INELASTIC AND STIMULATED SCATTERING OF LIGHT
FROM MOBILE CARRIERS IN SEMICONDUCTORS

by

Ying Chi Sumny Auyang

B.S., University of California, Los Angeles
(1967)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
December, 1971( ( ¢. Tai, 1672,

rd

Signature of Author

Department of Phys&s, \December 23, ﬂﬁl /i/
Certified by

—_— ’3

Thesis Super\'w,risors

Accepted by

Sl

Chairman, Departmental Committee on Graduate Students
Archives
MASS. INST, Ite

FEB 1 6 1972

LIBRA'RIES




INELASTIC AND STIMULATED SCATTERING OF LIGHT

FROM MOBILE CARRIERS IN SEMICONDUCTORS
by
Ying Chi Sunny Auyang

Submitted to the Department of Physics on December 23, 1971, in partial
fulfillment of the requirements for the Degree of Doctor of Philosophy.

ABSTRACT

A first principle description of the spontaneous spin-flip scattering
lineshape is developed. A general formula for the lineshape is obtained
including two important broadening mechanisms, namely the nonparabolicity
of the energy bands and the diffusion of electrons. When the scattered
light travels perpendicular to the magnetic field, nonparabolicity dominates
and a relatively simple expression is obtained for the lineshape in this limit,
When the scattered light travels in the direction of magnetic field, electron
diffusion along the magnetic field becomes dominant. The lineshape is then
a simple Lorentzian. Analytic expressions for the spontaneous linewidth
including its dependence on various parameters are obtained, These results
are compared with available experimental data with good agreement except
for the nonparabolicity dominated lineshape, though its linewidth is also in
good agreement with experiments. These linewidths are then used in the
Raman laser theory for detailed investigation of the stimulated scattering
behaviors.

A detailed theory of traveling wave electronic Raman lasers is cons-
tructed, which applies in particular to the spin-flip Raman lasers of Patel
and others. Ten equations are set up describing the behavior of the input
laser field, the Stokes field, the anti-Stokes field and the electronic system
explicitly. Solutions of these equations are obtained in the sinusoidal steady
state limit., Depletion of the input laser field is accounted for in an approxi-
mated but novel fashion, in the form of photon number conservation, We
are able to express the steady state output power in terms of the system
parameters and the input boundary excitation alone., Analytic formulas are
given for the linear gain, the threshold pump power, the Stokes and the anti-
Stokes power output., They describe among other things the saturation and
fluorescence behavior of the electronic Raman laser., Various intuitive inter-
pretations are provided for the analytic results. The detailed predictions
are in very good agreement with experiments,



A new mechanism for generating tunable high power coherent radiation
in the wavelength range 10 M - 354 from a single laser system is proposed.
The proposed device is based on’stimulated light scattering continuously tuned
by stress in p-type semiconductors., The conditions and feasibility for such
Raman laser operation are discussed in detail.
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A NOTE ON NOTATIONS

The four chapters of this thesis are quite independent, each with its
own sets of notations, equation numbers and references. Except otherwise

specified, notations and symbols are defined within each chapter.



INTRODUCTION

Development of tunable lasers is of great interest in both science and
technology. For example, the use of tunable infrared lasers in spectroscopy
has led to orders of magnitude improvement in attainable resolution. (. (2)
They also provide the necessary local oscillators in some optical communica-

(3)

tion systems. Air pollution detection is another example of their techno-

logical applications.
A most important tunable infrared laser, the spin-flip Raman laser @
based on inelastic scattering of light from electronic spin-sublevels in n-type
. 5) .
semiconductors, ( has recently become available, Much work has now
been reported on this laser and its applications since the first demonstration

of laser action by Patel and Shaw ®

less than two years ago. The spin-
flip Raman laser is interesting in many ways. It constitutes the first CW
operation of a Raman laser, and provides high power tunable infrared radiations.
Its gain of 1x 10-5 cm-l/W-cm-2 is the largest Raman gain known to date in

any portion of the spectrum. It can have very high conversion efficiency and
very low threshold power. Its tuning range is further extended by observations
of anti-Stokes and second-Stokes stimulated scattering.

4)

This spin-flip laser is, qualitatively, rather well-understood. How-

ever, the quantitative and detailed behavior has yet to be explained and pre-
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dicted. Many features of experimental observations,like the spontaneous and
stimulated lineshapes, dependence of threshold on carrier concentration, mag-
netic field, temperature, experimental geonetry and crystal size, as well as
stimulated output power characteristics have yet not received a rigorous and
accurate description. It is our purpose in this thesis to establish a general
framework and a complete theory to describe such detailed features. Our
theory should be able to correlate, explain, and predict the empirical results
from first principles, and to suggest optimal and feasibility conditions for
laser operations under different environments and parameter values. We have
also not restricted ourselves exclusively to spin-flip scattering in n-type semi-
conductors, so that our theory can be used to exploit other useful electronic
Raman processes for possible tunable laser operations. An example of such
an application to stress-tuned stimulated inter-valence band scattering in p-type

semiconductors will be given.

In the following section I we give a brief literature review of stimulated
electronic light scattering from semiconductors. We will then further discuss

the nature of our work and give a preview of our four chapters in section II.

I. LITERATURE REVIEW

7
In 1966, Wolff predicted the possibility of observing Landau Raman
scattering in n-InSb from the nonparabolicity of the conduction band. Yafet %)

extended this work by considering a more detailed band model, and further
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predicted the spin-flip scattering process. In 1967, Slusher, Patel and Fleury (s
reported the first experimental observation of spin-flip and Landau Raman sca-

ttering from conduction electrons in n-InSb. Subsequently, conduction electron

spin-flip Raman scattering has been observed in InAs, ) PbTe, tre) Cds,“')
and ZnSe.(“)
Woltf ‘> has also discussed the possibility of a Raman lasertuned by

magnetic fields, using stimulated Landau-Raman scattering. On the basis of the
experimental results of Slusher, et,at, @ it appears however that the spin-flip
process is a better candidate for observation of stimulated scattering, because
of its larger cross section and narrower linewidth, Stimulated spin-flip scatt-
ering in n-InSb was observed in early 1970 by Patel and Shaw, (¢)  and con-
stitutes the first and only observation of stimulated scattering from electronic
levels. A greal amount of experimental work on stimulated spin-flip scattering

s N . . N . s 13 )~
has since been reported, extending this Raman laser in various directions.*7¢'¢)

1),(3)
Some applications of this laser have already appeared and a lot of further work

are in progress.

Concurrently with the development of spin-flip Raman laser, some theo-

retical work has been reported on the detailed understanding of this device.

(¢
Markarov and Wherrett and Harper ue)

have considered the effects of
electron statistics on the spin-flip cross section. Their results are however
limited to the lowest Landau level. In Chapter 3 we will present results valid
at arbitrary temperature, magnetic field, and carrier concentration. Breuck 1)
has given a phenomenological description of the spontaneous spin-flip lineshape,

(20)

using the transport theory of Davis and Blum. An adjustable parameter is
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introduced to fit the experimental data, In Chapter 1 we will make an absolute
first principle calculation of the lineshape without adjustable parameters. Des-
cription of the spin-flip laser behavior is so far restricted to the application

of threshold formula from Shen and Bloembergen, (21)

partly because there is
no detailed theory of the power behavior in the literature. In chapter 2 we
develop a general theory of an electronic Raman laser to describe stimulated
spin-flip scattering,among other processes. Our detailed predictions describe

the steady state laser behavior completely., All our calculations are in good

agreement with experiments.

We have also calculated the cross section for stress-tuned inter-valence
band spin-flip scattering. In Chapter 4 we apply our general theory in a
detailed consideration for obtaining stimulated inter-valence band scattering. It
appears promising that a Raman laser stress-tumed in the wavelength range

10 M- 35/u can be obtained using p-InSb.

II. SUMMARY

The general purpose of our work is to establish from first principle
a theoretical framework for detailed investigation of stimulated electronic Raman
processes, in particular spin-flip scattering from n-InSb. Some approximations
are required, as usual, to obtain concrete results. Thus we have set up ten
equations of motion for a homogeneously broadened traveling wave electronic
Raman laser to describe the inhomogeneausly broadened spin-flip n-InSb laser,

through an investigation of the spontaneous lineshape. The detailed justification
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of this procedure in the case of n-InSb is given in Chapter 3. except for the
more delicate feature of a Lamb dip, our theory provides an accurate

description of the spin-flip laser behavior.

Our theory of spontaneous spin-flip lineshape, in contrast to previous
work, is a first principle calculation. It provides us with analytic expressions
for the spontaneous linewidth including its dependence on various parameters.
These linewidths are then used in the laser theory for detailed investigations
of the stimulated output. We have also noted two important mechanisms for
the spontaneous line broadening. Diffusion of the electrons can be important

and dominant in addition to nonparabolicity of the electronic energy bands.

Our investigation of electronic Raman laser behavior is confined to the
steady state, where we give a rather complete discussion including anti-Stokes
and pump radiations. The steady state power output behavior is theoretically
derived for the first time. A proper treatment of pump depletion is also

given,

Our theory is applied to the n-InSb case where we compare our absolute
calculations with no adjustable parameters to experimental observations. Effects
of electron statistics is included to obtain the de pendence of the scattering
behavior on various parameters. Because of the vast amount of experimental
data available, we have not attempted a comprehensive comparison with all the
data and restrict ourselves to only a subset of these data, In general all of our

calculations are in good agreement with experiments.,
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Applying our theory to light scattering continuously tuned by stress in
p-type semiconductors, we have derived the conditions for tunable Raman laser
operations. Feasibility of obtaining a high power laser tunable in the wave-
length range IO/A -35 I is established using p-InSb. We therefore propose a
new device based on such an effect. No experimental work has, however, been

performed or attempted,

In the following Chapter 1 we develop a first principle description of the
spontaneous spin-flip lineshape. A general formula for the lineshape is obtained
including both diffusion and nonparabolicity contributions. When the scattered
light travels perpendicular to the magnetic field, nonparabolicity dominates
and a relatively simple expression is obtained for the lineshape in this limit,
When the scattered light travels in the direction of the magnetic field, electron
diffusion along the magnetic field becomes dominant. The lineshape is then a
simple Lorentzian. These results are compared with available experimental
data with good agreement except for the nonparabolicity dominated lineshape,

though its linewidth is also in good agreement with experiment,

In Chapter 2 we develop a detailed theory of traveling wave electronic
Raman lasers. Ten equations are set up describing the behavior of the input
laser field, the Stokes field, the anti-Stokes field, and the electronic system
explicitly, Solution of these equations are obtained in the steady state limit.
Depletion of the pump field is accounted for in an approximate but novel
fashion, in the form of photon number conservation. We are able to express
the steady state output power in terms of the system parameters and the

boundary excitation alone. Analytic formulas are given for the linear gain,
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the threshold pump power, and the Stokes as well as the anti-Stokes power
outputs. They describe among other things the saturation and fluorescence
behavior of the electronic Raman laser. Our detailed predictions are in very
good agreement with experiments, and probably constitutes the first detailed

confirmation between Raman laser theory and experimental observations.,

In Chapter 3 we apply our theory in the previous chapters to the mag-
netic field-tuned n-InSb laser. Justification for applying our homogeneously
broadened theory to this actually inhomogeneous case is given. Effects of
Fermi statistics on the laser behavior are treated in detail, which manifest
in its magnetic field, carrier concentration, and temperature dependence. An
explicit formula is given for the effective cross section as a function of the
system parameters, The effect of crystal size on threshold pump power is
investigated, Our calculations are compared with experimental observations

with very good agreement,

In Chapter 4 we employ our theory in exploiting the feasibility of obtain-
ing stress-tuned stimulated spin-flip scattering from p-type semiconductors,
Cross sections and linewidths are calculated for such a process and the elec-
tronic Raman laser theory is used to investigate the stimulated behavior. We
conclude that with p-InSb, it may be possible to obtain stimulated light scatter-
ing from intervalence band spin-flip transitions. In such a situation we will
have a easily tunable high power laser source in the wavelength range 10 M-

35 o Further extension into the far infrared appears to be limited only by

phonon absorption in the crystal.
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CHAPTER 1

THEORY OF SPONTANEOUS SPIN FLIP RAMAN SCATTERING LINESHAPE

I. INTRODUCTION

In a magnetic field the electron energy is quantized into Landau

levels with energies
h a
nhwe t a7 Ry (L.1)

where We is the cyclotron frequency, m" the effective mass, ki the

electron momentum along the magnetic field, and M denotes the nth Landau
level. The 1/2 term is omitted because we choose to measure 8ll energies
from the bottom of the zeroth Landau level. Spin-orbit coupling again splits

each Landau level into two sublevels separated by

1| = piy |41 B a2

with /L(B the Bohr magneton and 3 the effective g-value. We will
consider the spin flip Raman (SFR) Aprocess in which an electron in one spin
sublevel is scattered by an incident pump photon with energy wr to the

other of the same Landau level, leaving a scattered photon with energy

Jﬁw7c = ’mo,, - fe 191 B. (1.3)

In the following, scattering from conduction electrons in InSb will be consi-

dered in particular.
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The light scattering processes are shown in Figure l.1. The magnetic
field is along the 2 direction. The incident field with wavevector rr and
polarization Er propagates along the y direction. The scattered radiation,
spec1f1ed by ‘w'f hf" } , can be collected in several directions: (1)
with k} normal to the magnetic field as shown in Figure l.la. This

we shall refer to as the q.B=0 geometry ")

, where cl = kr— kf

is the momentum transfer; or (2) with E; parallel to B as in Figure
1.1b. This is the 6-5#0 geometry. There are, of course, many other
posmble geometries, for example with the k& making a certain angle

with B . We will however not discuss these other cases here.

The simplest consideration of lineshapes is vie a phenomenoligical
collision model characterized by a collision time T . The spectrum is
then a Lorentzian with a constant full width 2/T . In the spin flip
process we ere considering, there are two distinct lifetimes involved. The
first is a spin lifetime Tg which characterizes those processes involving
the relaxstion of a spin excitation. The second, which we shall call the orbital
lifetime Tr , is caused by collisions within the same spin sublevel.
These orbital collision, which do not connect the two spin sublevels, do not
contribute to our scattering linewidth since the width of the spectral line is

(2) and the orbital

the difference in widths of the two spin sublevels,
collision rates for the two sublevels are the same. Thus the spectrum will
be characterized by Ts . A phenomenological calculation of the lineshape

by using these two collision times is carried out by Brueck. M
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3)
Yafet has calculated the rate of spin relaxation via acoustic

phonons in a magnetic field. For InSb with carrier concentration N=1016

-

cm °, his expression yields a lifetime Ts & 10-8 sec., Extrapolations of

experimental spin-resonance data in InSb 4 yields # collision time

T © 10'9— 10‘10 sec. From all evidence, 10_10 sec-1 seem to be a
upper bound for the spin relaxation rate. It can readily be seen that this
rate is too small to explain the observed spin-flip Raman scattering line-
width, which is of the order of lcm-l. B Other broadening mechanisms

must then be taken into account,

In materials such as InSb, nonparabolicity of the conduction band will
make an important contribution to the spontaneous SFR linewidth. In fact
in some cases, as in the 'cI\.—l-B_\:O geometry, the linewidth will be determined
primearily by the band nonparabolicity. Since the effective g-value is now
a function of energy, the scattered energy will be different for transitions
at the band edge and at finite k) as shown in Figure 1.2, hence a spread
in the resultina spectrum.

Another important contribution is the diffusion of electrons between
each collision. This effect is more important in the 'c'f.ﬁ#O geometry where the
electron diffusion along the magnetic field is observed. We will discuss in
more details these two broadening mechanisms and their relative importance

in this chapter.

In section II a general formulation of the differential cross section is

given. The generalized spin correlation function is calculated for the case in
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nonparabolicity effect is dominant in section III. Diffusion effects are consi-
dered in section IV and the results compered with experiment in section V,
Section VI discusses the other possible broadening mechanisms that are not
taken into account in the calculation, and their respective contributions to
the lineshape. Discrepencies between theory and experiment are also dealt

upon.

The following calculations are particularly formulated for a system in
the extreme stronﬁ magnetic field limit (quantum limit), where in thermal
equilibrium all electrons are in the lowest Landau level. They can however
be readily generalized to cases in which more than one Landau levels are
occuriee\, es in the spin-flip scattering from n—CdS.“)In Chapter 4 the
theory developed here will be generalized to situations without the presence

of magnetic field.

II. FORMULATION

Consider a many electron system under a constant magnetic field

with hamiltonian

Hy = Ho + V 4+ ‘z/ugjeff B-o (IL.1)

where

= el 12 o
Ho = iZ;,;,"{FwT} +  Ver) (IL.2)
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is the sum of one-electron hamiltonians, plus the periodic crystal potential Vd?),
and v accounts for electronic collisions with impurities, optical and

acoustic phonons, Here

= pi + 4me? ,

-

and O 's are the Pauli spin operators, A is the vector potential associated
A
with B and 3eﬁ- is the effective g-value which can depend on energy. To

P

first order in energy

dff = S (1+AN) (IL.3)

where 8. is the g-value at the band edge and )\ is a parameter measuring

the band nonparabolicity, For n-InSb, a two band model (7

calculation gives
A=-2/ Ea , being the energy gap. Note that only }, , rather
than ( H,-{-V) , appears in (II.3). Also, we have neglected the Coulomb

interactions in (II.1), their consequence will be discussed in section VI,

The interaction of this electron system with an incident electromagnetic
wave with vector potential Xu can be expressed by replacing F in (IL.1)
by ( F - e:\u /C) . Treating ﬁu as a perturbation, the transition probability
for the scattering of a photon from state (lor, .E’,, gr) to state (“f' Ff ) é)( )
with the accompanying transition of the many electron system from state | >
to 'F> is given by the matrix elements of the operators ,-4':, and ﬁﬁu .
The general expression for the differential cross section is then given in the

Born Approximation by



dr 1\ W, 2
B o BT il soa

(I1.4)

where ({---- >  denotes the average over initial states and w= ¢, - wj_ .

f
The matrix element M;r is given by ®)

— -

Hrr = é-ér.d%,<ﬂa:ad"1><”/’ezz.y

|t

>

. ) (IL.5)
# g_g <otu},|dl>(F lcif ;F1>
g

{<Fia:a«m XNIGG (1> | <FIdeGp'In SN Iada |r>}
EL"‘EM"I‘T'L)r EI'B“m.f

—

2

-

L

~I

(1I1.6)

[

.k
A . eA ]( P .
s Ge(T-F)e -Téf)
§ ¥
In deriving (I1.5), Il’ , j‘_s_ are second quantized in eigenstates of (H-V),
12>, \F> with creation operators QJ , q‘,* respectively. Here we use the
index o to denote the set of quantum numbers ( h,ku,ka,ﬁ) , $  being the

W
spin index. The first term in (II.5) comes from the term,treated to first

—_—
order, while the second part is derived from the T-Aw term to second order.

Neglecting the interaction between electrons, we can assume that the
intermediate many electron state |N> differs from the initial and final states
only by a single electron excitation. Under this approximation, the spectrum
(I1.4) can be expressed as the Fourier transform of a generalized spin correla-

tion function ), (1)
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3 v [0 ot
dw:sr. - (v;)_uf; L %‘e (NN (0) >

(11.7)
where
N.,m - e Wtk M e-—iﬂvt/ii (IL. 8)
+
L\“ = % X‘f a«’(‘\‘ (11.9)
and
TR
Fo= Kale T gD €€
X"F For f (11.10)

1< [<alj g e T > | 6
+m‘§{ J{fE,iJﬁAr‘f I ;«_:,F'p%
5 E-B-hy -

|

From now on we will concentrate our attention on InSb which has a

negative effective g-value, so that (II.1) becomes

HT = H- 'L%' %63 (1= IA1 He) (I1.11)
H = Ha + V .

