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ABSTRACT

A first principle description of the spontaneous spin-flip scattering
lineshape is developed. A general formula for the lineshape is obtained
including two important broadening mechanisms, namely the nonparabolicity
of the energy bands and the diffusion of electrons. When the scattered
light travels perpendicular to the magnetic field, nonparabolicity dominates
and a relatively simple expression is obtained for the lineshape in this limit.
When the scattered light travels in the direction of magnetic field, electron
diffusion along the magnetic field becomes dominant. The lineshape is then
a simple Lorentzian. Analytic expressions for the spontaneous linewidth
including its dependence on various parameters are obtained. These results
are compared with available experimental data with good agreement except
for the nonparabolicity dominated lineshape, though its linewidth is also in
good agreement with experiments. These linewidths are then used in the
Raman laser theory for detailed investigation of the stimulated scattering
behaviors.

A detailed theory of traveling wave electronic Raman lasers is cons-
tructed, which applies in particular to the spin-flip Raman lasers of Patel
and others. Ten equations are set up describing the behavior of the input
laser field, the Stokes field, the anti-Stokes field and the electronic system
explicitly. Solutions of these equations are obtained in the sinusoidal steady
state limit. Depletion of the input laser field is accounted for in an approxi-
mated but novel fashion, in the form of photon number conservation. We
are able to express the steady state output power in terms of the system
parameters and the input boundary excitation alone. Analytic formulas are
given for the linear gain, the threshold pump power, the Stokes and the anti-
Stokes power output. They describe among other things the saturation and
fluorescence behavior of the electronic Raman laser. Various intuitive inter-
pretations are provided for the analytic results. The detailed predictions
are in very good agreement with experiments.
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A new mechanism for generating tunable high power coherent radiation
in the wavelength range 10/M - 35,, from a single laser system is proposed.
The proposed device is based on stimulated light scattering continuously tuned
by stress in p-type semiconductors. The conditions and feasibility for such
Raman laser operation are discussed in detail.

CO-THESIS SUPERVISORS: Benjamin Lax,
Professor of Physics, Director of National Magnet
Laboratory

Peter A. Wolff,
Professor of Physics, Director of Atomic and
Solid States Physics Division
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A NOTE ON NOTATIONS

The four chapters of this thesis are quite independent, each with its

own sets of notations, equation numbers and references. Except otherwise

specified, notations and symbols are defined within each chapter.
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INTRODUCTION

Development of tunable lasers is of great interest in both science and

technology. For example, the use of tunable infrared lasers in spectroscopy

has led to orders of magnitude improvement in attainable resolution. (' )'()

They also provide the necessary local oscillators in some optical communica-

tion systems. Air pollution detection (3) is another example of their techno-

logical applications.

A most important tunable infrared laser, the spin-flip Raman laser (4)

based on inelastic scattering of light from electronic spin-sublevels in n-type

semiconductors, has recently become available. Much work has now

been reported on this laser and its applications since the first demonstration

of laser action by Patel and Shaw (t) less than two years ago. The spin-

flip Raman laser is interesting in many ways. It constitutes the first CW

operation of a Raman laser, and provides high power tunable infrared radiations.

Its gain of 1 x 10-5 cm-1/W-cm - 2 is the largest Raman gain known to date in

any portion of the spectrum. It can have very high conversion efficiency and

very low threshold power. Its tuning range is further extended by observations

of anti-Stokes and second-Stokes stimulated scattering.

This spin-flip laser is, qualitatively, rather well-understood. (4) How-

ever, the quantitative and detailed behavior has yet to be explained and pre-
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dicted. Many features of experimental observations,like the spontaneous and

stimulated lineshapes, dependence of threshold on carrier concentration, mag-

netic field, temperature, experimental geonetry and crystal size, as well as

stimulated output power characteristics have yet not received a rigorous and

accurate description. It is our purpose in this thesis to establish a general

framework and a complete theory to describe such detailed features. Our

theory should be able to correlate, explain, and predict the empirical results

from first principles, and to suggest optimal and feasibility conditions for

laser operations under different environments and parameter values. We have

also not restricted ourselves exclusively to spin-flip scattering in n-type semi-

conductors, so that our theory can be used to exploit other useful electronic

Raman processes for possible tunable laser operations. An example of such

an application to stress-tuned stimulated inter-valence band scattering in p-type

semiconductors will be given.

In the following section I we give a brief literature review of stimulated

electronic light scattering from semiconductors. We will then further discuss

the nature of our work and give a preview of our four chapters in section II.

I. LITERATURE REVIEW

In 1966, Wolff predicted the possibility of observing Landau Raman

scattering in n-InSb from the nonparabolicity of the conduction band. Yafet cs)

extended this work by considering a more detailed band model, and further
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predicted the spin-flip scattering process. In 1967, Slusher, Patel and Fleury S)

reported the first experimental observation of spin-flip and Landau Raman sca-

ttering from conduction electrons in n-InSb. Subsequently, conduction electron

spin-flip Raman scattering has been observed in InAs, ¢~) PbTe, (10) Cds,"')

and ZnSe. ( )

Wolff has also discussed the possibility of a Raman lasertuned by

magnetic fields, using stimulated Landau-Raman scattering. On the basis of the

experimental results of Slusher, et.at, it appears however that the spin-flip

process is a better candidate for observation of stimulated scattering, because

of its larger cross section and narrower linewidth. Stimulated spin-flip scatt-

ering in n-InSb was observed in early 1970 by Patel and Shaw, (6) and con-

stitutes the first and only observation of stimulated scattering from electronic

levels. A greal amount of experimental work on stimulated spin-flip scattering

has since been reported, extending this Raman laser in various directions.
(1), (3)

Some applications of this laser have already appeared and a lot of further work

are in progress.

Concurrently with the development of spin-flip Raman laser, some theo-

retical work has been reported on the detailed understanding of this device.

Markarov and Wherrett and Harper (t) have considered the effects of

electron statistics on the spin-flip cross section. Their results are however

limited to the lowest Landau level. In Chapter 3 we will present results valid

at arbitrary temperature, magnetic field, and carrier concentration. Breuck (f)

has given a phenomenological description of the spontaneous spin-flip lineshape,

using the transport theory of Davis and Blum. (20) An adjustable parameter is
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introduced to fit the experimental data. In Chapter 1 we will make an absolute

first principle calculation of the lineshape without adjustable parameters. Des-

cription of the spin-flip laser behavior is so far restricted to the application

of threshold formula from Shen and Bloembergen, (2¢) partly because there is

no detailed theory of the power behavior in the literature. In chapter 2 we

develop a general theory of an electronic Raman laser to describe stimulated

spin-flip scattering,among other processes. Our detailed predictions describe

the steady state laser behavior completely. All our calculations are in good

agreement with experiments.

We have also calculated the cross section for stress-tuned inter-valence

band spin-flip scattering. In Chapter 4 we apply our general theory in a

detailed consideration for obtaining stimulated inter-valence band scattering. It

appears promising that a Raman laser stress-tuned in the wavelength range

10r - 35/u can be obtained using p-InSb.

II. SUMMARY

The general purpose of our work is to establish from first principle

a theoretical framework for detailed investigation of stimulated electronic Raman

processes, in particular spin-flip scattering from n-InSb. Some approximations

are required, as usual, to obtain concrete results. Thus we have set up ten

equations of motion for a homogeneously broadened traveling wave electronic

Raman laser to describe the inhomogeneously broadened spin-flip n-InSb laser,

through an investigation of the spontaneous lineshape. The detailed justification
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of this procedure in the case of n-InSb is given in Chapter 3. except for the

more delicate feature of a Lamb dip, our theory provides an accurate

description of the spin-flip laser behavior.

Our theory of spontaneous spin-flip lineshape, in contrast to previous

work, is a first principle calculation. It provides us with analytic expressions

for the spontaneous linewidth including its dependence on various parameters.

These linewidths are then used in the laser theory for detailed investigations

of the stimulated output. We have also noted two important mechanisms for

the spontaneous line broadening. Diffusion of the electrons can be important

and dominant in addition to nonparabolicity of the electronic energy bands.

Our investigation of electronic Raman laser behavior is confined to the

steady state, where we give a rather complete discussion including anti-Stokes

and pump radiations. The steady state power output behavior is theoretically

derived for the first time. A proper treatment of pump depletion is also

given.

Our theory is applied to the n-InSb case where we compare our absolute

calculations with no adjustable parameters to experimental observations. Effects

of electron statistics is included to obtain the dependence of the scattering

behavior on various parameters. Because of the vast amount of experimental

data available, we have not attempted a comprehensive comparison with all the

data and restrict ourselves to only a subset of these data. In general all of our

calculations are in good agreement with experiments.
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Applying our theory to light scattering continuously tuned by stress in

p-type semiconductors, we have derived the conditions for tunable Raman laser

operations. Feasibility of obtaining a high power laser tunable in the wave-

length range 10A - 35f, is established using p-InSb. We therefore propose a

new device based on such an effect. No experimental work has, however, been

performed or attempted.

In the following Chapter 1 we develop a first principle description of the

spontaneous spin-flip lineshape. A general formula for the lineshape is obtained

including both diffusion and nonparabolicity contributions. When the scattered

light travels perpendicular to the magnetic field, nonparabolicity dominates

and a relatively simple expression is obtained for the lineshape in this limit.

When the scattered light travels in the direction of the magnetic field, electron

diffusion along the magnetic field becomes dominant. The lineshape is then a

simple Lorentzian. These results are compared with available experimental

data with good agreement except for the nonparabolicity dominated lineshape,

though its linewidth is also in good agreement with experiment.

In Chapter 2 we develop a detailed theory of traveling wave electronic

Raman lasers. Ten equations are set up describing the behavior of the input

laser field, the Stokes field, the anti-Stokes field, and the electronic system

explicitly. Solution of these equations are obtained in the steady state limit.

Depletion of the pump field is accounted for in an approximate but novel

fashion, in the form of photon number conservation. We are able to express

the steady state output power in terms of the system parameters and the

boundary excitation alone. Analytic formulas are given for the linear gain,
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the threshold pump power, and the Stokes as well as the anti-Stokes power

outputs. They describe among other things the saturation and fluorescence

behavior of the electronic Raman laser. Our detailed predictions are in very

good agreement with experiments, and probably constitutes the first detailed

confirmation between Raman laser theory and experimental observations.

In Chapter 3 we apply our theory in the previous chapters to the mag-

netic field-tuned n-InSb laser. Justification for applying our homogeneously

broadened theory to this actually inhomogeneous case is given. Effects of

Fermi statistics on the laser behavior are treated in detail, which manifest

in its magnetic field, carrier concentration, and temperature dependence. An

explicit formula is given for the effective cross section as a function of the

system parameters. The effect of crystal size on threshold pump power is

investigated. Our calculations are compared with experimental observations

with very good agreement.

In Chapter 4 we employ our theory in exploiting the feasibility of obtain-

ing stress-tuned stimulated spin-flip scattering from p-type semiconductors.

Cross sections and linewidths are calculated for such a process and the elec-

tronic Raman laser theory is used to investigate the stimulated behavior. We

conclude that with p-InSb, it may be possible to obtain stimulated light scatter-

ing from intervalence band spin-flip transitions. In such a situation we will

have a easily tunable high power laser source in the wavelength range 10, -

35 . Further extension into the far infrared appears to be limited only by

phonon absorption in the crystal.
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CHAPTER 1

THEORY OF SPONTANEOUS SPIN FLIP RAMAN SCATTERING LINESHAPE

I. INTRODUCTION

In a magnetic field the electron energy is quantized into Landau

levels with energies

M t t , ab
where 4Oc is the cyclotron frequency, m the effective mass, k the

electron momentum along the magnetic field, and denotes the nth Landau

level. The 1/2 term is omitted because we choose to measure all energies

from the bottom of the zeroth Landau level. Spin-orbit coupling again splits

each Landau level into two sublevels separated by

ItiiA1 JI ,a1 B (I.2)

with B the Bohr magneton and I the effective g-value. We will

consider the spin flip Raman (SFR) process in which an electron in one spin

sublevel is scattered by an incident pump photon with energy edp to the

other of the same Landau level, leaving a scattered photon with energy

f ar W A 12 ?l B. (1.3)

In the following, scattering from conduction electrons in InSb will be consi-

dered in particular.
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The light scattering processes are shown in Figure 1.1. The magnetic

field is along the z direction. The incident field with wavevector h~ and

polarization rF propagates along the y direction. The scattered radiation,

specified by (f, k, ) , can be collected in several directions: (1)

with f normal to the magnetic field as shown in Figure l.la. This

we shall refer to as the q.B=O geometry , where = - k
is the momentum transfer; or (2) with parallel to as in Figure

1.lb. This is the q.B4O geometry. There are, of course, many other

possible geometries, for example with the f making a certain angle

with B . We will however not discuss these other cases here.

The simplest consideration of lineshapes is viea a phenomenoligical

collision model characterized by a collision time 0 . The spectrum is

then a Lorentzian with a constant full width Z / t . In the spin flip

process we re considering, there are two distinct lifetimes involved. The

first is spin lifetime ts which characterizes those processes involving

the relaxation of a spin excitation. The second, which we shall call the orbital

lifetime Gt , is caused by collisions within the same spin sublevel.

These orbital collision, which do not connect the two spin sublevels, do not

contribute to our scattering linewidth since the width of the spectral line is

the difference in widths of the two spin sublevels, and the orbital

collision rates for the two sublevels are the same. Thus the spectrum will

be characterized by ts . A phenomenological calculation of the lineshape

by using these two collision times is carried out by Brueck. (|)
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Yafet has calculated the rate of spin relaxation via acoustic

phonons in a magnetic field. For InSb with carrier concentration N=1016

-3 -8cm , his expression yields a lifetime ts - 108 sec. Extrapolations of

experimental spin-resonance data in InSb yields a collision time

Ts 109- 1010 sec. From all evidence, 10 sec seem to be a

upper bound for the spin relaxation rate. It can readily be seen that this

rate is too small to explain the observed spin-flip Raman scattering line-

-1 ()(5)width, which is of the order of lcm Other broadening mechanisms

must then be taken into account.

In materials such as InSb, nonparabolicity of the conduction band will

make an important contribution to the spontaneous SFR linewidth. In fact

in some cases, as in the q.B=0 geometry, the linewidth will be determined

primarily by the band nonparabolicity. Since the effective g-value is now

a function of energy, the scattered energy will be different for transitions

at the band edge and at finite k) as shown in Figure 1.2. hence a spread

in the resultivn spectrum.

Another important contribution is the diffusion of electrons between

each collision. This effect is more important in the .Bf0 geometry where the

electron diffusion along the magnetic field is observed. We will discuss in

more details these two broadening mechanisms and their relative importance

in this chapter.

In section II a general formulation of the differential cross section is

given. The generalized spin correlation function is calculated for the case in
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nonparabolicity effect is dominant in section III. Diffusion effects are consi-

dered in section IV and the results compared with experiment in section V.

Section VI discusses the other possible broadening mechanisms that re not

taken into account in the calculation, and their respective contributions to

the lineshape. Discrepencies between theory and experiment are also dealt

upon.

The following calculations are particularly formulated for a system in

the extreme stror magnetic field limit (quantum limit), where in thermal

equilibrium all electrons are in the lowest Landau level. They can however

be readily generalized to cases in which more than one Landau levels e
()

occurie, es in the spin-flip scattering from n-CdS. In Chapter 4 the

theory developed here will be generalized to situations without the presence

of magnetic field.

II. FORMULATION

Consider a many electron system under a constant magnetic field

with hamiltonian

:T = Ho V i *UB ef B C (II.1)

where

H o = ri[n- c 7 + U () (II.2)
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is the sum of one-electron hamiltonians, plus the periodic crystal potential Vc),

and V accounts for electronic collisions with impurities, optical and

acoustic phonons. Here

Ti = v. 4 &ifc

and 's are the Pauli spin operators, A is the vector potential associated

with B and Ae is the effective g-value which can depend on energy. To

first order in energy

ffg ( I + X H) (II.3)

where is the g-value at the band edge and X is a parameter measuring

the band nonparabolicity. For n-InSb, a two band model calculation gives

=- 2/ , being the energy gap. Note that only H. , rather

than (Ht+V) , appears in (II.3). Also, we have neglected the Coulomb

interactions in (II.1), their consequence will be discussed in section VI.

The interaction of this electron system with an incident electromagnetic

wave with vector potential A can be expressed by replacing P in (II.1)

by I F - eaI/C). Treating Ad as a perturbation, the transition probability

for the scattering of a photon from state (,, ,) to state (py, jf, 1)

with the accompanying transition of the many electron system from state Z :>

to IF> is given by the matrix elements of the operators A and -A

The general expression for the differential cross section is then given in the

Born Approximation by
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tb-

dw ft
(11.4)

where - - > denotes the average over initial states and

The matrix element H1f is given by (s)

drl

U LO C 4) jPj:.

-- e i , <Flaa0,ill1 >< e I>
(II. 5)

B4 1 <F a |'d> I 

- F a * gitor Ez -El- i- f ,

jf = e (i eA ) e )(-t 

In deriving (II.5), j , are second quantized in eigenstates of (-F),

id>, Ie with creation operators a , ft respectively. Here we use the

index o to denote the set of quantum numbers (h,k,k, S) , being the

spin index. The first term in (11.5) comes from the termtreated to first

order, while the second part is derived from the t A term to second order.

Neglecting the interaction between electrons, we can assume that the

intermediate many electron state I1N> differs from the initial and final states

only by a single electron excitation. Under this approximation, the spectrum

(II.4) can be expressed as the Fourier transform of a generalized spin correla-

tion function (),'1)

(-m~~~~fiI' (r E-f) 
"t F "
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doc bic/L4I

dwdC if i 
lsdthel St L~~~~~~s

(11.7)

where

N() = e

?T.

and

< le )I' Ir> 6

+ 1 2 f <d I 1 XP I A>

Fr

(II.10)

< I~s>'2s 1P
<CC I Ip > 1 I I >

& - lr E lW tt `4 -f~

From now on we will concentrate our attention on InSb which has a

negative effective g-value, so that (II.1) becomes

IT = H - a (I- ) (II.11)

H - IA .V .

