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Chapter 1

Introduction

1.1 Background

Jennifer Roberts, the mother, is training to become a surgeon and is at her
[Virtual Environment] station studying past heart operations.

She previously spent many hours familiarizing herself with the structure and
function of the heart by working with the virtual-heart system she acquired after
deciding to return to medical school and to specialize in heart surgery. This sys-
tem includes a special virtual-heart computer program obtained from the National
Medical library of physical/Computational Models of Human Body systems and
a special haptic interface that enables her to interact manually with the virtual
heart. Special scientific visualization subroutines enable her to see, hear, and feel
the heart (and its various component subsystems) from various vantage points
and at various scales. Also, the haptic interface which includes a special suite of
surgical tool handles for use in surgical simulation analogous to the force-feedback
controls used in advanced simulations of flying or driving), enables her to prac-
tice various types of surgical operations on the heart. As part of this practice,
she sometimes deliberately deviates from the recommended surgical procedures in
order to observe the effects of such deviations .... "[5, p25]

Virtual environments, as exemplified in the vision above, are systems that integrate com-
puters, man-machine interfaces,and human operators to synthesize perceptual immersion into
artificial reality. These systems have the potential to allow humans to create design proto-
types quickly and inexpensively; to train in complex, hazardous environments; to operate on
remote tasks through transmission of sensorimotor signals; and create artificial environments
that are physically unrealizable. Clearly, the environment being modeled must be accurately
represented in order to be perceptually acceptable as a substitute for reality. Furthermore,
understanding of the human psychophysical system is necessary since virtual environments
transfer information to and from the human operator through sensorimotor signals. These
requirements impose strict constraints on the bandwidth, fidelity, and non-obtrusiveness of
the virtual environment. With continuously increasing growth in computational speed and
hardware, however, virtual environments are becoming feasible as powerful tools to assist
humans.
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CHAPTER 1. INTIOD UCTION

An important modality of virtual environments that has received little attention relative to
visual and auditory forms of feedback is haptics, or the touch channel. Haptics is unique from
vision and audition because both sensing and actuation occur on the environment. The ability
to haptically explore and manipulate objects greatly enhances the human's sense of immersion
in a virtual environment [.5]. A synergistic effect occurs when visual, auditory, and haptic
cues are combined and presented to the user. This coupling between different sensorimotor
channels is meaningfully exploited in software to facilitate and enhance representation of
multi-modal scenes.

Advances in haptic interaction have been primarily limited by the performance of haptic
interfaces. Haptic interfaces typically are electromechanical devices that interface with the
user's hand or finger and transmit position and force information bidirectionally between the
human and the virtual environment. Programming the force behavior of the haptic interface
as a function of position is equivalent to controlling the mechanical impedance felt by the
user [8]. Design constraints on haptic interfaces are motivated to achieve psychophysical
transparency between the desired programmed behavior of the virtual environment and the
human mechano-sensorimotor system. Inertia and friction, for example, in a haptic interface
only serve to corrupt the transmission of sensorimotor signals and reduce fidelity. The device
used in this thesis, the PHANToM haptic interface [11], is a high-performance ground-based
haptic interface with th ree active translational and th ree passive rotational degrees of freedom .
The PHANToM uses a lightweight cable-driven parallel linkage to transmit haptic signals
to and from the human fingertip (Section 5.1.2). Because of the high bandwidth and fidelity
exhibited by the device, the Phantom succeeds in satisfying the transparency requirement.

In addition to hardware, an intrinsic part of a modeled virtual environment is the software
representation and simulation of objects that comprise it. Three major components of a
dynamic environment simulation are listed below.

1. Dynamics simulation.

2. Collision detection.

3. Contact force modeling.

Haptic display is primarily concerned with generation of interaction forces (item 3 above).
Because visual and haptic display of object characteristics share similar attributes, some
mathematical techniques from the established field of computer graphics [6], for example
collision detection (item 2), can be borrowed to provide insight into methods for haptic dis-
play. Although parallels between visual and haptic simulation exist , the high bandwidth of
the human haptic system requires a considerably faster display of information, particularly
at the local areas of contact [5]. Furthermore, many significant mechanical attributes such
as surface friction, texture, and impedance are not appropriately addressed in the frame-
work of graphics. Thus, haptic display necessitates a fundamentally separate perspective for
simulation design.

A coherent framework for haptically representing shape, surface properties, and bulk
properties of rigid objects is discussed in [21]. Interaction force algorithms have been de-

veloped for rigid polyhedra that are based on static geometry constraints. The perception
of a rigid surface is conveyed if the programmable stiffness is made high relative to the hu-
man's proprioceptive sense for discerning stiffness. A point-based paradigm is described

14



1.2. AMIOTIVATION

in [26, 27] which computes interaction forces based on Hooke's law when virtual contact is
made. Another constraint-based display system utilizes edge contact models in addition to
vertex constraints to generate interaction forces [9, 10].

A smaller subclass of objects in our environment are better classified as deformable me-
dia. Examples include rubber, foam, and biological tissue. Deformable objects are compu-
tationially more complex to simulate due to the dynamic behavior they exhibit in their local
reference frames. Haptic interaction is simplified in rigid object simulations because, apart
from rigid body dynamics, items 1 and 3 above are decoupled. In other words, assuming all
objects are grounded in the environment, interaction forces with a grounded rigid object do
not affect the state of that object. Simulation of deformable objects, conversely, requires tight
computational coupling of items 1 and 3 in order to display accurate forces to the user. The
deformation force and geometry of a model is determined by a combination of interaction
modeling and calculation of internal reaction forces.

This thesis describes a prototype virtual environment system, IDMS (Interactive De-
formable Media Simulator), for haptically and visually interacting with deformable objects
in real-time. A discrete simulation model is used to represent media by a network of energy
storage and dissipative elements connected to point masses, or atoms. Volumetric properties
are achieved by (1) using a two-layer thick slab filled with tetrahedral elements to repres-
ent the surface of the object and (2) grounding atoms on the external surface of the slab to
their respective equilibrium positions. Real-time interaction is achieved by assuming local
deformation near the point of interaction; computation power is conserved by only simulating
those tetrahedral elements that lie within a bounding sphere centered at the interaction point.
Models are stored using pig and fern file formats (Appendix B) to visually and haptically
describe object properties. respectively. Generation of models is achieved by modifying pre-
existing models through either programmed or manually controlled forces. The following
section discusses the motivation behind developing IDMS.

1.2 Motivation

Integrated haptic and visual simulation of deformable media has potential applications in a
broad range of fields. Applications in two primary fields are briefly addressed below.

* Medicine
Virtual environments will play an important role as high-performance training tools in
medicine. Medical students will be able to learn about the human anatomy interact-
ively by probing sophisticated models ad infinitum, without accessing human cadavers
or invading the privacy of live human models. By equipping a haptic interface with
an application specific tool such as a scalpel, students will be able to practice surgical
procedures, which require a large degree of hand-ese coordination. on virtual mod-
els. Modeling interaction with biological tissue in these procedures requires real-time
simulation of deformable media.

* Computer-Aided Design
Current state-of-the-art computer-aided design (CAD) tools lack the ability to truly
interact with three-dimensional objects. Three-dimensional user input is transmitted

15



CHAPTER 1. INTRODUCTION

through two-dimensional projections of various views and a non-force-reflecting stylus.
The ability to both explore and manipulate with three-dimensional force-reflecting
haptic interfaces will allows designers to utilize their creativity much more effectively.
Engineers could easily mold virtual clay to construct prototypes and proof their ideas
before deciding on a design. The ability to interact with tangible three-dimensional
objects will give engineers a heightened sense of confidence before spending precious
money on tooling and manufacturing. The existing CAD primitives of cutting, copying,
and pasting combined with the haptic channel of interaction will provide engineers with
powerful creative tools.

1.3 Organization

* Chapter 2 discusses the domain of deformable media that is addressed by this thesis.
Requirements for a real-time interactive deformable media simulator are described.
Lastly, a review of literature related to deformable object simulation is provided.

* Chapter 3 describes and justifies the finite element modeling approach used to cap-
ture the significant physics of deformable media. Several features of the approach are
described in correlation with the requirements of Chapter 1.

* Chapter 4 describes the mathematical framework used for updating the state of the
model dynamics. Stability is discussed in terms of the model physical parameters and
the simulation time step.

* Chapter 5 discusses the hardware and software architecture that comprise the imple-
mentation of IDMS. The overall system loop that concurrently executes haptic. envir-
onment. and visual processing is also described. Algorithms for generating interaction
force and simulating local dynamics are presented. Lastly, techniques for automatically
and manually generating models are discussed.

* Chapter 6 presents results from fundamental haptic interactions with IDMS. Visual
and haptic information is presented for each interaction to illustrate the versatility and
functionality inherent to IDMS.

* Chapter 7 presents a summary of the features of IDMS and offers conclusions for further
research that will enhance the performance and functionality of IDMS.

16



Chapter 2

Problem Domain

2.1 Scope

Within the perceptible range of the human proprioceptive system, deformability qualitatively
encompasses a vast spectrum of objects ranging from highly compliant materials such as soft
foam to relatively stiff media such as highly viscous gels. Somewhere along this deformab-
ility spectrum lies a band of objects that is meaningful and feasible for real-time dynamic
simulation in a virtual environment. As described in the Introduction, a major application
area of this research is surgery simulation, which requires realistic modeling and simulation
of biological media. Without loss of generality, biological media provide a meaningful and
useful context for addressing the issues inherent in designing an interactive deformable me-
dia simulation. A broader, perhaps unrelated, range of deformable objects can be simulated
using this context as a coherent perspective. The following assumptions are made about the
material properties of biological media to assist in the motivation of design requirements for
such a system and incorporation into a virtual environment setting.

1. Local influence
Many interactive medical procedures such as suturing, incising, palpating, dissecting,
and retraction primarily have local yet complex influence on the biological object.
The forces induced by these interactions, however, do not substantially propagate to
affect the global state of the object. This result is fundamentally due to the highly
viscoelastic, overdamped behavior of tissue and the high mechanical coupling with the
skeleton through connective tissue in the surrounding environment.

2. Nonhomogeneity
Biological media are characterized by a nonhomogeneous composition of materials with
potentially discontinuous variations in mechanical impedances. Some forms of tumor-
ous tissue, for example, exhibit much stiffer mechanical properties than healthy tissue.
Underlying bone is perhaps better characterized by a rigid representation than a de-
formable one. Furthermore, surface properties such as friction may vary considerably
depending on the tissue type.
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CHAPTER 2. PROBLEM DOMA IN

2.2 Requirements

This section focuses on the design requirements of an interactive deformable media simulation
environment given the context described above.

2.2.1 Real-time interactivity

Real-time response in a virtual environment is derived by the bounds on perceptual immersion
defined by the human sensorimotor system. Each sensorimotor modality of the human has
information refresh rates that need to be satisfied or else the perceptual illusion of reality will
not be conveyed. The lower bound for visual modality requires a throughput rate greater
than 8 to 10 frames per second and a maximum delay of 0.1 sec [5, p.250]. These values are
primarily for static environments with slowly moving objects. Environments which contain
higher frequency motion require frame update rates on the order of 60 Hz to achieve visual
realism. The haptic modality requires considerably faster update rates to establish sufficient
performance. Specifically, the bandwidth of tactile and force feedback within the virtual
environment should exceed 1 kHz [5, p.184].