Consider now an electron with momentum kb in the spin up state of the nth

Landau level is scattered to the spin down state of the same Landau level

with a momentum shift T . Wr.itina_ the quantum numbers explicitly, (IL.9)
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becomes

~'>
N =5 Vit kg () Qniegty bygUokyhyt (m.12)

'
Note that in (II,12) the @ § are the Fermi-Dirac operators acting on many

electron states. _f\_! can be expressed as the sum of single particle opera-

tors
— ] . (11.13)

With (II.13), equation (II.7) can then be reduced from a mann electron
expression to a one-electron expression in which the operators of second

quantization disappear ''°

, - Tt
i}; - (E%)—%?ZL dte' tr {'f(HT)NH)[“)((HT)] N ] (I.14)

=

where )((HT) is the Fermi-Dirac distribution function, and the Ns are
) .
just the N; s in (II.13) with subscript 1t supressed. The reduction

from (II.7) to (II.14) is carried out in detail in Appendix 1B.

Now we shall assume that Koé \‘w (hhs ‘E) is a constant indepen-

dent of the quantum numbers. This approximation holds only if 'hwr is

A )
not close to K , as in case of a CO, laser scattering from InSb., In
p! 2

12)
cases where the resonance enhancement

is strong, as InSb is scattered
by a CO laser, a TW‘ (n k5 %) will be a strong function of kz .
With Ko a constant, __f*_l_ can be expressed as the product of a spin

operator and a density fludua:l:ion ,
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+
_N_ = Xo Vt%ké a"kz*ga/ I%*B* a"kakbf 8 X.,b“_r__i
t - Y r
N = Y% ,,,‘% Qokgit Rrbpg big v 2 ! o j’%
where 03 , OL are Pauli spin operators (13)

0 = 2030 —|
with commutators

[o},00] = O

[62,03] = F 201

[D—’hm'] = [6-";6-‘]

]

O.

The "’ 's in (II.15) are the electron density fluctuations

- +
fi = 2 a"hﬂki a""ﬂ‘?g"’&*ﬁs

= IJFe"KYf(“)
= Z e-z%?‘

1
¢ £ 17,

.‘-
SRt
j”% evolves in time as

. L 5 C-iﬂt/ﬁ
j’;‘ (t) fi 0) .

(11.15)

(I1. 16)

(I1.17)

(11.18)

(I1.19)
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In analogous to N discussed before, j’% stands for the single particle

density fluctuation.

Substituting (II.15) and (II.7) into (II.14) yields
2 282 @y " 2 * uu‘t
- G [ s

(- Bo565 (1- Ak ) Jt 5 o €~'zfu-f‘g-’fo-2u-)m]f/ﬁ (1L 20)

X € + 3

y [,_ f(H-%"’cza-xHa))] o~ ﬁg } ,

For simplicity, we shall only consider here those scattering potentials V

that do not flip spin, i.e.,

[vea] = [V, 6] = o. | (11 21)

The effects of this, and those potentials that do flip spin are discussed in section

I, from where we saw that (II.2]l) is a reasonable approximation since the spin

collision time , T3 , is long compared to the orbital collision time, Ts ',:_.'10_8
seconds, Making use of the operator relation (1)
fimory = froy + [ftn- o) Jeuo-, (L. 22)

together with (I1.16), we can extract all spin operators from (II.20) to give

7 2  [* it
ﬁ = ;,,%37) —3’2‘- l%-l- Lo(J( € ’fY{ﬂH'%b(")“H‘V))]

fH -2 A=) T/ e i fur B ATt
i

X [I- f(H+ %"’(l—lm-v]))]% 65 0- f

X @ (I1.23)
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We see that in (II.23), both st and V are small compared to H.
We will make the approximation of neglecting in (II.23) the terms Aw,V which
is to second order in smallness. In Appendix IC a treatment without making

this approximation is given, Thus, with (II.19), equation (II.23) can be written

as

Newe (Yol [t —ThOs A B Sk
—ﬁ“—i-ﬁ = (—fc—)—za;%—L fa&e Y #{HH' )] e “

P Rt AY
xed e’ "

)] e T e

Now we examine the commutation relations of J’i . It can be shown

easily that

[v.ﬁ.—sbfv,fi] = 0, (11.25)

which is a consequence of the approximation of setting ¥, as a constant. As

will be shown later, the electron diffusion rate across the magnetic field is much

-
slower than the electron diffusion rate along B , so that we can say that

Qx sxtE) T lasyrt) < |, (IL. 26)
where

rit) = Yo) + $¥ct).

In view of (II.26), and with equation (II.25), we then have
[H, Y_i (‘f)] E f—i F(ho)
[H, ﬁ_‘m ] = - F(Ha)f';{

(I1. 27)
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where

H? “Ho
Fibs) = am* {%3 t 335 \/a”' } (11.27a)

F?Ho) is just the difference in energy due to momentum shift i as shown in
Figure 1.2b. With (I1.25) and (II.27) it can readily be proved by expanding the

exponential in an infinite sum series that

HHetV) i (Mot Ve FlHe)T
fiti € - € fytt) . (1. 282)

Further, for any smooth function :F , by writting )C as a Fourier integral

in terms of resolution of exponentials, we can obtain by using (II.28a)

f;‘(ﬂ fthtv) = {0Vt Fing)] fi (). L.25b)

We will make another approximation by replacing F(Ho) in (11.27) by FIH)

which is in effect neglecting a term

HH+V) - HH) = “LV I—"m . (I1.29)

amt

. 22 ¥ . . . . . .
Since 'h%,. /am is also small compared with | , this step is consistent with
the approximation made before. Under these approximations with equations (II.25)

(I1.27) and (II.28), equation (II.24) becomes
4T ey b 1%)? @ :
fod = () B? [ At e v ff[H-hn-/\m]
X e - s [1-AH "mﬂ)b]t[h f(rﬁ EQ’IHLHHN A‘;\""‘)F(H))]

S’(f f-(o G4 O - }

which, by using the spatial invariance property of the particle density f'(;: t ) s

(11.30)

4

can be reduced to



30

o

’ [0{8 ffe W) |

X {[— [E"+ %B(w{zﬁ (/-.z“'/\ﬁws)F(S)}

(k) - TFEOTE PN
L{e"ﬁ* oot & f fsen) [ Pt FREt 00 s

where the 0306~ in (II.30) has been traced awéy.

The quantity under trace in (II.31) can be written as

W{?(G— { %Yal [o{rG(YHY,O)j’(rO f(o o) d¥’ (I1.32)

Lo

- - ' ~
where G(rtiYio) is the Green's function ) and s’(Y:"ly(o"’)
is the one-time density correlation function. In our approximation of

neglecting the interaction between electrons 08

E(FIO) 'f(o,o) = B(Y') (11.33)

which says that the electron correlates only with itself. Here we are mainly
concerned with electronic diffusion in a magnetic field, It is well known that
the diffusion rate along the magnetic field is much greater than the diffusion
rate across the field, which is approximately the former reduced by a factor
(; / We T )1 . In our case this factor is at most 10“3 so that we will only
consider the diffusion along z-direction. Q(Z,-{; | z’, o) can be obtained from

(14
the diffusion equation )

| ~(3 3) /avt (I1.34)
Va7 Dt

G(Z.Jclz)';o )
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where D  is the diffusion constant along the magnetic field.

Substituting (II.33) and (II.34) into (II.32) and integrating over 2 and

72’ ' , (I1.32) becomes

e—‘@;m“ N {*Z(E’~ H)} . (11, 35)

The trace in (I1.35) can be recognized at once to be the spin independent
density of state including collision ?(8) . Putting (II.35) into (II.31) and

integrating over JC yields our final result

A% - (ﬁ—)"’%"% Ja‘&’ f(e)f[f- B 1-0e) ]

2 (I1.36)
CTVRVNp U e —
X {l* f[g‘l‘ 2 ("AE)*(' & )F(S )} [‘4%“‘}\8)—({)- %F(‘E)]"‘(%;D)J -

The spectrum in (II.36) reflects the”density of states, ?fz), convolved with a
Lorentzian with full width J.%QD which is caused by diffusion of the
electrons. The two Fermi functions takes care of statistics and temperature
effects. In the following sections we shall make further approximations to
obtain simple expressions for the lineshape for the two geometries discussed

in section I.
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111, NONPARABOLOCITY DOMINATED LINESHAPE

We now consider the limit in which diffusion effect is negligible.

(I1.36) can then be reduced to

d;l}n - (mi;):mf]%w L prer de § [e- 5 1) ]

(TI1. 1)

x{1-{[21—1—5(1-/{5)}-(1-@)F(i)]} 5‘{w-wsu~)£)—":"-ﬂs>} .

Equation (III.1) shows that the spectrum is just the density of state evaluated
at the difference of energy between electronic initial and final states. This is
no other than the "joint density of state commmlz used in magneto-optics. (té)
The Fermi factors gives the statistic effects and.must be included to give

right dependences of the lineshape on magnetic field, carrier concentration,

and temperature.

We now proceed to calculate the density of state

f(‘é) = dn(e-H). (I11.2)
10)

Without any collision effects, the density of states in a magnetic field is

[} nmy ‘
- 2—"‘—*)/5 S — (I11.3)
Y(&) N ('t\a Qﬂ); wo JE- nhae , )
%
where 1 = ( ‘hc /e B) is the classical radius of the lowest Landau orbit.
In the quantum limit we are considering, only one Landau level is occupied

so that M, . = o . This free magnetic density of states shows a
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singularity at £ = o , hence a zero linewidth. Collisions, however, will
round off this singularity to give a finite linewidth. We will now calculate the

. (1)
collision broadened density of state (III.2), using the methods of Kubo.

Introducing the resolvent operator for the hamiltonian H 2 Ho-} V

I
Rsy = TR (111, 4)

where & is a complex variable, the delta function can be expressed PRVLL

3(2-H) = Im Luiu 5r Ree+in). (IIL.5)
"{—30
By making a damping theoretic expansion of the resolvent Res ) and keeping

only the diagonal parts, (III.4) becomes

l
Risy = ht G s (I11..6)
so that the density of states is
€) = Tm Jm L { ’ .
? ™ ’Tso T -‘Y Hb—fG(E—}iql)*(?'l"l"v
(I11.7)

= 7 L (M) (am*)x |
m T Gl (W ) @@

where the self energy, G(s), is given approximately by

Gy = - ' ! V (111, 8)
Hot+ G(s) =S ’
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and Val is the volume of the crystal. By taking matrix elements of (III,8)

between states lnka L3> >
> < [<nbyhs [V Ik ks ST s
Wk 0k, ‘ﬁ’ké%m* + (G»'LJ'IS’IS) )5 —$

(I11.9)

<6ihhah3fs) PRI

b

where (- --+ >5 denotes the average over scatterers. Note that (III.9) is
derived in the effective mass approximation, which is in effect neglecting the

nonparabolicity of the energy bands.

In Appendix 1D <G,,j,a],3fs)>s is calculated for elastic scattering of
electrons by /\'s impurity centers each with charge Ze via a screened

Coulomb potential
& ri-R
- - U(7- R:
Vivy T ) )

(111..10)

kY
ry) = ,

RJ being the coordinate of the j-th impurity, € the dielectric constant,

and %s the screening length, The result is

[
(TI1.11)
{ Kegpe)>s — €,

<&,E&)>, =

where
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(V) d
7 = WL(znl) (am) W

(IL.12)

W= - gM;a 14(47r62e2)11"3 (:zj‘ﬁ&;) )

That (III.11) is independent of ké follows from the fact that the coupling

between energy bands are. neglected.

Comparison between (III.11) and (III.7) at once yield the expression for

the density of states

Y(i) = _VI\T Im. {GoCg) de (I11.13)

where {&o(c) >s can be solved from (I11.11), Thus

=

oo V2B BT - [145-2 [FETT | v

Other scattering potentials, for example acoustic phonons, will also give the
same ]corm of density of states. Only V4 will be different in (III.12).
Although the calculation carried out here applie only to the extreme strong
field limit, generalizations can readily be made to extend these results to
include lower magnetic field cases. Substituting (III.14) into (III.1) and
integrating over £  will yield the final expression for the spectrum. We

will examine its shape more closely.
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First let us look at S’CE) . Figure 1.3 shows the behavior of s’CE )
as a function of € . It can be seen that the density of state has a peak at

€ =o as expected. The peak height is obtained by setting

in (III.14)

2/;
s’(o) = “,'\'7 {f— 7 (111, 15)

At the high energy side, (€) behaves like the unperturbed density of
g gy

state having | //€ dependence

|
Y(e) & .\%\,—_E-.- , 8 > Z%_ (111.16)

This result is not surprising since at high energy, the collision potential
is very small compared to H. . Examining the low energy side shows

that S’(i) has a rather sharp cutoff at

e, = - 3 (_27_)% . (IL.17)

There is no state allowed for € < €. . This sharp cutoff is a consequence

of neglecting the impurity band tail which we shall discuss in section VI.

Expanding (III.14) around €, , we get
%
© = 421 e- f 7B (II1.18)
f — e 77

The full width at half height of 5’(2 ) can now be easily solved.
From (III.18) the half height is obtained, and equating it with (III.15) and
(I11.16) and solving for §&  respectively, we get the half-peak-points on

the high and low energy sides, the difference of these two gives us the full
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width, which is

AE = 7] Z% (111..19)

.

From (III,12) it can be seen that the width (III.19) increases linearly with Ns

which is expected for more impurities means more collision, which rounds

off the singularity peak. Also, AEg decreases with magnetic field as B‘%
which is just reasonable for higher magnetic field reduces the collision rate,
hence sharpens the peak.

Having known the density of states, the lineshape follows immediately
from (IlI.1). First consider the ()1-15::0 geometry discussed in section I. In
this geometry %b“ so that we do not have to worry about diffusions at all
as can be seen from (II.26). Also, (II.25) shows that F(E) = o , thus
the spectrum becomes

de o)y e
dwdQ m: P AWs r AWs )
(II1. 20)

Ws- W ) Ws~lo W
x [ [ -f[5Es + 2]
{ s 2{|f/\ws+2 :
The lineshape will look just like the density of states, with a peak at W= Ws

and a cutoff at both the high and low frequency sides by the Fermi factors.

Figure l.4a shows schematically the lineshape in the ''quantum limit",
that is, when all electrons are in the spin up level of the zeroth Landau level.
In this case the fl - fli)] factor contributes little at low temperature, and the

spectrum is only cutoff at the low frequency side by the Fermi energy. E‘r
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Under the extreme stron-g field limit, and when the carrier concentration is
sufficiently high so that the Fermi energy EF is much larger than the width
of the density of states, the width of the spectrum is solely determined by the

density of states, especially at low temperature. Thus we have

~ ¥
T, 2 Aosag = T-/Aws 7% e < hwg (L2
’
TN is the nonparabolicity full spectral width at half power point. Since
Ws increases linearly with -8 s T:; can be seen to increase as
B Y3 . This result will not be so surprising if we recall that the non-

parabolicity of the Landau levels, specified by

/A; 3 BAE

is an increasing function of B .

With the increase of carrier concentration or decrease of magnetic
field, the Fermi level increases until EF & 'hws . At this point,
electrons start to occupy the spin down level as well. This fact is reflected in
the lineshape in figure 1.4b, where the [!~ -f (2)] factor now sets in and
cuts off the sharp peak of the density of states. At zero temperature, the

linewidth will be given by

Th & Als( hws) , hoe > € >hiw, (111 22)

which will be considerably greater than that given by (IIL.21). Fyrther

decresse in B  will bring in the peak of the second Landau level, resulting

in a narrow linewidth. Thus we will have an linewidth as an oscillatory
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function of the magnetic field. We will however not consider these and only
concentrate on the extremely strong field limit.

Now we turn to the ).‘ﬁ‘a\: 0 geometry. Figure 1.5 shows that the
spectrum has a sharp peak just as in the E}'.E;O case, but the peak is shifted

by
-h.: 2
=(1- %)\ws)ﬁm* . (II1. 23)

This peak seats on a low broad bump. The shifted peak determines the width
which is approximately equal to (III.21).

It should be noted here that for a fixed B and N , no matter
what the spectral shape may be, the area under the spectrum must be a
constant. This can be seen from (II.36), as an integration over 0  just

gives the integrated cross section for the N electrons, independent of

the lineshape.

IV  DIFFUSION DOMINATED LINESHAPE

Now we turn our attention to cases where %SD is much larger than
the width of the density of states calculated in the last section. Under this
situation the structures exhibited by s)(£) is buried in the broad Loren-
tzisn-like line caused by the diffusion of electrons so that we may neglect

nonparabolicity effects by setting A = o . As mentioned in section III,
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this limit of large diffusion does not apply to the EﬁzO geometry in which

qbis zero., Thus we will only consider the _(f—ﬁ:\: 0 case.

With A= o , (I1.36) reduces at once to

do-  _ [er)? n’!l_w_f: 24D
dwdf (m_c') Y ws-wlA (3P y (IV.1)

X “ote Y{s)f[gj‘:z“—’%]{l- f[f* Bl F(e)]}.

o

The integral in (VI.1) just gives the effective number of electrons that can be

scattered N@ﬁ. , so that the spectrum is simply a Lorentzian with full
width T
2,2
di [ €7\ o2 We To /2 (IV.2)

T = (me) ¥ O M (s ) (R/2)°

s = 21213 i (1V.3)

In contrast to the nonparabolicity lineshape for this geom etry, whose peak is

shifted, this diffusion spectrum is centered at W= Wy .

For a system of nondegenerate electrons with a Maxwellian velocity
distribution, the diffusion coefficient along the magnetic field D in (IV.3)

is given by

ke T
D= e T ' (IV.4)
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€17)
An extension of the Einstein relation (IV.4) to degenerate electrons yields

D= T (IV.5)

where the velocity of sound § for non-interacting electrons is given by
S = ¥3 IV.6

3m (IV.6)

In Appendix 1F T is calculated for elastic collisions with impurities via

(II1.10), and the result is quoted here

e 4 _| 7
T ° /g (av.7

3
where ?3 is the averaged electronic kinetic energy and 7 s
defined in (II1.12). In low tempersture, kaT < ef- , an expansion

of the Fermi distribution gives (see Appendix 3B ),

W A & _ oa (TkeTY'_ T fkeT i

fc“we;{’ - w5, Wk o
For high temperature keT > E’F ,

L . 4 [
T % {ha keT > € . (1v.9)

Substitution of (IV.5),(IV.6) and (IV.8) or (IV.9) into (IV.3) gives the

full width of the diffusion lineshape L ES . At low temperatures

T2 = Jg(%)g}:%_}_{;-ﬁ(ﬂéil)i} kT & (V.10
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For electrons in the extremely strong field limit,

N\? 4 W
Ef = (T) (nd) am? (1v.1)
so that b is proportional to N/ B® . The factor l‘z;
is, of course, dependent on N and B , but their effects will be small

for only their lagrithmic values contribute . At high temperature,

T & %1‘7&,—, —§E T ke T > (Iv.12)

which is proportional to |T N /B . Thus we see thst the spectral width
increases both with carrier concentration and temperature, while it decreases
with magnetic field. This result is reasonable, for although high T and N
and lower B will shorten the collision time, they will however increase

the average velocity of the electron, hence increase the diffusion coefficient.

Note that the calculation in section III and IV is valid only for tempera-
tures low enough so that the collisions with phonons are not important, For

g
InSb, mobility measureménts (18

show that phonon effects will not come in
for T<I100'K. For temperatures higher than that ] in (1I1.12) has to
be modified to include the phonon effects. Also, (IV.ll) is only true if all
the electrons are in the lowest Landau level. For higher N or lower B
the Fermi energy is more complicated. Morover, (IV.1l) gives the Fermi
energy at zero temperature, the change of EF in finite temperatures must

be taken into account to give the correct linewidth at T = 0. The behavior of

& as a function of B , N and T. is discussed in Appendix 38 .
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Finally the calculation in this section holds only if To  is large
compared to Tn obtained in the last section. If |5 and Tn  are com-
parable, we cannot use any of the approximations developed in sections III and
IV, and must go back to (I1.36) for the spectral shape. Since T>  decreases
with B and T increases with B , at some large field value (II.36)

seemed unavoidsble.

