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Submitted to the Department of Electrical Engineering
and Computer Science on June 10, 1987 in partial fulfillment
of the requirements for the Degree of Doctor of Philosophy

ABSTRACT

The research discussed in this thesis is an investigation of the

regulatory mechanisms that govern the cardiovascular system. These

mechanisms comprise the autonomic nervous system (ANS) and are modeled
as part of a feedback network in which systemic arterial pressure is the

controlled variable. In order to improve our understanding of the phy-
siology and potential pathology of autonomic regulation, we have at-

tempted to characterize the various functional and anatomic blocks im-
plicated in cardiovascular control using transfer function analysis.

Transfer functions represent the frequency response of the system or
subsystem under study, and are derived from measurements of the system's

input and output signals using spectral estimation techniques. Reliable
estimation of the transfer function requires that the input signal con-

tain significant power density over the entire frequency band of in-
terest. Consequently, we have had to devise methods for the introduc-
tion of broad-band perturbations at various points in the cardiovascular

system.
Our first set of experiments was designed for study of the response

of the sino-atrial (SA) node to fluctuations in vagal and sympathetic
tone, and was performed on anesthetized dogs. While the animal's atrial

electrogram was continuously recorded, a train of current pulses was ap-
plied to the right vagus or cardiac stellate nerve. The frequency of

these pulses was modulated by a band-limited Gaussian white noise signal
whose mean level could be adjusted from one experimental run to the

next. Transfer functions computed between the instantaneous neural
stimulation frequency and the resulting heart rate show that the SA node

responds to fluctuations in autonomic tone as a low-pass filter whose
parameters vary as a function of the mean level of neural activity.

This dependence on the operating point in the behavior of the SA node
had not previously been appreciated.

In a second study, we developed a technique to allow investigation
of the heart rate response to broad-band fluctuations in autonomic tone
in human volunteer subjects. These fluctuations were elicited by having

the subject breathe on cue to a sequence of beeps spaced erratically in
time. Instantaneous lung volume and surface ECG were recorded and

served as the system's input and output signals, respectively. Transfer
functions were then computed for each subject in both supine and stand-

ing positions, and reveal a significant alteration in morphology associ-
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ated with postural change. These results most likely reflect a shift in
autonomic activity that accompanies postural change, and demonstrate the
sensitivity of our approach in detecting subtle variations in autonomic
balance.

A final set of experiments was designed, and a single pilot study
performed on an anesthetized dog, to investigate the response of the ANS
to fluctuations in blood pressure in terms of changes in heart rate and
peripheral resistance. Broad-band oscillations in systemic arterial
pressure were induced by electrically pacing the ventricles with a white
noise frequency-modulated pulse train. The SA nodal rate response of
the ANS was measured via epicardial atrial electrodes, and was decoupled
from the ventricular activity by ablation of the atrioventricular junc-
tion (AVJ). Systemic vascular resistance was computed as the quotient
between time-averaged arterial pressure and aortic flow signals.
Transfer functions were then computed between arterial pressure and SA
nodal rate and between pressure and vascular resistance. Results from
the pilot study show that the determination of autonomic response
characteristics using this approach is quite feasible. We intend to
perform a series of experiments on dogs chronically instrumented as
described, but using aseptic technique. Once recuperated from surgery,
these dogs can then be studied in a fully conscious state, enabling us
to explore the effects of interventions such as acute hemorrhage and
selective autonomic blockade on cardiovascular regulation.

We believe these studies will improve our understanding of car-
diovascular physiology and assist in our interpretation of spontaneous
fluctuations commonly observed in the heart rate and arterial pressure.
Furthermore, it is our hope that with additional research, our efforts
will lead to the development of non-invasive clinical tools to assess
the integrity of a patient's autonomic nervous system that will be ap-
plicable in a wide spectrum of pathologic conditions.

Thesis Supervisor: Prof. Richard J. Cohen

Title: Associate Professor,
Harvard - M.I.T. Division of Health Sciences and Technology
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Chapter 1: ntroduction

The physiologic mechanisms that regulate the cardiovascular system

have long intrigued investigators in a variety of disciplines. While

medical researchers have quite naturally been interested in the perfor-

mance of the cardiovascular control system as a critical determinant of

patient health, engineers have found that this regulatory system consti-

tutes a fascinating paradigm of nature's solution to a common engineer-

ing problem: feedback and control. If we attempt to model the car-

diovascular control system as a feedback network, we need to identify

(1) the central processor organ, (2) the variables that are being moni-

tored and controlled, (3) the feedback paths and effector organs, (4)

the set-points and operating regimes of the system, and (5) the transfer

functions of the individual elements of the system and of the integrated

system. Additional relevant points to consider regarding this system

include interaction between the several feedback loops that comprise the

network, stability of the overall system, nonlinearities of operation,

and the appearance of failure modes.

A thorough understanding of this last point, namely the failure

modes of the cardiovascular control system, is a large part of the

motivation for the study of this system. Only with such an understand-

ing can we fully appreciate the mechanisms that underlie the hemodynamic

abnormalities seen in essential hypertension, sudden infant death syn-

drome, diabetes, and congestive heart failure, as well as in conditions

that stress the cardiovascular system such as hemorrhagic shock. Furth-

ermore, in order to provide proper therapeutic management in each of

these pathological conditions, we must understand not only the etiology
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and effects of the disease processes, but the effects of the interven-

tions as well. In particular, many of the pharmacologic agents used in

treating cardiovascular disorders selectively block one control path or

another, leaving the rest of the system intact. Since the various con-

trol limbs that comprise this system have different characteristic time

constants, selective blockade of any single pathway can affect the

dynamics, and even the stability, of the system profoundly. Similarly,

prosthetic devices such as pacemakers and artificial hearts can dramati-

cally alter not only the set-point, but the dynamic response of the car-

diovascular system to natural perturbations as well.

In the last century, great strides have been made toward under-

standing cardiovascular physiology. As I will discuss in greater detail

later, a number of investigators have employed a systems engineering

approach to study many aspects of the cardiovascular control system. A

difficulty encountered in this area of research, as in the investigation

of any biological system, is that one must significantly perturb the

very system he wishes to study in order to obtain the most informative

measurements. Conversely, the information obtainable from a study

designed specifically to be minimally perturbing will inevitably be lim-

ited. Consequently, many questions remain unanswered regarding the

dynamic response of the cardiovascular control system to disturbances of

the nature that it normally experiences from one moment to the next.

In this thesis, I report on the application of broad-band stimula-

tion techniques to probe the dynamics of several components of the car-

diovascular control system. The data I present is derived from three

different experimental setups: two groups of invasive studies in acute
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anesthetized dog preparations and a non-invasive study in human

volunteers. As mentioned above, the most invasive of these experiments

provides the most easily interpreted measurements, while those in the

least invasive studies were somewhat more perplexing. Nonetheless, sig-

nificant, new, and interesting results were obtained in all studies, and

add to our current understanding of cardiovascular regulatory dynamics.

Furthermore, some of the techniques developed in the course of this

thesis research show promise as potential diagnostic tools in clinical

medicine.

To provide an appropriate perspective through which to view the

experiments presented herein, I include a discussion (Chapter 2) of the

relevant cardiovascular physiology and of a block-type model of the

regulatory mechanisms that govern cardiovascular function. In Chapter

3, I review the various techniques to probe these control mechanisms

that have been employed in the past, and discuss some of the results

that have been obtained with these approaches. The data analysis tech-

niques that I have utilized are presented in Chapter 4. Here, the sig-

nal processing algorithms, as well as the hardware and software

developed for their implementation, are described. In Chapter 5, I dis-

cuss the animal preparation, results, and implications thereof for two

sets of experiments performed on anesthetized dogs, designed to probe

the dynamic behavior of the heart's normal pacemaker, the sino-atrial

node. In Chapter 6, I present a study of the effects of respiratory

activity on cardiovascular function in humans. A final group of experi-

ments, designed to investigate neural regulation of heart rate and peri-

pheral resistance, is discussed in Chapter 7. This latter study is part
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of an ambitious on-going project, and the results presented are derived

from pilot experiments performed on anesthetized dogs. Ultimately,

these experiments will involve fully conscious animals who will have

been previously instrumented with the necessary probes and catheters.

Finally, in Chapter 8, the significant implications of all the studies

are summarized, and future directions for this research are discussed.
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Chapter 2: Cardiovascular Physiolqgy

2.1 Function of the Cardiovascular System

The heart and blood vessels comprise a transport system that

enables exchange of fluid, gases, electrolytes, nutrients, and waste

products between the organs of the body. Of primary importance in the

operation of this transport system is its ability to deliver sufficient

oxygen to meet the collective metabolic needs of the various tissues.

Nutrients such as carbohydrates and fats are transported between the

digestive tract, liver, adipose tissue, and other organs for energy

storage, and then back through the blood stream to the brain and muscu-

lature for energy utilization. Metabolic waste products including car-

bon dioxide and urea are carried by the cardiovascular system for elimi-

nation by the lungs and kidneys. The cardiovascular system also pro-

vides a route of transport for hormones produced by the endocrine sys-

tem, and for the cells and products of the immune and clotting systems.

Fluid compartmentalization and osmolarity are maintained by the

membranes of cells that line the vasculature. Since each cell's electr-

ical and metabolic activities are strongly influenced by intra- and

extracellular pH and electrolyte concentrations, the transport of these

ions throughout the body constitutes a vital function of the cardiovas-

cular system. Also, since the blood volume that fills the vasculature

carries heat released as a byproduct of metabolism, the redistribution

of the blood between parts of the body provides a mechanism for thermal

regulation, as well. In particular, heat is conserved by selective con-

striction of vessels that serve the skin, and can be emitted through
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perfusion of such peripheral tissue. When more rapid heat loss is

required, as during muscular exercise, fluid originating in the vascula-

ture is exuded through the skin via sweat glands, thereby allowing for

evaporative cooling.

In its crudest form, the cardiovascular system may be thought of as

a network of plumbing. The heart serves as a pump and the blood vessels

are the pipes. The system is, in fact, more complicated than that: the

heart is a dual pump with four chambers, and each half of the heart sup-

plies a separate vascular circuit from the other. This structure is

outlined in Figure 2.1. As shown in this schematic, blood returning

from all organs except the lungs enters the right atrium, the

antechamber of the right half of the heart. During the ventricular fil-

ling, or diastolic phase of the cardiac pumping cycle, the tricuspid

valve opens, allowing blood to pass from the right atrium to the right

ventricle. The blood is then ejected through the pulmonic valve to the

pulmonary arterial vasculature during the systolic phase of the cardiac

cycle. The pulmonary arteries arborize and perfuse the parenchyma of

the lungs, where gas exchange between the alveolar sacs and the blood

occurs. In particular, carbon dioxide is released from the blood and

exhaled, while inspired oxygen diffuses into the blood. This oxygenated

blood enters the left-side antechamber, the left atrium. Left atrial

blood passes through the mitral valve into the left ventricle during

diastole, and is then ejected through the aortic valve during systole.

Branches of the aorta supply blood to the heart muscle itself, to the

brain, kideys, skeletal muscle, and skin, and to all other organs of the

body.



- 18 -

Pulmonary
Circulation

Systemic
Circulation

Aorta
Pulmonary
Artery

Figure 2.1. Schematic drawing of the circulation, showing the four
chambers of the heart and the pulmonary and systemic vascular circuits.
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The structure of the blood vessels themselves contributes impor-

tantly to the function of the cardiovascular system. Arteries, which

carry blood at high pressure away from the heart, are muscular vessels

capable of significant modulation of caliber and substantial stretching.

They ramify into smaller and smaller arterioles, ultimately giving off

capillaries whose walls are so thin as to allow gas exchange by diffu-

sion. The capillaries merge into venules which in turn collect into

larger and larger veins to return blood to the heart under low pressure.

The venous system is composed of vessels with much thinner, less muscu-

lar, walls than in the arteries and arterioles. The veins thus possess

a greater capacity for pooling of blood but present less resistance to

flow than the arterial vessels.

The mechanical properties of the vasculature may thus be modeled by

an electrical circuit with a resistance and capacitance as in Figure

2.2. In this representation, termed the Windkessel model, electric

current is analogous to blood flow and voltage represents pressure. The

heart is modeled here as a current source, although the cardiac output -

and thus current level - are by no means assumed constant. A single

current source, resistor, and capacitor, as here, model either the pul-

monary or systemic circuit; two such networks may be coupled in series

to represent the combined cardiovascular system. The resistance R is

the net effective resistance of all the parallel branches of the vascu-

lar tree. Similarly, the capacitance C is the sum of the individual

capacitances of the various vessels. This obviously represents a

tremendous simplification of the true vasculature, where the resistance

and capacitance are distributed along the length of the circuit, as in a
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Windkessel model of the circulation.
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waveguide.

The equations that describe the circuit behavior are:

i CdV (2.1a)
c _ Cd V

iR =V (2.1b)

iC + iR = i (2.1c)

Thus,

dV + -V i (2.2)
dt RC C

If the cardiac cycle is modeled by a square wave current signal of mag-

nitude I, then during systole,

V = V + IoR(1 - e- t / w) (2.3)

where Va is the voltage just prior to the upstroke of the current wave,

and the time constant equals RC. During diastole,

V Ve-t/r (2.4)V - Vbe

where Vb is the voltage ust prior to the fall in supply current.

Examples of the current and corresponding voltage waveforms are

shown in Figures 2.3a and 2.3b respectively. A stylized arterial pres-

sure waveform is shown in Figure 2.3c for comparison with the circuit

voltage signal. Note that the voltage waveform models the pressure

quite well. In fact, much of the differences between these signals can

be reconciled by taking into account the variable capacitance of the

ventricle itself during systole and the rebound effect of valve closure

at the termination of systole.
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Figure 2.3. Current and voltage waveforms for the Windkessel model.

