thus the total integral - has units of g'mm, not g.

To address these issues, it is necessary to adjust the distribution so that the area of each column is

equal to the mass in that specific bin. Because the x axis is already defined by sieve spacing, it

cannot be changed. The only other component of the area - the height - is thus defined by Equa-

tion (2.2).

Massi = Column Height Bin Width

Mass
Column Heighti = Bin Widthi

(2.2)

Thus, column height has units of g/mm and we can now add a column to Table 2-6 which repre-

sents the distribution value, referred to as the mass density in this case because it represents the
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amount of mass per unit length of the x axis.

Table 2-7: Sieve data with distribution

Lower Bin Upper Bin Size Mass Density
Size (mm) (mm) Mass in Bin (g)Size ()mm) (m) (g/mm)

0 0.5 0.22 0.44

0.5 1.0 0.40 0.80

1.0 1.2 0.23 1.15

1.2 1.5 0.31 1.05

1.5 1.7 0.24 1.22

1.7 2.0 0.32 1.06

2.0 2.5 0.47 0.93

2.5 3.0 0.32 0.64

3.0 3.2 0.084 0.42

3.2 3.5 0.071 0.24

3.5 4.0 0.053 0.11

Of course, this is a mass distribution; if we want to know the number distribution, then we would

need some way of inferring particle number based on bin width and the total mass in each bin (see

Chapter 3 for information on estimation techniques). Graphing the corrected mass density func-

tion results in Figure 2-5. Note the profound contrast of distribution shape when compared with

Figure 2-4. Before being correctly normalized, the data appears irregular and bimodal; after nor-

malization the distribution clearly has one mode and is relatively smooth. This is an example of a

continuous process with a discrete measurement system, which in turn leads to the bin-type repre-

sentation. The agglomeration process of creating the granules is continuous because the granules

can take on a continuous range of values. The sieve measurement system, however, restricts the

data to a much coarser bin-based representation, a common problem with measurement systems

which is addressed through sophisticated statistical techniques such as the kernel function estima-

tor (Press et al., 1993).

2.4 Continuous Population Representations

In some systems, it is possible to collect data in a very large number of bins. Consider a sys-
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Figure 2-5: Density plot of sieve data.

tern which produces the sum of 50 independent "continuous die rolls," each of which yield a real

number between 1 and 6 with uniform probability. The range of possible results of these sums is

between 50 and 300. The results of 10,000 of these sums are plotted in Figure 2-6 as a bin distri-

bution, where the integer values 50, 51, 52, ..., 299, 300 define the bin boundaries. Note how

4-

,u 300
0
E= 200

100

a 100 1
sum

250 300300

Figure 2-6: Bin representation of continuous die roll experiment data.

closely this distribution resembles the continuous distribution included for comparison purposes,
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Representation of Populations

as evidenced by Table 2-8. These two distributions are in fact so close that Figure 2-7 is included

Sum

Figure 2-7: Close-up bin representation of "continuous dice" die roll experiment data.

to offer a close-up.

In general, as the bin width of any bin representation decreases, the representation approaches a

continuous distribution; in this particular case, the representation approaches a Gaussian distribu-

tion.

Table 2-8: Comparison of sample and analytical representation statistics

StandardDistribution Mean DeviaionDeviation

Data 174.986 10.206

Analytical 175.000 10.244

In the limit as bin width decreases in the discrete representation, A - 0 and the expression for

the number of particles in any given subdomain of the distribution is transformed from a summa-

tion into an integral:

N = E nii- = n(O')d'
a < 1s fb Oa

(2.3)
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The array of data points ni becomes a continuous number distribution n(+), defined as follows:

DEFINITION

The number density function ofparticles is given by n(+, t) such that n(+, t)d/ is the number
particles in the size range [07 ~ + d+] at time t

n(f, t) , (An tAd A

Figure 2-8: Number density representation with highlighted size range segment.

In many ways, the number density function is directly analogous to a probability density function,

as shown in Table 2-9. For a more developed discussion of probability distributions, please refer

to either Appendix D, Drake (1967), or Papoulis (1991).

Table 2-9: Probability density function and number density function comparison

Density function Notation Distribution Slice Interpretation

Probability fx(x) fx(x)dx probability of x taking on a
value between x and x + dx

Number n() n(4)d number of particles between 
and + d+

Figure 2-9.illustrates a sample probability density function. The probability that x lies between a

and b can be calculated by integrating the probability density function from a to b:

b

Prob(a <x < b) = Jf(x)dx = fx(4)d

a

b

(2.4)

a

Note the change of variables in the second integral to emphasize that distinction between x and

the integration variable, ,. Similarly, the number of particles between sizes }a and 4b can be

determined by evaluating the integral of n({) from Pa to 4b, as shown in Equation (2.5).
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f (X) f 4-

x x+dx

Figure 2-9: Probability density function representation with highlighted distribution segment.

N(t a < < b, t) i n(l)d (2.5)

Note again the change of integration variable, this time from w to A. This emphasizes the fact that

both variables denote mass, but the value of v is simply an integration variable where is the

independent variable in the definition of N(4).

The cumulative probability density function is defined as the total probability of x taking on a

value less than or equal to x0. This function is calculated by taking the integral of the probability

density function for all possible values of x less than x.

Xo

px,• (Xo) = Prob(x < xO) -f()d (2.6)

The cumulative number density function likewise represents the number of particles size or less

and is defined as follows:

N() = n(W)dW (2.7)

0

Clearly, if the upper limit of integration in Equation (2.7) were differentially increased from + to 4

+ d+, then n(4)d more particles would be added to the system and the new total number of parti-

cles would be N() + n(4)d4. For this reason, n(4) is often written as dN/d4, to emphasize that it

represents the incremental number of particles added to the system as is increased diffferen-

tially.
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N( + d) = N(~) + n(,)d
dN (2.8)

N( + d) = N(~) + a (do)

We can now construct an augmented version of Table to 2-1 which includes the this new number

density notation.

Table 2-10: Common distribution finctions n(+)

+ - symbol - meaning n(+) dN/d+

Dp particle diameter n(Dp) dN

dDp

m particle mass n(m) dN
dm

l crystal length n(l) dN
dl

v particle volume n(v) dN
dv

The total probability of all possible outcomes in a system is always equal to

presented as the integral of the probability density function from -oo to oo :

1; here this result is

Prob(- <x < oo) = fx(4)d = 1 (2.9)

The number of particles in the distribution is computed by integrating over all possible values

(0, ):

00

(2.10)Ntota = N(O < < oo) = n(w)d*

0

Table 2-11 summarizes the similarities between integrals over probability density and number
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density functions.

Table 2-11: Probability Density and Number Density Function Comparison

Variable ofIntegrad Limits integrationValue Interpretationintegration

fx(x) (a, b) dx Prob(a < x < Probability of a < x < b
b)

n(4) (+1, 2) d{ N(+1) Number between +41, 2

f(x) (-o, b) dx Prob(x < b) Cumulative probability

n(4) (0, +2) do N( 2) Cumulative number density

fx(x) ( , oo ) dx 1 Total probability of all out-
comes

n(+) (0, ) d4 N Total number in population

Note that if the units of d~ are mass, then the units of n(4) must be mass 1 in order for Noa, to be

dimensionless. However, when dealing with real systems, the number density must be expressed

in terms of the size of the system where the population lives. For example, with railroad tracks,

one might be interested in the population of the mass of defects per mile. In this case the number

density of interest n() would express the number of defects per mile of track and the units would

be defects/mile.

2.5 Continuous Representation of Discrete system

As a final example, consider a process with a large number of discrete data points. Instead of

the sum of 50 "continuous die rolls" we will use the sum of 50 regular die rolls. Plotting the dis-

tribution of 10,000 of these individual sum results in Figure 2-10, where the stems of the individ-

ual data points have been omitted for graphical clarity. Again, note how the close spacing of the

data points results in a distribution which is closely approximated by a continuous distribution,

again a normal distribution. Table 2-13 demonstrates how closely the population statistics match
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the normal distribution.

Table 2-12: Comparison of die roll sums and Gaussian distribution statistics

Standard
Distribution Mean SeiadaioDeviation

Data 174.980 12.076

Analytical 175.000 12.159

Figure 2-10 compares these distributions.

A-

L 

I- '.
.

100 200

Sum

300 400

Figure 2-10: Comparison of "discrete dice" experiment and continuous distribution.

Although the process which generated this data is inherently discrete, the discrete data points are

so close together that for all practical purposes this problem may be treated almost identically to

the continuous process in Section 2.5 - both the continuous and discrete die roll systems produce

the same mean and only a slightly different standard deviation.

In fact, many physical systems can ultimately be treated as either discrete or continuous sys-

tems. In the case of a distribution of aerosol particles, the number density function could be a

function of either the number of molecules contained in a particle or the diameter of the particle.

For larger aerosol particles, a number density function of the number of molecules would result in

a discrete distribution with very close spacing, as in Figure 2-10; in this case it is more sensible to
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use particle mass as the independent variable in the number density function. However, for very

tiny nucleating particles that contain far fewer atoms, the discrete points in the number density

function will be spaced much further apart to the point where a continuous distribution would be

inappropriate. For further reference, Apostol (1969) presents an in-depth treatment of the relation

between discrete and continuous distribution functions, drawing examples from probability the-

ory.

2.6 Importance of Representations

The discussion of numerical solution techniques in Chapter 1 alludes to the importance of rep-

resentations in the numerical solution of PDE systems. For pc, station balance problems, the rep-

resentation is the conceptual model which forms the framework upon which a system is built.

The level of detail included in a representation defines the attributes of the population being stud-

ied and sets bounds on the level of detail and information in the model. To cite a well-known

example, each United States census creates a representation of the population of the United

States. The attributes - address, sex, age, income, race, etc. - included define the level of detail in

the representation, which is a conceptual model of the true population. Of course, the census can-

Collection
IPopulation attributes 1 Error

_ Raw

Data
U

Estimation Algorithm
Attributes of

Interest I

Figure 2-11: Diagram of conceptual and data representations of a population.

not collect all information about the population, so it is designed to collect what is deemed to be

the most relevant information. Because the representation does not include data such as eye color

or weight, this does not mean that the true population does not possess these attributes; it merely
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means that the conceptual representation being used does not include these attributes. Choosing

the attributes to be included in the representation is only the first step. Data collection procedures

must be defined and statistical estimation techniques employed to ensure that the population data

is of high quality - that the representation accurately matches the characteristics of the chosen

attributes in the true population. In spite of all efforts taken to ensure high quality data collec-

tions, errors will always be present in the data as well as the collection methods. Estimation algo-

rithms are used to compensate for these errors. For the United States census, this means that

sophisticated statistical techniques are employed to ensure that the census accurately reflects the

number of persons in the United States and their demographic information. As with many popu-

lation processes, gathering, analyzing and interpreting data is no simple task - recent improve-

ments in statistical techniques have been projected to save over $100 million in the 2000 census

(Cohen, White and Rust, 1999). As we will see in the following chapters, many of the same chal-

lenges exist in most population balance systems. Furthermore, the dynamic population balance

systems considered here place an additional requirement on the population representation: that it

interfaces easily with the governing equations for the physical system. In summary, there are sev-

eral key challenges in formulating an appropriate representation for a population balance process:

* correct choice of population attributes to accurately represent the true population

* collection of data and definition of statistical techniques to ensure that the representation

accurately matches the attributes of the true population

* ability of the representation to accurately reproduce the physics of the system

* ease of implementation in a numerical solution

Often, this last challenge requires that some transformation of the initial representation is required

to ensure that the data is properly scaled for use in a numerical model (see Chapter 6). Scaling

transfornlations are necessary to transfer population representation data to and from formats

which are used in experimental systems, computer models, and graphical or tabular presentation

of the data.

Representations are also used to catalog data from experimental measurement systems. Rig-

orous understanding of these representations enables the translation of population balance system

data from experimental measurement systems to computer models and vice versa. Representa-

tions are often motivated by the physics of the system in question, forming a common language
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with which the processes in the system may communicate.

To simplify matters, the representation of populations with only one attribute of interest will

be addressed first. In one-attribute population systems - also referred to as one-dimensional sys-

tems - there are two key questions:

1. which attribute is dominant?

2. what will be the metric for this attribute?

3. is the metric discrete or continuous?

For instance, take a system representing a population of polymer particles where size is the

attribute of interest. If the polymer chains are very short and only contain a few monomers each,

it makes sense to represent their size by a discrete set of "bins" which represent polymer chains

containing a specific number of monomers, as illustrated in Figure 2-12.

OP
Bin Member 0 P ot

oI PoP 

Bin Number 1 2 3 4 5

Figure 2-12: Polymer particle size bins corresponding to discrete numbers 3f monomers in
each polymer.

This type of representation seems suitable so long as the maximum size polymer chain is small

enough that a reasonable number of bins are necessary to represent the population. For example,

if the largest polymer chains in this system contained less than 40 monomers, then 40 bins at most

would be needed to represent the population. However, if the largest polymer chains contained

upwards of 1,000,000 monomers, this representation would clearly be impractical. In such sys-

tems the differences between the masses of polymer chains are so miniscule that a continuous rep-

resentation based on polymer chain mass might be a more manageable representation from a

numerical standpoint. A more natural implementation of a continuous representation might apply
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to a population of droplets in cloud formation where particle diameter could be used as a continu-

ous attribute of the population. Other attributes can be used almost equally as well as discrete or

continuous variables, such as age. One could easily see where the U.S. census might prefer to use

a discrete representation for age where a nuclear physicist studying the half-life of an unstable

nucleus would prefer to use nano- or micro-seconds as a continuous measure of decay time.

2.7 Discrete Population Representations Example

One way of cataloguing population data is to specify the number of members possessing cer-

tain properties. For a population of rabbits, one might list the number of rabbits associated with

different age ranges, as shown in Table 2-13.

Table 2-13: Rabbit population data

Age Range NumberNumber
(months)

0-2 11

2-5 18

5-10 9

10-13 6

13-16 5

16-25 7

25-35 4

35-45 0

45-50 1

This data is readily convertible to a histogram, as shown in Figure 2-13. Note that this histogram

represents the number of rabbits in each age range, plotted at a constant value over the entire age

range, essentially dividing the age range into a series of bins which hold varying numbers of rab-

bits. If Figure 2-13 represented the steady state of a rabbit population, one would expect that the

number of rabbits would decrease with age. If 11 rabbits are born each month, then how can there

be 18 rabbits with an age 3 months? After rabbits are born, they can only be reduced in number

due to death. Likewise, why does it appear that there are disproportionately more rabbits in the

16-25 month age range than in the 13-16 month age range.
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Figure 2-13: Discrete rabbit population example.

The key is to look at the number of rabbits per month in the distribution. There are actually 7/

9, or 0.78 rabbits per month in the 16-25 month age range while there are 5/3, or 1.67 rabbits per

year in the 13-16 month range - roughly twice as many!

In order to account for varying bin width, the concept of a number density function is intro-

duced to normalize the data. If we think of the number of rabbits in the age range (Ni) as the prod-

uct of the number distribution (ni) and the width of the bin, then for age range i:

Ni = niAage i (2.11)

and it follows that the number density can be calculated for each interval by dividing the total

number in the interval by the length of the interval:

N.
ni = Aage (2.12)

Aage,

Note that Ni has units of rabbits and Aage has units of months; therefore the number density func-

tion has units of rabbits/month. Table 2-13 can now be augmented by adding in the number den-
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sity function of rabbits.

Table 2-14: Rabbit population and number density data

Age Range Number Number Density
(months)

0-2 11 5.50

2-5 18 4.5

5-10 9 2.25

10-13 6 2.00

13-16 5 1.67

16-25 7 0.78

25-35 4 0.40

35-45 0 0.0

45-50 1 0.20

While the discrete population plot of number of rabbits vs. age (Figure 2-13) indicates that the

number of rabbits is an erratic function of age, the number distribution of rabbits shown in Figure

2-14 indicates that the number of rabbits declines monotonically with age through most of the dis-

tribution, a much more logical result.

Because the number distribution of rabbits is a function of the rabbit age, it is common to

write the number distribution of rabbits as n(age), which implies a number density function of

age. In cases where particle sizes are concerned, this function becomes n(size); often particle

diameter, Dp, is used to represent particle size and n(Dp) results. Likewise, if the symbol m is

used to denote mass, the number density based on mass is n(m). If the number distribution varies

as a function of time, it is written n(m, t).

2.8 Multiattribute & Multicomponent Distributions

2.8s- Continuous representations

In many systems, just one single attribute is not sufficient to describe all of the population

parameters of interest. In the general case, is a vector with n components 41, 2, ...4, each rep.

resenting one attribute of the distribution. The basic definition of the number density distribution
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Figure 2-14: Density plot of rabbit population.

given in section 2.4 still applies, except that now the interval [, 0 + do] exists in n dimensions.

Accordingly, n()do now takes the form n(Ol, 02, '",)d0ld2...dln which now represents the

number of particles in the multidimensional interval [$1, 1 + dl 1, 0 2, 02 + dO2 , ... , On, On + dfn]'

Tables 2-15 and 2-16 compare the list of attributes and their corresponding units for a pair of two-

dimensional systems and the general case n(O).

Table 2-15: Sample attributes for two-dimensional systems
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System Attribute I Symbol I Units Attribute 2 Symbol 2 Units

General - fi - . 2 -

Crystals Length I mm # of Defects k

Aerosol Diameter Dp Jm Density p g/cm3

. . . . . . ...... t 
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Table 2-16: Summary of two-dimensional distributions and corresponding units.

Note that while the domain of the differential element do was previously a differential line seg-

ment, it is now a differential area element, as shown in Figure 2-15.

n(d. .&-)
* NTI 'TZZ

12

ai

41

Figure 2-15: Illustration of a two-dimensional population domain.

Just as with the one-dimensional case, the same probability analogies apply to the two-dimen-

sional population systems, and can be directly generalized from Table 2-10. For instance, to cal-

culate the number of particles in the segment of the population ranging over the interval 1 = (al,

bl) and 2 = (a2, b2) the one-dimensional integral given in Equation (2.5) is expanded to a two-

dimensional integral, as given in Equation (2.13).

b2 b,

N(al < 1 < b, a2 < 2 < b 2) J'n(Wv1, 2)dWldv 2

a2 al

(2.13)
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System Distribution Units # ofparticles in"slice"

General n({ 1, 2) - n(OI, 02) dld 2

Crystals n(l, k) I/mm n(l, k) dl dk

Aerosols n(Dp, p) I/(mmu g/cm3) n(Dp, p) dDp dp
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If n(Ol, *2) were a two-dimensional normal distribution as given in Equation (2.14), then the inte-

gration given in Equation (2.13) would be measuring the volume shown in Figure 2-16.

n(01,02)

Figure 2-16: Population "slice" of a two-dimensional normal distribution.

- exp/..l "2 x 2n(42, 2) 2 227rr,2 2 , 2a22
(2.14)
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The distribution parameters and integration limits are summarized in Table 2-17.

Table 2-1 7: Summary ofparameters used in Figure 2-16

Symbol Parameter Value

No Total number in distribution 1000

Ct ! Mean of 1 0.4

Ct2 Mean of 42 0.5

a1 Standard deviation of 4)1 0.2

a2 Standard deviation of 02 0.3

al Lower limit of 41 0.35

a2 Lower limit of 42 0.3

b1 Upper limit of 41 0.45

b2 Upper limit of 42 0.4

2.8.2 Discrete multiattribute representations

Discrete multiattribute representations are very similar to single-attribute representations. In

the example of a two-attribute system, the "stems" will be placed on the x - y plane of the graph

and the number at that point will be shown in the z-direction.

2.8.3 Multiattribute bins representations

Just as with one-attribute properties, it is common that data for multi-attribute processes is

gathered in bins. In the two-attribute case, these bins are two-dimensional. Take the example of

a crystallization process with data on crystal length and the number of defects in a crystal given in

Table 2-18. The first two columns and rows present data on crystal length and number of defect
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bin sizes, while the remainder of the table reports the number of crystals in each of these bins.

Table 2-18: Two attribute crystal distribution

Lower # of 0 3 7 15 20 27
Range Defects 

Crystal Upper 3 7 15 20 27 35
Length Range
(mm). 

0 0.1 5 5 7 4 6 5

0.1 0.2 4 4 8 5 5 6

0.2 0.4 7 11 17 11 12 14

0.4 0.8 15 21 38 25 26 29

0.8 1.0 7 10 20 13 15 15

1.0 1.3 10 13 28 19 23 24

1.3 1.7 12 15 33 23 36 37

1.7 1.9 5 6 15 11 17 19

1.9 2.0 2 4 7 5 8 10

Plotting the heights of these two-dimensional bins as given by the raw data in Table 2-18 results

in Figure 2-17. This representation suffers from the same normalization problem that affected the

data in Table 2-6. However, now the bin data requires normalization along both of the attribute

axes. Note that the data still needs to be normalized to produce a density function.

Ni j = nij Alengthi . Adefectsj

(2.15)
n =

Alengthi Adefectsj
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0 

Figure 2-17: Two attribute crystal distribution as a function of size and defects.

67

2



Representation of Populations

The normalized data is presented in Table 2-19.

Table 2-19: Two attribute crystal distribution bins data

Lower # of 0 3 7 15 20 27
Range Defects _

Crystal Upper 3 7 15 20 27 35
Length Range
(mm) ,

0 0.1 16.67 12.50 8.75 8.00 8.57 6.25

0.1 0.2 13.33 10.00 10.00 10.00 7.14 7.50

0.2 0.4 11.67 13.75 10.63 11.00 8.57 8.75

0.4 0.8 12.5 13.13 11.88 12.50 9.29 9.06

0.8 1.0 11.67 12.50 12.50 13.00 10.71 9.38

1.3 1.3 11.11 10.83 11.67 12.67 10.95 10.00

1.3 1.7 10.00 9.38 10.31 11.50 12.86 11.56

1.7 1.9 8.33 7.50 9.38 11.00 12.14 11.88

1.9 2.0 6.67 10.00 8.75 10.00 11.43 12.50
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Plotting this normalized data results in Figure 2-18. Clearly, where no trend was visible in .

Number
n\~r;rP,
WV2u1ty 15

Z

Defect
ingth (mm)

Figure 2-18: Two attribute crystal distribution as a function of size and defects.

Figure 2-17, this plot shows a distinct relation between crystal length and the number of defects.

The units of this distribution are now /mm, as defects are unitless. Again, proper normalization

correctly represents the data, greatly improving otherwise incoherent data.
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Chapter 3: Transformations of Population Representations

The ability to manipulate population representations is critical to their utility in a wide range

of problems. In particular, two key operations are needed to efficiently work with population rep-

resentations.

· transformations - the ability to change distributions between various forms, such as from a

function of diameter n(Dp) to a function of particle volume n(v).

* scaling - the ability to manipulate the scale of the distribution to reflect wide range of parti-

cle sizes present in many systems.

As we will see in Chapter 6, the ability to transform number density distributions to a proper size

scale is critical to the efficient numerical solution of particle growth problems in a wide variety of

physical systems. The following sections detail the fundamentals of these transformations.

3.1 Common Transformations

Transformations are commonly used in the modeling of particle processes. Transformations

change the independent variable over which the distribution is defined. One example of a trans-

formation is used to change a distribution from n(v) to n(Dp):

iD2
n(Dp) = n(v) 2 (3.1)

Figure 3-1 shows the effects of transforming an exponential distribution from n(v) to n(Dp).

Equation (3.2) presents the form of an exponential population distribution used to produce n(v) in

Figure 3-1, using the parameters summarized in Table 3-1.

n(v) = Na e-a v (3.2)

Note that the distribution parameter units are consistent with the fact that the units of n(v) are I/

71



Transformations of Population Representations

II

V
oo

4 Dp U

Figure 3-1: Example of transformation from n(v) to n(Dp).

cm3 and the units for n(Dp) are 1/gm.

Table 3-1: Exponentialpopulation distribution parameters

Symbol Parameter Value Units

a exponential distribu- 1.0x 10- 2 1/cm3

tion parameter

No total number of parti- 1.0x106

cles in distribution

Vlow lower range of V 5.24x10-7 gm

Vhigh upper range of V 5.24 x 102

3.2 Deriving Transformations

In order to derive these transformations we must first review the basic properties of number

density functions which must be preserved under any valid transformation. Using these basic

properties, an variety of useful number of transformations may be defined.

3.2.1 Basic properties

Consider the properties required to define a general transform from n() to n(y):

the total number of particles, No, in both distribution forms should be the same:
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0o 00

In(%)d = No = fn(W)dW (3.3)
0 0

· the number of particles in corresponding "slices" of each distribution should be equal:

+2 W2

Jn()d = n(w)dw (3.4)

* some strictly monotonic one-to-one mapping must exist between and v to ensure that for

each "slice" of the distribution n(4) defined on (1, `2) there exists a corresponding slice (W1,

W2) of n(WI).

The condition given in Equation (3.4) must hold even on differentially small intervals (l, 42) and

(WI, 2). In addition, the strictly monotonic and one-to-one requirement requires that This leads

to the final condition which is ultimately used to derive all one-component transformations:

n(4)d4p = n(W)dW (3.5)

3.2.2 Example transformation from n(v) to n(Dp)

Recalling that each side of Equation (3.5) represents the number of particles in a differential

slice of their respective distributions, this condition effectively requires that transformations con-

serve the number of particles throughout every segment of the respective distributions. For the

example of n(v) and n(Dp), this means that:

n(Dp)dDp = n(v)dv

n(Dp) = n(v) (3.6)
dDp

Because v is a known one-to-one monotonic function of Dp, we can use this relation to calculate

the derivative in Equation (3.6) and arrive at a transformation:

v nr3 = r tP

dv _ tD2

dDp 2 (3.7)

n 2
n(Do) n(v) iP
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Figure 3-1 illustrates the graphical results of this transformation, where the gray areas mark off

corresponding segments of the two distributions. The first relation in Equation (3.7) gives the

one-to-one continuous mapping between v and Dp, which can be used to calculate the limits of the

highlighted area in n(Dp) given the limits of the area in n(v) and vice-versa.

Table 3-2: Limits of highlighted segments in respective distributions in Figure 3-1

Limit Symbol v Units Symbol Dp Units

Lower v1 23.4 pm3 Dpl 3.55 Pm

Upper v2 65.9 pm3 D2 5.01 Pm

The number of particles in each of these distributions segments can be calculated using the inte-

gral of the distribution function over the segment domain, as shown in Equation (3.8).

V 2 V2

fn(v)dv = INoa. e-avdv = -Noe-av I
2 = 2.74x105

¥1VI YI~~~~~~V
VI VI

Dp2 DPD(

f n(Dp)dDP = J Noa exp(- 6 2 dDP (3.8)

DP, DpI

O= -Na'exp a"Dp D o
2

=-NOexp(--.3 = 2.74x10 5

Note that both distribution segments contain the same number of particles, confirming that the

transformation is correct. Recalling that the area of the segments is equal to the number of parti-

cles in that segment, we can write an expression equating these two areas over some equivalent

width of the two distributions.

n(4)AO = n(W)AV

n(,) = n(v)-W ()
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This relation is illustrated in Figure 3-2. Because these are corresponding intervals, we know that

n(t)

w

Figure 3-2: Corresponding segments in two distributions undergoing transformation between
from n($) to n(W).

AW is a function of A+. We can therefore take the limit as the widths of the intervals At and Ay

approach zero, and Equation (3.9) becomes:

lim n(t) = n(y) _ n() (3.10)

3.2.3 Proof of one-component transformation theorem

The result given Equation (3.10) can be stated more formally as a theorem.

THEOREM

For any two single-attribute distributions n() and n(y), if there exists a differentiable strictly
monotonic mapping v =A), then the transformation from n(y) to n(t) is given by

n(o) = n()d (3.11)

PROOF

Start off with two corresponding distribution segments, as shown in Figure 3-2, then incre-

ment each of these intervals by a corresponding A4 and Ay. Because we have =), we can

require that:

f( + A) = + A (3.12)

This condition also stipulates that an equal number of particles have been added to these two dis-

tributions by incrementing by At and Al, respectively.

n(t)A = AN = n(W)AW (3.13)
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Figure 3-3 illustrates these increments added onto the initial distribution segments.

n() AO

+ W

W WV+AW

Figure 3-3: Equality of distribution transform from n() to n(y) when interval is incremented.

However, we know that AO = (O + AO) - 0 and Ay = (W + Ay) - y, so Equation (3.13) may be

rewritten as:

n(+)[(+ + A) - ] = n(v)[( + Av) - Wv , A

= n(v)[f( + AO) -fJ()]
Solving this expression for n() yields:

n(4) = 'n(v)[ ( + A\) -f(O)]
[(= n + a)- 4]

= n(W. l~''~-B;A X

J3. 1 )

(3.15)

The limit of this expression as the length of the interval AO approaches zero is readily recognized

as a derivative:

lim (n() = n(y/( + AO) -f())

df()n(4) = n(') d

n(4) = n(v)-

QED

Note that the mapping must obviously be strictly monotonic in order to ensure that each unique
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interval in has a corresponding unique interval in W. Becausef is differentiable, it is also contin-

uous (Rudin, 1976). Also, because the mapping is 1-1 and continuous, there exists an inverse

function f (v) = . Finally, if we assume that this inverse mapping is also differentiable, then

the hIverse Function Theorem (Strichartz, 1995) states that:

df1 I(.) 1 = 1 (3.17)
dy (df( ) (dyv

Note that this conveniently provides the inverse transformation:

n(W) = n()f-() n) (3.18)

Using this general property, numerous different transformations can be performed, as summa-
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rized in Table 3-3.

Table 3-3: Common transformations

From Units To Units Relation Transform

n(v) 1/cm3 n(Dp) 1/cm3 4 ,Dt.p3 7Dp2

v 3 2/ n(Dp) = n(v) 2

n(v) 1/cm3 n(m) l /g v= n(m) n(v)
P P

n(v) 1/cm3 n(y) none y = In(v) ) n(v)
n(ln(v)) n') v

n(ln(v)) = n(v)
V

n(v) /cm3 n(w) none = v0evw n(w) n(v)
Yw

n(v) 1/cm3 n(s) 1/cm2 7 n(s 3 /2 n( v)(
3 = n(s)

n(v) 1/cm3 n(y) none y = log(vy) n(v)
n(log(v)) 2.303 v

n(log(v)) n(v)
2.303v

n(Dp) 1/cm n(y= none y In(Dp) nD
n(ln(Dp)) (log(Dp)) 2.303Dp~~~~~~~~~~~~~2.........

Figure 3-4 illustrates several of these transforms.

Often, distributions exist over many orders of magnitude, and are more clearly represented

using logarithmic scales. Many different transformations between different scales can be con-

structed by simply conserving the number of particles in the transformation. For example, if we

wish to use In(m) as the independent variable instead of m, the new number density representation

must contain the number of particles in the size range between In(m) and In(m + dm) as the n(m)

representation contained in the size range between m and m + dm.

3.2.4 One-component transformation example

Differentiating the cumulative number distribution Equation (2.7) with respect to particle
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W

Figure 3-4: Summary of various transformations on n(v).

mass gives the differential change in number of particles as a function of number distribution:

dN = n(m)dm n(m) dN (3.19)

The key to performing a transformation is to ensure that the dN remains constant. Defining

n[ln(m)] in the same spirit as n(m):

m

N(m) = [ln(m')]dln(m') -dN = n[ln(m)]dln(m) = n[ln(m)]ldm (3.20)
m

o

which leads directly to the transformation:

n[ln(m)] dm = n(m)dm -, n(ln(m)) = m n(m) (3.21)m
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Because it is impossible to take the natural logarithm of a dimensioned quantity, ln(m) is actually

implicitly understood to mean In(m/l) where 1 has units of mass. Correspondingly, the quantity

n[ln(m)] must also be dimensionless in order for n(m) to be dimensionless as well. Some common

logarithmic scaling transformations (Seinfeld and Pandis, 1998) are listed in Table 3-4.

Table 3-4: Common logarithmic scaling transformations

3.3 Multicomponent Transformations

In multicomponlent systems, transformations still provide an important tool for manipulating

distributions. Take the two-dimensional exponential distribution, for instance.

(3.22)

Just as in the one-component case, it is necessary that any transformation conserve number in a

differential element of the distribution. For the general case where the transform is from n(Ol, 2)

to n(y , 'P2), the conservation of number results in Equation (3.23).

n( , 02 )da d 2 = n(w 1, /2 )ld W d 2 (3.23)

3.3.1 Two-component transformation example: n(m1 , m 2) to n(ln(m4), In(m 2 ))

For the case where the desired transform is from n(ml, m2 ) to n(ln(ml), ln(m 2)), it is easy to

perform two successive one-dimensional transformations, as shown in Equation (3.24).

(1) n(ml, m2) -+ n(ml, ln(m2))

(2) n(ml, ln(m 2)) -- n(ln(ml), ln(m2))

The first transformation is detailed in Equation (3.25).
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Multicomponent Transformations

n(ml, ln(m2 ))dmldln(m 2) = n(ml, m2)dmldm 2

n(ml, ln(m2))dln(m 2) = n(ml, m 2)dm 2

dm2 (3.25)
n(m l, In(m2)) = n(m3 m2)dln(m2 )

dln(M2)

n(ml, ln(m 2)) = n(ml, m 2)m 2

Note that the terms dml on both sides of Equation (3.25) cancel in the second step. Equation

(3.26) gives the form of n(ml, ln(m2)) produced by this transformation.

e(-m /mlo)e(-m2 /M20)
n(ml, ln(m 2)) = No --10 --- 20 2

- e ~elnm2 (3.26)=(-mI/m'e ( - e
"2/m2O)e3nm6

m 10 m2 0

The transformation from n(m l, ln(m,)) to n(ln(ml), In(m2)) is very similar to the first transforma-

tion, as shown in Equation (3.27).

n(ln(ml), ln(m 2))dln(m 1)dln(m 2) = n(m 1, ln(m 2))dml dln(m 2)

n(ln(ml), ln(m2))dln(m l) = n(ml, In(m2))dm1

dmnI (3.27)
n(ln(ml), n(m2)) = n(m, ln(m2))d (3.27)dln(ml)

n(ln(ml), ln(m2)) = n(ml, ln(m2))ml

Using both of these transformations in succession leads to the desired overall transformation,

given in Equation (3.29).

n(ln(ml), ln(m2)) = n(ml, ln(m2))m (3.28)

= [n(ml, m2)m 2]mI

n(ln(ml), In(m 2)) = n(m 1, m2)milnm2 (3.29)

For the set of parameters given in Table 3-5, the resulting transformation from n(ml, m2 ) to n(m l,
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In(m2)) and then finally to n(ln(ml), ln(m2)) is illustrated in Figure 3-5.

Table 3-5: Two-dimensional exponential distribution parameters

Symbol Name Value Units

N O Total number 1.Ox 106 -

m10 First exponential parameter 1.Ox10- 13 1/mass

m20 Second exponential parameter 2.0xlO 13 1/mass

To check the accuracy of this transform, we can always integrate each distribution function over

its corresponding range to determine the number of particles present in each segment. The

respective integrals are given in Equation (3.30).

b2 a2

N = n(m,, m 2)dmldm2

bla,

b 2 a2

N = I Jn(ln(m l), ln(m2))dln(ml)dln(m2)
b,a,
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In(m2)

Figure 3-5: Two component transformation stepwise presentation from n(m1, m2) to n(In(ml),
In(m 2)).
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Table 3-6 gives the corresponding values of the integration limits for each set of integrals. Note

Table 3-6: Integration limits and Nfor n(m i, m2) to n(ln(ml), In(m2)) transformation

Distribution a, a2 bI b2 N

n(ml, 2)2.0x 10-13 3.0x10-13 6.0x 10-14 8.x 0-14 6031

n(ml, ln(m 2)) 2.0x10-13 3.0x10-13 -30.4 -30.2 6031

n(ln(m ), In(m2)) -29.2 -28.8 -30.4 -30.2 6031

the agreement in N, the total number of particles in each segment, validating the transformation.

3.3.2 Proof of two-component transformation theorem

This two-component transformation formula may be stated more generally for monotonic

functions by the following theorem.

THEOREM

For any pair of two-component distributions n(4 , 42) and n(y , W2), if there exists a differentia-
ble monotonic mapping g =4), then the transformation to n(4>1, j 2)ftom n(l 1, '2) is given by

l (q + + 5)f2(, + L) -fl ()f2(q)]
n( l, 2) = n(W, W2) lim f + A + )f (3.31)

AO,, A,-,O [ iA02 + , iA 2 + A i 21

PROOF

Just as with the one-component case, we begin by analyzing the number of particles added to
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the system as the boundaries of a population segment are increased.

n(wl, 2)

+m
h + AO2

2

2 + Aq2

12

TI Q1 + Zl '1

Figure 3-6: Area comparison of two-dimensional transformation.

For the corresponding two-dimensional distribution elements (1 + A 1, 2 + A02) and (l + AL,

42 + A4Y2), shown in Figure 3-6, the relation equating the incremental increase in the number of

particles in these element comes directly from the definition of a multicomponent distributions

(see Section 2.8).

dN
n(i , 2) dA n(y, 2)

(3.32)

n( !, 2 =)d =d = n( , 2)dAw

The increase in area with the increment in each dimension is calculated as the shaded areas of the

corresponding parts of Figure 3-6.

dA, = ( + A 1)(0 2 + 32)- 1 2 33)

dA,4 = (WI + AsWI)(n2 + d e2)- i/ i 2

Substituting these expressions for the differential increase in area into Equation (3.32) results in

Equation (3.34).

n(4l, 02)[(01 + L 1)(02 + A2) -1 I2] = n(wl, '2)1[(WI + A1 )(y 2 + AY2) - C Wl2] (3.34)

Recalling the condition that y = A), Equation (3.34) can be rearranged as follows, where is

used to denote the vector = [1, 02]:
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Transformations of Population Representations

n(l, 2)[( + )(+ 1) + 2) -112]1
= n(pI, W2)[fl(l + AO1, 42 + Al 2 )f2 (l1 + Al, 2 + ~A2) -f1 ( 1 , 42)f2 ( 1 42)1 (3.35)

= n(Vl, '2)fl( + A4)f2(o + AO) -fi()f 2()]

Likewise, Equation (3.35) can be further rearranged to reflect a simplification in the 41 and 2

terms.

n( 1, 42)[(01 + A 1)(42 + A42)- 1 02] = n( , 2 )[ 1A' 2 + AO 1iA 2 + A 1 2] (3.36)

Finally, solving for the desired expression n(4l, 42) results in Equation (3.37).

n(4I, 02)[ 1 A 2 + A I A4 2 + AO1 2] = n(Vl, W2)fl ( + A4)f2 (4 + A4) -fil()f 2(4)]

n 2) = n( [f( + A4)f2(4 + AO) -f (O)f2(4)] (3.37)
[O1A4+2 + A 1 A 2 + AO142]

However, in order to obtain a final transformation from n(Wl, W2) to n(Ol, 42) we must take the

limit of this expression as A 1, A 2 decrease to zero.

n(4l, 42) = n(Wl, 'V2) lirn (v[f ( + A4)f2(4 + AO) -fl ( )f2() 3.38
AO,, 2 -O [4,A4 2 + A4 1A4 2 + AO1 2]

QED

3.4 Two-component Transformation Example: n(ml , m2) to n(m, x)

3.4.1 Basis for the transformation

The transformation from n(ml, m2) to n(ln(ml), In(m2)) is a direct extension of single-compo-

nent transformations. Using the result that both In(ml) and In(m2) are monotonic in both mi and

m2, we can apply Equation (3.38) to derive a transformation or we can perform successive one-

dimensional transformations. However, consider a system that does not have a monotonic set of

coordinate transformations.

(3.39)

ml =fi(m,x) =mx (3.40)
(3.40)

m 2 = 2(m, X) m. (1 -x)
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Two-component Transformation Example: n(ml, m2) to n(m, x)

The transformation from n(ml, m2) to n(m, xl) is more complicated to derive; because it is not

monotonic in both variables, a separate analysis comparing the differential areas of corresponding

distribution segments must be undertaken.

m = const = m + m2 mconstx = const =
m2 = m - mI ml + m2

* =point (m, x)
m2

Amt

Ax

i
-', -x/ M2=ml1 _

x

Ax

m ml

Figure 3-7: Corresponding segments for n(ml, m2) and n(m, x) distributions.

A quick glance at Figure 3-7 reveals that the simple area segment from the point (m, x) to (m +

Am, x + Ax) is bounded by two lines in m - x space: two where x is constant and two more where

m is constant. Translating these boundaries into m - m2 space results in the boundary lines illus-

trated in Figure 3-7, with the corresponding shaded segment. In order to define a transformation

between these two coordinate systems, it in necessary to apply Equation (3.32) with the new set of

variables.

n(b I, 2)dA, = n(l , 2)dA/

n(m,x)dA 1 = n(ml, m2)dA 2

dA 2
n(m,x) = n(ml, m2)

3.4.2 Derivation of the transformation

One method of calculating the ratios of these two areas is to start with a corresponding set of

points (m, x) and (ml, m2) and then to create a differential area covering the range from m to m +

Am and x to x + Ax as shown on the left side of Figure 3-7. This differential area is trivial to cal-

culate and familiar.

dA = Am- Ax (3.42)
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However, the corresponding increase in the differential area dA2 is a function of the increments in

m and x, as related by Equation (3.39). Figure 3-8 illustrates the corresponding area d42 created

by taking corresponding interval from the point (ml, m2), which is related to the original point

(m, x) via Equation (3.39). The boundaries on this interval are determined by equations marking

lines of constant m and x, respectively, in the ml - m2 space.

(ml, m2 )

m2

Al

Ah

Ab

ml

Figure 3-8: Area in the corresponding region of n(ml, m 2 ).

Noting that the lines of constant m all have slope -I and are therefore parallel, the area of dA2 is

given by Equation (3.43).

dA2 = (Ab+At)Ah (3.43)

The key is now to related the quantities Ab, At, and Ah back to the original increments Am and Ax

and then take the limits the ratio dA21dA I with respect to these two variables to obtain the trans-

form.

First, it should be noted that Ah will equal the amount that the constant m line moves as m is

incremented. The distance this line moves can be measured using the aid of the line x = 0.5,

which is perpendicular to the constant m lines, as shown in Figure 3-9. Recalling that the line x =

0.5 will intersect the constant m line at (m/2, m/2), the distance Ah is easily calculated in Equation

(3.44).
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x = 0.5

m,2

Figure 3-9: Distance of Ah as calculated using the perpendicular line x = 0.5.

h m m 2 ('2)2 (2)2 m

h+Ah = 1(m= 2{+( c+m 2 m+Am (3.44)

Am
Ah 

2

In order to solve for the values Ab and At, a similar approach is used to calculate the distance

between points on the line m = constant and its intersection with the line x = 0.5. In Equation

(3.45), the m* values represent the coordinates at the intersection with the line x = 0.5.

distance = J(mI -m|) 2+ (m2 -m ) 2 (3.45)

Recalling that mI = m x, m = m (1 - x) and that m = m yields the correct distance

formula.

distance = mx- 2) ((X) 2

i 2 (-i )2n (3.46)

distance = mr2x-D

Note that this is a general distance formula which allows us to calculate both Ab and At.
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b = (m+Am)f2(x-)

b+Ab = (m+Am)2(x +Ax- (3.47)

Ab = (b + Ab)- b = (m + Am)F2Ax

Thus, Ab can be calculated entirely in terms of m, Am, and Ax.

A = (m+Am)2Ax (3.48)

Likewise, the distance formula can be used to calculate At.

t m 2(x -2

t+At = m2(x+ Ax-) (3.49)

At = (t + At)- t = mf2Ax

We can now state At entirely in terms of m and Ax.

(3.50)

Substituting these expressions into Equation (3.43) yields the expression for a 2 and in turn the

ratio of the areas.

dA2 = (Ab + At)Ah

dA: = I((m + Am)d2Ax + mF2Ax) (3.51)
2 2 ~(3.51)

dA2[(m + Am)v2Ax + m2Ax] A 2

dA AmAx

Taking the limits of this ratio of areas with respect to Am and Ax yields the desired transformation.

n(m, x) = n(ml, m2)m = n(ml, m2)(m + M2 ) (3.52)
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Two-component Transformation Example: n(ml, m2) to n(m, x)

3.4.3 Verification of the transformation

The validity of this transformation can again be checked by integrating over corresponding

segments of two distributions. For convenience, the same limits in n(ml, m2) are used as in previ-

ous sections with the usual exponential distribution. Note the transformed version of the distribu-

tion, given in Equation (3.50).

e(-mx/mo) (-m( - x)/m 20 )
n(m,x) = N ---- (3.53)

m10 m2o

In order to use the integration limits given in Table 3-6, we must first determine the translated

integration limits in the m - x space. For the integration limit lines where ml is constant, we now

have a hyperbola in the m - x space.

m!
m1 = constant = mx-x = -- (3.54)m

Likewise, the integration limits where m2 is constant also translate into a hyperbola, as shown in

Equation (3.55).

m 2
m2 = constant = m( -x)-x = 1-- (3.55)

m

Translating both of the limits given in Table 3-6 to the new m - x coordinate system results in the

new set of integration limits summarized in Table 3-7.

Table 3-7: Transformed integration limits in m - x coordinates

Old Limit Equation New Limit

Lower m mlo w = 2.0x10 -1 3 m l tow 2.0x10 1 3

m m

Upper ml i lhigh = 3.0x10-13 _m, high _ 30x10 13

i in
X 

m mLower m 2 = 6.0Oxl _ m2, .OXl_ l' 4

Upper m22 high 80x10 14 2, high 1 8.0x1014
m m
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Figure 3-10 graphs the transformed integration limits in the coordinate system m - x.

X

Lower m2

Ipper m2

Jpper ml

ower m1

m

Figure 3-10: Transformed integration limits in m-x coordinates.

Note how the four vertices naturally split the m axis into three separate intervals for integration

from points A to B, B to C, and C to D, respectively. The m coordinates of these points is calcu-

lated by taking the intersections of the corresponding limit lines as given in Table 3-7; the values

of m at these vertices represent the various combinations of the upper and lower limits for mi and

m2, as summarized in Table 3-8.

Table 3-8: Transformed population limit vertices

Point symbolic m-value numeric m-value

A ml, low + ml, high 2.6x10l' 3

B ml low + m2, high 2.8x10 13

C ml, high+ m2, low 3.6x10 13

D m2, igh2hi 3.8x10-13
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Table 3-9 summarizes the resulting integration limits in both x and m coordinates.

Table 3-9: Summary of transformed integration limits

Integral Lower m Upper m Lower x Upper x Number

A B mlm, low + mi, high m , low + m2, high m, I m21 908mIIhigh 2,IoM2, low

m mBe~C Cl~l m + 2, high i, high + M2, low 4754

C- D MI, high+ m2, low m 1, h hig h m2, high 369 high 

m m

Equations (3.56) through (3.58) write out these integrals in full and their respective values.

iB IM
l

2. low)

N I = I ° n(m, x)dxdm = 908 (3.56)(mI..)

A m

C[(I

N2 - J n(m, x)dxdm = 4754 (3.57)D ( )
N3 = Jm n(m,x)dxdm = 369 (3.58)

Totaling the results from all three of these integrals yields 6031, the number of particles held in

the corresponding segment of the n(ml, m2) graph (see Table 3-6). The validity of this transfor-

mation has thus been demonstrated. Figure 3-1 1 shows the transformed distribution with the pop-
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ulation segments highlighted.

n(m,x)

Figure 3-11: Example of transformation from n(ml, m2) to n(m, x).

