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requirements for the Degree of Doctor of Philosophy in Biology

ABSTRACT

The gene nanos (nos) is required for the development of abdominal structures.

This requirement is indirect, by Nos protein inhibiting the translation of the maternal

Hunchback (Hbmat) protein, which would otherwise repress the abdominal gap genes

knirps (kni) and giant (gt). We have isolate mutations in at least five complementation

groups that can suppress the nos phenotype. Mutations in different complementation

groups interact with each other, suggesting that these mutations define a gene family.

Mutations in one complementation group are allelic to the gene Enhancer ofzeste (E(z)),

which is a member of the Polycomb group (Pc-G) family. We show that E(z) function is

required to maintain the repression of kni and gt that is initiated by the Hbmat protein.

Thus, E(z) is involved in the determination of their anterior boundaries of expression. A

1.8 Kb region of the kni promoter is sufficient for the regulation by Hbmat and E(z). We

further show that other Pc-g genes are also required for the repression of kni and gt.

Because Pc-G genes are thought to maintain repressed transcriptional states by regulation at

the level of chromatin structure, we propose that chromatin regulation is involved in the

regulation of abdominal gap genes.

We also examine whether the trithorax group (trx-G) of genes, which are thought to

antagonize the function of Pc-G products, may also have a role in gap gene regulation.

Surprisingly, the effect of trx mutations on abdominal development is synergistic, and not

antagonistic to that of Pc-G mutations. These results suggest a direct or indirect inhibitory

role of trx-G genes on gap gene expression. Our results show that if the effect of trx is

indirect, it is not mediated by Kr function. These data suggest that trx-G products may be

involved in early events that affect gap gene expression.

Thesis Supervisor: Dr. Ruth Lehmann

Title: Associate Professor of Biology
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CHAPTER I. INTRODUCTION TO THE DEVELOPMENT OF

PATTERNING IN DROSOPHILA EMBRYOGENESIS

1. Foreword

The studies presented in this thesis refer to the development of pattern in the

Drosophila embryo. In particular, these studies address the genetic interactions involved in

the establishment and stabilization of the embryonic anteroposterior pattern.

As will be discussed below, embryonic patterning is initiated by localized maternal

information present within the egg. Upon egg activation and fertilization, a cascade of

events transduces this prepattern of positional information into regional patterns of zygotic

gene expression. Interactions between maternal products and zygotic genes, and among

the zygotic genes themselves contribute to the refinement and stabilization of the pattern.

The main focus of my work has been the interface between maternal information,

specifically that relayed by the maternal Hunchback morphogenetic protein gradient, and

the activation of zygotic genes involved in the determination of the abdomen, namely,

Kriippel, knirps and giant.

This chapter provides the necessary background for these studies. First, a general

description of oogenesis and embryogenesis is presented. Then, the modes in which

different sets of maternal and zygotic genes achieve embryonic patterning are described.

Because a major topic of these studies is the maintenance of positional information once the

original patterning molecules are no longer present, a description of different ways in

which gene expression patterns are stabilized is also included. Finally, I present more

detailed information, from studies in both Drosophila and yeast, on the modes of gene

stabilization most relevant to these studies, namely, the imprinting of gene activity at the

chromatin level.

2. Drosophila development: oogenesis and embryogenesis

In order to provide a background for this introduction, I will briefly describe the

processes of oogenesis and embryogenesis, as well as the major landmarks of the cuticular

pattern. For more comprehensive descriptions, see Spradling (1993) on oogenesis, Foe et

al. (1993) on the early mitotic divisions, Costa et al. (1993) on gastrulation, Martinez Arias

(1993) on the development of segmental structures, and Martinez Arias (1993) and Jirgens

and Hartenstein (1993) for descriptions of the larval cuticle.
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A) Oogenesis

Each of the two Drosophila ovaries contains about 16 ovarioles. Each ovariole

contains an anterior region called the germarium, followed posteriorly by a string of six to

seven egg chambers at progressively more advanced stages of development. Stem cells

present at the anterior tip of the germarium divide to produce both more stem cells and cells

committed to gametogenesis, the cystoblasts. Cystoblasts divide four times with

incomplete cytokinesis. Because of this pattern of cell division, two of the resulting 16

cells are connected to their sister cells by four passages, called the ring canals. One of

these two cells is chosen to become the future oocyte. The other 15 cells become nurse

cells that will provide the oocyte with maternal products which will later be used by the

embryo for growth and patterning (see below).

Shortly after the fourth cystocyte division, somatic cells present in the germarium

begin to encircle the 16-cell cysts. These cells, called the follicle cells, divide a number of

times and rearrange themselves over the ovary, to eventually produce structural elements of

the egg membranes, as well as collaborate in the establishment of maternal patterning

systems of the oocyte (see below).

Within the germarium, both the oocyte and the nurse cells appear to enter meiosis.

While the oocyte becomes arrested at metaphase I, by the time the cysts exit the germarium

(stage 2) the nurse cells have abandoned the meiotic cycle.

Stages 2 to 10 are characterized by the polyploidization of the nurse cells, the

division of follicle cells and the beginning of vitellogenesis. In addition, during stages 9

and 10, the follicle cells carry out a number of migratory movements over the oocyte.

The production of maternal products by the nurse cells, as well as the uptake of

yolk precursor particles from the haemolymph by the oocyte lead to the growth of the

oocyte, so that by the beginning of stage 10 the oocyte is about the same size as the nurse

cell complex. At stage 11 the nurse cells dump most of their contents into the oocyte,

further increasing the size of the oocyte. The nurse cells then degenerate.

During the final day of oogenesis (stage 8 to 14), the follicle cells produce the two

layers of the eggshell, the inner vitelline membrane and the outer chorionic membrane.

This requires the production of specialized structures, such as the micropyle, an anterior

protrusion with a pore that is the site of sperm entry, and the chorionic dorsal appendages,

which are utilized for gas exchange. After production of the egg shell, the follicle cells

surrounding the oocyte degenerate, leaving only the imprints of their cell membranes on the

chorionic membrane.

14



B) Embryogenesis

Fertilization occurs in the uterus. Hydration of the egg during passage through the

uterus triggers the completion of meiosis and the activation of protein synthesis. After

pronuclear fusion, 13 rounds of nuclear divisions occur in the absence of cellular divisions.

These divisions are also characterized by the absence of G phases, resulting in a rapid

cycling between S and M phases.

The nuclei carry out a slow outward migration towards the periphery of the oocyte

beginning at nuclear cycle 7. During cycle 9, a small number of nuclei reach the plasma

membrane at the posterior pole of the oocyte. These nuclei are surrounded by plasma

membrane and by nuclear cycle 10 form the pole cells, the germ cell precursors. The rest

of the nuclei reach the periphery of the oocyte at nuclear cycle 10. Nuclei continue dividing

at the periphery of the embryo during the syncytial blastoderm stages (cycles 10 to 13).

These stages are characterized by the onset of gap and pair rule gene transcription (see

below). During cycle 14, the plasma membrane surrounding the syncytial embryo begin to

grow inward around the peripheral nuclei and by the end of this cycle have completely

surrounded the nuclei: this is the cellular blastoderm stage.

After cellularization, the embryo begins the process of gastrulation. Nuclear

divisions become asynchronous, with different cell populations dividing at different times.

Prospective mesoderm and anterior midgut (endoderm) cells present along the ventral

midline of the embryo invaginate through the ventral furrow, and prospective midgut and

hindgut cells invaginate at the posterior pole of the embryo.

At the same time, the germ band elongates along the dorsal side of the embryo,

effectively moving the posterior pole of the embryo moves anteriorly. At this time the

embryo begins to be divided into parasegments by the activity of segment polarity genes

(see below). In molecular terms the parasegmental boundaries are defined as the boundary

between the expression of the segment polarity genes wingless and engrailed. Although

considerable cell mixing occurs during this stage, no mixing occurs across the

parasegmental boundary. The metameric units defined by these boundaries, the

parasegments, do not correspond to the segments observed in the adult larvae but are

instead out of register with them.

Germ band elongation occurs until the posterior end of the germ band reaches 75%

egg length (EL- position from the posterior pole of the egg). During this so-called

extended germ band stage, a visible metameric pattern of the embryo appears in the form of

periodic grooves in the germ band. These grooves fall on the parasegmental boundaries of

the embryo. During this stage, three visible indentations also appear anterior to the trunk
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regions. These indentations, which are out of register with the parasegmental boundaries,

are of segmental character.

After this stage the posterior end of the embryo begins to move posteriorly towards

its original position: this is the so-called germ band retraction stage. During this stage the

definite larval segments appear. Dorsal groves arise out of register with the ventrally

located parasegmental boundaries. The position of these dorsal grooves coincides with the

position of the tracheal slits, which are depressions that form in the anterior third of the

parasegment. As a result, engrailed-expressing cells, the anterior most cells of each

parasegment, are now the posterior most cells of each segment.

A number of morphogenetic events occur in the germ band extended embryo,

including the separation of the imaginal disk primordia (which will give rise to adult

structures during pupariation), dorsal closure, and head and tail morphogenesis.

In addition, head formation occurs through the series of complex morphogenetic events

called head involution. This process involves the invagination of the anteriormost cells of

the embryo, which will form the internal cephalopharyngeal structures.

C) The larval cuticle

Patterning in the mature embryo is most easily observable in the embryonic cuticle,

which is secreted between 12 to 16 hours of development. Most maternal and zygotic

screens for mutations that affect Drosophila embryonic development have therefore been

based on the cuticular pattern. Therefore, I will here provide a brief description of the most

prominent aspects of the larval cuticle.

The embryo consists of four general regions, an internal head, the thorax, the

abdomen and the tail.

Head involution results in the internalization of most of the former head surface into

the lining of a set of folds that are connected with each other and with the foregut. Upon

deposition of a specialized cuticle, this structure becomes the cephalopharyngeal skeleton.

A number of head structures derived from other regions of the fate map, such as the mouth

hooks and the cirri, remain on the anterior surface of the embryo.

The thorax and the abdomen consist of three and eight segments, respectively. The

ventral cuticle of each segment is characterized by the presence of denticles in the anterior

half of the segment and a posterior smooth surface. On the dorsal side each segment has a

pattern of fine dorsal hairs which differ slightly in each segment.

The thoracic ventral denticles are short and stubby, and are arranged in parallel

rows. The abdominal denticle bands, on the other hand, are larger and hook-like. The
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abdominal denticles are arranged in five rows (except for the first segment), which form a

trapezoidal shape that becomes progressively less distinct in more posterior segments.

One of the most prominent structures of the tail region are the anal pads, which are

placodes of naked tissue surrounding the anal opening. A single tuft of denticles lies

posterior of the anal pads. On the dorsal surface, two protuberances bear the posterior

spiracles. These spiracles are lined internally by a mesh of hairs called Filzkbrper.

In addition to these structures, a number of sensory organs are present at precise

locations on the surface of the embryo. These less obvious structures can also be used as

landmarks of the cuticular pattern.

3. Maternal systems of patterning: localization of maternal information in

the oocyte

Screens for maternal effect mutations have identified a large number of maternal

genes required for embryonic patterning. Females mutant for these genes produce embryos

with patterning defects irrespective of the embryonic genotype. The phenotypes caused by

these mutations fall into four mostly non-overlapping classes, and thus these maternal

genes have been classified into four groups.

One single group of genes is required for the determination of the dorsoventral axis.

Null mutations in these genes cause either ventralization or dorsalization of the embryo,

depending on the location of the gene within this genetic pathway.

The three other sets of genes are required for the development of structures along

the anteroposterior axis: the so-called anterior, posterior, and terminal groups. Null

mutations in these genes abolish the development of, respectively, anterior structures such

the head and thorax, posterior structures such as the abdomen, and the anterior and

posterior-most structures of the embryo.

Each of these sets of genes is required for the production and localization within the

egg of a maternal product encoded by one of its members. Upon egg activation, the

localized factor in each case directs the regional expression of zygotic genes.

This section (3) describes for each of these genetic pathways, the events that lead to

the localization of the decisive maternal factors in the embryo. The following section (4)

addresses how the information inherent in the localized factor is interpreted by the zygotic

genome. For the sake of completeness, both sections include a description of patterning

events along the dorsoventral axis. Nevertheless, dorsoventral patterning is not the main

subject of this thesis and the reader may choose to skip these sections
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For simplicity, henceforth embryos from females mutant for maternal-effect genes

are referred to as "mutant embryos". Nevertheless, it should be kept in mind that this

description refers to the genotype of the mother that produced the eggs (i.e. the type of

maternal product inherited by the embryo), and not the genotype of the embryo itself.

A) The dorsal group of genes, a maternal system involved in

dorsoventral axis determination

A single genetic pathway is required for the development of the dorsoventral axis

(for reviews, see Chasan and Anderson (1993), Steward and Govind (1993)). This

genetic pathway includes about 20 known maternal effect genes. For the majority of these

genes, recessive mutations lead to dorsalized embryos which lack all lateral and ventral

pattern elements and develop into hollow tubes of dorsal epidermis.

Recessive mutations in the genes cactus, giirken, cornichon and Torpedo lead to the

opposite, ventralized, phenotype. Mutant embryos produce cuticles which lack dorsal and

lateral pattern elements and are encircled by ventral denticle bands.

As with the terminal group in anteroposterior patterning, and in contrast to the

anterior and posterior systems, this genetic pathway is not contained within the nurse cell-

oocyte syncytium. Rather, patterning information is transmitted from the oocyte into the

surrounding somatic cells and back into the oocyte. Since the oocyte and the follicle cells,

which secrete the egg membranes, interact tightly in the earliest events of this pathway,

mutations in genes involved in these events affect patterning of both the eggshell and the

embryo. This common pathway branches into two different processes, one, which will not

be described here in detail, required for the development of egg shell patterning and

another, required for embryonic patterning.

Defining the D-V polarity of the egg and the embryo: signalling from

the oocyte to the follicle cells

The earliest known steps within this pathway occur at stage 8 of oogenesis, when

the oocyte nucleus moves, perhaps at random, to the future dorsal side of the oocyte. This

asymmetrically located oocyte nucleus is thought to produce a signal required for the

development of dorsal fates. This signal is thought to be encoded by the product of the

gene gurken (Neuman-Silberberg and SchUpbach 1993). During oogenesis the gurken

RNA becomes localized to the dorsal corner of the oocyte. gurken encodes a TGFa-like

protein which is likely to be the secreted ligand of the Toll receptor in the follicle cells.

18



Recessive mutations in the genesfs(l)K1O, cappuccino, spire and squid cause the

mislocalization of the gurken transcript and therefore lead to the dorsalization of the both

the egg chamber and the developing embryo (Haenlin et al. 1987; Manseau and Schiipbach

1989; Kelley 1993; Neuman-Silberberg and SchUpbach 1993).

The gene squid encodes a putative RNA binding protein (Kelley 1993). The Squid

protein may interact with the gurken RNA and contribute to the localization of this signal to

the dorsal side of the oocyte.

fs(1)K10 is transcribed by the oocyte nucleus and encodes a nuclear protein with a

helix-loop-helix DNA binding motif (Prost et al. 1988; Haenlin et al. 1985). It is not yet

known whether the fs(l)K10 product interacts directly with the gurken RNA or whether it

regulates other factors required for gurken RNA localization.

The genes capuccino and spire also affect the formation of the germ plasm and

cause in addition cellularization defects in the embryo (Manseau and Schiipbach 1989).

Thus these two genes may be required for a more general function, perhaps related to the

integrity of the oocyte cytoplasm.

Recessive mutations in gurken, cornichon and Torpedo lead to the ventralization of

both the egg shells and the embryos (Schiipbach 1987; Price et al. 1989; SchUpbach and

Wieschaus 1991; Ashburner et al. 1990). No molecular information is available on the

nature of the protein encoded by cornichon. The Torpedo protein is required in the follicle

cells and is thought to transduce the Gurken signal from the oocyte to the cytoplasm of the

follicle cells (Schiipbach 1987; Price et al. 1989). Torpedo, a homologue of the epidermal

growth factor receptor gene, encodes a transmembrane protein with a tyrosine kinase

cytoplasmic domain.

Activation of the Torpedo receptor triggers a signal cascade likely similar to those

associated with other receptor tyrosine kinases, such as those involved in Drosophila

photoreceptor differentiation and patterning by the terminal group of maternal genes (see

below).

Decision making in the follicle cells: branching of the egg shell and

embryonic pathways
The activation of Torpedo in dorsal regions of the egg chamber triggers two

independent pathways: the promotion of dorsal fates in the dorsal follicle cells, and the

localization of an embryonic ventralizing activity in ventral regions of the egg chamber.

Little is known about the events that lead to the dorsalization of the egg chamber.

The spindle group of genes is likely involved in this branch of the pathway, since

mutations in these genes cause ventralization of the eggshell but do not affect the embryo
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(Lindsley and Zimm 1990). Other genes involved in the determination of the egg shell

dorsoventral axis may include genes found to be expressed in the dorsal follicle cells, such

as a subset of chorion genes and genes presumably marked by enhancer trap constructs

(Parks and Spradling 1987; Fasano and Kerridge 1988; Grossniklaus et al. 1989).

Differential gene expression along the dorsoventral axis in the follicle cells likely leads to

differential behaviors of these cells over the oocyte (see King 1970) and, ultimately, the

dorsov4ntral asymmetry of the egg morphology.

The activation of the Torpedo-initiated pathway in the dorsal side of the egg

chamber leads to the restriction of an embryonic ventralizing activity to the ventral region of

the egg chamber. Recessive mutations in genes downstream of this branch of the pathway

(with the exception of cactus, see below), lead to the dorsalization of the embryo, but not

the egg shell.

Activation of Torpedo in dorsal regions could lead to the restriction to ventral

regions of an embryonic ventralizing signal. This process may involve the repression in

dorsal follicle cells of one or more of the somatic-dependent genes pipe, nudel and

windbeutel, and, consequently, the localized activation of this gene(s) in ventral follicle

cells by a default pathway (Anderson and Niisslein-Volhard 1986; Schupbach and

Wieschaus 1989; Stein and Niisslein-Volhard 1992). No information is available on the

structure of these genes. Nevertheless, since nudel mutant females produce fragile

eggshells, the Nudel product may be a more general component required for the integrity of

the vitelline membrane.

Transmission of information back into the oocyte: activation and

reception of a ventralizing signal.

Four germ-line dependent genes, gastrulation defective, snake, easter and spdtzle,

may link this ventrally restricted activity to the activation of the Toll receptor in the

embryonic membrane. The protein products of these genes are likely translated in the

oocyte and secreted into the vitelline membrane. This is suggested by their germ-line

requirement (Seifert et al. 1987; Konrad et al. 1988b; Stein et al. 1991), the presence of a

signal sequence, but no transmembrane domain in their coding region (DeLotto and Spierer

1986); Chasan and Anderson 1989; Chasan and Anderson 1993), and the presence of

rescuing activity for mutations in these genes (not tested for gastrulation defective) in the

perivitelline fluid (Stein and Niisslein-Volhard 1992).

The genes snake, easter and gastrulation defective have sequence homologies to

trypsin type serine proteases (DeLotto and Spierer 1986; Chasan and Anderson 1989;

Chasan and Anderson 1993). This suggests that these genes may be part of a zymogen
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cascade in which products are sequentially activated by protease cleavage. This cascade

presumably leads to the activation of the Toll ligand.

A preactivated form of Easter lacking the "pro" domain causes a ventralized

embryonic phenotype and is epistatic over loss-of-function dorsalizing mutations in

gastrulation defective, snake and the somatic-dependent dorsalizing genes (Chasan et al.

1992). However, this preactivated Easter mutant protein is not epistatic over spdtzle

mutations. Thus Easter and Spatzle act downstream of the other dorsalizing genes. It is

possible that the easter product activates Spatzle by cleavage and Spatzle acts as a ligand for

the transmembrane Toll receptor (Hashimoto et al. 1988). Alternatively, Easter and Spitzle

may be required in parallel for Toll activation.

A conserved intracellular pathway leads to a gradient of nuclear

dorsal protein.
Activation of the Toll receptor in ventral regions of the embryo leads to the

formation of a nuclear gradient of Dorsal protein with nuclear concentrations highest in

ventral regions. This is achieved via an intracellular pathway involving the products of the

genes tube, pelle and cactus.

tube codes for a protein with no sequence similarities to other proteins, although it

is predicted to be cytoplasmic (Letsou et al. 1991). The Pelle protein encodes a putative

serine/threonine protein kinase (Shelton and Wasserman 1993). Allele-specific genetic

interactions between tube and pelle suggest that they encode proteins that interact directly

(Chasan and Anderson 1993).

In contrast to the majority of mutations in the dorsal group of genes, loss-of-

function cactus mutations lead to the ventralization of embryos (Schiipbach and Wieschaus

1989; Roth et al. 1991). Thus, cactus acts as a negative regulator of the ventralizing signal

encoded by Dorsal.

The Cactus protein forms a cytoplasmic complex with the Dorsal protein via its

ankyrin repeats and inhibits dorsal nuclear uptake and (Roth et al. 1991; Kidd 1992;

Steward and Govind 1993). Genetic and biochemical experiments suggest a model in

which Pelle phosphorylates the Dorsal protein in ventral regions of the embryo (Roth et al.

1991; Steward and Govind 1993). Phosphorylation of Dorsal in turn leads to the

dissociation of Dorsal from Cactus and the translocation of Dorsal into the ventral nuclei.

The intracellular pathway Toll-Cactus/Dorsal seems to be homologous to that

triggered by interleukin- (IL-1) in lymphocytes. In activated lymphocytes, the IkB/NFkB

cytoplasmic complex dissociates and NF-kB is taken up into the nucleus (for review, see

Lenardo and Baltimore 1989). The intracellular domains of Toll and the IL-1 receptor have
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sequence homology (Schneider et al. 1991). IkB and Cactus also share sequence

homology, including an acidic amino-terminal domain and ankyrin repeats, which are

usually involved in protein-protein interactions, in their carboxy-terminus (Geisler et al.

1992; Kidd 1992). Finally, Dorsal and NF-kB belong to the rel family of transcription

factors (Govind et al. 1992).

The similarities between these pathways suggest that they may act by very similar

mechanisms. One potential difference between these homologous pathways may be in the

event that triggers the dissociation of the inhibitor/nuclear factor cytoplasmic complex.

While the dissociation and nuclear translocation of the dorsal protein appears to be triggered

by the phosphorylation of the dorsal protein (Roth et al. 1991; Steward and Govind 1993),

in the case of IkB/NFkB, complex dissociation and nuclear transport depend on direct

phosphorylation of the inhibitor IkB (Lienhard-Schmitz et al. 1991).

The localized nuclear uptake of Dorsal protein in ventral regions produces a gradient

of Dorsal nuclear localization. The resulting gradient of dorsal activity leads to the

repression of zygotic genes that promote dorsal fates in ventral regions and the activation of

zygotic genes that promote ventral fates in ventral regions (see below).

B) Maternal systems involved in anteroposterior patterning: the

anterior group of genes

Localization and activation of the maternal anterior morphogen.

The anterior group of genes is required for the specification of the head and thoracic

structures. In addition, the anterior genes are also required in conjunction with the terminal

group of genes for the development of an acron, instead of a telson, in the anterior-most

region of the embryo (for review, see Driever (1993)).

The anterior group of genes consists of four members. Three of these, exuperantia

(exu), swalow (swa) and staufen (stau), are required for the anterior localization in the

oocyte of the mRNA of the fourth gene, bicoid (bcd) (Frohnh6fer and Niisslein-Volhard

1987; Berleth et al. 1988).

The localization of bcd RNA occurs in several phases (for review, see St. Johnston

et al. (1989)). bcd RNA can be observed localized as a ring at the anterior of the oocyte

very early in oogenesis, at stages 5-6. The gene exu is required to maintain this localization

of the bcd RNA at the stages 9-10a. During stages 10b- 12, when the nurse cells pump

large amounts of cytoplasm into the oocyte, the gene swa is required for the localization of

the bcd RNA to the anterior cortex. After stage 12, bcd RNA is redistributed into a tight
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cap at anterior and slightly dorsal positions. After fertilization, stau is required to maintain

this final bcd RNA localization.

Localization of bcd RNA may involve interactions of the Exu, Swa and Stau

products with the cytoskeleton. Studies using cytoskeletal inhibitor drugs showed that

microtubules, but not microfilaments, are required for the establishment and maintenance of

bcd RNA localization during oogenesis (Pokrywka and Stephenson 1991). These authors

have suggested that exu is required for the association of bcd RNA to microtubules, while

swa may be required more generally for a more stable microtubule network. The idea that

swa may have a more general role in cytoskeletal organization is further supported by the

fact that swa mutant embryos exhibit, in addition to head phenotypes, defects in

cellularization and nuclear migration (Zalokar et al. 1975).

At least some of the components of this system may bind the bcd RNA directly. In

particular, the predicted Stau protein contains several copies of a double stranded RNA

binding motif (St. Johnston et al. 1991. Exu and Swa proteins have no significant

homology to known proteins, except for a weak similarity in Swa to an RNA-binding motif

(Chao et al. 1991; Macdonald et al. 1991; Marcey et al. 1991). The sequences in the bcd

RNA required for its localization are present at the 3'end untranslated region of the RNA

(Macdonald and Struhl 1988; Macdonald et al. 1993).

Upon egg activation, the bcd RNA starts to be translated forming a concentration

gradient of Bcd protein with levels highest at the anterior end of the embryo. The simplest

model predicts that this gradient is formed by synthesis from the localized RNA source,

coupled with diffusion within the syncytial embryo and a constant rate of proteolytic

degradation throughout the embryo. The bcd protein gradient regulates zygotic target genes

in a concentration dependent manner (see below).

B) Maternal systems involved in anteroposterior patterning: the

posterior group of genes

Embryos from females mutant for any of the eleven known posterior group of

genes lack all abdominal segments. Nine of these genes, cappuccino, spire, staufen,

oskar, pipsqueak, vasa, valois, tudor, and mago nashi are required for the formation of the

pole plasm and polar granules at the posterior end of the egg. The polar granules are

required for germ cell determination and thus mutations in these nine genes have an

additional defect in that they do not form pole cells. The pole plasm is also the structure

that serves to anchor the posterior determinant, the RNA of the tenth gene, nanos. The

final member, pumilio, is required for nos function.
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Assembly of the pole plasm, the anchor for nos RNA localization.

The nine genes required for pole plasm formation have been proposed to act in an

ordered, hierarchical pathway, where the function and/or product of each gene are required

for the stepwise assembly of the pole plasm (for review, see St. Johnson (1993).

The genes capuccino, spire, staufen, and perhaps mago nashi, are involved in the

transport of the oskar mRNA to the posterior pole (Lehmann and Niisslein-Volhard 1991;

Manseau and Schiipbach 1989; Boswell et al. 1991). This is best shown by the fact that

capuccino, mago nashi, spire and staufen are required for localization of endogenous oskar

RNA to the posterior pole, but are not required for the phenotype caused by ectopic

localization of oskar RNA to the anterior using the bcd 3' UTR localization signal

(Ephrussi et al. 1991; Kim-Ha et al. 1991; Ephrussi and Lehmann 1992).

Mutations in capuccino and spire lead to additional phenotypes, such as the

dorsalization of egg chambers, as well as defects in division and migration of cleavage

nuclei in early embryos (Manseau and Schiipbach 1989). Thus these two genes may be

required for more general functions, such as the organization of the cytoskeleton or

intracellular transport.

On the other hand, staufen may have a more specific role in the transport of oskar

RNA to the posterior pole. Staufen protein colocalizes with oskar RNA at all stages

(Ephrussi et al. 1991; Kim-Ha et al. 1991 St. Johnston et al. 1991). First, both accumulate

at the stage 2 oocyte. At stages 7-9, both of these products are found at the anterior margin

of the oocyte, and at later stages, they are both found localized at the posterior pole of the

oocyte. Staufen encodes a protein with sequence similarities to double stranded RNA

binding proteins and thus it seems likely that Staufen acts as a chaperone protein during

transport of osk RNA to the posterior pole (St. Johnston et al. 1991).

Oskar function is required for the localization of products of genes downstream of

the pole plasm formation and abdominal development pathways, such as the Vasa protein

and the nanos and pumilio RNAs (Hay et al. 1990; Lasko and Ashburner 1990; Wang and

Lehmann 1991; Barker et al. 1992; Macdonald 1992). EM studies show that the Oskar

protein, is localized to the polar granules (Dickinson and Lehmann, unpublished data).

Localization of osk mRNA is instrumental for the determination of pole plasm.

Ectopic localization of oskar RNA to the anterior of the egg using the 3' UTR localization

sequences from the bicoid gene leads to the formation of polar granules and competent

germ cells at the anterior of the egg, as well as an ectopic anterior abdomen (Ephrussi and

Lehmann 1992).
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Mutations in vasa, tudor and valois do not affect oskar RNA posterior localization

and thus interfere with steps downstream of oskar RNA localization (Ephrussi et al. 1991).

The gene pipsqueak has recently been reported to also affect pole plasm formation by

affecting, likely among a number of other genes, vasa mRNA levels (Siegel et al. 1993).

The Vasa protein, but not its RNA, is localized to the posterior pole of the embryo

(Hay et al. 1988, Lasko and Ashburner 1990). Ultrastructural studies have shown that

Vasa is found in the polar granules. Sequence analysis suggests that vasa encodes an ATP-

dependent RNA helicase. Vasa protein may therefore interact with RNAs that localize to

the posterior pole plasm, including the nanos and pumilio RNAs.

The gene valois is unique in that, although it appears to interfere with steps

downstream of oskar RNA localization, it is not required for the function of the ectopically

localized oskar (Ephrussi and Lehmann 1992). The significance of these results is unclear.

Mutations in valois also affect cellularization in the early embryo (Schiipbach and

Wieschaus 1986a). Thus valois may be involved in more general processes related to the

cytoskeleton.

The tudor gene, on the other hand, appears to specifically affect polar granules

(Boswell and Mahowald 1985; Schiipbach and Wieschaus 1986a). The fact that the size of

polar granules in mutant correlates with the strength of tudor alleles, and the localization of

Tudor protein to polar granules by EM studies, suggest that Tudor is an integral component

of the polar granules (Boswell and Mahowald 1985; Bardsley et al. 1993).

During the assembly of the pole plasm, a number of interactions can be observed

which differ from a linear assembly pathway. For example, the Oskar protein is required

for the maintenance of its own RNA and the Staufen protein at the posterior pole (Ephrussi

et al. 1991; Kim-Ha et al. 1991; St. Johnston et al. 1991), and the functions of staufen,

valois and tudor are all required for the maintenance of Vasa localization during oogenesis

or embryogenesis (Hay et al. 1988, Hay et al. 1988; St. Johnston et al. 1991). These

interactions further suggest that components of the pole plasm interact with each other to

form stable complexes that constitute the polar granules.

Pole plasm formation is important for anteroposterior patterning because the

localization of the posterior determinant, the nanos RNA, depends on the formation of this

specialized cytoplasm (Wang and Lehmann 1991; Wang et al., 1994). This localization

occurs at the last stages of oogenesis and is directed by sequences present at the 3' end of

the nanos RNA untranslated region (Gavis and Lehmann 1992).
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The function of the Nanos protein gradient.

Upon egg activation, translation of the localized nanos RNA coupled with diffusion

of protein anteriorly across the embryonic syncytium creates a Nanos protein gradient with

levels highest at the posterior pole (Barker et al. 1992; Smith et al. 1992; Wang et al.

1994).

Nanos function is required for the activation of the abdominal gap genes knirps and

giant (Rothe et al. 1989; Eldon and Pirrotta 1991; Kraut and Levine 1991a). Nanos,

though, does not act on these genes directly, as is the case with the anterior determinant

Bicoid and its targets genes. Rather, Nanos protein plays an indirect role, by

translationally repressing maternal Hunchback, which would otherwise repress knirps and

giant expression (Hiilskamp et al. 1989; Irish et al. 1989a; Struhl 1989). The maternal

hunchback RNA, which is found uniformly distributed in the unfertilized egg, is the only

essential target of Nanos, since the abdominal phenotype caused nanos mutations is

suppressed by the lack of maternal hunchback function.

Sequences in the 3' UTR region of the maternal hunchback RNA have been shown

to be both necessary and sufficient for Nanos-dependent translational regulation (Wharton

and Struhl 1989). A 11 base bipartite sequence, which occurs twice in this region, has

been proposed to be the target of Nanos and has been termed the Nanos-responsive element

(NRE).

The gene pumilio is also required, perhaps in an auxiliary role, for the Nanos-

dependent translational repression of hunchback (Lehmann and Niisslein-Volhard 1987a;

Barker et al. 1992). pumilio is also required for adult viability and bristle determination,

suggesting a more general function for this gene. The gene pumilio codes for a very large

protein with eight tandem copies of a 36-amino acid repeat also found in several yeast and

plant proteins of unknown function (Macdonald 1992; Barker et al. 1992; D. Barker,

personal communication).

Translational repression of the maternal hunchback RNA by the Nanos protein

gradient leads to a complementary gradient of maternal Hunchback protein with levels

highest at the anterior of the embryo (Tautz 1988; Tautz and Pfeifle 1989). As discussed

below, the Hunchback protein gradient regulates transcription of downstream zygotic genes

in a concentration dependent manner.
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D) Maternal systems involved in anteroposterior patterning: the

terminal group of genes

Recessive mutations in terminal group genes affect embryonic structures

corresponding to the anterior-most and posterior-most regions of the embryonic fate map.

The anterior structures missing in these mutants define the acron, which includes the

labrum, parts of the brain, and portions of the cephalopharyngeal skeleton. The posterior

structures affected by these mutations define the telson, which includes structures posterior

to the seventh abdominal segment (A7), such as A8, the posterior gut, the malpighian

tubules, and the posterior spiracles.

The terminal group of genes includes seven maternal-effect genes: torso, torso-like,

fs(1)Nasrat, fs(1)polehole, trunk, corkscrew and l(l)polehole. Recent screens for

suppressors of Torso dominant alleles have identified a number of additional genes in this

pathway (see below, for review, see Sprenger and Niisslein-Volhard (1993)).

Production and localization of a terminal signal at both poles.

The pattern determinants of the anterior and posterior system are produced and

localized within the confines of the nurse cell-oocyte syncytium. On the other hand, the

terminal system, like the dorsoventral system, relies on a signal produced in the

surrounding follicle cells which is stored within the egg vitelline membrane and transduced

into the zygote after fertilization.

Transduction of this signal across the embryonic membrane is achieved via the

product of the gene Torso. Torso encodes a membrane receptor with homology in its

cytoplasmic domain to protein tyrosine kinases (Casanova and Struhl 1989; Sprenger et al.

1989). Autophosphorylation of Torso protein immunoprecipitated from embryonic extracts

reveals that the Torso kinase activity is present only in a window of 1 to 2 hours after

fertilization (Sprenger and Niisslein-Volhard 1993). Thus Torso is activated, probably by

an extracellular ligand, during the mid to late syncytial stages.

Torso dominant alleles have been particularly useful in the ordering by genetic

epistasis of genes in this pathway. Torso dominant alleles produce constitutively active

receptors which lead to the expansion of terminal structures at the expense of thoracic and

abdominal regions (Klingler et al. 1988; Szabad et al. 1989. Four genes, torso-like, trunk,

fs(1)Nasrat and fs(l)polehole do not suppress Torso dominant mutations and thus act

upstream of Torso function (Ambrosio et al. 1989; Casanova and Struhl 1989; (Casanova

and Struhl 1989; Perkins et al. 1992). Mutations in the genes corkscrew and l(1)polehole,

on the other hand, suppress a Torso dominant mutation and thus act downstream of Torso.
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One of the four genes that act upstream of Torso likely encodes a ligand for Torso

receptor. Transplantation experiments have shown that this ligand is present in the

perivitelline space, is difussible and limiting, and is locally produced at both ends of the

embryo, where it appears to be sequestered by the Torso receptor (Stein et al. 1991).

fs(l)Nasrat andfs(l)polehole mutant females produce eggs that often collapse

(Degelmann et al. 1990). These two genes may thus be involved in the integrity of the

vitelline membrane that anchors this ligand, rather than encoding the ligand itself.

The gene torso-like could possibly encode the Torso ligand. torso-like is the only

terminal group gene required in the somatically derived follicle cells and not the germ line

(Stevens et al. 1990). In particular, torso-like function has been shown to be required in a

few cells at each end of the egg chamber. This is in agreement with the expression of

torso-like RNA specifically in follicle cells at the anterior and posterior ends of the growing

oocyte (Savant-Bhonsale and Montell 1993). The Torso-like protein is predicted to be

secreted, with leucine-rich regions that are similar to leucine-rich repeats that may mediate

protein-protein and protein-lipid interactions. Ectopic expression of torso-like using a heat-

inducible promoter produces phenotypes similar to those caused by constitutively active

Torso. Thus, the Torso-like protein has all the properties expected of the localized, limited

Torso ligand which is present in the perivitelline space.

Alternatively, the Torso ligand could be encoded by the germ line-dependent trunk

gene (Casanova and Struhl 1993). Trunk protein could be secreted from the oocyte into the

perivitelline space in an inactive form. Inactive Trunk could be locally converted into active

ligand by the spatially restricted Torso-like protein.

Reception of the terminal signal and activation of an intracellular

protein kinase cascade.

Activation of the Torso protein triggers an intracellular signalling cascade that

includes the products of the genes corkscrew and l(l)polehole, and several other genes

identified as suppressors of a constitutively active Torso allele, such as Crk-like,

Suppressor of sevenless (Sos), Ras-l and Dsorl (Perrimon et al. 1984 Perrimon et al.

1985; Nishida et al. 1988; Ambrosia et al. 1989a; Ambrosia et al. 1989b); Perkins et al.

1992; Doyle and Bishop 1993; Lu et al. 1993; Tsuda et al. 1993). The precise epistatic

relationship between these genes is unknown. Nevertheless, the similarity of this pathway

to other receptor tyrosine kinase signal transduction pathways in yeast, C. elegans and

vertebrates, as well as to photoreceptor determination in Drosophila, has provided a

framework for understanding the events in this signalling cascade (Tsuda et al. 1993; Han
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and Sternberg 1990; Simon et al. 1991; Bruder et al. 1992; Clark et al. 1992; Kyriakis et

al. 1992; Williams et al. 1992).

The Crk-like protein may act as an adaptor between the activated receptor tyrosine

kinase and the Ras protein. The Crk-like sequence contains SH2 and SH3 domains, which

can mediate protein-protein interactions by binding to phosphotyrosine residues (Simon et

al. 1993; Doyle and Bishop 1993; Margolis 1992).

The activation of Rasl by the Torso receptor may also involve the function of the

Son of sevenless (Sos) protein, a nucleotide exchange factor (Simon et al. 1991; Doyle and

Bishop 1993). Sos activity leads to increases in the level of GTP-bound active Rasl.

Eventually, Rasl returns to its inactive, GDP-bound state by virtue of its GTPase activity.

The increased levels of active, GTP-bound Ras 1 during signal transduction result in

the activation of the product of the I(l)polehole gene, the serine-threonine kinase

Drosophila Raf homologue (Raf-l) (Mark et al. 1987; Nishida et al. 1988, Sprenger et al.,

1993). In mammals, Raf- 1 is directly associated with receptor tyrosine kinases and acts as

a kinase upon phosphorylation (Morrison 1990, App et al. 1991). Activation of Raf-l

leads to the phosphorylation of downstream targets in this cascade.

The gene corkscrew also modulates this pathway, but in a manner that remains

unclear. The corkscrew gene, encodes a tyrosine phosphatase and has two SH2 domains

(Perkins et al. 1992). Nevertheless. corkscrew mutations affect only a subset of the

structures affected by a Torso null mutation. Thus, corkscrew does not relay the entire

activity of the Torso signalling pathway but may only regulate the activity of a subset of its

components.

Recently, mutations in Dsorl, the Drosophila homologue of the microtubule-

associated protein (MAP) kinase activator, have been isolated as dominant suppressors of

D-raf (Tsuda et al. 1993). Genetic epistasis studies suggest that Dsorl acts downstream of

both D-raf and corkscrew. This result predicts a MAP-kinase like molecule downstream of

Dsorl, which could be encoded by DmERK-A (Biggs and Zipursky 1992)

This signal transduction cascade is likely to involve additional genes. Doyle and

Bishop (1993) have identified, in addition to Sos and Rasl, five other complementation

groups which, when mutated, act as suppressors of Torso and are thus likely involved in

Torso signalling. Other genes may be involved in the negative regulation of this pathway.

The gap-1 gene may provide such negative signals, since mutations in gap-i enhance the

activity of constitutive Torso alleles (Doyle and Bishop 1993)

Presumably, the end result of this signal transduction cascade is the localized

phosphorylation, perhaps by Raf- 1, of a transcription factor that activates terminal gap

genes. This activity appears to be distributed as a gradient with highest levels at each pole,
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and the activation of different downstream genes depends on different levels of terminal

activity (see below).

4. Initiation of patterned zygotic gene expression: interpretation of

maternal information gradients and its refinement via zygotic gene

interactions

The maternal systems produce gradients of protein that will direct the patterning of

different aspects of the embryo. These molecules act as morphogens, which are graded

factors that induce different cellular responses at different threshold concentrations. At the

molecular level, different cellular responses are produced by differential gene expression of

cell fate-determining genes.

The establishment of patterned gene expression in the embryo utilizes both

mechanisms that initiate and refine the gene expression domains and mechanisms that

maintain and stabilize the already established pattern. For the sake of clarity these two

different mechanisms will be discussed separately, in sections (4) and (5), respectively.

Nevertheless, it should be kept in mind that throughout embryogenesis these two types of

mechanisms often occur simultaneously, specially when considering different tiers of

genes. It should also be noted that the distinction between cross-regulatory interactions that

refine and those that stabilize a pattern is somewhat arbitrary, since in reality both of these

sets of interactions likely contribute to both processes.

A) Patterning of zygotic dorsoventral genes

The differential nuclear translocation of Dorsal protein caused by the dorsal group

of genes produces a gradient of dorsal activity with highest levels in ventral regions (Roth

et al. 1989; Rushlow et al. 1989; Steward 1989). Since the transcription factor Dorsal can

only function when present in the nucleus, this gradient of dorsal nuclear localization leads

to a gradient of dorsal activity with levels highest in ventral regions.

The graded Dorsal protein acts as a morphogen. Increasing levels of dorsal activity

induce in cells the fates of progressively more ventral regions in the order: ammioserosa

(dorsal midline cells, little or no dorsal activity required), dorsal epidermis (dorsolateral

cells), neuroectoderm (ventrolateral cells), and mesoderm (mesoderm, high dorsal activity

required). In embryos mutant for dorsal, ventral regions are deleted and dorsal and lateral

regions are expanded, suggesting that the steepness of the gradient has changed due to the

generally reduced dorsal activity (Anderson and Niisslein-Volhard 1984). Mutations in the
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recessive, ventralizing cactus alleles also seem to change the steepness of the gradient (Roth

et al. 1991). Embryos mutant for cactus lack dorsal and dorso-lateral structures, but do not

have an expanded mesoderm. Since Cactus normally inhibits translocation of the Dorsal

protein to the nucleus, the shallower gradient of dorsal activity, as reflected in this

phenotype, is consistent with an overall increase in nuclear Dorsal protein due to the lack of

cactus function This and other data at the level of zygotic gene transcription (Rushlow et

al. 1987) have suggested that Dorsal acts as a morphogen across the dorso-ventral axis.

Dorsal regulates ventral, lateral and dorsal zygotic genes. In ventral regions Dorsal

activates genes such as twist and snail, which are required for the differentiation of the

mesoderm (Jiang et al. 1991; Ip et al. 1992). Dorsal is also required for the activation of

genes required for the more lateral neuroectodermal fates, such as rhomboid, single minded

and lethal of scute (T3) (Bier et al. 1990; Kasai et al. 1992; Jiang and Levine 1993). In

ventral regions, activation of the dorsal-promoting zygotic genes zerknilt, decapentaplegic

and tolloid appears to be a default state. The expression of these genes is restricted to

dorsal regions by repression by Dorsal in ventral and lateral regions (Rushlow et al. 1987;

St. Johnston and Gelbart 1987; Ip et al. 1991; Shimell et al. 1991).

The activation of ventral and lateral genes and repression of dorsal genes by Dorsal

is likely the result of direct transcriptional regulation. Binding sites for the Dorsal protein

are found in the promoters of twist, snail, rhomboid and zen (for review, see Ip et al.

(1992). The same sites have been shown to mediate Dorsal-dependent activation or

repression depending on the target gene in which they are inserted (Ip et al. 1991; Jiang et

al. 1992 Pan and Courey 1992). Thus additional sequences in the promoters of these

genes, and likely binding by other transcription factors, determine the ultimate regulatory

effect of Dorsal on transcription.

The affinities of the Dorsal binding sites are important for determining the threshold

response. Strong Dl-binding sites in the zen promoter have a 5-fold higher affinity than D1-

binding sites in the twist promoter (Thisse et al. 1991; Jiang et al. 1991). Thus, in lateral

regions, low levels of Dorsal can repress genes with high-affinity Dl-binding sites, such as

zen, even though they are insufficient for the activation of genes with low-affinity binding

sites, such as twist.

Activation in lateral regions (i.e. at low Dl levels) dependent on high affinity D1-

binding sites require cooperative interactions between Dl and bHLH transcriptional

activators, such as daughterless and twist (Jiang and Levine 1993). Snail, which is a Zn-

finger DNA binding protein, inhibits this cooperative interaction. This may be achieved by

competitive binding to the bHLH binding sites (E boxes), although a more active

repression mechanism that masks activation by Dl may also be involved. This mechanism
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of repression by Snail may be used to restrict the expression of lateral genes such as

rhomboid, contributing in this manner to the establishment of the mesoderm/neuroectoderm

boundary.

The product of the dorsally expressed decapentaplegic (dpp) gene plays a major role

in patterning in dorsal and lateral regions (Ferguson and Anderson 1992; Wharton et al.

1993). Gene dosage and RNA injection experiments have shown that progressively higher

doses of Dpp promote the formation of progressively more dorsal fates: low Dpp levels

cause ventral ectoderm pattern elements, intermediate Dpp levels produce dorsal ectoderm

and high Dpp levels lead to the development of the ammioserosa.

Dpp encodes a member of the transforming growth factor beta (TGFb) family, and

is most closely related to the bone morphogenetic factors (BMP) 2 and 4 (Padgett et al.

1987; Wozney et al. 1988). This homology and the fact that Dpp protein undergoes limited

diffusion strongly suggests that Dpp is secreted and exerts its effects in the extracellular

compartment (Panganiban et al. 1990).

Four genes, tolloid (tld), shrew, screw and short of gastrulation (sog), have been

shown to exert a postrancriptional regulatory effect on dpp (Ray et al. 1991; Ferguson and

Anderson 1992). tolloid encodes a Drosophila homologue of the vertebrate BMP-1, which

forms a complex with BMP-2 and BMP-4 (Shimell et al. 1991 Wozney et al. 1988). These

homologies suggest that Tld and Dpp form part of a multiprotein, extracellular complex and

that the Tld protein modifies the activity of the Dpp protein. The sog gene, on the other

hand, antagonizes Dpp activity in ventral regions, and may refine the Dpp extracellular

gradient (Zussman et al. 1988; Shimell et al. 1991).

The spitz group of genes is required for the formation of ventrolateral

(neuroectodermal) structures (Mayer and Niisslein-Volhard 1988). This group includes the

genes spitz, Star, pointed and rhomboid. The gene spitz codes for a transmembrane

protein with the structural features of the transforming growth factor alpha (TGFa), a

member of the epidermal growth factor (EGF) family (Rutlege et al. 1992). Rhomboid

codes for a transmembrane protein with three to seven membrane spanning domains (Bier

et al. 1990). This molecular information and the facts that spitz and rhomboid have similar

phenotypes, and that some of these phenotypes are shared with mutations in the Drosophila

EGF receptor (DER) suggest a model for the action of these genes (Rutlege et al. 1992). In

this model, the spatially restricted Rho protein functions together with the more broadly

distributed DER to potentiate the activation of the DER tyrosine kinase by the ubiquitous

Spi ligand.

To the present, downstream targets of the dorsoventral patterning system have not

been well studied. Some of these targets may be genes involved in anteroposterior
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patterning. The Twist protein, for example, has been proposed to directly enhance the

expression of Ubx in the mesoderm (Qian et al. 1993) These interactions help integrate the

input from dorsoventral and anteroposterior patterning systems and lead to the complex set

of structures observed in the mature larva.

B) Patterning of zygotic anteroposterior genes

Patterning along the anteroposterior axis is established by a series of tiers of zygotic

expression. The first set of genes, the cardinal or gap genes, are expressed in broad

domains. Gap genes determine the further subdivision of the embryo by controlling the

segmentation genes, the pair rule and segment polarity genes. Simultaneously, gap gene

products also regulate the expression of homeotic genes to determine the identity of each

forming segment.

i) The cardinal genes: gap genes

The gap genes represent the first tier of zygotic anteroposterior expression. Six

principal gap genes are known, hunchback (hb), Kruppel (Kr), knirps (kni), giant (gt)

tailless and huckebein (hkb) (for reviews, see Hiilskamp and Tautz (1991); Hoch and

Jdickle (1993); Kornberg and Tabata (1993); Pankratz and Jackle (1993)). In addition, the

genes orthodentical (otd), buttonhead (btd) and empty spiracles (ems), which act in the

head region, have gap-like characteristics. All of these genes appear to be transcription

factors: Hb, Kr and Btd have Zn-finger DNA binding motifs (Tautz et al. 1987; Rosenberg

et al. 1986; Pankratz and Jackle 1993); Kni and Tll have homologies to the Zn-finger DNA

binding domain of steroid receptors (and T, but not Kni, has a weak homology in the

steroid binding domain; (Nauber et al. 1988; Pignoni et al. 1990); Gt has a basic-leucine

zipper region characteristic of DNA binding proteins (Mohler et al. 1989), and Otd and

Ems are homeobox proteins (Dalton et al. 1989; Finkelstein and Perrimon 1990).

Mutations in gap genes create large gaps in the anteroposterior pattern. As might be

expected, for each gene the regions of expression correlate with the fate map positions

corresponding to the structures affected by these gaps. hb is expressed in the anterior 50%

of the egg, and the absence of zygotic hb affects the development of head and thoracic

regions (Lehmann and Niisslein-Volhard 1987; Tautz et al. 1987; Tautz 1988). Kr is

expressed as a single band in a central domain partially overlapping the hb domain (Gaul

and Jickle 1987). Accordingly, Kr mutations affect the development of the thorax and first

five abdominal regions (Wieschaus et al. 1984b). kni is also expressed as a band, which is
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just posterior to that of Kr (Rothe et al. 1989). Mutations in kni affect the formation of

abdominal segments one through seven (Nauber et al. 1988). kni is also expressed in more

anterior regions of the embryo, in domains overlapping the hb domain, although there is no

obvious role for this domain of expression. gt is initially expressed in two domains, an

anterior band overlapping the hb domain, and a posterior cap expressed just posterior to kni

(Mohler et al. 1989). During the cellular blastoderm stage, the anterior band evolves into a

three striped pattern and the posterior cap retracts into a band. Accordingly, mutations in gt

have both anterior and posterior phenotypes, affecting the head and segments five through

eight. Both tailless and huckebein are initially expressed as overlapping caps at each pole

of the embryo, the ll expression domain being somewhat larger than that of hkb (Pignoni

et al. 1990; Bronner and Jackle 1991). Mutations in tll and hkb affect structures that

originate in the acron and telson of the embryo (Strecker et al. 1986; Weigel et al. 1990).

Finally, the head genes otd, ems and btd are expressed in progressively more posterior

areas of the head region and are required for the development of those regions (Dalton et al.

1989; Cohen and JUrgens 1990; Finkelstein and Perrimon 1990).

The gap genes are regulated by the three sets of anteroposterior maternal genes. In

general, the phenotype of a particular gap gene is similar to the phenotype of the maternal

genes required for its activation (Finkelstein and Perrimon 1990). Thus,. mutations in hb

and bcd both affect head and thoracic structures, which reflects the fact that hb is a major

target for Bcd activation. In accord to the fact that Nos is required for the activation of kni

and gt, mutations in kni, gt and nos all result in the deletion of abdominal segments.

Similarly, tll and hkb are activated by the maternal terminal genes, and mutations in these

maternal genes as well as tll and hkb affect terminal structures of the embryo.

The Bicoid morphogenetic gradient: regulation of anteriorly

expressed genes.

The Bcd protein is distributed in an anteroposterior protein gradient and acts as a

morphogen. This is indicated by experiments in which different bcd dosages lead to

corresponding shifts in the embryonic fate map, as assayed by both morphological markers

such as the head fold and the expression of marker genes such as hb and even-skipped

(Driever and Niisslein-Volhard 1988b; Struhl et al. 1989).

As mentioned above, the similarities between the bcd and hb mutant phenotypes

suggest that the hb is a major target for Bcd. The Bcd protein gradient activates hb in the

anterior half of the embryo. Indeed, the P2 promoter, which is used for the anterior hb

zygotic expression, depends on bcd for its activation and contains Bcd-binding sites (Tautz

et al. 1987; Driever and Niisslein-Volhard 1989). These sites can confer Bcd-dependent
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activation of heterologous genes in Drosophila and yeast (Driever and Niisslein-Volhard

1989; Driever et al. 1989; Hanes and Brent 1989; Struhl et al. 1989).

The hb P2 promoter contains both low affinity and high affinity bcd binding sites

(Driever and Niisslein-Volhard 1989). In vivo studies of the expression conferred by

fragments containing Bcd-binding sites suggest that the number and quality of these sites

determine the threshold concentration of Bcd protein required for activation (Driever et al.

1989; Struhl et al. 1989).