When the square wave current signal (a) is applied to the model, the

resulting voltage (b) rises and falls with time constant equal to RC. A

stylized arterial blood pressure trace (c) is shown for comparison.

i
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2.2 Need for Cardiovascular Regulation

The rate of metabolism in many tissues varies considerably depend-

ing on the rate of cellular growth, temperature, enzymatic activity, and

work performed. If te blood flow to each organ were always sufficient

to sustain its maximal metabolic needs regardless of the actual instan-

taneous requirements, the cardiac output would have to be maintained

orders of magnitude greater than the normal resting level, placing inor-

dinate demands on myocardial (heart muscle) performance. To avoid this

state of affairs, the circulation functions parsimoniously; the blood

flow to each organ of the body is maintained so as to exactly meet the

instantaneous functional requirements of that tissue. This is accom-

plished through three basic mechanisms: 1) regulation of blood flow

through the vasodilatory effects of insufficient nutrient concentration

(e.g., oxygen) or of excess metabolites (e.g., carbon dioxide, lactic

acid, hydrogen ions, etc.) within the local milieu, 2) neural control of

cardiac output and vascular resistance, and 3) humoral (blood-born chem-

ical) regulation of either local or general vascular tone by substances

such as hormones, ions, or toxins. These mechanisms allow for 25-fold

increases in blood flow through tissues such as skeletal muscle, while

at the same time preserve almost constant flow through the brain, whose

functional requirements hardly vary.

The regulation of regional blood flow may be represented by a modi-

fied version of the circuit shown in Figure 2.2. The new circuit, shown

in Figure 2.4, includes separate resistors for each section of the sys-

temic circulation. Each of these resistors is composed of two com-

ponents: one under local regulation via the first mechanism described



- 24 -
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Figure 2.4. Modified Windkessel model, with separate resistors for each
region of tissue in the body. Also indicated are local regulatory

mechanisms that control a component of the resistance so as to maintain

local perfusion, and global mechanisms that affect all the resistances
and cardiac output so as to regulate arterial pressure.

i
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above, and the other governed by the generalized effects included in

mechanisms 2 and 3. Note that the current source is also regulated,

representing the neural control of cardiac output.

A key question concerning the regulation of the circulation is:

what governs central neural control of cardiac function and peripheral

resistance? Local control mechanisms can respond to changes in dis-

solved ion and gas concentrations within the very neighborhood of the

regulated blood vessels. But the central nervous system (CNS) can not

sense regional changes throughout the body; rather, it responds to

changes in global hemodynamic variables. As I will discuss in greater

detail in Section 2.3, empirically, the CNS serves chiefly (although not

exclusively) to regulate systemic arterial blood pressure. Refering to

Figure 2.4, we see that a regulated arterial pressure, or voltage level

V, enables local control mechanisms to adjust regional blood flow

predictably and in proportion to the total local vascular resistance.

Cardiac output and systemic peripheral resistance are thus regu-

lated as part of a feedback loop. The anatomic and functional elements

that comprise this feedback loop will be discussed in the following sec-

tion. The overall effect of these central control mechanisms can be

summarized in terms of the circuit model: the current source and effec-

tive resistance are modulated to make the source behave as a well-

regulated voltage supply. Superimposed on this regulated voltage or

pressure level, however, appear phasic variations related to the cardiac

cycle. The story is further complicated by the fact that the setpoint

for mean arterial pressure may vary depending on the state of conscious-

ness and activity level of the organism. In fact, the influence of
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emotion, mentation, and other higher cerebral functions on hemodynamic

control is an area of active research. It is a goal of this thesis work

to explore the fundamental dynamics of the lower neural pathways impli-

cated in cardiovascular regulation, as a foundation for investigatory

endeavors concerning higher cortical pathways.

2.3 Autonomic Control - A Block Model

A block diagram model of the control network that regulates the

cardiovascular system is shown in Figure 2.5. Each of the subsystems

(blocks) within the complete network represents a distinct anatomical

and functional component of the cardiovascular system, and the connect-

ing lines represent either neural or vascular communication paths. Guy-

ton et al [54] presented a similar but more complete model of the vari-

ous cardiovascular control mechanisms. They separated these mechanisms

into two categories: those that govern the hour-to-hour or even day-to-

day state of fluid balance and those that mediate rapid responses (on

the order of seconds to minutes) to perturbations in systemic blood

pressure. The first category is comprised of the capillary filtration

system which controls the distribution of fluid volume between the blood

and the interstitial spaces, and renal mechanisms. These include the

control of urine output through modulation of the glomerular filtration

rate and the secretion of antidiuretic hormone and atrial natriuretic

factor (ANF). The renin-angiotensin system (RAS), well reviewed

recently by Reid [111], is considered by many to be another slowly

reacting regulator of intravascular fluid volume, although Akselrod et

al [4] have shown the RAS may play an important role in short-term hemo-
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Figure 2.5. Block diagram of short-term cardiovascular control. Each

block represents a separate functional entity, and the connecting lines
denote paths of neural conduction or blood flow.
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dynamic regulation, as well. The second category of cardiovascular con-

trol loops, however, consists of neurally mediated mechanisms, which by

definition comprise the autonomic nervous system (ANS).

While the study of renal function and the effects of shifts in

fluid balance on the cardiovascular system is an area of active investi-

gation, the scope of this thesis is restricted to the mechanisms that

regulate short-term control on hemodynamics (i.e., those with time con-

stants less than 10 minutes). For this reason, I have omitted renal

influences and capillary filtration in the model shown in Figure 2.5.

(The renin-angiotensin system will not be considered further in this

thesis, although it is included in this figure to show where its effects

would enter the model.) For sure, there exist other physiologic mechan-

isms, not included in this model, whose response to hemodynamic pertur-

bations may appear within minutes. The release of epinephrine from the

adrenal medulla in situations of stress is one example, and there may

well exist other similar mechanisms yet to be identified. Any such

effector pathways will be considered in this model to be just suffi-

ciently slow in their responses as to remain at constant levels of

activity throughout any one ten minute period, although it is understood

that these levels may differ from one operating regime to another.

Since these influences may well be important or even dominate in certain

physiologic regimes, one must obviously be cautious in attempting to

extrapolate results whose significance assumes validity of this simpli-

fied model to situations in which the model does not well apply.

The autonomic nervous system receives numerous input signals both

from afferent nerve fibers and from higher brain centers. The
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information received from other parts of the brain includes many of the

required set-point signals. One may alternatively define the autonomic

nervous system to include any such brain centers, so that all set-points

are controlled within the central processor block. The afferent nerves

carry to the brainstem information regarding many physiologic variables.

These include arterial blood gas partial pressures (pCO2 and pOz), body

temperature, degree of lung expansion (chest wall stretch, actually),

and blood pressure measured at several points in the vasculature. While

all of these signals are undoubtedly of importance in some aspect of

physiologic regulation, there is substantial evidence [58,100] suggest-

ing systemic arterial blood pressure is the variable most carefully

regulated by those feedback mechanisms that impinge on cardiovascular

function. For simplicity in this model, arterial blood pressure will be

the only variable considered to be both monitored and regulated by the

cardiovascular control system. Hemodynamic variables such as heart rate

and instantaneous cardiac output are, of course, governed by the ANS,

but their modulation is assumed here to be a means for regulating the

controlled variable, arterial pressure. Some other physiologic vari-

ables, such as body core temperature and pCOs, are indeed both monitored

and regulated by the ANS. An important assumption in this simplified

model, however, is that these variables remain sufficiently static from

moment to moment that their fluctuations do not significantly influence

short-term cardiovascular control. (Note that pCO2 is the key regulated

variable in models of respiratory control [211, but does not substan-

tially affect cardiovascular regulation unless its level rises or falls

well above the normal range.)
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The physiologic subsystem responsible for measuring arterial blood

pressure is not simple. The transducers are several, located at dif-

ferent anatomical sites, and may respond somewhat differently from each

other to fluctuations in pressure [5,39,66,67,121]. The most important

of these transducers, or baroreceptors, are situated in the aortic arch

and bilaterally in the bifurcations of the carotid arteries. The

baroreceptors consist of stretch sensors within the walls of the vessels

in which they are located. Afferent nerve fibers originating in the

carotid baroreceptors communicate with the brainstem by way of the glos-

sopharyngeal nerves, while aortic baroreceptor activity is carried by

the left aortic nerve which runs to the brainstem within the vagosym-

pathetic nerve trunk.

The autonomic nervous system apparently effects its function of

cardiovascular control through multiple, seemingly redundant, pathways.

Since mean arterial blood pressure is the product of cardiac output and

arterial vascular resistance, it is not surprising that mechanisms exist

to modulate both of these variables. Cardiac output is, in turn, the

product of heart rate and stroke volume, each of which is also regulated

by the autonomic nervous system. Further redundancy is present in the

system in that two major efferent neural pathways exist for the communi-

cation of information from the brainstem to the cardiovascular effector

organs. Signals carried along one of these neural networks, the sym-

pathetic nervous system, generally effect an increase in arterial blood

pressure and cardiac output, while the other pathway, the vagus nerve (a

part of the parasympathetic nervous system) carries signals that mediate

opposing effects. The sympathetic nervous system can be further subdi-
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vided according to the particular chemical receptor on the cell surfaces

of the tissues receiving the neural message. Although the neuro-

transmitter released by all sympathetic nerve terminals is norep-

inephrine, the receptor types differ somewhat in structure as well as in

sensitivity to norepinephrine analogs, and are classified as a, , and

02. The neurotransmitter for the parasympathetic nervous system is ace-

tyl choline, and the corresponding receptors on cells of the cardiovas-

cular system's effector organs all appear to be of the same type, termed

muscarinic receptors.

The effector organs of the cardiovascular control system are the

sino-atrial (SA) node which functions as the heart's pacemaker, the car-

diac ventricles whose contractility and degree of diastolic filling

determine stroke volume, and the systemic vasculature which presents an

impedance load to the ventricular pump. The SA node is innervated by

both the vagus nerve and the sympathetic nervous system. The receptor

type for the latter is P1. While either an increase in sympathetic

activity or a decrease in vagal signals can initiate an increase in

heart rate, the physiologic situations in which the first of these

mechanisms is actually invoked may be quite different from those in

which the second one predominates [37,52,108,122,125]. Thus the

apparent redundancy of this dual innervation of the SA node may actually

be an advantageous evolutionary development, allowing for the appropri-

ate response to a transient fall in arterial blood pressure in a variety

of settings. Similarly, the muscular walls of the arteriolar vessels,

which are innervated by sympathetic fibers, possess receptors that eli-

cit competing effects. a receptors predominate and when stimulated,
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cause vasoconstriction and thus an increase in vascular resistance.

However, receptors are also present in arterioles that supply skele-

tal muscle and mediate a vasodilatory response, especially during exer-

cise. Diastolic filling depends most critically on the state of fluid

balance, which varies slowly and is controlled predominantly by renal

mechanisms, as described earlier, but can be modulated in the short term

by changes in venous tone which is influenced by a and ,2 sympathetic

activity [53]. Finally, the contractility of the ventricles appears to

be controlled by the sympathetic nervous system (via receptors),

although some evidence suggests a small degree of participation by the

parasympathetic nervous system [100].

Clearly, the cardiovascular control system is substantially more

complicated than a simple feedback and control system such as a furnace

with a thermostat. The multiplicity of feedback and effector pathways

may provide a system fail-safe against failure of an individual pathway,

or it may be a crucial attribute of the system for optimal stable opera-

tion. This questions is largely unanswered at present.

2-4 General ardigna2 ul r gyatfm Behayl-a

Some of the basic principles of cardiovascular regulation are well

illustrated by the system response to several common physiologic and

pathologic perturbations. The availability of multiple feedback mechan-

isms, mentioned above, allows for the appearance of different types of

response in different situations. Vagal, or parasympathetic, modulation

is largely responsible for heart rate fluctuations in response to many

physiologic influences, while the sympathetic nervous system mediates
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most of the changes in cardiovascular function that take place in either

physiologic or pathologic stress. Even when increased sympathetic drive

is called upon, the specific reaction invoked may be quite selective;

the diverse cardiovascular effects of generalized sympathetic discharge

need not appear simultaneously.

2.4.1 Physlogi_ Influeneas

One of the most common physiologic perturbations to the circulation

is a change in posture from a recumbent position to standing. The

direct and immediate effect of such a postural change is a shift in

local blood volumes and pressures due to the weight of the intravascular

column of blood. Since the veins of the lower leg lie about 100 cm

below the level of the heart in the average erect adult, the pressure in

these veins should theoretically rise from less than 10 mm Hg when

supine to over 80 mm Hg when standing. The actual elevation in leg

venous pressure is not nearly this severe because valves within the

veins interrupt the column of blood. Similarly, the hydrostatic pres-

sure in the cerebral vasculature would be reduced by roughly 30 mm Hg on

standing, were it not for compensatory mechanisms invoked.

Despite a modest rise in venous pressure in the lower extremities

upon standing, the veins distend only minimally. Increased tone in sym-

pathetic fibers innervating the veins stimulate a receptors in the

vessel walls, thereby eliciting smooth muscle contraction and a reduc-

tion in venous capacity. a stimulation also causes an increase in sys-

temic arterial resistance which helps to maintain arterial blood pres-

sure in the cerebral circulation. Finally, the mean heart rate also
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increases on transition from supine to erect position. This is, in

part, a further manifestation of heightened sympathetic activity, as 

receptors in the SA node are stimulated. In most normal healthy indivi-

duals, however, most of the rise in heart rate on standing is due to

withdrawal of vagal activity, as will be discussed in detail in Chapter

6. The elevated heart rate, coupled with reduced lower body venous

capacity, helps mitigate the reduction in cardiac output that would oth-

erwise occur if a substantial volume of blood pooled in the dependent

vasculature. Note that all of these neurally mediated responses to

standing are presumably triggered by the initial fall in arterial pres-

sure at the level of the baroreceptors, although a decrease in right

atrial stretch may also play an important role.

A physiologic stress requiring substantially greater adjustments in

cardiovascular function is muscular exercise. During maximal exertion,

the rate of total oxygen consumption can rise 15-fold over the basal

state. This enormous demand for oxygen can be met in part by 5-fold

increase in cardiac output and thus oxygen delivery. Almost all of this

amplification in cardiac output is accomplished by sympathetically medi-

ated elevation in heart rate; the stroke volume rarely increases more

than 50% above the basal level. The remainder of the excess oxygen

demand is met by up to 3-fold increases in the fractional extraction of

oxygen from the blood, which becomes manifest in a commensurately

increased arteriovenous oxygen difference. The greatest part of the

augmented cardiac output goes to the working skeletal muscle, which in

fact steals blood from temporarily less essential organs, thereby reduc-

ing flow to those tissues. Organs that are exceptions to this rule
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include the heart itself whose perfusion increases in proportion to the

work it performs, the skin which is perfused according to heat loss

requirements, and the brain whose blood flow is constant.