Consider now an electron with momentum in the spin up state of the nth

Landau level is scattered to the spin down state of the same Landau level

with a momentum shift I . WritinI the quantum numbers explicitly, (II.9)

ce iwf

'iyTt/A (11. 8)

(II. 9)

< h! i- +) ( >

iHT/ t e

X 4o

Y. 
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becomes

-- hr Xt and% a+*,gJa (II.12)

Note that in (II.12) the a s are the Fermi-Dirac operators acting on many

electron states. N can be expressed as the sum of single particle opera-

tors

i (II.13)

With (II.13), equation (II.7) can then be reduced from a man: electron

expression to a one-electron expression in which the operators of second

quantization disappear ¢1o)
00

CX~UdQ ~ = J LflTJN( i(HT)itMT) N(l) 1(.)4I)J
where j (PT) is the Fermi-Dirac distribution function, and the N 's are

just the N' S in (II.13) with subscript i supressed. The reduction

from (II.7) to (II.14) is carried out in detail in Appendix lB.

Now we shall assume that o x 't (kid 6) is a constant indepen-

dent of the quantum numbers. This approximation holds only if ktdo is

tot close to , as in case of a CO2 laser scattering from InSb. In

cases where the resonance enhancement (12) is strong, as InSb is scattered

by a CO laser, 1) 't ( 18) will be a strong function of k .

With 5o a constant, lN can be expressed as the product of a spin

operator and a density fl1Cuor*tion,
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'y Ad e ea. , c4k a et,
Alh~

4'r
yo hk 

where G+ , C. are Pauli spin operators

oi-, . +T

with commutators

[ q , 3-1I-Z F20

III T 0 I O.

's in (11.15) are the electron density fluctuations

f�.

= r e -it f)

e= I
i

A z
i

p1

t
= ) -

evolves in time as

itt/4 p ti , -it/ti
f~o ) C -I t 1; 1 . 9

4 *r,
(I. 15)

(13)

-I

The 

(II. 16)

(II. 17)

(II. 18)

atai'pi'a

[ Cr-t , a-- I

= CF-) G'-]

e (II.19)

1: "ahh kS 'IeZ3,16fl
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In analogous to N discussed before, g stands for the single particle

density fluctuation.

Substituting (II.15) and (II.7) into (II.14) yields

_dwd (a ( X 2 i,,, W f + a ) |

-@6 OA- )jf t [ - (1. 20)
For simplicity, we shall only consider here those scattering potentials V

that do not flip spin, i.e.,

[ V ' r] 0 [ O. (11.21)

The effects of this, and those potentials that do flip spin are discussed in section

I, from where we saw that (II.21) is a reasonable approximation since the spin

collision time , , is long compared to the orbital collision time, hs V 10- 8

seconds. Making use of the operator relation (I#)

f(itT-) foj t -, , o)1 J - (11.22)

together with (II.16), we can extract all spin operators from (II.20) to give

dtio rm. t e il. W FAH F A 8 2

d X 8~-~ ___hH- e.X eU, i l-ItCt-vJl t/PIA()Jt (II. 23)

X LI- f(H+ (I-A[H- J)) a -) '~
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We see that in (II.23), both XWl and V are small compared to 4

We will make the approximation of neglecting in (II.23) the terms AlOsVwhich

is to second order in smallness. In Appendix 1C a treatment without making

this approximation is given. Thus, with (II.19), equation (II.23) can be written

as

-,X,,?y 2 .c azct e jtiy AceL J geA-HJ t-A)

e tt - fib+ a,, J I7 e )8 aft) 6; C } Z (II. 24)

Now we examine the commutation relations of H . It can be shown

easily that

0 0, A t -(I1 25)

which is a consequence of the approximation of setting " as a constant. As

will be shown later, the electron diffusion rate across the magnetic field is much

slower than the electron diffusion rate along B , so that we can say that

-gxsX*)~~ + Wa 6~t) 4~ 1 , (11.26)

where

/(t) " PrO) t Pt/).
In view of (II.26), and with equation (11.25), we then have

F"' p : ( t ) f ~ Huh), (11.27)[H Ji(..)] '~- ~
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where

F(Hb) a~nd (Ui t X (II. 27a)

F(I-) is just the difference in energy due to momentum shift as shown in

Figure 1.2b. With (II.25) and (II.27) it can readily be proved by expanding the

exponential in an infinite sum series that

i(btV)
it e

(II. 28a)

Further, for any smooth function f , by writting f as a Fourier integral

in terms of resolution of exponentials, we can obtain by using (II.28a)

#Be+) Nd+V) [6 VtvRb4')J t) (II. 28b)

We will make another approximation by replacing F(o) in (II.27) by tH)

which is in effect neglecting a term

R1Wvt V) - f ) 1 2 _'U-v -'kV

Since /sh is also small compared with 4 , this step is consistent with

the approximation made before. Under these approximations with equations (II.25)

(II.27) and (II.28), equation (II.24) becomes

/'ewd _24 r. '¥ato f I, e!;(2 ;ifl,
dWA = a~~~

(11.30)

x -iS - -H)h6 Jt [ f _ ( et tIJ5(/-,k) t 2ws) f(H))J

X iit, (f °0) arc_ 

which, by using the spatial invariance property of the particle density

can be reduced to

(II. 29)

sty Ot),

i 141t. V mo) I 
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LOo

x i~ e e AiH / 'P,)I(o°o) (II.31)

where the m-+ 6 in (11.30) has been traced away.

The quantity under trace in (II.31) can be written as

}v '5(C-H ) e' e8r tto) r, o) (o ) odr (11.32)

where (rt Y.°) is the Green's function )and 0)

is the one-time density correlation function. In our approximation of

neglecting the interaction between electrons (')

(Y,0) (0, O) = ;() (II.33)

which says that the electron correlates only with itself. Here we are mainly

concerned with electronic diffusion in a magnetic field. It is well known that

the diffusion rate along the magnetic field is much greater than the diffusion

rate across the field, which is approximately the former reduced by a factor

(I / c ) . In our case this factor is at most 10 3 so that we will only

consider the diffusion along z-direction. ,t o) can be obtained from

(t4)
the diffusion equation

(-(m4 ') D 4r t (11.34)
I4VTDt
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where -D is the diffusion constant along the magnetic field.

Substituting (II.33) and (II.34) into (II.32) and integrating over and

3' # , (II.32) becomes e ' fk {7-H) (11.35)
The trace in (11.35) can be recognized t once to be the spin independent

density of state including collision I(E) . Putting (11.35) into (11.31) and

integrating over t yields our final result

b

oX~~~ fll~s fS£49fr (11.) 36)

Colisiou by I

The spectrum in (11.36) reflect nsity of states, (), convolved with a

Lorentzian with full width fl;D which is caused by diffusion of the

electrons. The two Fermi functions takes care of statistics and temperature

effects. In the following sections we shall make further approximations to

obtain simple expressions for the lineshape for the two geometries discussed

in section I.
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III. NONPARABOLOCITY DOMINATED LINESHAPE

We now consider the limit in which diffusion effect is negligible.

(II.36) can then be reduced to

(III.1)

Kf-rt1 ,A,3 1j1 , 4X- AE

Equation (III.1) shows that the spectrum is just the density of state evaluated

at the difference of energy between electronic initial and final states. This is

no other than the "joint density of state" commonl used in magneto-optics.

The Fermi factors gives the statistic effects and must be included to give

right dependences of the lineshape on magnetic field, carrier concentration,

and temperature.

We now proceed to calculate the density of state

g(E ~4A (e- H ). (III.2)

Without any collision effects, the density of states in a magnetic field is

RM Z i 1 12wS ) I:o J8- nAtc ~ (111.3)

where ] (c/e ) is the classical radius of the lowest Landau orbit.

In the quantum limit we are considering, only one Landau level is occupied

so that Ylo 1 o . This free magnetic density of states shows a
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singularity at £ = o , hence a zero linewidth. Collisions, however, will

round off this singularity to give a finite linewidth. We will now calculate the

collision broadened density of state (III.2), using the methods of Kubo.

Introducing the resolvent operator for the hamiltonian H 2 Ho- V

R(s) -
I

(III.4)

where S' is a complex variable, the delta function can be expressed as)')

(III.5)By mag a damping theoretic expansio n of the resolvent

By making a damping theoretic expansion of the resolvent and keeping

only the diagonal parts, (III.4) becomes

R(S) 
I

so that the density of states is

P ) = -V " 1tr

where the self en ergy , 

where the self energy, Q I

(S) = - V

4Y f I1 C (E- i) (t ij I

Cs) , is given approximately by

V
I

Ho -t Q s) 

Rcs)

(III.6)

(111.7)

(III. 8)

1

Reg) -E

P

/o khl* '
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and V/ol is the volume of the crystal. By taking matrix elements of (III.8)

between states Ink i ) ,

< <'hl lk'kk > ) > s
-,~ " (III.9)

(~hk (k3) > Pk 'i t A -RM 4 its) '~ S>

where <. >, denotes the average over scatterers. Note that (111.9) is

derived in the effective mass approximation, which is in effect neglecting the

nonparabolicity of the energy bands.

In Appendix D <gnl~ag/s) % is calculated for elastic scattering of

electrons by /jS impurity centers each with charge Ze via a screened

Coulomb potential

(rwF) = e r -

being the coordinate of the j-th impurity, C the dielectric constant,

and Is the screening length. The result is

<6FIt£)>. g /4<$ ) -e , I(III.11)Sk > S -7

where
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c X (act)' ))a W

(L. 12)

s 1 4 Ze e2 a 1 2

That (III.ll) is independent of k follows from the fact that the coupling

between energy bands are neglected.

Comparison between (III.11) and (III.7) at once yield the expression for

the density of states

(£) - W I. <;o(£) > (111.13)

where (of) > can be solved from (III. 11). Thus

.1 r3 3 ± t J- ( (TS) j (111.14)

Other scattering potentials, for example acoustic phonons, will also give the

same fmof density of states. Only 7 will be different in (III.12).

Although the calculation carried out here applie only to the extreme strong

field limit, generalizations can readily be made to extend these results to

include lower magnetic field cases. Substituting (III.14) into (III.1) and

integrating over E will yield the final expression for the spectrum. We

will examine its shape more closely.
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First let us look at f[£). Figure 1.3 shows the behavior of (E)

as a function of . It can be seen that the density of state has a peak at

E = o as expected. The peak height is obtained by setting

in (III.14)

(°) = i .. (111.15)

At the high energy side, f¢£) behaves like the unperturbed density of

state having I //- dependence

t(£) Z -W jr . (III.16)

This result is not surprising since at high energy, the collision potential

is very small compared to Ho . Examining the low energy side shows

that I{) has a rather sharp cutoff at

2 3 ( 2 H~~~~~~)"~ ,(111.17)

There is no state allowed for E < £. . This sharp cutoff is a. consequence

of neglecting the impurity band tail which we shall discuss in section VI.

Expanding (III.14) around £. , we get

(4fl ? (111.18)

The full width at half height of yC) can now be easily solved.

From (III.18) the half height is obtained, and equating it with (III.15) and

(III.16) and solving for E respectively, we get the half-peak-points on

the high and low energy sides, the difference of these two gives us the full
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width, which is

a £ 7/1 7 (III. 19)

From (III.12) it can be seen that the width (111.19) increases linearly with Ns
which is expected for more impurities means more collision, which rounds

off the singularity peak. Also, ig decreases with magnetic field as B/

which is just reasonable for higher magnetic field reduces the collision rate,

hence sharpens the peak.

Having known the density of states, the lineshape follows immediately

from (III.1). First consider the q.B=0 geometry discussed in section I. In

this geometry u--o so that we do not have to worry about diffusions at all

as can be seen from (II.26). Also, (11.25) shows that r(E) r o , thus

the spectrum becomes

t _ e - ( i I , at , W,5 ,
dw Ao4 - 2 X Ss

(III. 20)

X [ W11" 2 s- o | lr 2

The lineshape will look just like the density of states, with a peak at W tos

and a cutoff at both the high and low frequency sides by the Fermi factors.

Figure 1.4a shows schematically the lineshape in the "quantum limit",

that is, when all electrons are in the spin up level of the zeroth Landau level.

In this case the [I- {(S)1 factor contributes little at low temperature, and the

spectrum is only cutoff at the low frequency side by the Fermi energy. E
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Under the extreme stron-g field limit, and when the carrier concentration is

sufficiently high so that the Fermi energy ~ is much larger than the width

of the density of states, the width of the spectrum is solely determined by the

density of states, especially at low temperature. Thus we have

Ts; ac 7.IAt £<Pt (III.21)

Tr is the nonparabolicity full spectral width at half power point. Since

c)s increases linearly with -8 , N can be seen to increase as

B l/3 . This result will not be so surprising if we recall that the non-

parabolicity of the Landau levels, specified by

/ub . BEX

is an increasing function of B

With the increase of carrier concentration or decrease of magnetic

field, the Fermi level increases until 4F t Os . At this point,

electrons start to occupy the spin down level as well. This fact is reflected in

the lineshape in figure 1.4b, where the [ - f 6) factor now sets in and

cuts off the sharp peak of the density of states. At zero temperature, the

linewidth will be given by

A xLs (') (III. 22)

which will be considerably greater than that given by (111.21). Further

decrease in B will bring in the peak of the second Landau level, resulting

in a narrow linewidth. Thus we will have an linewidth as an oscillatory
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function of the magnetic field. We will however not consider these and only

concentrate on the extremely strong field limit.

Now we turn to the q.B $ 0 geometry. Figure 1.5 shows that the

spectrum has a sharp peak just as in the q.B=0 case, but the peak is shifted

by

~-(r-f~wr: - . (111.23)

This peak seats on a low broad bump. The shifted peak determines the width

which is approximately equal to (II1.21).

It should be noted here that for a fixed B and N~ , no matter

what the spectral shape may be, the area under the spectrum must be a

constant. This can be seen from (II1.3 6), as an integration over X just

gives the integrated cross section for the N electrons, independent of

the lineshape.

IV DIFFUSION DOMINATED LINESHAPE

Now we turn our attention to cases where aoD is much larger than

the width of the density of states calculated in the last section. Under this

situation the structures exhibited by f(E) is buried in the broad Loren-

tzipn-like line caused by the diffusion of electrons so that we may neglect

nonparabolicity effects by setting ; \- o . As mentioned in section III,
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this limit of large diffusion does not apply to the q.B=O geometry in which

qis zero. Thus we will only consider the .B 0O case.

With k = o , (11.36) reduces at once to

down s-- a 6 ( J D )2
x :[ e :)f-rE - , f fre

(IV. 1)

The integral in (VI.1) just gives the effective number of electrons that can be

scattered , so that the spectrum is simply a Lorentzian with full

width a

aw 

tloo
TD/2

(US-t)o (rop)
(IV. 2)

(IV.3).D.
In contrast to the nonparabolicity lineshape for this geom etry, whose peak is

shifted, this diffusion spectrum is centered at CW- ts .

For a system of nondegenerate electrons with a Maxwellian velocity

distribution, the diffusion coefficient along the magnetic field .D

is given by

a- r
D = - * - .

in (IV.3)

(IV.4)

'iG~W$ "a R) 

e ia Al CCC

1'h I 0I N
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An extension of the Einstein relation (IV.4) to degenerate electrons yields

(IV.5)

where the velocity of sound S for non-interacting electrons is given by

(IV.6)
.2 2£

S = 3 a

In Appendix 1F T is calculated for elastic collisions with impurities via

(III.10), and the result is quoted here

_1

T
4 1

is the averaged electronic kinetic energy and

defined in (III.12). In low temperature, ksT E1 , an expansion

of the Fermi distribution gives (see Appendix 38 ),

For high temperature

- ?4 (t4 I- _

L

Substitution of (IV.5),(IV.6) and (IV.8) or (IV.9) into (IV.3) gives the

full width of the diffusion lineshape Td

rD -~ 3 HiAl EF I F M

. At low temperatures

kaT ar F (IV. 10)

(17)

where C

(IV.7)

is

kT /jF (IV.8)

(IV.9)k T -eF 
A-r rrf
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For electrons in the extremely strong field limit,

Efbl ( ) AD1 ~~~(IV. 11)

so that o, is proportional to N/B . The factor s

is, of course, dependent on N and B , but their effects will be small

for only their lagrithmic values contribute . At high temperature,

whih is 3iona l kt M. (IV.12)
which is proportional to T N /B . Thus we see that the spectral width

increases both with carrier concentration and temperature, while i decreases

with magnetic field. This result is reasonable, for although high T and N

and lower B will shorten the collision time, they will however increase

the average velocity of the electron, hence increase the diffusion coefficient.

Note that the calculation in section III and IV is valid only for tempera-

tures low enough so that the collisions with phonons are not important. For

InSb, mobility measurements show that phonon effects will not come in

for T<100l K. For temperatures higher than that 37 in (III.12) has to

be modified to include the phonon effects. Also, (IV.11) is only true if all

the electrons are in the lowest Landau level. For higher N/ or lower B

the Fermi energy is more complicated. Morover, (IV.11) gives the Fermi

energy at zero temperature, the change of E in finite temperatures must

be taken into account to give the correct linewidth at T = 0. The behavior of

as a function of B , 1h and T. is discussed in Appendix 38 .
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Finally the calculation in this section holds only if T is large

compared to Th obtained in the last section. If A; and T- are com-

parable, we cannot use any of the approximations developed in sections III and

IV, and must go back to (II.36) for the spectral shape. Since T' decreases

with 4B and r increases with B , at some large field value (II.36)

seemed unavoidable.

V. COMPARISON WITH EXPERIMENT

In this section we will mainly compare our results with InSb scattering

datas provided by Brueck. In his experiemnts, InSb is scattered with a CO

laser, with energy very close to the energy gap. In such cases, To can

depend quite heavily on energy as the resonance enhancement decreases with

finite T . This effect can be taken into account by letting in (II.26)

+Ito/a V(V. 1)

~(5 i + ) - t

where l. is the matrix element at k o . Also, the experimental

measurements have been done in low temperature T. 50*K so that phonon

contributions will not be important. In Appendix 1G the formulation will be

extended to include the situations in which many Landau levels are occupied

as well as effects of higher temperatures. The results obtained will be compared

with data of light scattering from CdS there.
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First consider the q.B=O geometry. As pointed out in section IV,

diffusion effects does not contribute to the lineshape in this particular case,

so that the results of section III for a nonparabolicity dominated lineshape

will be used. The screening length is is calculated in Appendix 1E and we

assume here that the semiconductor is not compensated, so that ZNs = .