3.4.4 General transformation formula

In general, multidimensional transformations use some function =p4) to derive a transfor-

mation between coordinate systems. The heart of this transformation lies in the need to conserve

the number of particles across each differential segment of these two distributions, expressed here

in integral and differential form:

fn(O)d = n(y)dy 
T r
n(+)do = n()dW 

where T and 7r represent respective integration regions. In fact, these transformations are directly

analogous to transformations between probability density functions of random variables, and can

be related by the following formula:

n(W) = n(4)lIJ (3.60)

where 1 represents the determinant of the Jacobian J of the transformation function f() with

respect to the elements of 4. This formula is developed in Apostol (1969) and applied to exam-

ples of probability density functions for two-dimensional random variables.
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Chapter 4: Dynamic Population Balance Equation

The dynamic population balance equation, also known as the general dynamic equation

describes the dynamic evolution of a population. In its simplest form, it is used to model the num-

ber density of a population n(4) as a function of time. As discussed in Chapter 2, can represent

any of a large number of attributes including size, mass, volume, diameter, length, etc. More com-

plex instances of the dynamic population balance occur when the number density of a population

is modeled as a function of multiple characteristics, n(), where is a vector of characteristics.

Models of this nature are referred to as multicomponent problems and will be addressed in Chap-

ter 5. The dynamic population balance equation for a single component n() is written as follows:8An)+ &n(+1) + + + +etc. (4.1)
at Growth at Coagulation at Sources a Fragmentalion

The following sections derive each of these terms individually. Note that the number of parti-

cles in these systems are not conserved; however, mass must be conserved, as always. For this

reason, mass is the natural variable to use to describe physical models because it is directly con-

served. For instance, because mass is conserved when particles coagulate it is easiest to express

the mass of the resulting particle as a summation of the two coagulating particles. Contrast the

ease of summing masses with the difficulty of determining the diameter of a particle created by

the coagulation of two smaller particles.

mI+m 2 = m
(4.2)

Dpi + Dp2 Dp

The dynamic population balance using mass as the basic representation variable is:
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( )= f2p(m-x,x)n(m-x)n(x)dx - n(m) f(mx)n(x)dx
0 0

coagulation with smaller population members coagulation with other population members

+ fy(x,m)n(x)dx - n(m) (mx)dx
m m

firagmentation from larger members fagmentation to smaller members

- V.vn(m) + VK-Vn(m) + f(m)
member convection member diffusion special forcing effects (4.3)

This equation describes the evolution of number density in a single-component system due to

coagulation, fragmentation, and both convective and diffusive transport. The last term, "other

functions" encompasses a wide variety of application-specific mechanisms, ranging from particle

sources and sinks to growth, nucleation, etc. Before proceeding, the origin of each term in the

dynamic population balance equation will be derived separately.

4.1 Coagulation

Coagulation refers to the process of two members of the population distribution colliding and

combining to form one larger member of the population distribution. A classic example of coag-

ulation occurs when you start to drive a wet car: some of the water droplets on the windshield

begin to move and bump into other water droplets, forming larger water droplets. Each coagula-

tion event involves two water droplets colliding to form one larger water droplet. If the resulting

water droplet has mass c then the two colliding droplets must sum to this mass. Figure 4-1 illus-

trates the masses of coagulating particles.

b

.

L; - u U

Figure 4-1: Binary coagulation of two smaller particles to form one larger particle.

Because typical population balance processes contain a large number of particles, a large number

of coagulation events continuously occur. The coagulation kernel is defined as the rate expres-
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Coagulation

sion describing the frequency of these coagulation events as a function of the coagulating particle

sizes. Because coagulation is a binary process, we would expect that the overall coagulation rate

follows a first-order rate law in the concentration of particles size a and b.

rate = k [a]. [b] (4.4)

However, instead of being a constant, k is a function of the particle sizes a and b. This function is

formally defined as the coagulation kernel.

DEFINITION

The coagulation kernel 1(a, b) is the rate function for thefirst-order process where particles of
mass c = a + b are formed due to the coagulation of two particles of masses a and b.

rate = 1(a, b) [a]. [b] (4.5)

Note that the coagulation kernel is a symmetrical function by definition as no distinction is made

between the coagulating particles:

[(a, b) = (b, a) (4.6)

In any given system, coagulation can both create and usurp particles size m. These phenom-

ena are referred to as coagulation production and coagulation removal, respectively. Coagulation

production occurs when particles of mass m are created by the coagulation of smaller particles.

Coagulation removal occurs when particles of mass m coagulate with other particles to form a

larger particle, resulting in a net loss of particles of mass m. The following sections present con-

tributions of these processes in the dynamic population balance equation.

4.1.1 Coagulation production

Coagulation production of particles with mass m occurs when two smaller particles coagulate.

If one of these coagulating particles has mass x, then the other has mass m - x, as illustrated in Fig-

ure 4-2. Applying the definition of the coagulation kernel, (x, m - x) is the rate (units of space ·

time'l particles 'l ) at which population members of mass m will be created by collisions between

particles of mass x and m -x. The rate of increase of particles of mass m due to collisions between

members of mass m - x and x in a population n(m) is the product of the coagulation kernel with the

number of particles in each these respective mass ranges:

dn(m)m = (m - x, x)n(m - x)A(m - x)n(x)Ax (4.7)dt
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- X

X _ 

m

Figure 4-2: Coagulation production of particles with mass m due to the coagulation of two
smaller particles of mass x and m - x.

Note the consistency of the units in this expression, as summarized in Equation (4.8) and Table 4-

1.

Table 4-1: Coagulation production units

Symbol Units

n(m) particles

cm 3 .g

Am g

dt s

(m- x, x) cm3

particle s

n(m - x) particles
cm3 .g

A(m - x) g

n(x) particles

cm3 g

Ax g

dn(m)Am
dt

particles
g

cm3 g
s

= (m - x, x)n(m - x)A(m - x)n(x)Ax

(4.8)
cm3 particles particles

particle s cm3 g g ' m3 . g

In this formulation, the interval Am must have the same width as both of the intervals A(m - x) and

Ax added together, as shown in Figure 4-3.
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A(m - x)

(a, b) (c, d)

Am = Ax+ A(m - x)

(a + c, b + d) m

Figure 4-3: Binary coagulation intervals of two smaller particles to form one larger particle.

However, when the intervals Am, A(m - x) and Ax become differentially small, these intervals

shrink to differential widths and Equation (4.7) becomes a partial differential equation.

an(m)dm = (m - x, x)n(m - x)d(m - x)n(x)dxat (4.9)

The terms n(x)dx and n(m - x)d(m - x) represent the number of population members in the differ-

ential slices in the size intervals (x, x+ dx) and (m - x, m - x + d(m - x)), respectively, as shown in

Table 4-2.

Table 4-2: Differential coagulation intervals

Figure 4-4 shows an illustration of these differential coagulation intervals. Conveniently, the new

n(m)
AL distribution segments

dx

I
d(m - x)

I
dm = dx+ d(m - x)

I
0 m

particle sizes

Figure 4-4: Differential coagulation intervals of two smaller particles to form one larger particle
illustrated both as distribution segments and particle sizes.
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definition of the combined particle interval dm is an identity enforced by the mass balance

m = x + (m - x). Note that we can divide Equation (4.9) through by dm, which results in:

n(m) = d(m-x)
at) = P(m-x,x)n(m - x) X)n(x)dx (4.10)

Recognizing that the derivative d(m - x)/dm = 1, the coagulation expression reaches its final form

for two differential segments of a population containing particles sized x and m - x.

an(m) (m - x, x)n(m -x)n(x)dx (4.11)
at

Note the consistency of units in this expression:

an(m)dm 3 (m- x,x) n(m - x)d(m- x) n(x)dx
___ _'1 1 mass

un1i[ units[=] - units[=] mass units[= .mass
[=1 I u] time-space mass mass

time space (4.12)

In general, "space" denotes normalization to the region where the population lives, be it in an

area, volume, or linear space. For the windshield example, "space" would take on units of

length2 . However, in most processes, space will take on some measure of volume - as given in

Table 4-1. Note that this is a binary coagulation kernel because it only takes into account colli-

sions of two population members at once to form a larger member. The effects of simultaneous

collisions between more than two particles are neglected; in most cases this simplification is eas-

ily justified.

Finding the total contribution to members sized m from coagulation of all smaller population

members requires that all combinations of particles size x and m - x are taken into account (see

Figure 4-5). As x takes on different values on the interval (0, m), the value of m - x also changes,

as illustrated by the particles of different sizes and colors. In order to calculate the collective

coagulation contribution from all of these smaller particle collisions over the continuous particle

size range, one must integrate between 0 and m, as shown in Equation (4.13).

(4.13)

As shown in Figure 4-5, each size particle is included twice when all of the combinations are
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One combination of particle sizes

· 0 On(m)
'Atx m-x m us

ninnin I 
All combinations of particle sizes

m

M 00 h.. an(m) _
m at

X I L

= (m -x, x)n(m -x)n(x)dx

m

= f(x, m-x)n(x)n(m-x)dx

0

- ww
_f 'oh _ww., o

Figure 4-5: Integration of all combinations of x and m-x to form particles size m.

taken into account, once for the variable x and once for the variable m - x. To correct for this dou-

ble-counting, the integral in Equation (4.13) is multiplied by a factor of 1/2. Note that we would

arrive at this same result had we initially summed the coagulation contribution from a number of

"bins" such as in Equation (4.7).

(4.14)

As the Ax shrinks to a differential size interval, this expression is transformed into:

m

an(m)dm = JP(m x, x)n(m - x)d(m - x)n(x)dx

0

where the fact that d(m - x)Idm = 1 reduces this expression to Equation (4.13).

(4.15)

4.1.2 Coagulation removal

By the same mechanism as in coagulation production, population members of size m can also

be lost to coagulation, as shown in Figure 4-6. Using the same coagulation kernel as before, the

loss of members size m due to coagulation with members size x is given in Equation (4.16).
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X _

W

m+x

m

Figu%4-6: Loss of population members of mass m due to coagulation with other population
members.

an(m)dm = -(m,x)n(m)dm n(x)dx

(4.16)
an(m) = -(m, x)n(m)n(x)dx

The coagulation kernel gives the rate at which particles of mass m + x are created, however this is

also the rate at which particles of mass m are usurped because one particle of mass m + x is cre-

ated for each particle of mass m which coagulated. Equation (4.16) gives the coagulation removal

due to a particle of mass m coagulating with one other particle mass x. As shown in Figure 4-7,

the total removal of particles mass m due to coagulation is due to coagulation with all other sized

particles. Again, the aggregate coagulation rate is calculated with an integral summing the loss of

One combination of particle sizes

an(m) -(m, x)n(m)n(x)dx
at

All combinations of particle sizes

N Ems n on(m) _

x I

(m) Jp(m, x)n(x)dx

0

x o . eo

Figure 4-7: Coagulation removal due to coagulation of particles size m with particles of all
other sizes x.
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members size m due to coagulation with members of all possible sizes x, which range from zero to

infinity:

an(m) = -n(m) Jp(m,x)n(x)dx (4.17)
at

0

In this case, there is no double counting in the integration process so the factor '/2 is not necessary.

One may ask if infinity is the appropriate upper size limit, and if so, what is the physical meaning

of an infinitely large particle? In fact an infinitely large particle signals a phase transition, also

referred to as gelation (Gueron, 1998).

4.1.3 Reduction of the coagulation production integral

In many applications, the coagulation integral must be performed numerically over a wide

range of particle sizes. In order to reduce the computational load of this integration, the integra-

tion limits of Equation (4.13) are reduced by utilizing the symmetry of the coagulation kernel.

Because the coagulation kernel is symmetric, integrating over each half of the total integration

range (0, m) yields the same value. Thus, instead of multiplying the integral by a factor of /2,

computational load is decreased by simply integrating over half of the original irtegration range,

(0, m/2). Figure 4-8 illustrates the symmetry of this integral and how it can be reduced.

x ° * ·/
-lm - *** 0 o

P(x, m - x) = Am - x, x)

x 0* m-x 0 
Y2{

-.

1lmx

0O x 0
r 0 

0®
Figure 4-8: Reduction of the coagulation production Integral by realization that the two halves
of the original integration are equal and thus the factor 1% can be eliminated when only half the
integration range is used.
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In short, instead of counting each pair of colored segments twice - once when its value is x and

again when its value is m - x the integral is simply performed over half the interval. The following

set of manipulations prove the validity of reducing the integration range. First, start off by divid-

ing the integration range in half and changing the dummy variable of integration from x to z in the

second integral:

m

an(m) _2 i(x, m -x)n(x)n(m-x)dx

0

2m (4.18)

2
- !p(x, m - x)n(x)n(m - x)dx + fp(z, m - z)n(z)n(m - z)dz

Reversing the limits of the second integral and then applying the transformation z = m - x yields

the desired result:

an(m) = JP(x, m - x)n(x)n(m - x)dx + J13(z, m - z)n(z)n(m - z)dz

o 2

2 2

2 p(x, m - x)n(x)n(m - x)dx- p(z, m - z)n(z)n(m - z)dz
0 m

m m

(4.19)
2 2

2= [I(x, m - x)n(x)n(m - x)dx - P(m - x, x)n(m
Lo 0

m m

= 2|(x, m - x)n(x)n(m - x)dx + P(x, m - x)n(x)n(m - x)dx
o0 

m

an(m) _ 2 (x, m-x)n(x)n(m-x)dxI
(t 2L~ ] 
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Thus the reduced scale coagulation production integral is:

(4.20)

4.1.4 Other coagulation kernel formulations

The preceding development applies to binary coagulation only. Note that in the case of a ter-

nary coagulation kernel (a, b, c) where three the population members collide to produce one

larger member, the coagulation integral would take the form:

m

an(m) = I f p(x, y, m-x-y)n(x)n(y)n(m -x-y)dxdy

0

(4.21)

The factor of 1/2 is necessary because double counting occurs in the inner integral over x, as sum-

marized in Table 4-3.

Table 4-3: Double counting in x integral

Variable Lower Limit Upper Limit

x 0 (m -y)

n(x) n(O) n(m - y)

n(m -x-) n(m - ) n(O)

Now the inner integral:

m-y

I (x, y, m -y - x)n(x)n(y)n(m - y- x)dx
0

can be transformed into an equivalent form by substituting k = m -y.

k

nOy) fP(x, y, k- x)n(x)n(k- x)dx

(4.22)

(4.23)

0

Note that this integral double counts the integrands exactly as in the binary coagulation case.

Describing the loss of particles due to coagulation is also similar to the previous case:
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at ~=-ncm, IIP~m I~y~.cir~nomdrdv (4.24)
00

The units of the coagulation kernel remain unaltered in this case. Under normal circumstances,

the frequency of ternary collisions is extremely low in comparison with binary collisions; as a

result only binary coagulation kernels are considered in population balance models.

4.2 Fragmentation

Fragmentation, also called breakage, is the opposite of coagulation; instead of two members

of a population combining to form a larger member of a population, fragmentation is the process

of one member of a population splitting into two smaller members. Going back to the example of

wet droplets, a fragmentation event occurs when a large water droplet moving across a windshield

leaves a small droplet behind it. A slightly more dramatic fragmentation event might occur if a

rock hit the windshield, shattering it into tiny pieces. In either case, one particle, droplet, or wind-

shield would be fragmented into a number of smaller members, as illustrated in Figure 4-9.

O x, 
X2 .X i=m
*! 

w xnJ

Figure 4-9: Fragmentation to form smaller population members.

Just as with coagulation, fragmentation can both create and remove particles in any given part of

the number density distribution. The creation of particles of mass m due to the fragmentation of

larger particles is referred to as fragmentation production while the removal due to the fragmenta-

tion of particles with mass m into smaller particles is referred to as fragmentation removal. The

following sections outline the expressions for fragmentation production and removal as originally

presented by Valentas, Bilous, and Amundson (Valentas, Bilous, and Amundson, 1966; Valentas

and Amundson, 1966).

4.2.1 Fragmentation removal

Fragmentation removal describes the rate at which population members of mass m within a

given space will fragment into smaller members of mass x. This is a unary process because it only
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requires one population member for a fragmentation event to occur. For this reason, it is natural

to describe the fragmentation removal as first order process with respect to the number of parti-

cles with mass m:

dn(m)Am = -g(m)n(m)Am
dt

m2 m2

a()dm = - f g(m)n(m)dm (4.25)
ml ml

an(m) -g(m)n(m)

where g(m) is the removal rate expression with units 1/s. The first expression in Equation (4.25)

gives the balance on a population "bin" while the second expression gives the balance over a con-

tinuous population segment (ml, m2) and the final expression gives the dynamic population bal-

ance form. Table 4-4 summarizes the units used in these expressions.

Table 4-4: Units offragmentation loss expression

Symbol Definition Units

n(m) number density # particles

g· cm3

dmr, Am (differential) mass range g

dt (differential) time range s

g(m) fragmentation rate i/s

4.2.2 Fragmentation production

Unlike the coagulation kernel, fragmentation is not assumed to be a binary process - a large

particle fragments into a number of smaller particles. Thus, for each large particle which frag-

ments, an entire distribution of smaller particles are created, as illustrated in Figure 4-10. In order

to create an expression for the gain of particles to any given population segment dm from the frag-

mentation of larger particles, several quantities must be known:

* the number of larger particles which are fragmented

* how many smaller particles are created from each larger particle
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n(m) + n(m) + ci 'O 
m m

Figure 4-10: Distribution of smaller particles created by the fragmentation of one large particle.

* how these smaller particles are distributed with respect to size

The first piece of information is actually given by the fragmentation removal term. The second

quantity is described by v(m), the number of smaller particles created by the fragmentation of a

particle of mass m. The third quantity is given by the fragmentation kernel, y(x, m), which

describes how the fragments from a particle size x are distributed with respect to mass after frag-

mentation. This kernel essentially describes the shape of the fragmented particle distribution, as

illustrated in Figure 4-10, and is defined as follows:

DEFINITION

The fragmentation kernel y(x, m)dm describes the fraction of total particles distributed into the
mass range (m, m + dm)from the fragmentation of a particle of mass x.

Just as before, we can derive the form of the population balance for fragmentation production

directly from the fragmentation kernel, v(m), and the rate expression for the loss of large particles.

dn(m)Am _ -dn(x)Axv(x)(x, m)Am (4.26)
dt dt

The first term on the right hand side is the fragmentation loss expression for large particles, which

can be substituted from Equation (4.25).

dn(m)Am = g(x)n(x)Ax . v(x)y(x, m)Am (4.27)
dt

In order to confirm the validity of Equation (4.27), we perform a quick unit check, as summarized
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in Table 4-5 and Equation (4.28).

Table 4-5: U!nits offiragmentation production parameters

dn(m)Amdn(m)A = g(x)n(x)Ax v(x)y(x, m)Amdt
particles (4.28)
g cm 3 1 particles 1

s g cm3 ' g g

Note that the last term y(x, m)Am is unitless but because Am has units of g; y(x, m) must therefore

have units of 1/g.

Of course, Equation (4.27) only describes the contribution to the mass range Am by fragmen-

tation of particles in one mass range covered by Ax. In order to find the aggregate fragmentation

to production, it is necessary to consider the contribution to particles of mass m from the fragmen-

tation of all larger particles x. Figure 4-11 compares the fragmentation production of particles
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n(m) number density of pro- # particles
duced fragments g cm3

dm, Am (differential) mass g
range

dt (differential) time s
range

g(x) fragmentation rate 1/s

n(x) number density of # particles
fragmenting particles g . cm3

v(x) fragments produced
per fragmented parti-
cle

y(x, m) fragmentation kernel 1/g
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from just one mass range of x and all mass ranges of x.

One combinar,on

®
* m00 M2

06 (a
~~L:7jK

x

I lli

X

.- ea~n

All combinations

x
(9

,'l a 0a

0 0 0
m 

m
x

-'\ '. 

dn(m) ' dtt) = n(x)g(x)v(x)y(x,m)dx
dt = n(x)(x)v(x)(x,m)dx= 

-dl ,t ~..,~,,,~, \,,t n 

Figure 4-11: Fragmentation production of particles size m by fragmentation from mass range.

For all combinations of particles, the fragments of mass m produced are all colored solid, demon-

strating how different sized large particles do not produce the same distribution of fragments. In

order to include the contribution from all ranges of fragmenting particles, we must sum over all

possible mass ranges Axi:

dn(m)Am
dt m = (g(x)n(x)Ax i. v(x)yxx,m)Am) (4.29)

i

Of course, we can cancel Am from both sides of the equation and then shrink the segments Ax

until the summation becomes an integral:
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(4.30)

which is the dynamic population balance equation expression for fragmentation production. Note

that the integral for x ranges from m to infinity because particles of mass m can only be produced

by particles of a greater mass. While the origin of Equation (4.30) is well-defined, some work

still needs to be done to thoroughly define v(x) and y(x, m).

Particles produced by fragmentation of a particle of mass x can only take on smaller m < x.

For this reason, y(x, m) is only defined on the interval (0, x). Because y(x, m)dm represents the

fraction of fragments in the interval from m to m + dm (see Figure 4-10), we would expect the

sum over all intervals to equal one, which of course is an integral when differential segments dm

are considered:

m

y(m, x)dx = 1 (4.31)

0

Note the consistency with the units given in Table 4-5.

Just as with coagulation, fragmentation processes must conserve mass. The mass balance is

expressed by equating the mass lost in a differential segment of the number density distribution

with the corresponding mass gained in other population segments due to this same fragmentation:

m

a(t = n(m)g(m)v(m) fy(m, x)xdx (4.32)

0

The left hand side expresses the mass lost in the interval located at mass m, while the right hand

side expresses the mass gained in other intervals by this fragmentation. Specifically, n(m)g(m)

gives the rate of fragmentation of particles size m, multiplying this by v(m) results in the total

number of smaller fragments, and finally the integral on the right hand side calculates the total

mass per fragment particle produced. Manipulating this expression yields:

m

an(m) v(n)g( m) (m, x)xdx (4.33)
0
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Comparing this expression to Equation (4.25) yields the relation:

m

Y(m) ly(m, x)xdx = 1

0

m (4.34)
v(m)= m

JY(m, x)xdx

0

This condition on v(m) ensures that the mass balance is satisfied. For an example of an applica-

tion of the fragmentation kernel, please refer to Section 4.5.4.

4.3 Growth

The previous section discussed the effects of coagulation and fragmentation processes on pop-

ulations. Both of these mechanisms have the ability to both create and usurp particles from any

given range of the number density distribution. Another classical process contributing to the for-

mation of particles is the growth process. Unlike coagulation and fragmentation, growth does not

change the number of particles in the system, rather it moves the particles which are already in the

system from one part of the mass range to another. For this reason, the growth mechanism is said

to conserve number but not mass. In contrast, the coagulation and fragmentation processes con-

serve mass but not number.

4.3.1 Analogy between growth and convection processes

As an example of growth occurring within the members of a population, consider a population

of rabbits growing at a uniform rate I -that is, each rabbit grows at the rate of I units of mass per

unit time. One would expect that the mass distribution of rabbits would shift to the right in Figure
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4-12 as a function of time:

time

n(m)

m

Figure 4-12: Effects of uniform growth on a number density distribution over time.

This phenomenon is analogous to convection within a fluid in a one dimensional regime with spa-

tial coordinate z:

temperature
fluidflow

Figure 4-13: Effect of one-dimensional convection on a temperature distribution over time.

Using the mathematical form of the convection equation cast in the nomenclature of population

distributions elicits the following expression:

An(m)_ (G(m)n(m))
at cm

where the growth rate may be a function of member size m.

4.3.2 Derivation of the growth expression

The validity of the growth expression given in Equation (4.35) can be proved by investigating

the case of growth in a discrete population balance for two segments of the population, denoted by
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the subscripts i - 1 and i, as illustrated in Figure 4-14.

n(n

Ami- I Am

am

Figure 4-14: Growth model over two segments in a bin-based number density distribution.

Growth within the population shown will affect the number of population members in segment i

in two ways. First, population members in segment i will grow larger and move into the next

larger population segment, causing a decrease in the number of members in the interval spanned

by Ami. Second, the number of population members in the interval spanned by Ami will increase

due to growth of population members in the interval spanned by Ami - . If a probabilistic frame-

work is used to describe the population growth and PGC i(o) is defined as the probability that a

population member of segment i will grow to the next larger population segment within some

time interval, then the growth expression is:

n(m,)Am,, - n(m)Amld -GI- (co)n(m,)Am,- PG, (o)n(m,)Am 1 1At
- - - -. " - - - , [ time

change in number of members in segment rate of membes from segment rate of members from segment step
i-I growing into segment i i growing into segment i+l (4.36)

Note that PG i(co) has units of 1/time and therefore can be expressed at the reciprocal of some time

constant:

(4.37)

Rearranging and taking the limit as At -+ 0 converts the expression to a differential equation with
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respect to time:

dn(mi)Ami 1 1

dtnAt,_, n(mi- i )Ami- , - An(mi)Ami (4.38)dt AtiI

Rearranging still further creates groupings of the form Am/At i. These groupings become the def-

inition of continuous growth rate, dmldt in the limit as the intervals Am and At go to zero. In the

population balance equation, growth rate is denoted by Gi:

dn(mi)Ami Am, 1 Amidn m Ati- n(mi - ) - 'i n(mi)
dt AtiI Al

dn(mi)Ami

dt l = Gi- n(mi- 1)- Gin(mi)

Dividing this expression through by Ami and taking the limit as Ami 0 0 yields the continuous

expression for growth rate:

an(mi) Gi- I_ n(mi - 1) - Gin(mi)

Am, -- 0 t Ami (4.40)

an(m) _ (G(m)n(m))
at am

where the dependence of G on particle size is no longer expressed through the subscript i; growth

rate is instead a function of size G(m).

4.3.3 Special case of constant growth

Growth within a mass-based population distribution is analogous to aging within an age-based

distribution - all members of the population age at the same rate. This creates a system where

every part of the distribution is translated an equal amount along the horizontal axis, as shown in

Figure 4-15. Of course, because aging occurs at a uniform, linear rate, this is a special case of

Equation (4.35) where G(m) = 1.

4.4 Sources and Sinks

A number of other effects also act on populations, including sources and sinks of population

members and other mechanisms that change the properties of a population member. Sources and

sinks include processes such as birth of rabbits or nucleation of aerosol particles. Other types of

sources and sinks include consumption or production of species due to reaction.
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n(a)

a

Figure 4-15: Effects of aging on a population density distribution with age as the independent
variable.

4.4.1 Sources within the domain of the number density distribution

Sources and sinks are processes that either add or take away population members. These may

include changes due to movement of the members across a system boundary or creation/destruc-

tion of members within the system boundary. The magnitude of the source or sink may vary as a

function of population member size or some other property:

m

Figure 4-16: Sourcelsink function as a function of particle mass.

If k(m)Am is interpreted as the number rate of population members being added to the size range

between m and m + Am, then the following expressions are a valid:

dn(m)Am = k(m)Am
dt

dn(m)dm = k(m)dm (4.41)
di

an(m)= k(m)
at

The first and second expressions in Equation (4.41) express the source/sink contribution to the

118

.:



Sources and Sinks

number of members in a given slice of the population distribution, for both finite and differen-

tially small distribution intervals. The last expression gives the source/sink term k(m) in the form

of a term in the continuous general dynamic equation, with expected units of /g · cm3 · s, which

are consistent with an(m) lat. In this sense, k(m) represents the number contribution from the

source per unit of the distribution independent variable. Note that the net number contribution of

population members within any interval of the population distribution is given by:

On(m) = k(m)
at

m,

Note that in the special case of a point source, the source adds population members of uniform

size m0 at a specified rate Ko we have (note ml < mo < m2):

dn(m)k(m) (mo)- K(m d K (mo)

m2 m2
dN(m1 < m < m 2) 

dt - Jk(m)dm = f KO(mo)dm (4.43)
m, m,

dN(m < m < m 2 )
dt 

While Ko has units of /(s · cm3 ) and represents the total rate of particle contribution from the

source, the expression Ko6(mo) actually has units of 1/(g · s cm3). This is easily confirmed by

taking the partial derivative of the middle expression in Equation (4.43) with respect to mass:

m2 m2
(dN(m < m < m2) 2 d 2ad (ml <m dt<m2 - f adtn(m)d m = a f Ko0 (mo)dm

m! ml (4.44)

an(m) = K

which is exactly the form for a point source in continuous population balances.

4.4.2 Boundar sources

Another type of source are point sources placed at the system boundary. Most commonly, this

is a boundary condition representing nucleation of particles entering the system at the smallest
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size (see Figure 4-17).

n(m) K

nuclea

growth
no -

m

Figure 4-17: Addition of particles from nucleation into a growing number density distribution.

Generally, in such systems both the nucleation rate and growth rates are known. In order to cal-

culate the correct boundary value no, we start off with a population balance on a population seg-

ment which borders on the left boundary, as shown in Figure 4-18.

nucleation

Figure 4-18: Population balance around segment of distribution adjacent to the left boundary.

Equation (4.45) presents the population balance on this element:

dn(m)Am = N + G n(ml) - Gon(t)dt . , __
_--V--- nucleation rate increase firom number decrease from number

number of mambers units: #/time of growing members of growing members
between and nAm (4.45)

Note that the second term is zero because n(ml) = 0; that is, there are no particles at a smaller

than mass = 0. Shrinking Am to a differential size and assuming the element stays at steady state

is equivalent to requiring that the rate of particles entering the system at the boundary is equal to

the nucleation rate. This assumption also sets the left hand side of Equation (4.45) to zero:

0 = No - Gon(m o) (4.46)

Noting that Go is equivalent to the growth rate at the left boundary, G(mo), this expression is
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readily solved to yield the boundary value n(mo):

n(m o) G( (4.47)

Note that the units of this expression are consistent, as summarized in Table 4-6.

Table 4-6: Boundary condition variable units

Symbol Description Units

n(mo) left boundary # particles
number density g . cm3

No nucleation rate # particles

s cm 3

Go growth rate g/s

This is the appropriate boundary condition for all systems where particles are entering the bound-

ary and then growing to larger sizes.

4.5 Examples

The following sections outline the development of the dynamic population for several exam-

ple systems including nucleation, growth, and fragmentation mechanisms.

4.5.1 Crystallization

One example is crystallization in a continuously mixed crystallizer, as shown in Figure 4-19.

Here, crystals are formed in a vessel which is continuously fed with concentrated solution. Crys-

tals form due to nucleation and grow to larger sizes, which is measured in terms of crystal length.

The outlet pipe from the vessel acts as a continuous sink.

If the crystallizer is fed with aqueous potassium sulfate solution, then the growth rate expres-

sion for the resulting potassium sulfate crystals in aqueous solution in the form used by Equation

(4.30) is (Chianese et al., 1987):

G(L) = 892a 2 (1 + 5.87L) (4.48)

where a is the degree of supersaturation in the liquid medium and L is the crystal length. In order

to prevent negative values of supersaturation, we use the expression:
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Figure 4-19: Crystallization of particles in a continuously mixed crystallizer.

a = max(c - Ceq, 0)

Figure 4-20 plots the growth rate as a function of crystal length for a = 0.0346.
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Figure 4-20: Crystal growth rate as a function of crystal length.

The saturation concentration is (Perry, Green, and Mahoney, 1984):

Ceq = 0.0735 + 1.375xl0-3T

A separate growth rate specific to crystal nuclei is also reported (Chianese et al., 1987):

Go = 847a 2

The nucleation expression gives the birth rate of crystals:
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N, = 4.12x10 14Mta3.4

where M, is the magma density, defined as:

QO

M,= PsfK (L)L3n(L, t)dt

0

(4.52)

(4.53)

which calculates the total kg of solvent present in the crystals per m3 of fluid. The symbol Ps is

the solid density and K, is the crystal shape factor, defined as:

KY(L) = 0.898exp[0.1681000 - 8.234L]

K,(L) = 4.460exp[- 0.079700L7 + 0.676L]

L<O.1 mm

L>0.1 mm
(4.54)

Figure 4-21 graphs the crystal shape factor as a function of crystal length.

2.0

1.5

1.0

0.5

0.0

Crystal Length (rnm)

Figure 4-21: Crystal shape factor as a function of crystal length.

The dynamic population balance for this system must naturally include the effects of n 'cleation,

growth and loss due to flow out of the crystallizer. Because the vessel is well-mixed and has vol-

ume V with a volumetric flowrate of v, the expression for loss of number density with respect to

unit time is:
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(L) _ -v n(L)
at

n(L) = _v n(L)a n(L) (4.55)

an(L) = _. n(L)
Ot z

where T is the residence time of the crystallizer. Note that this acts as a uniform sink on the popu-

lation and is referred to as the removal term. Adding this term to the growth term. produces the

dynamic population balance equation for this application:

an(L)_ = (n(L)G(L)) 4.56· n(L) (4.56)at L 

The boundary condition for this system is determined by the nucleation rates and growth rates,

as described in Section 4.4.2. As outlined in the previous section, nucleation is an example of a

point source because it acts as a source of particles which are uniformly at some minimum size. If

the growth rate in the system is known as a function of crystal length, then the boundary condition

is:

n(O) N0 (4.57)
Go

Note in this case that the minimum particle size is assumed to be zero because more accurate data

on minimum crystal size is not readily available.

Finally, for the mixed crystallizer system, some balance is needed on the liquid phase to

account for changes in liquid phase solute concentration due to uptake as the crystals grow. This

equation takes the normal form for liquid phase concentration in a continuously mixed reactor

with the exception that the loss term also includes the magma density.

MT

(4.58)
dc 1

dt -(C - c)

In this way, the variable c is used to perform the total mass balance on the crystallizer, while the

uptake inherently calculated by the first equation, which is essentially a mass balance of solute

between the two phases. It is easy to see how uptake of solute creates longer crystals which in
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turn results in a higher value of an MT and a lower value of c.

4.5.2 Numerical solution of crystallization example

In order to solve this model, a numerical solution is implemented for the two governing equa-

tions given Equations (4.56) and (4.58). Because Equation (4.58) is an ordinary differential equa-

tion (ODE), it is ready for numerical integration. However, Equation (4.56) is a partial

differential equation (PDE), and therefore must first be converted into a set of ODE's.

In general, there are three steps in generating a set of ODE's for numerical integration from a

PDE:

1. Propose an approximate solution
2. Formulate an error expression
3. Minimize the error expression

For this particular problem, the method of finite elements will be used.

Step 1: Propose an approximate solution

The first step in solving the governing equations is to propose an approximate solution. The

first expression is a partial differential equation, so the continuous solution n(L) will be approxi-

mated by a linear piecewise representation n*(L), as shown in Figure 4-22:

-,, r t
r Ji-q

-- n(L)

n *(L)

rL

Figure 4-22: True solution n(L) and approximate numerical representation n*(L).

This representation can be written as a linear combination of node points and "hat" functions:

n*(L) = ,ni(L)Oi(L ) (4.59)
i

where ni(L) are the values at the node points where the line segments meet in the piecewise repre-

sentation. The functions vi are "hat functions" which have value 1 at the node point i, and linearly
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decrease to zero at the node points i + 1 and i - 1, as shown in Figure 4-23. In essence, this repre-

*XL)
.

-

\

i-I i i+1

Figure 4-23: Hat function used in approximate solution.

sentation can be viewed much like a Fourier series or any other orthogonal expansion where the

ni(L) represent the coefficients and the ~i are the basis functions.

Step 2: Formulate an error expression

The error in our solution can be expressed as the difference between the right and left sides of

Equation (4.56) after substituting in the representation n*(L) for n(L):

R(L) - an*(L) + ( n *(L)(L) (L) (4.60)
cit L x

where R(L) is the residual function representing the error. When this residual function is forced to

zero, then Equation (4.60) is identical to Equation (4.56) and n*(L) = n(L).

Step 3: Minimize the error expression

In order to minimize the error expression, we take the inner product of the residual function

and the basis set, and set this quantity to zero.

(R(L), ~,(L)) = 0 Vi (4.61)

In practice, this inner product is performed over the domain of the solution (0, L) and produces a

set of i ordinary differential equations which define the evolution of the node point values n,{L).

These equations are often written in matrix form:

Ad n = B n + f(n) + (4.62)
cdt 

where the f(n) is a nonlinear vector function. These equations are then solved by numerical inte-
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gration (see Appendix B).

In theory, the inner product actually forces the error to be orthogonal to the representation,

which is equivalent to taking the projection of the true solution onto the approximate solution. In

vector space, this is the same as taking the projection of an n-dimensional vector onto an -dimen-

sional vector, where 1 < n. Take the projection of a two-dimensional vector onto the unit x vector,

as illustrated in Figure 4-24. In this case, however, the projections are not performed on vectors,

..

L

2-D vector

error

'~~~W I b.

y x
1-D "representation"

vector

Figure 4-24: Projection of a two-dimensional vector onto a one-dimensional "representation"
vector results in an error vector which is orthogonal to the representation vector.

but rather on functions. Nevertheless, the true solution is an arbitrary function, which can only be

perfectly represented by an expansion of the form given in Equation (4.59) if it has infinitely

many terms. However, it is only practical to represent our solution with a finite number N of node

points. In this sense, we are really using an N-dimensional function expansion to approximate the

infinite-dimensional true expansion. To find the closest approximation, we simply take the pro-

jection of the true expansion onto our approximation, which forces the error to be orthogonal to

our basis function representation, as expressed in Equation (4.61). For more information on the

theory of orthogonal approximation of functions, good starting points include Papoulis's (1991)

treatment of Karhunen-Loeve expansions and the section on approximation of polynomial func-

tions in Numerical Recipes in C (Press et al., 1993).

Numerical solution and results

In order to calculate the solution the necessary parameters in the governing equations are
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specified in Table 4-7. Using these parameters, the solution was generated over the domain (0,

Table 4-7: Crystallization simulation parameters

Parameter Value Units

c t0 0 kg solid/kg solvent

X 0.5 hr

T 25 oC

P 1000 kg/m 3

Ps 2660 kg/m3

Lmax 1.5 mm

La,) over the time period from t = 0 to 6 hours. Number density results are plotted as a function

et' time in Figure 4-25, and compare closely to other results generated in the literature (Pantelides

and Oh, 1996). Note that at time = 0, the number density distribution is uniformly zero, indicating

In(Numlb
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Figure 4-25: Evolution of the crystal length distribution as a function of time.

the lack of any particles in the system. As time increases, however, the number density at the size

L = 0 begins to increase and then propagate in the L direction as new particles nucleate and grow.

Note that the number density in the upper crystal size range maintains a high value in this system.
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This indicates that a large fraction of the total particles nucleated are actually growing out of the

upper size limit of the numerical solution. Because these particles are no longer in the system,

they no longer grow or contribute to the magma density, and therefore the uptake of mass by these

larger particles is unaccounted for by the model. Consequently, the magma density is underesti-

mated and the nucleation rate is overestimated. In order to remedy this, the upper size limit needs

to be increased until the number density at the upper size limit is roughly zero. In many popula-

tion balance processes, the particles actually grow very fast and have the potential to become

many orders of magnitude greater in size than the nuclei. In order to properly solve these sys-

tems, the solution domain must also cover many orders of magnitude, however significant numer-

ical challenges exist in solving over such a large range of particle sizes, as will be discussed in the

following chapters.

4.5.3 Rabbit population

For a population of rabbits, it is easy to imagine that three processes determine the number

density of rabbits as a function of age: birth, death, and aging. If a is the variable for age and n(a)

is the age distribution of rabbits, we can express birth and death as source and sink processes,

respectively. Thus we would expect the population balance equation to take the form:

n(a) n(a) + (4.63)
at at Birth at Death at Growth

Aging acts much like a growth process, which adds age to the population member instead of

mass.

n(a) - 5(n(a)G(a))Aging term: = O(n(a)G(a))
Growth

(4.64)

Aging rate expression: G(a) dt = 1

A typical birth function might be defined as follows:

amax

an(a) = b(a) = (0)kb n(a)da (4.65)
at Birth

amin

The birthrate at age zero is equal to the product of the number of population members in the fertile

age interval (amin, ama) and some birthrate factor kb. In the birth expression, 8(0) indicates that
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the birth function is zero for all values except for a = 0, which is means that birth will only add

members to the population at age = 0. Thus, the birth process will act much like nucleation by

adding population members at the left boundary of the population distribution.

n(O) - b(O) (4.66)

This boundary condition is derived from the assumption that the number of rabbits at age zero is

at steady state and that the affects of death at birth are accounted for in the birth rate factor kb:

an(a) _ b(a)_ (n(a)G(a)) a =
at a8~~~~a ~(4.67)

n(a) b(a) - G(a)n - n(a)OG(a)
at a

Because the growth rate is constant G(a) = 1, the last term in Equation (4.67) drops. The steady

state assumption allows elimination of the first term, leaving:

b(a)- G(a)an(a) 0
(4.68)

n(a) _ b(a)
aa G(a)

A typical death expression would indicate that the death rate is proportional to both the age of

the population members and the number of members at that age.

an(a) =-kda. n(a) (4.69)
at Death

Note that in the birth expression, the units of kb must be in time'2 space 'l order for the units to be

consistent (age is expressed in units of time); coincidentally kd in the second expression is also

expressed in units of time' 2 space 'l. Substituting the appropriate terms into Equation (4.63)

yields the final form of the population balance equation:

An(a) _ O(n(a)G(a))
at-kan(a) (4.70)

where the birth term is conspicuously absent because it takes the form of a boundary condition

and does not affect the number density on the interval a = (0, oo ).
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4.5.4 Fragmentation example

Most antibiotics are produced by culturing filamentous fungi in large well-mixed fermenta-

tion vessels. The well-mixed character of the vessel is maintained by a mixing impeller. The

fungi grow in long filaments, called hyphae, which are entangled together to form large clumps of

fungi. The impeller sometimes collides with the fungi, fragmenting off a tiny group of the fila-

mentous hyphae through, as shown in Figure 4-26:

A

A 0

Figure 4-26: Fragmentation In filamentous fungi.

Jiisten et al. (1997) reports that below a certain minimum fungal area A0 fragmentation no

longer occurs, and thus develops a model where fragmentation is manifested as a gradual reduc-

tion in area of large hyphal clumps through the loss of a small hyphal clumps of area Ao. Jisten et

al. report the dynamic population balance for this process:

An(A)_ (n(A) f(A)) (471)
at aA

and define the "fragmentation rate function"fas:

f(A) = -K(A -Ao)G (4.72)

where G = 1. If we examine Equation (4.71) is examined over a size interval AA which is the

same size as a hyphal fragment then we have:

On(A) _ a(n(A). f(A))
At aA (4.73)

dn(A) _ n(A + AA) f(A + AA) - n(A) f(A)
dt AA

where AA = Ao. Then substituting the fragmentation rate functionfyields:
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dn(A) _ n(A + AA) .(-K(A + AA-Ao))- n(A) (-K(A-Ao))
dt AA

dn(A) _ n(A + AA). K. A - n(A) . K (A -Ao)
dt AA

dn(A) _ n(A + AA) K A-n(A) K (A -Ao)
dt Ao

dn(A) _ n(A + AA).K. A n(A). K(A-Ao)
dt Ao Ao

(4.74)

The units of A are given in mm2 while K is a rate constant with units /s.

Close inspection of Figure 4-26 and the fragmentation rate function given in Equation (4.72)

reveals that the fragmentation kernel can also be used to describe this process. Because an hypha

of size A fragments into two pieces of area A - Ao and A0, we can propose the fragmentation ker-

nel:

y(A,x) = (x- A) + 8(x- (A - A))y(A~~2 

This fragmentation kernel gives the distribution of fragment sizes x created by the fragment of

one particle size a. Because 8(x) = 1 only when x = 0, the first term takes on a value of V2 when x

= A 0, which means that V2 of the total fragments are of size Ao. Likewise, the second term in

Equation (4.75) expresses the fact that the other /2 of the fragments are of size A - Ao.

Applying Equation (4.34) reveals that v(A) = 2, as expected because two particles are created

for every fragmentation event.

v(A) = A

Jy(A, x)xdx
0

v(A) = A
A

f(26(x -A) +
0

v(A) = A
Ao (A-Ao)
2 2

v(A) = 2

I(x-(A - Ao)))xdx

A

OV
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The last expression needed to fully describe the fragmentation kernel is g(A), which describes the

fragmentation removal rate for hyphae of area A in the same the form given in Equation (4.25):

(A)_ n(A)g(A) (4.77)
As shown in Figure 4-27, the fragmentat

As shown in Figure 4-27, the fragmentation rate can be interpreted as a negative growth rate. It

n(A

AA A

Figure 4-27: Interpretation of the fragmentation rate as a negative growth rate.

follows that the fragmentation rate constant would be defined by the characteristic time required

for a particle of area A to erode in area by AA at the rate prescribed by the functionfJA).

AA = At.f(A)

AA = At.K(A-Ao) (4.78)

At=
K (A -A 0 )

The inverse of this characteristic time can be interpreted as the frequency of fragmentation and is

analogous to g(A), recalling that AA = Ao:

K.(A-Ao)g(A)-

K. (A-Ao) (4.79)
g(A) =

Now that all of the necessary functions have been defined for the fragmentation process, we can

write the form of the dynamic population balance, following the form given in Equations (4.25)

and (4.30):
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o0o

an() = g(x)(x)n(x)v(x)y(x,A)dx- n(A)g(A)at
A

an(A) (-Ao) K. (x -A) r AO)) - n(A) 
at A A) 2 AO

A

co

a(A = A O n(x)[(A -A) + 8((A +A0 )-x)l]dx - (A) A )
at A 0 A (4.80)

A

oo

an(A) (x-An(x)[(A -Ao)+ ((A +Ao)-x)]dx -. n(A) (A -AA o Ao
A

an(A) _ K ((A4 +Ao)-O)n(A K (A -A,0 )
at AO A

On(A) _ K A K (A -Ao)- n(A+A)-n(A) A
at A A

Comparison with Equation (4.74) reveals that these two forms of the dynamic population balance

are identical! This means that the an erosion process where clumps of size Ao are breaking off

from a large particle is equivalent to the corresponding fragmentation process where two frag-

ments size A and A - A0 are created.

4.5.5 Relation between fragmentation, growth, and coagulation processes

The interesting observation to be made here is that in the limit as the size of the fragment

breaking off from a large population member goes to zero, the population balance term describing

fragmentation distributions goes to a growth term with a negative growth rate. Thus, growth/ero-

sion processes and fragmentation together cover the entire range of mechanisms where a large

particle loses mass, ranging from the continuous loss of molecules in the evaporation process to

the discrete loss of large fragments observed in a fragmentation mechanism.

This also has implications on the type of representation used for a process (see Chapter 2).

For example, if the smallest amount of mass that can be lost from a particle of any size is Am, then

it is possible to use a discrete representation with spacing Am to properly represent the system.

However, if the particles can lose very small amounts of mass through a "continuous" loss process

such as evaporation, then a continuous representation must be used. Note that no truly "continu-
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ous" loss process can exist, and Am never actually reaches zero. In fact, the smallest amount of

matter Am that can be lost by a particle will always be a finite quantity at least equal to the mass of

the smallest atom or molecule in the particle. The representations used in these models are

referred to as "monomer size distributions" because they rely on a description based on the small-

est possible particle element in the system (Jacobson, 1999). A "continuous" process actually

refers to the process where Am is so small compared to the magnitude of m that the process is

most effectively treated as a continuous process. For instance, take a model of a population of

swimming pools in a suburban area. The mass of water in the swimming pools could form a pop-

ulation which could be described by growth/evaporation mechanisms, but the mass of water in

each swimming pool is very large compared to the mass of a water molecule. For this reason, a

continuous model describing kg of water in each swimming pool would be appropriate. A dis-

crete model describing the population density function with the number of molecules in each

swimming pool as the independent variable would not only be ludicrous, but would require so

many bins to describe the population that a solution would not be tractable.