An important distinction between the effects of postural change nd

of exercise lies in the systemic vascular resistance. As mentioned

above, on standing, arterioles throughout the body constrict to maintain

cerebral blood pressure. During exercise, however, vessels that supply

the working skeletal muscle dilate under the control of both local regu-

latory mechanisms and systemic , sympathetic activation. As a result,

systemic vascular resistance falls, often substantially. In this way,

cardiac output can rise dramatically with only modest increases in

arterial pressure.

A third physiologic perturbation of cardiovascular function is

respiration. Both the pulmonary and systemic vascular circuits are

influenced by the phasic intrathoracic pressure fluctuations that accom-

pany the inspiratory/expiratory cycle. Not only does the intrathoracic

pressure have an additive effect on the blood pressure in vessels

emanating from the chest, but it also influences ventricular filling by

enhancing venous return to the heart during inspiration and causing the

opposite effect during expiration. Fluctuations in ventricular filling

modulate cardiac output, which in turn perturbs arterial pressure.

A particularly interesting effect of respiration on the cardiovas-

cular system, however, is its influence on heart rate. The phasic vari-

ations in heart rate that follow the inspiratory/expiratory cycle have

long been recognized and are refered to as the respiratory sinus
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arrhythmia (RSA). Three different mechanisms have been suggested as

being at least partly responsible for this phenomenon. The first

derives from the mechanical effects of respiration described above. The

autonomic nervous system senses fluctuations in systemic arterial pres-

sure (and perhaps in atrial stretch, as well) and responds through modu-

lation of heart rate. A second potential mechanism is an autonomic

response to the changing chest circumference. Stretch receptors within

the chest wall may well exist and communicate with the brainstem. The

third mechanism often cited is a direct neural interaction between the

respiratory drive and heart rate control centers of the brainstem. The

survival value of the latter two mechanisms is unclear and the RSA

remains a confusing and actively investigated phenomenon.

The ANS mediates these respiratory-induced heart rate fluctuations

predominately through modulation of vagal tone. Sympathetic modulation

also contributes somewhat, however, particularly at lower frequencies of

respiration. Since these two limbs of the ANS mediate responses with

differing amounts of delay, the precise phase relationship between

respiration and heart rate is likely frequency-dependent. Furthermore,

influences that shift the sympathetic/parasympathetic balance, such as

postural changes, will obviously affect this phase relationship, as

well. These issues will be examined in detail in Chapter 6.

2.4.2 Pathologic States

The spectrum of disease states that alter autonomic regulation of

cardiovascular function is almost as wide as the set of all diseases.

Three types of pathologies are discussed here to illustrate the kinds of



- 37 -

failure modes that exist in the cardiovascular control system, and how

the system tries to compensate for the effects of these maladies.

Hypertension, or high blood pressure, is a collection of disease

states in which the operation of the feedback loop of Figure 2.5 has

gone awry. This may occur as the result of three different etiologies,

First, the natural pressure sensor, or baroreceptor, may malfunction, as

in renal hypertension [100]. In this case, the ANS is no longer able to

detect properly the effect of its own actions. In particular, if the

baroreceptors send fewer impulses to the brainstem than they should for

a given pressure level, then the ANS will elicit an increase in cardiac

output or vascular resistance until the pressure rises such that the

baroreceptor signals appear normal. At that point, of course, the

arterial pressure is higher than desired.

Another scenario leading to hypertension is an inappropriate

overactivity of the cardiovascular effector organs despite proper

baroreceptor performance. This state of affairs implies that the ANS

has lost the ability to effect a diminution in cardiac output or peri-

pheral resistance. Vascular smooth muscle hyperactivity is one such

condition where this loss of end-organ control occurs. Unregulated

secretion of a sympathetic agonist into the blood stream, for example by

an epinephrine producing pheochromocytoma, will similarly result in

hypertension that is out of the hands of the ANS.

The vast majority of cases of hypertension, however, can not be

linked to these aforementioned etiologies. The most likely explanation

for these cases appears to be an idiopathic resetting of the central
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setpoint for blood pressure control. Refering to Figure 2.5, this can

be represented by an elevation in BPset '

A second type of pathologic state where cardiovascular regulation

is altered is hemorrhage. The autonomic responses to acute blood loss

are in many ways similar to those mentioned for postural changes, but

are generally of greater magnitude. Increased sympathetic discharge

elicits venous and arteriolar constriction, thereby reducing venous

capacitance and increasing vascular resistance. These effects, along

with an elevated heart rate and force of ventricular contraction, serve

to maintain mean arterial blood pressure even in the face of a 10 loss

of the blood volume. In more extensive hemorrhage, adrenal secretion of

epinephrine further augments sympathetic tone, and an accelerated

respiration and widened arteriovenous oxygen difference help compensate

for the reduced oxygen carrying capacity of the circulation.

However, a curious phenomenon is frequently observed in both humans

and laboratory animals that have lost a significant fraction of the

blood volume. Large amplitude low frequency (roughly .05 Hz) oscilla-

tions in heart rate and arterial blood pressure, as shown in Figure 2.6,

often spontaneously appear. These 20-second rhythms have been termed

Mayer waves [97], although their origin remains somewhat mysterious.

The heart rate oscillations have been shown to be secondary to those in

arterial pressure (presumably through the baroreflex) 95], and several

theories have been proposed [106] to explain the pressure waves: 1) the

triggering of a neural oscillator within the ANS, 2) the appearance of

rhythmic smooth muscle contractions in arterial vessel walls, indepen-

dent of the ANS, or 3) the development of a system resonance or
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ARTERIAL BLOOD PRESSURE. HEART RATE AND RESPIRATION
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Figure 2.6. Example of Mayer waves in a conscious dog, elicited by 30
cc/kg hemorrhage. Note that oscillations in arterial blood pressure (a)
and heart rate (b) have a period of roughly 20 seconds, which is much
longer than the period of respiratory activity (c). Reproduced from
Madwed, 1986.
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instability due to some change in the operational parameters of the

blood pressure control feedback loop. None of these tantalizing possi-

bilities has yet been either well demonstrated or ruled out, despite

active research in this area. One phase of this thesis research

addresses these issues and is discussed in Chapter 7.

A final class of disease states that affect cardiovascular regula-

tion, considered here, is the neuropathies. A neuropathic disorder

could theoretically interfere with either afferent or efferent nerve

conduction. The symptomatology associated with most neuropathies in

which the ANS is involved, however, suggest sympathetic efferent nerve

activity is most easily disrupted. The most common cardiovascular-

related complaint in these disorders is postural hypotension leading to

syrcopal (fainting) attacks upon standing, reflecting a loss of the sym-

pathetically mediated compensatory mechanisms normally invoked in pos-

tural changes.

Neuropathies are diseases that affect either the central nervous

system or peripheral nerves. The first category includes spinal trauma

and tabes dorsalis (tertiary syphilis) in which preganglionic sym-

pathetic fibers are injured before they emerge from the spinal cord,

pontine hemorrhage which disrupts the autonomic nuclei in the brainstem,

and a rare degenerative disorder of unknown cause called idiopathic

autonomic insufficiency or Shy-Drager syndrome. A prototypical peri-

pheral neuropathy is that associated with diabetes mellitus. In this

disease state, multiple peripheral sensory and motor nerves are often

affected, leading to parasthesias and pareses. But the appearance of

postural hypotension in affected individuals suggests sympathetic
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efferents, presumably postganglionic, may be disrupted by this disease

as well. The analysis techniques developed in this thesis research may

have utility in the early noninvasive detection of neuropathy in many

disease states. This is discussed further in Chapter 6.
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ChaPtr 3: ARRahes TowarEd Sudyng Autonomic Rggulati n

3.1 System Compnnts and Signals f Interest

The control network that regulates the cardiovascular system may be

studied as a whole or piece by piece. Both of these approaches have

been employed in the numerous past investigations of this system. In

taking the latter approach, one must decide how to split the control

system into its component parts and then identify which components are

to be studied. The splitting operation is somewhat arbitrary; for

instance, it is artificial to consider the left ventricle functionally

separate from the aorta and yet lump the aorta together with the rest of

the systemic vasculature in our analysis. On the other hand, if this

sort of division is done intelligently, we may be able to express the

complicated behavior of the integrated system as the interaction of

several more readily analyzed and understood functional blocks.

An important criterion in demarcating the functional blocks that

comprise the control system is that the signals considered to pass from

one block to the next be well defined. If these signals can be meas-

ured, then analysis of the behavior of the blocks becomes feasible.

Furthermore, if the communication of these signals between blocks can be

interrupted, then the behavior of the blocks may also be studied in an

"open-loop" configuration of the control network. It is important, how-

ever, to reiterate the caution mentioned in Chapter 1: the procedure of

opening the control loop may dramatically alter the operation of the

very system we wish to study.

A traditional and convenient delineation of system components that
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satisfies the above criterion is portrayed in Figure 2.5. Again,

briefly, the cardiovascular control system is divided into a pacemaker

(the sino-atrial node), a ventricle, resistance vessels, capacitance

vessels, a pressure sensor (or baroreceptor), and a central control ele-

ment (taken to be the combined nuclei of the brainstem). The relevant

signals that pass between these functional blocks include the pacemaker

rate, ventricular output or flow, vascular impedance, systemic arterial

blood pressure, and the various neural signals sent from the barorecep-

tor to the central controller and from central controller to all effec-

tor organs.

Arterial pressure is readily measured in humans or animals with a

strain gauge either inserted into or placed in fluid contact with an

arterial lumen. Cardiac output can be obtained on an instant to instant

basis with either electromagnetic or ultrasonic flow probes implanted

around the aortic root, or on a time-averaged basis less invasively

using either Fick or indicator-dilution methods [100]. The real part of

the vascular impedance, namely the resistance, can be estimated for each

cardiac cycle by dividing the mean pressure by the mean flow rate for

that beat. The pacemaker rate or heart rate is derived from the elec-

trocardiogram as the instantaneous frequency of cardiac activations.

Since the activations occur at discrete points in time, there are some

subtleties in defining the heart rate between these events. This is

discussed in detail in section 4.3. Neural signals are, however, techn-

ically the most difficult to measure. In general, the nerves are acces-

sible only through fairly invasive procedures, and even then carry a

signal that is often difficult to discern from noise. The vast majority
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of previous analyses of cardiovascular control, not surprisingly, have

thus been based on the two most readily obtained system signals, heart

rate and arterial blood pressure. A number of more invasive studies

have also examined aortic flow and peripheral resistance, and a few have

involved analyses of neural signals, particularly in the carotid sinus

nerve.

3.2 Mean Levels of Hemodynamic Variables

Undoubtedly the simplest analysis of hemodynamic regulation is a

determination of mean values for the system variables. A set of such

values for heart rate, arterial pressure, and cardiac output remains the

standard form for characterizirng an individual's hemodynamic status in a

critical care setting. Indeed, mean arterial pressure is likely the key

indicator of vital organ perfusion, mean cardiac output is a good metric

of cardiac function, and mean heart rate provides a measure of net

sympathetic/parasympathetic balance. Furthermore, treatment regimens

for essential hypertension are based almost entirely on steady state

values of arterial pressure. (Actually, the most important measure for

following antihypertensive therapy is the average diastolic pressure,

which is not the same as the mean arterial pressure. Like mean pres-

sure, however, the diastolic pressure measurement alone provides no

information regarding the nature of fluctuations in blood pressure.)

The mean signal values, in effect, indicate the bias points at

which the system components operate. Some additional understanding of

the behavior of a few system elements is afforded by examining a

component's output level when its input signal is experimentally clamped
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at various constant values, after the control loop has been opened. For

instance, in 1934, Rosenblueth and Simeone [1171 applied constant fre-

quency stimulation to the sympathetic and parasympathetic nerves and

measured the change in heart rate. These workers, as well as others who

conducted similar studies [92,119], presented input-output curves relat-

ing the change in heart rate to the stimulus frequency. Their data

demonstrates how different levels of sympathetic or vagal tone influence

the operating or bias point of the sino-atrial node, but does not

address the issue of fluctuations in autonomic tone around the operating

point or of the heart rate response to such fluctuations.

Similarly, a number of studies have been conducted to investigate

the effects of mean arterial blood pressure on the operating point of

the baroreceptor reflex [5,41,48,76]. In these studies, the arterial

baroreceptors were isolated and perfused at various mean pressures while

the heart rate and systemic arterial blood pressure were recorded.

Although the importance of the pulsatile nature of blood pressure was

addressed by several investigators [5,41,67,126,131] (and a pulsatile

component was therefore added to the applied mean perfusion pressure),

the critical issue of frequency-dependent responses to pressure fluctua-

tions was ignored.

3.3 Sontaneous Hedynamic Flucutin

An analysis of spontaneous fluctuations in the signals generated by

a control system often provides far more insight into the operation of

the system than does knowledge of the signal means. This is well exem-

plified by the furnace-thermostat analogy. The mean temperature in a
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house tells something about the thriftiness of the home owner with

regard to his use of heating oil, but nothing about the ability of the

heating system to respond to perturbations such as changes in outside

air temperature. On the other hand, the frequency of the characteristic

oscillations in temperature seen with such a heating system reflects the

amount of delay and hysteresis, or memory, inherent in the system, as

well as the periodicity of the perturbations (i.e., variations in exter-

nal air temperature).

A number of studies have been conducted in which a description of

autonomic nervous system function was deduced from observations of spon-

taneous fluctuations in hemodynamic variables in a variety of physiolo-

gic states 3,4,25,32-34,62,63,84,94,107,108,120,142]. Examples of such

fluctuations in heart rate and arterial blood pressure are shown in Fig-

ures 3.1a and b. Since many of the arguments made by these investiga-

tors are based on frequency-domain representations of such signals, Fig-

ures 3.1c and d are included to show corresponding power spectra of the

signals of parts a and b. Note that the estimation of these spectra

from finite length time-domain records is a nontrivial problem and is

discussed in Section 4.4.

The underlying assumption in any attempt to infer system component

behavior from observations of spontaneous fluctuations is that knowledge

of the output signal alone is adequate to deduce the input-output

characteristics of a system. Analysis of such fluctuations affords some

ability to compare the effects of different physiologic states on car-

diovascular function, but in fact, it allows for only a crude descrip-

tion of a system transfer function in any one state. The greatest
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density functions. (c) and (d) respectively. Reproduced from Madwed,
1986.
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difficulty with this method is that one might interpret a lack of power

density in a particular frequency band of the measured signal as a

diminished system response in that band, when in fact it may result sim-

ply from the lack of any input excitation at those frequencies.