V. COMPARISON WITH EXPERIMENT

In this section we will mainly compare our results with InSb scattering
(0)
datas provided by Brueck. In his experiemnts, InSb is scattered with a CO
laser, with energy very close to the energy gap. In such cases, ¥, can
depend quite heavily on energy as the resonance enhancement decreases with
finite kﬁ . This effect can be taken into account by letting in (II,26)
. a A
_ (Bt hioe/z )~ hioy”
¥.= Y ¢ . (V.1)
(B+ Hoc/2+€) - huwy

where :(o is the matrix element at kz =o , Also, the experimental
measurements have been done in low temperature TX 50°K so that phonon
contributions will not be important. In Appendix 1G the formulation will be
extended to include the situations in which many Landau levels are occupied

as well as effects of higher temperatures. The results obtained wilk be compared

with data of light scattering from CdS there.
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First comnsider the 'ci.—]§=0 geometry. As pointed out in section IV,
diffusion effects does not contribute to the lineshape in this particular case,
so that the results of section III for s nonparabolicity dominated lineshape
will be used. The screening length %s is calculated in Appendix 1E and we

assume here that the semiconductor is not compensated, so that ZNs=N |,

In Figure 1.6 is plotted the lineshape given by (III.21) as a function of

16 cm_3 and T=2°K. Note that (III.21) is valid only

magnetic field for N =10
if the electrons are in the quantum limit, which, in the given carrier
concentration, should occur at about B = 25 KG. When the magnetic field
falls below that, there will be an increase of the linewidth as the sharp
peak is cut off, Experimentally, this effect can be seen in Figure 1.6 by
the larger than usual linewidth at 20 KG. The calculated linewidth is about
1cm , and is in general two times lsrger than the experimental measure-
ments, which is about 0.5 cm—l. This discrepency is especially large at
high fields, because our width tends to increase with field. This is most
probably due to an over estimation of the impurity collision rate when calcu-
lating { . However, if taking the fact that ours is a first principle calcu-

lation with no fitting parameters at all, this can be considered as an accep-

table agreement,

Equation (III.21) provides the linewidth only at extremely low tempera-
tures such that the Fermi distributions are essentially step functions. At high
temperatures, there is no simple analytic solutions for ﬁ , we have to plot

the spectrum (III.20) and measure the width. Figure 1.7 shows the spectrum
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for N = 1016 cm-3 and B =49KG at 2 K and 50 K. The peak height is reduced

as temperature increases because of the thermal distribution of electrons.
The linewidth is however little affected by temperature for T< 70K,

In Figure 1.8 the linewidths for N = 1016 cm-3 and T =50"K is given as
a function of B, The widths are again bigger than experimental results,
The sudden drop at B= 25 KG indicates that the electrons pass into the quan-
tum limit, as discussed earlier. The effects of a partially occupied spin
down level as the system leaves the quantum limit can best be seen from
Figure 1.9, which shows the spectrum at T = 2°K and B =49 KG for several
carrier concentrations. For N =8 x 1015 cm_3, the system is strictly in
the quantum limit, so that the spectrum shows a sharp peak at W = Ws .
As the carrier concentration is increased to 2 x 1016 cm~3, the Fermi energy
just touches the bottom of the spin down sublevel, resulting in a reduction of
the spectral peak. A further increase of carrier concentration to 3 x 1016 cm-3

will completely wipe out any peaking structure as the spin down sublevel is

well ocoupied.

The spectral shape, however, does not check with experiment as
favorably. Figuresl.7, 1.10 and 1.1l shows the lineshape for N = 1016 cm_3 at
various magnetic field values and temperatures. Reproduced experimental
traces accompanying each figure are for purpose of comparison. As can be
seen, the theoretical curves are generally asymtrical showing a tail at the

low frequency side and a much faster drop at the high frequency side. This

tailing just reflect that each electron has a different effective g-value. That
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the tail is at the low frequency side is a direct consequence of a negative A
which means that the separation of the two spin sublevels is largest at k5=° .
Should X change sign, the mirror image of the spectrum shown will

resulte. This low frequency tail, if present, is however not promingnt

in the experimental results. Instead, some traces show a distinct tailing

at the high frequency side in contrast to the sharp drop predicted by theory.
This disagreement in spectral shape is probably a result of neglecting effects
such as Coulomb interactions between electrons, deep impurity potential wells,

as well as the anisotropy of the energy bands in our calculation.

Now we turn to the aﬁ ¥ 0 geometry. In this case the diffusion width
will in general be of order of several wave numbers, larger than the nonpara-
bolicity width. Thus we will use the results of section IV, The spectrum
will be Lorentzian centering at w= W, . Thus,the peak will not be shifted
with the change of experimental geometry as long as the electron system is
in the quantum limit. Once the spin down level is occupied, the —ci._1>3=0

peak will be shifted to the low frequency side by an amount
Aw = Aws(g/h— Ws) (v.2)

as can be seen from figures 1.4b and 1.9. The peak separations of the two

geometries are given in Figure 1.12, and agrees very well with experiment,

The line widths as given by (IV.10) is ploted for 2K in Figure 1.6.
In low magnetic field, the width predicted is too big, but in high fields,

droping as B~ , is quite close to the experimental measurements., A
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better agreement is obtained for T = 50°K by using (IV.10) as given in
Figure 1.8. In general the agreement between theory and experiment is not

bad.

The spectral shape will be a simple Lorentzian if Yo is taken to
be a constant, If we take into account the resonance enhancement by using ¥.
as given in (V.1l), the spectrum becomes slightly assymmetric. Figure 1.13
and Figure 1.14 gives the lineshapes for different fields and temperatures for
both constant Y, and (V.l). The spectrum agrees quite well with experi-
mental observations as can be seen by comparing with the accompanying

traces.

In general, we may say that our theory are in rather good confirmation
with experimental observations, except for the detailed spectral shape in certain

cases, The discrepgncies will be discussed in the nect section.

VI.  DISCUSSIONS

From the above section we may say that the diffusion dominated line-
shape checks quite well with experiment., The slightly larger than observed
linewidth may due to the rather crude methods used in calculating the diffusion
constant. Other collision mechanisms such as elastic collisions with phonons
may help to narrow the width. In high magnetic fields, when the width is

comparable to T'N as shown in Figure 1.6, the result should be modified
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to take into account nonparabolicity. An integration of (II.36) should be carried
out to yield the correct width in these high hield limits. This however is not

done in this thesis,

Besides the approximations made to arrive at our results, there are
several realistic features and broadening mechanisms of the semiconductor
neglected in this calculation. This must be born in mind when comparing
with experiment. First of all, the energy band is assumed to be isotropic,
for we used a single effective g-value for all directions. For anisotropic
band structures, different g-value should be used for each direction, and it
may well turn out that along some specific direction ﬁeﬁ' will have a posi-
tive A , so that there will also be a tail on the high frequency side. This

effect is not important for InSb, whose conduction bands are quite isotropic.

Another feature not considered here is the impurity band tail of the
density of states. In our comsideration of randomly distributed impurity centers,
we have not taken into account those impurities forming a cluster, thus creating
a deep potential well., This effect is also small because although the electrons
trapped in these potential wells have very low potential energy, they also have

high kinetic energies. ")

Finally, we have neglected Coulomb interaction between electrons. When
this is included, the following electron-electron collision processes may ocour,

Figure 1.15a shows the collision between two electrons with different spins.
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The collision changes the energies and momentums of the electrons but leaves
the spin state unchanged. These collisions do not contribute to the linewidth
since they do not connect spin as discussed in section I. However, it provides
a calculation of the electronic collision rate within the same spin-sublevel.
An estimation shows that this rate is about ~ 5x 1010 sec-l.
Another possible broadening mechanism when electronic Coulomb
interaction is included is the "Auger effect” of Figure 1.15b. Here, the
effective frequency shift may be bigger than ®&s as the broken line in
Figure 1.15b shows. This may account for the tailing of the spectrum at

the high frequency side in experimental observations. A detailed calculation

of this effect is complicated and we hope to carry it out in the future.
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APPENDIX 1A. CALCULATION OF EFFECTIVE g-VALUE

1
The Lax two-band model ") gives the energy of the nth Landau level

E, = {/EH +4Ej[(h+>)ﬁwc+ ﬂ 1/‘“3 B — Ea } (1A.1)

where Eg is the band gap and 30 the effective g-value at

ﬁkl
E 2 mi)hw l‘?’igm = o0 (1A.2)

The % signs refer to the spin up and down sublevels respectively. Since
the spin-orbit splitting is small compared to other energies, expansion of

the square root in (lA.l) gives

A T

The last term in (LA.3) is just /gazeﬁ B . For E<x E& , we finally

get, to first order in E

39_& ~ 3, (1- QE/EJ) ) (1A.4)

APPENDIX 1B FERMI-DIRAC OPERATOR TO SINGLE PARTICLE OPERATOR

REDUCTION

Let H be the sum of one-particle hamiltonians,

H= 2 H;
and f}H’ ) and §(+)
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Wt/% - it
Ay = e M poye I
. . (1B.1)
B#) = e iHt/f Bro) € -ile/h
be any two second quantized operators acting on many electron states
A) = Z @AWls>ala, 2 = ALwad
...('H df ' lf> ] f df a(f() a af
5 4 (1B.2)
= 2 <t a, 2 Z Bgt)a
Btt) “F< 1 Bit) 15> Oels 50t ) Oa &
where the (A 's are Fermi Dirac operators (25)
Q;l'”]') = fﬁi (...;)J' Ir. f)’)i__'__..> (1B.3)

and Alt) , Blt) are single electron operators operating on one-

electron states. In this appendix we will try to show that

{Att) Boyd = v {'f(H)AH)[l‘f(H)] Blo)} (1B.4)

where f (H) is the Fermi-Dirac distribution.

With equation (1B.2), we get

- + . At
(AR)Blo)) = "fi:” A.“e(ﬂ By (0) {0y als 0 0,y >

e‘("‘/&”)/ko'r 1B.5)

= 020, 024,
,fi:b AGFH—) Bjd)lﬂ) "Y { af /A ,k(c~(ﬂ71N)/hT)

where we have averaged over a canonical distribution. After some operator
(20)

algebras, (1B.5) reduces to
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(H080) = = A% Hht-50 030 4 46, 5 50] -

with

fa = <1 ) la> . (1B.7)

Suming over indices /u. and LV , (1B.6) becomes

(AW BlOYS = % J« (-3) Ap(t) Bparo)

(IB. 8)

= { $o Ay -] By ],

APPENDIX 1C A DIFFERENT FORMULATION FOR THE NONPARABOLICITY

DOMINATED LINESHAPE

A formulation of the nonparabolicity dominated lineshape slightly differ-
ent from that developed in section II is given here. In this formulation we
will relax the approximation of neglecting the AlsV  term in (II.23). For
simplicity, diffusion contributions will be ignored here. Also only the q.B=0
case is considered, although it is straight forward to generalize the results

=
to account for the q.B + 0 geometry.
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We will start with equation (II.14), with the N 's given by equation
(I1.15), where T¥e is approximated to be a constant. This, together with
the model for calculating 365} , and that the scattering potential does not
flip spins (II.21), are all the approximations necessary in the present formu-

lation. With % a constant, it can easily be shawn that

1l

o

[H., N ]
(1C.1)

]

o

[V, NJ

That the commutator between V and N vanishes follows from the
fact that V does not connect states of different spins. Using (1C.1)

and (I1.16), (1I.14) can be written as
£ 212 () ® ot
- BRI e i o]

o 1 EIINTIOS T [ o (VU SNAT (IC.2)
e

X

X fl~ )((HT %—é(b)\Hb))] NN %

Now we introduce the hamiltonian for the spin up electrons

Pl

The hamiltonian for spin down electrons can be written in terms of b4

n

H - E&@é(’_)\Hb) . (1C.3)

He 200y = 290 + 8 + AGsV (1c.4

where
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|- %Kms
|+ Aws /&

N
1N

Ws
A — (1C.5)
I+ XJWUJS /2

2
np

Putting (1C.3) - (1C.5) into (1C.2) we get

Lo /ez)”’%t [d{eiwtrfls fe %f%{f-%) e °7

X

dwdnd  Ime2 P
(1C.6)
)(e'l[d + (Hx )]V‘h ["{(d?{*ws(l‘f‘/\V))}'\l-}N f
Integrating over time, and tracing with the eigenstates of He , (1C.6)
bebmes
o’ e\ e [
dwodn (gfc‘) jﬁr de JC(?.) [hf(ﬁhm]
~ (1C.7)
Xty { sce- o) 3 [e+ - o o0 - Ws (/+)tV)§ _
Carrying out the trace with eigenstates of the spin up electrons |9 >
4 ,Qp = gf g > ) (1C.8)
(1C.7) becomes
o _ ey [T _
ol = o) 3 ’cf)}-f [ de )C(E) [i )C(?*JF““)] (1C.9)

<z 5(e-60) <qialerhw-«af =@ e AV) T}

which, if the term ADsV is neglected, gives (III.1).
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Since only the diagonal elements of the delta function 5[&‘ -Fhw—a(?’(—&L ( H/\V)]

is involved in (1C.9), we can replace it by the resolvent operator (te)
‘ T€) /7
S) = - (1C.10)
) ' 2
(o A+ ay-¢)+ TIe)
e 2 e+ hw-os | (1C.11)
The T(¢') and 4(¢) in (1C.10), defined by
Lun Ges ) = 4@ ¥ i Tee) (1C.12)

“[—)0
are just the linewidth and the energy shift of the eigenstates l‘?) respectively,

The Green's function Gts) is given by

r 2
Ges) = s {vly - {V <A TGS VL (Als) (1C.13)

where the first term, which is a constant, can be removed by reno¥malization,
{- } 4 denotes the diagonal psrts involved. Note that the second term in
(1C.13) is small because it involves the square of AQs , hence may be
neglected. This approximation is essentially neglecting the T(¢') in (1C.10)
and only keeping the energy shift. Thus (1C.9) becomes, after substituting

in (1C.10),

dr e’)z—“_)f- + [”Js f(a) [1- f-(e#awi(

dwdr mc (1C.14)
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where

Vo = <qivig> (1C.15)

In principle, (1C.14) can be solved if we know the wavefunctions |<.F> .
If we spproximate | > by Va 2 <X |V | > where |«> is the eigen-
states of Ho , then (1C.14) at once reduce to (III.1) except the entire

spectrum is shifted to the high frequency side by AGWs Vi

APPENDIX ID GREEN'S FUNCTION FOR IMPURITY SCATTERINGS

In this Appendix we shall calculate the self energy (1) (II1.9) for
electronic scatterings with Ns' randomly distributed impurity centers via
an attractive screened Coulomb potential (III,10). Using the Fourier trans-

form of the scattering potential

I NS - -R.
V) = a2 € o @)

2 (ID.1)

U(%) =

the matrix element in (III.9) becomes

<}<'nk5k5} VI) I ky'ky'> "y = %5 v V@) e |ty by
(1D.2)
= U?m' (ké)' %X'kbl)l ikﬂ',}%n\%‘a Skﬁ',ké‘l%ﬁ 5k6‘, k}}“@i}’ Ské',kz'ntzﬁ.
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(13
where (e

Z)',,,,'(k.a.zx.ka‘) = [OL’X uyn(x—l‘ka)e szxCPnT(X-lzkz]') . (1D.3)

The CP,, s in (1D.3) is the wave function for the state |'nka 3 . If we
neglect the nonparabolicity effect of the energy band structure, ‘Pn (x ~l’kg )

will just be proportional to the nth order harmonic oscillator wavefunction ¢,, *"

. k .
ulr-Lhy) = e iyt b 0oLy ) (ID.4)
Averaging over the random scatterers, G we get
E — ﬁs— ‘lf(.‘ ? Dag !
gy Vigyys = v TR 3y 1.5

where V., is the volume of the crystal. (1D.2) then becomes

N [u1g ) T’ Chay 9, ke’ ) :
g 9 s B om +66)-3 L .

If only elastic collisions are considered for an electronic system in the quantum

limit,
) (1D.7)

With (1D.7), by converting the summation to an integral, (1D.6) can be

reduced to

Gis) = - _ri;_}(iyzf_ej) (-’m)

X {0'5'77+ L’a(ﬂ%sz/-?)—— Q%;/,H_.... {

am™ )X ‘-165 R R
VGrs)-s (D.8)
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where the screening length ‘f)s is calculated in the next appendix. In general,
ﬂlcg; is very small, so that we may neglect the first and third terms in
the parantheses of (1D.7) in comparison with 102 ( ﬁ’iﬁ'/.z) . Also,

eﬁi’/ % & | so that we get finally

N2y ¥\ % 2
G(s) = -%(4226) (3’7) T';—(—%) 103 (1%52/2) Vals—)-: (1D. 8)
)

e
JUESEST————

V&s)-S

o

APPENDIX 1E SCREENING LENGTH IN A MAGNETIC FIELD

Celli and Mermin o9 developed a detailed calculation of the Coulomb
screening length for an electronic plasma in a magnetic field. We will use
their results here,

fo' = anetLdhty) | aE.)

L

} AN 4’ s f[gm (/f‘:u“jza)]‘ {[8,,‘1!(‘9-%5]"’(5)] | i:%l[& N
L° 2 2 Y <y"e ,h'> lE 2
h Q)" nn I N g N | (1E.2)
M(F-a‘ea)— n (p-3k)
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First of all, we observe that

f[ghi(f)] £ o ) {YI¢OI S=1}+
(IE.3)

§ [ (k] = 0,
since we are only interested in the quantum limit in which all electrons are

in the spin up sublevel of the zeroth Landau level. Also, we may approximate
L L B2
Eou (-3 lza)— Ep (pixky) = F10s + Zan® (ky'- 4,19123) . (1E.4)

Finally, as pointed out earlier, k.L <« ké , so that (1E.2) becomes

¥

L, = Ty:’ ary S atr fep-ky/a)] (IE.5)
s + H/em* (L;h?’rz,;’)

For 'Hzgl?m* <<Jvilo,, the integration in (1E.5) can be carried out to give

R T .0

APPENDIX 1F EFFECTIVE COLLISION TIME
colliston

Here we calculate the effective,time T which will be used in the
diffusion linewidth calculation. Consider the scattering potential (III.10),

for scatterings in the quantum limit, transition rates due to elashc collwions
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is given by the Golden rule

.2

J’L—“— _ o%fr Z <l<okk5[!/(v)!k8ka>[>g[&m ﬁé;] (IF.1)

Carrying out the same kind of analysis as leading to equation (1D.8), we get

Y- L@

where the averaged energy is given by

_ 5 ]?S(?)]C(?)\/'S—OIE’
'/% (t% ) r S’(Z){(S) de ' (r-9)

APPENDIX 1G  SPIN FLIP SCATTERING FROM n-CdS

Here we will give a brief discussion of the spin flip scattering lineshape
of CdS. We will only consider the 'Ef._]—3‘=0 geometry. In CdS, besides impurity
scatterings, we must also consider the acoustic phonons, since the electron-
phonon interaction in CdS is much stronger that in InSb., Electron interacts

with acoustic phonons with potential G2)
_ omahes \% 1 ek

[ge B 1 @“{m

(1G.1)
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where the first term is due to piezoelectric interaction and the second is
via a deformation potential interaction., & in (1G.l) is the coupling

constant, C , the deformation potential constant, fd the density of
the crystal and g = 'hS% . L{ is the creation operator of

the phonons.

A calculation similar to Appendix 1D gives the Green's function

which has the same form as (1D.8), but with

S AT
/=~ 7 (m)‘(w) w
T (1G.2)

2 k 2 2
w = G ?ﬁ/_——;— + O-Bél\/—'j%q-(ka'r)l

The above calculation is carried out for electrons in the quantum limit., The

linewidth, given by (III.21)

T ~ 7'12\% Z"/.S

is seen to be proportional to T S .

