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ABSTRACT

Communication at essentially error-free rates approaching
channel capacity has always involved complex signalling systems.
Recently it has been noted that this complexity can be removed at
the expense of a noiseless feedback channel from the receiver back
to the transmitted. Even simple linear modulation.schemes with
feedback can signal at error-free information rates approaching
channel capacity for a white noise forward channel. Such feedback
systems and their characteristics have been analyzed for both
digital and analog communications problems. The optimum linear
feedback system is given for both situations.

The addition of feedback channel noise makes the communications
model more realistic and has also been studied. The optimum linear
system remains undetermined for noisy feedback; a class of suboptimal
feedback systems yield asymptotically optimal noisy feedback systems
and have been studied. The results indicate that linear feedback
systems in the presence of feedback noise do provide some perfor-
mance improvement, but not nearly as much improvement as noiseless
feedback.

Also included is the derivation of the channel capacity of a
white noise channel with a mean square bandwidth constraint on the
transmitted signal. This result is then used to compare angle
modulation performance to the rate-distortion bound.
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CHAPTER 1

Introduction to Feedback Communication

In the design of communications systems much effort is devoted

to designing systems which perform as well as possible or as well

as needed in a particular application. For example, a system

operating over a white noise channel has an untimate error-free

information rate attainable given by channel capacity; however,

systems which signal at rates approaching channel capacity tend to

be very complex and involve coding for useful system performance

(see Wozencraft and Jacobs [20]). In all practical applications

some errors are allowed and a system must be designed to attain the

specified performance. If the performance desired is not too

severe, a simple system will achieve the desired performance. More

often, a simple system is not adequate and the complexities of

coding (or other complexities) are necessary to achieve the desired

performance. For the most part this thesis is concerned with this

latter problem, achieving some specified performance when a simple

signalling scheme is not adequate.

Introducing coding complexities will always improve the system

performance, but the cost of the coding-decoding apparatus may

be great. Recently several authors[ 4'7' 9 ] have studied the utilization

of a feedback link as a means of improving communication over the

forward channel. The advantage of such a feedback system is that

performance comparable to coding (without feedback) is attainable

without the complexities of coding; the main disadvantage, of course,

-7-
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is the addition of the feedback channel (an extra transmitter,

receiver, etc.). A feedback channel, then, offers an alter-

nate approach (to coding) to the system designer as a means of

improving the performance over the forward channel. Whether

or not a feedback system is less expensive (than coding, say)

depends on the application. Strictly speaking, feedback

systems without coding (the topic of this thesis) should be

compared with feedback systems with coding as far as performance

and complexity is concerned. Unfortunately such results for

coded feedback systems have not yet appeared in the literature.

Another advantage of feedback systems is that frequently

a simple system with feedback will perform better than a complex

coded system without feedback. In other applications where

space and/or power may be at a minimum (e.g., in satellite

communication) feedback may offer the only solution to system

improvement. Feedback can also be added to a completed nofeed-

back system to improve its performance; even a coded system

could be improved (with slight modification) by adding feedback.

The application of feedback can take many forms and consequently

give differing levels of system improvement. In a coded system,

for example, feedback might only be used to inform the transmitter

of each bit received; the transmitter would then alter the trans-

mitted signal according to the incorrect bits received. A more

complicated feedback system would continuously inform the trans-

mitter of the "state" of the receiver throughout the baud interval.

This second system clearly uses more feedback information and would
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be expected to offer more improvement than the first. Green[1 ]

distinguishes between these two applications of feedback;

the first is called post-decision feedback and the second pre-

decision feedback. Obviously post-decision feedback will not

give more improvement than pre-decision feedback; but then, it

will also be less expensive in terms of complexity.

Thus far, discussion has been limited to digital or coded

systems which transmit a single bit or more generally one of

a discrete set of messages. Another application of feedback

is to analog communications systems. The distinction between

analog and digital communication is mainly the distinction

between systems with a fidelity criterion (e.g., mean square

error) and those with a probability of error (P ) criterion.

Such applications to analog systems are also of interest and

are treated in this thesis. Analog communication involves no

decisions, but uses a continuous-time or pre-decision feedback

for lack of a better word. This thesis is primarily concerned

with all types of pre-decision or continuous-time feedback.

1.1 General Feedback Communication System

In Figure 1-1 a block diagram of a general feedback communication

system is shown. The information to be conveyed over the forward

channel can take any form (digital or analog) depending on the

application. For example, the channel might be used to transmit

a single bit in T seconds, 20 bits in T seconds, a single bit

sequentially, the value of a random variable, or a segment of a
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Figure 1-1. General feedback communication system
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random process. At the transmitter the signal s(t) which

contains the message is combined with the feedback signal

y(t) to generate the transmitted signal m(t). The forward

channel could be an additive white noise channel or could

contain more complicated disturbances; the results of this

thesis are concerned primarily with a white noise forward

channel.

The output of the forward channel r(t) is the input to the

receiver. The receiver attempts to recover the message from

the observed r(t) and also generates the return signal z(t),

the input to the feedback channel. The feedback signal z(t)

is corrupted by the feedback channel disturbances which could

be additive noise, delay, or other types of interference. In

many cases this feedback channel will be assumed to be noise-

less and without delay. In other words y(t) = z(t).

Typically there are realistic constraints imposed on the

system structure or system signals. The transmitted signal

m(t) must have a power (peak and/or average) constraint and

similarly for z(t) if the feedback channel is noisy. Trans-

mitted signal bandwidth constraints might also be imposed.

Given the necessary system constraints, the system must be

designed to maximize the overall performance whether the criter-

ion be probability of error for digital systems or mean square

error for analog systems.
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Although the signals shown in Figure 1-1 are functions of

the continuous variable time, most authors who have studied

feedback systems previously have studied discrete-time forms

of the continuous-time system of Figure 1-1. For the discrete-

time version the transmitted signal m(t) becomes m (a function

of the integer k) where k represents the k-th sample in time

or the k-th coordinate of some other expansion. Depending on

the expansion employed, such discrete systems may or may not

be easily implemented in practice. Even from an analytical

point of view such discrete formulations are not always tract-

able. The analytical comparison of the two analysis procedures

is the difference between sums and integrals, difference equations

and differential equations. This thesis will treat continuous-

time systems except for the following discussion of previous

investigations. Most authors subsequently apply their discrete

results to continuous-time systems; hence, by always dealing

with continuous-time signals such limiting procedures are avoided.

1.2 Summary of Previous Study of Feedback Communications

One of the earliest summaries of feedback communications

systems is given by Green [1]. Besides discussing some practical

applications of the use of feedback, Green includes a paper by

Elias [2] which describes a pre-decision feedback system. Elias

describes a system which is able to transmit at the channel capacity

of a white noise channel of bandwidth W = k W (W = source band-
c s s
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width, k = integer) by utilizing a noiseless feedback channel

of the same bandwidth. Shannon [5] has shown that even the

availability of noiseless feedback does not alter the ultimate

error-free transmission rate of the forward channel; hence,

throughout this thesis feedback will never improve the ultimate

rate of channel capacity, but perhaps make operation at rates

approaching capacity easier to achieve.

Elias achieves channel capacity by breaking utp the wide-

band channel into k separate channels interconnected with k-l

noiseless feedback channels. For Elias operating at channel

capacity implies that the suitably defined output signal-to-

noise ratio is at the maximum value prescribed by channel

capacity. Such a system is said to achieve the rate-distortion

bound on mean square error for analog systems although Elias

omits reference to the rate-distortion bound. Elias [3] has

extended his work to networks of Gaussian channels.

Schalkwijk and Kailath [4] have adapted a stochastic

approximation procedure to form a noiseless feedback scheme which

can operate at error-free rates up to the ultimate rate given

by the forward channel capacity. In their system a message space

is defined and a probability of error (Pe) calculated. For message
e

rates less than channel capacity Pe tends to 0 in the limit as

the number of messages and the length of the signalling interval

increase. Such behavior is usually what is meant when a digital

system is said to achieve or approach channel capacity.
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Schalkwijk and Kailath consider a discrete time system operating

over a T second interval with TN seconds between samples. The

message alphabet of M signals consists of M equally spaced numbers

e. in the interval [-.5,.5]. The receiver decodes the received

signal after T seconds to the 0I which is closest to the final

value of the receiver output x. The receiver output x is fed-

back to the transmitter at each time instant over the noiseless

feedback channel. The transmitter attempts to drive the receiver

output state xk to the desired message point (a particular

member of the M ei.'s) by transmitting at the k-th instant
1

mk = (Xk - 0) (1.1)

The assumed receiver structure is linear and satisfies the difference

equation

X 1 (M + nx = 0 (1.2)Xk+l = xk - k k =n)

where

= constant

nk = additive noise at k-th time instant

E[nknj] = N/2 6kj

The constants and N are adjusted so that the average power constraint

N
P 1 [ 2 (x -) 2 ] (1.3)

ave T iO i

holds and P is minimized.
e
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The performance of this system is shown to have a P which
e

tends to 0 at information rates less than

C = P ave/N nats/sec (1.4)
ave o

as T, , and N all go to infinity in a prescribed manner. C is

the channel capacity for the infinite bandwidth forward channel

with or without feedback. The information rate R. in nats/sec is

defined as

1
R = In (M) (1.5)

For finite values of T, M, and N Schalkwijk and Kailath's

system gives a lower P than that obtained for block coding
e

(without feedback). In other words even though both systems have

a P which approaches 0, the feedback scheme approaches 0 much more
e

rapidly. The feedback system is also structurally simpler and

does not involve complex coding-decoding algorithms for the messages.

Schalkwijk [6] in a companion paper shows how to modify the

wideband scheme for use over bandlimited channels. A bandlimited

channel for bandwidth W implies that (for the above scheme)
C

N 2 T (1.6)
C

and that a (in Equation 1.2) becomes a function of k (time). The

modified system then achieves error-free transmission (in the limit)

at rates u to the bandlimited channel capacity

P
CW = W ln(l + ave (1.7)

c NW 
c o c
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An important assumption of'these two papers is noiseless

feedback. In a practical situation there always exists some

noise in any system. Both of the above papers calculate the

performance of the feedback systems if noise is inserted. The

performance exhibits a sharp threshold at the point where the

feedback noise dominates the overall system performance. No

matter how small the feedback noise is (relative to the forward

channel noise), eventually P tends to 1 as M, N, and T tend
e

to infinity. The conclusion is that the feedback systems described

by Schalkwijk and Kailath cannot achieve channel capacity if

the slightest amount of feedback noise is present. In a practical

situation where P need not be 0 the feedback noise might or
e

might not be small enough for satisfactory operation of the feed-

back system. No attempt was made by Schalkwijk and Kailath to

take into account in system design possible feedback noise.

Omura [7,8] considers the identical discrete-time problem

from a different viewpoint. Assuming an arbitrary one-state

recursive filter at the receiver, Omura proceeds to determine the

best transmitted signal for that receiver (given the receiver

state is fedback) and then to optimize over the arbitrary one-

state filter. His arbitrary filter is described by

Xk+l Xk + kXk gk (k + nk)

(1.8)
xo=0
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where {k } and {gk} are free parameters to be determined. mk is

the transmitted signal which depends on the noiseless feedback

signal xk-1 and the message point ; the exact dependence of the

transmitted signal on these two inputs is optimally determined.

The optimization for {mk}, {k }, and {gk} can be formulated using

dynamic programming and then solved.

The optimal transmitter structure is linear (of the same form

as Equation 1.1). For any arbitrary set {k} the optimization

yields a particular set {gk} such that all of these systems have

identical performance. Omura's system differs slightly from

Schalkwijk and Kailath's in that Omura's has a constant average

power

E[mk = (Omura) (1.9)
ave

whereas Schalkwijk and Kailath have a time-varying instantaneous

average power

V

d2] 1 (Schalkwijk) (1.10)
E[mk2 I 

Both, of course, satisfy the average power constraint Equation 1.3,

but in different ways. Both systems have similar (but not identical)

performance; Omura's performs better for finite T, , and N.

Turin 9,10] and Horstein [11] consider a different system

utilizing feedback. They are concerned with transmitting a single

bit (or equivalently one of two hypotheses) sequentially or non-

sequentially. Thus far only nonsequential systems have been mentioned.

The receiver of the sequential system computes the likelihood ratio
I
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of the two hypotheses, H+ and H ; the ratio is also fedback to the

transmitter over a noiseless feedback link. For sequential

operation the system is allowed to continue until the likelihood

ratio at the output of the receiver reaches one of the two

thresholds, Y+ and Y. The time required for each bit to be

determined at the receiver will fluctuate, necessitating some

data storage capabilities. If the system is operated nonsequen-

tially, the receiver chooses the most likely hypothesis at the end

of the fixed transmission interval.

For Turin and Horstein the receiver (likelihood ratio computer)

is fixed and the optimal transmitted signal to be determined. In

particular they require the transmitted signal to be of the form

m+(x,t) = ± U (x)a(t) (1.11)

where x = likelihood ratio receiver output.

The signal transmitted under either hypothesis is the product of a

time function a(t) and a weighting U(x) due to the current state

of the receiver. A peak-to-average power ratio is defined

a= Ppeak /P (1.12)
peak ave

and a peak power constraint is applied by varying . Turin considers

a=l and a>-log2(Pe) = a'. Horstein considers the remaining values

of a.

For a tending to infinity (i.e., no peak power constraint)

the sequential system can operate up to an average error-free rate
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given by channel capacity. For a given (nonzero) P and average
e

time/decision T the sequential system has an average power

advantage of

= -log2(P e ) (1.13)

over the same system without feedback. Such a system without

feedback would be equivalent to a nonsequential matched-filter

likelihood ratio computer at the receiver.

For a finite peak power constraint it is impossible to operate

the system at any nonzero rate with P =0. Without allowing an
e

infinite peak power neither Turin and Horstein nor Schalkwijk and

Kailath can achieve channel capacity; Omura's scheme, however,

does not require an infinite peak power.

Kashyap [21] has considered a system similar to Schalkwijk

and Kailath'ts, but with noise in the feedback channel. Kashyap's

result is that nonzero error-free information rates are possible

for rates less than some R <C. Unfortunately his technique requires
c

an increasing average power in the feedback channel as T, M, and

N increase. Basically the transmitted power in the feedback

signal is allowed to become infinite so that the feedback link is

really noiseless in the limit and nonzero rates can be achieved.

That he could only achieve a rate R <C must be attributed to
c

his not letting the feedback channel power get large enough fast

enough.

Kramer [22] has adapted feedback to an orthogonal signalling

system. Orthogonal signalling systems (unlike the linear signalling

systems treated thus far) will operate at rates up to channel
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capacity without errors without feedback. The addition of feed-

back cannot improve on this error-free rate, but it does improve

on P for finite T, M, and N. In fact it is not surprising
e

that orthogonal signalling with feedback is much superior to

linear signalling with feedback. Of course, the orthogonal

system would be somewhat more complex in terms of transmitter-

receiver implementation. For the most part this thesis is not

concerned with the addition of feedback to already complex

systems; the main advantage of feedback appears to be a saving

in complexity at the expense of a feedback channel. However, for

some channels (e.g., fading) orthogonal signalling is almost a

necessity for satisfactory performance.

Kramer also considers noisy feedback, but like Kashyap,

lets the feedback channel power approach infinity so that the

noise in the feedback link "disappears" allowing capacity to be

achieved in the same manner as his noiseless system.

Butman [23,24] has formulated the general linear feedback

problem similar to Omura's. Butman assumes a linear transmitter

as well as receiver and optimizes over these two linear filters;

here a linear receiver is assumed (as with Omura) and the optimal

transmitter is shown to be linear. For noiseless feedback Butman's

discrete-time system performs better than Omura's, but Omura's

system can be made equivalent to Butman's in performance by removing

some of Omura's approximations. For noisy feedback Butman-has

some results for suboptimal systems; analytic solution for the

optimal system seems impossible. Unfortunately his partial results
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cannot be extended to the continuous-time systems treated in this

thesis. Butman, however, did impose a finite average power

constraint on the feedback transmitter and thereby formulated

a realistic problem of interest which others have failed to do.

1.3 Outline of Thesis

In the remainder of this thesis noiseless and noisy feedback

systems are studied employing a continuous-time formulation of

the problem. The primary concern is not so much with achieving

capacity of the forward channel, but with minimizing either the

probability of error (P ) or the mean square error for finite time
e

problems.

Chapter 2 treats the continuous version of Omura's problem

with noiseless feedback. Also investigated are the physical

characteristics (peak power, bandwidth, etc.) of such noiseless

feedback systems.

Chapter 3 treats the topic of analog signalling over noise-

less feedback systems. This is a new application of feedback

and has not been studied before.

Chapter 4 treats the digital problem in Chapter 2 when there

is noise in the feedback link. The results are primarily approximate

since analytic solution seems impossible. Nevertheless, such

partial results are most useful in systems engineering since the

optimal systems (if they could be determined) appear to be not much

better than some of the sub-optimum systems studied. Noiseless

feedback systems turn out to be very sensitive to the noiseless

assumption: noiseless feedback can be viewed almost as a singular
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system achieving dramatic performance improvement. The addition

of noise in the feedback link which makes the sstem more

realistic also cuts down the performance improvement.

Chapter 5 deals with extensions of this work and suggestions

for future study.

Chapter 6 contains some results unrelated to feedback

systems. They are included for completeness since the results

were obtained during my graduate research.

I-



CHAPTER 2

Noiseless Feedback -- Digital

In this chapter a noiseless feedback system will be developed

and its performance calculated. The system development is

similar to that of Omura [7,8], but the analysis is in terms

of a continuous-time variable t instead of a discrete variable

k. The mathematics necessary for this formulation involves

stochastic differential equations, dynamic programming, and

stochastic optimal control theory. No attempt will be made to

prove the necessary results from these areas; the reader is

directed to the references for further information.

2.1 Definition of Noiseless Feedback System

The receiver structure is assumed to be a simple linear

system described by a first order differential equation. The

motivation for such a receiver structure is primarily the

simplicity and practicality; the prospect of actually having to

build the system if it will work satisfactorily is not an

unpleasant one. Also, under the Gaussian noise assumption the

linear system will turn out to be optimal.

The receiver (by assumption) is an arbitrary one-state

linear filter operating on the received signal r(t) in the interval

O<t<T. The state equation is

d_ x(t) = (t) x(t) + g(t) r(t) (2.1)dt

-23-
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where (t) and g(t) are to e selected in an optimal manner.

A more general linear receiver would be one of higher dimensional

state, but the analysis for the one-state system indicates that

extra states in the receiver will not improve the system perform-

mance; hence, the assumption of a one state receiver does not

reduce the ultimate system performance.

The forward channel is an additive Gaussian white noise

channel as indicated in Figure 2-1. The feedback channel is

noiseless and allows the transmitter to know the state, x(t), of

the receiver.

The digital signalling problem consists of transmitting one

of M equiprobable messages from the transmitter to the receiver

with a minimum probability of error. Assume that the M messages

are mapped to M equally spaced points in the unit interval

i-l
[-.5,.5]. The random variable takes on the value -.5 + 

(i=1,M) depending on which message is transmitted. For this

system of coding the transmitter conveys the value of a random

variable which can be mapped back to the actual message if

desired.

The performance criterion for the system is the probability

of error (Pe), and ideally this criterion is to be minimized.