3.4 Autoregressive Models and Techniques

Despite the dangers associated with trying to interpret spontaneous

hemodynamic fluctuations, a number of techniques have been developed to

identify sensible models of cardiovascular function that could produce

the observed signal waveforms. In general, these incorporate linear

components assumed to be excited by an unmeasurable noise source. A

simple example is the model of a system component as a filter excited by

perfectly white noise (constant power density as a function of fre-

quency), as shown in Figure 3.2.

I I
w(t) ----- >1 H I----> x(t)

Figure .2. Linear system excited by noise.

The output power spectrum Pxx(f) is then related to the noise spectrum

Pww(f) by

Pxx(f) - IH(f) .Pww(f) = kH(f)l 3 (3.1)xx WW~~~~~~~~~~~~~~~~31

where H(f) is the transfer function of the modelled system component,
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and k is the power density level of the noise w(t). Thus,

IH(f) = [ k PxX) ]1/2 (3.2)

suggesting that the transfer function magnitude may be determined to

within a proportionality constant from knowledge of the output power

spectrum alone. In this fashion, one could, for example, model the

sino-atrial node as a filter stimulated by white noise, whose transfer

characteristics are proportional to the square root of the heart rate

power spectrum.

This technique poses two difficulties. The first relates to the

aforementioned lack of knowledge about the actual system excitation that

is assumed to be perfectly white. Even if the excitation were an ideal

white noise source, any finite duration realization of such a signal

would not contain exactly identical amounts of power in each bin of the

power spectrum. (This is actually a problem in spectral estimation from

finite duration records and will be discussed further in Section 4.4.)

As a result of this phenomenon, it is fallacious to interpret hills and

valleys in the transfer function magnitude as real, ust because such

features are present in the power spectrum of the output signal. Obvi-

ously, the problem becomes even worse if the theoretical noise spectrum

is not white.

The other difficulty with this approach is that it provides no

insight into the transfer phase characteristics of the system component

under study. Phase behavior can be inferred only with better knowledge

of the input signal or with the imposition of additional assumptions in

formulating the model of the subsystem at hand.
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A broad class of models that carry certain assumptions and provide

for a description of phase characteristics are the autoregressive

moving-average (ARMA) models. These relate the current level of a spon-

taneously varying signal to its past history and the current and past

values of an excitatory noise source. By virtue of the nature of these

models, the investigator may select, a priori, the level of complexity,

or number of free parameters, of the chosen model. In its most general

form, an ARMA process x(t) (i.e., a signal produced by an ARMA model) is

characterized by the differential equation,

ap dPXtl + ap 1 d- xtl + ... + aox(t)
dtP dtPoX

= Pq d1W + q-_ dq-lw I
dq dq tq-i + + + (t) (3.3)

where w(t) is the input noise*. Model identification involves finding

values of a...ap and PO...Pq that best fit the observed x(t) given an

assumed form for w(t). The choice of appropriate truncation levels p

and q for the two sides of equation (3.3) determine the order and com-

plexity of the model. Because these models are completely described by

a finite (and generally small) set of constants, they are referred to as

parametric models. By contrast, note that in the approach mentioned

above, in which the transfer function is computed directly from the pro-

cess power spectrum, the system description requires an entire curve or

equivalently, a large set of parameters. Such models are thus termed

Note that both w(t) and x(t) are assumed zero-mean in equation (3.3).
If x(t) is not a zero-mean process, such as heart rate or blood pres-
sure, its mean value should be removed and the remaining fluctuations
then analyzed as described.



- 51 -

infinite-parameter or, more commonly, non-parametric models.

Identification algorithms for ARMA models have been developed for

implementation on digital computers, thus requiring digitization of

observed signal x(t). The ith sample of x(t) is denoted x(i) and the

differential equation above may be written in the linear difference

equation form,

P q

x(n) + 2 a(k)x(n-k) = b(l)w(n-l). (3.4)
k=1 1=0

Note that there is no need for an extra parameter a(0) as a multiplier

of x(n), since it may be factored out of the equation without loss of

generality. Taking the z-transform 102] of equation (3.4) yields

A(z)X(z) = B(z)W(z) (3.5)

where

p

A(z) = 1 + I a(m)zm (3.6a)

m=l

and

q

B(z) = b(m)z- m. (3.6b)

m=0

The system function H(z) between input w(n) and output x(n) is thus

xH(Z) -L Bil (3.7)
H(z) - W(z) A(z)'

It is easily shown [79] that the output signal power spectral den-

sity Pxx(f) is related to the noise spectral density Pww(f) by
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BP (f)12 P t) (3.8)
xx ( f ) I A(f) ww

where A(f) and B(f) represent values of A(z) and B(z) respectively,

evaluated along the unit circle, z = exp(2nJfAt) for

-1/(2At) < f < 1/(2At). Since the noise source w(t) is generally

(although not necessarily) assumed white with spectral density caAt

(where At is the sampling interval), equation (3.8) may be rewritten

Pxx(f) = 2t IIB 2 (3.9)

If the process is such that a(k) = 0 for k 2 1, then

q

x(n) b(l)w(n-l) (3.10)
1=0

which is termed a moving-average (MA) process of order q since the out-

put is simply a weighted average of the recent input. The power spec-

trum for such a process is

p (f) = aAtlB(f)1 2 . (3.11)
Xx

Because of the denominator of unity in equation (3.11), a model that

gives rise to a strictly moving-average process is termed an all-zero

model.

On the other hand, if b(k) = 0 for k > 1 and b(0) = 1, then

p

x(n) = - a(k)x(n-k) + w(n) (3.12)

k=1

and the process is strictly an autoregression (AR) of order p, excited

by noise. The power spectrum for such a process is
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p(f) 1 tt) (3.13)
Pxx( f) = A(f)'

and a model that generates such a process is termed all-pole.

Again, the model can be made arbitrarily simple or complex, depend-

ing on the choices for AR and MA orders p and q. Note that, for exam-

ple, if a strictly AR model of first order is chosen, then the system is

taken to be no more complicated than a one-pole filter. Indeed, if such

an a priori restriction is made, then the transfer function H(f) will

have smooth and monotonic magnitude and phase characteristics, regard-

less of the observed fine structure in Pxx(f). The cutoff frequency of

the transfer magnitude and phase plots will be dictated by the best-fit

location of the pole. The ability to determine a phase relationship in

addition to the magnitude plot, and the more appropriate level of detail

present in these transfer functions, make this modeling approach far

more attractive than simply equating the transfer magnitude with the

square root of the process power spectrum as suggested above.

Several algorithms exist to help select the optimal AR model order,

so as to minimize the error between the observations and model predic-

tions without introducing spurious detail. Akaike [2] proposed a for-

mula, refered to as the Akaike information criterion (AIC), that is

theoretically minimized when the correct AR model order is selected. A

similar criterion has been introduced by Parzen [104]1. However, it is

important to note that the model order chosen may be inappropriately

high if either an AR or MA model is assumed when the system in fact

behaves as the other. While it would appear the safest approach is to

always assume an ARMA model, the task of parameter estimation is most
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formidable with such a general model. In fact, for AR models (and not

ARMA or MA models), parameter estimation involves solving a set of

linear equations, making this class of models the most attractive of the

three.

The parameter estimation algorithms for AR models derive from equa-

tions that relate the AR parameters to the process autocorrelation func-

tion Rxx(k), which in turn is estimated from the observed time series.

(See section 4.4 for further discussion of autocorrelation function

estimation.) It can be shown [791 that if the input excitation to an AR

model is white noise with spectral density e2At, then

- a()Rxx(k-1), for k > 0
1=

(3.14)
R (k) = j a(l)R (-l) + :' for k = 0.

Expression (3.14) is called the Yule-Walker equation. The p+1 parame-

ters a(1),a(2),...,a(p),a2 } may be determined by solving p+l equations

from equation (3.14), as follows:

Rxx(0) Rxx(-1) . . . Rxx(-p)

Rxx(1) RXX(O) . . Rx(-(-1))

Rx p xx(P) Rxx()

1

a(1)

a(p)

a

ro

(3.15)

}

A popular and efficient algorithm for the solution of these equations is

the Levinson-Durbin algorithm [88], which recursively computes the

parameters for progressively higher order AR models. The validity of

. ·'
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the choices for type and order of model can then be verified through

tests of the whiteness of the residuals. The error samples between the

observations and model predictions should be uncorrelated with each

other if the input excitation w(t) was assumed white noise.

Recently, AR models have been pursued actively in attempts to

ascertain and characterize noninvasively the genesis of spontaneous

heart rate and blood pressure fluctuations. Kenet et al [80,81]

employed such an approach in an investigation of heart rate and pressure

fluctuations during both normal sinus rhythm and atrial fibrillation.

In remarkably similar work, Cerruti et al [11-13,20,22,103] investigated

AR models of neurologically mediated heart rate and blood pressure con-

trol. The greatest difficulty that both groups encountered was a lack

of whiteness of the residuals. In particular, Kenet found that during

normal sinus rhythm, spontaneous heart rate and arterial pressure fluc-

tuations are generally confined to such narrow spectral bands that lit-

tle information about the system could be inferred from such measure-

ments. For that reason, he felt atrial fibrillation provided a richer

state in which to study circulatory dynamics. However, while atrial

fibrillation leaves the arterial tree intact and allows for an investi-

gation of vascular mechanical properties that may be extrapolated to the

normal state, it severely alters the control of heart rate [29].

Kenet's model of heart rate control based on atrial fibrillation studies

thus describes autonomic regulation of atrio-ventricular nodal conduc-

tion, and not of normal sino-atrial nodal firing.

Kalli et al [73,74] have extended the AR modelling approach to he

development of multivariate autoregressive (MAR) models of heart rate
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and blood pressure interaction. In these models, the current value of

each system variable is related to the past values of itself and other

system variables and to the present value of an excitatory noise signal.

Thus,

r p

i(n) 1 aij(k)xj(n-k) + wi(n) (3.16)J=i k=1

where r is the number of signals, Wi(n) is the noise source for the sig-

nal Xi(n), and aij(k) represents the set of parameters relating the ith

signal to past values of the others. Equation (3.16) leads to the

matrix formulation,

p

X(n) = A(k)nk) )+ (n) (3.17)
k=1

in which (n) is an (r x 1) matrix of time series, A(k) is an (r x r)

coefficient matrix, and W(n) is an (r x 1) matrix for residuals. The

z-transform of equation (3.17) yields

X(z) = A(z)X(z) + (z). (3.18)

Equation (3.17) may be solved recursively using the Levinson-Durbin

algorithm, as in the univariate case.

A difficulty encountered with MAR models is that even if the system

were known exactly, the model order p could depend on the chosen sam-

pling rate of the signals. This troublesome state of affairs relates to

the fact that the cross-correlation between two signals, unlike an auto-

correlation function, does not necessarily peak at a lag time of zero.

Since the model described by equation (3.16) includes terms for all k
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between 1 and the model order p, the number of terms required to charac-

terize a system delay will depend on the number of samples that span the

delay period, which is obviously related to the sampling rate. As in

the univariate case, after choosing the model order, the set of residu-

als wj(n) should be checked for whiteness as a first test of model vali-

dity.

In their implementation of MAR model analysis of heart rate and

blood pressure fluctuations, Kalli et al [74] found substantial varia-

tion in the whiteness of residuals between subjects, making interpreta-

tion of their results difficult. Nonetheless, their analysis provides

some insight into the degree of coupling between heart rate and arterial

pressure inherent in cardiovascular regulation, and represents a promis-

ing direction for further work.

3.5 an aes saing Exogenou Iut c__ation

To avoid the limitations inherent in analyses based on spontaneous

fluctuations and to characterize autonomic function with greater resolu-

tion and accuracy, many investigators have invoked methods in which a

time-varying waveform is applied as a system excitation, the resulting

output signal or signals are measured, and transfer relations are

estimated quantitatively. Such a procedure may be employed in either

closed- or open-loop preparations, and analyzed using either time- or

frequency-domain techniques.

Efforts to quantify the heart rate response to changes in sym-

pathetic and vagal activity began in 1962 when Warner and Cox [136]
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presented a mathematical model that could emulate the behavior of the

sino-atrial node using second-order differential equations to describe

the release, reuptake, and degradation of neurotransmitter at the

synapses between the autonomic nerves and the sino-atrial node. Several

years later, Katona et al [78] found that the Warner and Cox model per-

formed at least as well when simplified to a first-order linear dif-

ferential equation. Considerable controversy between these two groups

ensued [76], and the precise dynamics of the sino-atrial node response

have never been adequately resolved.

In the 1960's researchers also began to explore the response of the

autonomic nervous system to time-varying perturbations in blood pres-

sure. Several workers examined the transient response of the barorecep-

tor reflex by applying step changes or impulses of pressure to the

externally perfused baroreceptors and observing the resulting effect on

heart rate and systemic arterial pressure in the time

domain [48,65,75,76,89,123]. This pioneering work led to the approxi-

mate determination of characteristic delays in the various branches of

the autonomic nervous system [78] and demonstrated the presence of non-

linearities in the system [40,48,65,75,76,124].

Shortly after researchers began the time domain analyses of the

baroreceptor reflex, others started to approach the problem in the fre-

quency domain. Scher and coworkers [123] developed methods for imposing

sinusoidal pressure variations at a range of frequencies in the arterial

vessels containing the baroreceptors by employing a servo mechanism.

They then related the observed oscillations in heart rate and systemic

arterial pressure to the input signal in terms of a transfer magnitude
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and phase as a function of frequency of the input sinusoid. These

investigators, as well as others who performed similar stu-

dies [49,89,93,118,122,125,129], encountered several obstacles that

reduced the significance of their results. First, in all experiments in

which the autonomic feedback loop was opened (by surgically isolating

the baroreceptive vessels from the rest of the arterial vasculature),

the animals were anesthetized and thus in a non-physiologic state, and

in all the experiments in which the animals were in a normal awake

state, the feedback loop was left intact. (In the latter case, the exo-

genous servo mechanism that is attempting to impose a desired pressure

waveform must compete with the animal's intrinsic control system which

is attempting to eliminate these pressure oscillations [118,122,125].)