It is still unclear how the rather shallow Bcd gradient can establish a sharp

boundary of hb expression. Driever (1993) has pointed out that hb expression levels

change 20 to 50 fold over its boundary of expression, while in the same region Bcd protein

concentration changes only 2 to 3 fold. Presumably cooperative interactions between Bcd

bound to the multiple promoter sites are responsible for this sharp threshold of activation.

Alternatively, Bcd could be active only as dimers or multimers, and the Bcd monomer to

multimer ratio could have a sharp dependence on Bcd concentration.

The existence of additional target genes for Bcd has been proposed since, in spite of

their similarity, the bcd and hb mutant phenotypes are not identical. One or more of the

anteriorly expressed genes otd, enms and btd, or the gt anterior domain of expression, may

be such additional Bcd targets. The domains of expression of all of these genes are more

anteriorly restricted than that of hb. In principle, this more anterior restriction could be

mediated by a promoter with Bcd-binding sites of generally less affinity than those present

in the hb promoter.

Recently the terminal group activity has been proposed to restrict activation by Bcd

in anterior regions (Ronchi et al. 1993). This method of regulation may apply to anterior

genes, such as hb, otd and the sloppy pairedl locus, that are activated as a cap of

expression and retract their anteriormost expression to evolve into a band. It may also be

utilized in the regulation of genes that are activated somewhat later and appear as a band,

such as ems and sloppy paired2. The fact that this effect is observed in reporter constructs

whose expression is controlled solely by the Bcd binding site shows that this effect

involves modification of the Bcd activity. The modification of Bcd is dependent on the

activity of the serine/threonine protein kinase homologue D-raf, encoded by the terminal

group gene l(I)polehole (see above). That Bcd may be modified through phosphorylation

is further supported by the fact that Bcd protein is phosphorylated during early

development in a process dependent on terminal activity. A hybrid Bcd protein carrying

several copies of the transcriptional domain of yeast GCN4 did not respond to the terminal-

dependent regulation, which suggests that the inhibition of Bcd activity occurs at the level

of transcriptional activation and not DNA binding. Thus, the terminal group activity may
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lead to Bcd phosphorylation. This modification in turn restricts the ability of Bcd to

activate genes in the anteriormost regions, thus further refining the expression patterns of a

number of head genes.

The Hunchback morphogenetic gradient and its organizing properties

There are two different sources of Hb protein that contribute to the Hb protein

gradient: the maternal Hb (Hbmat) protein gradient established by translational repression

by Nanos of the hbmat mRNA, and the zygotic Hb (HbzYg) protein gradient established by

activation of Bcd in the anterior half of the embryo (see above). Although established by

very different mechanisms, both gradients of Hb protein have similar distributions, i.e.

high protein levels at the anterior of the embryo and low at the posterior.

The windows of temporal expression of the hbmat and hbzYg protein gradients

overlap, but are not identical (Tautz 1988). The Hbmat protein gradient appears very early

at nuclear cycles 6 or 7 and can be observed (in bcd embryos, where HbzYg is not

activated) to disappear during the cellular blastoderm stage (cycle 14). The HbzYg protein

gradient appears later, during cycles 11 or 12, and the protein can be observed past the

blastoderm stage until early gastrulation.

The hbmat and hbzYg RNA, although transcribed from different promoters, share

the same coding sequence (Schrdder et al. 1988). Thus, the Hbmat and HbzYg protein

gradients are formed by presumably an identical protein.

The spatially and temporally overlapping Hbmat and HbzYg protein gradients as

well as the identical primary sequence of the Hbmat and HbzYg proteins suggest that the

two gradients have similar properties. This is indeed the case, as both the Hbmat and

HbZYg gradients on their own can organize the zygotic gap gene pattern in a similar fashion

(Hiilskamp et al. 1990; Eldon and Pirrotta 1991; Kraut and Levine 1991a,Kraut and Levine

1991b; Kraut and Levine 1991b). These organizing properties are described below and the

two Hb protein gradients will be jointly referred to as the Hb protein gradient.

The Hb protein gradient acts as a major organizer of gap gene transcription in the

embryo. Hb regulates transcription of Kr, kni and gt. This regulation appears to be direct,

since Hb-binding sites have been found in the promoter regions of these three genes (Hoch

et al. 1991; Pankratz et al., 1992; M. Capovilla, personal communication).

High Hb protein levels repress transcription of Kr (Hiilskamp et al. 1990; Struhl et

al. 1992). Thus, the Hb protein gradient sets the anterior boundary of Kr expression at the

position in which Hb levels become too high to allow Kr expression. On the other hand,

moderate levels of Hb are required for the activation of Kr. Thus, the Hb protein gradient
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also sets the posterior Kr boundary at the position in which Hb levels become too low to

activate Kr transcription.

The concentration-dependent behavior of the Hb protein, acting as an activator at

low concentrations and a repressor at high concentrations, is a property that it shares with

the Kr protein (see below). This phenomenon has been partly mimicked in cultured

Drosophila cells, where Hb activates transcription in a concentration dependent manner and

this activation is lost at Hb concentrations above a certain threshold (Zuo et al. 1991). It is

possible that high Hb levels titrate out a coactivator. Alternatively, Hb may multimerize in

a concentration dependent manner and only the monomer can activate transcription, while

the multimeric form may contribute to repression. This second mechanism appears to be

involved in the dosage-dependent behavior of Kr as a regulator (see below).

Moderate levels of Hb also repress the expression of kni and gt. Thus the Hb

gradient determines by repression the anterior boundaries of expression of these genes, at

the positions where Hb protein levels are too high to allow their expression (Hiilskamp et

al. 1990 Eldon and Pirrotta 1991; Kraut and Levine 1991a, Kraut and Levine 1991b; Struhl

et al. 1992). The expression of kni and gt appears to occur by default (Capovilla et al.

1992; Pankratz et al. 1992). In the case of ki, studies employing regions from the

promoter fused to a reporter construct have shown that cis-acting sequences are required

for the activation of these constructs (Pankratz et al. 1992). Additional regions of the kni

promoter are required for Hb- and Tll-dependent repression (see below) and contain

binding sites for these two proteins. The fact that activators and repressors act through

different kni promoter regions suggests that repression can not be simply caused by

competitive interference at the level of DNA binding, as has been proposed in other

examples of gene regulation (see below).

These interactions allow the Hb protein gradient to organize the embryo into

anterior (hb-expressing), middle (Kr-expressing) and posterior (kni- and gt- expressing)

regions. Either the maternal Hb protein gradient on its own (as observed in bcd embryos)

or the zygotic Hb protein gradients on its own (as tested in embryos from Hb mutant germ

line clones) can organize the embryo in this manner.

Cross-regulatory interactions involving Kr, kni and gt constitute a self-organizing

system that refines the pattern initiated by the Hb protein gradient. For example, the

posterior kni boundary is determined by repression from Gt and Til (Pankratz et al. 1989;

Eldon and Pirrotta 1991), and the posterior gt boundary is determined by repression by TU

(Eldon and Pirrotta 1991; Kraut and Levine 1991b). In addition, the posterior Hb and Kr

boundaries are refined at the late blastoderm stage by repression from Kr and Kni proteins,

respectively (Gaul and Jackle 1987; Gaul and Jackle 1990)).
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Cascading gradients
The picture of embryonic anteroposterior patterning that begins to appear is one in

which patterning is not refined by a single morphogenetic gradient that acts along the entire

length of the embryo, but by a series of cascading gradients each of which organizes

sections of the embryo. Thus the anteroposterior bcd morphogenetic gradient activates the

HbzYg gradient in the anterior half of the egg. Hb, in turn, also forms a morphogenetic

gradient. Both Bcd and Hb contribute to the activation of Kr in a slightly more posterior

domain. The expressed Kr protein is similarly capable of regulating genes in a

concentration dependent manner, although these interactions appear to be more involved in

the stabilization of the pattern than in its establishment (see below).

Activation of gap genes at both ends by the terminal activity

As described above, activation of the Torso tyrosine kinase receptor signalling

cascade leads to the activation of an unknown transcription factor at both ends of the

embryo. This presumably graded transcription factor may also been proposed to act as a

morphogen, since different levels of terminal activity lead to the differential activation of

downstream target genes and the formation of different cuticular structures (Casanova and

Struhl 1989).

The terminal activator is required for the expression of at least tll and hkb as caps at

each pole (tll anterior expression later resolves into a band) (Pignoni et al. 1990; Weigel et

al. 1990; Br6nner and Jickle 1991). The boundaries of tll expression are further away

from the poles than those of hkb. The regulation of these two genes by the unknown

terminal activator has not been studied at the molecular level. Nevertheless, it seems

plausible that the different extents of activation from the poles of tl and hkb are a

consequence of differential affinities of their promoters to binding by the terminal activator.

This differential response to the graded terminal activity continues to organize the

terminal pattern indirectly through the differential regulatory activity of its targets genes.

This is the case for the posterior zygotic hb domain, which appears in the embryo after the

establishment of the Bcd-dependent anterior hb domain. The posterior hb domain of

expression is transcribed from the P1 hb promoter (the same used for transcription of the

maternal hb mRNA) and appears as a cap that resolves into a stripe (Tautz 1988). The

regulation of this domain as a stripe involves activation by Tll1 and repression by the more

posteriorly expressed Hkb protein (Casanova 1990).

tll and hkb appear to be the only targets of the terminal activity at the posterior pole,

since the posterior end of tll, hkb double mutant embryos resembles the phenotype caused
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by lack of terminal activity (Weigel et al. 1990). This is not the case in the anterior of the

embryo, however, and thus there are likely other target genes for the terminal system in the

anterior pole.

The Tll protein codes for a Zn-finger DNA binding protein that belongs to the

steroid receptor superfamily (Pignoni et al. 1990). This homology is primarily in the DNA

binding domain, although weak homologies also exist in the ligand binding domain.

Ectopic expression of Tll leads to ectopic tll activity, suggesting that if there is a Tll ligand,

it is distributed throughout the embryo (Hoch et al. 1992).

TIl itself appears to form a morphogenetic gradient. This is suggested by the fact

that different levels of tll activity lead to the determination of different structures (Strecker et

al. 1988; Casanova 1990). This may be achieved by different levels of tll activity leading

to the differential activation of downstream target genes, such as the seventh stripe of the

pair rule genefiishi tarazu (ftz), and the homeotic gene r-Abdominal B (r-Abd-B)

(Casanova 1990). The gene forkhead, which is expressed in a tll-dependent manner

posterior to the seventhftz stripe, may require for its activation levels of Tll slightly higher

thanftiz. Differential regulation to graded tll activity may also be responsible for the

organization of the caudal and r-Abdominal B domains into different but partially

overlapping domains (Sanchez-Herrero and Crosby 1988; Casanova 1990). Thus the

putative graded terminal activator and T11 may constitute cascading morphogenetic

gradients, as illustrated by the Bcd and Hb protein gradients (see above)

Tll also contributes to the pattern in non-terminal regions. T protein acts as a

strong transcriptional repressor. Repression by the graded Tll domain contributes to the

determination of the posterior boundaries of the abdominal gap genes kni and gt (Pankratz

et al. 1989, Eldon and Pirrotta 1991; Kraut and Levine 1991b).

ii) The segmentation genes: pair rule genes

The rough subdivision of the embryo into broad gap gene domains is further

refined by the pair-rule genes, which divide the embryo into one-segment units (for

reviews, see Kornberg and Tabata (1993); Pankratz and Jickle (1993)). Pair rule genes are

expressed in seven stripes along the embryo. Mutations in these genes affect structures

either even or odd numbered parasegments (Niisslein-Volhard and Wieschaus 1980).

Patterning of the so called primary pair rule genes is achieved by the combinatorial

effects of maternal and gap gene regulators. Primary pair rule gene products in turn

regulate the expression of secondary pair rule genes. The of-register expression of pair

rule genes in turn leads to the activation of the patterned segment polarity genes.
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Activation of primary pair rule genes: stripe by stripe regulation of

gene expression

The expression of primary pair rule genes is dependent only on maternal and gap

gene factors and not on other pair rule genes (although some exceptions are beginning to

appear, see Pankratz and Jckle (1993)). The three known primary pair rule genes are

even-skipped (eve), which encodes a homeodomain protein (Macdonald et al. 1986; Frasch

et al. 1987), hairy (h), which encodes a helix-loop-helix DNA binding protein (Holmgren

1984), and runt, which encodes a nuclear protein with homology to the acute myeloid

leukemia gene (Kania et al. 1990; Bae et al. 1993).

The promoters of primary pair rule genes appear to be composed of modules. Each

of these modules responds individually to the combinatorial input of maternal and gap

factors present in the region. The best studied example of these modules is that conferring

the pattern of the second eve stripe (the "eve stripe-2 element"). Hb and Bcd activate this

480 bp element so that this element directs expression in an anterior region (Frasch et al.

1987; Stanojevic et al. 1991; Small et al. 1991). Expression in this domain is restricted to a

band by the repressive action of the anterior Gt domain, which determines the anterior

boundary of this stripe, and Kr, which determines its posterior boundary. This 480 bp

region contains binding sites for Hb, Bcd, Kr and Gt proteins and these binding sites are

required for repression (Stanojevic et al. 1989; Small et al. 1991; Stanojevic et al. 1991).

Thus, regulation by these factors is likely to be direct. Binding sites for the repressors Kr

and Gt overlap those of the activators Bcd and Hb, so that the mechanism of repression

seems to involve competitive inhibition of DNA binding.

Another well studied example is the "h stripe-6 element". This 500 bp region

confers activation by kni and gt in a broad domain in the posterior region (Howard and

Struhl 1990; Pankratz et al. 1990; Riddihough and Ish-Horowicz 1991). The refining of

the anterior and posterior boundaries of this stripe occurs by repression by the Kr and Tll

domains, respectively (Pankratz et al. 1990; Pankratz et al. 1990). The presence of Kr and

Kni binding sites suggests that, at least for these factors, regulation of this element occurs

directly (Pankratz et al. 1990).

Other eve and h stripes appear to be regulated by separate modules in a similar

fashion, although there are some exceptions to this general rule (for review, see Pankratz

and Jackle (1993)).
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Regulation of secondary pair rule genes: simultaneous generation of

striped patterns
The patterned expression of the secondary pair rule genes depends on the activity of

the primary pair rule genes. These secondary pair rule genes arefushi tarazu (ftz), and

paired (prd), which encode two homeodomain proteins (Paired also has a paired-box motif)

(Kuroiwa et al. 1984; Weiner et al. 1984; Laughton and Scott 1984, Kilchherr et al. 1986),

and oddpaired and odd skipped, both of which encode Zn finger DNA binding proteins

(Kornberg and Tabata 1993; Coulter et al. 1990).

The best studied example of regulation of a secondary pair rule gene is that forftz.

ftz is first ubiquitously expressed in the embryo. Subsequently this expression retracts

from the poles, forming a domain spanning almost the entire embryo (Hafen et al. 1984).

This activation appears to occur by default. The nearly uniformftz pattern then evolves

into a series of seven stripes. The resolution of this pattern may involve repression by

hairy (Carroll and Scott 1986; Howard and Ingham 1986; Ish-Horowicz and Pinchin

1987), odd skipped (Ingham and Martinez Arias 1992) and eve (Frasch et al. 1988).

A 600 bp region just upstream of theftz promoter is capable of conferring the

complete seven-striped pattern (Hiromi et al. 1985; Hiromi and Gehring 1987). Thus this

element has been called the "zebra" element. Deletion analysis of this element identified

positive elements involved in expression in posterior regions of the embryo, as well as

negative elements involved in the repression offtz in posterior cells of odd-numbered

parasegments (Dearolf et al. 1989). The Caudal protein activates the posterior-specific

expression offtz. Caudal protein is distributed as a gradient with levels highest at the

posterior of the embryo (Macdonald and Struhl 1986). The Caudal protein binds the

posterior-activating element, and has been shown to directly mediate activation by this

element (Macdonald and Struhl 1986; Dearolf et al. 1989).

Another protein that has been found to bind the zebra element is Ftz-Fl, a Zn-finger

protein with structural similarity to steroid hormone receptors (Ueda et al. 1990; Lavorgna

et al. 1991). Ftz-F1 binding sites are required for the activation of this element in more

anterior stripes.

Ftz-F2, a Zn-finger protein encoded by the gene tramtrack, has also been found to

bind to the zebra element (Harrison and Travers 1990; Brown et al. 1991). Ftz-F2 is

required to repress ftz expression in the very early syncytial stages (beginning at the third

nuclear cycle), perhaps by counteracting an early general activator (Brown et al. 1991). In

addition, Ftz-F2 may act later at the germ band stage to repressftz in the interstripe regions

(Harrison and Travers 1990; Brown et al. 1991).

Thus, the seemingly simple zebra element is regulated by multiple inputs.
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iii) The segmentation genes: segment polarity genes

Segment polarity genes are expressed as sets of fourteen stripes (although some are

expressed uniformly or in very broad domains). Correspondingly, mutations in these

genes affect the cuticular pattern of each segment, where a part of the pattern is deleted and

replaced by a mirror image duplication of the remaining pattern (for reviews, see Ingham

and Martinez Arias (1992); Martinez Arias (1993)). These genes fall into four classes on

the basis of their phenotype. Embryos mutant for the wingless class (wingless, armadillo,

arrow, cubitus interruptus Dominant, disheveled, fused, gooseberry, hedgehog,

porcupine, smoothered) display deletions of the posterior portion of each segment with

mirror image duplications of the remaining anterior pattern (which forms the denticles).

The phenotype of embryos mutant for the naked class (naked, zeste white 3/shaggy) is the

reverse of that of the wingless class: these mutations cause deletions of the anterior portion

of the segment and duplications of the posterior portion (which lacks denticle bands, hence

the name of these class). Mutations in the patched class of genes (patched, costal) are

associated with small deletions of the anterior part of each segment and duplications of the

segmental boundary. Mutations in a fourth class of genes, the engrailed class (engrailed,

branched), lead to embryos covered with denticles.

The segment polarity genes are expressed during and after cellularization of the

embryo, as opposed to gap and pair rule gene products, which act within a syncytium.

Thus, while the members of the previous two groups of genes encode nuclear transcription

factors, the segment polarity genes code for a variety of molecules involved in different

aspects of cell determination and cell-cell signalling. Some segment polarity genes, such as

wingless and hedgehog, act as extracellular signals (van den Heuvel et al. 1989; Gonzalez

et al. 1991; Lee et al. 1992), and patched codes for receptor-like products (Nakano et al.

1989; Hooper and Scott 1989). Others, like shaggy/zeste white3 and fused code for

protein kinases and may be involved in intracellular signalling pathways (Preat et al. 1990;

Bourouis et al. 1990). The protein encoded by armadillo is homologous to a protein found

in adhesive junctions (Peifer and Wieschaus 1990). Finally, a number of segment polarity

genes encode transcription factors, such as engrailed and gooseberry (which encode

homeodomain proteins, Poole et al. 1985; Baumgartner et al. 1987), Cubitus interruptus

dominant (which encodes a Zn-finger protein, Orenic et al. 1990), and sloppy paired

(which contains a forkhead-type DNA binding motif (Orenic et al. 1990).

Activation of engrailed (en) and wingless (wg) is one of the best studied examples

of the initiation of the segment polarity iterated pattern. wg is expressed in the posterior
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cells of each parasegment, while en is expressed in an adjacent cell, the anterior cell of each

parasegment (Kornberg et al. 1985; DiNardo et al. 1985; Baker 1987; van den Heuvel et al.

1989). Regulation of en depends on the products of the genesftz, eve, prd and opa. Prd

and Opa are required to potentiate this activation in alternate segments (DiNardo and

O'Farrell 1987; Ingham et al. 1988). ftz and eve are expressed in alternate parasegments in

a skewed bell shape pattern with levels highest in the anterior cell of each parasegment and

lower levels trailing of in more posterior cells (Lawrence and Johnston 1989). Either Ftz

or Eve can activate en expression and repress wg expression (Howard and Ingham 1986;

DiNardo and O'Farrell 1987; Frasch et al. 1988). This has led to a model where a

threshold level of activation by Ftz or Eve leads to the restriction of en expression to the

anterior-most cell of the parasegment, while a lower threshold level for repression restricts

wg expression to the posterior-most cell (Ingham and Martinez Arias 1992).

en and wg function are instrumental for the patterning of the segment. It has been

proposed that en and wg act in part through a binary code, where en activity specifies cells

that secrete the first row of denticles and wg activity specifies the naked cuticle (Bejsovec

and Wieschaus 1993). In addition, a gradient of secreted Wg protein appears to be

required for the generation of cell types corresponding to the remaining positional values,

and the activity of this gradient is modulated by patched, engrailed, naked and hedgehog

(Gonzalez et al. 1991; Bejsovec and Arias 1991; Bejsovec and Wieschaus 1993).

Aside from the input from the pair rule genes to initiate the pattern of segment

polarity gene expression, there are complex interactions that further refine and maintain it.

These interactions rely on the activity of the segment polarity genes themselves, which are

present during gastrulation and germ band extension when the gap and pair rule regulators

have decayed. Some of these interactions are described below in the section devoted to

mechanisms of maintenance of gene expression.

iv) The selector genes: homeotic genes

Organization, expression and function of the homeotic genes

The homeotic genes are required for the different segment identities of the

metamerized embryo. These genes are found in large complexes. In Drosophila there are

two clusters of homeotic genes, the Antennapedia complex (ANTP-C, which includes

labial, Deformed, Sex combs reduced, and Antennapedia) and the Bithorax complex (BX-

C, which contains Ultrabithorax, abdominal A and Abdominal B) (for reviews Martinez

Arias (1993); Morata (1993)). These two clusters are found together forming a single unit

in other organisms, such as C. elegans (for review, see Burglin and Ruvkun (1993)), the
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beetle Tribolium (Beeman 1987), and in vertebrates (for reviews, see McGinnis and

Krumlauf (1992); Krumlauf (1993)).

A unusual feature of these clusters is that the order of these genes along the

chromosome (proximal to distal) is the same as the order in which these genes are

expressed along the anteroposterior axis of the embryo. This colinearity is also found in

the other organisms mentioned above. Its significance is not well known, although it may

be related to the regulation of these gene complexes at the chromatin level (see below).

After gastrulation, the expression of homeotic genes in the ectoderm show the

following spatial pattern: labial, anterior to parasegment (PS) 0, Deformed in PS0/PS 1,

Sex combs reduced in PS2, Antennapedia in PS3 to PS13, Ultrabithorax in PS5 to PS12,

abdominal A in PS7 to PS 12, and Abdominal B in PS 13 to PS 15 (see Martinez Arias

(1993)). In spite of the rather broad expression domains of some of these genes, they also

exhibit segment specific modulation. For example, expression of Antennapedia (Antp)and

Ultrabithorax (Ubx) is stronger in PS4,5 and PS6, respectively, than in other segments.

The homeobox gene caudal, which is not contained within these clusters, also acts as a

homeotic gene and is expressed in a domain in PS15 (Macdonald and Struhl 1986).

Because there are more segments than homeotic genes, some segments must be determined

by the combinatorial input of more than one homeotic genes (see, for example, Struhl et al.

(1992)). It has been proposed that different segmental identities arise in "mosaic" segments

with different combinations of cell populations expressing different homeotic genes (Peifer

et al. 1987).

Mutations in homeotic genes result in transformations of one segment identity into

another. In general, homeotic genes are expressed in the segments in which they are most

required, as well as in more posterior segments. Thus, loss-of-function mutations of

homeotic genes result in an "unmasking" of more anterior homeotic genes, which result in

transformations to the identity of more anterior segments (Lewis 1978).

The down regulation of homeotic function by more posterior genes occurs at two

levels. One is at the level of transcription, where posterior homeotic genes inhibit the

expression of more anterior genes. In the example just mentioned, repression of Antp by

BX-C products occurs partly at the level of Antp transcription (Hafen et al. 1984; Carroll et

al. 1986). Trans repression between homeotic genes may help fine tune the amounts of

homeotic products and thus influence their combinatorial effect on the determination of

segment identity (Peifer et al. 1987). In addition, these interactions likely stabilize the

pattern of homeotic expression (see below).

An additional level of regulation must be operating in the suppression of anterior

homeotic activity by posterior homeotic genes. Ectopic expression of homeotic genes from
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a heat shock promoter affects the identity of segments anterior to segments in which the

homeotic gene is normally active, but fails to affect more posterior segments (Gibson and

Gehring 1988; Gonzalez Reyes and Morata 1990; Gonzalez-Reyes et al. 1990). Thus

posterior homeotic genes still inhibit the activity of more anterior genes even when the latter

are expressed by a promoter that is not sensitive to cross-regulation. This phenomenon has

been termed phenotypic suppression.

Dosage experiments involving the simultaneous ectopic expression of several

homeotic genes suggests a model in which posterior homeotic proteins inhibit the activity

of more anteriorly expressed ones not by a strict functional hierarchy but by a quantitative

competition among the homeotic proteins (Lamka et al. 1992). It has been suggested that

phenotypic supression occurs by competitive inhibition at the binding sites of downstream

target genes (Gibson and Gehring 1988; Gonzalez Reyes and Morata 1990).

The significance of phenotypic suppression remains obscure. Nevertheless, since

the thoracic segments are likely to be more similar to an ancestral segment than the more

posterior abdominal segments, it has been proposed that phenotypic suppression evolved

as a way to determine more posterior identities in spite of the presence of homeoproteins

conferring more anterior segment identities (Morata 1993). Moreover, this mechanism may

be much more important in organisms such as vertebrates, where there seems to be no

downregulation by other homeotic genes in posterior regions (see below).

In addition to homeotic genes, there are other genes which lead to homeotic

transformations when mutated without affecting the expression of the homeotic genes per

se. One such gene, extradenticle, may encode a cofactor required for the target specificity

of homeotic proteins (Peifer and Wieschaus 1990) Another gene, teashirt, which encodes a

protein with a Zn finger DNA binding motifs, is specifically required for the determination

of PS3 and more generally for defining the basal identity of segments in the trunk region

(Fasano et al. 1991; Roder et al. 1992). Recently, the Zn finger spalt gene has been

proposed to inhibit teashirt expression and thus promote head identities (Kiihnlein et al.

1994).

The homeotic genes all code for transcription factors containing the homeo-box

DNA binding motif (reviewed in Levine and Hoey (1988). Thus they are likely to control

segment identity by directly regulating transcription of downstream target genes. A number

target genes for homeotic genes have been found through genetic and molecular techniques

(reviewed by Morata (1993)). Some of these genes are transcription factors themselves.

For example, the gene empty spiracles, which is required for the development of the

posterior larval spiracles, codes for a homeodomain DNA binding protein and is directly

activated by the Abdominal-B protein via cis acting sequences in its promoter (Dalton et al.
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1989; Jones and McGinnis 1993). This suggests that there is a hierarchy of activation

cascades downstream of the homeotic genes where additional transcription factors define

subsegmental domain identities.

Initiation of boundaries of homeotic gene expression

The establishment and refinement of the pattern of homeotic gene expression has

been shown to depend on multiple inputs from the gap genes and segmentation genes. In

some instances, an involvement of maternal coordinate genes has also been observed (see

below). In general, gap genes determine the boundaries of the broad domain in which

homeotic genes can be expressed, and segmentation genes are used to regulate homeotic

genes expression within each segment.

Genetic studies involving loss-of-function gap gene mutations and, in some cases,

ectopic gap gene expression have suggested that gap genes initiate the boundaries of the

domains in which homeotic genes can be active. Activation by Hunchback and the

maternal morphogen Bicoid restrict the expression of Deformed to the anterior region, and

the anterior Tailless domain determines by repression its anterior boundary (Jack and

McGinnis 1990; Reinitz and Levine 1990). The Antp P1 promoter is activated by Kr (Irish

et al. 1989b). The Antp P2 promoter, which is expressed in two bands in the anlagen of

PS4 and the third thoracic segment, is activated by Hb and to some extent by Kr, and this

activation may define the posterior boundary of expression from this promoter (Harding

and Levine 1988; Irish et al. 1989b).

Regulation of Ubx is the best studied case of initiation of homeotic genes. The

anterior boundary of the Ubx expression domain is established just anterior to PS5 by

repression by Hb (White and Lehmann 1986; Irish et al. 1989b). The posterior Ubx

boundary is determined at PS 13 by repression from T1l (Reinitz and Levine 1990).

Promoter fusion constructs using promoter and the Ubx basal promoter have

shown in vivo that segments form regulatory regions of Ubx (the bx, PBX and ABX

regions) can confer on the Ubx basal promoter patterns with boundaries similar to that of

the endogenous Ubx expression. The anterior boundaries of expression of these constructs

have been shown to depend on repression by Hb, and in the case of the bx fragment, the

posterior boundary has been shown to depend on tll function (Qian et al. 1991; Zhang et al.

1991; MUller and Bienz 1992). Hb-binding sites have been found in these three regions,

and, in the cases bx and PBX subfragments, mutation of these sites have been shown to

lead to derepression of expression similar to that produced by hb mutations (Qian et al.

1991; Zhang et al. 1991; Muiller and Bienz 1992). Repression in anterior regions can be

mimicked by Multiple Hb-binding sites inserted into an ubiquitous enhancer element from
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the Ubx region (Zhang and Bienz 1992). Thus Hb is directly involved in the determination

of the anterior Ubx boundary.

Gap genes have also been shown to regulate the expression of Abdominal-B (Abd-

B). Activation of Abd-B requires tll activity, and its anterior boundary is determined by

repression from the Kr gene product (Harding and Levine 1988). Studies from a fusion

construct containing a fragment from the IAB5 control region driving the Abd-B promoter

show that, in addition, repression by Kni and Hb downregulate the expression of these

gene in PS10 and PS14, respectively (Busturia and Bienz 1993).

The pattern of homeotic expression is refined by regulation by pair rule gene

products. The activity offtz has been shown to activate homeotic genes in stripes within

the domain of expression allowed by gap gene regulation, Sex combs reduced in PS2,

Antp in PS4, Ubx in PS6 (Duncan 1986; Ingham and Martinez-Arias 1986). The bx and

PBX fragments described above from the Ubx regulatory region, as well as the IAB5

fragment from the Abd-B regulatory region are expressed in even numbered parasegments

and their activation requiresftz activity (Qian et al. 1991; MUller and Bienz 1991; MUller

and Bienz 1992; Busturia and Bienz 1993).

Presumably, eve function has a similar role for the odd-numbered parasegments.

This is supported by the fact that the ABX fragment from the Ubx regulatory region directs

expression in odd number parasegments in an eve-dependent manner (Muller and Bienz

1992).

The regulation of homeotic genes by pair rule genes appears to have an important

role in embryonic development. The requirement offtz and eve activity for the activation of

homeotic genes insures the precise register of parasegments, formed by the segmentation

genes, and homeotic gene expression. In addition, because the ftz and eve expression

pattern has an intrinsic polarity within a segment (a sharp anterior boundary at the

parasegmental boundary and a gradual fading posteriorly) activation by these genes

provides a similarly graded Ubx pattern within each segment (see, for example, Muller and

Bienz (1992)).

The regulation of Ubx expression likely involves competitive inhibition between

activators and repressors at the level of DNA binding. A 248 bp subfragment of the PBX

region that directs expression in a striped pattern has been found to contain 3 Hb and 6 Ftz

protein binding sites (Muiller and Bienz 1992). In vivo testing of PBX-driven constructs

with mutations in the Ftz and/or the Hb sites in vivo has shown that Ftz binding sites are

required for expression in even parasegments and Hb-binding sites are required for the

limits of this expression. Many of the binding sites for these two factors are found close to

each other, which suggests that Ftz and Hb proteins directly compete for binding to the
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PBX regulatory region. A similar arrangement of overlapping binding sites for activators

and repressors is found in the bx enhancer region of Ubx, and in this case, competitive

binding to the promoter has been mimicked in vitro (Qian et al. 1993). Competitive

inhibition between positive and negative transcription factors has been proposed to

contribute to the sharpening of Ubx boundaries near the parasegmental borders.

Segment polarity geines have also been shown to modulate the expression of

homeotic genes. engrailed, for example contributes to the down regulation of Ubx in

posterior compartments (Martinez-Arias and White 1988). The expression of segment

polarity genes is in turn modulated in a segment specific manner under the influence of the

homeotic genes (Martinez Arias 1993). Thus the final stages of segment differentiation

may involve the interplay between segment polarity and homeotic genes.

Recently, alternative modes in homeotic gene patterning have been reported (for

review, see Morata (1993)). Of particular interest is the regulation of homeotic patterning

in the endoderm, which forms after the expression of gap and segmentation genes has

subsided. Patterning in the endoderm requires inductive signals, such as decapentaplegic

and wingless, that are secreted from the adjacent visceral mesoderm (Immergluck et al.

1990; Panganiban et al. 1990; Reuter et al. 1990).

v) Homeotic genes in other animal species

Homeotic genes homologous to the ANTP/BX complexes in Drosophila have been

found in a wide variety of organisms, from unsegmented Hydra and nematode species to

vertebrates (Beeman 1987; Shenk et al. 1993; McGinnis and Krumlauf 1992; Burglin and

Ruvkun 1993; Krumlauf 1993). The structure of these complexes is very similar to that in

Drosophila, which suggests that they are all derived from a common ancestral complex

(incidentally, in Drosophila, but not in oth,.;r organisms studied, this complex has split into

the two subclusters, the Antp-C and Bx-C). This suggests that these genes have been

utilized and conserved throughout evolution for the regional patterning of the embryonic

axis. Here I will briefly describe the organization and known function of Homeotic

clusters in the nematode C. elegans and the mouse as models for homeotic function in

unsegmented organisms and vertebrates, respectively.

The Caenorhabditis elegans homeobox gene cluster

The Hox cluster in C. elegans contains five genes arranged in the order ceh-13, lin-

39, mab-5, egl-5 and ceh-23 (Biirglin et al. 1991; Kenyon and Wang 1991; Wang et al.

1993). Sequence homologies suggests that these genes are homologous to the genes in the
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Drosophila homeotic clusters: ceh-13 is a labial homologue, lin-39 seems to be related to an

ancestor of Deformed and Sex combs reduced, mab-5 may be related to an ancestor of

Antp, Ubx and abd-A, and egl is most similar to Abd-B. ceh-23 is most similar to ems,

which in Drosophila is not part of the homeotic cluster (although it is functionally related to

it, see above), but is also present at the end of vertebrate homeotic clusters.

The order the genes in the chromosome is similar to the order of their homologues

in Drosophila and vertebrates (although in C. elegans the order of ceh-13 and lin-39 has

been inverted). As in Drosophila, this order is colinear with the domains along the

embryonic axis that express and require these genes.

Mutations in these genes lead to the transformation of cell identities in different

embryonic regions as evidenced by their altered patterns of cell division and migration and

the structures that they form. Many of the cell fate changes produced by loss-of-function

mutations are, like in Drosophila, posterior to anterior transformations, although

transformations in the opposite direction are also observed (reviewed by Burglin and

Ruvkun (1993)).

lin-39, mab-5 and egl-5 are required for the identity of central, posterior and tail

regions (Kenyon 1986; Chisholm 1991); Clark et al. 1993; Wang et al. 1993).

Accordingly, constructs carrying the promoter regions of these genes driving lac Z

expression show that these genes are expressed in overlapping regions. These regions of

expression correspond to the domains affected by their respective mutations. A similar

construct carrying the ceh-13 promoter shows that this gene is also expressed in a spatially

restricted manner (Burglin and Ruvkun 1993). ceh-23 also has a pattern of expression

reminiscent of its fly and vertebrate homologues (Wang et al. 1993). Genetic studies show

that, as in Drosophila, a combination of genes in regions of overlap of homeotic gene

expression is important for certain cell identities (Clark et al. 1993; Wang et al. 1993).

The mouse homeobox gene cluster

In vertebrates, like in Drosophila, duplication of the genes within clusters has led to

complexes with more genes than the presumed ancestral homeotic cluster, which is likely

more similar in its structure to the C. elegans homeotic cluster (for reviews, see McGinnis

and Krumlauf (1992); Burglin and Ruvkun (1993); Krumlauf (1993)). The vertebrate

clusters as a whole have in addition undergone a process of repeated duplications, so that in

vertebrates there are, not one, but four clusters of homeotic genes.

Like in other organisms, there is a colinearity between the position of vertebrate

homeotic genes in the cluster and the domain along the axis in which they are expressed.

Expression of vertebrate homeotic genes is less region specific than the corresponding
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expression of Drosophila homeotic genes. While the latter often have anterior and posterior

restrictions in their domains of expression, vertebrate homeotic genes are expressed in a

contiguous domain that extends from an anterior boundary to the posterior end of the

embryo. This arrangement, coupled to the phenomenon of posterior prevalence (see

below), suggests that a particular gene acts in its anterior region of expression, where it is

not coexpressed with other genes of the cluster. Because there are four such clusters, the

identity of each segment may be defined by the combinatorial effect of the "unique" genes

from each cluster. Alternatively, different clusters may contribute to the specification of

different cell types within the segment which together interact to give the segment its

particular identity.

Genetic studies involving gene "knock-out" and ectopic expression experiments

have shown that mouse homeotic genes have properties that are remarkably similar to those

of Drosophila homeotic genes (reviewed by Krumlauf (1993)). In short, loss of function

mutations lead to posterior to anterior transformations and, at least in some cases, ectopic

expression of genes confers a more posterior identity to more anterior segments. Similar to

the phenotypic suppression of Drosophila (see above), the posterior-most expressed gene

confers the identity of the segment and can not be overridden by ectopic expression of a

more anteriorly expressed gene. This phenomenon is referred to as "posterior prevalence".

Drosophila and mouse homeotic genes may be similar not only in structure and

organization, but also in some aspects of their regulation and function. The mouse

Deformed (Dfd) homologue Hox4b, for example, appears to be controlled, like the

Drosophila Dfd, by autoregulation (Regulski et al. 1991; Propperi and Featherstone 1992),

and mouse and Drosophila Dfd cis acting regulatory sequences can partially substitute for

each other in their respectively heterologous environment (Awgulewitsch and Jacobs 1992;

Malicki et al. 1992). The homeobox proteins themselves may also be similar in function:

ectopic expression of both the Antp and Dfd mouse homologue proteins can partially

recreate the transformation phenotypes produced by the ectopic expression of their

Drosophila counterparts (Malicki et al. 1990; McGinnis et al. 1990). Thus some elements

in the upstream and downstream regulatory network of Drosophila and mouse genes have

been conserved throughout evolution.

Nevertheless there are likely important differences in homeotic regulation and

function between Drosophila and vertebrates. As opposed to Drosophila, where the

presence or absence of a homeotic product transform segment identities in opposite

directions, in the mouse the precise dose of the homeotic product may also be important for

segment identity. This is suggested by the fact that both loss-of-function and ectopic

expression of Hoxc8 produce posterior to anterior transformations (Le Mouellic et al. 1992;
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Pollock et al. 1992). In addition, the regulation of mouse homeotic products is likely very

different from that in Drosophila, given that it occurs in a cellular environment, as opposed

to the Drosophila syncytium.

Recently, some advances have occurred in the understanding of the regulation of

homeotic gene expression. Mutations in the Retinoic acid receptor y (RARy) have been

found to produce phenotypes similar to those of Hox-b4 mutations (Lohnes et al. 1993;

Ramirez-Solis et al. 1993). This suggests that Hox-b4 is a major target of a pathway

involving the retinoic acid and RARy. The idea that retinoic acid regulates homeotic genes

further supported by studies where exogenous retinoic acid leads to shifts in Hox

expression in a concentration and time dependent manner (Morriss-Kay et al. 1991

Marshall et al. 1992; Conlon and Rossant 1992).

A gene that is known to directly regulate homeotic gene expression is Krox-20,

which encodes for a Zn-finger transcription factor (Gilardi et al., 1991). Krox-20

expression is restricted to rhombomeres 3 and 5, and mutations in Krox-20 lead to the

reduction or elimination of these segments (Wilkinson et al. 1989, Schneider-Maunoury et

al. 1993). Endogenous and ectopic Krox-20 protein drives the expression from a Hox-2b

promoter in the mouse embryo, and this activation is dependent on the presence of Krox-

20-binding sites in the Hoxb2 promoter region (Sham et al. 1993). Thus, direct activation

by Krox-20 is used in vivo to upregulate expression of Hoxb2 in the third and fifth

rhombomeres.

Clearly, given the obvious different morphologies between Drosophila and

vertebrates, the targets of homeotic products in each system must also be different. As

mentioned above, and specially in vertebrates, little is currently known about these target

genes.

5. Stabilization of transcriptional states in Drosophila

Gene expression patterns are often initiated by regulatory products that are

transiently expressed. In many cases, the pattern that is initially established persists in a

stable manner even after the transient regulators are no longer present. A clear example is

the lasting regulated expression of segment polarity and homeotic genes during

embryogenesis, even though the gap and pair rule gene products that initiated their

expression decay shortly after the beginning of gastrulation. Although not all cases of

maintenance of gene expression are as obvious as in this example, molecular genetic

analysis suggests that, in other cases, more subtle maintenance phases occur and are

important for the stabilization of gene expression patterns. An understanding of the
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importance of these stabilizing interactions is essential for the appreciation of the results

presented in this thesis. This section describes different ways in which these maintenance

phases are achieved.

A) Stabilizing cross-regulatory interactions

Here, I describe cross-regulatory interactions that maintain or stabilize established

patterns of gene expression. I have divided these interactions into two groups: interactions

whose disruption leads to an observable destabilization of gene expression boundaries

(essential interactions), and those without an obvious effect but which are inferred to

provide robustness and stability to the patterning system (redundant interactions).

Although cases for both essential and redundant stabilizing interactions can be

found in all tiers of zygotic gene expression, I provide examples mainly from the tier of gap

gene regulation. Part of this bias reflects the fact that cross-regulatory interactions among

gap genes are more thoroughly understood than those among other sets of genes. In

addition, it is this tier of zygotic gene expression that is most relevant to the studies

presented in this thesis. In these examples, it is useful to remember the order of the main

domains of gap gene expression along the anteroposterior axis, from anterior to posterior:

anterior hb-Kr-posterior kni-posterior gt (in addition, the anterior gt domain overlaps that

of hb)

This description does not intend to be exhaustive, but rather provide a flavor for the

use and value of cross-regulatory interactions.

i) Essential cross-regulatory interactions

An important stabilizing element in gap gene patterning is the product of the gene

Kruppel (also, see below). The anterior boundary of the posterior domain of gt expression

is initiated by the Hb protein gradient. In Kr mutants, this boundary is initiated at its

normal position, but shifts anteriorly at the late cellular blastoderm stage (Eldon and Pirrotta

1991; Kraut and Levine 1991b; Struhl et al. 1992). Thus, Kr acts as a negative regulator

of gt to stabilize the anterior gt boundary.

Another example of stabilizing cross-regulation is the interdependence of en and wg

expression in adjacent sets of cells through an extracellular signalling process (see below).

As already described, cross regulatory interactions between homeotic genes are also

important to maintain their patterns of expression. In general, a homeotic gene tends to

repress the expression of other homeotic genes that are normally expressed more anteriorly.
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The functional significance of this interaction has been challenged since the ectopic

expression of homeotic genes using a heat shock promoter does not override the activity of

more posterior homeotic genes (Gibson and Gehring 1988; Gonzalez Reyes and Morata

1990; Gonzdlez-Reyes et al. 1990). (As described above, this phenomenon has led to the

concept of phenotypic suppression). Nevertheless, in these experiments the ectopic

homeotic product may have been induced too late to exert an effect. Experiments where the

heat shock is administered at earlier stages show that ectopic homeoproducts can indeed

influence the identity of more posterior segments (Lamka et al. 1992) . This suggests that

homeotic cross-regulation is likely important at early stages for the stabilization of homeotic

gene patterns.

ii) Redundant cross-regulatory interactions

A genetic interaction is redundant when other interactions can provide a similar

function. The interactions can be equally important, in which case a similar (or no) effect

results from disrupting either one, whereas disruption of both produces a strong effect.

Perhaps more commonly, some interactions may be stronger than others. In this case

eliminating the stronger interactions may lead to phenotypes, while disrupting the weaker

interactions may not. In some of the cases described below, the stronger interaction(s) of

the redundant set of unequal strength has already been described as what appears to be the

main component in pattern initiation.

It has been proposed that redundant interactions accumulate during evolution to

increase the stability of biological systems, which are inevitably subject to internal and

external fluctuations (Tautz 1992). Redundant interactions may provide "fall-back"

positions on which to rely in case the primary interaction fails. In addition, a set of

redundant regulators may act in a combinatorial fashion and provide a more robust

mechanism of gene/patterning regulation.

Numerous redundant interactions have been reported to occur during early zygotic

gene patterning (see for review, Huilskamp and Tautz (1991)). For example, either Bcd or

Hb proteins alone can activate Kr expression (Hiilskamp et al. 1990). The level of Kr

expression in mutants suggests that Hb contributes more to the overall activation of Kr than

Bcd. The activation conferred by these two products appears to be direct (Hoch et al.

1991; Hoch et al. 1992).

Kr expression is also subject to multiple negative regulation. Ectopically expressed

Gt can act as a repressor of Kr (Eldon and Pirrotta 1991; Kraut and Levine 1991b). In an

otherwise wild-type background, however, mutations in gt do not lead to changes in Kr
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(Gaul and Jackle 1987; Eldon and Pirrotta 1991; Kraut and Levine 1991b). Similarly,

ectopic Tll can represses Kr expression, although Kr expression is normal in tll mutants

(Gaul and Jackle 1987; Klingler et al. 1988); Hoch et al. 1992). Thus, both Gt and Tll

have the potential to repress Kr expression, thereby stabilizing its boundaries of

expression. In both cases, the interactions are likely to be direct, since Gt- and Tll-binding

sites are found in the Kr promoter (Hoch et al. 1992; Capovilla et al. 1992; Pankratz and

Jackle 1993). Nevertheless, as explained above, the Kr boundaries are primarily

determined by other factors, such as Bcd, Hb and Kni.

Another example of redundant negative regulation is the repression of kni by Kr.

In Kr mutants, the posterior domain of kni expression is not altered, while in hbYg mutants

it is shifted anteriorly (Pankratz et al. 1989; Hiilskamp et al. 1990). When the embryos are

doubly mutant for hb'Yg and Kr, the anterior kni boundary shifts further anteriorly

(Hiilskamp 1991). Thus, although the anterior kni boundary is mainly determined by

repression by Hb, repression by Kr is also likely to be involved in the determination of this

boundary. Repression by Kr may be responsible for the stabilization of the anterior kni

boundary that is initiated by Hb in a manner analogous to the effect of Kr on gt as

described above. In the case of kni, however, regulation by other factors is strong enough

so that single Kr mutations do not have an observable effect on kni expression boundaries.

Two general observations support a role for redundant interactions in the patterning

process. First, the strength of both redundant and non redundant interactions are

modulated in accordance with the spatial positions of the genes involved. For example, in

the cross-regulatory interactions between Kr, kni and gt, the stronger repressive

interactions are those between genes that are not directly adjacent to each other (i.e. Kr and

gt), while immediate neighbors (Kr-kni and kni-gt) interact only weakly. The fact that

redundant interactions accommodate to this rule suggests that they provide real regulative

roles which are modulated by evolution.

In addition, as pointed out by Pankratz and Jackle (1993), even if when a gene is

mutated there are no changes in the boundaries of expression of other genes, it is possible

that the product of the first gene regulates the other genes at locations in the embryo other

than their boundary positions. Molecular information on the Kr promoter can be used to

exemplify this point. The CD1 element from the Kr upstream region, which can confer Kr

expression patterns to heterologous genes, contains binding sites for Hb, Bcd, Kni, TIl and

Gt proteins (Hoch et al. 1990; Jacob et al. 1991; Hoch et al. 1992). Genetic studies show

that the anterior boundary of Kr is determined by Hb repression (Hiilskamp et al. 1990;

Struhl et al. 1992), while mutating tll function has no effect on Kr (Gaul and Jackle 1987).

Thus, just anterior to the Kr anterior boundary, the CD1 element is likely occupied and
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repressed primarily by Hb protein. At the anterior tip of the embryo, however, where the

hb expression domain normally retracts (Tautz 1988), binding and repression by Tll could

be much more important. Interestingly, T11 binding sites overlap most of the binding sites

which mediate activation of Bcd, which is present at high concentrations in this anterior

region (Hoch et al. 1992). Thus, the T1 protein, which is seemingly unimportant in the

regulation of Kr, may be important in counteracting the activation of Kr by Bcd in

anteriormost regions.

iii) The Kr protein gradient: a stabilizing morphogenetic gradient?

The Kr protein, distributed in a bell-shaped domain that is activated in the middle of

the embryo by Hb and Bcd, has properties reminiscent of a morphogenetic gradient.

Nevertheless, the ability of Kr to regulate genes in a concentration dependent manner

appears to be involved mainly in secondary interactions, i.e. in the refinement and/or

stabilization of boundaries. Most of these interactions have been described in the above

sections. Anteriorly, high levels of Kr repress hb and contribute to the refinement of its

posterior boundary. Posteriorly, Kr may have a dual fimction, acting both as an activator

and a repressor of genes. High and moderate levels of Kr appear to be involved,

respectively, in the stabilization of the anterior boundaries of the posterior kni and gt

domains, which are initiated by the Hb gradient. In addition, low levels of Kr may be

required to activate kni, and thus contribute to the stabilization of the posterior kni

boundary.

The idea that Kr acts as an activator of kni at low concentrations was proposed

when Kr mutations were found to decrease the levels of posterior kni expression (Pankratz

et al. 1989). The significance of this finding remains unclear, since these results could be

simply explained indirectly, by the fact that Kr is required to inhibit Gt, which in turn is a

repressor of kni (Capovilla et al. 1992). Nevertheless, some data suggests that Kr may

indeed act as a transcriptional activator at low concentrations. Deletion of a kni promoter

region containing Kr-binding sites leads to decreased expression of a reporter gene

(Pankratz and Jackle 1993; this report has the caveat that this region is large and may be

regulated by other factors). More appealing support for this idea is provided by the fact

that single Kr-binding sites have been found to mediate reporter gene activation at low Kr

concentrations in tissue culture cells (Sauer and Jckle 1991). Thus Kr can mediate

trancriptional activation.

In the last study, it was found that, while Kr-binding sites mediate activation at low

Kr concentrations, higher concentrations of Kr lead to transcriptional repression. More
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recent studies have found that this behavior depends on Kr dimerization: at low Kr

concentrations Kr monomers activate transcription, and at high concentrations Kr dimerizes

and acts as an repressor through the same target sequences (Sauer and Jackle 1993). It is

not known whether the similar dosage-dependent behavior of the Hb protein (see above)

depends on a similar mechanism. These studies support the idea that Kr, like Hb, may act

as a concentration-dependent regulator of gap gene expression in the embryo.

iv) Redundancies at the level of patterning systems

Redundancy can also be observed at the level of patterning systems. In Drosophila,

perhaps one of the best examples of this type of redundancy are the maternal systems that

determine anteroposterior polarity: the bcd-dependent HbZYg and the nos-dependent Hbm a t

morphogenetic gradients. As described above, each of these gradients can on their own

organize the embryo into the major gap gene pattern Kr-kni-gt.

In this case, the Hbmat protein gradient appears to provide the weaker input. The

levels of Hbm at protein are lower, so that its long-range effects are weaker. As a

consequence, boundaries of kni and gt determined by the Hbm a t protein gradient alone are

shifted anteriorly with respect to the wild-type borders (and determination of the anterior Kr

boundary by repression, which requires high Hb protein levels, cannot be attained)

(Hilskamp et al. 1990; Struhl et al. 1992). Moreover, while the HbzYg protein gradient is

essential for proper gap gene patterning, elimination of the entire Hbmat patterning system

does not have major consequences on this process (Hiilskamp et al. 1989; Hiilskamp et al.

1990; Irish et al. 1989a; Struhl 1989; this thesis). Presumably, the apparently dispensable

function provided by the Hbmat-mediated system is nevertheless important for the

robustness of the patterning process, a topic which will be further developed in this thesis.

B) Autoregulation

Autoregulation can be defined as the control of the activity of a gene by its own

product. Here, I will provide a brief description of autoregulatory processes that occur at

the level of gene transcription.
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i) Positive autoregulation.

Direct positive autoregulation
The activation of a gene by its own product can provide a means to maintain the

expression of a gene after its original activators are no longer present. This process may be

particularly important for the regulation of segment polarity and homeotic genes, whose

expression patterns persist much longer than the molecules that initiate them. In addition,

as demonstrated for eve, an autoregulatory loop can enhance the activity of a gene and,

under some circumstances, contribute to the refinement of expression patterns.

A 100 bp sequence located about 5 Kb upstream of the eve promoter can confer a

eve-like pattern to a heterologous promoter (Harding et al. 1989; Jiang et al. 1991). This

expression is dependent on eve function, and thus this sequence is an autoregulatory

element. The minimal autoregulatory element contains two Eve-binding sites; these have

been shown to be essential for autoregulation in vivo.

Autoregulation of eve, aside from contributing to the maintenance of eve

expression, has been proposed to mediate the sharpening of the anterior eve boundary

(Warrior and Levine 1990; see also Ingham and Martinez Arias 1992). When they first

appear, eve stripes have a symmetrical bell-shape. Each eve stripe later adopts a skewed

shape with a sharp anterior boundary and a gradually decreasing posterior tail. eve stripes

are overlapped on different sides by stripes of hairy and runt expression. Negative

regulation by Runt in the posterior end of each eve stripe, coupled with rapid turnover of

Eve gene products may lead to a skewing of the stripe towards the anterior. This tendency

would then be enhanced and stabilized by autoregulation of eve expression above a certain

threshold level of Eve protein.

A similar process may be used for the regulation offtz in the alternate

parasegments. Thefiz gene contains a cis-acting autoregulatory element (Hiromi and

Gehring 1987). Autoregulation offtz, coupled with repression by a different set of factors

may also be implicated in the sharpening of the anteriorftz boundaries (Ingham and

Martinez Arias 1992).