However, for CdS, with its large effective mass, this limit is seldom
satisfied. In general, several Landau levels are always occupied. Also,
a rough esitmation of the collision rate in CdS by using (1G.2) shows that
the rate is about four orders of magnitude larger than the collision rate in
InSb. Thus the singularity peaks of the density of states are very well

rounded off. Under these situations, we may approximate S’(E) by the
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free density of states in the absence of a magnetic field

PE) = Gaj: (2 V% e (16:3)
The spectrum will be given by equation (III.20) with "(2) given by (1G.3).
At low temperatures, the lineshape will be primarily determined by the two
Fermi factors. As temperature increases, the shape broadens until it is
finally limited by the demnsity of states, which is zero for w > Ws .
Figure 1.16 gives the spectrum calculated at several temperatures, and their
linewidths are plotted in Figure 1.17. The width increases linearly with
temperature at low T, and less than linear for T goes higher. This depart

from linear dependence is caused by the density of states limitation.

Figure 1.17 shows that the theory does not compare favorably with
. (¢) . - .
experiment, especially at high temperatures. Also, experiment observed
lineshapes are Lorentzians centered at Ww=los , while theoretical curves

show a shift given by
AlWs (€F /Hh - Ws )

These discrepancies between experiments and theory need further investiga-

tion.
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Figure 1l.la H.§=O geometry., Both the incident and scattered radiations
propagate - perpendicular to the magnetic field.
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X
scattered radiation
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e N e |
incident radiation gF

Figure 1.1b q. B 0 geometry., The scattered radiation propagates parallel
to the magetic field



Figure 1.2a InSb band model used in lineshape calculation,
geometry,

0oL
wi
]
o

W (1- IAIE )+ [u~r’ulm;],%’,; (:&% 4«6 /i%%)

by

AN
Figure 1.2b  InSb band model used in lineshape calculation, q.B+ 0
geometry
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Figure 1.3 Collision broadened magnetic density of state .
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Figure 1.6 Comparison of the calculated linewidths with experiment.
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Figure 1.7 Comparison of theoretically predicted spectrum with experiment.
d.B=0 geometry. N=1.0x10'® cm~—2 . B=49KG.
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cerlculated with a constent Yo , »nd the broken line with equation (V.1).
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Figure 1.15a Electron-electyon collisions.

Figure 1.15b  "Auger effects”
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CHAPTER 2

THEORY OF TRAVELING WAVE ELECTRONIC

RAMAN LASERS. STEADY STATE BEHAVIOR

I. INTRODUCTION

A great deal of experiment and theoretical effort has been
recently devoted to the phenomenon of stimulated Raman scattering
(SRS), partly because it is a potent mechanism for obtaining coherent
optical radiation in many frequency ranges. In particular, the theory
of SRS has been discussed by many authors from various points of view.
Nonlinear effects important in a proper description of SRS in many systems
have also received extensive attention. “ It can be fairly asserted that the

phenomenon of SRS is qualitatively well understood.

No detailed explanation or quantitative understanding, however,
have been given to many features of the experimental observations. For
example, the saturation of the steady state (sinusoidal steady state,
stationary state) Stokes output power at high pump power level has not
received a quantitative description. Also no formula has been given for
the steady state output power as a function of the system parameters.
This information will be useful to those interested in adjusting or maximizing

their power output. More important is the problem of a proper treatment
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of the laser pump power depletion effect. This effect is important when the
conversion efficiency of SRS is high, and can lead to unphysical results when
neglected. Although SRS theory has been considered for both scattering from
collective and single particle excitations, the usual detailed theory 2)-(3)
is restricted to the description of scattering from collective modesif One needs
more variables than the collective case in a detailed explicit description of
scattering from multi-level single particle excitations.

With the development of the tunable spin-flip Raman (SFR) “
laser based on scattering from electronic spin-sublevels in semi-conductors,
single-particle SRS processes have acquired new importance. Much work has

(£)- 1) The SFR laser

now been reported on the SFR laser and its applications.
is interesting in many ways. It constitutes the first cw operation of a Raman
laser, and provides high power tunable infrared radiation. Its gain of

> cm -1 /W-cm"2 is the largest Raman gain known to date in any portion

1x10°
of the spectrum, and should be compared with the gain for Raman scattering in
082 at 5000 .A: It can have very high conversion efficiency and very low
threshold power. The electronic Raman laser is also interesting in other
regards. It can be considered as a generalization of ordinary multi-level
lasers with a different pumping mechanism. Since nonlinear effects like self-

focusing are expected to be unimportant in semiconductors, it also provides a

good testing ground for the general theory of Raman lasers. It appears at

# The nonlinear susceptibility is however frequently calculated through a multi-
level molecular system.
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present that a detailed theory of electronic Raman laser is worth considering,

which takes special account of the multi-level nature of the scattering excitations.

In this paper we construct a relatively complete description of the
electronic Raman laser. A hamiltonian is developed to describe the scattering
processes and the laser system. Together with added loss terms, ten coupled
equations of motion are then derived describing the average behavior of the pump
laser radiation, the Stokes radiation, and anti-Stokes (AS) radiation, and the two-
level electronic system. Steady-state solutions of these ten equations are
obtained. Among the results obtained we have analytic expressions for the Stokes
and anti-Stokes output powers, including their saturation behavior at large pump
power. Interesting insight and useful conclusions on the laser behavior can be

drawn from these formulas.

We have also given a novel treatment of the pump depletion effect.
When pump depletion is neglected one may run into answers for which the Stokes
power is larger than the pump power. Proper account for the pump depletion is
also important in obtaining steady state power expressions for Raman lasers
operating by scattering from collective modes. We will not discuss the collective
case in this paper. A detailed comparis .on of output power behavior for the
collective and single-particle Raman cases as well as other lasing mechanisms

will be reported elsewhere.

In section Il we discuss the development of quantum mechanical hamiltonian

densities that describe our single particle scattering processes. Its relation to
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the usual treatment by nonlinear susceptibility is indicated. The equations of
motion for the averaged fields and the electron densities are derived in section
ITI. The equations are solved in the steady state in section IV, where we also
give a detailed description of the phase matching behavior. In section V we
develop a proper treatment of pump depletion. This treatment allows us to
solve the problem of boundary condition excitation in a simple manner. In
section VI we discuss the detailed steady state behavior of our system in a
specific case, and interprete our results physically. The limiting cases of no
AS radiation is discussed in section VII, where we also indicate the difference
of our system from an ordinary laser and other Raman lasers. A brief
comparison with experiments is given in section VIII. Some discussions of the
nature of our results are given in section IX and a few concluding remarks in

section X.

Because the other optical nonlinearities are not important in the SFR

(10 . . . .
laser, ) our results are in excellent agreement with experiments. This
probably constitutes the first detailed confirmation between Raman laser

theory and experimental observations.

II. FORMULATION

Comnsider a collection of identical multi-level subsystems, each subsystem
can be a molecule, an atom or an electron. For definiteness we regard the
subsystem to be an electron, with levels 1 and 2 among others as indicated in

Figure 2.1la. The collection of electrons is supposed to span a volume V which
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we refer to as the crystal. The energy difference between levels 1 and 2 of an

electron is denoted by

fw, = Hw,- Hw, (IL. 1)

A Raman process involving the two levels may occur in the following way. A
photon of energy ﬁwr is incident on the electronic system, and is scattered by
one of the electrons with initial state 1 and final state 2. The scattered photon

has energy
fws = 'hwr - hw, (1. 2)

This process is depicted in Figure 2.1b. Other Raman processes involving
virtual transitions between the electron states can, however, also occur. As
indicated in Figure 2. lc an electron can be scattered from level 1 to 2 via an
intermediate state, although the scattered energy is still given by (II.2). Similar
process of higher order with the same scattered energy can clearly happen,
corresponding to transitions described by an n-th order perturbation theory

expression.

A first principle description of the entire system will, therefore, have to
consider all relevent levels of the electrons explicitly. Such a procedure is
always unduly complicated, and the common strategy is to retain only the initial
and final states, in our case 1 and 2, and eliminate the other intermediate states
through an effective parameter. Thus in this case we introduce a phenomeno-

logical effective hamiltonian
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Hy ~ S'(L:L Qa a.t + bs L+ aTaz) (1L.3)
a p b

to describe the scattering, regardless of the virtual transitions the electrons may
go through. In (II.3) we use bs and LP to denote the photon annihilation operator
of the Stokes and pump field, @, and Q. to denote the annihilation operators
for electronic levels 1 and 2 respectively. The effective parameter /Us,

can be determined from transition probability consideration. Thus we have

replaced an n-th order process by an effective first order one.

The presence of anti-Stokes (AS) radiation, when the electrons are more
populated in the lower level 1, is due to the coherent interaction of two pump
photons with the electronic system as shown in Figure 2.2. The interaction

hamiltonian can be written in this case

Hy ~ /“s'(LJ; LrCh s + bs L;a.*az) (1. 4)
+/M’ (ba byl Qs+ baby aia)

It is important to note that stimulated AS radiation does not occur as a Raman
process similar to Stokes generation, despite the appearance of the second

term in (II.4) similar to (II.3). This is because without a population inversion,
such stimulated process cannot occur. The production of AS waves is a four-
photon parametric process, so that generation of an AS photon is always
accompanied by a Stokes photon. On the contrary, Stokes photons can be generated
alone in the Raman process of Figure 2.1. Thus we see that the Stokes output

power is always greater than the anti-Stokes one. When a population inversion
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exists in the electronic system, stimulated AS radiation can then occur as an
ordinary Raman process, whereas stimulated Raman scattering is likewise
impossible at the Stokes frequency. Coherent two-photon conversion can, of

course, again occur.

We will formulate our problem quantum mechanically before we obtain
the classical equations for the quantum average quantities. The reason for doing
this is due to the non-classical nature of the multi-level systems, which lend
themselves more naturally to a quantum description. Moreover, our quantum

formulation will be used in subsequent papers.

Consider the hamiltonian for each electron

He = fw.ax @ + hw ;i Qi (IL.5)

for a total number of N electrons per unit volume. We define

+
M 2 'Z 0..; azi
(11.6)
* 4 ? Q. au:’_
+
{N( é % ali. OlL
(I1.7)

N, ¢ 2 % Qi
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N, - N 8 D
N, 4 Na @ S (1. 8)

Note that the different electrons are independent, The statistics of electrons
are taken into account in the spontaneous linewidth T’ , Which is calculated
in Chapter 1. The operator I  describes the polarization of the electron
system, A detailed discussion of the operator algebra and commutation rules
of the electronic operators can be found elsewhere.‘") We just note here the

following commutators:

[M,M] = D
[N, M]
[N, M1 = -M
[N, N2

The electronic and radiation variables are, of course, always commutative.

n
X

(I1.9)

N

(0]

We introduce the following spatially dependent electron density variables

o¢) = fomt) dr

B wt) = 3 0; $(r-V¥i) ’ (1L 10)
1=
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where @ = M, Mt N,, N2 . From (IL. 9) these variables obey the

commutation rules

_ b - ) o
_%(?,t), ?ﬂur,t‘)_l = ant)s(r-r)

:92.(?.%), Mw't) |

-

Mt) s (7-7)

(11.11)

(i), M ] = - Wiy 36-7)

WiGt), Nacwit) | o .

The electronic hamiltonian is given by

He = -hwl‘NI + t‘i).!’Nz
[ }ce wt) dr (11.12)

1}

J

= ”[l'md. ')Zl(?fl')'l‘ sz %2(?;‘(')] OLV .

We next consider the electromagnetic fields interacting with the electronic
system. Their electric field vectors are denoted by Er nt), !Eg(i,'t) and
-t
E“(?, t') , which are quantum operators corresponding to the pump, the

Stokes and the AS radiation. For simplicity we have neglected in this paper

2) - (3) (12)

coupling to higher order Stokes and AS modes. ¢ Backward waves
are also neglected. However, the fields may have arbitrary polarizations A;

A
and directions of propagations ki . We decouple each field operator into its
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positive and negative frequency parts

— ~) A ]
Eirt) = {IE?’(?,{) + IE; (?,t)} i = psoa, (I1.13)

)

_ R
{]E?)(Y't)} - Iy vt , (IL.14)

- .
where lEi ) corresponds to a photon creation operator. We assume that the

fields are essentially single mode so that

 _ LIAN _
E;: (t) & an; & nt) (I1.15)

_|v&at | = ikl & t)

with the cannonical commutation rule

(I1.16)

« 1o + of - . Y
[?1”,'(‘), % (Y,{-)] = 59 Sly- Y'). (11.17)
We use Ws and (0 to denote the uncoupled Stokes and AS frequencies which

are given by a)r -~ We and (» |°+ We respectively, The wavenumbers’k['

are related to W by

w; = '%I.Eil . 1= bs.a, (IL18)

with N; the refractive index of the crystal at the i-th frequency. The free-

field hamiltonian is, as usual,

Hr = ’Z hw; ?,-J'(?.Jc) St dy (1.19)
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The radiation electron coupling is described by a hamiltonian density

' - +_ - =
:= h {%mt) + M irt) }/{4 EE (11. 20)
for a coupling tensor /.5 . For a specific set of polarization and propagation

directions of the fields, we extract the Raman coupling of interest from (II.20)

K. = + (M+ WZ*)(/u,' &; 8,, "'/Ua: Ea fP ). (I1. 21)

The terms of importance from (II.21) in describing the Raman and four-photon

processes are given by

Ae = bps {£7857 + &7 eP 1)

(I1. 22)

s (e e+ e |

The remaining anti-resonant terms in (II. 21) are neglected in the rotating-wave

. () (i4)
approximation.

We now relate the parameters /us' and /JQ' in (II.22) to the Stokes and
AS scattering cross-sections (d6/d2)s and (d6/dR )a , which can be obtained
either by perturbation calculations or by experimental measurements. From

the golden rule and (II.21), the Stokes transition rate is

- 2 ws n:
We (ﬁ/u } (axc)?

(&g)s X ( photon flux )

(1I1.23)
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Ws: (-i‘%)sx% .

Here Ya} is the photon generation rate, V the volume of the crystal, and Ln,

the crystal length to be explained fully in section V. Thus we have

., £ e Ly, 4o
= ) ( )s .

Ms Xj ng da (11.24)
Similarly for the AS waves
2 2.3 L
a Te do
M 4 S 4 ! )& (I1. 25)

"3 ndws 42

We have introduced different ju's which are more convenient to use in the

following.

We have set up a complete quantum mechanical description of a nonlinear
optical process involving quantum wave fields, The total hamiltonian is now

specified by (1I.12), (II.19) and (II.22)

H = Hz + He + Hf

]

{ s [eﬁﬁ’c) & Gt) Mairty + E 45ty & lity Wity |

+ [ %0 &Lty ity + € 50 £t M)
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+ ‘h'ldc ?Zl“—’f(') + w; 722(?:'{:)

(11. 26)

+ 12 hw; &t Ent) } dr

The hamiltonian density (IL. 20) can be compared to a classical one

[« b ad
){1 = 2_( EE (11.27)

(3)
described by a second order nonlinear susceptibility %

X - ‘E/g (%-f’/?[') (I1. 28)

with (M + Mt ) considered as a classical or averaged polarization
density. Except for the electronic part, the hamiltonian (II.26) therefore has a

definite classical correspondent.

In ordinary descriptions of Raman scattering from collective excitations,
say SRS from phonons, the radiation and phonons interact through the electrons
which are eliminated via the description of a susceptibility. In our case no
collective excitations are present. Instead two of the electronic levels are
involved explicitly in the scattering process, and we eliminated the rest of the
electronic levels by an effective hamiltonian. The close analogy between our

description of nonlinear optics and the usual approach should be evident.
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III. EQUATIONS OF MOTION

The variables of our problem -are now the radiation fields &(iit), & i)

the electron polarization density WZ(F,t) , 9'it) , and population densities

ANivit) » Nxuvit) . We have a total number of ten field operators.

Equations of motion for these variables can be obtained rom the hamiltonian (II, 20),

using the cannonical equation

0 = ¥ [no0]

With the cannonical commutation rules (II. 11) and (II. 17), we obtain eazily
—%’F,GG',, + %%» = -ifi} (/4s8s%+/ua ')
T8l 52 = iyg s St
(TGl + 2 = - f gt

o1l _ 3 o + t
2 1we M. 2/)3;99“:%85 + Ja§'8)
&--3

X -
2= 3

B = 7 Xﬁﬂs(gggst‘ 9,,«?{*971*)
t g e (& &l ot - §' &)

(I1L.

(I11.

(II.

(111,

(1I1.

(111,

(111

(I1.

1)

2)

3)

4)

5)

6)

7)

8)
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can be interpreted as the difference of Stokes and AS radiative transition rate
between levels 1 and 2. We have used (II. 16) in obtaining (ITI.2)-(II.4). The
adjoint equations of (III.2)-(IIl,5) can be written down directly, so that we have

ten equations with ten unknowns.

Equations (I1L. 2) - (IIl.7) are fully quantum mechanical equations for the
operator variables. In this paper we will only be interested in the average or
mean behavior of these variables. We therefore proceed to replace the operators
by their expectation values. The linear terms pose no problem in such a
procedure, but approximations are involved in, for example, the replacement of
< 8}, > by < ?P><¢)z > . This amounts to neglecting some quantum
fluctuation contribution to the mean equations, similar to the case of the well-

(1 Denoting the averages < 7> by unscripted

known Ehrenfest's theorem.
case M, etc, we have equations for the variables Ei(%t) , Hirt) . Nyit).

N;t?.t) identical to those of (III.2)~(IIL. 7).

We next introduce loss terms into our equations. There is a great deal of

()

literature on first principle description of dissipation for both quantum and

classical systems, which we will not discuss here. We just expand our equations

(T11. 2) - (TI1.4) to read
C = 2 Y .
‘f,‘,; 'VEH + ‘3%' = - 'Eth ‘If% Q‘SESM‘*/.(&Eq M*) (I11.9)

c - . *
W'VEs’ + _%tE_S_ = - —}Es— ) )'J/AsEd,H (111.10)
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cC - SE .
TQIVE&l 4 7(-« - - )%_& _ ,@/u«EAH. (II1. 11)

Here the variables | /¥; are the photon lifetimes for the i-th field in the
crystal cavity. Since the loss term in the lEi(V:‘l') equation would be of the

form

according to the meaning of our ¥; , we have made the rotating wave-approxi-

mation in keeping the
I
y Ej
terms in (IIL.9) - (III. 11) and throwing away the anti-resonant terms

Y+

— C——

2~ .

These loss terms can also be introduced in the operator equations. In that case we
. . (n .

have to also introduce quantum operator noise terms ‘ for quantum mechanical

consistency =~ for preservation of the cannonical commutation relations.

Loss terms in the electronic system can be introduced in a variety of ways.

We use the ordinary rate equation approach, which can also be obtained from a

first principle description. (e Thus we extend (IIL.5) and (II1.7) to

ER R LR T S OB

2N
—2-{!‘ = R\ + WIINJ -~ T-;Nl - B (111.13)
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a;:_‘ = R.; + Wz| N; -~ T: Nz + B. (111 14)

The quantity r is the full-width of the spontaneous Stokes line-width.* The other
rate constants W's and T"s have their obvious transition rate-in rate-out
interpretations, as indicated in Figure 2.3. They describe the non-scattering
transitions, i.e., transitions between 1 and 2 except those from the Raman and
four-photon processes. The constants R\ and Ra canbe interpreted as non-
scattering transition rates into levels 1 and 2, or it can be regarded as repre-
senting the population effects of other levels in the electron system. A detailed
discussion of the procedure for deriving the loss terms in both radiation and

matter can be found in many places. ()

We make a further simplifying assumption before we proceed. We consider
the geometry of our problem as in Figure 2.4. The cavity length is along the z-
direction. The Stokes and AS output would therefore propagate near the direction
Z. We assume that all the waves involved are uniform in the x-y plane, This
assumption depends of course on the propagation direction and distribution of the
input beam, and is particularly good for the collinear case. Thus we have our

equations

Rt LT LV

oFs oFs : *
.%33 + =2 - -%;‘. - z\/'fz/MsE}H (111 16)

¢ OB 2R _ _ Yap _ ;
Eaé y 2= < AR zﬁa/AaEtM (I11.17)

Ey
That this formulation can be used to describe an inhomogeneously broadened
system under certain situations is shown in the next chapter,
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&

= = _ (-‘]_E + iwe ) H _ i{%,b (/‘S%ES*-"/L‘“E,’E‘) (I11.18)

]

Ro+ TosS -~ oD - aB (111.19)

[}

Rs = [ssS + [ssD (11 20)

where we have transformed to the D(¥, ¢ ) , S’(?,'(-) variables with

Rs = R+ R
B < Ri- g (I11. 21
Ts = T (Wotwsy-T-T2)
To = (M- wat Tm ) o
o = Z(Watway+Ti+T3)

(111.23)

rps = -zL(Wh’ Wz;'ﬁ'T:."T;)

These equations describe propagation of the variables inside the crystal medium.