Secondly, although the intended pressure signal in these studies was a

sinusoid, nonlinearities in the mechanical interface between the servo

system and the arterial tree, as well as the addition of mechanical

noise, distorted the input signal. Similarly, nonlinearities in the

response of the system being studied produced harmonic distortion in the

output signal (either heart rate or systemic pressure). This last prob-

lem was particularly troublesome when large amplitude oscillations were

used as input signals. Thus, rather than deducing a transfer function

to characterize the baroreceptor reflex, these workers were actually

computing describing functions [49,89,93,122,123,125,129], in which only

the fundamental component of the output signal is related to that of the

input. In fact, in none of these studies was any attempt made to quan-

tify the degree of corrupting noise and nonlinearities. Finally, in all

of these studies, measurements were made around only a single operating

point, mostly because of time constraints, since the determination of a



- 60 -

single describing function required driving the system many times at

different frequencies.

3.6 Nlnenar Analxs§i

The foregoing discussion of the previous research efforts that have

led to our current understanding of autonomic regulation points out the

areas in which further work is required. We still lack an adequate

quantitative characterization of the system's nonlinearities, its small

signal response over the full normal operating regime, and its response

in situations in which the cardiovascular system is stressed. The first

of these issues, the nonlinearities inherent in the system function, is

the most difficult to analyze and resolve.

Volterra [135] developed a mathematical formulation for the

representation of a nonlinear system in terms of a sum of progressively

higher order functionals in much the same way that a nonlinear function

can be represented by a sum of progressively higher order polynomials in

a Taylor series. He showed that for a system S that is nonlinear, time

invariant, analytic, and has finite memory, the relationship between

input x(t) and output y(t) can be written as
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y(t) = S[x(t)]

= ko + kl(v)x(t-v)dv

+ fflk, (Tl,.s,)x(t-' l)X(t-2s)X(t-'.)dsdsd~s

+ ·.. (3.19)

where ko, k(~), k(s,rs), k,(1i,T,,S), ... are known as the Volterra

kernels of the system. These kernels are symmetric functions of their

arguments (e.g., kS(?1,r2) = k(2a,T)), and for a causal system,

kn(1i,...,=n) = 0 if any of the arguments Gu,.,=n are negative. Thus,

all integrations are taken from zero to infinity. The zeroth-order ker-

nel k is a constant and is simply the response of the system to a zero

input (i.e., when x(t) = 0). Notice that the first-order functional is

exactly the convolution integral for a linear system. In fact, if

ko = 0 and all kernels above the linear kernel are zero (i.e., kn = 0

for n 2), then equation (3.19) reduces to

y(t) = kjx(t-)dx (3.20)

and the system is linear with impulse response k(r).

In 1958, Norbert Wiener presented a tremendously useful wrinkle on

the Volterra formulation. (Interestingly, he published his contribu-

tions in this field only in a book [140] transcribed from tape record-

ings of a lecture series he gave at M.I.T.) Wiener suggested that just
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as there exists a Fourier series representation of a periodic signal

comprised of a complete set of orthonormal basis functions (sinusoids),

so too can a series of orthogonal functionals be created to represent a

nonlinear system. The advantage of a series of orthogonal functionals

over the series of Volterra functionals is that if the series of orthog-

onal functionals Hn[x(t)] is truncated after any finite number N terms

and the residual error eN

eN = S[x(t)] - [xHn(t)] dt (3.21)
n=

is minimized, then those N terms will be the same as the first N terms

of the series extended to M terms (for M > N) when eM is minimized.

The use of a set of orthogonal functionals, however, imposes res-

trictions on the class of allowed input signals x(t) for which the

representation is valid. The most commonly used form of the Wiener

representation is

y(t) = 2 Hn x(t)] (3.22)
n=O

where the first four orthogonal functionals are:

Ht[x(t)] = ho (3.23a)

Hl[x(t)] = hl(e)x(t-v)dT (3.23b)
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H2[x(t)]- =jh(l,)x(t-l)x(t-s)dld

- P fh2(sl,i)dli (3.23c)

H,[x(t) = ffhs(.,.,s)x(t-~l)x(t-.)x(t--,)dsLd,2dl:

3P ffhl(rlVs,V)x(t-l)dld2. (3.23d)

This representation requires that the input signal be Gaussian white

noise, and the constant P refers to the variance of the input noise.

Lee and Schetzen [87] presented a method for experimentally

evaluating the kernels hi(r·,...,.i) of the Wiener representation by

utilizing crosscorrelation techniques. To use their procedure, a single

experiment is performed on the system with a zero-mean Gaussian white

noise input x(t), and the system response y(t) is recorded. The kernels

are then found recursively using the relation

hn( ' n E = [(tt)] x( t-) - -xn)]. (3.24)

Note that the right side of equation (3.24) is found by first computing

the residual of y(t) after subtracting off the part of the response that

is accounted for by the first n-l functionals, and then computing the

nth order crosscorrelation function with x(t).

Several investigators have applied this approach to the study of

nonlinearities in neural systems such as retinal cell chains [96] and

pupillary control networks 130]. While a number of researchers have

noted the importance of nonlinearities in cardiovascular regulation,
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particularly in the response characteristics of the barorecep-

tors [27,40,48,65,75,89,124], use of the Wiener or Volterra kernel

analysis in studying cardiovascular control has been scant 1]. On the

other hand, the Wiener series representation (and the Lee and Schetzen

identification technique) has several disadvantageous attributes that

are direct consequences of the very generality of the method. For one,

although systems engineers have gained enough intuition to interpret the

first-order Wiener kernel, few people can readily interpret the higher

order kernels either from their shape or analytic form. In addition,

computation of third and higher order kernels is so burdensome that few

investigators have even attempted to represent a nonlinear system with

more than the first and second order terms. Thus any higher order non-

linearities could not be included in such a characterization of the sys-

tem.

3.7 Transfer Function Analysis

In planning the research efforts described in this thesis, I sought

a systems analysis approach that would provide for an accurate and

readily interpretable system description that could be obtained effi-

ciently to allow for serial characterizations as conditions changed.

Thus, I was willing to trade off the generality afforded by the non-

linear analysis described above for a computationally simpler and more

easily understood representation of cardiovascular regulatory dynamics.

At the same time, since I was particularly interested in characterizing

the functional delays in the system that may give rise to resonances and

instabilities, I felt the acquisition of phase information was crucial.
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Furthermore, I felt that with the introduction of spectrally broad-band

waveforms as measurable system input signals, I could obtain more

detailed and accurate characterizations than those afforded by autore-

gressive analyses, where the system excitation is assumed unmeasurable.

Broad-band stimulation also enables the determination of system response

characteristics over the full range of a desired frequency band without

requiring multiple test runs, as in analyses based on sinusoidal input

excitations.

While I recognize nature is inherently nonlinear, for the purposes

of this thesis research, I make two important assumptions regarding the

nonlinearities in the operation of the cardiovascular control system.

First, I assume that for sufficiently small fluctuations around the

operating point, the system behaves linearly. Second, I assume that the

only significant nonlinearity is a dependence of the small signal

transfer function on the operating point. Given these conditions, the

control system can be well described by a family of bode plots generated

by varying the operating point as the parameter.

The limiting assumptions mentioned above prevent me from examining

nonlinearities such as those in which the cross-correlation between the

input and output signals depends not Just on the delay between them, but

also on the state of the system at some other point(s) in time. On the

other hand, saturation and other high-order gain nonlinearities can be

explored and characterized. These nonlinearities can be represented by

rearranging the data from the bode plots so as to graph transfer func-

tion magnitude (and phase) against operating point with frequency as the

parameter instead of the abscissa. Note that I have used the term
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"operating point" loosely, as it could (and will) refer to the mean fre-

quency at which a nerve is stimulated, the mean value around which the

arterial pressure fluctuates, or the mean cardiac output.

When a spectrally broad-band signal is applied at the system input,

a local transfer function H(f) (i.e., determined at a specific operating

point) can be determined from the input signal autospectrum S x(f) and

input-output cross-spectrum Sxy(f) using the relation [70],

Sxy(f)
H(f) = ------. (3.25)

SxX(f)

Statistical techniques used in the spectral estimation will be covered

in detail in Chapter 4. Note that since the cross-spectrum Sxy(f) is in

general complex, the transfer function estimate H(f) will also be com-

plex. This complex value at each frequency can be decomposed into a

magnitude and phase component. The basic prerequisite for implementa-

tion of this approach, aside from the restrictions on system nonlineari-

ties discussed above, is that the input excitation must contain signifi-

cant energy compared to the level of corrupting (unmeasured) noise at

all frequencies for which a system characterization is desired. The

input signal therefore ought to be of a broad-band nature and readily

measurable. The generation of such broad-band signals for use as the

input excitation will be discussed in the methods sections of Chapters

5, 6, and 7.

Transfer function analysis is a powerful approach toward studying

system behavior not only because it affords both magnitude and phase

characterizations, but also because it allows for the computation of a
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measure of confidence in the results obtained, the coherence function.

The ordinary coherence function r 2 y(f), is found from the input autos-

pectrum Sxx(f), the output autospectrum Syy(f), and the cross-spectrum

Sxy(f) using the relation [70],

ISxy(f) 1'

xy(f ) = (3.26)
Sxx(f)Syy(f)

A coherence value of unity at a particular frequency implies perfectly

linear operation of the system under study and an absence of corrupting

noise in the system. Where the coherence function falls substantially

from unity either the system functions less ideally or there exists

additive noise that makes the transfer function estimate at those fre-

quencies less reliable. This is discussed in greater detail in Section

4.5.

The diffusion of transfer function analysis into the fields of car-

diovascular regulation and autonomic control has been remarkably slow.

(Implementation of the related but inexpedient approach of describirng

function analysis was discussed in Section 3.5.) Zwiener [142] computed

phase and coherence functions between heart rate, blood pressure, and

respiration in man, but based his analysis on measurements of spontane-

ous fluctuations in these signals. Since spontaneous fluctuations in

hemodynamic variables are not typically of a broad-band nature, Zwiener

found good coherence between the measured signals only within fairly

narrow frequency bands, rendering his phase spectra difficult to inter-

pret. In addition, the finding of good coherence between spontaneously

fluctuating signals can not, in general, be extrapolated to imply a

causal relationship between one signal and another [701, because both
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may simply be varying in accordance with a third, unmeasured, signal.

By contrast, fluctuations that appear in a signal and are coherent with

an imposed input excitation can be interpreted as causally related to

the input activity.

In a rare application of broad-band stimulation of the cardiovascu-

lar system, Taylor [1331 applied randomly timed pacing impulses to the

cardiac atria of experimental animals and characterized the transmission

line properties of the arterial tree through the computation of an

effective impedance function. He found that the impedance of the

arterial system was depressed at very low frequencies (less than 0.03

Hz). Taylor pointed out that this behavior indirectly demonstrates the

presence of compensatory mechanisms within the ANS that modulate

arterial resistance. He made no attempt, however, to explicitly charac-

terize the dynamic response of the ANS in performing this function. In

Chapter 7, I describe how Taylor's approach can be modified to enable

investigation of the open-loop transfer properties of the ANS.
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Chapter : signal Pocessing Tebnes

The studies described in Chapters 5, 6, and 7 are designed to

explore different components implicated in cardiovascular regulation.

They are similar, however, in that they share a common approach, includ-

ing methods of data analysis. The analysis consists of 1) recording

various hemodynamic signals during broad-band system excitation, 2) ana-

log filtering, sampling, and digital processing of the signals, 3)

implementation of the transfer function analysis introduced in Chapter

3, and 4) pooling of data from the experiments within each study. In

this chapter, I outline the analysis techniques employed in these stu-

dies.

4.1 R_c_rding f hyg__lqgig S§gnals

The steps involved in recording, filtering, sampling, and prepro-

cessing the hemodynamic signals are tailored to the specific properties

of these waveforms. In particular, in recording the signals, it is

unnecessary to use equipment whose response bandwidth is wider than the

range of frequencies present in the signals. Since the recording

bandwidth is proportional to the tape speed, it is wasteful (and expen-

sive) to run the tape recorder at speeds higher than that required for

the desired bandwidth.

Another important consideration in the design of experiments and

the recording of physiologic signals is the length of time required for

each data segment. On the one hand, biologic systems are often non-

stationary, making spectral analysis inappropriate for very long
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records, especially when experimental conditions are changing or the

signals are clearly drifting away from their initial values. Also, the

desire to develop a practical clinical tool dictates that the analysis

not require inordinately long periods of data collection. On the other

hand, the frequency resolution of the analysis routine (i.e., the

minimum difference in frequency between two independent points of a

spectral estimate) is inversely proportional to the length of the data

segment. A tradeoff thus exists between experimental convenience and

frequency resolution of the analysis.

The signals analyzed in the studies that comprise this thesis

research are of two types. The first category consists of signals that

are measured directly, including arterial blood pressure, aortic flow,

and respiration. The second type of signal is one that is derived from

a measured waveform. Two such signals are the heart rate and the

instantaneous rate of neural stimulation. The heart rate is derived

from the electrocardiogram (ECG), and the neural stimulation rate is

determined from recordings of the stimulatory spikes. The requisite

bandwidth of the taping equipment used to record the signals for off-

line analysis is dictated by the signal with the widest spectral con-

tent. Thus, even though the blood pressure, flow, and respiratory sig-

nals lack significant power density beyond roughly 20 Hz, a recording

bandwidth of several hundred Hz is required to accurately capture the

morphology of the ECG's QRS complexes and the neural stimulatory spikes.

High fidelity recordings of these signals are essential to enable accu-

rate determination of the timing of cardiac and nerve activations in

order to derive the respective instantaneous rate signals.
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All experiments were recorded on a Hewlett-Packard model 3968A 8-

channel FM tape recorder, with a tape speed of 1 7/8 inches/sec. The

bandwidth at this speed is 625 Hz. Data segments were just over 6

minutes (364 seconds) long, allowing for a maximum spectral resolution

(minimum Af) of .00275 Hz. The actual spectral resolution realized in

these studies was, in fact, somewhat poorer than this due to the appli-

cation of spectral smoothing, described in Section 4.4.

4.2 _mpling, Eitmring , and Deaimating

The off-line analysis of recorded data begins with digitization of

the signals through a 12-bit analog-to-digital (A/D) converter connected

to and controlled by the Motorola 68010-based computer (Masscomp MC-500)

that processes the data. All signals are sampled at the same rate, and

the choice of sampling frequency is governed by three considerations.

First, since all samples are stored in two-byte words on limited disk

space, the sampling rate should be no higher than necessary. Second,

Nyquist's theorem states that the sampling rate must be at least twice

the highest frequency present in the signal to avoid aliasing 102].