Autoregulatory loops have also been described for homeotic genes. As mentioned

above, a 920 bp element 5 Kb upstream of the Dfd promoter contains four Dfd-binding

sites required for autoregulation in vivo (Kuziora and McGinnis 1988; Regulski et al. 1991;

Gonzdlez-Reyes et al. 1992). Similarly, autoregulatory elements for the expression of
labial in different tissues have been found in the labial promoter (Chouinard and Kaufman

1991; Tremml and Bienz 1992).
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Finally, the presence of binding sites for their respective gene product has been

reported for several genes, including hb (Stanojevic et al. 1989), and Ubx (Beachy et al.

1988; Irvine et al. 1993), and may be indicative of direct autoregulatory interactions. In

particular, Ubx has been shown to act as a direct positive transcriptional activator of its

own promoter (Johnson and Krasnow 1990).

Indirect positive autoregulation
In some cases, autoregulation has been shown to occur indirectly and depend on

extracellular signalling. It has been proposed that indirect autoregulation which involves

cellular interactions provides a way to coordinate cell fate decisions in the context of cell

populations (Bienz 1992).

Extracellular signalling may mediate, at least partially, Ubx autoregulation in the

visceral mesodern. In this tissue, Ubx activity is indirectly required for its own

expression. Ubx activity is required for the activation of an extracellular signal encoded by

decapentaplegic (dpp) (Reuter et al. 1990). Dpp is in turn required for the activation of

wingless in the adjacent cells (Immergluck et al. 1990). Both Dpp and Wg activity feeds

back on the Ubx-expressing cells and is required to maintain Ubx expression (Panganiban

et al. 1990; Thuiringer and Bienz 1993).

It has been proposed that the indirect autoregulation of Ubx in the visceral

mesoderm may be similar to a phase of maintenance of engrailed expression (Bienz 1992).

In the latter case, en autoregulation is driven via interactions with adjacent wg-expressing

cells. Hedgehog, which encodes an extracellular signalling molecule, is expressed in the

en-expressing cells, and is required for wg activation (Lee et al. 1992). The Wg signal

completes the feed back loop by acting on the en-expressing cells to maintain en expression

(Martinez-Arias et al. 1988; DiNardo et al. 1988).

Multiple phases of regulation

Many genes are likely to use multiple modes of regulation during different phases

of their expression. The gene engrailed (en) provides a good example of this phenomenon

(Heemskerk et al. 1991). The initial activation of en depends on pair rule gene products.

Once initiated, en expression becomes dependent on wg activity by the indirect

autoregulatory loop. Later, a requirement for autoregulation persists, but it is no longer

dependent on wg activity and may be direct. In the final stage, en is no longer dependent

on its own function and may be maintained by the activity of more global factors such as

the trithorax group genes (see below).

58



ii) Negative autoregulation

Negative autoregulation, in which a product represses its own expression, can be

utilized in two ways. First, it can stabilize levels of expression through a negative feedback

loop. Second, it can decrease or completely eliminate its own gene expression.

Ubx again provides one of the best studied examples (Irvine et al. 1993). Ubx

activity is required to repress the expression of a lacZ gene fused to the 35 Kb Ubx

upstream regulatory region. Moreover, varying the dosage of Ubx from 0 to four copies

affects the expression of the Ubx-lacZ construct as well as the endogenous Ubx in a

manner consistent with a negative autoregulatory loop.

This mechanism leads to an adjustment in the expression of Ubx when its gene

dosage is changed. For example, lowering the dose of Ubx to half of the wild-type level

reduces lacZ or the endogenous Ubx expression to a lesser extent, presumably because of a

relief in negative autoregulation. Conversely, additional doses of Ubx have less effect on

lacZ or Ubx expression than expected. The fact that Ubx doses near wild-type levels have

an observable effect on expression suggests that this mechanism is used in vivo to stabilize

the levels of Ubx expression.

The same study shows that autoregulation of Ubx is required for the spatial

modulation of its expression. Absence of endogenous Ubx leads to ectopic expression of

both Ubx and the Ubx-lacZ construct. Implicit in this mechanism is the idea that cells that

are dependent on Ubx function to turn off Ubx expression did indeed express Ubx initially.

Thus the temporal and spatial patterns of Ubx expression are modulated by Ubx itself.

C) Maintenance at the level of chromatin regulation

An additional level of maintenance of transcriptional regulation is mediated by two

sets of genes, the Polycomb-group genes and the trithorax-group genes. Although not

conclusive, the studies in Drosophila, as well as in other systems, including the Drosophila

regulators of heterochromatin (modifiers of position effect variegation) and the yeast

SPT/SIN and SWI/SNF families, have led to the idea that the Polycomb and trithorax

families are involved in chromatin regulation (for reviews, see Paro (1990); Bienz (1992);

Kennison and Tamkun (1992); Winston and Carlson (1992); Kennison (1993)). Here, I

will present a summary of the information available on three Drosophila and one yeast gene

families.
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i) The Polycomb group of genes

The Polycomb group (Pc-G) of genes was originally identified by the homeotic

phenotypes they produce when mutated. The Polycomb family includes the genes

Additional sex combs (Asx, Jirgens 1985; Sinclair et al. 1992), Enhancer of

zeste/polycombeotic (E(z), Kalisch and Rasmuson 1974; Shearn et al. 1978; Wu et al.

1989; Jones and Gelbart 1990; Phillips and Shearn 1990) extra sex combs (esc, Struhl

1981)), pleiohomeotic (pho, Duncan 1982)), Polycomb (Pc, Lewis 1978; Duncan and

Lewis, 1982), Polycomb like (Pcl, Duncan 1982; Breen and Duncan 1986), polyhomeotic

(ph, Jrgens 1985; Dura et al. 1987), Posterior sex combs (Psc, Jiirgens 1985; Adler et al.

1991), Sex combs extra, (Sce, Breen and Duncan 1986), Sex combs on midleg (Scm,

Jiirgens 1985), and super sex combs (sxc, Breen and Duncan 1986). On the basis of

synergistic phenotypic interactions which result in homeotic transformations, it has been

estimated that there are a total of about 40 genes that belong to this family (JUrgens 1985).

In addition, the gene Suppressor of zeste 2 (Su(z)2) may be loosely classified in this

family. Although it does not promote homeotic transformations, it is located in the same

complex as the Psc gene, and genetic and biochemical data suggests that it interacts with

other Pc-G genes products (Adler et al. 1989); Rastelli et al. 1993; Chapter 3 of this thesis;

see below).

Phenotypes of Pc-G genes

Mutations in Pc-G genes produce homeotic transformations. Homozygous mutant

embryos for the prototype gene, Polycomb, for example, exhibit strong transformations of

all segments into the eighth abdominal segment (Lewis 1978; Duncan and Lewis, 1982).

This embryonic "Pc" phenotype is produced by the ubiquitous derepression of homeotic

genes and the posterior dominance of Abdominal-B, the homeotic gene expressed in the

eigth abdominal segment (Struhl 1981; Juirgens 1985; Struhl and White 1985; (Struhl and

Akam 1985; Dura and Ingham 1988; Glicksman and Brower 1990; Jones and Gelbart

1990; McKeon and Brock 1991; Simon et al. 1992). In the adult, Pc-G mutations also

produce homeotic transformations, which also result from ectopic expression of homeotic

genes (Struhl 1981; Duncan 1982; Busturia and Morata 1988; Glicksman and Brower

1990; Jones and Gelbart 1990; Martin and Adler 1993).

The phenotype exhibited by null mutations in different Pc-G genes is variable. This

variability depends, at least in part, on the different maternal contribution of these genes.

For example, Pc itself has very little maternal contribution, which is consistent with the

strong zygotic phenotype exhibited by these embryos (Haynie 1983; Lawrence et al. 1983).
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Embryos mutant for Asx, Pcl, Psc, Sce and Scm all die as embryos or first instar larvae

and exhibit weaker homeotic transformations, a phenotype which is enhanced in the

absence of their respective maternal products (Breen and Duncan 1986, Martin and Adler

1993). Other Pc-G genes, such as E(z) and pho, provide enough maternal information to

reach more advanced stages of development, such as early pupae and pharate adults,

respectively. The absence of maternal product E(z) or Pho product, though, leads to

embryonic lethality due to homeotic transformations (Breen and Duncan 1986; Jones and

Gelbart 1990); Phillips and Sheamr 1990). In the case of esc, maternal product provides

most of its required function: esc homozygotes from heterozygous mothers reach to be

viable adults, and homozygous mutant females produce embryos with very strong

homeotic transformations (Struhl 1981). The gene ph seems to be strongly required both

maternally and zygotically (Dura et al. 1988; see below).

Except for esc, which may be specific for the regulation of homeotic genes (Moazed

and O'Farrell 1992; Chapter 3 of this thesis) Pc-G genes likely regulate other target genes.

Some of these targets appear to be the segmentation genes. Mutations in ph, Pc, Scm, Pcl,

Psc, pho and E(z) are required for the repression of the segment polarity gene engrailed in

posterior cells of parasegments (Dura and Ingham 1988; Smouse et al. 1988; Busturia and

Morata 1988; Moazed and O'Farrell 1992). Mutations in Pcl and Asx lead to pair rule-like

phenotypes, and in the case of Asx this phenotype is associated with ectopic expression of

even-skipped (Breen and Duncan 1986; Sinclair et al. 1992). Similarly, ph mutant

embryos have abnormal patterns of eve andftz expression in the nervous system (Dura et

al. 1988).

In addition, some Pc-G genes, such as ph, E(z) and pho, exhibit very pleiotropic

phenotypes. Lack of zygotic ph, besides causing homeotic transformations, leads to the

absence of ventral thoracic and abdominal derivatives (Dura et al. 1987). In addition, ph

mutant embryos show misrouting of axonal pathways in the CNS (Smouse et al. 1988;

Smouse and Perrimon 1990). Embryos that lack only the maternal Ph product show very

poor cuticular development, and if they are also mutant for zygotic ph function, arrest

development at the blastoderm stage (Dura et al. 1988). Mutations in E(z) lead to small

disc and oogenesis phenotypes (Jones and Gelbart 1990; Phillips and Shearn 1990).

Embryos from homozygous pho mutant germ line clones rarely develop a cuticle, and in

such cases, exhibit extensive segmentation defects (Breen and Duncan 1986). It is possible

that these phenotypes result from the misregulation of unknown targets in backgrounds

mutant for these Pc-G genes. Alternatively, some Pc-G genes may be required for

chromosomal integrity and, therefore, cell division.

61



Mutations in a subset of Pc-G genes modify the repression of white by the Zestel

product. The Zestel product, encoded by an aberrant allele of the gene zeste (see below),

represses white transcription, apparently by forming protein aggregates on the white

promoter (Chen and Pirrotta 1993). Loss-of-function mutations in the genes E(z) and

Su(z)2, Psc and Scm suppress the zeste1 phenotype (Wu et al. 1989; Jones and Gelbart

1990). Thus the products of these genes are thought to be required for the repression of

white by the Zestel product

The varied phenotypes produced by different Pc-G gene mutations suggest that,

although by definition they all affect homeotic gene regulation, different batteries of Pc-like

genes may act on distinct target genes.

Mode of action of Pc-G genes

Pc-G products have been shown to be required for the maintenance of the

boundaries of homeotic gene expression (Struhl and Akam 1985; Glicksman and Brower

1990; Jones and Gelbart 1990; McKeon and Brock 1991; Simon et al. 1992; Zhang and

Bienz 1992). The initial boundaries of expression, which are established by the spatially

restricted gap gene products (see above), appear normal in Pc-G gene mutants.

Nevertheless, at the germ band extended stage, these boundaries are no longer maintained

and ectopic homeotic gene expression occurs. The defect in homeotic regulation appears

shortly after the gap gene products have decayed. Thus, Pc-G genes are required to

stabilize the repressed states of homeotic gene expression initiated by gap genes.

In the case of engrailed, Pc-G genes appear to also have a role in the maintenance of

a repressed state. This is suggested by the fact that, in Pc-G mutant embryos, engrailed

expression is initially normal, and expands into ectopic areas at later stages (Moazed and

O'Farrell 1992).

The Pc protein contains a 37 aa stretch with homology to the HP1 Drosophila

protein (Paro 1990). HP1 is the product of the Su(var)205 locus, a modifier of position

effect variegation (PEV, see below) which is thought to be an integral component of

heterochromatin (Eissenberg et al. 1990; Eissenberg et al. 1992; James and Elgin 1986; see

below). This domain of similarity has been termed the "chromodomain" (Paro 1990), and

has been shown to be required for binding to chromosomes (Messmer et al. 1992). The

presence of the chromodomain in proteins from both the Pc-G and PEV genes has led to

the proposal that Polycomb and, by extension, the products of other Pc-G genes promote

the formation of stably repressed states of gene expression by organizing a

"heterochromatin-like" higher order structure (Paro 1990).
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This idea is further supported by a number of genetic studies that show functional

similarities between Pc-G and PEV genes. First, the Pc-G and PEV sets of genes

functionally overlap. This is shown by the fact that some Pc-G genes act as PEV

modifiers, and some PEV modifiers exhibit Pc-G phenotypes (Reuter and Spierer 1992).

Second, in both systems the extent of inactivation is sensitive to the dosage of a family of

dominant repressors (the Pc-G and the Su(var) genles) and dominant activators (the trx-G

and the E(var) genes)(see below). Third, constructs in euchromatin carrying the regulatory

regions of ph driving a mini-white gene exhibit a PEV-like eye color variegation phenotype

(Fauvarque and Dura 1993). This variegation phenotype is sensitive to, at least, ph and Pc

function, but it is not affected by traditional PEV modifiers. Thus, Pc-G genes confer on

genes a clonally inherited expression pattern that is functionally very similar to the

heterochromatinization that produces PEV.

The promotion of a heterochromatin state by Pc-G gene proteins may involve the

formation of large, multi-subunit complexes. This was first suggested by the similar

phenotypes caused by mutations in these genes, the sensitivity of these phenotypes to

dosage imbalances, and the apparent synergistic action of these genes (Jiirgens 1985;

Kennison and Russell 1987; Kennison and Tamkun 1988). Recently, biochemical studies

have corroborated this idea. The Pc and Ph proteins are associated within large

multiprotein complexes which contain about 10-15 proteins (Frarke et al. 1992).

Further supporting the idea that Pc-G genes act through multiprotein chromatin

structures, Pc-G gene proteins (Pc, ph, Psc and Su(z)-2) bind to salivary gland polytene

chromosomes at largely overlapping sets of about 50-100 different sites (Zink and Paro

1989; DeCamillis et al. 1992; Rastelli et al. 1993). In the case of Psc and Su(z)-2, binding

to chromosomes has been shown to depend on E(z) function (Rastelli et al. 1993). Thus,

Pc-G genes bind as complexes at specific chromosomal locations and this binding is

dependent on Pc-G function (at least that of E(z)).

Some of the chromosomal bands bound by Pc-G proteins correspond to loci that

have been shown to be regulated by Pc-G genes, such as the Antp and Bx complexes.

Regulatory regions from the Antp and Bx complexes, when inserted at new locations in the

genome, serve as new Pc and Ph binding sites (DeCamillis et al. 1992; Zink et al. 1991).

Thus Pc-G proteins directly interact with their target regulatory chromosomal region.

It is not clear which Pc-G gene if any, directly binds DNA. Attempts to show

binding activity of Pc protein and Ph protein, which contains a single Zn finger motif

(DeCamillis et al. 1992), to naked DNA have been unsuccessful (Franke et al. 1992).

Other candidates for direct DNA binding are the products of the genes Su(z)2 and Psc,

which are homologous to each other and to the murine oncogene bmi (Brunk et al. 1991;
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van Lohuizen et al. 1991). These proteins contain at their amino-terminus a cysteine-rich

region which has been proposed to be a novel type of Zn finger.

Recently, the sequence of E(z) has shown that it contains at its C-terminus a 53 aa

region with homology to the C-terminal region of the gene trithorax (Mazo et al. 1990;

Jones and Gelbart 1993). This motif is included within the region of greater similarity

between trx and its human homologue, ALL-1/Hrx, which has been implicated in acute

leukemias (Djabali et al. 1992; Gu et al. 1992; Tkachuk et al. 1992). Both E(z) and Trx

have, in addition, cysteine rich domains which may possibly have Zn finger structure.

This finding is particularly interesting given that trithorax is a genetic antagonist of Pc-G

genes that is required for the maintenance of active states. Jones and Gelbart (1994)

speculate that this domain may allow E(z) or Trx to interact with a common target, and that

binding of each product may organize the assembly of either a repressive, Pc-G complex,

or an activating, trx-G complex.

Regions from the Bx-C can confer onto reporter genes stable patterns of expression

that have been shown to depend on Pc-G function (Muiller and Bienz 1991; Zhang and

Bienz 1992; Busturia and Bienz 1993; Simon et al. 1993). Simon et al. (1993), have

shown that the elements required for initiation and maintenance of homeotic gene

boundaries are separable. A 6.8 Kb fragment from the abx region appears to have the

initiation elements necessary to establish proper boundaries of expression, but lack

maintenance elements necessary to maintain those boundaries during germ band extension.

The juxtaposition of this abx fragment to a 11.5 Kb fragment from another Bx-C region,

iab-3, which on its own can maintain boundaries of expression, provides elements

sufficient for maintained restriction of expression at different positions along the

anteroposterior axis. The maintained restricted expression by the combination of fragments

is dependent on Pc-G gene function. These results suggest that the Pc-G responsive

elements (PREs) are not specialized for particular parasegments. Rather, they provide a

general maintenance function to restrict expression initially specified by gap and pair-rule

gene products.

Recently, a formaldehyde-crosslinking/immunoprecipitation technique has allowed

mapping, to a 1 Kb resolution, of the association of Pc protein to a 350 Kb region in

cultured cells (Orlando and Paro 1993). Pc protein is found broadly associated with the

control regions of Ubx and abdA, and in some cases, it appears to be enriched in regions

known to regulate homeotic gene expression. Importantly, Ubx and abdA are inactive in

these cells, while the Abd B gene, which is expressed in these cells, is largely devoid of Pc

protein. This correlation strongly supports the idea that Pc-G genes are involved in the

repression of inactive chromosomal domains. (A similar correlation had been observed in
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salivary glands with short Antp P1 promoter constructs which appear to be subject to

position effects. In this case, the presence of a new Pc binding site correlated with the

inactivity of the gene construct located at that site (Zink et al. 1991).

The finding that Pc protein is associated with large regions of the Bx complex

agrees well with the idea that Pc-G are involved in the assembly of a "heterochromatin-like"

state that relies on a multimeric process. It has been proposed that one reason why

homeotic genes tend to be found in conserved clusters is because extended regulatory

regions may facilitate the formation and/or increase the stability of such multimeric

complexes (Bienz 1992, Orlando and Paro 1993).

It is still unclear how these heterochromatin-like complexes may be established.

Pc-G proteins may recognize protein-DNA complexes initiated by gap and segmentation

gene repressors and, perhaps by interacting with additional DNA sites, nucleate the

formation of a multimeric Pc-G/DNA complex. This complex would be maintained in spite

of cell division because of its self-assembling properties. Alternatively, it has been

suggested (Orlando and Paro 1993) that independent chromatin domains may facilitate the

nuclear spatial or temporal compartmentalization of origins of replication, which in turn

may provide appropriate microenvironments for the replication of Pc-G/DNA complexes.

Recently, mutations in C. elegans, such as in the gene polyarray, and in the mouse,

such as the in the mouse homologue of Psc, the bmi gene, have been found to produce

phenotypes consistent with derepression of homeotic genes (C. Kenyon and R. Krumlauf,

personal communications). Thus, regulation of homeotic genes by Pc-G-like genes may be

have been widely conserved through evolution.

ii) The trithorax group of genes

Mutations in genes in the trithorax group (trx-G) produce phenotypes that are

consistent with a general loss of activity of genes in the Antp and Bx-C complexes. The

group is named after its first member, trithorax (trx) (Ingham 1983, Ingham 1984). Later,

screens for modifiers of homeotic gene function led to the isolation of mutations in about a

dozen loci, including trx, that have been included in this family (Kennison and Tamkun

1988). These genes are kismet, Su(Pc)37D, Brista, devenir, brahma, kohtalo, verthandi,

1(3)87Ca, urdur, moira, osa, skuld and sallimus. The genes absent, small or homeotic

disks (ash)l, ash2 and female sterile (1) homeotic (fsh) are included in this family because

of their trx-like phenotype and their interactions with other trx-G genes (Shearn 1989;

Haynies, 1989). Another gene included in this family is zeste, a nonessential gene that

65



facilitates transcriptional activation, perhaps by allowing distant cis-acting regions to

interact with each other (for reviews, see Wu and Goldberg (1989); Tartof and Henikoff

(1991); see also Chapter 3 Addendum, Section L).

The members of the trx-G family have not been characterized as extensively as the

Pc-G gene family. Somatic clones of trx, kismet and moira produce patches of adult tissue

with homeotic transformations (Ingham 1985, Kennison and Tamkun 1988). Leaky alleles

of ashl and ash2 lead to adult transformations phenotypes similar to those associated with

trx mutations. fsh has a strong maternal component: homozygousfsh mutant mothers

produce embryos with homeotic transformations even if the sperm carries additionalfsh

doses (Gans et al. 1975; Forquignon 1981; Digan et al. 1986). However,fsh is also

required zygotically for larval and pupal development.

Homozygosity for trx leads to embryonic lethality. Nevertheless, these embryos

exhibit only weak homeotic transformations. This mild phenotype, which is independent

of maternal Trx product (Ingham 1983), is surprising, especially considering the strength

of trx mutations in the adult, and the fact that early embryos contain abundant trx message

(Mozer and Dawid 1989) Thus trx function is not essential in the expression of genes in

the Antp and Bx complexes. Nevertheless, the fact that, trx mutations suppress the

embryonic phenotype caused by esc mutations (Ingham 1983), and that trx mutations affect

embryonic homeotic gene expression (Breen and Harte 1991; Breen and Harte 1993),

show that trx is involved in the expression of at least some homeotic genes in the embryo.

The fact that mutations in trx-G genes act as genetic antagonists of Pc-G genes in

the regulation of homeotic genes (Ingham 1983; Kennison and Tamkun 1988; Shearn

1989; Tamkun et al. 1992; Jones and Gelbart 1993), suggests that trx-G genes have a

function that is similar, but opposite to that of Pc-G genes. The trx-G genes act at the level

of activation of homeotic gene expression: trx and brahma mutations have been shown to

reduce the levels of homeotic gene expression in the larvae and the adult (Ingham 1985;

Mazo et al. 1990; Breen and Harte 1991; Tamkun et al. 1992,). Together, these findings

have suggested the notion that the function of trx-G genes may be analogous to that of Pc-

G genes in gene repression, that is in maintaining the activated states initiated by transient

gene products.

Recently, brahma has been found to be homologous to the SNF2/SW12 yeast gene

(Tamkun et al. 1992). The fact that the yeast SNF/SWI genes are thought to activate gene

transcription by counteracting chromatin suggests a similar function for brm and other trx-

G genes in antagonizing chromatin regulation by Pc-G gene products (for reviews, see

Kennison (1993); Kennison and Tamkun (1992); Winston and Carlson (1992), also see

below). Antibodies against SWI1 and SWI3 recognize proteins in Drosophila extracts
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(Peterson and Herskowitz 1992), which suggests the existence of other SNF/SWI

Drosophila homologues which might correspond to trx-G genes. Interestingly, members

of the SNF/SWI family have been shown to be required in yeast for the activation of target

genes by the Drosophila Bicoid and Fushi tarazu proteins (Peterson and Herskowitz 1992;

Laurent and Carlson 1992). Together, these data suggest that the SNF/SWI and trx-G

genes are homologous families of genes and that their function has been conserved through

evolution.

It has been proposed that SNF/SWI genes have a dual role in the activation of

genes. Some of the proteins encoded by these genes act by relieving repression induced by

the histone group, and others have a more direct role in activating the transcriptional

machinery (Laurent and Carlson 1992; see below). Such a dual role may also exist in the

trx-G: the Brahma protein, which contains conserved motifs found in helicases (Tamkun et

al. 1992), may be involved in helicase activity. On the other hand, the Trx protein, which

contains Zn finger motifs and stretches of acidic residues (Mazo et al. 1990) may be more

directly involved in transcriptional activation.

The SNF/SWI genes have been proposed to form multimeric complexes (Laurent et

al. 1991; Peterson and Herskowitz 1992; see below). This suggests that trx-G gene

products, like the Pc-G gene proteins, may also form multiprotein structures. As

mentioned above, the similar domain present in both E(z) and trx has led to the proposal

that these two genes may be important for the nucleation of either Pc-G or trx-G multimeric

complexes onto a common target. The type of complex assembled would in turn determine

the chromatin state of the gene.

Recently, the product of the modifier of PEV, E(var)3-93D has been reported to

exhibit trx-like phenotypes when mutated and appears to be involved in the positive

regulation of homeotic genes (Dom et al. 1993). The product of E(var)3-93D is found at a

large number of loci, including the Antp and Bx complexes, and in many cases these sites

correlate with less condensed interband regions. E(var)3-93D contains at its N-terminus a

region of homology with the transcriptional regulators Tramtrack and the products of the

Broad complex. In addition these proteins also contain a Zn finger motif. Thus E(var)3-

93D may be a common component of the trx-G and PEV genes involved in the

determination of open chromatin domains.

Not all the genes above are directly involved in transcriptional regulation. Thefsh

gene, for example, encodes a transmembrane protein, and thus likely acts upstream of

events that may lead to transcriptional regulation (Haynes et al. 1989).
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iii) Position effect modifiers and the mass action model

Position effect variegation (PEV) is a phenomenon observed when an autonomous

gene is translocated to a position near heterochromatin (for reviews, see, Henikoff (1990);

Reuter and Spierer (1992)). Clonal inactivation of the gene leads to a variegated

phenotype. A classical example is the variegation in the eye of white expression.

PEV of white can be enhanced or suppressed (leading to a greater number of cells

with inactive and active gene expression, respectively), by a number of environmental

factors, including temperature, inhibitors of histone metabolism, the amount of

heterochromatin in the genome (such as the presence of Y chromosome) and genetic

modifiers.

With the assumption that PEV modifiers might encode genes involved in chromatin

structure or metabolism, several screens for dominant suppressors or enhancers of PEV

have been carried out (Reuter and Wolf 1981; Sinclair et al. 1983; Locke et al. 1988;

Sinclair et al. 1989; Wustmann et al. 1989; Sinclair et al. 1992). These screens have led to

the isolation of about 120 modifier of PEV loci.

These modifier mutations can be classified into four groups. About 10 genes

suppress PEV when present in only one dose (haplo-suppressors) and enhance PEV when

present in additional copies (e.g. triplo-enhancers).

This particular type of dosage dependence on PEV is consistent with a model in

which these PEV genes encode repressive heterochromatin components. The clonal

inactivation of the variegated gene would be a result from the gradual spreading of

multimeric heterochromatin complexes along the chromosome according to the chemical

law of mass action (Locke et al. 1988).

The cloning of some of these genes has been reported, and these results agree with

this basic model. The predicted product of the Suvar(3)7 gene contains 5 widely spaced Zn

fingers which could help package chromatin into heterochromatin (Reuter et al. 1990).

Suvar(2)5 encodes a protein, HP1, previously known to be associated with

heterochromatin (James and Elgin 1986; Eissenberg et al. 1990). As mentioned above, the

HP1 protein has a region of homology shared with the Polycomb protein. The gene

modulo encodes a lineage-specific protein that directly binds DNA (Krejci et al. 1989).

Thus, the Modulo protein may act as an anchor for the heterochromatin complex. The

sequence of Suvar(231) suggests that it may interact with DNA and the cytoskeleton

(Reuter and Spierer 1992). Thus molecular information for genes in this class is consistent

with them being structural components of heterochromatin.
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The idea that all integral components of heterochromatin belong in this first class of

PEV genes (haplo-suppressors, triplo enhancers) is nevertheless, likely an

oversimplification. This is suggested by the fact that deletions of part of the histone cluster

lead to the suppression of PEV, but its duplication does not cause enhancement of PEV

(Moore et al. 1983).

A second class of PEV modifier mutations, which includes about 10 genes,

consists of haplo-enhancer, triplo-suppressor loci. These genes may be involved in

maintaining active chromatin domains. One member of this class may be the gene E(var)3-

93D, which exhibits trithorax-like phenotypes and contains a region of homology to other

transcriptional regulators (Dom et al. 1992).

The last two categories consist of genes that have haploinsufficient but not

triplodominant effects (about 75 enhancers and 25 suppressors). These genes may encode

chromatin components that are less dosage-dependent, as in the example of the histone

cluster, or, alternatively, enzymes involved in the metabolism and modification of

chromosomal proteins. One such modifying factor may be the predicted protein

phosphatase encoded by Suvar(6) (Dombrandi et al. 1989).

As mentioned above, the similarities between the modifiers of PEV and the Pc/trx

sets of genes, and the fact that they appear to share common components, has led to the

suggestion that both these two pairs of genes may act through common mechanisms.

iv) The yeast SPT/SIN and SWI/SNF systems: a model for the

regulation by Polycomb and trithorax groups of genes

Several lines of work involving transcriptional regulation of a number of yeast

genes have converged into the study of two sets of genes that affect chromatin structure

(for review, see Winston and Carlson (1992)). One set includes the SPT/SIN genes,

which encode histone and non-histone chromatin repressors. The other set includes the

SWI/SNF genes, which are required for transcriptional activation and are thought to

counteract the repressive action of the SPT/SIN genes.

The SWI/SNF group of genes consists of SWII, SWI2/SNF2, SWI3, SNF5 and

SNF6. All five genes have been shown to be required for the normal transcription of a

number of genes, including ADH2, GALl, SUC2, INOI and HO (see Peterson and

Herskowitz (1992)).

These genes are required for maximal activation of transcription by other activator

proteins which have DNA-binding activity. For example, activation by GALA and the

Drosophila protein Fushi tarazu is reduced in the absence of SWII function (Peterson and
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Herskowitz (1992)), and activation by lexA-GAL4 and LexA-Bicoid fusions have been

shown to depend on SWI2/SNF2, SNF5 and SNF6 (Laurent and Carlson 1992).

Recently, the human homologue of SWI2/SNF2 and brahma, hbrm, has been found to

cooperate with the glucocorticoid receptor in transcriptional activation (Muchardt and Yaniv

1993). Interestingly, it is not required for activation of a number of other factors.

Studies of the activation properties of SNF protein that are tethered to the DNA via

the LexA DNA binding domain show that SNF2, SNF5 and SNF6 are likely to be directly

involved in transcriptional activation (Laurent et al. 1991; Laurent and Carlson 1992).

Activation by the lexA-SNF2 and LexA-SNF5 fusions requires the function of SWI,

SNF5, SNF6. These results show that even when these two genes are tethered to DNA

they are functionally dependent on other genes in the group. The lexA-SNF6 fusion, on

the other hand, has considerable activity in the absence of other SWI/SNF genes (see

below).

This mutual requirement may reflect that these genes act as a multimeric complex.

This has been suggested by the similar phenotypes of single and multiple mutant

combinations, by the fact that all these five genes regulate the same set of target genes, and

by the reduction in SWI3 protein stability that is observed in swil and swi2 mutants

(Peterson and Herskowitz 1992).

The SPT/SIN group of genes include SPT4, SPT5, SPT6, SPTJ, SPT16, SIN]

and SIN2. The identity of some of these genes suggests that gene regulation by the

SPT/SIN genes involves repression by chromatin. The SPTI, SPT2 and SIN2 genes

encode the histone proteins H2A, H2B and H3, respectively (Clark-Adams et al. 1988;

Winston and Carlson 1992). SIN] encodes a protein similar to High mobility group 1

(HMG 1) proteins and has been shown to nonspecifically bind DNA (Kruger and

Herskowitz 1991).

The SPT4, SPT5 and SPT6 proteins appear to also form a complex. First,

mutations in all three genes alter transcription in similar ways. Second, some recessive

mutations in different complementation groups fail to complement. Third, the genotypes

are sensitive to gene dosages. Four, SPT5 and SPT6 proteins coimmunoprecipitate

(Nasmyth and Stillman 1987).

The fact that mutations in SPT/SIN genes suppress mutations in the SWI/SNF

genes suggests that SWI/SNF proteins activate transcription by counteracting repression by

chromatin components (Sternberg et al. 1987; Nasmyth and Stillman 1987; Estruch and

Carlson 1990; Neigeborn and Carlson 1984; Neigeborn et al. 1986; Hirschhorn et al.

1992). The sequence of SWI2/SNF2 is particularly revealing, since this protein contains a

motif characteristic of helicases (Laurent and Carlson 1992; Davis et al., 1992). In its
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human homologue, Hbrm, this motif has been shown to be required for the potentiation of

the glucocorticoid-dependent transcriptional activation (Muchardt and Yaniv 1993). This

suggests that SWI2/SNF2 may be involved in changing the conformation of DNA in order

to reposition nucleosomes and facilitate binding of transcriptional activation factors.

The results of LexA-SNF fusion proteins described above have led to the proposal

that SWI/SNF genes have two types of functions (Laurent and Carlson 1992). Proteins

such as SNF2 and SNF5, which when tethered to DNA via the LexA protein require other

SNF/SWI genes, may be involved in relieving repression by the histone group. On the

other hand, the SNF6 protein, which activates independently of other SWI/SNF genes in

the same system, may have a more direct role in transcriptional activation. Alternatively, it

is also possible that SNF6 produces an activating effect indirectly, by changing the local

chromatin conformation.

Several studies have shown that SWI/SNF and SPT/SIN genes affect chromatin

structure (Matallan et al. 1992; Hirschhorn et al. 1992). These studies have found

differences in the chromatin accessibility of the SUC2 promoter in wild-type and swi/snf

mutant strains. Hirschhorn et al. (1992) have further shown that mutations in SPTI I and

SPT12 (H2A and H2B), which suppress the SNF phenotype, restore the wild-type

accessibility pattern in swi2/snf2 or snf5 mutant backgrounds. The MNase cleavage

patterns are consistent with nucleosomes being present on the SUC2 promoter in swi/snf

mutants, and absent or positioned differently in wild type or swi/snf spt double mutants.

A similar change in chromatin accessibility in swi/snf mutants was obtained when

the TATA box is deleted from the SUC2 promoter. The fact that the change in chromatin

structure is independent of transcriptional activity suggests that this change precedes the

binding of transcription factors such as TFIID. Thus this study provides compelling

evidence for a causal relationship between swi/snf mutations and chromatin structure.

As mentioned above, the analogy between the repressive-activating systems in yeast

(SPT/SIN-SWI/SNF genes) and Drosophila (Polycomb-trithorax groups of genes),

together with the fact that SWI2/SNF2 and brahma, a trithorax group gene, are

homologous, has suggested that these two systems have similar functions and mechanisms

of action.
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6. Introduction to Chapters and Appendixes

In this thesis I specifically address the regulation of the abdomen-promoting gap

genes, knirps and giant, by the maternal Hunchback (Hbmat) protein gradient. Chapter 2

presents the screens for suppressors of nanos (nos) that were carried out with the purpose

of isolating interacting products within the nos/hbmat/abdominal gap genes genetic

pathway, as well as a summary of the genetic characterization of suppressor-of-nos

mutations.

Chapter 3 consists of an article that is in print (Genetics, April 1994), which in

itslf is a good summary of much of the work presented in this thesis. This article presents

the genetic characterization of the suppressor-of-nos mutations allelic to the Polycomb

group gene Enhancer of zeste E(z). The basis for the suppression of the nos phenotype is

investigated, as well as the possible role of E(z) in the wild type embryo. We conclude that

E(z) is required for the maintenance of the repression of knirps and giant which is initiated

by the Hbm a t protein, and that therefore E(z) function contributes to the determination of

anterior kni and gt boundaries of expression. In addition, we show that other Polycomb

group genes are involved in this process, which suggests that the domains of expression of

kni and gt are regulated at the level of chromatin.

Chapter 4 presents a series of studies that show that trithorax group genes, which

are genetic antagonists of Polycomb group genes, interact with the gap gene machinery to

affect the expression of abdominal gap genes. Nevertheless, in the case of abdomen

formation, the effect of trx group genes on the nos phenotype is synergistic, not

antagonistic, to that of Polycomb group genes. An interpretation of these unexpected

results is difficult. The basis for this phenomenon is at the present unknown, although an

indirect effect through Kr has been ruled out.

The appendixes present "side stories" of work carried out during my program of

studies. The first two appendixes describe the genetic characterizations of two other

suppressor-of-nos mutations. Appendix A presents genetic studies carried out with the

son2 9 mutation, which is the strongest suppressor-of-nos mutation that is not allelic to

E(z). In addition, this appendix describes a screen for genes that interact with son2 9 and

E(z), and reports the isolation of the second site modifier gene, Sufsi-1.

Appendix B presents the genetic characterization and preliminary cloning of a P-

element induced suppressor of nos mutation, Pson4 9.

Appendix C refers to a topic unrelated to the bulk of this thesis, the isolation of

second site suppressor of the Bicaudal-D mutation. The mutations isolated define several
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complementation groups, some unknown and some in already known genes. These genes

may be involved in the determination of the polarity of the oocyte.

A clarification on nomenclature: The "nos phenotype" refers to the lack of

abdominal segmentation produced by mutations in nanos (nos). The "son phenotype", on

the other hand, refers to the suppression of the nanos phenotype exhibited by Pc-G

mutations, which allow the formation of abdominal segments in the absence of nos

function.
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CHAPTER II. Screens for suppressors of nos identify interacting products
in the abdominal segmentation pathway

ABSTRACT

Wild-type nanos (nos) function is required for the expression of abdomen-

promoting gap genes knirps and giant. This requirement is indirect, by the Nos protein

inhibiting the translation of the maternal Hunchback (Hbmat) protein, which otherwise

would repress transcription of knirps and giant. We reasoned that we could isolate

mutations in interacting genes within this pathway by screening for suppressor-of-nos

(son) mutations. Loss-of-function mutations in a gene could act as suppressors of nos if

the wild-type gene is required for the production, stability, or function of the Hbmat

protein. In addition, son mutations could consist of gain-of-function alleles of genes

involved in the activation of knirps and giant. Here, I describe screens for suppressor-of-

nos (son) mutations, as well as the initial genetic characterization of the identified son

mutations. Aside from their common son phenotype, the identified son genes themselves

form a family of interacting genes which appear to be involved in processes such as

morphogenesis and oogenesis.

INTRODUCTION

Embryos mutant for nanos (nos) lack the posterior domain of expression of the

abdomen-promoting gap genes knirps (kni) and giant (gt) and therefore do not develop

abdominal segments. The requirement for nos function on transcription of kni and gt is not

direct, but rather occurs through a double negative mechanism. Nos is required to inhibit
in the prospective abdominal region translation of the maternal hunchback (Hbmat)

repressor protein (Tautz 1988; Wang and Lehmann 1991), which otherwise would repress

transcription of kni and gt (Hiilskamp et al. 1989; Irish et al. 1989a; Struhl 1989; Eldon

and Pirrotta 1991; Kraut and Levine 1991a; Kraut and Levine 1991b).

The indirect requirement of nos for abdomen formation suggested that it should be
possible to isolate mutations that suppress the nos phenotype. Such mutations could in

principle restore abdomen segmentation in nos mutant embryos in a number of ways.

First, suppressor-of-nos (son) mutations may affect the levels of the Hbmat protein. This

could be achieved by mutations that affect the production, transport into the oocyte, or

translation of the hbmat mRNA. Second, son mutations could be mutations in the Hbmat
protein itself, which would reduce its activity. Nevertheless, this type of mutations may be
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difficult to isolate, since hb is required zygotically (Lehmann and Niisslein-Volhard

1987b). Fourth, son mutations may reduce the function of corepressor factor(s) required

to act in conjunction with the Hbmat protein. Fifth, son mutations may create overactive

alleles of sofar unknown transcriptional activator(s) of kni and gt which can override

repression by Hbmat. Finally, in what may be a less likely scenario, son mutations may

activate an alternate pathway which bypasses the abdominal requirement for kni and gt

activation.

These multiple possibilities suggested that the isolation of son mutations could be

useful in identifying additional proteins involved in this genetic pathway. Moreover, a

number of scenarios predict that loss-of-function mutations, which are the type of

mutations most easily produced, could behave as son mutations. Thus we undertook a

number of screens for suppressors of nos.

In order to maintain the screens for son mutations as simple as possible we opted

for an F1 screen, in which mutations would have to produce a dominant son phenotype

(see Figure 2.1). In order increase the possibilities of isolating such dominant son

mutations, the screen was carried out in a sensitized genetic background that is

heterozygous for hb. Maternal heterozygosity of hb causes a slight alleviation of the nos

phenotype, allowing the embryos to produce one or two, but rarely three, abdominal

segments (Hiilskamp et al. 1989; Irish et al. 1989a; Struhl 1989). In this genetic

background, half of the Hbmat protein is produced (see Chapters III and IV). This reduced

Hb level appears to be near the threshold of hb m a t activity required for repression of kni

and gt. Thus embryos from hb nos / + nos females are likely more sensitive to fluctuations

in the abdominal gap gene activation pathway caused by one mutant son copy.

Suppressor and enhancer screens have become a useful tool in the identification of

interacting genes in a genetic pathway. Such screens are based solely on function and not

phenotype, and are not subject to biases which may appear when analyzing mutations

which on their own have unexpected phenotypes. Dominant suppressor screens, in

particular, may identify a late (or maternal) function of genes that are required at earlier

steps in development. In addition, dominant suppressor screens are usually genetically

simpler, and this allows the screening of larger number of mutational events.

Suppressor screens have been used successfully in a number of systems. Such

screens are most useful in unicellular organisms, where large numbers of mutations can be

easily screened (see for example, Steams and Botstein (1988)). The nematode C. elegans

is also particularly amenable to suppression screens, due to, again, the ease of scoring a

large number of individuals. In addition, the ability of C. elegans to self-fertilize greatly

facilitates the isolation of recessive suppressors (see, for example, Herman (1988)
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In Drosophila, highly selective dominant suppression and enhancer screens have

also been effective in the identification of interacting genes. Fuller and coworkers

identified genes coding for microtubule associated proteins as second-site

noncomplementers (enhancers) of mutations in tubulin subunits (reviewed in Fuller et al.

(1989). Kennison and Tamkun (1988) have isolated mutations in the Polycomb and

trithorax groups of genes as enhancers and suppressors, respectively, of mutations that

cause a low level of ectopic homeotic expression. A number of laboratories have isolated

mutations in structural or modifying chromatin proteins in screens for suppressors and

enhancers of position effect variegation (for review, see Reuter and Spierer (1992). As a

final example, screens for suppressors of activated components of receptor tyrosine kinase

cascades required for photoreceptor cell differentiation and embryonic patterning have

identified further genes involved in these signalling pathways (Simon et al. 1991; Doyle

and Bishop 1993; Tsuda et al. 1993).

This chapter describes screens for suppressor of nanos (son) mutations using

either the point mutagen ethyl-methane-sulfonate (EMS) or P-element mutagenesis. In

addition this chapter describes the initial genetic characterization of the isolated son

mutations.

MATERIALS AND METHODS

Genetic analysis and strains: All genetic tests were carried out at 250C, and

only the progeny from the first four days of laying were analyzed. Embryos were allowed

to develop cuticle structures (24 hrs at 250 C) and the number of abdominal segments was

scored directly under a dissecting scope (the embryos being cleared by a film of oil). The

nos allele used was nosL 7 (lack of function with respect to the abdomen formation

function, although it retains some function, (Lehmann and Niisslein-Volhard 1991). In all

screens the nos chromosome was isogenized prior to mutagenesis. The hb allele used was

hb7M (null, Lehmann and Nusslein-Volhard 1987; Tautz 1988).

Screens for EMS induced suppressors of nos: The screens for dominant

suppressors of nos were carried out as diagrammed in Figure 2.1 la. Homozygous nosL7

males homozygous were mutagenized with either 35mM or 45mM ethyl-methane-sulfonate

(EMS). The F1 nos females were in addition heterozygous for hbm at. In principle, a

reduction in hb ma t dosage should help in the isolation of dominant and partially dominant

son mutations. Embryos from F1 hb nos /nos females never reach adulthood due to the

lack of proper abdominal development. If these females carry a dominant son mutation,

they produce embryos that form complete abdomens and become fertile adults. One half of
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these adult progeny should carry the dominant suppressor mutations. We therefore

individually backcrossed up to 10 individual males with the hb nos tester stock to test for

dominant suppression of the nos phenotype (Figure 2. lb). In sequential crosses, the same

males were also mated to females carrying appropriate balancers to establish balanced

stocks on the first, second and third chromosomes (Figure 2. lb).

A pilot screen of 1,842 F1 * nos /hb nos females was first carried out and led to

the isolation of the allele E(z)s o n 3. Later, two larger screens, of 7,530 and 3,842 Fl

females from experiments using 35mM and 45mM EMS concentrations, respectively, were

carried out. Because the initial characterization of E(z) so n3 had shown that the son

phenotype is temperature sensitive, these larger screens were carried out at a constant

temperature of 250C, as opposed to the pilot screen, which had been conducted at room

temperature. The higher temperature appears to have increased the number of putative son

lines with respect to the pilot screen, although, perhaps by chance, the final frequency of

isolated strong son mutations is similar. Table 2.1 summarizes the results from these three

experiments.

An estimate of the efficiency of mutagenesis was obtained by scoring for newly

induced mutations in visible marker genes in the F1 progeny. Newly induced curled (cu)

mutations were identified in trans to the hb nos chomosome, which carries cu, and newly

Figure 2.1. A) A screen for suppressors of nos. * denotes induced mutations on the
chromosome. TM3 is a third chromosome balancer. B) Strategy to determine the
chromosomal location of the suppressor mutation. Half of the F2 progeny should carry the
dominant son mutation. Up to 10 single F2 males were sequentially crossed to females of
the genotypes indicated. i) A cross to hb nos / TM3 females allows retesting for the son
phenotype. Five F3 hb nos /nos females were tested individually for the son phenotype.
These crosses allow to roughly locate the chromosomes which carry the son mutations. If
the son mutation is on the X or third chromosome, all F3 hb nos / nos females should carry
the suppressor. If the son mutation is on the second or fourth chromosomes, only half of
the F3 females should show the son phenotype. Further, if this cross yields only Sb+

(non-TM3) flies, this indicates that the F2 tester male carried the mutagenized nos
chromosome rather than the hb nos chromosome. ii) A cross to pP / TM3 females allows
the construction of third chromosome balanced stocks in the next generation. iii) A cross to
+ / CyO (a second chromosome balancer), will bring the mutagenized second
chromosomes or a wild-type second chromosome in trans to the balancer in the next
generation. If from the retest in (i) it appears that the son mutation may be located on the
second chromosome, additional second chromosomal lines were established and tested
separately for the son phenotype. iv) A cross to an attached X stock immediately balances
the X chromosome. If the retest in (i) indicates that the son mutation could be on the X or
third chromosome and further retesting of a third chromosomal balanced stocks (see ii) did
not show that the son mutations is on the third chromosome, further crosses were carried
out to test whether the son mutation was located on the X chromosome. Because of its
small size, no attempt was made to balance possible mutations on the fourth chromosome.
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Figure 2.1
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induced pink (p) alleles in trans to the pP allele on the balancer (TM3). Out of 7,530 flies

scored for cu and pP in the 35mM EMS experiment, 9 new cu alleles and 17 new pP alleles

were observed. This represents an average hit frequency for loss-of function mutations of

1.7 hits per locus per 1000 chromosomes. Assuming a similar hit frequency in both the

35mM and 45mM experiments one can predict that out of the total 12,854 half genomes

screened we induced, on average, 22 loss-of-function mutations per locus (1.7 hits per

locus per chromosome x 12,854 chromosomes).

A screen for P-element induced son mutations: The screen for P-element

induced son mutations was a modification of the screens for EMS induced son mutations

that allowed mobilization of p[w+] elements from a multi-p[w + ] X chromosome (Bier et al.

1989) in the FO males (Figure 2.2). A w mutant background was used to follow the

mobilized p[w+] elements.

An estimate of the efficiency of mutagenesis was calculated using the frequency of

recovery of newly induced cu alleles. Of the total number of mutagenized third

chromosomes (15,612), seven new cu mutations were induced. This suggests an

approximate hit frequency of 0.4 hits / 1000 chromosomes. Nevertheless, this estimate is

only approximate since P-elements are known to vary widely with respect to the frequency

of insertion at different loci and to our knowledge no information is available with regard to

the insertion frequency at the cu locus.

Fifty five (0.4% of the total screened) single flies produced adult progeny. Males

from twenty four (0.2% of the total screened) of these vials were fertile and were

backcrossed to yw, hb nos / TM3 flies in order to test for the son phenotype. Balanced

lines were established on the third chromosomes, and where appropriate (as indicated by

the retests), on the first and second chromosomes. Those third chromosome lines which

produced homozygous viable adult females were tested for the son phenotype in a wild-

type hbm a t background. Whenever appropriate, w+ and w- flies from the same line were

tested separately in order to determine whether the new son mutation was associated with a

p[w+ ] P-element. In those lines where the son effect did not seem to correlate with the

third chromosome, further crosses were carried out to establish first and/or second

chromosome balanced stocks.

Genetic mapping of son and Pson mutations: Genetic mapping was

carried out with multiple factor crosses. The multiply marked chromosomes used for

mapping son mutations were: for mutations on the third chromosome, "neuple" (th st ri roe

pP cu sr eS) and "rucuca" (ru h th st cu sr eS ca), and for mutations on the second

chromosome (i.e. Pson49), the multiply marked al dp b pr c px sp chromosome. The

initial mapping located the mutations to a particular interval on the chromosome. Further
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tests using a greater number of chromosomes with recombination events within the

appropriate interval allowed a more precise mapping of these mutations. Only results from

the most relevant recombinant lines are described below. Results from other recombinant

lines are always consistent with the reported map position.

E(z)s°nl- 3 : son 3 was isolated in the pilot screen, and its initial mapping was

carried out prior to the isolation of the other E(z)sO n alleles. The original chromosome that

carried the son 3 mutation was also lethal. In 17 recombinant lines, both the lethality and

the son phenotype were unseparable and mapped within the hairy-thread interval (3-26.5 to

43.2). This suggested that the son mutation was lethal. This notion was confirmed when

we identified two additional son mutations, son] and son2 , both of which are lethal in trans

to son3 (see also Chapter III). son' and son2 were more finely mapped within the h-th

interval using their associated lethality in trans to the son 3 mutation. This indicated that

son] and son 2 mapped to the same genetic position at 3-31.5 and 3-30.9, respectively

(number of recombinant lines used: 47 and 66, respectively).

son2 9: son 2 9 was mapped using the neuple chromosome and is very closely

associated with the visible marker radius incompletus (ri, map position: 3-46.8): the son

phenotype was inseparable from ri in 47 recombination events within the th-ri interval (a

distance of 3.6 map units) or in 17 recombination events within the ri-p interval (a distance

of 1.2 map units). 21 of these recombination events were used to map the female sterile

phenotype of son2 9 in trans to E(z) son3 (15 and 6 in the th-ri and ri-p intervals,

respectively). In all cases tested female sterility cosegregated with the son phenotype and

the ri marker.

Finer mapping was performed by isolating recombinants within the Wrinkled (W,

map position: 3-46.0) - ri and ri- pP intervals from son2 9 W+ ri+ pP+ / W ri pP females.

In 6 recombination events within the r-pP interval son2 9 always cosegregated with ri. On

the other hand, in 2 of 7 recombination events within the W-ri interval, son2 9 was

separable from the ri locus. This indicates that son 2 9 maps closely, and distal to the ri

locus, at about 3-46.6.

Testing son2 9 in trans to deficiencies in the region did not reveal any effects on

viability, visible adult phenotypes or fecundity (deficiencies used: DfT3L)in61,

Dfl3L)ri XT 1 0 6 , DfT3L)riXT10 4 and Dfl3L)riXT, which together span the cytological

region from 76F-77D, and 77D to 78A, these deficiencies may not overlap at the 77D

region). It is unknown whether the distal end of this interval covers the genetic position of

son2 9, at 46.6 (for reference see Lindsley and Zimm 1992).

son 59,126: The son phenotype as well as the recessive lethal and visible wing

phenotypes of son59 and son12 6 were mapped using a rucuca chromosome. The wing
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phenotype associated with the son5 9 /son5 9 and son5 9 /sonl2 6 genotypes mapped very

close to claret (ca, map position: 3-100.7) on the son 5 9 chromosome: 5 son 5 9 , ru h th st cu

sr es ca+ recombinant lines in trans to the son1 2 6 allele showed the wing phenotypes.

Four of these lines also showed the wing phenotype in trans to son5 9 (the last line may not

have shown it due to variability in the phenotype and a small sample size (n=14)). The

reciprocal recombinant chromosomes, carrying the entire originally mutagenized

chromosome except for the ca region, did not exhibit wing defects in trans to son 12 6 (not

tested in trans to son5 9). In addition, a lethal phenotype associated with the son 1 2 6

mutation also maps in the ca region (7 lines with only the ca+ region were lethal). The

sterility of son5 9/son12 6 females has not been mapped. Nevertheless, it is possibly

associated with the same mutations, since this phenotype is exhibited by both son 5 9

homozygotes and son5 9 /son1 2 6 transheterozygotes. However, the chromosomes used in

this experiment are not recombinant lines and it is also possible that both of these

chromosomes carry female sterile mutations that do not complement each other.

The son phenotype of son5 9 and son1 2 6 could not be properly mapped.