2.2.2 Passivity

An important but often overlooked property desirable of an interactive simulation is passiv-
ity of work interaction. Passivity implies that no net positive work transfer occurs from
hardware or software elements that lie between the simulation and the human during an inter-
action. A passive object in the virtual environment should not appear active to the human.
The environment dynamics may or may not be passive depending on the nature of the en-
vironment; an example of an active environment is muscle tissue in which energy is being
produced internal to the environment. Although strict passivity is perhaps too conservative
a requirement [2, 3] for haptic interaction, it is a useful robustness criteria and measure of
haptic display performance.

2.2.3 Nonhomogeneity

As exemplified above in 2.1 for the case of biological media, nonhomogeneous material proper-
ties such as density, stiffness. and viscosity need to be sufficiently captured by the modeling
representation in order to accurately convey changes in mechanical impedance felt by the
haptic interface. Humans rely on the perceived continuity of change in force to discriminate
between internal boundaries of different media. For example, doctors learn to detect tumors
by palpating and stroking tissue, relying heavily on perceptual changes in stiffness to identify
their presence.

2.2.4 Reformability

As mentioned above in the context of biological media. surgical procedures involve cutting,
removing, and joining. Algorithmically, the simulation should provide functionality for per-
forming such operations on the virtual model. More importantly. the model representation
should be flexible enough to allow for such real-time alteration of object characteristics using
the haptic and visual channels provided.

18



2.3. PREVIOUS APPROACHES

2.2.5 Data file format

A file format for coherently storing, reading, and writing model data by the simulation is an
important design requirement. A predefined standard for storing physical parameters and
geometry allows for a virtually infinite set of models to be defined easily. The use of a file
format also allows for creation of models by other software tools and conversion from other
model definition protocols used by other simulations. Libraries of models can be created
to represent systems that are better represented as a hierarchical collection of independent
objects, an obvious example being the human body.

2.2.6 Haptic scanning

In the context of visual images, scanning converts the real visual properties of an image into
a representable data format for later processing. Analogously, the notion of haptic scanning
is introduced. A real object would be haptically scanned for geometric, mechanical, and
material properties to produce an artificial copy that would serve as a haptic representation for
that object. This process would allow virtual models to be easily generated from existing real
objects. Although the mechanics of haptic scanning are perhaps not appropriately addressed
by the simulation itself, the modeling approach used in representing objects for the simulation
should be rich enough and amenable to incorporation of data from haptic scanning.

2.3 Previous approaches

This section describes previous research relevant to deformable object simulation.
Barr [1] describes an approach that permits global and local deformations of solid geomet-

ries. Tangent and normal vectors of the deformed model geometry are achieved by applying
a transformation matrix to the tangent and normal vectors of the undeformed geometry. A
series of deformation operations (including tapering, twisting, bending, and scaling) can be
performed on undeformed solid primitives by concatenating transformation matrices in a
hierarchical fashion. These methods, however, are not based on underlying physical models
and hence do not model nonhomogeneous physical behavior or allow for generation of haptic
interaction forces.

Terzopoulos [23] formulates a method for modeling deformable objects using elasticity
theory. Partial differential equations are derived using classical mechanics and solved using
finite element modeling techniques. External forces are added to represent gravity, fluid
forces, and collisions with rigid objects. A similar framework is used by Terzopoulos [24]
to address the inelastic deformation behaviors of viscoelasticity, plasticity, and fracture. The
resulting simulation of object dynamics are realistic and accurately represent natural phys-
ical behavior. The finite element calculations used in each of these methods, however, are
prohibitive for real-time simulation and thus do not satisfy the interactivity requirement.

Pentland [16, 17] presents a visually real-time (15 Hz) solid modeling system that allows
users to mold "clay" by applying external virtual forces. A family of superquadrics are used
as the basic volume primitives for describing the object geometry. The finite element method
is utilized to derive the matrix differential equations describing the dynamic behavior of each
object. Computational expense is minimized by using a modal method to only simulate the
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CHAPTER 2. PROBLEM DOMAIN

precomputed low-frequency modes of the system. The approach, however, does not address
generation of haptic interaction forces nor real-time simulation at haptic refresh rates ( 1
kHz). Furthermore, interactive reformability does not fit within the modal-based framework
since modification of object structural properties would require expensive recomputation of
the modal vectors.

Pieper [18] describes a system for animating human facial tissue using a finite element
approach to globally model tissue behavior. The structural and geometric topology is rep-
resented using a discrete simulation model, a network of discrete masses and mechanical
elements stored in graph form. This representation, similar to the one used in this thesis,
is appropriate for describing nonhomogeneous physical parameters and nonlinear mechanical
relationships. The graph method is also highly amenable to reformability, facilitating addi-
tion and removal of nodes and links during run-time. Pieper's approach for modeling facial
tissue, however, is not appropriate for modeling volumetric behavior of deformable objects.
Furthermore, haptic interaction issues are not addressed. Pieper [19] also discusses a system
for simulating plastic surgery that is based on finite element modeling. A global stiffness
matrix is utilized for solving the differential equations. This method, however, is aimed at
task-level analysis and similarly does not address display of information through the haptic
channel.

Cover [4] presents a methodology for interactive deformation of surfaces by using the
concept of active contours, essentially energy-minimizing splines. The surface is discretized
as a mesh of points and spring-like connections, each point containing information about
its direct neighbors and the external force being applied to the point. A "home" force is
also applied that acts to restore each point to its equilibrium position. A gradient descent
approach is used to update the point positions in the mesh in an energy-minimizing manner.
The internal energy of the contour, however, is globally controlled by only two parameters
that affect elasticity and flexibility. Hence, local variation in physical characteristics are
not captured by the active contour. Furthermore, it is not clear whether this approach is
amenable to easy incorporation of haptic scan data. Lastly, real-time interactivity is not
addressed in the framework of haptics.

Each of these methods are missing fundamental features that are necessary to satisfy
the requirements for true simultaneous haptic and visual interaction with deformable media.
The following chapter discusses the modeling approach used in IDMS and appeals to the
requirements listed above.
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Chapter 3

Physical Modeling

Modeling of deformable objects is indeed a nontrivial task. Unlike rigid objects, deform-
able media have significant internal dynamics and thus a state-based approach must be used
to solve for interaction forces. A physically-based approach grounded in applied mechanics
ensures that the model will capture the real world idiosyncrasies of deformable media. A
molecular level model, however, is clearly not necessary for a virtual environment setting in
which perceptual and cognitive abilities limit the range of information that can sensed. Thus,
a viable model must capture sufficient properties to prove perceptually realistic while main-
taining enough simplicity to allow for real-time simulation. The following chapter describes
the fundamentals behind the modeling approach used in IDMS and the features that make
the approach highly amenable for haptic interaction.

3.1 Approach

The modeling approach used in IDMS utilizes a combination of finite element modeling
(FEM) theory and surface encapsulation of volumetric properties to convincingly convey
the feeling of deformation to the user. In mathematics, a modal decomposition separates
a dynamic system into a linear superposition of normal eigenvectors. Carrying this modal
decomposition metaphor over to physical modeling, the haptic model only needs to represent
the most significant modes of deformation to the user. The model is comprised of a two-
dimensional layer of finite tetrahedral structural elements, networked together to form the
surface of the deformable model (see Figure 3-1). Tetrahedral elements (dashed line) are used
because they are structurally stable and have low mass density, requiring minimal discrete
elements per unit volume to represent them. The encapsulation of volumetric effects is
achieved by adding a restoring force between the top surface (bold line) of the tetrahedral
mesh and the equilibrium position of the top surface. The user only interacts with the
top surface of the mesh, both visually and haptically. The notion of a haptic window is
introduced to allow simulation of object dynamics local to the interaction point. Only media
that falls within this geometrically shaped window is simulated in order to generate real-time
response. Combined, these features serve to haptically and visually display the significant
modes of deformation to the user.

A discrete simulation model (DSM) is chosen to represent the surface mesh described
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Figure 3-1: A fragment of media represented by a two-dimensional layer of tetrahedral
elements (dashed line). Volumetric effects are simulated by applying a restoring force between
the top surface (bold line) and the equilibrium position of the top surface.

above. A DSM is a discretized network of lumped parameter elements and atoms that ap-
proximates the physical behavior of a continuum media. In the present context of deformable
objects, atoms are point masses connected to neighboring atoms through constitutive mech-
anical elements. Each tetrahedral element is represented by four link elements and four
bounding atoms, shared with neighboring tetrahedra. The DSM is stored in graph form to
facilitate alteration of the model topology. Simulation of the DSM state is accomplished by
a multi-step algorithm that is evaluated within the topology of the model. During each time
step, forces are summed for each mobile atom based on external forces and internal forces
from neighboring elements. The two state variables of position and velocity for each atom
are then numerically integrated resulting in the DSM state for the next time step.

The restoring force between the top layer of the mesh and the equilibrium position is
achieved within the framework of the DSM. Essentially, a massless immobile home atom
is added at the equilibrium position of each atom located on the surface of the mesh. A
connecting home element is added between the surface atom and its respective home atom.
As the virtual mesh is deformed interactively, the superposition of forces produced by home
elements in tension compactly simulates the volumetric compression of the continuum media.
Figure 3-2 displays the equilibrium and deformation states of a media fragment, explicitly
showing the home elements and atoms for the surface atoms that are significantly deformed'.

The following section describes the features of the modeling approach mentioned above in
light of the requirements of an interactive deformable object simulation described in Chapter
2.

'Note that during a normal IDMS session, only surface elements and surface atoms are visually rendered.
Home elements, home atoms, and interior atoms and elements are visually hidden.
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3.2. FEATURES

Figure 3-2: A fragment of dsm media in equilibrium is shown on the left. A sample deform-
ation and the home atoms and elements are explicitly shown at right.

3.2 Features

3.2.1 Surface representation

Assuming small deformations, haptic interaction can be viewed as primarily a surface phe-
nomena. Although the objects being modeled are clearly three-dimensional volumes, the
interactions being modeled can be approximated as occuring near the object surface. As dis-
cussed below, a surface representation of haptic properties is spatially and computationally
efficient compared to volumetric models of object physics.

Spatial properties

From a spatial perspective, a surface representation is highly desirable. The amount of
geometric and haptic data required to describe the object scales in proportion to the surface
area instead of the object volume. Furthermore, the process of haptically scanning in real
object properties will likely be implemented by measuring surface impedance and material
properties through the use of an instrumented force-measurement device. Mathematically
speaking, this procedure can be described as projecting multivariable data captured from a
measurement input space onto the geometric output space. Given that measurement data will
spatially cluster about the surface of the object, the use of a surface model for representing
haptic properties facilitates the data projection and registration process. Conversely, use of a
volumetric model would imply projection of the measurement space onto a higher dimensional
space, requiring the use of interpolation or other data-insertion techniques to fill the output
space.