Unfortunately this criterion is not tractable for selecting the

best transmitter structure minimizing P . Instead a quadratic
e

criterion is used to optimally select the transmitter structure;

the system is designed to minimize the mean square error in

estimating 0 at time t-T.
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n(t) S (f) = Nn/2

ddx(t) = ~(t)x(t) + g(t)r(t)

x(O) = 

Figure 2-1. Continuous-time digital feedback system

0
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Several comments about this criterion are appropriate. If

the transmitter is assumed linear, forming the minimum variance

estimate of at the receiver (and decoding to the nearest message

point) is equivalent to minimizing Pe ; hence, the solution

obtained shortly is the minimum P system when the transmitter
e

is constrained to be linear. As will be shown, the best trans-

mitter structure for minimizing the quadratic criterion is

linear anyway. In Chapter 3 analog estimation problems are

treated; for these problems the criterion is truly a mean

square error one so that the results of this chapter are

directly applicable.

Besides the message point , the transmitter has available

x(t), the current state of the receiver. This information is

transmitted continuously back to the transmitter over the noise-

less (and delayless) feedback link. Knowledge of the state

x(t) is sufficient to specify completely all characteristics

of the operation of the receiver; hence, any other information

supplied over the feedback channel would be redundant. Actually

the transmitter also has available the past values of x(t)

(i.e., x(T) for O<_T<t), but these values turn out to be un-

necessary. The general structure of the transmitter is arbitrary

with m(t) = f(e,x(t),t); the optimization implies that f( , , ) is

actually linear in the first two arguments.

In the formulation the functions (t) and g(t) which

determine the receiver are completely free. In a practical system

one or both of these functions might already be specified as part
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of the system or by cost considerations. Here these two

functions will be assumed unconstrained.

If the receiver state at t=T is to be the minimum mean

square error estimate of , the quadratic criterion to be

minimized is

2 2
a = E[ (x(T)-O) ] = minimum (2.2)

with the expectation over the forward channel noise and over

O (the message space).

One further constraint remains, that of transmitted power

or energy. The transmitted signal m(t) is unspecified, but

it must satisfy

T 2

f dt E[m (t)] < 0 = P Tave (2.3)
0- ave0

as an appropriate transmitter energy constraint. The expectation

is over the channel noise and the message space. A constraint

on the feedback channel energy has no meaning when the channel

is noiseless.

The constraint in Euation 2.3 is only on the average

energy used. During any particular T second interval the actual

energy used can be more or less than the average EO. Thus,

the transmitter must be able to exceed a transmitted energy of

E in T seconds frequently. The average over many intervals
0

(messages), however, is E0.

Summarizing the problem just formulated, the performance

2.
a in Equation 2.2 is to be minimized subject to the energy

constraint in Equation 2.3. The minimization is over the trans-

mitter structure m(t) and the free receiver functions (t) and
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g(t).

2.2 Stochastic Optimal Control and Dynamic Programming: Formulation

Having specified the problem in the previous section,

the solution technique follows by relating the problem to the

work of Kushner [12,13]. First of all, some interpretation

must be given to systems specified by differential equations

with a white noise driving term as in Equation 2.1. Such

stochastic differential equations are subject to interpretation

according to how one evaluates the limiting forms of difference

equations. The two principle interpretations are those of

Ito [18] and Stratonovich [19]; the only difference between

the two is the meaning of white noise. For this problem, though,

the two interpretations are equivalent since the differential

equations are linear.

Kushner [12,13] using the Ito interpretation has formulated

the stochastic optimal control problem in dynamic programming.

Technically Ito differential equations need to be expressed in

terms of differentials rather than derivations; throughout this

thesis derivative notation will be used for simplicity. Continuing

with Kushner's formulation, let the stochastic system to be

controlled by specified by a nonlinear vector state equation

d
x = f(xut) + (t)(2.4)

where (t) is vector white noise with covariance matrix

E[(t)(u)] = S(t) 6(t-u) (2.5)
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For the communications problem here the state equation is

Equation 2.1 or

dt x(t) = (t) x(t) + g(t)[m(t) + n(t)] (2.6)

The white noise i(t) in Equation 2.4 corresponds to g(t)n(t)

in Equation 2.6, the covariance function of the latter being

N0 2
E[g(t)n(t)g(u)n(u)] = g (t) 6(t-u) (2.7)

The ptimal control problem for Kushner is to determine

the control u within some control set in the interval of

operation [,T] which minimizes the cost functional

T

J = E[f dt L(x,u) + K(x(T)) 1 (2.8)
0

which contains an integral cost plus a terminal cost. The

notation E[ is the expectation conditioned on all the inform-

ation which is available to the controller u. The control

variables in the feedback communication problem are m(t),

¢(t), and g(t). (t) and g(t) are simply functions of time, but

m(t) is more complicated because it can depend on the feedback

signal x(t). The solution proceeds first by determining m(t)

(the transmitter structure); then the problem is no longer

stochastic control and (t) and g(t) can be found by ordinary

means. Therefore, identifying Kushner's control u with m(t),

the communications problem is to determine the control m(t)
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within the control set -<m(t)<- in the interval [n,T] wrhich

minimizes

T 

J = E[ X f dt m (t) + (x(T)-O- ] (2.9)
0

The constant X is a Lagrange multiplier necessary to impose

the average energy constraint in Equation 2.3.

This optimal control problem of Kushner differs from the

ordinary (deterministic) optimal control problem by the white

noise term in the state equation and the exDectation E[ .

Deterministic optimal control can be treated by dynamic programming

techniques of other techniques derived from Pontryagin [25];

stochastic optimal control cannot be formulated with Pontryagin's

method due to the nondeterministic nature of the system state

equation.

For the above stochastic problem dynamic programming

defines an optimal value cost function

T

V(x,t) = min E [ f dt (x,u) + K(x(T)) ] (2.10)

t

V(x,t) is the minimum cost of starting in state x at time t

and proceeding to the end of the interval. Kushner [12]

shows that the function V(x,t) must satisfy the partial differ-

ential equation

0 = min E*{ aX + <V, f > + L(x,u)~t DX'-

u£

+ Tr[S(t) -- ]} (2.11)
ax 
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where ordinary matrix notation has been employed to simplify

the equation. The boundary condition for the partial differ-

ential equation is

V(x,T) = K(x(T)) (2.12)

The solution of Equation 2.11 for V(x,t) and u is not easy.

No general techniques are known for solving such systems just

as similar techniques are not available for deterministic control

problems.

Proceeding with the parallel development of the communic-

ations problem, define the cost functional

T 2 2
V(x,t) = min E[ f dt m (t) + (x(T)-0)2 ] (2.13)

m(t) t

It follows from above that V(x,t) satisfies

0 = min E* { V + av [(t)x(t)(t)+gt)m(t)]

m(t)

2 N02 a2v
+ X m(t) + -g (t) } (2.14)

ax

subject to the boundary condition

V(x,T) = (x-e)2 (2.15)

Note that the quantity of interest (J in Equation 2.9) is

actually V(0,0). By finding V(x,t) first, V(0,0) follows easily.



-32-

Observe that although the control m(t) is written with

only a time argument, the control is actually a function of

t, x(t), and . This will become apparent when E*[ ] is

evaluated. Also Equation 2.15 implies that 0 is fixed and

known. Later the results will be averaged over to obtain

the system performance.

2.3 Solution of Noiseless Feedback System

In this section the solution to the stochastic optimal

control problem will be found to determine the dependence

of m(t) on x(t) and 0. Following this, the functions (t) and

g(t) will be optimized to complete the system.

The conditional expectation E[ ] is conditioned on the

fact that the transmitter knows x(t); hence, E[x] = x.

Inserting this fact in Equation 2.14 allows E[ ] to be

evaluated, leaving

~V ~V
= min { + x[(t)x(t)+g(t)m(t) + m2(t)

m(t) N 2

N 0 2 - } (2.16)
+-g (t) 2

4 ~

The minimization over m(t) is just a minimization of a

quadratic form in m(t) (for a fixed t). Evaluating Equation

2.16 at its minimum gives

2 2

0 = t - g (t) -2 2W .L + x ~(t)x(t) (2.17)
~t 4A x ~x2 ;x
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where the minimizing choice of m(t) is

m(t) = _g(t) [;V (2.18)

Equation 2.18 expresses m(t) in terms of the as yet unknown

V(x,t).

Several comments can be made at this point relating

stochastic optimal control and deterministic optimal control.

In this problem the optimal control m(t) is not affected

directly by the noise term in Equation 2.16, namely,

2 2 2
(N0/4)g (t);2V/Bx is independent of m(t). Thus, the solution

for m = m(x,t) is the same as would be obtained with no noise

present; this problem corresponds to optimal control of linear

systems treated similarly in Athans and Falb [14]. In general

the addition of the noise term in Equation 2.15 is the only

difference in the dynamic programming formulation of stochastic

problems. For many problems the solution to the deterministic

problem will also be the solution to the stochastic problem

if the control is given as a function of the state, not just

a function of time. The techniques of Pontryagin are not

applicable to stochastic problems since they do not explicitly

obtain the control as a function of state.

Returning to the partial differential equation for V(x,t)

in Equation 2.17, the solution is not at all obvious for this

or most other partial differential systems. -Since there is a
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quadratic cost imbedded in the problem, it is perhaps not

unreasonable to expect that V(x,t) is also a uadratic form.

Therefore, try a solution of the form

9
V(x,t) = P(t) [x- y(t)] - + r(t) (2.19)

where P(t), y(t), and r(t) need to be determined. Inserting

the above expression for V(x,t) into Equation 2.17 and equating

2) 0
the coefficients in front of x , x, and x to zero, there

result differential equations which P(t), y(t), and r(t) must

satisfy if V(x,t) in Equation 2.19 is to be the solution.

The differential equations and boundary conditions for these

three functions are

2 2
d 2 (t)p2 (t
d P(t) (t)P (t) - 2p(t)P(t) P(T) = 1 (2.20)d P(t) = 

d- y(t) = t)y(t) y(T) = (2.21)

d N 0 2
d r(t) = - No g (t)P(t) r(T) = 0 (2.22)

By solving these three equations, V(x,t) is determined by

Equation 2.19, implying that m(t) is (from Equation 2.18)

m(t) - g((t) (x(t) - (t) (2.23)

which is the desired optimal transmitter structure. Observe

that Equations 2.20-22 are easily solved numerically by integrating

backwards from tT where the boundary conditions are given.
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Actually in this problem the equations can be integrated

analytically. Starting with Equation 2.21, define

t

P(t,T) = exp[ f dv (v)] (2.24)

T

as the transition function of Equation 2.21. Applying the

boundary condition on y(t) gives

0
y(t) = 0 (t,T) = ~(Tt) (2.25)

as the solution for y(t) in the interval. y(t) represents a

type of tracking function for the transmitter; whenever x(t)

(the feedback signal) happens to equal y(t), the transmitted

signal m(t) is zero. y(t) is that value of x which will cause

the receiver to "relax" to x(T) = 0 with no further input

starting at state x = y(t) at time t. The additive channel

noise will always disturb the receiver state so that the trans-

mitted signal will never be zero for any measurable length of

time.

Equation 2.20 is a Ricatti equation for P(t) (without a

driving term). The solution can be written

2

P(t) = (T,t) (2.26)

1 T 2 2
1 + f dT g (T)D (T,T)

t

by employing the boundary condition. Finally the solution of

Equation (2.22) yields
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N0 2
r(t) =- X ln[P(t)D (t,T)] (2.27)

Now that V(x,t) has been determined the initial point

V(0,0) can be evaluated to give the original functional as

T 2 2
V(0,0) = min E*{ f dt m (t) + (x(T)-e)

m(t) 0

= P(0)y(O)2 + r(0)

N
= es- . 2 A ln(s0 ) (2.28)

where s is defined as

sO - P(0) 2 (0,T) (2.29)

The overall minimum cost (minimum over the transmitter structure

only is only a function of

T 2 2
+ f dT g (T)' (T,T) (2.30)

~0

and N/2, , and . Recall that is assumed known until the

average over e is taken later.

The next step in the optimization is to determine g(t) and

¢(t) by minimizing the cost in Equation 2.28 over all possible

g(t) and (t). Assuming no constraints on these functions, from

Equation 2.30 g(t) and (t) (or equivalently (T,t)) enter together
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in the cost. Therefore, either g(t) or (T,t) can be set to

1 without any loss in generality. Set tD(T,t) = 1 (which

implies (t) = 0) as the choice leaving the above equation

as

T
L 1+1 f dT g(T) (2.31)

so 
0 0

Setting (t) = 0 implies that the receiver structure is only a

multiplication (or correlation) of the received signal by g(t)

and integration of the product; the arbitrary memory allowed

origina±lly is not needea. qulva±ently trhe multiplicative

function could be set to unity and the receiver structure would

only involve the memory term (t). Also one could keep both

g(t) and (t) if, say, (t) is a given fixed part of the receiver.

All of these variations of the receiver have the same overall

performance if their values of s in Equation 2.30 are identical.

If a higher state receiver had been assumed initially, the

unnecessary redundancy of the extra states would appear at this

point in the analysis.

Reverting to ¢(t) = 0 and s given by Equation 2.31,

V(0,0) is still a functional of the arbitrary function g(t).

The optimal g(t) can be found by ordinary calculus of variations.

Perturbing Equation 2.28 gives

2 0
0 =V(O,O) = [e- 2s - ] 6s (2.32)

s0

The right hand side is zero if s0 = 0 or if the bracketed term

is 0. 6s = 0 implies that g(t) = 0 which is an impossible
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solution; therefore; setting the bracketed term to 0 implies

N X
N0

s = (2.33)
2

2e

or

T 2

f d g (t) = 2 X = constant (2.34)
0 T N

which is the only restriction on the optimal g(t). Note that no

solution for g(t) came out of the perturbation, only the above

constraint on the integrated square of g(t). This singular

solution implies that there are an infinite number of possibil-

ities for g(t), all of which have some performance as long as

Equation 2.34 holds.

At this point there are still several steps remaining to

obtain the overall system structure. The multiplier needs to

be determined such that the average transmitted energy is Eo0.

This averaging involves averaging over also. However, the

transmitter structure has been determined as

m(t) = - g(t)P(t) (x(t) - ) (2.35)MW WO % ( (23) 

where P(t) is known (Equation 2.26), X is an unknown constant to

be determined, and g(t) s (almost) arbitrary. The transmitter

sends a multiple of the instantaneous error between the receiver

state x(t) and the desired state .

2.4 Evaluation of the Performance of Feedback System

The previous section found the solution to the noiseless
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feedback problem in terms of te (almost) arbitrary g(t)

and the constants X and . Frequently in optimization

problems the solution for the optimum is relatively straight-

forward, but the actual evaluation of the performance is

more difficult; this problem is no exception.

Using the optimal transmitter structure in Equation 2.35,

the state equation of the overall system (Equation 2.6)

2

d _ g (t)P(t) (x(t) - 0) + g(t)n(t) (2.36)

x(O) = 0

for (t) = 0. Define the instantaneous error given 0 as

2
K(t) - E[(x(t)-0)2 ] (2.37)

The differential equation for K(t) is

NO

dK(t) 2(t)P (t) + (t) (2.38)

K(0) = 2

Therefore, the conditional performance (mean square error) of

the feedback system is the final value of K(t), namely

2 = E[(x(T)-0) 2 I = K(T) (2.39)CF le~~~~~~~~~(.9
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To relate this performance to the energy used, define

it

E0 (t) - f dT E[m (T)1 (2.40)
0
0

as the energy used after t seconds. In differential equation

form

2 2
d g(P K(t)= (t)2.41)
dt E0

E 0 (0) = 0

The remaining differential equation to specify the performance

calculation is that for P(t) given in Equation 2.20 (for

4(t)=0). In order to have all boundary conditions at t=0,

integrating backwards in Equation 2.20 gives

0
P(0) = s = (2.42)() 22

2e2

Solution of the three equations for K(t), E(t), and P(t)

can take many forms. Since g(t) is arbitrary except for the

integral square constraint in Euation 2.34, a fixed g(t) could

be selected and the equations integrated numerically or analy-

tically. For this problem analytical integration of these

equations for an arbitrary g(t) is possible; this procedure

was the original solution technique.

In view of the answer obtained, the following derivation

is shorter. Recall that the analysis is still conditioned on
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2
a fixed known 0. ultiplying Equation 2.38 by P (t) and

rearranging terms yields

dK 2 3(t) N 2 2

dt P (t) + 2 (P (t) (2.43)

Inserting the expression for dP/dt gives

N

dt
(2.44)

Integrating and using the initial conditions implies

K(t)P 2 (t) = 2 X P(t) (2.45)

which further implies that Equation 2.41 can be written

d NC 1 d

d- E0K(t) - K(t) (2.46)

Now the energy and performance are directly related; integrating

gives

K(t) = exp[-2En(t)/NC]

If is chosen properly, then E(T) = E and

2 = 62 exp[- 2 E0/N0]

lo

(2.47)

(2.48)
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as the conditional performance in terms of the allowed energy.

The absolute performance is obtained by averaging over 0

(the message space) to give the value of the minimum of

Equation 2.2 as

2 2
O = E[ ] exp[-2E 0/N 0 (2.49)

Unfortunately the solution leading to Equation 2.40 does

not contain some of the details of the system structure, such

as the value of X and the constraint on g(t). The most direct

(although cumbersome) way to obtain the value of is to

integrate Equation 2.41, equate E(T) to E0, and evaluate 

as

2 22 E[ 2] =2 E[E2]
% 2 N0 exp[-2E0/N] = 2 No (2.50)

which implies the only constraint on g(t) is

T 2 2 E[6 2

f dt g (t) = (1 - exp[-2E 0/N0 ]) (2.51)
0 NO

Observe that the parameter which was defined in Equation 2.29

is te fractional mean square error (or normalized mean souare

error)

2.,~~~~~~~~~~~~~~~~~~C

2 sO = exp[-2E 0/N0] (2.52)

The performance in Equation 2.52 is the fractional mean square

error for estimating any random variable 0 since the robabilitv
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density of has not entered the analysis. Implicitly 0 has

a zero mean and a finite variance.

2.5 Probability of Error for Linear Coding of Messages

In Section 2.1 the mapping from the message space (M

equiprobable messages) to the random variable was outlined.

Here this mapping will be used to calculate the probability

of error (Pe) for the digital signalling scheme.

The receiver decodes the terminal state x(T) into which-

ever message is most probable. For M equiprobable messages

the output space for x(T) (the values X(T) may take) can be

broken into uniform width cells (except for the end cells

near .5) corresponding to the M possible messages. If

x(T) falls into the i-th cell, i is the most probable value

of and the i-th message is the most probable message.

Assume that a particular 8. is sent. The probability of
1

error given 0. sent is approximately the average (over all
1

messages) P of the whole system; the only difference is that
e

the endpoint messages Oi
+ .5 have slightly lower conditional

probability of error. Henceforth, this conditional P given
e

8i sent will be treated as the average P for the system; it is
i e

negligibly higher than the true average P.
e

For a particular 0. if n(t) is Gaussian, then x(T) is a
1

Gaussian random variable. From the previous section given

i then

E(x(T)-0i) ] 8ei so i exp[-2E 0 /No] (2.53)

L~~~~~~~~~~~ 
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By appropriate manipulation of the system differential equations

the mean value of the difference is

E[(x(T)-ei)] = - e (2.54).~~~~~~~~~~ 0

which implies that x(T) is a biased estimate of 0i . Combining
ig

the above two equations gives the variance of the Gaussian

random variable x(T) as

!~~~~~~~~~~

Var[x(T) 1 ] = ei s( - s) (2.55)Vat [(!
:1

On the average the variance is

22
Var[x(T)] = E[0 ] s0(l - so) 1 (2.56)

Although the Var[x(T)] really is not the same for each i, for

purposes of analysis it will be assumed to be the constant

2 2
C above. Another approach would be to upper bound Oi by its

maximum value of .25 to remove the i dependence. The resulting

P would be an upper bound not significantly different from P
e e

calculated using 2l.