Specifically, for both mutations all types of recombinant lines exhibited a low and variable

degree of segment formation. It is possible that the son phenotype of son 5 9 and son 12 6 is

synthetic and caused by more than one mutation. An additional mutation that contributes to

the son phenotype of these chromosomes may be closely associated with the stripe (sr, map

position: 3-62.0) gene. This region could not be tested in recombinant lines, since the sr

marker was used to follow the nos mutation. It is however equally possible that the

penetrance of the son phenotype associated with the recombinant chromosomes is too low

to allow mapping in the hb nos /nos background.

son7 2 and sonl0 8 : Due to the low penetrance of the son phenotype caused by

these two mutations, attempts to genetically map them using the rucuca chromosome were

unsuccessful.

Pson8 2 : The son effect and the lethality of Pson8 2 were mapped using the rucuca

chromosome to within the sr-ca interval at 3-77 (number of recombination events tested

within this interval: 30 (sr+ ca-) and 9 (sr' ca). In all cases tested (n= 24) the son effect

and the lethality cosegregated).

Pson4 9: The w+ marker associated with the Pson4 9 mutation was mapped using

the al dp b pr c px sp multiply marked chromosome to 2-16. (28/29 dp+ b and 4/23 dp b+

are w+). The son phenotype correlates with the presence of the p[w+] element.

In situ hybridization to salivary chromosomes: Performed essentially as

in Laverty (1990). The probe used was a biotinylated pC4bgal plasmid (Thummel et al.

1988), which contains LacZ sequences.
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RESULTS

Screen for EMS-induced suppressor of nos(son) mutations

The screens for EMS induced son mutations are diagrammed in Figure 2.1. Out of

a combined total of 12,845 F1 * nos /hb nos females screened, 19 lines (0.1% of the total)

behaved after backcrossing to a tester hb nos chromosome as if they may carry a son

mutation and were therefore saved as balanced stocks.

These 19 putative suppressors stocks were retested by crossing balanced males

with hb nos heterozygous females and testing for the son phenotype in hb nos / * nos

progeny females. The results with 8 third chromosome lines (0.06% of the total number of

half genomes screened) which showed a significant suppression-of-nos phenotype are

shown in Table 2.2. This dominant phenotype is strongest in the sensitized hbm at

heterozygous background, but for many of these mutations can also be observed in the

presence of a wild-type dose of hbm a t. The mutation son5 9 is regarded as a mutation in a

son gene in spite of its negligible effect in this particular test because of its apparent allelism

with another son mutation, son1 2 6 (see below).

The son complementation groups

Seventeen putative suppressors from the 35 mM EMS experiment were tested for

allelism in an inter se complementation matrix. In this analysis, most of the

transheterozygous combinations showed no interaction (i.e. transheterozygotes showed no

deleterious effect on viability and females produced embryos without any obvious

phenotype, aside from the background nos phenotype). Some interactions were observed

between a number of son mutations. The data from this complementation matrix, along

with the genetic mapping of the son phenotype and other associated phenotypes (see

Materials and Methods for details), has allowed grouping of EMS induced son mutations in

the following complementation groups:

sonl- 3 :sonl, son2 and son3 are lethal in trans to each other. son1 and son2 map

to the same position at approximately 3-31, and son3 has been mapped to the hairy -thread

interval (3-26.5 to 43.2), suggesting that these mutations are allelic.

sonl- 3 were cytologically mapped by testing for non-complementation against

deficiencies in the region. A set of deficiencies, including two small deletions, E(z) 65 and

E(z)66 , which uncover only the haywire (hay) and Enhancer of zeste (E(z)) transcription
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Table 2.2. Suppression of the nos phenotype by son mutations.

genetic background (1) nos/nos hb nos /+ nos
% rescue (2) n % rescue (2) n

+/+ 0 338 2 160

son /+ 11 156 76 186
son 2 / + 6 160 42 145

son 3 / + 13 895 88 179

son 59 / + 0 128 3 220
son 126 / + 0 141 28 184
son29 / + 46 109 63 172

son7 2 / + 0 173 8 253
son 108 / + 0 192 14 167

(1) "+" denotes the wild-type copy of the particular suppressor mutation.

(2) % of embryos with 23 abdominal segments.
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units, failed to complement son -3 mutations (Table 2.3). When tested singly, hay

mutations are viable in trans to these alleles. On the other hand, son] and son 3 are not

viable in trans to E(z) mutations, and son2/E(z)null transheterozygous are viable but males

exhibit ectopic sex combs on the second and third legs, a phenotype associated with E(z)

mutations (Jones and Gelbart 1990) see also Chapter III Addendum). Thus, these three

mutations are all alleles of the essential gene Enhancer of zeste (E(z)) (see below) and will

be referred in the text as E(z)so n l , E(z)SOn 2 and E(z) s on 3.

son2 9 : son2 9 homozygous flies are viable and fertile. The son phenotype

associated with son2 9 (as well as its female sterile interaction with E(z)son alleles, see

below) map at 3-46.6. Deficiencies which span the corresponding cytological region (76F

to 78A) were tested in trans to son2 9 but failed to show any effect on viability or fertility

(see Materials and Methods). Similarly, these deficiencies did not show the female sterile

interaction in trans to E(z)son 3 . Nevertheless, these results do not necessarily imply that

son 2 9 is not uncovered by these deficiencies since the nature of the son2 9 mutation is

unknown.

Appendix A describes the genetic properties of son2 9 in more detail, along with

further attempts to determine its identity and function.

son 59 , 12 6 : son5 9 /son5 9 and son5 9 /son1 2 6 transheterozygotes are viable and

exhibit a high frequency of wing defects. I observed various degrees of blistering (where

the two sides of the wing blade are disattached) and a reduction in wing size (see Table

2.4). These flies also show occasional thoracic bristle defects, such as kinks, although

these were less frequent and more variable. In addition, son5 9/son5 9 and son5 9 /son1 2 6

females lay a high frequency (about 80%) of apparently unfertilized eggs. son 126 /son1 2 6

homozygotes are lethal.

The lethal and wing phenotypes associated with these two son mutations map to the same

location, closely associated with claret (3-100.7). These results suggest that son5 9 and

son 12 6 are alleles of a gene essential for viability wing morphogenesis and perhaps fertility

that is closely associated with ca.

son7 2 and son 1 0 8 : Neither of these two mutations shows interactions with any

other son mutation. They are included in this discussion because of their effect, albeit

small, on the nos phenotype (Table 2.1). Due to the low penetrance of their son

phenotype, attempts to genetically map these mutations using the rucuca chromosome were

unsuccessful.
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Table 2.3. Complementation mapping of son 1-3 alleles.

Chromosomes tested (1) Phenotype of transheterozygotes (2) n

Deficiencies:

Df(3L)Ez2 vs. son1 lethal 74
Df(3L)Ez3 vs. son 1 lethal (1/4) 64

Df(3L)Ez6 vs. son 1 lethal 25
Df(3L)Ez6 vs. son 2 viable 22 v., # with e-s-c: n.d. 52
Df(3L)Ez6 vs. son 3 lethal 44
Df(3L)Ixd6 vs. sonl lethal 20

Deletions of both E(z) and hay

E(z) 6 5 vs. son 1 lethal (1/4) 61

son 1 vs. E(z) 6 5 lethal (3) 249
son 2 vs. E(z) 6 5 viable 167 v., 62 of 82 males with e-s-c 400

son 3 vs. E(z) 6 5 lethal 303
E(z)6 6 vs. sonl lethal (1/4) 34

Individual E(z) mutations

son 1 vs. E(z) 6 3 lethal 493
son 2 vs. E(z) 63 viable 180 v., 40 of 60 males with e-s-c 634

son 3 vs. E(z) 6 3 lethal 416
E(z)64 vs. son 1 lethal 36
E(z)64 vs. son 3 lethal 36

Individual hay mutations

nc2 vs. son 3 viable 37 v. 116

nc2DE B 1 2 vs. son 3 viable 51 v. 132

nc2rvl vs. son 3 viable 29 v. 94
nc2rv3 vs. son 3 viable 54 v. 99

(1) X vs Y: X/Balancer males x Y/Balancer females. Other deficiencies in the h-th interval that

did not uncover the sonl-s mutations are not included.

(2) Absence of transheterozygous individual, which should be 1/3 (except were indicated by

'1/4, where it should be 1/4) of the total offspring, is indicated as "lethal". In viable"

combinations the number of viable (v.) individuals and of individuals with ectopic sex combs (e-s-c)

on the second or third thoracic legs is indicated. n.d.= not determined.

(3) Two individuals without the dominant markers present in the balancers were observed. It is

unclear whether these are son 1/E(z)65 escapers or individuals carrying a balancer chromosome,

but not exhibiting the Ser marker (which in some backgrounds is not completely penetrant).
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Interactions between son mutations

In addition to noncomplementation of alleles within complementation groups, a

number of interactions were observed between alleles of different complementation groups.

The son 2 9 -E(z)so n female sterile interaction: transheterozygous

combinations between son2 9 and E(z)son l -3 revealed a strong female sterile interaction

(see Appendix A).

The son59,1 2 6 E(z)so n 2 wing, bristle defect interaction:
transheterozygotes between son5 9 and son1 2 6 and the allele E(z)SOn2 exhibit similar wing

and bristle defects as those observed for son59 /son5 9 and son5 9 /sonl2 6 flies. This

interaction is specific to the E(z) so n 2 mutation, since it is observed only at a very low

degree with E(z)sonl or E(z)son3 (Table 2.4).

The genetic interactions within and between son complementation groups are

summarized in Figure 2.2. These data suggest that the gene products encoded by at least

three different genes (E(z) s onl -3 , son2 9 and son5 9 ,12 6 ) interact in a process related to the

nos phenotype and in additional processes such as oogenesis and bristle and wing

morphogenesis.

Screen for P-element induced suppressor-of-nos (Pson) mutations

A screen for suppressors of nos was also carried out using P-element induced

mutagenesis (see Figure 2.3). The ammunition chromosome used was an X chromosome

with five P-elements (multi-p[w+], Bier et al. 1989). P-element induced mutagenesis has

the advantage over EMS mutagenesis in that genes can be molecularly tagged by the

insertion of the P-element at locations usually adjacent to the mutated gene. The P-element

used had additional features. First, they contain "plasmid rescue" sequences, which

contain bacterial origins of replication and drug resistance genes and allow the easy cloning

of adjacent genomic fragments. These constructs can also act as "enhancer-traps", i.e. they

Figure 2.2. Genetic interactions between son alleles. son mutations are grouped as three
different genes, E(z)s °n, son59,1 26 and son2 9, according to complementation and
mapping data. Arrows indicate genetic interactions, which are abbreviated as follows: L,
lethality; S, female sterility; wg, br; wing and thoracic bristle defects. son5 9 and son1 2 6

mutations interact specifically with E(z)so n 2 . son2 9 interacts with the three E(z)so n

alleles. The sterile interaction associated with son59,12 6, has not been mapped and may be
associated with additional mutations in these chromosomes.
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Table 2.4. son 5 9 , 1 2 6 interact with themselves and E(z) S o n2 to produce a wing

phenotype.

(1) Recombinant chromosomes of son 5 9 son 1 2 6 and E(z)SO°n 1-3 were used in this experiment,

such that only a small portion of the original mutagenized chromosome is retained in the tester

chromosomes.
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zygotic genotype (1) % with defective wings n

son59/ son59 46 35
son5 9 / son 126 52 122
son 12 6 / son 12 6 LETHAL

son59 /E(z)SOn 0 59
son5 9 / E(z)son2 17 109
son5 9 / E(z)son3 1 122

son 126 / E(z)son 1 0 51

son 12 6 / E(z)son2 20 50

son 1 26 / E(z)son3 4 68



carry a weak promoter fused to a lacZ reporter gene which can reflect the activity of nearby

enhancers. 15,612 F1 flies of the genotype y w p[w+ ] /y w ; hb nos /nos were screened

for suppression of the nos phenotype in a manner similar to that implemented in the EMS

induced screen.

After the first test for the son phenotype, 15 selected lines were considered

candidates for carrying suppressors. These lines were tested for potential lethality and

sterility in trans to mutations in previously known son genes, such as E(z) (tester alleles

Ez6 and E(z)s ° n 3) and son5 9,1 2 6 (tester allele, son12 6 ). These tests did not reveal any

noncomplementation or other interactions between these putative Pson mutations and the

previously isolated son genes E(z) and son5 9 ,12 6

A final round of testing for dominant son phenotypes led to the selection of the

Pson mutations presented in Table 2.5.

Pson4 9 :Pson4 9 is associated with a p[w+] insertion in cytological band 26A9

(Figure 2.4A, B). This P-element insertion seems to be responsible for the son phenotype

of this chromosome, as well as reduced viability and fertility of homozygotes (see

Appendix B).

Pson8 2 : Pson8 2 is a w- line which exhibits a moderate son phenotype and is

homozygous lethal. The son effect and the lethality of Pson 8 2 both map at 3-77.

Pson3 3 and Pson 56 : These two lines have a son phenotype which appears to be

associated with the original multi-p[w + ] chromosome. Cytological detection of the P-

elements in the Pson5 6 line suggests that neither excision of the original P-elements nor

new P-element insertions have occurred in this chromosome (Figure 2.4D, compare to C;

this has not been determined for Pson3 3 ).

Thus the mutation Pson5 6 , as well as Pson8 2 (which, as stated above, is not

associated with a w+ insertion), may have been induced either spontaneously or by

P-element induced DNA rearrangements. Induction of mutations not associated with a

p[w+] element has been previously observed in screens that use this and other ammunition

chromosomes (see, for example, Bier et al. 1989). In the screen carried out by Bier et al.,

there was a preselection for p[w+] insertions in the autosomes, so that all chromosome

tested carried a new p[w+] element In the son screen presented here, no such preselection

for new insertion was carried out in order to maintain it as a simple F1 screen. This may

account for the higher frequency of mutations not associated with a p[w+] insertion.
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Figure 2.3

A 2,3 Sb X
TM3, Ser

y w, multi-p [w+]

j7

y w, multi-p [w+] nos

y w, multi-p [w+]'

IA 2,3 Sb 
nos

yw
yw

hb nos
TM3, Sb, Ser

* y w, multi-p [w+]

yw
*nos

hb nos sib nosTM3, Sb, Ser

sterile unless * is a suppressor of nanos
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Potential synergistic effects between different son and Pson mutations

A mutant background with a highly penetrant son phenotype would be extremely

useful to study of the nature of the son phenotype at both the genetic and molecular level.

The strongest dominant son mutations are homozygous lethal, which excludes the

possibility of simply homozygosing these mutations as a way of obtaining a stronger

effect. Somewhat surprisingly, the only strong son allele that is homozygous viable,

son 2 9 , does not appear to increase markedly in its penetrance when homozygosed (see

Appendix A). Therefore, allelic combinations between some of the strongest suppressors

were tested for their son phenotype in the hope that simultaneously mutating several son

genes would lead to a stronger son effect. Several transheterozygous combinations of the

mutations E(Z)sOn 3 , son2 9 , Pson8 2 and son1 2 6 were tested and the results are presented

in Table 2.6. In general the presence of two son mutations causes stronger son phenotype

than that conferred by single mutations. However, none of the combinations tested in a

genetic background with the normal hbm a t dosage exhibited a son phenotype exceeding

50% penetrance. As expected, reducing the dosage of hbm at by half further enhanced the

son phenotype. Nevertheless, one would like to study the effect of he son mutations

independently of a reduction in the hbm at product and therefore none of these

transheterozygous combinations appeared to be suitable for studies that require a highly

penetrant mutant background.

More penetrant son genetic backgrounds have been obtained by combining various

E(z) alleles (described in Chapter III).

Figure 2.3. A screen for P-element induced suppressors of nos. Delta 2,3 is a constitutive
source of transposase, which induces mobilization of P-elements (Robertson et al. 1988).
The screen was carried out in a background mutant for white (w) in order to genetically

follow the P-elements, which carry a w+ minigene. The y w, multi-p[w+] chromosome
carries multiple P-elements (Bier et al. 1990). TM3 is a third chromosome balancer, Sb
and Ser are dominant visible markers, y is a recessive visible marker. The Fl sibling males
were selected for the Ser marker to insure that the source of transposase was no longer
present in the following generations. Retesting and localizing the Pson mutations was in
general as described in the legend of figure 2. 1B, except for the following changes: a) all
stocks were y w. b) F2 surviving males carrying the TM3, Sb, Ser balancer were
backcrossed to hb nos / TM3, Ser (not Sb) females. This allowed retesting for the son
effect and generating a third chromosome balanced stock in a single cross (so that step (ii)
in Figure 2. l1B was not needed).
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Table 2.6. Son phenotype of embryos from females transheterozygous mutant

for two son genes.

son tranheterozygous nos /nos hb nos / + nos
combination

% rescue (1) n rescue (1) n

y+ w/y+ w+ (wild-type) background (2)

E(z)son3 / + 9 341 48 390

E(z)so n 3 + /+ son 12 6 22 172 67 238

son2 9 / + 39 406 n.d.
son2 9 + / + son 12 6 (3) 4 190 n.d.

y w /y+ w+ background (2)
E(z) s on 3 / + 7 341 74 402

E(z)son3 + /+ Pson8 2 32 232 93 44
son2 9 / + 49 301 n.d.

son2 9 +/+ Pson8 2 50 504 n.d.

(1) % of embryos with 23 abdominal segments.

(2) Since the yw background (present in Pson mutations) enhance penetrance of the son

phenotype, the crosses have been grouped accordingly.

(3) In this transheterozygous combination the son1 2 6 mutation weakens the enhancement of

the son2 9 mutation. This experiment has not been repeated and the significance of this particular

result is unclear.
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CONCLUSIONS

A summary describing the better characterized EMS and P-element induced son

mutations is presented in Table 2.7. From the results of this chapter, it seems appropriate

to emphasize a number of points:

a) The son phenotype is in general enhanced by heterozygosity for hb. This is in

accordance with the expectation that son mutations will affect hbm a t production and/or

function (see Introduction). In a hb+ background, on the other hand, most son mutations

do not have a strong dominant son phenotype and would likely not have been isolated in a

F1 screen. Thus, sensitizing the genetic background is important to isolate mutations that

cause semidominant effects.

b) Even though the screen was designed in principle to isolate mutations on all

chromosomes, most of the suppressors isolated are located on the third chromosome. It is

likely that this bias is due to the way in which the screens were designed, such that the

mutagenized third chromosome is balanced and can be followed, while the other

chromosomes are unbalanced. In addition, the assignment of a mutation to a particular

chromosome is difficult because it depends on testing a number of single females (see

legend of Figure 2.1) and the son phenotype is somewhat variable from female to female.

Thus, son mutations in chromosomes that are unbalanced may be difficult to recover.

Similarly, in a different screen, the only recovered dominant suppressors of the Bicaudal-D

mutation were on the second chromosome, where Bicaudal-D maps (see Appendix C).

That son mutations will only be more likely recovered when they map to a marked

chromosome is also shown by the finding that son mutations isolated in chromosomes

other than the third were linked to a p[w+ ] marker.

c) son mutations in particular genes were identified with a much lower frequency

than presumed loss-of-function mutations in the marker genes cu and p. For E(z), for

example, we isolated one E(z)s on mutation for every seven cu/p loss-of-function alleles.

In the case of E(z) this discrepancy can be explained by the nature of the E(z)s o n mutation.

Indeed, E(z)son mutations are gain-of-function alleles (see Chapter III), which would be

expected to be induced at a lower frequency than loss-of-function alleles. Moreover, E(z)

Figure 2.4. In situ hybridization to salivary chromosome of mutant Pson lines using
sequences present in the P-element. A, B) Second chromosome in Pson4 9 line:
hybridization signal in polytene band 26A. This result agrees with the genetic position of
the inserted P-element at 2-16. C, D) X-chromosome in the Pson4 9 (C) and Pson56 (D)
lines. In both lines, hybridization signals are found in chromosomal regions 1, 9 and 18,
which correspond, respectively, to the elements B/E, C and A of Bier et al. (1989). The D
element, which should be in region 3, has likely excised before mutagenesis.
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null alleles have only a weak son phenotype (see Chapter III), and thus E(z) null mutations

would likely not have been selected in our screens. It is possible that some of the other son

mutations isolated in these two screens are also unusual gain-of-function mutations,

although this remains to be proven.

d) Many of the son mutations interact in transheterozygous combinations to affect

processes such as oogenesis, and wing and bristle morphogenesis. Thus, these genes may

form a family of interacting products that act together in processes related not only to early

segmentation gene regulation but also to other aspects of development. One of the son

genes, E(z), is a known member of the Polycomb group of genes. The genes in this group

share in common the requirement for proper homeotic gene regulation, although many Pc-

G genes have pleiotropic phenotypes. Interestingly, mutations in other Pc-G genes also

show a son phenotype (see Chapter III). Thus it is tempting to speculate that the son

mutations isolated in these two screens and the Pc-G genes are functionally related.

Indeed, E(z) may not be the only son gene which produces homeotic phenotypes, since the

head involution and segmentation defects found among the progeny of son2 9 /E(z)S ° n

females and from Pson4 9 homozygous females, resemble phenotypes produced by weak

homeotic transformations (see Appendixes A and B).
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Table 2.7. Summary of selected EMS and P-element induced son mutations.

Denomination son other characteristics location

phenotype (1)

E(z)son 1-3 strong E(z)son 1-3 are gain-of function (2).

E(z)son 1,3 are lethals over nulls. 3-34.0

E(z)SOn2 is viable over nulls. 67E3-4

Interactions of E(z)SOn 1-3 with son 2 9

and of E(z)son2 with son5 9, 12 6

son2 9 strong viable. Interaction with E(z)son 1-3 3-46

(female sterility).

son59, 1 2 6 weak- son5 9 homozygotes viable. son 12 6

moderate homozygotes lethal. Also affects on

wings and bristle morphology and 3-100

fertility. Interaction with E(z)so n 2

(wing and bristle defects).

Pson4 9 moderate reduced viability and sterility. Allele is 2-16

likely not a null. Associated with p[w+] 26A9

Pson8 2 moderate lethal 3-77

(1) First term indicates genetic location (chromosome and map position), second term, when

known, indicates cytological position.

(2) See Chapter Iii.
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ABSTRACT
Anteroposteror polanrv of the Drosophila embryo is initiated by the localized activities of the maternal

genes, bicoid and nanos. which establish a gradient of the hunchback (hb) miorphogen. nanos determines
the distributlon of the maternal Hb protein by regulating its translation. To identify further components
of this pathwav we isolated suppressors of nanos. In the absence of nanos high levels of Hb protein repress
the abdomen-specific genes knirps and giant. In suppressor-of-nanos mutants, knirps and giant are ex-
pressed in spite of high Hhb levels. The suppressors are alleles of Enhancer of :este (E(:)) a member of
the Polvcomb group (Pc-G) of genes. We show that E(:), and likely other Pc-G genes, are required for
maintaining the expression domains of knirps and ,gant initiated bv the maternal Hb protein gradient.
We have idenufied a small region of the knlrps promoter that mediates the regulation by E(:) and hb.
Because Pc-G genes are thought to control gene expression by regulating chromatin. we propose that
imprinung at the chromatin level underlies the determination of anteroposterior polanty in the early
embryo.

ESTABLISHMENT of pattern along the anteropos-
terior axis in Drosophila is initiated by maternal

gene products which are synthesized during oogenesis.
These maternal gene products direct the spatial expres-
sion of gap genes which are transcribed from the em-
bryonic genome and whose products are expressed in
large, overlapping domains [reviewed in HitLsKc\AP and
TALTZ (1991)]. Precise transition from maternal to zv-
gotic control of gene expression is critical for the ini-
tiation and maintenance of a stable pattern of gap gene
expression.

Transition between maternal and zygotic information
along the anteroposterior axis is in part achieved by the
transition from a concentration gradient of maternally
derived Hunchback protein (Hba"') to a gradient of zy-
gotic Hb protein (HbV g) expressed by the embryo. The
maternal gene nanos (nos) establishes the maternal Hb
protein gradient (see Figure 1A). nanos RNA is synthe-
sized during oogenesis and becomes localized to the
posterior pole of the mature oocvte (WAN(; and LEHMANN
1991). After fertilization a posternor to anterior concen-
tration gradient of Nanos protein emanates from the
local RNA source (BARKER et al. 1992). Hb RNA is also
synthesized during oogenesis and is distnbuted uni-
formly throughout the freshly laid egg. Nanos protein is
a repressor of hb translation and thereby establishes a
concentration gradient of Hb'" "' complementary to that
of Nos (TAuTrz 1988; HOLts.iMP et al. 1989; IRISH et al.
1989a; STRUHL 1989: TAUTZ and PFEIFLE 1989; WACNG, and
LEFH.tANN 1991; WHARTON and STRUHL 1991). Zygotic ex-
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pression of hb, on the other hand, is controlled by the
transcription factor bicoid (bcd). Like nos, bcd RNA is
synthesized during oogenesis and is localized within the
oocvte, but to the anterior pole (FROHNH6FER and
NCSSLEIN-VOLHARD 1986; BERLETH et al. 1988). Bcd RNA
translation results in an anterior to posterior concen-
tration gradient of Bcd protein (DRIEVER and Ni0SSLEIN-
VO.HaRD 1988). This protein, in turn, activates hb and
other genes in the anterior half of the embryo in a
concentration-dependent manner (ScHR6DER et al.
1988; TA,trz 1988: DRIEVER and NSSLEIN-VOLFHRA 1989;
DRIEVER et al. 1989; STRUHL et al. 1989).

Thus, both the anterior morphogen bcd and the pos-
terior determinant nos achieve, bv different mecha-
nisms, a similar end result: the formation of an anterior
to posterior gradient of Hb protein. Although there are
a large number of additional regulatory interacuons be-
tween maternal signals and gap genes, and between gap
genes themselves [reviewed in HLsKActP and TtAUTZ
(1991); see also ELDON and PiRRoTrr (1991), KRALrT and
LEVINE (1991a,b), CAPOVILLA et al. (1992), and STRULHL et
al. (1992)], the Hb protein gradient stands out as a ma-
jor organizer of the embryonic gap gene expression pat-
tern. Hb protein can act both as a transcriptional acti-
vator and repressor, and the Hb protein gradient
determines the expression domains of gap genes
thereby dividing the embryo into antenor (hbh-
expressing), middle ( Kriippel (Kr)-expressing) and pos-
terior (knirps (knz)- and giant (gt)-expressing) regions
(see Figure IA) (HCtsKAtP et al. 1990; KRx\UT antI LE'INE
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1991a.b; STRUIII. et al. 1992). A gradient of either Hb '"'
or Hb"I protein, which are identical in primary se-
quence (T.\L'TZ et al. 1987), is sufficient on its own to
organize the einbro into this basic ( Kr-k n-gt) gap gene
pattern (although onlv Hb" protein attains the high
levels necessary for Kr repression ) (H t'LsKI.NP et al. 1990;
SrRUHL et al. 1992).

Changes in the distribution of Hb disrupt normal em-
bronic patterning. This is demonstrated most directly
in embrvos from nos mutant females in which Hbn'4 is
translated throughout the embryo. Uniformly high lev-
els of Hb'' repress transcription of the abdomen-
specific gap gene kni and gt and therefore these em-
bryos lack abdomen. Since Hb is the major repressor of
gap gene expression in nos mutants (HCLSKA.MP et al.
1989: IRISH et al. 1989a: STRTUHL 1989). we reasoned that
additional genes required for the production or the ac-
tivirv of the Hbn'' protein could be identified as sup-
pressors of nos (Figure 1).

We report here the identification and characteriza-
tion of three such suppressor-of-nos (abbreviated son)
mutations. We show that these mutauons are alleles of
the preiouslv characterized gene Enhancer of este
(E(z)) UONES and GELBART 1990; PT-LLIPS and SHEARN
1990). We investigated the role of E(z in the determi-
nation of the anteroposterior pattern and conclude that
E(:) is required to maintain transcriptional repression of
the gap genes kni and gt once repression has been ini-
tiated by the Hbm"' protein.

MATERLS .AND METHODS

Nomenclature: Throughout the text we refer to embryos
from mutant females as mutant embryos' which describes
their maternal and not their zgotuc genotype. Marker muta-
tions and balancer chromosomes are described in LINDSLEY
and Zll.l (1992). Staging of embrvos is as in FOE and ALBERTS
(1983).

Screen for suppressors of nos: hb"' is a protein null
(LEHtNN and NSSLEIN-VOLHARD 1987; TLTZ 1988), nosL7

behaves as a loss-of-function mutation %with respect to abdo-
men formation although it still retains nos function required
for oogenesis (LEH.tNN and NSSLEI-VOLkHRD 1991).
hb'7nos/T1M3 females were crossed to nosL; homozygous
males mutagenized with either 35 m or 45 m ethyl meth-
ylsulfonate (EMS). F hb7 'nosL;/nosL; females were tested in
groups for producing hatching embryos. Single females were
retested and lines were established from the F males. We
tested 12,854 half genomes, i.e., hb nos/nos females (9,372
from the 35 mM batch and 3.482 from the 45 mi batch). To
determine the efficiency of mutagenesis we also screened
for newly induced p alleles and cu alleles. The estimated yield
of our mutagenesis is about 1.7 hits per locus per 1000
chromosomes at 35 m (not determined for 45 m.).

Genetic analysis and strains: Suppression of the nos phe-
notvpe by all suppressors including the El : mutations is stron-
ger at higher temperatures and is observed more frequently in
the lavings of younger females. Therefore, to assure consis-
tencv in different experiments, all genetic tests were carried
out at 25' (except where noted). andcl only the progeny from
the first four davs of laving were anal7.ed. Embryos were al-
lowed to develop cuticle structures (2"- hr at 25') and the num-

her of abdoninal segments s;as scored either lit ectlv utnder a
dissecting scope (the embrvos being cleared by a film of nin-
eral oil) or as cuticle preparations embedded in Hover's tmle-
diiuln (WIFSCtcUS anld NSi sSLIN-Vot.II ARD 1986)

Elm:). rmutations re alleles of Enhancer o este (.nonvm
polccombeotic).

\lap position: son and son Illap lithin 5 map umts ot E(:)
(3-34.0). son' to the 3-26.5 to 3-43.2 interval.

Associated phenotypes: the E(:P'°" allcles. like other E':) al-
leles are larval lethal when trans-heteroz.vgous. Tihe alleles
E(: ' °" ' and E(:)' °" ' are lethal in trans to E(:) null alleles or
deficiencies. E(:,'": is viable and fertile in trans to those alleles
but males exhibit ectopic sex combs on the second and third
legs, a phenotype associated with E(- nmutations (W e al.
1989: JONE and GELBART 1990: PHILLIPS and SHE.sm. 1990). In
addition, these three alleles, like anumorphic E(:, alleles. act
as strong suppressors of the este-white interactiuon (data not
shown) UO(JES and GEt.URT 1990).

Complementation: a P element camrning only the E(:) tran-
scription unit (JUoES and GELBART 1993) suppresses the lethal-
itv associated with the E(:.'" alleles (vgouc genotypes tested:
E(z:I-°E(: )`, E(z)°" /1E(:?)', and E:'°'/E(:)'"). and re-
duces their suppressor-of nos effect (maternal genotypes
tested: in a hb'"' heterozygous background, E(:)'" 2 '/-'- and
E(:)'""/-: in a wild-tnpe hb""' background. E(:'°"'/E(:) '" '
and E(:'""/E(:)'°"). Thus these gan-otf-funcuon (g-o-f) al-
leles are anumorphic (polson').

E(:) alleles are referred to according to LINDSLEY and Zimm
(1992): Df(3L)E:6, E(:)5 '. E(:)- (deficiencies, E(:) °s partial
deletion. weakly antimorphic.JoNEs and GELRART 1993), E( :j)
E(:)°'(nulls, E:)" ' slightly antimorphic); E() " (temperature
sensitive. see legend of Table 1 . E(: ", E(: ' (g-o-f. suppre.;sor
and enhancer of the este-whte interaction, respecuvely).

Suppressor of zeste-2 (Su(z)-2) complex mutauons [except
where otherwise stated (see BRUNK et al. 1991)1: Su(:)2' ,
Df(2R)vg-B [deletlons of Pc, Su:)2 and Su(z)2-Dstal
(Su(-)2-D ) ]; Su(:)-2: Su(:2' 2 (null), Su(:u2' (g-o-f. suppres-
sor of the zeste-white Interaction); Posterior sex combs: Psc"4'
(hypomorph, possibly maternal-effect g-o-f [see aDLER et al.
(1989)], Psc'2, Psc'J s [null and g-o-f, respectively (C.-T. Wu
and MN. HowE, personal communicauon)] Psc' (go-f, suppres-
sor of the este-white interacuon); Su()-2-D: Su(z)3i(g-o-f,
suppressor of the este-white interaction). Other Pc-G muta-
tions are Additional sex combs, AsxD' [g-o-f (SINCL-UR et al.
1992)]; extra sex combs, esci (null), esc'0 (deletion) (STRUHL
1981 ) [recovery of esc null embryos was essentiallv as described
in STRUHL and AaM (1985) ]; pleohomeoac, pho' (hypomorph)
(DuNc.N 1982); Df(4)G (deletion) (BREEN and DuNc.,N 1986);
Polycomb, Df(3L)Pc (deletion) (HANIE 1983); Polycomblike.
Pc °' (null) (BREEN and Du,cCAN 1986); polyhomeotic, ph'0 '
(null) (DUR. et al. 1987); Sex combs extra, Sce" (nature un-
known) (BREEN and DNca2 N 1986); Sex combs on midleg, Scm"'
(null) (BREEN and DNck.N 1986); super sex combs, sxc' (null)
(IGHS.aIl 1984). The partial loss-of-function allelic combina-
tion ph4''/ph" ' (DURA et al. 1987) did not show significant
suppression of the nos phenotype.

Pole cell transplants: OvoDI females were used as hosts for
pole cell transplants as descnbed in LEHMANN and NOSSLEN-
VOLHARD (1987). Ovo' causes degeneration of the female
germ line (OLER et al. 1987). Donor embryos were derived
from the following crosses: (1) E(:)"'"'nos/TM3 x E(:)'""'nos/
TM13 to obtain E(:)'"'nos/E(lz)'"nos clones; (2) E(z)'""no/
TM3 x E(z'°"'nos/TM3 to obtain E(z) '" nos/E(z)"'nos
clones (nos = nos"'). The genonpe of the transplanted pole
cells was determined by the phenotpe of the progeny.

E()'" "'nos/E(z)"'"nos germ cells did not lead to adult prog-
eny but their genotypes were inferred by the rescue of the nos
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phenotspe and / ,r other .assocl.ltedi detects. At 25°. q ,' 16 f tertle
feinales presumablyv Ei' "",' /Et:l'"rnosr prodiced xerv
tew. abnornial eggs, loast of whicht did nol torr cuticles. At 18
3/4 fertile adult females ( presurnahlv E:i':""nos/E(: "'" 'rnl
Ild eggs s hich developed inlo larvae t 71 larvae 147 egg). All
emihnos frmed tit to eight ,abdomina.il seglelnts. Most if the
de\eloped emib'os (ti9/71 ) failed to hatch and none reached
adulthood. Many M4%. n = 32) shosed head i\olutlmli de-
fects siilllar to those obsene d n embrno, %sittlh mild hi)lle(itlC
tiansfiJnmatuons [see. for eample. Jt'Rt.ENS 1985)1.

E(:' 2 nos/E(:)'°"'nos germ line clones: '25 fertile fe-
males exhibited phenopes similar to those bsered tin fe-
males carrning E(:"' os/E(:l)"'n io germ line clones. 1-i%,
females produced embnos which reached adulthod. In these
cases the genotype of the transplanted pole cells was nan-
biguouslv Identified.

The additional phenotpes assoclated with these Ei:son
germ line clones, such as egg laving detects. \,ere also oberted
when similar germ line clones were ohtined in the presence
of functional nos product i E"'' nos A moie detailed tde-
scnption of these germ line clone results ,ill appear else-
wshere.

Analysis of expression patterns: E:':l'"' E: ' females were
grown at 25' and eggs were collected fronm oung females.
NIutant backgrounds: nosl : homoz gotes. bd * homozvgotres.
fI' hemlzvgotes. tsl'"/tsl'' trans-heterozngotes.

Whole-mount in situ hvbndization with digoxigenin-
labeled RNA probes for kni. gt, Kr and las Z was performed
as descnbed in GAvis and LEHtLx-N 1992.

The uransgenes ,hich contain the kni promoter-lac Z
fusions were kindls prouided bv 1. P..kRx.7rz and H. jAciL.
(P.KsxArz et a. 1992). Miales carning the transgene were
crossed to females of the appropnate genotype To insertion
lines led to idenucal results.

Whole-mount anubody staining was pertformed as in G-sls
and LEH.LCA.xN (1992). The rabbit anti-Hb anubodv. a gift from
G. STRLHL. was diluted 1:50 and preadsorbed against 4-18-hr
embryos. Biotinvlated secondary antibody (from Vector Labo-
ratories) was diluted 1:15 and preadsorbed against 8-14-hr
embryos.

RESULTS

Identification of Enhancer of zeste alleles as suppres-
sors of nanos: Embryos that lack functional Nos product
lack all eight abdominal segments. In the absence of
both Nos and Hbm"' embryonic patterning can proceed
normally if hb is expressed zvgoticallv (HCItSK-\MP et al.
1989; IRISH et al. 1989; STRUHL 1989). Thus, the major
role of Nos during early embryogenesis is to establish the
Hb protein gradient. We therefore reasoned that fur-
ther components of the nos-hb regulatory pathway could
be identified as suppressor-of-nos mutants (Figure 1). To
sensitize the selection system we searched for suppressor
mutants in a background heterozygous for hb. This re-
duction of the maternal hb gene dosage weakens the nos
mutant phenotyvpe, such that one to three abdominal
segments are formed in the progeny of hb nos/+ nos
females (Table 1) (HC-'lskxsP et al. 1989; IRlSH et al.
1989: STRUHL 1989). We screened for EMS-induced mu-
tations that allowed embros from ibh nos/+ no.s females
to develop into adults (Figure 1). After screening ap-
proximately 13.000 F, females. five suppressor muta-
tions were isolated. These mutants cause a strong domti-

nant suppression of the lo.s phenotype in a maternal
hbckground heterozygous for hh, and to a lesser extent,
thev also suppress the no3 phenotvpe in a mater nal back-
ground of nornmal hb dosage (Table I ).

Two of the suppressor mutatlon. represent sglet'
hits in itas vet unidentitiecl genes and will be described
elsewhere. Three other mutations are alleles of the
gene Enhancer ofzeste (E:, ) (JoNts and GELBARr 199'3):
PIiI.LIPS arid SHEARN 199(0) see MATERKLIS AND IETI()DS
for derails). We refer to these three mutations collec-
tlvelv as the E(:i"" alleles and ndividuall as E(z' "' .

E(:i"n and E(: '"'. Mutations in E(:) have previouslv
been analyzed in detail and E(:J has been shown to play
a role in regulation of expression of homeotic genes in
the Antennapedia and Bithorax gene complexes. More-
over, E(:, is required for proliferation of Imaginal disc
cells and the deselopment of egg chambers past earls
stages of oogenesis (JoNEs and GELBART 1990; PHII.PS
and SE-ARL'N 1990). Our results suggest that Et:, function
Is also involved in establishing the abdominal anlagen In
the early embryo.

E(:) '" alleles are specific for abdomen formation:
Suppression of the nos phenotype by E(z) alleles de-
pends on the maternal genoynpe. thus nos embrvos form
a normal abdomen only when the E(:) mutations are
present in the mother. Newlv snthesized zygotic E(:,
gene product provided by the paternal genome has no
effect on the nos mutant phenotype (data not shown).
Thus, consistent with a role in the regulation of expres-
sion of the first tier of segmentation genes, functions
affected bv the E(z)'° mutations are provided only ma-
ternally. In contrast, homeotic transformations which
affect a later stage in the segmentation process are
caused bv lack of maternal E(:) function, but thev also
depend on the embryonic genotype (JONES and GELBART
1990; PHILLIPS and SHEARN 1990).

E(z:'0 mutations are semidominant, and suppression
of the nos phenotype is much stronger in embryvos from
nos females homozvgous for E(:,)' (see Table 1). Table
I shows the dominant maternal effect of E(:) '° alleles
compared with other E(z) alleles that had been isolated
previously on the basis of other phenotypes. Although
many of the previously known alleles, including E(:) de-
ficiencies, have a significant dominant effect, none of
them can suppress the nos phenotype to the same extent
as the E(z)' alleles. Thus the E(zP°' alleles are gain-of-
function mutations that appear to code for aberrant pro-
teins (see also \LATERLALS AND METHODS).

To determine whether the phenotype of the gain-of-
function E(z:'"0 alleles reflects a requirement of wild-
type E(:, function for early pattern formation. we tested
the effect of E(:) loss-of-function allelic combinations in
a nos mutant background. Since E(:) null mutations are
hornozygous lethal. we used the temperature sensitive
allele E()"' which has significantly reduced E(:z activint
at the restnctuve temperature (JoNEs and GEI.IBART 1990).
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A)

B)

wild type

bma knl t

Hal

nos
nos

C)

F0 + + hb nos
+ + BAL X

F * ; ;* + nos *
+ + hb nos

EMS

+ + nos7; -+; nos

Fic.URE 1.-Screen for suppressors of
nanos. (A) Regulatorv Interactions at the
early cleavage stage (top diagrams) and at
the svncvtial/cellular blastoderm (bottom
diagrams) in embryos from wild-npe and
nos mutant females. In wild-type embryos
the Nos protein represses translation of
hb"°' RNA (top. left). The concentration of
Hb determines the anterior boundaries of
knl and gt expression (bottom. left). In em-
brvos that lack functional Nos protein, the
hb'" ' RNA is translated throughout the egg
(top, nght). High levels of Hb" ' repress knz
and gt transcription in the prospective ab-
dominal region and thus no abdominal de-
velopment occurs (bottom, right). (B) Phe-
notvpes of embryos from nos mutant
females. Vos mutant embryos lack abdomi-
nal segments, a reduction of the hb"' gene
dosage ( nos/hb nos) weakens the nos
phenot'ype. We identified suppressors of
nos in this 'sensitized" background (+ nos
*/hb nos). In principle, we should also re-
cover new hb alleles, however. this is diffi-
cult since hb is also required zygotically (LE-
H.NNN and NSSLEIN-VOLtFLRD 1987). (C)
Screen for dominant suppressors of nos.

sib C

embryos do not form an abdomen unless
mother carnes a suppressor mutation ()

We found that homozygosity or hemizvgosity for E(z)6'
at semipermissive (25°) and restrictive (29°) tempera-
tures causes a significant suppression of the nos pheno-
type (Table 1, Figure 2C). We conclude that the wild-
type maternal E(z) product is required for repression of
abdominal development in a nos mutant background.

The phenotypes of E(z) null mutations suggest mul-
tiple requirements for E(z) wild-type product(s) at dif-
ferent stages of development (JONES and GELBART 1990;
PHILLIPS and SHEF-su, 1990). In contrast, the E(z)'"0 mu-
tations are specific for abdomen formation. This speci-
ficitv of the E(z)'°" alleles is demonstrated most clearly
by the phenotype of embryos derived from germ line
cells mutant for the two strongest E(z )". alleles (E(z) °"'l

and E(z)'"o3). Since these alleles are lethal in trans, we
generated females whose germ line is homozygous for
nos and trans-heterozygous for these alleles by pole cell
transplants (see MATERIALS AND METHODS). Embryos from
such females frequently develop a complete set of ab-
dominal segments, but do not display the strong ho-
meotic transformations characteristic of mutations in
E(z) and other Pc-G genes (Table 1, Figure 2B). On the
other hand, embryos from E(z)`'/Df(E(z)) females de-
velop only some abdominal segments but show very
strong homeotic transformations (Table 1, Figure 2C).
This specificity of the E(z)"°" alleles is inconsistent with
a model in which different levels of wild-type E(z) activity
are required for different functions of E(z). Rather, we
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TABLE I

E(:) mutations suppress the nos abdominal phenotype

Maternal genospe

nos/ nns hb n/- no,

E:, niaterti.al Percent Percent
,enotxpe' rtcue rescue 11

_- 0 338 2 16i
E{:) 'I; 1I 156 76 1Sti
Es Jt ,./ 6 160 42 145

E: ski°~/- 13 895 88 179
¥f(3 L)E:6- I) 525 9 768
U./:l,"!- 0 356 2 473

t: :, ) "- ~}) 253 10 229
E(: )- 361 9 293
h. t '- I) ,575 12 353
E:) ,

'
,
-

0 297 1 122
Et: ) i - 0 562 4 31!
E:t,0 619 8 251
E,:j'/E(:) " (25') 2 216 xD

(29-) 6 84 xI)
E(:z"/E(:z" 25') 24 270 ND

29') 38 39 ND
E(: "

2 'E(:)" 95 366 ND
z) /~lE 0 100 29 XD

Ei: '"2/E( ~,,n;d 100 14 ND

Tests were performed tn a geneuc background with a futill or half
dosage of hb' ( nos/nos and hb nos/+ nos columns, respecuselv). All
tests are at 25' except where otherwise stated. The temperature-
,ensiuxe allele E(:" retains some awild-rvpe acumaiv even at the re-
stricuve' temperature (29') since suppression of the nos phenonpe is
stronger hemizsgotes (E(z)l",,E(7) ) than in homozsgote, [see
also JONES ad GEIIART (1990)] 1. For a descripuon of alleles ee Mla-
tenals and Methods.

aA '-' refers to the wild-type E(z) copy (z.e.. E(:1-).
b Percent of embryos with '-3 abdominal segments.
' From germ line clones. Test performed at 18°; 86% of the em-

brvos scored had S abdominal segments.
d From germ line clones; 50% of the embryos scored had ab-

dominal segments.

propose that the E(z) protein is a complex molecule and
that the E(z)"' mutations affect a specific function of this
protein.

E(:) is required for maintenance of gap gene repres-
sion: To understand how E(z)"' mutations alter the nos
phenotype, we studied the expression patterns of gap
genes in embryos derived from E(z) nos double mutant
females. As a source of mutant E(z) embryos we used
females of the genotype E(z)'° /E(:)", which is a viable
allelic combinauon that strongly suppresses the nos phe-
not-pe even in the presence of the normal maternal hb
gene dosage (Table 1). As observed previously, nos mtU-
tant embryos fail to express the gap genes kni and gt in
the prospective abdominal region (in Figure 3. compare
E, F with B, C. respectively) (ROTHE et alt. 1989; ELDON
and PRROTTA 1991; KR-xUT and L.EVINE 1991a). In coIn-
trast. E(:) mutant embryos express these gap genes in
spite of the absence of nos function (Figure 3. H and ).
Thus, E(z) wild-type function is required for the repres-
sion of abdomen-specific gap genes.

E(:) mutations suppress the abdominal phenotvpe of
embryos derived from females mittarit for okar andl

1' tGL RE 2'.-Supp'esslon ot the nosis phenotwpe bv E(:) mu-
tauons. (A) .Vos enibrvos form a nornmal head and thorax but
lack abdominial segnients. (B) Etz:) mutations suppress the nos
phenotvpe. Embrso from E(:J"-'nos/E(:)'°"nos germ line
with a complete abdomen. (C) Eihbrvo with suppressed nos
phenotnpe from Ellnos/E(:

5tnos female at 29:. All seg-
ments show strong homeotic transformations tosard an AS
identit. Note that the E(:) inttitant cotibitnat;on in (B) shows
no obvious homeotic transtfbrmations. Filzk6rper (arrow-
heads) unstretched in (A). stretched in (B). repeated in mnore
anterior segments in (C). Darkfield optics. Anterior tip. entral
left. H. head skeleton: T. thorax: A, abdomen; Te. telson: 'T'
and A' are thoracic and .abldominal regions: all segmenits trans-
formed into an A8 dentitv.

vasa alleles, which cause a failure to localize nos RNA
(data not shown; ,\%Xc; et al. 1994). Likewise. E(:z mu-
tations suppress the abdominal defect of embrvos from
females which lack nos RNA and protein (data niot
shown) (WaNxc; et al. 1994). This indicates that E(z): mtnu-
tations act downstream of nos function and thus must
affect a function involved in the production. the stabi!-
itv, or the activity of the Hb"'. protein. Using anti-Hb
antibody staining of embryos, we have not detected any
significant effect of E(:) tmutations on either the clistri-
bution or the levels of the uniformly distributed Hb"'
protein present in nos mutanits (data not shown, see also
Figure 4. D and 1). Thus, E(:) most likely acts down-
stream of. or in conjuniction with HbndI..

It has been proposed that E(z) and other Pc-G genes
are required for the maintenance but not for the ini-
tiation of the repressed state ofhomeotic genes (SrRUIL
and A.'st 1985; Gl.ICKS.NIAN and BROWER 1990; JONE-s and
GEI.IART 1990: McKFoEN and BRO(CK 1991; SIMoN t al.
1992). To determite whether E(:J is also required for
the maintenance of transcriptional repression of kni
andc ,gt, we comnpared thie time when these two genes are
tirst expressed in wild-type embryos to the timingoftheir
expression in embry(s from E(:z) nos double mutant tfe-
mniales. The posterior ex)pression of both kni atind t is tirst
cdetectable in E(z) os mutant ebrvos at the mid-
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wild type nos E(z)- nos-

gt
cycle 1 4a

gt
cycle 14b

I * kni
... I. 1Ah

FIGURE 3.-E(:) mutations allow abdominal gap gene expression in the absence of nos function. Expression patterns of knz and
i RNA in embryos from *wild-tnpe, nos and E(:z nos females. Only the posterior-most domain of expression of these two genes
(flanked by arrowheads) is required for abdomen formation and depends on no.s function. In wild-type embryos knm and gt posterior
expression is inluated at nuclear cycles 11-12 (MoHLER et al. 1989; ROTHE et al. 1989: ELDON and PIRROTrrA 1991; KRLT-r and LLVINE
1991 a) [shown in (A) at cvcle 14a]). Posterior expression is undetectable at early stages in E(z: nos embryos [shown in (G) at ccle
14a], but becomes detectable at a later stage [shown in (H), cycle 14b]. (Data shown only for gt, although a similar delay in
expression is observed for k7al in E(:) nos embryos.) Weak expression ofgt in nos embryos (E) (KRalat and LEVINE 1991 a) s vanable
and low compared with wild-type and E(z) nos embryos. The posterior domains of both kni and gt are shifted slightly posterorly
in E(:J nos embryos. This may be due to incomplete penetrance of the E(:) mutations. and/or parual repression of knl and gt
by Kr gene activityv. In nos and E(:) nos embryos Kr is activated more posteriorly than normal due to the high concentration of
Hb"' protein in the abdominal region (data not shown). This suggests that activation of Krby Hb is not affected by E(z) mutations.
Nomarski optics of whole-mount n situ hybridizations. Antenor left, dorsal p.

cellular blastoderm stage, at least one nuclear cycle de-
laved with respect to the onset of wild-type expression
(in Figure 3, compare B, H with A, G, respectively). The
time at which knz and gt are expressed in E(z) nos em-
bryos roughly coincides with the disappearance of the
Hb m"' protein (TAUTZ 1988) (our own observations).
Thus, our results are consistent with a role for E(z) in the
maintenance of the repressed state initiated by the Hb"' '

protein.
Role of E(z) in anteroposterior patterning: In willd-

type embryos Nos protein emanates from the posterior
pole and generates a complementary distribution of
Hb"'J' protein. At the svncytial blastoderm stage, when
the maternal Hb'" protein Is no longer detectable, hb:Y
is transcribed in the anterior half of the embryo under
the control of bcd. The concentration of either Hb"' or
Hb"x along the anteroposterior axis establishes the an-
terior boundaries of knl and gt expression (HfrLSKA.\IP et
al. 1990; ELDON and PIRROlT. 1991; KRtAL-r and LEVINE
1991a,b; STRUHL et al. 1992). Since E(:) is required for
the continued repression of these gap genes in nos mu-
tant embryos, we asked whether E(f) might also be re-
quired in wild-type embryos for the proper positioning
of the anterior boundaries of knz and gt expression. In
embryos that are mutant for E(z), but are otherwise willd-
type. the anterior boundaries of kni and gt are normal
(data not shown). This result could imply that the E(z)
product is required for the maintenance of gap gene
boundaries established by Hb'"' but s dispensable if an-

teriorly expressed genes, such as Hbhx, are activated by
bcd.

Therefore, to determine whether E(z) is required for
the determination of the anterior boundaries 3f'R; and
gt initiated by the Hbma' gradient, we tested the effect of
E(z) in bcd mutdnt embryos. In these embryos, the only
source of anteroposterior polarity is the Hb m"' gradient.
We fird that E(z) bcd double mutant females produce
embrvos in which the anterior boundaries of knm and gt
expression are shifted anteriorly (compare Figure 4, G,
H with B, C, respectively). Thus, E(z) is required for the
proper formation of the anterior boundaries of kni and
gt expression by the Hb"'' protein gradient.

The new boundaries of knz and gt expression in E(z)
bed double mutant embryos are determined solely by
cross-regulatory gap gene interactions. The anterior and
posterior boundaries of gt in E(z) bed mutant embryos
depend upon repression by tailless (tll) and other ter-
minal gap genes (compare Figure 4G with 5A). Negative
regulation by terminal gap genes also determines the
anterior border of knz (compare Figure 4H with 5B).
The posterior boundary of knz in E(z) bcd embryos is
negatively controlled bv gt (compare Figure 4H wvith
5C).

