A A A

EFFECT OF CHEMICAL STRUCTURE

ON ROCKET FUEL IMPULSE

by

S. T. Demetriades A.B., Bowdoin College 1950

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemical Engineering

from

Massachusetts Institute of Technology 1951

Signature of Author

Department of Chemical Engineering, August 24, 1951

Thesis Supervisor

Chairman, Dept. Committee on Graduate Students

Chem. erg g Thesis 1951

• . . .

4 • • • • •

ABSTRACT

EFFECT OF CHEMICAL STRUCTURE ON ROCKET FUEL IMPULSE by S. T. DEMETRIADES Submitted for the degree of Master of Science in the Department of Chemical Engineering on August 24, 1951

This thesis offers proof that the specific impulse of an adiabatic rocket motor fitted with an isentropic nozzle is a function only of the number and type of bonds entering the combustion chamber when the motor operates between two fixed pressures P_1 and P_2 .

This function is postulated to be:

ue	_2J_	٠	₹ niei
gc	Bc		≨ n ₁ w ₁

where $i = j, k, l, \cdots u = bond types$

 $\frac{u_e}{g_c}$ = specific impulse

J = mechanical equivalent of heat

 $g_c =$ unit conversion factor

- n_1 = number of bonds of type i
- ei = energy contribution of bond type i to total
 enthalpy change between combustion chamber and
 nozzle exit
- $w_1 = mass$ contribution of bond type i to total mass

i = summation sign over all i's.

This postulated function is shown to fit the facts for various mixtures of fuel and oxidant.

The magnitudes of e_1 and w_1 for various bonds of interest are calculated at stoichiometric mixtures of fuel and oxidant. The relative magnitudes of $-\frac{e_1}{w_1}$ describe the relative effect of chemical bonds on specific impulse and the optimum structure for a propellant is that which contains the maximum possible values of $-\frac{e_1}{w_1}$.

The Appendix contains an extension of Hottel, Williams and Satterfield's generalized Thermodynamic Charts from 3200°K to 4000°K. These charts are good for the system C-H-O and stoichiometric and fuel-rich mixtures only. Small amounts of nitrogen (-N - < .25) do not introduce appreciable errors.

Department of Chemical Engineering Massachusetts Institute of Technology Cambridge 39, Massachusetts

August 24, 1951

Professor Joseph S. Newell Secretary of the Faculty Massachusetts Institute of Technology Cambridge 39, Massachusetts

Dear Sir:

i

The thesis entitled "Effect of Chemical Structure on Rocket Fuel Impulse" is herewith submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering.

Respectfully,

S. T. Demetriades

ACKNOWLEDGEMENT

The author wishes to thank Professors H. C. Hottel and C. N. Satterfield for their stimulating questions and generous advice.

i

TABLE OF CONTENTS

	Abstract	11
I.	Introduction	1
II.	Literature Survey	2
III.	Proof that Specific Impulse is a Unique Function of the Chemical Bonds of the Reactants	3
IV.	Postulation of the Character of the Function f_{16} (N ₁) and Discussion	11
v.	Derivation of Bond Contributions to Total En- thalpy Change and Total Weight	19
	A. Stoichiometric Liquid Oxygen as Oxidant .	19
	1. Bonds encountered in normal paraffins	26
	 Bonds encountered in branched paral- fins Bonds encountered in monoolefins Bonds encountered in acetylenes Bonds encountered in alcohols Bonds encountered in aromatics Bonds encountered in amines and other nitrogen containing compounds 	31 35 39 43 48 53
	B. Accuracy of Bond Contribution Ratios	58
	C. Application of Bond Contribution Ratios .	59
	D. Conclusions	60
VI.	Recommendations	61
	APPENDIX	
	A. Extension of Generalized Thermodynamic Charts	63
	B. Suggestions for Improving the Accuracy of the Charts	75

75 . 76 72

Bibliography

~

.

Page

LIST OF TABLES

		Page
1.	Heats of Combustion	20
2.	Normal Paraffin Bond Types	27
3.	Normal Paraffin Calculated and Predicted ΔH	29
4.	Normal Paraffin Bond Contribution Ratios	30
5.	Branched Paraffin Bond Types	32
6.	Branched Paraffin Calculated and Predicted ΔH	33
7.	Branched Paraffin Bond Contribution Ratios	34
8.	Monoolefin Bond Types	36
9.	Monoolefin Calculated and Predicted ΔH	37
10.	Monoolefin Bond Contribution Ratios	38
11.	Acetylene Bond Types	40
12.	Acetylene Calculated and Predicted ΔH	41
13.	Acetylene Bond Contribution Ratios	42
14.	Alcohol Bond Types	45
15.	Alcohol Calculated and Predicted ΔH	46
16.	Alcohol Bond Contribution Ratios	47
17.	Aromatic Group Types	50
18.	Aromatic Calculated and Predicted ΔH	51
19.	Aromatic Group Contribution Ratios	52
20.	Nitrogen Compound Bond Types	55
21.	Nitrogen Compound Calculated and Predicted ΔH	56
22.	Nitrogen Compound Bond Contribution Ratios	57

List of Tables Continued

A1.	Compositions Corresponding to Interpolation Numbers Derived from the Graphs in Ref. 1	77
A2.	Equilibrium Gas Compositions at 300 psia	78
A3.	Fictitious Compositions Corresponding to the Real Compositions Investigated at 300 psia	82
A 4.	Values of Thermodynamic Functions Enthalpy and Entropy	84
A5.	Reduced Enthalpy, H ^r , versus Temperature, ^O K, at 300 psia	86
A 6.	Reduced Entropy, $S^r + \beta$, versus Temperature, ^O K, at 300 psia	87
A 7.	Vertical Shift (β) of S ₃₀₀ lines versus Atomic Composition and Entropy Interpolation Numbers at 300 psia	88

Page

TABLE OF FIGURES

ì

Al.	Generalized Temperature-Enthalpy Relation at 300 psia	89
A2.	Generalized Temperature-Entropy Relation at 300 psia	90
A3.	Generalized Temperature-Entropy Relation at 14.7 psia	91

Page

I. INTRODUCTION

Generalized thermodynamic charts have been prepared, (1), which greatly reduce the time and effort required to obtain an evaluation of the theoretical performance of high output combustion systems, such as rockets, operating on mixtures of carbon, hydrogen, oxygen and nitrogen.

It is relatively easy to predict from the above charts, with fair accuracy, the performance of a specific fuel-oxidant mixture. However, there is no way of determining directly, without repeated trials, which is the appropriate way of combining a given number of atoms of carbon, hydrogen, oxygen and nitrogen in order to achieve optimum rocket performance.

The object of this paper is to present a method for predicting the effect of chemical structure on rocket fuel theoretical impulse. The method may be used to predict how a change in chemical structure affects the theoretical specific impulse of a given atomic composition which involves the above four elements.

T. LITERATURE SURVEY

The theoretical performance of various chemical propellant systems has been calculated by a number of investigators. A comprehensive survey of this field appears in (<u>17</u>) and (<u>18</u>). However, the contents of the investigations cited in (<u>17</u>) and (<u>18</u>) are classified and therefore unavailable to this author.

There is no unclassified literature on a generalized method for predicting the effect of chemical structure on specific impulse. The existence of such a method in classified literature does not appear probable.

DI. Proof That Specific Impulse Is a Unique Function of the Chemical Bonds of the Reactants

The speed of the exhaust of a rocket is obtained from the adiabatic flow energy balance without external work or potential energy changes.

$$\frac{\Delta H}{W} = \sqrt{\frac{\Delta(u^2)}{2g_e J}}$$
(1)

- where H = true total enthalpy, chemical plus sensible, of mixture
 - W = mass of reactants taken as a basis in calculat $ing <math>\Delta H$
 - u = speed of W with respect to the rocket

 $g_c =$ unit conversion factor

J = mechanical equivalent of heat

Since the speed of the entering fuel and oxidant is negligible in comparison with the exhaust speed, we may write:

$$\frac{\Delta H}{W} = \frac{u_e^2}{2g_e^J}$$
(2)

where $u_e =$ speed of exhaust gases with respect to the

rocket

. :

Then the specific impulse, $\frac{u_e}{g_c}$, is $\frac{u_e}{g_c} = \sqrt{\frac{2J}{g_c} \frac{\Delta H}{W}}$ (3)

The units of specific impulse are:

$$\frac{L}{\Theta} \times \frac{F\Theta^2}{ML} = \frac{F\Theta}{M} = \frac{F}{M}$$
(4)

where F = force or weight

- M = mass
- L = length
- $\Theta = time$

Therefore, specific impulse is a measure of the force or thrust delivered per unit mass fired per unit time. Obviously, the highest possible specific impulse for any given system is the goal of the rocket engineer.

Since the quantity $\frac{2J}{g_c}$ is constant under all circumstances, specific impulse varies directly as $\sqrt{\frac{\Delta H}{W}}$ and reaches its maximum as $\frac{\Delta H}{W}$ reaches its maximum.

For a fuel and oxidant mixture of given atomic composition, W is constant and therefore specific impulse becomes maximum as ΔH becomes maximum.

 ΔH is, ideally speaking, the total enthalpy change of the gaseous mixture of combustion products between the combustion chamber and the nozzle exit. Enthalpy is a point property or point function, (6, 7, 13), i.e. it is dependent only on the initial and final conditions of the system and is independent of the path followed in producing the changes that differentiate between the initial and the final state of the system. In the case of the rocket motor the system

is the mass of reactants W. Therefore, the total enthalpy change ΔH which W undergoes is dependent only on the conditions of the initial state (in the combustion chamber) and the final state (at the nozzle exit area). Uniform conditions are assumed throughout the combustion chamber and on all of the exit area.

The intensive reference variables of which H is a function are temperature (T), pressure (P), and composition. Therefore, ΔH depends only on the composition, pressure and temperature in the combustion chamber and at the exit of the nozzle.

Let the pressure in the combustion chamber and the pressure at the exit of the nozzle be fixed at any two values P_2 and P_3 , respectively. Then the total enthalpy at these two locations is a function of temperature and composition only. However, for the kind of process defined above, the total enthalpy (over some convenient basis) in the combustion chamber is equal to the total enthalpy entering the combustion chamber (over the same basis).

Thus, if the variables are designated by the subscripts 1, 2, and 3 for the entrance to the combustion chamber, the combustion chamber and the nozzle exit in that order, we have:

$$H_2 = f_1(T_2, C_2)$$
 (5)

$$H_3 = f_2(T_3, C_3)$$
 (6)

 $H_1 = H_2$

where T = the temperature variable.

C = the composition variable.

The pressure at the entrance to the combustion chamber is assumed to be equal to that in the combustion chamber.

The composition C is a function of the temperature and the atomic composition A at any point. Thus, when we consider a mass W whose atomic composition does not vary between the entrance to the chamber and the exit, we may write:

$$H_2 = f_3(T_2, A)$$
 (8)

$$H_3 = f_4(T_3, A) \tag{9}$$

$$H_1 = H_2 \tag{7}$$

The chemical enthalpy entering the combustion chamber is known to be, $(\underline{14})$, a unique function of the number and type, N_1 , of chemical structural bonds which unite the atoms that comprise the molecules of the reactants at the entrance to the combustion chamber. Heat capacities are also known to be unique functions of the structural characteristics of the molecules, $(\underline{13})$, i.e., the number and type of bonds N_1 . If, therefore, the same convenient temperature basis is picked at the entrance to the combustion chamber for all the types of reactants considered, the total enthalpy entering the combustion chamber is a unique function of the number and type of bonds N_1 . Then:

$$H_{1} = f_{5}(N_{1})$$
 (10)

C

The atomic composition A at any point in the combustion chamber and the nozzle is completely and uniquely described by the number and type of bonds N_1 , i.e., for every N_1 we have one and only one A. Therefore:

$$A = f_6(N_1) \tag{11}$$

Note, however, that A does not uniquely define N_1 , i.e., N_1 is not a unique function of A since we may have different N_1 's for the same A.

Thus the total enthalpy in the combustion chamber. also, H_2 , is a unique function of the number and type of bonds N_1 at the entrance, or

$$H_1 = f_5(N_1) = H_2$$
 (12)

Since A is a unique function of N_1 ,

$$H_2 = f_7(T_2, N_1)$$
 (13)

and T_2 , the temperature in the combustion chamber, is a unique function of N_1 , or

$$\mathbf{r}_2 = \mathbf{f}_3(\mathbf{N}_1) \tag{14}$$

If we assume that the expansion from the combustion chamber to the exit of the nozzle is reversible and adiabatic, there is no change in entropy between the combustion chamber and the nozzle exit. Therefore:

$$S_2 = S_3$$
 (15)

The entropy in the combustion chamber, S_2 , at a fixed pressure P_2 , is a unique function of the temperature, T_2 , at that location and the atomic composition. But the

temperature in the chamber is a unique function of N_1 , the number and types of bonds at the entrance. Therefore, S_2 is a unique function of the number and type of bonds at the entrance, or

$$\mathbf{s}_2 = \mathbf{f}_9(\mathbf{T}_2, \mathbf{A}) = \mathbf{f}_{10}(\mathbf{N}_1) = \mathbf{s}_3$$
 (16)

The entropy at the nozzle exit, S_3 , at a fixed pressure P_3 , is a unique function of the temperature at that location, T_3 , and the atomic composition only, or

$$s_3 = f_{11}(T_3, A).$$
 (17)

And since S_3 and A are unique functions of N_1 , T_3 is a unique function of N_1 , or

$$T_3 = f_{12}(N_1).$$
 (18)

The enthalpy at the exit of the nozzle, H_3 , is a unique function of T_3 and A. Therefore:

$$H_3 = f_4(T_3, A) = f_{13}(N_1).$$
 (19)

And since $\Delta H = H_2 - H_3 = f_5(N_1) - f_{13}(N_1)$

and the second second

ţ

$$\Delta H = f_{14}(N_{1}).$$
 (20)

 ΔH , the change in total enthalpy between the combustion chamber and the nozzle exit, is proven to be (for an adiabatic reversible expansion from a fixed pressure P_2 to a fixed pressure P_3) a unique function of the type and number of chemical bonds which enter the combustion chamber in

a mass W, i.e., for every number and type of bonds N_1 at the entrance, we have one and only one ΔH . Even though N_1 is a function of ΔH , it is not a unique function of the total enthalpy change. The same ΔH may result from a variety of combinations of bond types.