The transmitter message space [-.5,.5] is compressed by

a bias factor (1 - s) at the receiver; thus, whereas the

message points are /(M-l) apart at the transmitter, they

are only (-s 0 )/(M-1) apart in the receiver space. If 0. is
1

sent, the receiver will make the correct decision if
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(l-s0 )( i 2(M-1l)) < x(T) < ( + 2(M-))(1-S ) (2.57)0 i -2(M-1)' <i 2 (M- 1) (lo (257

The probability of error is the probability of exceeding the

above cell and can be written

P = P - 2
e e 

i
f

1-s0

2M-2

dz exp[-z2/2ao]

0o

Q(v) = f dz 1 exp[-z2/2]
V

7~-

2

7

P becomes
e

P = 2 Q(
e

1 2I( _ 1)l/2

2(M-l) E8 2A ] °

or using Equation 2.52

1

2(M-1) E0 I
(exp[2Eo/N0] - 1)1/2) (2.61)

If the variance E[0 ] is approximated by the variance of a

random variable with uniform density in the interval [-.5,.5], then

E[02] =1/12 and P can be evaluated. A better choice for E ]
e

would be the actual variance of 0 for the message space assumed;

this is done in the next section.

Defining

(2.58)

(2.59)

(2.60)

P = 2 Q(
e

I

I
i

I

1i

Iii

i

I

I

i

i

i

I
i
I

II

I

i
i.i

I

-1 -
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A comparison of P above with that obtained b Omura shows
e

that Omura assumes E[02 ] = 1/12 and that, if the bias (-s)

can be ignored, his discrete system has the same P when
e

evaluated in the continuous-time limit. The bias can only be

ignored for large signal-to-noise ratios (2E/N ); mura
j 0

fails to note this fact.

Schalkwijk and Kailath's system output is an unbiased

estimate of (by their arbitrary choice) and has no such

restrictions. Their performance, however, is inferior in the

limit. If Schalkwijk and Kailath allowed a biased estimate

to be fedback and optimized their system, better performance

could be obtained. Recall, however, that they make no optimiz-

ation attempts in their application of a stochastic approximation

theorem.

As noted by Omura, Schalkwijk, and Kailath, P goes to
e

zero in a doubly exponential manner for feedback systems.

To relate this P to channel capacity, using Equations 1.4 and
e

1.5 to define capacity and rate, the probability of error is

(approximately)

i 2]-1/2
P = 2 Q( E exp[(C-R)T] ) (2.62)
e

which is Omura's result for unbiased artitioning (P when the
e

bias is ignored). A nofeedback system employing block orthogonal

coding also has a P which goes to zero (for increasing T and
e
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and R<C), but the error is only singly exponential in T.

The doubly exponential dependence of the feedback systems

implies that for finite T the feedback system will have a

lower P than the block orthogonal system without feedback.
e

Schalkwijk and Kailath [4] have some curves which indicate

the improvement of the feedback system over the block ortho-

gonal system.

As noted earlier, Schalkwijk and Kailath do not use a

biased system. From their paper the P obtained by them is
e

P = 2(½ E[02]- 1/2 exp[(C-R)T] .454 )(2.63)
e2

which is different from Equation (2.62) by the factor .454.

For finite T their system will perform substantially worse

than the feedback scheme of this chapter. For example, if

ethe continuous-time feedback system has an error P = 101,
-2

the unbiased system (Equation 2.63) would have Pe = 10 for
e

the same C, T, and R. This difference is a consequence of

the fact that feedback signal of Schalkwijk and Kailath is an

unbiased estimate of .

2.6 Comparison of Feedback System Performance with Butman's Results

Butman [23] assumes a general linear receiver and linear

transmitter for the discrete-time feedback problem. His solution

for the optimal linear system has the same limiting (discrete to



-48-

continuous) performance as Equation 2.61. This result is further

verification of the fact that the simple one-state receiver

assumed in this chapter performs as well as any higher dimensional

arbitrary linear receiver.

To rewrite Equation 2.61 so that it conforms to Butman's

result requires only the evaluation of E[0 2 ]. For the random

variable as described in Section 2.1, the variance is

E[] 12(M-) (2.64)
12(M-1)

which for large M is 1/12. Inserting the above expression for

E[e2 ] into Equation 2.61 gives

3(exp[2E0 /N0 ] - 1) 1/2
P 2 Q([ 2 ] ) (2.65)
e M - 1

which is Butman's result in the continuous-time limit.

2.7 Performance of Linear Receiver without Feedback

Some idea of the advantage and improvement of the feedback

system can be gained by examining the same problem without the

feedback link. Given a linear receiver, energy constraint, and

cost function (Equation 2.13), determine the best transmitter

structure and optimal receiver parameters for minimizing the

cost. The solution follows using ordinary calculus of variations.

The best transmitter structure is linear in , that is,

m(t) = e h(t) (2.66)
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where h(t) is arbitrary except for energy normalization. The

linear receiver is "matched" to the waveform li(t). Rather

than demonstrate the approach just outlined for obtaining the

solution to the nofeedback problem, the preceding results of

the noiseless feedback system can be extended to the nofeed-

back problem, the preceding results of the noiseless feedback

system can be extended to the nofeedback system.

The solution assuming no feedback implies that F,[ ] is a

different conditional expectation. E*[ ] is conditional on

the information available at the transmitter; now, without a

feedback channel, there are no conditions, namely

E*[x(t)] = x(t) = mean of x(t) (2.67)

replaces the previous definition of E*( ]. Equation 2.16 now

becomes

0 = min {E*[aV] + g(t)m(t) E[aV] + ¢(t) E*[x(t) x3V]

m(t)

at~N ax axv
N 

+ Xm2(t) +4 g (t) * a 2 (2.68)g (t) ~ax 2

The minimization over m(t) roceeds as before giving

m(t) = g(t) E*[V (2.69)
2X [ x
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I~~~~~~~~~~~~~
0 E*3V ) E*2v + (t) E*[x(t) a0 E t~~ 4X E x 3]

~02 2av+ - g2 (t) E[ 2 (2.70)
x 2

which correspond to Equation 2.18 and 2.17 respectively. The

same quadratic form solution will satisfy Equation 2.70 with

exactly the same P(t), y(t), and r(t); however, the E* operation

removes the variable x and leaves Equation 2.70 as an ordinary

differential equation. V(x,t) has no meaning any more since

x is not available to the transmitter. The transmitter structure

implied by Equation 2.69, however, is the optimal one which

minimizes Equation 2.9.

Inserting the quadratic form for V(x,t) into Equation

2.69 gives

M(t) = g(t)P(t) (x(t) - e0(t,T)) (2.71)

as the optimal transmitter structure. At this point in the

feedback problem the optimization for g(t) and (t) was carried

out by minimizing V(0,0). Here, using the above definition for

m(t), the performance and energy of the system can be calculated

to form the functional equivalent to V(0,0) for minimization.

The mean value x(t) satisfies

2 2
d x(t)= [(t) g (t)P(t) + (t,T)

x(0) = 0 (2.72)

L
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which follows from Equations 2.1 and 2.71. By solving this

equation for x(t) and using it in the expression for m(t),

the overall performance of the nofeedhack system can be

evaluated as

XE = 20 2(s s) (2.73)

2 22N 201 -1] (2.74)
E[(x(T)-e) - s + -X - (2.74)

with exactly the same definition of s as before (Equation 2.31).

Forming the function J in Equation 2.9 in order to optimize

over d(t) and g(t) gives

J = E[(x(T)-6) ] + XE
0

2 8 + - X[- -1] T(2.75)
2 s0

The dependence of J on ¢(t) and g(t) is again only through

s0; hence, one can take (t) = 0 without loss of generality.

Using calculus of variations to determine g(t), the perturbation

of J is

NX
6J = 0 = [ - 0 ] s (2.76)

2s2
0

For a meaningful solution the bracketed term must be 0 so that

so = 2 )1/2 (2.77)
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is the optimal value of so; g(t) again is almost arbitrary.

g(t) is analogous to the matched filter impulse response in

that approach to this problem.

The optimal performance is found by solving Euations

2.73 and 2.77 to eliminate and s. The average performance

of the nofeedback system is then

2 E[O 2
E[(x(T)-0)2] = 1 +s (2.78)1 + ~~~~(2.78N)) 

Proceeding as in the noiseless feedback case to calculate P ,
e

E[x(T)] = e (1 - sO) (2.79)

and

2
Var[x(T)] = E[0 2 ] s(l - sO ) (2.80)

These equations are exactly the same as Equations 2.54-56 in the

noiseless feedback problem; the value of s is different,

though. All of the arguments for P are exactly the same;
e

hence,

-1/2 e2

(nofeedback) P = 2 Q(E []M-1) (2E o/NO) ) (2.81)e~~ (M-l) ~~'0

Comparing the performance of the two systems with and

without feedback, the performance of the nofeedback system is

much less than that of the noiseless feedback system except when
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2E0/N0 is small. For these values of the signal-to-noise ratio

noiseless feedback offers no improvement (more correctly,

negligible) over nofeedback. The lack of exponential dependence

of the argument of the Q function on 2Eo/N0 in Equation 2.81

implies that the nofeedback system cannot transmit error-free

at nonzero information rates.

The purpose of this diversion to the nofeedback system

is twofold. First it demonstrates that for very small signal-

to-noise ratios (2CT = 2E0/N0 << 1) feedback is no improvement

over no feedback. In this region of operation one need not

bother with a feedback system even if the feedback link is

available. Second, it demonstrates how to interpret E*[ ] to

solve another problem (the nofeedback problem) which is very

similar to the original noiseless feedback problem. Many

equations turned out to be identical except that s (the

fractional estimation error) took on different values for the

two problems. This technique will be used later to investigate

the noisy feedback problem.

2.8 Operational Characteristics of Feedback Systems

Previously the performance of the feedback system has been

the only concern. In practice other operational characteristics

(e.g., power distribution, bandwidth) are also important in

physical systems. Many feedback schemes point out that an

infinite peak power is required to achieve capacity (or that a

very large peak power is required to achieve some given P );
e
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this fact is a severe limitation on any physical communications

system. As will be shown shortly, such large peak powers

can be avoided by choosing the free function g(t) properly.

Consider the noiseless feedback system for which (t) = O.

The transmitted signal is

m(t) = - g(t)P(t) (x(t) -0) (2.82)

as before. Since x(t) is a random process, m(t) is also;

2
hence, the instantaneous power m (t) is a random variable at

2
any instant of time. Since x(t) is Gaussian, m (t) can be

arbitrarily large (with some probability) if E[m (t)] is

large or if E[m (t)] is not large, but m2(t) just happens

to fall at a large value. The former case represents a

serious problem to a physical transmitter; if the average

2
instantaneous power is large, then with high probability m (t)

will also be large necessitating frequent power peaks for the

2
transmitter. Even if the average instantaneous power E[m (t)]

2
is small, power peaks can occur since m (t) can deviate from

its mean. Such occurences are unavoidable if feedback is used;

if the forward channel noise is statistically unlikely, the

receiver will tend toward the wrong message, causing the trans-

mitter (because it knows this) to increase its power in an

effort to combat the bad noise sample. For the most part the

forward channel noise will be statistically good, causing the
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transmitted power to be close to its mean. The conclusion is

that transmitter powter peaks caused by unnatural forward

channel noise cannot be avoided, but that power peaks

caused by E[m (t)] being large should be avoided if possible.

Reverting to the results of Section 2.4 the average value

of m(t) given the i-th message sent is

E[m(t) ] = i - g(t) = 6N 0ei g(t) (2.83)

11 i~~~~~~

where

N

s = 2 = 6.N A (2.84)
So 2 =6 0t2E[O 

2
for E[02] = 1/12. Similarly the conditional instantaneous

power is

E[m2 (t)l] = (6N0i g(t))2 P() (2.85)