Excitation will be in the form of boundary condition from @ L;,f) . No
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source term is therefore needed in (III. 15). Note that equations (III. 15) - (III.17)
can also be derived directly from a classical susceptibility. Physical interpretations

of the various terms in (III. 15) - (III.20) are evident and satisfying.

IV. STEADY STATE SOLUTION

The mean behavior of our Raman laser is now completely described by the
s et of equations (IIL, 15) - (II1.20). Although these equations form a highly
complicated system of coupled nonlinear partial differential equations, their
steady state solution can be obtained relatively easily. We first discuss the

kinematics of the wave couplings.

In Figure 2.5 is shown a wave vector diagram of the scattering process.
Because of the coupling of waves, the actual Stokes and AS wavevectors F; ’ E\,
are not given by the linear dispersion relations (IV.2). ks , ]Ei and -EF
satisfy the phase matching condition (IV.8), and the Stokes and AS waves come out
in cones making angles Os , Oa with z. We do not know Os and @., hence the
x and }; components of Es and ke . However, the whole kinematic problem can
be solved once we know Ak , the difference between the actual and unperturbed
Q-components of the wavevectors as defined in (IV.5). In section VI, sk will
be determined through a maximization of the gain coefficient. Thus in this
section we will assume 4k to be a known constant and proceed to solve the

kinematics.



101

Let E\r and ﬁe be the wavevectors of the pump laser and the
[y
electronic polarization density, and Es , km be those of the uncoupled

Stokes and AS fields,

n

k2 | B 0,
(IV.2)

k| = Zay,

()

Following Shen and Bloembergen, we introduce the g-components of the

wavevectors , kfé ) k% » k.:b , and kez ’

ksy = LRI~ (ki by) 1

(Iv.3)
o _ N, ) A
ke = { 1KT'= (ki ko) § %
and the momentum mismatch Aks and 4‘2« ,
= ke, = ko .
krﬁ 3 'st + (IV.4)
kn‘* ke; = k;B t Ak« )
so that
(IV.5)

(3

rib = kgb -+ kq}) + Ak,
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These relations are shown in Figure 2.5 for negative total mismatch

Ak = aks + 4ka . (IV.6)

It will be shown in section VI that the gain of the coupled waves depends on the ak ils
only through the combination 4k , which is then determined by maximizing the
gain, With a given Ak , we can find ks} and '2:5 from (IV.2) and (IV.4)
through the angles ®s and 9, asinF igure 2.5. In the following we will

assume that the difference

Ak’ = 4ks - 4ka (Iv.7)

is small compared to other wavenumbers of interest. In this case the number
keé and the vector Ee is also determined together with the coupled

wavevectors Es , E,, through the relation (IV.4) and the following equations

E}: Fs‘f E;
Ra = F‘,'*E‘e

(IV.8)

Geometry of these various wavevectors is depicted in Figure 2.5. Directions of

the outgoing wave & and 9,. for Stokes and AS wave cones are given by the

following formulas in terms of Ak and &so ’ &Z

kS0 | Sih62a

V) (ko |™ Tkea |12k] o565 (V-9

where 95':& are given by the solutions of the following equations

‘&in @Sl& =
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o 2 o ‘ Q :
”fms J = {”Qs'“, Qlkr’ ?':ls:a }

+{ akyy (1 2l )k f

I ks,q ’ 17] Qs'a_

sme } (Iv.10)

- QCaSGSC:a_ {”Q;.a| ’k}” $inGs,a

_ 2lkp|singp }
: {Rkﬁ { AErowRlal g

For pump waves incident in the z-direction, we have = & =o so that (IV.9)

reduces to

o =Kl lheal+ (akow Jak1)
Ces Os = £y 2 ) (Iv.11)

2 |ks,a ’ (,'ka, ~+ |ak] )

Other relations can be similarly determined from the geometry of Figure 2.5,

We now proceed to determine the sinusoidal steady state oscillation of

the system. Thus we define

E e i(k‘;bmks)z - 1 wst

ES = 5

5 - El e 1(&:23 +Aka)3 - :l(dqt (IV.IZ)
! 3 ke -yt

B = e 30 T (1V.13)
, ? - (et

M Me ey~ (IV.14)

to remove the dominant oscillation of the variables, and rewrite (III. 15) - (III. 20) as
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)
v
R -
I
it

- BB G (RN R ) O

mp 25 It

LQ_E.i’ ok roos o Vo

Ns 3 A -%—E— = - zf‘Es - ?chéks Es - Zﬁg/‘s EM * (Iv.16)
L & | 2 %, . e ' ry’

a5y 1 S = - 2E- 17 AkaEa - z{%ﬂQEaH (IV.17)

2 - -‘EH-iJ'z%D(/AsE'.’EQ*w*/AaE,:*Ea') (1v.13)

2 = Rot TS - D - 2B av.19
2 . R-TaS+ ReD (IV. 20)
T s $s Sy

B= iﬁa s (ﬁ,"g;HLEJ,' ES'*H'*)-H‘/% }Ja(EP E. M- 5”"5" MY)  av.

For the moment we will leave the Er' equation aside and consider equations
(Iv.16) - (IV.20) with Ef’, as a parameter. Superimposed on the individual

oscillators we set

! [} k “‘iwt
Es = Es' e d
172 k -‘,A‘t
Ea: = E, @ &7 (IV.22)
" kz-idt
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1)
for real K and W . This accounts for the spatial growth and frequency

pulling of the system. We neglect temporal growth in this paper. Substitution

of (IV.22) into (IV.16) - (IV.20) results in the algebraic equations

Lk % - . »
{Vls T2 " (0+a) }Es” + lﬁajus Er7H* = o (IV. 23)
.C-K- X N n . 14

I _ s ) < 1_ g% "
{g m%H + nffab(/u,§, Es' -l-/,(‘t%’)*E& Y=o (V. 25)
Ro+ TosS —~ Too D~ 2B = o (IV.26)

Rs~ TesS + s = o (1V.27)

In the steady state the gain and loss coefficients cancel each other with K=o
A solution for Es , Ea_ and H is then possible from (IV.23) - (IV.25)
only if the following determinant vanishes.

£y \
"_-'f' - i(lT)'f’As) o -]‘/‘sg"'*

0 %5‘7‘(‘3—&.) ‘)“ﬂg}' =0 (1V.28)

I

if)/ugﬁ% B 7‘13/;:{5% 5,”" T i
\

J

We use a bar to denote steady state values. This equation obviously holds

-

regardless of whether ﬁ,' is a function of the other variables. In the next
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section E*, will be obtained as a function of the other variables to account for

pump depletion.

The determinantal condition (IV.28) yields two real equations

‘;}"Tma - Jz: (W+45) (B -4a.) (IV.29)

- —‘}[X;(B-Auh ¥ (D 445) ] + 513,, :‘f(n/u.f- n/a;) = o

B[ F%¥a - @tas)(B-4) ] + F[¥s(B-00)+ Vel B 125) ]

—= - (1V.30)
+ DP’,[/I:(B-I-A;)-/A;(&)-A@) ] =o

We can regard these equations as determining the steady state frequency shift w

and population difference ]3 in terms of E" and other constants. We have

introduced the notations

R

0

7)'3 If', ’2 (1v.31)

AS = % Ak‘

Akg (IV.32)

]

4y

’:'n

for simplicity. The coupled algebraic equations (IV.29) - (IV.30) do not yield an
algebraic analytic solution in general. Further approximations will be made later
to obtain explicit expressions for 3 and D . Inthe following we will

therefore regard (O and D as known constants.
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The Stokes versus AS power ratio can be immediately obtained from

(IV.23) and (IV.24)

Wow P o T Ya Bl

y 4
Hiws r’s s ¥s |§s|‘
a _ (IV.33)
= Yeloapad (¥s/2)'+ (W+4s)°
P4
¥s w..,/As‘ (Yaf2 )* + (B~ 2a)® .
Wenote that P, € Wi IE| * is the photon dissipation rate, and is

therefore also the photon generation rate in the steady state. The radiative

transition rate becomes, from (IV.25)

B = fB-PF , (IV.34)

From equations (IV.26) and (IV.27) we obtain

B = T(b-bxsD) (1V.35)
S - S (Rs+BB) , (1V.36)

with

L| 8 R.D"’ RerS/T;S
La 4 [ - Eorbs/T’ss.

(IV.37)

The Stokes and AS power generated are then given by
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_ s _
'hws Ps 2 (’_ r\‘:&)s/XAQ),,L) (Lt - B:.D) (IV.38)

A " Fia (b~ b:D) (1V.39)
(1~ r YaWs/ Yawa) :

A detailed investigation of such steady state power behavior will be given in

following sections.

The relative phases of the system variables can also be determined

accordingly. Letus write

E}’ = Vﬁ/"g e '

_ ‘ (1V.40)
Es = \/ Ps /¥ € 9s
= _ i
E = VR Jv. et
We find straightforwardly from (IV.23) - (IV.26)
= P P .
Bo = —/——5— { (_?:i.s) t (Wt 4s) 5 (1V. 41)

Ysps B,
P + Z-Ps = @t Q1 = % (IV.42)
C?M - (?a. = ('Pa - Cpo + 771. , (IV.43)

with
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~l _ W + As
'h?M ( Ys/2 )

S
>

(IV.44)

125

A o

Ya./).

Thus only the relative phases of FPs , Fp‘ and (?,‘, can be determined.
Equation (IV. 15) also does not yield any additional condition. The arbitrariness

) of the laser.

left corresponds to the phase instability
To develop the usefulness of our equations in this section fully we have
to treat the pump equation now and to solve equations (IV.29) - (IV.30) for @

and D

V. DEPLETION OF PUMP FIELD

We wish to demonstrate here how depletion of the input laser can be
properly taken into account. We first discuss the geometry and the definitions
of the various power and flux terms involved. Consider the geometries of
Figures 2.6 and 2.7. The input field excites the scattering volume in the form
of a boundary condition, as mentioned before. The input flux (power per unit
area) is denoted by -T.'..° . The pump power per unit volume inside the crystal

is denoted by 'le, P’

We let

Ll = crystal length

L, = gain length v.h)
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L3 = crystal length,
The transmission from outside to the crystal medium at the input interface 1 has
a transmissivity T'. From the medium to outside at the output interface 2 one
has reflectivity R and transmissivity T. We can usually assume T +R =1, and
T=T'. Let Ig and I«be the Stokes and AS flux around the z direction outside
the crystal. In the steady state the Stokes and AS power are uniform in the

crystal so that

_ _ — ql- 20,) = (q-3%y)
le= P;lrb.'=‘P|mez2 ICBRQPW‘)QZ "’ (v.2)

! — -~
where 3 is the actual gain coefficient, 3 a normalized gain, and ﬂ.., , sz

are the power inside the medium at interfaces 1 and 2 respectively. The out-

put power is therefore

) n
s - gl~- SEL )
Pouf'sfale = P € 3 ©

)

Fam T/R (v.3)
Puide T/R.

1

We can then write

Ii: = R'nomr‘-u /T,

(V.4)

Is = -P-S—WOst T/R

[}

Ia F’.,'HOA LZ T/R . (V.5)

The loss coefficient ¥ can also be written

2e R

%= W L) te pro (V-6
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including bulk absorption loss A; and transmission loss. The difference of the
L's will become important in, for example, the non-collinear geometry of

Figure 2.7,

We now discuss the effect of the laser pump depletion. There are two
basic causes of depletion, due to absorption from ¥  and conversion to Stokes
as well as AS radiations. The absorption can usually be neglected for small ¥
For sufficiently small dr it can be taken into account by using the following
reduced Pih instead of P{,,o to represent the rate of photon input into

the crystal,

P = P f.L' GWIM

(V.7)
~aL
= F ° |- ¢ '
in
L .
The condition on L 1 being
L2 | (V.8)

Hereafter we will assume that (V.8) is obeyed and that substitution of the form

o
(V.7) are to be made. Note that T is still related to P{; as in (V.4).

We consider the effect of conversion by studying equation (IV.15), where

we can now neglect the loss term as discussed above. We have therefore

S g ) oo



112

Since only Pl’ appears in the equations of (IV.29) and therefore, we convert

(V.9) to
__Q_ a,gglz . a,ﬁlll
23 ot
(V.10)
<2 2 2 (€ 2,2 2
=- (ns33 7 zt)lEs'l - (maa*'iE) £
This equation is solved by the expression
. I _E_’_ - Pin nEP’ 'nh '
'El’"' Ya )" _(5{ -t e ? V.11
% 3 NsY¥s Na¥a (v.1)
with ‘sa\ . Note that Pr, = G’r’ . The constant P,  corresponds to the

solution in the absence of Stokes conversion, and can be taken to be that of (V.7).

It arises directly from the boundary condition that a constant input is present. In

the absence of coupling and loss, the boundary condition clearly becomes the solution
of Pf' inside the medium. Our equation (V.1l) therefore effectively solves the
boundary value problem of boundary condition excitation. The parameter F is
introduced for comparison so that in the limit of small Stokes conversion, the

2
solution for ‘E}, l can be taken from (V.11) with 8 =o

Equation (V. 11) provides an exact solution to equation (V.10), although only
approximate as far as the original equation (IV.15) is concerned. It can be
interpreted as photon number conservation, as P /¥ represent the number of
photons in each mode. The generation of each Stokes or AS photon requires a
pump photon, although an AS photon is always generated with an accompanying
Stokes photon. Equation (V. 11) thus enforces the conservation of photons in the

conversion processes explicitly, apart from the absorption loss.
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Strictly speaking, equation (IV. 15) applies only to the collinear geometry
of Figure 2.6. Even in other geometries, the application of (V.11) to account for
pump depletion appears justified for several reasons. In the first place its simple
interpretation and reasonableness lend itself to be a good "ansatz" in studying
depletion effects. Although the equations of motion may involve more spatial
coordinates in other geometric configurations, it seems that in the steady state
equations like (V. 10) and (V.11) would still hold. We will therefore employ (V. 11)
in both geometries of Figure 2.6 and Figure 2.7 in the folloving analysis.

Equation (V. 11) can be substituted directly into the equations of section IV for E','

and close the system.

VI. SPECIFIC SOLUTION

We want to obtain specific results by solving equations (IV.29) - (IV.30).
While they can be readily solved numerically, we like to obtain analytical results
by making simplifying assumptions. Thus we neglect the dispersion of the crystal

and the frequency dependence of the loss,
Ns & MNa = My =M | (VL.

Vs & Vo & R/ S (V1.2)
We also assume

/us ~/,(“ =/A. ] (VL.3)

Since the cross-sections ( Ac/dn) s and ( do /ﬂlﬂ-) a are frequently equal,

(VI.3) is closely consistent with (VI. 1),
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With (VI.1) - (VI.3), equations (IV.29) - (IV.30) can be solved immediately

with two pairs of solutions

—___—JTn (1+ A‘)

(V1.4)
b = —-— 2. 2 T'/2 /K
?/4 P {(a*r)'f‘d }{(HA ) [(W +x.)3]}
and
- 2 )3
6~ & (0 3 ]
(VL.5)
= _ T/z A
o 9/‘ P, o, Joerrs 2] {in Joy° T+ %) j
where
A = 4 t A, = S(aks+ak,). (V1.6)

The pair (VI.4) corresponds to the case with a positive population difference,
and ( VI.5) to the case with an initial population inversion. We will henceforth
consider the case (VI.4) only. In this case 5 plays a similar role to the

population inversion in an ordinary laser.
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A, SPATIAL GAIN

-

Since P‘, can be related to the other variables as in (V.11l) it remains

only to determine Ak for obtaining explicit formulas for the powers. The
mismatch ak is determined in the following way. Under eonditions (VI.1) -

(VL.3), the gain eigenvalues K of (IV.22) - (IV.25) has real part #

k=--;_;:+g,

where the normalized gain coefficient 3 is

_hWfF|_ s _ SKPRa
y C‘/g[ T et
/i B Be 5 |

The gain coefficient should be modified by a constant if the gain length is

different from the cavity length, according to (V.2).

(VI.7)

(V1. 8)

We note that the gain coefficient 3 is a function of Ak . As the pump

power increases, 3 will increase until along certain directions stimulated

radiation starts to occur when the gain cancels the loss ¥ . The mismatch 2k

will then take the value corresponding to the output direction. Physically we are

asserting that the Stokes and AS radiation will occur in the direction of maximum

# The imaginary part of K is always set to zero, since the momentum

mismatch has been absorbed in [_\k . Together with the vanishing of

(V1.7), we have obtained the values (VI.4) - (VI.5).
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gain. As the direction is determined by Ak as in Figure 2.4, we choose the 4k

which maximizes the gain. Therefore we have, setting

%E\To\zf")
B - - B

(VI.9)

w

and the resulting gain is

- ﬂf?«% b (V1.10)
b= oo St TP

The behavior of 3 as function of Ak is plotted in Figure 2.8. We observe

that as Ak-—* + co

-

. aar My
3(Ak-->=kaa) = T3 ??&_:%“2 (VI.11)

>

]

>

and

zg/ 2uk) S o, ak>o . (V1.12)

-

The gain coefficient (VI.7) can be strictly interpreted as a gain only if Pr
is a constant. In this case it corresponds to the familiar linear spatial gain and
can be compared to the usual expression, say from Shen and Bloembergen. @

With their equation (55) we have the following correspondence

K —— Im (Ak)
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5 ,{ W 2 (VI.13)
. fod o s

-— (s + K
l - iw C‘k;; st R).

The major difference is that we have neglected Ka(%s) and ¥wg in our
treatment. The contribution of ¥wRj is usually small compared with .I.,(?fs).r”
In the Lorentzian model, KQ (’Ks) is exactly zero at resonance and is small
close to resonance.m') m}It is therefore justified to neglect them. Shen and

()

Bloembergen were not able to produce analytic formulas in retaining these

contributions. Furthermore the use of complex susceptibility gives rise to

complex hamiltonians, which we are able to aviod.

B. FREQUENCY SHIFT AND POPULATION DIFFERENCE

Substituting (IV.9) into (VI.4) we obtain

L

w = VAT (VI.14)
IT
- 2—
Vals

The operating frequency is shifted from &g, g because

%
D (1+¥/T) . (VLI5)

of the cpupling of waves. The Stokes and AS will oscillate at frequencies

k)S = (‘-)O - (Uc+ B ) (VI.16)



Equation (VI. 15) shows that an increase in either the electronic or
photon dissipation constant would demand a larger coupling strength /,(* or laser
pump rate P}, would reduce the D required. These behavior are certainly
reasonable, The factor (1% x/r)x’ accounts for the detuning effect, which

increases the population difference needed for lasing.

C. STOKES ANTISTOKES POWER RATIO

With (VI.1) - (VI.3) the Stokes AS power ratio )V becomes

2 — 2
ro= Wa Y+ QW+t 4) (VL.17)
Ws X:-(- (20 - A)" .

Note that Ak>o when B <o , and in this case B> Ps as expected. In
Figure 2.9 we plot ¥ as a function of Ak/]’ for several values of

Y/T . On each curve, the cross indicates the Ak value of
maximum gain. In all cases, the antistokes photon number density is almost
equal to that of stokes for Ak & o . This is because the dispersion of the
refractive index is neglected so that the phase matching condition which is
required for antistokes generation is satisfied in the nearforward direction
collinearly with the pump wave, i.e., for small Ak . As Ak increases,
the AS to Stokes ratio decreases and finally, as Ak approaches infinity

2

y %{iﬁlﬂr — } , Ae—sde (V118
Vi+29T +1
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This drop in AS intensity is not surprising since the phase matching requirement
cannot be satisfied for such large Ak . At the direction of maximum gain, as

obtained by putting (VI. 15) and (VI. 14) into (VL.9)

2k = ._%[‘((w-(- T) ]’\i (VI.19)

the antistokes to Stokes ratio is

_ Wa VRYIT -]
A e T

Note that the ratio in (VI. 18) and (VI.20) is independent of the pump level.