The mass taken as a basis, W, is a unique function of the atomic composition A and therefore a unique function of the number and type of chemical bonds at the entrance, N_1 , or

$$W = f_{15}(N_1).$$
 (21)

Then specific impulse is a unique function of the number and type of bonds at the entrance to the combustion chamber, N_{1} , or

$$\frac{u_e}{g_c} = \frac{2J}{g_e} \cdot r_{16}(N_1). \qquad (22)$$

This result is generally applicable and limited only by the character of the function $f_{15}(N_1)$.

To summarize, for any W with P_2 and P_3 fixed,

$$H_2 = f_1(T_2, C_2)$$

$$H_3 = f_2(T_3, C_3)$$
and $H_1 = H_2$.
But $C = g(A)$,
therefore $H_2 = f_3(T_2, A)$,

$$\begin{array}{rcl} H_{3} &=& f_{4}(T_{3},A)\,,\\\\ \mbox{therefore } H_{2} &=& f_{5}(N_{1}) &=& f_{3}(T_{2},A)\,,\\\\ \mbox{But } A &=& f_{6}(N_{1})\,,\,\,\mbox{unique; } N_{1} &=& h(A)\,,\,\,\mbox{non-unique,}\\\\ \mbox{therefore } f_{5}(N_{1}) &=& f_{3}(T_{2},f_{6}(N_{1})) &=& f_{7}(T_{2},N_{1})\,,\\\\ \mbox{or } T_{2} &=& f_{8}(N_{1})\,,\\\\ \mbox{Also } S_{2} &=& S_{3}\,,\\\\ \mbox{and } S_{2} &=& f_{9}(T_{2},A) &=& f_{10}(N_{1}) &=& S_{3}\,,\\\\ \mbox{but } S_{3} &=& f_{11}(T_{3},A) &=& f_{11}(T_{3},f_{6}(N_{1})) &=& f_{10}(N_{1})\,,\\\\ \mbox{therefore } T_{3} &=& f_{12}(N_{1})\,,\\\\ \mbox{therefore } AH &=& H_{2} - H_{3} &=& f_{13}(N_{1})\,,\\\\ \mbox{therefore } \frac{u_{e}}{g_{e}} &=& \sqrt{\frac{2J}{g_{e}}\cdot\frac{\Delta H}{W}} &=& \sqrt{\frac{2J}{g_{e}}\cdot f_{16}(N_{1})\,.\\ \end{array}$$

P"

.

1. In the second sec

5 - 4 - 4 - 5 - 5

. 1 · · · ·

.

IX Postulation of the Character of the Function $f_{16}(N_1)$ and Discussion

Although proof has been offered above that specific impulse is a function, under the above-stated conditions, of the chemical structure of the reactants entering the combustion chamber, no evidence has been offered as to the character of this function.

The ratio $f_{16}(N_1) = \sqrt{\frac{f_{14}(N_1)}{f_{15}(N_1)}} = \sqrt{\frac{g_c}{2J} \cdot \frac{u_e}{g_c}}$ has the dimensions of $\sqrt{\frac{F \cdot L}{M}}$ where F = force dimension, L = length dimension, M = mass dimension. The variable N, is dimensionless. Therefore, since for a given mass basis the dimensions of $\Delta H = f_{14}(N_1)$ are those of energy and the dimensions of W = $f_{15}(N_1)$ are those of mass, the function f_{14} must have the dimensions of energy, i.e., FL, and the function f_{15} must have the dimensions of mass, i.e., M.

Dist.

Since each type i of bond contributes a certain amount of energy e_i specific to the bond to the total enthalpy H_1 , (<u>14</u>), and since the amount of energy contributed is a unique function of the bond type variable and furthermore since that energy is proportional to the number of bonds of that type, it appears expedient to postulate that, under the conditions stated above, ΔH is the sum of the products of the number n_i of each type of bonds times the corresponding energy contributions of each bond to ΔH .

Thus it is postulated that:

$$\Delta H = \sum_{i=1}^{n} n_i e_i \qquad (23)$$

where $i = j, k, l, \cdots u, = types of bonds.$

n₁ = the number of bonds of type i, dimensionless.
 e₁ = the energy contribution of each bond of the type i with dimensions FL.

\$\$ = summation over all the types of bonds present.
i

For any reactant mixture, the only unknowns in the above general expression for ΔH are the e_1 's. These can be easily derived from the generalized thermodynamic charts, (<u>1</u>), in the following manner:

Using the same notation as in the generalized charts

$$\Delta H = \Delta H^{r} (H_{f,2400} - H_{f,0}) = H_{2} - H_{3}$$
(24)

since
$$\Delta H^{r} = \frac{H_{2} - H_{f,0}}{H_{f,2400} - H_{f,0}} - \frac{H_{3} - H_{f}}{H_{f,2400} - H_{f,0}}$$

For any reactant mixture, ΔH can be calculated from the charts. Then, if that mixture contains more than one type of bonds, the ΔH of a sufficient number of other mixtures containing the same type of bonds (and possibly other types) is calculated so that the final number of mixtures chosen is equal to the total number of types of bonds present in all mixtures. Thus, given x types of bonds j, k, l, ••• u present each n_j, n_k, n₁, ••• n_u times, x mixtures are chosen which taken all together contain among themselves the types of bonds j, k, l, $\cdot \cdot \cdot u$. The corresponding $\Delta H^{\dagger}s$ are then calculated and the resulting system of x simultaneous linear equations

$$\Delta H_{1} = \sum_{i=1}^{n} n_{i} e_{i}$$

$$\Delta H_{2} = \sum_{i=1}^{n} n_{i} e_{i}$$

$$\vdots$$

$$\Delta H_{x} = \sum_{i=1}^{n} n_{i} e_{i}; i = j, k, l, \cdots u.$$
(25)

is solved for e_j , e_k , $e_1 \cdot \cdot \cdot e_u$. Then these e_i 's are the energy contributions to the change in total enthalpy of the bonds of type j, k, l, $\cdot \cdot \cdot u$ in that order.

Note that even though these energy contributions are unique functions of the type of bond (i.e., there is one and only one e for a given bond) when P_2 and P_3 are fixed, the type of bond is not a unique function of the energy contributions (i.e., for a given e there exist many different bonds). It is perfectly legitimate to have two different kinds of bonds of the same energy contribution. In that case ΔH may be equal for two systems of different structure and therefore, in some cases, of different composition. This in no way jeoparadizës the proof leading to (20) or the derivation of the bond contributions e since the resulting system (25) is still algebraically consistent and may yield, at worst, the same e's for two different kinds of bonds.

Summarizing: ΔH is a unique function, with dimensions FL, of N₁. N₁ is a non-unique function of the e₁'s. Therefore, e₁ is a non-unique function of ΔH (There may be different e₁'s for a given ΔH , which is equivalent to saying that ΔH may be the same for different e₁'s) and ΔH is a unique function of the e₁'s which is postulated to be $\Delta H = \sum_{i=1}^{i} n_i e_i$.

Other criteria for postulating this form of the function f_{14} are:

1) Ease of prediction of ei's.

2) Accuracy of predicted e₁'s.

3) General applicability of predicted e, 's.

The ease of prediction of e_1 's from the linear aggregate (25) is apparent.

The accuracy of predicted e_1 's is dependent on the degree of elaboration exercised in choosing the types of bonds for which e_1 's are computed. The greater the number of types of bonds employed, i.e., the greater the degree of distinction between types, the more difficult it becomes to use the bond contribution concept. The degree of distinction between bonds, however, is not entirely arbitrary. The tables of bond energies of formation, $(\underline{14}, \underline{15})$, provide a basis of choice since the differences between energies of formation are, in an indefinite way, a measure of the expected differences between the energy contributions e_1 . Thus no distinction will be made between the C-H bonds encountered in CH₄ and those found in C_2H_6 . In most cases no distinction will be made between the bond connecting two

atoms, say A-B, when one set of atoms C, D, $\cdot \cdot \cdot$ etc. fill the remaining bonds of atoms A and B, and the same bond connecting the same two atoms when a different set of atoms, R, S $\cdot \cdot \cdot$ etc. fill the remaining bonds of atoms A and B, and the same e_1 's will be assigned to each bond.

The accuracy of predicted eits is within the accuracy inherent to the generalized thermodynamic charts. In this investigation the relative rather than the absolute magnitudes of specific impulse are considered. Since, therefore, it was found that for a series of reactants whose atomic composition does not vary greatly, the error introduced by the charts is relative, in the same direction and equal in magnitude for each reactant mixture, and since for most nitrogen-free stoichiometric mixtures of fuel and oxidant the atomic composition interpolation numbers vary only between 0.75 and 0.95, i.e., the range where the charts are most accurate, there is ample justification for retaining at least four significant figures in the evaluation of specific impulse. In the range of the fuel-oxidant ratios studied the $\Delta H^{1}s$ predicted from the charts are in the range of 10⁵-10⁶ B.T.U./1b. mole of fuel and the computed ei's are in the range of 10⁴ B.T.U./bond type. This means that at least the first two or three figures of the five-figure bond energy contributions to AH are significant. With the basis for calculation of ei's assumed on page 22, it was found that all the above statements are supported by evidence accumulated by extensive use of the generalized thermodynamic For example, the ΔH computed from the charts for charts.

 $C_{6}H_{14} + 9.50_{2}$ is 534,580 B.T.U./lb. mole of fuel and the ΔH predicted by use of the e_{1} 's for the same reactants is 534,450 B.T.U./lb. mole of fuel.

With the basis chosen here, (see page 22), there is a wide applicability of the e_1 's. The computed e_1 's can be used to predict the exact ΔH , within the limitations always of the charts, for stoichiometric mixtures, and give the relative magnitude of the energy contribution to ΔH at every other fuel-oxidant ratio even when large quantities of nitrogen are present (i.e., at stoichiometric air).

Each bond also contributes a certain amount to the mass W of the reactants taken as a basis. This amount can be derived in a fashion similar to that used in the derivation of the energy contributions. Thus, given a total of x types of bonds j, k, \cdots u, present, each n_j, n_k, n₁ \cdots n_u times, x mixtures are chosen which together contain the types of bonds j, k, $1 \cdots$ u. The corresponding total W's are calculated and the resulting system of x simultaneous linear equations

$$W_{1} = \sum_{i=1}^{n} n_{i} W_{1}$$
(26)

$$W_{2} = \sum_{i=1}^{n} n_{i} W_{1}$$

$$\vdots$$

$$W_{x} = \sum_{i=1}^{n} n_{i} W_{i}; i = j, k, l, \cdots u.$$

is solved for w_j , w_k , $w_1 \cdots w_u$. Then these w's are the mass contributions to the total mass that is chosen as a basis, of the bonds of type j, k, l, \cdots u in that order.

The ease of prediction of w_1 's from the linear aggregate (26) is apparent.

The accuracy of predicted w_1 's is dependent on the degree of elaboration exercised in choosing the types of bonds for which w_1 's are computed. Weight contributions are computed for the bonds and groups for which e_1 's are calculated. The accuracy of w_1 's also depends on the accuracy of atomic weight data. In general, the predicted weight contributions are more accurate than the predicted e_1 's since the function (21) is more justifiable and since the accuracy of the weight data is greater than that of the thermodynamic data.

There are no limits on the applicability of wis.

Therefore the quotient $-\frac{\Delta H}{W}$ is seen to be the ratio of two sums of bond contributions to the change in total enthalpy and to the mass basis of the system, or

$$\frac{\Delta H}{W} = \frac{n_j e_j + n_k e_k + n_1 e_1 + \cdots + n_u e_u}{n_j w_j + n_k w_k + n_1 w_1 + \cdots + n_u w_u} . \quad (2a)$$

A quotient of this nature is maximized when the individual quotients $\frac{n_1 e_1}{n_1 w_1}$ are maximized, since in order that every individual $\frac{n_1 e_1}{n_1 w_1}$ may become maximum every $n_1 e_1$ must become maximum and every $n_1 w_1$ must become minimum. Then, also, the sums $\sum n_1 e_1$ and $\sum n_1 w_1$ become maximum and minimum respectively.