The effect of E(z) mutations on knz and gt transcrip-
tion Is not observed when these genes are first expressed:
anterior boundaries of expression in E(-) bed embryos
are established at positions similar to those found in bed
embrvos. Later, at the cellular blastoderm stage, kn2 and
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bcd E(z)- bcd -

* gt
:ycle 14a

* gt
cycle 14b

* kni
:ycle 14b

anti-Hb

cuticle

Fiut:R. 4.-E(:) maintains the anterior boundaries of kni and gt expression in bcd embryos. (A-C. F-H) gt and kni RSNA
expression in whole-mount embryos from bcd and E(z) bcd mutant females. Until nuclear cycle 14a the anterior boundaries of
gt and knz are similar in bcd and E(z) bcd mutant embryos (A. F data shown for gt). At cvcle 14b, however. these boundaries have
shifted anteriorly in E(z) bcd embryos (B, G and C, H). The embryo in (G) shows the most extreme effect of E(:) mutations on
gt expression. In less extreme cases E(z) bed embryos show a gap of variable extent ithin the gt expression domain (not shown).
This gap is likely caused by hb""'-dependent activauon of Kr, a mutual repressor of gt (HLSK.kIP et al. 1990: ELDON and PIRROrrA
1991; KRA.srr and LEvINE 1991b; STRUHL et al. 1992).The variability in the expression of gt is likely due to the incompletely penetrant
E(-) background. The expression patterns of Kr and kn are similar and within a single embryo the patterns of kni and Kr are
roughly complementary to that of gt (data not shown). It is therefore probable that expression of Kraffects gt expression in embryos
that display the less extreme phenotype and thereby indirectly leads to activation of knl (H) (CAPOViLLA et al. 1992). (D, I) Anubodv
staining at a pre-pole-bud stage shows no detectable difference in Hbm"' protein levels in bcd and E(z) bcd embryos. E(z) does not
affect the levels but rather the activity of Hb'' protein: in embryos from bcd mutant females heterozygous for a protein null. hb: 'f,
the levels of Hb"' are lower than in E(zj bcd embryos even though abdominal pattern duplications are not observed see below.
data not shown). Hb is detected by anti-Hb antibody. Nomarski optics. Anterior left, dorsal up. (E,J) Cuticular phenotypes of larvae
from bcd and E(:)bcd females. (E) Bcd mutant larvae lack head and thoracic structures and form a second telson with unstretched
Filzk6rper (left arrowhead). (J) E(:) brd larvae develop nvtwo short abdomens in mirror image and stretched Filzk6rper at both ends
(arrowheads). The anterior abdomen of E(z) bed embrvos is usually shorter than the posterior one; this asvmmetry may be caused
by the off-centered expression of kni which overlaps with a domain of residual Kr actiitv (H. not shown). Arrows indicate anterior
to posterior polarity of abdomens. Darkfield optics. Anterior left. ventrolateral view.

gt expression is expanded anteriorly in E(z) bcd embryos
(in Figure 4, compare B, G with A, F, respectively). This
suggests that the relative concentration of Hb m' " protein
initiates the restrictions of kni and gt expression. At the
cellular blastoderm stage, when Hb"' " protein is no
longer detectable, E(z) function is required to maintain
a stably repressed state.

Hb and E(_) act on the same cis-acting sequences in
the kni promoter: Our experiments suggest that E(z)
and hb act in conjunction to restrict expression of knz
and gt within the prospective abdominal region. To ana-
lv7.e a possible molecular interaction between the twvo
gene products we asked whether sequences within the

kni promoter, known to be required for abdomen-
specific expression. contain sequences required for
Hb'" and E(z) mediated regulation. A 1.8-kbp fragment
of the kni promoter fused to the lac Z reporter gene
confers abdomen specific expression that is identical to
that of the endogenous kni gene (P \.NKRarz et al. 1992)
(see Figure 6A). This region contains at least five po-
tential binding sites for the Hb protein (P.\NKR\TZ I a!l.
1992).

To determine whether this reporter construct re-
sponds to repression by Hb".; we first examined the ex-
pression of the transgene in the progeny of nos and bed
mnLutilnt females. Like the endogenous kni expression,
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E(z) - bcd - rsl -
*gt

E(z) - bcd - tsl 
* kni

gt -E(z) -bcd -
* kni

FIGURE 5.-Regulation ofgt and kni expression by gap gene
interactions in E(:) bcd embryos. Expression patterns of kni
and gt RNA in E({z bcd tsl and gt, E(:) bcd embryos. (A) gt is
ubiquitously expressed in E(:) bcd tsl embrxos (cf. Figure 4G).
This embryo shows the most extreme effect of E(z) mutations
on gt expression in this background. The anterior expansion
of the gi domain is less extreme in other E(z) bcd sl embryos.
(B) The anterior boundary of knz expression expands ante-
riorly in E(:) bcd tsl embrvos (cf. Figure 4H). The expression
pattern in (A) represents a more extreme situation than that
in (B) (see legend of Figuire 4). (C) knz expands postenorly
in a gt, bcd embryo (cf. Figure 4H).

lac Z RNA is absent from the abdominal region in em-
bryos from nos mutant females (Figure 6B) and is ex-
pressed as a single band in embryos from bcd mutant
females (Figure 6D). We then asked whether these se-
quences are also sufficient to confer E(z) dependent
regulation. We find that kni-lac Z is expressed in the
prospective abdominal region in embryos from E(z) nos
females (Figure 6C) and that the domain of expression
is expanded anteriorly in embryos from E(z) bcd females
(Figuire 6E). Thus, the regulation of the transgene is
identical to that of the endogenous posterior kni do-
main. We conclude that this region of the kni promoter
contains all sequences required for E(z)-dependent
transcriptional repression.

Other Polycomb group genes are also involved in the
maternal to zygotic transition of gene expression: Based
on the similar homeotic phenotypes of Pc-G genes, it has
been proposed that their gene products act in conjunc-
tion. To determine whether these genes also interact
during the maternal-zvygotic transition of gene expres-
sion we tested mutations in additional Pc-G genes for
suppression of the nos phenotype.

We first determined whether mutations in any of the
known Pc-G genes show a dominant maternal effect
similar to that of E(z). Mutations in the genes Additional
vex combs, Polvcomb. Polrtcomblike, polyhomeotzc, Sex
combs on mtdleg and Sex combs extra do not show anv
significant dominant suppression of the nos phenotype
(data not shown: for these and other Pc-G genes. see
MATERIALS AND IETIIODS for specific alleles used and ref-
erences). We did, however, detect significant dominant
suppression of the not phenotype by mutations in the

Su(z)2 complex (Su(zJ2-C) (Figure 7A, Table 2). In-
terestingly, deletions of the entire complex, which in-
cludes the genes Posterior sex combs (Psc), Suppressor of
zeste 2 (Su(:)2) and Suppressor of zeste 2-D (Su(z)2-D)
show significantly stronger suppression than single mu-
tations in any of the genes. Thus, reducing the dosage
of more than one Su(z)2-C genes may imbalance a mul-
ticomponent 'repression complex," or alternatively, the
genes within the Su(z)2-C may be partially redundant in
function. In addition, we detected dominant suppres-
sion of nos by mutant alleles of the gene pleiohomeotic
(pho) (Table 2, see below).

Since mutations in most Pc-G genes lead to homozy-
gous lethality, it is not simple to determine the recessive
maternal effect of these genes. Nevertheless, we were
able to test two genes for which homozygous mutant
allele combinations are viable: null alleles of the gene
extra sex combs (esc) and a hypomorphic allele of pho.
Embryos from nos mutant females, which also lack ma-
ternal and zygotic esc product, do not form segments in
the abdominal region (Figure 7C). Since a loss-of-
function E(z) background results in suppression of the
nos phenotype, whereas a null esc background has no
effect, we conclude that esc is not involved in the re-
pression of gap genes by Hbma". On the other hand, em-
bryos from nos;pho females can form a complete set of
segments in the abdominal region (Figure 7B). Thus, in
addition to E(z) several Pc-G genes are required for the
repression of gap genes by Hbm"t. We conclude that
maintenance of gap gene boundaries, like the mainte-
nance of homeotic gene boundaries, may involve several
Pc-G group gene products.

DISCUSSION

Screens for dominant suppressors or enhancers of
specific mutations have proven to be very successful for
identifving interacting products. This is especially ap-
plicable to unicellular organisms where a large number
of individuals can be tested to detect rare events (see, for
example, STEARNS and BOTSTEIN 1988). In higher eu-
karyotes such as Drosophila, where the number of in-
dividuals that can be screened is limiting, highly selec-
tive suppressor and enhancer screens have been
successfully used for the identification of microtubule-
associated proteins (reviewed in FULLER et atl. 1989), ac-
tivators and repressors ofhomeotic genes (KENNISON and
T.NLMKUN 1988), and products involved in signal trans-
duction during photoreceptor cell determination (Si-
MO10N et al. 1991) or during embryonic patterning (DOYLE
and BRISHOP 1993).

We carried out a screen for suppressors of the nos
phenotpe and discovered that Enhancer of zeste (E(z)),
a member of the Polycomb group of genes (Pc-G), is a
negative transcriptional regulator of the abdomen-
specific gap genes knirps (knz) and grant (gt). Our ge-
netic analysis indicates that E(z) maintains the proper
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FIouRE 6.-A 1.8-kbp fragment of the knz
regulatory region fused to lac Z faithfully me-
diates regulation by hb"m ' and E(z). (A-E)
Whole-mount in situ hybridization showing
expression from the kni-lac Zfusion construct
in (F). Posterior domain of expression is
marked by arrowheads. (A) Expression of the
transgene in a wild-type embryo (cf. Figure
3C). (B) Nos embryo lacks the posterior do-
main of expression (cf. Figure 3F). (C) E(z)
nos embryo expresses the transgene in the
posterior domain (cf. Figure 31). (D) In bcd
embryos the anterior domain is missing and

-- UL . n-h "r= ^-UI4m;-i- ;o eiL-I cl|-hii ant-
ULG ]U~IL. UllOldI-1 13 $1IIItU $1illlUy d. 1.T -

riorly ( cf. Figure 4C). (E) In E(z) bcd embryos
the posterior domain is shifted further ante-
riorlv than in bcd embryos (cf. Figure 4H).
Ectopic expression in the ventral region is
likely due to a mesoderm enhancer element
present in the ry gene, which is part of the P
element transformation vector (Dou.E et al.

F)
kni genomlc seqL

lac Z
Phsp 70
hsp 70

J knm promoter/lac.

anterior boundaries of kni and gt expression once the
initial domains of expression have been set according to
the concentration gradient of the repressor Hunchback
(Hb). Thus, the suppression-of-nos screen uncovered an
involvement of Pc-G genes in the early patterning of the
embryo.

E(z) is required for repression of gap genes: We have
studied the effect of E(z) mutations in embryos from nos
and bcd mutant females. In nos embryos translation of
hb" ' RNA is deregulated resulting in high levels of Hb''
protein throughout the prospective abdominal region
(TAUiTZ 1988: W.cNG and LEHMANN 1991). Hb'.' in turn
represses transcription of the gap genes kni and gt, in-
hibiting abdominal development (HCLSt.'\qP et al. 1989;
IRISH et al. 1989a; STRUHL 1989: ELDON and PIRRTrTA
1991; KRAUT and LEVINE 1991a,b). We show that E(z)
mutations lead to expression of kni and gt in the pro-
spective abdominal region of nos embryos. It is this ef-
fect of E(z) mutations that constitutes the basis for sup-
pression of the nos phenotype in the presence of Hbma'.
In bcd embryos, hb:~ is not expressed, and the Hbma'
protein gradient is the major organizer that determines
the anterior boundaries of kni and t (HiOLSK-.NIP et al.
1990; STRUHIL et al. 1992). We show that the E(z) prod-
uct is required for the proper maintenance of these
boundaries.

What is the molecular basis for the effect of E(z) mu-
tations on transcriptional repression of knl and gt? E(z)

1989). (F) Schematic diagram showing the
knz/lac Zfusion construct. A 1.8-kbp region of
the kni regulatory region fused to a basal heat
shock promoter directs lac Z expression [KX

ience construct from P.NKRrz et al. (1992)]. The
double ovals mark a cluster of at least five po-
tential binding sites for Hb protein (PA.NKRATZ
et al. 1992). All embryos at cycle 14b, Nomar-

Z fusion ski optics, anterior left, dorsal up.

mutations, as any other suppressor-of-nos mutation, may
in principle affect either the production or the activity
of the HbL"' protein. We were unable to detect any sig-
nificant reduction in the levels of Hbmat in embrvos from
E(z) females. Thus, E(z) does not seem to affect the pro-
duction of Hba"' protein. In addition, the effects of E(z)
mutations in embryos are only apparent when the Hbmat

protein is no longer detectable. We therefore conclude
that E(z) affects a subsequent step of gene regulation
that involves the stable maintenance of a transcription-
allv repressed state.

In theory, E(z) mutauons could affect the levels of Kr,
which would then alter the boundaries of kni and gt.
This idea seems unlikely, however, since the effects of
E(z) mutations are more extreme than those caused by
a lack of Kr: first, Kr mutations do not restore abdominal
pattern in nos embryos (KRAur and LEVINE 1991a), and
second, the anterior border of gt is shifted further an-
teriorlv in E(z)bcd embryos than in Kr;bcd double mu-
tant embryos [this report and STRUHL et al. (1992)]. We
favor the idea that E(z), like hb"a', directly affects kni and
gt expression. This is consistent with the finding that the
phenotype of E() mutations most closely resembles that
of deleting hb t"' (HC'LSKAMP et al. 1989, 1990; IRISH et al.
1989a; STRUHL 1989).

We have mapped cs-acting sequences required for
E(z) mediated repression to a small fragment in the kni
regulatory region that contains binding sites for Hb pro-
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FIGLRE 7.-Suppression of the nos phenotype bvy other Polv-
comb group genes. Cuticle preparations of larvae derived from
females mutant for nos and various Pc-G group genes. (A)
Embryo from a nos mutant female that Is also heterozygous for
a deficiency of the entire S:)2 complex. (B) Embrvo from
a nos;pho double mutant female..Vos:pho embrvos show van-
able degrees of homeotic transformations (not shown). (C)
Strong nos phenotype in ese: nos embryo; note complete trans-
formation of the three thoracic segments ('T') into an A8 Iden-
tity. Darkfield optics Antenor up. ventral view. T, thorax; Ab,
abdomen.

tein (P.ANKRATZ et anl. 1992). It is possible that E(z) and
other Pc-G genes interact with the DNA region present
in this transgene. Alternatively, binding sites for E(z)
may be distributed throughout the genome and inter-
actions between these sites and specific sequences
bound by Hb may be required for stable repression.

Our conclusion that the E(z) product, and other Pc-G
products (see below), are required for the transcrip-
tional repression of gap genes agrees well with the pre-
xiouslv postulated role of E(:) as a transcriptional re-
pressor of the white and engradled genes (JONES and
GELBART 1990: .MIOAZED and O'FARREI.L 1992) and of ho-
meotic genes (JONES and GELBART 1990; PHILLIPS and
SHELRN 1990; SIMO.N et al. 1992). Similar to its role in gap
gene regulation. a function of Pc-G genes has been im-
plied in the maintenance of engrailed repression in an-
terior cells within each segment (IOAZED and O'FARRELL
1992) and in the maintenance of ordered expression of
homeotic genes along the anteroposterior axis (S-TRUHL,
and .ix.xt 1985; GL.ICKS.IaNLN and BROWER 1990:JONEs and
GELBART 1990; McKEON and BROCK 1991; SIION et al.
1992: ZL,'G and BIENZ 1992).

The determination of anterior boundaries of gap
gene expression bv Hb"'" appears analogous to the later
cletermnination of anterior boundaries of homeotic gene
expression hv gap genes (WHIITE and LEHlI.\NN 1986;
H.xI)I,(t; and LEvINE 188: IRIs I a1l. 1989b: RTM lxrz and
LEvINE 1990: Q(I.\AN l al. 1991: Z I ..x; t al. 1991; ZAN;
and BIENZ 1992: BUs'rUR.\ and BlEZ 1 993). In both cases
transient, spatially restricted epressoi-s initiate boundl-
aries rof exprcssion arnd those boulilares persist in 

TABLE 2

Suippression of nos abdominal phenotype by Pc-G genes

Maternal genoty)pe

nos/no hb no/+ not

Pc-GC iaternal Percent PI'ccent
genotpe a rescule n rescle n

Wild tpe ) 594 ( 614
Df(Su(:)2-C)/T-r ' 2 '266 27 445
Ptc'/- 0 352 ) 382
PVc'/+ 2 350 7 256
Psc '"/ i- 0 651 12 532
ps,

24
/+ 0 132 0 632

Su(zJ2'1/+ 0 52 3 316
Su(:12" ~/+ 0 866 0 689
Suz(3t'/+ 0 212 0 266
Df(4) G/+ 0 378 5 587
pho'/+ ) 455 10 659
pho'/pho" 89 18 CD

esc
2

/esc' 0 181 NO

Tests ssere performed in a genetic background with a full or half
dosage of hb" ' ( nos/nos and hb nos/+ nos columins. respectivelv). All
tests are at 25° except sshere otherwise stated. For a description of
alleles see \LAT.RLAI2S ,1) M\ETIlODS.

" A +' refers to the wild-type copy of the particular Pc-G gene
tested.

b Percent of embryos with -3 abdominal segments.
Data hossn Is for the deficiency Sru:)2' . A similar result Has

obtained using the deficiency Df(2R)vg-B
a Test performed at 18'.

Pc-G-dependent process after the original repressors are
no longer present (Figure 8). The difference between
the two processes is that in the blastoderm embryo ad-
ditional independent regulators (e.g., Hb"K) obviate the
absolute requirement for the Pc-G function in the de-
termination of gap gene boundaries. Regulators like
Hb .g may not require a Pc-C-dependent maintenance
function because they are present throughout the time
that kni and gt are expressed. In the later embryo at the
extended germ band stage, no similar redundant
mechanisms exist for the proper regulation of homeotic
gene boundaries in the absence of Pc-G genes.

Polycomb group genes and the chromatin link: The
Pc-G genes are estimated to comprise about 40 genes
(JURGENS 1985), of which only about a dozen are known.
Here, we show that mutations in several other Pc-G
genes, such as pho, and genes in the Su(z)2-complex,
can also act as suppressors of nos. We speculate that
these and perhaps other Pc-G genes are involved in the
negative regulation of gap genes bv Hb'nJ'. At least one
Pc-G gene. ers is clearly not required for this process.
Esc mav be specific for homeotic regulation, as it is also
not required for regulation of engrailed (OAZED and
O'F.ARRELI. 1992).

It s likely that other Pc-G genes are involved in the
repression of gap genes but were not identified in our
screen which selected ftor rare dominant gain-of-
function nmutations. A rigorous test for a role of maternal
Pc-C genes in gap gene regulation will require testing
the effect of honlotygositv for null muitations in thct-
genes on the not phenotype. These tests will require j
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syncytlal blastoderm (2hrs) &

cellular blastoderrn (2 Shrs) l
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Hbmat ( gap~Hb~ ~ genes

gastrulauion (3hrs) A,

Al
extended germ band (6hrs)

Pc Gmat+zyg

Z 1P9 homeotic
genes

FIGURE 8.-Polvcomb group genes are required for two anteropostenor patterning pathways during embryogenesis. (Left side)
Model for gap gene regulation by Hb"' and Pc-G genes as proposed in this article (top, svncytial stages: bottom, cellular blastoderm
stage). The situation depicted is that in bcd mutant embryos, where the only source of anteroposteror polarity is the hb'"' gradient.
During the syncytial stages Hb'""' establishes the boundaries of gap genes such as gt (shown) and kni. Bv the end of the blastoderm
stage, when Hb""' is no longer detectable, the original boundaries remain at their original positions In wild-type embryos (ar-
rowhead), but are not maintained in Pc-G mutant embryos (as drawn). (Right side) Model for homeotic regulauon by gap genes
such as hb'a and Pc-G genes as previously proposed (top, beginning of gastrulation stage; bottom, germ band extended stage).
Gap gene products (e.g., Hb) are present untinl the early gast-ulauon stages, and establish the boundaries of homeouc genes
such as LUbx. In wild-type embryos these boundaries remain at their original locations (arrowhead in the extended germ band
embryo shown) when gap gene products are no longer present. In Pc-G mutant embryos, though, these boundaries are not properly
maintained at these stages. In both models, we propose that at an early stage a specific repressor is present in a spatially restncted
manner where it initiates boundaries of gene expression. At a later stage, when the initial repressors are no longer present, Pc-G
gene products are required to maintain those boundaries. In embryos that lack Pc-G gene acuvity gene expression occurs indis-
criminately throughout the embryo (the remaining gene boundaries are determined by cross-regulatory In teractions among zygotic
genes-see text).

generation of germ line chimeras since the function of
most Pc-G genes is required at different times during
development and thus mutations in these genes are ho-
mozgous lethal.

It has been proposed that Pc-G genes may be involved
in the formation of a condensed, or "closed" chromatin
structure that is less accessible to transcription factors
[reviewed in PA.RO (1990), KENNISON and T.*NIKUN (1992),
WINSTON and CARLSON (1992) and KENNISON (1993)].
Promotion of a stably repressed chromatin state may
involve the formation of large multi-subunit complexes
composed of several Pc-G gene products. This was first
suggested by the similar homeotic phenotypes caused by
mutations in these genes, the sensitivity of these phe-
notypes to dosage imbalances and the apparently svn-
ergistic action of these genes UCRGENS 1985: KENNISON
and RUSSELL 1987; KENNISON and T11MKUN 1988). Re-
cently, biochemical studies have corroborated this idea
(ZINK and PARO 1989; DECA.MILLIS et al. 1992:; FR;NKE et
al. 1992: RASTELLI et at. 1993; MARTIN and ADLER 1993).
Our results suggest that the Pc-G repression machinery
mav also regulate gap gene expression.

Redundant gradients in AP axis determination: The
discovery that nos function is dispensable for abdomen

formation in the absence of functional Hbma"" product
raises the question about the importance of the nos-
dependent patterning system. In particular, Hb'"R, which
is activated by the anterior morphogen bicoid, can de-
termine the anterior boundaries of kni and gt and thus
fully compensate for the lack of Hb m

a
' (HiOLSrANMP et al.

1990: STRUHL et al. 1992). At present we can only specu-
late about the evolution of these two maternal systems
that can independently specify the proper positioning of
gap gene expression domains along the anteroposterior
axis.

The finding that the maintenance of repression of
both gap genes and homeotic genes utilizes Pc-G prod-
ucts suggests an ancestral scenario for the determination
of the anteroposterior axis in insects. In this model, a
local source of nos would establish a complementary
concentration gradient of Hb. Hb would then regulate
both the subdivision (e.g., gap gene pattern) and iden-
titv (e.g., homeotic gene expression) of the first embry-
onic regions. A Pc-G gene dependent process would
main tai this prepattern throughout embrvogenesis. In-
deed. homeotic genes are known to respond to regula-
tion by the Hb ' "' protein (IRISH et al. 1989b; ZHA.NG et al.
1991). Further comparative molecular studies will help
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clarify the evolutionary history of the "nos-hb-Pc-G" sys-
tem of anteroposterior patterning.

It has been proposed that redundant systems of po-
sitional information may be favored through evolution-
an time, since independent overlapping functions
would make the patterning process more resilient to ex-
ternal or internal fluctuations (TAUTZ 1992). In this con-
text, a role of Pc-G genes in the determination of tran-
scriptional state of gap genes suggests that the Hbm" '

gradient may organize the embryo along the anteropos-
tenrior axis by "imprinting" the promoters of gap genes
with a particular chromatin conformation. This implies
that cell fate determination along the anteroposterior
axis is regulated at the chromatin level, by reducing ac-
cess to the promoters of posterior-promoting gap genes
in anterior regions. A precedent for spatial imprinting
of genes has been reported recently in mouse muscle
cells (DONOGHUE et al. 1992). In the Drosophila embryo,
such a chromatin scaffold would provide a robust base
for further refinement by the overlying network of zv-
gotic gene interactions.

We are grateful to ANNE EPHRUSSI for her colaboration in the screen
for suppressors of nos. We also thank all members of the Lehmann
laboratory, and specially DOUG BARKER and Liz GAVIS, for help and
advice at different stages of this project. We are indebted to RCKJONES
and MICHAEL P.SRATZ for sending us fly stocks carrying the E(z) tran-
scription unit and the kni promoter/lac Z fusion constructs por
to publication. We also thank NtsRGAREr FULLER, RiCK JONES, PEDRO
SANTAMARIA,JEFF SIMON and C.-TING WU for sending us fly stocks. Finally,
we thank STEVE BURDEN and DAN CURTIS for cnuticisms on the manu-
script. This work was supported by a David and Lucile Packard fel-
lowship. L. is an associate invesutigator of the Howard Hughes Medi-
cal Insutitute.

LITERATURE CITED

ADL.ER, P. N.J. CARLTON and B. BRUNK, 1989 Geneutic interactions of
the Suppressor 2 of zeste region genes. Dev. Genet. 10: 249-260.

BARKER, D. D., C. WANG, J. MooRE, L. K. DICKINSON and R. LEHMANN
1992 Pumilio s essential for funcuon but not for distnbuuon of
the Drosophila abdominal determinant Nanos. Genes Dev. 6:
2312-2326.

BERLETH, T., M. BURRI, G. THOMA, D. BoPP, S. RICHSTEIN et al.,
1988 The role of localization of bicoid RNA in organizing
the antenrior pattern of the Drosophila embryo. EMBO J. 7:
1749-1756.

BREEN, T. R., and . M. DUNcAN, 1986 Maternal expression of genes
that regulate the Bithorax complex of Drosophila melanogaster.
Dev. Biol. 118: 442-456.

BRUNK, B. P., E. C. MARTiN and P. N.ADLER, 1991 Molecular Geneucs
of the Posterior Sex Combs/Suppressor 2 of este region of
Drosophila: aberrant expression of the Suppressor of zeste gene
results in abnornal bnste development. Geneucs 128: 119-132.

BusUrRiA, A., and M. BIENZ, 1993 Silencers in Abdominal-B, a ho-
meouc Drosophila gene. EMBOJ. 12: 1415-1425.

CAPOILLA, M., E. D. ELDON and V. PIRROTrrA, 1992 The giant gene of
Drosophila encodes a b-ZIP DNA-binding protein that regulates
the expression of other segmentation gap genes. Development
114: 99-112.

DECAMILLUS, M.. N. CHENG, D. PIERRE and H. W. BRoCK 1992 The
polhomeotzc gene of Drosophila encodes a chromaun protein
that shares poltene chromosome-binding sites with Polvcomb.
Genes Dev. 6: 223-232.

DONOGHUE. M.J . B L. PArrON, J. R. SANS andJ. P. MERLE. 1992 An
axial gradient of transgene methylation n murine skeletal
muscle: genomic imprinting of rostrocaudal posiuon. Develop-
ment 116: 1101-1112.

DoLu, H.J., andJ. M. BistHoP, 1993 Torso, a receptor trvrosie kitnase
required for embryonic pattern formation, shares substrates with
the Sevenless anid EGF-R pathways in Drosophila. Genes Dev. 7:
633-646.

DOYLE, H. J., R. KRAUr and M. LEVINE, 1989 Spatial regulaution of
zerknfillt: a dorsal-ventral patterning gene in Drosophila. Genes
Dev. 3: 1518-1533.

DRIEVER, W., aid C. N0SSLFIN-VOLHARD, 1988 A gradient of blcoid
protein in Drosophila embryos. Cell 54: 83-93.

DRIEVER, W., and C. NfSSLEIN-Vou-iARD, 1989 The blcoid protein is a
posiuve regulator of hunchback transcripution in the early Dro-
sophila embryo. Nature 337: 138-143.

DRIEVER, W., G. THOMtA and C. NfJSSLEIN-VouLARD, 1989 Determina-
tion of spatial domains of zvgotic gene expression in the Dro-
sophila embryo by the affinity of binding sites for the bicold mor-
phogen. Nature 340: 363-367.

DUNCAN, 1. M., 1982 Polvcombhlike: agene thatappears to be required
for the normal expression of the Bithorax and .&ntennapedia
complexes of Drosophila melanogaster. Geneutics 102: 49-70.

DUR,J.-M., and P. INCHAM, 1988 Tissue- and stage-specific control of
homeoutic and segmentation gene expression in Drosophila em-
bros by the polyhomeottc gene. Development 103: 733-741.

DuaR.J -. , N. B. RANDSHOLT,J. DEATRsICK. 1. ER;, P. SANT..aMARLA et al.,
1987 A complex geneuc locus, polvhomeotic, Is required for seg-
mental specificauon and epidermal development in D. melano-
gaster. Cell 51: 829-839.

ELDON, E. D., and V. PIRRoTrTA, 1991 Interacuonis of the Drosophila
gap gene giant with maternal and zygotic pattern forming genes.
Development 111: 367-378.

FoE.,V. E., and B. M. ALBERTS, 1983 Studies of nuclear and cytoplas-
mic behaviour dunng the five mitoutic cycles that precede gastru-
lation in Drosophila embrvogenesis.J. Cell Sci. 61: 31-70

FRANKE. A.. M. DECAMILuS, D. ZINK, N. CHEN'C, H. W. BROCK et al.,
1992 Polvcomb and polyhomeottc are constituents of a muluim-
enc protein complex in chromaun of Drosophila melanogaster.
EMBOJ. 11: 2941-2950.

FROHNHOFER, H. G., and C. N'ssLEiN-VouARD, 1986 Organization of
the antenror pattern in the Drosophila embryo by the maternal
gene bcoid. Nature 324: 120-125.

FULLERa, M. T. C. L. REA.N, L. L. GREEN, B. RBERTSON, R. DEURING et
al., 1989 Interacting genes idenutify interacting proteins in-
volved in microtubule funcuon in Drosophila. Cell Moul. Cto-
skeleton 14: 128-135.

GAVIS. E.. and R. LEH.',,-,.. 1992 Localization of nanos RNA controls
embryonic polantv. Cell 71: 301-313.

Gc.sMA.N, MN. A., and D. L. BROWER, 1990 Persistent ectopic expres-
sion of Drosophila homeouc genes resuluting from maternal de-
ficiency of the extra sex combs gene product. Dev. Bol. 142:
422-431.

HARDNG, , and M. LEVINE, 1988 Gap genes define the limits of
Antennapedia and Bithorax gene expression dunng earvly devel-
opment in Drosophila. EMBOJ. 7: 205-214.

HAI-NE,J. L., 1983 The maternal and zygouc roles of the gene Poly-
comb in embryonic determinaution in Drosophila melanogaster
Dev. Biol. 100: 399-411.

HCIt.ssP.M.,andD. TAtrZ, 1991 Gapgenesandgradients-thelogic
behind the gaps. Bioessays 13: 261-268.

HCLsKs.MP. MN., C. SCHRODER, C. P.E, H. JCKLE and D TAL-rz,
1989 Postenor segmentation of the Drosophila embryo in the
absence of a maternal posteror organizer gene. Nature 338:
629-632.

H(;LSaPi, MN.. C. PEItFLE and D. TturT7., 1990 A morphogenetic gra-
dient of hunchback protein organizes the expression of the gap
genes Krfippel and knirps in the early Drosopha embryo. Nature
346: 577-580.

INGHAM. P. W. 1984 A gene that regulates'the Bithorax complex
differenually in larval and adult cells of Drosophila. Cell 37:
815-823

IRISH, V. R. LEH.MANN and M. AKA.M, 1989a The Drosophila posterior-
group gene nanos functions bv repressing hunchback activity.
Nature 338: 646-648.

IRusH, V. A NLARTINEZ-ARIAS and M.A&KvM. 1989b Spatial regulation of
the Antennapedia and Ultrabithorax homeotic genes during Dro-
sophila early development. EMBOJ. 8: 1527-1537.

JONES, R. S., and W. M. GELART, 1990 Genetic analysis of the En-
hancer ofzeste locus and its role in gene regulation in Drosophila

142

1352



Pc-G Genes and Gap Gene Regulation

melanogaster. Geneucs 126: 185-199.
JoNEs, R. S.. and W. MN. GELBART. 1993 The Drosophila Polycomb

group gene Enhancer of zeste contains a region with sequence
similannt to tthorax. Mol. Cell. Biol. 13: 6357-6366.

JC RENS. G., 1985 A group of genes controlling the spatial expression
of the bithorax complex in Drosophila. Nature 316: 153-155.

KENNISO%, J. A.. 1993 Transcripuonal acuvation of Drosophila ho-
meouc genes from distant regulatory elements Trends Genet. 9:
75-79.

KENNISO'.J. A., and .M. A. RUSSELL, 1987 Dosage-dependent modifiers
ofhomeouc mutations In Drosophila melanogaster. Genetics 116:
75-86.

KE.NxisoN.J. A., andJ. W. T.caKLUN, 1988 Dosage-dependent modifiers
of Poilcomb and Antennapedia mutations in Drosophila. Proc.
Natl. Acad. Sci. USA 85: 8136-8140.

KENNISON,J A.. andJ. V. T.A.IKUN, 1992 Trans-regulauon ofhomeouc
genes in Drosophila. New Biol. 4: 91-96.

KRAL. R.. and MS. LEVINE, 1991a Spatial regulation of the gap gene
giant dunng development. Development 111: 601-609.

KRAL-T, R.. and MN. LEVINE, 1991b Mutually repressive interacuons be-
tween the gap genes giant and Kruppel define middle body re-
gions of the Drosophila embryo. Development 111: 611-621.

LEHtL',S. R.. and C. NCSSLEIN-VOLHARD, 1987 hunchback, a gene re-
quired for segmentation of an antenor and postenor regionl of
the Drosophila embryo. Dev. Biol. 119: 402-417.

LEHtLsNN. R., and C. NCissLEiN-VoLtHAD., 1991 The maternal gene
nanos has a central role in pattern formation of the Drosophila
embryo. Development 112: 679-691.

LINDsLEY, D. L.. and G. G. Z.i, 1992 The Genome of Drosophila
melanogaster. Academic Press. San Diego.

.tARTIN, E., and P N. ADLER, 1993 The Polycombgroupgene Posterior
Sex Combs encodes a chromosomal protein. Development 117:
641-655.

McKEo'. J., and H. W. BROCK, 1991 Interactions of the Polycomb
group of genes with homeouc loci of Drosophila. Roux's Arch.
Dev. Biol. 199: 387-396.

.MO.ED, D.. and P. H. O'FRELL. 1992 Maintenance of the engrailed
expression pattern by Polycomb group genes in Drosophila. De-
velopment 116: 805-810.

MOHLER, J., E. ELDON and V PROTrA, 1989 A novel spatial tran-
scnpton pattern associated with the segmentaton gene, giant, of
Drosophila. EIBOJ. 8: 1539-1548.

OLvR., B., N. PERRIMsON and A. P. NLAHowALD, 1987 The ovo locus is
required for sex-specific germ line maintenance in Drosophila.
Genes Dev. 1: 913-923.

PtS.'xTZ, M. J., M. BUSCH, M. HOCH, E. SEIFERT and H. JACKLE,
1992 Spaual control of the gap gene knirps in the Drosophila
embryo by postenor morphogen system. Science 255: 986-989.

P..Ro, R., 1990 Impnnung a determined state into the chromaun of
Drosophila. Trends Genet. 6: 416-421.

PHILLIPS. NI. D., and A. SHER.N, 1990 Mutauons in olvcombeottc, a
Drosophila polvcomb-group gene. cause a wide range of maternal
and zvgouc phenotypes. Genetics 125: 91-101.

QtAN, S., MN. C.-POviLL.A and V. PIRROTTA, 1991 The bx region en-
hancer, a distant cis-control element of the Drosophila L'bx gene
and its regulation by hunchback and other segmentauon genes.
EMIBOJ. 10: 1415-1425

R.suELL. L.. C. S. CHA.N and V. PRRorT-rA, 1993 Related chromosome
binding sites for zeste. suppressors of zeste and Polycomb group
proteins in Drosophila and their dependence on Enhancer of
zeste function. EMBOJ. 12: 1513-1522.

RENrrz.J., and M. LEVINE. 1990 Control of the initiation of homeotic
gene expression by the gap genes giant and tailless In Drosophila.
Dev. Biol. 140: 57-72.

ROTHE, NI.. U. NALBER and H.JAcKLE, 1989 Three hormone receptor-
like Drosophila genes encode an identical DNA-binding finger.
EMSBO J. 8: 3087-3094.

SCHRODER. C.. D TALTZ. E. SIFRT and H. J cLE. 1988 Differential
regulation of the two transcnpts from the Drosophila gap seg-
mentaton gene hunchback EIBOJ 7: 2881-2887

SIMON. J., A. CHIAG and W. BENDER. 1992 Ten different Polvcomb
group genes are required for spaual control of the abdA and AbdB
homeouc products. Dev. Biol. 114: 493-505.

SIMON, M. A., D. L. BoArELL, G. S. DODSON, T. R. LAVERTY and G. M.
RUBIN, 1991 Rasl and a putauve guanine nucleoude exchange
factor perform crucial steps In signalling by the sevenless protein
nvrosine kinase. Cell 67: 701-716.

SINCLAIR, A. R. R. B. CAMtPBELL, F. NICHOLLu, E. SLADE and H. W. BROCK,
1992 Geneuc analvsis of the Addtional sex combs locus of Dro-
sophila melanogaster. Geneucs 130: 817-825.

STEAR.uS, T., and D. BOTSTEIN, 1988 Unlinked noncomplementaton:
isolauon of new conditional-lethal mutations in each of the tu-
bulin genes of Saccharomyces cerevislae. Geneucs 119: 249-260.

STRUHI. G., 1981 A gene product required for correct inituauon of
segmental determination in Drosophila. Nature 293: 36-41.

STRUHL, G., 1989 Differing strategies for organizing antenor and pos-
terior body pattern in Drosophila embryos. Nature 338: 741-744.

STRUHL, C., and M. AiA.%i, 1985 Altered distlbutions of Ultrabzthorax
transcripts In extra sex combs mutant embryos of Drosophila.
EMIBOJ. 4: 3259-3264.

STRUHL. G.. K. STRUHL and P. tMAcDosALD, 1989 The gradient mor-
phogen bicold Is a concentrauon-depenent transcnptional ac-
tivator. Cell 57: 1259-1273.

STRLHL, G., P. JOHNSTON and P. A. LAWR'ENCE. 1992 Control of Dro-
sophila body pattern by the hunchback morphogen gradient. Cell
69: 237-249.

Tur;TZ. D., 1988 Regulation of the Drosophila segmentation gene
hunchback by two maternal morphogeneuc centres. Nature 332:
281-284.

TAt-Z. D., 1992 Redundancies. development and the flow of infor-
mation. Bioessays 14: 263-266.

TAUTZ. D., and C. Prn.LE, 1989 A non-radioactive in situ hybndiza-
ton method for the localizaton of specific RNAs in Drosophila
embryos reveals translational control of the segmentation gene
hunchback. Chromosoma 98: 81-85.

TAUrZ,. D., R. LEHS,,C , H. SCHNURCH, R SCHUH. E. SEIFERT. A. KIENUN,
K.Jo.NEs and H. JcicI. 1987 Finger protein of novel structure
encoded by hunchback, a second member of the gap class of Dro-
sophila segmentation genes. Nature 327: 383-389.

WVANG. C., and R. LEHMAN.N, 1991 .anos Is the localized postenor
determinant In Drosophila. Cell 66: 637-648.

WA.G, C., L. DICxcSON and R. LEH.M-N', 1994 The geneucs of nanos
localization In Drosophila. Dev. Dyn. 199: 103-115.

WHARTON, R. P.. and G. STRUHL. 1991 RNA regulatory elements me-
diate control of Drosophila body pattern by the postenor mor-
phogen nanos. Cell 67: 955-967

WHrrE, R., and R. LEHANN, 1986 A gap gene, hunchback, regulates
the spatial expression of Ultrabithorax. Cell 47: 141-152.

WVIESCHAUS. E. F., and C. NSSLEIN-VoLHARD. 1986 Looring at
embryos, In Drosophila: A Practical .4pproach, edited y D. B.
ROBERTS. Washington.

WINSTON. F., and M. CARLSON. 1992 Yeast SNF/SWI transcr ptional
activators and the SPT/SIN chromaun connection. Trends
Genet. 8: 387-391.

Wu. C.-T . R. S.JoNEs, P. F. LASKO and WV. M. GELBART, 1989 1 tomeosis
and the interaction of zeste and white In Drosophila. Mol. Gen.
Genet. 218: 559-564.

ZHA.NG. C.-C., and M. BIENz, 1992 Segmental determination n
Drosophila conferred by hunchback (hb). a repressor of the
homeouc gene Ultrabithorax (Ubx). Proc. Natl. Acad. Sci. USA
89: 7511-7515.

ZH.C, C. C.,J. M.ILER, M. HOCH, H. J.;cKLE and M. BIENZ. 1991 Tar-
get sequences for hunchback in a control region confernng
Ultrabithorax expression boundanes. Development 113:
1171-1179.

ZINK, B.. and R. P.uo, 1989 In vivo binding pattern of a trans-
regulator of homeotic genes In Drosophila melanogaster. Nature
337: 468-471.

Communicating editor: M. T. FUI.LER

143

1353



144



ADDENDUM TO CHAPTER III

This section contains a number of studies which are referred to, but not described in

detail, in Chapter III (Genetics 136: 1341-1353, April, 1994).

MATERIALS AND METHODS

Except where specifically described, materials (including fly strains) and methods

are as in Chapter III.

Genetic analysis and strains: The vasa and oskar alleles used were: vasDI

(strong, Lehmann and Niisslein-Volhard 1991), vasPD (partial loss-of-function,

SchUpbach and Wieschaus 1986), osk 16 6 (strong, Lehmann and Niisslein-Volhard 1986).

The hunchback class V alleles used were hb9K4 9 and hb9 K59 (Lehmann and Niisslein-

Volhard 1987a). The knirps alleles used were: kniIL, kniFC, knilID (strong), kniI l , kni14B

(weak); the Kruppel allele used was Krl (deficiency); the zeste alleles used were: za

(amorph), and z1 (gain-of-function)(for references see Lindsley and Zimm 1992).

Production of E(z)son germ line clones: OvoDI females were used as

hosts for pole cell transplants as described in Lehmann and Niisslein-Volhard (1987a).

OvoD l causes degeneration of the female germ line (Oliver et al. 1987). Donor embryos

were derived from the following crosses:

Experiment (A) - Creation of E(z)sonl/E(z)so n 3 clones: E(z)sOnl nos / TM3, Ser

females x E(z)so°n 3 / TM3, Sb males.

Experiment (B) - Creation of E(z)On 2 /E(z)s o n 3 clones: E(z) s o n2 nos / 7M3, Ser

females x E(z)s ° n 3 / TM3, Sb males.

Note on experiments (A) and (B): Mutations in the gene nos are completely

recessive, and thus this nos heterozygous background should be equivalent to wild-type

background.

Experiment (C) - Creation of E(z)sonl nos /E(z) s o n3 nos clones: E(z)s °n l nos /

TM3, Ser females x E(z)s °n 3 nos / TM3, Sb males.

Experiment (D) - Production of E(z)son2 nos /E(z) s on3 nos: E(z)s on2 nos / TM3,

Ser females x E(z)son3 nos / TM3, Sb males.

Adult females derived from the transplanted hosts were mated to various types of

males. In most cases these males carried chromosomes with the recessive markers scarlet

and ebony which are also present in the E(z)s°n-carrying chromosome. This allows to

genetically distinguish the E(z)son-carrying chromosomes in the progeny of these females.
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(Presence of the TM3 balancer chromosome, can also be distinguished in this progeny by

the dominant visible marker Stubble (Sb) and Serrated (Ser)).

In many cases these males were in addition heterozygous for the mutation

E(z)son 3 , which would lead to the production of embryos which are mutant for both

maternal and zygotic E(z).

Temperature sensitive period for the son phenotype during

oogenesis: Females of the genotype E(z)s on 3 nos/hb nos were grown at either 18°C or

250C. During early adulthood, these females were shifted to 250C or 180C, respectively,

and eggs were collected every two hours at 250C, or every four hours at 180 C (at 250 C

development is about onie half as fast as that at 180C (Ashburner 1989)). Embryos were

allowed to age and were scored for the presence of abdominal segments.

Temperature sensitive shift of E(z) 6 1 nos / E(z) 6 5 nos embryos:

E(z)6 1 nos /E(z) 6 5 nos females (E(z)61 is a temperature sensituve alelle, E(z) 6 5 is a null

allele) were grown and mated to wild-type males in egg laying cages at the semi-permissive

temperature of 25°C. Embryos from these females were collected at 30 minute intervals

and then shifted to the restrictive temperature of 290C. Eggs collected in this manner

should contain embryos at developmental stages earlier than nuclear cycle 4. This is earlier

than the stage at which the Hbmat protein gradient forms (nuclear cycle 6-7), which is the

earliest time in which E(z) function would expected to be required for gap gene regulation.

Nevertheless, because of retention of fertilized eggs within females, a fraction of these

embryos are likely at older developmental stages even if collected within this time interval.

This fraction of embryos may be past the ts stage and thus may obscure an early ts period.

Expression of gap genes in E(z) mutant, but otherwise wild-type

embryos: Expression of the gap genes Kr, kni and gt was detected by in situ

hybridization using digdxigenin-labelled RNA probes. The expression patterns of embryos

at the late cellular blastoderm stage were then digitized and averaged using the NIH image

program as described in Barker et al. (1992), except that the embryos were visualized with

Nomarsky (light) optics. In addition, the intensity profiles have not been inverted, and

thus the highest intensity of RNA expression corresponds to the lowest point in the profiles

as presented in Figure 3.14. The numbers of wild-type (control) and E(z) mutant embryos

used were, respectively, for Kr expression, 6 and 8; for kni expression, 11 and 6 ; and for

gt expression, 7 and 5. For each gene expression pattern, T-analysis at a 95% confidence

level was perfomed using data points collected from individual embryos. Data was

collected in two different ways: i) One set of data consists of the staining intensity at a

fixed position where the anterior boundary of expression was approximately half-maximal,

standarized to the total intensity differential in the region. Egg lengths (EL) positions used
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were 42% EL for Kr expression, 55% EL for kni expression, and 63% EL for gt

expression. Staining intensity values were converted to the fraction: [((intensity of the

experimental value at the fixed EL) - (background intensity near the center of the embryo)) /

((highest intensity in the domain of expression) - (background intensity near the center of

the embryo))]. ii) A second set of data consisted of the EL position at half-maximal

intensities (correcting for the background intensity), i.e. EL position at [(((highest intensity

in the domain of expression) - (background intensity near the center of the embryo)) / 2) +

(background intensity near the center of the embryo)]. For each gene expression pattern,

statistical analysis of both sets of data yielded similar results.

Effect of son and Pc-G mutations on the zeste-white interaction:

These experiments used the z1 wis allele, which is particularly sensitive to alterations in

E(z) function (Jones and Gelbart 1990). To test each mutation (m) the following cross was

performed: + /Y; m / TM3 males x zl wi /zl wis ; Df(3L)Ez6/ TM3 females. 3 - 5 day

old male progeny of the genotype zl wi /Y ; m / TM3 were scored for eye pigmentation.

In each cross, sibling males of the genotype z wiS /Y ; Dfi3L)Ez6/ TM3 served as a

control for direct comparison with the tested mutation. z wiS /Y ; E(z)so n 2 /DJ(3L)Ez6

males were obtained in the same cross as z1 wiS /Y; E(z) so n2 /TM3 males. In all cases

except for the DfT3L)Ez6-carrying chromosome, the chromosome tested in the z-w assay

carried a nos mutation and was the same that was used to test for the son phenotype.

RESULTS AND DISCUSSION

Lethal phase of E(z)s ° n alleles

In the process of identifying sonl- 3 mutations as alleles of Enhancer ofzeste

(E(z)), it was of interest to study the lethal phenotype of these three alleles and compare it

to that of previously known E(z) alleles. Therefore, the lethal phases of E(z)s °n mutations

in transheterozygous combinations with each other and with E(z)6 3 , a loss-of-function

(lof) allele, and E(z)6 5 , a deficiency of E(z), were determined in two different manners.

First, flies that carried E(z) mutations in trans to a TM6B third chromosome

balancer were crossed to each other. This balancer carries the dominant marker Tubby

(Th), which allows us to distinguish transheterozygous larvae and pupae by their Tb+

phenotype. The results shown in Table 3.3 indicate the stage up to which E(z) allelic

combinations can support development. This stage is an upper limit since dying Tb+

individuals were also observed at earlier stages. A control cross showed that

E(z)6 3/E(z) 6 5 individuals can reach early pupal stages. This is consistent with previously

147



reported data (Jones and Gelbart 1990). E(z)sonl/E(z)lof died at approximately the same

stage. In trans to E(z)6 3 or E(z)6 5, E(z)so n 2 and E(z)so n3 supported development to later

stages: E(z) s °n2 up to viable adults and E(z) s o n 3, at least in trans to E(z)6 5, to the late

puparium stage. This is consistent with E(z)so n 2 and E(z)s ° n3 alleles retaining some wild-

type E(z) function (see Chapter I). Because transheterozygotes for E(z) deficiencies do

not survive to the pupal stage (Jones and Gelbart 1990), E(z)son l may also retain some

residual wild-type E(z) activity.

In the second set of crosses flies which carried E(z) mutations in trans to a wild-

type third chromosome were intercrossed. The observed lethality in such crosses should

only be produced by E(z) mutations. These data show that E(z) mutations do not cause

embryonic lethality (there is a dominant maternal-effect lethality associated with the E(z)6 5

chromosome; it is unclear whether this is caused by E(z)6 5 or another mutation on that

chromosome). In most cases where the E(z) allelic combination is lethal, the percent of

surviving adult progeny is less than the expected 75%. This may reflect a dominant

deleterious effect of E(z) mutations on viability. Surprisingly, progeny from the cross

between the E(z) 63 and E(z) 6 5 alleles are the least viable. This may indicate a high

background lethality associated with heterozygosity and homozygosity for E(z) null

mutations. Crosses involving these E(z)lof alleles and E(z)s °n alleles exhibit a lesser

extent of zygotic lethality. This result may again indicate that the E(z)s o n alleles retain

wild-type E(z) function.

Table 3.3.
(1) "+" indicates a chromosome with wild-type E(z), t indicates a third chromosome as
indicated in (2) and (3). Boldface indicates maternal genotype.
(2) t =third chromosomal balancer TM6B, which carries the dominant marker Tabby (Th).
Transheterozygous mutant larvae and pupae can be distinguished by their Th+ phenotype
from siblings which carry the Tb marker.
(3) Flies were crossed in egg laying cages and the development of the progeny was
followed in apple juice plates supplemented with yeast. The stage written is the latest stage
in which transheterozygous (Th+) progeny was observed. Stages were designated by
using the following criteria: early prepupa: white or brown pupal case, no recognizable eye
or wing formation; late prepupa: eye and wings begin to be visible; late puparium: eye color
is red. This stages correspond roughly to stages P2, P4 and P14, respectively (Ashburner,
1989).
(4) t =third chromosome from the Canton S wild-type stock. Transheterozygote larvae and
pupae cannot be distinguished from siblings carrying wild-type chromosomes.
(5) Flies were crossed in egg laying cages. Indicated is the % of progeny that did not
hatch from the egg case (embryonic lethal).
(6) One hundred first instar larvae that had hatched in the cross (see (5)) were transferred
to food vials. Indicated is the number of individuals that led to pupae and eclosed adults.
(7) Control cross: "+ " is a third chromosome from the Canton S wild-type stock.
(8) Control cross for the last three rows: "+" is a third chromosome with the nosL7, st e
background chromosome in which the E(z)so n mutations were induced.
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In summary, both of these experiments show that E(z)sonl and E(z)so"3 mutations,

like other lethal E(z) mutations, are larval/pupal lethal, while E(z) so n 2 retains enough

function to allow development to adulthood. These results are consistent with the idea that

sonl-3 mutations are alleles of E(z) which retain wild-type activity in the order E(z) s on 2 >

E(z)s o n 3 > E(z)s o nl.

Production of germ line clones mutant for E(z)s o n

Before the identification of the mutations son' 3 as alleles of the gene Enhancer of

zeste, an attempt was carried out to discern the wild-type function of this then unidentified

complementation group. In particular, since these mutations had a maternal effect on the

nos phenotype, it was of interest to test the maternal effect of heteroallelic combinations for

these mutations in a wild-type background. It was also of interest testing whether in a nos

mutant background these semi-dominant suppressors of nos exhibited a stronger, or even

complete, son phenotype. Because these mutations were lethal in trans to each other, both

of these experiments required transplants of germ line clones mutant for E(z)SOn alleles into

wild-type embryos (see Materials and Methods). A summary of the production of these

germ line clones is presented in Tables 3.4 and 3.5.

E(z)S° n clones in a wild-type background. E(z)so n l /E(z)son3 germ line clones:

Most the egg laying females which could carry a germ line of this genotype were tested at

250 C. Only two of these females produced a relatively large number of eggs. When

embeded in Hoyer's medium, most of these eggs appeared unfertilized (109/110). One egg

case contained an embryo which had developed a cuticle and had apparent head involution

and dorsal closure defects. After 5 days of laying at 250 C these females were transferred

to 290C to observe their egg laying phenotype at this temperature. Again, most of the egg

cases appeared unfertilized (47/49). One embryo showed head involution defects and

another appeared to have arrested development during gastrulation. Both at 250 C and at

290C, many of the eggs also had an abnormal morphology, being smaller and rounder than

wild type, and sometimes having a flacid appearence. After a five more days at 290 C days,

dissection of these females revealed that they did not have the normal array of

developmental stages found in wild-type ovaries but rather appeared to have degenerated

and exhibited a stringy appearance. This phenotype has also been described for

temperature sensitive E(z) alleles by Jones and Gelbart (1990) and Phillips and Shearn

(1990).

E(Z)son 2 /E(z) so n 3 germ line clones: Most ot the E(z)s ° n 2 /E(z)son 3 germ line

clones were tested at 25°C. Two females carrying E(Z)son 2 /E(z)SOn 3 clones had been
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Table 3.4. Production of E(z)s o n germ line clones of in wild-type and nos mutant

backgrounds.