Third, and perhaps most constraining, the accuracy of the algorithm that

determines the instantaneous rate signals is directly related to the

error in event interval measurements. Since the software that deter-

mines event intervals can attain only discrete values where the quanti-

zation error is the time between consecutive samples, the sampling rate

must be high enough to adequately limit this error.

For most of the experiments, the sampling rate was 360 Hz, thus

limiting the interval measurement error to 2.7 msec. The instantaneous
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rate r (in units of min-1) is related to the event interval t (in units

of seconds) by

r = 60. (4.1)

If the true event interval were At = .0027 see larger than the measured

interval t, then the rue instantaneous rate r' would be

r= 60 (4.2)t + At

The error Ar in the instantaneous rate measurements is thus

Ar r - r' 60 60

= _60Att(t + At)

~ 60 At (43)

For heart rates around 100 beats/min., t .6sec, and the rate error

Ar = .4S5 beats/min. This was adequate in all but one series of experi-

ments, discussed in Chapter 5, where the error was halved by sampling

the signals at 720 Hz.

Since the ECG (and all other signals) contain insignificant power

at frequencies beyond 180 Hz, sampling at 360 Hz would appear to satisfy

Nyquist's criterion for avoidance of aliasing. However, superimposed on

all signals is a substantial broad-band noise floor originating predom-

inately in the FM magnetic tape medium. It is therefore wise to filter

out high frequency components in the signals when sampling them. All

signals were thus passed through 6-pole Butterworth filters en route
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from the tape recorder to the A/D converter. The filter bank's band-

pass edge is set to half the sampling frequency or even lower.

Although several hundred samples of each signal are acquired each

second to allow for accurate temporal location of ECG and neural events,

neither the instantaneous event rate signals nor the other hemodynamic

signals need be represented by more than a few samples per second. This

is because signal content related to autonomic regulatory dynamics is

confined to frequencies below 1 Hz [4,24,86,103,108,120,125,142]. In

fact, a number of researchers [86,93,133] believe the frequency band

between D.C. and 0.1 Hz to be the most germane in studying cardiovascu-

lar control. The directly measured hymodynamic signals (arterial pres-

sure, aortic flow, and respiration) may thus be decimated by a factor of

100 or more from their original sampling rates of 360 Hz or 720 Hz. We,

in fact, decimate these signals down to an effective sampling rate of

2.8125 Hz. From an initial sampling rate of 360 Hz, this represents a

decimation factor of 128, and from 720 Hz the decimation factor is 256.

The band-pass edge of the analog anti-aliasing filters for these signals

is generally set to 90 Hz, allowing for decimation from 360 Hz to 180 Hz

(factor of 2) without any risk of introducing aliasing. The remaining

decimation (factor of 64) down to 2.8125 Hz must be preceded by digital

low-pass filtering. This operation is performed in three stages; each

stage involves the application of a low-pass filter and decimation by a

factor of 4. The filter program utilizes the overlap-add method [102]

to convolve efficiently the data stream with a 31-point symmetric filter

window. Time and frequency domain representations of this window are

shown in Figure 4.1. Note that the filter passes frequencies between
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D.C. and fs/8, where fs is the sampling frequency. The output of this

filter may then be decimated by a factor of 4 without the introduction

of aliasing.

Derivation of the instantaneous heart rate and neural stimulatory

rate signals does not involve any decimation procedure, per se. Once

the temporal locations of the R waves in the ECG and the neural stimula-

tory spikes have been determined using a peak detection routine, values

for the corresponding instantaneous event rate signals are simply com-

puted at time intervals of 1/2.8125 = .3556 seconds. Care must be

taken, nonetheless, to insure that these instantaneous rate signals are

free of aliasing artifacts. The algorithm developed to perform this

operation is presented in the following section.

At this point, the seemingly arbitrary choice of 364 seconds as the

length of data records can be explained. The data analysis involves the

computation of Fourier transforms, for which we employ the Fast Fourier

Transform algorithm [30]. The maximum computational efficiency of this

algorithm is realized when the data stream length is a power of 2. Con-

sequently, we analyze 1024 sample values of each signal at a time, which

yields a record length T of

T = 1024 samles __ = 364 seconds . (4.4)
2.8125 samples/sec.
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1.3 Derlyatl n Q be t_ Heart Rate Sgnal

4.3.1 iffigmQltla in DefiDig ar£t ate

In Chapter 2, I pointed out that there exist some subtleties in

computing a meaningful heart rate signal. This signal is derived from

timing measurements of the ECG, and is poorly defined between cardiac

activation events. Over the past several years, heart rate variability

has been studied extensively in our laboratory [3,4,95,108] and else-

where [28,33,35,63,84,85,94,101,103,108,113,120,142]. A considerable

degree of debate has arisen concerning the definition of instantaneous

heart rate and the development of algorithms to compute a heart rate

signal. We have developed an approach that enables efficient derivation

of an instantaneous rate signal that makes intuitive sense and is easily

utilized in both autospectral and cross-spectral analyses. While the

following discussion is geared toward the heart rate signal in particu-

lar, the algorithm is equally well suited to the derivation of any other

instantaneous event rate signal, such as the instantaneous neural stimu-

latory rate.

4.3.2 Previous Algorhs for Heirt Rate

In a recent paper 33], DeBoer et al compared two methods that

employ spectral analysis for the study of heart rate variability. In a

second paper [35], the same authors presented an evaluation of these two

methods and of a third by testing each on a sequence of simulated RR

Much of the text of this section has been published in a communication
article of the IEEE Transactions on Biomedical Engineering [16].
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intervals generated by an integral pulse frequency modulation (IPFM)

model. An IPFM model is a device that integrates its input signal until

the result of this integration reaches a preset threshold, at which

point the device sends out a pulse, resets the integrator to zero, and

begins the integration anew. Hyndman and Mohn 641 first suggested the

IPFM model as a functional description of the sino-atrial node, and it

remains a useful model for the mechanism by which the autonomic nervous

system modulates heart rate. We can represent the operation of an IPFM

model mathematically as

f tk+ ( + m(t))dt. (4.5)
ft k

T is the integrator's threshold value, which equals the duration of each

RR interval were there no autonomic modulation of the SA node's intrin-

sic firing rate. The input signal is s(t) = 1 + m(t), where all auto-

nomic influences are lumped together in this model and are represented

by m(t). Obviously, when m(t) increases, the RR interval shortens so

that the instantaneous heart rate varies in proportion to s(t). tk is

the time of the kt h R wave.

In their evaluation of the performance of the various spectral

techniques for analysis of heart rate variability, DeBoer et al compared

the results of each method to the spectrum of the input signal applied

to the IPFM model that generated the simulated RR intervals. They con-

sidered the latter as the "true" heart rate spectrum. These investiga-

tors demonstrated that all three of the methods they considered intro-

duce significant artifacts that corrupt the spectra and made them differ

from the "true" spectrum.
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DeBoer et al labeled the three types of power spectral estimates

that they discussed as (1) the spectrum of inverse intervals, (2) the

spectrum of intervals, and (3) the spectrum of counts. (For a detailed

description of the methods involved in the computation of these spectra,

see references [33,35].) The spectrum of inverse intervals is the

discrete Fourier transform (DFT) squared of the sequence of numbers

corresponding to the reciprocals of the RR interval durations. Each

number in the sequence corresponds to a single beat; this obviously

results in uneven sampling of the process in time. Since these numbers

are evenly spaced only when plotted against beat number, the units of

the frequency axis of this spectrum are "cycles per beat" instead of

"cycles per second." While the number of cycles per beat can be con-

verted to an average number of cycles per second by multiplying the

former by the average heart rate, it is not surprising that this spec-

trum would differ in appearance from that of the input signal to an IPFM

model that generated these RR intervals. For example, if the IPFM

model's input were a sine wave, then there would be relatively fewer

beats (and thus RR intervals) around the sine wave's minima, and rela-

tively more when the sine wave is near its maxima. Thus the spectrum of

inverse intervals is the DFT squared not of a sampled sine wave, but

rather of a distorted sinusoid-like signal that appears alternately

stretched out and compressed. Clearly, such a spectrum will contain

harmonics of the fundamental sine wave.

The spectrum of intervals is similarly the DFT squared of a

sequence of numbers in which there exists one number for each beat. In

this case, however, the values of the numbers that comprise the sequence
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are the RR interval durations themselves. These values are inversely

proportional to the input signal applied to the IPFM model. Thus the

spectrum of intervals appears as the spectrum of a signal derived from

the IPFM model's input signal after it has been both time-warped and

inverted. Not surprisingly, the harmonics present in this spectrum are

often even larger than in the spectrum of inverse intervals.

The spectrum of counts is the Fourier transform squared of a set of

unit area delta functions on a true time axis spaced according to the

sequence of RR intervals. This power spectral estimate, denoted P(f),

can be computed analytically as

tN [Nsin(2nftN) N 2

PC(f) =N [ 2nftN k= cs(2tk)j

(cos(2ftN) - 1) N 2
2 nftN k 2 ) (4.6)

F'""l~f~~L anft ZtN kk=!

where N is the number of delta functions in the record and tk denotes

the location in time of the kth impulse. (Note that equation (4.6) con-

tains terms that compensate for the truncation effects that result from

computing the Fourier transform of a fnite set of delta functions.)

Rompelman et al [115] have presented a modification of this technique

for efficient computer implementation. Since this spectrum is that of a

true time signal, it is free of harmonic artifacts like those seen in

the spectrum of intervals and the spectrum of inverse intervals. On the

other hand, when the intervals are generated by an IPFM model, the spac-

ing of the delta functions (not their amplitude) is modulated by the

input signal applied to the model. Thus artifacts will appear in the
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spectrum of counts at sidebands of the mean repetition rate, since it is

a frequency modulated process.

4.s.i Dscriptino of New Heart ate AAlgortbm

In Figure 4.2 is shown a schematic of the algorithm we use to

derive a heart rate signal from the ECG. The steps involved are as fol-

lows. After sampling the ECG and determining R-wave locations to the

nearest sample point, a sampling frequency fr for the heart rate signal

is chosen. This is a true frequency (i.e., the heart rate samples will

be evenly spaced in time at this frequency), and may be chosen arbi-

trarily, without regard to the mean heart rate or the frequency at which

the ECG is sampled. For synchrony with the decimated blood pressure,

flow, and respiratory signals, we select fr = 2.8125 Hz, as mentioned

above. A "local window" is then defined at each heart rate sample point

as the time interval extending from the previous sample to the next. We

then count the number of RR intervals (including fractions thereof) that

occur within this local window. Examples of how we compute fractional

RR intervals are shown in Figure 4.2. The value ri of the heart rate at

each sample point is taken to be

ri = fr ' i / 2 (47)

where ni is the number of RR intervals that fall in the local window

centered at the it h sample point. Finally, we determine the heart rate

power spectrum from the sequence of heart rate samples, using the esti-

mation techniques discussed in Section 4.4

In this section, to allow for comparison with the results of DeBoer et
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Several observations may be made regarding this technique. Obvi-

ously, since the heart rate at each point depends on events in the ECG

both in the recent past and the near future, this method can not be

employed in real time analysis without incurring a delay. The heart

rate signal produced by our algorithm may equivalently be viewed as sam-

ples of a step-wise continuous instantaneous heart rate signal convolved

with a rectangular ("boxcar") window. This step-wise continuous instan-

taneous heart rate signal maintains an amplitude equal to the reciprocal

of the current RR interval, for the duration of that RR interval (see

Figure 4.2c). This signal differs from traditional tachometer signals

(see for example Figure lb in [33]) in that the value held during the

kth interval is I / (tk+l-tk), not 1 / (tk-tk_l). As DeBoer et al have

recently noted [36], the traditional tachometer signal is flawed on two

counts. First, the signal lags the ECG by an entire beat, which may be

inconsequential in autospectral analysis, but can introduce artifactual

phase shifts in cross-spectra, for example, between heart rate and blood

pressure or respiration. Secondly, the traditional tachometer signal

provides a biased estimate of the heart rate since the lowest values are

held for too short an amount of time, and the highest values are held

for inappropriately long intervals. The mean heart rate thus appears

higher than it should. The non-delayed instantaneous heart rate signal

in Figure 4.2c avoids both of these complications.

al [33,351], all spectra (except those computed from analytic expres-
sions) were estimated using the Blackman-Tukey algorithm [791, employing
a Bartlett window. Also to facilitate this comparison, all power spec-
tral estimates have been normalized by dividing by the square of the
mean of the input signal. Finally, amplitude spectra (i.e., the square
root of the corresponding power spectra), as opposed to the power spec-
tra themselves, are displayed in Figures 4.4, 4.5, and 4.6 to emphasize
the presence of harmonics and other artifacts.
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Convolution of the heart rate signal with the rectangular window

has the effect on the power spectrum of multiplication by a low-pass

filter. The shape of the filter W(f) is

rsin(2f/fr) 
W(f) = [_ / (4.8)

where, again, fr is the sampling frequency of the heart rate signal, so

that 2/fr is the width of the rectangular window in the time domain.

This filter, plotted in Figure 4.3, passes very little power beyond the

Nyquist rate (i.e., fr/2), and its effects can be compensated for in the

band 0 < f < fr/2 by multiplying the power spectrum by 1 / W(f). In

practice, we apply a 1 / W(f) correction, but consider the spectral

estimate accurate only for 0 < f < fr/4, since the multiplication by

I / W(f) significantly amplifies any aliased power in the band

fr/4 < f < fr/2.

It should be noted that a power spectral estimate Ps(f) for the

step-wise continuous signal shown in Figure 4.2c can be computed analyt-

ically without the need to generate samples of the signal using the

relation,

P(f) -= 
c(fN)ts~r) (2nrN,3 [ tk+l-tk - (cos(2wftk+l) - cos(2 12tk)) 

+ tk+ -tk (sin(2nftk+l) -sin(2nftk)))) (4.9)

where N is the number of steps in the period of observation and tk is

the time at the beginning of the kth step. This technique generates

spectral estimates whose only artifacts are the result of the small
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amount of generally high frequency power inevitably present in the

discontinuities between adjacent steps. However, it is not a practical

method because the evaluation of equation (4.9) for many different fre-

quencies is computationally very burdensome and can not be made more

efficient through the use of FFT-like algorithms.