The home element described above is a discretized encapsulation of the local surface
impedance and volumetric properties in the modeled continuum object. In the current gener-
ation of IDMS, each home element is a second order representation of the surface impedance,

N, NI-1 "I,,' -"�

I/ -"-�
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storing elastic and viscous properties. The spatial density of home elements is governed by
the sampling size of tetrahedral elements used. Borrowing principles from discrete-time sig-
nal processing [15], a larger resolution of tetrahedra will capture higher spatial frequency
content of the continuum media. A larger resolution, however, increases data storage and
imposes a greater computational load on the haptic rendering algorithm for displaying the
data.

Computational properties

A surface representation allows for computationally tractable rendering of virtual objects.
Real-time simulation of objects using volumetric finite elements throughout the object are still
intractable even on supercomputers. A surface model reduces the computational complexity
from requiring O(n 3 ) operations for a volume representation to only O(n2 ) operations for a
surface representation. Given this reduction, desktop workstations can suffice as real-time
simulation engines.

3.2.2 Local simulation

Current haptics technology primarily involves environment interaction with fingers or tools
that have localized mechanical effect. Just as a graphics simulation only renders those objects
that fall within the viewing window of the monitor, a haptics simulation need only render
those effects that are spatially local to the interaction point to minimize computation effort.
This haptic "window" is not as spatially rigid as the rectangular viewing space of a tradi-
tional graphics display because physical elements throughout the model contribute some work
transfer to the user. Thus, the haptic window must selectively include enough elements to
the point of diminishing marginal return for computational cost versus perceptual realism.

A DSM facilitates local simulation of dynamics. As explained in more detail in Section
.. 5.2, local simulation is achieved by only simulating media that lies within a sphere centered
at the interaction point; the rest of the model is immobilized and hence not unnecessarily sim-
ulated during each time step. The size of this sphere is empirically chosen such that stroking
along the surface of the virtual object is haptically smooth. Although not implemented in the
current generation of IDMS, a slower background process could be added to update global
dynamics. This parallelism of different time scale processes is amenable to the concurrent
run-time model used in the software implementation of IDMS (Section 5.2).

3.2.3 Nonhomogeneity

Nonhomogeneity of model physical characteristics are compactly represented in the DSM
framework. Variations in density can be achieved varying atom mass values appropriately.
Nonhomogeneous stiffness and viscosity is similarly achieved by varying the physical para-
meters of DSM elements. Furthermore, the DSM framework conveniently allows for regions of
higher resolution meshing of tetrahedral elements, especially where surface properties contain
higher spatial frequency.

24



3.2. FEATURES

3.2.4 Nonlinearity

In addition to nonhomogeneity, many materials exhibit nonlinear mechanical behavior. Using
a solid mechanics model, the regime below the yield stress of a material can be represented
by linear relations; above this point, the material becomes plastic and nonlinear stress-strain
behavior results. Given the graph form (Section 3.3) used to store the DSM, each element
may contain a nonlinear constitutive relation F(1, i) to produce an internal force. Additional
state variables may be added per element as necessary for other force generating relations.
For simplicity of computation and modeling, however, all the models used in this thesis use
linear relations.

3.2.5 Boundary conditions

Boundary conditions can be easily applied by immobilizing atoms. Each atom data structure
contains a boolean specifying the boundary condition, fixed or free, of the atom (see Section
3.3). The DSM simulation algorithm saves computation power by only updating the state of
those atoms that have a free boundary condition. Also, element forces are generated only for
elements that are bounded by at least one mobile atom.

3.2.6 Reformability

The graph-based method (Section 3.3) and data structures used to represent the DSM greatly
facilitate appending and removing atoms and elements from the model. Different interaction
procedures can be implemented by producing different effects on the topology of the graph.
For example, removal of material can be achieved by deleting atoms and elements from the
graph. Slicing, a mass-conserving procedure, can be accomplished by removing elements
along the cutting path. Gluing and joining multiple models together is possible by adding
elements between existing atoms of the models.

3.2.7 Parallel processing

The DSM approach scales well with increased processing power, both in single and multi-
processor computer architectures. More processing power translates into a greater number of
atoms and elements that can be simulated at required haptic servo rates, allowing rendering
of more complex models. In a multi-processing system, each processor can be assigned a
region of the model to simulate. Run-time model data would be stored in central, shared
memory to facilitate data coherency and access between processors.

3.2.8 Data file format

The fern and plg 2 file formats described in Appendix B are the off-line storage protocols for
representation of model data used in IDMS. All initial conditions, physical parameters, and
topology information used in constructing the data structures and connectivity are completely
contained in these files.

2The pg file format is a subset of the more descriptive Wavefront Technologies obj file format, which
will be integrated into later iterations of IDMS
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3.3 Data representation

Storing the DSM data in graph form allows for flexibility and efficiency in computation. Each
node in the graph represents an atom and each link represents an element. In conventional
FEM techniques. matrices are used to store state and material property as the simulation
progresses. Often these matrices are sparsely filled, thus occupying an unnecessary amount
of memory. For a model with N atoms and two state variables per atom, use of matrix
storage amounts to 0(4N 2 ) storage. Graph storage, conversely, grows linearly with N and
is only O(N). Graph storage is highly amenable to the design requirement of reformability.
As material is removed, added, or joined during the simulation, nodes and links in the graph
can be correspondingly manipulated. Matrix-based methods are essentially limited to static
topologies, because appending and deletion are algorithmically difficult and time-consuming.

In addition to the spatial advantages of linear storage and malleability, graph methods
are time efficient relative to matrix methods. Complex computationally-intensive numerical
techniques are necessary to invert matrices. Assuming the best case scenario for matrix
methods, a matrix multiplied by a state vector must occur during every simulation loop.
This operation entails 0(8N 3 ) operations. Conversely, solving for the state using graph
methods only requires O(N + L) operations, where L is the number of elements in the model.

The following sections describe the data structures that comprise a DSM.

3.3.1 Atom

The data structure, A, for the atom is shown in Table 3.13. The variable num contains the
atom's number in the list of atoms for the parent model, M. A list of neighboring element
structure addresses is maintained to facilitate in calculation of external forces on the atom.
The surface condition sc holds a boolean determining whether the atom is located on the
exterior of the model (external), hence visually and haptically sensable, or on the interior
(internal). The boundary condition bc is also a boolean determining whether a position
constraint is being imposed (fixed) or not (free). Finally, the spatial condition spc specifies
if the atoin is inside or outside the haptic window.

3.3.2 Element

The element data structure is shown in Table 3.2. The num contains the element's number
in the list of elements under the parent model, M. The physical parameters for the element
are stored in variables k, b, and 1eq. Structure addresses &A0 and &A1 of the element's
two bounding atoms allow the state variables and I to be calculated. The state variables
combined with the physical parameters are used to evaluate the internal element force f
during each simulation loop.

3.3.3 Model

The model data structure, M, is the root node of the DSM graph and stores individual lists
of the N atoms and L elements that comprise it (Table 3.3). As a preprocessing step, a list

3ANSI C notation is used where appropriate for addressing.
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nurn

m
P

Peq
x!
X 2

k2
f

&£°, &, . &£k-l
bc
sc

spc

atom number
mass
absolute position
absolute equilibrium position
differential position
differential velocity
time derivative of xl
time derivative of x2
net force applied on atom
list of neighboring elements
boundary condition (fixed or free)
surface condition (external or internal)
spatial condition (local or non-local)

Table 3.1: Data structure for atom.

Table 3.2: Data structure for element.

A

num element number
k stiffness
b viscosity
I length

i time derivative of length
1eq equilibrium length

f net internal force
&8A°, &A1 list of neighboring atoms
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name

V.A O, A' , .. , &AN - I

kA 0, &A,. .., &ANS- I
&£0 , &',..., &£~- 

model name
list of ilodel atoms
list, of model surface atonis
list of model elements

Table 3.3: Data structure for model.

of the NS atomrs which are on the surface of the model is also included in the model data

striucture. This list of surface atoms facilitates evaluation of collision detection algorithms by

reducing the size of the search space; atoms that are beneath the surface need not be searched
for potential interaction with the user.
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Chapter 4

Mathematical Framework

4.1 Simulation

A state-space approach is used to analyze and simulate the model dynamics. Briefly, in
a state-space approach, the mathematical model is represented by a series of first order
differential equations. The order of a dynamic system is determined by the number of initial
conditions that need to be specified. In the DSM approach, there are two state variable
vectors, x1 and x2, for each of the N atoms in the model, resulting in at least a 6N order
system for the entire model. 6N is a lower bound on the order of the system because the
constitutive relations used to calculate internal element forces may be nonlinear. The set of
differential equations that defines the dynamic process of a model can be written as

x = f(x, u, t) (4.1)

where x is a 6N dimensional state vector of the process. Although the physics defined in
the element constitutive relations are time-invariant, they have the potential to be nonlinear
functions of x. Thus, the lack of linear time invariance (LTI) in the model precludes use of
the conventional convolution integral approach for solving the state of the dynamic system.

As will be explained later, the actual run-time order of the model is much less because
only certain atoms are simulated each time step, depending on the position of the haptic
interface. This "localizing" simulation feature due to use of a haptic window is fundamental
to realizing real-time deformation response. During the simulation, a multi-step algorithm
shown in Figure 4-1 is used iteratively to update the state of the model. Each block of the
diagram is explained in detail below.

1. Calculate externalforces

A'-+f l= t (4.2)

The external force on each mobile atom, A', in the DSM is calculated, as shown in
Equation 4.2, and stored in the atom's data structure. This step essentially finds the
input component f(u) in Equation 4.1. The external input can be supplied by a variety
of sources. Field forces such as gravity (feat = mig) and air resistance (fxt = -miil)
may be applied to each mobile atom. Interaction forces are applied locally to those
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/BEGIN SIMULATION

LOOP

CALCULATE
EXTERNAL FORCES

ON ATOMS

CALCULATE
INTERNAL FORCES

IN ELEMENTS

EVALUATE TIME
DERIVATIVE OF

EACH ATOM'S STATE
VARIABLES

INTEGRATE STATE
VARIABLES FOR

EACH ATOM----/
, END SIMULATION

Figure 4-1: Algorithm for updating the DSNM state.

surface atoms that come into contact with the haptic interface (see Section 5.5.1). The
versatility of the DSMI allows other external forces to be easily added as the environment
model becomes more complex. Examples include interaction with rigid environment
walls. collision between multiple deformable objects, and surface friction at the contact
patch.

2. Calculate internal element forces
Once all external forces on mobile atoms are calculated, internal element forces need
to be evaluated and stored in each element's data structure, £. This step is spatially
solving for the potentially nonlinear component f(x) in the topology of the model. The
constitutive element relations, nonlinear or linear. are determined during the modeling
process for the particular media being simulated. Currently, each element is composed
of a linear spring and dashpot in parallel and hence apply only linear elastic and viscous
forces. respectively. The following equations are used to update each element's state.