In Figure 1.6 is plotted the lineshape given by (III.21) as a function of

magnetic field for N = 1016 cm-3 and T=2°K. Note that (III.21) is valid only

if the electrons are in the quantum limit, which, in the given carrier

concentration, should occur at about B 25 KG. When the magnetic field

falls below that, there will be an increase of the linewidth as the sharp

peak is cut off. Experimentally, this effect can be seen in Figure 1.6 by

the larger than usual linewidth at 20 KG. The calculated linewidth is about

-11 cm , and is in general two times larger than the experimental measure-

ments, which is about 0.5 cm . This discrepency is especially large at

high fields, because our width tends to increase with field. This is most

probably due to an over estimation of the impurity collision rate when calcu-

lating . However, if taking the fact that ours is a first principle calcu-

lation with no fitting parameters at all, this can be considered as an accep-

table agreement.

Equation (III.21) provides the linewidth only at extremely low tempera-

tures such that the Fermi distributions are essentially step functions. At high

temperatures, there is no simple analytic solutions for rT , we have to plot

the spectrum (III.20) and measure the width. Figure 1.7 shows the spectrum
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16 -3
for N = 10 6 cm and B = 49KG at 2 K and 50 K. The peak height is reduced

as temperature increases because of the thermal distribution of electrons.

The linewidth is however little affected by temperature for T< 70K.

In Figure 1.8 the linewidths for N = 1016 cm 3 and T = 50 K is given as

a function of B. The widths are again bigger than experimental results.

The sudden drop at B 25 KG indicates that the electrons pass into the quan-

tum limit, as discussed earlier. The effects of a partially occupied spin

down level as the system leaves the quantum limit can best be seen from

Figure 1.9, which shows the spectrum at T = 20 K and B = 49 KG for several

15 -3carrier concentrations. For N = 8 x 10 cm , the system is strictly in

the quantum limit, so that the spectrum shows a sharp peak at co = os .

16 -3As the carrier concentration is increased to 2 x 10 cm , the Fermi energy

just touches the bottom of the spin down sublevel, resulting in a reduction of

the spectral peak. A further increase of carrier concentration to 3 x 1016 cm 3

will completely wipe out any peaking structure as the spin down sublevel is

well occupied.

The spectral shape, however, does not check with experiment as

favorably. Figures 1.7, 1.10 and 1.11 shows the lineshape for N = 10 cm 3 at

various magnetic field values and temperatures. Reproduced experimental

traces accompanying each figure are for purpose of comparison. As can be

seen, the theoretical curves are generally symtrical showing a tail at the

low frequency side and a much faster drop at the high frequency side. This

tailing just reflect that each electron has a different effective g-value. That
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the tail is at the low frequency side is a direct consequence of a negative 

which means that the separation of the two spin sublevels is largest at =o 
Should X, change sign, the mirror image of the spectrum shown will

result. This low frequency tail, if present, is however not prominent

in the experimental results. Instead, some traces show a distinct tailing

at the high frequency side in contrast to the sharp drop predicted by theory.

This disagreement in spectral shape is probably a result of neglecting effects

such as Coulomb interactions between electrons, deep impurity potential wells,

as well as the anisotropy of the energy bands in our calculation.

Now we turn to the q.B 0 geometry. In this case the diffusion width

will in general be of order of several wave numbers, larger than the nonpara-

bolicity width. Thus we will use the results of section IV. The spectrum

will be Lorentzian centering at o= /O . Thus,the peak will not be shifted

with the change of experimental geometry as long as the electron system is

in the quantum limit. Once the spin down level is occupied, the q.B=O

peak will be shifted to the low frequency side by an amount

aU X- Us ( /t - 5 ) (V.2)

as can be seen from figures 1.4b and 1.9. The peak separations of the two

geometries are given in Figure 1.12, and agrees very well with experiment.

The line widths as given by (IV.10) is ploted for 20 K in Figure 1.6.

In low magnetic field, the width predicted is too big, but in high fields,

droping as B- , is quite close to the experimental measurements. A
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better agreement is obtained for T = 50 K by using (IV. 10) as given in

Figure 1.8. In general the agreement between theory and experiment is not

bad.

The spectral shape will be a simple Lorentzian if 'o is taken to

be a constant. If we take into account the resonance enhancement by using 1o

as given in (V.1), the spectrum becomes slightly assymmetric. Figure 1.13

and Figure 1.14 gives the lineshapes for different fields and temperatures for

both constant Y. and (V.1). The spectrum agrees quite well with experi-

mental observations as can be seen by comparing with the accompanying

traces.

In general, we may say that our theory are in rather good confirmation

with experimental observations, except for the detailed spectral shape in certain

cases. The discrepancies will be discussed in the nect section.

VI. DISCUSSIONS

From the above section we may say that the diffusion dominated line-

shape checks quite well with experiment. The slightly larger than observed

linewidth may due to the rather crude methods used in calculating the diffusion

constant. Other collision mechanisms such as elastic collisions with phonons

may help to narrow the width. In high magnetic fields, when the width is

comparable to rM as shown in Figure 1.6, the result should be modified
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to take into account nonparabolicity. An integration of (II.36) should be carried

out to yield the correct width in these high hield limits. This however is not

done in this thesis.

Besides the approximations made to arrive at our results, there are

several realistic features and broadening mechanisms of the semiconductor

neglected in this calculation. This must be born in mind when comparing

with experiment. First of all, the energy band is assumed to be isotropic,

for we used a single effective g-value for all directions. For anisotropic

band structures, different g-value should be used for each direction, and it

may well turn out that along some specific direction ff will have a posi-

tive a , so that there will also be a tail on the high frequency side. This

effect is not important for InSb, whose conduction bands are quite isotropic.

Another feature not considered here is the impurity band tail of the

density of states. In our consideration of randomly distributed impurity centers,

we have not taken into account those impurities forming a cluster, thus creating

a deep potential well. This effect is also small because although the electrons

trapped in these potential wells have very low potential energy, they also have

high kinetic energies. ()

Finally, we have neglected Coulomb interaction between electrons. When

this is included, the following electron-electron collision processes may occur.

Figure 1.15a shows the collision between two electrons with different spins.
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The collision changes the energies and momentums of the electrons but leaves

the spin state unchanged. These collisions do not contribute to the linewidth

since they do not connect spin as discussed in section IL However, it provides

a calculation of the electronic collision rate within the same spin-sublevel.

An estimation shows that this rate is about 5 x 1010 sec 1 .

Another possible broadening mechanism when electronic Coulomb

interaction is included is the "Auger effect" of Figure 1.15b. Here, the

effective frequency shift may be bigger than Ws as the broken line in

Figure 1.15b shows. This may account for the tailing of the spectrum at

the high frequency side in experimental observations. A detailed calculation

of this effect is complicated and we hope to carry it out in the future.
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APPE NDIX 1A. CALCULATION OF EFFECTIVE g-VALUE

The Lax two-band model ) gives the energy of the nth Landau level

E"=- .k - (1A. 1)

where is the band gap and I& the effective g-value at

Ea 4- (sl'ic i % 
F i~~~ _L) -W, -+ -0.1 = ILLI 3h

(1A. 2)

The signs refer to the spin up and down sublevels respectively. Since

the spin-orbit splitting is small compared to other energies, expansion of

the square root in (1A.1) gives

El, - -j JEh 4E - El
The last term in (1A.3) is just

get, to first order in E

(1A.3)i; /J BX

e2fft B . For E <E , we finally

L S (- 2E/E )

APPENDIX 1B FERMI-DIRAC OPERATOR TO SINGLE PARTICLE OPERATOR

REDUCTION

Let H

and LA/i) and

be the sum of one-particle hamiltonians,

1=E Hi

()

(1A.4)
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A (t) e igtt Aeo) e io/t
t(+e) C iae Bqaieo ro)ei /A

be any tWo second quantized operators acting on many electron states

(lB.1)

A O Ar t at

Id B(t)Ip> c9f

OL 's are Fermi Dirac operators

i (-In ) j I.

(1B. 2)

a 

(2S)

(1B.3)

, Bet) are single electron operators operating on one-

electron states. In this appendix we will try to show that

(1B.4)<(A B(o)>

where f(H) is the Fermi-Dirac distribution.

With equation (B.2), we get

((t) P(o) >
.a . .I.

5)

= z )F7Plo) faoy0t a

T11"

where we have averaged over a canonical distribution. After some operator
algebras, 5) reduces to )

algebras, (lB.5) reduces to

-_ 
AP

where the

and Alt)

I-.a I... n . >

< cc O"M >
r= 7

,Itlp0

<4I O t O O

BT () 61, 

= jy (H)A(V1-f-EH~J

ATM ' 8',O)
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<_A(t)lo)> =~· 2 A f E ) f , Sir ( i ff ) -S3
A15"*)r, fr'-") ~3 (lB. 6)

with

fs -~ <W ~~~1 f~) [ (1B.7)

Suming over indices/ and 1s , (1B.6) becomes

(1B.8)

- - X God[A) Al- (H o8,)3

APPENDIX 1C A DIFFERENT FOP MULATION FOR THE NONPARABOLICITY

DOMINATED LINESHAPE

A formulation of the nonparabolicity dominated lineshape slightly differ-

ent from that developed in section II is given here. In this formulation we

will relax the approximation of neglecting the AXsV term in (11.23). For

simplicity, diffusion contributions will be ignored here. Also only the q.B=O

case is considered, although it is straight forward to generalize the results

to account for the q.B ¥ 0 geometry.
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We will start with equation (II.14), with the N 's given by equation

(11.15), where la is approximated to be a constant. This, together with

the model for calculating 9 , and that the scattering potential does not

flip spins (II.21), are all the approximations necessary in the present formu-

lation. With XV a constant, it can easily be shown that

(1C. 1)

[V, N o

That the commutator between V and N vanishes follows from the

fact that V does not connect states of different spins. Using (C.1)

and (II.16), (II.14) can be written as

=dw (e2t) 1z ,Zc iY Ei(k-l
ilk RlI °S11 l-t O +i tl+ 2 ()3 °)]/ Y(1C.2)

e e

X Hk- f(4t,- )) N'tq

Now we introduce the hamiltonian for the spin up electrons

H - a (-k HA ) (1C.3)

The hamiltonian for spin down electrons can be written in terms of d(

hit *SbI--) = 1d X - .+r ( (lC.4)la ~ ' ~ 
where
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- N1iU5

t A-W. /a-

Ws
(1C.5)

Putting (1C.3) - (1C.5) into (1C.2) we get

t fAc fe 
ae'O) V(-X) e

iet/t

(1C.6)

Integrating over time, and tracing with the eigenstates of HO' , (1C. 6)

befomes

(IC.7)

dLoki - 11 (F i X L 12 f > - fttwd]

Carrying out the trace with eigenstates of the spin up electrons

X{il> - F, l>
(IC.7) becomes

J--c11 J
/e )\2
tVUC J (1C. 9)

X (- ),T o([St-i- -</- 1-0 .tIvj IF>

w CsV is neglected, gives (III.1).

dL2r

CL JR

f6

r 

(1C. 8)

~CZ) a

which, if the term

44/+Wt'(1+Aj iV("" (tl1tAI~'<(i-f(a t J0t ))~ -

.It,

t W - JE ) El- Et tbj) 12-
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Since only the diagonal elements of the delta function [E -(-- I, V)

is involved in (1C.9), we can replace it by the resolvent operator£ '()) = Jr(1C. 10)
E£ -g t 6. - , (lC. l)

The Y(f') and (E') in (1C.10), defined by

,IL4 4(?c'i. ) = d) i () (1C.12)

are just the linewidth and the energy shift of the eigenstates I > respectively.

The Green's function G(s) is given by

G° ALJlV - lv } V (s) s) (1C.13)

where the first term, which is a constant, can be removed by renormalization.

..- 14 denotes the diagonal parts involved. Note that the second term in

(1C.13) is small because it involves the square of Ai3s , hence may be

neglected. This approximation is essentially neglecting the Y(T') in (lC.10)

and only keeping the energy shift. Thus (1C.9) becomes, after substituting

in (1C.10),

, (1C.14Q
x + 6(e-Ec) M(-i ) + s - i)- iV V1
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where

VI ' <( I V > . (1C. 15)

In principle, (C.14) can be solved if we know the wavefunctions ITf .

If we approximate c > by VW - O i V lo > where I> is the eigen-

states of Io , then (1C.14) at once reduce to (III.1) except the entire

spectrum is shifted to the high frequency side by )\(Js V 

APPENDIX D GREEN'S FUNCTION FOR IMPURITY SCATTERINGS

In this Appendix we shall calculate the self energy (1) (III.9) for

electronic scatterings with Is randomly distributed impurity centers via

an attractive screened Coulomb potential (III.10). Using the Fourier trans-

form of the scattering potential

(1D.1)

the matrix element in (111.9) becomes

K l<.Ii V i'b ) >< K > V' -. ',
(1D. 2)

X I ,a , 3 )k H ,,k &i% t Ad' /j k+' A
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where
(Ib)

i~rx K*CP" ( x -il~' ) x Jn(x-la 3 ) e (1D.3)

The C0 s3 in (1D.3) is the wave function for the state I mk > 
i (·vlk~~~~~~~~~ka)~ 

If we

neglect the nonparabolicity effect of the energy band tructure, f, (X 3k)
will just be proportional to the nth order harmonic oscillator wavefunction q, tz')

C, x- k ) = C
i(hk~ f~S)

(ID.4)

Averaging over the random scatterers, () we get

< V() V') X (1D.5)

where V6 is the volume of the crystal. (1D.2) then becomes

=- - ticN I)+ j I ;T~ +( 1 1) ~'%'kt V'1 'i W, + V ± A n-1tq(S) -3S c Sk1 ' Y'ib-
(1D. 6)

If only elastic collisions are considered for an electronic system in the quantum

limit,

. , _ (1D.7)

With (1D.7), by converting the summation to an integral, (1D.6) can be

reduced to

(D. 8)

(h I I 1K. 6), =

~' (- 1' ) 

NS IU- 2 I 

V1 I"'' ' 2~

V., 7T Z 
Is 6 R ti

I-~-

X o-5- 7 * '&3 - §'8a/14
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where the screening length Ls is calculated in the next appendix. In general,

QS1 6'a is very small, so that we may neglect the first and third terms in

the parantheses of (1D.7) in comparison with 1 (5'/,.2 ) . Also,

eAs? L- I so that we get finally

c(s)
Os (4 4T Fea) ) L" ) 1 24 °) A / I
Vo! " ) 2 V .rT)T

(1D. 8)

= /
-()- S

-~~IGs v-7

APPENDIX 1E SCREENING LENGTH IN A MAGNETIC FIELD

Celli and Mermin ) developed a detailed calculation of the Coulomb

screening length for an electronic plasma in a magnetic field. We will use

their results here,

s =~ 4X7e2 (L°(l,J) (1lE.1)

Lo= = TY _E
1h (1lE.2)

f I0'' - et I I 

E,t( P- 'Y E` (t- Y
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First of all, we observe that

fSRwav f)J
(1E.3)

since we are only interested in the quantum limit in which all electrons are

in the spin up sublevel of the zeroth Landau level. Also, we may approximate

(IE.4)Finatll ) - pt (t E ari , 

Finally, as pointed out earlier, , so that (1E.2) becomes

LoK = i .; ti 6i + tt8t t ( + arid o)

For tjbl^>2i,, the integration in (E.5) can be carried out to give

(1E.5)

(IE.6)

APPENDIX IF EFFECTIVE COLLISION TIME

Here we calculate the effectiveAtime 'U which will be used in the

diffusion linewidth calculation. Consider the scattering potential (III.10),

for scatterings in the quantum limit, transition rates due to elastic coliions

In 1 , 61 -S 1, +

a-ipd

k-L "< k6

Al 2 O)M* ~YYi to

Sf &- ( C':s )I l- 0 
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is given by the Golden rule

I d - \kL< Ooi IV(Y)/ ii > I A AS) - (lF. I)

Carrying out the same kind of analysis as leading to equation (D.8), we get

t_ 4 am ) I? (IF.2)

where the averaged energy is given by=t -2d (LF.3)
APPENDIX 1G SPIN FLIP SCATTERING FROM n-CdS

Here we will give a brief discussion of the spin flip scattering lineshape

of CdS. We will only consider the q.B=0 geometry. In CdS, besides impurity

scatterings, we must also consider the acoustic phonons, since the electron-

phonon interaction in CdS is much stronger that in InSb. Electron interacts

with acoustic phonons with potential ( z)

) f{ ( e) ' t C- c ) (G.)
X., i ) c, (ir( %)~' (1G 1)

Y t i. 

X~~''.~ 
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where the first term is due to piezoelectric interaction and the second is

via a deformation potential interaction. o( in (1G. 1) is the coupling

constant, C, the deformation potential constant, P, the density of

the crystal and to s ' b+t is the creation operator of

the phonons.

A calculation similar to Appendix D gives the Green's function

which has the same form as (1D.8), but with

7r sT xe(1G. 2)

w = c , 0 V s(k

The above calculation is carried out for electrons in the quantum limit. The

linewidth, given by (III.21)

is seen to be proportional to T3 .

However, for CdS, with its large effective mass, this limit is seldom

satisfied. In general, several Landau levels are always occupied. Also,

a rough esitmation of the collision rate in CdS by using (1G.2) shows that

the rate is about four orders of magnitude larger than the collision rate in

InSb. Thus the singularity peaks of the density of states are very well

rounded off. Under these situations, we may approximate I() by the
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free density of states in the absence of a magnetic field

P (i) I (l)r ( ~clrln)( / (1(3Z3)

The spectrum will be given by equation (III.20) with (S) given by (1G.3).