For a fuel and oxidant mixture of given atomic composition, W is fixed when the mass basis is chosen and therefore there is no need to compute the individual w_1 's. Then, in order to have a maximum impulse the appropriate types of bonds must be selected which will contribute maximum e_1 's per bond and which will yield the optimum reactant structure within the limitations imposed by valence numbers, possibility of existence of compound, etc.

When a choice must be made from a wide variety of possible atomic compositions, W is not fixed and the bond contributions to the total mass must be calculated for all atomic compositions. All possible quotients $\frac{n_1e_1}{n_1w_1} = \frac{e_1}{w_1}$ must then be formed and by picking the maximum quotients the appropriate bonds must be selected which will yield the optimum reactant structure within the limitations imposed by valence numbers, possibility of existence of compound, etc.

This paper provides tables of the contributions e_1 of various types of bonds to the total ΔH and of the quotients e_1 for the most important structural bonds and groups.

In both the fixed atomic composition case and the case where a choice must be made from a variety of possible atomic compositions, a general method for the selection of the optimum structure of any atomic composition is introduced so that the work of selecting the optimum structure becomes systematic and less effort- and time-consuming.

Change and to Total Weight

The bonds of various fuels and oxidants used in rocket propulsion were studied extensively and the results appear below. Attention is called to the fact that various assumptions were made and different bases were selected in an attempt to reduce the computational effort where such assumptions and bases would not affect the consistency of the final results. All assumptions and choices of bases are stated at the proper places in the text.

A. Stoichiometric liquid oxygen as oxidant

When pure oxygen is used as oxidant, it was found that, in-general, an increase of the oxygen beyond the stoichiometric ratio, makes the specific impulse decrease, mainly because of the increase in W. AH increases too, because oxygen dilution lowers the temperature and suppresses dissociation, but the corresponding increase of AH is small. As the oxygen is decreased below the stoichiometric ratio and down to a certain critical value, AH again increases, because incomplete combustion lowers the temperature, and the specific impulse becomes greater since W becomes smaller. As the oxygen is decreased below the critical point, specific impulse drops sharply. No study of this critical point is made here but its existence is worth noting.

The relative magnitudes of the energy contributions of the various bonds were not found to be greatly affected by the change in the amount of oxygen.

TABLE 1

HEATS OF COMBUSTION (a)

Hydrogen, Carbon, Carbon Monoxide and Hydrocarbons

Note:

The following values are taken from the tables of the American Petroleum Institute Research Project 44, of the National Bureau of Standards on the Collection, Calculation and Compilation of data on the Properties of Hydrocarbons.

> Heat of combustion Δ H^o_c at 25 °C and constant pressure to form H₂O(gas) and CO₂(gas)

Compound	Formula	State	K cal/mole				
Hydrogen Carbon Carbon Monoxide	H ₂ C CO	ga s solid gr. gas	57.7979 94.0518 67.6361				
PARAFFINS							
Methane Ethane Propane n-Butane 2Methylpropane	CH4 C2H6 C3H8 C4H10 C4H10 C4H10	ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ ମ	191.759 341.261 488.527 635.384 633.744				
(Isobutane) n-Pentane 2-Methylpentane (Isopentane)	C ₅ H ₁₂ C ₅ H ₁₂	e E	782.040 780.120				
2,2-Dimethyl propane (Neopentane)	C ₅ H _{ll}	g	777.370				
n Hexane 3-Methylpentane 2,2-Dimethylbutane 2,3-Dimethylbutane n-Heptane 2,3-Dimethylpentane n-Octane n-Nonane n-Decane	CeH14 CeH14 CeH14 CeH14 CeH14 C7H16 C7H16 C8H20 C9H22	g g g g g g g g g l g g l l g g l l	928.930 927.870 924.530 926.400 ,075.850 ,073.120 ,222.770 ,369.700 ,516.630				

(a) All other heats of combustion used in this text were taken from (<u>1</u>), (<u>6</u>), (<u>8</u>) and (<u>20</u>). TABLE 1, CONT'D

			Heat of combustion AH ^o at 25 °C and constant pressure
			to form H ₂ O(gas) and CO ₂ (gas)
Compound	Formula	State	K cal/mole
MOI	NOOLEFINS		
Ethene (ethylene) Propene (propylene) 1-Butene cis-2-Butene trans-2-Butene 2-Methylpropene (isobutene)	C ₂ H ₄ C ₃ H ₆ C ₄ H ₈ C ₄ H ₈ C ₄ H ₈ C ₄ H ₈	හ භ භ භ භ	316.195 460.428 607.679 606.037 604.994 604.056
2-Methyl-l-Butene 3-Methyl-l-Butene 2-Methyl-2-Butene	C _s H _{lO} C _s H _{lO} C _s H _{lO}	20 20 20 20	750.570 752.330 749.080
A	CETYLENES		
Ethyne (acetylene) Propyne(Methylacetylene 1-Butyne(ethylacetylene 2-Butyne (dimethylacetylene) 3-Methyl-1-butyne	$C_{2}H_{2}$ $C_{3}H_{4}$ $C_{4}H_{6}$ $C_{4}H_{6}$	තා තා තා තා තා	300.096 442.070 589.302 584.974 734.050
ALKY	L BENZENES	5	
Benzene Toluene Ethylbenzene 1,2-Dimethylbenzene 1,3-Dimethylbenzene 1,4-Dimethylbenzene 1-Methyl-4-ethylbenzene	CeHe C7H8 C8H10 C8H10 C8H10 C8H10 C8H10 c8	50 50 50 50 50 50 50	757.52 901.50 1048.53 1045.94 1045.52 1045.69 1192.47
Methyl alcohol Ethyl alcohol n-Propylalcohol isopropylalcohol n-Butyl alcohol Amyl alcohol Methyl-diethyl corbinol	CH40 C2H60 C3H80 C3H80 C4H100 C3H120 LC6H140	liquid l l l l l l l	149.80 296.35 439.80 432.60 586.25 723.70 853.15

(b) From (<u>6</u>) **ань**, 3 С. 2 С. 2 The bond 0-0 connecting the two oxygen atoms in the oxygen molecules entering the combustion chamber was assumed to make a contribution of zero to the change in total enthalpy and to the total weight. The e's and w's of all other bonds were computed on this basis.

In order to employ the generalized thermodynamic charts at their maximum accuracy (see Appendix), stoichiometric mixtures of fuel and oxidant were used in the prediction of e_1 's and w_1 's. However, by employing scattered mixtures in the fuel-lean and fuel-rich regions it was confirmed that even though the magnitudes of the e_1 's changed, the relative magnitudes remained substantially the same. The same was found to be true for the weight contributions, w_1 .

Thus, an increase in oxygen always increases and a decrease in oxygen always decreases all the weight bond contributions. Therefore, if the $-\frac{e_j}{w_j}$ quotient for a certain bond j is the highest of all other quotients at the stoichiometric ratio of oxygen to fuel, the same quotient will still be the highest at all other ratios of oxygen to fuel since all the w_i 's will change in the same relative way.

In Table 1 are listed the heats of combustion of various paraffin and olefin hydrocarbons, alcohols, ethers, aldehydes, ketones, amines, aromatics and other organic compounds, which are probable rocket fuels and which provide among them a great number of important bonds. The heats 2.2.

of combustion for the fuels listed are at $25^{\circ}C$ and constant pressure and over gaseous H_2O and CO_2 . The units employed are B.T.U./lb. mole. The initial state of the fuels is gaseous (unless otherwise noted) since methane, the critical temperature of which is -83°C, was used to derive the important C-H bond and since a change of basis for other fuels would needlessly complicate all calculations.

The ΔH calculated for liquid hydrocarbon fuels is in general less by 1 per cent than that calculated for gaseous hydrocarbons. The latest heat of combustion data were used in all cases, (5, 6, 8, 15).

These heats of combustion are converted to the basis used in the generalized thermodynamic charts, (<u>1</u>, page 46), i.e., to heat evolved on cooling given compound from 300° K to 0° K, plus heat released by burning with O₂ at 0° K to give CO_2 , H₂O (vapor), O₂ and N₂. This is equivalent to burning the compound at 300° K (or 25° C, approximately) to give CO_2 , H₂O (vapor), O₂ and N₂, adding the heat released by cooling the products to 0° K and subtracting the heat necessary to heat the stoichiometric oxygen used from 0° K to 300° K. Then the enthalpy of the liquid oxygen used is added and the result is H₁.

As an example, consider the calculation of H_1 for methane.

 $CH_{l_{4}} + 2O_{2} = CO_{2} + 2H_{2}O + \Delta H_{c}$

$$\Delta H_{c} = \text{heat of combustion of CH}_{4}, \text{ gaseous, at 25°C,}$$

over CO₂, H₂O (vapor) = 345,166 B.T.U./lb.
mole.

in general, for a gas, $\Delta H_{1,sensible}^{2} = (c_{p,av})(t_{2} - t_{base}) - (c_{p,av}) x$ $(t_{1} - t_{base}). \qquad (27)$

or, approximately,

$$\Delta H_{1,sensible}^{2} = (c_{p,av.})_{2} (t_{2} - t_{1}).$$
(28)
then.from Figure 27, reference (1),

$$c_{p,av.,CO_{2}} = 7.45 \text{ B.T.U./lb. mole.}$$

$$c_{p,av.,H_{2}O} = 7.95 \text{ B.T.U./lb. mole.}$$

$$c_{p,av.,O_{2}} = 6.94 \text{ B.T.U./lb. mole.}$$
therefore,

$$\Delta H_{sensible} = (1 \times 7.45 + 2 \times 7.95 - 2 \times 6.94) 1.8 \times 298 = 5,080 \text{ B.T.U./lb. mole.}$$
And since the enthalpy of the liquid oxygen used is
-1818 B.T.U./lb. mole,

$$H_1 = 345,166 + 5,080 - 3,636 = 346,610 B.T.U./1b. mole.$$

Since for stoichiometric mixtures of hydrocarbons and oxygen the flame temperature is beyond the range of the generalized thermodynamic charts in (1) the charts were extended to 4000° K. The extensions appear in the Appendix with an

appropriate discussion.

CONSIGNATION OF THE OWNER

Figures Al, A2, and A3 are the extensions of and correspond to Figures 29, 31, and 32 of reference (<u>1</u>) in that order. It was not found necessary to extend Figure 30 of reference (<u>1</u>). Use must be made of Figure 33 of reference (<u>1</u>) for the prediction of $(\alpha - \beta)$.

The composition interpolation number plots as well as Figure 33 of $(\underline{1})$ apply to and should be used concurrently with the corresponding extended charts in the Appendix.

The interpolation numbers used have only three significant figures the last of which is doubtful. However, it was found that a change in the interpolation number by 0.005 in either direction does not affect the results as long as the change is in the same direction for all compounds studied and as long as a change in the composition of the system in one direction produces a relative change in the interpolation number. Thus it was found that if the Figure 29, (1), interpolation number for $C_{4}H_{10}$ + 6.502 is assumed to be 0.894 and that of C_5H_{12} + 80₂ is assumed to be 0.896, the resulting ΔH^*s are consistent and they are the same in the first three significant figures as when the interpolation numbers are assumed to be 0.899 and 0.901 for $C_{4}H_{10} + 6.50_{2}$ and $C_{5}H_{12} + 80_{2}$ respectively. Even if there were a change to the third significant figure of ΔH , that change would be kept consistent in a homologous series of compounds if the interpolation numbers were kept consistent

and the relative magnitude of the ΔH 's and the e_i 's would not change.

It must be emphasized that the relative magnitudes of the bond energy contributions are not appreciably affected by any of the factors contributing to the errors inherent to the charts if those errors are kept in the same direction. (1.) Bonds encountered in normal paraffins

In general, the formula for paraffin hydrocarbons is $C_nH_{2n} + 2$. Then the basis correction for the heat of combustion and the liquid oxygen correction and reduction of the heat of combustion to H_1 is, in terms of n:

 $298(1.8) \overline{7.45n} + (n + 1)(7.95) - (-\frac{3n + 1}{2})(6.95) - \frac{1818(3n + 1)}{2} = (1500 - 55n) \text{ B.T.U./lb. mole}$

Table 2 provides the bonds found in various paraffins and the corresponding $H_{f,2400}$, H_1 and H^{Γ} for stoichiometric combustion with liquid oxygen. The bonds C-H, $C^{1}-C^{1}$, $C^{1}-C^{11}$, $C^{11}-C^{11}$ were found sufficient to describe the ΔH of the normal paraffins. C^{1} and C^{11} represent primary and secondary carbons respectively.

The derived e_1 's were used to compute the ΔH of various compounds and the results can be checked with the ΔH 's, calculated from the charts, in Table 3.

TABLE 2

The bond types C-H, $C^{i}-C^{i}$, $C^{i}-C^{ii}$, $C^{ii}-C^{ii}$, are represented by the letters a, b_{1} , b_{2} , and b_{3} respectively. C^{i} and C^{ii} represent primary and secondary carbons respectively.