Equation 4.3 finds the difference vector. s, between the absolute positions of the two
bounding atoms A1 and A °.

s = iA+p - -.£i+Ao_+p
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The element's length, , for the current time step is found by taking the magnitude of
s. as shown in Equation 1.4.

e= I si (4.4L)

The unit dlirection vector, 9, between the element's adjoining atoms is consequently
found by Equation 4,1.5. 9 i,,~~~~ Sz~~ (41.5)
The scalar velocity of the element's length, i, is then found by applying a first order,
backwards difference filter to the scalar length data for that element (Equation 4.6).

= A(t£i-. , - $ l._l)/T+ ( - A)ei'i,_ (I,.6)

The magnitude of stiffness force present in the element is found by multiplying the
element's stiffness constant, k, with the difference between current element length, 1,
and element equilibrium length, leq. The stiffness force vector is found by scaling a with
the stiffness force magnitude (Equation 4.7).

fk= £'-+k(-41l -£'-leq)s (4.7)

The viscous force is similarly found by multiplying the element's viscous constant, b,
with I, and consequently scaling by this amount (Equation 4.8).

fb = P-b b(P-1) i (4.8)

Finally, the net force internal to the element is found by summing up the vector force
contributions of the various constitutive elements (Equation 4.9).

Ei-4f = fk + fb (4.9)

3. Evaluate time derivatives of state variables
The next block evaluates the time derivatives of the state variables xl and x2 for each
of the mobile atoms in the model. Equation 4.10 assigns the velocity, x2 , to the time
derivative of position, x1 .

= 2 (4.10)

The acceleration, x2, is set equal to multiplied by'the sum of forces acting on A i

as shown in Equation 4.11. The sum of forces is comprised of external forces A'-+f,
calculated in Step 1, and internal forces k=O Tie.f, calculated in Step 2. Only the

k elements that connect to A i are used in calculating the internal forces. This step
completes the vector differential equation defined in Equation 4.1.

k-1
x2i = i (Ai-f + Z £J-of) (4.11)

j=O

4. Integrate state variables
Several numerical algorithms exist for integrating ordinary differential equations of the
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form

= (x, t), (4.12)

where the function f is known [20]. These algorithms can be broadly grouped into the
following three classes.

(a) Predictor-corrector

(b) Bulirsch-Stoer

(c) Runge-Kutta

The dynamic process of a DSM, however, obeys the differential equation shown in
Equation 4.1, which has dependence on a causal input forcing vector u. Given that the
virtual environment simulation is progressing concurrently with non-deterministic user
interaction, haptic forces can only be calculated for the same time interval as is being
simulated.

Although predictor-corrector (PC) methods do not require evaluations of f at time steps
future to the current one (and hence obey causality), PC methods are only appropriate
for very smooth equations. Given the potential for discontinuous human input through
the haptic interface, PC methods are not desirable. Similar to PC methods, the Bulirsch-
Stoer (BS) method is only appropriate for differential equations containing smooth
functions on either side. Furthermore, the BS method requires evaluations of f at later
time steps, violating the causality criteria.

Runge-Kutta methods, of the algorithms listed above, are the most amenable to integ-
rating nonsmooth data. An nth order Runge-Kutta method makes use of n function
evaluations to calculate the state of the next time step. Although used in the literature
primarily for pedagogical purposes, the Euler method (n = 1) satisfies causality and
is computationally efficient since the additional computational cost of re-evaluating the
DSM loop for higher order Runge-Kutta methods is prohibitive. Currently, the Euler
method has proven sufficient for simulating a wide range of material properties in IDMS.

Equations 4.13 and 4.14 integrate state variables xl and x 2, respectively, using Euler's
method and the simulation step size, T.

x1[n + 1] = x [n] + i [n]T (4.13)

X2 [n + 1 = x2[n] + *2 [n]T (4.14)

Equation 4.1.5 updates the absolute position p for each atom by adding the differential
position x1 to the absolute equilibrium position Peq.

p[n + 1 = Peq + xl[n + 11 (4.15)

4.2 Stability

The numerical stability of the DSM simulation is governed by a combination of stability
of the continuous-time model, step size T, and the discrete-time integration method used.
Aside from guaranteeing a stable response, addressing stability is important for maximizing
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comrnputational efficiency, A time step that is chosen too large for the given physical parameters
will reduce simulation spee(l untnecessarily, hence compromising haptic fidelity.

Given the infinite set of complex three-dimensional topologies that can be simulated
using IDMS. it is impossible to produce a stability criteria for all models.Much insight, can
)be dierived, however, from analyzing a lunped paramet(!r rodel of a media, fragment arid
iusing the resulting intuition in designing global models, Stability of the models Iused in this
thesis was etermrined by mathematically analyzing a fragment of DSNM rmedia. creating a
global object with this media, and then cnl)pirically testing the object haptically for propler
feel. This procedure is repeated as necessary to converge on a perceptually c.onvincinlg, yet
stable model.

The system shown in Figure 4-2 is a one-dimensional simplification of the haptic win-
(low described in Section 3.2.2. Each mass is connected by a spring-dashpot element to its
nearest neighbors and its own equilibrium position, hence modeling the connecting and home
elements, respectively. The ends of the system are mechanically grounded, thus representing
the boundary condition at the haptic window border. This simple 6th order system is an
excellent vehicle for illustrating the stability of the discrete-time window model as a result of
varying physical parameters and T.

X, X X 

Figure 4-2: 6th order system model of haptic window.

The continuous time differential equation for the plant is
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are the system matrix A and state vector x respectively.
Using an Euler integration method, the discrete-time equation describing the state update

is

x[n + 1 = (AT + )X[n] (4.18)
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where T is not to be confused as a matrix. The stability of the system is governed by
the eigenvalues of the discrete-time system matrix, A: = AT + I. The following sections
describe the tradeoff between performance and stability in the z-plane using a root locus
approach. Nominal unitless parameter values of the media fragment are k = 15.0, b = 0.15
and n 0.002 and the time step is T = 0.001 sec, resulting in an uniderdamped system. In
the following figures, 'x' marks the location of the nominal pole positions. In each subsection,
one parameter is varied while holding the others fixed.

4.2.1 Stiffness

As shown in Figure 4-3. increasing the element stiffness k decreases the margin of stability
in the z-plane for a fixed value of 7. Stiffer systems have higher natural frequencies and thus
require smaller time steps for stable numerical simulation. Nevertheless, at T = 0.001 sec (1
kHz update rate). the range of representable stiffnesses is still greater than 10:1.

mE

-1 -0.5 0 0.5 1
Real

Figure 4-3: Z-plane root locus of haptic window: 15 < k < 400.

4.2.2 Mass

Decreasing the atom mass m forces the poles to the left on the real axis (see Figure 4-4,
eventually pushing them outside the unit circle. From a performance perspective, however,
lighter masses are desirable because they reduce the amount of high frequency momentum
transfer during interaction with the surface. Larger masses result in the perception of haptic
"noise" as atom masses transition on and off the master interaction point (see Section 5.5.1).
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-1 -0.5 0 0.5
Real

Figure 4-4: Z-plane root locus of haptic window: 0.001 < m < 0.002.

4.2.3 Viscosity

In the continuous-time system, decreasing the viscosity b moves the poles closer to the jw
axis while increasing the viscosity stabilizes the system. In the discrete-time case, lowering
the viscosity similarly forces the poles towards the unit circle, for example, shown at the
value of b = 0.1 in Figure 4-5. Larger values of b increase the frequency content of the plant
dynamics, also tending to destabilize the system (b = 0.9). For the nominal value of b = 0.45,
a viscosity range of approximately 10:1 exists.

4.2.4 Time step

From a performance perspective, a minimal time step T is desired in order to increase the
servo rate of the haptic display, hence improving the bandwidth of force display. Furthermore,
from a stability viewpoint, increasing T shifts the poles to the left on a path leaving the unit
circle, as shown in Figure 4-6. A smaller time step, however, limits the number of atoms and
elements that can be simulated each time step, reducing the computable spatial resolution for
a given window size.

3.5
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Figure 4-5: Z-plane root locus of haptic window: 0.1 < b < 0.9.

1

0.8

0.6

0.4

0.2

E
E 0

-0.2

-0.4

-0.6

-0.8

-1

-1 0
Real

0.5

Figure 4-6: Z-plane root locus of haptic window: 0.001 < T < 0.002.
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Chapter 5

Implementation

The framework described in the last chapter provides the mathematical core for processing
the DSM simulation. Integration of the DSM simulation into the IDMS system requires
a real-time computer architecture to meet the computational constraints of an interactive
virtual environment. Sections 5.1 and 5.2 describe the hardware and software architectures,
respectively, that provide the computational backbone for IDMS. Section 5.3 explains the
flow of processing from the initial state of obtaining model data files to the state of real-
time interaction. Section 5.4 proceeds to describe the real-time system loop. Section 5.5
explains the algorithms and data structures used to generate an interaction force both on the
environment and the user. Lastly, Section 5.6 describes the current methods of generating
data models for simulation in IDMS.

5.1 System Architecture

Several high-performance components comprise the hardware architecture that IDMS runs
upon. The choice of architecture is heavily influenced by the concurrent run-time model used
in simulating IDMS (see Section 5.2). Figure .5-1 illustrates the IDMS system architecture
and the flow of information between the components. Each of the components and their
connectivity is described below.

5.1.1 Human

The human delivers position to and receives force-feedback from the haptic interface. Visual
feedback is delivered to the human by the visual engine through a color display and the
optional use of StereoGraphics CrystalEyes shutter glasses, which provide a stereo display
of the screen to the user. In the current IDMS virtual environment setting, the user places
herself behind the haptic interface and the visual display is positioned directly behind the
haptic interface. Mathematically speaking, the origins of the user, haptic interface, and visual
display reference frames are placed roughly in a collinear fashion and the depth axes of the
three frames are approximately parallel. The visual display is positioned as close as possible
behind the haptic interface without interfering with the workspace of the device. Based on
empirical trials of different plans, this spatial layout allows the user to register haptic and
visual signals in a perceptually coherent manner.
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ENVIRONMENT 

HAPTIC ENGINE SBTAE VISUAL ENGINE

_ !

FORCE
HAPTIC INTERFACE P HUMAN

Figure 5-1: System architecture for IDMS. Wide arrows represent flow of sensorimotor sig-
nals; thin arrows represent flow of electronic data.

5.1.2 Haptic interface

The haptic interface provides information about the Cartesian position of the endpoint in the
form of encoder data for each of the haptic interface axes. Motor torques applied to the joints
of the haptic interface are mechanically transmitted through the device's structure, resulting
in an endpoint force applied to the user. The Phantom haptic interface is used in IDMS to
serve these purposes and is described below.