which is larger than the square of the mean by the factor

P(t)/P(0). Observe that the choice of g(t) essentially

determines the time dependence of the mean of m(t), but that

9

~~~~~~~~~~~2g (t)P(t) determines the mean square value. The preceding

paragraph indicates that peaks in g (t)P(t) are to be avoided

if possible; P(t) depends on g(t) through the differential

equation for P(t).

If g(t) is selected as a constant (that constant which

satisfies the integral square constraint in Euation 2.31), then

the average instantaneous power (F[m2(t)]) is proportional
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to P(t), a steadily increasing function with a sharp peak at

t = T. The ratio of this peak at t = T to the average power

at the start of the interval is

P(T) = exp[2E /N (2.86)
P (0)

which could be quite a large peak power for even reasonable

values of the signal-to-noise ratio. n a limiting argument

showing that the feedback system will achieve capacity the

peak ower becomes infinite.

SchalkTwijk and Kailath's scheme chooses a transmitted

signal which is a constant multiple of the error waveform,

namely m(t) (x(t)-e); hence, in order for this to be the

transmitted signal, g(t)P(t) = constant. Equation 2.85

implies then that the instantaneous average power is proportional

to l/P(t) (for another P(t)). This system has roughly the

same peak power ratio given in Equation 2.86 except that the

peak occurs at the beginning of the interval instead of the

end. As Schalkwijk and Kailath noted, the peak power becomes

infinite as channel capacity is achieved.

Omura and Butman have shown that the optimal discrete-

time system produces a constant average instantaneous power.

If g(t) is chosen so that

E

E[m (t)] = T .P (2.87)
T ave
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2
then this implies that g (t)P(t) = constant. The solution

for g (t) yields

2 E0
g (t) = 2 exp(-2E 0ot/N0 T] (2.88)

3N T

Using this choice of g(t), the complete system is determined;

it is drawn in Figure 2-2.

The above choice of g(t) does away with all peaks of

E[m (t)] and is therefore the best one can do. Power peaks

2
can still occur since m (t) is random, but as argued earlier

these occur with low probability.

Another aspect of feedback system is the fact that the

transmitted energy in any T second interval is also a random

variable; unlike transmitting fixed deterministic signals

each transmission of a message has some energy which fluctuates

about the mean energy Eo0. The transmitter as designed here

must be able to handle "energy peaks" from time to time. Any

transmitter sending a random process must be able to do this.

Wyner [26] has analyzed Schalkwijk and Kailath's system

with the constraint that the transmitter can never send more than

E0 energy; the transmitter is turned off if E0 joules are used

before T seconds are up. The performance suffers considerably

with this constraint; P is no longer doubly exponential in
iRuon sig e

(C-R)T, but only singly exponential like block orthogonal coding



T

i ~ ~ ~ ~
i~ ~~~~] -58-i~~~~~~~I

-
X-

CD

4Jas

uaw

d 4J

0

In
e.

E v)0 0)
44

*1-4we 9-6 XQ 10C;4 

w

eq
a}
u

on

v1

i

i

i

i

I

I

ii

i

i

I
i

ii

i



-59-

without feedback. As noted, Schalkwijk and Kailath's scheme

is suboptimal in many ways. Particularly with the power peak

right at the start of the time interval the transmitter uses

up most of its allowed energy early in the interval. The

transmitted energy of the optimal constant power system would

have less tendency to be used up before the end of the

interval and, hence, perform better under a strict energy

constraint.

The transmitted signal has a bandwidth on the order of

the bandwidth of x(t), the receiver state. Equation 2.82

shows that m(t) is a time-varying multiple of the instantaneous

error. Since the waveforms are not strictly bandlimited,

the bandwidths to be discussed are only approximations in the

sense that signal power does actually exist outside the

bandwidth of the signal. Most of the signal power, however,

is within the indicated bandwidth. A nofeedback system has

a bandwidth (at the transmitter) on:the order of /T. The

analogous feedback system will generally have a larger trans-

mitter bandwidth; feedback is analogous to other bandwidth

expansion schemes which trade increased bandwidth for improved

performance.

The feedback system state x(t) is the output of a one

state linear filter driven by white noise. The location of

the pole (even though it may change with time) gives an approxi-

mate idea of the bandwidth of the process x(t). The transmitted

signal m(t) has roughly this same bandwidth.
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Consider now the various choices of g(t) and the effects

on the transmitter bandwidth. If g(t) = constant is selected,

the pole of the x(t) process starts at (1 - exp[-2E 0 /No])/T

at t=O and increases to (1 - exp[-2E0 /N0)/T times

exp[2E0/N0] at tT. At the beginning of the interval the

bandwidth is essentially that of the nofeedback system, ut

the bandwidth increases rapidly at the end of the interval

(at the same time that the power peaks). For Schalkwijk

and Kailath's system exactly the time reverse happens, large

bandwidths and power at the start of the interval.

By choosing g(t) such that the average transmitted power

is constant, the pole of the x(t) process remains constant

at 2E0/NoT. Although the feedback system uses 2E/N 0 times

the bandwidth of the nofeedback system, this increased band-

width is still much less than that required for other choices

of g(t). Also the bandwidth for this constant power system

does not tend to infinity for channel capacity arguments.

All of the operational properties of g(t) in Equation 2.88

and in the system diagram Figure 2-2 make it the best choice

even though almost any choice of g(t) will have the same P.
e

Rather than setting (t) -= 0, suppose g(t) = 1 and (t)

is the arbitrary function. In this case similar variations

are possible for different choices of (t) (or equivalently

4(T,t)). (T,t) is the impulse response of the receiver, but

not all choices of (T,t) yield some ¢(t) (i.e., not all linear

filters are state realizable). If the particular impulse response
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$(T,t) can be achieved with some other realization (other than

a one-state system), the receiver and transmitter of the

feedback system ould perform as desired. In other words

any linear receiver structure will make an acceptable feed-

back system; the receiver need not be a finite state filter

as has been assumed.

This completes the analysis of the noiseless feedback

system. The continuous-time system analyzed here is related

to the many discrete-time systems studied by others. The

continuous-time system is very much unrestricted in receiver

structure; many realizations are possible all of which have

the same performance. The various realizations, however, differ

in such characteristics as power distribution and bandwidth.

Throughout a noiseless feedback link has been assumed

to be available. It remains to be shown in Chapter 4 exactly

how critical this noiseless assumption is. In the next

chapter the application of a noiseless feedback link to an

arbitrary communications system (as opposed to the particular

model studied in this chapter) is made. The utilization is

motivated by the results of this chapter.



CHAPTER 3

Noiseless Feedback -- Analog

The previous chapter treated a digital signalling problem

for transmitting one of M equiprobable messages over a channel

employing feedback. The actual analysis took the form of a

parameter () estimation problem by relating the message space

to a set of message points ei. Conceivable the original
i'

communications problem could have been that of transmitting the

value of a continuous random variable (with some probability

density) over the channel. This new problem is simply an

extension of Chapter 2. A more general problem would be that

of transmitting a random process over the channel using

feedback. This problem is the subject of this chapter, that

of using noiseless feedback to convey an analog message

through the channel. Essentially an analog system is one

in which the criterion is a mean square error rather than

probability of error. Analog messages (processes) can be

transmitted in continuous time (e.g., angle modulation), sampled

in time with continuous amplitudes (e.g., pulse amplitude

modulation), or sampled, quantized and relayed over a digital

channel.

One approach to the analog estimation problem would be a

structured approach similar to the solution technique of

Chapter 2. By choosing a communications system structure which

employs the feedback channel and then optimizing over any free

-62-
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functions available, a feedback sstem results. Unfortunately

such system, while they do ive improved performance over

nofeedback systems, give little insight into the effect of

feedback on the system or its performance. Rather than

approach analog estimation in this manner, a feedback scheme

which is independent of the communication problem will be

presented and then applied to several systems. Basically

given a complete nofeedback system (which could be digital

or analog with any appropriate transmitter/receiver), a procedure

for adding a feedback channel to improve the performance without

significantly changing the system modulation/demodulation is

presented.

In Chapter 2 the optimal transmitted signal was found to

be a multiple of the instantaneous error, the difference between

the receiver state x(t) and the desired receiver state 0.

Perhaps all communications systems using noiseless feedback

should transmit some type of "error" waveform. For many

reasons this is a logical choice for a transmitted signal using

feedback. In transmitting the error the transmitter does not

re-transmit what the receiver has already determined; thus,

more power is available for transmitting what the receiver needs

to know, namely, the error the receiver is making. For example,

in a block coded system the feedback channel could inform the

transmitter of the current status of the decoded message. The

transmitter would then delete the remainder of the block bits
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if the receiver had already decided on the correct message

and proceed to wait until it is time for the next message.

If the receiver has not decoded the message correctly,

the transmitter would continue to transmit bits which

"drive" the decoder towards the correct message. Consider-

able savings in power are possible by not having to trans-

mit te "correction" bits whenever the message bits are

decoded properly. As will be shown, there are many cases

in which the transmission of the error waveform is in fact

optimal. Much of the next two sections is treated in

Cruise [27].

3.1 Application of Feedback to Arbitrary Nofeedback Systems

Consider the following nofeedback system to which feedback

will be applied to improve the performance. The transmitted

signal is m(t) and is somehow related to the information being

transmitted. For example if a process a(t) is being trans-

mitted, m(t) could be of the form

m(t) = m(t,a(t)) (3.1)

The exact dependence of the transmitted signal on the message

is unimportant at this point. The channel is assumed to be

a white noise channel. The received signal r(t) is

r(t) = m(t) + n(t) (3.2)
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Again, exactly what the receiver does to decode the message

is not important.

For these signals a feedback channel has been added

as shown in Figure 3-la. Note that the transmitter which

generates m(t) and the receiver which processes r(t) are

not shown in the figure; only the feedback elements are

shown. The box H represents a time-varying realizable

(possibly nonlinear) filter to be determined shortly. K(t)

is a gain also to be determined. For the feedback system

the transmitted signal is now

m'(t) = K(t) [m(t) - (t)] (3.3)

In order to preserve the characteristics of the transmitted

signal of the nofeedback system, let K(t) be such as to

maintain exactly the same average instantaneous power in the

feedback system as in the nofeedback system. This choice of

K(t) will not guarantee that all the characteristics of the

two transmitted signals will e the same, but at least the

transmitter ower/energy constraints will be identical. The

appropriate choice of K(t) is

E[m (t)] = K (t) E[(m(t) - (t)) ] (3.4)

Equation 3.4 determines K(t) in terms of the statistics of m(t)

(the nofeedback transmitted signal) and (t) (the signal fedback).
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m(t) is determined by the choice of the filter H1.

As implied by the notation, H is chosen to make (t) an

estimate of m(t), namely the minimum mean square error

estimate of m(t) given the received signal up to time t.

This estimate is also the same as the conditional mean

of m(t) given r(T) for T < t. Note that the estimate is

of the transmitted signal, not of the message itself.

If m(t) is as given in Equation 3.1, then

m(t) = M(t,a(t)) (3.5)

not m(t,a(t)) which would be another type of feedback system.

For the most part in the examples these two types of estimates

are equal due to the linearity of the modulation.

In Figure 3-lb) the system of Figure 3-la has been re-

drawn lumping all of the feedback parts into a new channel

which appears very much like the original additive noise

channel. Whichever transmitter/receiver structure is present

for the nofeedback system can be used directly in the feed-

back system of Figure 3-lb with a slight modification for the

time-varying white noise. The receiver observes the trans-

mitted signal m(t) in a noise n(t)/K(t) rather than just n(t)

in the nofeedback case. Since K(t) > 1, this is always an

improvement since the noise is reduced in amplitude.

In conclusion a noiseless feedback system has been designed

which effectively reduces the channel white noise density,

I
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regardless of the particular communications application of

the channel. The ordinary nofeedback structure can be added

at both ends of the feedback channel in Figure 3-lb. The

feedback structure, however, does depend on the type of

modulation being used. Observe that the feedback structure

does not really leave an additive noise channel with smaller

noise than the original additive noise; this would mean an

increased channel capacity and a violation of Shannon's

[5] result. A nofeedback system which operates at channel

capacity will not operate above capacity with feedback; it

will, however, perform better for finite T and approach

P = 0 faster.
e

3.2 Parameter Estimation

In this section a feedback system similar to the system in

Chapter 2 will be developed based on the ideas presented in

Section 3.1. The approach is quite different here although the

feedback system here is almost identical to that discussed in

Chapter 2.

For the nofeedback system assume that the value of a Gaussian

random variable 0 (zero mean, variance 2) is to be conveyed

across an additive white noise channel with spectral density

N0/2. might represent a voltage to be transmitted or perhaps

part of a more complicated message. In Chapter 2 was related

to the message points and did not have a Gaussian density.

Assume that the transmitter uses pulse amplitude modulation
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with the height of the pulse being proportional to 0. Then

the transmitted signal m(t) is

m(t) = (3.6)

in order to maintain an average transmitted energy of E in

the transmission interval [0,T]. The receiver is assumed to be

the minimum mean square error estimator of 0; therefore, the

output of the receiver at time T (when the estimate of 0

is generated) is

^~~~
0(T) = f dt \4 r(t) (3.7)

0

N0/2 + E0

The normalized (or fractional) variance of the estimate O(T)

for this nofeedback system is

1 1 ~~E[(g(T) - 38)2
(no 1 + (2E0/N0) = E (T) )2] (38)
feedback

which is identical to Equation 2.78, the nofeedback system of

Chapter 2. This performance is independent of the density of

0 and is optimal for the constraints of a simple linear receiver

and a Gaussian density for 0. Certainly a nonlinear scheme

could be devised which would convey the value of through the

cnannel wn a smaller normalized mean square error.
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For this simple communications system feedback will be

added as outlined in Section 3.1. One component of the

feedback structure in Figure 3-la which must be determined is

the filter H1. The input to H1 is K(T)m(T) + n(T) and the

output is the minimum mean square error estimate of (T).

For this problem with linear modulation and Gaussian statis-

tics the best filter is also linear. The realization of

this filter is just a Kalman [30] filter which, if the input

is

r'(t) = K(t)m(t) + n(t)

EO
= K(t) E2 0 + n(t) (3.9)

a2T

the minimum mean square error estimate of m(t) is

m(t) = 0(t) (3.10)

where 0(t) is the output of the Kalman filter

2F
d A(t) -K2 0 
dt 0-Y (t)P(t) 2 0 (t) + K(t)P(t)r'(t)

t a~~2NoT N0 a2T

(3.11)

6(o) = 0

A
P(t) is the covariance of the estimate (t) and is defined

P(t) = Ej[(e(t) - )2 ] (3.12)
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P(t) is the solution of the Ricatti equation associated with

the Kalman filter, namely

2E0d 2F 2 2dP(t) 0dP(t) = 2 K (t) P() (3.13)
dt C2 

2N0

P(O) = a2

Applying Equation 3.4 the gain K(t) is evaluated from

2 2 E0 E0
K (t) E[(m(t) - m(t))2 ] -- K (t)P(t) = (3.14)

2T1T

For this choice of K(t) the covariance P(t) satisfies

d 2E0P(t) = 2 P(t) (3.15)
dt N T

0

which is easily solved using the initial condition in Equation

3.11. The formulation of the Kalman filter in terms of (t)

(rather than S(t)) is a convenience because the mean square

error of (T) is just P(T). The normalized mean square error

of the feedback system is therefore

expf-2EIN 0 P(T) (3.16)
feedback exp[-20N ] = 2

Observe that Equation 3.16 is identical to Equation 2.52

(if the notational differences are accounted for). The system

derived in this section is the constant power system discussed

in Section 2.8 and drawn in Figure 2-2. This system has a
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constant average power because the nofeedback system from

which the feedback system was designed has a constant

average power.

Another way to consider the addition of feedback is to

consider the nofeedback receiver (Equation 3.7) redrawn

as a Kalman filter in Figure 3-2a. Instead of just estimating

e at the end of the interval, a continuous estimate (t)

is generated. At t = T both systems produce the same estimate

and have the same mean square error. The advantage of this

new realization of the nofeedback system is that the system

with feedback looks very similar as shown in Figure 3-2b.

Basically the feedback path in the nofeedback Kalman filter

becomes the feedback signal in the noiseless feedback system.

K(t) adjusts the transmitter power, and the covariance P(t)

of the feedback system is now different from that of the no

feedback system.

This derivation of the same system of Chapter 2 gives

considerably more insight into exactly which part of the

feedback link plays in the improved performance of feedback

systems over nofeedback systems. Feedback allows the trans-

mitter power to be reduced without changing the basic structure

of the system or its performance. By inserting a gain (K(t))

to raise the transmitter power back to its allowed level,

the overall performance is substantially improved.

3.3 Rate-Distortion Bound -- Parameter

Previously the linear feedback system was shown to be capable
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transmitting messages at rates up to channel capacity with

arbitrarily low probability of error. Similarly the linear

feedback system can be shown to achieve the rate-distortion

bound on mean square error. For digital systems channel

capacity indicates the ultimate performance achieveable;

for analog systems the rate-distortion bound indicates

the minimum mean square error attainable.

Shannon [5] has derived an expression for the minimum

channel capacity required to transmit a Gaussian variable

0 (zero mean, variance a ) with a mean square error (distortion)

of E: (< 72). This rate is given by

~2of £ (<a ). This rate is given by

2R(e) = In(-) nats (3.17)

R(c) is the minimum amount of information require to estimate

e with a mean square error no greater than .

The additive white Gaussian noise channel of the communic-

ations system has a capacity given in Equation 1.4. If this

channel is used for T seconds (with or without feedback), the

maximum information transmitted from the transmitter to the

receiver is

E 0
C(T) = nats (3.18)

if the channel is operated at channel capacity. By equating

this maximum information with the amount of information required

for a given error (Equation 3.17)
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F ~2E0 1 2
C(T) = R(e) = ln -) (3.19)

the minimum mean square error attainable is

S ~~~~~~~~~~~~(3.20)= exp[-2E 0 /N (3.20)

Equation 3.20 is the rate-distortion bound on transmitting a

Gaussian random variable over an additive white noise channel

in T seconds; no modulation/demodulation system can achieve

a normalized error less than that of Equation 3.20.

The linear nofeedback system analyzed in Section 3.2

has a normalized error given by Equation 3.8 which is sub-

stantially above the rate-distortion bound. The addition of

feedback altered the system performance so that the normal-

ized mean square error became that of Equation 3.16 which

is precisely the rate-distortion bound in Equation 3.20,

indicating that the linear feedback system is optimal. No

other modulation scheme could possibly do better.

3.4 Rate-Distortion Bound -- Process, Finite Interval

Having shomwn that the linear feedback system is the best

system in the sense that no other system can have a lower mean

square error in transmitting a single random variable, the

feedback system can be modified to transmit optimally a finite
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set of random variables or a T second segment of a random

process. The solution to the former problem will be apparent

from the solution of the latter. n order to send a Gaussian

random process with a minimum mean square error given by

the rate-distortion bound, the process is decomposed into

its Karhunen-Loeve coordinates and each coordinate is trans-

mitted exactly like in Section 3.2.

A Gaussian random process (zero mean) a(t) can be

expanded

00

a(t) a= E a W(t) O<t<T (3.21)
i=l

where

T

a. = f dt a(t)i(t) (3.22)
1

0

T

f du i(u)$j(u) = ij (3.23)
0

The infinite set of a.'s are independent zero mean Gaussian
1

variables with variance X. where
1

T

Xi V(t) = f du R (t,u)$iu (3.24)
110 1

E[a(t)a(u)] = R a(t,u)
a

(3.25)
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These equations are just the statement of the Karhunen-Loeve

expansion (see Davenport [28]).

In order to transmit the T second segment of a(t), the

coefficients a. are first evaluated at the transmitter. This
1

operation requires an initial delay of T seconds so that the

a. in Equation 3.22 can be calculated. Then these a are
1 1

transmitted one at a time over the noiseless feedback system

using a subinterval of length T. and a reduced energy Ei1

for the i-th coefficient. The exact division of time and

energy to optimize the system must be determined.

The criterion of the system is the integrated mean

square error

T 2

£ = f dt E[(a(t) - a(t)) (3.26)
0

which is to e minimized. If E. is the estimation error in
1

estimating each of the a at the receiver, then the total
1

error is

00

= Z C. (3.27)

i=l 1

Using the feedback system of Section 3.2, Equation 3.16 implies

that ci is Ai exp[-2Ei/N 0] and therefore

Xi exp i (3.28)

1. ep[-2Ei/N0] (.8



-78-

is the expression to be minimized by selecting Ei. The

E are not completely arbitrary since there sum is the

average energy transmitted by the transmitter of the feed-