Compound	Bond Types and Numbers	^H f,2400	H	<u>H</u> r
CH4	4a	143,430	346,616	2.4166
C ₂ H ₆	6a , 1b ₁	242,150	615,664	2.5424
° _{3^H8}	8a, 2b ₂	340,870	880 ,688	2.5836
C4H10	10a, 2b ₂ , 1b ₃	439,570	1,144,975	2.6047
0 ₅ H ₁₂	12a, 2b ₂ , 2b ₃	538,290	1,408,902	2.6173
C6H14	14a, 2b ₂ , 3b ₃	637,010	1,67 <u>3,</u> 249	2.6267
C7H16	16a, 2b ₂ , 4b ₃	735,730	1,937,650	2.6336
с ₈ н ₁₈	18a, 2b ₂ , 5b ₃	834,450	2,202,051	2.6389
с _{9^н20}	20a, 2b ₂ , 6b ₃	933,170	2,466,470	2.6431
$C_{10}H_{22}$	22a, 2b ₂ , 7b ₃	1,031,890	2,730,889	2.6464
As an example of the calculation of $\Delta H,$ consider the case of $CH_{\rm Le}.$

 $CH_4 + 2O_2 = CO_2 + 2H_2O$, fictitious composition. $H_1^r = 2.4166$, Fig. 29, (1), interpolation no. = 0.840, read $T_1 = 3417^{\circ} K$ from Fig. Al. $T_1 = 3417^{\circ}K$, Fig. 31, (1), interpolation no. = 0.860, read $S^r + \beta = 1.1305$ from Fig. A2. From Fig. 33, (1), $\alpha - \beta = 0.0175$. Therefore, $S^r + \alpha = 1.1480$. $S^{r} + \alpha = 1.1480$, Fig. 32, (1), interpolation no. = 0.860, read $T_2 = 2700$ from Fig. A3. $T_2 = 2700$, Fig. 30, (1), interpolation no. = 0.850, read $H_2^r = 1.6020$. Then $\Delta H^r = 0.8146$, ΔH = (28146)(143,430) = 116,840 B.T.U./lb. mole fuel Then, the contribution of each C-H bond is $\frac{116,840}{\mu}$ = 29,210 B.T.U./C-H bond. For $C_2H_6 + 3.50_2$, $\Delta H = 198,660$ B.T.U./lb. mole fuel. Therefore, the C^1-C^1 energy contribution is 198,660 -

 $-6 \ge 29,210 = 23,400 \text{ B.T.U./C^1-C^1}$ bond.

Reactants	W	Fg. 29	Fg. 31	Fg. 33	Fg. 32	Fg. 30		<u>AH</u>
CH4+202	80	.840	.860	.0175	.860	.850	116,840	·
C ₂ H ₆ +3,50 ₂	142	.870	.890	.0178	.875	.875	198,660	
° ₃ H ₈ +50 ₂	204	.890	.898	.0195	.890	.880	283,800	
C4H10+6.502	266	.894	• 900	.0197	.895	.885	367,350	
с ₅ н ₁₂ +80 ₂	328	.896	• 902	.0199	.900	.888	450,980	450 ,900
C ₆ H ₁₄ +9.50 ₂	390	.898	. 904	.0200	.903	.891	534,480	534,450
C7H16+1102	452	.90	.906	.0202	.905	.894	618,450	618,000
C8H18+12.502	514	• 902	. 908	.0203	• 90 7	.897	701,280	701,550
C9H20+1402	576	. 904	• 909	.0204	.909	•899	784,890	785,100
C ₁₀ H ₂₂ +15.50 ₂	6 3 8	.906	.910	.0205	.910	.901	869,260	868,650

TABLE 3

Heat of combustion data used for the determination of H in Table 2 are from (5), page 244.

Table 3 gives the calculated values of ΔH (in B.T.U./ 1b. mole fuel) and W (in lbs.) and the predicted values for ΔH . The interpolation numbers used in calculating ΔH are given under the headings Figure 29, Figure 31, Figure 33 (the $\alpha - \beta$ is listed), Figure 32 and Figure 30, for the corresponding figures of (1) and the Appendix (see page72).

Table 4 gives the energy (e1) and weight (w1) contributions as well as the $-\frac{e_1}{w_1}$ ratios of the listed bond types. The bond type code letters are explained in Table 2.

TABLE 4

Bond Type	Energy Contributions	Weight Contributions	
8.	29,210	20	1460
bl	23,400	22	1064
b2	25,060	22	1139
b3	25,130	22	1142

(2.) Bonds encountered in branched paraffins

In general, the formula for branched paraffin hydrocarbons is $C_nH_{2n} + 2$. Their complete combustion yields n moles CO_2 and n + 1 moles H_2O . Then the basis correction for the heat of combustion, the liquid oxygen correction and the reduction of the heat of combustion to H_1 is, in terms of n:

$$298(1.8)\left[7.45n + (n + 1)(7.95) - \frac{3n + 1}{2}(6.95)\right] - \frac{1818}{2}(3n + 1) = (1500 - 55n) \text{ B.T.U./lb. mole.}$$

Table 5 lists the bonds found in various branched paraffins and the corresponding $H_{f,2400}$, H_{l} and H^{r} for stoichiometric combustion with liquid oxygen. The bonds $C^{1}-C^{111}$, $C^{11}-C^{111}$, $C^{1}-C^{17}$, $C^{11}-C^{17}$ and $C^{111}-C^{111}$ were found sufficient to predict, in conjunction with the bonds derived from other hydrocarbons, the ΔH of the branched paraffins.

Table 6 gives the values of ΔH (in B.T.U./lb. mole fuel) as calculated from the charts and W (in lbs.), and the predicted values for ΔH . The interpolation numbers used in calculating ΔH are given under the headings Figure 29, Figure 31, Figure 33 (The $\alpha - \beta$ is listed), Figure 32 and Figure 30, for the corresponding figures of (<u>1</u>) and the Appendix (see page 72).

22

The bond types $C^{1}-C^{111}$, $C^{11}-C^{111}$, $C^{1}-C^{1v}$, $C^{11}-C^{1v}$ and $C^{111}-C^{111}$ are represented by the letters b_{4} , b_{5} , b_{6} , b_{7} and b_{8} in this order. For other bond type code letters see previous tables.

Bond Types and Numbers Hf. 2400 Hr Compound H $C4H_{10}$ Isobutane 439,570 1,142,017 2.5980 10a, 3bh C5H12 538,290 1,405,446 2.6109 Isopentane 12a, 1b2, 2b4, 1b5 C5H12 2,2 Dimethyl 12a, 4b₆ propane 538,290 1,400,496 2.6016 $C_{6H_{14}}$ 3-Methyl pentane 14a, 2b₂, 1b₄, 2b₅ 637,010 1,671,341 2.6237 $C_{6H_{14}}$ 2,2 Dimethyl $^{-14a}$, $1b_2$, $3b_6$, $1b_7$ 637,010 1,665,329 2.6142 butane C6H14 2,3 Dimethyl butane 14a, 4b4, 1b8 637,010 1,668,695 2.6195 C. H. 2,3' Dimethyl 16a, 1b₂, 3b₄, 1b₅, 1b₈ 735,730 1,932,736 2.6269 pentane

Calc'd Pred¹d Fg.29 Fg. 31 Fg. 33 Fg. 32 Fg. 30 ΔH Reactants W ΔH C4H10+6.502 266 .894 .900 .0197 .895 .885 367,040 Isobutane C5H12+802 328 .896 .900 .902 .0199 .888 449,960 Isopentane C5H12+802 328 .896 .902 .0199 .900 .888 447,100 2,2-Dimethyl propane C6H14+9.502 390 .904 .898 .0200 .903 .891 532,990 532,820 3-Methyl pentane C6H14+9.502 390 .898 .904 .0200 .903 .891 529,800 2,2-Dimethyl butane 06H14+9.502 390 .898 .904 .0200 .903 .891 531,903 2, 3-Dimethyl butane C7H16+1102 452 .900 .906 .0202 .905 .894 614,260 614.800 2,3-Dimethyl pentane

وهوبي (1994) مانية الأنبي الإنتاب ال Table 7 gives the energy (e_1) and weight (w_1) contributions as well as the $-\frac{e_1}{w_1}$ ratios of the listed bond types. The bond type code letters are explained in Table 5.

TABLE 7

Bond Type	Energy Contributions	Weight Contributions	-ei- Wi
b4	25,000	22	1137
b5	24,380	22	1108
^b 6	24,140	22	1097
Ъ ₇	23,480	22	1067
Ъ ₈	23,000	22	1045

Zel

(3.) Bonds encountered in monoolefins

In general, the formula for monoolefins is C_nH_{2n} . Their complete combustion yields n moles CO_2 and n moles H_2O . Then the basis correction for the heat of combustion, the liquid oxygen correction and the reduction of the heat of combustion to H_1 is, in terms of n:

 $298(1.8)\left[7.45n + 7.95n - \frac{3n}{2}(6.94)\right] - 2727n = -50n B.T.U./lb. mole.$

Table 8 lists the bonds found in various monoolefins and the corresponding $H_{f,2400}$, H_1 and H^r for stoichiometric combustion with liquid oxygen. The bonds $C^1 = C^1$, $C^1 = C^{11}$, $C^{11} = C^{11}$, cis, $C^{11} = C^{11}$ trans, $C^1 = C^{111}$ and $C^{111} = C^{11}$ were found sufficient to predict, in conjunction with the bonds derived from other hydrocarbons, the ΔH of the monoolefins.

Table 9 gives the values of ΔH (in B.T.U./lb. mole fuel) as calculated from the charts and W (in lbs.), and the predicted values for ΔH . The interpolation numbers used in calculating ΔH are given under the headings Figure 29, Figure 31, Figure 33 (The $\alpha - \beta$ is listed), Figure 32 and Figure 30, for the corresponding figures of (1) and . the Appendix (see page 72).

The bond types $C^{1} = C^{1}$, $C^{1} = C^{11}$, $C^{11} = C^{11}$ is, $C^{11} = C^{11}$ trans, $C^{1} = C^{111}$ and $C^{111} = C^{111}$ are represented by the letters c_{1} , c_{2} , c_{3} , c_{4} , c_{5} and c_{6} in this order. For other bond type code letters see previous tables.

Compound	Bond Types and Numbers	^H f,2400	H	Hr
C_2H_4	4a, 1c1	197,440	569,050	2.8821
C _{3^H6}	6a, 1b ₂ , 1c ₂	296,160	828,620	2.7978
C ₄ H8 1-Butene	8a, 1b ₂ , 1b ₃ , 1c ₂	394,880	1,093,620	2.7694
C ₄ H8 cis-2- Butene	⁸ a, ^{2b} ₂ , 1c ₃	394,880	1,090,660	2.7620
C _{4H8} trans-2- Butene	8a, 2b ₂ , 1c4	394,880	1,088,780	2.7572
C4H8 2-Methyl propene	8a, 2b4, 1c5	394,880	1,087,100	2.7529
C ₅ H10 2-Methyl- 1-butene	10a, 1b ₂ , 1b ₄ , 1b ₅ , 1c ₅	493,600	1,350,780	2.7365
C ₅ H ₁₀ 3-Methyl- 1-butene	10a, 2b4, 1b5, 1c2	493,600	1,353,950	2.7430
C5H10 2-Methyl- 2-Butene	10a, 1b ₂ , 2b ₄ , 1c ₆	493,600	1, <i>3</i> 48,100	2.7311

r"

Reactants	W	Fg.29	Fg. 31	Fg. 33	Fg. 32	Fg. 30	Calc'd	Pred'd <u>AH</u>
С ₂ н ₄ +30 ₂	124	.910	.915	.0207	.915	.910	178,310	
C _{3H6} +4.50 ₂	186	.910	.915	.0207	• 915	.910	255,100	
с _{4H8+602}	248	.910	.915	.0207	.915	.910	338,570	338,670
С ₄ н8+602	248	.910	.915	.0207	.915	.910	336,440	·
С ₄ н ₈ +60 ₂	248	.910	.915	.0207	.915	.910	336,100	
С ₄ H ₈ +60 ₂	248	.910	.915	.0207	.915	.910	337,580	
C ₅ H ₁₀ +7.50 ₂	310	.910	.915	.0207	.915	.910	419,300	420,300
C _{5^H10} +7.50 ₂	310	.910	.915	.0207	.915	.910	421,050	421,530
C5H10+7.502	310	.910	.915	.0207	.915	.910	418,620	

Table 10 gives the energy (e_1) and weight (w_1) contributions as well as the $-\frac{e_1}{w_1}$ ratios of the listed bond types. The bond type code letters are explained in Table 8.

TABLE 10

Bond Type	Energy Contributions	<u>Weight</u> Contributions	_ei_ Wi
cl	61,470	44	1394
°2	54,800	44	1246
°3	52,640	44	1198
c ₄	52 , 30 0	1414	1190
°5	53,902	1414	1225
°6	51,460	44	1169

્યુદ્ધ

(4.) Bonds encountered in acetylenes

In general, the formula for acetylenes is $C_nH_{2n} - 2$. Their complete combustion yields n moles CO_2 and (n - 1)moles H_2O . Then the basis correction for the heat of combustion, the liquid oxygen correction and the reduction of the heat of combustion to H_1 is, in terms of n:

$$298(1.8)\left[n(7.45) + (n - 1)(7.95) - 6.94(-\frac{3n - 1}{2})\right] - (-\frac{3n - 1}{2})(1818) = -(47n + 1500) \text{ B.T.U./lb. mole.}$$

Table 11 lists the bonds found in various acetylenes and the corresponding $H_{f,2400}$, H_1 and H^r for stoichiometric combustion with liquid oxygen. The bonds $C^1 \equiv C^1$, $C^1 \equiv C^{11}$ $C^{11} \equiv C^{11}$ were found sufficient to predict, in conjunction with the bonds derived for other hydrocarbons, the ΔH of the acetylenes.