At low temperatures, the lineshape will be primarily determined by the two

Fermi factors. As temperature increases, the shape broadens until it is

finally limited by the density of states, which is zero for cW > Os .

Figure 1.16 gives the spectrum calculated at several temperatures, and their

linewidths are plotted in Figure 1.17. The width increases linearly with

temperature at low T, and less than linear for T goes higher. This depart

from linear dependence is caused by the density of states limitation.

Figure 1.17 shows that the theory does not compare favorably with
(N)

experiment, especially at high temperatures. Also, experiment observed

lineshapes are Lorentzians centered at -cos , while theoretical curves

show a shift given by

A s! (C /t A- Is )

These discrepancies between experiments and theory need further investiga-

tion.
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Figure 1.la q.B=O geometry. Both the incident and scattered radiations
propagate perpendicular to the magnetic field.
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mnt radiation

Figure 1.lb q.B / 0 geometry. The scattered radiation propagates parallel
to the magetic field
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Figure 1.2a InSb band model used in lineshape
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calculation.

Figure 1.2b InSb band model used in lineshape calculation. q.B O0geometry
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Figure 1.14 Comparison of the calculated spectrum with experiment for
16 -3q.B 0geometry. N=10 cm . B=35 KG. T=500K. The solid line is

calculated with a constant Y. , and the broken line with equation (V.1).
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CHAPTER 2

THEORY OF TRAVELING WAVE ELECTRONIC

RAMAN LASERS. STEADY STATE BEHAVIOR

I. INTRODUCTION

A great deal of experiment and theoretical effort has been

recently devoted to the phenomenon of stimulated Raman scattering

(SRS), partly because it is a potent mechanism for obtaining coherent

optical radiation in many frequency ranges. In particular, the theory

of SRS has been discussed by many authors from various points of view.

Nonlinear effects important in a proper description of SRS in many systems

have also received extensive attention. It can be fairly asserted that the

phenomenon of SRS is qualitatively well understood.

No detailed explanation or quantitative understanding, however,

have been given to many features of the experimental observations. For

example, the saturation of the steady state (sinusoidal steady state,

stationary state) Stokes output power at high pump power level has not

received a quantitative description. Also no formula has been given for

the steady state output power as a function of the system parameters.

This information will be useful to those interested in adjusting or maximizing

their power output. More important is the problem of a proper treatment
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of the laser pump power depletion effect. This effect is important when the

conversion efficiency of SRS is high, and can lead to unphysical results when

neglected. Although SRS theory has been considered for both scattering from

collective and single particle excitations, the usual detailed theory ()- (3)

is restricted to the description of scattering from collective modes. One needs

more variables than the collective case in a detailed explicit description of

scattering from multi-level single particle excitations.

With the development of the tunable spin-flip Raman (SFR)

laser based on scattering from electronic spin-sublevels in semi-conductors,

single-particle SRS processes have acquired new importance. Much work has

now been reported on the SFR laser and its applications. () I) The SFR laser

is interesting in many ways. It constitutes the first cw operation of a Raman

laser, and provides high power tunable infrared radiation. Its gain of

1 x 105 cm -1 /W-cm 2 is the largest Raman gain known to date in any portion

of the spectrum, and should be compared with the gain for Raman scattering in
o

CS2 at 5000 A. It can have very high conversion efficiency and very low

threshold power. The electronic Raman laser is also interesting in other

regards. It can be considered as a generalization of ordinary multi-level

lasers with a different pumping mechanism. Since nonlinear effects like self-

focusing are expected to be unimportant in semiconductors, it also provides a

good testing ground for the general theory of Raman lasers. It appears at

# The nonlinear susceptibility is however frequently calculated through a multi-
level molecular system.
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present that a detailed theory of electronic Raman laser is worth considering,

which takes special account of the multi-level nature of the scattering excitations.

In this paper we construct a relatively complete description of the

electronic Raman laser. A hamiltonian is developed to describe the scattering

processes and the laser system. Together with added loss terms, ten coupled

equations of motion are then derived describing the average behavior of the pump

laser radiation, the Stokes radiation, and anti-Stokes (AS) radiation, and the two-

level electronic system. Steady-state solutions of these ten equations oe,

obtained. Among the results obtained we have analytic expressions for the Stokes

and anti-Stokes output powers, including their saturation behavior at large pump

power. Interesting insight and useful conclusions on the laser behavior can be

drawn from these formulas.

We have also given a novel treatment of the pump depletion effect.

When pump depletion is neglected one may run into answers for which the Stokes

power is larger than the pump power. Proper account for the pump depletion is

also important in obtaining steady state power expressions for Raman lasers

operating by scattering from collective modes. We will not discuss the collective

case in this paper. A detailed comparis on of output power behavior for the

collective and single-particle Raman cases as well as other lasing mechanisms

will be reported elsewhere.

In section II we discuss the development of quantum mechanical hamiltonian

densities that describe our single particle scattering processes. Its relation to
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the usual treatment by nonlinear susceptibility is indicated. The equations of

motion for the averaged fields and the electron densities are derived in section

III. The equations are solved in the steady state in section IV, where we also

give a detailed description of the phase matching behavior. In section V we

develop a proper treatment of pump depletion. This treatment allows us to

solve the problem of boundary condition excitation in a simple manner. In

section VI we discuss the detailed steady state behavior of our system in a

specific case, and interprete our results physically. The limiting cases of no

AS radiation is discussed in section VII, where we also indicate the difference

of our system from an ordinary laser and other Raman lasers. A brief

comparison with experiments is given in section VIII. Some discussions of the

nature of our results are given in section IX and a few concluding remarks in

section X.

Because the other optical nonlinearities are not important in the SFR

laser, ) our results are in excellent agreement with experiments. This

probably constitutes the first detailed confirmation between Raman laser

theory and experimental observations.

II. FORMULATION

Consider a collection of identical multi-level subsystems, each subsystem

can be a molecule, an atom or an electron. For definiteness we regard the

subsystem to be an electron, with levels 1 and 2 among others as indicated in

Figure 2. la. The collection of electrons is supposed to span a volume V which
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we refer to as the crystal. The energy difference between levels 1 and 2 of an

electron is denoted by

tn, ' = ti(X)2 ~ tiZ (II.1)

A Raman process involving the two levels may occur in the following way. A

photon of energy 4lO is incident on the electronic system, and is scattered by

one of the electrons with initial state I and final state 2. The scattered photon

has energy

4n 0 ti tDA)- e (II. 2)

This process is depicted in Figure 2. lb. Other Raman processes involving

virtual transitions between the electron states can, however, also occur. As

indicated in Figure 2. c an electron can be scattered from level 1 to 2 via an

intermediate state, although the scattered energy is still given by (11. 2). Similar

process of higher order with the same scattered energy can clearly happen,

corresponding to transitions described by an n-th order perturbation theory

expression.

A first principle description of the entire system will, therefore, have to

consider all relevent levels of the electrons explicitly. Such a procedure is

always unduly complicated, and the common strategy is to retain only the initial

and final states, in our case 1 and 2, and eliminate the other intermediate states

through an effective parameter. Thus in this case we introduce a phenomeno-

logical effective hamiltonian
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to describe the scattering s a, a + virtual transitions the electrons may (

to describe the scattering, regardless of the virtual transitions the electrons may

go through. In (11. 3) we use s and , to denote the photon annihilation operator

of the Stokes and pump field, a. and al to denote the annihilation operators

for electronic levels 1 and 2 respectively. The effective parameter /u

can be determined from transition probability consideration. Thus we have

replaced an n-th order process by an effective first order one.

The presence of anti-Stokes (AS) radiation, when the electrons are more

populated in the lower level 1, is due to the coherent interaction of two pump

photons with the electronic system as shown in Figure 2.2. The interaction

hamiltonian can be written in this case

~x - pbu bra, a) + a (11.4)

It is important to noteha at occur as a Raman

It is important to note that stimulated AS radiation does not occur as a Raman

process similar to Stokes generation, despite the appearance of the second

term in (11.4) similar to (II.3). This is because without a population inversion,

such stimulated process cannot occur. The production of AS waves is a four-

photon parametric process, so that generation of an AS photon is always

accompanied by a Stokes photon. On the contrary, Stokes photons can be generated

alone in the Raman process of Figure 2. 1. Thus we see that the Stokes output

power is always greater than the anti-Stokes one. When a population inversion
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exists in the electronic system, stimulated AS radiation can then occur as an

ordinary Raman process, whereas stimulated Raman scattering is likewise

impossible at the Stokes frequency. Coherent two-photon conversion can, of

course, again occur.

We will formulate our problem quantum mechanically before we obtain

the classical equations for the quantum average quantities. The reason for doing

this is due to the non-classical nature of the multi-level systems, which lend

themselves more naturally to a quantum description. Moreover, our quantum

formulation will be used in subsequent papers.

Consider the hamiltonian for each electron

Fli = -. aj42- +4 ),i

for a total number of N electrons per unit volume.

i

M+ 1 z

Rev, i 2

(II.5)

We define

Q,0 2:

Q I it 4

aL, Oa

(II. 6)

+ (II.7)
N a .
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NI - N Y

N l, - N -a S . (II.8)

Note that the different electrons are independent. The statistics of electrons

are taken into account in the spontaneous linewidth r , which is calculated

in Chapter 1. The operator describes the polarization of the electron

system. A detailed discussion of the operator algebra and commutation rules

of the electronic operators can be found elsewhere.( 0 We just note here the

following commutators:

[M, M = D

EN M, = 

[ N) fr4

(II. 9)

-H

O

The electronic and radiation variables are, of course, always commutative.

We introduce the following spatially dependent electron density variables

O L%) a- Ot t) r

(II. 10)(t) = 2: Oi S(vY--
1=1
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where = mIlt tM, N 

commutation rules

[ ri), 9] (i, t)

[X ,~), V2t, ) ]

From (11. 9) these variables obey the

= oIrty) s r-r')

(II. 11)

The electronic hamiltonian is given by

He i 1 1 + ti1 Na

(11.12)

_ f[Alf z,) )-tRif) + ?2 (,tt,) 0

We next consider the electromagnetic fields interacting with the electronic

system. Their electric field vectors are denoted by Er(Pt), EP,t±) and

E0{i,, t) , which are quantum operators corresponding to the pump, the

Stokes and the AS radiation. For simplicity we have neglected in this paper

coupling to higher order Stokes and AS modes. ) ( 3) Backward waves (IJ)

are also neglected. However, the fields may have arbitrary polarizations i

and directions of propagations i . We decouple each field operator into its

- ii ) S (?-Y- '

Xe. (?'t> J~
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positive and negative frequency parts

Ei (,t)- E, (Pt)t k(t) t ^i .-*

where E, i corresponds to a photon creation operator.

fields are essentially single mode so that

IEF (Y~t,) 4 .2an; i; (Yt)

We assume that the

(II. 15)

I- I (II.16)

with the cannonical commutation rule

(II.17)

We use (lOs and j,, to denote the uncoupled Stokes and AS frequencies which

are given by and bt We respectively. The wavenumbers})k(

are related to

wJi

with Y1i the refractive index of the crystal at the i-th frequency.

field hamiltonian is, as usual,

'1 = S, Ci,

.- (tr t),IE , }

(II. 13)

(II.14)

M3 by

C i n f, S'Ck, (II. 18)

The free-

f
(II.19)

I

6� SG�-F')�

-- A

1h I I

~~kw i *(it-OT a +) I P

E!+) - I ~

--4

o ei(t)

i~tS 4 "[ Fi (it))
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The radiation electron coupling is described by a hamiltonian density

~t -f7,.t) t }t/, tE E E (1.20)

for a coupling tensor . For a specific set of polarization and propagation

directions of the fields, we extract the Raman coupling of interest from (11. 20)

XI ii (97n t* )§s et ' rl t pe& ). (11.21)

The terms of importance from (11.21) in describing the Raman and four-photon

processes are given by

(II. 22)

The remaining anti-resonant terms in (11.21) are neglected in the rotating-wave
(II) (IV-)

approximation.

We now relate the parameters /Us and 4' in (11.22) to the Stokes and

AS scattering cross-sections (dr/A2)s and (d'/dt),u, ,which can be obtained

either by perturbation calculations or by experimental measurements. From

the golden rule and (II.21), the Stokes transition rate is

wetI (ph tC) 

= )S X~ (photon flux (11.23)
(II. 23)
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Here Ad is the photon generation rate, V the volume of the crystal, and ,
the crystal length to be explained fully in section V. Thus we have

47rf'C3 L,

I'nsa Ios· d a X (II. 24)

Similarly for the AS waves

I' a
4r2c3 L, / doc

An94 ):da X
(I1.25)

We have introduced different u s which are more convenient to use in the

following.

We have set up a complete quantum mechanical description of a nonlinear

optical process involving quantum wave fields. The total hamiltonian is now

specified by (11.12), (11.19) and (11.22)

I = H= + He + HF, 6H .-,0).,t f si [ gt) es,f t) ,il) t+ et ,{) (i,) t I,) J

* ii~t4 L f [ [ it ) 97(Rt) + Et &(H) t7 (Nt )jJ

rS~~~~~~~.
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+ uto, W t, t t- (Yt)
(II.26)

The hamiltonian density (II. 20) can be compared to a classical one

X's~ X ElE (11.27)

described by a second order nonlinear susceptibility %

'1(9 ~n t') (II. 28)
with ( flt 97t+) considered as a classical or averaged polarization

density. Except for the electronic part, the hamiltonian (11. 26) therefore has a

definite classical correspondent.

In ordinary descriptions of Raman scattering from collective excitations,

say SRS from phonons, the radiation and phonons interact through the electrons

which are eliminated via the description of a susceptibility. In our case no

collective excitations are present. Instead two of the electronic levels are

involved explicitly in the scattering process, and we eliminated the rest of the

electronic levels by an effective hamiltonian. The close analogy between our

description of nonlinear optics and the usual approach should be evident.
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III. EQUATIONS OF MOTION

The variables of our problem are now the radiation fields

the electron polarization density 97(, 4Lt), ,at), (it) , and population densities

. We have a total number of ten field operators.

Equations of motion for these variables can be obtained rom the hamiltonian (II. 20),

using the cannonical equation

0
With the cannonical commutation rules (II. 11) and (II. 17), we obtain easily

C

nr 17l+ Xat't)

(III.1)

(III. 2)

(111.3)-l Is I 

C
I v t

/0

(II.4)

(III.5)(Cs

4 (III. 6)

(111.7)

Here

ai;rs 9I1
(II.8)e,4 ; )

(4a&t o

e I .t) , eill pit)

= -i 9P., + "P'

9 f 7i ~, S

4
It·u,3

JI 4% f

e,.E,'++e

= -

(e &V r-

P't IN 1

A H, 03

-t i ff4 A
j
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can be interpreted as the difference of Stokes and AS radiative transition rate

between levels 1 and 2. We have used (II. 16) in obtaining (III. 2)-(III. 4). The

adjoint equations of (III. 2)-(111.5) can be written down directly, so that we have

ten equations with ten unknowns.

Equations (III. 2) - (III. 7) are fully quantum mechanical equations for the

operator variables. In this paper we will only be interested in the average or

mean behavior of these variables. We therefore proceed to replace the operators

by their expectation values. The linear terms pose no problem in such a

procedure, but approximations are involved in, for example, the replacement of

< P l > by ( ~> ~ . This amounts to neglecting some quantum

fluctuation contribution to the mean equations, similar to the case of the well-

known Ehrenfest's theorem. ( ) Denoting the averages 4 1> by unscripted

case M , etc, we have equations for the variables Et(Yt) , rl(tJ,

aIlrpi~) identical to those of (III.2)-(111.7).

We next introduce loss terms into our equations. There is a great deal of

literature () on first principle description of dissipation for both quantum and

classical systems, which we will not discuss here. We just expand our equations

(I1I.2) - (III.4) to read

n- 1VE1,j f - 2 (Es M etch *) (111.9)

s V r I -t ' (III.10)Ts V -at - H(II.10
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C a -o
nIl |v Ed. - -h- -- E4 i- (III.11)

Here the variables I/' i are the photon lifetimes for the i-th field in the

crystal cavity. Since the loss term in the EiY t) equation would be of the

form

according to the meaning of our di , we have made the rotating wave-approxi-

mation in keeping the

terms in (III. 9) - (III. 11) and throwing away the anti-resonant terms

These loss terms can also be introduced in the operator equations. In that case we

have to also introduce quantum operator noise terms ) for quantum mechanical

consistency - for preservation of the cannonical commutation relations.

Loss terms in the electronic system can be introduced in a variety of ways.

We use the ordinary rate equation approach, which can also be obtained from a

first principle description. Thus we extend (III. 5) and (III. 7) to

Ot i- ) -- - D s E (IT. 12)

(111.13)
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at~- Ad R,+ W2/, 1, TrE l, + (III.14)

The quantity r is the full-width of the spontaneous Stokes line-width. The other

rate constants Ws and "r have their obvious transition rate-in rate-out

interpretations, as indicated in Figure 2.3. They describe the non-scattering

transitions, i.e., transitions between 1 and 2 except those from the Raman and

four-photon processes. The constants R and Rz can be interpreted as non-

scattering transition rates into levels 1 and 2, or it can be regarded as repre-

senting the population effects of other levels in the electron system. A detailed

discussion of the procedure for deriving the loss terms in both radiation and

matter can be found in many places. (I)

We make a further simplifying assumption before we proceed. We consider

the geometry of our problem as in Figure 2.4. The cavity length is along the z-

direction. The Stokes and AS output would therefore propagate near the direction

z. We assume that all the waves involved are uniform in the x-y plane. This

assumption depends of course on the propagation direction and distribution of the

input beam, and is particularly good for the collinear case. Thus we have our

equations

_Cr a 4 e 4 = - O - iide (Us i+u~E + (Ill 15)

sas t WE iycs Etl (III.16)

C a}F_ at, =."- i~ aA F t) (III. 17)

That this formulation can be used to describe an inhomogeneously broadened
system under certain situations is shown in the next chapter.
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XH _ _ we ) H - i D (&s §fE L )

e -
A = R - fs + I

where we have transformed to the D t ) i S(,t) variables with

Ra

(III. 21)

(III. 22)

I (W12tW1 + ±, + r;)
(111.23)

% --.- -- I . I.I / 

These equations describe propagation of the variables inside the crystal medium.