back system. Therefore, the E must satisfy the energy
1

constraint

co

E = Z E i (3.29)
i=1

The minimization of Equation 3.28 subject to the constraint

in Equation 3.29 can be handled easily with ordinary calculus.

The resulting necessary condition for a minimum is

Ai exp[-2Ei/N0] = constant = 8 for E # 0 (3.30)

The solution for the optimal energy distribution is such that

only a finite number of the ai's are transmitted. No energy

is used to convey the lower energy eigenvalues of the process.

Assume that K of the ai are transmitted with nonzero energy;

Equation 3.31 implies that these K variables correspond to the

K largest eigenvalues X.. The mean square error is
1

1 ~~~~~~~~~~~~~~~~~~~~00
E= K + Z X. (3.31)

i=K+l

where 3 is such that

N 0 K i
0 1F T Z ~ ln(~-) (3.32)

0 ~i=l
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Equations 3.31-2 are precisely the rate-distortion equations

as derived in Goblick [16] for a random process. Note that

the individual energies are selected so that each coordinate

is estimated with exactly the same () mean square error;

the error in the remaining coordinates is just the variance.

The selection of the lengths (Ti) of the subintervals

determines the power distribution in the interval. In order

to achieve a constant average instantaneous power, the

intervals should e chosen proportional to the energies E..

As noted earlier, a delay of T seconds is necessary at

the transmitter in order to calculate the K a. to e sent.

Similarly another T seconds of delay is required at the

receiver to reconstruct the estimate a(t).

In conclusion a technique for transmitting an arbitrary

Gaussian random process a(t) over a white noise channel in the

time interval [,T] with the minimum mean suare error attain-

able has been demonstrated by utilizing a noiseless feedback

channel. In the next section the identical problem is treated

for the case when the time interval is infinite.

3.5 Rate Distortion Bound -- Stationary Process

For a stationary process a(t) (-o<t<o) several concepts

from the finite time interval case of Section 3.4-need to be

altered to achieve the appropriate rate-distortion bound.

Basically in the infinite interval an integrated error is



-80-

meaningless; the new criterion is mean square error. Unless

the process is stationary, the criterion is a function of

time; hence, a(t) is assumed to be a sample function from

a stationary random process. During an infinite interval

the transmitted energy can be infinite and the information

conveyed can be infinite; hence, a transmitter power

constraint is appropriate rather than energy, and a channel

capacity in nats/second replaces the previous capacity

in nats. The eigenfunctions of the finite interval sample

function tend to sinusoids as T + . The eigenvalues become

a continuum, namely the spectral density of the process.

Given these changes, the transmission scheme is very similar

to finite time interval case of the preceding section. The

lower amplitude eigenvalues are neglected and the higher

amplitude eigenvalues are scaled in power before transmission.

These operations are easily done with linear filters designed

in the frequency (eigenvalue) domain.

Cruise [15] describes a noiseless feedback system which

achieves the rate-distortion bound on the transmission of

analog signals over additive white Gaussian noise channels.

The performance of the feedback system is derived by comparison

of the noiseless feedback system with a phase locked loop model.

In this thesis these same results will be derived without

making reference to phase locked loops. A linear filter
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structure for the feedback system is assumed and the filters

chosen optimally; the resulting performance is that given

by the rate-distortion bound.

Figure 3-3 shows a linear noiseless feedback system

which for suitable choices of the filters L(f), Glr(f),

and G (f) will achieve the rate-distortion bound on perform-
pu

ance. The preemphasis filter L(f) and the postloop filter

G (f) are allowed to be unrealizable filters because they
pu

can be realized with some delay. The loop filter Glr(f),
lr

however, must be realizable if the feedback channel is to

be realistic. The overall system is realizable-with-delay,

just as a coded digital system is realizable with coding and

decoding delays.

Consider the design of Glr(f), the loop realizable filter.

Choose this filter such that x(t) (see Figure 3-3) is the

minimum variance (realizable) estimate of b(t), the output

of the preemphasis filter. The solution for Glr(f) involves

the solution for a realizable Wiener-Hopf filter. Without

actually solving for G (f) the performance or variance of

the estimate x(t) of b(t) is given by

00

= f df ln~~l+~ (3.33)~b = E[(x(t)-b(t)) ] = -- f df n[l + N Sb (f ) ] (3.33)
-00 0

=- f df lnf1 + N IL(f)2 S (f)]
--0 a
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n(t)

a(t- L(f)

a(t) = message process with spectral density Sa(f)

m(t) = transmitted signal

x(t) -- feedback signal

Glr f) = realizable linear filter

Gpu(f) = unrealizable linear filter

L(f) = unrealizable linear filter

a(t) = realizable-with-delay estimate of a(t)

Figure 3-3. Noiseless feedback system achieving the
rate-distortion bound on performance

(t)
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Observe that the error h is also the transmitted ower of the

feedback system in Figure 3-3 upon which there is a constraint.

Also, the calculation of G (f) has been bypassed; it is
1r

not needed and will not be calculated here.

Since the postloop filter is allowed to be unrealizable

and arbitrary, any effects of the loop filter and feedback

link can be removed by inverse filtering, leaving an unrestricted

unrealizable filtering problem. The overall system appears

as shown in Figure 3-4 where the realizable loop has been

redrawn as the realizable filter H (f) with spectrum given by
r

= 1(f)= (334)
tir~f3 1 + (l if)

In order to cause the output of the system a(t) to be a

minimum variance estimate of a(t), G (f) is chosen to be that

function which makes Hr(f)G u(f) the unrealizable Wiener filter

for the problem shown in Figure 3-4. The variance of this

estimate can be expressed (again without actually computing

the optimal filter) as

o S (f)
2 a

£ = E[(a(t) - a(t)) ] = df 2(3.35)

N+ (f) a(f)

The transmitted power (average) E[m (t)] is given by ~b in

Equation 3.33 as a function of the message spectrum S (f) and the
a

power spectrum L(f) 12 = S(f). The performance (mean square error)
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a(t)

Figure 3-4. Simplification of feedback system in Figure 3-3

a(
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of the feedback system is given in Equation 3.35 in terms

of the same quantities. The two filters Glr (f) and Gpu(f)

have been determined in deriving these two equations,

leaving SL(f) as the remaining function to be selected in

the system. SL(f) is adjusted so that

b = Pave -= transmitted power constraint (3.36)

and the performance is minimum. SL(f) is an unrestricted

function except that it is a power spectrum and must be

nonnegative. The minimization can be carried out by forming

a functional J which is

J= + N.0~b
N b

0X S (f)
f df 1 + (2/N0 )Sa (f)SL (f)

-00 0 a L

2
+ 8 ln(l + S(f)S (f))] (3.37)

N0a

where the Lagrange multiplier is 2/N 0; . is arbitrary but

constant. Perturbation of the above euation yields

No N
6 = 0 - SL(f)+ 2S(f) 6SL (f) (3.38)

L 2~ 2S a~f 
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or solving for SL(f)

SL ( f ) = larger of {

SLMf = larger of

N ,1 1

2 ( - S(f)a~f

)

The constant is determined by setting the power constraint

in Equation 3.36 to equality. Denote the frequencies where

SL(f)>0 by F and the frequencies where SL(f) = 0 by F.

Then the power constraint in Equation 3.36 becomes

= P
p ave

N
N 2 f df ln[S (f)/8]

F

and the performance or mean square error of the estimate a(t)

is

= f df S (f) + f df
a

F F

(3.41)

These two equations are the continuous analogs to the discrete

spectrum (finite time interval) problem of Section 3.4. Note

the similarity between Equations 3.40-1 and Equations 3.31-2.

A comparison of Equations 3.40-1 with the rate-distortion

bound (see Goblick [16]) equations shows that they are identical.

Thus, the feedback system of Figure 3-3 can achieve the ultimate

(3.39)

(3.40)
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performance of all systems (feedback or nofeedback) operating

over the white noise channel. No other system can have a

lower mean square error than that given by the simultaneous

solution of Equations 3.40 and 3.41.

The solution for SL(f) in Equation 3.39 indicates that

L(f) is a strictly bandlimited (perhaps several passbands)

unrealizable filter which passes only the frequency regions

where S (f) is large. No attempt is made to estimate the
a

process a(t) in the frequency range(s) F. Those frequencies

in F which are not attenuated to 0 by L(f) are scaled so

that the resulting error spectrum is constant. This form of

the error spectrum is indicative of achieving the rate-

distortion bound.

The processing of the sample function in this infinite

interval is the same type of processing found in the previous

section for finite time intervals where only the highest

eigenvalue coefficients were transmitted. Observe that a

delay is required for L(f) just as a delay was required

at the receiver in both systems.

Some idea of how much improvement in performance (mean square

error) is afforded by the feedback channel can be gained by

considering the one pole message spectrum

2k P
S (f) = (3.42)
a 2f2 (42)
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Define a signal-to-noise ratio for the problem as

4P
= ave ave ~~~~~~~~~(3.43)

N0k

For large values of X (roughly >20) the noiseless feedback

system (also rate-distortion bound) has a normalized mean

square error of

s ~,8 1
P 2 1 + /2 (rate-distortion) (3.44)Pae 7 2 1 + /2

ave wr

Suppose that the preemphasis filter L(f) is replaced by a

constant gain. It will not reject the proper frequencies

nor scale properly the rest of the frequencies; therefore,

such a system is a suboptimal feedback system. The normalized

mean square error for this system is

c 1
£ = 1 +/2 (L(f) - constant) (3.45)

Pav 1 + /2ave

This performance is not significantly different from the

ultimate given in Equation 3.44. The conclusion is that the

preemphasis filter is not extremely critical to the performance

of the feedback system.

Suppose the suboptimal system is further degraded by requiring

the postloop filter Gpu(f) to be constant. Now the system is

realizable-without-delay since both unrealizable filters have been

removed. The performance drops to



-89-

P 1 - 1(realizable-without- (3.46)
P 1 + /4
ave delay)

Again the system performance is reduced, but not significantly.

The possible advantage of this suboptimal feedback system

is that all the filters are realizable.

If the feedback channel is removed, the system is an

ordinary linear filtering problem. Allowing delay, the

mean square error for this unrealizable Wiener filtering

problem is

£ = _ 1 (realizable-with-delay (3.47)

ave / + without feedback)

This is the performance of the nofeedback system to which

feedback has been added. With feedback the performance increases

from that of Equation 3.47 to that of any of the preceding

three equations depending on the choice of system filters.

Equation 3.44 is the ultimate performance achieveable with any

system (not just linear) with or without feedback.

A comparison of the forms of the feedback system (Equation

3.47) and the feedback system indicates that feedback essentially

squares the normalized mean square error. If the fractional

error would be .01 for the linear system without feedback, it

would be about .0001 if feedback were added. Compared with the

exponential improvement that feedback offers when transmitting
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a single random variable, this improvement of the feedback

system is not as dramatic. Yet the rate-distortion bound

states this is in fact the maximum improvement possible.

The various feedback systems (optimum and suboptimum)

mentioned above indicate that the feedback system is

relatively insensitive to the filters in it. A realizable-

without-delay feedback system (which is suboptimum) is

only 3 db worse than the optimum for large signal-to-noise

ratios. The inverse dependence of the normalized error for

feedback systems is not lost by restricting the feedback

system filters to be realizable; hence, even such suboptimum

systems offer almost as much performance gain over the no-

feedback system as does the optimum.

Another useful way of comparing nofeedback and feedback

systems is in terms of the effective increase in signal-to-

noise ratio which the addition of feedback implies. For

example, suppose the signal-to-noise ratio (suitably defined

for some system) is 10. Without feedback this 10 implies

some performance of the system; with feedback this 10 implies

a much improved performance. Taking this improved performance

with feedback, it implies that a nofeedback system would

require a much higher signal-to-noise ratio to achieve this

same performance, say 1000. Thus, feedback gives an effective

signal-to-noise ratio of 1000 for an actual signal-to-noise

ratio in the channel of 10. In other words a nofeedback system

with signal-to-noise ratio of 1000 performs as well as a
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feedback system operating through a channel with signal-to-

noise ratio of 10.

For the digital system of Chapter 2 and the parameter

system of Section 3.2 the appropriate signal-to-noise ratio

is

SNR = 2E 0I/N0 (3.48)

The use of feedback implies that the effective signal-to-

nosie ratio is

digital
SNR > exp[SNR] - 1 (3.49)

for the digital system. For the analog systems in this section

the appropriate signal-to-noise ratio is X given in Equation

3.43. For this definition the addition of feedback implies

an effective signal-to-noise ratio

analog
SNR > SNR(1 + SNR/4) (3.50)

Comparing Equations 3.49 and 3.50 for the improvement which

feedback offers for these two types of systems, the improvement

of analog process systems is much less signal-to-noise ratio-

wise than that of the digital (or random variable) system.

For the digital system as time progresses in the interval the

receiver is able to improve its estimate of e continually (and

hence reduce the effective transmitted signal power via the
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feedback link). The analog process system has a message which

changes continuously with time so that the error in the

estimate of the message cannot be arbitrarily small with

increasing time; hence, the feedback link is not able to

reduce the effective transmitted power as much.

3.6 Kalman Filtering with Noiseless Feedback

In many applications of message estimation the Kalman

[17] formulation is appropriate. These instances are when

the message process is suitably represented by a finite

dimensional vector random process. For such a process observed

in white noise the minimum variance estimate of the process

is the output of a Kalman filter defined by a linear differen-

tial equation. The Kalman filter is the realizable Wiener-

Hopf filter for the problem. Since the filter is realizable,

the results of Section 3.4 imply that the addition of a feed-

back link to the system will not allow the overall system to

achieve the rate-distortion bound; delays at the transmitter

and receiver are necessary to achieve the bound. Nevertheless,

it does offer improvement even when delays are not allowed.

The example of Section 3.4 indicates that omitting the delays

is not critical to the improved performance of feedback systems.

The general vector formulation of Kalman filtering implies

a vector or diversity channel, that is, the communications

channel is actually several parallel white noise channels. The
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transmitter power constraint can take any number of forms in

this situation depending on how the composite channel is

constructed. For example, the total transmitted power

(sum over all separate channels) might be limited or

perhaps each separate channel has a maximum transmitted

power. Many other possibilities exist for appropriate

transmitter(s) power constraint.

Rather than choose a particular transmitter power

constraint, for analysis purposes the addition of a feedback

link will be made without actually calculating the improvement

which feedback offers. This improvement depends exactly on

the definition of the transmitter power constraint.

Following Kalman's 17] notation define the vector

message process by the vector differential equation

dtdtx(t) = F(t)x(t) + G(t)u(t) (3.51)

where the white noise driving the equation satisfies

E[u(t)u'(s)] = Q(t) 6(t-s) (3.52)

The transmitted signal is

y(t) -= (t) x(t) (3.53)
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whicbh need not be of the same dimension as the process x(t).

The channel adds a vector white noise w(t) to v(t) to form

the received signal

zt = 1(t) (t) + w(t) (3.54)

where the remaining noise correlations are

E[w(t)w'(s)] = R(t) (t-s)

and

E[w(t)u'(s)] = 0

-1
R (t) is assumed to exist. The receiver structure is the linear

Kalman filter specified by

d__ x (t ) = F(t)A(t) + P(t)H'(t)R (t)z(t) - (t)x(t)] (3.57)
-- = -- = = - - -- --

where

P(t) = E[(x(t) - (t))(x(t) - (t))'] (3.58)

-The differential equation for P(t) is

(3.55)
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dt P(t) = F(t)P(t) + (t)F'(t) + (t)Q(t)G'(t)
dt==-===-=

- 1(t)H'(t)Rl(t)1(t)P(t) (3..59)

All of the above differential equations have associated initial

conditions which are not stated explicitly.

The transmitted power matrix for this nofeedhack system

is

S(t) = E[X(t)X'(t)] = H(t) Ex(t)x'(t)] '(t)

= H(t) (t) '(t) (3.60)

The appropriate power constraint will depend on (t). For

example, if the total power transmitted over the several

diversity white noise channels is limited, then this constraint

involves only Tr[S(t)].

The nofeedback system above has a performance given by

Equation 3.59 and a transmitted power given by Equation 3.60.

Consider adding a noiseless feedback channel to this system.

The development associated with the parameter system shown in

Figure 3-2 indicates that the formulation of the nofeedback

system in terms of a Kalman filter has a natural feedback

structure by feeding back the Kalman filter output estimate

of the transmitted signal. In the case here the estimate of

the transmitted signal is (x) x(t) which is returned to
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the transmitter via the feedback channel. The new transmitted

signal (of the feedback system) is the difference

y(t)
[feedback

= H(t) [x(t) - (t)]
= _ _~~

(3.61)

The channel adds white noise to the transmitted signal to

form the received signal

z(t)
[feedhack

= H(t)[x(t) - (t)] + w(t)

The receiver structure is only slightly altered

d 

dt -~) Ifeedback
= F(t)x(t) + P(t)H'(t)Rl(t)z(t)

Ifeedback

(3.63)

where P(t) is exactly the same covariance function specified

in Equation 3.59. Therefore, the performance of the feedback

system is exactly the same as that of the nofeedback, but the

transmitted power is reduced to

S (t)

Ifeedback

= H(t)P(t)H'(t)

The exact improvement of the feedback system depends on the

definition of the power constraint as well as the definition of

(3.62)

(3.64)

I
i

I
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the performance. Perhaps the receiver is only interested in

estimating one of the states of x(t) or some combination

of states. These characteristics all depend on the individual

problem treated and can be determined from the above equations.

One would expect that the improved performance is on the

order of that calculated in Section 3.5, namely the normal-

ized mean square error (suitably defined for the vector

problem) of the feedback system is roughly the square of

the normalized mean square error of the nofeedback system.

The assumption was made above that the feedback link

diversity equalled the forward channel diversity, that is,

if there are 3 forward white noise channels, then there are

also 3 reverse noiseless channels. It is easily shown that

more diversity in the feedback link than the forward is

redundant and will not improve the performance. The actual

feedback diversity needed can be less than the forward

diversity. The required diversity in the feedback channel

for the above analysis to be valid is given by

feedback diversity = rank[H(t)] < forward diversity (3.65)

If the feedback diversity is less than that given in Equation

3.65, then the feedback system falls in the class of noisy

feedback systems.



CHAPTER 4

Noisy Feedback Systems

Thus far only noiseless feedback systems have been investigated.

The implied definition of a noiseless feedback system is a system

in which the transmitter has knowledge of the exact state of

the receiver at each instant in time during the transmission

interval. A noisy feedback system, then, is one in which the

transmitter does not have exact knowledge of the state of the

receiver. For example, suppose the feedback channel has a

separate additive white noise which is added to the signal

transmitted from the receiver back to the transmitter. The

transmitter would then observe the receiver state in white

noise and would be unable to determine the exact receiver

state. Another example of a noisy feedback system would be

one in which there is a delay in the feedback path; the

transmitter would observe x(t-t0), but not x(t), the current

state. For this system the feedback "noise" is the delay tO

which prohibits exact knowledge of the current receiver state.

In this chapter these various types of noisy feedback

systems are analyzed to evaluate the forward channel improvement

using a noisy feedback link. Most physical systems have some

type of noise in the feedback link; hence, this chapter is more

important from a practical point of view than the preceding

chapters. Unfortunately there are very few analytic results for

noisy feedback systems.

-98-



-99-

4.1 Discrete-Time Solution of Noisy Feedback

Before proceeding to the continuous-time formulation of

noisy feedback systems, some useful motivation and insight

can be gained from the discrete-time systems of Butman [23]

and Elias 3]. Both have formulated the general linear

feedback system with an additive noise feedback channel, but

were unable to solve for the optimal parameters of their

respective systems.

In a discrete-time system the transmitter uses the

channel N separate times to transmit the message point as

indicated in Figure 4-1. The transmitted signal mk depends

linearly on and the output of the feedback channel. The

feedback channel has a delay of one time unit so that it is

only used N-1 times. The performance (mean square error in

estimating ) and the transmitter energy constraint are

identical in form to those of the continuous-time system

analyzed in Chapter 2. Since there is noise in the feedback

channel, a feedback transmitter energy constraint is also

necessary. The additive Gaussian noises in the forward and

feedback channels, nk and wk, are assumed independent of each

other with zero means and constant variances, E[nk] = N0 /2 and

E[w2] = W/2.

The optimization problem is to find the four arbitrary

linear filter shown in Figure 4-1 which minimize the performance

subject to the two transmitter (forward and feedback) constraints.

This is the statement of the general linear additive noise discrete
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feedback problem. The continuous-time version of this general

linear problem is obvious. The solution to either version

of the problem is highly desirable, but has not been found.

The only optimal solution known is in the discrete-time

version for N = 2 as solved by Elias [3].

Since Elias' result is the only true solution to any

noisy feedback system, it is important to understand it for

any assistance it might give in designing suboptimal systems