Using a similar method to the derivation given in Section 4.5.4, it is possible to derive the

coagulation kernel for a deposition process where particles of size A gradually accumulate on par-

ticles of constant size A0 to produce particles of size A + A o.

constant

.AN ~4.. AiA
L, -0o

A

Figure 4-28: Coagulation process where particles of varying size A coagulate with tiny parti-
cles of constant size Ao.

Tnis derivation is very similar to the one already given and can be broken into the following steps:

1. Derive the population balance for coagulation from the coagulation loss and production

expressions for constant coagulation kernel with P(x, y) = K, where the units of K are s' l cm 3 .

2. Derive an equivalent population balance for growth based on this coagulation mechanism.
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The following two assumptions facilitate this derivation:

1. Assume that the equilibrium concentration (Ceq) for the growth kernel is zero (see the growth
process example in section 4.5.1)

2. Assume that the number density of smaller particles A0 in the coagulation production expression
is analogous to the bulk phase gas concentration (c).

4.5.6 Critical population size for coagulation and fragmentation kernels

Note that the use of an integral expression for coagulation and fragmentation processes

applies only in the limit as a large number of population members are present. Only when the

number of population members is large will the "law of large numbers" from probability theory

(Drake, 1967) apply and allow the use of deterministic fragmentation and coagulation kernels.

For small populations, the characteristics of the population is not as evenly averaged and the sto-

chastic nature of the behavior of individual population members becomes the driving force behind

population dynamics. Please refer to Gueron (1998) for more discussion of the validity condi-

tions for deterministic integral equations in population balances. Ramkrishna and Frederickson

(2000) present extensive material on stochastic population balances.

4.6 Summary

A population balance process may include a number of the mechanisms listed above as well

as other mechanisms. For more examples of crystal growth rate expressions, please refer to have

been studied in a number of systems and are reported in literature Chianese et al. (1995), Karel et

al. (1994), and Sohnel et al. (1996). Studies of fragmentation (Chianese, Sangl, and Mersmann,

1996) and nucleation (Chianese, Contaldi and Mazzarotta, 1986; Chianese, Karel, and Maz-

zarotta, 1995) are also available.
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Chapter 5: Multicomponent Dynamic Population Balance Equation

The previous chapter rigorously derived the expressions for growth, nucleation, coagulation,

and fragmentation directly from principles of physics. However, many particulate systems con-

tain more than one component of primary interest. Some examples of these systems include crys-

tallization, where often crystals are formed in an effort to purify a liquid phase component, and

atmospheric aerosols, where composition has a strong effect on the condensation growth rate of

the particles. These systems require a multicomponent population balance equation to describe

the evolution of the particles in the system. These multicomponent systems are described by mul-

ticomponent number density functions, as introduced in Chapter 2.

5.1 Multicomponent number distribution

With more independent variables, the definition for number distribution must be expanded to

include multiple components:

DEFINITION

The number density function ofpopulation members with s attributes is completely specified

by the vector m={ml, m2, m3, ..., ms} is given by n(m) such that n(m)dm is the number ofpopu-

lation members in the attribute range [m1, ml+ dml][m2, m2+ dm2][m3, m3+ din3]... [ms ms+

dmS].

It follows from the definition that the units of n(m) is I /(cm3 gS) where s is the number of spe-

cies in the system. Alternatively, the number density distribution may be represented as a func-

tion of particle size and the composition of s - 1 species. Chapter 2 illustrates such an example in

a two-component system.

In general, if the individual species masses in each population member are specified, then the

attributes ml...m, are all defined as individual species masses. If instead, the total mass of the par-

ticle and mass fractions for the first s - 1 species were used to specify the number distribution of

population members, then the first attribute would be mass and the remaining s - 1 species would

be mass fraction. If m were used to denote total particle mass and x i defined as the mass fraction

of component i, the number density would be written as n(m, x i, x2,..., s i), or n(m, x) where x =
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{x1, x2,..., x - }. Using the n(m) representation, the following sections derive the multicompo-

nent dynamic population balance equation.

5.2 Coagulation

When two multicomponent population members with mass composition vectors x and y coag-

ulate, they form a new population member with mass m = x + y.

x = 1X X , *,, X,I

YV= IV1v, y,,v, Ay.
- - J

m=x+y

= {X +YlX 2 +Y2,...,Xs +Y,}

Figure 5-1: Multicomponent coagulation.

Note that the composition of the particles is now described by a vector of the individual compo-

nent masses. The previous definition of the coagulation kernel (x, y) from Chapter 4 must be

augmented to account for this.

DEFINITION

The multicomponent coagulation kernel 1(x, y) is the rate function (with units of space · time')
for the first-order process where particles of composition x and y in a given space will collide and
coagulate into one larger member with composition m = x + y.

As in the single-component case, coagulation may both produce and remove particles of any

given size m. These two processes are referred to as coagulation production and coagulation

removal and are addressed separately in the following sections.

5.2.1 Coagulation production

As in the one-component case, coagulation production results from the agglomeration of

smaller particles to form a larger particle. In the one-component case, this meant that particles of

size m could be produced by the agglomeration of particles of size x and m - x. In the vector case,

this means that the mass of each component in the new particle is the sum of the masses of that

component in the two smaller particles:
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m, =x, +(n -x,)

m2 =X2 +(m -x 2 )

m, =x,, +(m, -x,)
(5.1)

This set of relations is often expressed in the equivalent vector form: m = x + (m - x). The cor-

responding expression for coagulation production in the population segment between m and m +

dm is:

dn(m)Am = p(m - x, x)n(m - x)A(m - x)n(x)Axdt
dn(m)AmlAm 2. Ams

dt

(5.2)

= (m - x, x)n(m - x)A(m 1 -- x )... A(ms - xs)n(x)Axl ... Ax s

When the intervals for Am i, A(mi - xi), and Ax i become differentially small, Equation (5.2)

becomes:

an(m)dmldm2... dms
at

= (m - x, x)n(m - x)d(m !- xl)... d(ms - x)n(x)dxl ... dx

The units of this expression are:

an(m), Sn...a,n2 = ,(m-x,x) n(m-x)d(mn-x1)...d(ms-xs)at .
units[=]-keslc masss

tirne-space masss

units[=1 t I--
tine-spce

units[=] I ,ass
masss

n(x)dcj. .. A

nits [=]----mass
masss

(5.4)

Using the fact that:

d(mi-xi) =1
dmi

Vi

enables further simplification of Equation (5.3):

n(m)dml dm2 .. dmsan()dmdm2 s = (m - x,x)n(m - x)d(mI -xl)...d(m- s)n(x)dxI... dxsat

an(m) _ x)n(m d(ml - xl)d(m2 - X2)
=(m -x,x)n(m-x) din1 di 2at dml dm2

an(m) = (m - x, x)n(m -x)n(x)dx ... dxat 

d(m -X s)
... dms n(x)dx!...dx
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Summing over all possible combinations of coagulating population member attributes requires

integration with respect to each attribute variable:

(5.7)

The factor 2 corrects for double counting caused by integration. In the one-component case the

factor of /2 corrected double counting in one dimension. In this case, the multiple integration still

produces double counting, which is remedied by the factor /2. Equation (5.7) is equivalent to

determining the coagulation contribution from Equation (5.2) by summing over all possible com-

binations of coagulating compositions:

X, < ms (x 2 < m2 )x < ml

dnt 2(m) = 3(m-x, x)n(m- x)n(x)Axl...Ax (5.8)

X, X 2 XI

and taking the limit as the intervals go to zero results in the expression and produces a partial dif-

ferential equation:

m, m2 m!

(5.9)an(m) =2 | JfP(m-xx)n(m-x)n(x)dxdx 2 ...dxs (59)
0 00

5.2.2 Reduction of coagulation production integrals

As with the one-component case, double counting may be eliminated by reducing the integra-

tion range of the outermost integration limit:

m,

2 m 2m,

an(t) j I I (m -xx)n( m-x)n(x)dxl dx2 dx (5.10)
0 00

The outer integration limit is effectively a one-dimensional integral because all of the other vari-

ables have already been integrated out; therefore the same reduction of integration range as in the

one-component case can implemented. Note that this still represents a large reduction in the total

integration range, effectively cutting it in half.
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5.2.3 Coagulation loss

The coagulation loss term is also derived from a balance on a multidimensional population

segment:

dn(m)Aml!Am2..Am
dn()Am 2 S = -P(m, x)n(m)Aml Am 2... Amn(x)AxlAX 2... Ax.. (5.11)dt

Dividing through by all the Ami 's, this expression trivially reduces to:

an(m) = -(m, x)n(m)n(x)AxAx2.. . Ax. (5.12)

which describes the rate at which particles of size m are lost due to coagulation with particles size

x. In order to determine the total loss or particles size m due to coagulation with all other particle

sizes, it is necessary to sum over all possible intervals Axi.

n(m)
an()t = E -P(m, x)n(m)n(x)AxlAx 2... Ax-s (5.13)

Ax, Ax 2Ax 1

As usual, this expression reduces to an integral when the intervals Axi are reduced to zero:

oO coOM

an(m) = f ff-p ( m x)n(m)n(x)dxldx2 . dxs (5.14)
0 00

which also converts the expression to a partial differential equation. Realizing that m is constant

within these multidimensional integrals results in the final form of the coagulation removal

expression:

(5.15)

Note that the units for the coagulation kernel are cm3/s and remain unchanged from the single

component case.

5.3 Fragmentation

As with the single component case, fragmentation can both produce and usurp particles in any

given size range n(m) of a number density distribution. Particles of size m may be produced by

the fragmentation of larger particles, a process referred to as fragmentation production, while
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fragmentation removal refers to the process by which particles of size m are lost due to fragmen-

tation into smaller particles. The following two sections detail the derivation of these two frag-

mentation contributions in the dynamic population balance equation.

5.3.1 Fragmentation removal

The removal of particles due to fragmentation, as in the one-component case, is a first order

process. Performing a balance over one multidimensional population segment yields:

dn(m)Am Am 2 ... Am,

dt = -g(m)n(m)Am Am 2.... AM (5.16)

The continuum form of this equation is a partial differential equation is given in Equation (5.17):

n(m) = -g(m)n(m) (5.17)
at

5.3.2 Fragmentation production

In order to describe the production of particles due to fragmentation, we define the multicom-

ponent coagulation kernel to describe the resulting distribution of fragments when a large particle

undergoes fragmentation.

DEFINITION

The multicomponent fagmentation kernel y(x, m)dmldm2...dms describes the fraction of total
particles distributed into the mass range [mnl, m +dml ][m2, m2+dm2][m3, m3+dm3]... [ms,
mn+dm5 ]from the fagmentation of a particle ofcomposition x

As in the one component case, because y(x, m) is a fraction, ',e integral over the domain of all

possible smaller particle sizes must sum to one. Because the particle fragments may have any

composition so long as mi < x i for all i, resulting in the following s-dimensional integral:

m. m2 m

J... f Jy(m, x)dCldx 2 ... dx = 1 (5.18)

0 00

Much like the one-component case, the total production of particles in a given bin range is the

product of the rate at which the larger prattles fragment multiplied by the number of smaller parti-

cles created by each fragmentation v(x) and the fraction of these smaller fragments which have

size m, y(x, m).

144



Fragmentation

n(m)AmlAm 2... Am -dn(x)AxlA x2... x 
5 _dr~ .- v(x)¥(x, m)AmlAm2....Ams (5.19)dt dt

The Am, terms on both sides of this expression can be canceled:

On(m) = -dn(x)AxlAx 2 .. AXv(x)Y( ) (5.20)
Ot dt

In order to account for the contribution from all possible population segments, it is necessary to

sum over all of the larger particle sizes that could fragment to produce a particle size m:

An(m) _ -dn(x)V (x m)AxIAx 2 .. Ax,
at dt

an(im) - E ( dn(xV(X)y(x. m)Ax Ax2.Ax3 (5.21)

AX, 2 AX

In the case where the intervals Axi are reduced in size, this expression becomes a multidimen-

sional integral:

oo m)d (522)

an -m " fJ ( dtx)v(x)y(xm)dXl's (5.22)
Xs X2XI

Finally, substituting the expression for the rate of larger particle fragmentation from Equation

(5.17) yields the final expression for fragmentation production:

(5.23)

As with the one component case, a mass balance can be written which matches the amount of a

given species lost due to fragmentation removal in a given population segment m to the amount of

that species gained by the fragments of these particles.

m, m2 m,

an(m)m = -g(m)n(m)v(m) ... J fy(m,x)xidx 1dx2...dxs
0 0 0 (5.24)

n(m)miat(m)m = -g(m)n(m)mi

The first expression equates the amount of mass lost from the population segment at m to the
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mass gained by the smaller particles; the second equation gives the expression for the loss of these

particles size m. Combining these two expressions yields the mass balance relation:

me m2 m I

g(m)n(m)m i = g(m)n(m)v(m) I... fY(m, )xidXldX2 ... dxs
0 00

m, m2ml

mi = v(m) ... (m )xdx ld x...dx (5.25)
0 00

m2m i

0 0 0 t

Where the last statement is obtained by summing the second expression over all species. Know-

ing y(m, x) and m, this expression makes it easy to directly calculate v(m).

v(m) m mm(5.26)
m, m2m\

I , I y(m x) x l dx2 *

0 00 

5.4 Growth

For a multicomponent model, growth may occur due to the accumulation of any given compo-

nent. An expression for growth due to accumulation of any single species i is identical to the sin-

gle component expression for growth of a single component:

an(m)_ n((m)Gi(m))
(5.27)

at ami

where Gi(m) = dmi, /dt, the rate of accumulation of species i in a particles of size m.

This expression can be derived directly from a balance on a differential population segment. For

the two-component case, the differential population segments are illustrated in Figure 5-2. Ana-

lyzing the rate at which particles move along the axis of species 1 results in the two-component

population segment balance given in Equation (5.28).

dn(ml, m 2)AImlAm 2 1 1
dn dt - I n(m - Aml m 2)Am1 Am2-- n(ml, m2)AmlAm2 (5.28)Ati- 
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n(m. m,)

r(m m 2 )

Gl(ml, m2)

' n - X1- ml

Figure 5-2: Growth rates of different components and the direction of growth in the two-com-
ponent number density scenario.

which is the direct two-component interpretation of Equation (4.38). This expression is a balance

which tracks the rate at which particles move along the ml axis; physically this is equivalent to the

rate at which particles grow due to accumulation of species 1. For the general case of an s-com-

ponent system where the balance is written around species i:

dn(m1 m, ... M,)AmI ... Ami ... Ams 1
dt - n(ml, ... mi- Am/, ... ms)Am 1...Ami.. Ams

~~~~i-I1~ ~(5.29)

-Ai't n( m , . .. mi, . .. ms)Aml . . Ami. .. AmsAt,

Canceling out all of the Am's except for Ami:

dn(m , ... mi, ... ms)Ami 1
dt '- = n(ml ... mi - Ami, ... ms)Ami

(5.30)

n(mrlg t ... xm,)Ami

Rearranging this expression:
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dn(m, .. ,.. .m)Am, Ami n(m ...- Am...
dt - - n(m I ...m1-Am, ...m)

(5.31)
Ami
Atn(m1 , ...mi, .. .ms)

we can now reinterpret the Ami/At terms as growth rates representing the mass of component i

which the particles accumulate per unit time. Taking the limit of these expressions as At

approaches zero allows the substitution of the continuous growth rate expression Gi(m):

dn(m1, ... mi, .. ms)Ami
dt =Gi(ml' "'mi-Ami ' * "ms)n(ml' "'.......... mi-Ai'"'.ms) (5.32)

-G,(m mm,, ... m,)n(m, ... m, ms )

Dividing this expression through by Ami yields:

dn(ml...., .mS)
di(5.33)

Gi(m, .. mi - Ami, ... ms)n(m t, ...m - Am, ... ms) - Gi(m! .. m. m,)n(mi,. m3, .. m.Ms)
Am i

Taking the limit as Ami goes to zero results in the growth expression for species i:

an(m)_ o(n(m)Gi(m))
at ami

(5.34)

In order to account for the growth of all species in the system, it is necessary to sum the growth

expressions for all species i:

an(m) n((m)G(m))
(5.35)

5.5 Sources and Sinks

Just as with the one-component case, sources and sinks may either be manifested as boundary

conditions or sources within the domain of the number density distribution.

5.5.1 Sources within the number density distribution domain

Sources within the domain of the number density distribution add particles at a given rate over

some range of the number density distribution. If k(m)Am is the rate at which these particles are

added, then the population balance over a differential population segment is:
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dn(m 1, m2, ...m,)AmAm 2... = k(m, .. m)mAm.. Am (5.36)
dt ... k(r, mt ...m)m......m (5.36)

Note that the units of k(m) are l/(cm3 s. gS) where s is the number of species and "s" is seconds.

Taking the limit as the population intervals Am1 are reduced in size transforms this expression into

a partial differential equation:

an(m1, m2, ... m)dm dm2... dms
at k(ml, m 2, ' "ms)dmldm2 dms

an(m)dm dm2.. d (537)
at = k(m)dmldm2 .. dm

Finally, dividing through by all of the dmi terms results in the final form of the population balance

expression for sources and sinks in the number density distribution domain:

an(m) k(m) (5.38)
at

5.5.2 Boundary nucleation sources

In one-component systems where the smallest particles present are newly formed nuclei, the

nucleation and growth rates specify a natural boundary condition, as shown in Chapter 4. How-

ever, this does not hold in multicomponent systems. Consider a two-component system with spe-

cies a and b. Depending on the particular system, several cases may arise:

* nucleation is due primarily due to formation of particles of pure a

* nucleating particles contain a mix of species a and b

* nucleating particles contain primarily pure a or pure b

The first case will produce particles of mass (a,in,, 0) where amin denotes the mass of a critical

nucleus of pure component a. This acts as a point source in the form of Equation (5.38):

k(a, b) = NoS(a- a,in)8(b ) (5.39)

where No is the nucleation rate in terms of particles/(cm3 s). The second case will produce a

nucleation function in the form of Equation (5.38) which covers some finite domain of the nurm-
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ber density distribution, as shown in Figure 5-3.

n(m._ m-)

(m1, m 2 )

G,(ml, m2)

m1

Figure 5-3: Growth rates of different components and the direction of growth in the two-com-
ponent number density scenario.

Finally, the third case is merely an extension of the first case, where k(a, b) is represented by two

point sources:

k(a, b) = Na6(a-amin)8(b) + Nb6(a)8(b - bin) (5.40)

where Na is the nucleation rate for particles of pure a and Nb is the nucleation rate for particles of

pure b.
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Chapter 6: Scale Analysis of Growth Mechanisms

Growth is one of the most important processes in the formation of particles. Depending upon

specific conditions and chemistry, particle growth can be driven by a number of processes. The

process of incorporating a gaseous vapor into a particle may include a number of distinct steps

and mechanisms. For example, diffusion typically transports gas phase species to particle sur-

faces, while the process of incorporating these species into the particle may be limited by either

surface reactions or reactions within the entire particle volume. Examples include:

* deposition processes where the particle grows by chemically reacting with gas phase species

on its surface. When this reaction is the limiting step, a surface reaction-limited growth law is

used.

* often some gas phase species are consumed by reaction within a particle or droplet. As the

species is depleted in the droplet, it is replenished by absorption from the gas phase. When the

rate-limiting step is reaction within the droplet, a volume reaction-limited growth law is used

Figure 6-1 depicts the relationship between the various growth processes that occur in particles.

Volume
Diffusion Reaction

1,

Surface Reaction

Figure 6-1: Particle growth mechanisms.

Depending on which step of the growth process is limiting, vastly different growth laws result.

Different growth laws produce marked differences in the dynamics of the respective population

balance equation for that system, motivating the use of different solution methods. The following

sections investigate these varying growth processes and summarize the resulting differences in

solution methods.
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6.1 Diffusion-Limited Particle Growth

Often in physical processes, growth of particles is constrained by the rate at which molecules

from the gas phase diffuse to the surface of the particle. In the case where the particles are greater

than the mean free path of the gas molecules, the growth law for these particles is given by:

dm
dt 2 DpD(c - C)W (6.1)

G(Dp) = 2DpD(c, - c) W

This growth rate represents the rate at which mass of component i is added to particles of size Dp

(Friedlander, 2000). Table 6-1 summarizes the symbols in this expression and their units.

Table 6-1: Summary of symbols for continuum condensational growth expression

Symbol Name Units

m Mass of the condensing species in the particle g

D,, Particle diameter cm

D Diffusivity of condensing species in bulk gas cm2/s

C. Concentration of the condensing species in the bulk mol/cm3

gas

Cs Equilibrium concentration in the gas phase at the par- mol/cm3

tide surface

W Molecular weight of the condensing species g/mol

6.2 Implementation in Numerical Solution

The dynamic population balance equation for a one-component system undergoing growth is:

an(m) _ n(m). G(m)) (6.2)
at am

Please refer to section 4.3 for a full derivation of the growth expression. Note that in this form,

G(m) is expressed in the form dmi/dt - which is consistent with the units required for this form of

the population balance. However, G(Dp) from Equation (6.1) must first be converted to G(m).

Assuming spherical-shaped particles/droplets, the formula for volume of a sphere can be used to

develop a relationship between Dp and m.
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v = 4cr3= 6D33 6P

m pv = pv = D3 (6.3)
- ppu

Substituting this result into G(Dp) yields the desired growth rate G(m).

G(m) = ,-() D(c - c)W (6.4)

The lumping all the parameters except m into the parameter K results in the simplified form of the

growth law.

K = 2nD(c - Cs) f 1/3
(6.5)

G(m) = Km 1/3

Substituting this form of the growth law G(m) into Equation (6.2) produces the population bal-

ance equation for a system 1udergoing diffusion-limited particle growth.

6 P =

an(m) = -2nD(c, - cS) (n(m) 'a (6.6)
at 0m am

an(m) _ a(n(m) . (Kml/3))
At am

By using the method of characteristics, this expression can be solved to describe the evolution of

n(m) as a function of t.

6.3 Characteristic Curves

The method of characteristics (Zauderer, 1989; Zwillinger, 1992) provides a method of draw-

ing the "characteristic curves" which describe the dynamics of hyperbolic partial differential qui-

etens. For partial differential equations of the general form:

a(x, t)Ž + b(x, t)t = c(x, t)y + d(x, t) (6.7)& atr
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the method of characteristics provides the following set of ordinary differential equations regard-

ing the dynamic evolution of x, y, and t.

dW = b(x, t)
(6.8)

dx = a(x, t)

Solving these two differential equations yields two curves, x(s) and t(s) which parametrically

describe the evolution of x and t in the system. Along each of these curves, the evolution of y is

specified by:

dy , ty = cd(x, t) (6.9)
ds

Note that Equations (6.8) and (6.9) can quickly be validated by comparing Equation (6.7) with the

identity:

dy _ oydx + y dt
ds x ds t ds

dy _ a(x, t) + aYb(x, t) (6.10)

dy (x c y + d(x, t )
ds

The most common application of the method of characteristics is to analyze the dynamics of con-

vective systems.

6.3.1 Convective system constant velocity: characteristics example

Flow of a chemical component A in a one-dimensional system is given by the familiar rela-

tion:

acA (CA v) (6.11)
at Oz

where the flow is in the z-direction at velocity v. In the case where v is constant, this expression

reduces to:

-A -vA (6.12)
at az
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In order to apply the method of characteristics, it is first necessary to identify corresponding com-

ponents in Equations (6.7) and (6.12).

Table 6-2: Variable correspondence between Equations (6.7) and (6.12)

Equation (6.7) Equation (6.12) Variable
component component Definition

x z distance

y CA concentration

t t time

a(x, t) v velocity

b(x, t) 1 n/a

c(x, t) 0 n/a

d(x, t) 0 n/a

The corresponding set of differential

tions given in Table 6-2.

equations for this system follow directly from using the rela-

di 1

ds
dz
ds

(6.13)

If the initial set of conditions for this system are t = to and z = z0o, and s = 0, then integrating with

respect to s yields the following set of curves.

t(s) = to + s

z(s) = O+ v. s
(6.14)

For this particular system, it is possible to eliminate s from Equation (6.14) and solve directly for

z as a function of t and vice-versa.

z(t) = z0+ v(t- t 0)

z - zo
t(z) = ~ + to

(6.15)

Using this relation, it is possible to construct a set of "characteristic curves" describing the posi-

tion of individual "packets" of concentration starting at various points zo.
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1.o

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
z

Figure 6-2: Convective system characteristic curves for constant velocity.

Figure 6-2 illustrates a set characteristic curves for the case where to = 0, v = I and the points z0

are evenly spaced between zero and one. Examining the line starting at z = 0.3, shown as a

dashed line in the figure, this line proceeds at a constant rate to higher values of z as t increases.

The derivative of the line at any given point is the inverse of the velocity, which is constant at 1.

Thus, a "packet" of concentration originally located at the point z0o = 0.2 travels at constant veloc-

ity to the right, creating the characteristic curve trajectory in t - z space. Note also that:

dCA
0 (6.16)ds

so the value of CA is constant along each characteristic curve.

6.3.2 Convective system, varying velocity

In the case where the velocity v is a function of position, the results are more complicated.

Take the system where v(z) = I + z. In this case, the derivative in Equation (6.11) is expanded:

aCA a(CA v(z)) _ aCA av(z)
at =-V(Z)- CA (6.17)

ECA (+ CA
at - (1
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Table 6-3 lists the correspondence between terms in Equations (6.7) and (6.17).

Table 6-3: Variable correspondence between Equations (6.7) and (6.17)

Equation (6.7) Equation (6.17) Variable
component component Definition

x z distance

y CA concentration

t t time

a(x, t) I + z velocity (v)

b(x, t) I dv/dz

c(x, ) 0 n/a

d(x, t) 0 n/a

The corresponding set of differential equations for this system is now:

(6.18)
dz
TS = ( +z)

Note that in any process where dtlds = 1, if initial conditions are such that to = so = 1, then t = s.

As a result, the second differential equation can be restated in terms of z and t and integrated

directly to yield the characteristic curve.

dz
a"7 =(1 +z)dt (6.19)

This yields the characteristic curve:

t ,nl+Z (6.20)

Plotting the set of characteristic curves evenly spaced between z = 0 and z = 1 yields Figure 6-3.

Note that now the characteristic lines are curved, indicating that individual "packets" of concen-

tration actually gain velocity as they move to higher values of z, a fact that is consistent with the

velocity v = I + z. In addition, CA now evolves according to the expression:
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0.6
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0.3
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0.0 0.2 0.4 0.6 0.8 1.0
z

Figure 6-3: Characteristic curves for convective system with varying velocity.

dC
s- = -C (6.21)

which can be solved by integration with respect to the characteristic curve parameter s.

6.4 Diffusion-Limited Growth Characteristics

Using the method of characteristics, it is also possible to calculate the characteristic curves of

population balance problems involving growth. For a system undergoing growth, the governing

equation is:

n(m) (n(m)* G(m))
At Oma~~~t ( ) i ( )_~~ am ~(6.22)
at -n(m) - G(m) a(m

Applying the method of characteristics as prescribed by Equation (6.7):

dt

(6.23)
dm
ds = G(m)

Again, because to = 0 and so = 0, we have s = t and therefore:

dm
-i = G(m) (6.24)dt
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This result applies to all systems of the form given in Equation (6.22). Substituting the appropri-

ate growth law from Equation (6.5) and integrating this expression yields the characteristic curve.

dm = Kml 13

dt
t m

Jdt = Km 1/3 dm (6.25)

to mo

t-t o = 3 (m2/3 -m 2 / 3)

Figure 6-4 shows a plot of these characteristic lines spaced evenly in m with K = 1.15 x 10 4" and

to = 0.

0.6

0.5
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Figure 6-4: Characteristic curves spaced evenly in m for diffusion-limited growth law.

Note the even spacing of the characteristic lines, with the smallest particles growing slightly

slower at first and then leveling off as they increase in size. The almost-uniform growth rate for

this system is well-scaled and readily adaptable to numerical solution. Plotting the same charac-

teristic curves on a log scale with the m points evenly spaced along this scale reveals a very differ-
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ent result, as shown in Figure 6-5. Comparison with the characteristic curves in Figure 6-4 show

60x10'3
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10' 16 10 ' 14 10 12 10
mass (g)

104

Figure 6-5: Logarithmically spaced characteristic curves as a function of m for diffuson-lim-
ited growth law.

that the characteristic curves have a markedly different appearance despite the fact that this graph

still represents the same physical growth model.

In fact, the characteristic curves shown in Figure 6-4 are actually the characteristic curves of

the logarithmic-scaled system of governing equations. These governing equations can be derived

from the original system of governing equations by introducing a logarithmic scaling transforma-

tion:

m = moeYw (6.26)

where the new system of governing equations will describe the evolution of a distribution with w

as the independent variable, n(w). The following section derives this logarithmic-scaled growth

expression from the original governing equation for growth derived in section 4.3.

6.4.1 Rescaled diffusion-based growth expression

Just as number density distributions can be rescaled (see Chapter 3), the governing equations

can also be rescaled to describe the evolution of a particle system. Using the transformation given

in Equation (6.26), the number density distributions are transformed as follows:
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m - moeT

n(w)dw- n(m)dm

dm(6.27)n(w)= n(m) = n(m)my
dw

n(m)= n(w) =
dm my

In order to perform a similar transformation on the governing equations, we seek a transformation

of the form:

n(m)_ a(n(m)G(m)) An(w)
atam a =(6.28)Agt m t'

which can be reached by directly substituting the expression for n(m) from the last line of Equa-

tion (6.26) into the population balance equation for growth:

An(m)_ o(n(m)G(m))
At am

_ dw_ _ ~nwdw G(m)) (6.29)
jn( )dr q dm

at am

The growth rate expression must accordingly be converted from G(m) to G(w), or from dm/dt to

dwldt.

dw 1
m = ineYw ---min dm ym

dm dw dm dw dw
dt Gm 'dm dm

G(w)= G(m) dw

Finally, incorporating the results of Equation (6.30) and the chain rule reveals the final form of

the population balance equation as given by Equation (6.31).
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8(n(w) ) Pin(w)4wG(m)) dn(w) G(m))

n(w)_ d w dm

at w aw

an(w)= (n(w)G(w))
at &w

Using this result, the growth characteristics for this system may be calculated as a function of w.

6.4.2 Log-scaled growth characteristics

Using the log-rescaled growth expression for diffusion-limited growth, G(w) is evaluated as in

Equation (6.32):

G(w) = G(m)dw Km1 _= Km2/ 3 (6.32)
dm m Y

Recalling that m = mmineYW results in the final rescaled population balance given in Equation

(6.33), the final rescaled growth rate expression is:

G(w) (mKmineYw)/3 (6.33)(mmin )

Together with the rescaled population balance equation for growth:

an(w) _ (n(w)G(w)) (6.34)
at 8w

it is possible to derive the characteristic curves for the logarithmically scaled growth expression

given in Equations (6.31).

It is evident that the form of the population balance equation for this system is identical to that

in Equation (6.22) with the exception that w is substituted for m. It follows that the method of

characteristics for this system results in the differential equation:

dw t ~ G(w) (6.35)
dt

Substituting the proper growth expression and integrating from t = 0 to t and wo to w yields the

characteristic curve:
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dw K
dt =- (mmineYW)2 / 3

t w

Coincidentally, the same result would have been reached had the expressions m = mmnew and

mo = mmineYw° been substituted directly into Equation (6.25),

t= 2 [(mminew)2/3 - (mineY w) 23]

2yw 2yw (6.3
t= 2 3 -e3 

which emphasizes the fact that Equations (6.25) and (6.37) represent the same physical process

with a different scaling system.

In order to plot these characteristic curves for the purposes of comparison with Figure 6-4, it is

necessary to first establish the values of the variables in these two characteristic plots. Table 6-4
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lists typical parameter values for a system of condensing water droplets.

Table 6-4: Diffusion-limited growth characteristic curve parameters

Symbol Definition Value Units

coo bulk gas H 20 concentration 4.57x10 -5 mol/cm 3

Cs H20 concentration at particle surface 4.15x 10 -5 mol/cm3

W molecular weight 18.0 g/mol

r density 1.0 g/cm3

D diffusivity 0.0242 cm2/s

mmin minimum particle mass 1.0x10 16 g

mmax maximum particle mass 1.Ox10-8 g

Y3 logarithmic scaling factor 18.42 n/a

K growth constant 1.15x 10 4 g2/3/s

The note that the minimum particle mass corresponds roughly to aqueous particles 70 nm in

diameter, or the mean free path of air. Figure 6-6 plots the characteristic curves as a function of

w.
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Figure 6-6: Logarithmic scaled characteristic curves for diffusion-limited growth law.
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6.4.3 Comparison of diffusion-limited characteristic curves

Observing the characteristic curves in Figures 6-4 and 6-6 reveals that the growth rate G(m) or

G(w) is essentially the inverse slope of the characteristic line at any (t, m) or (t, w) point, respec-

tively. Whereas the growth rate based on w varies wildly based on position in the system, the

growth rate based on m is a much more uniform function, and therefore more amenable to solu-

tion by numerical methods. The impact of scaling on the ease of numerical simulation will be fur-

ther analyzed in section 6.6.

6.5 Surface Reaction-Limited Growth Characteristics
In many systems, particle growth is limited by a surface reaction. For example, deposition

processes often involve a chemical reaction at the particle surface. Friedlander (2000) presents

the surface-reaction limited growth expression.

G(m) =
ca(p7)i/3v 62/3

i2 7 M. kr
m2/3 = Km 2 1 3

(6.38)

Table 6-5 summarizes the definition and units of the symbols in Equation (6.38).

Table 6-5. Symbols definitions for surface reaction-limited growth kernel

Symbol Definition Units

a accommodation co(Effi- -
cient

r density g/cm3

Vm molecular volume cm3

Mw molecular mass g/mol

k Boltzmann constant J/K

T temperature Kelvin

m particle mass g

K c(pit) I /3Vm62/3 gl/3/s

27MwkT

Applying the method of characteristics to this growth expression yields the following differential

165

I



Scale Analysis of Growth Mechanisms

equation.

Integrating this expression results in the characteristic curve for this system.

t m

t =I Krn2/3d
to mo

t-t o = (m /3

In the special case where to = 0, the characteristic curve

(8.33).

t= (m1/3 _m 1/3
K 0

Figure 6-7 plots these characteristic curves assuming that

growth constant in the diffusion-controlled growth case.

50

40
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(E
E

30

20

10

0

reduces to the form given in Equation

(6.41)

K = 1.15x 10 4,the same value as the

0 2 4 6
mass (g)

8 10x10 9

Figure 6-7: Surface reaction-limited characteristic curves as a function of m.

As with the diffusion-limited case, the logarithmic-scale characteristic curves are obtained by

substituting m = mmineYW and mo = mmineYW°o into Equation (8.32).
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t = [(mmine¥w)l/3 -(rminewo) /3]

3mK ) (6.42)

Figure 6-8 graphs these logarithmically scaled charactestic curves. As in the diffusionlimited

Figure 6-8 graphs these logarithmically scaled characteristic curves. As in the diffusion-limited
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Figure 6-8: Logarithmic scale surface reaction-imited characteristic curves.

case, the logarithmic-scaled characteristics indicate a very fast growth rate for the smallest parti-

cles in the system and a much smaller growth rate for the largest particles. Conversely, when

viewing the characteristics from a mass-based scale, the smallest particles appear to grow the

slowest, while most of the particles in the system are at a much faster growth rate.

6.5.1 Volume reaction-limited growth characteristics

Many systems undergo reactions within particles that drive the transport of the reacting spe-

cies to the particle surface. Friedlander (2000) cites examples of these mechanisms.

lM(vi r

G(m) = · m (6.43)
Pp

G(m) = K m
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The parameters used in Equation (6.43) are summarized in Table 6-6.

Table 6-6: Volume reaction-limited growth lawparameters

Symbol Definition Units

Mi molecular g/mol
weight

Vi stoichiometric mol/mol
coefficient

r rate of reaction mol/(s.cm3)
per unit volume

Pp particle density g/cm3

m paricle mass g

K (MiV r 1/s

pp

Applying the method of characteristics to this system yields the differential equation:

dmm = Km
dt

Integrating this expression as usual yields the characteristic curves.

t m

0 mO

(6.44)

(6.45)

t= ln(m

Figure 6-9 plots the characteristic curves given K = 1.15x 10 - 4 , as in both the previous exam-
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pies. Rescaling by substituting m = mmineYW and mo = mmineYWo results in the characteristic

4
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2 4 6 8 10x10' 9

mass (g)

Figure 6-9: Volume reaction-limited characteristic curves as a function of m.

curves expressed as a function of w:

t = (w- wO) (6.46)

which are plotted in Figure 6-10.
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Figure 6-10: Volume reaction-limited characteristic curves as a function of w.

For this system, the logarithmic scale results in a constant growth rate, while the mass scale

results in a large discrepancy in growth rates between large and small particles, indicating that the

logarithmic scale system is much easier to solve from a numerical perspective.
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6.6 Comparison and Analysis of Growth Rate Scaling

As shown in the previous sections, the growth rate expression G(m) or G(w) used in the popu-

lation balance problem varies depending on physics and chemistry of the system. Specifically,

growth rates may be limited by diffusion to the particle surface, by reaction at the particle surface,

or by reaction within the entire particle or droplet volume.

6.6.1 Solution time constraints: Courant condition

Typically, a numerical implementation will divide the domain of solution up into a number of

equally spaced elements (see Appendix B). Each solution method chooses some representation to

approximate the number of particles in that element. In many ways this is similar to dividing the

population distribution up into small "bins" in which the particles are placed (see Chapter 2).

Depending on the solution method used and the form of the population balance equation, various

restraints exist to ensure the stability of the numerical solution (Morton, 1996). One particular

constraint is imposed based on the Courant number (Strang, 1986) and is known as the Courant

condition. This condition is valid for systems governed by the differential equation:

dC4 -vCA (6.47)
dt az

Figure 6-11 depicts a sample distribution of CA and the element or bin spacing for three adjacent

nodes in a sample system.

rC'
%-A AL V

Az

Figure 6-11: Elements in a concentration distribution undergoing one-dimensional convection.

For this system, the Courant condition places a restriction on the maximum time step At which a

numerical integration algorithm can take while maintaining stability:
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At< Az (6.48)
v

When the Courant condition is violated, a numerical artifact known as aliasing can occur, which

allows the convected species to skip over adjacent elements, causing an instability. For a more

complete explanation of the basis for this condition, please refer to Strang (1986).

If we approximate the growth rates G(m) and G(w) in Equations (6.2) and (6.31) as constant

over a given element in the solution domain, then the Courant condition can be applied to estimate

the minimum number of time steps required to generate a solution. In this case, the respective

growth rate G(m) or G(w) is equivalent to velocity, v, and the element width is given as either Am

or Aw. Thus, the Courant condition requires that:

At< Am
(6.49)

Aw
At < 

G(w)

As demonstrated in the previous sections, the growth rates G(m) and G(w) vary widely based on

both the growth law and particle size. However, the minimum time step for the entire system will

be based on the smallest minimum time step for all of the elements. Armed with this knowledge,

we can apply the Courant condition on the first and last elements to determine whether normal or

logarithmic scaling result in a lower minimum number of time steps.

6.6.2 Scaling effects on solution time

Using values of K which result in 103 time steps over a solution time of I second for the m-

scaled growth laws, Figure 6-12 compares the solution times for the m and w scales with each
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growth law.

108

107

( 106

) 105
10

0
. 104

103

E
102

101

100

C3 'G(m) Timesteps'
* 'G(w) Timesteps'

I. II U tlUI I

Figure 6-12: Comparison of minimum number of time steps under varying growth law.

Table 6-7 summarizes the growth rate and time step information for the system depicted in Figure

Table 6-7: Minimum number of time steps under different growth laws

K

G(mmin)

G(Wmin)

G(09mmxax -) min

w Timesteps

Optimal scaling
.............~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Diffusion-
Limited Growth

0.0004808

2.23 x 10 - 9

1.00x10O6

1.00x10 3

1.21 xlO 6

1.92x10

1.21xlO 7

m

Surface
Reaction-

Limited Growth

0.2311

4.98x10 - 12

1.00xlO- 6

1.00x 103

2.70x03

.08xlOI

2.70x104

m

Volume
Reaction-

Limited Growth

111.1

1.11xlO- 14

1.00xlO- 6

1.00x103

6.03

6.03

6.03x101

w
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6-12. Because the number of timesteps is roughly proportional to the total solution time, the m-

scaled system would be expected to yield a solution 0,000 times faster than the w-scaled system

for a diffusion-limited growth law. Similarly, the surface-reaction based solution would be

expected to reach a solution 100 times faster with a m-scaled than w-scaled system. For the sys-

tem with w-scaled growth law, however, the volume reaction-limited growth law is roughly an

order of magnitude faster to solve. Recall, however, that t characteristic curve expressions aie

not only a function of K, but also often include some expression such as y, mmin or mmax related to

the total range of particle sizes. The next section explores these effects on solution times.

6.6.3 Effect of varying particle size range on solution time

Table 6-8 summarizes the various systems and their corresponding growth laws.

Table 6-8. Summary ofgrowth laws

Figure 6-13 compares the number of timesteps required by w scaling with m scaling as a function

of increasing range of particle sizes. Similar to the previous section, the parameter K was varied

for each growth law as a function of size to keep the number of m timesteps constant at 1,000 as

an even basis of comparison with w timesteps. Note that the example in the previous section cor-

responds to a value of Mma/Mmin of 108 in this graph. The graph clearly shows that the differ-

ences in the number of timesteps grow larger as the particle size range increases. In fact, with a

size range covering 15 orders of magnitude, w-based scaling in a diffusion-limited system would

take at least 1011 timesteps compared with 103 timesteps with m scaling, increasing the estimated
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Figure 6-13: Comparison of minimum number of time steps with m and w scaling as required
by the Courant condition under varying growth laws.

solution time by a factor of 108! Also note that the optimal scaling method holds over all particle

size ranges, proving the universal applicability and utility of this analysis.

6.6.4 Note for multi-component systems

When more than one component is present, then one or more components may be actively

contributing to particle growth. It is also possible that each species is incorporated into the parti-

cles by a different growth mechanism. For systems where the growth laws of the species are inde-

pendent and follow one of the growth mechanisms presented in this chapter, the optimal scaling

with respect to each component will be determined by Table 6-7. For example, in a system with

two species where the growth from the first species is limited by diffusion and the growth from

the second species is limited by volume reaction, then the optimal scaling for this system would

be n(m 1, w2) where

m 2 moeW

I"-n c)2 (6.50)

2 m

In systems where the growth rates due to the individual species are highly correlated, then a char-

acteristics analysis of the growth rates must be carried out over the domain of particle sizes in the

system to determine the optimal scaling.
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Summary

6.7 Summary

The process of growth is critical to the formation of new particles in a wide range of particu-

late processes; yet the growth mechanisms in various systems can vary considerably. Depending

on whether particle growth is limited by diffusion to the particle surface, reaction on the particle

surface, or reaction within the particle volume, growth laws take on very different mathematical

forms which require particular treatment for efficient numerical solution. In particular, diffusion-

limited and surface reaction-limited growth s stems should be solved using number density

domains scaled as particle mass, while volume reaction-limited systems are more amenable to

solution when the number density domain is scaled as the logarithm of particle mass. As the

range of particle sizes covered by the number density distribution increases, the benefits of using

correct scaling becomes more pronounced. Finally, the characteristics analysis can be readily

applicable to multicomponent systems, where the insights of characteristic analysis provide a

framework for choosing the scaling of the multicomponent number density distribution.
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Chapter 7: Solution Methods for Multicomponent Dynamic
Population Balances

7.1 Introduction

One particularly challenging class of population balance problems is multicomponent particu-

late systems. Typical phenomena which occur in these systems include coagulation, fragmenta-

tion, growth; condensation, nucleation, and many others. These phenomena describe processes in

virtually every class of chemical process, including emulsions, aerosols, micelles, crystallization,

combustion, and polymer condensation. Industrial applications range from nanotechnology to air

pollution, pharmaceuticals and mining. In spite of the ubiquitous nature of particulate systems,

accurate and computationally tractable models of multicomponent particulate systems have not

been developed due to the difficulty involved in framing the solution with a compact representa-

tion, especially for coagulation processes. This chapter introduces a new representation for multi-

component particulate systems which is both accurate and computationally much faster than other

methods and applies this representation to a two-component aerosol coagulation model.

7.2 Representation of Population Distribution

Because population balances can describe such a wide array of physical systems and pro-

cesses, a general representation is needed to define a population distribution. In order to meet this

need, a population distribution is defined by a number density function n(4) such that n(4)do rep-

resents the concentration of particles in the population with characteristics between and + do.

Depending on the system of interest, can take on a number of different forms. Examples are

given in Table 7-1, assuming that the all particle concentrations are given in terms of number of

particles per cubic meter. In a system such as the second row in Table 7-1, where the only popu-

lation characteristic of interest is particle mass. would be defined as particle mass, and the pop-

ulation distribution function might be represented as in Figure 1. Because the cumulative number

of particles per unit volume smaller than size m * is given by:

m.

N( < m*) = n(m)dm (7.1)
0
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the number density function n(m) is often given the name dN/dm because it represents the incre-

mental increase in the cumulative number of particles as m* is increased. Much of the early work

regarding single component coagulation and fragmentation was pioneered by Valentas in the

1960's (Valentas, Bilous and Amundson, 1966; Valentas and Amundson, 1966). For a compre-

hensive treatment of number density distributions, please refer to Chapter 2.

Table 7-1: Number Density Representations

O__) + Definition n(4) units # particles total # particles

v volume n(v)1 n(v)dv

volume m3 I n (v)dv
0

m mass n(m) m _ _ n(m)dm 
mass m 3 In(m)dm

0

m = {ml, m 2 , mass com- n(m) I _ n(m)dm1
· .., ms} ponents mass m3 dm2 ...dmns I I fn(m)dmdm 2...dm s

o oo

{m, x} {m, composi- n(m, x) I n(m, x)dm I
X1, X2 , .. , Xs i} tion mass m 3 dX I2 ... J...Jfxn(mx)dmdx dX 2... d I

0 000

n(m)

I1

m m+dm

Figure 7-1: Graphical representation of a number density distribution.

For a population with s individual components, as shown in the last two rows of Table 7-1, the

population distribution n(m) or n(m, x) requires s degrees of freedom to be completely specified.

These degrees of freedom may be specified as individual component mass amounts mi, as in the

third row where m is a vector m = {ml, M2, ..., ms}. Alternatively, the s degrees of freedom may

178

_fNr4m
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also be specified by s - 1 mass fractions xi and total particle mass, m:

m = Emi

t (7.2)

m

The population distribution now takes the form n(m, x) where x = {x l , x2, ..., x s I }. In the next

sections, unless specifically noted, all populations will be specified by individual component

masses, n(m).

7.3 Multicomponent Governing Equations

7.3.1 Coagulation

As discussed in Chapter 5, the coagulation kernel (1, m) is defined as the rate per unit of con-

trol space at which population members of composition 1 and m coagulate to form a population

member of composition I + m. The units of the coagulation kernel are spacel/time. The relevant

units of space vary from one system to another. For a point model or system, space has no dimen-

sion, however, for an atmospheric volume, space will be 3-dimensional and have units of length3.

The contribution to population members of a given composition m due to coagulation is given by:

m, m2m,

atn(m) 2 fj ( l3(m-c, c)n(m-c)n(c)dcldc 2...dc S (7.3)
0 0 0

where the coagulation event represented within the integral is illustrated in Figure 3. The factor

of 1/2 is used to account for the fact that the integral expression double counts collisions (see

Chapter 5). For the simple case of two particles with composition q and s colliding, the integral

will count two collisions in each dimension of integration - one where c = q and m - c = s and

another when c = s and m - c = q. The decrease in population members of a given size m due to

agglomeration with particles of other sizes (as shown in Figure 4) is given by:

00 o000

an(m) _ n(m)f ... ff3(m, c)n(c)dcd (7.4)

0 00

Naturally, these integral expressions are only applicable when the population contains a large
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number of particles. Although individual particles behave stochastically, when large numbers of

particles are present individual effects average out and these deterministic equations may be used

(Gueron, 1998). For a system affected only by coagulation, the full dynamic population balance

includes contributions from both Equations (7.3) and (7.4).

m, m2m I

an(tm) 2 f.. I (m-ec, c)n(m - c)n(c)dcldC2... dc

0 00

In the special case of a single-component system, Equation (7.5) reduces to the governing equa-

tion for number density.

an(t) _ 2 (c, m - c)n(c)n(m - c)dc-n(m) f(m, c)n(c)dc (7.6)

0 0

C-CI , C2, ... , CI 4

m = (m - c) + c

m c= m -c,. m,- - c, ..... m -c. = {ml, m2,-,mS}

Figure 7-2: Coagulating particles creating a particle size m.
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C.O

m+c
m

a8n(w) -n(m) ... P(m, c)n(c)dcdc 2 ... dc

0 00

Figure 7-3: Coagulating particles removing particles size m.

7.3.2 Fragmentation

The multicomponent fragmentation expression is defined in Equation (7.7):

an(m) = I.. If n(x)g(x)v(x)y(x, m)dxIdx 2... dxs-g(m)n(m) (7.7)
at

, T X. I

where g(x) is fragmentation frequency of particles size x, v(x) is the number of smaller fragments

created, and y(x, m) is a density function describing the fractional distribution of fragments from

particles size x into particles size m. The function v(x) is restrained by the expression:

v(m) = m (7.8)

J... J Jy(m x)xjx, idx 2 ... dx

0 0 0 

which essentially enforces a mass balance on the fragments. For a more detailed review of the

multicomponent fragmentation governing equations, please refer to Chapter 5.

7.3.3 Growth

In a multicomponent system. a growth rate is defined for each component as the rate of

change of mass in that component per unit time.

dm
G,(m) di (7.9)

The overall growth rate for a particle is then the sum of these individual component growth rate

expressions:
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an(m) an((m)Gi(m)) (7.10)
at -a ml

7.4 Review of Multicomponent Numerical Solution Methods

In general, complete specification of a multicomponent aerosol system requires knowledge of

the time variable, the size variable and, when s is the number of species, s - 1 composition vari-

ables. Thus, a total of s + 1 independent variables exist in an s-component dynamic system. In

order to generate a full numerical solution with p node points along the axis of each independent

variable, a total offp node points are required to determine the full multidimensional surface rep-

resenting the multidimensional number density function n(nml, m, ... m). Accordingly, pS equa-

tions are required for numerical integration. Because the number of equations scales

exponentially with the number of components, solving all but the simplest of systems requires a

prohibitive amount of computation (Kim and Seinfeld. 1990). Thus, although this method is

straightforward and can accurately represent any multicomponent system. it is not suitable for any

more than two or three components due to its poor scaling as the number of components is

increased. Furthermore, the independent variables typically range over several orders of magni-

tude which complicates the issue of node placement and scaling along each axis.

When coagulation or fragmentation processes are active in a system, a number of integral

terms must be incorporated into the general dynamic equation, transforming it from a partial dif-

ferential equation into a partial integro-differential system. For multicomponent systems. the

coagulation term is expressed as a multidimensional integral, which further adds to the complex-

ity of the problem and increases its computational intensity. as shown in Table 7-2.

Several methods have been previously employed in an attempt to address the difficulties asso-

ciated with multicomponent particulate systems (see Table 7-2). The distribution splitting

method (Toon et al., 1988) proposed that multiple species be represented by a series of mixed and

pure-component distributions. For instance, a two-component system would be represented by

four distributions: one distribution each representing the number density of each pure component,

another number density representing the mixed particles, and a final function describing the com-

position of the mixed particles (see Figure 7-4). This method allows limited representation of

variation in composition at each size point in the overall population. For the two component case.
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Table 7-2: Comparison of Multicomponent Population Balance Methods

Equation # Equations p =
Scaling 10, s = 4, n = 2

Full s-dimensional surface PS 10,000 Kim & Seinfeld (1992)

Distribution Splitting p s 2 - 320 Toon et al. (1988)

Multicomponent Sectionalization p s 40 Gelbard & Seinfeld
(1980)

Species Mass Distribution p s 40 Pilinis (1990)

Split Distribution Method p(s n)a 80

a. "n" represents the number of terms in the composition expansion, as explained in later sections.

Number density - Component 

n,(m) n,2(n
A

n,(m)
L

a

-
xY

nI 

Number density - Component 2

Number density - mixed

I)

m

m

Mixed Composition

Figure 7-4: Distribution splitting method for representation of multicomponent systems.

three different compositions are possible at any given mass point: pure component 1. pure compo-

nent 2, and the composition given at that mass point in the mixed composition distribution. Solu-

tion time unfortunately scales as s 2 1 with the number of species s in the system. For more

detail on the scaling of the distribution splitting method, please refer to Appendix -iH.

Another method which has been employed is the multicomponent sectionalization method

(Gelbard and Seinfeld, 1980). This method effectively discretizes the representation space along

size and composition coordinates. While this method treats coagulation effects well, it does not

conserve the number of particles in the system and poses significant difficulties in modeling all
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but the most elementary growth processes. The species mass distribution method addresses the

number conservation caveat of the multicomponent sectionalization method by implementing a

continuous analog of the multicomponent sectionalization method (Pilinis, 1990; Katoshevski and

Seinfeld, 1997). The main assumption this technique, known as the internally mixed assumption

(IMA), is that all particles of the same mass have the same composition, leading to a uniform

composition distribution as shown in Figure 7-5. This assumption states that particles of the same

n(x)

I_ ,_ L 1 h.x

@O0 Externally mixed o 1imb, , . . .--n(x)
w w Internally mixed 

0 I

Figure 7-5: Externally mixed aerosols have particles with very different compositions while
internally mixed aerosol particles have uniform composition.

size all have the same composition (Ferndndez-Diaz et al., 1999) and effectively reduces the gov-

erning equation set to p .s equations representing each species in the system at p node points. The

sacrifice for this reduction in complexity, of course, is the lack of ability to account for composi-

tional variations at each size range of the population. In fact the representation used by the spe-

cies mass distribution is even more restrictive than the distribution splitting method and not much

better than a lumped one-component representation. For example. in the two-component case the

distribution splitting method allows particles of mass m to take on one of three compositions: pure

component 1. pure component 2, or mixed component 1 and 2 (at some fixed mixed composition),

while the species mass distribution method will restrict all of the particles of mass m to one mixed

composition.

In the past, the inability of measurement methods to simultaneously resolve size and composi-

tion variations within a population of particles has made the internally mixed assumption difficult
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to verify. Recent evidence, however, suggests that particles of the same size but very different

compositions coexist in atmospheric aerosols (Noble and Prather, 1996), as shown in Figure 7-6.

O Type A organic
* Pure Organic
* Total Particles

_=1 AwidO avxll dWasrrt (gy.io~ ~ ~~~~~~~~~~~~~--------
V.0

E 0'

C 

eol ;0I ;,*., ,-" i, ) g 

O Type E organic
* Inorganic oxides
[l Marine

* Total Particles

Aerodynamic Diameter (m)

Figure 7-6: Data collected in study of aerosol compositions (Noble and Prather, 1996) showing
the large variations in composition within every size segment of the distribution.

IThe assumptions of these various methods for treating multicomponent aerosol sstems are sum-

rnarized in l:igure 7-7, which shows condensed versions of the coagulation production terms of

the governing equations. In general. these methods preselect the representation tor the system.

forcing the user into either a representation which either has adequate representation of the multi-

component system but unsatislfactor solution time (full multidimensional representation) or a

representation with satisfactory solution time but an inability to adequately describe the multi-

component system.

In order to address the need for a flexible method which could incorporate varying degrees of

resolution for multicomponent systems with tractable solution times, Resch (1995) developed the

distribution splitting method. This method uses a Wiener expansion (Tatang. 1994). or polyno-

mial chaos expansion (PCE). to compactly represent the composition at each size range of the
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number density distribution. The representation of the multicomponent problem is now "split"

into two separate distributions: 1) the number distribution as a function of population member

size, and 2) the composition distribution at each size. This implementation has been tested using

an analytical solution from Gelbard and Seinfeld (1978) which applies to systems with an expo-

nential initial distribution, constant coagulation kernel, and growth rate proportional to the mass

of the particle. This growth law corresponds to a physical system which is limited by volume-

based reaction within the particle, and therefore is most efficiently solved when the number den-

sity distribution is log-rescaled, as shown in Chapter 6. For clarity, a complete and rigorous pre-

sentation of the assumptions and derivations for the split composition distribution method is

presented in the following sections. Starting with the basic multicomponent population balance

for coagulation, the set of differential equations used in numerical implementations is developed.

186



Review of Multicomponent Numerical Solution Methods

Results are presented and compared to a two-component analytical solution.

Multidimensional Surface

~An~m) M m l Direct polynomial chaos
= ata 2. | | *. (m, m - c)n(m)n(c)dcl. .dc representation for n(m,t)

Assume that all composition
variations can be represented Assume there is no variation
by a set of distributions in composition among

particles with same mass Split Composition Distribution Method
e - A-- - - -- - . . . . ~~~~~~~~~~~~~~~~~~~~

Species Mass Distribution

a i(m) = flc,m-c)(ic +ml,,,_).nct),n(m-c,)dc i

(m) = nm i ·n(m)

Use polynomial chaos
expansion to represent
composition variation

I +

Assume that variations within
discrete "sections " are negligible

Figure 7-7: Dynamic population balance numerical solution methods summary.

7.4.1 Overview of methods

The species mass distribution concept is based upon the notion that it is possible to explain the

evolution of a number density distribution by tracking the mass distributions of the components in

the system. The mass distribution is defined similar to the number density distribution, except

where the number density describes the number of particles between mass m and m + dm, the

mass distribution describes the total mass of particles in the size range between m and m + dm.

In the general case where the number density is described by n(m) or n(m, x), the mass distri-
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bution of a species is a daunting quantity to calculate, involving multidimensional moments over

complex integration limits. For example:

I II

qi(m) = .. ln(m,x)mx i dxdX 2... dx s- (7.11)

0 00

where qi(m) is the species mass distribution for component i. However, in the case where the par-

ticles are assumed to be perfectly internally mixed, this expression is greatly simplified:

qi(m) = n(m). mi (7.12)

Figure 7-8 depicts and example of a species mass distribution.

q.(m)

I
m m+ dm

Figure 7-8: Example of a species mass distribution.

Because all of the particles have the same composition, the total mass of component i in the mass

range (m, m + dm) is simply the product of that component mass multiplied by the number of par-

ticles. This method severely restricts the system by requiring that all particles of the same mass

have the same composition, producing a large reduction in the complexity of the solution by

essentially assuming a uniform composition distribution among particles of a given size. Instead

of solving the governing equations for an s-dimensional system where s is the number of species,

the governing set of equations is reduced to a set of s one-dimensional governing equations for the

individual mass distributions.

The split composition distribution method essentially relaxes the internally mixed assumption

by introducing a probabilistic representation of the variation in particle composition at each parti-

cle mass, as shown in Figure 7-9. These probabilistic representations are defined by a random
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Xb

Figure 7-9: Example of a species mass distribution.

variable expansion, the Wiener expansion. Because this expansion converges rapidly, this

method can describe a wide range of systems with just a few new differential equations describing

the evolution of the moments of these distributions at the each node point in the system. Further-

more, this technique allows the gradual addition of more expansion terms when necessary to meet

the desired accuracy. In contrast, full s-dimensional representations scale as p' where p is the

number of node points and s is the number of species. The following sections derive the govern-

ing equations for these methods.

7.5 Derivation of the Species Mass Distribution Method

7.5.1 Species mass distribution representation

One method of representing a multicomponent mixture, known as the species mass distribu-

tion method, was introduced by Pilinis (1990). The basic assumption behind this method is that

all particles of the same size have the same composition.

If the total number of particles between mass m and m + dm is n(m, )dm. then m, n(m)dm is

the total mass of species i contained in these particles. The number of particles in the population

segment multiplied by the mass of component i each particle gives the total mass of component i

in particles in that population segment. In order to express this as a distribution, we equate this

quantity to the species mass distribution qj(m)dm. defined as the total mass of component i con-

tained in particles ranging in size from m to m + dm.

qi(m)dm = mi, n(m)dm (7.13)
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This is referred to as the species mass distribution for component i. Here the left side represents

the total mass of species i contained by particles between sizes m and m + dm. The right side

therefore represents the total number of particles between sizes m and m + dm multiplied by mi,

the amount of species i contained in each particle size m. Inherent in this definition is the assump-

tion that all particles of size m contain the same amount of species i, mi. Dividing both sides of

Equation (7.13) through by dm produces the transformation from number density to species mass

distribution:

q1(m) = mi n(m) (7.14)

Naturally, the sum of the individual species masses in a particle must equal the total mass of the

particle:

m = Em i (7.15)

i

and it follows therefore that the sum of the species mass distributions over all species in the sys-

tem produces the total mass distribution:

q(m) = qi,(m)

= Ym,. n(m)
(7.16)

= n(m)z m,

q(m) = n(m)m

From Equations (7.14) and (7.16) we can write the relation:

qi(m) - n(m)- q(m) (7.17)
m, m

Thus the individual species mass distributions coupled with the internally mixed assumption com-

pletely define the system. The only dependent variable which is not directly specified by the spe-

cies mass distributions is mi, however mi can be calculated using the individual species mass

distributions. Starting with the relation given in Equation (7.17):
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qi(m) _ q(m)
mi m

(7.18)
m qi(m)

i q(m)

Finally, recalling that the total mass distribution is the sum of the individual species mass distribu-

tions, as show in the first line of Equation (7.16), we can produce mi as a function of individual

species mass distributions and the independent variable m only.

m qi(m)
m,= (7.19)

~q,(m)

The multicomponent general dynamic equation based on individual species balances will thus

take the form:

dy,(m) _ aq(m) aq,(m)

alI at coagulation of fragmentation

(7.20)
aq,(m) a'(m)

+growLth sources & sinks

Each of the contributions from growth. coagulation, and sources and sinks are derived in the fol-

lowing sections.

7.5.2 Coagulation removal term for species mass balance

When particles are lost due to coagulation. each particle lost removes the amount of mass mi

of species i from the mass distribution in the range (m, m + din). Thus. the coagulation removal

term is simply the coagulation rate multiplied by the mass of component i contained in each parti-

cle:

q,(m) m-- ml n(m) J1(mn c)n(c)dc (7.21)
0

Recalling that q,(m) = m,n(m) = m, mn(m) produces
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Go

a - l(m)rn P(m, c)n(c)dc (7.22)
0

Finally, because n(c) = q(c), we have:

(7.23)

Note that in practice this integral cannot be extended to include the point c = 0 because q(c)l/c is

undefined at this point.

7.5.3 Coagulation production term for species mass balance

When two particles coagulate to form a larger particle, the amount of species i that is added to

the species mass distribution is equal to the sum of the species masses in the two original parti-

cles. Because the mass of species i is a function of m:

minm = mij +mI (7.24)

where the masses of the two coagulating particles are a and m - a. Using this fact, the coagulation

contribution to the species mass distribution will be the product of the number of particles added

and the mass per particle added to the range (m, m + dm) of the species mass distribution:

aqi(m) 1

at 2 J(m, + mi m-a)O(a, m - a)n(a)n(m - a)da (7.25)
0

Substituting n(a) qi(a) and n(m-a) q(m - a) yields:
ma

aqi(m) I rqi(a)q(m - a)da (7.26)
At 2 2(mida + i lm - a)13( a , m - a) ia m-a

which simplifies to:

m

at 2r-aAt 2 I l [P(a, m - a)qi(a) q m da (7.27)
One pathological case fr this expression occurs in the event that m,

One pathological case for this expression occurs in the event that m,j = 0. Noting that both the
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sum milm = mila+ milm a and the coagulation kernel are symmetrical expressions, the integra-

tion range in Equation (7.25) can be reduced as follows (see Appendix C for more details):

m
2

- f(mila + mil m-a
0

)(a, m - a)n(a)n(m - a)da (7.28)

A set of similar substitutions would lead us to the governing equation:

m

0i(m) r a)q(a)q(m- a)da
a I mil ) m-aI0 a

(7.29)

The advantage of this, of course, is that the computational requirements of the coagulation kernel

are roughly reduced by a factor of two. Because the coagulation kernel is often the most costly

term to evaluate in terms of computation time, this reduction in integration range often translates

into a large reduction in solution time with no loss of accuracy.

Pilinis instead uses the symmetrical nature of the integral to eliminate the m,Il terms:

(7.30)

Starting off by breaking the original coagulation production expression from Equation (7.25) into

two terms yields:

m

qi(m) f pa, m -a)(mila+ m, )n(a)n(m -a)da

(7.31)
t? m

21 (a,m-a)m,l'n(a)n(m- a)da+ p(a, m-a)mil an(a)n(m - a)da

q(a)
Recalling that mil n(m-a) = q,(m-a) and that n(a) a) substitutions are made into

the second integral:
the second integral:
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m m

q, 2 (a, m - a)m'lan(a)n(m - a)a + Ip(a, m - a)mIlm an(a)n(m - a)da
0 0

(7.32)
m m -

2f (a m - a)mil n(a)n(m rn a)da + (a,m - a)q,(m - a)q(a)da
o 0

Similarly, mil n(a) = qi(a) and n(m - a) = q(m -a) are substituted into the first integral:
'a -a

aqi(m)t 2 i(a,m - a)m n(a)n(m- a)da+ p(a, m - a)q,(m - a)q(a)da
o o

(7.33)
m m 

2 (a,m-a)qi(a)(m a)da+ (a, m - (a)qi(m - a))d
m-a a

0o 

Next, transform the second integral using a change of integration variable c = m - a.

m m

qim)t 2 jp(a, m - a)milan(a)n(m - a)da + (a, m - a)qi(m - a)q)da
o o

(7.34)
m 0

= IJ(amna--qa)q()(m a)da+ fJ(m-cc)q,(c)(m L)(-dc)}
wrhrOnlimitad-a m w 
0 m

where the integration limits are changed because now a = m when c = and a = when c = m.

Also, da = -dc because m is constant and a = m - c. Reversing the limits of the second integral

results in:
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q(m) = (a, m -a)q(a)n(m- ) da+ fp(m-c,c)qi(c)q C)(-dc)at 2 m-a M 
0 m

! t
= 1(a,m-a)q,(a)q(m a)da- a) J(m-c,c)q(c)q(m-c)c (7.35)cf3(a mn - a)qi(a) q(m- a -)da+ (m - c, c)qi(c)m )c dc (7.35)

O~~~ M~0

Changing the dummy variable of integration in the second integral from c to a and applying the

symmetry property of the coagulation kernel

m m
Oqi(m ) 1n J[3(anm )i(c) r

at = 24 f (a, m - a)q(a)(r-a )da + (m- c, c)qi(c)q( )dcat 2
0 0

_ m

2 3(am-a)(am - -a) da+ fJ(m-a, a)qi(a)q(m a)da (7.36)m-a -- a
0 J

Ba, mr- a)q(a) q(- a)da+ J3(a,m-a)qi(a) a) da4f(m-a r-a
0 0

results in an expression which is easily summed to yield the coagulation production expression

due to Pilinis:
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aq(m) 1 (am - a)q(a)(- )da + P(a, m - a)q(a)q a)da}t 2 m-a m-a
0 0

q(m - a)d | (7.37)
m - a)qi(a)

d amn-a

m

= p(a, m - a)qi(am- da
0

7.5.4 Fragmentation loss term for the species mass balance

The loss of species i from the population segment (m, m + dm) due to the fragmentation of

particles will be equal to the product of the rate particle fragmentation and the mass of species i

contained in each of these fragmenting particles, mi:

a(t g(m)n(m)milm (7.38)

Using the relai ,m mnmqto (. eu tt ratagmentation loss term for

the species mass balance method:

aqi(m)
at -g(m)qi(m) (7.39)

7.5.5 Fragmentation production term for the species mass balance

The increase of species i in the population segment covering the interval (m, m + dm) due to

the fragmentation of larger particles is equal to the product of two quantities:

1.) the number of fragments created in the interval (m, m + dm)

2.) the amount of species i contained in these fragments.

Fragmentation is assumed to distribute all species evenly among the resulting fragments, which

are also referred to as daughter particles. Thus, the mass fractions xi in the fragments particles are

the same as in the original particle. If the original particle has mass c, then the mass fraction of

the fragments is given by:
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mil
Xi c (7.40)

C

Thus every daughter particle of size m will contain an amount of species i equal to the product m.

xi. Inserting this into the integrand of the one-component expression for fragmentation produc-

tion yields the species mass distribution expression for fragmentation production:

oo

aqi(m)
at g(c)n(c)v(c)y(c, m)m. xi dc

m (7.41)

mt i

= g(c)n(c)v(c)y(c, m)m- · dc
C

m

Substituting the relationship qi(c) = mil n(c) yields the species mass distribution expression for

fragmentation production:

(7.42)

7.5.6 Growth term for species mass balance

The species mass distribution growth equations can directly be derived from analyzing a dis-

tribution segment, just as the growth term was developed for the number density distribution in

Chapter 4. The mass of component i in a small slice of the population distribution would be influ-

enced by the amount of component i contained in smaller particles which grew into the current

size range, by the amount of component i contained in particles in the current size range which

grew to a larger size, and by the change in the amount of component i in the current size range, as

shown in Figure 7-10. This is very similar to the single-component expression except that now

the mass flux of condensing species into the population segment, n(m) · dmildt, also affects the

species mass distribution. Note also that the growth rate, dmildt, denoted Gi, is summed over all

species to produce the total growth rate for the particle.
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n(m) , dm,
nS(m) dt

dt
dm

min(m dt)dt -,

m, j-1 m

Figure 7-10: Discrete mass species distribution under growth.

Expressing the cumulative effects of these phenomena in a discrete formulation:

X ' zj j + = NrAM'1 j~
n"'n(m')am'lw -nJn(m')tld =n",n(m-,) At At-n,,n(m) ' At+n ) 

mass gaed form nmllr mass gained from sim maMs gained from parcls
paids grown to sizemj paides grown to largr s size m in sg copa nt

M Cntn(7.43)

Note that in the last term, Ami, j represents the growth rate of component i in interval j, while the

width of the interval is Ami j. Dividing this expression through by At yields:
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mijn(mj)Amjt + - mi jn(mj)Amjl

mi,jn(mj)Amjl,+ + - mijn(mj)Amij

At

= mi, 1 ln(mji)( At At

Amtl t + n(mj)Am.- At- mi j- n(m)ij- n) +
AA i~~~~~~~~'J~

(7.44)

= m, j-In(mj-l)( At)"-ln

-mi,_ n(mj)(1 A') + n(m)Amj At

Taking the limit of this expression as At -+ 0 yields a differential governing equation and con-

verts the Am/At expressions into growth rates:

d t n()Am = mi j-ln(rm,) Gi j- l-mi j-ln(m) Gij + n(mj)AmjGi, dt ~ i. 1 >j~ nm,41 jj~
i i

(7.45)

Dividing this expression through by Amj and taking the limit as this interval approaches zero

yields the species mass balance expression for growth:

dmin(m) 
dt

mi,j - I n(mj _ ) Gi,j I - j - In(m)Z Gi j
i i

Am)

min(m)2:Gi(m
amin(m) i 

__in _ - Am- + n(m)Gi(m)
at am ']i(m)

Finally, recognizing that qi(m) = mij n(m) and that :n(m) = 'm yields an expression in

terms of species mass balances qi(m).

aqi(m) G(m) +q(m)
|dq(m) _ ' +' -J----Gi(m) (7.47)

at am m

Note that the dummy variable for the summations has been changed from i to j to emphasize the

distinction with i used in the other terms.
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7.5.7 Sources & sink terms for the species mass balance

In order to specify the effect of sources and sinks on an individual species mass distribution, it

is necessary to specify both the increase in number of particles as a function of time as well as the

change in their composition with time:

q(m) i(m) n(m) (7.48)at m i(r)lsource at(7.48)
source

In essence, this expression states that the rate of mass accumulation is the product of the number

of new particles entering the system and their compositions.

7.6 Split Composition Distribution Method
In order to address the need for a multicomponent representation which can be tailored to the

needs of various systems, the split composition distribution was proposed by Resch (1995). This

method essentially models the overall number density distribution and then superimposes a repre-

sentation describing the composition distribution of particles at each mass segment of the number

density distribution. This is essentially accomplished by substituting a random variable xi(o) for

the composition into the species mass distribution equations where:

mi = m. Xi(Co) (7.49)

This essentially relaxes the internally mixed assumption and allows variation within the sub-pop-

ulation of particles. The basis behind this approach is to treat the particles at each specific size as

a sub-population. Within each of these sub-populations, the probability density function of xi(O)

describes the composition variation of the particles, as shown in Figure 7-11. This probability

density function is essentially the number density function normalized by the number of particles

in the number density distribution segment (m, m + dm). Please refer to Chapter 2 for more infor-

mation on the relation between number density distributions and probability density distributions.

Because these particle systems are generally assumed to contain a large number of particles,

the law of large numbers can be applied to n(m) and the probability density function for composi-

tion to determine the number of particles at any combination of mass and composition. In this

sense, the split composition distribution representation fully defines the multidimensional system.

For instance, integrating n(m) over the mass range between m = 1.0 x 10-15 and m + dm = 1.01 x

10-15 might reveal that N(I.0 x 10 ' 15 < m < 1.01 x 10-15) = 103. If we wanted to know the num-
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Pj (x,)I
- - m=m

n(m)t m*//\\ / xII - \ P. tX )I . ___. 
-/ ' ' im=m 

Xb

Figure 7-11: Discrete mass species distribution under growth.

ber of particles within this mass range which had compositions between xa = 0.5 and 0.501, this

quantity could be calculated as follows:

.Olx10-1'5 (0.501

N(1.0x101 5 <m<1.01x10 1 5, 0.5 <xa<0.501) = f n(m) Px[x,(m)]dxa dm(7.50)

1.Ox10-15 0.5

For more information on probability density functions, please refer to Drake (1967), Papoulis

(1991) or Appendix D.

The split composition distribution method thus produces the following set of governing equa-

tions:

1.) an overall number density equation
2.) s - 1 "relaxed" species mass distributions, where s is the number of species

If there are p node points for the number density equations, this will contribute p equations to the

system of ODEs representing the split composition distribution model. Ifp node points are simi-

larly used to represent each probability density function for the composition, then the "relaxed"

species mass distributions will be two-dimensional functions in (xi, m) space. Ifp node points are

used along each of these dimensions, then p2 node points will be needed for each of the "relaxed"

species mass distributions - in the case where the compositions are assumed to be independent of

one another. Thus, the complete solution will require the simultaneous numerical integration ofp

+ (s - 1) p 2 ODEs. If no assumptions are made regarding the correlation of the compositions,

then a full set ofps governing equations may be needed.
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In order to reduce the set of governing ODEs, an orthogonal expansion of random variables is

employed to describe xi(co) for each species. This expansion is known as the Wiener expansion or

polynomial chaos expansion (PCE) and was developed by Norbert Wiener (Wiener, 1938; Wang,

1999). Because this orthogonal expansion converges quickly, a wide range of probability density

functions can be represented with very few expansion terms. Recent applications of this tech-

nique have been developed for uncertainty analysis and representation of uncertain random vari-

ables (Tatang, 1994; Wang, 1999), but the representation is also well-suited for describing the

distribution of compositions among particles.

7.6.1 Wiener expansion

In order to represent the composition distribution, an expansion is used which was developed

by Norbert Wiener (Wiener, 1938). This expansion uses a set of orthogonal basis functionals of

standard probability density functions to represent distributions. In general, these probability

density functions can be any continuous distribution, including lognormal, gaussian, exponential

distributions, etc. Depending on the basis function used, the expansion will have a different

domain and a different set of orthogonal functionals. By changing the basis function, the expan-

sion can be tailored to better fit the particular requirements of a given application (Wang, 1999).

In the split composition distribution method, independent Gaussian probability distributions

of mean zero and standard deviation one (i(o) N(O, 1 )) are used as basis functions. For this

set of basis probability density functions, the orthogonal functionals of the Wiener expansion con-

sist of Hermite polynomial functionals of Gaussian random variables. Thus, a two-dimensional

Wiener expansion describing a two-dimensional random variable is given by:

X i(tO) = Xi,0 + Xi, 1 1(o) + Xi, 242(O) + Xi, 3 [41 () 2 - 11
(7.51)

+ Xi, 441 (O)2(O) + Xi, 5 2(() 2 - 1]+ ...

where the xi, are coefficients of the expansion. Depending on the type of system represented and

the required accuracy, different probability density functions may be used and a varying number

of terms included in the expansion. When a two-term Wiener expansion is used to represent the

composition distribution of each component in the system:

xi = xi, + Xi, (4 X() (7.52)

then the composition distribution of each component i is Gaussian with mean xi, o and standard
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deviation xi, (see Figure 7-12). This is easy to confirm by directly calculating the mean and vari-

XI,
m*

Figure 7-12: Two-term Wiener expansion based on Gaussian random variables.

ance of the expansion:

00

Xi= E[x]= (i, o + Xi, )dP( )
--oO

(xi, O + xi, I)f(41)el (7 53)

00 1
---<I

xio+xi,1 e I

00

2 = E[(xi-x )2 ] = (x, 0 + Xi, 14 -Xi, o)2dP( 1)

oo0~-0
0_ _42 (7.54)

= (Xi 11)2- 1e224

-00

= x21t, I

Note that these evaluations are conveniently defined by the moment generating property of Gaus-

sian random variables (see Appendix D). For convenience, all random variables have been

expressed in the form 5 in lieu of 4(co).

Solving for these two coefficients of the expansion completely determine the probability den-

sity function for each species. In the case where there are s species and n expansion terms in a
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system with p node points, the total number of ODEs specifying the system is p(l + s · n). Solu-

tion of the overall number density expression contributes p equations, while the composition dis-

tribution equations contribute p s n equations.

7.7 Derivation of Split Composition Distribution Method Governing
Equations

Derivation of the split composition distribution method governing equations involves the fol-

lowing steps:

1. decide how many terms will be included in the Wiener expansion for the system
2. substitute the Wiener expansion into the species mass distribution governing equations\
3. minimize the error in the composition equations by forcing the expansion to be orthogonal to

the basis functions. This step produces a set of governing ODEs for composition.

The following sections derive the form of the split composition distribution governing equations

for a system where the Wiener expansion for each species is given in Equation (7.52).

7.7.1 Coagulation

Coagulation has the ability both produce and usurp particles of any given size. Starting off

with the governing equation for coagulation loss as given in Equation (7.22):

o

,aqi(m)
-qi(m) P(m, c)n(c)dc (7.55)

0

and substituting qi(m) = n(m). m x i (m) yields:

an(m)m xi(m)
= -n(m)m xi(m) Jp(m, c)n(c)dc (7.56)

0

For this derivation the Wiener expansion is:

xi(m, 0) = xi, o(m) + xi, l(m)i(0)) (7.57)

This notation emphasizes that the parameters of the random variable xi(m, o) are a function of

particle size m. Substituting the Wiener expansion into the governing equation produces:
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an(m)m [xi, o(m) + xi, (m)i(o)]
= -n(m)m. [xi, o(m) +xi, X(m)Ii(o)]

00 (7.58)

p(m, c)n(c)dc
0

Henceforth i will be understood to mean 4i(o) for the sake of clarity. The error of this governing

equation is minimized by taking its inner product with respect to the two basis functions for this

expansion, 1 and i. First starting with the left-hand side expression and taking the inner product

with respect to 1 and 4i.

00

an(m) m [i, o(m) +xi, I(m) i]

f anm) at Pi(ai)dEi =

n(m)m [xi, o(m) + xi, l(m)i] (,)d i =f at

n(m)m xi, O(m)
at

(7.59)
n(m)m xi, (m)

at

These expressions are trivial to evaluate because the inner products are essentially moments of the

Gaussian probability density function. As shown in Appendix E, the moments are given by the

formula:

O0 00 _2

27

(7.60)

1 · 3- ...(n - l))on

n = 2k+ 

n = 2k

Applying the same inner products to the right hand sides of Equation (7.58) yields:

00 o0

(-n(m)m .[xi, (m) + xi, (m)i] I(m, c)n(c)dc, 1) = -n(m)m xi, (m) f3(m, c)n(c)dc
0 0

(7.61)

(-n(m)m [xi, (m) + xi, (m)i] fI(m, c)n(c)dc, i) = -n(m)m xi, (m) fi(m, c)n(c)dc
0 0

The two differential equations which specify the evolution of xi, and xi, are thus:

205



Solution Methods for Multicomponent Dynamic Population Balances

On(m)m .xi, (m)--'m 0 - -n(m)m xi, o(m) J(m, c)n(c)dc

0 (7.62)

an(m)m xi, l(m) -n()m x, (m) (m, c)n(c)dc

0

The coagulation plroduction term is derived in a similar fashion. Starting with Equation (7.25)

and then converting all mi's and qi(m)'s to n(m), m, and xi yields:

aqi(m) 1

at =2 f(mia + milm - )P(a, m - a)n(a)n(m - a)da

m
an(m)m xi
n(m)mt = 21 (a. xil a + (m - a)xim -a) (a, m - a)n(a)n(m - a)da

0

Next, substituting the Wiener expansion results in:

an(m)m [xi, o(m) + xi, 1(m)i]
at

m

= i J{a. [xi (a) + xi, (a)4i]

0

+ (m - a)[xi, o(m - a) + xi, (m - a)4i] }

'* (a, m - a)n(a)n(m - a)da

Taking the inner products of this expression with respect to 1 and dx results in the 

coagulation production:

m

n(m)m. x i, 0(m) 1 ao(a) + (m - a)xi, (m - a)}

0

* f(a, m - a)n(a)n(m - a)da
m

an(m)m i xi, = 2 Ja xi (a) + (m - a)xi, (m - a)}

0

3(a, m - a)n(a)n(m - a)da

(7.64)

expression for

(7.65)

Introducing the Wiener expansion into the governing equations actually means that the num-

ber density n(m) is no longer deterministic and can also be described by a Wiener expansion. If
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necessary, the number density distribution can be expanded to include multiple terms; by treating

n(m) as a deterministic quantity, implicitly the assumption has been made that n(m) is adequately

described by the zero-order Wiener expansion:

n(m) = ni, 0(m) (7.66)

which is equivalent to assuming that the expected value of the number density distribution is suf-

ficient to describe the solution.

7.7.2 Fragmentation

Just as with coagulation, fragmentation affects the number density distribution through both

fragmentation loss and production mechanisms. The fragmentation loss mechanism is given by

Equation (7.39); converting this expression in terms of n(m), m, and xi results in:

aqi(m)
aqi() = -g(m)qi(m)

(7.67)
an(m)m xi

a=t -g(m)n(m)m ' xiat

Substituting the Wiener expansion yields:

an(m)m [xi, 0(m) + x, 1 (m)i ]
at a [xi O xi,= -g(m)n(m)m [xi, o(m) +xi, l(m)] (7.68)

Finally, taking the inner product of this expression with respect to the basis functions 1 and i

results in the expression for fragmentation loss:

n(m)m xi, o(m)
at = -g(m)n(m)m xi, o(m)

(7.69)

an (m) xO t = -g(m)n(m)m ' xi, (m )

The fragmentation production term is given by Equation (7.42).

o0

aqi(m)
at c

m

Converting the qi(m) terms to n(m), m, and xi yields:
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an(MM t xi Ig(c)n(c)c 'Xicv(c)(c, m)mdcat C
m

Next, substituting the Wiener expansion produces:

(7.71)

an(m)m [xi, (m) + xi, 1 (m) ] 
8,at' = Jg(c)n(c)c. [xi,o(c) +x i,, l (c) i l v(c)y(c, m)cm-dc (7.72)

m

Finally, taking the inner product with respect to the basis functions 1 and 4i results in the govern-

ing expression for fragmentation production:

(7.73)

7.7.3 Growth

Unlike fragmentation and coagulation, growth is often a strong function of composition in

many applications. Therefore, any variation in composition should produce some variation in the

growth rate, depending on the system.

Figure 7-13: Random variable representations for both the composition and the growth rate,
which is a function of composition.

Figure 7-13 depicts a sample system where a distribution of composition at some mass point m in

the system results in a growth rate which is also a distribution described by a random variable. As

a result, Gi(m) can be described by a Wiener expansion of the same form as x(o), but with differ-

ent coefficients:
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Gi(m, c) = gi, o(m) + gi, 1(m)i (7.74)

where the ,1 used in this expansion is the same 41 used in the Wiener expansion for x(Co). The

problem of determining the growth rate can be viewed as a parametric uncertainty problem. In

general, parametric uncertainty problems use some deterministic model in conjunction with a ran-

dom input to describe the output of the system. Because the input is a random variable, the output

is also described by a random variable. In the growth problem, the varying input is given by x(co)

while the system model is the growth rate law for species i, Gi(m, x). The output of this model is

thus described the random variable Gi(m, o). Using the uncertainty analysis methods developed

by Tatang (1994) and Wang (1999), it is possible to solve for the coefficients gi, o(m) and gi, (m)

as a function of the coefficients of the xi, o(m) and xi, (m) in the Wiener expansion for the compo-

sition.

In order to calculate the growth term in the split composition distribution method, we start off

with the species mass distribution expression for growth:

a(Oqi(m)Gj(m)) Eqj(m)
aqi(m) Gi(m) (7.75)

at am m

Substituting qi(m) = n(m) m x i into this expression yields:

(n(m) ) m xi(m) G(m) ) En(m) m xj(m)
an(m). m.xi(m) _m J+i Gi(m) (7.76)

at om m

Next, replacing the expressions xi and Gi(m) with the appropriate Wiener expansions produces:

An(m) m [xi, o(m) + xi, (m)i] 
at

[n(m). m. [xi, O(m) + xi, (m)i](gj, o(m) + gj, I (m))]
j (7.77)

am

+ n(m) xj, O(m) + xj, (m) (gi, o(m) + gi, (m)i)

Finally, taking the inner product with respect to the basis functions 1 and 5i results in the final
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form of the governing equations:

(7.78)

In the case where the coagulation or fragmentation rates were also strong functions of compo-

sition, the corresponding coagulation and/or fragmentation kernels would also be random vari-

ables and would require treatment similar to the growth expression. Conversely, in systems

where the growth rate is not a strong function of composition gi, I(m) O and the growth rate is

deterministic.

7.7.4 Sources & sinks

Starting with the species mass balance expression for sources:

aqi(m)
at = mi(m) sourc

an(m)

source
(7.79)

we first substitute qi(m) = n(m) m xi(m) to produce:

an(m). m .x 1(m)
at = mXi I source t) (7.80)

source

Because the split composition distribution method allows variation in the particle composition,

substituting the Wiener expansion results in:

an(m) m[xi (m) + xi, (m)i + an(m)
At = m (xi, o(m)lsource + Xi, (m)&ilsource ) at source

(7.81)
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+ n(m)[gi, o(m)xj, (m) + xi, o(m) gi, 1(m)]
J

m [n(m) ' m(xi, (m) ' gi, 1(m) + xi, i(m)gj, o(m)J]
an(m)m ' xi, I(m) 

at am

+ n(m)[xm, ( g,,(m) +g, (m)xj, o(m)]
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Taking the inner product of this expression with respect to the basis functions 1 and 4i produces

the split composition distribution method governing equation:

an(m) m xi, (m) an(m)
at= m xi, o(m)lsource at

source (7.82)

n(m). m x, (m)_ 7n(m)
at -= m xi, (m)ilsource at

source

7.7.5 Full set of governing equations

The equations outlined in the sections above generate a solution for the quantities

(m) m xi, (m) and n(m) m xi, (m). In order to fully define the solution and solve for the

moments of the composition distribution xi, O(m) and xi, (m), a solution is needed for n(m). This

solution is generated by the solution of the overall number density distribution governing equa-

tions as given for a one-component system in Chapter 4, where the overall growth rate in the sys-

tem is simply the sum of the mean growth rates:

G(m) = EGU(o) (7.83)

7.8 Analytical solution

Analytical solutions to the multicomponent population balance exist only under very restric-

tive conditions. For systems with simultaneous coagulation and growth, an analytical solution

exists under the following conditions (Kim and Seinfeld, 1992):

1. the initial multicomponent number density distribution follows an exponential distribution:

e Ml)( Md) -( M,

no(m1, i 2, Ms, ,) No ... (7.84)
0lo M2 0 mso

2. the growth rate is proportional to the mass of each component in the particle:

Gi(m) = ci · m (7.85)

3. the coagulation kernel (x, y) is constant:

(x,y) = Po0 (7.86)
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Note that this form of the growth rate law corresponds to a system where growth is limited by vol-

ume-based reaction (see Chapter 6).

Under these conditions, the resulting multicomponent number density distribution is:

n(m 4N N 1 exp(- e-i r) 1 mje-r (7.87)n___ 1 m, -A) - j + __ei(T + 22) mo mo (k!) 2 o
i=1 k=O L =1J

where:

* No is the initial number of particles in the population,

* mio is a parameter defining the initial distribution of component i.

* mj is mass amount of componentj.

* T is defined as:

T = Nopot (7.88)

· Po is the constant value of the coagulation kernel.

* Ai is defined as follows:

ci
oAi NoP (7.89)

In a system where the growth rate is zero, this solution reduces to:

s c s k

4 , m
n(m, ) ( 4N2 2 )O exp m [ 2 MO (7.90)

i= I k= O j= 

7.9 Summary

In an effort to practically address the needs of multicomponent population balance problems,

Pilinis (1990) introduced the species mass distribution method. While this method successfully

reduces the governing set of equations enough to produce a tractable solution, in practice the

internally mixed assumption restricts this method to the extent that it is almost a pseudo-one-com-

ponent solution. Take, for instance, a system undergoing fragmentation of particles and consider
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two portions of the corresponding species mass distributions, as shown in Figure 7-14.

ql(m)

m2 ml m

Figure 7-14: Two portions of a species mass distribution undergoing fragmentation.

In general, particles at mI will not have the same composition as particles at m2. However, parti-

cles of mass m2 can be produced from particles of size ml. These new fragments of mass m2 will

not have the same composition as the other particles at mass m2, however the internally mixed

assumption requires that all of these particle have the same composition. To meet this require-

ment, the representation essentially averages the composition of the new fragments with the other

fragments at size m2. In practice, however, this is an artifact of the representation because no

mechanisms exists which averages the composition of new fragments with the fragments. As a

result, the true physics of this process are not well-represented by the species mass distribution.
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Chapter 8: Numerical Implementation and Solution of the Split
Distribution Method

Analytical solutions to multicomponent population balance problems only exist for a limited

number of highly restricted conditions. As a result, numerical solutions are needed for the major-

ity of applications. However, analytical solutions do have utility for verifying the results of

numerical solutions. This chapter develops the numerical solution for the analytical solution pre-

sented at the end of Chapter 7 for systems with coagulation and growth, and compares the results

of this solution to the analytical results.

8.1 Rescaled equations

As discussed in Chapter 6, the form of the growth rate law affects how the governing equa-

tions should be scaled. For a solution with evenly spaced elements and a growth law of the form:

Gi(m) = ci. mi (8.1)

Rescaling the governing equations to n(w) results in the optimal time step for the numerical solu-

tion. The following exponential scaling is used, based on the maximum and minimum particle

sizes in the domain range of the solution, mma and mmin:

,-= ,n(Mmax)
min

m = eyw m O = mmin (8.2)ym0e = mmin

dw - moeYw = ym

The following sections detail the development of the governing equations in n(w) and their imple-

mentation in a numerical solution using the orthogonal collocation on finite elements method.

8.2 Coagulation

8.2.1 Coagulation removal

In order to derive the rescaled split composition distribution equations, we start with the gov-

erning equations scaled for n(m). These equations include the overall number density equation:

215



Numerical Implementation and Solution of the Split Distribution Method

oO

an(m) -n(m) JP(m, a)n(a)da (8.3)
Ot

0

as well as the governing equations for composition:

an(m)m x, ( n(m)m xi, M) 15(m, a)n(a)da
8t

0 (8.4)
0

an(m)m xi, l(m)
n t x- - = -n(m)m xi, (m) Jp(m, a)n(a)da

0

First, the governing equation for overall number density will be transformed, followed by the

governing equations for composition.

Development of the term for the governing equation for coagulation loss in the overall num-

ber density equation starts with the substitution of n(m) = n(dw _ n(w)dm ym

0ym =j _n(w) $[(m(w), a)n(a)da (8.5)O

Where m in the coagulation kernel has been replaced by m(w). Multiplying both sides of this

expression by ym yields:

o

n(w) = -n(w) 13(m(w), a)n(a)da (8.6)

0

The integration limits also need to be adjusted to account for the fact that the solution domain is

(mmin, Mmax):

mmax

an(w) =n (w) f (m(w), a)n(a)da (8.7)

mmin

To complete the transformation, the dummy integration variable must also be transformed to an

logarithmic scale. This is accomplished by the transformation:

a = moeYV (8.8)
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This transformation yields the relationship n(a)da = n(v)dv which completes the rescaling of

the governing equations:

(8.9)

Table 8-1 summarizes the variable transformations used in rescaling the governing equations.

Table 8-1: Original and rescaled distribution variables.

Original Rescaled Relation

m WIn w m moeYW

a = moe

In order to derive the form of the governing equations for composition, the same general pro-

cedure is used. First, substituting n(m) = n(w) into Equation (8.4) produces:
dm 7 M

n(W.)m Xi, o(m(w))

at

n(W)m xi 1(m(w))

at

n(W)m Xi(m(w)) Ip(m(w), a)n(a)da
0

n(W)m xi(M(w)) fp(m(w), a)n(a)da
0

Canceling out m's and multiplying through by y results in a simplified expression:

9n(w)x' °(W)L = - n(w) xi, (W) fi(m(w), a)n(a)da

0

an(w) xi, l(w)
at = -n(w) xi, l(w) (m(w), a)n(a)da

0

where the x(m(w)) terms have been expressed as x(w). Again, the integration limits are adjusted

to affect the solution domain:
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an(w)xi, O(W) = -n(w) xso(w) J (m(w) a)n(a)dam

Mmin

mmgx

= -n(w) xi, l (w ) J 1(m(w), a)n(a)da
mmin

Finally, the dummy integration variable must also be rescaled by substituting

an(w)xi, O(w) = -n(w) Xi o(W) f1(m(w), a(v))n(v)dv
at 

0

an(w) xi, l(W)
I

= -n(w) xi, (w) lp(m(w), a(v))n(v)dv
0

(8.12)

n(a)da = n(v)dv

(8.13)

8.2.2 Coagulation production

A similar procedure is followed to convert the governing equations for

tion, which include both the overall number density expression:

coagulation produc-

m

8n(m) _ 2 fp(m - a, a)n(m - a)n(a)da
at o

0

(8.14)

as well as the governing equations for composition:

an(m)m xi, o(n

an(m)m xi, l(m)

m

n) a+ (m -a)xi, (m - a) }

0

* p(a, m - a)n(a)n(m - a)da
m

= {a'xi, (a)+(m-a)xi (m- a)}
0

· (a, m - a)n(a)n(m - a)da

Again, the overall number density expression will be treated first, followed by the governing

equations for composition. First, n(m) = n(w) - n(w) is substituted into the expression.
dm ym
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i[n(w)] m

2 Jf(m - a, a)n(m - a)n(a)da (8.16)
0

This expression is simplified by multiplying both sides of the equation by ym. The integration

limits are also changed to reflect the fact that the smallest possible coagulating particles have

mass mmin and that therefore the largest coagulating particles can have mass m - mmin.

m

an(w) 1 m fp(m(w) - a, a)n(m w) - a)n(a)da

0
rn-rmij (8.17)m - min

= Ym2 I P(m(w) - a, a)n(m(w) - a)n(a)da

mmin

Applying the symmetry property to this integral to eliminate the double-counting correction fac-

tor /2 and reduce the integration range results in:

r - min
2

an(w) = ym fJ (m(w)-a,a)n(m(w)-a)n(a)da

min nm~~~~~~~~~~min ~(8.18)
m - mmin

2

= YmoeYW I (m(w) - a, a)n(m(w) -a)n(a)da
Mmin

In order to convert the dummy variable to an exponential scale, it is necessary to derive conver-

sions for n(m - a) as well as n(a). Because logarithmic-scaled mass variables are being used, it is

necessary to write the rescaled versions of n(m - a) and n(a) in a manner that conserves mass, as

shown in Figure 8-1. In order to account for this nonlinear relationship between the logarithmic-

scaled particle masses, a new variable u is introduced to represent the mass of the second coagu-
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a-)
Normal masses: a + (m- a) = m

Logarithmic masses: m(v) + m(u) = m(w)

Figure 8-1: Graphical representation of a number density distribution.

lating particle, as shown in Table 8-2. Using these variables, it is possible to use the mass balance

Table 8-2: Exponential Variables Transformation Summary

Normal Size Exponential Size ScalingParticleParticle Variable Variable Relation

Small Coagulation Particle #1 a v a = meyv

Small Coagulation Particle #2 m - a u m - a = mOeyu

Large Coagulation Particle m w m = moeYw

on the coagulating particles to solve for u as a function of w and v.

m(u) = m-a
rn(u) = m(w) - m(v)

moeYu = moeYw - moeYv

u = 1In(eYw - e)
¥

(8.19)

dv _n(V)HoeeatasrminThe transformation for n(a) is given by n(a) = n(v) However, a transformation
da mtoyeyv

is still needed from n(m - a) to n(u).

In general, transformations are defined by equating two segments of corresponding number

density distributions. Starting with the basic identity n(s)ds = n(u)du where define s = m - a and

r(u) = m(w) - m(v). Because ds/da = -1, we can write:

n(s)ds
-n(m -a)da
n(m -a)da

= n(u)du

= n(u)du
= -n(u)du

220

v

m-- w
INv

(8.20)



Coagulation

Note that u is a function of v and w. Because n(a) has been converted to n(v), the integration vari-

able must be a function of v. This is easily accomplished by differentiating Equation (8.19) with

respect to the variable to be used in the coagulation interval, v:

du 1 -yeYv

d ¥Y eyvw - eyv (8.21)

du 1 yey dv = -eYv dv
yeyvw - eyv eyw - eYV

This yields the desired conversion for n(m - a)da:

n(m - a)da = -n(u)du

-eYvvn(m - a)da = -n(u) eYdv
eYvw - eYv (8.22)

ev
n(m - a)da = n(u) e.V dv

eYvw - eyv

Substituting these expressions into the governing equation for coagulation production will also

require a change of integration limits. The limit at mmin convert to 0:

m(v) = moeYv -* yv = ln(-) = --> v = 0 (8.23)

and the limit at (m - mmin)/2 converts as follows:

- min mo0 eYw - mo0
m(v) = 2 -' moeYv 2

eyv e (8.24)
2

Y L 2

Substituting these integration limits and variable transfonnations yields the rescaled overall num-

ber density governing equation:

I , [eY -I ]

n(w) - 0moeYw p[(u),m(v)m eYVeyW eT dv (8.25)

Simplfyi0 tiepesnr nI oYeYveVw e r
Simplifying this expression results in the final form of the overall number density governing
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equation for coagulation production:

1 e'- 1

an(w) _ eywan•2L) J [r ma(u), m(v)]n(u)n(v) f dv

0

The same transformations are used for the governing equations for composition:

n(w) X, ()
on( m Xi, (W)

¥m

I[e'w- I]

I { moeYV xi, O(v) + meYuxi, O(u) }

0

· [m(u), m(v) n(v) eYv n(u)dv
moyeyvevw - evV

(8.27)

a"(w)mx l(w)
Ym X, 1 (w)

at

1 me 1(v)

J { mOey xi 1(v) + moeuxi, (u) 
0

*· [m(u), m(v)] n(vn(u)dv
moyeYveYvw - erv

Simplifying these expressions yields:

I rer - 11

_ y L~~~~ 2 
an(w)x, (w) _

at f
0

* P[m(u), m(v)]n(v) I n(u)dveyvw ev

In rey - I'
,

an(w)x, (w)_
at

0

1
· [m(u), m(v)]n(v) I n(u)dv

eyvw- eyv
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{eYv xi, (v) + euxi, 0 (u)}

{ eyV xi, (v) + eYuxi I (u)}

(8.28)
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8.3 Growth

The growth expression for the overall number density equation is transformed as follows (see

Chapter 6):

On(w)_ O(n(w)G(w)) (8.29)
at dw

G(w) is given by:

G(w)= ZG,(w) = gi, 0(w) (8.30)
i i

where the G,(w) is the expected value of the growth rate for species i. These values can be sur-

mised from comparing the Wiener expansions for G,{m) and Gi(m), as developed in the following

section.

8.3.1 Derivation of rescaled growth rate Wiener expansion

In Chapter 7, the form of the Wiener expansion for Gi(m) was derived:

Gi(m, () = gi, (m) + gi, 1(m)i (8.31)

For the growth rate law of the current system where G,(m) = ci , mi = ci m xi, substituting

the Wiener expansion for x:

xi(m) = xi, (m) + xi, (M)i (8.32)

produces the expression for Gim, co):

Gi(m, o) = ci m [xi, o(m) + xi, (m)i]33)

= ci. m xi O(m) + ci m xi, (m)

Comparing this expression and Equation (8.31) reveals that:

gi, O(m) = ci m xi o()(8.34)
(8.34)

gi, (m) = Ci m xi, 1 (m)

Starting off with the growth rate law given in Equation (8.31), the growth rate can be first

transformed to Gi(m).
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Gi(w) dmi dw, ( w d) = - dm

= G(m) -w

CGi(m) Ci. m xi

Simplifying this expression yields the final form of the growth rate expression:

CiG,(w)= -xi

Substituting the Wiener expansion for xi into this expression produces

Gi(w) = c [xi, (w) + xi, (w)J]

Ci Ci

= -xi, O(W) + -Xi, I(W)i

Comparing this expression to the Wiener expansion for G,(m):

Gi(w) = gi, o(W) + gi, I(W)i

reveals that the coefficients are:

gi, (w) = IXi,o(W)

g, I(w) = (W)
Y

Incidentally, this is the same result that would have been reached using the same transformation

as for Gi(m) on the coefficients of the expansion. These transformations are defined in the same

manner as for Gi(m):

gi, O(w) = gi, (m) d

dw
gi, (W) = gi, d(m) dm

Substituting the expressions for the coefficients from the Gi(m, eo) expansion:

(8.40)
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I C/
gi,O(w) = cc m. xi, O(m) - = xi, o(m)

(8.41)
1 Ci

gi, I(w) = ci m xi, I(m) m = - x i I(m )

produces the identical coefficients for the Wiener expansion and verifies the transform given in

Equation (8.40).

8.3.2 Governing equations for composition

Because transformations have been already been defined for n(m) and the coefficients of the

growth rate Wiener expansion, these expressions can be directly substituted into the split compo-

sition distribution governing equations:

[n(m) m m(x i, o) (m) i m gj, o(m) + xi, (m) g, I(m))
an(m)m xi, O(m) j

at am

+ n(m)[gi, o(m)'Xj, o(m) + x, O(m). g, (m)]

Vi (8.42)

a[n(m). m(xi, O(m) gi, (m) + Xi, (m)'gj, O(m))]

an(m)m xi, (m) i J
at am

+ n(m)[xi, (m)g, 0(m) + g, (m)xj O(m)]

which produces the rescaled governing equations.
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an(w)Bm . xi, o(W) a,(W)dw ' m(x, o(W)Zgj, o(W)d + i, I(W)' gi, (W)w]
dm b dm

+ n(w)d gi, O( aw)dmx +dw) X , (W) + xi, (W) dm'glWd
j

8[n(W)dw m
dm

, l,.dmXi, o~~6w'gl")'

Ow

+ n(w)d[ dm
i(w) go (W)-

+ g ,(w) XI o(W)

Multiplying through by dm/dw terms leaves:

(8.44)

n(w)m xi, (W) mlxo(W)dgj(W)i,
J

Ow

dw+ n(w) o(w wXjj,o(W) + Xi, o(W) gi, I(w)dww
J

gi, ()dw + i,

n(w w)L ·. "Zj, O((M)w g

Finally, canceling the remaining extra dm/dw terms and dividing through by m results in the final
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+xi, (W)gj, O(W)

am

(8.43)

I (w) gi, ()d ]

On(w)m xi, I(W)

at

(w)gj, O(W) ddw,

Ow

i~~)dw I W
anwdmla' - I'w

.... j

a (w) dw
dm

a n(w)dw. m i, O(W)
dm
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form of the governing equations.

(8.45)

8.3.3 Combined system of governing equations

The combined system of governing equations for a system are assembled by collecting each

of the relevant terms describing all of the desired mechanisms for each set of equations needed to

fully specify the system. In this particular instance, there are three sets of equations are needed to

describe the system:

* one overall number density equation

· s composition equations describing the evolution of xi, , the mean composition for each

component in the system

* another set of s composition equations describing the evolution of xi, , the standard devia-

tion of composition for each component in the system

This system of equations can be expressed in the following form:
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an(w) _
at

an(w)xi, (W) _
at

8an+ n(w) + n(w)+n(w)
at coagulation a8t coagulation at growth

loss production

an(w)xi, O(w) + n(w)xi, 0(w)

at coagulac tion

loss production

On(w)xi, I(w) _ nw)xi I (w) an(w)xi (w) n(w)xi, I(w)
t_ = + + at

t coagulation at coagulation growth

loss production

where each of the terms in these equations have been derived in the preceding sections. Note that

the last two sets of equations actually add s equations each because i = 1, 2, ..., s.

In general, this system can be completely described by a state vector of variables, n. For this

system, the state vector is fully described by n(w), n(w) xi, o and n(w) xi, 1 where the latter two

terms can be divided by n(w) to reveal the mean and standard deviation of the composition,

respectively. Reviewing the governing equations reveals that the right hand side terms belong to

two groups:

1. functions of the state variables

2. first derivatives of functions of the state variables

Accordingly, if all of the right hand side terms are lumped into these two groups, the governing

equations can generally be expressed as:

n(w) - n(w)] + ag[n(w)]
at aw

OW) n(w)) agn(w)] 0
at aw

(8.47)

Note that the integral terms are lumped underJln(w)].

8.4 Numerical Solution

As first shown in the crystallizer example of Chapter 4, the method for implementing the

numerical solution follows the following steps:

1. Propose an approximate solution
2. Formulate an error expression
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3. Minimize the error expression

This procedure essentially takes a set of partial differential equations (PDEs) governing a system

and then converts this system to a set of ordinary differential equations. In general, if the approx-

imate solution is written as n*(w), then the error expression is the difference between the right and

left sides of Equation (8.47):

R(w) -a,*(w) (w)- ag[n(w)] (8.48)
at -tw

This function R(w) is referred to as the residual or error function. In order to optimize the solution

and ensure that the approximate solution n*(w) matches the true solution as closely as possible,

we seek to minimize this residual over the solution domain w = (Wmin, Wmax). Depending on the

form chosen for the approximation, a number of different techniques may be employed to mini-

mize the residual, including finite element, finite differences, and orthogonal collocation on finite

elements (see Appendices A and B for more examples and discussion). Also, depending on the

independent variable used for the spatial or size coordinate, w may be substituted for m, In(m),

etc. For the most general case, then, we write R(*) to denote the system:

R() = W M An( ag-n'(0) (8.49)at '4

and emphasize that ~ can take on any one of a number of forms depending on the application and

scaling of the independent variable.

For this particular implementation, the orthogonal collocation on finite elements method will

be employed. This method proposes an approximate solution in the form of a cubic spline over a

number of solution subdomains which are referred to as elements (see Figure 8-2).

8.4.1 Cubic spline representation for orthogonal collocation on finite elements

Orthogonal collocation on finite elements uses a series of polynomial representation functions

over local element domains illustrated in Figure 8-2. Typically, the polynomials for orthogonal

collocation on finite elements are represented by spline curves. When a cubic spline representa-

tion is chosen, n() is fully determined by four coefficients active on each element i:

n(4) = f(rl) = ai, + lai, I + 2i 2 + 13ai, 3 (8.50)

Note that rl is a local variable on each element and is equal to { - {i within element i. Two condi-
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A

u element

Figure 8-2: Element subdomains with a cubic spline fit over each element.

tions are imposed at the boundary of adjacent elements: 1) continuity, and 2) continuity of the first

derivative. Continuity is an obvious requirement and continuity of the first derivative imposes

continuity of particle flux due to growth between two elements, a necessary condition for any

implementation which aspires to describe growth processes:

Flux out of element i = Flux into element i + 1 -Ga) = -Gan() (8.51)
a. ,I a1 ,.

Using the notation from Equation (8.50), these continuity condition is:

ai, +llctai, + 12a1, 2 + 3ai, 3 -- =a i+ +Tl Xi+ 1ai+ X 2 2 +l13ai+ +i 31 (8.52)

which reduces to:

ai o + ai, I + i,2 + i,3 a i+1,0 (8.53)

In order to apply a continuity condition for the first derivative, we must apply the chain rule to the

derivatives of each element:

dn(+) = df,(n)d41 (8.54)
do di d 

where the function rn on each element is a function of 4 defined by:

r i-C- I(8.55)
and it follows that d/d is the inverse e lement width:

and it follows that ald~ is the inverse element width:
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1do A_ +s X(8.56)

As a result, equating the first derivative between two element requires that:

df(r)dI| df + I()d| (8.57)
(8.57)drl d , dn do |n =o

The derivatives forfi andJ; + I can be calculated from Equation (8.50):

df,(rj)
dy _ a + 2ija, + 3rl2a; 3 (8.58)

Substituting this expression and Equation (8.56) into Equation (8.57) yields the continuity expres-

sion for the derivatives at the element boundaries:

dfi(n) 1 = dfi+ 1(n) 1
dn Pi-*~-! l_ 1 dn *i+ - n=o

1 1a,, +2iai, 2 +3qa j,3 = , , +2la,+1,2+ 3i 2a+ +,,3 , (8.59)a 1 +2a ,2 +3z I = 1
Oi, I +20[i, 2+, 3~i0i_ i, ~i+! - i

Isolating the element widths results in the final form of the derivative continuity constraint:

a,; I + 2ai 2 + 3ai,3 = + I, 1 (8.60)

Equations (8.53) and (8.60) determine two coefficients on each element. The remaining two

coefficients must be determined by two more conditions on each element. These conditions are

determined by the value of n(m) at two node points rlk in each element:

n()i,k = f(lk) = ai, + kai,l +11ti, 2 +tkai, 3 k = 1,2 (8.61)

First, the continuity restraint from Equation (8.53) can be solved for the coefficient ai, 2:

(ai,2 = ai+ l1,o-aCi, O-i, l - i, 3 (8.62)

which is then substituted into Equation (8.61):
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n(4)i, k ai, + kai, I + nlk2(i + 1,-i, 0 - Ot, - ai, 3) + 1i, 3 (8.63)
(8.63)

- (1 - tlk2)ei, 0 + (lk- rl)ai, ! + tl2oai+ , + (lk3 - 112)aoi, 3

In order to reduce this expression to contain just the first two coefficients for the two adjacent ele-

ments i and i + 1, an expression is needed for a, 3. This expression is obtained by solving Equa-

tions (8.53) and (8.60) for the coefficient a 3 while eliminating a, 2 Multiplying Equation

(8.53) by 2 and subtracting from Equation (8.60) yields the desired result:

a, I + 2a, 2 + 3ai, 3 - i- , II

-2(ai, +ai, + ai,2 + ai, 3) = -2ai+ 1, 0
O~~i- ~-1 ~(8.64)

-2ai, 0 - ai, + a, 3 = -2ai,+ 1, 0 + i+ 1, 

ai, 3 = 2ai, 0 + ai, l- 2. + + _ Otai l, i

Finally, substituting this expression into Equation (8.63) results in the final expression:

n()i k = (1 - 312 + 2iq)ai,0O + ('k - 2r2 + k)i, !

~+ (3 2t3)a + _3- '~ 2)a +,1 (8.65)

Thus for a system with N elements, there are 4 · N unknown coefficients. These coefficients are

specified by 2' (N - 1) conditions imposed by Equation (8.53) at the boundary between elements,

and 2 · N more conditions imposed by Equation (8.61). The remaining two degrees of freedom

are specified by the boundary conditions. For all of the elements i except the last, this system of

equations is therefore given by the following general formula:

n()i, k = (1-3n 2+2n3)ai,0+(k-2n2+ ) i= 2,...,N- k = 1, kk= 2,., N-I k 1,66)

+(311k- 2n+,Q 0 + ~ (n -,n2)a,+ i = 1 k -0, ,2+(3k -2 i+; 10 k k k 0i

where the node points qk are placed at the roots of the second order shifted Legendre polynomial

on the interval (0, 4i - 4i - 1) = (0, wi) corresponding to the width of the each element. This place-

ment of collocation points minimizes the error in the solution and provides the optimal coeffi-

cients for the cubic spline representation (Villadsen and Michelsen, 1978; Finlayson, 1972).
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Table 8-3 gives the location of node points for a cubic spline on each element. The points k = 0 in

the first element and k = N in the last element are placed at the edges of the system boundary and

serve as implementation points for the boundary conditions.

Table 8-3: Collocation Point Placement

k Tlk

0 0

1 1 1

-2 '0211l

2

-+- 0.789

3 1

The optimal solution given by the orthogonal collocation on finite elements method can be

understood by analyzing the error, or residual R in the solution of the differential equation:

R(w) = Ot(w) -f[(w)]- g[n(w)] (8.67)
Ot w-

The cumulative error over the domain of interest (a, b) is represented as:

b

Error = R(w)dw (8.68)

a

Using a method known as Gaussian quadrature (Stoer and Bulirisch, 1980) this integral can be

calculated exactly using a weighted sum of R(w) at specific points wi - referred to as collocation

points - located at the roots of the corresponding orthogonal polynomial for the system (see Table

8-3):

b

Error = R(w)dw = R(wi)w i (8.69)

a i

The error can then be minimized by forcing it to zero. This simply requires that R(wi) = 0 for all

node points wi, and is equivalent to requiring that the PDE given in Equation (8.67) is satisfied at

each node point in the system. The new system of ODEs now takes the form:
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dn(w1)= d
... n(w)I + (g[n()])lm = mj

dn(w)xi, O(Wj) - f ) x, (w), x] (w)x mI = mj
dt i

dt = nwn(w) , xi, (w) (W)]l m mj

Vj = 1...2N+2

Vj = 1...2N+2
(8.70)

Vj = I...2N+2
d

+ dg, [n(w), xi, o(W) x, xi, I(W)] I = m

where the n(wj) and its associated products with the compositions xi, o(wj) and xi, I(w) are the ele-

ments of the state vector. Note that the each line of Equation (8.70) represents a series of equa-

tions describing the evolution of n(wj), n(w) xi, o(Wj), and n(wj). xi, (wj), respectively, at the

node pointsj = 1, 2, ..., 2. N + 2 where N is the number of elements in the solution domain.

Using the Equation (8.66), it is possible to write a matrix expression relating the node point

values n(wi) to the coefficients aj, 0 and ai, for i = 1, 2, ..., 2 N + 2. Using the general notation

of for w:

(8.71)n(,) = A*a

where the A matrix is given in Equation (8.72).

(3ij -2t)

(3iY-21)

(3,/ -21)

(I -3,Y +2 n)

(1-34+2ri)

(3r-2.) A' (-i)

(1-3.+2q1) (-21.+,) (3f-2W2)
I

tL (r h )

1 A.

(8.72)

For the sake of brevity, Afi has been substituted for the ratio of element widths:
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Ais C -Oi-I (8.73)
vi+ I Oi+ -i

Likewise, the first two coefficients of each cubic spline function can be recovered using the val-

ues at the node points and the inverse of the A matrix:

a = A-l. n(O) (8.74)

and the remaining two coefficients can easily be solved using Equation (8.53). Because all posi-

tion-dependent expressions are isolated in the A matrix, the first and second derivatives with

respect to { can be found by differentiating individual terms in the A matrix:

_n(-) = aA =

2 2 (8.75)
Ya M = aAa = C-a

Re-substituting the second relationship into Equation (2) yields two matrices, B A '1 and C A '1

which act as first and second derivative linear operators. These operators are convenient in evalu-

ating derivatives such as those common in growth terms.

n(4) = B a = BA-'n(O)

2 (8.76)

an(O) = C- = CA-ln()

Equations (8.77) and (8.78) illustrate these matrix representations in full.

n(Oh1,0

n()l,
n()1,2

n(Oil
n(O)l,2

n(O)lli
n(s)I+1,2

n(O,), l

n()N,2
n(O)N,3

a1, 0

al,l
a 2,0
a2 ,1

ai,0

ail
aj 1,1

aN,0
aN,1

aN,3 (2 77\
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(-6q+6j) (1-4h+3.) (-6) I
AO, A, A. (3A-2)

(-6,+6rg) (-4rm+3i) (6,-6y) 1 (3i-2,)

(( (-6t/, +6) (-4,,+3r) (6th-6r) 1 (i2
(-6 +6r ) (1-4t +3r) (6q -6t) 1 3-2

(-6 +6) (I-4a+3)6 (s6 -6) (ig 2)

AON-I AN-I A#N-I N

o 1 21, 3.1g

0 1 2q, 3i

f9N QSN 

(8.78)

(-6+127o) (-4+6t7/) (67o-6Yg) (67,-2)

(-6+127,) (-4+67,) (67r,-61) (6,7,-2)
a2 a2 aw2 L\1^dh

(-6+122) (-4+6,2) (62-622) (672-2)
Ai0 An A e, IA02 Ad

( 2q a,) ) 6q22

(-6+12,72) (4+67,-2) (672-6q2) (6qf-2)

A02 Af02_§ ^0H-I ANIA^N

o o 2 67!

0 2 60N
"'6N 'aN.

(8.79)

Note that this method provides a compact representation for imbedding the calculations for the

cubic splines and its derivatives in a matrix which does not vary with time. This provides for fast

and easy interpolation between the nodepoints and derivative calculations, operations which are

necessary for the calculation of coagulation and growth terms, respectively.
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8.5 Results

Using the method of orthogonal collocation on finite elements, the equations for coagulation

and growth were written out at each node point as shown in the previous section. This system of

differential equations was then numerically integrated using a Runge-Kutta timestep algorithm.

8.5.1 Coagulation only

As a start, the solution was tested for coagulation only with a constant coagulation kernel.

Figure 8-3 compares the overall number density results to the analytical solution, starting from a

two-component exponential distribution as the initial condition.

I .OOE+06

1.00E+04

-e

a
1.00E+00

1 .OOE-02

1.OOE-18 1.OOE-16 1.OOE-14 1.OOE-12

Mass (g)

Figure 8-3: Comparison of analytical and two-component number density results.

The parameter values used in this calculation

Table 8-4:

are given in Table 8-4.

Parameter values

237

Symbol Value Units

No 106 cm -3

Po 10-7 cm 3/s

ml0 10-16 g

m0 o10-18 g
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The results for composition are shown in Figure 8-4. The solution for both n(m) and the mole

1.00

0.80

I 0.60

L o.

0.20

0.00

1.OE-18 1.OE-16 1.OE-14 1.OE-12

Mma(g)

Figure 8-4: Mole fraction comparison of analytical and numerical results for two-component
system.

fraction closely match the analytical results, indicating that the first-order Wiener expansion is a

reasonable approximation for this particular problem.

Note that because the analytical solution given in Chapter 7 is given in terms of n(ml, m2), the

number density distribution must be converted to n(m) and the mean mole fractions must be cal-

culated in order to compare with the experimental results. Appendix H presents the fiull method

used for deriving the transformed results.

8.5.2 Growth only

Because the rescaled growth rate is constant, it is trivial to test the overall number density

solution for growth in the one-component case. For the growth rate law:

G(m) = ym (8.80)

where y = ln(mmax /min), the growth-only solution was calculated for an initially lognormal

distribution. The numerical and analytical results for this system are compared in Figure 8-5,
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1.OE+09

I.OE+06

1.0E+03

· 1.OE+00

; 1.OE-03

1.OE-09

1.OE-12

1.00E-25 1.00E-22 1.00E-19 1.00E-16 1.00E-13 1.00E-10

mass (g)

Figure 8-5: Single-component solution for a lognormal initial distribution with growth rate law
G(m) = y- m.

which shows very good agreement. For more detailed comparison and analysis of multicornpo-

nent results, please refer to Resch (1995).
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Chapter 9: Aerosol Mass Spectrometer Experimental System

A novel measurement system has been developed by Aerodyne Research, Inc. to simulta-

neously measure aerosol size and composition (Jayne et al., 2000).

9.1 Experimental System

The experimental system consists of a heated bath, injector, and flow tube, as depicted in Fig-

ure 9-1.

Injector

Fo Aerosol
Mass

)ectrometer

arn Dry

Filtered
Air

Figure 9-1: Laminar flow through a cylinder with constant wall temperature Tw and uniform ini-
tial temperature To .

Dry, filtered air enters the heated bath where it absorbs vapor from the heated liquid. The air then

exits the heated bath and flows through an injector into a flow tube. The air from the injector is

introduced into the center of a laminar flow at a flowrate which matches the average laminar

flowrate over the injector cross-section, as shown in Figure 9-2. The gas from the injector then

Annular gas flow >

Injector gas flow - 3

Annular gas flow - >

Figure 9-2: Matching of Injector gas flowrate with average laminar flowrate over Injected cross-
section.
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cools as it passes through the flow tube, undergoing nucleation, growth, coagulation, and diffu-

sion. The injected gas is assumed to quickly take on a laminar flow profile without significant

mixing with the annular gas flow. Upon exiting the flow tube, a sample from the central injected

flow region is withdrawn for sampling by the aerosol mass spectrometer. Table 9-1 summarizes

some of the base case operating parameters for the experimental system.

Table 9-1: Summary ofparametersfor experimental flow tube system.

Symbol Definition Value Units

L flow tube length 25 cm

D flow tube diameter 2.5 cm

Do injector diameter 1.1 cm

VT total flowrate 14.8 cm 3/s

vI injector flowrate 3.7 cm3 /s

tf flow time through 3.0 s
tube

u superficial velocity 8.3 cm/s

For this analysis, the bath will be treated as containing pure H2 SO4 at a temperature of 137°C.

9.2 Scale Analysis

A number of different physical processes may act on the injected stream of H2SO4 after it

enters the flow tube. As the gas progresses down the flow tube toward the aerosol mass spectrom-

eter inlet, it cools down. This causes the gas phase H2 S04 to nucleate into small particles which

can then grow and/or coagulate with other particles. The H2 SO4 vapor will also diffuse out of the

center injected flow region out towards the flow tube wall. Some of the H2SO4 particles will also

migrate out toward the flow tube wall due to Brownian diffusion. The following scale analysis

compares the magnitude of these processes.

9.2.1 Loss of H2SO4 due to flow tube wall deposition

One potential sink of gas phase H2SO4 is the molecular diffusion from the center injection

region out to the flow tube wall, as illustrated in Figure 9-3.
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Diffusion to Walls

Figure 9-3: Diffusion of gas phase H2S0 4 in the flow tube. H2 O84 vapor diffuses from the cen-
tral flow of Injected gas from the heated bath to the walls.

Gas which diffuses to the wall is assumed to be deposited on the wall and removed from the gas

phase. The gaseous phase H2 SO4 concentration at the wall is assumed to be zero. The concentra-

tion in the central flow will be highest when the gas is first injected into the flow tube. The gas

which exits the bath through the injector is assumed to be saturated with the liquid H2SO4 in the

bath; its vapor pressure is given by the Antoine equation (Reid, Prausnitz, and Poling, 1987).

K
ln(P) = K T+K 3 (9.1)

The concentration of H2 SO4 then follows directly from the ideal gas law.

PP W
C= RT (9.2)

Table 9-2 summarizes the data used in the Antoine equation and subsequent conversion to con-

centration, as measured experimentally in the H2 SO4 bath (note that Pp needs to be converted
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from N/m2 to N/cm2 for use in the concentration equation). In order to determine the time scale