The Phantom haptic interface [11, 12] shown in Figure 5-2 is a three-degree-of-freedom
force-reflecting interface that relies on a cable-driven transmission and well-balanced mech-
anics for high fidelity transmission of position and force signals. The design of the Phantom
allows users to execute wrist-centered motions with a large workspace. Multiple Phantoms
can be interfaced with the hand allowing multi-finger interactions with the virtual environ-
ment. The endpoint of the Phantom is a passive three degree-of-freedom gimbal which allows
for torque-free rotations. This feature enables the Phantom to be treated as a point force
source at its endpoint. Various tools, passive or active, can be inserted into the gimbal to
model different types of interactions with the world. The simplest of these tools, a thimble,
is shown more clearly in the Phantom schematic in Figure 5-3 and allows the user to apply
and receive point forces at the fingertip. In the context of surgical simulation, a surgical tool
such as a scalpel or tweezer may be inserted into the gimbal to reflect the desired training
situation. For example, Figure .5-4 shows an instrumented passive tweezer mounted to the
gimbal. Binary contact information is provided through an electrical switch that is closed
when both tweezer sides are touching.

5.1.3 Haptic engine

The haptic computational engine is responsible for running processes that simulate the dy-
namics of the virtual environment (environment process), servo the haptic interface (haptic
process), and update the visual process on the visual engine with the current environment
state. As explained in Section 5.2, the haptic and environment processes are run as one com-
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Figure 5-2: The Phantom haptic interface.

bined process because of the inherent interactive coupling between the environment dynamics
and the haptic interface. A 120 MlHz Pentium-based computer running Linux. a unix-ba-sed
multitasking operating system, is used to serve these purposes.

5.1.4 Visual engine

The visual engine is responsible for displaying the state of the virtual environment at a
sufficient refresh rate to the human visual system. A 200 MHz Silicon Graphics Indigo II Ex-
treme workstation. used as the IDMS visual engine, is designed for fast graphics computation
because its architecture has an integrated graphics pipeline for processing low-level graph-
ics routines. The visual processes for IDMIS use the Silicon Graphics OpenInventor library
toolkit built upon the OpenGL protocol for platform independent graphics rendering. All
the figures in this text which display visually rendered scenes from IDIMS depict the viewer
window that is standard to the OpenInventor library. Incorporated into this viewer are basic
viewing primitives such as zooming, panning. rotating, lighting, and shading that are easily
controllable by the user. Lastly, data is communicated between the haptic and visual engines
over Ethernet using a UDP packet level connection, ensuring high throughput rates of data
transfer.
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Figure .5-3: Schematic of Phantom haptic interface (Courtesy of David Brock, MIT Artificial
Intelligence Laboratory).

5.2 Run-time Model

A concurrent [5., p259] model is utilized as the run-time software architecture for IDMS (see
Figure 5-5). Under the concurrent model, separate operations in the environment run in
parallel on different processors. In IDMS two main processes, which handle three discrete
subprocesses, run concurrently on the haptic and visual engines. The client process, running
on the haptic engine, is comprised of the environment and haptic processes and updates
at approximately 1 kHz. The environment and haptic processes are lumped together as
one process because the haptic interaction force is applied to the haptic interface and the
environment dynamics concurrently (see Section 5.4). The server process, which runs on
the visual engine and is equivalent to the visual process, receives environment data from the
client process and renders the visual state of the environment at approximately 30 Hz. In
order to decouple loading effects between the client and server processes. a separate shared-
memory process runs on both the haptic and visual engines to handle interprocessor data
communication. The client process updates the shared-memory process on the haptic engine
with differential changes in environment data, hence minimizing latency in the time-critical
client loop. The two individual shared-memory processes run synchronously using a hand-
shaking protocol and serve to transfer the entire visual state of the environment at 30 Hz.
Lastly, the server process runs synchronously with the shared-memory process on the visual
engine and hence also updates the screen at 30 Hz. Because Linux is not a preemptive
operating system. the shared-memory process on the haptic engine is currently initiated by
the client process at 30 Hz. The use of a preemptive real-time operating system. such as
LynxOS. would allow each process to be time-sliced during each unit of processing time.
allowing for more transparent decoupling between processes (see Section 7.2.1).
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Figure 5-4: Instrumented tweezers attached to Phantom gimbal.

\ concurrent architecture is appealing as a run-time model for II)IS for the following
roasolS.

1. Modal dromposition
By separating haptic and visual software onto two platforms. issues specific to each
sensorirnotor modality can be addressed and optimized independently. ssuming mod-
ular programming techniques are used, changes to visual rendering software will not
affect the performance or integrity of the haptic rendering software. Furthermore. each
platform can be tailored to the specific hardware needs of the modality it represents.
'File haptic engine. for example. requires bus slots for expansion cards to accornmod-
ate interfacing with strain gauges. amplifiers. encoders. and other analog and digital
input/output. Because of the extensive commercial hardware available for the PC plat-
form and tile memory-mapped I/0 on the bus. hardware interfacing is greatly facilit-
ated. Furthermore. other modalities. such as audition. can be addressed independently
of currently represented modalities without necessarily constraining hardware or soft-
Nware.

2. Parall-l processing
The use of additional processors increases computational power significantly by par-
allelizillg computation. Furthermore, each processor can be matched independentl to
the required refresh rate of the modality it represents. resulting in decoupling between
rendering rates for different modalities. As stated in Section 2.2. an adequate haptic
display requires at least 1 kHz bandwidth to convincingly transmit tactile and force

;),2, RUN41MEMODEL
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Figure 5-5: Concurrent model of run-time processing for IDMS.

information. Conversely, a visual display only requires at minimum a throughput rate
of 8 to 10 Hz and a latency of 0.1 seconds. Since the haptic process is part of a feedback
control system that includes the haptic interface, it is desirable to minimize computa-
tion delay in order to maximize force display bandwidth. Computation specific to the
visual modality is separated onto the visual engine, thus parallelizing computation of
and decoupling oading effects between the haptic and visual processes.

5.3 Process flow

An IDMS session follows the process flow diagram shown in Figure 5-6. The database of pig
and fern files is accessible to both the haptic and visual engines'. The left sequence is run
by the haptic engine; the sequence on the right is executed by the visual engine. When both
sequences have completed, the real-time interactive simulation begins.

The client process parses the feem file and constructs a complete model data structure. Jt.
described in Section 3.3. Once the model is created, the client process proceeds to set the
initial conditions of the model in the environment. Although this procedure is currently em-
bedded within the simulation, a shell could be written that allows the user to interactively set
the initial conditions of the model. The haptic interface is then calibrated and geometrically
registered with the reference frame of the environment. Finally, the shared-memory process
on the haptic engine is initiated as a child process by the client and the user is prompted to
begin the simulation.

In parallel. the server (visual) process initiates a viewer window for graphics display and

'Each model is comprised of a pg and fern file sharing the same filename prefix, for example cube.plg
and cube.fem.

- - - |
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Figure 5-6: Process flow of an IDMS session. The sequence on the left is executed by the
haptic engine; the sequence on the right is executed by the visual engine. The interactive
simulation loop begins when both sequences have finished.

forks off the shared memory process on the visual engine as a child process. When the client
process reads the fern file, the server is notified and the corresponding pig file is read from
the database. This pig file is used to create an object data structure native to OpenInventor
for storing topology and geometry information. The server then displays the object in the
viewer window. The user proceeds to orient the object in the viewer window so that it is
visually registered with the haptic interface. Graphical editors and menus allow the user
to easily change visual properties such as material color, display mode (shaded, wireframe,
or vertices), and lighting direction. Stereo viewing is a built-in option to the OpenInventor
viewer window and can be selected dynamically 2. Once the visual conditions are set, the
user signals the client process to begin the IDMS simulation loop. Viewing conditions can be
changed if necessary at any time during the simulation.

5.4 System Loop

Figure 5-7 depicts in detail the computation blocks that are executed and the processes they
occupy during each system loop of IDMS. The DSM simulation blocks are each represented
by a thick border in the environment process. As mentioned in Section 5.2, the environ-
ment and haptics processes are combined as one process because both are synchronized to
the interaction force computation block (Section 5.5.1). Because only local dynamics are

21f stereo viewing is chosen, the user can interactively choose the offset value between the left and right
images presented to the shutter glasses.
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simulated, the environment dynamics and haptic display can be updated simultaneously and
still meet required perceptual refresh rates for the human haptic system. As referred to in
Section 3.2.2, however, the next design iteration of IDMS might involve a second environment
process to update global dynamics at a slower refresh rate. In this situation, the first loop in
the diagram would still be updated quickly, thus maintaining haptic fidelity, and the second
loop would be updated less often for atoms and elements external to the haptic window.

5.5 Interaction Force Calculation

5.5.1 Master Interaction Object

The subsystem of IDMS that calculates the interaction force, the master interaction object
(MIO), is the software element connecting the simulation and the haptic interface. The
MIO models in software the contact interaction between the human and the object surface.
The MIO inputs position information from the haptic interface and the DSM simulation and
outputs a force signal back through the haptic interface and the DSM simulation. Each haptic
interface that is connected to IDMS is assigned a different MIO.

In system engineering terminology, the MIO is a software entity representing a linear
time-invariant (LTI) two-port element. There are energy requirements imposed on the MIO
by the virtual environment. These requirements are enumerated below and refer to Figure
.5-8. which shows the power flow between each of the two-port elements in IDNIS.

1. Causality
In order to preserve integral causality on each of the atom masses in the DSM, only
forces can be applied as inputs to them. Given that the haptic interface only outputs
position information, the MIO must convert position input into force output to satisfy
the causality constraint in the DSM simulation. Similarly, the haptic interface can only
apply force on the user. Thus, the MIO must also convert position output from the
DSM simulation into force input for the haptic interface. Similar to a two-port gyrator.
the MIO transforms an effort variable input from port A into a flow variable output
at port B; furthermore, a flow variable input at port B is transformed into an effort
variable output at port A. Unlike a gyrator, however, the MIO uses position input from
both the first port (haptic interface) and the second port (DSM simulation) to generate
equal and opposite force output on both ports. Lastly, the MIO can store energy but a
gyrator must conserve power at both ports, hence it is unable to accumulate energy.

2. Passivity
As mentioned in Section 2.2, an important property for a virtual environment is passiv-
ity along the transmission path between the simulation and the human. Implementa-
tion of the MIO using software models of passive physical elements will ensure passive
characteristics. Early experiments with potential field based modeling of passive envir-
onments approaches utilized a non-passive MIO, resulting in the undesirable perceptual
feel of an active environment.

3. Stiff dynamics
Depending on its representation, the MIO can have internal dynamics. In the context
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Figure 5-7: Breakdown by process of overall system loop. The environment and haptics
processes are synchronized to run at the same speed because the external force is applied to
the haptic interface and the simulation dynamics concurrently.
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Figure 5-8: Power flow between two-port elements in IDMS.

of deformable media, it, is desirable for the interaction element to have a much stiffer
surface impedance than that present in the model, in order to prevent filtering or
attenuation of deformation force during contact. If the poles of the interaction element
are too closely located to those of the model being simulated. the human may not be
able to distinguish the dynamics of the interaction element from the dynamics of the
simulated media.