Experiment Total # # hatched # pupae # eclosed # of tested # of egg laying

injected (% of total) (% of total) (% of total) females females

(% of total) (% of total, % of

tested females)

A 588 356 (61%) 308 (52%) 295 (50%) 131 (22%) 18 (3.1%, 14%)

B 571 400 (70%) 312 (54%) 307 (53%) 121 (21%) 31 (5.4%, 26%)

C 570 334 (59%) 293 (51%) 291 (51%) 123 (21%) 20 (3.5%, 16%)

D 540 352 (65%) 269 (50%) 262 (49%) 111 (21%) 29 (5.3%, 26%)

(A) Cross to obtain donor pole cells: E(z)S °nl nos/TM3 fernales x E(z)sn3/ TM3 males. Used

to obtain E(z) S °nI / E(z)son 3 germ line clones.

(B) Cross to obtain donor pole cells: E(z) S On 2 nos / TM3 females x E(z)SOn 3 / TM3 males. Used

to obtain E(z) sOn 2 / E(z) s on 3 germ line clones.

(C) Cross to obtain donor pole cells: E(z)SO°n1 nos / TM3 females x E(z)S °n 3 nos / TM3 males.

Used to obtain E(z) S O°n 1 nos / E(z) s0 n 3 nos germ line clones.

(D) Cross to obtain donor pole cells: E(z) s °0 2 nos / TM3 females x E(z) s 0n 3 nos / TM3 males.

Used to obtain E(z) s ° n 2 nos /E(z) s ° n 3 nos germ line clones.
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Table 3.5. Number of germ line clones produced of each E(z)s ° n genotype.

(1) The experiment shown correspond, in the same order, as experiments A-D in Table 2.

(2) Females carrying this genotype were distinguished by the presence in their progeny of the

dominant marker Stubble present in the TM3 balancer.

(3) Females carrying this genotype were distinguished by the presence in their progeny of the

recessive markers scarlet and ebony present in the E(z)s ° n (nos) chromosomes and the absence

of the dominant marker Stubble present in the TM3 balancer

(4) Females carrying this genotype produced > 10 eggs. Nevertheless, these eggs did not

develop into adult offspring, and therefore their genotype could not be genetically proven.

These females are assumed to carry E(z)s On transheterozygous germ line clones because of the

presence of egg and embryonic phenotypes similar to those observed in the genetically proven

E(z) sOn transheterozygous clones (column 5), and, in the nos mutant background, the presence

of embryos with partially rescued abdominal phenotypes.

(5) Females in this column produced < 10 apparently unfertilized eggs. It is unclear whether

these females carry E(z)SO° n germ line clones or whether the egg production observed comes

from leakiness in the ovoD 1 mutation.

(6) Females in this column produced adult flies without the recessive markers associated with the

E(z)S ° n mutations or the Sb marker associated with the TM3 balancer chromosome. Therefore,

the germ line of these females is assumed to carry a mutated ovoD1 mutation that no longer

confers dominant female sterility.
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# of egg laying females of a particular genotype

Experiment (1) Tempera- # females E(z)SOn/ E(z)SOn/ Putative Not deter- ovoD 1

ture tested TM3 (2) E(z)SOn (3) E(z)son/ mined (5) revertant

E(z)son (4) or other(6)

UE(z)son1 / 250°C 129 9 0 2 7 0

E(z s In 3' 180C 2 0 0 0 0 0

-E(z)s on2 / 250°C 85 11 1 0 2 2 2

Ez)s on3 1 80°C 36 3 1 0 0 0

"E(z) son l nos/ I 250C 75 7 0 1 7 1

E(z)Son 3 nos 1 80°C 48 1 0 3 0 0

'E(z)son 2 nos/ 250°C 86 19 2 3 1 3

E(Z)son3 nos' 180°C 25 O 0 1 0 0



mated to males wild type for the E(z) mutation. About 21% (n=359) of the egg cases

appeared to be unfertilized. Of the embryos that developed a cuticle, 21% (n=28 1) did not

hatch. Some (fraction not determined) of these embryos exhibited head defects which
could be caused by head involution defects. Thus E(z)son2 /E(z)SO n 3 germ line clones

exhibit some degree of maternal-effect sterility (38% (n=359) of the egg cases did not

develop into hatching larvae). The oogenesis and embryogenesis phenotypes caused by the

E(z)son2 /E(z) s o n 3 genotype are milder than those found in E(z)son l /E(z) s on 3 clones

(Table 3.6). This is consistent with E(z)SOn2 retaining more wild-type function than

E(z)s o n l (see section above). Eight females carrying E(z)SOn 2 /E(z)SOn 3 clones had been

mated to E(z)SOn 3 / + males. The progeny from these females exhibited a degree of

embryonic lethality higher than when females with a similar germ line were mated to wild-

type males (Table 3.7). Control females carrying E(z)s o n2 / TM3 or E(z)Son 3 / TM3 germ

lines mated to males of the same genotype show that a zygotic E(z)SOn mutant genotype per

se does not cause embryonic lethality. Thus, the embryonic lethality depends on an

E(z)SO n maternal genotype and is enhanced by being in addition zygotically mutant for

E(Z)son . Ovaries from females carrying E(z)so n 2 /E(z)SOn 3 germ line clones were

dissected and had no apparent abnormalities.

Adult E(z)son(2 or3 ) / + progeny from E(z)SOn2 /E(z) so n 3 germ lines exhibited a

high frequency of wing defects such as disruptions of the LII and LIII wing veins (16/80)

and reduction in wing size (2/80) (Figure 3.9). No wing defects were found in progeny
from control E(z)son(2 0r3 ) / TM3 germ lines. Thus the effects of the maternal background

mutant for E(z)so n can be observed as late as the development of adult structures.

E(z)SOn clones in a nos mutant background. These clones showed phenotypes

similar to those described above in a nos + background, such as egg laying phenotypes,

head involution defects, and the presence of wing defects in the adult progeny. Here, I will

emphasize the son phenotype conferred by these genotypes.

E(z)so n l nos /E(z)SO n 3 nos germ cells did not lead to adult progeny but their

genotypes were inferred by the rescue of the nos phenotype and/or other associated defects.

At 250C, eight females produced very few, abnormal eggs, most of which did not form

cuticles. We presume that these females carried E(Z)sonl nos /E(z) so n 3 nos germ line

clones. At 180 C 3/4 fertile adult females (presumably E(z)sOn l nos /E(z)SO n 3 nos) laid

eggs which developed into larvae (71 larvae/147 eggs). All embryos formed six to eight

abdominal segments (86% of the embryos scored (n=29) had 8 abdominal segments).

Most of the developed embryos (69/71) failed to hatch and none reached adulthood. Many
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Table 3.6. E(z)s ° n 2 /E(z) s ° n 3 germ line clones exhibit weaker oogenesis and

maternal effect embryonic lethality E(z)s °nl /E(z)so° n3 germ line clones

(1) '+' indicates the wild-type E(z) copy, which in this experiment was present on a rucuca

chromosome (ncuca is a multiply marked chromosome which is wild type for E(z)).

(2) % of embryos that form a cuticle that do not hatch.

(3) % of total number of eggs that do not lead to hatching larvae (i.e. apparently unfertilized +

embryonic lethals).

(4) Results from two females mated to E(z) s On 3/rucuca males.

(5) Results from two females mated to rucuca /rucuca males.

(6) Results from eight females mated to E(z)SOn3 /rucuca males.

154

germ line % of total eggs % embryonic % of total Total number

genotype x genotype that appear lethality (2) infertility (3) of eggs

of males (1) unfertilized __

E(Z)sonl / E(z)80n 3 X 99 100 100 110

Ez)son3 / + (4)

E(z) s on 2 / E(z)8 °0 n 3 X 21 21 38 359
+ /+ (5)

E(z) ° n 2 / E(Z)80n3 x 12 44 48 1540
Ez) son3/+ (5) .



Table 3.7. The maternal effect embryonic lethality caused by E(z)son mutations

is enhanced by zygotic E(z)s° n mutations.

(1) + " indicates the wild-type E(z) copy, which in this experiment was present on a rucuca

chromosome.

(2) % of embryos that form a cuticle that do not hatch.

(3) Results from two females mated to rucuca /rucuca males.

(4) Results from eight females mated to E(z) s ° n3 / rucuca males.

(5) E(z)S°n 2 / TM3 and E(z)s°n 3 / TM3 germ lines could be distinguished by the Sb and Ser

markers in their progeny (see Methods of this section).

(6) Results from three females mated to E(z)S°n3/rucuca males.

(7) Results from three females mated to E(z)s°n 3 /rucuca males.
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germ line genotype % embryonic Total number

x genotype of males (1) lethality (2) of eggs

E(z)s °n2 / E(z)s8 n 3 X 21 359

+/+(3)

E(z)0 °n2 / E()80s n3 x 44 1540

E(z)on3 /+ (4)

E(z)s °n 2 / TM3, Sb x 0.6 527

E(z)SOn3 / + (5, 6)

E(z)son 3 / TM3, Ser x 1.8 623

E(z)son3/+ (5, 7)



(84%, n=32) showed head involution defects, similar to those observed in embryos with

mild homeotic transformations (see, for example, JUrgens (1985)).

E(Z)son2 nos /E(z) s° n 3 nos germ line clones: 8/25 fertile females exhibited

phenotypes similar to those observed in females carrying E(z)s °n l nos /E(z) son3 nos

germ line clones. Two females produced embryos with a high degree of abdominal rescue

(50% of the embryos scored (n=14) had 8 abdominal segments). Many of these embryos

reached adulthood. In these cases the genotype of the transplanted pole cells was

unambiguously identified by the genetic markers observed in the progeny.

In summary, transheterozygous combinations for E(z)son alleles exhibit, aside

from a very strong son phenotype, a number of additional phenotypes. Some of these

defects, such as the oogenesis defects and maternal effect embryonic lethality, have been

previously described using temperature sensitive E(z) alleles. Thus E(z) is likely involved

in these processes. Other phenotypes, such as the egg morphology defect and the

maternal-effect adult wing phenotypes have not been reported and may be caused by the

gain-of-function character of these alleles.

In Chapter mII we discussed the fact that E(z)SOn heteroallelic germ lines, while

exhibiting a very strong son phenotype, caused relatively weak, if any, homeotic

phenotypes. This suggests that the E(z)s ° n gain-of-function products preferentially

interfere with gap gene repression.

Suppression of E(z)SOn-associated phenotypes with extra E(z)+

copies.

The complementation of a phenotype with wild-type copies of a particular gene

constitutes strong genetic evidence for allelism of the mutations producing the phenotype to

the wild-type gene. In addition, the effect of extra wild type gene copies can provide

information on the nature of the mutations. Therefore, I tested the effect of extra doses of

E(z) on two phenotypes associated with E(z)s ° n mutations, namely, the lethality and the

son phenotype induced by heteroallelic combinations. The wild-type E(z) copy was carried

within a P-element construct that only contains the E(z) transcription unit (p[E(z)], see

Jones and Gelbart (1993))

Figure 3.9. E(z) s ° n germ line clones cause a maternal effect wing phenotype in the adult
progeny. A) Wild-type wing from E(z)son / + siblings. B, C) Wing phenotypes exhibited
by adult progeny form E(z) s ° n 2 /E(z)s ° n 3 germ line clones: interrupted LII and LIV wing
veins (B), and small wings, possibly with a wing to haltere homeotic transformation.

156



Figure 3.9
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Suppression of the lethality associated with E(z)s o n mutations. The

heteroallelic combinations E(z)s o n3 /Df(3L)Ez, E(z)so nl /E(z) s o n 3 and E(z)so n2 /

E(z) son 3 are lethal (see Table 2.3). Extra doses of E(z) suppress the lethality associated

with all these genotypes (Table 3.8). Interestingly, for a particular genotype there is a

tendency to obtain less progeny which carry two p[E(z)] constructs than one p[E(z)]

construct (observed in crosses C and D).

Reversion of the son phenotype. The effect of extra E(z) copies was tested

on both the dominant son phenotype and the recessive son phenotype. Table 3.9 shows

that extra E(z) copies decrease the dominant phenotype induced by E(z) s ° n mutations in a

hb heterozygous background. Surprisingly, the presence of the CyO balancer chromosome

used in these crosses also decreases the son phenotype. It is unknown whether this effect

is due to the presence of specific mutations on the CyO chromosome or by non-specific

effects caused by balancer chromosomes in general. As in the rescue of the E(z)so n

associated lethality, two p[E(z)] copies tend to exhibit a weaker reversion effect than only

one p[E(z)] copy.

Table 3.10 shows that one extra E(z)+ copy greatly reduces the strong son

phenotype confered by two E(z) so n heteroallelic combinations in a wild-type hbmat

background. In addition, the oogenesis and embryonic phenotypes associated with this

E(z)SOn maternal genotype are also alleviated. For example, at 250C E(Z)sonl/E(z)son3

clones are mostly unable to produce eggs that can be fertilized and develop into embryos

(see above). At a lower temperature the egg laying defect is alleviated and 84% of the

embryos that develop cuticles exhibit head involution defects. E(z)SOnl/E(z)SOn3 females

that carry one E(z)+ copy, on the other hand, can produce eggs that develop into embryos

at 250C, only 25% (n=16) of which show head defects.

In conclusion, the fact that P-element constructs carrying only the wild-type E(z)+

transcription unit can rescue both the lethality and the maternal-effect phenotypes (including

the son phenotype) associated with E(z)son mutations strongly argues that the E(z) so n

mutations are E(z) alleles.

In Chapter III we show that the E(z)s ° n mutations have a stronger son phenotype

than E(z)n Il mutations. Thus the E(z)so n mutations behave as gain-of-function (g-o-f)

alleles with respect to the son phenotype. Here I show that additional wild-type E(z) copies

revert the son phenotype caused by these g-o-f mutations. This indicates that E(z)s on

alleles are antimorphic in nature, that is, that they may code for aberrant products that

interfere with the wild-type E(z) function (at least in the process of gap gene regulation).
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Table 3.8. Complementation of the lethality caused by E(z) s o n mutations with

extra wild-type E(z) copies.

Genetic cross A (1)

E(z)son3 / TM3 females x

fE(z)/CvO: Df(3L)Ez6/ TM3 males

Genotype of progeny number of

progeny

+ / CyO; (Df(3L)Ez6 or E(z)s °n 3) / TM3 36

p[E(z)]J/ + ; (Df(3L)Ez6 or E(z)s ° n 3) / TM3 37

+ / CyO; E(z)sn 3 / Df(3L)Ez6 0

[E(z) /+; E(z)3 /Df(3L)Ez6 22

Genetic cross B (1)

p[E(z)]/ CyO ; E(z)sOn3 / TM3 females x

p[E(z)/ CYO; E(z)s°nl / TM3 males

Genotype of progeny number of

progeny

p[E(z)]/ CyO; E(z)S°n(l or3) / TM3 17

p[E(z)]/ CyO ; E(z)s o n 1 / E(z)son3 24

p[E(z)J/p[E(z) ; E(z)S°n(1 or 3) / TM3 14

p[E(z)1/pJE(z)1; E(z)SOnl / E(z) so n3 9

Genetic cross C (1)

p[E(z)/ CyO ; E(z)s on3 / 7M3 females x

E(z) / CyO ; E(z) S °n 2/ TM3 males

3enotype of progeny number of

progeny

=[E(z)]/ CyO; E(z)son(2 or 3) / TM3 12

2[E(z)]/ CyO ; E(z)son2 /E(z)son 3 41

p[E(z)] /p[E(z) ; E(z)s°n(2 or 3) / TM3 12

p[E(z)/p[E(z)]; E(z)son2 / E(z)o 3 13

(1) In these experiments, the chromosomes carrying E(z)sOn 1-3 and Df(3L)Ez6 carried in addition

a nosL7 mutation. The heteroallelic combinations E(z)s o n 3/Df(3L)Ez6, E(z) s °n l /E(z) s o n3, and

E(z)son2 / E(z) s °n3 are 100% inviable (see Table 1).
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Table 3.9. Extra E(z)+ copies revert the revert the dominant son phenotype

caused by E(z)so n mutations (hbm at heterozygous background).

(1) Females tested for the data in rows 1 and 3 were the progeny of the cross: p[E(z)]/ CyO;

E(z)son nos / TM3 x + /+; hb nos / TM3. Females tested for the data in rows 2 and 4 were the

progeny of the cross: p[E(z)] / CyO; E(z)s ° n nos / TM3x p[E(z)] / CyO ; hb nos / TM3. A +

indicates a wild type chromosome that carries an E(z)+ copy. CyO is a chromosomal balancer used

in the cross. For unknown reasons, the presence of this balancer appears to suppress the son

phenotype.

(2) % embryos with 3 abdominal segments.

(3) Data is from Table 2.1 and is included for comparison.
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E(z)s° n maternal genotype hb nos / nos background)

Maternal E(z) E(z)O n2 / + E(z)O n3 / +

complement (1) % rescue (2) n % rescue (2) n

+/CyO 1 8 574 26 352
p[E(z)]/CyO 10 1269 9 0.13

p[E(z)] / + 26 1010 58 1868
p[E(z)] / p[E(z)] 31 287 65 373
+/+ (3) 42 145 88 179



Table 3.10. Extra E(z)+ copies revert the revert the recessive son phenotype

caused by heteroallelic E(z)so n combinations (full hbmat dose).

(1) Data is from germ line clone experiments and is included for comparison.

(2) % of embryos with 2 3 abdominal segments.

(3) Females of these genotypes were produced with the crosses E(z)son(1 or 3) / TM3 males x

p[E(z)] / CyO; E(z) °n 3 nos / TM3 females.

(4) Data collected at 250c.
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E(z)S° n maternal genotype (nos /nos background)

Maternal E(z) E(z)son / Ez 3 E z )son2 / E(z)son3

complement (1) % rescue (2) n % rescue (2) n

+/+(3) 100 29 100 14
p[E(z)]/+ (4 ) 35 133 20 300



Interestingly, both in the reversion of lethality and the son phenotype, there seems

to be a tendency for two extra wild-type E(z) copies to have a smaller reversion effect than

one extra E(z) copy. It is possible that, at least in these backgrounds already "sensitized"

with the presence of E(z)son products, too much E(z) product actually interferes with E(z)

function.

Variables that influence the son phenotype

During the characterization of the son phenotype, it became apparent that the

penetrance of this phenotype was influenced by a number of different factors. The

following is a discussion on the factors that have been observed to influence the son

phenotype.

Temperature dependency of the son phenotype. The penetrance of the son

phenotype caused by different son alleles increases with temperature (Table 3.11). At

180 C son mutations have no detectable effect on the nos phenotype. Nevertheless, this

relatively low temperature is not incompatible with the son phenotype since the strong

E(z)Onl/E(z)so n 3 combination produces a highly penetrant son phenotype at 180 C (see

above and Chapter II). At 290C, the son phenotype is most penetrant, but heterozygosity

for hbm at also leads to a son phenotype at this temperature. At 250C, the effect of son

mutations in a hbn at heterozygous background is high in comparison with the alleviation of

the nos phenotype by the hbmat heterozygous background. The higher signal to noise ratio

of this assay at 250C is one reason why most tests for the son phenotype are carried out at

this temperature (the other reason is practical, since at 290 C flies tend to be less healthy and

males become sterile).

The temperature sensitivity of the son phenotype is observed with all son mutations

tested and even in a wild-type (son+) background. This indicates that the temperature

sensitivity of the son phenotype is not caused by the temperature sensitivity of a particular

son allele but that it is caused by a E(z)-independent process that affects abdomen

formation.

To obtain information about the nature of the son phenotype, I determined the

temperature sensitive period during oogenesis for the dominant son phenotype exhibited by

E(z)s on 3 nos/hb nos females (see Materials and Methods). Temperatures of 180 C and

25°C were chosen for this experiment because of the absence of a dominant son phenotype

at 18°C, and a strong son phenotype at 250°C. Because Drosophila ovaries contain strings

of egg chambers at different stages of development, eggs that are collected at different times
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Table 3.11: Temperature sensitivity of the son phenotype

(1) A "+ ' represents the corresponding wild-type allele.

(2) % of embryos with 2 3 abdominal segments.
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Maternal genotype

son nos / nos hb nos / nos
maternal % rescue (2) % rescue (2)

genotype( 1 ) (n) (n

1 8C 250C 290C 180C 250C 290C

+/+ 0 (73) 0 (303) n.d. 0 (180) 2 (160) 70 (103)

E()sOnl /+ 0 (51) 2 (54) 32 (49) 0 (4) 91 (80) 74 (53)

E(z)sOn 2 /+ 0 (270) 3 (347) 35 (23) 0 (10) 17 (169) 77 (39)

E(z)sn3/+ 0 (51) 11 (152) 52 (25) n.d. 88 (179) 98 (80)

son5 9/+ 0 (101) 0 (93) 0 (60) 0 (67) 3 (330) 69 (170)
son 126/+ 0 (72) 0 (218) 7 (57) n.d. 49 (167) 44 (76)



after the temperature shift come from egg chambers that were at progressively earlier stages

in oogenesis at the time of the shift. The duration of each stage in Drosophila oogenesis

has been previously calculated (see Ashburner 1989), and thus it is possible to correlate the

ts period with particular stages of oogenesis. Figure 3.10 shows that the ts period for the

son phenotype spans a broad window between about 10 and 70 hours after the shift. This

implies that this process is temperature sensitive during a broad period that approximately

lasts from stage 2 in oogenesis, when the nurse cells begin polyploidization to stage 10,

just before the nurse cells pour their contents into the oocyte.

Time since balanced stock was established. The dominant son phenotype has

decreased in some of the son stocks as they have been passaged for a number of

generations. For example, E(z)so n 3 nos /nos females exhibit weaker son phenotypes in

experiments carried out at later times after the establishment of the stock (Figure 3.1 1A).

This effect may be due to the accumulation of modifier mutations that increase the viability

of heterozygous son stocks.

These modifier mutations do not affect the stronger son phenotype when in addition

to the son mutation a hb mutation is introduced by crossing (Figure 3.1 B). Indeed, the

son phenotype exhibited by chromosomes carrying both E(z)O n and hb alleles is weaker

than that exhibited by a transheterozygous combination of the same mutations (E(z)SOn 3 hb

/ + + and E(z)SO°n3 + / + hb genotypes produce 48% (n=390) and 88% (n=179) embryos

with > 3 abdominal segments, respectively). These observations underscore the need for

outcrossing when carrying out suppressor-of-nos tests.

Age of females. In general one observes that the first layings from females carrying a

son mutation exhibit a stronger son phenotype than later layings. This effect is also

observed in hb nos/nos females even m the absence of son mutations. Figure 3.11B

exemplifies this phenomenon in a E(z)s ° n3 nos /hb nos background.

During the first experiments after the identification of the E(z) s on3 mutation the age

dependency of the phenotype was not observed. Thus, the son phenotype does not seem

to be intrinsically dependent on the age of the female (this can also be observed in the

progeny of E(z)s °n 3 nos/nos females - Figure 3.11A). The son phenotype caused by

mutations in the same stock tested at later times did, however, show a dependency on the

age of the females. Thus, the accumulation of genetic modifiers in the stock carrying son

alleles may have enhanced this age-dependent phenomenon.

Practical consequences for experimental procedures. The effect on the son

phenotype by genetic and non-genetic factors causes a practical problem when comparing

strengths of different son genotypes. To minimize the effect caused by these variables,
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data quantifying the son phenotype reported in these studies come from tests which, except

where otherwise stated, conform to the following guidelines:

a) The female flies used grew, and were tested at, a constant temperature of 250C.

b) Quantitative comparison of the son phenotype confered by different genotypes

were made using chromosomes (either those carrying newly induced mutations or

recombinant chromosomes) that had been recently created (less than 3 passages of the

stocks). In the cases when tests were repeated, all mutant stocks involved in the

comparison were retested.

c) Only embryos from the first four days of layings were scored for the son

phenotype.

The effect of temperature on the son phenotype is reminiscent of the effect of

temperature on variegation. Higher temperatures increase both the suppression of nos and

the suppression of variegation. Since suppression of nos and suppression of variegation

may have a similar molecular basis (see Chapters I and III), it seems possible that the

temperature sensitivity for both of these processes may have similar causes.

It has been proposed that the effect of temperature on variegation occurs by

affecting developmental rate, i.e. that higher developmental rates suppress variegation

(Hartmann-Goldstein 1967). This is also supported by the fact that variegation is enhanced

by increased crowding in the food medium, which decreases developmental rates. In more

specific terms, this would mean that higher developmental rates lead to a higher level of

gene transcription of genes regulated at the chromatin level.

Similarly, the son phenotype, which we argue involves derepression of chromatin-

regulated genes, may also be affected by some process related to developmental rate. This

hypothesis may help explain the puzzling result that, while E(z) appears to act in the early

embryo, a son-independent process related to the son phenotype has a temperature sensitive

period during oogenesis (there is also an E(z)-dependent ts period during early

embryogenesis, see below). It is possible that the son phenotype depends, directly or

indirectly, on the developmental rate of the early embryo, which would in turn depend on

the accumulation of maternal products during oogenesis.

Figure 3.10. Temperature sensitive period of the son phenotype. E(z)s °n 3 nos /hb nos
females were grown at either 180C or 250C. At the time indicated as 0 hours in the graph,
each group of females was shifted to 250 C or 18°C, respectively. The temperature
sensitive period for the son phenotype, which spans from about 10 to 70 hours prior to egg
deposition, corresponds to approximately stages 2 to 10 in oogenesis.
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Figure 3.10. Temperature shift of E(z)S° n nos/ hbnos females

solid line: 180 Cto 25°C

dashed line: 250°C to 18°C
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The dependency on the age of females for suppression may also indicate that eggs

produced by younger females have a maternal content that give them a different character

(e.g. lead to a higher developmental rate of the embryo) than eggs produced by older

females. The fact that eggs produced early and late have different properties has also been

observed in layings from females carrying maternal effect mutations, which often exhibit

stronger phenotypes when laid by older females.

In summary, the son phenotype is modified by genetic and non-genetic factors.

The non-genetic factors can be external (e.g. temperature) or internal (e.g. age of the

females). The exact nature of all of these factors is unclear. At least in some of these

cases, the effect on the son phenotype appears to originate during oogenesis. Thus

processes that occur during oogenesis can affect the outcome of developmental decisions

that occur in the early embryo.

The son phenotype depends on maternal, but not zygotic, E(z)

product

The regulation of homeotic genes by Pc-G gene products involves in most cases

both maternal and zygotic Pc-G contribution. Females mutant for E(z), for example, have

a maternal effect homeotic phenotype (Jones and Gelbart 1990; Phillips and Shearn 1990;

see also Chapter Im, Figure 2C) which is enhanced when these females are mated to E(z)

mutant males. It was therefore of interest to determine whether both maternal and zygotic

E(z) product may be also involved in the regulation of the gap genes kni and gt.

First, E(z)SOn3-carrying males were crossed to appropriate females and tested for

the son phenotype (Table 3.12). A paternal E(z) s °n 3 copy does not suppress the

abdominal phenotype of embryos from hb nos /nos females. Nor does paternally

introduced E(z)SOn 3 enhance the maternal effect son phenotype of E(z) s ° n 3 nos/hb nos

Second, nos females that in addition were hemizygous for the temperature sensitive

allele E(z)6 1 were crossed, at the restrictive temperature, with either wild type males or

E(z)6 1 hemizygous males. The extent of abdomen formation is very similar in the progeny

Figure 3.11. Dependence of the son phenotype on both the age of the females and the age
of the balanced stocks. Data labelled 10/89, 1/91 and 3/93 correspond to experiments
carried out at the corresponding months and year. A) Results from E(z)so n 3 nos/nos
females. The son phenotype decreases in strength in older stocks. B) Results from
E(z)s on 3 nos/hb nos females. Then son phenotype enhanced by hbm a t heterozygosity
does not decrease in strength, but becomes more dependent on the age of the
female.females. Thus the E(z)son 3 allele can only produce the son phenotype when
introduced maternally.
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Figure 3.11 10/89
-- -1/91

E(z)son3 nos / nos .....3/93
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E(z)s° n3 nos / hb nos

0 2 4 6 8 10 12
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Table 3.12. E(z)s °n3 does not produce or enhance the son phenotype when
introduced through the father

Maternal genotype

Paternal genotype (1) hb nos /nos E(z)so n 3 nos / hb nos

% rescue (2) n % rescue (2) n

+ / TM3 4 166 81 97

E(z)son 3 / TM3 4 189 65 89

(1) '+' is the wild-type E(z) copy. Both chromosomes tested (+ and E(z) s °n3) contained in

addition the mutation nos L 7

(2) % of embryos with 2 3 abdominal segments.

Figure 3.12. Paternal E(z) product is not involved in the son phenotype. Embryos from
E(z)6 1 /E(z)6 5 females were collected at the restrictive temperature for the E(z)61 allele.
The profiles of abdominal segment formation are very similar whether the females had been
mated to wild-type or E(z)6 1 /E(z) 6 5 males.
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Figure 3.12
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from both crosses (Figure 3.12). This indicates that zygotic E(z) product does not affect

the suppression of the nos phenotype confered by the maternal E(z) mutations.

Both of these results argue that the repression of kni and gt depends only on the

E(z) product already present in the egg. This is consistent with gap genes being part of the

first tier of zygotically expressed genes. Apparently, zygotic E(z) product is not produced

early enough to regulate the genes in this first tier of zygotic expression. Although this has

not been proven, for similar reasons, we assume that the zygotic products of other Pc-G

genes also do not contribute to the regulation of kni and gt.

Summary of mutations that affect the nos phenotype

The following are complete tables for the tested son phenotype conferred by

mutations in E(z) and in other Pc-G genes. Many of these results have already been

presented in Chapter III. Here, only results not previously shown will be discussed.

Suppression-of-nos by E(z) alleles. Table 3.13 has a complete list of the son

phenotype confered by E(z) mutations in trans to wild-type E(z) copies and to other E(z)

mutations. E(z)s n 2 confers a weaker son phenotype in trans to the deficiency E(z)6 5 than

in trans to the temperature sensitive E(z) 6 1 allele, even at semi-restrictive temperatures.

This is unexpected since E(z) 61 appears to retain more wild-type function than the

deficiency (compare, for example, the effect of E(z)6 1/E(z)6 1 with E(z)6 1/E(z)6 5 ). This

discrepancy may indicate that the E(z)son2 /E(z) 61 combination has an allele-specific

synthetic effect that produces a particularly strong son phenotype.

Suppression-of-nos by mutations in other Pc-G genes. Table 3.14 has a

complete list of the son phenotype caused by mutations in Pc-G genes other than E(z). The

table has been divided in two groups, those with genes which show no detectable effect on

the son phenotype, and those with genes that show an effect.

Mutations in the gene Polycomb do not significantly enhance the son

phenotype confered by son mutations. The homeotic transformations produced by

mutations in Pc-G genes are particularly sensitive to haploinsuficiency for the Polycomb

locus (see, for example, Kennison and Russell (1987)). I therefore tested whether a

similar effect could be observed in the case of the son phenotype. Table 3.15 shows that

maternal haploinsufficiency for Pc does not significantly enhance the son phenotype

conferred by E(z)son l J3 and son2 9 , another son mutation (compare to Chapter III, Table

2). These results indicate that if Pc is involved in the regulation of gap genes, the

requirement for its product is less dosage dependent than in the case of homeotic gene

regulation.
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Table 3.13. E(z) mutations suppress the nos abdominal phenotype

E(z) Maternal

Genotype (1)

+/+

E(z)son / +

E(z)son2 / +

E(z)SOn3 / +

Df(3L)Ez6 / +

E(z)65 / +

E(z) 6 6 / +

E(z) 6 3 / +

E(z)64 / +

E(z) 1 / +

E(z)60 / +

E(z)61 /+

E(z)61 / E(z)61 (250C)

(290C)

E(z)61 / E(z)65 (250C)

(290C)

E(z)s ° n 2 / E(z) 6 5 (250 C)

(290C)

E(z)so n 2 / E(z)6 1

E(z)son 1 / E(z)son3 (3)

E(z)SOn2/ E(z)son3 (4)

Maternal Genotype

nos /nos

% rescue (2)

0

11

6

13

0

0

0

0

0

0

0

0

2

6

24

38

31

44

95

100

100

n

338

156

160

895

525

356

253

361

575

297

562

619

216

84

270

39

216

78

366

29

14

% rescue (2)

2

76

42

88

9

2

10

9

12

1

4

8

n.d.

n.d.

n.d.

n.d.

n.d.

n.d.

n.d.

n.d.

n.d.

(1) a '+' represents the wild-type E(z) gene.

(2) % of embryos with 2 3 abdominal segments.
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hb nos /+ nos

n

160

186

145

179

768

473

229

293

353

422

318

251



Table 3.14. Suppression of nos abdominal phenotype by Pc-G genes

Maternal Genotype

nos / nos hb nos I + nos

Pc-G Maternal

Genotype (1) % rescue (2) n % rescue (2) n

wild type 0 594 0 614

Pc-G genes which do not exhibit dominant son henotypes

AsxD 1 /+ 0 398 0.5 753

esc 0 /+ 0 89 2 201

esc2 /escscl 0 181 n.d.

Pc / + 0 296 2 517

pclR5 / + 0 227 3 281

ph501 / + n.d. - 0 966

ph410/phbr 0 149 n.d. -

SceD/+ 0 406 0 657

ScrnD /+ 0 420 0.9 212

Scx1 /+ 0 351 0 426

Pc-G gene which exhibits no dominant or recessive son phenotype

esc 10 /+ 0 89 2 201

esc2 / esc1 0 0 181 n.d.
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Table 3.14 (continuation)

Pc-G aenes which exhibit a dominant and I or recessive son DhenotvDe

Df(Su(z)2-C) / + (3)

Psc/+
Pscl4 4 / +

Psc 1 4 3 3 / +

PSce 2 4 / +

Su(z)21 / +

Su(z)2.b7l +

Su(z)31 / +

Df(4)G / +

phoC / +

phoC / phoc (4)

2

0

2

0

0

0

0

0

0

0

89

266

352

350

651

132

52

866

212

378

455

18

27

0

7

12

0

3

0

0

5

10

n.d.

(1) A + represents the wild-type copy of the corresponding gene.

(2) % of embryos with > 3 abdominal segments.
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445

382

256

532

632

316

689

266

587

659

1 i.



Table 3.15. Heterozygosity for Pc does not significantly enhance the son
phenotype conferred by son mutations

(1) A '"+ represents the wild-type copy of the corresponding gene.

(2) % of embryos with > 3 abdominal segments.
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Maternal

genotype

son Maternal Pc5 nos / + nos

Genotype (1) % rescue (2) n

+/+ 0 296

E(z)son / 0 347

E(z)son2 /+ 0 524

E(z)Sn3 / + 0 531

son 29 /+ 56 723



In summary, mutations in some Pc-G genes, but not in others, exhibit dominant

and/or recessive effects on the nos phenotype. The son phenotypes exhibited by some Pc-

G genes indicate that their products are likely involved in gap gene regulation. The absence

of dominant son phenotype is not easily interpretable. Given the weak dominant effect

confered by E(z) null and loss-of-function mutations, it is possible that mutations in some

of these Pc-G products do not exhibit a dominant son phenotype but would cause a

recessive son phenotype. In the case of extra sex combs (esc), embryos which entirely

lack Esc product can be easily obtained, and an involvement of this gene in the regulation

of gap genes has been ruled out. For other Pc-G genes, the creation of germ line clones

homozygous mutant for these genes will be required in order to rigorously test their role in

gap gene regulation.

Epistasis analysis of E(z) and other genes in the pathway

In order to genetically locate the effect of E(z) within the pathway that leads to

abdominal development, I carried out epistasis analysis using double mutant combinations

of mutations in E(z) and other genes in this pathway.

Supression of the abdominal phenotype caused by mutations in genes
upstream of nos localization and by other nos mutations. E(z)s o n 3 was tested

for epistatis over mutations in the genes vasa and oskar. These two genes are required for
formation of the pole plasm and therefore embryos from females mutant for them are

defective in both abdomen and pole cell formation. Since nos embryos have no defects in

pole plasm assembly, suppressors of nos would be expected to act downstream of this

process. Indeed, E(Z)s on3 suppresses the abdominal defect of embryos from vasa and

oskar females (Table 3.16). The adult progeny from these females were sterile. Thus E(z)

mutations specifically rescue the abdominal defect caused by mutations that cause defects in

pole plasm assembly.

It was also of interest to test whether the son phenotype requires allele-specific

interactions involving the nosL 7 allele, which is not a null allele (Lehmann and Niisslein-
Volhard 1991). Thus E(z)s °n 3 was tested for the son phenotype in backgrounds

hemizygous for other nos alleles. E(z)so n 3 suppresses the nos phenotype produced by all

nos mutations tested, which include null alleles such as nosRD and nosBN (Lehmann and

Niisslein-Volhard 1991,Gavis and Lehmann 1994)(Table 3.16). Thus E(z) mutations
bypass the nos requirement for abdomen formation.

Female mutant for strong vasa and nos alleles have additional oogenesis phenotypes
such as the production of few eggs, which in the case of vasa lack dorsal appendages
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Table 3.16 E(z)son3 suppresses the abdominal phenotype caused by

mutations in genes upstream of nanos and by other nanos mutations

(1) '+' indicates the wild-type copy of the appropiate gene.

(2) % of embryos with 3 abdominal segments.

(3) Ten male progeny from these females were crossed to wild-type females and found to be

sterile.

(4) Df(3R)pxtl 03 and Df(3R)PXt2 6 delete the hb and oskgenes.

(5) 17 male and 12 female progeny from these females were crossed to wild-type flies and found

to be sterile.

(6) Three male and seven female progeny from these females were crossed to wild-type flies and

found to be sterile.

(7) Df(3R)Di 4 3 deletes the nos gene.

n.a. = not applicable; n.d. = not determined.
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Maternal Genotype

Maternal Genotype (1) nos I nos hb nos I + nos
% rescue (2) n % rescue (2) n

vasD1 vasPD + /+ 0.4 2934 34 525

vasD1 /vasPD; E(z)son3/+ 24 480 94 (3) 174

osk 1 66 /Df(3R)pxT10 3 (4) n.a. 0.4 758

E(z)so n 3 osk16 6 / Df(3R)pxT1O3
n.a. 73 (5) 236

osk 166 / Df(3R)pxT26 (4) n.a. 0.6 483

E(z)s °n 3 osk 166 / Df(3R)pxT26 n.a. 72 (6) 246

nosL7 / Df(3R)Dx43 (7) 0 413 n.d.

+ nosL7/ E(z)SOn3 Df(3R)Dx43 11 290 50 150

nosBN / Df(3R)D1x43 0 94 n.d.

+nosBN / E(z)son3 Df(3R)DIx43 35 196 97 43

nosRD / Df(3R)Dlx43 0 100 n.d.

+ nosRD / E(z)son3 Df(3R)Dlx43 16 38 48 41

nosRW / Df (3R)Dx43 81 873 n.d.

+ nosR W/ E(z)so n3 Df(3R)DIx43
70 248 n.d.



(Lehmann and Niisslein.Volhard 1991). It is unclear whether the egg production

phenotype observed in vasa females is due to a requirement of vasa for production of nos

during early oogenesis. The presence of a E(z) s on 3 mutation in these females is not

associated with a significant increase in the number of eggs produced by vasa and nos

mutant ovaries (Table 3.17). This suggests that E(z) does not regulate downstream targets

of nos during oogenesis.

An increase in egg production of vasa mutant ovaries is associated with hb

heterozygosity (Table 3.17). This suggests that vasa and hb may be part of a common

pathway during early oogenesis. Nevertheless, the egg production defect caused by nos,

are not alleviated by hb heterozygosity. Completely removing hb function in a germ line

mutant for strong nos alleles would clarify whether vasa, nos and hb may be part of a

pathway during oogenesis required for egg production.

On the other hand, the ventralized egg phenotype associated with vasa mutations

did not appear to be significantly suppressed by either the hb or E(z)so n 3 mutations, which

suggests that this phenotype is unrelated to nos, hb and E(z).

In conclusion, these data suggest a role for hb , but not E(z), in a vas- (and perhaps

nos-) dependent pathway in oogenesis.

Enhancement of the son phenotype by other hb alleles. The enhancement of the

son phenotype conferred by hb mutations would not be expected to be specific to the hb7M

allele, since this allele is a protein null. Indeed, a deficiency for hb also enhances the son

phenotype (Table 3.18). Thus, this enhancement is caused by a reduction in the hb

dosage.

Lehmann and Nuisslein-Volhard (1987a) described a type of hb alleles that caused

zygotic phenotypes that are stronger than those caused by a hbnull mutations. Testing of

these so called class V alleles for their enhancement of the son phenotype showed that these

alleles also produce a stronger dominant son phenotype than hb nulls. This can be

observed both in E(z) wild-type and E(z)s °n mutant backgrounds (Table 3.18). Thus class

V hb alleles appear to code for dominant negative products that interfere with the function

of wild-type hb copy.

The son phenotype requires zygotic gap genes. The abdominal phenotype

observed in embryos from nos females occurs because of transcriptional repression of the

gap genes kni and gt. E(z) mutations could suppress the nos phenotype by reactivating the

expression of these gap genes, or by activating an unknown parallel pathway that can

promote abdominal development. In order to distinguish these two possibilities I tested

whether E(z)SOn mutations could suppress the abdominal phenotype caused by lack of kni

function.
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Table 3.17. Mutations in hb, but not in E(z) suppress the egg production defects

associated with strong vasa alleles.

(1) vasa or nos mutant bacground are as indicated. In the rows with data, the genotype with

respect to E(z) and hb are indicated in this same order.

(2) # of eggs produced in the first three days of laying for vasa mutant females and the first four

days of laying for nos mutant females.

(3) The E(z)SOn3-carrying chromosome in rows 2 and 4 also contained the nosL 7allele. To

control for a possible effect of the nos mutation, females in rows 1 and 3 were also heterozygous

for this mutation.
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Maternal genotype (1) I # of eggs(2) I # of females # eggs/day/female % ventralized egg

vasD1/vasDl background (3)

+ +/+ + 17 19 0.3 94
E(z)Son3 +/+ + 9 21 0.14 67

+ hb7M / + + 573 23 8.3 100
E(z)son3 + / + hb7M 458 29 5.3 98

nosRC/Df(3R)D( 43 back round

++/++ 32 6 1.3

E(z)son3 +/+ + 1 9 0.03 n.a.
E(z)son3 + /+ hb7 M 1 5 0.07 n.a.

nosRD/Df(3R)D 43 background

+ +/+ + 100 6 4.2
E(z)S on3 + /+ + 38 6 2.1 n.a
E(z)son3 +/+ hb7M 41 6 2.3 n.a.

nos9 1/Df(3R)D 43 back round

-++/++ 22 7 0.79

E(z)SOn3 +/+ + 3 6 0.17 n.a.

E(z)son 3 + +/+ hb7M 1 5 0.07 n.a.



Table 3.18. Suppression of the nos phenotype by different hb alleles.

(1) "+" indicates the wild-type allele.

(2) % of embryos with > 3 abdominal segments.

(3) Df(hb) is Df(3R)pTlT 1 0 3

181

nos mutant background

Maternal hb Maternal E(z) genotype (1)

genotype (1) +/+ (z)son2/+ E(z)son3 / +
% rescue (2) n % rescue (2) n % rescue (2) n

+/+ 0 338 n.d. - n.d.

hb7M/+ 0 1081 20 278 96 275

Df(hb) /+ (3) n.d. - n.d. - 66 15
hb9K49 / + 1 223 25 407 81 487

hb9K59 / + 70 632 82 378 99 306



Embryos homozygous for strong kni alleles were tested for their degree of

abdominal segmentation in maternal genotypes containing one copy of E(z)son 3 (E(z)son3

/ +), or a combination of E(z)s °n 3 and hb heterozygosity (E(z)so n 3 + / + hb). These two

maternal genotypes, specially the second one, suppress the abdominal defects caused by

nos mutations. Nevertheless, these genotypes do not suppress the abdominal phenotype

caused by strong kni alleles (see Table 3.19). This indicates that E(z) acts upstream of kni

by reactivating the normal pathway that leads to abdominal development.

In summary, E(z)0o n mutations are epistatic to nos and its upstream genes, interact

with hb and require the expression of the zygotic gap gene kni. Since nos mutant embryos

rescued by E(z) mutations form structures which are dependent on gt function and since kni

and gt appear to be coordinately regulated, we presume that gt function is also required for

the son phenotype. These genetic results locate the site of action of E(z) downstream of

nos and upstream of the activation of zygotic gap genes. In Chapter III we show that kni

and gt are expressed in E(z) nos mutant embryos, which is in agreement with these results.

Furthermore, we locate the site of E(z) action with respect to hbm at, by determining that

E(z) does not affect the levels of Hbmat. Thus together the molecular and the genetic data

converge in a model in which E(z) is required to act in conjunction with the Hbmat protein

to repress the gap genes kni and gt.

An E(z)-dependent temperature sensitive period during early

embryogenesis is consistent with E(z)-dependent gap gene regulation.

We have proposed that E(z) mutations cause the son phenotype because E(z) is

required to repress gene expression of the abdomen-promoting gap genes. This model

predicts that using the temperature sensitive (ts) allele E(z) 6 1 one might be able to observe

an E(z) dependent ts effect on the son phenotype during the early stages of embryogenesis.

Control embryos from nos females which were wild-type for E(z) function and had

been shifted to the restrictive temperature during early embryogenesis showed a small

increase in abdominal segmentation (about 20% of the embryos shift from the "0 segments"

to the "1 segment" category- compare, in Figure 3.13, (A) and (B)). Temperature

sensitivity for abdomen formation during early embryogenesis has been reported and may

be related to the function of the gene pumilio (Lehmann and Niisslein-Volhard, 1987b).

Embryos from E(z)6 1 nos /E(z) 6 5 nos females that had been similarly treated exhibited a

larger increase in segment formation. Specifically, about 60% of these embryos shifted
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Table 3.19. Mutations in E(z) and hb can not rescue the abdominal phenotype

caused by strong kni mutations.

(1) +' indicates the wild-type copy of the corresponding gene.

(2) All embryos scored had two abdominal segments.
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Zyotic enotype

kniL homozygotes kniFC homozygotes

Maternal genotype (1) average # of average # of

abdominal abdominal

segments (2) n segments (2) n

++/++ 2 34 2 22

E(z)son3 + /+ + 2 131 2 56

E(z)s n 3 + /+ hb 2 127 2 104



Figure 3.13
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from the "0 segments" category to categories with one or more abdominal segments (in

Figure 3.13, compare panels (C) and (D)).

Thus, although there is also a small E(z)-independent temperature dependence for

the formation of abdominal segments, there appears to be a significant E(z)-dependent

temperature sensitivity during early embryogenesis. This result is consistent with the

above described model for E(z) function in early embryogenesis.

Is E(z) involved in transcriptional regulation of knirps and giant in

wild-type embryos?

In Chapter m we show that E(z) is required for the maintenance of the anterior

boundaries of kni and gt that are initiated by the Hbmat protein gradient. The embryos

used in these experiments were mutant for bcd. This prevented the activation of many

anteriorly expressed genes which depend on bcd for their activation, including the zygotic

hb expression, so that the only source of anteroposterior polarity in these embryos is the

Hbmat protein gradient

The effect of E(z) mutations in bcd mutant embryos, and thus on the determination

of boundaries by Hbmat, was very clear. It is less clear what role E(z) may have in the

determination of gap gene boundaries in the presence of the normal set of regulatory

interactions that occur in wild-type embryos. In particular, since the Hbmat protein

gradient has been shown to be nonessential, it is possible that E(z) function is also

dispensable for proper gap gene regulation.

The following two studies attempt to obtain genetic evidence for a role of E(z)

function in the transcriptional regulation of gap genes in wild-type embryos.

Expression of gap genes in embryos mutant for E(z) but otherwise wild

type. The E(z)SOn 2 /E(z) 6 1 heteroallelic combination was used as the E(z) mutant

background to try to detect possible differences. In embryos from nos and bcd mutant

females, this E(z) mutant combination confers strong phenotypes detectable both at the

cuticular and the gap gene expression levels.

Embryos from E(z)s ° n 2 /E(z) 6 1 females were collected under conditions similar to

Figure 3.13. Post-deposition temperature shift of embryos from nos and E(z) nos females.
Embryos from nos/nos or E(z)6 1 nos/E(z)6 5 nos females were collected at 250 C at 30
minute intervals and immediately shifted to 290 C (the restrictive temperature for E(z)6 1 ,
E(z)6 5 is a null). For each genotype, control samples of embryos which were not shifted
to 290C were also scored. A and B) About 20% of the embryos form one field of
denticles upon shifting to the higher temperature. C and D) About 60% of the embryos
form a higher number of abdominal segments at the restrictive temperature for E(z) 6 1 .
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those carried in the studies involving nos and bcd mutant backgrounds. Expression of the

gap genes Kr, kni and gt was detected by in situ hybridization using digoxigenin-labelled

RNA probes and analized as described in the Materials and Methods. The average profiles

of about 5 to 1 1 embryos are plotted in Figure 3.14. Statistical analysis of the data points

at the anterior boundaries of kni expression suggest that these boundaries are different in

wild-type and mutant embryos (see Materials and Methods). This difference is, though,

very small (about 2% EL). Similar analysis suggests that the anterior boundaries of Kr and

gt are not statistically different.

Suppression of weak kni alleles by E(z)SOn and hbmat mutations. Above we

show that strong kni alleles are completely epistatic to E(z)s on mutations. This indicated

that kni acts downstream of E(z) in the pathway that leads to abdominal segmentation. In

principle, the abdominal phenotype produced by weak kni mutations could behave

differently, i.e. it may be suppressed by E(z)s o n mutations. This would occur if the defect

produced by the partially defective kni allele can be alleviated by increased concentrations

of the mutant Kni product. In order to test whether E(z) and / or hb m a t mutations may

affect the levels of Kni product I tested the effect of these mutations on the abdominal

phenotype caused by two weak kni alleles, knilI V and knil 4 B.

Embryos mutant for each one of these weak kni alleles in trans to the strong kni

alleles kniIL, knilID and kniFC were produced from wild-type, hb / +, E(z)SOn 3 / + and

E(z)so n 3 + / + hb females. Preliminary studies showed that the abdominal phenotype

caused by kniIIV is not affected in any of these backgrounds (Figure 3.15), while that

caused by kni 14 B seemed to be affected.

A larger scale experiment was repeated with kni 14 B/kni(lL or FC) embryos.

Figure 3.16 shows that the presence of E(z) son 3 , or of a hb mutation in the maternal

background increases the number of abdominal segments produced by both of these kni

mutant genotypes. As with the son phenotype, the strongest effect is produced in a

background that carries both E(z)SOn 3 and hb mutations.

Thus, maternal genotypes that in nos and bcd mutant embryos cause derepression

of the abdomen-promoting gap genes kni and gt, also increase the number of abdominal

segments produced by embryos mutant for at least one weak kni mutation. Given the

known role of E(z) and Hb in transcriptional repression, the increase in abdominal

segments produced by kni 14 B in E(z)SO°n and hb mutant backgrounds can be interpreted as
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Figure 3.14. Expression profiles for Kr, kni and gt RNA expression in wild-type and
E(z)SOn2/E(z)6 1 embryos at the late cellular blastoderm stage (s. 14b).
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being caused by an increase in transcription of these gene, and thus in the concentration of

its partially functional product. The defect confered by the kniII V allele, on the other hand,

may not be rescuable by an increase in the kni II V product.

The suppression of the abdominal phenotype caused by knil 4 B mutations by hb

and E(z)SOn mutations suggests that in the wild-type embryo Hbmat and E(z) are involved

in establishing a certain level of kni transcription, perhaps being involved in an equilibrium

between activating and repressing factors.

In conclusion, these two studies suggest that in the wild-type embryo, E(z) has a

role in regulating kni expression. First, the anterior boundary of kni expression in E(z)

mutant embryos exhibits a small but statistically significant anterior shift. Second,

phenotypic studies of the effect of E(z) mutations on weak kni alleles are consistent with

E(z) mutations causing an increased transcription of kni in an otherwise wild-type

background. These data support a role of E(z) in the normal regulation of kni.

Nevertheless, it should be kept in mind that in both of these studies the mutant E(z)

background involved gain-of-function (antimorphic) E(z) alleles. Thus, it remains

unknown whether a complete loss of E(z) function would have an effect on kni expression.

The lack of statistically significant effects on the anterior boundaries of Kr and gt

expression in E(z) mutant embryos might reflect the fact that there are, for both of these

boundaries, other strong interactions that do not depend on Hbmat. In particular, the

anterior Kr boundary is determined by HbZYg, and the anterior gt boundary is strongly

repressed by Kr.

Figure 3.15. Mutations in hb and E(z)s °n3 do not affect the abdominal phenotype
produced by the weak kniIIV allele. Embryos mutant for the weak kniIV allele in trans to
strong kni alleles (knillD, kniF C and knilL), were tested for their degree of abdomen
formation in four maternal backgrounds: wild type ((A), (E) , (I)), hb/+ ((B), (F), (J)),
E(z)SO°n3 /+ ((C), (G), (K)), and E(z) s ° n3 +hb + ((D), (H), (L)). TM3 is a balancer
chromosome that is wild-type for kni.