Table 12 gives the values of ΔH (in B.T.U./lb. mole fuel) as calculated from the charts and W (in lbs.) and the predicted values for ΔH . The interpolation numbers used in calculating ΔH are given under the headings Figure 29, Figure 31, Figure 33 (The $\alpha - \beta$ is listed), Figure 32 and Figure 30, for the corresponding figures of (1) and the Appendix (see page 72).

The bond types C-H, $C^{i} \equiv C^{i}$, $C^{i} \equiv C^{ii}$ and $C^{ii} \equiv C^{ii}$ are represented by the letters a, d_{1} , d_{2} and d_{3} respectively. For other bond type code letters see previous tables.

Compound	Bond Types and Numbers	^H f,2400	H	Hr
C_2H_2	2a, 1d1	152,750	538,572	3.5258
C ₃ H₄	4a, 1b ₂ , 1d ₂	251,470	794,076	3.1577
C4H6 1-Butyne	6a, 1b ₂ , 1b ₃ , 1d ₂	350,190	1,068,043	3.0498
C ₄ H6 2-Butyne	6a, 2b ₂ , 1d ₃	350,190	1,051,253	3.0019
C ₅ H8 3-Methyl- 1-butyne	8a, 2b ₄ , 1b ₅ , 1d ₂	448,910	1,319,540	2,9394

Reactants	W	Fg.29	Fg. 31	Fg. 33	Fg. 32	Fg. 30	Calc'd	<u>Pred'd</u> Δ <u>H</u>
C ₂ H ₂ +2.50 ₂	106	• 940	• 950	.0230	• 940	.940	149,820	
⁰ 3 ^H 4+402	168	•930	• 942	.0220	.930	•930	230,700	230,150
C4H6+5.50 ₂ 1-Butyne	2 30	.922	•935	.0218	.922	.922	313,700	
0 ₄ H ₆ +5.50 ₂ 2-Butyne	2 30	• 922	•935	.0218	.922	.922	304,280	
C ₅ H ₈ +70 ₂ 3-Methyl- 1-butyne	292	.918	•930	.0215	•918	.918	396,110	396, 310

Table 13 gives the energy (e₁) and weight (w₁) contributions as well as the $-\frac{e_1}{w_1}$ ratios of the listed bond types. The bond type code letters are explained in Table 11.

TABLE 13

Bond Type	Energy Contributions	<u>Weight</u> Contributions	
dl	91,400	66	1384
d ₂	88,250	66	1337
^d 3	78,900	66	1194

(5.) Bonds encountered in alcohols

In general, the formula for monohydroxyl hydrocarbons is $C_nH_{2n+2}O$. Their complete combustion yields n moles CO_2 and (n-1) moles H_2O . Then the basis correction for the heat of combustion, the liquid oxygen correction and the reduction of the heat of combustion to H_1 is, in terms of n:

 $298(1.8)\left[7.45n + (n + 1)(7.95) - \frac{3}{2}n(6.95)\right] - 1818\left(\frac{3n}{2}\right) = 4260 - 50n \text{ B.T.U./lb. mole.}$

Table 14 lists the bonds found in various alcohols and the corresponding $H_{f,2400}$, H_1 and H^r for stoichiometric combustion with liquid oxygen. The bonds C⁰-OH, C¹-OH, C¹¹-OH and C¹¹¹-OH were found sufficient to predict, in conjunction with the bonds derived from other hydrocarbons, the ΔH of the alcohols.

Table 15 gives the values of ΔH (in B.T.U./lb. mole fuel) as calculated from the charts and W (in lbs.), and the predicted values for ΔH . The interpolation numbers used in calculating ΔH are given under the headings Figure 29, Figure 31, Figure 33 (The $\alpha - \beta$ is listed), Figure 32 and Figure 30, for the corresponding figures of (1) and the Appendix (see page 72).

Since the heat of combustion of liquid alcohols was used (because of lack of gaseous state data) the various C-OH bonds include that change of base difference. The C-OH energy contributions should be higher by 2000-5000 B.T.U. and the relative magnitudes should change but should still remain in the same descending order.

The bond types $C^{0}-OH$, $C^{1}-OH$, $C^{11}-OH$ and $C^{111}-OH$ are represented by the letters g_{1} , g_{2} , g_{3} and g_{4} in that order. For other bond type code letters see previous tables.

Compound	Bond Types and Numbers	^H f,2400	H	$\underline{\mathtt{H}^{\mathbf{r}}}$
Сн _З он	3a, 1g1	143,430	265,450	1.8507
С ₂ н ₅ он	5a, 1b ₁ , 1g ₂	242,150	529,270	2.1857
n-C ₃ H ₇ OH	7a, 2b ₂ , 1g ₂	340,870	795,750	2.3344
1-C ₃ H ₇ OH	7a, 2b ₂ , 1g ₃	340,870	782,790	2.2964
n-C4H90H	9a, 2b ₂ , 1b ₃ , 1g ₂	439,570	1,059,310	2.4100
n-C ₅ H ₁₁ OH	lla, 2b ₂ , 2b ₃ , 1g ₂	538,290	1,306, 670	2.4274
$CH_3(C_2H_5)_2C(OH)$	13a, 2b ₂ , 1b ₄ , 2b ₅ , 1g ₄	6 <i>3</i> 7,010	1,539,630	2.4170

Reactants	W	Fg.29	Fg. 31	Fg. 33	Fg. 32	Fg. 30	Calc'd	Pred d <u>AH</u>
CH30H+1.502	80	.840	.860	.0175	.860	.850	95,340	
С ₂ H50H+302	142	.870	.890	.0178	.875	.875	181,500	181,560
n-C ₃ H ₇ OH+ +4.50 ₂	204	.890	.898	.0195	.890	.880	266,700	
1-0 ₃ н ₇ он+ +4.50 ₂	204	•890	.898	.0195	.890	.880	263,970	·
n-C ₄ H ₉ OH+ +60 ₂	266	•894	.900	.0197	•895	.885	350,380	350,250
n-C ₅ H ₁₁ OH+ +7.50 ₂	328	.896	.902	.0199	.900	.888	434,070	433,800
сн ₃ (с ₂ н ₅) ₂ сон+ +90 ₂	390	.898	• 904	.0200	.903	.891	509,630	

Table 16 gives the energy (e_1) and weight (w_1) contributions as well as the $-\frac{e_1}{w_1}$ ratios of the listed bond types. The bond type code letters are explained in Table 5.

TABLE 16

Bond Type	Energy [*] Contributions	<u>Weight</u> Contributions	-ei- Wi
\mathbf{g}_{1}	7710	20	385
g2	12050	20	602
g3	9380	20	469
gu	6020	20	301

* Above liquid basis.

(6.) Bonds encountered in aromatics

A different method of deriving the e_1 for bonds encountered in aromatics is employed. The energy contribution e_{Bz} to ΔH of the entire benzene (C₆H₆) molecule is calculated. Then it is assumed that each carbon-hydrogen bond contributes the same amount of energy as in the paraffins, namely $e_a = 29,210$ B.T.U. Therefore, the substitution of one hydrogen by, for example, $a - CH_3$ radical will yield:

$e_{Bz} - e_a + 3e_a + e_{b_4} = \Delta H_{C_6H_5CH_3}$

It was found that it is not necessary to differentiate between ortho-, meta-, and para-substitution since only the fifth or sixth significant figure of the heats of combustion varies in these cases.

In general, the formula for benzene and the alkyl benzenes is $C_nH_{2n} - 6$ and their complete combustion products are n moles CO_2 and n - 3 moles H_2O . Then the basis correction for the heat of combustion, the liquid oxygen correction and the reduction of the heat of combustion to H_1 is, in terms of n:

Table 17 lists the bonds found in various alkyl benzenes and the corresponding $H_{f,2400}$, H_1 and H^r for stoichiometric combustion with liquid oxygen. The group $C_6H_5^-$ was found sufficient to predict, in conjunction with the bonds derived from other hydrocarbons, the ΔH of <u>all</u> monosubstituted benzenes. For polysubstituted benzenes an equivalent basic aromatic group is computed by subtracting sufficient a's from the value e_{B_7} .

Table 18 gives the values of ΔH (in B.T.U./lb. mole fuel) as calculated from the charts and W (in lbs.) and the predicted values for ΔH . The interpolation numbers used in calculating ΔH are given under the headings Figure 29, Figure 31, Figure 33 (The $\alpha - \beta$ is listed), Figure 32 and Figure 30, for the corresponding figures of (<u>1</u>) and the Appendix (see page 72).

The groups $C_{6H_5}^{-}$, $C_{6H_4}^{-}$ and $C_{6H_3}^{-}$ represented by the letters k_1 , k_2 and k_3 respectively. For other bond type code letters see previous tables.

Compound	Bond Types and Numbers	^H f,2400	<u>H</u>	Hr
с ₆ н ₆	la, lk ₁ or 2a, k ₂	458,250	1,358,800	2.9651
о _{6н5} сн ₃	k _l , 3a, 1b4	556,970	1,617,900	2.9048
с ₆ н ₅ с ₂ н ₅	k ₁ , 5a, 1b ₂ , 1b ₅	655,690	1,882,500	2.8710
снзс6н4снз	k ₂ , 6a, 2b ₄ .	655,690	1,878,200	2.8622
С2H5C6H4CH3	k ₂ , 8a, 1b ₂ , 1b ₄ , 1b ₅	754,410	2,142,450	2.8410

	W	Fg.29	Fg. 31	Fg. 33	Fg. 32	Fg. 30	Calc ^I d <u>AH</u>	Pred'd <u>AH</u>
с _{6^H6+7.50₂}	318	• 940	• 945	.0225	• 940	• 940	412,760	
с ₆ н ₅ сн ₃ +90 ₂	380	•933	•938	.0220	•933	•933	496,450	496,180
0 ₆ н ₅ 0 ₂ н ₅ +10.50 ₂	442	.930	•935	.0215	.930	•930	579,200	579,040
сн ₃ с ₆ н ₄ сн ₃ + +10.50 ₂	442	•930	• 935	.0215	•930	•930	579,100	579,600
С ₂ H ₅ C ₆ H ₄ CH ₃ + +120 ₂	504	• 928	•933	.0210	• 928	. 928	662,950	662,460

Table 19 gives the energy (e_i) and weight (w_i) contributions as well as the $\frac{e_i}{w_i}$ ratios of the listed group types. The group type code letters are explained in Table 17.

TABLE 19

Group Type	Energy Contributions	<u>Weight</u> Contributions	<u>e</u> i w _i
kl	383,550	309	1241
ka	354,340	306	1180
k ₃	325,130	291	1119

7. Bonds and groups encountered in amines and other nitrogen containing compounds

In this series of fuels it was found necessary to use the group contribution concept introduced on page 48.

Because of the variety of series studied, no general way of predicting the change of the heats of combustion due to base changes was used.

The number of reactants studied in this table was limited by the availability of reliable thermodynamic data. Thus, interesting monofuels such as hydrazine nitrate were not studied.

Most heats of combustion used in this section were taken from Table 4, page 46 of (1). Then the enthalpy of the liquid oxygen necessary for complete combustion was added to the heat of combustion and the result was H_1 , the total enthalpy of the reactants entering the combustion chamber. All fuels studied were in a liquid state and therefore each of the bonds and groups listed here has absorbed the entire change of state error which ranges from 1000 to 5000 B.T.U. per bond (see page 23). This change of basis does not appreciably affect the relative magnitudes of the energy bond contributions.

The limitations of the accuracy of the extended charts for nitrogen containing mixtures have been adequately discussed elsewhere (pages 64 and 76).

Table 20 lists the bonds and groups found in various nitrogen-containing organic compounds and the corresponding $H_{f,2400}$, H_{1} and H^{r} for combustion with stoichiometric liquid oxygen. The groups C^O-NH₂, C-N-C, C-N-C, C¹-NH₂, C¹¹-NH₂, H L L N-H, C^O-NO₂, C¹-NO₂, C-CN, C-NC and N-H were found sufficient to predict, in conjunction with bonds and groups derived from other hydrocarbons, the ΔH of most nitrogen-organic compounds.

Table 21 gives the values of ΔH (in B.T.U./lb. mole of fuel) as calculated from the charts and W (in lbs.), and the predicted values for ΔH . The interpolation numbers used in calculating ΔH are given under the headings Figure 29, Figure 31, Figure 33 (The $\alpha - \beta$ is listed), Figure 32 and Figure 30, for the corresponding figures of (<u>1</u>) and the Appendix (see page 72).

A more detailed study of the nitrogen-organic compounds is needed and it should be easy to make when more accurate thermodynamic data and charts become available.

The groups $C^{0}-NH_{2}$, C-N-C, C-N-C, $C^{1}-NH_{2}$, $C^{11}-NH_{2}$, H C N-N, $C^{0}-NO_{2}$, $C^{1}-NO_{2}$, C-CN, C-NC, N-H are represented by the letters l_{1} , l_{2} , l_{3} , l_{4} , l_{5} , l_{6} , l_{7} , l_{8} , l_{9} , l_{10} and l_{11} in this order. For other bond and group type code letters see previous tables.