Specifically, the MIO is defined by a static geometric shape that is dynamically centered
at the endpoint of the haptic interface. This shape represents the geometry of the real-world
tool being modeled for interaction. The minimum size of the MIO is determined by the
lowest spatial resolution of atoms present on the model surface. Too small a size for the
NIIO will generate a nonsmooth force during stroking. Too large a size. however, increases
the number of atoms and elements that need to be simulated to generate an interaction force,
thus increasing computation load. These tradeoffs need to be considered carefully when
determining the spatial resolution and MIO size for a particular modeled environment.

During contact, atoms that are positioned internal to the geometric boundary of the MIO
receive an external force. A reaction force is applied to the haptic interface equal to the
negative sum of external forces applied on DSM atoms by the MIO. Figure .5-9 illustrates
a typical interaction sequence using. for example. a spherical MIO shape. Currently. each
atom receives a force proportional to its internal penetration distance normal to the geometric
surface. simulating an elastic contact. Other force generating functions are possible as long as
they satisfv the energy requirements enumerated above. A simple collision detection algorithm
is used to find those atoms of the model that are internal to the MIO boundary. Collision
detection with the MIIO is computationally efficient because only point intersections need
to be found. Increasingly complex geometries can be created for the MIO as a function of
processing power and more efficient collision detection algorithms. The following example
illustrates the MIO representation of fingertip interaction.

Example 1: MIO representation of fingertip

Modeling the fingertip as a haptic interaction element is accomplished by representing the
MIO as a spherical object. A sphere is an ideal shape for the MIO because collision detection
and force generation are fast to compute. The data structure, MIO, shown in Table .5.1 is
used to store parameters and variables for a spherical MIO of radius r with surface stiffness
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Figure 5-9: Illustration of an interaction between a spherically-shaped MIO and the surface
of a model.

k.

Table 5.1: Data structure for MIO representation of human fingertip.

The following algorithm computes the collision detection and calculation of interaction
force using a spherical MIO. This algorithm comprises the top three computation blocks of
the haptic process in Figure 5-7. A look-up table of square root values is used to reduce
square root computation time by a factor of 50%.

MTZO-ff = 0
for i = 1: NS

d = A--p - Mi(Z-+p
r = Idl
if r < M1O-+r

f = MO+k(MIO-r -r)/(r) 
A'-zf+ = f
MZO-4f -= f

end
end

Note that currently all NS atoms are scanned for possible intersection with the MIO. The
integration of three-dimensional spatial data structures (octrees) into IDMS would greatly

MO
p absolute position of haptic interface endpoint
f net force applied on environment
k boundary stiffness
r radius of interaction sphere

rl radius of local sphere

* * * * @ 0 0
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reduce the search space of potential collisions, Off-line, the model would be subdivided
into a tree of octatts to a given spatial resolutionr A preprocessing step would assign each
surface atom to a leaf octant based on the atom's equilibrium position. During run-time, the
search space for MNIO collision is consequently reduced to leaf octants that are children of
the smallest octant which entirely contains the MIO,

5.5.2 Local simulation

As stated in section 3.2.2, the feature of IDMS enabling real-time simulation is the ability
to simulate the region of DSMVI media local to the interaction point. Local simulation is an
option to IDM.IS: some procedures such as model generation utilize the DSM algorithm on
all model atoms and elements and hence require the local simulation option to be turned off.
The DSMI framework allows for this local simulation to be easily implemented. The variable
rl in the A4IZO data structure contains the radius of the sphere, centered at the center of the
.MIO. that spatially separates atoms and elements into local and non-local entities. Atoms
are defined as local if their absolute position lies within the radius of the local sphere. as
illustrated in the following algorithm. Note that internal as well as external atoms can be
defined as local: hence all N atoms are scanned.

for i = 1: N
d A--*p - M1Z-*p
r = Id
if r < MI0Z9-+r

i -- pc = LOCAL

end
end

If local simulation is on. this algorithm is executed in tandem with the MNIO collision detection
algorithm in the first computation block of the haptic process. Atoms are first tested for
inclusion in the local sphere before testing for collision with the interaction sphere to save
computation. Once the local atoms have been defined. the simulation space of the four blocks
of the DS.M algorithm are each modified as shown below.

1. C'alculate external forces
VA' (0 < i < Y - 1) s.t. A--+spc == LOCAL

2. Calculate internal element forces
VYc (0 < i < L - 1) s.t. -+A°-+spc == LOCAL or -+Al -+spc == LOCAL

3. Evaluate time derivatives of state variables
VA' (0 < i < N - 1) s.t. A-+spc == LOCAL

4. Integrate state variables
VAi (0 < i < Y - 1) s.t. A-+spc == LOCAL

Note in block two. elements are indirectly defined as local if either one of their bounding
atoms is local. As mentioned above, the use of spatial data structures such as octrees to store
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atom location would greatly reduce time spent in searching through the list of model atoms
for local ones.

5.6 Model Generation

5.6.1 Draping

The flexibility of IDMS allows simulation of any model that adheres to the fem and pig
file formats. An important concern to be addressed is the creation of such models for use in
IDMS. Currently, the main approach to model generation in IDMS is based on draping a free-
form rectangular viscoelastic "skin" slab onto a parametrically defined rigid form, and then
saving the equilibrium state of the slab as the newly defined model. The same DSM engine
(Section 4.1) is used to simulate the physics of state transition from the initial condition to
the equilibrium position. Although this process is not intended to be real time, it is of no
consequence because the haptic display channel is turned off during the draping procedure.

Draping forces are generated by applying attractive forces between atoms in the slab and
the surface of the parametric object. Thus, the skin slab wraps itself around the object in an
energy-minimizing fashion similar to a sheet of positive charge conforming to the exterior of
a negatively charged object. Home elements are added to each of the NS surface atoms on
the slab once the state is saved, in effect "hardening" the state of the skin. Finally, the new
model is written to disk as pig and fern files for later use by IDMS. Although the resulting
surface is not closed in a mathematical sense, the surface area produced is sufficiently large
for meaningful interactions.

The three stages of draping are described in detail below using the example of a rect-
angular slab and a spherical form. The procedure is illustrated in the six frames shown in
Figure 5-10.

Stage 1: Set initial conditions

During stage one, the initial conditions of the slab are set manually so that it is centered
above the center of the rigid form and exterior to the surface of the rigid form.

Stage 2: Apply attractive forces between slab and form

Once the slab is positioned according to desired initial conditions, the DSM engine is started
and the attraction forces are applied between the slab and the form, illustrated in the following
algorithm. The spherical form has a radius Rf, surface stiffness kf, attractive stiffness k}, and
a viscosity bf. An atom external to the form surface receives an attractive force proportional
to its distance away from the surface with stiffness k. The material parameters kf and bf
are empirically determined to produce a highly inelastic response from collision between slab
atoms and the form surface, consequently minimizing settling time.

Let c be center of sphere
for i = 1: N

d = A-+p - c
r = dl
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Figure -10: Exam ple depicting three stages of draping using a rectangular slab and a spher-
ical form (from top to bottom. left to right): (1) initial state. (2-5) attraction. and (6)
eq uilibrium.
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if r > RI apply attractive forces
Ai-+f+ = -k (r- R/) d

else apply contact forces
Aief+ k(R - rd- b(A'4D 1)

end

Stage 3: Attach home elements and save to disk

When stage three is reached, the slab state is saved and home elements are added to each
surface atom. Finally, the new spherically-shaped model is written to disk as two files, the
pig file and the fem file.

for i = 1: N
Ai-+eq = 
if A--sc == EXTERNAL

Add new home atom Ah
Ahi eq = Ai-+Peq
A4hi-+bc = FIXED

Add new home element ghi between Ai and Ahi

end
end
Output temp. f em and temp.plg files

5.6.2 Other methods

Another approach to model generation is molding. Using the haptic display channel, the
human can manually create shapes by manipulating, squeezing, depressing, and pinching
existing models. Geometrically simple shapes such as prisms and flat sheets, that can be easily
generated algorithmically, are used as initial models to mold. This approach is only limited
by the human's creativity in model generation. Other model generation techniques are also
possible. These include using commercial software tools such as AutoCAD or ProEngineer for
automatically creating surface finite element meshes for arbitrary topologies. Furthermore,
standalone algorithms that mathematically tessellate the surface of rigid objects with the
viscoelastic tetrahedral elements should be feasible.
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Chapter 6

Results

The following sections illustrate the features, performance, and versatility of IDMS by de-
scribing results from fundamental interaction tasks. Visual results from each interaction are
presented as a sequence of screen images from the IDMS display 1. Force and position histor-
ies of the MIO object are also provided to qualitatively and quantitatively express the haptic
display performance.

6.1 Basic Interactions

Each of the basic interactions in this section operate on the homogeneous DSM media frag-
ment shown in Figure 3-2. The haptic display is refreshed at approximately 700 Hz and the
visual display is updated at 30 Hz. The Cartesian axes of the fixed IDMS reference frame
are shown explicitly in the first frame of Figure 6-1. All position measurements are taken
with respect to this reference frame. The element parameters are k = 15 and b = 0.2 and
the atom mass is 0.002. The top surface of this fragment has dimensions of 4.00 inches along
x and 3.46 inches along y. The surface stiffness of the MIO was empirically found to be
MIO-k = 400, approximately 27 times the stiffness of the elements in the media. Given
the relatively high stiffness value of the MIO, the deformation force is transmitted from the
simulation to the user with negligible filtering of information.

During initial trial sessions with IDMS, a transparent sphere was used to visually render
the MIO object. Interestingly, this action was visually disconcerting because part of the
sphere would disappear beneath the top surface of the mesh due to atoms penetrating the
MIO surface. Users tend to focus on the media deformation itself rather than the MIO object
while in contact. Consequently, a small diamond shaped object was used instead because it
provided an unobstructed view of the deformation and removed the disturbance due to visual
interference between the MIO and the media. Taking into account the DSM element length
of 1 inch, the radius of the MIO was empirically optimized to be MI1-Or = 1.5 inches for
modeling the human fingertip. Although this radius is approximately three times the radius of
a fingertip, users do not perceive the actual MIO size due to the small diamond-shaped visual

'In the following figures where appropriate, the viewer display is shown in reverse video and all objects
are shown in wireframe to clarify deformation results
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representation. The absence of collocation between the haptic and visually displays and the
poor kinesthetic discriminability of the human ([5, p170] allow the user to successfully register
haptic and visual cues using primarily haptic force and visual deformation information.

6.1.1 Palpation

A typical finger palpation sequence is depicted in Figure 6-1. The force and position histories
for the MIO are shown in Figure 6-2. As expected, f and f, are negligible relative to
deformation force normal to the surface, f,. The peak value for f, reached is approximately
1.7 N. Note that f, becomes nonzero at approximately z = 1.5, which is the radius of the
M I.

The force versus displacement relationship applied to the haptic interface for a palpation
interaction is shown in Figure 6-3. The measurement data is fitted in a linear least squares
sense to illustrate the stiffness behavior of the media. The stiffness increases initially as
more atoms come into contact with the MIO and then transitions into a linear function
as the number of intersection atoms levels off. The curve illustrates that the contribution
of deformation force by home elements of intersection atoms is dominant relative to the
force provided by non-intersection atoms. The use of a haptic window exploits this rapidly
diminishing contribution of force by conserving processing power for local atoms.