(suboptimal since the optimal is not known) utilizing noisy

feedback. Elias' result on feedback systems is a sidelight

to his paper on networks of Gaussian channels; he gives very

little detail other than the system performance. Here his

system will be described in much more detail with emphasis

on the structure rather than the performance.

If N = 2 for the system in Figure 4-1, then only 2

transmissions forward and 1 transmission backward is made.

This special case of Figure 4-1 is redrawn in an expanded

fashion in Figure 4-2. The time sequence of operation of the

system in Figure 4-2 is the top horizontal channel operates,

then the sloping feedback channel operates, then the bottom

channel operates, and finally the estimate of 0 is generated

as a linear combination of the 2 receiver outputs. The constant

gains tl,...,t6 can be identified as the components of the

arbitrary filters LRF1,...,LRF4 in Figure 4-1. The noise has

been relabeled to correspond to Elias' [3] notation; actually

n1 and n3 are the two forward channel noise samples and n2
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is the feedback channel noise sample. The noise variances

are defined by Elias so that the specified signal-to-noise

ratio of each of the three noisy branches is maintained.

Each branch has a signal-to-noise ratio of 1/Ni (i=1,3);

the forward and feedback energy constraints imply what

these three numbers should be. With the noise variances

defined so as to maintain the required signal-to-noise ratio,

the gains t, t4, and t6 may e set to unity since they

are redundant degrees of freedom in the analysis; these gains

have dotted lines around them in Figure 4-2. The remaining

3 parameters t2, t3, and t5 are the constants to be determined

optimally.

Summarizing Elias' problem, given branch signal-to-noise

ratios 1/N find the optimal choice of t2, t3, and t5 such

that the output signal-to-noise ratio

Var[e] 1 (4.1)
v- Var[(]

8 - ~~~~~~~~~Var[6]

is maximized. Clearly maximizing Sout is the same as minimizing

A
the mean square error (variance) of the estimate e. The

constraint on the forward transmitted energy can be written in

terms of the signal-to-noise ratios as

2E0 1L1

N *F =N N 42
0 1N 3 (4.2)

i~~~~~~~~~~1 + N
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The feedback transmitter energy constraint is

1
SNR B = N (4.3)B 2

The transmitted variable is assumed zero-mean Gaussian;

hence, the linear feedback system structure assumed turns out

to be optimal of all possible feedback structures.

Given t2 in Figure 4-2, the optimal choice of t3 and t5

is obvious since the structure is a discrete Gauss-in-Gauss

problem (see Van Trees [30]). By carrying out the analysis

outlined in Elias [3], the weight t2 and the overall optimal

output signal-to-noise ratio are

N

t2 -(l+N 1 )(N + N2 (1+N1 )) (4.4)

and

2+ 1out N + 2 (4.5)
out N1 N2+ N (1+N 2
opt 1 N + 2N(+N1)

if is taken as a unit variance random variable. Also the

optimal choice of N3 and N1 such that Equation 4.2 holds is

1 1 SNR (4.6)
N N 2 F (4.6)1 S
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which implies that each use of the forward channel should have

the same mean square transmitted power since the forward channel

white noise variance is constant (N0/2).

Consider now exactly what part the feedback channel plays

in the overall system. From Figure 4-2 the transmitted signal

at the second iteration (bottom channel in Figure 4-2) is

m2 = e t = e + t2(e + n (4 7)

In order to give the term "t2 sl some interpretation, the

optimal choice of t2 in Equation 4.4 can he written in terms

of the noise variances (rather than the signal-to-noise ratios)

as

-1
t2 (4.8)

2 ~2 21 + n + n2 + (n2/n1)

From the study of noiseless feedback systems the optimal system

was found to transmit the error signal (or difference between the

message and the current receiver estimate). If this were true

for the noisy system also, then t2 would be chosen to make -t2s

the minimum mean square error estimate of the receiver's estimate

of e. After one iteration the receiver has only

r1 = 0 + n 1 (4.9)



-106-

available and would therefore estimate 0 as

r
1

01 ~~ ~~~= (4.10)

1 + n1

If -t2 s1 in Equation 4.7 is chosen to be the minimum mean square

error estimate of 01 above, then the choice for t is

-1t2 -- (4.11)

mse 2 2
mse1 + nl + n2

which is different from the optimal t2 in Equation 4.8. If

2

n2 N2(1 + N1 ) 1 + SNRF/2--~~ =F (4.12)
2- N1 SNRB

n1

is sufficiently small, then the optimal weighting in Equation

4.8 does not differ greatly from the suboptimal mean square error

weighting in Equation 4.11. The implication is that for sufficiently

large signal-to-noise ratios in the feedback path the mean square

error system is essentially as good as the optimal. The performance

should also indicate this fact and will be calculated now.

After two iterations of the forward channel, the receiver

has available the two observations

r = 0 + n1 (4.13)
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(4.14)r2 = (1 + t2)O + t2(n1 + n2 ) 3

where the noise powers can be calculated as

n2n 1 = N1

= N2 (1 + N1)

(4.15)

(4.16)

(4.17)= N [1 - 1
= N[1 ( i+N1 ) (+N2)

The performance of the optimal system is given in Euation 4.5.

The suboptimal system performance is obtained if t2 is given

by t2 in Equation 4.11 and the optimal choices for t3 and

mse

t5 are selected for this given t2
mse

The output signal-to-noise ratio for this choice of t2

can be written down without directly calculating t3 and t5.

Define a noise covariance matrix N based on the observation

equations for r1 and r2 as

N1 Nlt 2
mse

Nlt2
mse

n3 + t23 2 (n + n2 )
mse

(4.18)

2
n3
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The best choice for t3 and t5 yield can estimate of for

which the output signal-to-noise ratio defined in Equation

4.1 is

1

Sou t [1 l+t2 ] 1[

out2mse l+t
mse

mse

(4.19)

[N1 + N2(1+N1)] [2N1(l+N2) + 1]

2

N1 [ N1(l+N1)(l+N2) - N1 (l+N2) + N2

A direct comparison of the two system performances given

in Equations 4.5 and 4.19 is difficult. Theoretically it follows

that the suboptimal system has a lower output signal-to-noise

ratio, or

Sout > Sout (4.20)

opt mse

for all choices of N1 and N2. Equality holds only when the

quantity in Equation 4.12 is 0, namely when N2 = 0. This is the

noiseless feedback situation from which the suboptimal system

was motivated. In Figure 4-3 the output signal-to-noise ratios

are compared for N1 = .1 (i.e., a forward signal-to-noise ratio

of SNR = 20). The output signal-to-noise ratio for the feedback

systems discussed in Chapter 3; from the figure the effective
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signal-to-noise ratio of the optimal system is always greater

than 20 as it must be. The suboptimal system is not always

above 20 in output signal-to-noise ratio; for those regions

less than 20 the implication is that it is better to dis-

connect the feedback channel rather than use the suboptimal

feedback system.

In the high SNRB/SNRF regions of operations the difference

in performance of the two systems is quite small. As this

ratio approaches infinity, both systems become identical and

are the optimal noiseless feedback systems with an output

signal-to-noise ratio of 120. For low values of this ratio

both systems approach the nofeedback signal-to-noise ratio of

20 although the suboptimal system approaches 20 from below.

One conclusion of this example which is important for the

remainder of this chapter is that the suboptimal MSE system

is an effective utilization of feedback which is asymptotically

(large SNRB/SNR) optimal. Since the optimal solution for

arbitrary noisy feedback systems is generally unattainable,

the MSE system remains as an easily constructed, potentially

effective feedback system whose performance is investigated in

the remainder of this chapter.

Clearly the MSE system is probably a poor system whenever

the signal-to-noise ratios in the forward and feedback paths are

roughly equal. A slight modification of the MSE system can be

made to improve the performance.
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The above calculations of the MSE system assumed that each

use of the forward channel should use equal energy. Allowing

N1 and N3 to be free (although satisfying Equation 4.2) gives

1 + (N1 + N3) (1 + N2)
S (4.19a)

out N
mse Nl+N' 2
mod 1

[ 3 2 N +N2 +N1N2

The maximization of Equation 4.19a subject to constraint

Equation 4.2 was carried out numerically and plotted in

Figure 4-3 as a dashed line. This same type of modification

is used in Section 4.6 in discussing the continuous-time MSE

system.

Before proceeding to the investigation of several sub-

optimum systems, one important observation must be made relative

to the previous studies of noisy feedback systems. Many authors

(including Kushner [12] on stochastic differential equations

and as recently as Omura [31]) state that in the presence of

feedback noise the optimal system does in fact estimate the

receiver state as outlined in the above MSE system. Elias' result

is a direct counterexample to this idea; many more counterexamples

are contained in the various MSE systems studied in this chapter.

Some idea as to why the MSE system is really suboptimal can

be found by comparing the optimal t2 in Equation 4.8 with the

suboptimal t2 in Equation 4.11. lThe major difference is that
mse



-112-

the optimal choice depends on the relative noise levels of the

two forward and feedback channels as well as the absolute

levels. Even though both noise levels n and n might be small,1 2
n2 can still be much larger than n, implying that the feed-

back channel is much worse than the forward channel even though

both channels are very good. The optimal system recognizes

this fact that the feedback channel, even though very good

absolutely, is actually relatively poor compared to the forward

channel; t2 in Equation 4.8 will become much smaller in this

case than t2 (smaller in magnitude), thereby tending to
mse

rely less on the feedback channel.

4.2 MSE Feedback System Formulation

In this section the MSE noisy feedback system will be formulated

in general terms. Succeeding sections apply these general results

to specific types of feedback channel noise models. Recall that

the MSE system is not the optimal linear noisy feedback system,

but it will be shown to be a most useful noisy feedback system.

In Chapter 2 the study of noiseless feedback indicated that

the optimal transmitted signal is of the form

m(t) = g(t)P (t ) - ) (4.21)

where g(t) is arbitrary and P(t) is known as the solution of a

differential equation. x(t) is the receiver state obtained over

the noiseless feedback channel. In the presence of feedback noise
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Define also the variance or mean suare error of the estimate

x(t) as

V(t) (t) Erx ] = - E[x(t)x(t)] (4.26)

V(t) is the mean suare error the transmitter makes in

estimating the receiver state x(t).

Inserting m(t) in Equation 4.23 into the state equation

for x(t) (Eauation 2.1 with (t) = ) gives

2
d 2^P
d t) = - g (t)P(t) ((t) - ) + g(t)n(t)

2 2
g (t)P(t) x(t) - g (t)P (t) x(t)

x(t) - P x(t)

92W+ g(P(t) + g(t)n(t) (4.27)

If (t) = 0 (i.e., no feedback noise), then this equation reduces

to the state equation of the noiseless system of Chapter 2. The

effect of the feedback channel noise is the additional driving

term in Euation 4.27 involving x(t). Now the receiver state is

the OUtDut of a linear system driven by two noise inputs associated

with the forward and feedback channel noises. The actual feed-

back channel noise enters implicitly in the error waveform x(t).

Since the mean of x(t) in the noisy feedback case is tile

same as in the noiseless case, define the variance of x(t) as



-115-

Q(t) -i Varfx(t)] (4.2-)

The differential equation for Q(t) follows easily from the state

equation 4.27 as

d 2g' (t)P (t) 02
dt Q(t) = [Q(t) - V(t) + g (t) (4.29)

Q(0) = 0

Q(t) is te solution of a linear differential equation and can

be broken up (by superposition) into two parts corresponding

to the to drives to the equation. Define these two parts as

o(t = Q (t) + O (t) (4.30)

where the parts satisfy

dt Qs(t)
dt s

0 (0)-S

d o t

dt v(t )

Qv(0)

2 _ 2 (4.31)

= 0

2= - 2 (t)P(t) O (t) + 2g (t)P(t) (t) (4.32)

~x= x

= 0

i

I

I
I

I

1

I

I lJ W.
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Of the two components Q (t) represents the fluctuations of x(t)
5

due to the forward channel noise assuming noiseless feedback;

hence, Q (t) is exactly the same as the Varfx(t)] used in

Chapter 2 in the treatment of noiseless feedback systems.

0 t) is the fluctuation due to the noisy estimate of the
.v

receiver state caused by the noisy feedback channel; it is

a linear function of the mean square error V(t) of the receiver

state estimate.

Having defined the appropriate functions, the average

instantaneous transmitted power of the MSE feedback system is

2 g2 (t)P2
E[m (t)] = (noiseless system power) + Q (t) - (t)]

2 [Qv

(4.33)

and the performance (mean square error) of the MSE system is

2
E[(x(T) - 0) ] = (noiseless system error) + Qv(T) (4.34)

The performance (mean square estimation error) of the noisy system

is just that of the noiseless plus the effect of the feedback

noise on the final state of the receiver, namely Qv(T). The

transmitted energy is slightly more complicated, being the integral

of Equation 4.33.

Observe that the characteristics of the MSE system depend

only on V(t), variance of estimating the receiver using the
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feedback channel observations. For whichever type of feed-

back noise is present, one need only calculate the variance

V(t) to determine the overall performance of the noisy feed-

back system by inserting V(t) into Equation 4.32. For example,

if the feedback channel noise is additive white noise, then

V(t) is the solution of a Ricatti equation and can be used

to determine Equations 4.33 and 4.34.

Suppose that the type of feedback noise has been specified

and that V(t) can be calculated. The remainder of the solution

is to find the best choice of g(t). Again the functional

T

J = E[(x(T) - 0)2 ] + X I dt [m2 (t)] (4.35)

0

is formed and perturbed to find the optimal g(t). Analytically

this is a formidable problem. For any particular g(t) he

performance of the noisy feedback system can be determined

numerically, but numerical optimization over g(t) appears

difficult. Some numerical results for additive noise feedback

channels are given in Section 4.6. Lacking the best g(t),

the performance of the MSE system is not the best it could be

if the optimal g(t) were known.

In the next several sections different types of feedback

noise will be studied. By using the results in Equations 4.33

and 4.34 the performance of the SE system for these noises can

be determined.

.'
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4.3 Solution for a Constant Variance Estimate

Assume that the feedback channel noise is such that the

best estimate x(t) of the receiver state has a constant variance.

A constant variance estimate is a good approximation or many

noisy feedback systems. For those applications where SNRB >>

SNRF the feedback channel probably will have a larger band-

width than the forward channel; hence, perhaps a steady state

approximation for the feedback channel is appropriate. Another

situation in which a constant variance estimate of the receiver

state might arise is a noiseless feedback system in which the

receiver state (voltage) x(t) must be quantized due to measure-

ment limitations. For example x(t) might range between -.5

and +.5 volts with a measurement accuracy to the nearest milli-

volt. Even in situations in which a constant variance approx-

imation is not valid, the results of this section can be used

to make a good guess as to how well the noisy feedback system

will perform.

Assume that the feedback channel is such that the estimate

x(t) has a mean square error of

V(t) = V0 < E[ 2 ] (4.36)

which is assumed less than the signal () variance. If the

inequality in Equation 4.36 does not hold, the feedback channel

cannot be of any value.

Since V(t) is constant, Equations 4.32 and 4.33 can be
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integrated to evaluate J in Equation 4.35 as

2 N0
J =- 0 (+ 9 - VO)s0 2 X ln(s0) (4.37)

which differs slightly from the noiseless expression (Equation

2.28) by the additional terms involving V. The quantity s

is the same quantity of Chapter 2, namely

T
1 2-1 = 1 + 1 dt g (t) (4.38)

So 0

and contains the dependence on g(t). Perturbation of the above

equation for J in order to determine the best choice of g(t) leads

to an integral square constraint (as before) with a performance

of

E[f(x(T) - e) 2 ] = V0 + (e2 - V0 )exp[-2E0/NO] (4.39)

This is the performance of the MSE feedback system subject to a

transmitter energy constraint of E and a constant variance receiver

estimate.

Examining the performance of the noisy feedback system, it is

clear that if V is small enough, then the noisy system performance

is essentially the same as the noiseless system. V0 is small enough

if
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2

>> exp[2E /N ] (4.40)
0

The quantity on the left in Equation 4.40 can be recognized as

approximately the signal-to-noise ratio of the feedback channel

since it is the reciprocal of the normalized error in estimating

the receiver state using the feedback channel observations.

The quantity on the right in Equation 4.40 is approximately the

effective signal-to-noise ratio of a noiseless feedback system

operating over the same forward channel. Thus, the inequality

in Equation 4.40 states that, in order for the noisy feedback

system to be essentially noiseless, the feedback channel signal-

to-noise ratio must be much greater than the effective signal-

to-noise of the noiseless feedback system. For SNRF =

2E0/N0 = 5 the feedback channel signal-to-noise ratio must be

5
much greater than e = 150 for the noisy system to be essentially

noiseless.

At the other end of the scale, as SNR F = 2Eo/N tends to'F 0 0

infinity the noisy feedback system performance tends to V0

which is not 0. This result is ample indication that the MSE

system is actually suboptimum. As SNR tends to infinity, it is

easy to construct a nofeedback system which will have a mean

square error tending to 0 (which is better than a mean square

error of V). As noted before, the behavior of the MSE system

fails to take into account the relative poorness of the feedback

channel.

L.
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In Sections 3.5 and 4.1 the usefulness of the feedback systems

can be indicated by the effective signal-to-noise ratio of the

feedback system (or euivalently the output signal-to-noise ratio).

The effective signal-to-noise ratio for the constant variance

noisy feedback MSE system is

noisy SNR
e-1

SNR - (4.41)
feedbacl: 0

1 + (+ e )
2

This uantity is plotted in Figure 4-4 for two values of the

7
feedback signal-to-noise ratio /V . Also included in the plot

0*

is the effective signal-to-noise ratio for noiseless feedback

(Equation 4.41 when V = ) and the effective signal-to-noise

ratio of the nofeedbacik system (which is the actual channel

signal-to-noise ratio). As the forward SNRF increases, the

effective signal-to-noise ratio approaches SNR = e /V0 so that

the effective signal-to-noise ratio of the MSE system can never

be arentr than th f d1-xirt- cnnnel ci #1 -t--nn- . r

if there is no noise in the forward channel, the MSFE system will

not have a mean square error of 0 in estimating , but the

performance will be a mean square error of V0 (the feedback channel

variance). Again, this is another demonstration that the SE

system is suboptimum.

The effective signal-to-noise ratio in Eauation 4.41 can be

converted to a probability of error (P ) for the message coding
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scheme of Chapter 2 by

signal-to-noise ratio.

for the sstem is SNR,

noting the dependence of P on the effective
e

If the effective signal-to-noise ratio

then P is
e

P - 2 Of[ SNR 1 / 2 ]
e

2 (C-1) 

(4.42)

where the function is the area in the tail of the normal

density (Equation 2.59). For comparison purposes several points

can be calculated from Euation 4.42 as (for M=2)

P
e

10-5

10

n-7

SNR

19.4

24

29.2

This scale change could be used in Figure 4-4 to convert the

vertical scale from effective signal-to-noise ratio to P to
e

determine the P improvement of the feedback system.
e

As an example of how these results might be applied to a

physical system, suppose that the forward channel has SNRF = 3.5

and operation with a P < 10- 6 for a single bit is desired.
e -

From the table an effective signal-to-noise ratio of 24 is needed,

but without feedback the effective signal-to-noise ratio would only

be 3.5. If a noiseless feedback link ere available, it would
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3.5boost the effective signal-to-noise ratio to e5 - 1 = 32.1

which is more than enough for a P < 10 . For practical
e -

reasons there are no voltmeters, say, which could read the

receiver state x(t) to an infinite number of decimal places

for the noiseless feedback link; hence, truly noiseless feedback

is not possible. Suppose instead a binary quantizer is to

be purchased for measuring x(t) to some finite number of its.

The exact number of bits of quantization needed to achieve

-6
P < 10 can be determined so that no extra expense is involved

in purchasing the quantizer.

First the required fractional variance of the "noisy"

feedback link can be calculated b equating Equation 4.41 to

24 and solving for

V0
< .0099 (4.43)

02

Next the fractional error of a k-bit quantizer must be determined

and then equated in Equation 4.43. The error due to quantization

is (approximately) uniformly distributed in an interval of width

-k
2 . For example, a 3-bit system which measures x(t) as .0625

implies that x(t) actually lies in the interval 0 to .125, an

interval of width 2 3 = .125. If the error in estimating x(t)

is uniform in the interval, then the fractional variance of the

estimate is the variance of a random variable uniform in an interval
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-kof idth 2 or

(4.45)
_ 12

Equating the fractional variance of the quantizer to the required

feedback error in Equation 4.43 implies that k > 2, or that at

least 2 bits of quantization are needed. Thus, if the receiver

informs the transmitter of the uarter of the interval [-.5,.5]

the receiver state is in, the system will operate with an

effective signal-to-noise ratio of 27.2, more than adequate

e -6
to achieve the desired P < 10 . Observe that if only the

e -

sign of x(t) (1 bit) is available at the transmitter, this is

-5
sufficient to operate at P = 2 x 10 which is still an improve-

e -

ment over the nofeedback- P = 6 x 10 
e

Using the result in Equation 4.41 for te effective signal-

to-noise ratio of the MSE system, the expected noisy feedback

improvement for different types of feedback systems can be approximated.

In the next section the effects of delay are evaluated.

4.4 Approximate Performance of Feedback Sstems witlh elayv

Suppose that instead of measurement noise, a constant loop

delay of t seconds is present. The transmitter only has available

x(t-t0 ) at time t and must estimate x(t). The procedure in this

section will be to calculate (approximately) the fractional estimation
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error made 1y the transmitter in estimating x(t) given x(t-tq).

Then this error will be used in Euation 4.41 to determine the

'ISE system performance in te presence of delay.

In Chapter 2 in the study of noiseless systems the choice

of g(t) in the system was found to be almost arbitrary; owever,

there was a uniue g(t) which seemed to give te best operational

characteristics (e.g., constant transmitted power, constant

bandwidth). Assume that this choice of g(t) is made. The state

equation for x(t) for this choice of g(t) is

dt x(t) = - k x(t) - k x(t) + k + g(t)n(t) (4.46)

where k is the constant pole location

2E 0 SNMRF
kF = NRF (4.47)
Nk T T