Excitation will be in the form of boundary condition from §E (,) . No

(1II.18)

(111.19)

(III. 20)

= -:L2 ( W + )A/1 - , --2 
-ZL (W2.1 - W12. -t 'r-a - T-1 )

r-- = + w., - w,. 4- r - r. i
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source term is therefore needed in (III. 15). Note that equations (III. 15) - (III. 17)

can also be derived directly from a classical susceptibility. Physical interpretations

of the various terms in (III. 15) - (111.20) are evident and satisfying.

IV. STEADY STATE SOLUTION

The mean behavior of our Raman laser is now completely described by the

s et of equations (III. 15) - (111.20). Although these equations form a highly

complicated system of coupled nonlinear partial differential equations, their

steady state solution can be obtained relatively easily. We first discuss the

kinematics of the wave couplings.

In Figure 2.5 is shown a wave vector diagram of the scattering process.

Because of the coupling of waves, the actual Stokes and AS wavevectors rs, h

are not given by the linear dispersion relations (IV. 2). s , 1- and 

satisfy the phase matching condition (IV. 8), and the Stokes and AS waves come out

A Ain cones making angles 0s , ~) with z. We do not know s and /P, hence thex and y components of s and . However, the whole kinematic problem can

be solved once we know k, the difference between the actual and unperturbed

z-components of the wavevectors as defined in (IV.5). In section VI, 4k will

be determined through a maximization of the gain coefficient. Thus in this

section we will assume k to be a known constant and proceed to solve the

kinematics.
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Let ~ and 2e be the wavevectors of the pump laser and the

electronic polarization density, and be those of the uncoupled

Stokes and AS fields,

h I

'Ms

(IV. 2)

C .

Following Shen and Bloembergen, ) we introduce the z-components of the

wavevectors , kr , k , and 6Lc)

{I k - (ksx t 'SO

and the momentum mismatch Als and ,.

kr, ke

k ke - ° t k
k e ' a

6
so that

o (IV.5)

41 -t k.

)1

(IV.3)

I dk,
(IV. 4)

k26

~' ,h
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These relations are shown in Figure 2.5 for negative total mismatch

Ak - 4ks Ske . (IV.6)

It will be shown in section VI that the gain of the coupled waves depends on the k i s

only through the combination Ak , which is then determined by maximizing the

gain. With a given k ,we can find ksA and kS from (IV. 2) and (IV. 4)

through the angles t0s and . as in Figure 2.5. In the following we will

assume that the difference

zk' = ks - (IV.7)

is small compared to other wavenumbers of interest. In this case the number

ke~ and the vector Se is also determined together with the coupled

wavevectors s , r through the relation (IV. 4) and the following equations

(IV. 8)

Geometry of these various wavevectors is depicted in Figure 2.5. Directions of

the outgoing wave Os and 60 for Stokes and AS wave cones are given by the

following formulas in terms of Ak and 49s , 9a.

Sin MA I - where+ |,so. Iare gliingCt50 (IV.9)

where )s, are given by the solutions of the following equations
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Ik~l0 4)- .1kpo 14 _ .2o.101

I-
I ks I L4 0 A )

-+ k 

- dCos ,°L, f °lk' -aI*I > ; (IV. 10)
8,4 SSIn se

r kn(l-
)

-t Ikl }I

For pump waves incident in the z-direction, we have L = o so that (IV.9)

reduces to

2

c s,
(IV. 11)

)

Other relations can be similarly determined from the geometry of Figure 2.5.

We now proceed to determine the sinusoidal steady state oscillation of

the system. Thus we define

- i oJ,tE - E ( )

,L Iec (IV. 12)- i cIt

ikea -et

H e

to remove the dominant oscillation of the variables, and rewrite (III. 15) - (III. 20) as

1 Ell )

.f pkr, (

(IV. 13)

(IV. 14)

!

w v ~

- I ko -a s~a~-

Q I ~ I Slkle

I ks10. ih 1'1a

(-k t 1.4 I 

-2 kS1'0 I ( Q p -+ I-A I
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- iJ (sEsH'+/Eoh HF*)

Ts E4sP4s ~ti, * LE 1 t Ea'I)

B = i s (EH'- gj i't1') "i &( EZ'- M I El t)

For the moment we will leave the E equation aside and consider equations

(IV. 16) - (IV. 20) with as a parameter. Superimposed on the individual

oscillators we set

ESI 

e

e

ks- it
o e

c aE-d
I a

(IV. 15)

_ Es - i Cs'

= _ 2l E _ i kg.4
a I nkE

(IV. 16)

(IV. 17)

-D

(IV. 18)

(IV. 19)

(IV. 20)

(IV. 21)

(IV. 22)

C fi24
'F la 

a I

aEsI-t-6

i afal

= X 
aZl -i D (

"s- zw*

,,- ;,.
J

H '

=- V3E1 1

-i~~~piE;,I f

ta~~~~

-irf, 1
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('7)
for real and O . This accounts for the spatial growth and frequency

pulling of the system. We neglect temporal growth in this paper. Substitution

of (IV.22) into (IV. 16) - (IV.20) results in the algebraic equations

cef1s

fe

a

Es

z4- ? r,' H"
- 244

RD + TsS - n - B -

Rs -ss s3 + ±t1 '- 

In the steady state the gain and loss coefficients cancel each other with

A solution for ES E. and - is then possible from (IV.23) - (IV.25)

only if the following determinant vanishes.

r

0o

0 -9pSE~

A.2I- a4 )

z- jii 2 _
6 D-ro 

9

(IV.28)

We use a bar to denote steady state values. This equation obviously holds

regardless of whether ' is a function of the other variables. In the next

= 

=- 

(IV. 23)

(IV. 24)

(IV. 25)0

(IV.26)

(IV. 27)

-

91.7 � Es" *,�O, � =

,.4
I-

I

- i(Z+AS)

I .
7gt ·is4

+ i ry

H'- iry -
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section E will be obtained as a function of the other variables to account for

pump depletion.

The determinantal condition (IV.28) yields two real equations

8T V. r A - (IV.29)

S [( 4,) + X'(I5 s) 4 =D ( l-By ) 0

(IV.30)
+ +Fr tq)-S-Q) A°,

We can regard these equations as determining the steady state frequency shift 4)

and population difference D in terms of and other constants. We have

introduced the notations

"a 'zar |(IV.31)

ga - n X k,, (IV.32)

for simplicity. The coupled algebraic equations (IV. 29) - (IV. 30) do not yield an

algebraic analytic solution in general. Further approximations will be made later

to obtain explicit expressions for and D . In the following we will

therefore regard b1 and D as known constants.
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The Stokes versus AS power ratio can be immediately obtained from

(IV. 23) and (IV. 24)

r A- A P1
r. PA

I

15 id 3.
tdS_ BLz

Ts

We note that

4 -iW Irs & I 

iL)s S Is I 

(IV.33)

( r4/2 ) +

p 4 i iI

is the photon dissipation rate, and is

is the photon dissipation rate, and is

therefore also the photon generation rate in the steady state. The radiative

transition rate becomes, from (IV. 25)

B = Ps - e. 0

From equations (IV.26) and (IV.27) we obtain

B - I(Li AD)

(S-F To )

(IV. 34)

(IV.35)

(IV.36)

with

(IV. 37)

The Stokes and AS power generated are then given by

c( is +t (&j + 'ds)

Is

9 kv R ms /Fs

A ,bO-1SOTn/15
b-A
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tLwS Ps

elU. P.

(IV.38)

(b,- 6k,) (IV.39)

A detailed investigation of such steady state power behavior will be given in

following sections.

The relative phases of the system variables can also be determined

accordingly. Let us write

I.1i C

e
(IV.40)

e

i LFa /. eI&

We find straightforwardly from (IV. 23) - (IV. 26)

RM __) (L

YSP1· S PP W 

Ad is 4 = To t ,

. o- qo 

Y/.2

(IV.41)

(IV.42)

A/I (IV.43)

with

(I - r Y. W / Y4 0,0-

a ( - r Yutj / ' wa-

= V s /-6,
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(IV.44)

Thus only the relative phases of Cs , ,, and ~m can be determined.

Equation (IV. 15) also does not yield any additional condition. The arbitrariness

left corresponds to the phase instability 01) of the laser.

To develop the usefulness of our equations in this section fully we have

to treat the pump equation now and to solve equations (IV. 29) - (IV. 30) for Go

and D .

V. DEPLETION OF PUMP FIELD

We wish to demonstrate here how depletion of the input laser can be

properly taken into account. We first discuss the geometry and the definitions

of the various power and flux terms involved. Consider the geometries of

Figures 2.6 and 2.7. The input field excites the scattering volume in the form

of a boundary condition, as mentioned before. The input flux (power per unit

area) is denoted by ;T, . The pump power per unit volume inside the crystal

is denoted by AMY ?;,

We let

L1 = crystal length

L2 = gain length (V.1)
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L3 = crystal length.

The transmission from outside to the crystal medium at the input interface 1 has

a transmissivity T'. From the medium to outside at the output interface 2 one

has reflectivity R and transmissivity T. We can usually assume T + R = 1, and

T = T'. Let Is and Tlbe the Stokes and AS flux around the z direction outside

the crystal. In the steady state the Stokes and AS power are uniform in the

crystal so that

pi MI1lle = RM' ee* (V.2)

where I is the actual gain coefficient, X a normalized gain, and Pa, , P,,

are the power inside the medium at interfaces 1 and 2 respectively. The out-

put power is therefore

-I't. a Le )

-=~~~ Par~~~~ /R ~(V.3)

Pihs;je T /R.

We can then write

1h = Pi3 /T
(V.4)

Is, P ~ L4Z T/R

IR e jFj>%-tJ4i)oLT/R .(V.5)

The loss coefficient ' can also be written

~~X~~acPi = -' (V.6)
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including bulk absorption loss 0G and transmission loss. The difference of the

L's will become important in, for example, the non-collinear geometry of

Figure 2.7.

We now discuss the effect of the laser pump depletion. There are two

basic causes of depletion, due to absorption from ~ and conversion to Stokes

as well as AS radiations. The absorption can usually be neglected for small '

For sufficiently small odr it can be taken into account by using the following

reduced Pi instead of Pats to represent the rate of photon input into

the crystal,

_ p."

- Do

L. e f

(V.7)

I-

The condition on L1 being

(V. 8)

Hereafter we will assume that (V. 8) is obeyed and that substitution of the form
0

(V. 7) are to be made. Note that -iT* is still related to Pan as in (V. 4).

We consider the effect of conversion by studying equation (IV. 15), where

we can now neglect the loss term as discussed above. We have therefore

C a,
MP I e 9 i(PEH+ H') (V. 9)

A Li~ I
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Since only pa appears in the equations of (IV. 29) and therefore, we convert

(V. 9) to

(V.10)

This equation is solved by the expression

aK Rh Ps_

5-1 Pi =p pr ne Q' t · (V.11)

with | . Note that p . The constant PI, corresponds to the

solution in the absence of Stokes conversion, and can be taken to be that of (V. 7).

It arises directly from the boundary condition that a constant input is present. In

the absence of coupling and loss, the boundary condition clearly becomes the solution

of Pt inside the medium. Our equation (V. 11) therefore effectively solves the

boundary value problem of boundary condition excitation. The parameter P is

introduced for comparison so that in the limit of small Stokes conversion, the

solution for Ei, | can be taken from (V. 11) with o ·

Equation (V. 11) provides an exact solution to equation (V. 10), although only

approximate as far as the original equation (IV. 15) is concerned. It can be

interpreted as photon number conservation, as P/ ' represent the number of

photons in each mode. The generation of each Stokes or AS photon requires a

pump photon, although an AS photon is always generated with an accompanying

Stokes photon. Equation (V. 11) thus enforces the conservation of photons in the

conversion processes explicitly, apart from the absorption loss.
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Strictly speaking, equation (IV. 15) applies only to the collinear geometry

of Figure 2.6. Even in other geometries, the application of (V. 11) to account for

pump depletion appears justified for several reasons. In the first place its simple

interpretation and reasonableness lend itself to be a good "ansatz" in studying

depletion effects. Although the equations of motion may involve more spatial

coordinates in other geometric configurations, it seems that in the steady state

equations like (V. 10) and (V.11) would still hold. We will therefore employ (V. 11)

in both geometries of Figure 2.6 and Figure 2.7 in the following analysis.

Equation (V. 11) can be substituted directly into the equations of section IV for %

and close the system.

VI. SPECIFIC SOLUTION

We want to obtain specific results by solving equations (IV. 29) - (IV. 30).

While they can be readily solved numerically, we like to obtain analytical results

by making simplifying assumptions. Thus we neglect the dispersion of the crystal

and the frequency dependence of the loss,

(VI.1)

~s · 9a iT . (V1. 2)

We also assume

(VI.3)

Since the cross-sections (a/l ld ), and (l&/d ) are frequently equal,

(VI. 3) is closely consistent with (VI. 1).
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With (VI.1) - (VI.3), equations (IV.29) - (IV.30) can be solved immediately

with two pairs of solutions

=- =-v. (I+ '" )
(VI.4)

and

/,0 = a YL , 2 
(VI.5)

Pwhere/T )3

where

= = As + =t - n hks+4 A. (VI.6)

The pair (VI .4) corresponds to the case with a positive population difference,

and (VI.5) to the case with an initial population inversion. We will henceforth

consider the case (VI.4) only. In this case D plays a similar role to the

population inversion in an ordinary laser.
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A. SPATIAL GAIN

Since l can be related to the other variables as in (V. 11) it remains

only to determine Ak for obtaining explicit formulas for the powers. The

mismatch Lk is determined in the following way. Under conditions (VI. 1) -

(VI.3), the gain eigenvalues )( of (IV.22) - (IV.25) has real part

.k -C I (VI.7)

where the normalized gain coefficient is

= offV4 Q
(VI. 8)

The gain coefficient should be modified by a constant if the gain length is

different from the cavity length, according to (V.2).

We note that the gain coefficient 5 is a function of dk. As the pump

power increases, I will increase until along certain directions stimulated

radiation starts to occur when the gain cancels the loss . The mismatch }

will then take the value corresponding to the output direction. Physically we are

asserting that the Stokes and AS radiation will occur in the direction of maximum

# The imaginary part of is always set to zero, since the momentum

mismatch has been absorbed in ak . Together with the vanishing of

(VI.7), we have obtained the values (VI.4) - (VI.5).
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gain. As the direction is determined by Llk as in Figure 2.4, we choose the dk

which maximizes the gain. Therefore we have, setting

(VI.9)

and the resulting gain is

= c!_ .- (VI.lO)

The behavior of 4

that as ak 
as function of k is plotted in Figure 2.8. We observe

i co

'L 4,C 2 T/4f~ (VI.11)

and

d4k o (VI. 12)

The gain coefficient (VI. 7) can be strictly interpreted as a gain only if P

is a constant. In this case it corresponds to the familiar linear spatial gain and

can be compared to the usual expression, say from Shen and Bloembergen. (2)

With their equation (5) we have the following correspondence

d Xv ( k4)

Da/ aj~) i 0 

k

a *co)~m) 
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i Z 4 7 (X1-~ WAR) (VI.13)

7" (XsO ke ·
The major difference is that we have neglected kcks) and %AR in our

treatment. The contribution of GXoR is usually small compared with -T (s).

In the Lorentzian model, 4 [(% ) is exactly zero at resonance and is small

close to resonance (/)) t is therefore justified to neglect them. Shen and

Bloembergen(a ) were not able to produce analytic formulas in retaining these

contributions. Furthermore the use of complex susceptibility gives rise to

complex hamiltonians, which we are able to aviod.

B. FREQUENCY SHIFT AND POPULATION DIFFERENCE

Substituting (IV.9) into (VI.4) we obtain

W = (VI.14)

DJ> I2~~ tu,2pr~ ( /r ~)"~ r(VI. 15)
The operating frequency is shifted from /) s , a)) , because

of the cpupling of waves. The Stokes and AS will oscillate at frequenciesa)s~ -` G ~)~o -(be 8 ) ~ (VI.16)
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~ = M 4 (We + ( e )

Equation (VI. 15) shows that an increase in either the electronic or

photon dissipation constant would demand a larger coupling strength ~ a or laser

pump rate R would reduce the D required. These behavior are certainly

reasonable. The factor ( I /') accounts for the detuning effect, which

increases the population difference needed for lasing.

C. STOKES ANTISTOKES POWER RATIO

With (VI. 1) - (VI.3) the Stokes AS power ratio r becomes

r = + ( ) (VI.17)

Note that glo when <o , and in this case P,> P as expected. In

Figure 2.9 we plot r as a function of 4k/] for several values of

`Y/ r . On each curve, the cross indicates the k value of

maximum gain. In all cases, the antistokes photon number density is almost

equal to that of stokes for k o . This is because the dispersion of the

refractive index is neglected so that the phase matching condition which is

required for antistokes generation is satisfied in the nearforward direction

collinearly with the pump wave, i.e., for small k . As Ak increases,

the AS to Stokes ratio decreases and finally, as Ak approaches infinity

/3tz -l } -ai (VI.18)
{I+;t/r +1
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This drop in AS intensity is not surprising since the phase matching requirement

cannot be satisfied for such large Ak . At the direction of maximum gain, as

obtained by putting (VI. 15) and (VI. 14) into (VI. 9)

k G -[ r) 1t (VI.19)

the antistokes to Stokes ratio is

()& /1* WJ'/ -IrY ~ 4 =f , -- 7T I(VI.20)r { II+Y/r +l

Note that the ratio in (VI. 18) and (VI.20) is independent of the pump level.

From (VI. 20) we see that

IF:OIUI E x2E

This can be qualitatively understood as follows. In general it can be seen from

the equations of motion that when T'- r, the photons will relax to quasi-equilibrium

faster than the elictrons. They will follow the electrons adiabatically. The

four-photon parametric process for Stokes-AS generation described in section II

is clearly favorable in this situation of rapid electronic transitions. Hence the

number of AS photon created is comparable with the number of Stokes photon.