Figure 3.16. Mutations in hb and E(z)so n 3 alleviate the abdominal phenotype produced by
the weak knil4 B allele. Embryos mutant for the weak knil4 B allele in trans to strong kni
alleles (kniFC and knilL), were tested for their degree of abdomen formation in four
maternal backgrounds: wild type ((A), (E)), hb/+ ((B), (F)), E(z)son3/+ ((C), (G)), and
E(z)s ° n 3 +/hb + ((D), (H)). TM3 is a balancer chromosome that is wild-type for kni.
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Figure 3.15 Paternal Genotype: knr// TM3
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Figure 3.16 Paternal genotype: kni' 48 / TM3
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In bcd embryos, mutations in E(z) do not exactly mimick lack of hb

activity

During the studies on the role of E(z) mutations on the Hbmat gradient I observed

that the phenotypes conferred by E(z) mutations were not entirely equivalent to the lack of

hbm a t function. In most embryos from E(z) bcd females the posterior abdomen was longer

than the anterior (Figure 3.17A), while embryos that lack both Bcd and Hbm a t have short,

symmetric double abdomens (HUilskamp et al. 1990). Similarly, most embryos from E(z)

bcd tsl females form a polar abdomen with four or five segments (Figure 3.18A), while

segments (Struhl et al. 1992). In order to better understand the effect of E(z) on these

embryos, I further investigated possible cause(s) for this difference.

embryos from tor bcd hb germ line clones (mutations in tor and tsl, two genes required for

the terminal pathway, should be roughly equivalent) form a polarized field of at most two

One likely cause is the fact that the E(z) mutant combination is not completely

penetrant, and thus there is likely residual E(z) function in these embryos. Because of E(z)

function is required for adult viability and oogenesis, the production of germ line clones

heteroallelic for E(z)so n mutations in a bcd mutant background would circumvent this

problem.

Another likely cause for the non-equivalence between E(z) and hbm at mutations is

that, while E(z) mutations cause Hbmat to be effectively mutant for its repressive function

on kni and gt, the Hbmat protein itself is still present and in principle capable of functioning

as an activator of Kr. The Kr protein is in turn a repressor of both kni and gt and thus

would tend to prevent their expression in the anterior half of the embryo. To test whether

the activation of Kr by Hbmat is involved in these differences, embryos from E(z) bcd and

E(z)bcd tsl females with reduced Kr levels were compared to similar embryos with the

wild-type Kr dosage. In these experiments the "Kr mutant" collection consisted of one

quarter homozygous Kr mutant embryos, one half Kr heterozygotes embryos and one

quarter embryos with the wild-type Kr dosage.

Indeed, activation of Kr contributes to the differences between E(z) and hb

mutations. A reduction in Kr dosage in E(z) bcd embryos leads to an increase in the degree

of symmetry of these embryos (compare Figures 3.17A and B), so that a greater fraction of

Figure 3.17. A reduction in Kr dosage increases the symmetry of embryos from E(z) bcd
females. A) E(z)So n 2 bcd/E(z) 61 bcd females crossed to wild type males. B) Krl/+;
E(z)SOn 2 bcd/E(z)61 bcd females crossed to Krl/+ males. One-quarter and one-half of this
progeny are expected to have no and half the normal Kr dosage, respectively. Symmetry
index is defined as (# of abdominal segments in the posterior abdomen - # of abdominal
segments in the anterior abdomen). Symmetrical embryos have a symmetry index of 0.
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Figure 3.17
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embryos are similar to bcd hb7n a t mutant embryos. Similarly, a reduction in Kr dosage

causes a reduction in the number of abdominal segments produced by embryos from E(z)

bcd tsl females (compare Figures 3.18A and B), so that they approach the morphology of

tor bcd hblat mutant embryos.
Thus although mutations in E(z) alone are not equivalent to the complete absence of

hbm a t, mutations in both E(z) and Kr approach the hb nlat mutant phenotype. These data

suggests that mutations in E(z), while inactivating the maintenance of the repressive

function of the Hbmat protein, do not affect the Hbmat protein per se nor its activation of

Kr.

Interactions between nanos, suppressors-of-nanos and zeste

Some of the Pc-G genes involved in the regulation of gap genes, such as E(z) and

the genes in the Su(z)2 complex, have also been reported to be involved in the repression

of white (w) by the Zeste1 (Z 1 ) product. The following two studies expand on this

possible connection. First, I compare the son phenotype and the suppression of the zeste-

white interaction confered by a number of son, E(z) and other Pc-G mutations. Second, I

ask whether the wild-type Zeste product, which has been proposed to facilitate transcription

of genes, is required for the expression of kni and gt.

Effect of mutations in E(z), other son genes and other Pc-G genes on the

zeste-white interaction. Mutations in some Pc-G gene, such as E(z), Sex comb on

midleg (Scm) and the Su(z)2 complex, are known to affect the repression of white by the

Zestel (Z1 ) product (Jones and Gelbart 1990; Wu et al. 1989). The wild-type Zeste

protein is a weak transcriptional activator of white. Flies homozygous for null zeste

mutations (such as the allele za) have a mild reduction in eye pigmentation (Kaufman et al.

1973). The zI allele codes for an aberrant Zeste protein that produces a yellow eye

phenotype because it represses white transcription when two or more copies of the 5'

region of white are in close proximity (see Chen and Pirrotta (1993) and references

therein). Null mutations in some Pc-G genes, such as E(z), Scm and Su(z)2, suppress this

phenotype, leading to a darker eye. Thus, these Pc-G gene products may be required for

the transcriptional repression of white by Z1.

Figure 3.18. A reduction in Kr dosage decreases the number of abdominal segments
produced by embryos from E(z) bcd tsl females. A) E(z)son 2 bcd tsl/E(z) 6 1 bcd tsl
females crossed to wild type males. B) Krl/+; E(z) so n2 bcd tsl/E(z)6 1 bcd tsl females
crossed to Krl/+ males. One-quarter and one-half of this progeny are expected to have no
and half the normal Kr dosage, respectively.
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Figure 3.18
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Since the effect of mutations in these Pc-G genes can only be observed when white

is repressed by Z 1, it is unclear what role, if any, these Pc-G genes normally have in the

transcription of white. Nevertheless, the repression of white by Z1 is a simple assay to

determine whether genes are involved in the repressive process that Z1 promotes. This

process may involve multimeric structures containing Pc-G products similar to those that

have been proposed to act on homeotic genes (see Chapter I).

The effect of the E(z)s o n mutations, as well as that of other son mutations, on the

zeste-white interaction is shown in Table 3.20. In an otherwise wild-type background, z1

wi /Y males exhibit an orange eye color. As previously reported (Jones and Gelbart

1990), control E(z) nU ll mutations have a mild suppression effect on the repression of w iS

by Z1, leading to a dark orange color. The E(z)son mutations have a stronger suppression

effect of the zeste-white interaction, which shows that they are gain-of-function alleles

which interfere with the wild-type E(z) function (this had also been inferred by their son

phenotypes-see Chapter II). This effect is comparable to that of the previously known

gain-of-function E(z)6 0 allele. The son mutations son2 9 , son5 9 and son1 2 6 did not have a

detectable effect on the repression of wiS by Z1.

Table 3.21 compares the dominant son phenotype and suppression of the zeste-

white interaction by E(z)son and other son mutations. In some cases E(z) mutations affect

both processes with corresponding strength. For example, E(z)null alleles and deficiencies

cause a mild son phenotype and a mild suppression of the z-w interaction, while E(z) so n

alleles have a strong effect in both processes.

Nevertheless, there is not an absolute correspondence of the effect of mutations on

these two processes. The gain-of-function allele E(z) 6 0, for example, is a strong

suppressor of the z-w interaction but does not appreciably suppress the nos phenotype.

The opposite case, when mutations affect the nos phenotype but not the z-w interaction is

also observed, as in this case with the son mutations son2 9 and son126 .

I have also tested a number of Pc-G mutations for their effect on the z-w

interaction. Table 3.22 shows the effects of mutations in Pc-G genes on the z-w

interaction. I found that in addition to mutations in E(z) and the Su(z)2 complex, a

Polycomb like allele, PclD5, also causes a dominant suppression of the z-w interaction.

Mutations in the genes extra sex combs (esc), pleiohomeotic (pho) and Super sex combs

(Sxc) did not appreciably modify the z-w effect.

Table 3.23 compares the son phenotype and suppression of z-w effect for a number

of Pc-G genes. Again, there seems to be no absolute correlation between son effects and

the suppression of the z-w interaction. Mutations in some genes, such as Pcl, act as strong

suppressors of the repression of w by Z 1 but do not have a detectable dominant son
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Table 3.20. Suppression of the zeste-white interaction by E(z) alleles and other

son mutations.

(1) Careful observations in two separate experiments, one of them with an independent

observer, establish the order of strength of suppression of the z-w interaction as: (lighter eye

color) E(z)6 0 = E(z)son2 < E(z)sonl = E(z) s o n 3 (darker eye color).
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Genotype Eye color in zl wis / Y males

+/+ orange
Df(3L)Ez6 / + dark orange

E(z)65 / + dark orange

E(z)63 /+ dark orange

E(z)64 / + dark orange

E(z)1 / + yellow
E(z)6 0 / + reddish (1)
E(z)son 1 / + reddish (1)

E(z)so n2 / + reddish (1)
E(z)S0on3 / + reddish (1)

E(z)s n 2 / Df(3L)Ez6 red (wild-type)

son2 9 / + orange
son59/+ orange
son 126 / + orange



Table 3.21. Comparison of the suppression of nos and suppression of the

zeste-white interaction phenotypes by E(z) and other son mutations.

(1) Legend of symbols for the suppression of the nos phenotype. symbol (% of embryos with > 3

abdominal segments in a hb nos/nos background): 0 (0-5%), + (6-15%), ++ (16-30%), +++ (51-

100%).

(2) Legend of symbols for the suppression of the z-w interaction. symbol (eye color of z1 ws /Y

males): - (yellow 0 - enhancement), 0 (orange - no suppression), + (dark orange), ++ (reddish),

+++ (red (wild-type) color).

(3) It is possible that E(z)l enhances the hb nos/nos phenotype in the same way that it enhances

the z-w effect. This enhancement would be difficult to detect in this particular background

because the background level of abdominal segment formation is already very low.

(4) Data for son phenotype is from the genotype E(z)sn 2/ E(z)65 in a nos, hb+ background (see

Table 3.10, E(z)65 is a null). A (+) has been added for comparison according to the expected

enhancement of the son phenotype in a hb heterozygous background.
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E(z) genotype Suppression of the nos Suppression of the z-w
__________....__ _ phenotype (1) interaction (2)

+/+ 0 0

Df(3L)Ez6 / + + +

E(z)65 /+ 0 +
E(Z) 6 3 / + + +

E(Z) 64 /+ + +

E(Z) 1 /+ 0 (3)

E(z)6 0 /+ 0 ++
E(z)son 1 / + +++ ++
E(z) s o n2 / + ++ ++

E(z) s o n 3 / + +++ ++

E(z) s ° n2 / Df(3L)Ez6 +++(+) (4) +++

son 2 9 /+ +++ O
son59 / + O O
Son 126 / + ++ 0



Table 3.22. Suppression of the zeste-white interaction by mutations in Pc-G
genes.
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Genotype Eye color in z1 wiS / Y males

+/+ orange
E(z)n ul l / + dark orange

E(z)son / + reddish
esc / + orange
Pcl/ + reddish
pho/+ orange
Su(z)2-C / + reddish
Sxc / + orange



Table 3.23. Comparison of the suppression of nos and the suppression of the

zeste-white interaction phenotypes caused by mutations in Pc-G genes.

(1) Legend as in Figure 2.21, (1).

(2) Legend as in Figure 2.22, (2).

(3) The degree of suppression for this column is based on values in a background with full hbmnat

dose. To facilitate a comparison with the dominant effect column, a (+) has been added to

account for the expected enhancement in a hb m at heterozygous background.
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phenotype. On the other hand, mutations in pho have dominant and recessive effects on the

nos phenotype but do not act as suppressors of the z-w effect.

In conclusion, I have found that there are both allele and gene specific effects for

both the suppression of the nos phenotype and the suppression of the repression of w by

ZI. The allele specificity suggests that E(z) is a complex protein which functions in the

repression of gap genes and white by using different functional domains. Further evidence

of the complexity of E(z) is presented in Chapter IIm, where we show that E(z)so n

mutations strongly interfere with gap gene repression but retain other E(z)-dependent

functions.

The gene specificity of Pc-G genes in their effects on the nos phenotype and the z-

w interaction suggests that different combinations of Pc-G genes are used for the

repression of different genes. Nevertheless, in most cases the recessive effect of null

mutations in both of these processes has not been determined, which leaves open the

possibility that the same set of Pc-G products may be required for the repression of gap

genes and w, but that these two processes are differentially sensitive to reductions in Pc-G

gene function.

zeste is not absolutely required for the son effect. The wild-type zeste gene has

been shown to be required for pairing-dependent effects at a number of loci, including the

Bithorax complex (reviewed in Wu and Goldberg, 1989). The Zeste protein has been

proposed to facilitate transcriptional activation and has been shown to activate genes

containing Zeste binding sites in vitro and in vivo (Pirrotta et al. 1987; Biggin et al. 1988;

Laney and Biggin 1992). Nevertheless, the Zeste protein must be part of a redundant

system of transcriptional activation since flies homozygous for null zeste alleles exhibit as

their only phenotype a mild reduction in eye pigmentation (Kaufman et al. 1973; Goldberg

et al. 1989).

Given the involvement of Zeste in in vivo transcription from white and Ubx

promoters (Kaufman et al. 1973; Laney and Biggin 1992), and the effect of mutations in

the E(z) and Su(z)2-C genes in both gap genes and white regulation, it seemed possible that

the wild-type Zeste product may be involved in the activation of kni and gt. Clearly, Zeste

is not required for the activation of these genes in an otherwise wild-type background,

since females homozygous for zeste null alleles are viable and fertile. Nevertheless,

perhaps the derepression of kni and gt by E(z) mutations in a nos background is dependent

on Zeste activity, or the E(z) mutations rendered the kni and gt promoters more sensitive to

the lack of Zeste activity. Thus I tested for the effect of zeste mutations on the son

phenotype.
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Table 3.24 shows that the son phenotype still occurs in the absence of maternal

wild-type Zeste product (a/aza). Thus, the Zeste product is not essential for the son

phenotype.

A maternal genotype homozygous for the zI allele seems to produce a reduction in

the son phenotype caused by E(z) s ° n3 , both in the full dose and heterozygous hb m a t

backgrounds. This effect appears to be dependent on two copies of the Z1 product, since it

is not observed in embryos from za/zl females. It is possible that the gain-of-function Z1

product interferes with expression of kni and/or gt in a manner similar to its repression of

w transcription, although in the latter case za/zl individuals also exhibit the a phenotype.

Nevertheless, these results should be considered preliminary since these experiments have

not been repeated, and it is also possible that the reduction of the son phenotype in z1

homozygotes is caused by an additional mutation present on the z1 chromosome.

In summary, these data show that zeste is not essential for the son phenotype. If

zeste is involved in the activation of kni and gt, there is sufficient redundant activators in

the early embryo for the normal transcription of these gap genes. Evidence for the presence

of activators which can substitute for zeste function in the in vivo activation of the Ubx

promoter has been recently obtained (Laney and Biggin 1992).

204



Table 3.24. zeste function is not required for the son phenotype.

(1) % of embryos with 2 3 abdominal segments.

205

Maternal Genotype

Maternal zeste genotype E(z)son3 nos /nos E(z)son3 nos/hb nos

% rescue (1) n % rescue (1) n

za /za 10 48 67 63

za /zI 10 147 93 293

z1 / z 1 1 268 38 215
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CHAPTER IV. A possible role of trithorax group genes in the

regulation of gap genes

ABSTRACT

Previous experiments have shown that Polycomb group (Pc-G) genes are

required very early in embryogenesis for the patterning of abdominal gap genes.

Specifically, some Pc-G genes are required for the maintenance of the repression of

knirps and giant initiated by the maternal Hunchback (Hbmat) protein. Here, I ask

whether trithorax group (trx-G) genes, which have been shown to antagonize Pc-G

genes in the regulation of homeotic genes, also have a role in gap gene regulation. In

genetic backgrounds that depend on repression by the Hbmat protein trx-G gene

mutations exert an effect on abdominal segmentation that is synergistic and not

antagonistic to that of Pc-G gene mutations. A strong effect of trx mutations depends

on an alleviation of the repression of knirps and giant by Hbmat and Pc-G genes.

These results are consistent with trx-G genes acting through a pathway that is

independent of, but secondary to, that of repression by Hbmat and Pc-G genes.

Genetic data show that the effect of trx mutations is not mediated indirectly by Kr,

another factor that can repress knirps and giant expression. Possible models for a role

of trx-G genes in the regulation of abdominal gap genes are discussed.

INTRODUCTION

The initiation of gene expression patterns in the Drosophila embryo depends on

inputs from transient regional factors, such as the products of maternal, gap and

segmentation genes (for reviews, see Hiilskamp and Tautz (1991); Hoch and Jickle

(1993); Kornberg and Tabata (1993) and Chapter I). The stabilization of those patterns

depends on maintenance mechanisms such as cross-regulatory interactions,

autoregulation and regulation by general factors such as the products of the trithorax

(trx-) and Polycomb group (Pc-G) genes (for reviews, see Bienz (1992); and Chapter

I).

A number of lines of evidence suggests that regulation by the trithorax group

(trx-G) and Polycomb group (Pc-G) of genes occurs at the level of chromatin (for

reviews, see Paro (1990); Kennison and Tamkun (1992); Kennison (1993); Chapter I).

In particular, trx-G and Pc-G genes are thought to promote the formation of,
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respectively, open and closed chromatin domains thereby stabilizing gene expression

patterns.

Both of these groups of genes are believed to affect a number of targets,

including the homeotic genes. However, mutations in trx-G genes cause homeotic

phenotypes characteristic of loss of homeotic gene function, while mutations in Pc-G

genes lead to phenotypes resulting from ectopic homeotic gene expression. In both

cases, the effect has been shown to occur at the level of homeotic gene transcription

(for trx-G gene, see Ingham (1985); Tamkun et al. (1992); Breen and Harte (1991);

Breen and Harte (1993); for Pc-G genes, see Struhl and Akam (1985); Glicksman and

Brower (1990); Jones and Gelbart (1990); McKeon and Brock (1991); Simon et al.

(1992); Zhang and Bienz (1992)). Consistent with these opposite phenotypes,

mutations in trx-G genes suppress the homeotic phenotypes caused by Pc-G gene

mutations (Ingham 1985; Mazo et al. 1990; Breen and Harte 1991; Tamkun et al. 1992;

Breen and Harte 1993).

We have previously shown that the Pc-G gene Enhancer of zeste (E(z)) and

other Pc-G genes are involved in the repression of gap genes (Chapter III). In

particular, mutations in E(z) affect the maintenance of the repression of the abdominal

gap genes knirps (kni) and giant (gt) that is initiated by the maternal Hunchback

(Hbmat) protein gradient. This maintenance function has been shown to stabilize the

anterior boundaries of expression of kni and gt.

Here, I ask whether the trx-G genes, like the Pc-G, may be similarly involved

in the regulation of gap gene expression. This question is particularly interesting given

the recent finding that the E(z) and Trx proteins have a common C-terminal domain,

which has been proposed to interact with a common target (Jones and Gelbart 1993).

Interestingly, the role of E(z) as a gap gene regulator is dispensable in the wild-type

embryo (Chapter III). The role of E(z) in the maintenance of gap gene repression is

normally obscured by the overlying network of redundant gap gene zygotic

interactions, such as repression by Bicoid-activated genes. It is possible that similar

redundant interactions might be obscuring a role for trx-G gene function in the

regulation of gap genes.

In the hope of circumventing interactions that could substitute for a role of trx

function in gap gene regulation, I have tested the effect of trx-G mutations in mutant

backgrounds where the phenotype is dependent on the transient function of the Hbmat

morphogenetic gradient. These backgrounds are the same that previously allowed us to

observe the effect of Pc-G genes on gap gene regulation.
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The first mutant background lacks nanos (nos) function and leads to the ectopic

translation of Hbmat protein in the prospective abdominal region (Tautz 1988; Wang

and Lehmann 1991). Hbmat protein represses kni and gt transcription and leads to

embryos that completely lack abdominal structures. This mutant background allows

testing a possible role of trx mutations in the activation and/or repression of the

abdominal gap genes.

The second background in which trx mutations were tested was a bicoid (bcd)

mutant background. The Bcd protein activates transcription of a number of anteriorly

expressed genes, including the zygotic hunchback (hbZYg) gene (Schrdder et al. 1988;

Tautz 1988; Driever and Niisslein-Volhard 1989; Driever et al. 1989; Struhl et al.

1989). Thus, in bcd mutant embryos, many possibly redundant interactions are not

present. Moreover, in these embryos, the only source of anteroposterior polarity is the

Hbmat protein gradient (Hiilskamp et al. 1990; Struhl et al. 1992). This mutant

background allows testing for a possible role of trx-G gene mutations in patterning by

the Hbmat morphogen.

We find that trx-G mutations have an effect in both mutant backgrounds. To

our surprise, and in contrast to the case of homeotic gene expression, the effect of trx

and Pc-G gene mutations on abdominal gap gene expression is synergistic. The effect

of trx-G mutations does not occur by affecting the levels of the abdominal gap gene

repressor Kr. Thus trx-G mutations must be acting on the expression of gap genes

either indirectly through an unknown pathway, or directly in an unprecedented manner.

MATERIALS AND METHODS

Genetic analysis and strains: All experiments were conducted at a

constant temperature of 250C. Embryos were allowed to develop cuticle structures (24

hrs at 25°C). In the nos mutant background, the number of abdominal segments was

scored directly under a dissecting scope (the embryos being cleared by a film of mineral

oil). In the bcd mutant background, the embryos were scored as cuticle preparations

embedded in Hoyer's medium (Wieschaus and Niisslein-Volhard 1986).

The background-mutations used were nosL7, which lacks the function required

for abdomen formation (Lehmann and Niisslein-Volhard 1991), bcdEl, a strong allele

(Struhl et al. 1989) and hb7 M, a protein null (Lehmann and Niisslein-Volhard 1987b;

Tautz 1988). The E(z)so n mutations are gain-of-function dominant suppressor-of nos-

(son) mutations. E(z)6 5 deletes the E(z) locus (Jones and Gelbart, 1993) and E(z)6 3 is

a null (Jones and Gelbart, 1990). The son mutations son2 9, son5 9 , son1 2 6 and
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Pson 8 2 are described in Chapter II and Appendix A. The trx-G mutations tested were

(unless otherwise stated, see Lindsley and Zimm 1992 for references): trithorax,

Dfl3R)red-P52 (=Df(trx) in the text), a deficiency that deletes the trx locus), trxl(a

temperature-sensitive loss-of-function allele) trxE2 (a strong suppressor of Pc);

brahma, brm2 (loss-of-function, (Tamkun et al. 1992, J. Kennison, personal

communication), brm2 0 (partial loss-of-function, an additional trx-G-like mutation is

also present in this chromosome, J. Kennison, personnal communication); kohtalo:

ktol; moira: morl (loss-of-function); osa: osa2 . The Kruppel allele used, Kr1, is a

null.

Antibody staining: Embryos were fixed with paraformaldehyde and stained

according to Gavis and Lehmann, 1993. Anti-Kr rabbit antibody, a gift from M.

Levine, was used at a 1:2000 dilution. Anti-Hb rat antibody, a gift from G. Struhl,

was used at a 1:5000 dilution.

A note on nomenclature

The "nos phenotype" refers to the lack of abdominal segmentation exhibited by

embryos females mutant for the nanos (nos) gene.

Mutations isolated in screens for suppressors of the nos phenotype (i.e. those

that allow the formation of abdominal segments in the absence of nos function) are

called "son (suppressor-of-nos) mutations". The "son phenotype" refers to the partial

or complete rescue of the nos phenotype by these son mutations, by mutations in some

Pc-G genes, and by maternal heterozygosity for hb.

Mutations in trx enhance the tendency of son mutations to suppress the nos

phenotype. This effect is referred to as the "trx-dependent enhancement of the son

phenotype".

The effect of nos, hb and son mutations on the expression of kni and gt has

been shown to depend solely on the maternal genotype (Lehmann and Niisslein-

Volhard 1991; Chapter III; see below). For this reason, I refer to embryos according to

their maternal genotype, and not their zygotic genotype (e.g. embryos from nos or E(z)

mutant females as nos or E(z) mutant embryos. A similar nomenclature is sometimes

used for trx-G mutations. In this case an exclusively maternal effect seems likely, but

has not been rigorously tested (see below).
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RESULTS

Trithorax mutations enhance the son phenotype

In the case of homeotic genes, the effects produced by mutations in Pc-G genes

are counteracted by mutations in trx-G genes. I tested whether a similar genetic

interaction occurs in the case of gap gene regulation, i.e. whether mutations in trx-G

genes suppress (revert) the son phenotype caused by E(z) mutations to a more "nanos-

like" phenotype.

Initially, I tested for the dominant effect of a deficiency that includes the trx

locus on the E(z)-dependent son phenotype. This experiment involved comparing the

percent of embryos that formed abdominal segments in the progenies of + Dfltrx)

nos/E(z)- + nos and + +' nos/E(z)- + nos females. Surprisingly, the trx deficiency

enhanced the son phenotype associated with E(z) mutations (Table 4.1). This effect is

most apparent with E(z) so n alleles, which are gain-of-function alleles that have a strong

dominant son phenotype (Chapter III).

In a similar experiment, I also tested whether other mutations that had been

isolated in screens for son mutations (see Chapter II) were enhanced by the trx

deficiency. Table 4.1 shows that the trx deficiency enhanced the son phenotype

conferred by Pson82 , but not that conferred by son2 9 or by mutations in the son5 9,1 2 6

complementation group. This suggests that Pson8 2 may have a role similar to that of

E(z) in the repression of gap genes. (The implications of the different behavior in this

assay of son2 9 are discussed in Appendix A.). The dominant son phenotype of the

son5 9 and son1 2 6 mutations may be too weak to be observable, even if enhanced by

trx mutations. Thus, a deficiency of trx enhanced the son phenotype conferred by

some, but not all, dominant son mutations.

A mutation in Polycomb, which does not have on its own a dominant son

phenotype, also did not exhibit any trx-dependent enhancement of the son phenotype

(Table 4.1).

The dominant enhancement of the son phenotype was also induced by other trx

alleles, such as trxE2 and the temperature-sensitive trxl allele (Table 4.2).

Interestingly, this enhancement was in turn reduced in embryos from females doubly

heterozygous for trxE2 and the brahma allele brm2 . A similar effect has been observed

in a bcd mutant background (data from experiments in bcd mutant embryos suggests

that the effect of trx alleles on the son phenotype is more representative of the effect
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Table 4.1. Enhancement of the son phenotype by Df(trx).

Maternal Maternal genotype

genotype nos /nos Df(trx) nos/+ nos

% rescue (1) n % rescue (1) n

+/+ 0 625 0.3 666

E(z)son 1/+ 2 246 13 373

E(z)son2/+ 0.5 440 9 691

E(z)son3/+ 1 299 47 (2) 234

E(z)65/+ 0 409 0.5 220

E(z)63/+ 0 403 1 519

son29/+ 37 596 32 820

son5 9/+ 0.2 847 0 637

son 126/+ 0 605 0 254

Pson8 2/+ 0 807 12 378

Pcs/+ 0 732 0 84

(1) % of embryos with > 3 abdominal segments.

(2) This value is taken from a previous experiment where E(z)so n 3 + / + Df(trx)

transheterozygotes were viable (E(z) s ° n 3 + / + + control: 2%, n=166). For this reason it is not

directly comparable to other values in this table. On this and subsequent tests E(z) s ° n 3 + / +

Df(trx) transheterozygotes were lethal. The lethality may be caused by the accumulation of a

genetic modifier and is not with the maternal genotype.
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caused by mutations in the trx-G as a whole rather than that caused by the brm2

mutation, see below).

Because in all tests mutant females are crossed to wild-type males, it seems

likely that the effect of trx mutations is, as in the case of E(z) (Chapter III), solely due

to maternal trx contribution. This would be consistent with the fact that the abdominal

gap genes are part of the first tier of zygotic gene expression, which relies solely on

regulation by mate nal products. Nevertheless, proper tests addressing the possibility

of zygotic trx-G gene contribution to the son phenotype have not been performed.

These data suggest that trx and Pc-G genes do not have antagonistic roles on the

expression of the abdominal gap genes, as in the case of homeotic genes. Rather, the

phenotypic effects suggest that the wild-type products of both trx and Pc-G genes may

contribute, directly or indirectly, to the repression of kni and gt in nos mutant embryos.

The enhancement of the son phenotype by trx mutations depends

on mutations that weaken the repression of abdominal gap genes

In order to better characterize the effect of trx mutations in the repression of gap

genes, I asked whether trx mutations can cause a son phenotype in a nos (otherwise

wild-type) background. trx mutations did not cause a son phenotype, even in

combinations such as trxlIDfitrx), which were expected to have severely reduced trx

function (Table 4.3). The lack of a recessive enhancement of the nos phenotype by trx

mutations contrasts with their strong dominant enhancement in backgrounds that

contain one copy of son, E(z)SOn or hb mutations (Tables 4.1 and 4.2). Thus, trx

mutations enhanced the son phenotype induced by other mutations that affect hb

function, but could not on their own induce a son phenotype. This suggests that trx

mutations act through a pathway that is independent of, but secondary to, that of

repression of kni and gt by Hbmat.

The enhancement of the son phenotype by trx mutations is

independent of Kr function

The known role of trx-G genes as activators of homeotic genes is in apparent

contradiction with their negative effect on abdomen formation, and presumably kni and

gt expression. These two facts may be reconciled if trx-G genes are required for the

expression of a second factor that in turn represses kni and gt. One such factor might

be the product of the gene Kr. In nos mutant embryos, ectopic Hbmat protein present
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Table 4.3. trx mutations do not affect the nos phenotype in a wild-type E(z)

background

(1) % of embryos with >3 abdominal segments.

217

Maternal genotype

(nos background) % rescue (1) n

+ / + 0 476

trx1 / + 0 821

trxE2 / + 0.2 870

Df (trx) /+ 0 710

trx1 / Df (trx) 0 639



in the prospective abdominal leads to the activation of Kr in this same domain (Gaul

and Jackle 1987; Gaul and Jackle 1989; Struhl et al. 1992). Kr in turn can act as a

repressor of kni and gt transcription (Hilskamp et al. 1989; Eldon and Pirrotta 1991).

Thus, both Hbmat and Kr likely contribute to the repression of kni and gt in nos mutant

embryos.

To test whether the effect of trx mutations is mediated through Kr, I tested

whether a reduction in the zygotic dose of Kr further enhanced the son phenotype.

Females of the genotype + trx(+or-) nos /E(z)s on 3 + nos were mated to Kr

heterozygous males. Half of the embryos from this cross were expected to have one

dose of Kr. The son phenotype was mildly enhanced in embryos that have a reduced

Kr dosage when their mothers carry the wild-type trx or trxE2 alleles (Table 4.4). This

effect was not observed in embryos from females that carry the trxl allele. Thus, these

experiments were consistent with a mild, although variable, enhancement of the son

phenotype by reduced Kr levels.

In order to conclusively test whether trx mutations act through Kr we examined

whether the trx-dependent enhancement of the son phenotype depends on Kr function.

The effect of combinations of mutant E(z)so n 3 and trxl alleles on a nos mutant

background was tested in embryos that were homozygous mutant for a Kr null allele

(Table 4.5). The results of this experiment showed that even in the absence of Kr

function, trx mutations caused an increase in the number of abdominal segments

produced by nos mutant embryos. This shows that the effect of trx on the nos

phenotype is likely through target(s) other than Kr.

In nos embryos, abolishing repression by Kr does not lead to the formation of

abdominal structures (Kraut and Levine 1991a; Table 4.5). However, repression by

ectopic Kr in nos embryos likely contributes to the nos phenotype. This is suggested

by the fact that, while in nos embryos the posterior spiracles (Fizkorper) are never

stretched, Kr nos double mutant embryos often exhibit stretched posterior spiracles

(68% with one or more stretched spiracles). This mild contribution of Kr to the nos

phenotype may explain the mild enhancement of the son phenotype by a reduced Kr

dosage described above.

Effect of trithorax group mutations in bcd mutant embryos

In order to test whether other trx-G genes have a role in the anteroposterior

patterning organized by the Hbmat protein, I tested the effect of mutations in several

trx-G genes, such as brahma (brm) kohtalo (kto), moira (mor) and osa, in bcd mutant
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embryos. In a bcd mutant background, anterior zygotic genes, including hbZYg, are

not activated, and the only source of anteroposterior polarity is the Hbmat protein

gradient.

Embryos that are mutant for bcd have a duplicated telson at the anterior end of

the embryo which has unstretched Filzkdrper material (Figure 4.1A). Nevertheless,

these embryos have a unique anteroposterior polarity that span their entire axis.

Females mutant for bcd which in addition carry mutations in tx-G genes, such

as kto, mor, osa and trx,-produce embryos that have at their anterior end a field of

denticles that is often in opposite polarity to the normal axis (Table 4.6, Figure 4. iB)

In addition, the anterior Filzkorper material is often stretched. This is likely an

indication that some abdominal segmentation has occurred. These effects are also

observed in bcd mutant embryos that have only one dose of Hbmat product (Table 4.6,

Figure 4.1C).

Table 4.6 shows the dominant effects of mutations in trx-G genes in bcd mutant

background with either the normal Hbmat complement, or half the Hbmat dosage,

using Filzkdrper stretching as a quantitative measure. Although results are somewhat

variable, some trends in this data can be observed. Mutations in kto, mor, osa, and trx

appear to have a significant dominant effect on the bcd phenotype, while brm mutations

do not appear to produce a significant effect. The same general trends, at a higher

penetrance, are observed in a background with half a dose of Hbmat.

The effect of combinations of two trx-G mutations was, in general, stronger

than that caused by single mutations. An exception was that a mutation in brm 2

reverses the effect of a trx mutation. This effect is similar to that conferred by this brm

allele in nos mutant embryos (see above). (The chromosome carrying the hypomorphic

brm2 0 allele contains a second mutation that is a strong suppressor of Polycomb, J.

Kennison, personal communication. Thus the effects of this chromosome may not

represent solely the effect produced by the brm2 0 allele). This phenomenon could be

explained if the balance between Trx and Brm gene products, and not their absolute

amounts, is important for the proper function of a trx-G gene complex.

The effect of trx-G mutations in the bcd background was similar to that in nos

Figure 4. 1. Cuticle preparations of bcd, bcd trx-G and bcd, hb heterozygous
embryos. A) bcd embryo. Anterior Filzkirper (arrowhead) are not stretched and the
anterior denticle bands have the normal polarity. B) bcd trx-G (actual genotype: bcd
trx1 osa /bcd mor) mutant embryo. C) bcd, hb heterozygous embryo. In B) and C),
there is a small reversal of denticle polarity at the anterior of the embryo and the
Filzk/rper (arrowheads) are stretched. Arrow indicates abdominal polarity, from
anterior to posterior. Dark-field optics. Anterior is left, dorsal is up.
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Figure 4.1
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mutant embryos, i.e. enhancing the formation of an "abdomen", although this time at

the anterior end of the embryo. The tendency to form abdominal structures is

presumably caused by leaky expression of abdominal gap genes at anterior regions,

where they normally are repressed.

The effect of trx mutations in a bcd background with the normal hbm a t

complement was further enhanced when multiple trx-G gene mutations were combined

(Figure 4.2) Again, in spite of the somewhat variable background, it was apparent that

the additive effects of mutations in different trx-G genes, such as in the genetic

combinations trxl + osa2 / + mor1 + and trxl + osa2 + /trxl mor1 +, led to a high
proportion of bcd embryos with rudimentary anterior abdomens.

Expression of Hbmat and Kr in trx-G mutant embryos

Embryos from bcd mutant females which in addition carried the trx-G mutant

combination trxl + osa 2 /+ mor1 + exhibited phenotypic effects at a penetrance of

about 50% (Figures 4.1 and 4.2). Embryos from these females will be referred to as

bcd, trx-G mutant embryos.

Using the bcd, trx-G mutant embryos, I attempted to obtain more evidence on

the possible mechanism of action of trx on gap gene regulation. Previously I had

shown, in a nos background, that the effect of trx mutations is mediated through a

target different than Kr. I attempted to directly confirm this result by testing whether

Kr expression is affected by trx-G mutations. In addition, I tested whether the effect of

trx on abdomen formation is mediated through the Hbmat protein (for example, if trx-G

gene function was required for activation of hbmat expression in the nurse cells).

Kr and Hbmat protein were detected in bcd, trx-G mutant embryos using

antibody staining (not shown). For both proteins, the staining patterns and intensities

were similar to those observed in parallel stainings of bcd (wild type for trx) embryos.

Figure 4.2. Effect of multiple mutations in trx-G genes on a bcd mutant background.
Rows and columns represent different gametes, boxes represent the genotype of this
combination. The background genotype is homozygous for bcd. In each box, the
value at the top left corner represents the percent of embryos that produce stretched
Filzk6rper, and the value in the bottom right comer is the sample size. Two different
lines carrying the brm 2 0 mutation were used, to increase the possibilities that at least
one of them also carried the associated trx-G-like mutation (see Materials and
Methods). Boxes and double boxes indicate genotypes that led to layings with 5-15%
and > 16% embryos with stretched anterior Filzkorper, respectively. "L" indicates that
the genetic combination is lethal.
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In addition, the staining intensities for both proteins in these two mutant backgrounds

were clearly higher than those in control embryos that carried half the dose of Hbmat

protein (i.e. from bcd hb/bcd + females).

Unfortunately, in this large scale experiment, the penetrance of the phenotypic

effect observed in bcd, trx-G mutant embryos was significantly lower than that

observed in bcd hb/bcd + embryos (9% compared to 37%, respectively). This leaves

open the possibility that trx-G mutations affect the levels of Kr and/or Hbmat protein,

but the penetrance of this effect is too low to be observed.

DISCUSSION

Here, I report the effects of trx-G mutations in nos and bcd mutant

backgrounds. In nos mutant embryos, trx mutations enhance the suppressor-of-nos

phenotype produced by mutations that alleviate repression of kni and gt by Hbmat. In

bcd mutant embryos, trx mutations promote the formation of small mirror-image

abdomens in anterior regions. Both of these phenotypes can be explained if mutations

in trx-G genes increase the tendency of abdominal gap genes to be expressed in spite of

high Hbmat levels.

Possible models for the effects of trx mutations on abdominal gap

genes

trx-G and Pc-G genes are genetic antagonists of each other. At the molecular

level, they are thought to be involved in the activation and repression of homeotic genes

(Figure 4.3A), perhaps by promoting stable chromatin structures (for reviews, see Paro

(1990); Kennison and Tamkun (1992)). Previously, I had shown that Pc-G mutations

repress the abdominal gap genes in a manner similar to their effect on homeotic genes

(Chapter III). On the other hand, the synergistic enhancement of the son phenotype by

trx and Pc-G mutations suggests that trx-G genes have an inhibitory, and not a

positive, role on gap gene expression. Thus our data argue against a model for gap

gene regulation similar to that in the regulation of homeotics (Figure 4.3B).

An alternative model that accommodates the phenotypic effect of trx-G

mutations and the fact that trx-G genes are thought to be involved in gene activation is

presented in Figure 4.3C. In this model, trx-G genes are required for the expression of

a second factor (X), which in turn is a repressor of kni and gt. An obvious factor with

the properties of X could be the Kr protein. However, this study shows that the effect
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of trx mutations can be observed in the absence of Kr function. Thus, trx must act in

the pathway of abdomen regulation through a target other than Kr.

Another candidate for a factor with the properties of X in model C could be the

Tll protein. In tll mutant embryos, kni expression expands posteriorly, showing that

T11 is normally a repressor of kni (Pankratz et al. 1990; Pankratz et al. 1992). In nos

and bcd mutant embryos, Tll could be contributing significantly to the repression of

abdominal gap genes in posterior and anterior regions, respectively. This repression

would be alleviated in trx mutant background if tll expression depends on trx-G

activity. This model is particularly interesting, since the identity of the terminal genes

activator is unknown. The possibility that the effect of trx mutations on the son

phenotype is mediated through Tll is currently being tested.

In another model, trx-G genes are required for hbm a t expression (Figure 4.3D).

No apparent differences in the levels of Hbm a t protein were observed trx-G bcd mutant

embryos when compared to bcd mutant embryos. Nevertheless, because in this

experiment the penetrance of the rudimentary anterior abdomen phenotype in trx-G bcd

embryos was significantly lower than that in control bcd embryos with half the dose of

Hbmat, it is not possible to conclude with certainty that mutations in trx-G genes do not

affect Hbm a t levels. Future experiments should try to achieve a more penetrant

background, perhaps by using genetic backgrounds homozygous mutant for strong trx-

G mutations. Because trx-G genes are required for adult viability, this will require the

creation of germ line clone chimeras.

Additional models can be proposed in which the integrity of trx-G gene

complexes is required for the stability of Pc-G complexes, or of a common target

required for the function of trx- and Pc-G genes in the early embryo (Figure 4.3E).

Indeed, genetic and molecular studies in Drosophila and homologous systems in yeast

provide some precedents for these possibilities (Franke et al. 1992; Peterson and

Herskowitz 1992; Jones and Gelbart 1993).

Another, although unprecedented, possibility is that some trx-G gene products

can act as direct repressors of gap genes (Figure 4.3F).

Synergistic interactions between trx and son mutations

In this report, I show that the that enhancement of the son phenotype by trx

mutations depends in turn on mutations that weaken the repression of kni and gt in nos

mutants. In a nos (but otherwise wild-type) background, trx mutations, even when

homozygosed, do not induce a strong son phenotype. On the other hand, a strong

227



effect of even one mutant copy of trx can be observed when additional genetic

mutations (son, Pc-G genes or hbtat) weaken the repression of kni and gt in the

prospective abdominal region. The genetic behavior of trx is different from that of

hbna t or Pc-G gene mutations, which when homozygosed cause a strong suppression

of the nos phenotype (Hilskamp et al. 1989; Irish et al. 1989a; Struhl 1989; Chapter

III).

In a bcd mutant background, one can observe mild effects caused by trx

mutations in the absence of additional son-type mutations. Given the results in a nos

background, however, it seems likely that this effect is small compared to that in

synergism with son mutations.

The fact that the effect of rrx mutations is greatly enhanced when repression by

Hbmat is compromised has implications for models of trx function. In particular, this

phenomenon seems most consistent with a model in which trx acts through a pathway

which is independent of, but secondary to, the input from Hbmat/Pc-G genes (as in

Figure 4.3C).

A redundant role for trx-G genes in embryogenesis

In the absence of both maternal and zygotic Trx product, embryonic

development can proceed normally to a large extent, with embryos exhibiting only

minor homeotic and segmentation defects (Ingham 1983). Nevertheless, early embryos

Figure 4.3. Possible models for a role for trx-G and Pc-G genes in the regulation of
the abdominal gap genes kni and gt. A) trx-G and Pc-G products are involved in the
maintenance of activated and repressed states, respectively, of homeotic genes. The
initiators of homeotic gene expression (not shown) are regions specific transcription
factors such as maternal, gap and pair rule gene products. B-F) Hypothetically models
for the regulation of gap genes by trx- and Pc-G genes. Pc-G genes are involved in the
maintenance of the repression initiated by the Hbmat protein (Chapter lI). The
activators, whose identity is still unknown, may be general "default" factors. B) trx-G
genes are required for the activation of kni and gt. The enhancement of the son
phenotype by trx mutations suggests that this model is incorrect. C) trx-G genes are
required to activate a repressor (X) of kni and gt. Candidates for this repressor could
be Kr and Tll, although expression and genetic studies show that Kr does not mediate
the effect of trx. D) trx-G genes are required for the expression of the Hbmat protein.
Antibody staining studies show that this model is incorrect. E) In genetic backgrounds
with mutations in trx-G genes, trx-G gene products form complexes that are unstable.
The unstability of these complexes leads in turn to the degradation of Pc-G gene
product complexes, or, alternatively, a common target required for the function of both
of these groups of genes. F) In the early embryo, trx-G genes have an unprecedented,
direct repressive role on gap gene regulation.
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Figure 4.3. Models for trx-G gene function
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contain abundant trx RNA (Mozer and Dawid 1989), and trx is known to influence the

expression of homeotic genes in the embryo (Ingham 1983; Breen and Harte 1991;

Breen and Harte 1993). It is possible that in the embryo trx-G genes substitute for one

another. Alternatively, as it is the case of E(z) in abdominal gap gene regulation,

additional activators present in the embryo provide redundant functions that obviate the

requirement for trx-G function.

I have attempted to observe a role for trx and other trx-G genes in the regulation

of gap genes by testing mutations of these genes in genetic backgrounds whose

phenotypes rely upon the function of the Hbmat protein. In particular, a possibly

redundant role of trx in the regulation of abdominal gap genes by the Hbmat gradient

can be tested in bcd mutant embryos, since in these embryos other sources of

anteroposterior polarity have been removed. My results are suggestive of such a role

for trx-G gene products. Nevertheless, additional experiments are required to clarify

the exact nature of this role.

Our data argue that, in contrast to the case of homeotic regulation, trx-G genes

are not required to activate abdominal gap genes. The difference between homeotic and

gap gene activation may depend on the type of activators involved in these two

processes. While for homeotic genes the activators are specific transcription factors

(Duncan 1986; Ingham and Martinez-Arias 1986; Jack and McGinnis 1990; Reinitz and

Levine 1990; Irish et al. 1989b; Harding and Levine 1988; Qian et al. 1991; Miiller and

Bienz 1992; Busturia and Bienz 1993), in the case of the abdominal gap genes, the

activators are not known, and may be more general factors (Pankratz et al. 1992). It is

possible that this second class of factors act independently of trx-G genes function.
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CONCLUSIONS AND FUTURE DIRECTIONS

A screen for suppressors of nanos identifies a number of functionally
related genes involved in the regulation of gap gene patterning

Embryos that lack the nanos (nos) product do not form abdominal structures

because the abdominal gap genes, knirps (kni) and giant (gt) are not expressed. The
requirement of Nos to activate abdominal gap genes is indirect, where Nos is required to

repress in posterior regions of the embryo translation of the maternal Hunchback (Hbmat)

protein, which would otherwise repress transcription of kni and gt.

This indirect pathway suggested that mutations in genes required for the production

or activity of the Hbmat protein would suppress the nos phenotype. Therefore, we carried

out several screens for dominant suppressor-of-nos (son) mutations. Mutations in at least

5 complementation groups were isolated. One of these complementation groups

corresponds to the gene Enhancer of zeste (E(z)).

Genetic analysis shows that the E(Z)so n alleles isolated in our screen are gain-of-

function (antimorphic) alleles. Interestingly, they specifically affect the function required

for the regulation of abdominal gap genes, while other functions, including regulation of

homeotic genes, are comparatively less affected. The molecular characterization of the

lesions present in these mutations may identify a domain that is specifically involved in gap

gene regulation. The sequencing of the E(z)s on alleles is currently under way in the

laboratory of Rick Jones (SMU, Texas), who cloned the E(z) gene.

Unlike the E(z)son alleles, loss-of-function mutations of E(z) do not behave as
strong dominant suppressors of nos. We were able to show, using a temperature sensitive

E(z) allele, that loss-of-function mutations in E(z) act as recessive suppressors of nos.

This proved that the wild-type E(z) product is required for the nos phenotype.

Since E(z) is a member of the Polycomb group (Pc-G) of genes, it seems possible

that other Pc-G genes are also involved in abdominal development. Unfortunately, the fact

that loss-of-function mutations in genes that are involved in the regulation of gap genes

may not show a dominant son phenotype makes it difficult to prove whether other Pc-G

genes also regulate gap gene expression. This is because most Pc-G genes are required

zygotically, and thus testing their recessive effect involves the creation of homozygous

mutant germ line clones in a wild-type soma. Nevertheless, determining which Pc-G genes

are involved in abdominal gap gene regulation will require the systematic creation of such

germ line chimeras. Similar tests could also be applied to mutations in genes from families

related to the Pc-G family, such as the modifiers of position effect variegation.
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Our analysis suggests that other Pc-G genes are also involved in the regulation of

abdominal patterning. A number of other mutations in Pc-G genes, such as in

pleiohomeotic (pho) and the Su(z)-2 complex showed dominant suppression of nos. In

the case of pho, homozygous adults for a weak mutation are viable and show a strong son

phenotype. The case of the Su(z)2 complex is interesting, since individual loss-of-function

mutations in genes of the complex exhibit weak or no dominant son phenotype, while the

simultaneous reduction of several products using deficiencies encompassing the region

produces a stronger effect. This suggests that combining several Pc-G mutations may lead

to an observable dominant effect that would implicate the tested genes in abdominal gap

gene regulation.

On the other hand, we have been able to show that embryos that completely lack

extra sex combs (esc) product do not show a son phenotype. Thus, at least one Pc-G gene

is not involved in the regulation of abdominal gap genes.

Mutations in many of the other genes isolated as suppressors of nos exhibit genetic

interactions that suggest that these genes form part of a functionally related family of genes.

For example, transheterozygous combinations of the son5 9 or son 12 6 mutations and an

E(z)SOn allele lead to wing and bristle defects, and similarly, transheterozygous

combinations of E(z)s on mutations and the son2 9 mutation produce a strong female sterile

phenotype. A screen for revertants of this female sterile interaction has led to the isolation

of mutations in another interacting gene, Sufsi-I.

It is possible that the functional family defined by the son mutations may overlap

the Pc-G family in more than the common E(z) gene. Indeed, phenotypes exhibited by

certain son mutations are reminiscent of phenotypes produced by Pc-G mutations. For

example, females with mutations in Pson4 9 , son2 9, and Sufsi-1 produce embryos that

exhibit head involution defects and, in the case of Sufsi-1, pair-rule like phenotypes, both

of which have been associated with Pc-G gene mutations. It would be interesting to test

whether double mutant combinations of these mutations among themselves, or in

combination with Pc-G gene mutations, lead to an enhanced homeotic phenotype.

The role of Pc-G genes in the regulation of abdominal gap genes

We have studied the basis for the son phenotype conferred by Pc-g gene mutations

in genetic backgrounds mutant for E(z). Mutations in this gene lead to the derepression of

kni and gt in nos mutant embryos in spite of uniformly high levels of Hbmat protein.
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Thus, E(z) is required to act in conjunction with the Hbmat protein to repress transcription

of the abdominal gap genes kni and gt.

Because the Hb protein gradient determines by repression the anterior boundaries of

expression of kni and gt, we hypothesized that E(z) might be also required for the

determination of these boundaries. Nevertheless, the gap gene expression patterns in E(z)

mutant embryos that are otherwise wild type are largely normal. This lack of phenotype is

perhaps not surprising, since previous studies showed that proper development can occur

in the absence of Hbmat protein. Clearly other redundant zygotic products, including the

zygotic Hunchback (HbZYg) protein gradient, can substitute for the function of the Hbmat

and E(z) proteins in the early embryo.

In order to better test for an role of E(z) function in the determination of

anteroposterior patterning by the Hbmat protein gradient, we tested the effect of E(z)

mutations in embryos that are mutant for the gene bicoid (bcd). In bcd mutant embryos

many anteriorly expressed zygotic genes, including hbZYg, are not expressed, and thus the

only source of anteroposterior polarity in the embryo is the Hbmat protein gradient. We

find that, in bcd embryos, E(z) is required for the proper determination of anterior

boundaries of kni and gt.

The effect of E(z) mutations in both nos and bcd mutant backgrounds is observable

only at late stages. This timing roughly coincides with the disappearance of the Hbmat

protein. Thus we propose that E(z) is required for the maintenance of the repression of kni

and gt that is initiated by the Hbmat protein. This mechanism of gap gene regulation by

E(z) agrees well with the previously described roles of E(z) in the maintenance of

repression of homeotic genes and segment polarity genes.

The fact that Pc-G genes are thought to regulate expression through chromatin

structure has led us to speculate that abdominal gap gene regulation involves regulation at

the chromatin level. This model predicts that the early Hbmat gradient promotes, together

with Pc-G gene products, spatial differences in chromatin accessibility at the kni and gt

promoters. Thus, in the anterior of the embryo, where Hbmat levels are high, the

promoters of kni and gt would acquire through Pc-G products a more condensed form that

is less accessible to transcription factors. In posterior regions, on the other hand, these

promoters would remain in open, accessible conformations. At later stages, this

"chromatin infrastructure" would be further refined by the network of appearing gap gene

products.

Clearly, this model is likely an oversimplification, since both kni and gt have

anterior domains of expression and therefore in those regions they must be accessible to

activation by transcription factors. Perhaps the presence of the Bcd protein in these regions
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counteracts the repressive role of Hbmat and Pc-G products. The fact that the Bcd protein

has been shown to cooperate in yeast cells with yeast trithorax group-like products

suggests that Bcd may be interacting with trithorax-group genes in the Drosophila embryo

to establish open chromatin domains.

We have found that a 1.8 Kb region of the kni promoter is sufficient to confer

regulation by Hbm at and E(z). Thus this region may contain Pc-G responsive elements

which may interact with Pc-G genes to promote a closed chromatin structure. This region

is, to my knowledge, the smallest fragment of DNA which is sensitive to Pc-G genes. The

simplicity of the kni promoter region, in comparison to those of homeotic genes, may be an

advantage in future molecular studies involving Pc-G regulation.

Using this kni promoter region, I am currently attempting to prove the model that

Hbmat and Pc-G products confer chromatin accessibility differences along the

anteroposterior axis of the embryo. These experiments rely on transcription from a

bacteriophage T7 promoter inserted within the E(z)-responsive kni promoter fragment as an

in vivo measure of chromatin accessibility (an idea borrowed from Kim McCall and

Welcome Bender in one of our joint group meetings).

I am also using this E(z)-responsive kni promoter region in a different experiment.

The Posterior sex combs protein, which genetic experiments predict is involved in the

repression of kni (Psc is part of the Su(z)2 complex), binds to a band in salivary gland

chromosomes that corresponds to the location of the endogenous kni locus. Thus, it is

possible that Psc protein could be found associated with kni promoter regions inserted at

other locations in the genome. This association would provide evidence for a physical

association between Pc-G genes and kni regulatory regions.

The Nos/Hbmat/Pc-G pathway: a selected patterning system?