(V1. 20)

From (VI.20) we see that

|Ea,|2<< 'E'sl2 ) ¥ X T

lEa.'z & ’Esr, )’>>T .

This can be qualitatively understood as follows. In general it can be seen from

the equations of motion that when Y<> T , the photons will relax to quasi-equilibrium
faster than the electrons. They will follow the electrons adiabatically. The
four-photon parametric process for Stokes-AS generation described in section II

is clearly favorable in this situation of rapid electronic transitions. Hence the

number of AS photon created is comparable with the number of Stokes photon.

Whenthe reverse is true, ¥ <« T, the electronic relaxation are relatively

fast, the four-photon process will not be effective and will be weak in comparison

to the ordinary Stokes scattering process. Hence only a small proportion of the

radiation generated has AS character.
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D. STOKES AND ANTISTOKES OUTPUT POWER

We now obtain the output powers from (VI.20), (VI.15) and (IV.38) ~ (IV.39)

_F‘s: = 2‘{{(!+%)§&|}{L,—%;;F:’(H-rl)il}._ (V1. 21)

The left side of the above equations will be the actual rate of photon density

-

generation if R 4 is taken to be f|; , neglecting pump depletion. With (V.11)

we have
4
Ps = %{(l'}%):i' i (V1.22)
a

{L' f[ﬁ/_f[ i /[Pm 'EL,(HT) ]1FL, T ]}

which reduces to (VI,21) with ’3=o . It is straightforward to show that

2R /2fu >0 for P; >0 . The threshold and saturated powers from (VI.22) are
9

b X
(Pn)g = B, '47% v 1+ Y/T (V1.23)

F{ :'i.l {/H YT % | } (V1.24)

which are also the same as those obtained in the ‘B =6 case, Note that the

n

Stokes and AS outputs always have the same threshold. It is clear from (VI.23) -

(VI.24) that we must have the consistency conditions

L, >o, b > e V1.25)

They will be discussed in more detail in subsection F, In Figure 2.10 we plot
the power output as a function of the input for both the cases of pump depletion

included and neglected. We see that unphysical results can occur in certain



121

regions of the input if pump depletion is neglected.

The dependence of the threshold requirement on the system parameters is
intuitively reasonable. Compared with the standard formula, we have included
the effect of detuning and more exact properties of the electronic systems.
Formula (II.24) should be used to bring (VI.23) in close resemblance to the
ordinary threshold equation. Equations (IV.37) and (VI.25) also allows clear
indication of the limitations on the output powers which arise from the transition
rates of the levels, and the difference pump rate. The saturation behavior will

be further discussed in the next subsection.

We note that the photon number conservation is indeed obeyed
B 5 X L+ =
Bt PR = tV” AT (V1.26)

[t i B g )
Pn‘n" Ff < Pfh.

i

E. CLOSED ELECTRONIC MODEL

We consider the following particular electronic model of interest.

We set

RD = Rg (VIL.27)

I
0

s = N (VI.28)
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so that each electron is allowed only on levels 1 and 2. In this case

Ll = (rDS-TSS)N

(VL. 29)
172 = TDD' Eb .
The total rate out can be written as
T: = Wy + nA
(V1.30)

= W+ mH)A

where A is the radiative absorption rate and N is the number of thermal

noise photons. The equilibrium situation is expressed by

T'N, = G Na (V1.31)

so that

ln = (Wp- TT )N
(V1.32)

b = Wnt T,

In most situations, the A's term in (VI.30) is small compared to the other rate.

If we substitute (VI.32) into the power equations (VI.23) - (VI.24), we

obtain

p T
= Wo-Ti 4mc’l, N(ds/do)s 4 *

-F )* (V1.33)
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ﬁg _ l"i_'_ﬁ N {\/T_;_Tfi, } . (VL.34)

Equation (VI.33) can be compared with the ordinary threshold formula. The
saturation behavior of (VI.34) allows a simple interpretation. Consider the

special case [1=6 and ¥«T , we have

f;s' ~ W2 N (VI.35)
s 2

This represents what one would intuitively expect the maximum output power to
be. The power is limited by the rate of removing the level 2 electrons back to
the lower level for the further Stokes scattering, and of course also by the actual
number of scatterers available. The factor of twe arises because the effective
number of scatterers is N /2 . This is due to the fact that after N /2
electrons has shifted to level 2 from level 1, the system can no longer operate
without a positive D . This point also sheds light on why the transition rate
out of level 2 is so important in the power saturation. Such considerations are

closely connected with the idea of a fluorescence cycle to be discussed at present.

F, FLUORESCENCE CYCLE

For an ordinary laser to work effectively, it is clear that the lasing atoms
should be able to circulate between the various relevent levels rapidly. The route
of return of an atom to the upper state after lasing transition can be called the
fluorescence cycle. In our case the fluorescence cycle corresponds to the return
of electrons to level 1 after the scattering. If such routes are not always

available, the system will not be able to lase. Mathematically the condition for the
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existence of effective fluorescence cycle is expressed by the positiveness of the

output power. They are given in our case by (VI.25). Thus we require

Ro + [osRs/Tas > o (V1.36)

Top = Tsb Tos /Tss >0

-

This equation is easily interpreted in the case when (VI.20) applies. Thus we

have

Wi > T (VI.37)

which implies that the non-scattering transition rate from level 2 to level 1 has
to be faster than that from level 1 to 2. In the other situation we will clearly
pile up level 2 gradually, and the population difference will eventually vanish.
Stimulated processes will then stop altogether. Similar interpretations can be

given to (VI.36) with a more detailed consideration.

We have given a detailed analytic as well as physical description of the
steady state electronic Raman laser in this section, with the simplifying
assumption (VI.1) - (VI.3). Numerically results are easily obtained in the more
general case, but the quantitative insights obtainable in this special case are
certainly of general interest. It turns out that our formulas in this section

already provides an excellent quantitative description of the SFR lasers.
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VII. COMPARISON WITH OTHER LASERS

Our specific results in the above section are based on the assumptions
(VI.1) - (VI.3), and would not therefore go to the limit of no AS radiation with
/44 —> o . Nevertheless it is straightforward to go through the same analysis

and we will merely present the results here. Thus we set

Ha =o (VIL.1)
in equations (III, 15) - (III. 18). The frequency and momentum mismatch are now

given by

a),. - e = W - 40 (VIL. 2)

I?r - Fe = E; (VIL.3)

The phase matching condition (III.3) will be automatically satisfied, as in SRS

from optical phonons. Making the change of variables,

E —> E. e ths3 ~ 1Wws-awlt VIL4)
Es —> Es ¢ g~ tut (VIL.5)
We obtain as before
o= - T*'lz}_ AW (VIL.6)
B = = I () (VIL.7)

"’+ Y (VIL. 8)
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The Stokes output will oscillate at the well-known pulled frequency

- _ Y{(Wo-We ) + TWs
Ws = T+v '

(VIL.9)

The photon density generation rate is
5t b B BB | o

The quantities Lg and ba are still given by (IV.36). The threshold and

saturation P  are therefore

(Pn)g = ;’; f (t+d?) (VIL.1D)
E-’ = —i—' . (VIL.12)

Equations (VII, 8) and (VII. 10) appear to be closely similar to the coupled
St okes-AS case. The threshold differs from (VI.23) only by a different detuning
factor. The saturation also has basically the same form and interpretation as

(VI.24).

In most applications, /u‘q:o as may be seen from (VI.2). The AS
radiation is therefore always present. However, in the perpendicular geometry
of Figure 2.7, it is very small under the usual circumstance ¥<< T . In this
configuration the momentum matching condition (IV.5) cannot be satisfied in any
way, because of the constraints on | ksn ’ and ”h:. [ . From (IV.9) - (IV.10)
it is readily observed that this situation is mathematically described by Ak Doe .
This can also be seen graphically by extrapolation of our Figure 2.5. The AS

output power will then be small from (VI.22), but it may not be entirely negligible.
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In this situation we should, strictly speaking, use our Stokes-AS formulation
rather than the above purely Stokes results. The practical difference is of

course insignificant.

We discuss briefly the difference of our system from the Raman laser

—(3
(1)=3) This has been mentioned in sections TI

based on SRS from phonons.
and III, Here we would like to make the following point. In the ordinary case
the equations of motion involve, upon elimination of the electron variables,

only the radiation and phonon modes. We would have obtained a similar set of
equations if we assume D to be a constant parameter in our equations.
Retaining D as a variable results in a more general set of equations than those
before. In particular this allows us to compute the steady state power behavior
of the system, even when pump depletion is neglected. In the other case the
equations are linearized by neglecting pump depletion, and so no steady state
power output can be obtained. It is interesting to point out that the boundary
value problem can be solved, and the steady state output can be obtained in that

case with the help of our equation "(V.11), which introduces the necessary

nonlinearity.

Our laser can also be compared to an ordinary laser operating with a
population inversion. The primary difference lies in the different way the pump
enters the system, as well as the presence of AS radiation. This different
pumping mechanism produces different output power behavior as a function of the
pump. Some contrast in saturation and fluorescence cycle behavior has already been
mentioned in section V. Detailed discussions on the power behavior of various lasing

mechanisms, including SRS frcm collective and single-particle excitations, will
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be reported elsewhere.

VIII. COMPARISON WITH EXPERIMENTS

We will not attempt any comprehensive comparison of our theory with
experiments here. We also will not discuss the various idealizations of our
theory in contrast to the experimental situations. Effects neglected in our treatment
which may have importance in the actual observations include inhomogeneous
broadening, multimode structure, backward Raman waves, input beam behavior,
higher order Stokes components, transient effects, fluctuation phenomena, as
well as other optical nonlinearities.

A great deal of experimental results are now available on the SFR lasegfm’{q)-ﬂ)
We will primarily compare only with a small fraction of these results here due to
space limitation., Consider the geometry of the experiment in the collinear
configuration of Figure 2.6. A CO2 laser pump is scattered by a crystal of

n-InSb in a magnetic field, with most of its electrons in the lowest Landau level.

) (4)
The parameters of the problem are determined experimentally, (d9/dR)s ¥ 10 23cmz,
- 7 -19 -
T« 0.5cm l, () & = 0.3cm 1 , R=0,36 ,”) n=4, G=/M.x2x10 8sec,

(17)
magnetic field H =50 KG. In the experiments of Aggarwal, etc,ﬂwe have N =

16

2x 10" cm -3, L =2 cm. Some experimental and theoretical results are given

in Table 2.1, The Stokes and AS power behavior as a function of the input is plotted

3

in Figure 2,11 for the system but with N = 1.3 x 1016cm- and L =0.4 cm. The

(5)

theoretical curve is compared to experimental data. There is excellent

agreement between experiments and our present theory.
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Several uncertainties exist in the measured values which affect our theo-
retical answers. In particular the value | can lie somewhere between 0.4 and
0.5 cm-l. The observed values of (4/4Q)s and T can also be off by a factor of
2. Given these uncertainties and the fact that no adjustable parameters have
been used, our theory can be considered to be in very close agreement with

experiments,

Some important qualitative properties of our predictions are also well
observed. For example the constancy of r as a function of input is roughly
obeyed in Aggarwal, etc's experiment. It is obeyed much more closely in
Figure 2,11, Equation (VI.16) predicts an r =0,11, The difference between
this r and the other r = 0.03 is also in agreement with our theoretical prediction
that a larger ¥ gives rise to higher r. From (V.6) we see that the longer
crystal of Aggarwal, etc., results ina lower ¥ , even & is the same in

both cases.

It is possible that the accuracy of our theory and the power measurements
may together lead to better estimates of | and Ts than before. Detailed
quantitative discussions of SFR laser behavior and interpretations of available

experimental results will be given in a future publication.

IX. DISCUSSIONS

Some comments on the nature of our results are in order. Many realistic

features of the experimental situations such as those mentioned in the above
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section are neglected in our theory, in addition to the approximations made to arrive

at the analytic results. This should always be kept in mind in applying our results
to specific problems, although it appears from the above comparison that our
assumptions are very good in the SFR laser case. In particular it is known that
nonlinear effects like self-focusing is not important in n-InSb,('o) in the parameter

range of interest,

Besides the detailed understanding and checking on the experimental
observations, our theoretical results are also useful in the general planning of an
experiment, For example, they indicate the limiting factors for obtaining large
output power. In general one can draw the conclusion from (V.6) and (VI.22) that
a large crystal subjected to condition (V. 8) is preferred, both for getting a lower
threshold and higher output power. By examining the rate constants involved one
will also be able to tell whether a fluorescence cycle will perpetuate. If one is
interested in maximizing the output power, in particular the AS output, one can
examine (VI,22) and choose the controllabel parameter such as R accordingly. If

one is interested in maximizing the efficiency

. B
' ’Yl P (IX.1)

one can similarly choose the relevant constants. As a function of P..', , for

example, the efficiency attains its maximum at

bi w2
P = (2"‘ T,!,"z%]'_") Pﬂ. . (1X.2)

Similar use can be made for other considerations.
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Our results also suggest the following interesting possible application.
As we mention before, we can use accurate power measurements to determine,
via our formulas, the various parameters of the scattering system. For example
tle saturated power gives a good indication of the relaxation rate. Thus new
information may be obtained on the various non-equilibrium transition rates of
the electronic system. With further analysis of more general scatterer model
or with detailed observations of the scattering output, additional information on

the scatterer is also possible.,

Finally we note that further experimental observations for testing the

detailed predictions of our theory should be worth undertaking.

X CONCLUSIONS

We have constructed a general theory of an electronic Raman laser which
is described by ten coupled equations of motion. The steady state laser behavior
is treated in detail, Closed-form analytic results are obtained, which are also
interpreted physically. Since the other optical nonlinearities are not important
in the spin-flip Raman laser, our results are in striking confirmation with

experimental observations.

In future publications we hope to extend our treatment to include effects
of inhomogeneous broadening, backward Raman waves, multimode structures, as
well as higher order Stokes and Anti-Stokes components. We also hope to

consider the transient behavior, the stability of the steady state, and the quantum
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statistics of the output radiations. Our theory is also useful in the exploration

of new mechanisms for obtaining coherent, tunable optical radiation.
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EXPERIMENTAL THEORETICAL
r=0,03 r = 0.032 (V1.16)
. 4 2 . 4 2 (V1.20)
Ith-4.0x10 W/cm Ith—S.OXIO W/cm (V.2)
1° 22,2x10% W/ cm? 1° - 4.0 x 10* W/cm? (VL. 21)
S S (V.5)

Table 2.1 List of values from calculations and exPeriments .( ig Equations from
which the theoretical value is obtained are indicated to the right.
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Energy level of an electron.
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Figure 2.lb Raman scattering with direct electronic

excitation from level 1 to level 2,
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Figure 2.lc Raman scattering with initial electron state 1
and final state 2 through an intermediate state; virtual tran-
sitions are denoted by dash-lines.
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Figure 2,2  Coherent four-photon process with no final

electron state change.
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Figure 2.3 The transition rate behavior of an electron.

The double-dash-line indicates non-scattering transitions.
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Figure 2.8 Gain coefficient as a function of momentum mismatch Ak_
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Figure 2.10 Logarithmic plot of the Stokes output power as a function of
input power; Curve A corresponds to the input power, curve B to the Stokes
power neglecting pump depletion, curve C to the Stokes power with pump
depletion. Power conservation is violated in a certain range of input in case B.
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circles are experimental results from reference 7. The curves are obtained

from equations (VI.22) and (VI.32).
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CHAPTER 3

MAGNETIC FIELD TUNED SPIN-FLIP RAMAN LASER

I. INTRODUCTION

In this chapter the theories developed in the previous chapters will be
applied to the spin-flip Raman (SFR) laser tunable in the infrared by a magnetic
field. The linewidth T’ calculated in Chapter 1 is taken as a parameter which,
together with other parameters to be calculated in the subsequent sections, will
be substituted into the formulas of Chapter 2 to yield the behaviors of the
stimulated SFR scattering, The results will then be compared to available

experimental data on the InSb SFR laser.

The main parameters that takes care of the magnetic field, carrier
concentration, and temperature dependence of the Raman laser are the spontan-
eous linewidth T, which accounts for the experimental geometry and elec-
tron statistics; the total cross section (Jo"/ JO.)T , in which is buried the
polarization characteristics of the electromagnetic waves; and the loss ¥ ,
which depénds on B , N aswellas T . In section II, we will
investigate the validity of applying the T calculated in Chapter 1 to describe
the SFR laser by the homogeneously broadened Raman laser theory of Chapter

2, In section III, the cross section and its dependence on B , N and T

are calculated, where statistics effects are also considered in particular. The
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losses are discussed in section IV and the results of these three sections will
be combined in section V to derive the behavior of the SFR laser, including

detailed threshold conditions, power output and saturation.

II. INHOMOGENEOUS BROADENING

All the stimulated SFR scattering experiments are performed in the
€.§= 0 geometry discussed in Chapter 1., In this geometry the main broadening
mechanism for the spontaneous lineshape is nonparabolicity of the energy bands,
where the electrons have different g-values and hence different frequency
shifts. We encounter therefore the situation of an inhomogeneous broadened
line. We will show that the electronic Raman laser theory of Chapter 2,
which is valid for a Lorentzian spontaneous line, does apply under certain
approximations to stimulated SFR scattering in InSb with inhomogeneous line-
shape. We will only present here a simple arguement establishing the validity
of equations (III,15) - (III, 20) of Chapter 2. Development of a Raman laser
theory including inhomogeneous broadening is a separate problem, and will be
reserved for future works. Except for the Lamb dip ©) effect, a more

complete treatment will give results similar to our present ones.

Consider N two level electronic systems, the energy separation of the

jth being

-hwaj - hw,J- = tudd- . (LL.1)

The Hamiltonian for each electron is
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= cat a .at A
HA -hwza a:a QZ) + -kwla alJ Q.J

(11.2)
We define
+
. = p . M= 2M:; (I1.3)
Mp= Oy &y y ¢
+
T q Qi = Nij
Ny = a4 &, o= 28y
N + N (IL.4)
V= 24 P 2 = 2 Nag ,
R A
and
N.j- sz = Dj D = fDé (IL.5)
Since the two level systems are closed, we have
N.j + sz = | (I1.6)

Using (II.1) - (II.6) we have, parallel to the derivation of (2.III.18) - (2.IIL, 20)
(in Chapter 2),

%

Bog ) - i guRs ) O

oDy
P4

!

Tos = Ton Dj - 283 (11.8)
where

B(} = iﬁa/‘s (EI:ESH‘-! - E}&*Hf) +ilz73/4a(Er*EAHf— BEHM;), (I1.9)
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In (II.7), Js is the spin relaxation rate Tz =3/T¢, all other constants

and operators used in (II.7) - (II.9) are defined in Chapter 2.