Compound	Bond Types and Numbers	^H f,2400	H	$\underline{H^r}$
CH3NH2	3a, 1 ₁	182,825	421,680	2.3012
$(CH_3)_2NH$	6a, 1 ₂	281,550	672,140	2.3875
(CH3)3N	9a, 13	380,270	960,710	2.5120
C2H5NH2	5a, 1b ₁ , 11 ₄	281,550	672,320	2.3880
$(CH_2)_2(NH_2)_2$	4a, 1b ₁ , 11 ₄	320,970	736,150	2.2375
C ₆ H ₅ NH ₂	k ₁ , 1 ₅	497,670	1,393,800	2.8010
$C_{6H_4}(NH_2)CH_3$	k ₂ , 3a, 10 ₄ , 11 ₅	596,390	1,648,450	2.7615
N ₂ H ₄	41 ₁₁ , 11 ₆	123,530	236,550	1.9162
CH3NO2	3a, 11 ₇	138,140	284,300	2.0580
C _{2H5} NO ₂	5a, 15 ₁ , 11 ₈	236,860	548,150	2.3165
CH ₃ CN	3a, 11 ₉	192,170	517,710	2.6920
CH 3NC	^{3a} , ¹¹ 10	192,170	536,610	2.7912
NH3	3111	84,110	131,280	1.5608

	W	Fg.29	Fg. 31	Fg. 33	Fg. 32	Fg. 30	Calc'd	Pred ¹ d <u>AH</u>
CH3NH2+2.2502	103	.800	•790	.0150	.800	.800	150,000	
(CH ₃) ₂ NH+3.750 ₂	165	.820	.830	.0160	.850	.850	221,000	
(CH ₃)N+5.250 ₂	227	. 860	.880	.0170	.870	.860	315,000	
C2H5NH2+3.7502	165	.830	.840	.0170	.860	.860	227,000	
(CH ₂) ₂ (NH ₂) ₂ + +40 ₂	188	.815	.830	.0160	.850	.850	256,000	255,840
с _{6^н5^{nн}2+7.7502}	341	•930	•930	.0220	• 930	.925	428,400	428,350
С ₆ н ₄ (NH ₂)СH ₃ + +9.250 ₂	403	•932	•932	.0222	•932	. 927	511,770	:
N ₂ H ₄ +O ₂	64	• 560	• 590	.0175	• 575	• 570	85,000	
^{CH} 3NO2+0.7502	85	.840	.860	.0160	.850	.840	106,000	
C2H5NO2+2.2502	147	.875	.880	.0180	.880	.875	185,000	
CH3CN+2.7502	129	.910	.910	.0190	• 900	.900	162,000	- - -
CH3NC+2.7502	129	.910	.910	.0190	• 900	.900	168,000	
NH3+0.7502	41	• 570	.600	.0180	• 585	• 580	48,900	

Table 22 gives the energy (e_i) and weight (w_i) contributions as well as the $-\frac{e_i}{w_i}$ ratios of the listed bond types. The bond and group type code letters are explained in Table 20.

TABLE 22

Bond Type	Energy Contributions	Weight Contributions	$-\frac{e_1}{w_1}$	
l	62,400	43	1450	
12	45,700	45	10 30	
1 ₃	53,100	47	1130	
14	57,800	43	1345	
15	44,800	32	1400	
1 ₆	20,300	9.4	2160	
17	19,400	25	776	
1 ₈	15,5 50	25	622	
19	75,400	69	1092	
110	81,400	69	1180	
1,,	16,300	13.66	1193	

B. Accuracy of
$$-\frac{e_1}{w_1}$$
 ratios

The first two and with some reservations the third figure of the $-\frac{e_1}{w_1}$ numbers should be accepted as significant.

The relative magnitudes of $\frac{e_1}{w_1}$ at stoichiometric mixtures are within 1.0 per cent of the relative magnitudes of $-\frac{e_1}{w_1}$ at other fuel/oxidant or fuel/(oxidant + diluent) mixtures.

The first two significant figures of atomic weights were used because the relative error thus introduced is negligible.

C. Application of Bond Contributions.

As an illustration of bond contribution uses the following two simple examples are presented. <u>Example 1</u>. Which is the best way of introducing oxygen into the fuel structure?

From table 16, p. 47 we see that C° -OH contributes:

$$e/w)_{g_1} = 385.$$

From table 12, p. 57, we see that C^o-NO₂ contributes:

$$e/w)_{17} = 776$$

Therefore the best way of introducing oxygen into a fuel is through a $C-NO_2$ bond.

Example 2. Which is the best structure for a fuel mixture of composition C_n H_{2n}?

By inspection of tables 4, 7, 10, 13 and 19 we see that that fuel is pure nC_2H_4 rather than $n(2/3 \text{ CH}_4 + 2/3 \text{ C}_2H_2)$ or $n(2/3 \text{ CH}_4 + 2/9 \text{ C}_8H_6)$.

D. Conclusions

The values of $-\frac{e_1}{w_1}$ listed in tables 4, 7, 10, 13, 16, 19 and 22 predict the desirability of inclusion of various chemical bonds in rocket fuel structure. Thus, in order to connect two given atoms in a way which will yield the optimum specific impulse, the bond with the highest possible $-\frac{e_1}{w_1}$ must be picked. An inspection of these tables establishes the desirability of bonds such as $C^1 = C^1$ over $C^1 - C^1$ etc. Usually bonds which contribute maximum values of $-\frac{e_1}{w_1}$ also contribute an increase to the flame temperature but this paper did not elaborate on bonds from a temperature point of view.

The calculations of bond contributions assume equilibrium among the chemical species present in the rocket engine. The reactions taking place in it are rapid enough, $(\underline{17}, \underline{18})$, to justify this assumption even for such a short $(10^{-3}-10^{-4}$ sees) residence time. This paper does not investigate the effect of reactant structure on rates of reaction. It is possible that such an effect may influence, $(\underline{11})$, specific impulse by decreasing (or increasing) the rate of reaction so that equilibrium is/reached within the chamber (or is reached very early in it so that a shorter one could be used). Since, however, a rocket motor is a continuous process and is not dependent on exact timing of detonation (such as is necessary in piston engines) for full efficiency, specific impulse should be insensitive to such "knock" effects.

RECOMMENDATIONS

One of the methods for predicting the effect of fuel structure on specific impulse investigated by the author was the quantization of heats of combustion of various fuels on a bond type basis. Thus the contribution h_1 of each type of bond i to H_1 , the total enthalpy entering the combustion chamber, rather than ΔH was found in a manner similar to that employed in deriving the contri-The $-\frac{h_1}{w_1}$ quotients were then butions of each bond to ΔH_{\star} calculated and it was found that their relative magnitudes were not in close agreement with the relative magnitudes of the quotients $-\frac{e_1}{w_1}$. No simple correlation could be found between $-\frac{h_1}{w_1}$ and $-\frac{e_1}{w_1}$. However, the use of $-\frac{h_1}{w_1}$ is recommended when only a rough estimate of the effect The $-\frac{h_1}{w_1}$ of structure on specific impulse is necessary. can be computed with greater accuracy since no use has to be made of the generalized charts. No table of $\frac{h_i}{w_i}$ is included here since hi for various bonds can be easily calculated from the tables of H1. in the text.

It can be seen that in most cases e_1 can be predicted to 3 significant figures. This suggests the possibility that tables constructed to give e_1 for each bond as a function of the ratio fuel/oxidant at any pressure difference will be accurate enough to use in predicting

enthalpy changes of various mixtures used in rockets, gas turbines and jet engines. For example, a plot could be made of e for the bond C-H versus fuel/oxidant at various pressure differences. Given tables for enough bonds, the absolute magnitude of ΔH for any mixture can be predicted.

The critical ratio of fuel/oxidant giving the maximum specific impulse should be further investigated.

The space above the upper (0.9) composition interpolation line of the figures in the Appendix may be used for interpolation numbers between 0.9 and 1.0 by assuming that the "doubled-up" space between 0.9 and 1.0 is equal to the interval between 0.8 and 0.9. The error introduced by this assumption cannot be greater than 1 per cent.

APPENDIX

Early in the investigation of this topic it was found that the generalized charts of Hottel, Williams and Satterfield, (1), do not cover the temperature ranges attained by stoichiometric mixtures of hydrocarbons and liquid oxygen. Because of the general desirability of stoichiometric mixtures (minimum error in reading composition interpolation numbers, ease of computation of H^r , etc.), the charts were extended to cover the region from 3200 to 4000° K.

The bases used in (1), page 44, are employed.

Seven mixtures of carbon, oxygen and hydrogen and one of carbon, oxygen and nitrogen were studied. These mixtures are listed in table Al. Emphasis was placed on the stoichiometric mixtures of CH_4 , C_2H_6 and C with oxygen because the composition interpolation numbers, as read from the charts of (1), of the hydrocarbons studied lie between the composition interpolation numbers of these three systems. Then the fuel C_2H_6 , with $\frac{C}{H} = 3$, was studied at four different oxygen concentrations.

The exygen concentrations were picked in the following manner. The $\frac{0}{0 + 2C + -\frac{H}{2}}$ value of the intersections of the $\frac{C}{C + H} = 0.25$ (corresponding to C_2H_6)
line and the composition interpolation numbers 0.2, 0.4, 0.6, 0.8, in the fuel-rich region, was read from the charts (Figure 29, $(\underline{1})$). Then, since C = 2 and H =6, the resulting four equations where 0 is the only unknown were solved and the determined values of 0 were the oxygen concentrations corresponding to the four fuelrich mixtures of interpolation numbers 0.2, 0.4, 0.6, 0.8. The atomic ratios of these four mixtures are given in Table Al. Finally, the mixture C + O + 2N was picked because it provides the interpolation number of zero value.

It is worthy of note that the composition C + 0, also of composition interpolation number zero, was studied but since its reduced enthalpy and reduced entropy data were within 0.1 per cent of the C + 0 + 2N line it was not listed in the tables or plotted on the charts.

The absence of nitrogen from the compositions studied does not impair the value of the charts since the flame temperature of mixtures in which an excess of nitrogen is present cannot climb, because of the diluent effect of nitrogen, into the region above 3200° K. Only when a small amount of nitrogen is present does the flame temperature climb above 3200° K, and then the amount of nitrogen is so small ($-\frac{N}{O} < 0.25$) that, as revealed by a study of the system $C_2H_4(NH_2)_2 + 4O_2$, (3), the error introduced by ignoring it and reading a composition interpolation number from the $\frac{N}{O} = 0$ table is in the order of 1 per cent. This error is absorbed by the energy contribution of the bonds which link nitrogen with other atoms and therefore it is expected that these bond contributions will all be either higher or lower than the true values. The error will lie in the same direction for all mixtures since the effect of nitrogen within the above-mentioned narrow concentration limits is relatively the same.

It was found that the nitrogen containing bonds' energy contribution values calculated by use of Figures Al, A2, and A3 were less, by 9 per cent, than those calculated by use of the $C_2H_4(NH_2)_2 + 4O_2$ system data. This error should be the same for all mixtures of approximately the same nitrogen content and therefore the relative magnitudes of the energy contributions of various nitrogen containing bonds are true.

For each mixture, the equilibrium gas composition was calculated for values of the temperature at intervals of 200° K between 3200° K and 4000° K, and at 300 psia. It was not found necessary to calculate the equilibrium compositions at 14.7 psia because Figure 30 of reference (<u>1</u>) covers the range of nozzle exit temperatures attained at a pressure of 14.7 psia and Table 14 of Appendix C of reference (<u>1</u>) provides enough data for

an extension of the generalized entropy plot at 14.7 psia to cover the ranges of interest. Only the C-H-O mixture data from this table were plotted in Figure 3.

A chemical reaction among a moles of A, b moles of B, etc., to give r moles of R, s moles of S, etc., may be written in the following generalized form:

 $aA + bB + \cdots \iff rR + sS + \cdots$ (A1)

At thermodynamic equilibrium the fugacities of the components indicated in Equation (Al) are related by the equation:

$$\frac{(f_R)^r (f_S)^s \cdots}{(f_A)^a (f_B)^b \cdots} = K \qquad (A2)$$

where f_1 (i = A, B, ... R, S ...) is the fugacity of component i, and K, known as the equilibrium constant, is a function only of temperature. If it is assumed that the behavior of the species present is in accordance with the laws of ideal solutions and gases, equation (A2) can be expressed as follows:

$$\frac{(\mathbf{x}_{R}\pi/\xi_{x_{1}})^{r}(\mathbf{x}_{S}\pi/\xi_{x_{1}})^{s}}{(\mathbf{x}_{A}\pi/\xi_{x_{1}})^{a}(\mathbf{x}_{B}\pi/\xi_{x_{1}})^{b}} = \kappa \quad (A3)$$

$$1 = A, B \cdot \cdot \cdot, R, S \cdot \cdot \cdot$$

or
$$\frac{(P_R)^r (P_S)^S \cdot \cdot \cdot}{(P_A)^a (P_B)^b \cdot \cdot \cdot} = K \qquad (A4)$$

Where x_1 is the number of moles of component i in the mixture, x_1 is the total number of moles of gaseous components, π is the total pressure in atmospheres and P_1 is the partial pressure of component i.

From general correlations concerning the compressibility factors and fugacities of gases it is estimated that at pressures below 1000 psia and temperatures above 2000° K the assumption of ideal behavior results in errors of less than 0.2 per cent in calculating volumetric behavior and of less than 0.5 per cent in calculating equilibrium concentrations. Although corrections can be made for variations from ideal behavior, the resulting gain in accuracy is small in comparison with the considerable increase in computational labor.