When the reverse is true, T' , the electronic relaxation are relatively

fast, the four-photon process will not be effective and will be weak in comparison

to the ordinary Stokes scattering process. Hence only a small proportion of the

radiation generated has AS character.
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D. STOKES AND ANTISTOKES OUTPUT POWER

We now obtain the output powers from (VI.20), (VI. 15) and (IV.38) - (IV.39)

p i +T. 6,- {/ -} 1 r .- (VI.21)
The left side

generation if

we have

4-

of the above equations will be the actual rate of photon density

P is taken to be i, neglecting pump depletion. With (V. 11)

8 {(1 I

which reduces to (VI.21) with B A . It is straightforward to show that

aj /)[l > for P,;, > o . The threshold and saturated powers from (VI.22) are

(P" )~ b = t f /(VI.23)

which are also the same as those obtained in the 

which are also the same as those obtained in the r 2b

Stokes and AS outputs always have the same threshold.

(VI.24) that we must have the consistency conditions

(VI.24)

case. Note that the

It is clear from (VI.23) -

VI. 25)

They will be discussed in more detail in subsection F. In Figure 2.10 we plot

the power output as a function of the input for both the cases of pump depletion

included and neglected. We see that unphysical results can occur in certain

(VI.22)
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regions of the input if pump depletion is neglected.

The dependence of the threshold requirement on the system parameters is

intuitively reasonable. Compared with the standard formula, we have included

the effect of detuning and more exact properties of the electronic systems.

Formula (11.24) should be used to bring (VI.23) in close resemblance to the

ordinary threshold equation. Equations (IV.37) and (VI.25) also allows clear

indication of the limitations on the output powers which arise from the transition

rates of the levels, and the difference pump rate. The saturation behavior will

be further discussed in the next subsection.

We note that the photon number conservation is indeed obeyed

pa-t t- FL = A H t t z (VI.26)

E. CLOSED ELECTRONIC MODEL

We consider the following particular electronic model of interest.

We set

RD o Rs o (VI. 27)

(VI. 28)
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so that each electron is allowed only on levels 1 and 2.

,1

In this case

(rF- ThS) 

(VI.29)

The total rate out can be written as

C, = W., + MiA

- "1t 3 A (VI.30)

where A is the radiative absorption rate and In is the number of thermal

noise photons. The equilibrium situation is expressed by

17, JI I= r-at4 (VI.31)

so that

1, = (w,- r )f

(VI.32)

In most situations, the A's term in (VI.30) is small compared to the other rate.

If we substitute (VI.32) into the power equations (VI.23) - (VI.24), we

obtain

W(,- 4ecL,
(VI.33)I (4/

IN l (d.A),(Rah)

M W1.1

yr tk
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s w - 1 {NrftI± 3 (VI.34)

Equation (VI.33) can be compared with the ordinary threshold formula. The

saturation behavior of (VI. 34) allows a simple interpretation. Consider the

special case 'Tr - and )zr , we have

S r WA / W 9(VI.35)

This represents what one would intuitively expect the maximum output power to

be. The power is limited by the rate of removing the level 2 electrons back to

the lower level for the further Stokes scattering, and of course also by the actual

number of scatterers available. The factor of two arises because the effective

number of scatterers is /2 . This is due to the fact that after /

electrons has shifted to level 2 from level 1, the system can no longer operate

without a positive D . This point also sheds light on why the transition rate

out of level 2 is so important in the power saturation. Such considerations are

closely connected with the idea of a fluorescence cycle to be discussed at present.

F. FLUORESCENCE CYCLE

For an ordinary laser to work effectively, it is clear that the lasing atoms

should be able to circulate between the various relevent levels rapidly. The route

of return of an atom to the upper state after lasing transition can be called the

fluorescence cycle. In our case the fluorescence cycle corresponds to the return

of electrons to level 1 after the scattering. If such routes are not always

available, the system will not be able to lase. Mathematically the condition for the
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existence of effective fluorescence cycle is expressed by the positiveness of the

output power. They are given in our case by (VI.25). Thus we require

RI + F S /SS > o (VI.36)

This equation is easily interpreted in the case when (VI.20) applies. Thus we

have WVe ' , (VI. 37)
which implies that the non-scattering transition rate from level 2 to level 1 has

to be faster than that from level 1 to 2. In the other situation we will clearly

pile up level 2 gradually, and the population difference will eventually vanish.

Stimulated processes will then stop altogether. Similar interpretations can be

given to (VI.36) with a more detailed consideration.

We have given a detailed analytic as well as physical description of the

steady state electronic Raman laser in this section, with the simplifying

assumption (VI. 1) - (VI.3). Numerically results are easily obtained in the more

general case, but the quantitative insights obtainable in this special case are

certainly of general interest. It turns out that our formulas in this section

already provides an excellent quantitative description of the SFR lasers.
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VII. COMPARISON WITH OTHER LASERS

Our specific results in the above section are based on the assumptions

(VI. 1) - (VI.3), and would not therefore go to the limit of no AS radiation with

#a -- . Nevertheless it is straightforward to go through the same analysis

and we will merely present the results here. Thus we set

,/a Z- o (VII.l)

in equations (III. 15) - (III. 18). The frequency and momentum mismatch are now

given by

4) - Oe A 6 - 4tA (VII. 2)

kzr Sle~ . F .(VII.3)

The phase matching condition (III.3) will be automatically satisfied, as in SRS

from optical phonons. Making the change of variables,

ES j E4 e (VII. 4)

Es - > ]E e (VII. 5)

We obtain as before

-r T a (VII. 6)D --a- t I 1+ d r (VII.7)
(VII. 8)
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The Stokes output will oscillate at the well-known pulled frequency

'' ( 4o -e ) rS
Y(0)cS '=e ) (VII. 9)

The photon density generation rate is

The quantities lb and La are still given by (IV.36). The threshold and

saturation s are therefore

IFr LBy tlk (VII.11)

PS Z By . (VII. 12)

Equations (VII. 8) and (VI. 10) appear to be closely similar to the coupled

St okes-AS case. The threshold differs from (VI.23) only by a different detuning

factor. The saturation also has basically the same form and interpretation as

(VI.24).

In most applications, l 4 o as may be seen from (VI.2). The AS

radiation is therefore always present. However, in the perpendicular geometry

of Figure 2.7, it is very small under the usual circumstance Ye< ' . In this

configuration the momentum matching condition (IV.5) cannot be satisfied in any

way, because of the constraints on Iks I and I. . From (IV.9) - (IV. 10)

it is readily observed that this situation is mathematically described by Ak - .

This can also be seen graphically by extrapolation of our Figure 2.5. The AS

output power will then be small from (VI.22), but it may not be entirely negligible.
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In this situation we should, strictly speaking, use our Stokes -AS formulation

rather than the above purely Stokes results. The practical difference is of

course insignificant.

We discuss briefly the difference of our system from the Raman laser

based on SRS from phonons. ( ) ) This has been mentioned in sections II

and III. Here we would like to make the following point. In the ordinary case

the equations of motion involve, upon elimination of the electron variables,.

only the radiation and phonon modes. We would have obtained a similar set of

equations if we assume D to be a constant parameter in our equations.

Retaining D as a variable results in a more general set of equations than those

before. In particular this allows us to compute the steady state power behavior

of the system, even when pump depletion is neglected. In the other case the

equations are linearized by neglecting pump depletion, and so no steady state

power output can be obtained. It is interesting to point out that the boundary

value problem can be solved, and the steady state output can be obtained in that

case with the help of our equation (V. 11), which introduces the necessary

nonlinearity.

Our laser can also be compared to an ordinary laser operating with a

population inversion. The primary difference lies in the different way the pump

enters the system, as well as the presence of AS radiation. This different

pumping mechanism produces different output power behavior as a function of the

pump. Some contrast in saturation and fluorescence cycle behavior has already been

mentioned in section V. Detailed discussions on the power behavior of various lasing

mechanisms, including SRS frocn collective and single-particle excitations, will
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be reported elsewhere.

VIII. COMPARISON WITH EXPERIMENTS

We will not attempt any comprehensive comparison of our theory with

experiments here. We also will not discuss the various idealizations of our

theory in contrast to the experimental situations. Effects neglected in our treatment

which may have importance in the actual observations include inhomogeneous

broadening, multimode structure, backward Raman waves, input beam behavior,

higher order Stokes components, transient effects, fluctuation phenomena, as

well as other optical nonlinearities.

A great deal of experimental results are now available on the SFR laser.

We will primarily compare only with a small fraction of these results here due to

space limitation. Consider the geometry of the experiment in the collinear

configuration of Figure 2.6. A CO2 laser pump is scattered by a crystal of

n-InSb in a magnetic field, with most of its electrons in the lowest Landau level.

The parameters of the problem are determined experimentally, (da/L)s c 10 23cm ,

-1 ('7) -)8r 0.5 cm , a = 0.3cm , n = 4, /w, 2 x 10 sec,
(/7)

magnetic field H = 50 KG. In the experiments of Aggarwal, etc, we have N =

2 x10 cm , L = 2 cm. Some experimental and theoretical results are given

in Table 2.1. The Stokes and AS power behavior as a function of the input is plotted

in Figure 2.11 for the system but with N = 1.3 x 1016cm'3 and L = 0.4 cm. The

theoretical curve is compared to experimental data. ) There is excellent

agreement between experiments and our present theory.
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Several uncertainties exist in the measured values which affect our theo-

retical answers. In particular the value r can lie somewhere between 0.4 and

0.5 cm 1 . The observed values of (di/Q)s and 2 can also be off by a factor of

2. Given these uncertainties and the fact that no adjustable parameters have

been used, our theory can be considered to be in very close agreement with

experiments.

Some important qualitative properties of our predictions are also well

observed. For example the constancy of r as a function of input is roughly

obeyed in Aggarwal, etc's experiment. It is obeyed much more closely in

Figure 2.11. Equation (VI. 16) predicts an r = 0.11. The difference between

this r and the other r t 0.03 is also in agreement with our theoretical prediction

that a larger gives rise to higher r. From (V. 6) we see that the longer

crystal of Aggarwal, etc., results in a lower ' , even ot is the same in

both cases.

It is possible that the accuracy of our theory and the power measurements

may together lead to better estimates of and s than before. Detailed

quantitative discussions of SFR laser behavior and interpretations of available

experimental results will be given in a future publication.

IX. DISCUSSIONS

Some comments on the nature of our results are in order. Many realistic

features of the experimental situations such as those mentioned in the above
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section are neglected in our theory, in addition to the approximations made to arrive

at the analytic results. This should always be kept in mind in applying our results

to specific problems, although it appears from the above comparison that our

assumptions are very good in the SFR laser case. In particular it is known that

nonlinear effects like self-focusing is not important in n-InSb,(0 ) in the parameter

range of interest.

Besides the detailed understanding and checking on the experimental

observations, our theoretical results are also useful in the general planning of an

experiment. For example, they indicate the limiting factors for obtaining large

output power. In general one can draw the conclusion from (V. 6) and (VI.22) that

a large crystal subjected to condition (V. 8) is preferred, both for getting a lower

threshold and higher output power. By examining the rate constants involved one

will also be able to tell whether a fluorescence cycle will perpetuate. If one is

interested in maximizing the output power, in particular the AS output, one can

examine (VI.22) and choose the controllabel parameter such as R accordingly. If

one is interested in maximizing the efficiency

(IX.1)

one can similarly choose the relevant constants. As a function of Pi;, , for

example, the efficiency attains its maximum at

i1, , r . (IX.2)

Similar use can be made for other considerations.



131

Our results also suggest the following interesting possible application.

As we mention before, we can use accurate power measurements to determine,

via our formulas, the various parameters of the scattering system. For example

tie saturated power gives a good indication of the relaxation rate. Thus new

information may be obtained on the various non-equilibrium transition rates of

the electronic system. With further analysis of more general scatterer model

or with detailed observations of the scattering output, additional information on

the scatterer is also possible.

Finally we note that further experimental observations for testing the

detailed predictions of our theory should be worth undertaking.

X CONCLUSIONS

We have constructed a general theory of an electronic Raman laser which

is described by ten coupled equations of motion. The steady state laser behavior

is treated in detail. Closed-form analytic results are obtained, which are also

interpreted physically. Since the other optical nonlinearities are not important

in the spin-flip Raman laser, our results are in striking confirmation with

experimental observations.

In future publications we hope to extend our treatment to include effects

of inhomogeneous broadening, backward Raman waves, multimode structures, as

well as higher order Stokes and Anti-Stokes components. We also hope to

consider the transient behavior, the stability of the steady state, and the quantum
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statistics of the output radiations. Our theory is also useful in the exploration

of new mechanisms for obtaining coherent, tunable optical radiation.
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Table 2.1 List of values from calculations and experiments 7) Equations from
which the theoretical value is obtained are indicated to the right.

EXPERIMENTAL THEORETICAL

r - 0.03 r = 0.032 (VI.16)

I 4.0 x 104 W/cm2 I =5.0 x 104 W/cm2 (VI.20)th th (V.4)

I 2.2x W/c2 =4.x 104 W/cm (VI.21)
5s~~~~~~~~~ S ~(V.5)
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Figure 2.lb Raman scattering with direct electronic
excitation from level 1 to level 2.
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Figure 2. 1c Raman scattering with initial electron state 1
and final state 2 through an intermediate state; virtual tran-

sitions are denoted by dash-lines.
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Figure 2.5 Phase matching between the pump, the Stokes, and the
anti-Stokes radiations.
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Figure 2.9 Ratio of Stokes and anti-Stokes photon generation rate in the
steady state; the x's indicate the values at maximum gain.
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Figure 2.10 Logarithmic plot of the Stokes output power as a function of
input power; Curve A corresponds to the input power, curve B to the Stokes
power neglecting pump depletion, curve C to the Stokes power with pump
depletion. Power conservation is violated in a certain range of input in case B.
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Figure 2.11 Stokes and anti-Stokes output as a function of pump input. The
circles are experimental results from reference 7. The curves are obtained
from equations (VI.22) and (VI.32).
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CHAPTER 3

MAGNETIC FIELD TUNED SPIN-FLIP RAMAN LASER

I. INTRODUCTION

In this chapter the theories developed in the previous chapters will be

applied to the spin-flip Raman (SFR) laser tunable in the infrared by a magnetic

field. The linewidth Tr calculated in Chapter 1 is taken as a parameter which,

together with other parameters to be calculated in the subsequent sections, will

be substituted into the formulas of Chapter 2 to yield the behaviors of the

stimulated SFR scattering. The results will then be compared to available

experimental data on the InSb SFR laser.

The main parameters that takes care of the magnetic field, carrier

concentration, and temperature dependence of the Raman laser are the spontan-

eous linewidth ' , which accounts for the experimental geometry and elec-

tron statistics; the total cross section (Jr/dJl.)T , in which is burie4 the

polarization characteristics of the electromagnetic waves; and the loss Y

which depends on B , N as well as T . In section II, we will

investigate the validity of applying the r calculated in Chapter 1 to describe

the SFR laser by the homogeneously broadened Raman laser theory of Chapter

2. In section III, the cross section and its dependence on B , and T

are calculated, where statistics effects are also considered in particular. The
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losses are discussed in section IV and the results of these three sections will

be combined in section V to derive the behavior of the SFR laser, including

detailed threshold conditions, power output and saturation.

II. INHOMOGENEOUS BROADENING

All the stimulated SFR scattering experiments are performed in the

q.B = 0 geometry discussed in Chapter 1. In this geometry the main broadening

mechanism for the spontaneous lineshape is nonparabolicity of the energy bands,

where the electrons have different g-values and hence different frequency

shifts. We encounter therefore the situation of an inhomogeneous broadened

line. We will show that the electronic Raman laser theory of Chapter 2,

which is valid for a Lorentzian spontaneous line, does apply under certain

approximations to stimulated SFR scattering in InSb with inhomogeneous line-

shape. We will only present here a simple arguement establishing the validity

of equations (III.15) - (III.20) of Chapter 2. Development of a Raman laser

theory including inhomogeneous broadening is a separate problem, and will be

reserved for future works. Except for the Lamb dip ) effect, a more

complete treatment will give results similar to our present ones.

Consider N two level electronic systems, the energy separation of the

jth being

ti'4 _)_1 (n.1)
The Hamiltonian for each electron is
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Hi i= ti2j j a + -L +i wIj 0c oi
We define

at aLI

i1 Q'd a j

H = H
J

j j
(II.4)

ta i f :
i Zd

and

r4Ij- Nj

Since the two level systems are closed, we have

1Ij r42 = I (II.6)

Using (II.1) - (11.6) we have, parallel to the derivation of (2.III.18) - (2.111.20)

(in Chapter 2),

MH'= ( tlJjIt z· 'wdH
rs -T, Dj

- i;/ D(sEtE +: / E )

2 8;

where

Bi i Ps (EP:s5H - § , H ) + i v' ( EA H - F. aI ) ,3 ~J j t

(II.2)

(II.3)

(II.5)

(II.7)

(II. 8)

(II.9)

I

D -2D

O -- I
�rf 1=
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In (11.7), s is the spin relaxation rate rS at , all other constants

and operators used in (II.7) - (11.9) are defined in Chapter 2.

Equation (11.8) can be summed over j to give at once equation (2.111.19)

but the Hj equation presents difficulty because of the toj j term. However,

from (2.III.19) we can see that the population difference .D is built up

mainly by the radiative transition, which in the steady state is given by (2.IV.34)

B Ps A ·. (II. 10)

From Chapter 2 we see that Po. is usually an order of magnitude smaller

than P$ , and that Ps has a saturation value given by (2.VI.35)

pSS .A (II. 11)

Thus the rate of radiative transition which creates the population difference

is bounded by Wl . From Chapter 1 we see that this rate is much

slower than the orbital collision rate which brings electrons from one state

er -8to another with the same spin, as e[s Wl, 10 seconds, compared

to the electron-electron collision time = 10 10 sec. In such long time

interval ~s , the orbital collision will essentially wash out the inhomo-

geneous effect, and we may regard Dj in (II.7) as a constant independent

of j. Thus, in the steady state, (11.7) can be solved to give the polarization

of the j-th electron,

ir qD (pJs iEs: + 4t - ) (II.12)
T., wJ
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Since only the Ljy 's are involved in the summation of (II.14), we can replace

the sum by an integral over a distribution of dL . The actual distribution

of /d can now be taken from the spontaneous lineshape calculation in

Chapter 1. Here, we will further approximate the lineshape to be a Lorentzian

centering at t1ep ,8o , with width 'r , T being the width of the

actual spontaneous spectrum. This is a reasonable approximation in view of

the experimental observed lineshape discussed in Chapter 1. Equation (11.12)

thus becomes

M Fl

W= (11. 13)

F rom>+ C1 e- e) > T Aij-O)
From Chapter 1 we see that T -:' . A contour integral of (.16)

will give at once

t-1 = D (II. 14)

which gives exactly the same result if H is solved by using equation

(2. III. 18).
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Thus we see that the results of Chapter 2 can be applied to our case of

inhomogeneous broadening in InSb SFR scattering. We are therefore able to

apply our results of Chapters and 2 directly to the SFR laser without any

modifications. Further extensions of our treatment to include various features

left out here will be carried out in the future.