Equation (II.8) can be summed over j to give at once equation (2.III,19)
but the H) equation presents difficulty because of the wj- M _) term, However,
from (2.1II1.19) we can see that the population difference D is built up

mainly by the radiative transition, which in the steady state is given by (2.IV.34)

B = P~ Pa. (I1.10)

From Chapter 2 we see that f,  is usually an order of magnitude smaller

than Fs , and that Ps has a saturation value given by (2.VI.35)
RS = +waN. (1L 11)

Thus the rate of radiative transition which creates the population difference

is bounded by W), . From Chapter 1 we see that this rate is much
slower than the orbital “collision rate which brings electrons from one state

to another with the same spin, as Tg € W,:' = 10_8 seconds, compared
to the electron-electron collision time T, = 10-10 sec. In such long time
interval g , the orbital collision will essentially wash out the inhomo-
geneous effect, and we may regard Dj in (II.7) as a constant independent

of j. Thus, in the steady state, (II.7) can be solved to give the polarization

of the j-th electron,

o i@D([lngs*+Jg§,E*l (I1.12)
H) - = 1} 7 \j . 7 4
Ts/a + z(w)'—w)
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Since only the loa' 's are involved in the summation of (II.14), we can replace
the sum by an integral over a distribution of & J . The actual distribution
of ﬁ)é can now be taken from the spontaneous lineshape calculation in
Chapter 1. Here, we will further approximate the lineshape to be a Lorentzian
centering at ‘hwe = /u 38'0 R with width T’ , T’ being the width of the
actual spontaneous spectrum. This is a reasonable approximation in view of

the experimental observed lineshape discussed in Chapter 1. Equation (II,12)

thus becomes
M= -G {wgE 4+ pgE]

X de T/a |
d (T/ay'+ (w‘)- “We)? TB/R + ilwy-W) :

(I.13)

From Chapter 1 we see that T > Tg . A contour integral of (II.16)

will give at once

= ; D( E*"‘ a !
H zﬁs_a sE e F E‘,Eq) T PUETA— (I1.14)

b
which gives exactly the same result if M is solved by using equation

(2.111,18).
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Thus we see that the results of Chapter 2 can be applied to our case of
inhomogeneous broadening in InSb SFR scattering, We are therefore able to
apply our results of Chapters 1 and 2 directly to the SFR laser without any
modifications, Further extensions of our treatment to include various features

left out here will be carried out in the future,

III. TOTAL CROSS SECTION

Here we will consider the total cross section (ds/dR )T in the aﬁ =0
geometry, In principle (do/dL)+ is given by integrating equation (1.III, 20)
over all frequencies W . In this section we shall make some approxima-
tions to obtain analytic results that will show the magnetic field, carrier concen-
tration and temperature dependence of the cross section, We will use the free
magnetic density of states (1G.3), and approximate ‘6’.# to be independent of

the quantum numbers N and k; . Thus we can write in general

]r <) %,',’,‘f)'. *;.c 2 f dk, {Teok- 2711 frank m]} —_—

with  Us  defined in (1.I1.10) and

S(hkb) = ')ﬂmc + %%

# This % is the Raman matrix element, and should not be confused with the
optical loss Y .
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The total cross section in (III.1) is the product of two terms

&), - ng )

(JG'/A) )s in (IlI.2) is the single particle cross section defined by

do- ea 2 W 2

(E)s = 6».0) 83’,, RO (111.3)
This is the quantity calculated by many people before.“Hs) As expected, (dc/Ja,)s
is independent of N and T , but it can and does depend on the magnetic
field through Y . An analytic expression of ¥ for the SFR scattering

@)
@) to first order in B , while Wright, etc., carried out

is given by Yafet
a numerical calculation for Yo . Their results show a cross section quite
independent of B . However, in previous works, conduction band intermediate
states have been neglected, these intermediate states cause a cancellation of the
cross-section for InSb at around 85 KG when 'ha)r & e, . This effect

is observed in stimulated SFR scattering experiments, Brueck “) has given

a numerical computation for (d0/dn )s taken into account these effects for SFR
scattering in InSb with a CO laser, which has a strong resonance enhancement

hactor, Using the wavefunctions in Yafet, @

we have calculated numerically
(do/dn)s for SFR scattering in InSb with a CO, laser, and the result is

plotted in Figure 3.1 as a function of magnetic field.

Polarization selection rules are also accounted for in ¥e . It has been
shown by previous workers that for the ?1’.§= 0 geometry discussed in Chapter 1,
the only allowed polarization for the SFR scattering are (Z,-) and (+,Z), where

Z refers to the electric field polarized along the magnetic field direction, and
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4 refers to circularly polarized electric fields. The first term in the polariza-
tion refers to the incident wave and the second to the scattered waves, Thus
we see that if either the incident or the scattered electric field is polarized

along B , the other must be polarized transverse to it.

The effective number of electrons that can be scattered is

| Ninay
Neg = R e I [o“zz{f[&'(hka)-5?]—{[%]3)11%]}'(111.4)

N"ff’ takes into account electron statistics and only through it can the total

cross section be dependent on N and T . Wherett and Harper (1) has
calculated N'”‘ in the limit of zero temperature and high magnetic field. We
will give here expressions for Neﬁ valid for finite temperatures as well as
all B, N values. (note that this calculation for N'ﬂ' given here is com-

pletely general, and can be applied, for example, to the SFR scattering in CdS).

First consider the low temperature limit, For kaT << {:'F , an

expansion of the Fermi integral in (III.4) gives ‘0

2 _ eB  amh\k _

(111, 5)

X %W{‘/E'f-hmcf'h&)s/l - \/EF-‘thc-ﬁws/z

~ 25 OthsT) [(&‘F- rhoc+ hios /2 );f' (ﬁ=~n‘hwc-‘ﬁw=/’).%] }

where 8,= is the Fermi energy, To yield the correct B , N and T
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dependences of Neﬁ , the variation of €|: with these parameters must be
taken into account, A calculation of 8]: for finite temperature in a mag-
netic field is given in Appendix 3B, Equation (III.5) shows that Neﬁ is an
oscillatory function of B and N ,as more and more Landau levels are

occupied with increase N and \/B .

In the quantum limit, Nmay = © , so that (III,5) at once yields an
expression for Neﬁ'. " . When several Landau levels are occupied, we

can use the Euler Maclaurin summation formula ey

to give a close from
expression for Noﬁ- . The Euler Maclaurin formula is discussed in Appendix

3A, keeping only two terms in equation (3A.l), we get
28 (eB \¥ _
N = Gy (e ) (Puatl)

2 [[6 thaka\ (&‘Wﬂ’i 42( L WY &1 (ILL.6)
SN e J Hoe

Hoc Tm

_.(’_T:S‘i'[f-(&r:ish) (ef-m./z\% & )% # 5 g:,/a)'%]}

The error € at T =0 for (IIlI.6) is given , by using (3A.5),

hwe
A
& /€F+ T < € < /ﬁr+ - (11 7)

which can be compared with the leading term

3(& + Hosh \%

With two Landau levels occupied, q.' = Jhe , the error is seen to be
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within 10%. The error will be considerably smaller when more Landau levels
are occupied, In Figure 3.2, the total cross section is plotted as a function

(i)
of magnetic field, and the experimental data are taken from Patel.

At high temperature, 'st >> 8,; , We may approximate f(e)
in (III.1) by the Boltzmann distribution, The integration over kb and summ-

ation over M  can then be carried out exactly to give

N
2 cosh (fws/2keT)

s /2 kaT 42 ¢ Hanh (Al f2ksT)
X{e /QB—NN ‘;fm*kﬂ" eB aM__, . I

Neﬁ=

(111, 8)

Cosly’ (Huas / ks T)

IV, LOSSES

A third parameter we need to know in our Raman laser theory is the opti-
cal loss in the Raman cavity ¥ . There are two main loss mechanisms as
discussed in Chapter 2, The first is the bulk free-carrier absorption loss
whose dependence on magnetic field can be obtained from the complex dielectric

(1)
constant

[w w(/-z/»z)]
ey = 6,,{ i W* [ m(!-z'r()(l-z'rl )+ ]

(Iv.D
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where €e  is the high frequency dielectric constant, "( = | / WT and

(IV.2)

4rNe? \%&

W, = m
f M* e

is the Plasma frequency. The variation of the free carrier absorption &« in

n-InSb as a function of magnetic field and carrier concentration is given by Patel

3
and Shaw, (153 and their results are reproduced in Figure 3.3. It shows

that for a carrier concentration N<3 x 1016 cm-3, the free carrier absorption is

relatively field independent for B £50KG,

A second contribution to ¥  comes from the reflection loss on the
cavity, This loss is independent of B , N and T , but it depends on
the reflectivity of the cavity mirror as well as the cavity length., The total

loss is given by

dn R

2¢ (
YW) = T 7 (Kw) ~ T) (IV.3)

where M, is the refractive index for frequency W , Alw) the free
carrier absorption, R  the reflectivity of the mirror and L the cavity

length,

V. STIMULATED EMISSION

By using the parameters of the preceeding sections in the Raman laser
theory of Chapter 2, we can now examine the behavior of stimulated spin flip
ry

scattering in InSb, The main purpose of the present treatment is for compari-
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son with existing experiments., There are many experimental works devoted

(), 03),(4), (15
to the SFR laser, all using InSb, Patel, etc., ( )and Allwood, etc.m’)

used a CO2 laser as a pump source in the E.ﬁ = 0 noncollinear geometry dis -

cussed in Figure 2,7 to obtain stimulated Stokes radiation tunable from ~ 11.7/&

(l'l),{l?

-~13 /A . In the same geometry, Mooradian, etc. )used a CO laser

pump to achieve lower threshold and higher conversion efficiency. Stimulated

s - 17) >
anti-Stokes radiation was reported by Patel, etc, ( Allwood, etc,, ¢* ’

(1)

and Aggarwal, etc. with their experiments carried out in the q,B =0

collinear geometry of Figure 2,6, We will try to compare our theories with
. .. (1), (22) .
these experiments, Second Stokes emissions are also observed, ’ we will

however not consider this here,

First we will investigate the threshold condition. The formulas for the

input threshold power @)t s given b? equation (2,VI,30) together with
1

2

(2.V.7) and (2.V.4)., With [, 2o in (2,VI,30), T° =0.5 cm
(see Chapter 1) and a reflectivity R = 36% as given by the natural reflectivity
of InSb, the threshold power for different experimental configurations are given
along with their respective characterizing parameters in Table 3.1. A very

good agreement between theoretical and experimental results are obtained.

The low thresholds obtained by using a CO laser pump source is due

)

to the resonance enhancement effect, which enhances the single particle

cross section considerably. For experiments with a CO2 laser pump, Aggarwal
)
etc. ! obtained a comparatively lower threshold because they used a longer

crystal, which in effect reduces the reflection loss, as can be seen from (IV,3).
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For &£=0.3 cm~1 (see Figure 3.2), with a 2 cm long sample, we get ¥ =,065
cmﬁl, as compared with ¥ = 0,228 cm™ for a 0.4 cm crystal. Thus we see
that to achieve lower thresholds it is better to use longer sample subjecting
to the condition (2.V.8). Figure 3.5 plots the threshold as a function of the

sample length b, and shows a minimum at L

R A (vV.D)

Figures 3.5 and 3.6 shows the power behavior in the 'd_é = 0 noncollinear

an

(8)
geometry for the CO pump and a CO2 pump respectively, In this geometry

the anti-Stokes waves are absent., Because of its lower threshold, the CO pump
experiments can achieve much higher conversion efficiency, so that depletion
effects must be taken into account, A close check is obtained with experimental

results,

The saturation of Stokes power is also exainined, The power saturation

formula is given by (2.VI.3l). Here we let |/W. to be the spin relaxation

time G=2x10"> sec, With the experimental data of Aggarwal, etc, " N=2x

1016 cm—3, equation (2.VI,3l) yields a Stokes saturation at (Ts)max =4 x 104

watts/cmz, as compared to the 2,2 x 104 watts/cm2 observed, A similar calcu-

16 ields (Ts)mar= 2.8 x 10%

watts / cmz, comparing with the observed value 3.2 x 104 WattS/sz.

lation with the data of Patel, etc, (8 for N=1.3x10

Note that by taking |/w,. &~ T , we have neglected the effects of electrons

(13)
diffusion in and out of the pump beam, That Patel, etc., obtained a higher satura-



162

(1) ., . . . .
ted power than Aggarwal, etc, in spite of their lower carrier concentration,

s) a beam

is most probably due to this diffusion effect. In Patel's experiment,

with radius ~ IOO/A is used in comparison with the ~0.12 ¢cm beam radius of
(21) . .

Aggarwal, and because of this small radius, the electrons are easier to

diffuse through, thus increasing the maximum output power.

Let us comment on the magnetic field behavior of the Stokes power. It
has been observed(”)'us) that the stimulated emission stops once when the
system passed out of the quantum limit, This is not surprising if the threshold
condition (2,VI,30) is examined closely. From Chapter 1 we see that the spon-
taneous width |  increases by a factor of about 3 as the spin down level sinks
below the Fermi level, Calculations of section III shows that the effective num-
ber of electrons that can be scattered decreases as spin down sublevel starts
to get populated. Together these two effects would increase the threshold by
an order of magnutude. This would make stimulated emission harder to obtain.
They are, however, not impossible, Using low carrier concentrations to obtain

15

- (23)
a narrow line, (N=10" cm 3), Patel has observed stimulated emission at

magnetic field as low as 400G,

We now turn to examine the anti-Stokes(AS) behavior, As said in Chapter
2, stimulated AS scatterings are only possible in the aﬁz 0 collinear geometry.
The threshold conditions for AS emission is the same as for Stokes, and is con-
firmed by experiment, The power output behavior of the Stokes-AS emission

R . . . . . (19)
is given in Figure 2.11, which represents a close agreement with experiment,
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Several qualitative properties of our Raman laser theory is well supported

by experimental observations. First of all, the AS to Stokes power ratio r,

(1)

is calculated for two cases. In Patel's experiment , with L = 0,4 cm,

giving a ¥ =0.228 cm-l, equation (2 .VI.16) gives r = 0.09, as compared to
an observed r = 0,08, Similarly, with (2.VL.16) and a ¥= of 0.065 cm -
resulting from a L =2 cm as used in Aggarwal's experiment, ") we get

r =0.032, which can be compared with the observed value 0.03. Both cases

agree well with experiment,

Also the constancy of r as a function of input power is notable, In
Figure 3,7 is plotted the AS-Stokes ratio as a function of input power and is

seen to check with the accompanying data.

More quantitative calculation of the SFR laser behavior will be carried
out covering a wider range of carrier concentration, magnetic field and tem-

perature in the near future. Optimal operating conditions will also be obtained.

APPENDIX 3A. THE EULER MACLAURIN SUM FORMULA

For a derivation of the Euler Maclaurin formula, see reference 10, This

technique is perhaps the most efficient way to deal with the summation of smooth

functions as

M in‘}cvzw
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Consider the summation of a smooth function }t( k) , the formula states

éo ?(k) = [ foodx + C + :{"f(fn) + f—f—f('oqh

. \ (3A.1)
Baw 0" (2m) B, (%~ [x3)
Tt @myl )C (n) - [ f (x) dx m_(_-—_—,?m) ,
where C is independent of 7,
| Bz ! B"m {Jm")
= 3l - o {ly- o - ; (0)

and [x] is the largest integer <« . The Bm(X) 's in (3A.1) are

Bernoulli Polynomials,

Bm(x-0a3) = 2am) @n) )" z R eos (arkx ), (3A.3)

and the Bm 's are Bernoulli numbers, the first few are given by

1 .

B=1T 5 B, = 35 5 B.;:M)
- - €91

B, = 30 s Bs =7¢ 54:3_7237

An error estimation of neglecting the intezral term in (3A.l) is given with

the help of the properties of the Bernoulli Polynomial

na

’Bgm(x~£ﬂ)[ < | Bam | = o?(,?m)(ﬁm z k ’ (3A.4)

thus it follows that

(Bm) Blm (1 [X]) ' B:m‘ ’ n (2m) (3A.5)
[ S22 < 85 [

&

N
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APPENDIX 3B. FERMI ENERGIES IN FINITE TEMPERATURE

First let us consider the case when no magnetic field is present. The

zero temperature Fermi energy is well known x

$2
Er(o) = (37°N )% . (3B.1)
At low temperature, E':(T) can be obtained through the free energy, which,
for k;T « € , has form (P
Nk;l‘ 2 TR\ L .
~ N{ &, )“EL; "'Z%("{L) g3 .(313.2)
The Fermi energy is then given by
_ 2F «~ éJrks _I - L(mkTVL 3B.3
kBT << so .
As temperature increases, g}: 4 &(T) can be found by solving

N = {.zln)‘ (_.’21_)34 r fre fce)ole (3B.4)

With Y(ﬁ) given by (1G.3), solving for T in (3B.4) with E'f('r) =o

2

we find that
& =o, ke T = & . (3B.5)

Thus, for kgT > & , the Fermi energy goes negative, as can be seen

from curve A for Figure 3.8, we can then use the expansion =)

¥ Note that all energies are measured from ZH,
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o o8 /keT
|=.' i e‘e'*’f)/kﬂ fl ® r P (3B.6)

Keeping the first two terms in (3B.6) with p =1/2 and solving for E'F , we

get

Ef = ReT 'Q"j {\5[' /l 'g' ke.:-)%]} (3B.7)

which is an improvement of using the Boltzmann distribution in (3B.4)

Now we try to calculate the Fermi energy in a magnetic field. j’(s:)
is given then by equation (1.III.3), and we have to sum over Landau levels n.
First consider the zero temperature case. In the large field limit, so that

only the first spin up sublevel is occupied, €, can be solved at once
N\ +h _
&= (£)er)5l - o, ~dho, <g < Thos,  ©6B.9)

where l = (He / eB )& .  When the first spin down sublevel is also

occupied, we get

pyenlyt 2 + BTG anl)”

(3B.9)
< ¢ < he - Thws .
When more than one Landau levels are occupied, a solution of E, is not
as easy, we will use the Euler Maclaurin sum formula described in the last

Appendix to perform the summation over Landau levels. Keeping only two terms

in the expansion (3A.l), we get
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2 4

£ = (ss"Jr’N)% R:F’n* {[ I+\/H- %(&er“ ]3

+ [1- ar %F(zw“ f }

(3B.10)

Tu
4 &>‘h’4’c-—f.

The error bound for & as given in (3B.10) can be found by using (3A.5).

Now we try to find the variation of ?f with temperature. Only the
case of extreme quantum limit, - Wosly < €, < 'WOs/aL will be considered.
By using tabulated values of the Fermi integral, the fermi energy is plotted
as a function of temperature in curve B of Figure 3.8. As can be seen, at
very low temperature, the Fermi level increases with temperature, which can

be expressed analytically by methods parallel to that leading to (3B.3),

keT \2_ rksT 2
&= et 3)E 2N S T« & (3B.11)

Further increase in temperature detreases the Fermi level, we get,

8,: = kaT , ksT= -2 E.
(3B.12)
% = (o] J kBT = 3'580
At high temperature, the first two terms in the expansion (3B.6) with p = -1/2
will give
L_ /1 2/E \k
% = kBTLS {05-\/5"" % (kBT) } (3B.13)

quite similar to the Fermi energy when no magnetic field is present,
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5 2
s I4, (watts/cm®)
'h‘dr( ev) (E)S‘ (cmz) N (cm—3) L (cm) || experiments | theory
q.B = 0 noncollinear geometry
(13
0.116 1.0x 1023 1.3 x 101 0.2 6.4 x 10° 4.0 x 10°
] 1)
0.235 1.5 x 10720 1.0 x 101 0.4 41x108" Lox1®
q.B = 0 collinear geometry
0.116 1.0x107%3 1.3 x 1010 0.4 2.1x10°
- (1)
0.116 1.0x10723 2.0 x 10'© 2.0 4.0x10% 5.0 x 10%
- (18)
0.235 1.5 x 10720 1.0 x 1010 .48 6.8 x 102 8.7 x 102

Table 3.1 Values of threshold pump power from experiments and calculations.

1

F=0.5 cm , R =36%.
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Figure 3,1 Spin flip matrix element as a function of magnetic field.
dotted line takes into account only valence band intermediate states.
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Figure 3.2 Integrated total cross section for spin flip scattering in n-InSb.