Allowance was made for the possible presence of the species CO_2 , CO, H_2O , H_2 , OH, H, O, O_2 , NO, and N_2 .

The following general expressions for the equilibrium constants were derived by the author from data given in, $(\underline{1})$, and, $(\underline{16})$.

$$\log K_1 + 9.339 \times 10^2 \left(-\frac{1}{T}\right) - 1.190 = 0$$
 (A5)

 $\log K_3 + 17.906 \ge 10^3 (-\frac{1}{T}) - 3.7075 = 0$ (A6)

$$\log K_6 + 26.42 \times 10^3 (\frac{1}{T}) - 6.105 = 0$$
 (A7)

$$\log K_7 + 26.51 \times 10^3 \left(-\frac{1}{T}\right) - 6.564 = 0 \quad (A8)$$

$$\log K_9 + 12.0 \ge 10^3 \left(-\frac{1}{T}\right) - 3.199 = 0$$
 (A9)

$$\log K_{10} + 15.042 \times 10^{3} (\frac{1}{T}) - 3.7368 = 0$$
 (A10)

Where $T = {}^{o}K$ and K_1 , K_3 , etc., are the equilibrium constants corresponding to:

$$K_{1} = \frac{P_{CO}P_{H_{2}O}}{P_{CO_{2}}P_{H_{2}}} = \frac{x_{CO}x_{H_{2}O}}{x_{CO_{2}}x_{H_{2}}}$$
(A11)

$$\kappa_{3} = \frac{P_{NO}P_{H_{2}}}{P_{N_{2}}^{1/2}P_{H_{2}O}} = \frac{x_{NO}x_{H_{2}}(\pi)^{1/2}}{x_{N_{2}}^{1/2}x_{H_{2}O}(\boldsymbol{\xi}_{\mathbf{x}})^{1/2}}$$
(A12)

$$\kappa_{6} = \frac{P_{02}P_{H_{2}}^{2}}{P_{H_{2}0}^{2}} = \frac{x_{02}x_{H_{2}}(\pi)}{x_{H_{2}0}^{2}(\Sigma_{x})}$$
(A13)

$$\kappa_{7} = \frac{P_{0}P_{H_{2}}}{P_{H_{2}}0} = \frac{x_{0}x_{H_{2}}(\pi)}{x_{H_{2}}0}$$
(A14)

$$\kappa_{9} = -\frac{P_{H}}{P^{1/2}} = -\frac{x_{H}(\pi)^{1/2}}{x_{H_{2}}^{1/2}(\boldsymbol{\Sigma}_{x})^{1/2}}$$
(A15)

$$\kappa_{10} = \frac{P_{OH}P_{H_2}^{1/2}}{P_{H_2}O} = \frac{x_{OH}x_{H_2}^{1/2}}{x_{H_2O}(\Sigma_x)^{1/2}}$$
(A16)

For a discussion of the accuracy of these equilibrium constants see $(\underline{17}, \underline{19})$.

These equilibrium relationships combined with the mass balance equations, permit the setting up of a series of simultaneous equations establishing the concentrations of all constituents in the reaction products. These equations can be solved only by trial and error. For the initial trial values the graphical solutions shown in the charts of (3) were used. Hirschfelder's equilibrium constants were used by (3). The equilibrium compositions of the systems $\frac{C}{0} = 0.5$, $\frac{H}{0} = 0$, $\frac{N}{0} = 0$ and $\frac{C}{0} = 0.25$, $\frac{H}{0} = 1$, $\frac{N}{0} = 0$ at 3200° K and 300 psia were calculated from (3) and checked against the data in (1). The results checked in the first four significant figures. The equilibrium data presented here in Table A2 are believed to be accurate up to four significant figures.

As an example of the calculation of equilibrium compositions consider the case of the system $C + O_2$.

There are two elements (C and O) present and four components (CO, CO_2 , O_2 and O). Therefore, we need two equilibrium relationships. These are provided by the reactions:

2

$$20 \rightarrow 0_2 \tag{A17}$$

$$c_0 + -\frac{1}{2} - c_2 \rightarrow c_2$$
 (A18)

Then $\tilde{K}_{A} = \frac{P_{O_2}}{P_{O_1}^2} = \frac{x_{O_2}(\xi x)}{x_{O_1}^2 \pi}$ (A19)

$$\kappa_{\rm B} = \frac{{}^{\rm P_{\rm CO}}_2}{{}^{\rm P_{\rm CO}}{}^{\rm P_{\rm O}}_2} = \frac{{}^{\rm x}_{{}^{\rm CO}}_2}{{}^{\rm x}_{{}^{\rm CO}}{}^{\rm 1/2}_{{}^{\rm T}}^{\rm 1/2}}$$
(A20)

where
$$K_{A} = -\frac{K_{6}}{K_{7}^{2}}$$
 (A21)

$$\mathbf{K}_{\rm B} = \frac{1}{\kappa_1 \kappa_6^{1/2}}$$
(A22)

and
$$x_{CO_2} + x_{CO} = 1$$
 (A23)

$$2x_{CO_2} + 2x_{O_2} + x_0 + x_{CO} = 2$$
 (A24)

These yield:

$$\frac{2(1 + x_{CO})(\frac{1}{x_{CO}} - 1)^{2}}{\pi(K_{B})^{2} + (\frac{1}{x_{CO}} - 1)^{2}} + \frac{K_{B}(1 + x_{CO})(\frac{1}{x_{CO}} - 1)}{K_{A}^{1/2}(\pi(K_{B})^{2} + (\frac{1}{x_{CO}} - 1)^{2})} - \frac{K_{B}(1 + x_{CO})(\frac{1}{x_{CO}} - 1)}{K_{A}^{1/2}(\pi(K_{B})^{2} + (\frac{1}{x_{CO}} - 1)^{2})}$$

- $x_{CO} = 0$ (A25)

which can be solved by trial and error, and

$$x_{O_2} = \frac{(1 + x_{CO})(\frac{1}{x_{CO}} - 1)^2}{\pi(K_B)^2 + (\frac{1}{x_{CO}} - 1)^2}$$
(A26)

Then x_{CO_2} and x_0 can be derived from (A23) and (A24) respectively.

In Table A2 the values of
$$y_1 = \frac{x_1}{\sum x}$$
 are listed.

The method of generalizing enthalpy and entropy employed in (1), page 44, is used here.

The fictitious compositions appearing in Table A3 were determined as outlined on page 59 of (17).

The thermodynamic data appearing in Table A4 were taken from $(\underline{1})$ and $(\underline{16})$ but were reduced to the basis used in $(\underline{1})$. Where necessary corrections were introduced so that they are consistent with the values used in $(\underline{1})$, even though those values are not the latest and most accurate, as explained on page 69 of $(\underline{1})$.

In general, the enthalpy of a mixture is

$$H_{mix} = \sum_{i} y_{i}H_{i},$$

and the entropy is

$$s_{mix} = \sum_{i} (y_{1}s_{1} - y_{1} \operatorname{Rln} - \frac{P}{1}),$$

where i = general component

- S = entropy
- H = enthalpy
- y = mole fraction
- R = gas constant

P = partial pressure in atmospheres.

The vertical shift β of the entropy lines at 300 psia was derived, for each interpolation number, from the data in Table 13 of (<u>1</u>). Thus, the tie point of all interpolation numbers is seen to be at T = 2400°K and $s_{300}^{r} + \beta = 0.9550$, or $\beta = 0.9550 - s_{300}^{r}$ for any composition.

7/

A plot of atomic composition versus β was made and the β 's for the compositions studied here were derived from it and appear on Table A7.

The reduced data of Tables A5 and A6 appear graphically in Figures A1 and A2. The data for the 3000° K to 3200° K region of both figures were taken from (<u>1</u>).

The interpolation lines 0.1, 0.3, 0.5, 0.7 and 0.9 in both figures were fixed by interpolation. The region between 0.8 and 1.0 is most accurate in both charts.

The composition interpolation number plots as well as Figure 33 of $(\underline{1})$, apply to and should be used concurrently with the corresponding extended charts in the Appendix.

It can be seen that the interpolation lines for atomic compositions containing hydrogen slope upwards more sharply at higher temperatures than the interpolation line 1.0 (for $C + O_2$) and therefore they intersect this line. This is a true representation of fact since it is much easier to raise the temperature of a carbon and oxygen system than it is to raise the temperature of a carbon, hydrogen and oxygen mixture because the latter system absorbs more energy by dissociation (i.e., there is more dissociation in the C-H-O mixture and that keeps the temperature down).

In Figure Al, the line which begins at the intersection of the T = 3850° K and H^r = 3.50 lines and which is given an atomic composition interpolation

number of 0.87, is arbitrarily assumed to be the upper interpolation line in the range from 3850° K to 4000° K since the data for all the other mixtures studied fall below that line. Following this assumption, the 0.9 line is easily located by interpolation between the 0.87 and 1.0 lines.

In Figure A2, the line which begins at $T = 3710^{\circ}K$ and $S^{r} + \beta = 1.212$ approximately and which is given an atomic composition interpolation number of 0.88, is arbitrarily assumed to be the upper interpolation line in the range from $3710^{\circ}K$ to $4000^{\circ}K$, since the data for all the other mixtures studied fall below that line. Following this assumption, the 0.9 line is easily located by interpolation between the 0.88 and 1.0 lines.

Thus in both figures it was assumed that mixtures with atomic composition interpolation numbers ' above 0.87 (for H^r) and above 0.88 (for $S^r + \beta$) lie in the space between these lines and the 1.0 lines.

Since H_1^r is calculated from heat of combustion data with an accuracy of five significant figures, a contraction of the H_{300}^r scale will not impair the accuracy of the determination of ΔH^r . For this reason and in order to make Figure 1 smaller the H_{300}^r scale was contracted by twofold. Thus the unit of the H_{300}^r scale is 0.02 and has a unit scale/mean scale range)

quotient, Q, of $\frac{0.02}{2.00} = 0.01$ whereas the unit of the temperature scale is 10° K, or $Q = \frac{10}{3500} \approx 0.003$. The same temperature scale was retained in all three Figures. In Figure A2 the $S_{300}^{r} + \beta$ scale has a unit of Q002 and $Q \approx \frac{0.002}{1.150} \approx 0.002$, and in Figure A3 the $S_{300}^{r} + \alpha$ scale has a unit of Q002 and $Q = \frac{0.002}{1.200} \approx 1.200$ ≈ 0.002 . Since each scale unit is large enough to permit reading a value of $\frac{1}{10}$ of it, and since all the scales except that of H_{300}^{r} have approximately the same Q, the same number of significant figures, namely four, can be read from each of the three scales. A fifth significant figure may be added in some cases without actually sinking into inordinate use of poetic license.

Figure 30, (1), yields $H_{14.7}^{r}$ to at least four significant figures and although the temperature scale of that plot is such that each scale unit represents 20°K, so that Q = $-\frac{20}{2000}$ = 0.01, the temperature can be read to four significant figures when use is made of a magnifying lens.

Although it is contrary to the theory of errors to derive results of more significant figures than justifiable by the least accurate data used, when there exist grounds for assuming that the error in the data (or in reading a plot) is in the same direction in all cases and when the relative rather than absolute magnitudes are sought, it is legitimate to vest with significance the first "doubtful" figure.

Suggestions for Improving the Accuracy of the Charts

The accuracy of the charts at the higher temperature ranges can be improved by making separate plots for the fuel-rich, stoichiometric and fuel-lean mixtures so that there would be only one mixture for each interpolation number. As the charts are constructed now, there exists a fuel-lean and a fuel-rich mixture for every interpolation number.

More compositions should be investigated and more accurate values for the thermodynamic functions and the equilibrium constants should be used.

Tie-points should be picked at higher temperatures even if that would mean providing more elaborate equilibrium composition data with the charts and postulating a more elaborate fictitious composition.

Analytical expressions for the atomic composition interpolation numbers should be developed or more accurate plots of the interpolation numbers should be constructed.

A continuous and unique function of the variables C-, H-, O-, and N-content should be developed <u>first</u> and that function should then be plotted on a Temperature-Enthalpy and Temperature-Entropy plane.

Accuracy of Extended Generalized Thermodynamic Charts

The extended charts presented here, although sufficient and accurate for the investigation of stoichiometric and fuel-rich mixtures of hydrocarbons or carbon and oxygen, are not based on a great enough wealth of equilibrium data to satisfy the author of their accuracy in the fuel-lean region, although random calculations have shown that they are certainly within 10 per cent of the truth in that region.

For mixtures containing nitrogen in a ratio of nitrogen to oxygen greater than 0.50, the charts are within 5 per cent of the truth in the $3200^{\circ}K$ to $3600^{\circ}K$ range and within from 5 to 10 per cent of the truth for the range from $3600^{\circ}K$ to $4000^{\circ}K$.