III. TOTAL CROSS SECTION

Here we will consider the total cross section (r/dAQ )T in the q.B = 0

geometry. In principle (dr/ra)T is given by integrating equation (1.III.20)

over all frequencies X . In this section we shall make some approxima-

tions to obtain analytic results that will show the magnetic field, carrier concen-

tration and temperature dependence of the cross section. We will use the free

magnetic density of states (1G.3), and approximate Vo( to be independent of

the quantum numbers n and . Thus we can write in general

Ait5r zI4 C cj e4kB j1 fJI frpk , iL )
(e meI (a;r)' fur o nab l

with '~6 defined in (.II.10) and

# This is the Raman matrix element, and should not be confused with the
optical loss ( .
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The total cross section in (III.1) is the product of two terms

iT Nr ( )s (III. 2)

(/~d[s), in (III.2) is the single particle cross section defined by

)S l (111.3)

This is the quantity calculated by many people before. As expected, (d/o']a),V

is independent of N and T , but it can and does depend on the magnetic

field through T. . An analytic expression of for the SFR scattering

is given by Yafet () to first order in B , while Wright, etc., carried out

a numerical calculation for Ae . Their results show a cross section quite

independent of B . However, in previous works, conduction band intermediate

states have been neglected, these intermediate states cause a cancellation of the

cross-section for InSb at around 85 KG when to~ 1i . This effect

is observed in stimulated SFR scattering experiments. Brueck ) has given

a numerical computation for (dr/Jda ) s taken into account these effects for SFR

scattering in InSb with a CO laser, which has a strong resonance enhancement

hactor. Using the wavefunctions in Yafet, ¢
2

) we have calculated numerically

(lJ/L), for SFR scattering in InSb with a CO2 laser, and the result is

plotted in Figure 3.1 as a function of magnetic field.

Polarization selection rules are also accounted for in I . It has been

shown by previous workers that for the q.f- = 0 geometry discussed in Chapter 1,

the only allowed polarization for the SFR scattering are (Z,-) and (, Z), where

Z refers to the electric field polarized along the magnetic field direction, and
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t refers to circularly polarized electric fields. The first term in the polariza-

tion refers to the incident wave and the second to the scattered waves. Thus

we see that if either the incident or the scattered electric field is polarized

along B , the other must be polarized transverse to it.

The effective number of electrons that can be scattered is

Nff takes into account electron statistics and only through it can the total

cross section be dependent on [N and T . Wherett and Harper (7) has

calculated N in the limit of zero temperature and high magnetic field. We

will give here expressions for Ntf valid for finite temperatures as well as

all B' N values. (note that this calculation for Nj. given here is com-

pletely general, and can be applied, for example, to the SFR scattering in CdS).

First consider the low temperature limit. For kT << EF , an

expansion of the Fermi integral in (III.4) gives

N4 2 eB *? X en~ti/ -/E~wc- 4ie iJ- /z (I11II.5)
where is the Fermi energy. T o the correct , and T

where EF is the Fermi energy. To yield the correct B . ^1 and T
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dependences of Nef , the variation

taken into account. A calculation of

netic field is given in Appendix 3B.

oscillatory function of B and 4

occupied with increase N and

of 'F with these parameters must be

Ef: for finite temperature in a mag-

Equation (III.5) shows that S is an

,as more and more Landau levels are

/B 

In the quantum limit, 7 X = o , so that (111.5) at once yields an

expression for ef . When several Landau levels are occupied, we

can use the Euler Maclaurin summation formula () to give a close from

expression for NFe . The Euler Maclaurin formula is discussed in Appendix

3A, keeping only two terms in equation (3A.1), we get

(air) a (are {3 /itm

X /E' iar 3

(rlT)aLh

The e rror a t T = 0 for (.6) is given , by using (3A.5),

The error e at T = for (111.6) is given, by using (3A.5),

24 -"/.2
/eI~Lec$9t+m/

(III1.7)

which can be compared with the leading term

3With two Landau levels occupied,

With two Landau levels occupied, t = t-,0e , the error is seen to be

< F e - -h
la2
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within 10%. The error will be considerably smaller when more Landau levels

are occupied. In Figure 3.2, the total cross section is plotted as a function
(I1)

of magnetic field, and the experimental data are taken from Patel.

At high temperature, kbT » , we may approximate fae)

in (III.1) by the Boltzmann distribution. The integration over Gi and summ-

ation over 'i can then be carried out exactly to give

-A N 

.2 Ck (-osksT)

tw, a kNT / i 2 TX - e - 7 T'7rmjikT)eB

(III. 8)

0co6 (is / .ksT) J

IV. LOSSES

A third parameter we need to know in our Raman laser theory is the opti-

cal loss in the Raman cavity I . There are two main loss mechanisms as

discussed in Chapter 2. The first is the bulk free-carrier absorption loss 

whose dependence on magnetic field can be obtained from the complex dielectric
constantconstant

(IV.l)(o) = E., I

a) .1 W-'(- t I ~i
P 

to-'F k)- W.(/- j))(- ij 4 tc' 
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where E4 is the high frequency dielectric constant,

e P fTe ) o (IV. 2)

is the Plasma frequency. The variation of the free carrier absorption p( in

n-InSb as a function of magnetic field and carrier concentration is given by Patel

and Shaw, () and their results are reproduced in Figure 3.3. It shows

that for a carrier concentration N < 3 x 1016 cm , the free carrier absorption is

relatively field independent for B 50KG.

A second contribution to Y

cavity. This loss is independent of

the reflectivity of the cavity mirror

loss is given by

2C ((
Vma) nW all

comes from the reflection loss on the

B , bi and T , but it depends on

as well as the cavity length. The total

Ih R (
r~) L }4 (IV. 3)

where 4 is the refractive index for frequency 4) , dl t) the free

carrier absorption, R the reflectivity of the mirror and I. the cavity

length.

V. STIMULATED EMISSION

By using the parameters of the preceeding sections in the Raman laser

theory of Chapter 2, we can now examine the behavior of stimulated spin flip

scattering in InSb. The main purpose of the present treatment is for compari-

= I/ V t and
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son with existing experiments. There are many experimental works devoted

to the SFR laser, all using InSb. Patel, etc., ' ) ')'and Allwood, etc.6)

used a CO2 laser as a pump source in the q. B = 0 noncollinear geometry dis -

cussed in Figure 2.7 to obtain stimulated Stokes radiation tunable from - 11.7

-13 . In the same geometry, Mooradian, etc. 7' used a CO laser

pump to achieve lower threshold and higher conversion efficiency. Stimulated

anti-Stokes radiation was reported by Patel, etc, Allwood, etc.,

and Aggarwal, etc. ( ) with their experiments carried out in the j.B = 0

collinear geometry of Figure 2.6. We will try to compare our theories with

these experiments. Second Stokes emissions are also observed, we will

however not consider this here.

First we will investigate the threshold condition. The formulas for the

input threshold power (I,)r- is given b equation (2.VI.30) together with

(2.V.7) and (2.V.4). With T F o in (2.VI.30), r = 0.5 cm -,

(see Chapter 1) and a reflectivity R = 36% as given by the natural reflectivity

of InSb, the threshold power for different experimental configurations are given

along with their respective characterizing parameters in Table 3.1. A very

good agreement between theoretical and experimental results are obtained.

The low thresholds obtained by using a CO laser pump source is due

to the resonance enhancement effect, () which enhances the single particle

cross section considerably. For experiments with a CO2 laser pump, Aggarwal

etc. obtained a comparatively lower threshold because they used a longer

crystal, which in effect reduces the reflection loss, as can be seen from (IV.3).
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For = 0.3 cm 1 (see Figure 3.2), with a 2 cm long sample, we get = .065

cm , as compared with = 0.228 cm for a 0.4 cm crystal. Thus we see

that to achieve lower thresholds it is better to use longer sample subjecting

to the condition (2.V.8). Figure 3.5 plots the threshold as a function of the

sample length 1 , and shows a minimum at L

-<_i _ >C} 8 tl (V.1)

Figures 3.5 and 3.6 shows the power behavior in the q.B = 0 noncollinear

geometry for the CO pump and a CO2 pump respectively. In this geometry

the anti-Stokes waves are absent. Because of its lower threshold, the CO pump

experiments can achieve much higher conversion efficiency, so that depletion

effects must be taken into account. A close check is obtained with experimental

results.

The saturation of Stokes power is also examined. The power saturation

formula is given by (2.VI.31). Here we let I /t. to be the spin relaxation

time ;Z-2 x 10 sec. With the experimental data of Aggarwal, etc, N = 2 x

1016 cm 3, equation (2.VI.31) yields a Stokes saturation at (Ts)hc = 4 x 104

watts/cm 2, as compared to the 2.2 x 104 watts/cm 2 observed. A similar calcu-

lation with the data of Patel, etc, ¢3) for N = 1.3 x 1016 yields (s)^a= 2.8 x 104

watts / cm2, comparing with the observed value 3.2 x 104 watts/cm 2

Note that by taking l// c , we have neglected the effects of electrons
(13)

diffusion in and out of the pump beam. That Patel, etc., obtained a higher satura-
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ted power than Aggarwal, etc, in spite of their lower carrier concentration,

is most probably due to this diffusion effect. In Patel's experiment, (13) a beam

with radius 100/A is used in comparison with the -0.12 cm beam radius of

Aggarwal, and because of this small radius, the electrons are easier to

diffuse through, thus increasing the maximum output power.

Let us comment on the magnetic field behavior of the Stokes power. It
(II), fl3 )

has been observed that the stimulated emission stops once when the

system passed out of the quantum limit. This is not surprising if the threshold

condition (2.VI.30) is examined closely. From Chapter 1 we see that the spon-

taneous width r increases by a factor of about 3 as the spin down level sinks

below the Fermi level. Calculations of section III shows that the effective num-

ber of electrons that can be scattered decreases as spin down sublevel starts

to get populated. Together these two effects would increase the threshold by

an order of magnutude. This would make stimulated emission harder to obtain.

They are, however, not impossible. Using low carrier concentrations to obtain
15 -3 (23)a narrow line, (N = 101 cm ), Patel has observed stimulated emission at

magnetic field as low as 400G.

We now turn to examine the anti-Stokes(AS) behavior. As said in Chapter

2, stimulated AS scatterings are only possible in the q.B = 0 collinear geometry.

The threshold conditions for AS emission is the same as for Stokes, and is con-

firmed by experiment. The power output behavior of the Stokes-AS emission

is given in Figure 2.11, which represents a close agreement with experiment.
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Several qualitative properties of our Raman laser theory is well supported

by experimental observations. First of all, the AS to Stokes power ratio r,

is calculated for two cases. In Patel's experiment (' ?) with L = 0.4 cm,

giving a = 0.228 cm 1, equation (2 .VI.16) gives r = 0.09, as compared to

an observed r = 0.08. Similarly, with (2.VI.16) and a Y - of 0.065 cm

resulting from a L = 2 cm as used in Aggarwal's experiment, ¢( ' ) we get

r = 0.032, which can be compared with the observed value 0.03. Both cases

agree well with experiment.

Also the constancy of r as a function of input power is notable. In

Figure 3.7 is plotted the AS-Stokes ratio as a function of input power and is

seen to check with the accompanying data.

More quantitative calculation of the SFR laser behavior will be carried

out covering a wider range of carrier concentration, magnetic field and tem-

perature in the near future. Optimal operating conditions will also be obtained.

APPENDIX 3A. THE EULER MACLAURIN SUM FORMULA

For a derivation of the Euler Maclaurin formula, see reference 10. This

technique is perhaps the most efficient way to deal with the summation of smooth

functions as

k , 9 insert
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Consider the summation of a smooth function f(k) , the formula states

+- C+ n) t-: h

B2-
' (,m)! (ii)

where C is independent of ,

C = -f) - ) -

and [x] is the largest integer . The Br (X) 's in (3A.1) are

Bernoulli Polynomials,

B(-xJ) = c(am)!-')m)-l) k-", ( kx), (3A.3)

and the B 's are Bernoulli numbers, the first few are given by

j

64 : 30 f35 = 5

B3= 44-~ ~I

d3 =
c`73,0

An error estimation of neglecting the integral term in (3A.1) is given with

the help of the properties of the Bernoulli Polynomial

_ d(2km) (IK)>
- 0 ?(.Thi(,V)ak

thus it follows that

i(X)
'O f ""'

B,, (- I)

I m(a I f (x) at

u) B" (x- ig)
(X, A - ( ) 

(3A.1)

f I (o)
(3A.2)

• IQ 1Y I k 4YM (3A.4)

(3A.5)

5.2nf~I

1 13" c* - ET I) I
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APPENDIX 3B. FERMI ENERGIES IN FINITE TEMPERATURE

First let us consider the case when no magnetic field is present. The

zero temperature Fermi energy is well known 

& E b () 2 (3 N ) (3B. 1)

At low temperature, ~f (T)

for krT<' 0o

can be obtained through the free energy, which,

, has form ()

The Fermi energy is t hen given by 

The Fermi energy is then given by

- _kT - ( T ' )IF6 6 P.. k - Z

As temperature increases, E': j (T) can be found by solving

given by (G.3), solving for T in ( 3B.4) with

given by (G.3), solving for T in (3B.4) with

we find that

f= O ) kbT o .E (3B.5)

ksT > Eg , the Fermi energy goes negative, as can be seen

from curve A for Figure 3.8, we can then use the expansion

* Note that all energies are measured from t-o .

}
(3B. 2)

(3B. 3)
J

With ()

(3B. 4)

ET) o

Thus, for

LPF T) = L el·> a~~,~ t
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P'- eL + 1 (T) Y' r (3B.6)

Keeping the first two terms in (3B.6) with p = 1/2 and solving for F ,we

get

w hich is an improvement of using the Boltma (3B.7)

which is an improvement of using the Boltzmann distribution in (3B.4)

Now we try to calculate the Fermi energy in a magnetic field. DY)

is given then by equation (1.III.3), and we have to sum over Landau levels n.

First consider the zero temperature case. In the large field limit, so that

only the first spin up sublevel is occupied, so can be solved at once

E.=( -(2 Q - S" 

where 1 = (iC /e B ) . WI

occupied, we get

-I W < < kLs,1;? s A SIr
(3B. 8)

ien the first spin down sublevel is also

(3B.9)

#$b4), · ~ ~ ( ~c -L tws
When more than one Landau levels are occupied, a solution of F. is not

as easy, we will use the Euler Maclaurin sum formula described in the last

Appendix to perform the summation over Landau levels. Keeping only two terms

in the expansion (3A.1), we get
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£o (3t'9)~X *lvl~' ft 1+ Al (0 f,)'j

LI- Jr -i- g 2 (-,rJ)` Q- i .j 3 7(3B. 10)

The error bound for Io as given in (3B.10) can be found by using (3A.5).

Now we try to find the variation of with temperature. Only the

case of extreme quantum limit, - il'sk < -ts/.z will be considered.

By using tabulated values of the Fermi integral, the fermi energy is plotted

as a function of temperature in curve B of Figure 3.8. As can be seen, at

very low temperature, the Fermi level increases with temperature, which can

be expressed analytically by methods parallel to that leading to (3B.3),

V 17-16T_ Lsorksr -L E C = a° 4 h )lT< <'< (3B.ll)

Further increase in temperature decreases the Fermi level, we get,

kf t ,, k&BT- T .4'
(3B. 12)

At high temperature, the first two terms in the expansion (3B.6) with p = -1/2

will give

E = ITBT L /T (3B. 13)

quite similar to the Fermi energy when no magnetic field is present.
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Table 3.1 Values of threshold pump power from experiments and calculations.

r= 0.5 cm , R =36%.

I'tt (watts/cm2 )

k ev) (cm2 N (cm3) L (cm) experiments theory

q. B = 0 noncollinear geometry

0.116 1.0 x 10-23 1.3 x 1016 0.2 6.4 x 10 4.0 x 10

0.235 1.5 x 10-20 1.0 x 1016 0.4 4.1 x 103

q.B = 0 collinear geometry

0.116 1.0 x 10-23 1.3x10 16 0.4 2.1x10 5

0.116 01016 4 (rl) 5.0x104)
0.116 .0x10 -2 3 2.0 x10 16 2.0 4.0 x 104 5.0 x 104

0.235 1.5 x 10-20 1. 016 .48 6.8x102 8.7x102



169

30

* 25

w 20

Z

¢ 15

10

5

n

0 20 40 60 80 100

MAGNETIC FIELD (KG)

Figure 3.1 Spin flip matrix element as a function of magnetic field. The
dotted line takes into account only valence band intermediate states.
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Figure 3.2 Integrated total cross section for spin flip scattering in n-InSb.
16 -3

N = 3 x 10 cm . T = 30 K. The circles are experimental data taken from

reference 11.
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Figure 3.4 Threshold pump power as a function of the crystal length for the
collinear geometry of Figure 2.6.
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Figure 3.7 Anti-Stokes to Stokes output power ratio as a function of input
pump power. The dots are experimental results taken from reference 19.

.15

P

.

.1

0

ci4

0Ci0 0 
0

0

0

.