N=3x10 cm-3. T =30 K. The circles are experimental data taken from

reference 11,
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Figure 3,4 Threshold pump power as a function of the crystal length for the
collinear geometry of Figure 2.6,
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Figure 3.5 Stimulated Stokes output power as a function of input pump power.
‘dr = 5.32 /gm . The circles are experimental results taken from reference
17.
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Figure 3.7 Anti-Stokes to Stokes output power ratio as a function of input

pump power, The dots are experimental results taken from reference 19,
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Figure 3.8 Fermi energy as a function of temperature, Both the Fermi level
and the temperature is normalized with respect to the zero-temperature Fermi
energy ¢, . Curve A is for zero magnetic field case, and Curve B is for

electrons in the "quantum limit",
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CHAPTER 4

STRESS TUNED STIMULATED LIGHT SCATTERING

IN p-TYPE SEMICONDUCTORS

I. INTRODUCTION

Recently, stimulated spin-flip light scattering in n-InSb “ and its appli-
cation as a tunable source of coherent infrared radiation ®> have been reported,
Considerable interest persists ) in extending and further exploring this useful
laser process. However, the tunability of the spin-flip Raman (SFR) laser
is, limited by the magnetic field dependence of the scattering cross section,

and by the strength of available magnetic fields,

We propose in this Chapter to employ stress as the tuning mechanism
of a Raman laser based on the process of stimulated inter-valence band scatt-
ering (SIV) in p-type semiconductors. Specifically, we consider the Stokes
scattering with associated hole transition between heavy and light hole bands
of opposite spin, as indicated in Figure 4.l. An external uniaxial stress S
splits the valence band by an amount linearly proportional to S, thus the Stokes
frequency W, can be tuned through the stress. Besides offering a versatile
laser source, the spontaneous and the stimulated scattering of holes could
serve as a probe of the properties of p-type semiconductors. Valence band

structure, relaxation mechanisms and nonlinear effects might be studied by this
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method. In the following we give a careful investigation of this process, taking

the complicated valence band into account.

The valence band structure in the presence of an uniaxial stress is
given in section II. In section III we calculate the spontaneous scattering cross
section and linewidths, which; together with the loss coefficients found in
section IV, gives the threshold conditions for stimulated emission. In section
V, the stimulated behaviors are investigated in details, including the threshold

oump power, stimulated power output and linewidth,

II. VALENCE BAND STRUCTURE UNDER AN EXTERNAL UNIAXIAL STRESS

Consider a cubic crystal with a s-like conduction band lying above
p-like valence bands, the band gap at k=0 is Eg . Spin orbit interaction
further splits the six-fold degenerate valence band edge into a four fold 7P
multiplet and a twofold PV:- doublet separated by 3 . Off k=0, the
energy bands can be determined by using K.p perturbation theory. The k.p

hamiltonian in terms of angular momentum operators T is given by “
2 2 2 2 2 2 2 2
He = Ak - B[ki(3=33)+ k(35337 + NGNS

- & [I53) ek + {353k + (333 (ks ] ]

where A , B and N’ are the valence band parameters, (¢)  and {}

(IL.1)

denotes the symmetrized product, 5 Jx ')'3} = 3 FXJE’ -+ 53'3}) , etc,.
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An uniaxial stress applied to the crystal removes the cubic symmetry,
and splits the Psp bands into a pair of degenerate Kramer's doublets.

6)

Kleiner and Roth * have given a strain hamiltonian He to describe this

splitting of the Py,  states at k=0

He = Dy (exx+ E’M +e3) t 2Dy [(Jx{ +3%) €ex +(]_aé_g_jz) 83
(11.2)
+(3'5‘-‘éyz)e&} + $ Dy [{ma}exa t {33} ey + {373,1 %] ’

where the @ 's are the strain components, and the D ‘s are the valence

band deformation potentials.

We will only consider here a stress S applied along the [ OOi] direction,

so that (IL.2) becomes

X[

He = 2(3%377) (I1.3)

where A gives the splitting of the heavy hole(hh) and light hole (lh) bands
at T<\= 0 as indicated in Figure 4.1 “

4 D -
1= ¥ Sil [oo] (IL.4)

The C 's are the elastic constants. For stress applied along other principle

directions, see references 7 and 8,

Under large strains, the valence band edges decouple, so that Hk can
essentially be considered as a first-order perturbation. Keeping only the diago-

nal elements of (II.1), we get the energies of the heavy hole band £, ,
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the light hole band €& , and the spin orbit splitt off band &s.

&, = (AT ZzB”)(k;ntk?;)l - (A~B)kg (IL.5)
S, = Ak + F(4+3)
R . 1, 4
- JER) - fus 4 Fkak) [adksk 4 ORI
Eo = AR + F(at3)

+ { (_g:_—)z__ %4§ -+ %B_(kz_skbz) [B(kl‘:Bkg) + 23+ BA‘) ] j% (11.7)

From (II.5) - (II.7) we see that while the heavy hole band is unaffected by the

presence of stress, the light hole and spin-splitt-off states are mixed by the
(8)

strain.

For $ > 4, BR , (II.6) can be expanded to give
2 K=ok ( J+ 1.8
Gy, © Ak + 4+ B(— %) (IL.8)

which is linearly dependent on A
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III, SPONTANEOUS SCATTERING CROSS SECTION AND LINEWIDTH

Here we will consider the scattering of a pump photon of frequency (4)’,
to a Stokes photon of frequency (s with accompanying hole transition between
the heavy and light hole bands of opposite spins. The differential cross section
of this process can be obtained by approximating the heavy hole and light hole
bands to be parabolic with effectives masses w1, and m, respectively.

Calculations parallel to the developments in section 1.III gives

ﬁ% _ m;)z—g;-ﬁl?for hlg)a(g)f(z)[l-f(ﬁm)] s[’ﬂo J&(, ](111 1)

where §(€) is the density of states and JO(E) the Fermi function. In general

m, >> m, , So that (III, 1) can be reduced to

doﬁﬂ) = W)«UI wr lYo mz F)C )[I~ fmu)] (I11.2)

The matrix element Jo , which is defined in equation (1.II.10), was
first calculated for valence band spin-flip scattering processes by Yafet. a Using
the energy band model described in section II, a calculation completely analogous
to Yafet's gives the result for scattering under an uniaxial stress. To first

2
order in A  and ké , we get
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512 9+ 2(AK- 24) /%
- )" T3k + (AR-24)%

2P’ hio,
5 5

y {% %x‘;éd 4 ﬁ,,;_iem 655 } (111.3)
R ’
where P is the interband momentum matrix element, the € 's are the photon
polarizations and Bf = (lopt s)/2, This matrix element is considerably
larger than that of the conduction band spin-flip scattering. For InSb, for
example, ¥, is about eight times the value of conduction SFR scattering,
making a factor of ~ 60 difference in the cross section. Generally the cross
section is nearly independent of stress. In InSb with er 10.6 Is and dEg/dS =
15 x 10_6 ev/Kg-cmnz, ¥  decreases only by 8% as S increases to 104
Kg/cmz. However, for scattering with 'hlﬁr near Ea , Y. drops
drastically with increasing S because of the decrease in the resonance enhance-

ment.

Now we examine the spectrum (III.2) more closely. The spontaneous
Stokes spectrum is expected to have a large linewidth because of the big difference
between hh and lh band curvatures. The spectral shape is shown schematically
in Figure 4.2. As can be seen, the spectrum is zero at &) =o , then increa-
ses with {w until it reaches a peak value at . At the high frequency
side of © , the spectrum decreases as i LI+ exr(mﬁ.w/ml —?F)/kﬂ- ]"'_
Because of the small effective mass of the light hole band, the [I- frhw) ]

factor in (IIl.2) does not contribute much.

At zero temperature, the spectrum (III.2) has a peak at
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which follows from the fact that the density of states increases monotonically
with € . The full width at half power point can then be solved at once by

using methods that lead to (1.III,19)

I = %——E& € o T=o. (I11.5)

At low temperature, hIT < 9]: , the abrupt cutoff at © is smoothed by

the Fermi functions in (III.2), and the spectral peak is shifted to

o = 4+ ‘%(SF + 0.78 kaT ) , kﬂ' < E‘r ) (11.6)

as shown in Figure 4.2b, The linewidth, however, is essentially unchanged,

and can still be approximated by (IIL.5) .

As temperature increases, the Fermi level drops (see Appendix 3B),
until it becomes negative for E']:(D) < hsT . At these high temperatures,
the holes becomes non-degenerate, and we can use the Boltzmamn distribution
in (III.2). The lineshape now has peak at

= m keT
-h'l() = A+ _—1:!-;5_— , kgT 2 E}(O) (1I1.7)
a

and full width
m
' = 18 T.,L, ksT ) keT 2 5'7(0) . (IL.8)

Note that as the holes become non-degenerate, it is the temperature that domi-

nates the linewidth, which is now independent of carrier concentration.
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In general, these linewidths are very broad, For InSb with N=3 x 1016

cm-s, a width ~ 100 cm_l is obtained for T = SoK. This width is two orders

of magnitude larger than the conduction SFR scattering linewidth,

IV. LOSSES

Another important quantity which determines the possibility of stimulated
emission is the losses of the Raman media ¥ , which is composed as usual
of the bulk absorption « and the reflection losses. Absorption in p-type
semiconductors is dominated by free carrier inter-valence band absorption.

Kane *) has found that the absorption coefficient « is proportional to the carrier

concentration N
N [daw) 17 [ p/nk Wk
d{w, N, T) ~ 0 { a(k? ] {f(_a—;..)" f(?r_n:_)s . (IV.1)

(1)

Infrared absorption data are available for p-type Ge,(“) InSh, “”Ga,As,{B)InAs.
Equation (IV.1) is used to extrapolate these data to the desired T and N. There
are, of course, a very strong lattice absorption band, this we will not consider
because stimulated emission will be impossible if « 1is close to one of these

absorption bands. Absorptions due to two or three phonon processes will be

considered later when we discuss individual cases.

In Table 4.1 the optical loss of the Raman cavity ¥ is listed for
several semiconductors at various frequencies. A reflection loss of 1 cm_1

is added to & in estimating ¥ , In general, the losses are very large
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compared to the conduction band., This is due to the complicated band structure
of the valence bands. To achieve SIV scattering, the Raman gain must be able
to overcome this tremendous loss, and in the next section we will investigate

this further.

V. STIMULATED EMISSION

Now we investigate the stimulated behavior of this inter-valence band
scattering process. The tuning characteristics of the stimulated line will be

given in the low temperature by using (IIl.6)

Filos = 'hwr-’hﬁ = _t'wf— A- %’I (gf* 072ksT) , hoT« o), (v.1
and in high temperature by (III.7)

s = 'I’TU'»"W:) = Jﬂ""" '.T'En’:ksT_‘A, kstsf(o), (V.2)
with 4 defined in (II,4). Thus we see that the Stokes frequency 4)g can

be tuned linearly by varying the stress S.

With all the relevent parameters given in the previous section, the

threshold pump power for SIV can readily be found. The Raman gain 83 is

given by ()
2 3
16w ¢ (do/dr)r
s < =
3 Hws m, N; 1) T (V.3)
where 'nr, N¢ are the refractive indices at wr , s ; I is the pump

power flux, % the Bose distribution factor and (40'/411)7 is the total crosssection,

i, e., equation (III,2) integrated over all W .
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Because of the large & , depletion of pump due to absorption must
be taken into account. Equation (2.V.7) gives an expression of the absorption
reduced pump rate 1 in terms of the actual pump rate J°

-2l
/I— €
1= 1. (V.4)
L,

where L is the length of the Raman cavity, If & L >>|, the pump power will

all be absorped. The condition on L is thus

AL 2 | , (V.5)

For ALl & |} , the pump power is reduced to about 64% of its original value.
Equation (V.5) imposed a condition for the length of the Raman cavity, In InSb,

for example, L should be less than 0.05 cm.

With the above development we can now consider the optimal choice of
parameters T and N for achieving SIV, Low temperature is needed in order
to have a reasonably narrow spontaneous linewidth, We fix 5°K as a readily
achievable temperature, although lower T is even more desirable. To minimize
the threshold for SIV, we observe that a higher N would increase the absorption
and the cross-section in about the same proportion as can be seen by comparing
(I11.2) and (IV.1). From equation (IlI.4) one sees that I’ can be minimized
by choosing the smallest N such that the holes remain degenerate. Table
4,1 is constructed with this approach. We have also included the n-InSb SFR
laser for comparison, T is calculated from (111.4), which is accurate to
about 10% in our present case., The value of ¥ listed is that corresponding
to wr , and the threshold power density Ij;. is obtained by equating 3, of

(V.1) to the value ¥ , together with equations (V,2) for oL = | .
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The most promising crystal in this list is p. InSb with a CO2 laser pump.
Henceforth we will restrict our discussions to this material, First we consider
the W dependence of the various quantities in Table 4.1. The spontaneous
linewidth T' given by (III.5) is independent of & , to a good approximation.
The cross section is nearly independent of L as noted before, and g s
increases slightly with decreasing ®© from (V.3). The free carrier absorption,
as obtained from extrapolation in N of Gobeli and Fan's experimental results, (12)
is independent of & from 15 /u. to ..35/‘ , but decreases by an factor of 1/2
from 15 /u\ to 11 /u . In InSb, the main lattice band is at 52}4, around this
frequency the crystal will be opaque to the scattered light. From 30} - 60/-.

e)

there is a two pho on absorption band.‘ In InSb, this two phonon process
has absorption coefficient of about 8 cm-l, which is about 10% of the free
carrier absorption. Thus from 30 pon to 50/- , the threshold value will be

~10% larger than that given in Table 4,1.

To investigate the feasibility and the detailed behavior of Raman laser

output, we need further information on the transition rates of the hh and lh

(30

bands. From mobility measurements we have J3 2115 cm_1 and [] =5 cm-1

where T, and Ta: are the relaxation rates for the hh and lh respectively., The

radiative rates (")

are small compared to these values because % is small,
Thus we have T3 >> Tt . so that the "fluorescence cycle" would work very

well and we are able to sustain the laser output. Because of the short lifetime
~10-]‘3 sec, corresponding to W/ [2 , the Raman output is considerable. For an

7

input fluc of 3 x 10 watts/cm2 the output power is ~100 KW/cm3. We have

therefore a reasonably high power laser.
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The stimulated linewidth is inversly proportional to the rate of photon

generation an
7T His N
r - W24+T  2xibs] (v-©)
where
- - -, .1 A N]'l‘”-!
N = (htx)+ 3 Na- N, (V.7)

'XIL;}" is the rate of Stokes photon density generated, and N) , Na are
the hole population densities of the lh and 1l bands respectively. ( see Chapter
2 for more detailed definitions). At low temperature, the lh band is scarcely
populated, so that N <=1. For InSb with S = 5000 Kg/cmz, A =0.044 ev,

we get a stimulated linewidth of the order of 104 Hz for a Raman output of

10 watts,

Our SIV is therefore an efficient, high power, tunable coherent source
of infrared radiation in 11 /« to ~357& . Compared with the n-InSb SFR laser
of similar fas /I , our laser has the desirable characteristics of providing
higher power, covering a wider range of frequencies, as well as improving

ease and speed of tuning.

Inter -valence band scattering could be useful method for studying p-type
semiconductors. With judicious choice of parameters, as we have shown above,
it may be possible to obtain stimulated scattering and to have a easily tunable
laser source from ~10 M to~35 /A . Further extensions into the far infrared
appears to be limited only by the optical properties of InSb and its ability to

stand up to high pressure.
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3 *
laser g’ ¢cm Watts
-1 dor -1y 0 —— -1 (=)
source 'hw’,(ev) T(cm ) T(Cm /Iwatts ¥(cm ) L oms
Ge Ar 0.69 38.7 6.0x1070 5.1x10 "% 1.75 5.3x107
-5 -5 6
InSb €O, 0.116 103 1.8x10 2.6x10 82 4.9x10
co 0.216 | 103 9.0x10™° 1.8x10™° 21 1.8x10°
GaAs YAG  L.16 18.7 6.0x10© 4.7x10°% L5 5. 0x10’
-6 -6 6
InAs  CO, 0.116 64.0 1.8xI10 4.1x10 13 5. 0x10
-7 -5 4
n-InSb 002 0.116 0.5 3.0x10 2.2x10 1.3 4,110
Table 4,1 All Values are computed at T =5°K, N =3 x 100 cm ™,

* In Calculating Y

, when two different values are available, the larger

value is chosen to provide a margin,
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conduction band, spin {}.

heavy hole band,
spin ¢, 4 , mass m

1

light hole band, spin +,7%,
mass m,

/ \ spin orbit splitt off band

Figure 4.1 Energy bands under an external uniaxial stress.
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A
<

Figure 4.2s. Spontaneous lineshape at T =0.

% [A+ %llz(?f—‘_w‘w ksT )] I\ Ws

Figure 4.2b. Spontaneous lineshape at low temperatures.
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CONCLUSIONS

We have developed in this thesis a comprehensive theory of light
scattering from electronic levels, with specific applications to spin-flip scatt-
ering in indium antimonide. In the following we will review our major

accomplishments and suggest further revenues of fruitful research.

I. CRITIQUE

We have first investigated the theory of spontaneous lineshape for ‘spin-
flip Raman scattering, Besides its application to our later theory of stimulated
scattering, our first principle description of spin-flip scattering is of indepen-
dent interest. We have found two important contributions to the lineshape,
from electron nonparabolicity and diffusion. Each of these two mechanisms
is dominant in a different geometry. Analytic formulas are provided for the
lineshapes and linewidths. Our linewidth results as well as the diffusion

broadened lineshape are in very good agreement with experiment,

The nonparabolicity broadened lineshape is, however, not in such good
agreement with experiments. This may due partly to possible experimental
errors, because there are certain features of the experimental results which
appear inconsistent. It is also possible that we lmve neglected some important

effects in our approximation. Further theoretical investigation along our line
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of approach should be promising and additional careful measurements needed

to clarify this issue.

In Chapter 2 we have constructed a general theory of an electronic
Raman laser including anti-Stokes and pump radiations. The steady state laser
behavior is treated in detail. Closed-form analytical results are obtained and
interpreted. We have solved the problem of finding scattering outputs in terms
of only the system parameters and the boundary condition pump excitation.
Interesting qualitative results include the constancy of Stokes-anti-Stokes power
ratio as a function of input, and the saturation behavior with proper pump
depletion. This theory is sufficiently general to be applicable to many other

Raman systems.

In Chapter 3 we made a detailed analysis of the temperature, carrier
concentration, and magnetic field effects on spin-flip scattering. The scattering
theories of Chapters 1 and 2 are then applied together with this treatment for the
n-type indium antimonide spin-flip Raman laser. Our analytic results are
compared to various experimental data with very good agreement in general.
Since the other optical nonlinearities are not important in the spin-flip laser,
our comparison probably constitutes the first detailed confirmation between
Raman laser theory and experiments. Because of the vast amount of data
available, we have not attempted a comprehensive comparison. Our results
can however be readily applied to correlate, organize, and explain all the

available data.
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In Chapter 4 we analyzed the possible operation of a stress-tuned p-type
indium antimonide inter-valence band laser using the approach we have developed.
It appears promising that a new, easily tunable high power laser in the wave-
length range 10 K- 35 M4 can be obtained with this mechanism. Further

theoretical and new experimental work are certainly worthwhile.

We have therefore demonstrated the usefulness of our electronic Raman
scattering theories not only in detailed analysis of experimental observations
on the important spin-flip n-type laser, but also in general exploitation of
useful stimulated electronic scattering mechanisms., In addition, our theory
can establish the possible environment and conditions under which the laser

can operate.

II. SUGGESTIONS FOR FUTURE WORK

A number of interesting theoretical work are opened through our inves-
tigations. Refinement of our approximation or inclusion of additional mechan-
ism can be carried out along our direction of approach in the nonparabolicity
dominated lineshape calculation. Much further work should be pursued based
on our model of an electronic Raman laser to include effects of inhomogeneous
broadening, backward Raman waves, multimode structure, as well as higher
order Stokes and anti-Stokes radiations. One can also consider the stability
of the steady state, the transient behavior, and the quantum statistics of the
scattering outputs. Other new mechanism of stimulated scattering should be

exploited with the aid of our theory.
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Many interesting experimental problems are also suggested by our work.,
Careful measurements of spontaneous and stimulated lineshapes should be made
to provide further understanding of the broadening mechanisms and additional
comparison with our theory. While our laser theory already appears to
provide an accurate description of the spin-flip laser, various further experi-
ments with different configurations should be carried out to provide a detailed
confirmation with our theory and understanding. The new mechanism we
propose for generating tunable coherent radiation by stress convers a very
wide frequency range and looks promising. Experimental efforts should be

worthwhile to be undertook immediately.

Finally, we note that a very fruitful interplay of our theory with experi-
ments would be the indication of the limiting operating conditions of stimulated
scattering. Applications will be greatly facilitated if practical operations of

the laser can be realized without severe environmental restrictions.
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