x(t) is the estimation error in estimating x(t) given x(t-t).

In order to approximate the mean suarred error E[x2(t)],

consider a stationary one-pole random process a(t) with a spectrum

S (f) = A448a + (4.48)(2Tf) + 
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Given a(t-t0 ), the minimum variance estimate of a(t) has a

fractional steady-state mean square error of

!~~~~~~~~~~~~~~~~

E[(a"(t) - a(t))2
E 2(t) -(t)) ' - 1 - exp[-2kt 0] (4.49)

E[a (t)]

where the estimate a(t) is

a(t) = E[a(t) ] (4.50)

la(t-t0 )

The above expression for the fractional estimation error can

be applied directly to the feedback system to give the approximate

fractional mean square error of the transmitter's estimate of

the receiver state. Admittedly the feedback system estimation

error is not in the steady state, but Equation 4.49 is a

reasonable upper bound to the estimation error. It is an upper

bound because at the start of the interval the estimation error

is zero (the transmitter knows that the receiver is initially

at rest) and increases toward the steady state value. The system

is roughly in the steady state at the end of the interval since

kT = SNR which is normally around 5 or more if the forward

channel is not too noisy.

Inserting Equation 4.49 into Equation 4.41 gives the

approximate signal-to-noise ratio improvement of the MSE system
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in the presence of a loop delay of t seconds as

delay tO

SNR texp[SNR] - (4.51)
1 + (1 - exp[--2kt0])(l + exp[SNR])

or by using the value of k in Equation 4.47

delay to

SNR " exp[SNR] 1 (4.52)
1 + (1-exp[-2SNR(t0 /T)])(l+exp[SNR])

as the effective signal-to-noise ratio of the MSE system with

delay t.

The important quantity which indicates whether or not the

delay t is important to the otherwise noiseless feedback system

is

to
kto = NSR (~-) (4.53)

F T

which must be small compared to exp[-SNRF] in order for the

system improvement in Fquation 4.52 to essentially the same as

the noiseless delayless feedback system.

As an example of the application of Equation 4.52, consider

the system used for an example in the previous section. Suppose

that there is no quantization error, but that operation at

P < 106 is desired for SNRv = 3.5. The maximum loop delay for
e --.



-128-

this operation is desired. In Equation 4.43 the maximum fractional

variance allowable in estimating the receiver state was determined:

therefore, Equation 4.49 must be less than

1 - exp[-2(3.5)(t0/T)] < .0099 (4.54)

or solvina

to < 7T00 (4.55)

-6
in order for P < 10 in the MSE feedback system.e -

Delay is a significant problem for the SE feedback system

because the estimation error increases rapidly with increasing

delay. Heuristically the bandwidth of the feedback system is

roughly the location of the pole, namely 3.5/T. It would seem

that as long as the delay in the loop is much less than the

reciprocal bandwidth, the feedback system performance should

be almost as good as the noiseless feedback system. A delay of

1/10 the reciprocal bandwidth would appear (from an engineering

point of view) to be reasonable for ignoring the delay; this

would correspond to a delay T/35. The inequality in Equation

4.55 is much stronger and tends to negate the engineering point

of view" for tis system.

Authors who have dealt with discrete-time feedback systems

have indicated that loop delay can be handled in discrete-time
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feedback systems by time multiplexing several feedback systems

so that each system effectively has no delay. For every

additional unit of time delay there must be an additional

message and receiver so that many separate feedback systems

(using the single channel at different times) may be necessary

to eliminate the effects of the delay. This solution to

delay is not directly applicable to continuous-time systems

unless one proceeds by discretizing the continuous-time system.

4.5 Additive Tite Feedback loise

Consider a feedback system in which the feedback channel

is an additive white noise channel like the forward channel.

This model is one of the more realistic feedback system models

since no system (or channel) is really noiseless. The most

general linear system for such a feedback communications

problem is shown in Figure 4-1 for the discrete-time case.

The four filters LRF1,...,LRF4 are to be chosen optimally

subject to the forward and reverse transmitter power constraints.

Since the optimal solution is unknown, the performance of the

MSE system will be studied. In this section the techniques of

the preceding two sections will be used to approximate the

performance of the MSE system operating with additive white noise

in the feedback channel. Section 4.6 gives more accurate numerical

results for several types of MSE systems.

If the feedback channel has additive white noise of spectral

density W/2, then a feedback transmitter energy constraint
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must e imposed to make the problem meaningful. Assume that the

receiver is restricted to an energy EB in transmitting back

to the transmitter in the interval [0,T]. This implies

that a reverse or backward signal-to-noise ratio can be defined

2EB
SNRB = B (4.56)

B W0

in a manner analogous to the definition of SNRr, the forward

signal-to-noise ratio.

Considering the one-state receiver outlined in Section

4.2 and drawn in Figure 4-5, if g(t) is chosen to make x(t)

have a constant pole location (bandwidth), then the fractional

estimation error in estimating x(t) at the transmitter (based

on the feedback channel observations) is approximately the

steady state realizable Wiener filtering error if the receiver

sends back a multiple of the receiver state x(t). If a(t)

is a one-pole (located at -k) stationary process observed

in white noise, then if

4P

A = ave (4.57)
N k

and N0/2 is the white noise density and Pave is the average

transmitted power, the normalized realizable steady state error

is estimating a(t) observed in the white noise is

.1
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g(t)P(t)

w(t)

Figure 4-5. Additive noise feedback system

y(t) =

Y(t) 

x(t)
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2 2
- - 1/2 1/2 (4.58)
1 + (l+A) 1 + (1 + 2SNRB/SNR F )

The second part of Euation 4.58 follows by observing k is

given in Euation 4.47 and P = E/T. The above expression
ave B

for the normalized estimation error is pessimistic due to the

fact that the true feedback system starts out at t = 0 with

zero error and only approaches the error in Equation 4.58

as steady state is reached; T may not e long enough for

steady state to be reached, in which case the fractional error

is never as great as that in Equation 4.58.

With these reservations the value of in Equation 4.58

can be inserted in Equation 4.41 to give the approximate erform-

ance (signal-to-noise ratio improvement of the MSE system)

white exp [SNR. SNR white exp.] - 1 (4.59)
1 + 2(exp[SNR] + 1)

1 + (+2SNTR/SNR)1 2

The above expression for the effective signal-to-noise ratio

of the MSE system implies fairly poor performance unless

SNRB >> SNRF . For example, recall the system in Section 4.3BF

and 4.4 which had a SNRF = 3.5 and needed a fractional variance

less than .- 699 to achieve P < 10 . In order to achieve thisless than .0099 to achieve P < 10 . In order to achieve this
f__ 
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performance with white noise in the feedback path, the signal-to-

noise ratio in the backward direction must be approximately

SNRB = 10000, a rather large signal-to-noise ratio.

For these cases when SNR is much much greater than SNRFBI 

the MSE system is almost optimal; this is the limit in which

the MSE system is asymptotically optimal. The implication

is that the optimal system (if it were known) would not give

significantly better improvement than the MSE system perform-

ance calculated in Equation 4.59, 4.52, and 4.41. Whenever

SNR is not much much greater than SNRF, the MSE system
B

performance (which is still given by these equations) is much

poorer than would be obtained from the optimal linear system.

In the next section the basic MSE system is modified

slightly to obtain system improvement even when SNRB is on

the order of SNRJ. The modification is an extra gain parameter

which takes into account the effect of the feedback noise on

the overall system performance. As noted in Section 4.1 in

the study of Elias' system, this appears to be the fault of all

MSE systems.

4.6 Numerical Results for Additive Feedback Noise

Considering the same additive white noise feedback problem,

suppose SNRF = 5 and SNRB = 100. Using these values in Equation

4.59 implies that the addition of the MSE feedback link changes

the effective signal-to-noise ratio from 5 (without feedback) to

3.6 with feedback. The addition of feedback has degraded the
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performance; hence, this is a situation in which the MSE system

for utilizing feedback is quite suboptimal. The modification

of the MSE system developed in this section will achieve an

effective signal-to-noise ratio of about 19 which is certainly

a much better feedback system. In fact the modified system

is modified in a manner which prohibits the effective signal-

to-noise ratio of the feedback system from being less than

SNRF, the nofeedback signal-to-noise ratio.

The structure of the feedback system is essentially the

same as that shown in Figure 4-5. The receiver transmits

a multiple of the receiver state x(t) back to the transmitter

over the feedback channel. The filter HI1 which generates

y(t) = x(t) is, therefore, a Kalman filter to be calculated

shortly. The feedback signal is

z(t) = K(t) x(t) (4.60)

and must satisfy the constraint on feedback transmitter energy

T
2

E = f dt E[z (t)] (4.61)
B 

0

The differential equation of the receiver is

l x =2 (t)P(t)2d x(t) = (t)P(t) + + g(t) n(t) (4.62)
dt y(t)
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where y(t) is the transmitter's estimate of the receiver state.

The filter H1 which generates y(t) observes z(t) + (t) =

K(t)x(t) + w(t). The minimum mean square error estimate

y(t) which estimates x(t) is a Kalman filter; the only

difference from the ordinary Kalman [17] formulation is that

the "message" x(t) depends on the estimate y(t). Nevertheless,

the filter H1 satisfies

d ~~~~2 2d (t) [+ 2K (t)V(t) (t)P(t) g (t)P(t) 
at ) y(t) + edt ~w0

2
2K2 (t )V(t)+ K (t)V(t) [z(t) + w(t)] (4.63)

W0

y (0) = 0

where the variance V(t) of the estimate y(t) satisfies the

Ricatti eutiion

d N0 2 2K2 (t)V2 (t)
dt V(t) = 2°g2(t) - __ ______(4.64)

V(O) = 0

This value of V(t) is what is-required to insert in Equation 4.29

to determine the performance of the noisy feedback system.
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Unfortunately direct use of V(t) in this manner is not ossible

without first determining the feedback channel signal-to-

noise ratio.

The noisy feedback MSE system is completely specified

by Equations 4.62 and 4.63, leaving g(t), K(t), and X is

determined by the forward transmitter energy constraint. The

remaining g(t) and K(t) are arbitrary and can be varied to

improve the performance.

Recall that for the noiseless case and the constant

variance estimate case the shape of g(t) did not affect the

system performance; this fact led to other (power, bandwidth)

considerations to determine a suitable g(t). Now, however,

the estimate variance is not constant; hence, the best choice

of the shape of g(t) might be expected to affect the system

error.

Consider what the choice of g(t) affects. The transmitted

signal for all 'ISE feedback systems is

m(t) = - g(t)P(t) (y(t) - ) (4.5)(y(t) - )(4.65)

where y(t) is the estimate of the receiver state. If the

estimate y(t) is not very good during some part of the interval,

one would hope that the transmitter weighting g(t)P(t) would be

relatively small in that section of the transmission interval.

Since in the time-varying system the transmitter knows that the
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receiver state is 0 initially, the variance of the estimate

y(t) is small near t = 0, but generally increases toward

a steady-state value. Perhaps the best shape of g(t)P(t)

would e large initially and tapering off (perhaps to zero)

as the estimate becomes worse later in the interval. Such

a design philosophy would certainly guarantee a signal-to-

noise ratio (effective) no worse than the nofeedback system

since all of the energy could be concentrated early in the

interval. Toward this end several different shapes of g(t)

are tried. By varying the amplitude of g(t) to optimize

the feedback system performance, the MSE feedback system performs

quite well. The exact effect of the shape of g(t) on the trans-

mitter weighting g(t)P(t) is quite complex.

In order to calculate the performance of the MSE feedback

system, several equations in addition to Equation 4.64 are

needed. Equation 4.29 specifies the behavior of Q(t), the

variance of the receiver state x(t). Define

11(t) = E[x(t) - ] = E[y(t) - e] (4.66)

in order to calculate mean values. It follows that the differential

equation for at(t) is

2
d g (t)P(t)

= - (t)P t) (4.67)

u (0) = -
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Some convenience is obtained by writing P(t) directly in

terms of u(t)

P(t) = v(T)
vI (t)

v(T) =

(4.68)

-0

T
1 + X f dt g (t)

0

For these definitions the mean suare error of the MSE

system in estimating 0 is

E[(x(T) 0)2 = Q2(T) (4.69)

with a forward signal-to-noise ratio of

SNRF

2 

= 2- f dt [O(t) - V(t) + t t)P(t )2 (4.70)
N0 0

and a feedback channel signal-to-noise ratio

T

.NR = 2_ f dt [Q(t) + (O+p(t)) ] K (t)
WO 0

(4.71)
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Summarizing, the TSE feedback system in Figure 4-5 (for

tIl being the Kalman filter in Equation 4.63) has been analyzed

to yield the erformance and constraints of Euations 4.69

to 4.71 in terms of functions specified by differential equations.

The functions g(t) and K(t) and the constant are free subject

to the signal-to-noise ratio constraints.

At this point the analysis stopped and numerical evaluation

of these equations started. The optimization over K(t) and

g(t) even on a computer is not at all straightforward since

the functions are almost completely aribtrary. Instead some

modified optimization was carried out numerically to determine

the performance of several MSE systems.

The feedback transmitter gain K(t) was assumed to be

constant, that constant which made SNRB be the desired value

in Euation 4.71. The value of is that which makes SR F

equal the desired forward signal-to-noise ratio. For this

procedure there are no constraints on g(t): g(t) was selected

as a parameterized waveform such as

Trt
g(t) = A sin(-) (4.72)

where the optimal choice of the constant A was found numerically.

For this class of problems the computational chore is to find

the two constants ( and K) which yield the correct SNRFP and

SNPI and then choosing the best value of which minimizes
'P e
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Equation 4.69.

The computation was carried out and plotted in Figure 4-6

for the probability of error P as a function of the feedback
e

signal-to-noise ratio (SNRB) for different values of SN?.

g(t) was the half sine wave above with T = 1 (T does not

affect the performance). Other data in the figure include the

performance of the system without feedback and with noiseless

feedback. Observe that the modified !MSE system always performs

better than the nofeedback system which is in contrast to other

MSE system studied in this chapter which perform worse than

nofeedback in some regions.

The system performance plotted in Figure 4-6 is for g(t) =

half sine wave. In Figure 4-7 several different shaped g(t)

are compared at a fixed forward SNRF = 5. The three types of

g(t) considered are: 1) constant, 2) half sine wave cycle,

3) full sine wave cycle. From the results plotted in Figure

4-7 each choice of g(t) performs slightly differently although

there is no clear "best' g(t) of these three shapes.

The choice of g(t) (as in the noiseless case) affects the

power distribution at the transmitter. Roughly, with noisy

feedback the instantaneous average transmitted power is proportional

to g 2(t); this result is an empirical one based on the numerical

results. For g(t) a constant, the transmitted power is approximately

constant except for a gradual peaking at the end of the interval.

The power distribution in the feedback channel was always ramp-

like for the constant K(t).
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As noted in Chapter 3, feedback systems can be viewed as

reducing the effective channel noise or as increasing the

effective signal-to-noise ratio. In Figure 4-8 the data

from Figure 4-6 are plotted to indicate the relationship

between the effective signal-to-noise ratio of the feedback

system and the feedback channel signal-to-noise ratio. Figure

4-8 also indicates the increase in effective signal-to-noise

ratio to be expected if the feedback channel were noiseless

which is substantially larger than the noisy feedback results.

A comparison of the results of Figure 4-8 with the

approximate results of Equation 4.59 shows that the latter is

quite pessimistic for the SNRB range plotted in the figure.

For example, for SNRF = 3 and SN B = 180, Equation 4.59 predicts
F B

an effective signal-to-noise ratio of 4.3 whereas the figure

gives 10. One reason for the difference is that the true

estimation error is actually less than half that given by

Equation 4.58; another reason is that better use of the feedback

channel is obtained by a different g(t).

4.7 Comments on Noisy Feedback Systems

In this chapter digital systems employing noisy feedback

channels have been analyzed. Approximate solutions have been

obtained for different types of feedback channels. The formulation

of the exact optimal feedback system is resent, but the problem

remains unsolved. Guided by the results of Elias, it appears that
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the optimal feedback system (if it could be determined) does

not perform much better than the suboptimal MSE systems

studied for large SNRB/SNR ratios.

By starting from the known solution for noiseless

feedback in which the transmitter sends the error between

the receiver and the message parameter (e), the suboptimal

MSE system operating in the presence of noisy feedback estimates

the receiver state and sends the estimated error of the receiver

as its transmitted signal. Many have stated that this technique

yields the optimal noisy feedback systems, but Elias' results

prove otherwise. Nevertheless, the MSE system is asymptotically

optimal and provides a system capable of using the noisy feed-

back cannel. A close examination of Elias' system indicates

that the MSE system does not consider the effects of the feed-

back noise on the overall system performance, but only the effect

of the feedback noise as it alters the transmitted signal power.

Several examples of this chapter demonstrate this fact.

The performance of the noisy feedback systems discussed

depend on the fractional or normalized mean square estimation

error of the transmitter's estimate of the receiver state.

Knowledge of this normalized error enables one to approximate

the performance of the MSE system. For most practical cases this

error is far too large for the noisy feedback system to obtain

the dramatic improvement of noiseless feedback. The performance

improvement of noisy feedback systems computer here may or may
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not e large enough to warrant the use of a linear feedback

system. 'fore complex signalling techniques would be necessary

to improve the system erformance.

The signal-to-noise improvement calculated and plotted

is only for the digital example. Other systems (such as

analog estimation problems) hlave signal-to-noise ratios

associated with them which may or mav not be related to the

digital system signal-to-noise ratio. The characterization

of feedback systems by the increase in effective signal-to-

noise ratio is a convenience. hic' is 1Imited to the particular

system analyzed. The effective signal-to-noise ratio for

analog estimation problems would have to be calculated separately.
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CHAPTER 5

Summary and Extensions

At this point a summary of the preceding three chapters

will be given followed by a series of related problems which

are extensions of the feedback systems studied here. Some of

these problems do not appear promising in view of the results

of this thesis; others are appropriate for further research.

5.1 Summary

As reported in Chanter 1, previous studies of feedback

systems have been restricted to discrete-time versions of

noiseless feedback systems. Many similar systems have been

described which operate at error-free rates up to channel

capacity.

In Chapter 2 the noiseless feedback problem is formulated

directly in a continuous-time variable, thereby saving the

limiting argument of discrete-time versions and providing a

direct differential equation structure which is easily implemented.

Since the channel noise model is usually a continuous-time white

noise model, this solution is more desirable. In other cases a

sampled-time system might be appropriate.

Formulation of the problem in continuous-time necessitated

the introduction of two relatively new mathematical disciplines:

stochastic differential equations and stochastic optimal control.

-147-
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The two topics are very closely related.

The formulation of the digital communications problem

(transmitting one of a finite number of messages) in terms

of stochastic optimal control and dynamic programming allowed

a solution by judicious guessing of the optimal value function.

By imposing a linear receiver the optimal transmitter is

also linear. For other linear Gaussian roblems with quadratic

costs similar solution guessing can be most useful. Also for

linear stochastic problems the interpretation of the white

noise in the differential equations in noncontroversial

since the two interpretations (Ito and Stratonovich) lead to

identical mathematics and system performance.

The evaluation of the performance of the differential

systems necessitates the derivation of the corresponding

differential equations for variances and powers. By using the

results of the Ito calculus to develop a simple algebra for

treating stochastic differential equations, the step from

stochastic equation to the deterministic power or variance

equation is obvious. These techniques are most useful for mani-

pulating all stochastic state variable systems, particularly

linear systems.

The performance of the continuous-time system evaluated

in Chapter 2 is identical to the limiting form of Butman's [23]

discrete-time system. By suitably altering the work of the

other discrete-time authors to improve their system performance,
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the performance there can be made identical. The performance of

feedback systems is conveniently expressed either in terms of

the robability of error or in terms of an increase in effective

signal-to-noise ratio.

Although the performance of the systems (both discrete-

and continuous-time) can be made identical, one difference

has been noted. For continuous-time systems the waveform g(t)

(and hence the power distribution) is almost arbitrary whereas

the discrete-time system requires a unique gk and a uniform

power distribution in the transmission interval. For many

reasons the choice of g(t) such that a uniform power distribution

results in the continuous-time feedback system is a most desirable

choice of g(t); this choice is not necessary, however.

In Chapter 3 the topic of analog estimation communication

using noiseless feedback is discussed and developed. This topic

has not been studied before and represents further application

of feedback channels. Much of the results of the analog estimation

systems were strongly motivated by the use of noiseless feedback