Table 9-2: Parameters for calculation of gas phase H2SO4 concentration

Symbol Definition Value Units

K1 1st Antoine equation 32.21

parameter

K2 2 nd Antoine equation 11709.73 K

parameter

K3 3 rd Antoine equation 17.98 K
parameter

T temperature 410 K

Pvp vapor pressure 127.11 N/m2

W molecular weight 98.07 g/mol

R ideal gas constant 831.4 Ncm/mol/K

T temperature 410 K

C concentration 3.66x 10-6 g/cm3

(Deen, 1998) of diffusion, the ranges of each appropriate variable in the system are substituted

into the governing equation for radial diffusion:

6C = a r a
at r r- r(r )

which will result in a number of expressions AC, At, Ar, D:

AC 11 (Dr C
At rArk Ar/'

(9.3)

(9.4)
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Table 9-3 summarizes the basis for calculating the values in Equation (9.4).

Table 9-3: Calculation of characteristic ranges for radial diffusion

Symbol Maximum Value Minimum Value A Units
-. ,,_" . . ,

C 3.66x10-6 0 3.66xl0 g/cm3

r 1.25 0.55 0.7 cm

t x 0 . s

Using the fact that the At = r, it is possible to solve Equation (9.4) and produce a generic expres-

sion for the characteristic radial diffusion time.

AC_ 1 1 (DrAC
At rA Ar

AC !I (DnLrA (9.5)
x rAr\ Ar/

_ (Ar)2
D

The diffusivity of H2 SO4 is determined from a set of experimental results in a similar system

(P6schl et al., 1998) where the diffusivity of H2 SO4 through N2 gas was determined as a fiunction

of total system pressure.

D p D = 66.8 torr cm2 (9.6)
P 5

Assuming that the diffusivity of H2SO4 through dry air is similar to the diffusivity through nitro-

gen gas, the diffusivity of H2SO4 can be calculated using Equation (9.6) and the fact that the

experimental system is at atmospheric pressure, 760 torr.

66.8 torr cm
D= s

760 torr (9.7)

D = 0.0879c m
s

Substituting the appropriate values into Equation (9.5) and solving for T yields the characteristic

diffusion time.
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0,72

0.0879 (9.8)

T = 5.57 s

Thus a first order estimate would assume exponential decay of concentration in the central flow

region with a decay constant of T. Because the residence time in the flow tube is 3.0 s, we have:

C - = e-3.0/5.5 7

Co ~~~~~~CO ~~~~(9.9)

C = 0.58
o

where CO represents the initial concentration of a gas packet entering the flow tube and C repre-

sents its concentration at time t. Under the current system, approximately 58% of the entering

H2SO4 vapor will remain when the gas exits the flow tube. However, the following sections will

reveal that this is an upper limit for H2 SO4 vapor deposition. In fact, H2 SO4 is also usurped by

nucleation and growth, reducing the total fraction of H2 SO4 deposited on the flow tube walls.

9.2.2 Loss of particles due to flow tube wall deposition

The flow tube wall also acts as a particle sink due to diffusion from the central flow region to

the walls, where the particles are deposited. According to Friedlander (2000), the diffusivity of

particles in a gas is described by the set of relations in Equation (9.10).

kT
f

f - K (9.10)

Ki = +D [A1 +A 2 exp( X )]

where X represents the mean free path of air as given in Atkins (1994).

;, -k (9.11)aP
The third expression in Equating (9.10) represents a slip correction factor. Substituting into Equa-

tion (9.5) produces the characteristic particle diffusion time as a function of particle diameter,

temperature, and gas viscosity.
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(9.12)(Ar)23nD
kTr

Using a 2 nd order polynomial fit to interpolate air viscosity data from Incroprera and DeWitt

(1996) in addition to the parameters for Equation (9.10) given in Friedlander (2000), the variables

used to calculate the characteristic diffusion time can be summarized as in Table 9-4.

Table 9-4: Summary ofparameters for calculating particle diffusivity

Symbol Definition Value Units

Ar distance from central 0.7 cm
flow region to wall

k Boltzmann constant 1.38x10-21 N cm
K

T temperature 410 K

3. mean free path of air kT cm

AT2cYP _ __ __ __

a collision cross-section 4.24x 10- 19 m2

of air

P atmospheric pressure 101,325 N
m 2

viscosity of air 2.35x10 9 N s
cm2

Dp particle diameter varies cm

Al 1st slip correction fac- 1.257
tor coefficient

A2 2 nd slip correction fac- 0.4
tor coefficient

A 3 3rd slip correction fac- 0.55
tor coefficient

Note: the collision cross-section of air was obtained by taking a composition average of the cross-

sections of N2 and 02 (4.0x10-19m 2 and 4.3 x 10 19 m2), respectively:

C = 0.7 9 aN + 0. 21lao (9.13)
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Figure 9-4 plots n/no, the fraction of original particles remaining in the central flow region after

3.0 s in the flow tube..

1.0 -"

0.8 /

0.6 

0.4-

0.2-

0.0 -

0.01
I .. .i 1 ll

Partidcle Diamter Dp (n)
0.1 I

a *. . . I .. .. .,

10
B U I m ii

-- I " I I I I I * I

10-2o 10-18 1 16 1- 14 10 012 10
mass (g)

Figure 9-4: Fraction of original particles remaining In the central flow after 3.0 s in the flow
tube.

The largest particles diffuse slower than the smaller particles, explaining why the vast majority of

the larger particles are not deposited on the flow tube wall. Figure 9-5 plots diffusivity as a func-

tion of particle size.

0.01
Particle Diameter Dp ("lm)

0.1 1 10

10' 2 0 10 'l e 10-16 1 4

Mass (g)
10 -12 10 '1

Figure 9-5: Particle diffusivity due to Brownian motion as a function of particle size.

9.3 Temperature Profile - Graetz Problem

It is possible to solve for the temperature profile in the flow tube using theoretical results for

the temperature profile of a fluid under laminar flow in a circular tube with constant wall temper-

ature, as shown in Figure 9-6.
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Temperatwe Proftle, Gr etz Problem

flow
_II u TW

Entrance Fully
Region Developed

Region

Figure 94: Laminar flow through a cylinder with constant wall temperature Tw and uniform ini-
tial temperature To.

In general, there are two important temperature profile regions in any laminar flow heat trans-

fer problem in a cylinder: the entrance region and the fully developed region. For a fully devel-

oped flow, the Nusselt number is constant and directly relates the heat transfer coefficient, fluid

conductivity, and diameter. For cylinders with a constant wall temperature T, this correlation

takes the following form (Incropera and DeWitt, 1996):

Nu k - 3.66 (9.14)
k

The length of the entrance region for these is given by the following set of relations:

puoDRe pu-

(D) (9.15)

Gz -1 = 0.05
Re *Pr

where Gz is the Graetz number. Note that the density refers to the density of air, and is calculated

by an expression very similar to Equation (9.2).

PW
P RT (9.16)

Table 9-5 summarizes the parameters used in calculating the density of air. The molecular weight

of air was calculated assuming that the composition of air consists of 78 mol% N 2, 21 mol% 02 ,
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and I mol% Ar.

Table 9-5: Data for calculation of the density of air

Symbol Description Value Units

P ambient pressure 10.13 Nc/m2

W molecular 28.59 g/mol
weight of air

R ideal gas con- 831.4 N cm/mol/K
stant

T temperature 410 K

p density 8.50x10-4 g/cm3

Table 9-6 summarizes the values of the parameters to be used in the calculation of the entrance

length. Note that the Prandtl number, Pr, was linearly interpolated for air from data in Incropera

and DeWitt (1996).

Table 9-6: Parameters used in calculating the length of the entrance region

Symbol Description Value Units

p density 8.50x10 - 4 g/cm3

uO superficial velocity 8.33 cm/s

D diameter 2.5 cm

1g viscosity 2 .3 5xlOm g
cm s

Re Reynolds number 75.3

Pr Prandtl number 0.687 -

z entrance length 6.47 cm

Solving Equation (9.15) for z results in an entrance length of 6.47 cm, much less than the total

length of the flow tube. Because the entrance length represents such a minor fraction of the total

flow tube length, the Nusselt number for the fully developed region will be used to determine the

temperature profile of the entire flow tube. This temperature profile can be derived by performing

a heat balance on a length segment Az of the pipe, as shown in Figure 9-7.
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flow

AzI m

Figure 9.7: Heat balance on a segment Az of the flow tube.

The heat balance on this segment matches the temperature change to the heat lost due to convec-

tion at the flow tube surface.

m.C dT= -hAATPdt
(9.17)

Aznp- Cp,T= -hAznD(T- Tw)

Recall that for gases, density is a function of pressure:

PW
P RT (9.18)

Substituting this relation and simplifying yields the heat balance:

AznrPWD2CpdT

4RT It =-.hAznD(T- T)

PWDC dT 
4RT dt -h(T- Tw) (9.19)

dT -4hRT(T- T,)
dt PWDCp

Rearranging this expression yields an easily integrable form produces:
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T

dT
T(T- Tw)dt

-1 dT+ dT
TwTdt T(T- T) dt

T

| wTdT+- 1 dT =
Tw(T- Tw)

T

-4hR
PWDCp

-4hR
PWDCp
t

,hR dt

P WDC
O

(9.20)

which yields the temperature profile in the flow tube.

To 
w hRTwt(9.21)

exp( phRTDC
exp PWD )

Finally, using the superficial velocity to recall that z = t. uo, the temperature profile can be con-

verted to a function of distance along the flow tube.

(9.22)

Note that Equation (9.14) is used to calculate the heat transfer coefficient, h. Table 9-7 summa-
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rizes the parameters used to calculate the temperature profile.

Table 9-7: Summary ofparameters for temperature profile calculation

Symbol Definition Value Units

To initial temperature 410 K

Tw wall temperature 298 K

k conductivity of air 0.0345 W
rmnK

h heat transfer coeffi- 5.05 W
cient K

R ideal gas constant 8.314 J
mol K

P ambient pressure 101,325 N/m2

W molecular weight 0.02859 kg/mol

D flow tube diameter 0.025 m

Cp heat capacity of air 1015.4 J
kg K

z position in flow tube varies cm

uo superficial velocity 8.33 cm/s

Figure 9-8 graphs the temperature profile of the flow tube.
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Figure 9-8: Temperature profile in the flow tube.
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As the flow tube cools, the gas phase H2SO4 will naturally become supersaturated, which drives

the particle creation and growth mechanisms. These mechanisms and their effects on the particle

size distribution will be discussed in the following sections.

9.4 Nucleation

The primary source of particles in this system is nucleation. In general, nucleation may occur

on small "seed" particles distributed through the gas phase or it may occur when tiny clusters of

condensing gas molecules grow into a particle. The latter case is known as homogeneous nucle-

ation; it is the dominant particle generation mechanism in the flow tube.

Friedlander (2000) states the following relation for the nucleation rate:

(9.23)
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Table 9-8 summarizes the parameters used in the nucleation expression.

Table 9-8: Nucleation rate calculation parameters

Symbol Definition Value Units

dN o rate of particle nucle- varies # particles

dt ation cm3 . s

Pi gas phase H2SO4 0.0127 N/cm2

pressure

Wm mass of an H2SO4 .63x10-2 5 kg
molecule

k Boltzmann constant 138x o23 J/K

T temperature varies K

ni concentration of 16 # molecules
H2SO4 molecules ._ cm3

Vm volume of an H2SO4 3.93x102 3 cm3

molecule

a surface tension 5.95x 10 6 J/cm2

Pvp vapor pressure varies N/cm2

Figure 9-9 graphs the homogeneous nucleation rate as a function of flow tube position assuming
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the temperature profile from the Graetz problem..
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Figure 9-9: Nucleation rate
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as a function of position.
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The gas phase concentration of H2 SO4 molecules, ni, is calculated from the gas phase concen-

tration using the molecular mass and Avagadro's number.

CNA
ni -W

3.66 x 10- 6 g 6.024xl023molecules
cm3 mol m 'Aw

ni 
98.07 

mol

ni= 2.24xlOlI6molecules
mol

The details of the calculations for determining the surface tension and molecular volume of

H2SO4 are included in the following sections.

9.4.1 Surface tension of H2SO4

The surface tension of H2 SO4 is calculated according to the group-contribution "parachor"

method described in Reid, Prausnitz, and Poling (1987). According to this method, the surface

tension is given by:

c = [P-(p,-p) 4 (9.25)

where P is the parachor and pi and Pv are the liquid and gas phase densities, respectively. The
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parachor calculation is summarized in Table 9-9.

Table 9-9: Parachor calculation summary

Using this value of the parachor, Table 9-10 summarizes the calculation of the surface tension.

Table 9-10: Surface tension calculation parameters

Symbol Definition Value Units

P parachor 147.7

Pi liquid density 0.0188 mol/cm 3

Pv vapor density 3.72x 10-8 mol/cm3

density

a surface tension 59.45 g/s2

Note that in the nucleation expression the

requires a conversion factor of 10' 7.

surface tension a is given in terms of J/cm2 , which

9.4.2 Molecular volume of H2SO4

The molecular volume of H2 SO4 is determined by assuming that the atom farthest from the

central sulfur atom will determine the molecular radius. Because all of the O and S atoms in the

molecule are sp3 hybridized, all of the angles are 109.5° (Atkins, 1994). Thus, the radius of the

molecule should be determined by the distance between the S and H atoms. Placing one of the S-
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Number of Individual Total
Group Groups Contribution Contribution

S 1 49.1 49.1

-OH 2 29.8 58.6

-O 2 20.0 40.0

TOTAL 147.7
_ _ _ _ _ _ _ _ _ _ I_1
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\ H
0 0

0O

Figure 9-10: Structure of the H2SO4 molecule.

O-H groups in cartesian coordinates makes for ready evaluation of this distance.

Y
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-70II
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Figure 9-11: Placement of S-O-H bond in cartesian coordinates.

Consulting the CRC Handbook of Chemishy and Physics (Lide and Frederikse, 1996) reveals the

bond lengths, as summarized in Table 9-11.

Table 9-11: Bond lengths in H2SO4

Bond Length (A)

S-O 1.574

O-H 0.970
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which allow quick calculation of the x-y coordinates of the S and H molecules.

Table 9-12: Coordinates ofS and H atoms in H2SO4 radius calculation

Atom Coordinate Formula Value

H x 0.970cos(70.5) 0.324

H Y 0.970sin(70.5) 0.914

S x -1.574 -1.574

S y 0 0

Applying the distance formula results in the radius of the H2 SO4 molecule.

d = /(0.324 - (-1.574))2 + (0.914 - 0)2 (9.26)
d = 2.11

With a molecular radius of 2.11 A, the molecular volume is easily calculated as follows.

4 34v = nr = n(2.11)3
3 3 (2 ) (9.27)

v = 37.35

Converting the molecular volume from A3 to cm3 yields 3.93x10-23 cm3.

9.5 Growth
Particles which have nucleated also grow under the supersaturated conditions of the flow tube.

Assuming a diffusion-limited growth law, as given in Equation (9.5):

K 2D(c, - c5)( (9.28)

G(m) = Km1/3

where W has been omitted because the concentrations will now be expressed in g/cm3 . Using a

method of characteristics analysis (see Chapter 6), it is possible to predict the growth of particles,

assuming a constant degree of supersaturation, which fixes K. Specifically, the mass of the parti-

cles is given as a function of time and initial particle size by the Equation (9.25).
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t-t o = 3 (m2/3 -m 2/3 )

m =(2 
3 0~~,)/

(9.29)

Because the nucleation rate can also be calculated (see section 9.4), it is possible to approximate

the number density distribution of particles exiting the flow tube under conditions of varying

nucleation rate and constant supersaturation. Table 9-13 summarizes the calculation of K for this

system.

Table 9-13: Calculation of growth rate constant

Symbol Description Value Units

D diffusivity of H2SO4 0.0879 cm2 /s
in air

coo bulk concentration of 4.85 x -6 g/cm3

H2SO4

Cs .equilibrium concen- -03- 9 g/cm3

tration of H2SO4

P liquid H2SO4 density 1.841 g/cm3

K growth constant 2.71 x 10 g2/3/s

Take a differential section of air traveling through the length

Figure 9-12. As the position of the segment moves from za to zb,

of the flow tube, as shown in

the residence time of the seg-

flow
1

I I

I I
I I

Za Zb

ta tb

Z

t

Figure 9-12: Dfferential segment of air as it transverses the flow tube.
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ment varies from ta to tb, where:

t ZaUO

t = .bb U0

(9.30)

Over this time segment, a number No of new particles will nucleate within this differential seg-

ment of air. If no(t) represents the nucleation rate per cm3 of air as a function of time, then No rep-

resents the total number of nucleated particles over this time span.

No = no(t*)dt*

ta

(9.31)

Assuming constant supersaturation, these newly nucleated particles will follow a characteristic

curve over time as they grow from size mo at time t* when they nucleate. Thus, the largest parti-

cles in this segment will be the ones which nucleated at time ta and the smallest particles will be

the ones which nucleated at time tb.

(2K + M2/3) 3/2
ma = ((t-ta)+m 3) (9.32)

m2/3) 3/ 2 (9.32)

mb = (2K(t-tb)+ )

Notice the data we now have describe a "bin" into which this population segment fits, as shown in

Figure 9-13.

n(m)

ma mb

No

(ma - mb)

m

Figure 9-13: Bin defined by nucleating and growing particles.
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In fact, if the total residence time in the flow tube is divided up into many tiny segments (ta, tb),

then this same procedure may be used to approximate the entire number density distribution of

particles when the gas segment exits the flow tube, as shown in Figure 9-14. Using this data, it is

I 417
VI II -

6E+17 -

Ev 4E+17 -
C

2E+17 -

-

1E-20 1E-18 1E-16 IE-14 1E-12 1E-10 1E-08

Mass (g)

Figure 9-14: Size distribution resulting from nucleation and growth at constant supersatura-
tion over the full residence time in the flow tube.

possible to compare the relative contributions of coagulation and growth to determine if coagula-

tion is a significant process in this system.

A quick order of magnitude analysis and comparison with Figure 9-9 reveals that 1018 particles/

cm3 have nucleated in this system and grown to a size of approximately 10-9 g, which means that

the total mass of all particles should be somewhere on the order of 109 g/cm3 ! This obviously

indicates that all of the gas phase H2SO4 is taken up into particles well before 3 second limit. In

order to obtain a realistic result, it is necessary to iteratively solve this system for the maximum

amount of time that particles can nucleate and grow before all of the gas phase H2 SO4 is taken up.

Iteratively solving the nucleation and growth problem reveals that all of the gas phase H2 SO4 is

usurped by nucleation and adsorption at roughly 0.17685 seconds. The results of this analysis are
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presented in Figure 9-15.

A nl.a. _
r. %WL-. * W -

3.00E+06 -

E 2.00E+06 -C

1.00E+06 -

O.OOE+00 -

r

F

r

I I - I - I 

1E-20 1E-18 1E-16 1E-14 1E-12 1E-10 1E-08

Mass (g)

Figure 9-15: Size distribution resulting from nucleation and growth at constant maximum
supersaturation over 0.18 seconds in the flow tube.

These results further reinforce the analysis of H2SO4 lost to the flow tube wall. Inserting a char-

acteristic adsorption time for the gas phase of 0.18 seconds into Equation (9.9):

C= e-t/ = e-0.18/5.57
Co

(9.33)C
-- = 0.968
Co

reveals that less than 3.2% of the gas phase H2SO4 is lost to wall deposition.

9.6 Comparison of Coagulation and Growth Rates

Given the data presented in Figure 9-15 and the fact that coagulation scales roughly with the

square of number density, the highest coagulation rate will occur near the peak of the graph -

somewhere near 10-13 g. Calculating the rate at which self-coagulation removes particles from

this bin involves employing the following formula:

rate = (m, m) N(m)Am N(m)Am (9.34)

The coagulation kernel 15 is calculated based on the Brownian coagulation kernel:

P(rl, r2) = 2kT( + (r + r2) (9.35)
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where rl and r2 are the radii of the two coagulating particles. Data on the peak bin is summarized

in Table 9-14.

Table 9-14: Datafor peak bin and coagulation calculation

Symbol Definition Value Units

ma lower bin range 1.58x10 13 g

mb upper bin range 2.75x10-1 3 g

NO number of particles in bin 2.01 x106 -

rl, r 2 mean bin radius 3.02x 10 cm

p particle density 1.841 g/cm3

k Boltzmann constant 1.38x10-21 Ncm
K

T temperature 410 K

viscosity of air 2.35x 10 9 s
cm2

rate coagulation rate 2594 particles
s · cm3

Growth out of this bin can be thought of as a rate process describing the rate at which particles

leave the bin. Expressing the rate as the total number of particles divided by some rate constant

At:

rate = N-
At

(9.36)

A simple manipulation reveals that this is equivalent to the product of the growth rate and the

number density.

No No Amrate- -
At Am At

Norate = G(m)

(9.37)

Recalling that G(m) = K m 3 and calculating the new value of K = 1.43x10 based on the
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shorter final supersaturation, we can use Am = mb - ma = 1.17x10- 13 to estimate the rate of

particles leaving the bin due to growth is:

rate = Km /3

2.01xO6 1.43x10(2.17x10' 3 ) 1 13 (9.38)rate = 1.43x1076(2.17x1
1.03x10O 13

rate = 1.67x10 9

where m is taken to be the midpoint of the mass interval. The relative rates of coagulation and

growth reveal that coagulation is an insignificant process compared to growth in this system.

9.7 Variation of Nucleation and Growth Results with Temperature

Using the analysis presented in section 9.5, it is possible to predict the variation in the number

density as the initial bath temperature To of the system is varied. Figure 9-16 plots results com-

paring the number density distributions when the bath temperature is 350 K and 410 K.

A nn a.A
!. =I.W=- tW -

3.00E+06 -

E 2.00E+06
C

1.OOE+06 -

O.OOE+00 -

rq

- 410KI

I- 3Ki
350K-

1E-20 1E-18 IE-16 IE-14 1E-12 IE-10 1E-08

Mass (g)

Figure 9-16: Comparison of the size distributions in the flow tube as a function of temperature.

These results indicated that a smaller total number of particles are nucleated at lower tempera-

tures, and that these particles grow to a smaller particle size, as expected.
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Chapter 10: Solution and Scale Analysis of Simultaneous Coagulation,
Growth, and Nucleation

10.1 Introduction

The practical solution of population balance systems often requires a solution over many

orders of magnitude. For instance, consider the following experimental data describing the mass

distribution of aerosol particles formed in the aerosol mass spectrometer system described in

Chapter 9. Clearly, this system is capable of producing particles up to l101 X g in size. The largest

0.01 Dp 1 ) 1

15
a.
o,o 10

0 5

0

-19 .18 -17 o16 1s .14 .3 -12 .1
10 10 10 10 10 10 10 10 10

Mass (9)

Figure 10-1: Sample mass distribution data from aerosol mass spectrometer experimental sys-
tem.

particles contain the most mass per particle, and therefore decreasing the upper solution range

from 10' 1l g will result in a physically inaccurate model, much as in the crystallizer model dis-

cussed in Chapter 4 and presented in Pantelides and Oh (1996).

Because the system is undergoing nucleation, a comprehensive model must include particles

down to the typical nucleus size. For H2 SO4 , experimental results have shown that the typical

nucleus diameter is in the range of 2 - 10 nm (Berndt et al., 2000), which requires a minimum par-

ticle mass of approximately 10-20 g. For this system, the growth rate uses a diffusion-limited

growth law:
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G(m) = Km1/3

K = 2D(c - cs)( 6 (10.1)

which is the most common physical mechanism for particle growth. As a result, any practical

solution which aspires to describe the formation of particles in this system must be able to solve

the population balance including the growth law given in Equation (10.1) over roughly 9 orders of

magnitude in particle mass. Examination of the growth rate expression reveals that the growth

rate can be expected to vary over at least three orders of magnitude, without including the varia-

tions expected over time as gas phase concentrations change.

In spite of these requirements, all of the numerical solutions which have been developed in the

literature fail to solve diffusion-based growth population balances over any significant range of

particle sizes. In fact, the only numerical solutions which do solve the population balance equa-

tion for growth over more than just two orders of magnitude use the growth rate law:

G(m) = Km (10.2)

which yields characteristic curves of constant slope when the node points are log scaled (see

Chapter 6). This is equivalent to a constant growth rate over the logarithmic range of particle

sizes and results in a system of equations which is trivial to solve. Solutions which include sur-

face reaction-limited or diffusion-limited growth laws are much more difficult to solve and - up to

now - solutions have only been produced for two or fewer orders of magnitude. Table 10-1 sum-

marizes the results presented in the literature for a variety of population balance nodels and
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experimental systems.

Table 10-1: Summary ofpopulation balance solutions including growth

Orders of
Reference System Growth law G(m) magnitude

1og(mma/mmin)

Chung et al. (1999) crystallization Constant K 2

Resch (1995) aerosol Volume reaction Km 6

Pilinis (1990) aerosol Volume reaction Km 9

Kim and Seinfeld (1991) aerosol Volume reaction Km 5

Alvarez et al. (1992) polymerization Volume reaction Km I

Katoshevski and Sein- aerosol Surface reaction Km2/3 2
feld (1997)

Pantelides and Oh (1996) crystallizer Diffusion Km1 /3 1
........

This chapter outlines the development and implementation of novel scaling methods which over-

come the limitations in current implementations to develop optimal solutions for a variety of

growth rate laws over many orders of magnitude. In addition, the scaling requirements of coagu-

lation and growth processes are developed.

10.2 Scaling of Numerical Solution Methods

The growth term is mathematically identical to a convection equation and therefore must

adhere to the Courant condition (Strang, 1986):

G(O)At S AO (10.3)

where G() is the growth rate in the 4 coordinate, At is the maximum allowable time step, and A4O

is the spacing between node points in the solution domain. Depending on the scaling system cho-

sen, this results in a different maximum time step. Because growth is assumed to be diffusion-

limited, the growth expressions for m and w solution coordinates are:

G(m) =

G(w) -

Km 1/3

K
Ym 2 /3

(10.4)
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These two functions are plotted over the proposed solution domain in Figure 10-2. Note that the

DD (um)

300x0O'12

250

e 200

150

100

50

12
10

101
10 

10

10

10-17 10-1 10 10 10,12 10 1 
Mass (g)

Figure 10-2: Comparison of rescaled growth rate expressions in m and w scaling systems.

mass-based growth rate varies over only two orders of magnitude, while the w-scaled growth rate

varies over roughly four orders of magnitude. Using 14 elements spaced along this solution

domain results in the element boundary placement shown in Figure 10-3. Even though the node

* a a a * * * * * m a U m a U

L m - spacing 

. w- spacing

. * *..

1 .OOE-17 1 .OOE-1 5 1 .OOE-1 3 1.00E-11

Mass (g)

Figure 10-3: Comparison of element spacing for m and wscaling methods.

points are unevenly placed, the element boundaries are evenly spaced in their respective scaling

systems, yielding the minimum time step functions over the domain range shown in Figure 10-4.

Note that the m - scaling has maximum time steps on the order of 10-' 3, and can thus be expected
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Figure 10-4: Minimum time step variation over the solution domain range for w and m scaling
systems.

to complete each second of numerical integration with several thousand time steps. The w - scal-

ing, however, generates minimum time steps on the order of 10-14 s, thus requiring an exorbitant

number of timesteps to solve. Note also that the m - scaling method places a large number of ele-

ments in the upper size range, as shown in Figure 10-3, leaving only one element to cover the

most important part of the solution range. In contrast, w - scaling offers uniform scaling over the

solution domain and desirable node point resolution, but at the expense of intractable solution

times. It is readily apparent that neither of these scaling methods are appropriate, and therefore a

new scaling method must be formulated.

10.3 The R - Scaling Method

The Courant condition offers a very limited range of possibilities for reducing the number of

time steps required for numerical integration:

At G() (10.5)

In general, the growth rate G(4) is determined by the physics of the system; this leaves only one

degree of freedom - A4 or At - in the Courant condition. Simply put, because the physics of the

system determine the growth law and the Courant condition is necessary to enforce stability,

choosing the time step determines the solution node placement and vice versa. However, the

numerical integration routine is forced to use the same value of At for all points in the solution

domain. By choosing a variable node point placement Ad, it is possible to construct a node-point

scaling which results in a constant time step:
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(10.6)
G(r)

This can be accomplished if AS has the same functional form of G(+). For the case where ~ = m

and the growth law is diffusion-limited:

Am
3Am (10.7)

Km1 /3

In order to find an optimal scaling method, a new scaling coordinate X is needed such that the

node points are evenly spaced:

-AX _ (10.8)
G(X)

where x represents a constant timestep value. In essence, this is equivalent to specifying that G(X)

is constant in the new scaling coordinate. Setting the value of this constant to 1/y yields:

G(X) = 1 (10.9)
Y

However, recall the relationship:

G(X) A d)_ dAm 
d- dtm

(10.10)

G(X) = G(m)d-

Substituting this expression into Equation (10.9) yields a new basis for defining a transform

between m and the new scaling coordinate X:

)d I

(10.11)
dm

ym /3

Integrating this expression yields the functional relationship underlying this transformation:

Id) = dm/3
O mmin (10.12)

= 3 (m2/ 3 - m2/3)
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The scaling factor y is defined by setting X = I when m = mmax:

- 2(m2/3 m2/3)2y1 max - minin

(10.13)
y =3(m2/3 m23)

Spacing the elements evenly along the coordinate X results in a constant timestep, with the follow-

ing element boundaries, plotted here for comparison with w and m scaling.

. m -spacing

. w- spacing
. r-spacing

1.00E- 1.OOE- 1.00E- 1.00E- 1.00E- 1 00E- 1.OOE-
17 16 15 14 13 12 11

Mass (g)

Figure 10-5: r - scaled node point placement in comparison with w and m spacing.

As shown in Figure 10-5, this new scaling method provides more even spacing, and therefore bet-

ter resolution than the m - spacing method, while minimizing the solution time required at this res-

olution. This is made possible by the fact that both Am and G(m) have the same functional form,

as shown in Figure 10-6. Because the shape of these function match very closely, the timestep,

which is determined by the ratio of these two functions, is almost constant. Figure 10-7 shows a

plot of the maximum time step as a function of particle size. Because the maximum timestep

allowable in the numerical integration algorithm is the lowest maximum timestep over the entire

solution domain, it is evident that this new r - scaling method has a maximum timestep compara-

ble to the m - scaling method and many orders of magnitude faster than the w -scaling method.

Thus this new scaling method offers fast solution times with increased resolution by optimizing

the timestep with respect to the Courant condition.

273



Solution and Scale Analysis of Simultaneous Coagulation, Growth, and Nucleation

0.1
3 4 5 789

.,I

Dp (m)

2 3 4 56? 6 9

' '''" .-1 . I ""1 ' '"'11 ' 11 ''' ......
-17 3 1 66 .s 1 14 .3 .12

10-t7 10 10 ass 10 g) 10 1C
Mass (g)

.12
- 300x10

250

200

150

100

50

.11

')
Q

Figure 10-6: Comparison of node spacing dm and growth rate function G(m) over the solution
domain using r - spacing.
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Figure 10-7: x - scaled node point placement in comparison with w and m spacing.

10.4 Hybrid Scaling Methods

The r - scaling method presents a method for optimizing the resolution and solution time for a

given growth kernel. In general, an optimal scaling method can be derived using the same

method as shown in the previous example for the r - scaling method. This can be accomplished

by substituting the growth law into Equation (10.7) and proceeding with the derivation as out-

lined.

Although this method yields the optimal results for resolution and timestep, demanding appli-

cations may require a larger number of node points and/or more orders of magnitude in the final

solution. While the r - scaling method offers better spatial resolution than w - scaling, applica-

tions requiring more node points in the lower range of the logarithmic size range will need to add
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Hybrid Scaling Methods

a large number of node points before adequate resolution is achieved in the size domain (see Fig-

ure 10-5). For these cases, hybrid scaling systems can be constructed which combine the benefits

of the various scaling methods over different ranges of the solution domain. For instance, when a

system requires the solution of a diffusion-based growth equation over very many orders of mag-

nitude, a hybrid method can be employed which combines the ability of w - scaling to offer high

resolution over many orders of magnitude and the ability of r - scaling to offer fast solution times.

r- scaling hybrid

w- scaling

Total size range

Figure 10-8: - scaled node point placement in comparison with w and m spacing.

Examining Figure 10-4 reveals that the time step for the w - scaling method is most restrictive

in the lower size range. This occurs because G(w) = K/y m- 2/ 3 and thus the rescaled growth

rate is largest in the smallest size range. However, because Aw is constant, this means that the

Courant condition will produce the smallest maximum timestep in the smallest size ranges, where

G(w) is largest:

t < G(w) (10.14)G(w)

Because the r scaling method has a constant time step over the entire domain range, it can be

effectively employed over the lower size ranges, while the w scaling method can be employed to

efficiently cover the upper particle size ranges with relatively few extra node points.

In the case of a system requiring a solution over the domain (10-20 g, 10-8 g), a total of 14 total

finite elements can be used, with the first elements scaled using the r system over the range from

10-20 to 10-14 and the remaining elements using the w scaling system to cover the remainder of the
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Figure 10-9: Node point placement for a hybrid scheme combining r- scaling in the lower solu-
tion range with w scaling in the upper solution range.

solution domain. The node spacing for this scheme is illustrated in Figure 10-9. Using this scal-

ing scheme, a solution was generated for the known analytical solution of an initial lognormal dis-

tribution and the growth rate G(m) = m. Figure 10-10 shows the results of this numerical solution
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15s
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.20 .18 .16 -14 .12 - 10 4
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Mass (g)

Figure 10-10: Comparison of analytical and numerical results for a hybrid solution of an ini-
tially lognormal distribution with growth rate G(m) = m.

for a final solution time of 3.0 s. Solution time was approximately 20 s on a 333 MHz personal

computer, and the close agreement between numerical and analytical results indicates that the

solution is both accurate and fast. Figure 10-11 plots the node spacing and growth rate as a func-

276

__ _C



Solutionfor Aerosol Mass Spectrometer Experimental System

tion of particle size. The resulting minimum time step is a function of particle size, as shown in

0.01
Dp (lAm)

0.1 10

-20 .18 .16 .4 .12 .10 -6
102 10 10.1( 10 10 10

Mass (g)I

Figure 10-11: Growth rate and node spacing as a function of particle size for hybrid spacing
method using diffusion-limited growth law.

Figure 10-12. Note that the w - scaled section does not limit the timestep; using the r scaling
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Figure 10-12: Timestep as a function of particle size for hybrid spacing method with diffusion-
limited growth law.

method in the lower size ranges results in a maximum timestep on the order of 10-5 s which is still

much larger than the maximum timestep for pure w - scaling of 10-14.

10.5 Solution for Aerosol Mass Spectrometer Experimental System

In an effort to demonstrate the utility of these rescaled growth equations for describing the

solution of population balance problems, sample solutions have been developed to compare with
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analytical solutions describing the aerosol mass spectrometer experimental system under a variety

of conditions. The set of governing equations for this system include the single-component num-

ber density governing equation:

m
2 0o

an() _ p(x, mx)n(x)n(m -x)d-n(m) x)n(x)n(mx)ddx (G(m)n(m)) (10.15)at am
0 0

where the growth law is generally assumed to represent diffusion-limited growth, as shown in

Equation (10. 1):

G(m) = Km 1/ 3

K = 2nD(cc-cs)( /3 (10.16)

However, because this is an enclosed system, an additional mass balance is needed for the gas

phase in order to model the uptake of H 2 SO 4 from the gas phase:

co

=- I G(m)n(m)dm-No min (10.17)
mmin

which occurs due to particle nucleation and growth.

The first term describes the uptake of gas phase H2SO4 due to particle growth; the second term

describes the rate of uptake due to nucleation. If the gas entering the flow tube is saturated with

H2SO4 at a temperature of 410 K, it will contain roughly 3.65x 10 6 g/cm3 H2SO4 . Examining

Figure 9-15 reveals that these particles can be expected to grow to a size of 10-11 g. Summing the

particles from all of the bins in this solution reveals that approximately 1.47x 10 particles are

expected to nucleate. If all of these particles grew to the same size, they would need to reach a

size of 2.48x 10-13 g in order to uptake all of the H2SO4 vapor. This represents the absolute min-

imum upper size limit that can be used for any numerical solution of this problem; anything less

will create a situation where particles "escape" the system by growing larger than the maximum

size limit and therefore no longer participate in the uptake equation. The resulting vapor concen-

tration will be overestimated, leading to overestimates of number density and nucleation rates

similar to the crystallization example (Pantelides and Oh, 1996) shown in Section 4.5.2. Observ-
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ing Figure 9-15 also reveals that the number density of particles starts to become significant

somewhere around 1017 g, and thus a solution domain of (10' 17, 10' 1) would be the absolute

minimum required for this particular application. In order to generate a solution, a scaling system

must be selected for the solution domain.

Using the homogeneous nucleation rate and characteristic solution given in Chapter 9, it is

possible to approximate the analytical solution to this system for nucleation and growth. This is

essentially accomplished by repeatedly performing the "bins" solution presented in sections 9.5 -

9.7 over small timesteps, using the results of the previous timestep as the input for the next

timestep. Figure 10-13 shows the results of this analysis for when the particle size distribution

initially contains zero particles and the H2SO4 bath temperature is 410 K. Final conditions for
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Figure 10-13: Analytical results for nucleation and growth

this simulation where reached when the growth and nucleation rates became negligible. At this

final condition, 90% of the initial gas phase H2SO4 had been adsorbed by the particles and a total

of 3.26x 105 particles had nucleated. Note that the results predict an almost monodisperse parti-

cle size distribution, a significant departure from the observed shape of the number density distri-

bution shown in Figure 10-1 as well as the sample solution with time-varying nucleation rate

given in Figure 9-15.

Using the final conditions from the analytical solution, it is possible to estimate characteristic

coagulation and growth rates. For coagulation, the distribution can be treated as monodisperse; it

follows then that the rate of change in the number density distribution can be approximated by:
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rate = (m, m). N2 (10.18)

Because the particles are well within the continuum coagulation regime, the Brownian diffusion

coagulation kernel takes the form:

((x,y) = Tkr( + rI )[r(x) + r(y)] (10.19)

Where r(x) and r(y) are the radii of particles sized x and y, respectively. Note that in this case x =

y = m and so the coagulation rate reduces to:

rate = 83kT. 2 (10.20)

Each coagulation event will produce a particle with approximate mass 2 · . In order to compare

the growth rate, it is necessary to determine the rate at which particles of at mass m would grow to

the same size, 2 m. This rate can be estimated by the following expression:

rate = N. G(m) (10.21)
Am

The expression G(m)/Am approximates the frequency (units l/s) at which particles grow from m

to 2 · m; multiplying this expression by N produces the overall rate. The parameters used in this
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calculation and the results are summarized in Table 10-2.

Table 10-2: Calculation of growth rate constant

Symbol Description Value Units

k Boltzmann constant 1.38x10-21 N cm
K

T temperature 410 K

Lp viscosity of air 2.35x10 9 N s
cm2

m change in mass 1.Ox10- I g

Am change in mass 1.0x 10-1 g

K growth constant 2.51 x 10 8 g2 3/s

N number of particles 3.26x105 #/cm3

G(m) K m1 13 5.4x10- 12 g/s

coagulation rate 68.23 #/s

growth rate 1.76xl05#/s

Even under these conditions, the growth rate of particles overwhelms the coagulation rate, justify-

ing the lack of coagulation in this solution and suggesting that the discrepancy between experi-

mental and theoretical results must be due to some deficiency in the model physics. This

deficiency is most likely in the nucleation rate; the classical homogeneous nucleation rate has

been widely criticized in a variety of applications ranging from crystallization to the formation of

carbon black (Fabry, Flamant, and Fulcheri, 2001; Leubner, 2000). In particular, the nucleation

rate is particularly sensitive to the value a, which represents the surface tension of H2SO4 in the

nucleating particles. Figure 10-14 shows results for this solution with initial temperature of 376 K

and twice the normal value of a. Note that the resulting number density distribution still has the

same shape as the analytical solution given in Figure 10-13, however it is about two orders of

magnitude wider at the base. Although this qualitatively reproduces the trends shown for lower

temperatures in the experimental data (see Figure 10-1), it still represents a large departure from
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Figure 10-14: Test numerical solution for growth and nucleation with ncreased a value.

the experimental data and further emphasizes the need for accurate nucleation models.

In fact, it is possible to analyze the experimental data given in Figure 10-1 and these analytical

results to estimate the number of particles. For the experimental data at the highest temperature

point (410 K, see Figure 10-1), it is possible to estimate the total number of particles in the distri-

bution using the following pieces of information:

1. the initial gas is initially assumed to be saturated at a concentration of .65 x 106 g/cm3

2. the mean particle mass lies between 10-13 and 10-1i g (the area on either side of the mean

particle mass in Figure 10-1 will be equal at this point).

If mean particle mass is 10'13 g and the total mass of all the particles is .65 x 10 g/cm3, then

there must be 3.65x10 - 6 /1 .0 x1 0 - 3 , or 3.65x107 total particles per cm 3. This represents the

upper limit total particles. A similar calculation for the case where the mean mass is 10 'l g

reveals that the lower limit for total particles is 3.65 x 105. However, the data in Table 10-2 indi-

cates that 3.26x 05 particles are present in the analytical solution. Thus, the experimental system

contains up to two orders of magnitude more particles than are produced in the numerical model.

However, because the total number of particles are conserved in the nucleation and growth model,

this shortfall in particles must be produced by a shortfall in the nucleation rate. In the case where

coagulation is occurring at an appreciable rate in the experimental system, this shortfall is even

more pronounced. A similar analysis for the case of increased a results in a mean particle mass of

roughly I0' 12 and therefore a total number density of roughly 3.65x106, which is closer to the

experimental value.
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In order to address these discrepancies in nucleation rates, techniques such as parameter esti-

mation and model discrimination can be applied to rigorously optimize such imbedded parame-

ters as . Because the hybrid scaling method results in fast solution times, both parameter

estimation and model discrimination studies can be completed in a reasonable amount of time.

10.6 Application Examples

10.6.1 Optimal seeding of batch crystallization

In industrial practice, the majority of particle processes do not rely on nucleation for the cre-

ation of particles, but instead use seed particles as a starting point for heterogeneous nucleation

and growth. Examples of seed-initiated growth processes include colloid processing (Dushkin,

2000) and crystallization. The seed particles represent an initial condition for the growth problem

and have a strong influence on the final shape of the particle number density distribution (Chung

et al., 1999). In order to determine the optimal seed particle number density distribution, an

inversion problem must be solved; this requires a fast and accurate numerical solution of the pop-

ulation balance.

10.6.2 Condensation nucleation counters

The ability to produce nucleation and growth solutions over many of orders of magnitude

directly impacts a large range of population balance applications. One example is the application

to condensation nucleation counters (CNC's). Direct particle sizing methods can typically only

measure particles down to the 10 - 20 nm size range; in order to measure particles smaller than

this, condensation nucleation counters are employed (see Figure 10-15). These counters pass the

sampled particles through a condenser to increase their size up to the measurable range, then

invert a growth model of the condenser to infer the original distribution of particles entering the

CNC. By utilizing the scaling methods developed here, the growth model for the CNC can be

solved much faster than with conventional methods, allowing decreased computation time for

estimating the initial distribution and, as a result, increased sampling rates and/or an increased

sample measurement range.

10.7 Summary

Current numerical solutions of population balance models are generally either restricted to a
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Figure 10-15: Condensation nucleation counter grows particles by passing them through a
condenser until they reach a measurable size, then nverts a growth model to estimate the
original particle size of the particles.

limited selection of growth laws or limited solution range. This lack of modeling ability generally

precludes the accurate and/or fast solution of the entire class of problems involving simultaneous

nucleation and growth, and limits the solution domain for these systems to just one or two orders

of magnitude. However, using insights into the numerical stability limits of the governing equa-

tions for growth, it is possible to develop new node point placement schemes which reduce the

solution times and increase the solution domains by orders of magnitude. In particular, the r -

scaling method has been developed for growth rate laws of the form:

G(m) = K. m/ 3 (10.22)

In addition, hybrid methods have been developed to improve the resolution of the r - scaling

method while minimizing the negative impact on the maximum time step, and therefore minimiz-

ing the increase in solution times. This same framework can in fact be used to develop optimal

node point scaling for any arbitrary growth law by using the relationship:

m

dX= fJ dm (10.23)

0 mmin

which determines the algebraic relationship between the new optimized scaling coordinate X and

the mass-scaled coordinate m. Finally, these scaling methods are trivially extendable to the multi-

component governing equations used in the multicomponent split composition distribution
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Summary

method (Resch, 1995), where the growth rate expression takes the form:

aqi(m)ZGj(m)) Eqj(m)

ai(m) - am + Gi(m ) (10.24)mt am m

which results in the same stability condition for the timestep:

At C (m) (10.25)G(m)
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Chapter 11: Conclusions and Directions for Future Research

11.1 Conclusions

Current numerical solutions of population balance models are generally either restricted to

limited selection of growth laws or limited solution range. This lack of modeling ability generally

precludes the accurate and/or fast solution of the entire class of problems involving simultaneous

nucleation and growth, and limits the solution domain for these systems to just one or two orders

of magnitude. However, using insights into the numerical stability limits of the governing equa-

tions for growth, it is possible to develop new node point placement schemes which reduce the

solution time by orders of magnitude (see Chapter 10). These new solution methods enable a
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Figure 11-1: Minimum number of timesteps for I second solution time as a function of scaling
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wide range of applications including:

-fundamental model refinement
-condensation nucleation counters and other measurement systems
-estimation of optimal seed crystal distributions

Because these scaling methods are directly applicable to the split composition distribution method

(see Chapters 7 and 8), they can readily be extended to multicomponent systems. In this sense,

the combined scaling techniques with the Split Composition Distribution method form a frame-
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work for the efficient and accurate solution of multicomponent population balance problems over

many orders of magnitude.

Currently the dynamics of particle formation is poorly understood. For instance, classical

nucleation theory is widely acknowledged to poorly represent the nucleation processes in a large

variety of systems (Berndt et al., 2000; Fabry et al., 2001; Leubner et al., 2000). In order to test

and develop new theories of particle nucleation, growth, and coagulation, more accurate models

and experimental data are needed. In particular, high time-resolution data is needed for carefully

controlled experimental systems, and sophisticated models are needed to study these systems.

Furthermore, analytical methods are needed for comparison with numerical results. Chapters 9

and 10 present a case study of an aerosol mass spectrometer experimental system, developing a

set of analytical tools to compare with numerical and experimental results. A comparison of ana-

lytical and numerical results for this system reveals that relatively monodisperse distributions are

produced under conditions of nucleation and growth only, and that coagulation is insignificant

under these conditions. However, comparison of the resulting experimental and numerical/ana-

lytical number density distributions reveals that the models underpredict the number of particles

in the system. Because particle growth conserves the number of particles in the system, this

shortfall in particles can only be due to an underprediction of the nucleation rate.

In the past, the inability of models to cover a large range of particle size prevented the devel-

opment of models which could attempt to reproduce the results of these systems. The develop-

ment of new scaling methods has enabled accurate modeling these experimental systems, creating

the opportunity for refinement of classical nucleation theory by model discrimination and param-

eter estimation techniques.

Finally, the development and implementation of population balance models has been poorly

treated in the literature. For the fi;st time, this work presents all the relevant topics for under-

standing population balance models in one coherent document. Specifically, the following topics

are presented to clarify the modeling of population balance systems:

1. number density distributions and scaling transformations
2. governing equations for single and multicomponent systems
3. implementation of these governing equations in a numerical model

In order to make these concepts clear, the concept of number density distributions is rigorously
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defined in Chapter 2. The basic properties of these number density distributions forms the foun-

dation behind the derivations of scaling transformations in Chapter 3, where the conditions for the

existence of a scaling transformation are developed. This analysis enables the development of

multicomponent scaling transformations, presented in this work for the first time.

The basic definition of a number density distribution is then used in Chapters 4 and 5 to derive

the single- and multi-component governing equations for processes including coagulation,

growth, fragmentation, and sources. The derivation also identifies a method for reducing the inte-

gration range of the multicomponent coagulation integral by a factor of /2, which significantly

reduces the computational load on aerosol models.

11.2 Directions for Future Research

In .'de to make the most use of the advances in current methods, several directions for future

research exist.

11.2.1 Testing and refinement of theoretical models

Up to now, the lack of efficient solution methods and controlled experimental systems have

prohibited the development of solution methods which accurately describe simultaneous nucle-

ation, growth, and coagulation. However, these three processes control the formation of new par-

ticles in all particulate processes. In spite of this, it is widely acknowledged that classical

homogeneous nucleation theory fails to accurately describe a wide range of processes. By using

the methods contained in this work, the combined coagulation, growth, and nucleation models can

be efficiently solved, allowing the testing and refinement of these physical mechanisms. Using

carefully controlled experimental systems such as aerosol mass spectrometer and flow tube devel-

oped by Aerodyne (see Chapter 9), experimental results can now be directly compared with

numerical solutions. Using the scale analysis tools developed in chapters 6, 9, and 10, experi-

ments can be designed to decouple the effects of nucleation, growth, and coagulation.

11.2.2 Numerical analysis of the coagulation and fragmentation kernels

While a wealth of numerical stability and error analysis is available to describe hyperbolic

terms describing particle growth, little analysis is available to describe the stability and error con-

ditions of the integral terms. This analysis desperately needs to be performed to establish concrete

stability limits for systems involving coagulation and fragmentation.
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11.2.3 Improvements in the split composition distribution method

Up to this point, the convergence properties of the Wiener expansion in the split composition

distribution have not been studied. Higher-resolution multicomponent number density experi-

mental data is needed to determine:

1. which set of basis functions is most appropriate for the Wiener expansion
2. the rate of convergence for the Wiener expansion as new terms are added.

These data will provide the basis for testing the split composition distribution method against

experimental results, and determine the ability of this method to accurately describe the full range

of possibilities between internally mixed and externally mixed aerosols.

11.2.4 Development of fully integrated population balance solution

In spite of the utility of the split composition distribution method for multicomponent sys-

tems, it has yet to find widespread use. This can largely be attributed to the difficulty in under-

standing the Wiener expansion methods for describing composition variations. While this

document has attempted to present the split composition method clearly, the level of program-

ming skills and mathematical understanding required to manipulate this method effectively is far

too high. Furthermore, the progran'ming tools which have been developed for the split composi-

tion distribution method use antiquated programming approaches and are difficult to maintain for

even an expert user. An object-oriented programming framework for population balances will

improve maintainability and facilitate the development of new algorithms and modeling tech-

niques. Finally, the implementation of an imbedded algorithm to generate the governing equa-

tions for the Wiener expansion terms will enable the widespread use of the split composition

distribution method.
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Appendix A: Case Study of a Pressure Swing Adsorption System

A.1 Introduction

Since the inception of pressure swing adsorption (PSA) systems and their subsequent imple-

mentation in industrial processes beginning with Skarstrom's cycle (Skarstrom, 1960), a prolific

number of new PSA cycles have been developed (Jasra et al., 1991; Ruthven et al., 1994; Yang,

1987) in parallel with a family of model simulations for these processes (Ruthven et al., 1994;

Yang, 1987). Today, PSA processes are not only used in industrial applications, but also in mili-