E

.05

1 1.5 2.5 3

1Xg /I

-

I I



176

0 1 2 3 4

TEMPERATURE kBT /

Figure 3.8 Fermi energy as a function of temperature. Both the Fermi level
and the temperature is normalized with respect to the zero-temperature Fermi
energy g . Curve A is for zero magnetic field case, and Curve B is for
electrons in the "quantum limit".
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CHAPTER 4

STRESS TUNED STIMULATED LIGHT SCATTERING

IN p-TYPE SEMICONDUCTORS

I. INTRODUCTION

Recently, stimulated spin-flip light scattering in n-InSb oi) and its appli-

cation as a tunable source of coherent infrared radiation (2) have been reported.

Considerable interest persists (3) in extending and further exploring this useful

laser process. However, the tunability of the spin-flip Raman (SFR) laser

is, limited by the magnetic field dependence of the scattering cross section,

and by the strength of available magnetic fields.

We propose in this Chapter to employ stress as the tuning mechanism

of a Raman laser based on the process of stimulated inter-valence band scatt-

ering (SIV) in p-type semiconductors. Specifically, we consider the Stokes

scattering with associated hole transition between heavy and light hole bands

of opposite spin, as indicated in Figure 4.1. An external uniaxial stress S

splits the valence band by an amount linearly proportional to S, thus the Stokes

frequency os can be tuned through the stress. Besides offering a versatile

laser source, the spontaneous and the stimulated scattering of holes could

serve as a probe of the properties of p-type semiconductors. Valence band

structure, relaxation mechanisms and nonlinear effects might be studied by this
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method. In the following we give a careful investigation of this process, taking

the complicated valence band into account.

The valence band structure in the presence of an uniaxial stress is

given in section II. In section III we calculate the spontaneous scattering cross

section and linewidths, which; together with the loss coefficients found in

section IV, gives the threshold conditions for stimulated emission. In section

V, the stimulated behaviors are investigated in details, including the threshold

oump power, stimulated power output and linewidth.

II. VALENCE BAND STRUCTURE UNDER AN EXTERNAL UNIAXIAL STRESS

Consider a cubic crystal with a s-like conduction band lying above

p-like valence bands, the band gap at k = 0 is ~ . Spin orbit interaction

further splits the six-fold degenerate valence band edge into a four fold /

multiplet and a twofold Py doublet separated by S . Off A = 0, the

energy bands can be determined by using ]T.j perturbation theory. The i~.

hamiltonian in terms of angular momentum operators J is given byHk (A3 BLJ~p~fk~k3} -t k;(3g-A-JJJ ti(n.1)
B and are the valence band parameters, Is a Iwhere A , and N are the valence band parameters d, and etc

denotes the symmetrized product, lJxY t- ( -t T etc.,
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An uniaxial stress applied to the crystal removes the cubic symmetry,

and splits the ps/ bands into a pair of degenerate Kramer's doublets.

Kleiner and Roth (4) have given a strain hamiltonian Hle to describe this

splitting of the P3L states at k = 0

He = DV(exx + e t eL)+ i h[c x-3T^ x (T;i2) eia
(II.2)

~t ) |+ 3 D ffye t JTa } n P3_ enJ

where the e 's are the strain components, and the D 's are the valence

band deformation potentials.

We will only consider here a stress S applied along the [ 001 direction,

so that (II.2) becomes

Hfle L 3 T) (II.3)

where z gives the splitting of the heavy hole(hh) and light hole (lh) bands

at k = 0 as indicated in Figure 4.1

4 _ i-4 S II (II.4)

The C 's are the elastic constants. For stress applied along other principle

directions, see references 7 and 8.

Under large strains, the valence band edges decouple, so that Hk can

essentially be considered as a first-order perturbation. Keeping only the diago-

nal elements of (II.1), we get the energies of the heavy hole band h ,
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the light hole band , and the spin orbit splitt off band £so

-ks A t ( 6)

- .4+' 32^ k )(k2 [13 (0 -3 k t) b (%t 3 )|

ES = A + (+ %)

{ (6 +
T (h 3 ) L

(II.7)B(k-3h) t a( t d) I

From (11.5) - (11.7) we see that while the heavy hole band is unaffected by the

presence of stress, the light hole and spin-splitt-off states are mixed by the

strain. (8)strain.

>> a, 8k'

AZ + 4

, (11.6) can be expanded to give

B ( sk )(
36 )

which is linearly dependent on

(II. 5)

(II.6)

For

(11.8)

3

A
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III. SPONTANEOUS SCATTERING CROSS SECTION AND LINEWIDTH

Here we will consider the scattering of a pump photon of frequency c0

to a Stokes photon of frequency W with accompanying hole transition between

the heavy and light hole bands of opposite spins. The differential cross section

of this process can be obtained by approximating the heavy hole and light hole

bands to be parabolic with effectives masses Ad and his respectively.

Calculations parallel to the developments in section 1.III gives

where ) is the density of states and () the Fermi function. In general

rY, %:> »m , so that (III. 1) can be reduced to

a) TI14 Vand(s- Xt1 If(- f,l (111. 2)

The matrix element 'o , which is defined in equation (.II.10), was

first calculated for valence band spin-flip scattering processes by Yafet. (7] Using

the energy band model described in section II, a calculation completely analogous

to Yafet's gives the result for scattering under an uniaxial stress. To first

order in A and k , we get
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r< ~ El 2 (A i/Ak'- 24)/%Eo F2- (to)2 (i3a t (k-.24),

.E X (II.3)

where P is the interband momentum matrix element, the 's are the photon

polarizations and ,- = (+4 los)r/. This matrix element is considerably

larger than that of the conduction band spin-flip scattering. For InSb, for

example, 'b, is about eight times the value of conduction SFR scattering,

making a factor of ~ 60 difference in the cross section. Generally the cross

section is nearly independent of stress. In InSb withA = 10.6yk and dEg/dS =

15 x 10- 6 ev/Kg-cm ' 2, X decreases only by 8% as S increases to 104

Kg/cm2. However, for scattering with Am near , ~, drops

drastically with increasing S because of the decrease in the resonance enhance-

ment.

Now we examine the spectrum (III.2) more closely. The spbntaneous

Stokes spectrum is expected to have a large linewidth because of the big difference

between hh and lh band curvatures. The spectral shape is shown schematically

in Figure 4.2. As can be seen, the spectrum is zero at O = o , then increa-

ses with (; until it reaches a peak value at i . At the high frequency

side of L , the spectrum decreases as / I@t exJ(kmi/m,- -E)/T I

Because of the small effective mass of the light hole band, the [I- 5itw) J

factor in (III.2) does not contribute much.

At zero temperature, the spectrum (III.2) has a peak at
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io ~= 4 + ml el / a , T o, (I11.4)

which follows from the fact that the density of states increases monotonically

with E . The full width at half power point can then be solved at once by

using methods that lead to (.111.19)

rF = l T- o. (III. 5)

At low temperature, kT << f ,the abrupt cutoff at t is smoothed by

the Fermi functions in (111.2), and the spectral peak is shifted to

= + ( t o kT ), keT < + (11.6)
as shown in Figure 4.2b. The linewidth, however, is essentially unchanged,

and can still be approximated by (111.5) .

As temperature increases, the Fermi level drops (see Appendix 3B),

until it becomes negative for Ef() ' kT . At these high temperatures,

the holes becomes non-degenerate, and we can use the Boltzmann distribution

in (III.2). The lineshape now has peak at

t k± f kST ro) (III.7)

and full width

r = j 8 t keT , sT 2 F'o) (MI.8)

Note that as the holes become non-degenerate, it is the temperature that domi-

nates the linewidth, which is now independent of carrier concentration.
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In general, these linewidths are very broad, For InSb with N = 3 x 1016

cm 3 , a width 100 cm 1 is obtained for T = 5 K. This width is two orders

of magnitude larger than the conduction SFR scattering linewidth.

IV. LOSSES

Another important quantity which determines the possibility of stimulated

emission is the losses of the Raman media , which is composed as usual

of the bulk absorption dl and the reflection losses. Absorption in p-type

semiconductors is dominated by free carrier inter-valence band absorption.

Kane ) has folund that the absorption coefficient at is proportional to the carrier

concentration N

)e Wabrd ]tin ea1fo m ) p- ) (IV.l)

Infrared absorption data are available for p-type Ge, 1 InSb, )GaAs,()InAs. l)

Equation (IV.1) is used to extrapolate these data to the desired T and N. There

are, of course, a very strong lattice absorption band, this we will not consider

because stimulated emission will be impossible if is close to one of these

absorption bands. Absorptions due to two or three phonon processes will be

considered later when we discuss individual cases.

In Table 4.1 the optical loss of the Raman cavity I' is listed for

several semiconductors at various frequencies. A reflection loss of 1 cm1

is added to in estimating If , In general, the losses are very large
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compared to the conduction band. This is due to the complicated band structure

of the valence bands. To achieve SIV scattering, the Raman gain must be able

to overcome this tremendous loss, and in the next section we will investigate

this further.

V. STIMULATED EMISSION

Now we investigate the stimulated behavior of this inter-valence band

scattering process. The tuning characteristics of the stimulated line will be

given in the low temperature by using (III.6)

t 'it'Ml - .78 k.T ) , T<< ), (v. 1)
-Wr.. ~1,-~ .. - - ,,,

and in high temperature by (III.7)

o· "ti~tl 'J.-* ~ kaT A-4, kT Z Go), (V.2)

with L defined in (II.4). Thus we see that the Stokes frequency AJs can

be tuned linearly by varying the stress S.

With all the relevent parameters given in the previous section, the

threshold pump power for SIV can readily be found. The Raman gain 3s is

given by ()

i16r~ Ce (1/a)T

C '4c O r/ts k+ )T r (V.3)

where 71, s are the refractive indices at (4, , ) ; I is the pump

power flux, the Bose distribution factor and (cT/Al)ris the total crosssection,

i. e., equation (III.2) integrated over all .



188

Because of the large al , depletion of pump due to absorption must

be taken into account. Equation (2.V.7) gives an expression of the absorption

reduced pump rate I in terms of the actual pump rate ['

1- e
'I . o . e (V.4)

where L is the length of the Raman cavity. If dl >/, the pump power will

all be absorped. The condition on L is thus

L L i } }I (V.5)

For -4L t I , the pump power is reduced to about 64% of its original value.

Equation (V.5) imposed a condition for the length of the Raman cavity. In InSb,

for example, L should be less than 0.05 cm.

With the above development we can now consider the optimal choice of

parameters T and N for achieving SIV. Low temperature is needed in order

to have a reasonably narrow spontaneous linewidth. We fix 5K as a readily

achievable temperature, although lower T is even more desirable. To minimize

the threshold for SIV, we observe that a higher N would increase the absorption

and the cross-section in about the same proportion as can be seen by comparing

(III.2) and (IV.l1). From equation (III.4) one sees that r can be minimized

by choosing the smallest N such that the holes remain degenerate. Table

4.1 is constructed with this approach. We have also included the n-InSb SFR

laser for comparison. r is calculated from (III.4), which is accurate to

about 10% in our present case. The value of listed is that corresponding

to r , and the threshold power density I is obtained by equating ~s of

(V. 1) to the value , together with equations (V.2) for o L 



189

The most promising crystal in this list is p InSb with a CO2 laser pump.

Henceforth we will restrict our discussions to this material. First we consider

the Wl dependence of the various quantities in Table 4.1. The spontaneous

linewidth f given by (III.5) is independent of XO , to a good approximation.

The cross section is nearly independent of L as noted before, and 9s

increases slightly with decreasing from (V.3). The free carrier absorption,

as obtained from extrapolation in N of Gobeli and Fan's experimental results, (I )

is independent of &) from 15, to 35 , but decreases by an factor of 1/2

from 15,) to 1l/. In InSb, the main lattice band is at 52 around this

frequency the crystal will be oraue to the scattered light. From 30 - 60/

there is a two pho on absorption band. ) In InSb, this two phonon process

has absorption coefficient of about 8 cm , which is about 10% of the free

carrier absorption. Thus from 30t on to 50J, the threshold value will be

-10% larger than that given in Table 4.1.

To investigate the feasibility and the detailed behavior of Raman laser

output, we need further information on the transition rates of the hh and lh

bands. From mobility measurements ( we have ra 115 cm 1 and r, 5 cm-1

where r and rx are the relaxation rates for the hh and lh respectively. The

radiative rates ' ) are small compared to these values because ;i is small.

Thus we have z ~> 1 , so that the "fluorescence cycle" would work very

well and we are able to sustain the laser output. Because of the short lifetime

410- 13 sec. corresponding to I/r , the Raman output is considerable. For an

input fluc of 3 x 107 watts/cm 2 the output power is -100 KW/cm . We have

therefore a reasonably high power laser.
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The stimulated linewidth is inversly proportional to the rate of photon

generation

row 427 A l 61(V.6)
where

ZN 7 ( )-- 4 1 l (V.7)

'ls11 is the rate of Stokes photon density generated, and N , are

the hole population densities of the lh and 11 bands respectively. ( see Chapter

2 for more detailed definitions). At low temperature, the lh band is scarcely

populated, so that N - 1. For InSb with S = 5000 Kg/cm 2 , A = 0.044 ev,

we get a stimulated linewidth of the order of 104 Hz for a Raman output of

10 watts.

Our SIV is therefore an efficient, high power, tunable coherent source

of infrared radiation in 11/& to ~35t . Compared with the n-InSb SFR laser

of similar s / , our laser has the desirable characteristics of providing

higher power, covering a wider range of frequencies, as well as improving

ease and speed of tuning.

Inter-valence band scattering could be useful method for studying p-type

semiconductors. With judicious choice of parameters, as we have shown above,

it may be possible to obtain stimulated scattering and to have a easily tunable

laser source from '10/ to 35 . Further extensions into the far infrared

appears to be limited only by the optical properties of InSb and its ability to

stand up to high pressure.
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Table 4.1 All Values are computed at T = 5K, N = 3 x 1016 cm-3.

* In Calculating y' , when two different values are available, the larger

value is chosen to provide a margin.
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Figure 4.2a. Spontaneous lineshape at T = O.
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Figure 4.2b. Spontaneous lineshape at low temperatures.
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CONCLUSIONS

We have developed in this thesis a comprehensive theory of light

scattering from electronic levels, with specific applications to spin-flip scatt-

ering in indium antimonide. In the following we will review our major

accomplishments and suggest further revenues of fruitful research.

I. CRITIQUE

We have first investigated the theory of spontaneous lineshape for spin-

flip Raman scattering. Besides its application to our later theory of stimulated

scattering, our first principle description of spin-flip scattering is of indepen-

dent interest. We have found two important contributions to the lineshape,

from electron nonparabolicity and diffusion. Each of these two mechanisms

is dominant in a different geometry. Analytic formulas are provided for the

lineshapes and linewidths. Our linewidth results as well as the diffusion

broadened lineshape are in very good agreement with experiment.

The nonparabolicity broadened lineshape is, however, not in such good

agreement with experiments. This may due partly to possible experimental

errors, because there are certain features of the experimental results which

appear inconsistent. It is also possible that we lave neglected some important

effects in our approximation. Further theoretical investigation along our line
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of approach should be promising and additional careful measurements needed

to clarify this issue.

In Chapter 2 we have constructed a general theory of an electronic

Raman laser including anti-Stokes and pump radiations. The steady state laser

behavior is treated in detail. Closed-form analytical results are obtained and

interpreted. We have solved the problem of finding scattering outputs in terms

of only the system parameters and the boundary condition pump excitation.

Interesting qualitative results include the constancy of Stokes-anti-Stokes power

ratio as a function of input, and the saturation behavior with proper pump

depletion. This theory is sufficiently general to be applicable to many other

Raman systems.

In Chapter 3 we made a detailed analysis of the temperature, carrier

concentration, and magnetic field effects on spin-flip scattering. The scattering

theories of Chapters 1 and 2 are then applied together with this treatment for the

n-type indium antimonide spin-flip Raman laser. Our analytic results are

compared to various experimental data with very good agreement in general.

Since the other optical nonlinearities are not important in the spin-flip laser,

our comparison probably constitutes the first detailed confirmation between

Raman laser theory and experiments. Because of the vast amount of data

available, we have not attempted a comprehensive comparison. Our results

can however be readily applied to correlate, organize, and explain all the

available data.
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In Chapter 4 we analyzed the possible operation of a stress-tuned p-type

indium antimonide inter-valence band laser using the approach we have developed.

It appears promising that a new, easily tunable high power laser in the wave-

length range 10J - 35,M can be obtained with this mechanism. Further

theoretical and new experimental work are certainly worthwhile.

We have therefore demonstrated the usefulness of our electronic Raman

scattering theories not only in detailed analysis of experimental observations

on the important spin-flip n-type laser, but also in general exploitation of

useful stimulated electronic scattering mechanisms. In addition, our theory

can establish the possible environment and conditions under which the laser

can operate.

II. SUGGESTIONS FOR FUTURE WORK

A number of interesting theoretical work are opened through our inves-

tigations. Refinement of our approximation or inclusion of additional mechan-

ism can be carried out along our direction of approach in the nonparabolicity

dominated lineshape calculation. Much further work should be pursued based

on our model of an electronic Raman laser to include effects of inhomogeneous

broadening, backward Raman waves, multimode structure, as well as higher

order Stokes and anti-Stokes radiations. One can also consider the stability

of the steady state, the transient behavior, and the quantum statistics of the

scattering outputs. Other new mechanism of stimulated scattering should be

exploited with the aid of our theory.
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Many interesting experimental problems are also suggested by our work.

Careful measurements of spontaneous and stimulated lineshapes should be made

to provide further understanding of the broadening mechanisms and additional

comparison with our theory. While our laser theory already appears to

provide an accurate description of the spin-flip laser, various further experi-

ments with different configurations should be carried out to provide a detailed

confirmation with our theory and understanding. The new mechanism we

propose for generating tunable coherent radiation by stress convers a very

wide frequency range and looks promising. Experimental efforts should be

worthwhile to be undertook immediately.

Finally, we note that a very fruitful interplay of our theory with experi-

ments would be the indication of the limiting operating conditions of stimulated

scattering. Applications will be greatly facilitated if practical operations of

the laser can be realized without severe environmental restrictions.
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