6.1.2 Stroking

In contrast to palpation. stroking involves motion of the MIO lateral to the surface while it
is in contact with the media. A sample stroking sequence is shown in Figure 6-4. At an
approximately fixed position of y = 1.5 inches, the MIO object is brought into contact with
the media surface. laterally moved at constant z in the direction of increasing x, and then
brought out of contact with the media. In order to illustrate the effect of speed on lateral
force interaction, two cases differing in lateral surface s eed are discussed below.

Slow lateral surface speed

As shown in Figure 6-5. between t 1 sec and t 3 sec, the MIO object lowers and
deforms the media surface, increasing the normal force to a value of fz - 1.3 N. As the MIO
accelerates in the positive x direction across the media, the opposing lateral force f increases
to -0.1 N due to the inertia of atoms along the MIO path that needs to be overcome. As the
MIO decelerates at x ~ 3 inches, the lateral force changes sign to reflect the buildup of inertia
behind the MIO object.

Fast lateral surface speed

Figure 6-6 displays the MIO force and position histories for the same stroking sequence shown
in Figure 6-4. with the exception that the surface is traversed three times while the MIO is
in contact. Although the average normal force f is similar to that of the previous case. the
maximum lateral force f, reaches a maximum magnitude of almost 2 N during each traversal
due to the increased lateral speed. Similarly, the lateral force perpendicular to the traversal
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Figure 6-1: Sequence of visual frames for palpation interaction (from left to right, top to
bottom).
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Figure 6-2: Position and force histories for the MIO during palpation.
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MIO z force vs. z position (measured)

z (in)

MIO z force vs. z position (third order linear least-squares fit)

z (in)
5

Figure 6-3: Interaction stiffness normal to surface for palpation: (top) measured, (bottom)
linear least squares fit.
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Figure 6-4: Sequence of visual frames for stroking interaction (from left to right, top to
bottom).
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6,1, BASIC INTERACTIONS
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Figure 6-5: Position and force histories for the MIO during a stroking interaction using a
slow lateral surface speed.
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path, f,, also increases dramatically because of the rapid transfer of momentum to atoms as
they are pushed aside,

6.1.3 Plucking

Using the tweezers shown in Figure .5-4 as an interaction tool, the surface can be plucked,
manipulated, and held. The MIO is slightly modified to model the grasping ability of the
tweezers as follows. If the MIO is in contact with the surface when the tweezers are closed,
a sorting algorithm is executed to find the nearest atom, of those that are in contact with
the MIO, to the center of the MIO. A new element C is created that connects the nearest
atom and the center of the MIO with an equilibrium length equal to the distance between the
atom and the MIO center at the time of closure. The stiffness of this element is assigned the
same stiffness as that of the MIO surface to simulate a rigid attachment with the atom. If
the tweezers are opened, the connecting element is deleted, hence allowing the contact atom
to return to equilibrium. A sample plucking sequence is shown in Figure 6-7.

Figure 6-8 shows the position and force histories of the MIO da ring an example plucking
sequence with a media fragment. While the MIO is in contact with the media, the user
closes the tweezers hence creating the connecting element between the nearest contact atom
and the MIO center. When the MIO is no longer in contact with the surface, the MIO force
represents the connecting element force. At t - 4 sec, the tweezers are opened and the MIO
force instantly falls to zero magnitude. There is a slight perturbation in MIO position as the
human stabilizes after receiving a step function in force.

6.2 Local Simulation

The sequence shown in Figure 6-9 illustrates the stroking interaction with a higher resolution
media fragment. The curvature of the fragment was generated by draping it onto a spherical
form and consequently saving the state of the new model. The local simulation option is
enabled using a haptic window radius of MIC-rl = 2.25 inches. Although the haptic display
refresh rate suffers slightly in this particular example due to the increase in spatial density
of atoms, the refresh rate is largely uncoupled from the size of the media fragment. Recall
from Section 5.5.2, some coupling is still present because the collision detection algorithm
searches the entire atom list for potential collision atoms. As described previously, however,
complete uncoupling would occur if octrees were used to spatially segment the DSM model.

60



6.2, LOCAL SIMULATION
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Figure 6-6: Position and force histories for
fast lateral surface speed.
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,....... /.., ..
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Figure 6-7: Sample plucking sequence using an instrumented pair of tweezers (from left to
right, top to bottom).
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Figure 6-8: Position and force histories for the MIO during a plucking sequence.
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Figure 6-9: Stroking sequence with a media fragment using the local simulation option (from
top to bottom. left to right).
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Chapter 7

Conclusions

7.1 Summary

In summary, Interactive Deformable Media Simulator (IDMS) is a real-time dynamic simu-
lation that allows users to interact both haptically and visually with deformable media in a
virtual environment setting. Haptic feedback is provided through the Phantom haptic inter-
face and visual feedback is presented by OpenInventor based graphics software on the Silicon
Graphics Indigo II Extreme workstation. A finite element approach is utilized to model the
structural properties of deformable media. Real-time computation is achieved by (a) using
a surface representation coupled with a surface restoring force to encapsulate volumetric
properties; (b) conserving computation power by rendering media local to the interaction
point; and (c) evaluating the simulation within the topology of the model. The discretized
representation of the media facilitates creation, modification, and storage of model data. The
Master Interaction Object (MIO) is a fixed geometric shape that efficiently calculates inter-
action force based on point intersection and surface penetration distance normal to the MIO
boundary. Other interaction modalities such as tweezers are easily integrated into IDMS
by appropriate modification of the MIO force generation algorithm. The following section
describes further research that would enhance the performance and functionality of IDMS.

7.2 Future Work

7.2.1 Computational architecture

The DSM framework in IDMS is highly amenable to a parallel processing architecture. Ad-
ditional processors could be assigned mutually exclusive sections of media for simulation
purposes. Model data would be stored in common memory to ensure data coherency and
to facilitate communication of data between processors. Furthermore, a real-time preempt-
ive operating system such as LynxOS for the haptic engine is critical to evenly distribute
processing between the haptic and environment processes and the shared memory process.
Currently, under Linux, the haptic process signals the shared memory process to begin a data
transfer to the visual engine at 30 Hz. Although not a factor for simple models, the delay
induced by transferring visual information for complex models may become haptically no-
ticeable at the 30 Hz frequency. A real-time operating system will allow for context switching
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between processes at much higher service rates than possible in Linux, removing the need
for synchronization between haptic and shared memory processes.

7.2.2 Dynamics Simulation

In order to achieve real-time response, local simulation is utilized by IDMS to calculate in-
teraction force. For the class of media addressed in this thesis, this technique is sufficient for
creating realistic interactions. Media in which local interactions are more globally propagated
throughout the media may require additional concurrent dynamics processes to update the
model state. These "global dynamics" processes may run at slower update rates than the
"local dynamics" process depending on the frequency content present in the media. This syn-
chronous execution of multiple time-scale dynamics processes fits easily into the concurrent
run-time architecture of IDMS.

7.2.3 Spatial data structures

Integrating spatial data structures into IDMS will greatly improve computation performance.
Currently, the entire list of surface atoms is traversed to check for collision detection with the
MIO. A more efficient approach would be to segment the model into a multi-resolution spatial
hierarchy. Octrees and bounding boxes would easily serve these purposes. This procedure
could be done as a preprocessing step to IDMS or could be incorporated into the pig and
fem data file formats.

7.2.4 Haptic interactions

In addition to the fundamental haptic interactions of palpation, stroking, and plucking, other
more complex haptic interactions should be modeled and implemented. Each interaction may
involve independent modification of the interaction force algorithm or require a special tool
to be inserted in the Phantom gimbal in order to model the real world interaction. Examples
of potential interactions include sewing, suturing, piercing, and incising. Surface effects such
as friction and stiction could also be implemented as external forces applied to individual
atoms and the MIO.

7.2.5 Model generation and filling

In order to exploit the variety of models that IDMS can simulate, more advanced techniques
need to be created for generating model geometries and assigning values to physical para-
meters for atoms and elements. As described in Section 3.2.1, a haptic interface with an
instrumented end effector could be used to measure surface impedance and geometry data.
The home elements provide a compact representation of surface impedance and hence meth-
ods for assigning home element values based on measurement data need to be developed.
Depending on the context, these scanning and filling techniques may be required to be non-
destructive to preserve the state of the real object.
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7.2.6 Visualization

Currently. the media is visually displayed in either shaded or wireframe graphics modes.
In the shaded mode, each polygon specified by the pig file is uniformly shaded based on
lighting direction. In wireframe representation, only each surface element is displayed. In
each of these modes, the surface smoothness suffers for large deformations due to the spatial
discretization of atoms. Two-dimensional parametric interpolation polynomials could be
incorporated utilizing the positions of the surface atoms as control points to provide a visually
smooth deformation. B-splines are especially suited for local deformation because they utilize
a set of blending functions that locally influence shape changes. depending only on neighboring
control points to produce changes in curvature 14].

Depending on the object being modeled, texture mapping may add significant realism
to the visual display. Skin, for example, could be texture mapped onto biological objects
to enhance visual feedback. The SGI Indigo II Extreme platform cannot handle real-time
texture mapping and thus more powerful computation hardware would be necessary. The
SGI Reality Engine, a multiprocessor based hardware architecture, would ideally serve these
and other graphics intensive purposes.
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Appendix A

Notation

Symbol Meaning (units if applicable)

IDMS Interactive Deformable Media Simulator
DSM Discrete Simulation Model
MIO Master Interaction Object
p absolute position
Peq absolute equilibrium position
xl differential position
x2 differential velocity
f force
num number in sequence
bc boundary condition (fixed or free)
sc surface condition (external or internal)
spc spatial condition (local or non-local)
m mass
k stiffness
b viscosity
I length

leq equilibrium length
r radius
rl local radius
Rf spherical form radius
k~ form surface stiffness
kf form attractive stiffness
bf form surface viscosity
T simulation step size (sec)
A atom data structure
C element data structure
M4 model data structure
t4Z(90 MIO data structure

-e dereferencing operator, A-+m is the mass stored in atom A
N number of model atoms
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L number of model elements
NS number of model surface atoms



Appendix B

Data File Formats

B.1 pig files

B.1.1 Description

The pig file description is one of several widely used data file formats for describing three-
dimensional polyhedra. These file formats are used for a variety of purposes including
computer-aided design, computer graphics, and modeling. A brief description of the pig
file format is provided here. The pig file format is essentially a subset of the substantially
more versatile obj file format provided by Wavefront Technologies [25], that additionally
allows for free-form curves and surfaces, material properties, nested grouping of objects, and
many other graphics attributes.

The format of a pig file, shown in Figure B-1 is a listing of vertices and polygons that
comprise the polyhedra, each listed on a separate line. The first line of the file contains, in
order, the ASCII name of the object, the number of vertices, and the number of polygons.
Each vertex entry has the x, y, and z coordinates that define its position. Each polygon entry
contains the number of sides and a list of vertex numbers that comprise the polygon, the first
vertex being numbered 0. A whitespace separates the first line, the listing of vertices, and
the listing of polygons.