tary, commercial and home applications. Among air separation applications alone, PSA systems

are widely used to produce oxygen for the crew in military aircraft (Teague and Edgar, 1999), to

provide an on-board source of enriched air on scuba diving vessels (Rossier, 1999), and to pro-

vide oxygen at home for persons with lung diseases. Modem PSA systems often operate on a

complex cycle and rely on a complex system of valves to control flow throughout the cycle.

Modeling efforts use this information to decouple individual adsorption beds, allowing accurate

description of the process with a relatively simple model.

Recently, a new PSA process has been developed which operates without any valves. While

this process promises to offer reduced maintenance and increased reliability, the lack of an exter-

nally-controlled pressure cycle results in a much more complex process model than conventional

models require. This paper presents a model which meets the rigorous demands of dynamically

describing this valveless process. While some modem PSA models have described complex

cycles (Malek and Farooq, 1997), most of these models do not employ strict conservation of mass

across system boundaries (Teague and Edgar, 1999). This model combines a complex process

cycle with rigorous implementation of boundary conditions to accurately solve for pressure histo-

ries in the adsorption beds. Results indicate that strict conservation of mass is the most critical

criterion for accurately describing the dynamics of such a complex PSA cycle.

From the very first PSA patents in the late 1920's and early 1930's (Hasche and Dargan,

1931; Finlayson and Sharp, 1932; Perley, 1933) up until the current day, essentially all PSA sys-

tems have used valves. The valving systems used in modem PSA systems channel air through

networks of adsorption beds in order to repeatedly saturate, regenerate, and sometimes equalize
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adsorption beds. A PSA process operating on a complex cycle may have more then 30 valves

(Malek and Farooq, 1997) and 10 or more adsorption beds (Fuderer and Rudelstorfer, 1976).

While valves allow precise control of flow and pressure in the process, they also require mainte-

nance and proper control algorithms. From a modeling perspective, valves have the added benefit

of simplifying many PSA process models by decoupling the interactions between adsorption

beds. Many studies such as Malek and Farooq (1997) use this decoupling to simplify process

models, allowing the adsorption beds to be simulated individually using boundary information

from columns at other stages of the PSA cycle. However, PSA cycles which contain equalizing

columns cannot be completely decoupled and present several challenges: 1) properly coupling

flow between the equalizing columns, 2) rigorously conserving mass, and 3) solving for the cor-

rect pressure equalization profile. While recent models have taken into account the effects multi-

ple components (Chlendi, Tondeur, and Rolland, 1995) or nonisothermal conditions in a

multibed process (Malek and Farooq, 1997), these models make assumptions which fail to con-

serve mass (Malek and Farooq, 1997; Budner et al., 1999) by assuming a pressure relationship

between two equalizing adsorption beds of the form given in Equation (A. 1).

dP - k(PI-P2 ) P> P2
dt (A.1)

This assumption is made to avoid the added computational cost associated with implementing

rigorous flow boundary conditions between the adsorption beds, however, it leads to incorrect

results, including false pressure and velocity profiles, and incorrect product purity information.

A novel new PSA process has been developed and is currently used for medical oxygen as

well as a variety of commercial applications (Hill, 1992). While this cycle is essentially a Skar-

strom cycle with one equalization step added (see Figure A- 1) the process is fundamentally differ-

ent in how the individual adsorption beds are connected. Unlike conventional PSA processes,

flow between adsorption beds is not controlled by valves, but rather through a set of open orifices

which connect the adsorption beds at their product side to a common product collection vessel

and a channeled rotor (see Figure A-2). Because the channeled rotor is the only moving part

within the PSA unit, this process exhibits much higher reliability than conventional processes

(Hill, 1992). Two banks of six beds each operate in parallel on a six-stage cycle to produce oxy-

gen from a compressed air inlet stream. While this open-orifice configuration significantly sim-
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Figure A-I: Pressure swing adsorption cycle with one equalization stage.
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Figure A-2: Arrangement of adsorption beds in PSA unit.

plifies the mechanics and controls for this PSA system, it also opens many new degrees of

freedom in its conceptual model and greatly increases the complexity of numerical solution. Typ-

ical PSA models rely on well-defined control of the overall PSA cycle to decouple the various

adsorption columns. In many cases, this reduces the model to include just one adsorption column

which needs to reach a cyclic steady state. Furthermore, the system of equations is often a linear

set of differential algebraic equations (Ruthven et al., 1994). In contrast, because this new pro-
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cess has continuously connected product tanks and adsorption beds with dynamically varying

boundary conditions, the model for this PSA system requires simultaneous solution of a system of

equations including all of the adsorption columns and the product tank. In addition, two columns

in the process are always equalizing, requiring the solution of an additional nonlinear set of equa-

tions to rigorously determine the pressures in these beds. Finally, the time-scales over which the

adsorption columns pressurize and depressurize differ greatly from the time scales characteristic

of the product tank, creating a system of stiff nonlinear differential algebraic equations (DAEs).

A mathematical model for this new PSA process is presented and solved under a variety of

process conditions. The existence of multiple steady states is demonstrated and the rationale

behind the existence of these steady states explained. Experimental results are compared with the

simulation output under a range of conditions.

A.2 PSA Process Description

The PSA process consists of twelve pressure swing adsorption (PSA) beds, or columns,

arranged such that two banks of six columns are simultaneously performing the same PSA cycle

(see Figure A-2). At the end of each cycle, the columns rotate to new positions, as shown in Table

A-1. Flow on the product side of the columns is restricted by an orifice, while flow on the feed

Table A-i: Column Rotation

Old Position New Position

Column 1 - Column 2

Column 2 Column 3

Column 3 - Column 4

Column 4 -- Column 5

Column 5 - Column 6

Column 6 -- Column 1

side of the columns is channeled through a rotor. The rotor exposes each adsorption bed to high

pressure feed air, ambient air, and a pressure-equalizing adsorption bed as it moves through the

PSA cycle. A sample pressure profile through all six positions is sketched in Figure A-3.
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Figure A-3: Example pressure profile over process cycle.

An adsorption column which starts off in the "Column 1" position is being fed at high pres-

sure. When it reaches the Column 2 position it will equalize in pressure with the bed in the Col-

umn 5 position. During the next step as Column 3, it will blow down to atmospheric pressure and

then purge through its entire tenure as Column 4. Upon reaching the Column 5 position, the

adsorption bed will gain pressure as it equalizes with Column 2. Finally, the column will com-

pletely repressurize and start high pressure feed while at the Column 6 position before returning

back to the Column 1 position. Table A-2 summarizes the cycling process for each column.

Table A-2: PSA Cycle Summary

Product gas flows into the product tank from the feed columns. Some of this product gas is with-

drawn as product at a regulated flowrate; the remaining gas exits as it purges columns 3 and 4.
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Column Stage I Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

I High Pres- Equalization Blowdown & Purge Equalization Pressuriza-
sure Feed Purge tion & Feed

2 Equalization Blowdown & Purge Equalization Pressuriza- High Pres-
Purge tion & Feed sure Feed

3 Blowdown & Purge Equalization Pressuriza- High Pres- Equalization
Purge tion & Feed sure Feed

4 Purge Equalization Pressuriza- High Pres- Equalization Blowdown &
tion & Feed sure Feed Purge

5 Equalization Pressuriza- High Pres- Equalization Blowdown & Purge
tion & Feed sure Feed Purge

6 Pressuriza- High Pres- Equalization Blowdown & Purge Equalization
tion & Feed sure Feed Purge
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A.3 Mathematical Model

Pressure gradients across orifices govern the flowrate in each column. Flow through each ori-

fice is described by the orifice equation (Geankoplis, 1993) and shown in Equation (A.2):

Co (P-P 2 ) (A.2)

where the diagram in Figure A-4 clarifies some of the variable names.

U1 / P2

' % 

Figure A-4: Orifice configuration and relevant variables.

In order to conserve mass across all orifices, the mass flowrate is required to be constant accord-

ing to the relationship given in Equation (A.3), in conjunction with the requirement that the com-

position of the gas is identical on both sides of the orifice.

uoPoAo = ulPIAI (A.3)

P1, Dl, T1, p, and ul are the pressure, diameter, temperature, density, and superficial velocity of

the gas in the tube, respectively. u0o is the superficial velocity of gas through the orifice, D1 is the

orifice diameter, and P2 is the pressure of the gas at the outlet. Pressure is assumed to equilibrate

instantaneously throughout the entire column, as confirmed with preliminary calculations using

the Ergun equation. A generalized Langmuir isotherm, commonly referred to as a competitive

Langmuir isotherm, is used to describe adsorbent equilibrium.

qi = bici (A.4)
(A.4)

The following assumptions in the development of the mathematical model:

The following assumptions are used in the development of the mathematical model:

1. The adsorption column is assumed to be isothermal. This was justified by experimental

results confirming that no significant heating of product gas occurred.

298



Mathematical Model

2. The ideal gas law applies to this system.

3. Columns which are depressurizing or pressurizing follow either a logistic growth or expo-

nential model pressure profile. These are just two of many possible pressure profiles that could be

used. The logistic growth model is useful because it is a second order model with derivatives of

zero as t -- 0 or t -- oo. The differential equation and algebraic solution of the logistic growth

model for the No>K/2 case along with the shape of the solution for both cases are shown in Figure

A-5. Specifically, stage 2 columns follow an exponential pressure decay, while columns in stages

K 1o(

K 8[K
2

6C

dt = rNl -

NKert
N(t) = Kert 

K+NO(ert - 1)
No

O.S 1 1.5 2 2.5 3

Figure A-5: Logistic growth model used for pressure profile in columns.

four and six follow a logistic growth model. Stage 5 columns require special treatment and will

be addressed later.

4. The composition of air is assumed to be as shown in Table A-3.

Table A-3: Air Composition

Two equations govern the behavior of a pressure swing adsorption column with two compo-

nents: the mass balance and the component balance for one species, listed respectively in Equa-

tions (A.5) and (A.6).
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Component Mole Fraction

N2 0.78
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2 n
C a ac +(I j=0 (A.5)- DLZ- + (uC) + + (1 - E) (A.5)

j=1
2

a ci a aci[ aqi-DL a(Uc + jt-+ ( -6) = 0 (A.6)
The linear driving force (LDF) model (Glueckauf and Coates, 1947; Glueckauf, 1955) is used as a

lumped mass transfer model, where the rate of mass transfer is proportional to the difference

between the concentration on the adsorbent and the equilibrium concentration, qi .

ki(q - qi) (A.7)

Substituting the generalized Langmuir isotherm yields the solid phase component balance.

o: _ k Po0 -Xoat 1 O+ oYo + PNN2

(A.8)
_N2 -k( PNYN2 _

At = k + Poyo, + PN2N 2 )

The gas phase component balance for this case is derived by manipulating Equation (A.6).

2 ax

= D a Y uz + - + yy N2 (A.9)
O-t = z P DL-~ ii

Likewise, the gas phase mass balance is derived from Equation (A.5).

= _-a -P P21, + ¥ys I (A. 10)

A different mass balance and composition balance are required to describe the evolution of pres-

sure and composition within the product tank, which is assumed to be well-mixed.

6

6 E UANiiPi
dPT _ RT UNiAiPi VprodPatm _ i= I VprodPatm. _______ atm 1 = prod1atm(A.11)
d-'t VTE RT VT VT VT

i=1
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dyT _ 1 yTdPT
dt PTVTE UNiAi iYNi- VprodPatmYT pT (A. 12)

In these governing equations, PT, VT, YT, and T are product tank pressure, volume, mole frac-

tion of oxygen, and temperature, respectively. Ai is the cross-sectional area of each bed which is

open to flow, Vprod is the volumetric product flowrate, Patm is the ambient (atmospheric) pressure,

and UNi and YNi denote the composition and flowrate at the orifice of column i.

To completely specify the governing equations, two boundary conditions are required for the

gas phase composition Equations (A.9) and (A.12), while one boundary condition is required to

solve the velocity Equations (A. 10) and (A. 11). The composition boundary conditions are treated

as follows. At all boundaries where gas is flowing into a column, the boundary composition is set

at the composition of the incoming gas; at all boundaries where gas is flowing out of a column,

the system is treated as being convection-dominated and the dispersive term is dropped. Natu-

rally, the velocity boundary conditions are given by Equation (A.2), which specifies the velocity

at the orifice. However mass must be conserved in the flow between columns 2 and 5 when they

are equalizing. This is accomplished by requiring that the pressure-adjusted flowrate leaving col-

umn 2 is equal to the pressure-adjusted flowrate entering column 5.

P 2U z = o, column 2 = -PsU z = 0, column 5 (A.13)

This additional condition overspecifies the boundary conditions for column 5, as illustrated in

Figure A-6.

In order to meet this extra condition, an additional degree of freedom - pressure - must be granted

to the equations governing column 5. Because the pressure in column 5 is not explicitly given by

any of the governing equations, the nonlinear system of equations relating bed pressure to outlet

velocity must be solved independently. However, inspection of Equation (A. 10) reveals that as

dP/dt varies in the adsorption bed, the inlet velocity will vary monotonically. That is, the faster

the pressure increases in an adsorption bed, the faster air will need to enter the bed. Using this

fact, it is possible to implement an efficient and stable interval halving search which converges

rapidly to the correct pressure in the repressurizing adsorption bed.

301



Case Study of a Pressure Swing Adsorption System

Column 2

orifice velocity, UN
(given)

Column 5
Two velocity conditions must

By be met, but the governing
\ equation only accomodates

\ one boundary condition!

N1- feed side velocity, Uo, deter-
mined by Equation (A.10)

Figure A-6: Simultaneous calculation of pressure and velocity in equalizing columns 2 & 5.

A4 Numerical Implementation
The governing partial differential equations -were converted to a set of ordinary differential

equations by the method of orthogonal collocation on finite elements (see Figure A.7), which rep-

resents the solution as a series of cubic splines on elements representing subdomains of the entire

solution domain. By solving the system of governing equations at nodes within each element

placed at the root of the local orthogonal polynomial, the error in the solution is minimized (Vil-

ladsen and Michelsen, 1978; Finlayson, 1972). Using matrices BA '- and CA-1 to represent oper-

ator matrices for the first and second derivatives, respectively, the system of converted ordinary

differential equations may be represented in matrix form.

dx°2'i POyi
dt 2 1 + P 2 Yi + N2(1 -Yi)

dXN2, - ( PN2( -y1 )
dt - 1 + Poyi + PN2(1 - -i) 

oJ

(A. 14)

N2J

dy N N r+

dt DL Yj(CA-)i,j -u i (BA-1)i, + Yi 1) 02, i + YiyN
j=1 j=l

i= I(A.I

N- IIu(BA') dP / dx:.0) UN(BA),A
i(BA-) Pdt P d +Ys -tA

j=1
(A.16)
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Methods

The above system of equations describes one PSA bed only; the full set of equations is a block

diagonal system consisting of the above set of equations for each bed, augmented by terms and

equations describing the connectivity of each bed. The DASSL time step integration package is

used to numerically integrate the system of differential equations, using a backwards differentia-

tion formula (BDF) method (Petzold, 1982). Note that at each time step, several challenges exist:

1) because the pressure of the product tank varies freely, columns which are pressurizing or

depressurizing may experience a change in flow direction through the orifice. Controls are neces-

sary to monitor flow direction and ensure that the correct boundary conditions are maintained.

2) for each time step, many evaluations of the differential algebraic equation system are

required. To evaluate the algebraic equations governing velocity, the convergence algorithm to

properly match flowrates between equalizing beds 2 and 5 must be employed.

The model was run through a successive substitution convergence algorithm (see Figure A.8)

until it reached cyclic steady state. Although successive substitution typically converges slower

than more sophisticated algorithms, it is known for its stability, a characteristic that is highly val-

ued in this application. In addition, evidence supporting the existence of multiple steady states in

such this system requires a consistent set of initial conditions to ensure that the same steady state

is reached at convergence. Typically, between 30 and 70 cycles are necessary to reach conver-

gence, which requires between 20 minutes and an hour to simulate on a 333 MHz personal com-

puter.

Orthogonal collocation on finite elements

ZO Zi Z2 Z3 Z 4

. I
X I

I II _ I 

., t ~~~~~.*0-- 17

(U element

Figure A-7: Orthogonal collocation on finite elements.

A.5 Methods

Langmuir isotherm parameters were fitted using data from the adsorbent manufacturer, UOP,
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Figure A48: Time step integration schematic.

for 5A zeolite. The parameters corresponding to the fitted isotherms are summarized in Table A-

4. Note that H is the Henry's law coefficient for each component and is equal to q, b. In order

Table A-4: Oxygen and Nitrogen Adsorption Parameters

Component qs (moU/m 3 ) b (m3 /mol) H

Oxygen 4841 0.001036 5.018

Nitrogen 3055 0.003800 11.61

to maintain the most robust model possible, the velocity between equalizing columns is fixed as a

function of the pressure difference between the two columns, as shown in Equation (A. 17).

U = f(P2, P)

-Min{2.0x lO7, O.1P2 Max(.0 -P /P), 0.0} (A.17)

U2 = P
P2

Note that the negative sign denotes that the direction of flow is out of the bottom of column 2.

For P2 held constant at 130,000 Pa, the velocity out of the feed side of column 2 will vary as

shown in Figure A-9.

Note that positive velocities between the two equalizing columns are not physical and are there-
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Figure A-9: Column 2 feed side velocity as a function of pressure difference with column 5.

fore eliminated to prevent numerical oscillations in velocity between the two columns. Orifices

between the beds and product tanks were also characterized, with an orifice coefficient of 0.61.

A base case was established to represent the performance of the PSA unit with 14.5" adsorp-
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tion beds under the most basic set of input parameters, as listed in Table A-5. Note again the feed

Table A-5: Base Case Input Parameter Values

Name Description Value Units Reference Page

C0 orifice discharge coefficient 0.6139 Experiment

Dtube tube diameter 1.438 in. -

DL axial dispersion coefficient 2.02 x -30 m2/s Ruthven et al., 186

(1994)a

Do orifice diameter 0.029 in -

E void fraction 0.37

L column (bed) length 14.5 in -

KO oxygen mass transfer coefficient 62.0 s-l Ruthven et al., 186
(1994)

KN, nitrogen mass transfer coeffi- 19.7 s-1 Ruthven et al., 186
cient (1994)

q 0 2S oxygen saturation concentration 4841 mol/m3 Table A-4

qN2s nitrogen saturation concentra- 3055 mol/m3 Table A-4
tion

Ho, Henry's law 02 coefficient 5.02 - Table A-4

HN2 Henry's law N2 coefficient 11.6 Table 4

Mw gas phase molecular weight 3.18x10-2 kg/mol 95% 02

Patm atmospheric pressure 30.2 psia -

PH atmospheric pressure 14.7 psia -

T temperature 298 K -

Tcycle cycle time 2.5 s -

VT tank volume 5.0xl 1-4 3 

Yfeed feed composition 0.22
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a.This value is used to give a Peclet number of 500.

composition of YA = 0.22 is used to represent the lumped mole fraction of both oxygen and argon.

In order to check that solution included a sufficient number of finite elements to reach conver-

gence, models were solved with both 5 finite elements and 10 finite elements. The results of one

such run are summarized in Table A-6. Comparison of results with 5 and 10 elements indicates

Table A-6: Product Purity Comparison for 5 and 10 Finite Elements

Flowrate (pm) 2.08 3.22 4.48 5.80 7.00 8.14

5 elements 0.939 0.935 0.93 0.924 0.918 0.912

10 elements 0.938 0.933 0.928 0.923 0.917 0.912

that 5 elements sufficiently represer

solutions.

I1

o0.75 -

N' 050

X0.25 -
.-

CL

n

nt the solution and thus 5 elements were used for all model

-.- Lower Steady
State

_- Upper Steady
State

L ..

0.00 2.50 5.00 7.50
Production Rate (Ipm)

10.00

Figure A-10: Existence of multiple steady states as a function of production rate.

Initial condition effects were studied by using two different initial oxygen mole fractions, 0.22

and 0.95. It was found that under some conditions, differing initial conditions would result in dif-

ferent cyclic steady states, as shown in Figure A-10. The existence of multiple steady states is not

uncommon for a complex nonlinear system, and can be explained by analyzing the amount of

oxygen entering and leaving the PSA unit under different conditions. The product 02 removed is

related to the 02 product purity linearly through the flowrate.
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Product 02 Removed = 02 Product Purity Product Flowrate (A. 18)

Note that the shape of the "02 fed - 02 purged" curve (see Figure A.1 1), can be deduced from

computational results. First, whenever the starting composition is y = 0.22, the solution is at a

higher composition. Therefore, the amount of 02 removed from the system must be less than the

amount of 02 entering the system in this regime, in order to drive the model towards the stable

steady state. Likewise, aty=l.0, the stable steady state solution is always at a lower composition

value, indicating that the amount of 02 removed under these conditions is greater than the amount

entering the unit. Therefore, due to the linearity of the 02 removed line, there must be at least one

intermediate unsteady state corresponding to the point where the lines cross in between the two

stable steady states. This does not preclude the existence of more steady states (more crossings of

the product 02 removed line). Also, under some operating conditions the two steady states will

approach each other and merge, as illustrated in Figure A-12, to yield a set of conditions with one

unique steady state.

6'

red

y=0.22 02 Product Purity y=1.0

Figure A-11 : Multiple steady state analysis of total 02 balance around PSA unit comparing 02
generated and 02 removed.

An analogous explanation of multiple steady states in continuously stirred tank reactors

(CSTR's) can be found in Fogler (1999). In order to ensure that all simulation results were reach-

ing the same steady state, initial conditions of y = 0.22 were used in all simulations.
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c'©l

Yo 2

y11 _ MI,

Figure A-12: Special cases of oxygen generation and removal resulting in varying numbers of
stable and unstable steady states.

A.6 Results and Discussion

The base case gas phase compositions of the system throughout the steady state cycle are

illustrated in Figure A-13. The corresponding product purities over the a range of production

flowrates is as follows shown in Figure A.14. As can be seen from Figure A-14, the base case

product purity does not degrade with increasing production rate as the experimental data indi-

cates. Average inlet flowrates for this case range between 1.87x10- 3 and 1.94x 10 - 3 m3/s, where

experimental data report inlet flowrates ranging between 4.13 x 10-4 and 1.01 x 10- 3 m3 /s. In spite

of the rigorous orifice characterization and use of actual experimental values for many parame-

ters, the inlet flowrate is still far too high. Similar results were observed with a PSA unit with

reduced length 7.5" adsorption beds (see Figure A-15).

In order to reconcile these discrepancies, the effects of several important effects were studied:

void fraction s, bed efficiency, mass transfer coefficients, pressure drops between beds, orifice

coefficient, and cycle time. As shown in Figure A-16, void fraction has little effect on break-

through under base case operating conditions. It is also possible that a significant portion of

adsorbent particle interiors are not active due to the amount of binder used in creating the adsor-

bent pellets (Breck, 1973; Teague and Edgar, 1999). In order to incorporate the effect of inactive

binder in adsorbent pellets, the parameter W is multiplied by an "active adsorbent fraction" l,

yielding Equation A. 19.
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Column 1 Column 2

.35

a i.lmn I _ ·

Column 5

-/.5 0

Figure A-13: Gas phase composition profiles for each column over the entire process cycle.

N = (aP T ax 0 2 axNvau - l p Xo + x =t (A.19)
az Pat P at at

Furthermore, the value of y = E RgrOqO s in Equation (A.9) can be pre-multiplied by

another factor "X" to represent the fraction of active adsorbent which participates in mass transfer

to the bulk, resulting in Equation (A.20).
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Figure A-14: Base case product purity as a function of product flowrate.
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Figure A-15: Product purity as a function of product flowrate with reduced length adsorption
beds.

2 (

Yt DYz2- z ( 1CY _ +y' Ys (A.20)

This realistically emulates the conditions where some portion of the adsorbent particles are

unable to effectively participate in mass transfer to the bulk gas. One example of how this could

occur is shown in Figure A- 17. Gas deep within the pores will still adsorb and desorb as the PSA

systems cycles from high to low pressures, but it is effectively isolated from the bulk gas and

unable to participate in mass transfer. Decreasing either of these efficiency factors decreases the
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Figure A-16: Product purity as a function of production rate under varying adsorbent bed void
fractions.

product purity uniformly as a function of product flowrate (see Figure A-18), yet neither make

breakthrough more pronounced. Similarly, decreasing mass transfer decreased product purity, but

still did not produce breakthrough as illustrated in Figure A-19.

Pore Length

, Concentration front at pore mouth

Low
pressure

Concentration front penetration

High
pressure

Pore segment unable
to transfer mass

Figure A-17: Isolated pore regions with restricted mass transfer to bulk gas.

Increased pressure drops though adsorption bed connections were emulated by concurrently

increasing the purge pressure and decreasing the feed pressure in the stem. Pressure drops were

varied from 1 to 4 psi, but revealed only minor effects (see Figure A-20).

The effect of cycle times on the product purity was investigated at a flowrate of 5.80 lpm in

.the 14.5" bed PSA unit. Results are graphically summarized in Figure A-21. As cycle time
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Figure A-18: Product purity vs. product flowrate at varying adsorbent efficiencies.
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Figure A-19: Effects of mass transfer coefficient on product purity as a function of product
flowrate.

increases, the amount of breakthrough and resulting degradation in product purity is very evident

at increased cycle times. The similarity of these two curves can be related through the dimension-

less time parameter T = t u /L. As the cycle time increases, the dimensionless time parameter

increases at constant velocity u (as determined by the orifice) and tube length L. Likewise, at con-

stant cycle time t and tube length L, the experimental data could be interpreted as representing an

increasing velocity in the tube and therefore an increasing . This suggests that if the correct

adsorption bed orifice flowrates could be reproduced in the model, then experimental and model
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Figure A-20: Product purity effects of increased pressure losses across adsorption beds.

results would match well. However absorption bed orifice flowrate measurements are essentially

impossible to obtain from this PSA unit. Instead, overall inlet flowrates must be compared under

varying conditions (see Table A-7). This comparison reveals that the inlet flowrates most closely

Table A-7: Effject ofparameters on inletflowrate, productflowrate = 5.08 m3/s

Inlet Flowrate

Model ~(m 3/s)
Base Case 1.91x10-3

Reduced Co 1.70x 103

Reduced C0, Pressure drop = 3 psi 9.64x 104

= 0.95 6.52x10' 4

match experimental values when the orifice coefficient is reduced, indicating that additional flow

restrictions exist in the PSA unit. However, by lumping these resistances into the orifice coeffi-

cient, satisfactory results can be obtained.

More restricted orifices affect the internal PSA unit dynamics in two ways. First, they directly

affect the amount of gas entering the PSA unit. Second, more restricted orifices prevent gas from
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Figure A-21: Similarity of product purity as a function of cycle time and product flowrate.

columns 2 & 5 from flowing into the product chamber, reducing the amount of gas available for

purge. It is thus observed that much more restricted orifices (Co 0.2) reproduce the observed

breakthrough effects for the PSA unit, as shown in Figure A-22.

1 _
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8 0.5 0

o 0.25 -

·- .L j..

_ Experimental
-- Model

I J I ~~~~~~~~~~~~~~~I
0 2.5 5 7.5 10

Product Flowrate (Ipm)

Figure A-22: Comparison between experimental and numerical product purity as a function of
product flowrate.

According to the dimensionless cycle time x, more pronounced breakthrough curves would be

expected if the individual adsorption bed cycle time increased. Because cycle time t and bed

length L are constant, x can only increase with superficial velocity u in the bed. One would expect

that less restricted orifices would increase velocity u and generate results in accord with experi-
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mental data. The pressure in the product tank would decrease as more product is drawn off at

higher production rates, causing an increase in orifice velocity and a decrease in product purity by

breakthrough. Instead, more restricted orifices yielded the correct product purity and inlet flow-

rate results. This can be explained by analyzing the effects of product tank pressure on purity.

The overall mass balance on the system reveals that under base case conditions, the inlet flowrate

in the PSA model is higher than in experimental results. Because product flowrate is the same in

both the model and experimental results, this means that the base case purge rate was too high.

Restricting orifices to match inlet flowrates produced correct purity results because of two effects.

First, reducing the overall inlet flowrate decreased the amount of purge gas (product flowrates are

unaffected), resulting in adsorption beds which break through more easily. Second, decreasing

inlet flowrate increases the effects of drawing more product from the unit. Drawing more product

at lower inlet flowrates creates a more pronounced decrease in product tank pressure and the cor-

responding increase in velocity u and breakthrough.

A.7 Conclusions

Results indicate that parameters directly affecting the dimensionless time parameter T of the

adsorbent beds dictate the performance of the system and dominate the product purity of the PSA

unit. A number of other parameters including void fraction, adsorbent efficiency, pressure drops,

and mass transfer have a minimal effect on product purity. Specifically, changing cycle time, bed

length and orifice velocity within the columns influences . Further analysis revealed that the

relationships between these flowrates and other measurable quantities, such as inlet flowrate, are

complex and depend on a variety of process parameters. Hence, for any PSA process operating at

this level of complexity, it is critical that the entire model be implemented with rigor. Boundary

conditions which properly conserve mass and convergence algorithms which accurately solve

equalizing adsorption bed pressure histories are crucial. Any deviation from this level of rigor

will lead to false results and invalidate any useful comparisons that could be made between pre-

dicted model performance and observed experimental results.

In addition, using a more complex model requires a deeper process understanding. For

instance, this model required use of specific initial conditions to ensure that the same steady state

was reached. In similar complex PSA models, it is crucial to ensure that 1) the convergence algo-

rithm is stable, and 2) if the converged steady state is dependent on initial conditions. Failure to
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do so will again result in false or misleading model results which will confound efforts to recon-

cile experimental and simulated model results.

A.8 Summary

A mathematical model has been developed to describe a novel new PSA process which con-

trols flow between six adsorption beds via orifices and a channeled rotor instead of solenoid

valves. Orifice-restricted flows pose several new challenges which increase both the conceptual

and computational complexity of the model. First, unlike previously developed PSA models,

effects between the various adsorption beds cannot be decoupled due to the continuous intercon-

nection of all adsorption beds through orifices to a product collection tank. Continuous coupling

of all adsorption beds and the product tank requires that all of these individual subunits are incor-

porated into one comprehensive dynamic model, greatly increasing the size and complexity of the

set of differential equations in comparison with conventional models. Second, because flow con-

ditions are unknown, a separate nonlinear algebraic set of equations must be solved to rigorously

determine the correct pressure profile in the equalizing columns. Unlike models with decoupled

adsorption beds, this model requires that mass conservation is enforced at all times. If this condi-

tion were not enforced, model results would indicate that the PSA unit was either creating or

destroying oxygen and/or nitrogen. Third, flows between individual columns and the product col-

lection chamber may also change directions, which requires dynamic monitoring and mainte-

nance of boundary conditions within the time-step integration algorithm. Finally, the existence of

multiple steady states restricts the sets of initial conditions that can be used in order to achieve

consistent and repeatable results. By using orthogonal collocation on finite differences imple-

mentation for this complex system, a fast and accurate model was created, which was subse-

quently used in a thorough study of the PSA unit.

A.9 Notation

Ai = cross-sectional area of an adsorption bed

bi = Langmuir isotherm coefficient for component i

ci = gas phase concentration of component i

C0 = orifice discharge coefficient
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s = void fraction

Ys = ratio of saturation concentrations
qo02s

1l = active adsorbent fraction

ki = mass transfer coefficient for component i.

L = adsorbent bed length

X = fraction of the total adsorbent available to participate in mass transfer

PT Patm, Pi = pressure of product tank, atmosphere, and column i, respectively

1-s
v I RgTqo2s

qi = saturation concentration of gas on an adsorbent particle

qi = equilibrium concentration of gas on adsorbent

qi = average concentration in adsorbent particle

x0 2 i, XN2,i = concentration of oxygen and nitrogen, respectively, on adsorbent particles at

position i in the adsorbent bed

y = gas phase oxygen concentration

YT = gas phase oxygen concentration in product tank

z = axial position in the adsorbent bed
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Appendix B: Numerical Solution of Mathematical Models

B.1 Background

Many models are expressed in the mathematical form:

y' + a + L(y) + yL(L(y)) = 0

f(a, , ,y) = 0
Specifically, when L is the differential operator with respect to some spatial variable, for example,

x, equation (B.l) is:

2

=a + po + 72-Y (B.2)at = X oX2

Corresponding initial and boundary conditions are required to fully specify the problem:

Yl.x= = f(X)

aylx +b = (B.3)ax=0

The boundary condition given in equation (B.3) is commonly referred to as the Robin boundary

condition. Special cases of this occur when a or b are zero. When a = 0, a constant flux is speci-

fied at the boundary; this is called a Neumann boundary condition. If b = 0, a constant boundary

value is specified; this is referred to as a Dirichlet boundary condition. This form of differential

equation is widely used in many applications, including fluid dynamics, statics, heat and mass

transfer, and particulate systems.

There are several numerical solution methods for this equation. Each method, however, gen-

erates a system of equations that solves for the value of the unknown variable at a finite number of

points in the system. Thus, the solution is obtained for a discretized system. This is accomplished

by using the values in the system at the present time to approximate the time derivative term. A

time step algorithm is then used to determine the value of the unknown variable at these nodes for

the next time step. The value of the unknown function at other points is determined either by

interpolation or a linear combination of polynomials. For example, in solving for a function in a

two-dimensional field, the solution points might be chosen as shown in Figure B-1:
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y

- x

Figure B-l: Sample node point placement in a two-dimensional solution.

B.2 Finite Difference Methods

Finite difference schemes directly approximate the derivative terms. Where the derivative is

defined as:

f(x) = lim fx + AX)-fAx) (B.4)
Ax -,O0 Ax

the simplest form of finite difference approximation is analogous. For a one-dimensional discret-
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ization, let the values at the nodes be yi, where i = 0, 1, ..., N:

I

I - I [

xo xl x2

I.~ ~ ~~ .I ~~~~I
I I 

I I I I

XN

Figure B-2: Correspondence between node points and solution values In a one-dimensional
system.

These values ofyi and xi are then used to determine the first derivative at each node using an anal-

ogous definition of derivative:

(B.5)_ + I -Yi _ f(xi+ I)-(xi)

B.2.1 Accuracy determination

Many different linear combinations of these points may be used; this affects the accuracy of

the solution. The accuracy is determined by generating a Taylor expansion of the function at each

node and then substituting this into the derivative formula. The formula for a Taylor series expan-

sion of a functionJ(x) around the point x0 is:

(x-x 0)2 (x -x0)_ +.f(x) = f(xo) + (X - XO)(Xo) - 2! f'(x0 ) + ... - n) ...
2! n' (B.6)

For the numerical differentiation formula given by equation (B.6), the accuracy is determined as
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follows. Let Ax = xi + - xi.

Ax

1 I I I I I l

Xo Xi Xi+1 XN

Figure 8-3: Node point placement In a one-dimensional system.

Performing a Taylor expansion at the node xi + around the node xi results in:

A2

f(xi+ I) = f(xi) + Axf(xi) + -f'(X) + ... (B.7)

Substituting this expression into equation (B.5) yields:

Ax 2

f(xi) + AxfJ(xi) + f(x) + ... - f(xi)
f (xi) x =(xi) (xd+ (B.8)

Ax
Thus the largest error term is 2f'(x,) and the expression is O(Ax) accurate.

It is possible to construct differentiation formulas that are more accurate. This generally

requires using more node values. Richardson extrapolation (Bender and Orszag, 1978) is one

method for finding more accurate differentiation formulas, however, more accurate approxima-

tions can also be found by performing Taylor expansions at neighboring nodes and then generat-

ing a solvable system of equations. For example, in order to generate a more accurate first

derivative for a system with uniformly spaced points, one would begin by performing Taylor

expansions at the points xi + and xi . 1:

Ax 2 Ax 3

(B.9)flx,_ ) = f(xi)- + Ax (x,) + + 'f(x,) +.3)(x) +.
) = fix)-AXf (Xi) + X)
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where the points x, xi + and xi I are unevenly spaced, as shown in Figure B-4:

AX2 Ax,

<1 I II III I I

XO Xi- xi Xi+l XNv

Figure B-4: Uneven node point placement in a one-dimensional system.

Now the differentiation formula must be some linear combination ofAxij) and the expansions for

fxi + 1) andf(xi - ). Let the coefficients for this linear combination be A, B, and C:

f(xi) = Bf(xi ) + A() + AAx (x,) + A (xi) + A 3)(xi) + ...
(B.10)

+Cf(x) - CAxf(x,) + c2f'(Xi)- C! 3)() + (B.O)

In order to solve the following system for the best approximation to the first derivative, the f(x)

terms must cancel:

Bf(x,) + Af(x,) + Cf(xi) = (B.1 l)

Likewise, the sum of thef'(xi) terms must bef'(xi):

Ax(xi) - CAx2f (Xi) = (Xi) (B.12)

Finally, to obtain higher-order accuracy, thef" '(xi,) terms must also cancel:

Ax2 Ax1 2
A 2 (xi) + C -f' (xi) = (B.13)

This system of equations can be expressed in matrix form:

1 1 

ax? HBI = I (B.14)

The appropriate coefficients A, B, and C can then be determined by simple matrix inversion.

In the special case where Axl = Ax2 = Ax, the system of equations looks like:
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Ax 0 -Ax -] I] (B.15)

and the solution is A = 1/2Ax, B = 0, C = -1/2Ax. In fact, substituting these coefficients into

Equation (B. 10) yields:

f(Xi) = f(Xi)+ 2· 33)(Xi)+ (11.1)

and the approximation is now O(Ax2) accurate. Note that in the case of unevenly spaced nodes,

this error term would be O([max(Axl,Ax2)]2) accurate.

Second derivative approximations can be built up in a similar fashion. As an example, the lin-

ear combination method could be used to cancel our all terms but thef' terms. Likewise, "the

derivative of the first derivative" could also be found. Using the linear combination of nodes

method, the following coefficients give accuracy O(Ax2) for the second derivative in the case of

evenly spaced nodes:

Table B-l: Coefficients for Second Derivative

Node Coefficient

Axi-. 1/

Ax) -2/Ax 2

jAxi+l) 1/AX2

This is a centered finite difference scheme because nodes on both sides of node x are used in cal-

culating the derivative at node x. This is often impossible for boundary points. In this case, either

forward or backward finite difference schemes are used. For calculating the derivative at the node

x0 with equally spaced nodes, the points jxo),jAxl), Ax2), andAx3) are used in obtaining O(Ax2)

accuracy:

Table B-2: Coefficientsfor First Derivative, Left Boundary
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Table B-2: Coefficients for First Derivative, Left Boundary

Node Coefficient

fixl) 3/Ax

fix 2) -3/2Ax

}fx3) -1/3Ax

In summary, numerical difference schemes can be used to approximate a wide range of derivative

accuracies. Further information on numerical derivative approximation is available in Stoer and

Bulirisch (1993).

Consider the solution for Equation (B.2). After discretizing the system into N evenly spaced

points, with N = 0 corresponding to x = 0 and N = 10 corresponding to x = L, the system can be

expressed in matrix form:

Yo ao \ \ \ 0 
Yl a] -I~ 0 ! 0..... 0

aI\ \ \
dt Y2 = .. - I .. 

\\ \
YN- I a-I 0 ...... 0-1 0 1

YN aN 0 0 0 \ \ \

Yo

Y1

Y2

YN I

+3
x 2

\ \ \ 0 0 00
1-2 1 0 ...... 0

\ \ \

0... 1-2 1 ...0
\ \ \

0...... 01 -21
0 0 0 \ \ \

Note that in this case, Ax = L/10.

B.2.2 Boundary conditions

The boundary conditions describe the behavior at the edge of the domain that is being mod-

eled, and are necessary to fill in the rows for Yo and YN in equation (B. 16). Taking the most gen-

eral case of a mixed boundary condition, given by equation (B.3), the boundary conditions at yo

and YN may be written:

agy 0+ b Cb

(B.17)

aLyN+ bLx | = CL
xThese expressions can be solved for y and substituted into the model equation atL and

These expressions can be solved for qy /8x and substituted into the model equation at Yo and yN:
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Co \-0o 0 
YO o \\o o 0 0

-1 0 1 0......0 YJ 1-21 0...
d Y2 = + 0 -I 0 2 + 20 I -2 !dt2 -X * I0 0 2 72 0...1 -2 1\ \ \\

YN- .. 0. 0-10 YN-I ...... 0 I

Y- a, CL -aL YN J 0 0 0 0 \
bL 0 000\ \

Using the values of y at each iteration, the value of dyldt is determined.

then used to integrate dyldt with respect to time.

0 0
... a

... 0

-2 1

\ \

Yo

Y1

Y2

YN- I

Y'V

(B.18)

A time step algorithm is

B.3 Method of Weighted Residuals

Another method for solving these types of equations is the method of weighted residuals. In

the method of weighted residuals, the first step is to form a residual, usually denoted R, represent-

ing the deviation of the numerical solution from the true solution. Using the example given in

Equation (B. 1):

R = y' + + L(y) + yL(L(y)) (B.19)

The goal then is to generate a solution such that this residual is zero over the domain of the solu-

tion. To accomplish this, the solution is first approximated by some representation:

N

y(t) yi(t)Oi(x) (].20)
i=O

At each point in time, the solution is now the linear combination of some set of representation

functions Oi with the coefficients yi. Substituting this representation into the residual:

N N N

R = E i(x)y'(t) + a + E Yi(t)L(i(X)) + y Z yi(t)L(L(Oi(x)))
i=O i=O i=O

N (B.21)

R = a+ Z [i()Yij'(t) + pyi(t)L(+i(x)) + yyi(t)L(L(~i(x)))]
i=O

Now we have a system of N + 1 unknowns and only one equation! In order to get a satisfactory

solution, we need to find the optimal values for the y's which nifiz. the value of the residual

over the entire domain of the solution. This is accomplished by setting the integral of the residual
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with some weighting functions, oj, to zero:

N

a + E [,i(x)Yi'(t) + pyi(t)L(Oi(x)) + yyi(t)L(L(Oi(x)))] jdidA - 0 (B.22)
i=O

By choosing N + 1 different oj's, we can now generate the N + 1 equations necessary to solve for

the Yi coefficients. This is equivalent to setting the inner product of the residual and some weight-

ing to zero, which forces the length of the residual vector in the function space of the weighting

function to zero.

Implementations of this method will vary based on: 1) the form of the linear operator 2)

choice of representation function, and 3) choice of weighting function. Three of the most well-

known implementations of this method are known as Galerkin's method, collocation, and subdo-

main methods. Examples will be derived for the special case where the linear operator, L, is the

differential operator. The resulting form of the differential equation is:

2

+a + y+ y = (B.23)
Ot ax ax2

This equation represents a convection-diffusion model, and applies to a host of other models. The

term a represents a forcing term, while the first derivative term represents convection and the sec-

ond derivative term represents diffusion. Typical boundary conditions for this equation fit the

form given by Equation (B.3):

ay + b = c (B.24)

B.4 Finite Element Methods - Galerkin Approach

The Galerkin method is applied by choosing identical "hat" functions for both the representa-

tion and the weighting function, where the hat function Oi has value zero at xi 1 and xi + and
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value one at xi where xi E [q, r] , the spatial domain of the solution (Finlayson, 1972):

Y

One Hat Function 

I _

V x;

Hat Functions
Over Domain 1-

If X

I o *, *N-2 , N-I *'
XX\ /XX

r

Figure B-5: "Hat"' functions used as for both representation and weighting in the Galerkin
method.

where

N

y(t) = E yi(t)0i(x) (B.25)
i=O

Note that with this representation, the yi's are easily interpreted as the value of the solution at x i,

since Oi = 1 at xi. Thus, for this system, the residual is given by Equation (B.23):

2

R = a + pa + (B.26)

Substituting the representation for y and setting the integral of the residual with respect to the

weighting functions j to zero yields:

N N N 2

i=O i=O i=O
r( N ~~~~~~~N N 2 ')(B.27)

Th i i==0 i 0 

This integral actually forms a system of equations which can be expressed in matrix form where

rowj + 1 of the matrix system represents the integral of the residual with respect to weighting

function Oj. Note that the values of xl, x2, x3 effect the slopes of the hat functions, and therefore
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the values of the integrals. This example will be developed term by term for the common case

where the xi's are evenly spaced with a distance of s from xi to xi + i.

B.4.1 First term

Thej + 1th row of the matrix describing the first term is:

Al r

dx= aY'ijd (B.28)

i= q

The different cases for evaluating this integral are illustrated in Figure B-6, shown in "local" coor-

dinates £.

i=j
i O, N

0

+

O E

2 = •o ~3
(;)2 g

3 

ij adjacent

ij not adjacent
Pi *J

J dirjCd = o
q

Figure B-6: Galerkin method contributions for the 4i ~j Integral.

Using this information, the matrix for the first term is:
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i=j
i=N

3

O 0
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1

6s

21 00
14 1 0

\ \\
0... 14

0 ... .. 0 O

00 00

0 00
... .O

1

1

0

0

4

1

1

2

d
dt

Yo

Yl

Y2

YN-

YN

1

-TATY6 d
(B.29)

B.4.2 Second term

The second term is much easier to evaluate. Assuming that a is constant with respect to x:

I 

0 2e

f ajdx
q

0o £ ) 2t
f dx =
0oj=N

Figure B-7: Galerkin method contributions for the aj Integral.

Knowing these integrals, the contribution of the second term, a, can be expressed as a forcing

vector with N + 1 rows:

S
a2

as
I

as
a2aa

= f (B.30)

B.4.3 Third term

Thej + lth row of the matrix describing the contribution of the third term is (assuming that 
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is constant with respect to x):

AN AN

p Yiaxid p eyxdx
i= 

(B.31)

i=U

Figure B-8 summarizes the values these integrals take on:

, = X / t
No i/x- 1/ + i

D- _- 2E
0 2

= (- X) /

/Ox = -1 /E

O e

(aiNidx

X 2

£ 

i/x = -1 /

0 2

( - x) =

i,j not adjacent
,i * q aXjdx = oTX'$.cc=

Figure B8: Galerkin method contributions for the (i /x)4+ integral.

Now the contribution matrix for these terms can be written as:
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1

i=j
i=1 L

1

2

i=j
i=N

1

2

O c

F- e =- 1
02 = -

j = X/S

1

2
dxf- 20o

,i j

O 

-Xdx = 1
fe 2

i=j+l - X) /£
= 1 /

i# 0 , N
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-1 1 0 00 0 0
-1 0 1 0 ...... 0

\ \\
0 ...- 1 0 1 .. 0

\\ \
0 ...... 0-1 0 1

0 0 0 0 0 -1 1

Yo

Y1

I

YN- 

YN

= By (B.32)

B.4.4 Fourth term

The] + 1th row of the matrix expressing the contribution of the fourth term is (assuming that y

is constant with respect to x):

N 2 N 2

l; aX2j X dYix f 2Ojdx (B.33)
i=O i=0

There is a severe problem with this contribution as it is expressed in Equation (B.33). Since the

hat functions are linear, their first derivatives will be constants and their second derivative will be

zero. Thus the second derivative of Oi in Equation (B.33) should be zero and therefore there

should be no contribution from the fourth term! Furthermore, up to this time no heed has been

paid at all to the incorporation of boundary conditions in this problem, as given in Equation

(B.24). Stating these boundary conditions explicitly:

CrarYlraryI, +b C

(B.34)

aqylq + bq) =Cq C -Y bq
q q q

One elegant mathematical manipulation can make the boundary conditions easy to incorpo-

rate at the same time that it eliminates the problem caused by taking the second derivative of a lin-

ear function. Integrating the integral in Equation (B.33) by parts yields:

2 r

Subsituti= ioa dx (B.35)

Substituting this expression back into Equation (B.33) produces:
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N 2 N r N

Y7E fYi f'Q Odx = Y r yji Jaa4 -Y Yi Jadix (B.36)
qOX O q 1= qax ox

i=O i=Oq i=-O

The first term in Equation (B.36) allows the easy incorporation of boundary conditions:

N r 

Y : Yia >Jaaf i| _ LY 1 (B.37)
i=O q qi=0

The only terms where this expression will be nonzero is whenj = 0 or N:

~=j = O--Y = --
i q O -- Ybq

(B.38)
i Cr -ar Cr ay

=N-+ y 1 o r x == Y_ Y-aY
q rr br

These terms are easily incorporated into the matrix system. Note that when bq or br are zero

(Dirichlet boundary condition), the corresponding expression is undefined. This happens when

the boundary condition specifies the value ofy. When a boundary condition specifies the value of

y at the boundary, the row of the matrix system describing that boundary is eliminated. Since y is

known at that boundary, the system has one less unknown and one less equation. The column of

the matrices which were multiplied by that value ofy become a forcing vector. This will be illus-

trated later.

The only contributions left to describe are due to the second term in Equation (B.36), as illus-
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trated in Figure B-9.

/E

i=
i=N

ij adjacent
i/ Ox

/x

O E

-1d = 1
£2 

0 , 

= 1/E

= -1 /

Note: this is identical
to the case where i,j
are interchanged

O 

ij not adjacent /
f oia'jO1 d = 
q8 X aX

Figure B-9: Galerkin method contributions for the (i / ax ) ( j ,/ ax ) integral.

Writing out these contributions in matrix form:

1 -1 0 0 0 0
-1 2 -1 0......

\ \\
0 ... -1 2-1 ...

\\ \
o ...... o0-1 2
000

0

0

0

-1

0 0 -1 1

Yo

Y1

Y2

I

YN - I

YN

= Cy

The entire formulation is the set of matrix equations:

I d d-A-y +f+By + Cy = -- y = 6eA-1((B + C)y + f)
6s d dt
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i=j
i 0 O N

qax i) 

-1 /E
+

1adx = 1o6 15

i=
i=O

Idx
62

1

c
1ldx

T2

1

6

(B.39)
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Where A is exactly as given by Equation (B.29). The remaining terms, (B + C)y + f, including

the boundary effects for non-Dirichlet boundaries are:

0

P y
2 

0 0 0

0

... . *-- O -P _ Y
2 

(2)
2

O 0 O O -P
2 

As an example if a Dirichlet boundary condition were given that y = Yo at x = r, the system would

look like:

(2)

2 s-s
PY
2 

O O O -2
2 2

Y
£

0 0 0 0 Y (2 2

Y1

Y2

YN -
YN

+

as +Yo(-a

as
a Cr

2 br

(B.42)
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Appendix C: Multicomponent Coagulation Production Expression

C.1 Introduction

The mechanism of coagulation, also referred to as agglomeration, affects a wide variety of

physical systems including aerosols, soot formation, polymer condensation, and other particulate

processes.

C.1.1 Number density distribution definition

The state of a population balance system is typically defined by a number density distribution

which describes the number of particles possessing a given combination of properties. For "sin-

gle-component" number density distributions, the number density distribution gives the number

of particles as a function of a single particle property such as mass, volume, diameter, etc. Figure

C- 1 illustrates a typical number density distribution based on particle mass. For a single-compo-

n(4, t) al, AA4 s,

Figure C-1: Example number density distribution as a function of property 4.

nent system, the number density is formally defined as follows.

DEFINITION

The number density function ofparticles is given by n(4, t) such that n(, t)d is the number par-
ticles in the size range [, ++ d+] at time t.

Note that n(+) represents the number density of particles; in order to find the total number of par-

ticles it is necessary to integrate over a segment of the density distribution:

339

41



Multicomponent Coagulation Production Expression

b

N(a< < b)= n(4)do (C.1)

a

In a typical implementation, the total number of particles is expressed per unit volume of the sys-

tem. For instance, in an aerosol system N might be expressed in units of particles/cm3 . It follows

then from Equation (C. 1) that n(O) has units of 1/([)] · cm3). If 4 were mass in g, then the units of

n() would be l/(g cm3). The foundation of modem population balance problems for single-

component systems can be traced back to Valentas and Amundson (1966) and Valentas, Bilous,

and Amundson (1966).

For multicomponent systems, more than one particle property is of interest and becomes a

vector of properties, 4. This leads to the following expanded definition for multicomponent num-

ber density distributions:

DEFINITION

The number density function ofpopulation members with s attributes is completely specified by
the vector ={1, 02, .3 s)}is given by n() such that n()do is the number ofpopulation mem-
bers in the attribute range [1, 1 + d 1][42, 02+ dO21][3, 03+ d03].- [, s+ dsl].

For a system where the only attributes of interest are component masses, s will be the number of

species in the system. Again, it is important to emphasize that this expression is a density func-

tion and that the total number of particles is produced by integrating over a multidimensional seg-

ment of the distribution.

b, b2 b,

N(a < < b, a2 < 2 < b2,..., as < Os < bs) = *If" I n()d OI l d
2

" dA s (C.2)
a, a2al

Of course, in the case where s = 1, Equation (C.2) reduces to Equation (C. 1). The units of N will

still be the number of particles per cm3 of system volume. Accordingly, the number density func-

tion n(O) will have units 1/([41] [02]... [s] * cm3). If n() describes an aerosol system with s com-

ponents where 1 = ml, the mass of component 1 in grams, 02 = m2, the mass of component 2 in

grams, etc., then the number density is written as n(m) and the units are /(g s · cm 3 ).

C.2 Coagulating Particles Mass Balance