in the digital problem studied in Chapter 2.

In Chapter 3 simple linear feedback systems are shown to

achieve the rate-distortion bound on mean square estimation error.

Achieving the rate-distortion bound in analog systems is the

equivalent of achieving channel capacity in digital systems.

Noiseless feedback systems can achieve the rate-distortion bound

for the transmission over a white noise channel of a Gaussian

random variable or a Gaussian random process in a finite interval
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of time or a stationary process over an infinite (or very long)

time interval. The feedback system is linear in all cases.

In order to achieve the rate-distortion bound for processes

some delay was necessary. A brief discussion of a one-pole

process example showed that removing the delay caused some

degradation in performance, but not nearly as much as removing

the feedback channel; hence, useful application of feedback

does not require delay for processing, but delay does improve

the system performance. Kalman filtering is easily adaptable

to noiseless feedback.

The overall improvement of analog estimation with noise-

less feedback is not nearly as dramatic (when viewed as a

signal-to-noise ratio improvement) as is the digital system

improvement. This fact is a result of the rate-distortion bound

which specifies the ultimate improvement attainable by any

system; the feedback system achieves this ultimate and can do no

better. The potential advantage of using feedback is much less

in analog systems; in fact there exist nofeedback systems (see

Van Trees [29]) which operate very close to the rate-distortion

bound. The only possible advantage of analog feedback systems

in these cases is system simplicity.

In Chapter 4 the digital problem ith noisy feedback is

studied. Unfortunately analytic solution of noisy feedback is

unavailable in general. Elias [3] has solved the simplest

discrete-time noisy feedback system, but the more complex extensions

of his discrete-time feedback system are not easily solved.
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Similarly attempts to solve the noisy feedback problem in

continuous time have failed. Instead of the performance of many

suboptimum MSE noisy feedback systems have been evaluated.

These systems are similar to the noiseless feedback system of

Chapter 2 and are asymptotically optimal as the feedback noise

density tends to zero. Based on Elias' solution, it appears

that the suboptimal MSE system performance for SRB > SNRF

is not significantly different from the unknown optimal

performance. Approximation techniques are also demonstrated

which are useful in estimating how well a feedback system can

be expected to perform without actually performing the system

calculations.

Without feedback linear modulation systems cannot achieve

channel capacity as the length of the transmission interval

increases. With noiseless feedback the linear system can achieve

channel capacity with an increasing time interval. With noisy

feedback the linear system cannot achieve channel capacity with

increasing time interval given a fixed average transmitted power

in the feedback link.

An extension of a result of Elias [3] implies that the

effective signal-to-noise ratio of a linear noisy feedback digital

system is bounded by the sum of the forward and reverse signal-

to-noise ratios, SNRF + SNR B . The actual performance (effective

signal-to-noise ratio) calculated for several suboptimal MSE

systems is much less than the bound. Even for the exact optimal

solution of Elias the optimal system is generally much below
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this bound, implying that the bound is not too tight. Consider

the feedback situation Twhen oth channels are white noise

channels with the same sinal-to-noise ratios, SNRF = SNR.

The bound implies that the effective signal-to-noise ratio

is at best doubled. The conclusion is that, for feedback to

be effective in offering improvement, the feedback channel

must be considerably better than the forward channel. In those

cases where the feedback channel is not significantly better

than the forward channel, perhaps some signalling scheme other

than linear amplitude modulation will utilize the available

feedback channel better. Whether or not a more complex modulation

system could actually utilize the poor feedback channel is yet

to be determined; perhaps no system can achieve much improvement

whenever the reverse channel is no better than the forward channel.

The text includes many examples indicating that the optimal

noisy feedback system does not follow from the noiseless feedback

system by replacing the receiver state in the noiseless system

by the estimate of the receiver state to get the optimal noisy

feedback sstem. Such SE systems are only asymptolically optimal.

There is no way to interpret the optimal system of Elias so as

to visualize it as estimating the receiver state. In other words

it appears that the optimal feedback system cannot be determined

except by a direct solution (which seems very difficult).

5.2 Related Topics in Feedback Systems

In this thesis only linear feedback schemes have been considered.
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The main reason for this restriction is the simplicity of linear

systems. Others have considered more complex signalling

(e.g., orthogonal message sets) which perform better than the

linear system both with and without feedback. In some applications

the performance requirements may necessitate considering nonlinear

feedback systems.

Just as more complex systems are possible, more complex

channels are also of interest. Additive colored noise in the

forward channel is one example. A multiplicative noise or fading

channel is another example of a forward channel disturbance

which could be combatted by using a feedback channel. Fading

severely inhibits one-way communication systems; a good feed-

back channel perhaps would offer a means of system simplification

and improvement. If the feedback link is essentially no better

than the forward channel, it is not clear if feedback can offer

much in the way of improved performance.

Two-way communication over two channels between two locations

is a feedback system problem. Both channels could be operated

independently of one another or used in conjunction with each

other to form feedback systems. The results of the preceding

chapters are directly applicable with very little additional

computation.

Similarly feedback applications to the various analog

estimation systems are also possible in the presence of other

types of channels.
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5.3 Suggestions for Future Research

The results of Chapters 2 and 3 essentially complete the

study of noiseless feedback systems over additive white noise

channels. Conceivably additional colored noise could be added

to the forward channel along with a bandwidth constraint to

prevent operation at high frequencies where only the white noise

is present, but this problem does not seem to be the most useful.

The most desirable result would be an analytic solution for the

optimal noisy feedback system for additive white noise in the

feedback channel. Such a result for digital and/or analog systems

would be an appropriate conclusion to the approximation techniques

of Chapter 4. This author along with others has attempted to

solve this problem without success; whether or not a solution

is possible remains to be seen.

In addition to continued effort to solve the general noisy

feedback problem, attention should be focused on fading channels.

It appears that feedback could be most useful in lessening the

effects of fading. Suppose the noiseless feedback system of

Chapter 2 actually operated in a fading channel where the trans-

mitted message waveform was scaled by a random variable. Since

the feedback system transmits the error, the fading only affects

the time it takes the receiver to approach the correct message

point, not the ultimate message point. In effect the only change

the slow fading of the channel has on the noiseless feedback
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system is to make the effective transmitted energy a random

variable. The overall performance in a fading environment is

reduced, but not enough to make the feedback system ineffect-

ive. For fast fading channels the effects are not as obvious

and need to be studied. Certainly other than linear modulation

systems are needed for effective communication in a fading

environment.

Theoretically fading does not alter the white noise channel

capacity. Yet there are no known nofeedback systems capable

of achieving this capacity; conceivably a noiseless feedback

system could be designed which would achieve this capacity and

thereby produce a system capable of achieving the theoretical

capacity.
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Angle Modulation ystem Performance

Relative to the Rate-Distortion Bound

The results of this chapter are essentially unrelated to

the preceding chapters. The channel capacity of an rms

bandlimited white noise channel is calculated. Then, the results

of Van Trees [29] pertaining to angle modulation subject to

mean square bandwidth constraints are compared to the ultimate

performance implied by the rate-distortion bound.

6.1 rms Bandlimited Channel Capacity

The usual definition of the channel capacity of a band-

limited additive noise channel implies that the channel is

strictly bandlimited. In some applications a strictly band-

limited assumption cannot be realistically imposed on the trans-

mitted signal and/or channel. For example, a transmitted signal

of finite duration is obviously not strictly bandlimited. To

compare the performance of such an approximately bandlimited system

to the theoretical performance implied by the strictly bandlimited

channel capacity can lead to contradictions (such as system

performance better than the theoretical" ultimate performance).

In this section the strictly bandlimited assumption of channel

capacity is replaced by a mean-square bandwidth (rms) constraint

and the resulting channel capacity computed.

As is well known the channel capacity of an additive white
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noise channel (spectral density N/2) for which the transmitter

spectrum is S(f) is

m0 W2S(f)

C = 2 f df n ( + n ) (6.1)

It is convenient to define a normalized spectrum, a(f)

S(f) = P (f) (6.2)

where P is the average transmitted power which is assumed

finite. Equation 6.1 becomes

OD

= 2 f df n (1 + N0 o(f)) nats/sec. (6.3)

The remaining part of the solution for C is to maximize Equation

6.3 subject to any transmitter or channel constraints. Here

an infinite bandwidth channel is assumed with power and bandwidth

constraints on the transmitter.

For example, if a strictly bandlimited constraint is made

at the transmitter

o(f) = 0 If > W (6.4)

and the optimal choice of (f) is

c(f) = 21W

I

(6.5)

I

If W
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with the resulting well known capacity formula from Equation

6.3

C = W n (1 + NW). (6.6)

Defining a signal-to-noise ratio A in the transmitter bandwidth

P

N0 W
(6.7)

implies that the channel capacity increases logarithmically

with increasing signal-to-noise ratio.

For an rms bandwidth B constraint at the transmitter,

B = f df f- (f) (6.8)
-00

which represents a constraint on (f). The other implies constraints

are

r(f) > 0 (6.9)

00(

f df o(f) = 1. (6.10)

In order to maximize Euation 6.3 subject to the three

constraints on o(f) (Equations 6.8-6.10), define
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co co
OO 00 CO1 df n (4-

j = f n (1 + (f)) + a, f a(f) df + y ff- O(f) df (6.11)
-- ~O t _ -CO _-O

where and y are Lagrange multipliers. Perturbation of J with

respect to (f) yields

NI
1

a(f) = max(O, + 1]) (6.12)2 +y2 ]

The maximum operation is necessary to satisfy (f) > O. Clearly

if , y are positive, (f) = 0 Which does not satisfy the constraint

Equations 6.8 and 6.10. Similarly if the two multipliers are

of different signs, the constraints cannot be satisfied; hence,

a and are both negative. Define two new positive multipliers

Q and f such that

2 
0 2 Qfc~~~~~~~~~~

f
1 C

o(f) = max(O, 2B ( ) ) (6.13)
2

1+
f

c

where the signal-to-noise ratio in the rms andwidth

= ?, B(6.14)
Po
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has been introducedr. Tle transmitter snectrum is that of a

one-pole rocess shifted do.m to cutoff at f f.

For (f) as given in Equation 6.13, direc ecvaluatiorn

of the constraints Equations .8 and 6.10 yield

3 3 2 1 1 1) -1
AB= (-+ - ( + 9) tan 0)

Q 0

AB = f {(1 + ) tan- 1 O - 1}.
c 0

(6.15)

(6.16)

These two equations determine the unknowns f and Q. Given f
c c

and as the solution of these equations, the channel capacity

from Equation 6.3 is

C = 2 f {1 - 1 tan-1 . (6.17)
c tn

It can be shown from

written

the above equations that C can also be

C = B g(A) (6.18)

where g(A) is a complicated implicit function. The important

observation is that channel capacity for rms bandwidth is of the

same functional form as the strictly bandlimited form Equation

and
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6.6 roviding signal-to-noise ratios in the transmitter bandwidth

are defined. Unfortunately g(A) is implicit and cannot be

determined analytically.

The equations can be solved approximately for A >> 1. For

large Q the channel capacity in Equation 6.17 is

C 2 f . (6.19)
c

Similarly for large Q, Equation 6.15 implies

2 3"~ 3
3 X AB (6.20)

or combining

I\J 1/3 1/3C B (12)1/3 1 3 (A >> 1) (6.21)

which implies that channel capacity increases as the cube root

of A for an rms constraint, but only logarithmically for a

strict bandwidth constraint. Thus, using the strict bandwidth

capacity formula for channels which are actually rms band-

limited yields a capacity much lower than the true capacity.

g(A) is plotted in Figure 6-1 along with its asymptote

(Equation 6.21).

6.2 Rate-Distortion Bound for rms Bandlimited Channels

Goblick [16] states the rate-distortion function for a stationary

Gaussian process a(t) with a monotonic spectrum S (f) in parametric

i
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form as

S (f)

R = f df in S M (nats/sec) (6.22)

~00 a

= 2% S(~) + 2 fdf S (f) (6.23)
a a

where ~ is the minimum mean suare error in estimating a(t) for

a given information rate R. In this chapter only message spectra

-th
of the Butterworth family will be treated. The n order

unit power Butterworth spectrum is

S M 2n ~~~~~~~~~(6.24)a (f) = sin ) (6.24)
N f 2n

1 + (C)w

which is monotonic. Other nonmonotonic spectra could be treated

with modification of Equations 6.22 and 6.23. Goblick [16] has

plotted the rate-distortion function for several different

Butterworth orders.

To determine the rate-distortion bound for transmitting a(t)

through a white noise channel with an rms transmitter bandwidth

constraint, the rms channel capacity is equated to R in Equation

6.21 and the resulting minimum mean square estimation error

can be determined for the particular message spectrum Sa(f).
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The rms channel capacity given in Equation 6.18 is for a

low pass channel. Since angle modulation systems operate at

bandpass, the correct rms capacity is the bandpass channel

capacity. The important bandwidth for bandpass systems is the

rms bandwidth about the carrier. Denoting this bandwidth by

B and assuming that the signal-to-noise ratio A is defined in

this rms bandwidth B, then the transmitted signal spectrum has

half its power at ositive frequencies and half at the negative

frequencies. For the positive frequencies only the signal-to-

noise ratio is A/2 and the channel capacity contribution for

the positive frequencies only is Bg(A/2). The negative

frequencies contribute the same, giving a total bandpass capacity

of

C = 2 g(A/2) (nats/sec) (6.25)
rms

bandpass

Given a particular A and B (signal-to-noise ratio and rms and-

width), Equation 6.25 indicates the channel capacity which is

then inserted into the left side of Equation 6.22. For the

message spectrum S (f) the value of can be determined and used
a

in Euation 6.23 to determine the minimum mean square error 

which is the rate distortion bound. No system can produce lower

mean square error operating under the same constraints. In

general the solution must be done numerically.
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6.3 Comparison of Angle Modulation Systems for Butterworth

Message Spectra

The choice of an rms bandwidth constraint for angle modulation

systems is quite judicious since the rms bandwidth of the trans-

mitted signal is easily determined even though the modulated

spectrum is rather complex. Van Trees [29] has determined the

system performance (reciprocal normalized mean square estimation

error) for several types of angle modulation systems assuming

a Butterworth message spectrum.

In Figure 6-2 the performance of various modulation systems

is compared for a first order Butterworth message spectrum. A

bandwidth expansion of B/WM = 10 is used. The horizontal axis

is labelled as the signal-to-noise ratio in the message bandwidth.

lThe lowest curve corresponds to realizable FM, the next unreal-

izable FM, the next optimum (preemphasis) angle modulating and

finally the rate-distortion bound. The breaks in the three

curves correspond to the approximate threshold region of the angle

modulation systems. For the first order Butterworth message the

optimum angle modulation system is only 6 db worse than the

ultimate rate-distortion performance as the signal-to-noise ratio

increases.

The numerical performance comparisons could be carried out

for other order spectra in this same fashion. Some analytical

results can be obtained for large signal-to-noise ratios for

arbitrary order Butterworth spectra. In fact for all Butterworth

orders (other than the first) the optimum angle modulation performance
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diverges from the rate distortion bound rather than paralleling

it as shown in Figure 6-2.

For large A

C
rms
bandpass

(6.2'6)

Using this along with the Butterworth spectrum in Equation

6.22 and 6.23 implies that the maximum reciprocal error is

-1
irate

distortion

2n-1

% A 3 (6.27)

where n is the order of the Butterworth spectrum. Using the

integral expressions for the angle modulation performance

obtained in Van Trees [29] and approximating them for large

A, it follows that

%~~~~
u-1 \ -1 % A

FI! FM
U r

2n-1
2n+2

(6.28)

-1 -
Of course, > (-1 always although they have the samea totrslpe, SFM >

u r

asymptotic slope. Similarly it can be shown that

E- 1 no A(n > 3)
OAM

(6.29)

% 1 / 3
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which increases slightly faster than FM, but not nearly as

-1
fast as RD ' As shown in Figure 6-2, for n = 1

- -X 1 1 A1 3 and the optimum angle modulation system
RD 0AM

performance does not diverge from the rate-distortion bound.

As the order n tends to infinity, the Butterworth spectrum

becomes strictly bandlimited. For this situation

A1/3

rate~~~orto ~e (6.30)
distortion

- E OA1 A (6.31)
u

Vi A (6.32)

Fr (Zn A)

Thus, for strictly bandlimited message spectra angle modulation

system performance diverges rapidly from the rate-distortion

bound.

l



REFER1NTCES

[1] P. E. Green, Jr., Feedback Communications Systems,"'

ch. 14, in Lectures in Communication System Theorv,
Baghdadv, Ed.,McGraw-Hill, New York, 1961

[2] P. Elias, "Channel canacitv without coding," appendix
to ch. 14, Lectures in Communications System Theory,
Baghdady, Ed., McGraw-Hill, New York, 1961

[31 P. Elias, Networks of Gaussian channels with applications
to feedback sstems," IEEE Trans. on Info. Theory,
July 1967

[4] J. Schalkwijk and T. Kailath, A coding scheme for
additive noise channels with feedback -- Part I:
No bandwidth constraint," IEEE Trans. on Info. Theory,
April 1966

[51 C. E. Shannon, "The zero error capacity of a noisy

channel," IRE Trans. on Info. Theory, Sept. 1956

[6] J. Schallkwijk, "A coding scheme for additive noise
channels with feedback -- Part II: Bandlimited
signals," IEEE Trans. on Info. Theory, April 1966

[7] J. . Omura, "Signal optimization for channels with
feedback," Tech. ep. No. 7001-1, Stanford Electronics
Laboratories, August 1966

[5] J. . Omura, "Signal optimization for additive noise
channels with feedback," Session 7/4, WMSCON, August 1966

[9] G. L. Turin, "Signal design for sequential detection
systems with feedback," IEEE Trans. on Info. Theory,
July 1965

[10] G. L. Turin, "Comparison of Sequential and nonsequential
detection systems with uncertainty feedback," IEEE
Trans. on Info. Theory, Jan. 1966

[11] M. iHorstein, "On the design of si-jnals for sequential

and nonsequential detection systems with feedback,"
IEEE Trans. on Info. Theory, Oct. 1966

[12] F. J. Kushner, "Optimal stochastic control," IRE Trans.
on Auto. Control, Oct. 1962

[13] H. J. Kushner, "Near optimal control in the presence of
small stochastic perturbations," Journal of Basic Eng.,
ASME, March 1965

-169-



-170-

[14] {. Athans and P. L. Falb, Optimal Control, McGraw-Hill,
New York, 1966

[15] T. J. Cruise, "Achievement of rate-distortion bound
over additive white noise channel utilizing a noiseless
feedback channel," IEEE Proceedings (Letters),
April 1967

[16] T. J. Goblick, "Theoretical limitations on the transmission
of data from analog sources," IEEE Trans. on Info. Theory,
Oct. 1965

[17] R. E. Kalman and R. S. Bucy, "New results in linear
filtering and prediction theory," Journal of Basic
Eng., ASME, March 1961

[18] K. Ito, "On stochastic differential equations," Memoirs
of Am. Math. Soc., No. 4, 1951

[19] R. L. Stratonovich, "A new form of representation of
stochastic integrals and equations," Tech. Rep. No.
7050-9, Stanford Electronics Laboratories, August 1966

[20] J. M. Wozencraft and I. N{. Jacobs, Principles of
Communication Engineering, John Wiley and Sons, 1965

[21] R. L. Kashyap, "A feedback coding scheme for an additive
noise channel with a noisy feedback link," First
Annual Princeton Conference on Information Sciences and
Systems, 1967

[22] A. J. Kramer, "Analysis of communication schemes using
an intermittent feedback link," TR 7050-11, Systems
Theory Lab., Stanford Univ., March 1967

[23] S. Butman, "Optimum linear coding for additive noise
systems using information feedback," TR No. 1,
Comm. Theory Lab., Calif. Inst. of Tech., May 1967

[24] S. Butman and T. L. Grettenberg, "Optimum linear coding
for additive noise systems using feedback," Paper
25.5, 1967 IEEE Conf. on Communications

[25] L. Pontryagin et al, The Mathematical Theoryv of Optimal
Processes, Interscience Publishers, Inc., New York, 1962

[26] A. D. Wyner, "On the Schallkwijk-Kailath coding scheme
with a peak energy constraint," IEEE Trans. on Info.
Theory, Jan. 1968

[27] T. J. Cruise, "Scheme to utilize noiseless feedback to
reduce channel noise," RLE QPR No. 88, Mass. Inst. of
Tech., Jan. 1968



-171-

[28] W. B. Davenport and . L. Root, Random Signals and Noise,
M!cGraw--'U1, NewT York, 158

[29] II. L. Van Trees, Detection, Estimation, and Modulation
Theory Part II, John Wiley and Sons, to be published)

[30] H. L. Van Trees, Detection, Estimation, and Mfodulation
Theory Part I, John iley and Sons, New York, 1968

[31] J.K. Omura, "Opntimum linear transmission of analog data
for channels ith feedback," IEEE Trans. on Info. Theory,
Jan. 1968

[32] T. J. Cruise, Chlannel capacity for an rms bandwidth
constraint," RLE OPR No. 90, ass. Inst. of Tech.,

July 1968



BIOGRAPHY

Theodore Joseph Cruise was born September 9, 1942 in San

Francisco. He graduated from Willow Glen Senior High School in

San Jose, California in 1960.

He received the S.B. degree in electrical engineering from

Massachusetts Institute of Technology in 1965 and the S.M. and

E.E. degrees from M.I.T. in 1966. He was a National Science

Foundation Fellow for four years and also taught courses in the

Department of Electrical Engineering. He is a member of Tau Beta

Pi and Eta Kappa Nu.

He married the former Sherry Ormsby in 1967.

-172-