On the other hand, mere sampling of the step-wise continuous

instantaneous heart rate signal at a rate fr without first filtering it

results in aliasing artifacts in the corresponding power spectrum. To

demonstrate this we first computed analytically (using equation (4.9))

the spectrum of the step-wise continuous heart rate signal corresponding

to a sequence of intervals produced by an IPFM model, where the input

signal s(t) was

s(t) = 1 + m cos(2nfmt). (4.10)

The modulation depth m was chosen as .3, the modulation frequency fm was

.16 Hz, and the IPFM threshold (also the mean interval duration) was

1.05 sec. These are the same parameters used by DeBoer et al [351 in

their simulation. The amplitude spectrum (P(f)) 1 2 for this simulation

is shown in Figure 4.4a for frequencies between D.C. and 2 Hz.

Harmonics of the modulation frequency as well as a substantial peak

at the mean heart rate (.952 Hz) can be clearly seen in Figure 4.4a.

Next, shown in Figure 4.4b, is the amplitude spectrum of a sequence of

samples taken from the unfiltered step-wise continuous heart rate signal

corresponding to the same simulation, where the sampling rate fr was 1.2

Hz. The peak at the mean heart rate has become aliased and appears as a

spectral component at .248 Hz, which is well into the band of
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physiologic interest in heart rate variability studies. The location of

this aliased peak will obviously depend on the choice made for the sam-

pling rate fr.

The amplitude spectrum of the sequence of heart rate samples deter-

mined by our algorithm is shown in Figure 4.4c. Note the marked reduc-

tion in the aliased power at .248 Hz. For purposes of comparison, the

sampling rate here was chosen to be the same as in Figure 4.4b (1.2 Hz).

This choice is arbitrary, however, and again, in our studies f is in
r

fact set to 2.8125 Hz. It is important to note that while our method in

effect generates heart rate sample values of a piece-wise continuous

signal that has undergone the necessary anti-aliasing filtering, the

particular means by which we achieve the filtering operation is very

efficient. Our method avoids the computational burden of actual digital

convolution.

4.3.4 Perfrmance Comarison aMQDog ALgQrgt s

In order to demonstrate that the spectrum of the heart rate signal

constructed using our algorithm is relatively free of artifacts, we per-

formed the same simulations as DeBoer et al [35] by implementing an IPFM

model on a digital computer. We then computed heart rate spectra first

using the three methods they presented and then using ours. Figure 4.5

shows the results of the simulation where the IPFM model input signal

was again

s(t) = 1 + .3 cos( 2nfmt) (4.11)
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with the modulation frequency fm = .16 Hz and the IPFM threshold set to

1.05 sec.

All four spectra in Figure 4.5 show a large peak at the modulation

frequency (.16 Hz). However, the spectrum of intervals (Figure 4.5a)

and the spectrum of inverse intervals (Figure 4.5b) also contain a sig-

nificant peak at the first harmonic (.32 Hz) and a smaller one at the

second harmonic (.48 Hz) of the modulation frequency, that are virtually

absent in the heart rate spectrum computed with our algorithm (Figure

4.5d). Similarly, there is a sideband artifact at .472 Hz (.952 - .48

Hz) in the spectrum of counts (Figure 4.5c) that is totally absent in

the spectrum computed with our algorithm.

Figure 4.6 shows the results of a second simulation in which the

input signal applied to the IPFM model was

s(t) = 1 + .3 cos(2nft) + .3 cos(2nfst) (4.12)

Here, again, the model's threshold was 1.05 sec. The two modulation

frequencies f, and fr were .12 Hz and .16 Hz, respectively. These are

the same parameters as those used by DeBoer et al in their second simu-

lation [35]. All of the spectra for this case show large peaks at the

two modulation frequencies. In addition, the spectrum of intervals

(Figure 4.6a) and the spectrum of inverse intervals (Figure 4.6b) pos-

sess artifacts at harmonics of both modulation frequencies, and the

spectrum of counts (Figure 4.6c) contains sideband artifacts at integer

multiples of f, and f away from the mean repitition rate of .952 Hz.

Furthermore, the spectrum of inverse intervals (Figure 4.6b) contains a

component at .04 Hz, the difference between the two modulation
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frequencies. All of these artifacts are almost completely absent in the

heart rate spectrum computed using our algorithm (Figure 4.6d).

The preponderance of influences that impinge on heart rate ori-

ginate outside the heart, vary slowly compared to the heart rate, and

are relatively insensitive to the actual timing of ventricular activa-

tions. For this reason, we feel that it seems more natural to charac-

terize heart rate on a real time axis, rather than against "beat

number." The IPFM model is consistent with this description since it

lumps autonomic control and all other factors that affect heart rate

into a single time-varying signal. Our algorithm provides a computa-

tionally simple definition of a heart rate signal, and as Figures 4.5

and 4.6 demonstrate, the spectrum of this signal very closely matches

that of the IPFM model input signal. It is not surprising that the two

spectra should be virtually identical, since by the very way we have

defined the heart rate signal, were it applied to an IPFM model, the

resulting sequence of RR intervals would be identical to that observed.
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4.4 Spectral Estimation

An essential ingredient in the transfer function analysis employed

in this thesis research is the estimation of power spectral densities.

Both auto- and cross-spectra of and between the acquired hemodynamic

signals must be found before transfer and coherence functions can be

computed. There is often some confusion as to the use of the term

"estimation" as opposed to "computation" of spectra. We speak of spec-

tral estimates based on finite-length records of data. This does not

mean that the energy content of the data record within a spectral bin is

poorly defined or hard to determine. Rather, the uncertainty enters

when we attempt to extrapolate frequency-domain information about a seg-

ment of data to the infinite-duration process from which the segment was

extracted. By no means should the recipe for spectral estimation

presented in this section be thought of as the only or the best tech-

nique available. Other algorithms abound and have been well

reviewed [79]. The method we use, however, offers some convenient flex-

ibility and imposes no a priori assumptions about the signals beyond

stationarity, making it one of the most popular approaches employed,

particularly in the analysis of stochastic data.

4.4.1 Autospectrum

We estimate the power spectral density function of a signal x(t)

using the Blackman-Tukey method [19]. In a nutshell, this technique

involves first estimating the autocovariance function (ACVF) for the

process, then applying an appropriate time-domain window, and finally

taking the Fourier transform of the windowed autocovariance estimate.
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The Wiener-Khinchin relation [139] states

Sxx(f) = Rxx ()e e- 2 frd. (4.13)

Thus, the power spectrum Sxx(f) of a process is the Fourier transform of

the ACVF Rxx(), where, for a real-valued stationary process with mean

x.

Rxx(x) = E[(x(t) - X) (x(t+T) - x)]. (4.14)

If we knew Rxx(X) exactly, then evaluation of the power spectrum would

be trivial. The problem is we do not know Rxx(X) exactly, and must

estimate this function from 6-minute records of x(t). In fact, our

knowledge of x(t) has been reduced to a mere 1024 samples, denoted x(n),

and the ACVF Rxx(k) we wish to estimate is a function of the integer

number of lags k, such that

Rxx(k) = E[(x(n) - x) (x(n+k) - x)]. (4.15)

From now on, x(n) will be used as a short hand notation for x(n) - x-

If the process is ergodic, then the expectation value operator in

equation (4.15) may be replaced by a time average. Thus, for

1-N < k < N-1, the ACVF may be estimated by

N-kl-
R (k) = ---- xo(n) xo(n+lkl) (4.16)

N-Ikj n=o

where the N = 1024 samples of x(n) are indexed from n = 0 to n = N-1.

Note that the ACVF estimate is based on progressively fewer terms as Ikl

increases, causing the expected error, or variance, between Rxx(k) and

the true process ACVF R x(k) to grow as Ikl approaches N. Jenkins and
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Watts [70] have shown that for many processes, the mean square error e

of the ACVF estimate, where

N-i

£ = - R (k)) (k2, (4.17)
N k=0x x

can be reduced by using the estimate

N-1lkl-l
R'xx(k) = Xo(n) xo(n+lkl) (4.18)

in place of Rxx(k). While the variance of R'xx(k) remains small as k1

increases, this estimator introduces bias error in the tails. It is

easily seen that

R'xx(k) = xx(k). (4.19)

The prefactor (N-lkl / N) is simply the Bartlett window. As will be

shown below, we apply a different window to the ACVF estimate, but like

the Bartlett window, it too down-weights the tails of the ACVF, where

the variance of the estimate is the greatest.

At this point, it is worthwhile to consider the computational bur-

den involved in evaluating Rxx(k). In order to compute Rxx(k) for N

different values of k using equation (4.16), one must perform roughly

N2/2 multiplications and as many additions. While this may be carried

out quite rapidly on a 32-bit microprocessor-based computer when

N = 1024, we sought a short cut in which the number of arithmetic opera-

tions would climb more slowly than a multiple of N, should we be

interested in analyzing longer records of data. Furthermore, since the

transfer function analysis requires estimation of both input and output
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autospectra as well as the cross-spectrum, it became desirable to find a

method that provides intermediate results which are common to the

evaluation of all three spectra.

We invoke a Fourier transform technique to evaluate Rxx(k) effi-

ciently. This must not be confused with the Fourier transform operation

required to derive the spectral estimate from the ACVF. The steps taken

to compute the ACVF estimate merely comprise a "trick" to avoid the com-

putational burden of evaluating Rxx(k) directly. The method is based on

the relation,

R (k) = F-T P-ftX(q).X*(q)] (4.20)

where F is the discrete Fourier transform (DFT) operator, and X(q) and

X*(q) are the DFT of xo(n) and the DFT's complex conjugate, respec-

tively. The DFT and inverse DFT definitions used here are:

M-1

Y(q) = F qy(n)] = I y(n) e- 2n jqn/M (4.21a)

n=O

M-1

y(n) = F-n[Y(q) Y(q) e 2njqn/M (4.21b)
q=O

where M represents the length of the DFT. I will now demonstrate that

equations (4.16) and (4.20) are equivalent when the DFT length M is set

equal to 2N, and then consider the computational savings afforded by

this procedure.

If M > N and we set x,(n) = 0 for N n M-1, then equation

(4.21a) gives
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N-I

X(q) = I xo(n) e- 2nJq n/M
n=O

N-I

x*(q) = xo(m) e2nJqm/M.
m=O

(4.22)

(4.23)

Expansion of the right hand side of equation (4.20) using equations

(4.21b), (4.22), and (4.23) yields

M-1 -1

_F j)= e2nJqk/M Xo(n) e-2niJqn/

f x 0 (m) e2nJqm/

C:'

N-1 N-1 M-1

T-1 (n)x* ) e2jq(k+m-n)/M
R' [ __n= m= q=

(4.24)

Note that

M e2nJq(k+m-n)/M = 

q=o L o

for k+m-nl = O, M, 2M, ...

otherwise.

Now, if M = 2N, then Ik+m-nl < M since 1-N < k < N-1, and m and n are

bounded between 0 and N-1. Thus, the only non-zero terms in equation

(4.24) are those for which k+m-n = O, or equivalently, n = m+k. There

will be exactly N-lkI such terms, so equation (4.24) becomes

N-Ikl-l
1TT F[X(q) x(q)] = T (x,(+). (4.26)

F:TklNN ~ 0*

For a real-valued process, x (m) = x(m), so that the right hand sides

of equations (4.16) and (4.26) are identical, thus proving equation

and

(4.25)
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(4.20).

Note that if M = N instead of 2N, then non-zero terms will appear

in equation (4.24) when either k+m-n = 0 or Ik+m-nl = N. Equation

(4.24) would then become

N-1k-1
T- F l[X(q) .X (q)] N- [xo(m)xo(m+k)

+ xO*(m)xo(m+k-N) + xo*(m)xo(m+k+N)], (4.27)

where, again, Xo(n) = 0 for n < 0 or n > N. The additional terms in

equation (4.27) not found in equation (4.26) represent shifted copies of

the ACVF that are superimposed on the desired ACVF estimate. Thus, in

order to correctly derive Rx,(k) for -1023 < k < 1023 from 1024 samples

of Xo(n) using this Fourier transform technique, xo(n) must first be

padded with 1024 zeroes, extending its total length to 2048 samples, and

then 2048-point DFTs should be employed.

The most computationally intensive steps in the implementation of

equation (4.20) are 1) performing a 2N-point DFT on xO(n), 2) multiply-

ing the 2N points of X(q) by their complex conjugates, and 3) performing

a 2N-point inverse DFT. The DFT and inverse DFT operations are made

efficient through use of the Fast Fourier Transform (FFT) algorithm,

which requires M-logsM multiplications and an equal number of additions

for an M point DFT. The total number of arithmetic operations required

to derive the ACVF estimate is thus on the order of 2N.(2 log2N + 3)

multiplications and 4N(log 2 N + 1) additions. Clearly, for large N this

method becomes substantially more efficient than direct computation of

equation (4.16), which requires roughly N arithmetic operations.
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We now turn to the issue of windowing the ACVF estimate. As men-

tioned above, the unbiased ACVF estimate Rx(k) becomes progressively

noisier in its tails. There is substantial estimator variance, however,

even for kl << N, since the evaluation of RXx(k) is based on a finite

segment of data. Because the power spectral estimate Sxx(q) is derived

from Rxx(k), estimation error present in the latter inevitably

translates into a degradation of the former. In fact, even when a

Bartlett window is applied to Rxx(k) before taking its Fourier

transform, if x(n) is composed of samples of a colored noise process

(i.e., filtered white noise), the anticipated error in each point of the

resulting spectrum is as large as the value of the spectral estimate

itself [102]. On the other hand, the frequency resolution (closest

spacing between two independent points) of this spectral estimate is

3/2N times the sampling rate [70], or roughly .004 Hz when N = 1024 and

the sampling rate is 2.8125 Hz. This is much finer than is necessary

for even the most detailed description of autonomic response charac-

teristics. By applying a window other than the Bartlett to the ACVF

estimate, however, it is possible to trade off some of the excessive

frequency resolution for a reduction in variance of the power spectral

estimate.

The effect on the spectral estimate of applying a window w(k) to

the ACVF is easily ascertained. Since the spectral estimate Sxx(q) is

derived from the ACVF estimate xx(k) using the relation

xx(q) = At Fq[Rxx w(k)], (4.28)

it is clear that
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Sxx(q) = ' x(q) W(q), (4.29)

where S'xx(q) = At Fq[RXx(k)], W(q) = Fq[w(k)], and "*" is the convolu-

tion operator. (The factor of At, the sampling interval, is included so

that Sxx(q) has units of power density.) Equation (4.29) shows that the

resulting spectral estimate may be thought of as the Fourier transform

of the unwindowed ACVF estimate smeared by (or convolved with) the

Fourier transform of the window function. The choice of the window

shape is generally based on the degree of power leakage between spectral

bins that may be tolerated. Most of the literature on this subject

stresses the virtues of minimal power leakage, and the majority of the

research effort in this area of signal processing has been spent in the

design of windows whose frequency-domain representations include the

narrowest possible main-lobe and the smallest possible side-lobes 102].