Because the process of coagulation conserves mass, in the one-component case two particles of
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Coagulating Particles Mass Balance

mass a and b will combine to form a new particle of mass a + b, as illustrated in Figure C-2

b

a._
U -r U

Figure C-2: Masses of coagulating particles a and b to form a particle of mass a + b.

For a multicomponent system, the individual component masses are tracked separately. The mass

of the two particles are vectors a and b where a = {al, a2, ..., as} and b = {bl , b, ..., bs}. The par-

ticle which is created by this coagulation event has mass c = {cl, c2, ..., cs}, as shown in Figure C-

3. Table C- summarizes the relationship beween the component masses of the coagulating parti-

= e.-_ ____ c I
I. 1" "2 . ' SI

= {a1 + b, a 2+ b2,..., as + bs}

Figure C-3: Particle masses in multicomponent coagulation.

cles.

Table C-I: Individual component masses in multicomponent coagulation

Particle a b c

Mass of component 1 al bl cl

Mass of component 2 a2 b2 c2

Mass of component s as bs r

Total particle mass , i Ebi
i i i

In fact, using the information in Table C-l, the multicomponent coagulation of particles a and b is
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Multicomponent Coagulation Production Expression

much more accurately depicted in Figure C-4. It is important to note that each of the individual

Total Mass

Component
Masses Individual Sums

a

a,

aQ

b,

+

b2

a = {al, a, ..., a}

\\N I
% ' I

a b b

b, b2 bs

bQ(ll

a2 ....

+

() )

...

bs

CqCs

ci

C(1)

C

Figure C-4: Multicomponent coagulation particle masses and relation to total mass.

component masses can vary independent of the other masses. Thus, although particle b is much

larger than particle a, particle a actually contains much more of component s than particle b and is

therefore the largest contributor to the final amount of component s in particle c.

C.3 Coagulation Kernel

Most particle systems contain a large enough number of particles that coagulation events can be

described as a rate process, as opposed to isolated stochastic events. Because coagulation is a

binary process, we would expect that the overall coagulation rate follows a first-order rate law in

the concentration of particles size a and b.

rate = k-[a]- [b]

The single-component form of this coagulation kernel is formally defined as follows.

(C.3)
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Coagulation Kernel

DEFINITION

The coagulation kernel (a, b) is the rate function for the first-order rate process where particles
of mass c = a + b are formed due to the coagulation of two particles of masses a and b.

rate = (a, b) .[a] [b] (C.4)

It follows that the coagulation kernel should have units space/time, or cm3/s for the aerosol exam-

ple. Note that the coagulation kernel is a symmetrical function by definition as no distinction is

made between the coagulating particles:

P(a,b) = P(b,a) (C.5)

Using the definition of the coagulation kernel, it is possible to describe the evolution of a number

density distribution. In general, coagulation will affect the number density of particles size m in

two ways:

1.) coagulation loss: when a particle of size m coagulates with any other particle in the system, a

particle of mass m is lost and n(m) decreases.

2.) coagulation production: when two smaller particle coagulate to form a larger particle of size

m, the number density n(m) increases.

The multicomponent coagulation kernel is defined similar to the single-component coagulation

kernel

DEFINITION

The multicomponent coagulation kernel P(a, b) is the rate functionfor the first-order process by
which particles of compositions a and b will collide and coagulate into one larger member with
composition c = a + b.

Just as with the one-component case, the units of the coagulation kernel are space · time 'I and are

the same as for the single-component case. Also, because there is no distinction between particles

a and b, the multicomponent coagulation kernel must also be a symmetrical function:

I(a, b) = P([, a) (C.6)

Just as in the single-component case, the number dueaity n(m) can be affected by both loss and

production of particles of mass m due to coagulation. Using the definitions of number density

distribution and the coagulation kernel, the following sections derive the proper expressions

describing the evolution of the multicomponent number density distribution due to coagulation.
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C.3.1 Coagulation loss of particles

In the single-component case, particles of mass m are lost when a particle of mass m coagulates

with any other particle. The rate at which particles of mass m are lost due to coagulation with par-

ticles of mass u is a function of the number of particles of mass m, the number of particles of mass

u, and the coagulation kernel:

dn(m)dm = -(m, u)n(m)dm n(u)du (C.7)
dt

This expression follows directly from the first-order rate law given in Equation (C.4). Because

n(u) and n(m) are density functions, the expressions n(m)dm and n(u)du represent the concentra-

tion of particles in the size ranges (m, m + dm) and (u, u + du), respectively. Both of these expres-

sions have units of 1/cm3 . Note the consistency of the units in this expression, as shown in Table

C-2.

Table C-2: Units of variables in coagulation loss expression

Symbol Definition Units

n(m) number density 1

g cm3

dm (differential) mass range g

n(u) number density 1

g cm 3

du (differential) mass range g

[(m, u) coagulation kernel cm3

5

Dividing Equation (C.7) through by dm produces the rate of change in number density n(m):

dn(m) = -(m, u)n(m)n(u)du (C.8)
dt

This expression only accounts for the loss of particles of size m due to coagulation with particles

in the differential size range (u, u + du). In order to produce the total loss rate of particles size m,

it is necesssary to account for all possible values of u, which requires an integral:
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Coagulation Kernel

dn) = - fP(m, u)n(m)n(u)du (C.9)
0

Recognizing that n(m) is constant within the integral produces the final form of the single-compo-

nent coagulation loss expression:

dn(m) n(m) f(m, u)n(u)du (C.10)

0

For multicomponent systems, the total loss expression due to coagualtion for particles of mass m

coagulating with particles of mass u is a multidimensional integral which accounts for all of the

combinations with which particles of mass m may coagulate.

00 0oo0

dn(m i, m2, . ms)

dn(m, dt = -n(M) fI... fI (m, u)n(u)duldu2...du (C.11)
0 00

C.3.2 Coagulation production of particles: one-component case

For one-component systems, the production of particles of mass m occurs when any two particles

of masses summing to m coagulate. If these two particles have masses a and b, then a + b = m.

Because of this restriction, there is only one degree of freedom in choosing the size of the coagu-

lating particles - as soon as the mass of particle a is chosen then the mass of particle b is given by

b = m - a. Figure C-5 illustrates this relationship, where the mass of the two components are the a

and b axes and the line b = m - a defines the relationship between the masses of the two coagulat-

ing particles.

Incorporating this restraint into the single-component rate law for coagulation given in Equation

(C.4) yields the expression for the rate of production of particles size m from particles size a and

m - a.

dn(m)dm = (a, b)n(a)da n(b)db
dt

(C.12)
dn(m)dmt = 3(a, m - a)n(a)da n(m - a)d(m - a)dt

Note that the length of the interval di is constrianed by the relation:
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L

m-a 4

mg

Figure C-5: Mass-conservation restriction on two coagulating particles forming a particle of
mass m.

dm = da + d(m-a) (C.13)

which is graphically depicted in Figure C-6. This constraint is derived from comparing the limits

n(m)
L distribution segments

da

I
d(m - a)

I
dm = da + d(m -a)

I
m

particle sizes

Figure C-6: Particle masses in multicomponent coagulation.

of the coagulating intervals, as summarized in Table C-3. It holds from this constraint that if da

Table C-3: Differential coagulation intervals

Variable Lower Limit Upper Limit Range

a a a + da da

m -a m -a (m -a) + d(m -a) d(m -a)

m m m m+dm dm = m-a+d(m-a)+a+da-m

dm = da + d(m-a)

is held constant, then d(m - a)ldm = 1. This allows the conversion of Equation (C.12) to a form
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Coagulation Kernel

describing the evolution of the number density n(m).

(C.14)dn(m) - p(a, m - a)n(a)da n(m - a)

This expression account for the creation of particles size m by the coagulation of particles of mass

a with particles of mass m - a. In order to find the total contribution, it is necessary to consider all

possible combinations of a and m - a which can produce a particle of mass m. To accomplish this,

integration over all possible values of a is employed:

dn(m) _ Ip(a, m -a)n(a)n(m - a)da

f2

(C.15)

Because the coagulating particles a and m - a clearly must be smaller than m, the integration limits

for a are restricted to the interval (0, m). However, using these integration limits actually repeats

each value of the integrand, as illustrated in Figure C-7. Table C-4 shows direcly how these inte-

r - U

m -a*

0

a
m

a* m-a*

0 
Figure C-7: Replication of integrand during coagulation production integration over the inter-
val a = (0, m).

grand values are repeated. Clearly, the same.duplication of integrands will occur for every value

a* E (0, m). In order to correct for this double-counting, the integral can be multiplied by a fac-

tor of 1/2:
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Table C-4: Duplication of integrands during coagulation production integration over a = (0, m).

Point 1 2

a a* m-a*

m -a m -a* a*

n(a) n(a*) n(m - a*)

n(m - a) n(m - a*) n(a*)

(a, m - a) n(a, m- a) (a, mn - a)

Integrand [3(a*, m - a*)n(a*)n(m - a*) [3(m -a*, a*)n(m - a*)n(a*)

(C.16)

Alternatively, the double-counting can be eliminated by

shown in Figure C-8.

,. - u IF -

- a) 

a

reducing the integration limits for a, as

- a)

a

0 m 0 m/2 m

Figure C-8: Elimination of double-counting by reduction of integration range.

It the diagram at the left, the integration range covers the interval a = (0, m). This double-counts

the points labeled "1" and "2," which correspond to the points a a* and a = m - a* in Figure C-

7. By decreasing the integration range to a = (0, m/2), the diagram at the right shows how only

point is counted. Point "2," is outside the integration limit and is therefore not counted. In fact.

none of the points outside the integration limits are counted, which completely eliminates double-

counting. The factor of 1/2 can thus be eliminated from the governing equation when the integra-

tion range for a is (0, m/2):
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Two-component Coagulation Production

(C.17)

Equations (C. 16) and (C.17) are equivalent forms of the expression for productionof particles size

m due to binary coagulation of smaller particles.

C.4 Two-component Coagulation Production

In two-component systems, the number density n(m) = n(m1, m2) where m and m2 are the indi-

vidual component masses. If two particles a and b of respective compositions (a1, a2 ) and (bl, b2)

coagulate, a particle of mass (ml , m2) will be formed. Figure C-9 illustrates these coagulating

particles and the resulting particle of composition m.

a b m

+

Figure C-9: Individual mass components of two coagulating particles a and b.

Note that four compositions are needed to fully define the two coagulating particles: a l, a2, bl,

and b2. However, ml and m2 are related to the individual component masses in the coagulating

particles by their respective mass balances:

ml = a + b ( 8)

m2 =a2 + b2

Using this restraint, the number of degrees of freedom required to specify the coagulation rate of

particles at composition m = (ml , m2) is reduced from four to two. Thus, only al and a2 need to

be specified to determine the coagulation rate:
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dnm) = P(a, b)n(a)n(b)dalda2

dn(ml, m 2) (C. 9)

dt = P(al,a2, bl, b2)n(al, a2)n(bl, b2)daida2

Of course, these expressions only account for coagulation production from one set of combina-

tions for the coagulating particles. In order to produce the coagulation production expression for

all combinations of particles, integration is performed over both of these degrees of freedom.

dn() - f(a, b)n(a)n(b)dalda2
(C.20)

dn(ml, m2)
dt - f P(al, a2, bl, b2)n(al, a2)n(bl, b2)daada2

Substituting the mass balance from Equation (C. 19) into this expression results in the production

expression for two-component coagulation:

dn(m) _= f (a, m-a)n(a)n(m- a)da1 da 2

(C.21)
dn(m , m2)

dt =- P(a, a2 ml -a, m2 - a2 )n(a1, a2)n(m -a, m2-a2 )dalda2

Because neither of the coagulating particles cannot contain more a component than the product

particle m, the integration limits for al and a2 are restricted to the intervals (0, ml) and (0, m2),

respectively.

U"2

m2 - a 2

a2 *

L

I I
I I

I ,

2 

.-- O ----------. ---.
I I

I,,I.. I .....

a, * m -a * a!

Figure C-10: Elimination of double-counting by reduction of integration range.
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In order to properly analyze any possible double-counting in this two-dimensional integral, the

integrand will be analyzed at all combinations of points involving mass a = al* or a2 = a2*.

These points are summarized in Table 6. Note that the integrand for the coagulation production

Table C-5: Duplication of multicomponent coagulation production integrands over a = (0, m).

Point n(a1, a2) n(m - a l, m2- a2) p

I n(al*, a2*) n(m - al*, m2 - a2*) [(al*, a2*),(m - al*, m2 a2*)]

2 n(ml -al*, a2*) n(al*, m2 - a2*) [(m -al*, a2*),(al *, m2 a2*)]

3 n(al*, m2 a2*) n(ml - al*, a2 *) P[(al*, m2 - a2*),(mI - al*, a2*)]

4 n(m -al*, m2 -a 2*) n(al*, a2 *) P[(m - a l*, m2 - a2 *),(a1 *, a2*)]

expression is the product of the three columns. Due to the symmetrical nature of the coagulation

kernel 3, points I and 4 produce the same integrand, as do points 2 and 3. These two sets of inte-

grands are distinct, illustrating that the integral over the limits a1 = (0, al) and a2 = (0, a2) still

produces double-counting and requires the factor 1/2 to correct for this:

m2m,
dn(m., m2) 1

d;it = 2 J Ip ( a ,a 2, m l -a, m2 -a 2)n(a,,a 2)n(m-al, m 2-a 2)da lda 2 (C.22)

0 0

It is still possible, however to reduce the integration limits while eliminating this double-counting.

By reducing the integration limits in the outer integral to a2 = (0, m2/2), only points 1 and 2 in

Figure C-10 are included in the integral and no double-counting is produced:

m2
2 m,

dn(m , m2)
dn(mt m) I (al, a2 m -a ' m2 -a 2)n(a l a2)n(m l -a, m 2 -a 2)dada 2 (C.23)

0 0

C.5 Multicomponent Coagulation Production

In the general case of an s-component system, the point a* = (al, a2, ..., as) will generate 2s

combinations of node points. This is due to the fact that the expression for n(a*) can either be

composed of ai* or mi - ai* for each component i. This binary set of alternatives for each compo-
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nent generates a set of 25 possible combinations and therefore 25 node points. Each of these node

points has exactly one other equivalent integrand, where n(a*) is the "complement" of the original

point. These two points produce equivalent integrands, as illustrated in Figure C-I 1. Because

n(a *) n(m - a*)

4- original point

4- "complement" point

Figure C-11: Elimination of double-counting by reduction of integration range.

only one unique complement exists, the replication of integrands is limited to double-counting

and the factor of 1/2 will correct this regardless of the number of components in the system, s.

(C.24)

Similarly, this factor of 1/2 can be eliminated by reducing the integration limits of the outer inte-

gral:

(C.25)

C.6 Summary

Coagulation is one of the most important mechanisms in the formation of particles. However,

it is also the most computationally intensive of the mechanisms influencing these processes. This

paper presents a systematic and sound method for significantly reducing the computational effort

required for coagulatiion calculations while maintaining the same accuracy.

The symmetry of the coagulation kernel coupled with the mass balance on coagulating parti-
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m,
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Summary

cles results in double-counting over the logical range of integration for the coagulaiton production

expression. This result holds regardless of the number of species in the system. This can either

be corrected by multiplying the integral by a factor of 1/2 or by reducing the upper integration

limit for the outermost integration variable by a factor of 1/2.

Reducing the integration range by a factor of 1/2 rougly reduces the computational cost of

evaluating the coagulation production kernel by 50%. Because coagulation is the most intensive

mechanism to evaluate, large reductions can be expected in the time required to solve dynamic

population balance problems.
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Appendix D: Parameter Estimation in Population Balance Models

D.1 Introduction

Population balance models are used to describe a wide range of physical phenomena from

crystallization and aerosol dynamics to granulation and milling operations. Typical population

balance models are governed by a set of partial integro-differential equations. Solution of these

equations requires numerous evaluations of integrals at each numerical time-step, which is com-

putationally intensive and time-consuming, causes inversion algorithms to scale very poorly with

number of model evaluations.

Inversion algorithms generally converge after many iterations, each of which requires a vary-

ing number of model evaluations depending on the algorithm. Random and grid searches as well

as simulated annealing rely almost entirely on a large number of model evaluations to perform an

inversion. In contrast, gradient search algorithms perform a significant amount of analysis on the

results of model evaluations in an attempt to find a more optimum convergence path. The stabil-

ity of gradient search algorithms is generally not known a priori; as a result a number of model

evaluations are often required to ensure stability. The ridge regression technique, however guar-

antees stability by performing considerable analysis on the model evaluations at each time step

and is therefore promising for population balance model inversion applications.

This work investigates the efficacy of ridge regression for population balance models by using

an analytical solution describing the evolution of a population subject to particle growth and

coagulation under special conditions.

D.2 Population Balances

D.2.1 Representation of population distributions

Populations are generally composed of a large size range of particles containing a large num-

ber of particles at each size. It is therefore convenient to represent the population as a distribution

of particles where if n(s) is the number density of particles at size s, then the number of particles

between size s and s + ds is:
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N = n(s)
g

and can be represented by the shaded region Figure D-1:

n(s)

1

s s+ds.1

Figure D-1: Distribution Representation of Population

The number density can be converted to another basis by equating the number of particles in a dif-

ferential "slice" of the distribution. For example:

n(s)ds = n(logs)d(logs) =:> n(s) = n(logs)d(lgS) n(logs)ndl ds ln(lO)s
n(logs)= ln(lO)s. n(s)= 2.303s n(s)

(D.2)

D.2.2 Dynamic population balance equation

Population balances are generally governed by the general dynamic equation (GDE):

a
mn(s) = p(x, s - x)n(x)n(s - x)dx + fy(x, s)n(x)dx

1. .. .. - _

coagulation from smaller particles fragmentation from
larger particles

- n(s) f y(s, x)dx -

fragmentation into
smaller particles

n(s) f p(x, s)n(x)dx

coagulation with
other particles
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v.vn(s) + VK Vn(s) + f(s) (D.3)

-transport due to transport due to other functions

convection diffusion e.g., growth

The first coagulation term evaluates the rate at which particles size s are produced from particles

size x and s-x by integrating the coagulation kernel P(x, s - x) over the entire range of particles that

are smaller than s. The factor of l/ results from the fact that two particles form to produce one

particle - half as many new particles as old particles. The fragmentation kernel y(x, s) expresses

the efficiency at which a larger particle size x fragments to produce a smaller particle size s.

Other particles may also be produced through this fragmentation, but only that particles size s will

affect An(s) /at. The expressions for fragmentation of a particle size s and coagulation of a parti-

cle size s are developed similarly. The GDE may also include terms for particle transport, diffu-

sion, or other effects such as growth, nucleation, deposition, etc. For example, a particle growth

term takes the form:

-n(s) = -(I(s)n(s)) + other effects (D.4)

Particle size s can be represented by a variety of metrics, including mass, length, or volume.

D.2.3 Analytical solution

An analytical solution exists for a special case of the GDE for particle coagulation and growth

when the coagulation kernel is constant and the growth rate is proportional to particle size:

(x,y) = o I(v) = ov (D.5)

As in Equation (D.5), particle size will be represented by volume, v, for the remainder of this

paper. The analytical solution requires an exponential initial number density distribution based on

particle volume:

n(v, 0) = NexpV-) (D.6)
V0 \VO

with an average particle size vo and an initial total number of particles No. The analytical solution

is:
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n(v, t) = No exp ( +· expe(-iAr) - At) (D.7)

where - ;o ° * -^2cowhere = Nopot and A = 2
2 NOIO

If the parameters take on the values given in Table D-l:

Table D-I1: Parameter Values

Figure D-2 shows plots of the analytical solution at t-=O, 20, and 200 with 35 points evenly spaced

on a log scale:

Coagulation & Growth Analytical Solution

Q nnF+nf

8.00E+05

7.00E+05

E 6.00E+05

5.00E+05

C 4.00E+05

: 3.00E+05
' 2.00E+05

1.OOE+05

O.OOE+00

1.00E-01 1.00E+01 1.00E+03

V/Vo

Figure D-2: Analytical results comparison.
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The dNV/d(log(V)) notation is equivalent to n(log(V)). Distributions are commonly expressed in

this form, as n(log(V)) is actually the change in total number of particles N with respect to change

in log(V).

D.3 Parameter Estimation Techniques

D.3.1 Least squares techniques

Least squares parameter estimation techniques seek to estimate optimal parameter values by

linearizing a function at the initial best parameter estimate:

n = no + AAp (D.8)
an.

where A is the Jacobian with elements aij = pj if ni is the number density at node i and pj is the

jh parameter.

If An is defined as the vector of differences between data and model values at each point

An, = n,-n i (D.9)

then the least squares solution which minimizes the length of the error vector An is:

Ap = (ATA)-IATAn (D.10)

The new parameter estimates are then found by Pnew = Pold + Ap and the length of the error

vector is calculated. The new A matrix is then evaluated at the new parameter values p and the

next iteration of the algorithm is performed. Often, however, the ATA matrix is not well-condi-

tioned, so "damping" is added to the system to facilitate the matrix inversion:

Ap = (ATA + C2 I)-IATAn (D.11)

Increased damping has the effect of limiting the magnitude of Ap and slowing the convergence

rate while increasing the stability of the algorithm.

One common measure for the error vector is the root mean square (RMS) error:

RMS = (D.12)

In general, least squares techniques will seek to reduce this RMS error at each iteration using a
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variety of schemes which adjust damping values until the RMS error is reduced (i.e., the algo-

rithm remains stable) at the new parameter values. For the ridge regression algorithm, a wide

range of damping values are used to show the values of the new parameters as a function of damp-

ing, allowing the new parameter values to be hand-picked. Most often parameters are chosen

which represent some moderate change to avoid either converging painfully slow or becoming

unstable.

' ",2 Log-rescaling

Log-rescaling attempts to rescale data the Jacobian matrix A such that the derivatives are nor-

malized and dimensionless. The elements of the A matrix for log rescaling are:

pjOni
a - pi (D.13)

" napi

D.4 Results

The response surface of the error at t=200 was evaluated by:

Vmax

error = f (n(V) Ida - n(V) Imodei)2 f (D.14)

Vmin

Figure D-3 plots the contours of the response surface using the parameters defined in Table D-1.

The optimum parameter values are in the center of the red oval at the left side of the plot; the ini-
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3.014

3.012

CT
0.01

3.008

3.006

ix 10 7 2x 10-7 3x 10' 4x 10-7 Sx 10'7

Figure D-3: Model response surface contours.

tial parameter guess for parameter estimation is marked by the X and listed in Table D-2:

Table D-2: Initial Parameter Guesses

[ a

3.0x10- 7 7.0x10-3

Data points were generated by adding Gaussian noise with a standard deviation equal to 10% of

the value of each point to the analytical solution at 35 points evenly spaced along a log scale from
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0.1 to 1.0x104. Figure D-5 shows the response surface of the RMS error of the data points with

a nE inA

8.0E+04

ME

,::t

o

z

7.OE+04 -

6.OE+04

5.OE+04

4.OE+04 -

3.0E+04 -

2.OE+04

1.OE+04

O.OE+00

VNo

Figure D-4: Data points for parameter estimation
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Case Study: Log rescaling with low number density threshold

noise vs. model points:

RMS 3

error

Figure D-5: RMS response surface.

Note that the contours of this surface would appear very similar to Figure D-4, indicating that the

RMS response surface will take on a similar shape regardless of the noise. The following subsec-

tions review the results of variations on the ridge regression method with this data set. For all of

the inversions performed, derivatives for the Jacobian matrix were estimated using a two-point

finite difference formula.

D.5 Case Study: Log rescaling with low number density threshold

D.5.1 Implementation

Unlike the output from an analytical model, all numerical solutions to the GDE will employ

some minimum number density threshold below which the number of particles is essentially neg-

ligible. Two undesirable effects arise from this effect:

* 1) the first derivative is discontinuous at the point where the threshold is first enforced, sub-

jecting the Jacobian to error at this point
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· 2) the sensitivity of the model to every parameter is artificially forced to zero wherever the

threshold is in force

3.00E+04 .

2.50E+04 -

2.00E+04.

cm 1.50E+04

1.00E+04

5.00E+03

n nniF+n

· 0

Active
Threshold
Cutoff

A .· · · *

1.00E+00 1.00E+01 1.00E+02

log(V)

1.00E+03 1.00E+04

Figure D-6: Number Density Threshold

-12
The number density threshold for this graph is 1.0x 10- 2 . Previously, an uncertainty analysis

was carried out on this system which revealed that the "front" of the number density distribution

is the region where the model is most sensitive to variations in the parameters P and a, as shown
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by the error bars.

A

5.5

5

45

84
; a5
g3

25

2

1.5

1

0.000001 0.0001 0.01 1 100 10000

VNO

Figure D-7: Uncertainty analysis of particle size distribution.

In an effort to retain the effects of the "front" part of the distribution, the threshold was set to an

extremely low value, 1.0x 10 -3 . This resulted in and ATA matrix with eigenvalues in the range

of 1.0x 1050 and a completely intractable solution.

D.6 Case Study: Log rescaling using logN(log(V))

In an effort to scale down the sensitivity of the system and eliminate threshold effects, the out-

put of the model and data was expressed as logN(log()). Note that because log rescaling uses

the error vector:

Aln(N) = ln(Ndata-Nmodel) (11.2)

whenever Ndata and Nmodel have different signs, AIn(N) will be undefined. For these cases, AIn(N)

is redefined as:

Aln(N) = ln(INdat.l ) + ln(INmodell) (11.3)
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The log rescaled sensitivity expression, however, has log(N(log()) in the denominator, so an

asymptote appears where log(N(log(V))=O, as shown in Figure D-8:

Sensitivity Plots

1.OOE+06 -

5.00E+05 -

0.OOE+00 ,
1.00

-5.00E+05 -

-1.OOE+06
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-2.50E+06

I
F-W -W · WYY9WW $ t · i m -I - v v v - -I- I

E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+0 *1001
a -

-1

-i

i

_I

. dN(logV)/ds 
. dN(logV)/db 

I__.__ '_ _ 

- .OOE+01

5.00E+00

L 0.OOE+00

E+04--5.00E+00

- -1.OOE+01

-1.50E+01

- -2.OOE+01

.
-2.50E+01

log(V)

Figura D-8: Sensitivity plot of IogN(Iog(V)) resufts.

D.7 Case Study: Log rescaling with data shift
Asymptotes in the sensitivity expression and the need to correct the sign of Aln(N) can be

eliminated by simply adding a constant to every data and model point such that all log(N)'s are
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Case Study: Log rescaling with data shift

greater than zero. The resulting sensitivity plot exhibits no asymptotic behavior:

Sensitivity Plot, Shifted Data

L dN(logV)/ds

. dN(logV)/db

_ - _ .

8.00E+03

4.00E+01

3.00E+01

2.00E+01 !

z
1.00E+01

O.OOE+00

-1 .OOE+01

1og(V)

Figure D-9: Sensitivity plot with shifted data points.

However, the eigenvalues for this system make the problem no more

case.

tractable than the previous

Table D-3: Eigenvalues and Data Forms

Method Log Data Eigenvalue Eigenvalue
Rescaling 1 2

Shifted Log Yes log(N(log(V))) 0.4279 8.90x 110

Corrected Yes log(N(log(V))) 2.62x10 4 1.22x 1012
Sign

Basic Ridge No log(N(log(V))) 4.02x10 13 7.28x10 16

Regression

D.7.1 Case Study: No log rescaling using log number density data

Ridge regression was also examined without log rescaling. As shown in Table D-3, the eigen-

values for this method suggest that this method is much more tractable than the other methods
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investigated in this study. In addition, the sensitivity plot also suggested this:

Senstity Pkot, No Recang, Log Data

4.00E+08

3.50E+08

3.00E+08

2.50E+08

2.00E+08

1.50E+08

1.00E+08
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O.OOE+00 -. ,-

-5.00EPOe1

.

. dN(logVdb
dN(logV)/ds

.

I .. *-- -~ * a U

a

.

.

1 U.00E+00 1.0UE+ 1.0E 1.00E03 1.00E+04 

1.00E+00 1.OOE+01 1.0E+02 1.00E+03 1.OOE+04

Figure D-10: Sensitivity plot for ridge regression without log rescaling.
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The ridge trace for the first iteration is similarly well-behaved:

Ridge Trace,

ff---

1't Iteration, No Log Rescaling
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7.00E-03 

7.00E-03 4
- 7.00E-03 .
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* *

U
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.

.a
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- 4.00E-07
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- 2.00E-07 b

- 1.00E-07

.- O.OOE+00

1.00E+16 1.00E+19 1.00E+22 1.00E+25
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Figure D-11: Ridge trace for ridge regression without log rescaling.
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Finally, the RMS error decreased monotonically with the number of iterations:

Convergence Trace

5

4

o 3

n
2

1

0 1 2

Iteration

I

3

- 4.OOE-07

[- 3.00E-07

.-2.00E-07

1.00E-07

n nnf +nn

4

Figure D-12: RMS error and p value va. terations.

In addition, convergence is relatively rapid, in spite of the fact that only b changed over the first 3

iterations.

Table D-4: RMS error and Parameter Values Results

Iteration [ ao 2

0 3.Ox10-7 7.0x10-3 7.24x10 1 5

I 2.51 x17 7.O0x103 8.26x10 14

2 _2.14x10 - 7 7.Ox1073 1.51 x1015

3 .99x10-7 7.0x10-3 N/A1.99xi0-? .xI
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Plotting the parameters on the RMS contour leads to the following results:

3.014

3.012

C0.01

J. 008

).006

ix 10 7 2x 10 7 3x 10-7

P

4x 10 ' ?5x 10-7

Figure D-13: Parameter evolution.

D.7.2 Conclusions

Several variations on ridge regression were investigated for inversion of a population balance

problem including growth and coagulation effects. Using actual number density data as opposed

to log(number density) produced ill-conditioned systems. All attempts to implement log rescaling

produced ill-conditioned systems, generally due to changes in sign in the logarithm or the argu-

ments of the logarithm. Ridge regression without log rescaling produced encouraging results.

Further efforts should be made to determine an optimal convergence scheme for this method.

D.8 Definitions

D.8.1 Greek symbols

P(x, y) The collision efficiency at which two particles size x and y coagulate to form a larger par-
ticle size x + y

y(x, y) The efficiency at which a particle size x will produce a particle size y as a result of break-
ing up.
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Appendix E: Probability Density Functions

All probabilistic notation hinges on using some form of a random variable to describe the out-

come of a random event. A random variable is often written in the form x(o) where x(o) is the

outcome of a random process with o as the input, as shown in Figure E- 1.

randomC -- X(process

Figure E-1: Random output x(o) from a random process with Input o.

The possible outcomes of the random event may be discrete, as in rolling a die,- or continuous,

as in the direction which a spinning bottle points when it comes to rest. For a discrete event, the

probability of a particular outcome x0 may be described by px(xo), the probability that the out-

come of the random event is x0 (Drake, 1976). This may also be expressed as P{x = xo} (Papou-

lis, 1991). For the example of rolling a six-sided die, the probability that any one side faces up is

1/6. Similarly, for a continuous event, we define the probability that the outcome lies within a

range of possible outcomes. For example, the probability that the spinning bottle comes to rest

between 0 and 30 degrees is 1/12. This is denoted by px(O < x < 30) or P{0O < x < 30}. However,

what if we want to describe the probability of the outcome of a given value xo? This is denoted in

the limit:

fx)dx < x <x + Ax}
f(x)dxlx= lira Ax (E.I)

and is defined as the probability density function of x. Note that this density function has units

equal to l/x. The functionAx) is a density function; therefore it does not represent an actual prob-

ability but rather a slice of the probability density distribution represents the probability of an

event:

f(x)dxlxO = P{x o <x < x0 + dx} = P(x)lxO (E.2)

373



Probability Density Functions

as illustrated in Figure E-2.

Xx)

X o xo+ dx

Figure E-2: Probability density function f(x) and corresponding segment ranging from x0 to x 0

+ dx.

Note that if we use the notation x(o) for a random variable, this expression is slightly altered:

f(x(o))dxx = Px 0 <x(o) <x0 + dx} = P(x(@o))x (E.3)

which emphasizes the fact that the x(o) is the outcome of a random event.

In general, several properties define probability density functions. First, probability density

functions are nonnegative over their entire domain:

f(x) > 0 Vx (E.4)

Second, the sum of all possible outcomes must equal one. For a probability density function, this

sum is expressed as an integral:

If(x)dx= I (E.S)

Often, the expression Jx)dx is written as dP(x) to acknowledge that the total probability P(x)

increases as the area under the curve expressed by the product.x)dx (see Figure E-2).

o00

J dP(x) = 1 (E.6)

E.1 Moments of a Probability Density Function

A number of statistics can be used to describe the characteristics of a probability density func-
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tion. The most commonly used statistics are the moments of the probability density function. The

nth moment of a probability density function, written as E[xn], of the density function, is defined

as:

oo

E[x] = xi dP(x) (E.7)
-. 00

Note that the zeroeth moment is one! In general, E[.] is known as the expectation operator and

acts as a linear operator on any arbitrary function. For example:

00

E[q(x) + r(x)] I[q(x) + r(x)]dP(x)
-00

= [q(x) + r(x)lf(x)dx (E.8)
--o

00 00

- q(x)f(x)dx + f r(x)f(x)dx
-- o -00

= E[q(x)] + E[r(x)]

Expected value operations on the different exponents of the random variable in question are

referred to as moments. The zeroeth moment is E[1] and is equal to one for all probability density

functions, the first moment E[x] is the mean. Central moments are referred to as moments of the

distribution less the mean. For example, the second central moment of a random variable x is

E[(x-E[x])2 ]. This moment is referred to as the variance of the distribution. Third and fourth cen-

tral moments are referred to as skewness and curtosis, respectively.

E.2 Moment Generating Functions

Special probability density functions have well-defined standard central moments. One such

example is the normal, or Gaussian probability density function. The normal probability density

finction is:

px(x) = f(x) = -2e (E.9)

The nth moment of this density function is given by the formula (Papoulis, 1991):
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oo co _X2

E[x] = f(x)xndx = e 2xndx

"-0 .W(E.10)
1° n = 2k+ 

1- 3...(n-l)crn n = 2k

where k is any nonnegative integer. This property is critical to the derivation of the split composi-

tion distribution method in Chapter 7.
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Appendix F: Orthogonal Polynomials

Unique sets of orthogonal polynomials exist on and are defined by the interval over which

they are orthogonal. Table lists different sets of polynomials and their corresponding domains:

Table F-1: Summary of Orthogonal Polynomials

Orthogonal Domain
Domain TypePolynomial Example

Hermite Infinite (0,0)

Laguerre Semi-Infinite (0, )

Legendre Bounded (0, 1)

For more information on types of orthogonal polynomials, please refer to Wang (1999).

Orthogonal polynomials are uniquely defined by a recursive relationship. An nth order poly-

nomial:

n-I
Ln = E airi(x) (F. I)

i-0
If L n is an orthogonal polynomial of order n - 1, then the following conditions completely deter-

mine the polynomial:

a0 = 
(LaL=) = Vi•] (F.2)

(L i, L) = 0 Vi j

In the case where the polynomial is also orthonormal, the following additional condition applies:

(L i, Li) = 1 Vi (F.3)

In the case of a Legendre polynomial over the domain (0, 1), these relations yield Lo = 1, and L1

follows from recursion:

377



Orthogonal Polynomials

Lo = l,L = ao+alx

I I I1(o, Ll) =fL a 2 =O=aI= (F.4)1 1(LO L1) JLo- LIdx = J ( +a1 x)dx = O Sx+ Vx|= 0 =>a 2 (F.4)
O O

=L I = 1-2x

The n + 1 undetermined coefficients of an nth order orthogonal polynomial are likewise deter-

mined by n inner products with all lower-order polynomials from L0o to L, 1 and an arbitrary scal-

ing condition a = 1. In the special case of orthonormal polynomials, the condition a = 1 is

replaced by the orthonormality condition given in Equation (F.3).

Taking the example of the first Legendre polynomial L I from Equation (F.4), this normaliza-

tion requirement results in:

$W2(1 -2x)2d = I 2 w2( 1-6 (F.5)
o -60

Using this rescaling factor, the orthonormal function L I is:

L = l - 2 x (F.6)

The utility of orthogonal polynomials is that they form a complete basis set which is capable

of representing any arbitrary function aJx) on the domain of the orthogonal polynomial to any

desired degree of accuracy:

f(x) = ciLi (F.7)
i=0

Furthermore, due to the orthogonality of the individual terms, this series converges at an optimal

rate. When a truncated representation is used to form an n-term expansion ofJ(x):

n

fix) CcL, (F.8)
i=0

The optimal coefficiencts c i for this expansion are determined by minimizing the error in the

expansion over the domain of the orthogonal representation:
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Error = J( ciLi(x) - fx ) dx (F.9)

0 i=o

This error is minimized when the derivative of this expression with respect to each coefficient cj

is zero:

X ict(x) f(x) dr = o X 2(ci4(x)-f(x)L (X)dO=(c LJ() = (f (x), L (o ))

cj(L,(x), Li (x)) = (f (x), L(x)) c = (f(x), L (X))(

Thus cj is the length of the projection from of the function fx) onto the representation function

L(x) (see section 4.5.2). In the special case where orthonormal polynomials are used, cj is simply

the inner product of Lj andjfx). Note that the intermediate expression:

f , ciL,-(x) -f(x) L(x)dx = 0 (F.I 1)

o i=O

indicates that the optimal values of cj are those which satisfy the condition that the error of the

representation is orthogonal to all of the orthogonal basis polynomials. Adding a new term to the

expansion results in the addition of a new expansion term which is also orthogonal to all of the

previous expansion terms. Because both the error and the new term are orthogonal to all of the

previous terms, this new is able to account for and capture as much of the error as possible. Thus,

the expansion is optimally convergent. For more information on orthogonal basis functions,

please refer to Strang (1986), Stoer and Bulirisch (1993), or Naylor and Sell (1982).
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Appendix G: Wiener Expansion

G.1 Definition

Consider following definition of Wiener expansion (also known as the polynomial chaos

expansion) from Ghanem and Spanos (1991):

Let {,i(O),i=1,...,oo} be a set of orthornomal Gaussian random variables. Consider the space

S(Ep) of all polynomials in of degree not exceeding p. Let Up represent the set of all polynomials

in orthogonal to S(Ep-). Finally, let SS() be the space spanned by .p. Then the subspace

SS(E-p) of O is called the pth homogeneous chaos, and _p is called the polynomial chaos of order

p, where E is a Hilbert space offunctions defined by mapping the probability space, Q, onto the

real line, R.

This scheme was pioneered in 1938 by Wiener (Wiener, 1938) and was originally referred to

as the "polynomial chaos." Follow-up work was conducted by Cameron and Martin (1947).

Tatang (1995) applied this Wiener expansion to random variables to develop a new uncer-

tainty analysis technique. The random variable x(o) can be approximated in the space 0 with the

following polynomial chaos expansion:

co no co

x(co) = a0 + a E E ail 2=2(5 ,(CO)I4i2())

<o (O (30

~~,,E E E a,,,,)3 ((O) ((O ( 40)) (G.+ )
i = i2 = 113 = 1

When used in finite problems, a pth order polynomial chaos expansion will approximate an N-

dimensional random variable where N replaces oo in equation (G. I).

G.1.1 Example problem

As an illustration of the polynomial chaos expansion method, the following equation is con-

sidered:

a(o)x(o) = b(c0) (G.2)

Choosing the p's of the polynomial chaos expansion to be Hermite polynomials leads to
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orthogonal p's with the representation:

N

x(o)) CxjHj({4i(o))) (G.3)
j = I

where Hj({i(c)} ) is a multidimensional Hermite polynomial of order j. Substituting this into

equation (G.2) and re-expressing as a residual yields:

N

RN(X, O) = a(X) E xjHj({ i())) - b(o) (G.4)
j=1

Thus, a two-dimensional polynomial chaos expansion for a(c) and b(o) would look like:

a(O) = ao + a,1 +a2,2+ a3(42 - 1) + a44142 + a5(52- 1) + .
2a42 3) = 1 ~ ~ ~ (G.5)

b(o) = b + b4 + h22 + b3(2 - 1)+ b4l + b(42 - 1)+ *-
Expressing a(o) and b(o) as independent Gaussian random variables eliminates all cross-terms

and terms of order higher than 4i:

a(o) = a +a 1 (.6)

b(o) = b0 + b2 42

where the constant term is the mean and the coefficient of the 4i term is the standard deviation of

each distribution. The corresponding polynomial chaos expansion for x(o) will include second-

order terms to account for any 41-2 interactions:

x(O) = + x 1 I + X2g2 + X3(g2 I) + X44 142 + X(- 1 ) (G.7)

The form of the residual is:

R6(x, w) = (a 0+ al )(Xo + xX + x22 + x3(42 1 ) + X412 + X(2 - 1)) (0.)
(G.8)

-(b o + b242)

In order to solve for the six coefficients x0 ...x5, the residual is orthogonalized with Hermite poly-

nomials Hi(41, 42, ..., j) where i is the order of the polynomial andj is the number of probabilstic

dimensions it spans:
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00 0000

... f J Hi(, 42, *..., )R6(x, o)dP(4 1 )dP(42 ) ... dP() = (G.9)
-00 -00-00

where dP(4i) enforces that this is an integral over a probabilistic space. Recalling the analogy

between probability density functions and number density functions in Chapter 2:

dP(4i) = f(i,)dei (G. 10)

whereJf(i) is the probability density function and di is the segment of the probability density dis-

tribution. Thus, Equation (G.9) can be rewritten as:

00 0000

|. | |f i(4X )(42)* f(4)Hi(4I, 42***, )R6(X, O)4142 ... j O (G. 1)
-o -00-0

The Hi's are determined by an orthogonalization procedure. For the case of i = 0, the Hermite

polynomial is constant and is chosen as Ho = 1. For i = 1, the Hermite polynomials are deter-

mined by a routine orthogonalization algorithm with Gaussian probability density functions as

weighting functions:

00 o 0

I f Hi(41XX42 ***Rj)k(4, s 42 **, )dP(41)dP(42) ... dP(4j) = i k

(G. 12)
00 0000

... [Hi(4j9 ,, J , , 1 )]2dP( 1)dP( dP(2) .. dp() =I
--00 -00-00

The first condition in Equation (G. 12) forces all of the Hi's to be orthogonal. The second condi-

tion is optional; it further requires that the Hi's are normalized. Applying Equation (G. 10) to this

expression yields:

f..I J fI()(42)...(4j)H,(4,, , , .'., 4)H( ,,2 2...S )4142 .j...= 0 iek
-00 -0-c -00 (G.13)
00 0 o00

...I f X2)- .-f(,j)([ ,(,l X, ,.- .,,)1)2dP( 1,)g42.. =1
-00 -00-00

Note that this orthogonalization scheme can be used for any given probability density function
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j(A4). In fact, a different probability density function can be used along each coordinate i. When

J(i) is used to represent a normal probability density function along both coordinates of a two-

dimensional Wiener expansion, the Hi's are:

Ho = 

H2(411 2 ) = 1

H3 ( 1,, 2 ) = 2 H 4 1~~~ - ~(G. 14)
H5(1,, 42)= 4152

H6(1, 42) = 2 1

Note that it is trivial to arrive at these functions from the orthonormal equations in Equation

(G. 13) using the following property which applies to the moments a normal distributions (Papou-

lis, 1991):

00

E( = 3 .....n- for n even
E(")= "5"f~gdE, 0 for n odd (.15)

For example, for the b(o) term in the H I expression:

l )f (
1 42)(b + b342)d14d2 = r f(1) f(42)(bl + b342)424

= f'f(4l)b, = bI
-- M (G.16)

Thus, the system of equations reduces to the following set of matrix equations:

a, a2 0 0 0 0

a2 a 0 2a2 0 0

O O al O a 2 0

0 2a2 0 2al 0 0

O Q a2 0 a 1 0

O 0 0 0 0 2a,

xi

X2

x3

x 4

x5

X 6

b,

0

b3

O

O

O

(G.17)
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with the corresponding solution:

=b l) 2a2 - a l)

bla2
2 - 3a2 - a

b 3a1

x3 =- a2 (G. 18)

bla2
al(a - 3a2)

b3a2

X6 = 0

References

[1] Bender, C.; Orszag, S. Advanced Mathematical Methodsfor Scientists and Engineers,
McGraw-Hill, New York, 1978.

[2] Cameron, R. H.; Martin, W. T., "The Orthogonal Development of Nonlinear Functionals in
Series of Fourier-Hermite Functionals."

[3] Ghanem, Roger; Spanos, Pol D. Stochastic Finite Elements: A Spectral Approach. Springer-
Verlag, New York, 1991.

[4] Papoulis, Athanasios Probability, Random Variables, and Stochastic Processes, 3
rd Ed.,

McGraw-Hill, 1991.

[5] Stoer, J.; Bulirisch, R. Introduction to Numerical Analysis, 2nd Edition, translated by R. Bar-
teis, W. Gautschi, and C. Witzgall, Springer-Verlag, New York, 1993.

[6] Tatang, Menner A. Direct Incorporationof Uncertainty in Chemical and Environmental Engi-
neering Systems, MIT Thesis, 1995.

[7] Wang, Cheng Parametric Uncertainty Analysis for Complex Engineering Systems, MIT The-
sis, 1999.

[8] Wiener, Norbert The Homogeneous Chaos American Journal of Mathematics, 60, 897-936,

385



Wiener Expansion

1938.

386



Appendix H: Population Statistics

This section rigorously reviews the proper techniques for calculating population statistics,

including the mean and standard deviation, from multidimensional number density distributions.

In general an exponentially-distributed population with s components is defined by the fol-

lowing expression:

e 2 e( M,)

nO(m, m2, ... ,m ) = No ... m (H.1)i 1 0 m020 msO

For a two-component exponentially distributed population this expression reduces to:

.nO(ml, m2 ) = NO 20 (H.2)
m10 !or20

The total number of particles in the population of size m = ml + m2 is found by integrating over all

possible combinations of components ml and m2 summing to m. This is accomplished by substi-

tuting m2 = m - mi into Equation (H.2) and integrating over all possible values of ma from 0 to m:

n(m) no(mI, m - m )dm 

0

=|Noe e dm (H.3)INodm M

mIO-M20 -

In addition to number density, composition statistics are also of interest. The mean composition

of component I among particles size m is calculated via the expected value of composition:

xl(m) = E[xl(m) ] = xlP(xl)dxIl (H.4)
0

Noting that m I = x i m, where m is constant and thus dm1 =rl I , Equation (H.4) can also be
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expressed as:

I m m

I fmI px(xl dm (H.5)E[xl(m)] = xlpx(x l )l = .x(xl) l mlpx(l)dmI (H.5)

0 0 0

Conversely, the linearity of the expectation operator (see Appendix E) can be applied directly to

x = ml/m:

m m

Jmin(ml ,M-m , )dm, fmIn(m,M-mdmn(m, M- 1)dml
!-E 11 0 __ _ 10E[xi] = E l E[ml] _ ° (H.6)

m J m m m m n(m)

fn(ml,M-ml)dm 
0

In essence, this method of calculating E[xl] is equivalent to first calculating the average m1 per

particle and dividing this by the mass of the particles, m. The average mi per particle, in turn, is

calculated by summing the total mI in all particles and then dividing that by the total number of

particles, as shown by the integral on the right hand side of Equation (H.6).

Comparing Equations (H.5) and (H.6) yields the expression forpx(xl):

px(xl) n(ml, m- ml) m n(ml, m-ml)
m n(m) n(m)

In order to confirm the validity of this expression for px(xl), check to see that:

I

Jp(x,)dx i = 1 (H.8)

0

This is accomplished through a simple change of integration variables, remembering that mi = xi

* m, where Mis constant and thus dm1 I = dr1 I m:
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* n(xm, (1 -xl)m)dm 1

n(m) m

m
n(xlm, (1 -xl)m)

n(m)
o

n(ml, M-m )
I n(m) d
o

= n(m)
n(m)

=1
Using integration by parts, the mean composition of the two-component exponentially distrib-

uted population is:

e(-m,-
xl(m) =

(ne mO

(H.10)
m10m 2 0

m(mlo - m20)

Similarly, the variance of the composition can be calculated using either one of the following two

expressions:

ca2(m) = E[(x, -E[xl]) ] = E[(xl-l) 2 ]

(H. 1)
a2 (m) = E[x 12] - E [2 = E[x2] - x 2

XI I I Xi

When the second expression from Equation (H. 11) is used to evaluate the variance using n(ml,

m2), E[xl 2] is evaluated in a fashion similar to the evaluation of the mean x l:

E[x I = E[( 2 z ( I
particles

(H.12)= E () 2n (m l Im - m l )A mlzt m n(m)
particles

which is again evaluated using an integral to sum over all particles in the distribution.

m

E[x2] = (2n(m
particles

m-ml)Am 1

n(m)

iml2 . n(ml, m - ml)dm 1

-o
m2 . n(m)

Such a seemingly difficult expression can easily be evaluated using a symbolic mathematics

package such as Mathematica:
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m

mn2 n(m1, m -ml)

E[x2]= 0

m __m (H.14)

e m10 2m 2 m2 2e mmlom20
+ 2

e m,, _, m,, (m 1- mo20)

which leads to the simplified final expression:

2 M2 e(_ m mm2 20 e Oml(H.15)
x1 m2(m1-o20 )2 ( - 2

le m-e m2°

Statistics for the second component in a two-component system are obtained by changing all m 's

to m2 's and m1 0's to m20's, and vice-versa in the above expressions.

H.1 Three-Component System

The exponential three-component population distribution is:

(m (_M2) (_M3)

nO(ml, m2, m3 ) N mO 20 M30 (H.16)
i 1 0 m2 0 M30

Integrating over all possible combinations of mass using the constraint M = ml+ m2+ m3 gives the

number density as a function of total particle mass:

m - m ,
n(m) = J n(m 1,, m2, -m -- m2)dm 2dml (H. 17)

0

The exponential three component population distribution is:

N
(m) 10 - m20)(mI1 0 - m30)(m 20 - m30) (H. 18)

+ miom20 e m-e +mlom30 e m 3
-e -
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Three-Component System

Similarly, the average composition may be found by integrating:

mln(ml, m2, m - mI - m2)Am2Aml

i

o o

m(m -ml)

n(m)

mln(ml, m2 m - m - m2 )
·- ,,, ,,,t,, ,2' dm2 dm 1m "{m WrskIIrJ

fI
_0 0

m n(m)

Evaluating and simplifiying this expression yields:

NO.,. e(t H, 1 -on) n)e -o) ) - ( )+ 
(no -m) (Ho -om) (n 0-mO)

ntton- °(D - N))
(NO -o) 

eMjfl~Q(m -0 )-e-"" M o(O -m)+eM/'m~(mo_ -mi) (H.20)

Using the identity from (H. 11) we use the second identity to calculate the standard deviation for

composition. However, the mean composition is given in (H.20) and we only need to find E[x1
2 ]:

m(m -m,)

JI m2 . n(m 1, m2, m - mi - m2)dm 2dml

(H.21)rr,.-21- 0 o
2. n(m)'-Ll J 

m2

Evaluation of this expression leads to the result:

E I21

e- MIm,om

(mo - m2)3( mo - m30)3
{M2(m, 0 -- m20 ) (mO - m30)2 - 2Mmo(mo - m20)(m,0 - m30 )

·[m20(ml - m30 ) + m30(m,0 - m2 0)] + 2m,0 [3m2om30 - 3m,0m2om3o(m20 + m,30 ) + m2(m2 + m2om30 + m3)]}

+/( -e-M/m3 03+2 e m3 )
+2m2 (mlo - m30)3 (m2 - Mr30)

-MIM20 3e m2

(mo - m 20) 3 (m 20 - m 30 )

(e-MmI20 _ e-M l3 )m20m30 - mO(e-M/'2m2O 0 - e M/m°m 30) 

(Mio - m20)(m,O - m30 )(m, - m30o ) J (H.22)
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particles

m(m -ml)

=fJ

ml n(ml, m2, m - mi -m 2)dm2dM 

(H.19)

M2 e-ImOm
t(MO - m 20 )(m,0 - m30 )

- -

-t'
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Appendix I: Scaling of the Distribution Splitting Method

The distribution splitting method for s species represents a multicomponent population as all

possible combinations of pure and mixed species distributions coupled with appropriate govern-

ing composition equations for each of the mixed distributions. For instance, in a system with two

components 1 and 2, there are two distributions representing each pure component and one equa-

tion to represent the distribution of mixed particles containing both components 1 and 2. One fur-

ther distribution must be included to describe the composition of the mixed particles containing

both I and 2. The total number of equations in this system are summarized in Table I-1:

Table I-. Summary of Distribution Splitting Equations - Two Component Case

Additional
Distribution Number Composition

Distribution Distributions
Components Equations EquationsEquations per Number

Distribution

One component 2 0 2

Two components 1 1 2

Similarly, for the case of three components, the total number of distribution splitting equations

can be summarized as follows:

Table I-2: Three Component Distribution Splitting Equations

Additional
Number CompositionDistribution TotalDistribution Distributions

Components Equations EquationsEquations per Number
Distribution

One component 3 0 3

Two components 3 1 6

Three component 1 2 3

For instance, in the case of two components, there are three different ways of choosing two com-

ponents and thus there are three number distribution equations to describe mixed distribution of
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two components. Because each of these distributions contain two components, one composition

distribution is necessary to define the composition each two-component mixed number distribu-

tion. For a four component system, the number of distributions needed for the distribution split-

ting method are summarized in Table I-3:

Table 1-3: Four Component Distribution Splitting Equations

Additional
Distribution Number Composition Total

Comonents Distribution Distributions EquationsComponents EquationsEquations per Number
Distribution

One component 4 04 
=4 I 4

Two components (4) 61 (4 2 12

Three component (3 4 2 (4 3 12

Four component 3 4 3 (4 4 4

As shown in by the pattern

described by the summation:

revealed in Table I-3, the total number of distributions can be

E J~~~(I)~~~ *i ~(1.1)
i= I

where s is the total number of species in the system and (S) represents a combination. Manipulat-

ing this expression slightly reveals a closed form for the number of distributions:
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= s! (s -1)!
.) i = ( i - ) ( x -- 1)!

i=l i=l i=l
s s

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _S_ -S
E [(s - 1) - (i - 1)]! (i - 1)! i 

i- i~ (I.2)s-l

i=O
S

i= I

where the last equality relies on the condition:

n

() = 2n (1.3)

i=O

This last relation comes from probability theory. Consider the total number of possible outcomes

of a coin tossed n times. Each coin toss has two possible outcomes, so the total number of possi-

ble outcomes are the product of the number of possible outcomes of each coin toss, or 2n. Alter-

natively, consider n distinct coins. The total number of different ways that i heads can be chosen

from this group of n coins is (n). This is also equal to the otal number of different outcomes from

flipping n coins where there are i heads. Of course, the total outcomes of flipping a coin n times

is this quantity summed over all possible number of heads, or:

n E ~~~ ~ ~~(n).~ ~(1.4)
i=O

Thus the distribution splitting method scales as s 2s - with the number of components. If each

distribution has p node points, the total number of equations needed for the distribution spitting

method isp -s- 2 - 1. This represents a considerable improvement over the scalingpS required for

a full multidimensional surface solution. However, this reduction in scaling is obtained with

some limitation in the ability to truly represent all compositions. In the multidimensional case

component i will always have number density at any total mass m = mI + m2 + ... + mn defined for

any value of xi = mi/m as given by n(m1, m2, ..., ms). However, this is not true for the distribution
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splitting method. For example, a two-component model is comprised of pure number density dis-

tributions for components 1 and 2, as well as one mixed component distribution with a corre-

sponding composition distribution:

Number density - Component 1 Number density - mixed

I I I I
ni(m) I i nl 2(m)

ml

n 2 (m) A k xl(m)

""z hk /2

m

m

Number density - Component 2 Mixed Composition

Figure I-1: Mixed composition distribution example.

At a given mass, there are only three possibilities for the composition of a particle, xl = 1, xl = 0

and xl as defined by the mixed composition function.
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