TABLE AL

Compositions Corresponding to Interpolation

Numbers Derived from the Graphs in Ref. 1

Reduced Enthalpy at 300 psia.		Reduced Entropy at 300 psia.
Interpolation No.	Composition	Interpolation No.
o	C + O + 2N	0
.2	$C_{2}H_{6} + 4.120(0)$. 26
.4	$C_{2}H_{8} + 5.990(0)$	• 46
.6	0 ₂ H ₆ + 6.500(0)	.60
.8	C ₂ H ₆ + 6.775(0)	•76
.84	$CH_4 + 4.0(0)$.86
.87	$C_{2}H_{6} + 7.0(0)$.89
1.0	C + 20	1.0

TABLE A2

Equilibrium Gas Compositions at 300 psia

	C + O +	2N		$C_{2}H_{6} + 4.12(0)$				
	3400	3600	3800	4000	3400	3600	3800	4000
Y ₀₂					.00196	.00475	.00843	.01225
Yo					.00392	.00980	.02073	.03824
Y _{H2}					•22598	.21569	.20907	.20000
Y _H					.04917	.07475	.11323	.15637
Y _{OH}					.02975	.04804	.06520	.08431
Y _{H2} 0					.30760	.27736	.22441	.17745
rco	•5	•5	•5	•5	.32647	.32010	.31226	.30000
Y _{CO2}					.05515	.04951	.04167	.03138
YCO+Y	C02				.38162	.36961	• 35 393	.33138
Y _{Na}	•5	•5	•5	•5				

TABLE A2, CONT'D

-*******

	$C_{2}H_{6} + 5.99(0)$					He + 6.5	5(0)	
	3400	3600	3800	4000	3400	3600	3800	4000
Y ₀₂	.0333	.04534	.05319	.0 5392	.05343	.06372	.07304	.07157
Υ _Ο	.01593	.03064	.05269	.07990	.02010	.03652	.06103	.09118
Y _{H2}	.07451	.08971	.10049	.10980	.05858	.07402	.08456	.09510
Υ _H	.02843	.04951	.07868	.11593	.02515	.04461	.07255	.10980
Ч _{ОН}	.06863	.09313	.11691	.12598	.07696	.10245	.12696	.14265
Y _{H2} O	.41741	•35049	.27893	. 20907	.41530	•34927	.27500	.20490
Y _{CO}	.21127	.22941	.23872	.'25099	.18382	.20784	.22402	.22745
Y _{C02}	.15049	•11177	.08039	.05441	.16666	.12157	.08284	•05735
CO+CO2	.36176	.34118	.31911	•30540	•35048	.32941	• 306 86	.28480

.

TABLE A2, CONT'D

	$C_{2H_{6}} + 6.775(0)$			CI	$CH_{4} + 4(0)$			
	3400	3600	3800	4000	3400	3600	3800	4000
Y ₀₂	.06520	.07745	.08309	.07 990	.06995	.07966	.08333	.08039
х ^о	.02254	.03995	.06495	.09681	.02319	.04118	.06520	.09745
Y _{H2}	.05250	.06627	.07819	.08873	.05588	.07255	.08799	.09926
Ч, Ц	.02377	.04191	.06985	.10490	.02451	.04387	.07359	.11029
Ч _{ОН}	.08039	.10735	.12892	.14510	• 0 8700	.11372	.13602	.15393
Y _{H2} 0	.41246	• 34403	.27402	.20540	.45493	• 3 8235	.30487	.22869
YCO	.17304	.20000	.21373	. 22034	.14118	.16250	.17547	.18073
YCOD	.17010	.12304	.08725	.05882	.14338	.10417	.07353	.04926
CO+CO2	.34314	.32304	.30098	.27916	.28456	. 26667	.24900	.22999

TABLE A2, CONT'D

	C2	+ H ₆ +	3.502		C	+ 02		
	3400	3600	3800	4000	3400	3600	3800	4000
Y ₀₂	.07931	.08701	.08897	.08725	.14755	.17010	.17990	.17500
YO	.02456	.04279	.06863	.10122	.03392	.05858	.09534	.14314
Y _{H2}	.04652	.06172	.07549	.08407				
$\mathtt{Y}_{\mathtt{H}}$.02245	.04005	.06814	.10270				
Y _{OH}	.08402	.10956	.12990	.14755				
Y _{H2} O	.40354	.34137	.26961	.20294				
YCO	.16230	.18980	.21078	.21300	.32892	•39877	.45515	.49314
YCO2	.17730	.12770	.08848	.06127	.48961	.37255	.26961	.18872
c0+c0 ²	•33960	• 31750	.29926	.27427	.81853	.77132	.72476	.68186

,

.

TABLE A3

Fictitious Compositions Corresponding

to The Real Compositions Investigated

<u>300 psia.</u>

(Based on C-H-O-N-content of real compositions at corresponding temperatures.)

T, °K	3400	3600	3800	4000
C + O + 2N				
N2 CO	•5000 •5000	•5000 •5000	.5000 .5000	•5000 •5000
$C_{2}H_{6} + 4.120(0)$				
H ₂ H ₂ O CO CO ₂	.25400 .31843 .29553 .08609	.24600 .30841 .28623 .08338	.23176 .29913 .27408 .07985	.22057 .27650 .25662 .07476
$C_2H_6 + 5.990(0)$	١			
H2 CO CO2	.05875 .48389 .12394 .23782	.05541 .45636 .11689 .22429	.05183 .42683 .10932 .20979	.04960 .40850 .10463 .20077
$C_{2}H_{6} + 6.50(0)$				
H2 H20 CO CO2	02278 50294 06484 28564	.02142 .47270 .06094 .26847	.01995 .44034 .05677 .25009	.01809 .40911 .05269 .23190
$C_2H_6 + 6.775(0)$				
H ₂ H ₂ O CO CO ₂	01301 .50170 .02560 .31754	.01224 .47232 .02410 .29894	.01141 .44006 .02245 .27853	.01059 .40815 .02032 .25334
$CH_4 + 4.0(0)$				
H ₂ 0 CO ₂	.56912 .28456	• 5334 • 26667	.498 00 .24900	.45998 .22999

Т, °К	3400	3600	3800	4000
$C_{2}H_{6} + 7.0(0)$				
H2O CO ²	• 50940 • 33960	.47625 .31750	.44889 .29926	.41140 .27427
C + 2.0(0)				
c 02	.81853	.77132	.72476	. 68186

.

x

.

TABLE A4

The values of total enthalpy H and entropy S for the chemical species H, H₂, O, OH, H₂O, CO, N₂, O₂, and CO₂ are given below. These values are from references (<u>1</u>) and (<u>4</u>). The units of enthalpy are calories/g-mole and of entropy calories/g-mole °K, which equals BTU/16 mole °R. The values are based on a "dead" state of O°K and products of complete combustion as described in Chapter 4 of reference (<u>1</u>). The thermodynamic functions are for the ideal gaseous state commonly used in physicochemical calculations. To convert calories/g-mole °K to BTU/1b-mole, multiply the former by 1.8000.

Temp.,	РК	3400	3600	3800	4000
H		97002	97934	98865	9 97 96
Hz		83839	85627	87427	89235
0		75428	76360	77291 .	78222
OH		64940	66735	68535	70339
H₂O		38106	40851	43620	46409
CO		94776	96563	98360	100140
02		29358	31312	33282	35267
C05		45038	48116	51230	54382
Nz		27807	29580	31355	33130

ENTHALPY

	ENTROPY									
Temp., °K	3400	3600	3800	4000						
H	39.50	39.81	40.11	40.41						
Ea	49.584	50.105	50.6 09	51.102						
0	50.580	50.89	51.19	51.49						
OH	62.49	62.98	63.53	63.94						
H20	70.20	70.96	71.67	72.32						
CO	66.658	67.228	67.784	68.326						
C2	69.215	69.805	70.385	70.955						
c02	81.904	82.834	83.744	84.634						
Nz	64.895	65.390	65.865	66.305						

	TAB	LE A5		
Reduced Enthalpy,	H ^r ,	versus	Temperature,	<u>°K</u> ,

at 300 psia.

Totomolation line#		u ^r		
interpolation line.	3400	3600	3800	4000
. O	1.4647	1.5582	1.6517	1.7452
.2	1.7885	2.0607	2.4303	2.9489
.4	2.0840	2.5077	2.9991	3.4807
.6	2.2430	2.6808	3.1986	3.7930
.8	2.3455	2.7779	3.2886	3.8851
.84	2.3872	2.8252	3.3402	3.9586
.87	2.4026	2 . 85 30	3.3530	3.9684
1.0	2.4467	2.8607	3.3065	3.7629

*See Table Al for corresponding compositions.

Reduced Entropy,	s ^r +β, versu	s Temperat	ure, °K,					
<u>at 300 psia.</u>								
				1.000				
Interpolation Line*	3400	3600	3800	4000				
0	1.0049	1.0134	1.0216	1.0294				
. 26	1.0522	1.0800	1.1123	1.1663				
.46	1.0863	1.1331	1.1851	1,2426				
.60	1.1065	1.1567	1.2123	1,12680				
.76	1.1209	1.1701	1.2268	1.2833				
.85	1,1217	1.1764	1.2299	1,2913				
.88	1.1244	1.1810	1.2359	1. 2940				
1.00	1.1380	1.1853	1.2338	1.2813				

TABLE A6

1

ß

*See Table Al for corresponding compositions.

TABLE A7

<u>Vertical Shift (β) of S₃₀₀ lines</u>

versus Atomic Composition and

Entropy Interpolation Numbers at 300 psia.

Atomic Comp.	<u>c</u> ,	<u><u><u></u></u>,</u>	$\frac{N}{O}$,	Interpolation No.	ß
C + O + 2N	. 1	0	2	0	.0289
C ₂ H ₆ + 4.120(0)	.485	1.456	0	• 26	.0107
C₂H ₆ +5.990(0)	• 338	1.001	0	• 46	.0100
C ₂ H ₆ +6.500(0)	.3077	.923	0	.60	.0110
C₂H ₈ +6.775(0)	.2952	.885	0	.76	.0115
CH4 + 4(0)	.25	1.0	0	.86	.0130
C ₂ H ₆ + 7(0)	.2857	.857	0	.89	.0104
C + 2(O)	.50	0	0	1.0	.0193

í

FigureAl. Generalized Temperature-Enthalpy Relation at 300 psia.

FigureA3. Generalized Temperature-Entropy Relation at 14.7 psia.

BIBLIOGRAPHY

- (1) Hottel, H. C., Williams, G. C. and Satterfield, C. N. "Thermodynamic Charts for Combustion Processes" John Wiley and Sons, 1949
- (2) Huff, Vearl N. and Morrel, Virginia E. "General Method for Computation of Equilibrium Composition and Temperature of Chemical Reactions" NACA T.N. No. 2113. NACA, 1950
- (3) Huff, Vearl N. and Calvert, Clyde S. "Charts for the Computation of Equilibrium Composition of Chemical Reactions in the Carbon-Hydrogen-Oxygen-Nitrogen System at Temperatures from 2000° to 5000°K" NACA T.N. No. 1653. NACA, 1948
- (4) Huff, Vearl N. and Gordon, S. "Tables of Thermodynamic Functions for Analysis of Aircraft-Propulsion Systems" NACA T.N. No. 2161. NACA, 1950
- (5) Perry, John H. "Chemical Engineer's Handbook" McGraw-Hill Book Co., 1950
- (6) Hougen, O. A. and Watson, K. M. "Chemical Process Principles" John Wiley and Sons, 1943
- (7) Glasstone, S. "Physical Chemistry" D. VanNostrand Co., 1949
- (8) Kharasch, M. S., Bu. Stand. J. of Res., 2, 359, (1929)
- (2) Brinkley, S. R., Jr., Journal of Chemical Physics, 15 (No. 2), 107-110, Feb., 1947
- (10) Kriezer, E. J. and White, W. B., Journal of Chemical Physics, <u>16</u> (No. 4), 358-360, April, 1948
- (11) Kettering, Charles F. "Effect of Molecular Structure of Motor Gasolines on Combustion" National Petroleum News, <u>36</u> (No. 40, sect. II), R-649, Oct., 1944
- (12) Andersen, J. W., Beyer, G. H., Watson, K. M. "Thermodynamic Properties of Organic Compounds--Estimation from Group Concentration" National Petroleum News, <u>36</u> (No. 27, sect. II), R-476, July, 1944

(13) Zemansky, "Principles of Thermodynamics" D. Van Nostrand Co., 1949 1.

- (14) Pauling, L. C., "The Nature of the Chemical Bond" Oxford University Press; 1939
- (15) International Critical Tables, 3, 248, McGraw-Hill Book Company, 1928
- (16) Hirschfelder, J. O., McClure, F. T., Curtiss, C. F., and Osborne, D. W.: Thermodynamic Properties of Propellant Gases. NORC Rep. No. A-116, Nov. 23, 1942. (Extension and Revision of NDRC Rep. No. A-48) Abs. Bib. Sci. and Ind. Reps., vol. 2, No. 10, Sept. 6, 1946, p. 743, PB 28531
- (17) Satterfield, C. N.: M.I.T. Sc.D. Thesis in Chem. Eng. Part 2, "Generalized Thermodynamics of High Temperature Combustion"
- (18) Wimpress, R. N. "Internal Ballistics of Solid-Fuel Rockets" McGraw-Hill Book Co., 1950
- (19) Lewis, B. and von Elbe, G. "Combustion, Flames and Explosions in Gases" Cambridge University Press, London, 1938
- (20) Bichowsky, F. R. and Rogsine, F. D. "The Thermochemistry of the Chemical Substances" Reinhold Publishing Corporation, New York, 1936