{name} {nv} {np}

{x} {y} {z}

{x} {y} {z}

(number of sides} {v1} {v2} ... {vn}

{number of sides} {vl} {v2} ... {vn}

Figure B-l: pig file format.
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B.1.2 Example: hexAxSJhome.p1g

The pig file for the fragment of media shown in Figure 3-1 is shown below.

hex 22 28

0.600 0.000 0.000

1.500 0.000 0.000
2,500 0.000 .000
3.500 0.000 0.000
0.000 0.866 0.000
1.000 0.866 0.000
2.000 0.866 0.000
3.000 0.866 0.000
4.000 0.866 0.000
0.500 1.732 0.000
1.500 1.732 0.000
2.500 1.732 0.000
3.500 1.732 0.000
0.000 2.598 0.000
1.000 2.598 0.000
2.000 2.598 0.000
3.000 2.598 0.000
4.000 2.598 0.000
0.500 3.464 0.000
1.500 3.464 0.000
2.500 3.464 0.000
3.500 3.464 0.000

3015
3126
3237
3459
3540
35 6 10
3651
36 7 11
3762
37 8 12
3873
3 9 10 14
3 10 9 5
3 10 11 15
3 11 10 6
3 11 12 16
3 12 11 7
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3 13 14 18
3 14 13 9
3 14 15 19
3 15 14 10
3 15 16 20
3 16 15 11
3 16 17 21
3 17 16 12
3 18 14 19
3 19 15 20
3 20 16 21
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B.2 fern fles

B.2.1 Description

The fem file format was developed for IDMS to describe networks of atoms and connecting
constitutive elements. This format changes as increases in modeling complexity within IDMS
require more physical parameters or initial conditions to be specified.

The specific format of the fern file is shown in Figure B-2. The first line of the file contains,
in order, the name of the object, the number of atoms, and the number of elements. Each
atom entry has the z, y, and z coordinates that define the atom's initial position; the atom
mass; the boundary condition (fixed or free); and the surface condition (on surface or not).
Each element entry contains the numbers of the two atoms the element connects, the element
stiffness, and the element viscosity. The first atom in the atom list is numbered zero. A
whitespace separates the first line, the listing of atoms, and the listing of elements.

{name} {na) ne)

{x} {y} {z} {mass} {boundary condition} {surface condition}

{x} {y} {z} {mass} {boundary condition} {surface condition}

{al} {a2} {stiffness} {viscosity}

{al} a2} {stiffness} {viscosity}

Figure B-2: fem file format.

B.2.2 Example: hex_4x5 home.fem

The fem file for the fragment of media shown in Figure .3-1 is shown below. Note that home
atoms and home elements are included.

hex 58 141

0.500 0.000 0.000 0.002000 1001 2001
1.500 0.000 0.000 0.002000 1001 2001
2.500 0.000 0.000 0.002000 1001 2001
3.500 0.000 0.000 0.002000 1001 2001
0.000 0.866 0.000 0.002000 1001 2001
1.000 0.866 0.000 0.002000 1001 2001
2.000 0.866 0.000 0.002000 1001 2001
3.000 0.866 0.000 0.002000 1001 2001
4.000 0.866 0.000 0.002000 1001 2001
0.500 1.732 0.000 0.002000 1001 2001
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1.600 1,.732 0,000 0,002000 1001 2001
2.600 1.732 0,000 0,002000 1001 2001
3.50O 1.732 0.000 0.002000 1001 2001
0.000 2.598 0.000 0,002000 1001 2001
1.000 2.598 0,000 0,002000 1001 2001
2.000 2.598 0.000 0.002000 1001 2001
3.000 2.598 0,000 0.002000 1001 2001
4.000 2.598 0.000 0,002000 1001 2001
0.500 3.464 0,000 0.002000 1001 2001
1.500 3.464 0.000 0.002000 1001 2001
2.500 3.464 0.000 0.002000 1001 2001
3.500 3.464 0.000 0.002000 1001 2001
0.500 0.000 0,000 0.002000 1000 2000
1.500 0.000 0.000 0.002000 1000 2000
2.500 0.000 0.000 0.002000 1000 2000
3.500 0.000 0.000 0.002000 1000 2000
0.000 0.866 0.000 0.002000 1000 2000
1.000 0.866 0.000 0.002000 1000 2000
2.000 0.866 0.000 0.002000 1000 2000
3.000 0.866 0.000 0.002000 1000 2000
4.000 0.866 0.000 0.002000 1000 2000
0.500 1.732 0.000 0.002000 1000 2000
1.500 1.732 0.000 0.002000 1000 2000
2.500 1.732 0.000 0.002000 1000 2000
3.500 1.732 0.000 0.002000 1000 2000
0M000 2.598 0.000 0.002000 1000 2000
1.000 2.598 0.000 0.002000 1000 2000
2.000 2.598 0.000 0.002000 1000 2000
3.000 2.598 0.000 0.002000 1000 2000
4.000 2.598 0.000 0.002000 1000 2000
0.500 3.464 0.000 0.002000 1000 2000
1.500 3.464 0.000 0.002000 1000 2000
2.500 3.464 0.000 0.002000 1000 2000
3.500 3.464 0.000 0.002000 1000 2000
0.500 0.289 -0.817 0.002000 1001 2000
1.500 0.289 -0.817 0.002000 1001 2000
2.500 0.289 -0.817 0.002000 1001 2000
0.000 1.155 -0.817 0.002000 1001 2000
1.000 1.155 -0.817 0.002000 1001 2000
2.000 1.155 -0.817 0.002000 1001 2000
3.000 1.155 -0.817 0.002000 1001 2000
0.500 2.021 -0.817 0.002000 1001 2000
1.500 2.021 -0.817 0.002000 1001 2000
2.500 2.021 -0.817 0.002000 1001 2000
0.000 2.887 -0.817 0.002000-1001 2000
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1.000 2.887 -0.817 0.002000 1001 2000

2.000 2.887 -0.817 0.002000 1001 2000

3.000 2.887 -0.817 0.002000 1001 2000

0 1 165.000000 0.20000

1 2 15.000000 0.200000

2 3 15.000000 0.200000

4 5 16.000000 0.200000

5 6 15.000000 0.200000

6 7 15.000000 0.200000

7 8 15.000000 0.200000

9 10 15.000000 0.200000

10 11 15.000000 0.200000

11 12 15.000000 0.200000

13 14 15.000000 0,200000

14 15 15.000000 0.200000

15 16 15.000000 0.200000

16 17 15.000000 0.200000

18 19 15.000000 0.200000

19 20 15.000000 0.200000

20 21 15.000000 0.200000

0 4 15.000000 0.200000

0 5 15.000000 0.200000

4 9 15.000000 0.200000

5 9 15.000000 0.200000

1 5 15.000000 0.200000

1 6 15.000000 0.200000

5 10 15.000000 0.200000

6 10 15.000000 0.200000

2 6 15.000000 0.200000

2 7 15.000000 0.200000

6 11 15.000000 0.200000

7 11 15.000000 0.200000

3 7 15.000000 0.200000

3 8 15.000000 0.200000

7 12 15.000000 0.200000

8 12 15.000000 0.200000

9 13 15.000000 0.200000

9 14 15.000000 0.200000
13 18 15.000000 0.200000

14 18 15.000000 0.200000

10 14 15.000000 0.200000

10 15 15.000000 0.200000

14 19 15.000000 0.200000

15 19 15.000000 0.200000
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11 1 15.000000 0.200000
11 16 15.000000 0,200000
16 20 16.000000 0.200000
16 20 16,000000 0.200000
12 16 15.000000 0.200000
12 17 15.000000 0.200000
16 21 15.000000 0.200000
17 21 15.000000 0.200000
0 22 15.000000 0.200000
1 23 15.000000 0.200000
2 24 15.000000 0.200000
3 25 15.000000 0.200000
4 26 15.000000 0.200000
5 27 15.000000 0.200000
6 28 15.000000 0.200000
7 29 15.000000 0.200000
8 30 15.000000 0.200000
9 31 15.000000 0.200000
10 32 15.000000 0.200000
11 33 15.000000 0.200000
12 34 15.000000 0.200000
13 35 15.000000 0.200000
14 36 15.000000 0.200000
15 37 15.000000 0.200000
16 38 15.000000 0.200000
17 39 15.000000 0.200000
18 40 15.000000 0.200000
19 41 15.000000 0.200000
20 42 15.000000 0.200000
21 43 15.000000 0.200000
44 0 15.000000 0.200000
44 1 15.000000 0.200000
44 5 15.000000 0.200000
45 1 15.000000 0.200000
45 2 15.000000 0.200000
45 6 15.000000 0.200000
46 2 15.000000 0.200000
46 3 15.000000 0.200000
46 7 15.000000 0.200000
47 4 15.000000 0.200000
47 5 15.000000 0.200000
47 9 15.000000 0.200000
48 5 15.000000 0.200000
48 6 15.000000 0.200000
48 10 15.000000 0.200000
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49 6 15.000000 0.200000
49 7 16.000000 0.200000
49 11 16.000000 0.200000
50 7 15.000000 0.200000
60 8 15.000000 0.200000
50 12 15.000000 0,200000
51 9 15.000000 0.200000
51 10 15.000000 0.200000
51 14 15.000000 0.200000
52 10 15.000000 0.200000
52 11 15.000000 0.200000
52 15 15.000000 0.200000
53 11 15.000000 0.200000
53 12 15,.000000 0.200000
53 16 15.000000 0.200000
54 13 15.000000 0.200000
54 14 15.000000 0.200000
54 18 15.000000 0,200000
55 14 15.000000 0.200000
55 15 15.000000 0.200000
55 19 15.000000 0.200000
56 15 15.000000 0.200000
56 16 15.000000 0.200000
56 20 15.000000 0.200000
57 16 15.000000 0.200000
57 17 15.000000 0.200000
57 21 15.000000 0.200000
44 45 15.000000 0.200000
45 46 15.000000 0.200000
47 48 15.000000 0.200000
48 49 15.000000 0.200000
49 50 15.000000 0.200000
51 52 15.000000 0.200000
52 53 15.000000 0.200000
54 55 15.000000 0.200000
55 56 15.000000 0.200000
56 57 15.000000 0.200000
44 47 15.000000 0.200000
44 48 15.000000 0.200000
47 51 15.000000 0.200000
48 51 15.000000 0.200000
45 48 15.000000 0.200000
45 49 15.000000 0.200000
48 52 15.000000 0.200000
49 52 15.000000 0.200000
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46 49 i5.000000 0.200000
46 60 15.000000 0.200000
49 63 1,5000000 0.200000
C 53 15.,000000 0.200000

61 54 15.000000 0.200000
51 55 15.000000 0.200000
52 55 15,000000 0.200000
52 56 15.000000 0.200000
53 56 15.000000 0.200000
53 57 15.000000 0.200000
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