It has been proposed that redundant systems of positional information may be

favored through evolutionary time, since independent overlapping functions would make

the patterning process more resilient to internal or external fluctuations (Tautz, 1992). The

redundant Nos/Hbmat/Pc-G patterning system could provide such redundancy at the level

of chromatin imprinting. Here, I would like to propose that one reason for the presence of

the "dispensable" Nos/Hbmat/Pc-G patterning system in the Drosophila embryo, is the

natural selection for enhanced reliability in patterning.

I have attempted to determine whether the nos/Hbmat/Pc-G patterning system

contributes to the reliability of gap gene patterning by carefully examining gap gene

expression patterns in embryos that are mutant for E(z) but are otherwise wild type. These
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experiments have not shown a major contribution on the determination of gap gene

boundaries by this patterning system. It is likely, however, that the challenges of natural

selection are more discriminatory than laboratory conditions.

Do trithorax group genes have a role in the regulation of gap genes?

trithorax group (trx-G) genes are thought to be required for the establishment of

active or open chromatin domains. Because trithorax group genes antagonize Pc-G genes

in the regulation of homeotic genes, and because Pc-G genes are required for the repression

of gap genes by the Hbmat protein, I have tested the effect of trx-G mutations in two

backgrounds whose phenotypes depend on Hbmat function. These were the same genetic

backgrounds, mutant for nos or bcd functions, that allowed us to observe an effect of Pc-G

mutations on gap gene regulation.

Mutations in trx-group genes do exhibit a phenotype in these mutant backgrounds.

As inferred from their phenotypic effects, mutations in these genes seem to enhance the

expression of abdominal gap genes. Thus, trx-G products appear to have an inhibitory role

on gap gene expression. This effect is unexpected considering the role of trx-G genes in

the activation of homeotic gene expression. Currently, the exact cause of this effect is

unknown, although indirect effects mediated by the gap gene Kr have been ruled out.

Nevertheless, these results support a role for trx-G function in the regulation of very early

patterning genes. Additional experiments to understand the way in which mutations in trx-

G genes affect abdominal development are under way.
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APPENDIX A: Genetic analysis of son 2 9 and the isolation of a second site

modifier locus, Sfsi-

ABSTRACT

The suppressor-of-nos mutation son2 9 has genetic properties that are slightly

different than those exhibited by the E(z) mutations. It has a maternal effect son phenotype

that is less dependent on maternal hunchback and trithorax dosage. This suggests that it

may act at a different step of the pathway of abdominal regulation. son2 9 mutations interact

with gain-of-function E(z) suppressor-of-nos alleles to produce a strong female sterile

interaction. I have isolated mutations that suppress this sterile interaction. Three mutations

are allelic and define the Suppressor of the female sterile interaction-i (Sufsi-1) gene. A

viable allele of Sufsi-l produces maternal effect phenotypes that are similar to those caused

by the female sterile interaction itself. Thus, son2 9 and Sufsi-I are interacting genes that

may regulate a number of target genes, including the gap genes knirps and giant.

INTRODUCTION

son2 9 is the strongest dominant suppressor-of-nos (son) mutation isolated that is

not an Enhancer of zeste (E(z)) allele. The following studies further characterize the

function and identity of son2 9.

In addition I describe here the isolation of second site modifiers of son2 9 and E(z).

The son2 9 allele and the E(z) alleles that are strong dominant son mutations (E(z)son

alleles) interact with each other, so that transheterozygous females are largely sterile. I

carried out a screen for suppressors of this female sterility to possibly isolate revertants of

son2 9, whose nature is unknown, or additional second site modifier mutations that may

interact with son2 9 and E(z). The results of the screen led to the isolation of mutations in

the gene Suppressor of the female sterile interaction-i (Sufsi-1). Surprisingly, maternal

homozygosity for at least one allele of Sufsi-i leads to embryos that exhibit phenotypes

similar to those that are produced by the son2 9/E(z)so°n female sterile interaction.

I discuss possible models for the action of the son2 9 and Sufsi-i genes.

MATERIALS AND METHODS

Genetic strains: Genetic strains are as in Chapter II, III and IV.
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Genetic analysis of son2 9: The genetic mapping of son 2 9 is described in

Chapter I.

Screen for Su(fsi): The screen for suppressors of the son2 9 /E(z)son female

sterile interaction (Su(fsi)) was carried out as shown in Figure A.2. The son2 9-carrying

chromosome is a recombinant derivative of the nosL7 st e chromosome in which the son

mutations where induced (Chapter II). In this recombinant the left and right arm of the

second chromosome have been exchanged with the "neuple" (th st ri pP sr e) chromosome

(see new set of markers in Figure A.2). Males homozygous for an isogenic son2 9

chromosome were mutagenized with 35mM Ethyl Methyl Sulfonate (EMS), a point

mutagen, and crossed to E(z)s °n 3 nos / TM3 females. The E(z)SOn3-containing

chromosome used carried a nos mutation since the presence of nos mutations appears to

enhance the female sterile interaction (fsi) phenotype caused by the + son 2 9 /E(z) s °n +

genotypic background (see Table A.5). This chromosome also provided appropriate

visible markers that allowed it to be distinguished from the son2 9 -containing chromosome.

For simplicity, this screen only attempted to isolate Su(fsi) mutations on the third

chromosome.

An estimate of the mutagenesis frequency was obtained by scoring for newly

induced pP (in * son2 9/TM3(p-') males) and cu (in E(z)s °n 3 (cu-)/* son2 9 females, see

Figure A.2). Of the approximately 3,000 individuals screened in each case, 5 pP and 3 cu

newly induced mutations were observed. This suggests a frequency of mutagenesis of 1.3

hits/ locus/1,000 chromosomes.

Genetic analysis of Sufsi-1 alleles: Genetic mapping of Sufsi-l: The

lethality associated with Sufsi-163 and Sufsi-182 was mapped to within the ru - h interval

(3-0.0 to 3-26.5), at approximately positions 3-20 and 3-15, respectively (number of lines

used: 19 and 45, respectively). Thus, Sufsi-1 is inferred to map at position near 3-17.5.

Recombinant chromosomes carrying only the ru-h region from the original Su(fsi)4-

carrying chromosome also showed the semilethality and embryonic phenotypes associated

with the original chromosome, and the embryonic phenotypes associated with Sufsi-14 are

enhanced in transheterozygous combinations of Sufsi-14 and Sufsi-16 3 and Sufsi-1 82 (see

Tables A.7-9). Therefore Sufsi-14 is regarded here as another Sufsi-J allele, although

because of its rough mapping, it is formally possible that Sufsi-14 is a mutation in a

different, but interacting, gene in this chromosomal region.

The screen for Su(fsi) mutations allowed recombination in the F1 females. In order

to insure that the phenotypes associated with the Sufsi-J mutations were not related to a

E(z)SOn3 allele recombined onto the son29 -carrying chromosome, the chromosomes

carrying Sufsi-14 , Sufsi-16 3 and Sufsi-18 2 were backcrossed to chromosomes carrying
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the E(z) alleles E(z)6 5 and E(z)6 4 . In all instances, transheterozygote combinations were

viable, which indicates that the Su(fsi)-carrying chromosomes did not contain the E(z)so n 3

allele.

Tests involving the Sufsi-l alleles involved recombinant chromosomes where the

only region of the originally mutagenized son2 9 chromosome is the ru-h interval.

RESULTS

Genetic properties of son2 9

Effect on the suppression of nos.

The suppression of nos by son2 9 is strictly maternal. The son effect only occurs

when son2 9 is introduced through the mother and not when introduced through the father

(Table A. 1). Thus, like in the case of E(z), it is the maternal product that is involved in

abdominal regulation.

In contrast to the son phenotype conferred by E(z) mutations, homozygosity for

son2 9 does not have a much higher effect than heterozygosity over a wild-type copy (Table

A. 1, see also Chapter II). In addition, higher temperatures do not induce a drastic increase

in the degree of suppression of the nos phenotype (Table A. 1)

In addition, the suppression of nos by son2 9 is much less dependent on the number

of wild-type hbm at and trithorax copies than suppression by E(z) mutations (Tables A.2

and A.3).

B) Additional phenotypes caused by son2 9 mutations

Adults homozygous for the son2 9 mutation frequently (21% of the flies, n=62)

exhibit thoracic bristle duplications. son2 9/ TM3 balanced adults also exhibit this

phenotype, to an extent similar to that caused by son2 9 /son2 9 homozygotes (21%, n=91).

Thus it is possible that this effect is associated with mutations in the stock different than

son2 9. Nevertheless, it seems likely that the bristle duplication phenotype is indeed

associated with son2 9, since mutations in a second site suppressors of son2 9, Sufsi-l, also

exhibit the recessive (but not the dominant) phenotype, and this phenotype is enhanced by

additional son2 9 mutations (see below).

The son2 9 mutation also exhibits, at a low penetrance, a maternal effect zygotic

phenotype. A small fraction (about 6%) of the embryos from son 2 9 homozygous mothers

show head involution defects which are similar to those observed by us with the E(z)s °n

germ line clones (Chapter I) and others by other mutations that induce weak homeotic

phenotypes (see, for example, iirgens (1985)).
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Table A.1. Maternal-effect suppression of the nos phenotype by son2 9.

(1) % of embryos with > 3 abdominal segments.

(2) Females were grown at 250 C, then shifted to 290 C

246

genetic cross (females x males) % rescue (1) n

son 2 9 nos / nos x OR 46 109
son 29 nos / son2 9 nos x OR (250C) 42 868
son 2 9 nos / son 2 9 nos x OR (290C) (2) 44 758
nos / nos x nos / nos 0 292
nos / nos x son29 nos/ son2 9 nos 0 271



Table A.2. Suppression of the nos phenotype by son2 9 is less hbmat-dependent

than that by E(z) so n alleles

Maternal hb+ / hb+ hb- / hb+ hb -dependence

genotype
% rescue() n % rescue() n (2)

experiment 1

son 2 9 / + 46 109 63 172 1.4

E()S on l / + 11 156 76 186 6.9
E(z)so n 2 / + 6 160 42 145 7
E(z)son3 / + 13 895 88 179 6.8

experiment 2

son29 / + 36 439 68 212 1.9
E(z) so n2 / + 1 372 14 482 14
E(z)son 3 / + 2 259 86 478 43

(1) % of embryos with > 3 segments.

(2) Value shown is the ratio (% rescue in hb- / hb+ over % rescue in hb+ / hb+. This ratio

represents a measure of the enhancement of the son phenotype produced by hb

heterozygosity.

Table A.3. Suppression of the nos phenotype by son 2 9 is less trx-dependent

than that by E(z)s °n alleles

maternal genotype trx / trx+ Df(trx) / trx+ trx -dependence
% rescue(0) n % rescue(l) n (2)

son2 9 / + 37 596 32 820 0.86

E(z)s n l / + 2 246 13 373 6.5

E(z)son2 / + 0.5 440 4 691 8
E(z)son3 / + 1 299 47 (3) 234 47 (3)

(1) % of embryos with > 3 abdominal segments.

(2) Value shown is the ratio (% rescue in Df(trx) / trx+ over % rescue in trx+ / tnrx. This ratio

represents a measure of the enhancement of the son phenotype produced by trx

heterozygosity.

(3) Value is from a different experiment and may not be directly comparable to other values in this

table. See footnote (2) in Table 4.1.
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Female sterile interaction of the son 2 9 mutation in trans to E(z) s o n

alleles

Transheterozygous females of son2 9 and E(z)so n3 exhibit a strong sterile

interaction where most of the eggs do not show any development, probably because of a

defect in fertilization (as inferred by the lack of appearance of brown pigment in the

embryos of the embryos). A smaller percentage of eggs do develop into embryos that form

a cuticle. Most of these embryos do not hatch due to various defects, such as apparent

head involution defects and segmentation defects (Figure A. 1A) These phenotypes had

been previously observed in embryos from females homozygous for son2 9 and for E(z)So n

mutations.

This sterile phenotype can not be induced paternally, since wild type females are

fertile when crossed to son2 9, E(z)s °n3 transheterozygous males (Table A.4). This

indicates that the sterility is not due to chromosomal aberrations, but is likely caused by

maternal-effect mutations.

This female sterile interaction is not dependent on the nos mutations present in the

original chromosome in which these son mutations were induced, since it can still be

observed in a wild-type nos background (Table A.5). Nevertheless, the presence of one or

two mutant nos copies appears to increase the frequency of unfertilized eggs in layings

from son2 9, E(z) s ° n transheterozygotes. This may be due to additive effects of separate

mutations, since nos also has a function during oogenesis.

The E(z)S°n/son2 9 interaction is strictly dependent on the gain-of-function nature of

the E(z)son alleles, as it is not observed in progeny from son2 9/E(z)nu l l females (Table

A.5). This suggests that the female sterility depends on the ability of the E(z)SOn product,

or an E(z)son/Son2 9 complex, to act as a poison in processes required during both

oogenesis and embryogenesis.

A genetic screen for revertants/suppressors of the son2 9 /E(z)son

maternal sterile interaction leads to mutations in a second site modifier
locus

It is possible that son2 9 is a gain-of-function mutation and that the fsi depends on

that gain of function character. This argument has some support in the fact that in the

screen for suppressors of nos, only one allele of son2 9 was recovered, a frequency which

was lower than that for the appearance of the gain-of-function E(z)s o n alleles. Also, the

sterility of E(z)SOn +/+ son2 9 females is dependent on the gain-of-function nature of the
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Figure A. 1. Embryonic phenotypes exhibited by embryos from +son2 9/E(z)SO n +
transheterozygous females and from Sufsi-14 homozygous females. A) Embryo from
+son2 9/E(z)son 3 + transheterozygous females, which show the female sterile interaction
between son2 9 and E(z)son alleles. Embryos exhibit various defects, such as head
involution and segmentation defects. 3) Embryo from from Sufsi-14 homozygous females.
Sufsi-1 4 is a mutation isolated as a dominant suppressor of the son2 9/E(z)son sterile
interaction (see below). Homozygosity for Sufsi-14 causes phenotypes similar to those it
suppresses in one copy. Dark field optics. h: Head parts that have not involuted properly;
arrowheads: defective abdominal segments (compare with the phenotypically wild-type
embryo shown in Figure 3.2B). Anterior (head) top and ventral left.
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Table A.4. The son29 / E(z)son interaction is not paternally induced.

genotype of males (1) % affected eggs (2) n

son2 9 / E(z)s o n 3 4 23

son2 9 / TM3 O (3) 41

(1) Females used in the cross were wild type for son2 9 and E(z). Their particular genotype was

hb7m nos / TM3.

(2) Includes mostly apparently unfertilized eggs and embryos which formed a cuticle but did not

hatch due to visible cuticular defects.

(3) 10 of 41 embryos did not hatch but had no cuticular defects. This phenotype is due to the

expected 1/4 TM3 homozygous embryos.

Table A.5. The dominant sterile interaction

gain of function nature of the E(z)s on allele.

son29 / E(z)son3 depends on the
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maternal genotype % unfertilized % non- % hatchers n

eggs hatchers

son29 / son2 9 28 5 67 1138

son29 / E(z)s o n 1 68 29 3 147

son29 nos / E(z)s on 1 nos 92 8 0 153

son2 9 / E()son 2 39 26 35 151

son2 9 / E(z)son3 35 38 27 2281

son2 9 / E(z)s o n 3 nos 87 8 5 3897

son29 / DfE(z)6 9 0.3 91 1504

son29 nos / DfE(z)6 4 6 90 289



E(z)SOn alleles. Nevertheless, the possibility that E(z)so n, son29null transheterozygous

females do not exhibit the female sterile phenotype can not be properly tested due to the

absence of son 2 9 null alleles or deficiencies that clearly remove this locus (see Chapter II).

If the female sterile interaction depends on the hypothetical gain-of-function nature

of the son2 9 allele, a screen for suppressors of this female sterile interaction (Su(fsi)) could

lead to the isolation of son 2 9 null alleles. Regardless of this assumption, a screen for

suppression of the son2 9/E(z)son interaction could in addition lead to the isolation of

mutations in second site modifier genes which code for products that interact with the

Son2 9 and/or E(z)son products.

A screen for suppressors of the son2 9/E(z)so° n female sterile interaction was carried

out as shown in Figure A.2. Approximately 3,000 F1 son2 9 /E(z) s °n 3 nos females were

individually tested in laying blocks and their progeny observed for three consecutive days.

Typically, more than 90% of the eggs from females of this genotype are affected (see

above). Seventy-three Fl females (2.4% of the total) whose progeny exhibited a markedly

lower fraction of affected eggs were selected and placed into individual vials. The

mutagenized chromosomes were recovered from each of these females and backcrossed to

the E(Z)son3 nos chromosome in order to retest for their Su(fsi) phenotype.

From the results of the retest lines were classified in four groups (number of lines

in each group are in parenthesis): 0 (30), I (28), 1I (10) and III (3), which correspond to

retest frequencies of >60%, 31-60%, 11-30% and <10% affected eggs, respectively.

Table A.6 presents the Su(fsi) phenotype for lines in groups II and III.

Chromosomes in groups II and III (13 lines, 0.04% of the total number of

mutagenized chromosomes) were tested in a single inter se matrix for possible interactions

such as effects on viability, visible adult phenotypes and fertility. Only one set of three

mutations, Su(fsi) 4, Su(fsi)6 3 and Su(fsi)8 2 , did not complement each other. These three

mutations appear to be alleles of a single gene essential for viability, which will be referred

to as Sufsi-l (see below).

The rest of the lines in Groups II and mI were kept as balanced stocks. The

mutations in Group I were tested for effects on viability in trans to Sufsi-16 3 and

Sufsi-18 2 . None of the transheterozygous combinations exhibited visible adult phenotypes

or an obvious effect on viability, and Group I lines were discarded thereafter.

The Sufsi-1 gene: Sufsi-l maps at approximately 3-17.5 and is represented by

three alleles, Sufsi-14, Sufsi-16 3 and Sufsi-18 2 (see Methods). This map position is

252

Figure A.2. Screen for revertants and/or second site suppressors of the son2 9/E(z)s °n

female sterile interaction. See Materials and Methods for details.



Figure A.2
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Table A.6. Dominant reversion of the son2 9 / E(z)son female sterile interaction

by Su(fsi) mutations.

Su(fsi) mutation

(maternal background genotype:

son2 9 / E(z)son nos)

none

Type II Su(fsi)

20

30

28

27
24

30
29
24
29
17

Type Il Su(fsi)

Su(fsi)4 / + 9 115

Su(fsi)1 9 / + 10 232
Su(fsi)34 / + 5 134

Su(fsi) 2 0 / +

Su(fsi) 2 1 / +

Su(fsi) 4 0 / +

Su(fsi) 5 1 / +

Su(fsi) 6 2 / +

Su(fsi) 6 3 / +

Su(fsi) 6 7 / +

Su(fsi) 7 5 / +

Su(fsi) 7 6 / +

Su(fsi) 8 2 / +

(1) % of eggs that do not hatch (i.e. unfertilized + unhatched)
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154
158
158

173

66
125
165
139
238
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different from that of the son2 9 mutation (3-46.6) so that these mutations are clearly not

revertants of son2 9 but rather second site suppressors of the son2 9/E(z)s o n female sterile

interaction.

Sufsi-16 3 /Sufsi-18 2 individuals are lethal, and Sufsi-14 /Sufsi-1 6 3 and Sufsi-

14 /Sufsi-182 have a reduced viability (Table A.7). This deleterious effect on viability is

enhanced in the presence of son2 9 mutations, suggesting that both Sufsi-J and son2 9

functions are important for viability.

In addition, Sufsi-1 mutations in heteroallelic combinations cause extra bristles in

the thoracic region (Tables A.7 and A.8). This phenotype is similar to that caused by

son2 9 mutations, although Sufsi-1 mutations, in contrast to son2 9 mutations, have only a

very weak dominant effect. The penetrance of the extra bristles phenotype caused by

Sufsi-1 mutations is enhanced by the presence of son2 9 mutations. Thus the son2 9 and

Sufsi-1 genes may both be involved in a process related to thoracic bristle determination.

In addition, Sufsi-1 mutations have dominant and recessive maternal-effect

embryonic phenotypes. A fraction of the progeny from Sufsi-14 (but not Sufsi-16 3 and

Sufsi-18 2 ) heterozygous females exhibit pair rule-like phenotypes, even when crossed to
wild type males (Table A.9). Progeny from Sufsi-14 homozygous females exhibit this

effect at a higher penetrance and in addition exhibit head involution and pair rule-like

defects (Figure A. 1B). These phenotypes are enhanced in the progeny of

Sufsi-14/Sufsi-1 6 3 and Sufsi-14 /Sufsi-1 8 2 females (Table A.9). In general, the
penetrance of these maternal effect phenotypes is enhanced at higher temperatures (Table

A.9). These results suggest that the Su(fsi)-l maternal product is involved in embryonic

development.

This maternal-effect embryonic phenotype is enhanced when females of the same

genotype are crossed to males carrying Sufsi-1 mutations (Table A.9). Thus, zygotic

Sufsi-1 product is also likely involved in embryogenesis. Nevertheless, the maternal

Sufsi-1 product appears to be sufficient for embryogenesis even in the absence of zygotic

products, since stocks carrying the presumed loss-of-function alleles Sufsi-16 3 and Sufsi-

182 (see below) do not exhibit these embryonic defects.

As observed for the adult phenotypes described above, the embryonic phenotype of

Sufsi-1 mutations is enhanced by the presence of additional mutations in son2 9 (Table

A.9). Thus the Son2 9 and Sufsi- products appear to interact in processes required for

embryonic patterning.

In the absence of known Sufsi-l null alleles or deficiencies that uncover this gene,

the nature of the Sufsi-I alleles is subject to speculation. The alleles Sufsi-16 3 and Sufsi-

182 may be loss of function mutations. This is suggested by their lethal phenotype, their
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Table A.7. Su(fsi)4 ,63, 82 mutations are associated with a reduction in viability

and an extra bristle phenotype.

Genetic cross

(females x

males)

son 2 9/TM3 x

son29/TM3

Su(fsl) 4 /TM3 x

son29/TM3

Su(fsl) 63/rM3 x

son2 9/TM3

Su(fsl) 8 2 /TM3 x

son29/TM3

Su(fsl) 6 3 /TM3 x

Su(fsi)4/TM3

Su(fs) 82 /TM3 x

Su(fsi)4/TM3

Su(fs1) 63/TM3 x

Su(fsi)82/TM3

Su(fsl) 4 son 29/TM3 x
son29/TM3

Su(fsl)6 3/TM3 x

Su(fsi)4 son29/TM3

Su(fsl) 8 2/TM3 x

Su(fsi)4 son2 9/TM3

# of

mutations

(1)

2

2

2

2

2

2

2

3

3

3

Standarized

viability of trans-

heterozygous( 2)

1

0.98

1.07

1.02

0.76

0.76

0

0.71

0.44

0.68

n

153

208

116

131

172

137

96

137

148

154

Standarized

fraction of extra

bristles (3)

1

1.6

0.95

0.71

1.4

2.7

n. a.

2.8

3

2.3

(1) # of mutations include each mutation in son29or Su(fsi) 4 ,6 3 ,8 2

(2) Fraction of progeny as counted 20 days of setting up the cross. The value shown is

standarized against the viability of son 29 homozygotes, which was 0.41 of the total progeny

(expected was 0.33; the difference in these two values is likely due to semi-lethal effects

associated with the TM3 balancer).

(3) Fraction of scored adult progeny with extra thoracic bristles. The value shown is standarized

against the fraction of son 2 9 homozygote adult found with extra bristles, which was 0.21.
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n

62

83

51

55

54

42

40

27

43



Table A.8.

son2 9 and
Dominant and recessive bristle duplication phenotype conferred by

Sufsi-1 mutations.

Mutation

son29
Sufsi- 14

Sufsi- 163

Sufsi- 182
trans-heterozygous
combinations
Sufsi- 1 4 Sufsi- 163

Sufsi1 4/Sufsi- 182
Sufsi- 16 3/Sufsi- 182

recessive effect (1)

21

n.d.

n.a. (lethal)

n.a. (lethal)

30

57

n.a. (lethal)

n

62

n

54

42

dominant effect (2)

% n

21 91

6 108

3 116

4 102

(1) Effect of homozygosity for the mutation

(2) Effect of heterozygosity for the mutation in trans to a wild-type allele
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Table A.9. Embryonic phenotypes produced by son2 9 and Sufsi-1 mutations.

(1) Results from a different experiment as in row 13. The two different values represent results

when females were mated to Oregon R and nos L7 , st e/TM3 males, respectively.

258

x wild-type males x sib males

(of same genotype

as females

Maternal genotype % embryos n % embryos n

with defects with defects

son2 9 /son 2 9 250C 3 29 0 21

Sufsi- 14 /Sufsi- 14 250C 13 191 7 300

Sufsi- 14 /Sufsi16 3 250-290C n.d. 21 33

Sufsi- 14/Sufsi- 182 25-290C n.d. 26 137

Sufsi-14 son29/
Sufsi- 16 3 son2 9 180C 15 48 39 64

250C 8 156 19 149

25-290C 25 155 58 142

290C n.d. 78 73

Sufsi-14 son2 9/

Sufsi- 18 2 son2 9 180C 25 146 51 136

250C 47 163 70 87

25-290C 56 141 75 113

290C n.d 97 87

Sufsi- 14 son2 9/TM3 250C 15 131

Sufsi- 163 son2 9 /TM3 250C 1 167

Sufsi- 182 son2 9/TM3 250C 1 206

Sufsi-1 4 son2 9 /TM3 (1) 250C 8, 4 25, 24 4 46



lack of a dominant phenotype and the fact that the frequency in which these alleles were

obtained is similar to that of induced loss-of-function mutations during mutagenesis

(approximately 0.7 and 1.3 hits/locus/1,000 chromosomes, respectively, see Methods).

The allele Sufsi-14 retains some wild-type Sufsi-1 function, as indicated by its ability to

support development into adulthood. Sufsi-14 appears to have in addition a gain of

function character, since it causes dominant maternal effect embryonic defects.

DISCUSSION

The role of son 2 9 in gap gene regulation

son2 9 homozygotes are mostly viable and fertile. Homozygous adults often exhibit

extra thoracic bristles and, at a low frequency, females produce embryos with embryonic

defects such as head involution defects. Its most obvious phenotype is its strong

suppression-of-nos phenotype.

Deficiencies near the candidate son2 9 region do not exhibit any strong interaction

with son2 9 (see Chapter II). Nevertheless, the limits of this deficiencies with respect to the

position of son2 9 are not well defined, and thus it is not known with certainty whether

son2 9 maps within or outside of the region covered by these deficiencies. It is also

possible that one copy of the son2 9 mutant product retains enough wild type function to

support development, or that son2 9 function is largely dispensable.

The son phenotype conferred by son2 9 mutations differs from that conferred by the

better studied son2 9 mutations in several aspects. Although son2 9 has a relatively strong

dominant son phenotype, homozygosity for son2 9 does not have a much greater son

phenotype. This is in contrast to E(z) mutations, which cause a weak dominant son

phenotype and a much greater son phenotype when homozygosed (see Chapter 1II). It is

possible that a single son2 9 copy is adequate for the son phenotype and a greater dosage is

above a threshold and has no further effects. It is also possible that the son2 9 mutations

requires a wild-type allele to exert its son effect, and that in son2 9 homozygotes the

addition of an extra son2 9 mutant copy is offset by the absence of wild-type son2 9

function.

Heterozygosity for maternal hb and trx enhances the son phenotype conferred by

son2 9 to a relatively small extent, whereas the son phenotype conferred by E(z) mutations

is extremely sensitive to the dosages of these two genes. These results could be explained

if the effect of son2 9 in the pathway that leads to knirps and giant transcriptional regulation

occurs at a step that is downstream from the step where E(z), hb and trx act, and thus is

less sensitive to variations in the dosages of these genes.
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Because of the uncertain cytological location of son 2 9 , and the absence of known

son2 9 null alleles, the nature of the son2 9 mutation itself remains unclear. This in turn

causes uncertainty on the function of the wild-type son 2 9 function. At present one can

only speculate on the possible functions of the wild-type son2 9 product.

One possibility is that the function of the wild-type son 2 9 gene is similar to that of

Polycomb-group genes, so that it would be required for the repression of a number of

genes, including the gap genes kni and gt (Figure A.3A). In this scenario, the son2 9 allele

could code for a loss of function or a dominant negative gain-of-function. This explanation

is consistent with the head involution phenotype observed in a small fraction of embryos

from son2 9/son2 9 females. Head involution defects have been observed in embryos with

weak homeotic transformations caused by mutations in Pc-G genes, including E(z)

mutations (see, for example, Jurgens (1985),; see also Chapter III).

This explanation is also consistent with the strong female sterile interaction of

son2 9 with the mutation in the Pc-G gene E(z) (E(z)s °n mutations). + son2 9 /E(z)sOn3 +

females lay many unfertilized eggs, perhaps due to misregulation of unknown genes during

oogenesis. Progeny embryos from these females that do develop a cuticle exhibit a high

frequency of head involution and pair-rule like defects. Again, the head involution defects

observed in these embryos could be the result of weak posterior transformations.

Similarly, pair-rule-like defects can be caused by mutations in certain Pc-G genes (Breen

and Duncan 1986; Sinclair et al. 1992).

An alternative possibility is that the wild-type son2 9 gene is involved in the

activation of kni and/or gt (Figure A.3B). In this scenario, the son2 9 allele would code for

an overactive, gain-of-function allele. This possibility is particularly interesting since thus

far the activators of kni and gt in the embryo are unknown. The phenotypes associated

with son2 9 by itself and in trans to E(z)s ° n mutations could also be explained in this case if

the son2 9 mutation, when combined with an E(z)s on mutation, leads to the unregulated

expression of a number of genes involved in oogenesis and embryogenesis.

Figure A.3. Models for the interaction of the Son2 9 wild-type product with gap genes.
A) If the son2 9 mutation is a loss-of-function or antimorphic allele, then the wild-type
son29 product may be involved in gap gene repression. B) If the son2 9 mutation is a gain-
of-function (overactive) allele, then the wild-type Son2 9 product may be involved in gap
gene regulation.
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A screen for suppressors of the son 2 9 /E(z)s o n female sterile

interaction: identification of the interacting gene Sufsi-1
I carried out a screen for suppressors of the female sterility exhibited by son2 9,

E(z)SOn transheterozygous females. The original purpose of this experiment was the

isolation of new son2 9 alleles. This idea was based on two assumptions: first, that son2 9

is a gain-of-function mutation, and second, that the sterile interaction is dependent on this

gain-of-function character, and would not be caused by son2 9 loss-of-function mutations.

A number of suppressor mutations were isolated. An inter se complementation

matrix revealed interactions between three alleles which map genetically at a position that is

different from that of son2 9. Thus these mutations are not son2 9 revert nts. It is unclear

whether any of the other isolated suppressor mutations are son2 9 revertants. The absence

of additional complementation groups in the inter se matrix suggests that no son2 9 revertant

was isolated. This could indicate that the starting assumption of the screen is incorrect, i.e.

that son2 9 does not have a gain-of-function character that is required for the female sterile

interaction. Alternatively, only one son2 9 revertant allele was isolated and thus would

show no interactions in an inter se matrix, or more than one son2 9 allele was isolated but

the wild-type son2 9 function is dispensable.

The three suppressor mutations isolated appear to be alleles of a single gene, which

has been named Sufsi-l. Interestingly, Sufsi-1 mutations cause on their own phenotypes

also observed in son2 9 homozygotes and in son2 9 E(z)s °n3 transheterozygotes, such as

extra thoracic bristles in the adult and head involution defects in embryos. Sufsi-J

mutations have in addition a maternal effect pair rule-like phenotype in embryos. These

phenotypes are in general enhanced by additional son2 9 mutations.

son2 9 and Sufsi-1 mutations cause on their own similar phenotypes, and Sufsi and

son2 9 mutations mutually enhance the bristle and embryonic phenotypes. Thus, it is

somewhat surprising that Sufsi-1 mutations suppress, rather than enhance, the

son2 9/E(z)son female sterile interaction. It is possible that the son2 9 and Sufsi-1 products

act together in a complex, perhaps related to that formed by Polycomb group products.

This complex would be generally required for viability and in particular in processes such

as adult bristle determination, and embryonic head involution and segmentation.

In this model, the reduction of Sufsi-J product could suppress the E(z)S°n/son2 9

dominant negative interaction in two ways. It may eliminate the function of the complex

altogether, and perhaps the aberrant interaction initiated by the gain-of-function E(z)son

(note that E(z) nu lls do not cause the female sterile phenotype). Alternatively, the balance

between Sufsi- 1 and Son29 products may be important and the reduction in Sufsi- 1

product may counteract the son2 9 mutation in E(z)s on, son2 9 transheterozygotes.
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It is not known what misregulated target genes are responsible for the sterility of

E(z)so n, son2 9 heterozygous females, and therefore, what targets may be affected by

Sufsi-1. The head involution and pair-rule embryonic phenotypes caused by Sufsi-1

mutations suggest that this gene is involved in the regulation of, respectively, homeotic and

pair rule genes. Currently, it is also unknown whether Sufsi-1 affects the regulation of

abdominal gap genes knirps and giant.

In summary, the combination of the suppressor-of-nos and female sterile interaction

screens has led to the isolation of at least two new genes which may be involved in the

regulation of a number of targets during development, including the abdominal gap genes

knirps and giant.
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Appendix B. Genetic and preliminary molecular characterization of
Pson49 , a P-element induced suppressor-of-nanos mutation

ABSTRACT

Pson4 9 was isolated as a suppressor-of-nos (son) mutation induced by P-element

mutagenesis. In addition, homozygosity for Pson4 9 leads to a maternal effect embryonic

phenotype. Here, I show that the son phenotype and embryonic phenotypes are associated

with the presence of the P-element insertion. These experiments suggest that Pson4 9 is

involved in the regulation of gap genes and perhaps other genes such as homeotic and pair

rule genes. The son and embryonic phenotypes caused by Pson49 mutations are similar to

those produced by mutations in members of the Polycomb group of genes. Thus, Pson4 9

may be a new member of this family of genes.

I have cloned about 50 Kb of the Pson4 9 genomic region. Northern analysis has

revealed a set of structurally related transcripts produced by genomic sequences within 4

Kb from the P-element insertion. This set of transcripts consists of one major 7 Kb

transcript and several, less abundant larger transcripts. No other transcripts are detected

using probes spanning this 50 Kb region. Thus, these large transcripts are good candidates

to be mRNAs produced by the Pson49 gene.

INTRODUCTION

Chapter II describes a genetic screen for supressors of nos (son) using P-element

mutagenesis. Pson4 9 is the only induced son mutation that is conclusively associated with

a P-element insertion. Here, I describe genetic results that show this association, as well as

the son and other phenotypes associated with this mutation. I also describe preliminary

molecular analysis of the Pson4 9 genomic region.

MATERIALS AND METHODS

Genetic analysis and strains: Genetic tests and strains were performed as in

Chapters II and 111. Genetic mapping of Pson4 9 by virtue of the w+ marker of the P-

element is described in Chapter I.

P-element construct: The P-element used for mutagenesis (Chapter II) is

described in detail in (Bier et al. 1989). It contains a mini-white gene, a lacZ gene that acts
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as an enhancer trap construct in the flies, and a an ampicillin resistance and bacterial origin

of replication for easy cloning of flanking DNA.

Molecular cloning of the Pson4 9 region: Genomic DNA from flies of a

Pson49 /Cyo stock was digested with either XbaI or SacII and used to transform competent

bacteria (Pirrotta 1986). Fragments from each of these clones (see Figure B.4) were used

to screen a NotBamNot-CaSpeR cosmid genomic library (Tamkun et al. 1992). DNA

fragments were hybridized to a Northern blot containing 10 jig of poly-A+ selected mRNA

(a gift from A. Williamson). The blots were stripped of hybridized signal in between

experiments. Cloning and hybridization techniques are according to standard procedures

(Maniatis et al. 1982).

In situ hybridization to salivary chromosomes: Performed essentially as

in Laverty (1990). The probe used was a biotinylated pC4bgal plasmid (Thummel et al.

1988), which contains LacZ sequences.

RESULTS

Association of P-son 4 9 with a P-element insertion

The suppressor-of-nos phenotype present in the Pson4 9 line cosegregated with the

white+ marker (Table B.1). Maternal homozygosity for the w+-carrying Pson49

chromosome led to the production of abdominal segments in nos embryos (Figure B. A).

Thus Pson4 9 is a suppressor-of-nos mutation associated with the p[w+] element.

Aside from the nos phenotype, mutant females homozygous for the Pson4 9

chromosome also exhibit on their own a number of phenotypes. Pson49 /Pson4 9

homozygous flies are less viable and fertile than wild-type flies (not shown). In addition,

maternal homozygosity for Pson4 9 leads to embryonic lethality in a fraction of the

embryos. Embryos exhibit a range of phenotypes, such as segment deletions and fusions,

often in a pair-rule-like fashion, external heads indicative of head involution defects and, in

some cases, absence of head and cuticular structures (Figure B.2). This suggests that the

Pson49 product is required for a number of developmental processes.

To test conclusively whether the P-element insertion is responsible for the son and

other phenotypes associated with Pson4 9, I carried out a scheme to isolate excision

derivatives of the putative Pson4 9 insertion mutation (Figure B.3). Balanced stocks of w-

excision derivatives were created. Lines were classified according to their viability when

homozygosed (Table B.2). A number of lines were significantly more healthy as

homozygous stocks than the original Pson49 chromosome. In addition, embryos from

females homozygous for these lines did not show the high degree of inviability
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Table B.1. The son phenotype in the Pson4 9 line is associated with
the w+ marker.

(1) Females tested were obtained from the following cross: yw / Y; Pson4 9 / +; nos st

e / + males x yw / yw; + / +; (hb) nos st e / + females. Females were tested

individually to distinguish those that had lost the nos mutation through recombination.

(2) % of embryos with 3 abdominal embryos.
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Maternal Genotype

white phenotype (1) nos/nos hb nos/nos
% rescue (2) n % rescue (2) n

w+ 5 348 35 277
w - 0 215 17 69
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characteristic of embryos from Pson4 9 homozygous females (Table B.3). Therefore, both

the viability of adults and embryos appears to be associated with the presence of the P-

element.

Three viable revertant lines were tested for their recessive suppression-of-nos

phenotype. One of them, R24, has a reduced suppression-of-nos phenotype in comparison

to Pson4 9 (Figure B. 1B), while two other lines completely lack the ability to suppress the

nos phenotype. Thus, the excision of the P-element present in the Pson49 chromosome as

assayed by the w+ marker gene is associated with reversion to a wild-type Pson49 function.

This indicates that the Pson4 9 mutations are likely produced by the insertion of the p[w+ ]

element.

Preliminary molecular analysis of the Pson 4 9 genomic region

The P-element associated with the Pson4 9 mutation carries a bacterial drug

resistance gene and an origin of replication that allow direct cloning from genomic mutant

DNA (Bier et al. 1989). Thus I used these features to directly clone genomic regions that

flank the Pson4 9 -associated P-element (see Materials and Methods). The structures of the

isolated clones are shown in Figure B.4. Fragments from each flanking region were used

to probe a genomic cosmid library (Tamkun et al. 1992), which led to the isolation of about

50 Kb of genomic region that flanks the P-element insertion (Figure B.5A). The correct

identity of these clones was corroborated by in situ hybridization to salivary gland polytene

chromosomes using one of the genomic cosmids (Figure B.6).

A Northern blot carrying 0 -2.5 hr poly+ RNA was sequentially probed using

different fragments of these genomic walk (Figure B.5B). These results show that only

Figure B.3. Scheme for the isolation of P-element excision derivatives of Pson4 9 ([w+]).
Delta 2,3 is a stable source of transposase used to mobilize the P-element (Robertson et al
1988). Sb, Sp are dominant visible markers; y and white (w) are recessive visible
markers. CyO and TM6 are second and third chromosome balancers, respectively.
* represents an excision event as indicated by a white mutant phenotype that is not
associated with the CyO chromosome in the F2 males.

Figure B.4. Structure of the P-lacW plasmid rescue construct and the flanking fragments
isolated from Pson4 9 genomic DNA. P-lacW contains a bacterial origin of replication and
an ampicillin resistance marker as indicated. X and S genomic clones were isolated by
transfecting competent bacteria with Pson4 9 genomic DNA that had been digested with
either XbaI or SacII, respectively. Probes L and R indicate left and right probes used to
isolate the genomic cosmid clones represented in Figure B.5. (H) Hind III; (E) EcoRI; (S)
SacII; (X) XbaI; (G) BglII; (P) PstI; (B) BamHI.
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Figure B.3
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Table B.2. Types of P-element excision Pson4 9 derivatives.

Chromosomal line (1)
Pson49
R3
R9a
R9b
R14b
R22
R24
R1 (2)
R14a (2)
R26b (2)
R2
R5a
R5b
R5c
R6a
R6b
R8
R12
R17a
R17b
R17c
R23a
R23b
R23c
R23d
R26a

Effect of homozygosity
sick

viable
viable
viable
viable
viable
viable
viable?
viable?
viable?
inviable
inviable
inviable
inviable
inviable
inviable
inviable
inviable
inviable
inviable
inviable
inviable
inviable
inviable
inviable
inviable

(1) Lines denoted by the same number but different letters originate from the same F1

male in the excision crosses (Figure B.3). Therefore it is possible that these lines are

derived from an identical excision event.

(2) These three lines exhibit a moderate to high frequency of embryonic lethality in

sibling crosses, which is characteristic of the inviable lines (not shown). In the latter

case, the embryonic lethality appears to be associated with the CyO balancer. It is

possible that these lines are homozygous inviable and the "homozygous" tested females

are in actuality heterozygous females that do not exhibit the Cy phenotype (CyO is not

completely penetrant). Two other lines initially classified as homozygous viable by

these tests were found upon further testing to be homozygous lethal.
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Table B.3. Viable P-element excision derivatives of Pson49 exhibit a
reduced embryonic phenotype.

(1) % of embryos that formed a cuticle that did not hatch.

(2) unf.= unfertilized. These chromosomes may have acquired unrelated mutations that

affect oogenesis during the P-element mobilization crosses.
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Maternal genotype % embryonic n
(x to sib CyO males) lethality (1)

Control: Pson 4 9 recombinant line
Pson 49, al +dp+b-pr-cu-px-sp-/
Pson 4 9, al+dp+b-pr-cu-px-sp- 32 11 4
Control: w+ chromosomes isolated after excision scheme

Cl/Cl (2) (< 14 unf. eggs) (2)

C2/C2 1 7 1 29

C5/C5 (2) (40 unf. eggs) (2)

Excision lines (w-) that are viable as homozygotes and have low
embryonic mortality
R3/R3 6 1 1 8
R9a/R9a 6 112
R9b/R9b 3 196
R 14b/R14b 6 126
R22/R22 2 192
R24/R24 5 8 5
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one detectable set of likely structurally related transcripts are encoded by this genomic

region. Thus, these transcripts are likely candidates to be the Pson4 9 mRNAs.

Discussion

Here I show that the P-element associated Pson4 9 mutation leads to a variety of

phenotypes, including the suppression-of-nos phenotype, head involution defects, and

pair-rule-like segmentation defects.

Interestingly, this set of phenotypes is similar to phenotypes exhibited by Pc-G

genes. Mutations in these genes lead to the suppression of the nos phenotype (Chapter

III), segmentation defects of a pair-rule character (Breen and Duncan 1986; Sinclair et al.

1983), and homeotic defects, which can result in head involution defects (see, for example,

Jurgens (1985). Therefore it is tempting to speculate that the Pson49 Pson49 gene is

another m ember of the Polycomb group family. This class of genes have been proposed

to be involved in the trancriptional repression of target genes at the chromatin level (Paro

1990). This is, therefore, a candidate function for the Pson4 9 gene.

The phenotypes associated with the Pson4 9 mutation can be reverted by P-element

excision, which shows that the Pson49 mutation is caused by the insertion of a transposable

element. I have cloned the genomic region adjacent to this P-element. Prelimary analysis

suggests that the Pson4 9 gene transcribes a set of structurally related large ( 7 Kb)

transcripts. Further work will be required to confirm this hypothesis and better understand

the role of the Pson4 9 and other son genes.

Figure B.5. Genomic region of the Pson4 9 locus. A) Structure of the genomic cosmids
isolated that encompass about 50 Kb flanking the Pson4 9 P-element insertion. Sizes of
EcoRI fragments are indicated. B) DNA probes used as probes on a 0-2.5 hr embryonic
polyA+ RNA. All fragments tested which contained the region indicated with a filled box
showed hybridization to a 7 Kb transcript and several less abundant transcripts of about 10
Kb and > 11 Kb. All tested fragments that did not contain this region (open boxes) did not
hybridize to any detectable RNAs. Probes encompassing the entire 50 Kb genomic region
did not detect any additional transcripts.

Figure B.6. In situ hybridization to salivary gland chromosomes. A, B) Hybridization of
Pson4 9 chromosomes with a DNA fragment complementary to the lacZ portion of the P-
element construct. C) Hybridization of wild-type chromosomes with the genomic clone
7.6 (see Figure B.5). In both cases a unique hybridization band is detected in
chromosomal region 26A.
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Appendix C. Isolation of suppressors of the Bicaudal-D mutation.

ABSTRACT

Embryos from females that are mutant for Bicauda-DD (Bic-DD) mutations exhibit

at their anterior ends mirror image duplications of the abdomen. Mutations in some genes
involved in oocyte determination and pole plasm formation, such as egalitarian and vasa,

act as dominant suppressors of the Bic-DD phenotype. In order to isolate interacting

components in this pathway, we carried out a screen for suppressors of Bic-DD. Genetic

characterization of the suppressor-of-Bic-DD mutations shows that 4 new egalitarian and 3

new vasa alleles were isolated. In addition, a number of mutations that act as suppressors

of Bic-DD define at least two other complementation groups required for viability and

oogenesis. Genetic interactions between suppressor-of-Bic-DD mutations suggest that

these genes form part of a functionally interacting gene network.

INTRODUCTION

Loss-of-function mutations in the Bicaudal-D (Bic-D) locus interfere with the

differentiation of the oocyte during oogenesis (Suter et al. 1989; Suter and Steward 1991).

Bic-D encodes a coiled-coil protein similar to the myosin tail (Wharton and Struhl 1989;

Suter et al. 1989), and the Bic-D product is required for the accumulation in the pro-oocyte

of its own and other RNAs (Suter and Steward 1991). Thus it is thought that the Bic-D

protein is a component of the cytoskeletal network that is required for early transport of

products into the oocyte.

Gain-of-function Bic-D mutations (Bic-DD), on the other hand, lead to defects that
are observed during embryogenesis, namely, the formation of anterior mirror image

abdominal duplications (Niisslein-Volhard et al. 1984; Wieschaus et al. 1984; Mohler and

Wieschaus 1986, see Figure C. 1). These defects are caused by the ectopic anterior

localization of nos RNA by the Bic-DD product. Bic-D protein is uniformly distributed in

wild-type embryos but is enriched at the anterior of the oocyte in Bic-DD mutant embryos.

It is this abnormally distributed protein that is thought to gather at the anterior pole

components of the pole plasm, including the nos RNA (Wharton and Struhl 1989).

The duplicated mirror image abdomens produced by Bic-DD mutations can be
modified by a reduction of in dosage of certain genes involved in the pathway of oocyte

determination and posterior pattern formation (Mohler and Wieschaus 1986). Mutations in

the gene staufen (stau), for example, act as dominant enhancers of the bicaudal phenotype.
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This may reflect a requirement of stau for the transport of pole plasm components to the

posterior of the embryo (St. Johnston et al. 1991). Mutations in the genes egalitarian (egO

and vasa (vas), on the other hand, act as dominant suppressors of the Bic-DD phenotype.

egl and vas may be required for the function of the wild-type and mutant gain-of-function

Bic-D protein. Indeed, egl loss-of-function alleles have oogenesis phenotypes very similar

to those of Bic-D loss-of-function mutations, suggesting that both products act in a

common process.

The dominant suppression of the Bic-DD phenotype by genes involved in the

pathway of oocyte determination suggested that a screen for dominant suppressors of the

Bic-DD phenotype could be useful as a means of identifying further components in the

pathway of oocyte development and/or pole plasm formation. Here, I present the results of

such a screen. As expected, the screen for suppressors of Bic-DD mutations led to the

isolation of new vas and egl alleles. In addition, we isolated mutations in several

complementation groups that appear to be required for viability and/ or oogenesis.

MATERIALS AND METHODS

Genetic analysis and strains: The dominant Bic-D mutation used in the

genetic screen was Bic-D71 34 (Niisslein-Volhard et al. 1984; Wieschaus et al. 1984;

Mohler and Wieschaus 1986). The staufen mutation used was stauD3 (Lehmann and

Niisslein-Volhard 1991). See legend of Figure C.2 for a description of the screen.

Embryos were examined under a dissecting microscope after clearing with a thin film of

oil. Recombinational mapping was carried out using the multiply marked chromosome S

Sp Tft mamN2 G pu2 .

RESULTS

A screen for suppressors of the dominant Bicaudal-D phenotype was carried out as

shown in Figure C.2. Heterozygosity for the stau mutation was used in the screened

mutant background to increase the penetrance of the Bic-DD mutation (Lehmann and

Niisslein-Volhard 1991). Our preliminary results suggested that the enhancement of the

Bic-DD phenotype by the stau mutation did not affect the strong dominant suppression

phenotype exhibited by mutations in egl and vas.

About 7,600 Bic-DD stau / + + females carrying newly induced mutations were

screened for suppression of the Bic-DD phenotype. Of these, 189 (2.5 %) females were
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Figure C. 1. The bicaudal phenotype. Embryo exhibiting two mirror image abdomens.

(Photo courtesy of Jen Mach)
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separated into vials and retested for suppression of Bic-DD. Upon retest, 36 lines (0.4%)
seemed to contain a second chromosomal suppressor of Bic-DD. These chromosomes

were saved as balanced second chromosome stocks.

The combination of an inter se matrix and genetic mapping has allowed the

classification of 13 mutations into 4 or 5 complementation groups. The following is a brief
description of these groups:

The vasa group: At least three new vasa alleles have been identified: vas2 c,
vas3f, and vas4c. Inter se combinations of these mutations lead to egg and embryonic

defects characteristic of vas mutations. Genetic mapping shows that these three alleles map
near 2-50, a position very close to that of the vas locus (2-51). In addition. the mutation
Su(Bic-DD) 6e interacts with these three alleles to produce unfertilized and apparently

undifferentiated embryos and maps within the Sp- Tft interval, which includes the vas

locus. Thus this mutation may be an additional vas allele.

The egalitarian group: Four mutations appear to be newly induced alleles of
egl: egl2 b, egl2e, egl3 e and egl4e. Females transheterozygous for combinations of these

alleles lay very few eggs, if any. The mutations egl2b, egl3 e and egt4e have been mapped to
the right hand side of the mamN -2G (map position: 2-70.3) mutation, a position consistent

with them being alleles of egl (map position: 2-104). One of the alleles, egl3e, is

particularly interesting, since it produces only a few eggs. This is the only known egi

leaky allele.

The Su(Bic-DD)-Lethal (Su(Bic-DD)L) group: Three mutations: Su(Bic-
DD)Lle, Su(Bic-DD)L5e and Su(Bic-DD)L 6b have been mapped to the same interval,

between the Sp and Tft markers (2-22 to 53.6). Su(Bic-DD)L6b and Su(Bic-DD)L5e are

lethal in trans to each other. The combinations Su(Bic-DD)L6b and Su(Bic-DD)Lle, and
Su(Bic-DD)L 5e and Su(Bic-DD)Lle are viable in trans to each other, and females exhibit a
very high frequency of infertility (> 95% of the eggs appear unfertilized).

The Su(BicD)-Sterile (Su(BicD)S) group: This group consists of two

mutations Su(Bic-DD)S3b and Su(Bic-DD)S5 c. Both of these mutations have been
mapped to the mamN 2G-Pu 2 interval (2-70.3 to 97). Transheterozygous combinations of

these two alleles are 100% sterile. In addition, Su(Bic-DD)SS5c homozygotes are also
100% sterile. In both cases, the eggs appear to be unfertilized. Su(Bic-DD)S3b

homozygotes are not viable. It is unknown whether this is related to a second mutation in
the same chromosome, or whether Su(Bic-DD)S, like Su(Bic-DD)L, is also required for
viability.

289



X

BicD stau, pr cn

4
X

EMS

sib r

high frequency of bicaudal embryos
unless * is a suppressor of BicD

290

Figure C.2

BicD stau, pr cn

CyO

++

++



It appears that these mutations form a set of interacting products. For example,

Su(Bic-DD)L1 and Su(Bic-DD)L6b are, respectively, 95% and 75% sterile in trans to

vas3f, Su(Bic-DD)L5 e is 70% sterile in trans to egl3e, and Su(Bic-DD)S3b is 90% sterile in

trans to vas6e.

Conclusion

Here, I present the results of a screen for suppressors of the dominant Bicaudal-D

phenotype. As expected, new alleles of the genes vas and egl were isolated. In addition,

two new complementation groups were identified. These genes, Su(Bic-DD)L and Su(Bic-

DD)S, are required for viability and/or oogenesis. The isolated suppressor-of-Bicaudal-DD

mutations appear to interact with each other. Because Bic-D and egl are involved in oocyte

determination and all the isolated genes interact with Bic-DD and with one another, it is

possible that they form part of a genetic network involved in oocyte differentiation.

Figure C.2. Screen for dominant suppressors of the dominant Bicaudal-D phenotype.
Mutagenized wild-type chromosomes were introduced into a Bic-DD stau mutant
background. Bic-DU stau doubly heterozygous females carrying newly induced mutations
were tested in groups of six. Females from pools that produced a higher than background
proportion of hatching embryos were separated into individual vials. Suppressor mutations
were recovered from the progeny of the "suppressed" females. Retests and the creation of
balanced stocks were carried out using appropriate balancer chromosomes. pr and cn are
visible recessive markers.
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