We, on the other hand, are more concerned with the degree of vari-

ance, or expected error, in the values of the spectral estimate due to

the largely stochastic nature of the measured biologic processes. In

order to achieve a reduction in this estimator variance, we are willing

to tolerate a substantial degradation in the frequency resolution. A

natural choice for the shape of the smoothing function is a Gaussian, or

normal, distribution. A Gaussian window is elegant in that its Fourier

transform is also a Gaussian, and is convenient in that its width may be

regulated by varying a single parameter. The analytic form of such a

window is

-(kAt) / 2a, 2
, (4.30)w(k) = e
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for 1-N k < N-1, where at is a free parameter that represents the

half-width of the Gaussian in the time-domain. The Fourier transform of

equation (4.30) gives the frequency-domain representation:

-(qf) 2/2a 2

W(q) = e (4.31)

for 1-N < q <. N-1. Af is the spacing between adjacent points in the

spectral estimate and equals f /2N, where fs is the sampling rate. Note

that Af is not the same as the frequency resolution defined above, since

adjacent samples of the spectrum are not necessarily uncorrelated with

each other, particularly when the spectral estimate has been intention-

ally soothed. at and of are related to each other by at = 1/(2naf).

So, if we define a resolution factor r such that af = r sAf, then

at = NAt/nrs . We typically choose r s = 4. The width of the Gaussian in

the frequency-domain, defined as twice its standard deviation f, then

works out to .011 Hz. Time- and frequency-domain representations of

this window are shown in Figure 4.7. Note that with r = 4, w(k) dies

off long before k = N, so that truncation effects are minimal.

Inspection of equation (4.31) reveals that W(q) is normalized such

that

W(q)&f 1. (4.32)
q=_s

As Figure 4.7b shows, W(q) at q = N is so small that in practice we may

approximate

N-1

W(q)Af : 1. (4.33)
q= N
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As a result of this normalization, application of this window does not

alter the estimate of total power P in the signal x(n), where Px is

found according to Parseval's theorem as

N-1 2N-1

P = xo
2 (n) = Af () (4.34)

n=O q=0

xx(q) is a "biased" estimator, however, in the sense that peaks in the

spectrum tend to be underestimated and valleys overestimated because of

the smoothing operation. But of much greater importance, the smoothing

greatly reduces the estimator error. Jenkins and Watts [70] have shown

that the estimator variance is reduced by a factor Q, where

N-1

Q NAt (k)t. (4.35)

For the Gaussian window,

N-i -(kAt)2/a 2

Q k= -e At. (4.36)
NAt k= N

If we define a = at/ 12, then equation (4.36) may be rewritten as

--- y N-1
= ~2na -1- e(kAt) 2/2c2 t (4.37)
Q t k=N 2na

But,

N-1

1__ e-(kAt 2/2aAt 1 (4.38)I ___
k= N 2na

since this is essentially the integral of a normalized Gaussian. So we

get,

q2na z mnat
Q = _----- = ----- (4.39)

NAt NAt
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Substituting at = NAt/nrs from above into equation (4.39) gives finally,

Q= 1 (4.40)

S

and for r = 4, we find Q = .141. Multiplication of Rx(k) by this win-

dow thus leads to a reduction in the variance of the spectral estimate

to roughly 14% of its unwindowed level. Equivalently, the expected

error, which equals the square root of the estimator variance, is

reduced by roughly a factor of 2.7. It should be noted that the spec-

tral estimate has a chi-square distribution about the true spectral den-

sity. The number of degrees of freedom in this chi-square distribu-

tion is inversely proportional to the variance ratio Q. In particular,

=2 (4.41)

so, for r = 4, p ~ 14.

The sequence of steps implemented in computing the spectral esti-

mate is schematized in Figure 4.8. First, the D.C. component of x(n) is

removed to provide x(n). xO(n) is then extended to twice its original

length by zero-padding. Next, the 2N-point FFT of x(n) is computed, as

is its complex conjugate. X(q) and X (q) are then multiplied, and the

inverse FFT of the result is computed. At this point, we have found the

biased ACVF, and the inverse Bartlett window prefactor must be applied.

The Gaussian window may then be applied to the unbiased ACVF. The FFT

of the windowed ACVF is finally computed, and the result multiplied by

At so that the spectrum will have units of power density. Note that

Sxx(q) represents the spectral estimate at a frequency f = qAf = qfs/2N.
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algorithm.
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4.4.2 Cross-spectrum

In order to determine the transfer and coherence functions for an

input/output signal pair x(n) and y(n), we must first obtain estimates

not only of the autospectra Sxx(q) and Syy(q), but of the cross-spectrum

xy(q) as well. The approach outlined above for estimation of the

autospectrum is easily modified to enable computation of the cross-

spectral estimate.

By analogy with equation (4.28), Sxy(q) is derived from the esti-

mate of the cross-covariance function (CCVF) Rxy(k) according to the

relation,

Sxy(q) = At Fq[Rxy(k)w(k)]. (4.42)

The true CCVF is defined by

R (k) = E[xo(n) · YO(n+k)], (4.43)

where y(n) = y(n) - y. For ergodic processes, the expectation value

may be found by time-averaging. The CCVF is thus estimated using a

relation analogous to equation (4.16), except that the limits of the

summation must be written explicitly for the two cases k 0 and k < 0

since the arguments of x(n) and yo(m) are not interchangeable:

N-k-1

N-jk|j n x0(n) y(n+k) for k > 0
n-

R (k) = N-1 (4.44)

N-k 2 xO(n) y(n+k) for k < 0.
n=-

A computationally more efficient FFT-based formula for evaluating Rxy(k)
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can be derived using the same arguments that led to equation (4.20).

Thus,

Ry(k) = T F[X*(q).Y(q)] (445)

where, again, xo(n) and yo(n) are first padded with N zeroes,

X (q) = F[xo(n)], Y(q) = Fq[y(n)], and the FFT and inverse FFT opera-
q q

tions are performed on 2N-point data sequences. Once the unbiased CCVF

estimate Rxy(k) has been found, it can be multiplied by the same Gaus-

sian window as that used for evaluation of the autospectral estimates.

Finally, equation (4.42) is invoked to derive the cross-spectrum from

the windowed CCVF estimate.

A couple of remarks are in order concerning the subtle differences

between auto- and cross-spectral estimation. Note that while the ACVF

estimate Rxx(k) is symmetric in k, the CCVF Ry(k) is not. As a result,

their Fourier transforms Sxx(q) and Sxy(q) differ in that the autospec-

trum is entirely real-valued and thus has zero phase, while the cross-

spectrum is complex and can be decomposed into non-zero magnitude and

phase components. This will become important in computing the system

transfer funtion because the transfer phase will be exactly the same as

the cross-spectral phase.

The lack of symmetry in the CCVF also brings about a potential dif-

ficulty in the estimation of the cross-spectrum. If the system contains

any delay between input and output (as any causal system does), then

Rxy (k) will peak at some value of k other than k = O. Jenkins and

Watts [70] have shown that the operation of multiplying such a function

by w(n), which does peak at k = O, results in the introduction of bias



- 107 -

error in the spectral estimate Sxy(q). While they discuss compensation

techniques to eliminate this bias error, they also acknowledge that the

error is small unless the delay becomes comparable to NAt. Although the

autonomic nervous system certainly does contain delay elements, there is

no evidence that any such delay exceeds 15 to 30 seconds. As the 6-

minute data record length is more than an order of magnitude larger than

these delays, we have chosen to ignore the small bias error incurred.

4.5 Transfer Function Estimation

The rationale behind and the meaning of the complex transfer func-

tion as a system characterization were discussed in Chapter 3. In addi-

tion, the coherence function was introduced as a measure of statistical

significance of the transfer function estimate. In this section, we

consider the computation of the transfer and coherence function esti-

mates using the auto- and cross-spectral estimates described above.

Derivation of the expected error in the transfer function estimate from

the coherence function is then discussed. Finally, a method for pooling

the transfer function estimates from all experiments within a study and

for determining the expected error in the pooled estimate is presented.

4.5.1 Transfer and Coherence Functions

A relationship between the transfer function H(q) and the cross-

spectrum and input autospectrum was given in equation (3.25). This

equation can be rewritten to provide a means for estimating the transfer

function using estimates of the auto- and cross-spectra instead of their

theoretical true values:
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S (q)
H(q) - --- (4.46)

s (q)

where, as before, q refers to the frequency qAf which equals qfs/2N.

Equation (4.46) provides a robust estimate for H(q), as it is easily

shown [15] that H(q) is unaffected by the addition of noise or other

uncorrelated signals to the output y(n). Transfer magnitude and phase

components, IH(q)I and He(q) can be derived from the real part HR(q)

and the imaginary part HI(q) of the complex function H(q) as follows:

IH(q)l = [(HR(q))2 + (HI(q))21/ 2 (4.47a)

H( q) = tan -1 .. .. (4.47b)
IHR(q)

As discussed earlier, only the numerator in equation (4.46) is complex,

so that the transfer phase H(q) is identical to the phase component of

the cross-spectrum Sxy(q).

Note that there is no guarantee that a transfer function estimated

using equation (4.46) will correspond to a causal system. In fact, if

the system under investigation contains a feedback path such that fluc-

tuations in the output signal y(n) influence the input x(n), then the

computed transfer function will clearly correspond to an acausal system.

A useful check that the system at hand includes only a feedforward path

is provided by computation of, the impulse response function, found by

taking the inverse Fourier transform of H(q). A causal impulse response

curve deviates significantly from zero only for t > 0.
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The coherence function may similarly be evaluated using estimates

of the input signal autospectrum S (q), the output autospectrum Syy(q),

and the cross-spectrum Sxy(q) according to the relation,

Is y(q) 1
xy( q) (4.48)

Sxx(q)syy(q)

The theoretical coherence T2xy(q) is real-valued and bounded between

zero and unity. Its estimate jxy(q) is also real-valued, and while it

never falls below zero, it may attain values greater than unity due to

estimator error. The estimation error in both H(q) and ?'xy(q) becomes

particularly significant in spectral bands where the input power density

Sxx(q) is comparable to the level of unmeasurable noise. Thus,

reiterating the point made in Chapter 3, successful transfer function

analysis requires that the input excitation contain significant power

over a broad range of frequencies.

Note that while Sxx(q), Syy(q), and Sxy(q) must all be found before

xy (q) can be evaluated, the number of arithmetic operations required

to compute the three spectral estimates is less than three times that

required for a single such estimate. This is because the functions

X (q) and Y(q), required for the computation of Sxy(q) using equation

(4.45), have already been found in computing Sxx(q) and Syy(q).

4.5.2 Confidence Limits of Transfer Function

The coherence function provides a measure of believability in the

transfer function estimate. The closer the coherence is to unity, the

more appropriate is the linear model in describing the system at hand,
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as the output fluctuations are more highly correlated with the input.

Evaluation of the coherence function is most useful, however, in that it

enables quantitative determination of confidence limits around the

transfer function estimate, and of the estimator variance. The latter

is particularly important in computing a group average from multiple

experiments, as each datum should be weighted in inverse proportion to

the variance of its estimate.

The approach presented here for determination of transfer function

estimator variance is adapted from Jenkins and Watts [70], with some

modification. They derived expressions for arbitrary-percentage confi-

dence intervals for the magnitude and phase, based on the diagrams shown

in Figure 4.9. In Figure 4.9a, the complex transfer function estimate

is plotted as a vector on the HR - HI plane, whose end-point is

inscribed in a circular confidence zone. This circle is then approxi-

mated by a region that, when plotted in H - IHI space as in Figure

4.9b, appears as a rectangle described by the pair of equations [70]:

IH(q)l = IH(q)lJ1 2 L-- f 2 2(1-a)F () 1 (4.49a)
L LL xy,, JJ J

H (q) = H (q) + sin 1 -_ f .. 2 (1-a) [!-X(-!))" 2 (4.49b)

The rectangle represents the 100(1-a)% confidence region for IH(q) I and

He(q). f2, 2(1-a) is a number such that

Prob{F2,4_ 2
< f2 ,-2(1

- a)} = -a,. (4.50)
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where F2 2 is the Fisher F distribution with 2 degrees of freedom in

the numerator and p-2 degrees of freedom in the denominator. p

represents the number of degrees of freedom in the chi-square distribu-

tion that characterizes the spectral estimates, which equals 14, as dis-

cussed above. Note that the circular region in Figure 4.9a can also be

approximated by the square zone shown in Figure 4.9c. The sides of this

square depict the confidence intervals for HR(q) and H(q), and the

length of any edge is obviously identical to the confidence interval for

IH(q)l, given by equation (4.49a).

We are interested in obtaining the variance of the distribution of

the transfer function estimate about its theoretical true value. By

plotting the width of the confidence interval as a function of a, one

could map out the shape of the estimator distribution. While it is not

quite a Gaussian distribution, approximating it as one is not terribly

inaccurate. A good approximation of the estimator variance, therefore,

is the square of half the confidence interval width for a = .32, since a

Gaussian distribution contains all but 32% of its area within one stan-

dard deviation from the mean. The variance n2(q) in the estimate of

HR(q) or HI(q) is thus,

n'(q) = IH(q)'. .- 2 f2, (1-.32) ---- (4.51)

and when ~ = 14, f2 (1-.32) 1.4.

4..3 Pling of Transfer Function Data

One of the ultimate goals of this thesis research is the develop-
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ment of clinical tools to assess the integrity of an individual's auto-

nomic nervous system. Such a tool will inevitably involve a comparison

between transfer function data for the individual and some standard of

normal. It therefore became important to devise a method whereby

transfer function measurements made on a group of presumably normal

experimental animals or human volunteer subjects could be coalesced so

as to yield a group average. It is also useful to determine the stan-

dard error of the group mean so that pooled transfer function data for

various physiologic states can be compared and tested for statistically

significant differences.

The estimator variance n(q) given by equation (4.51) characterizes

the error inherent in the measurement of the transfer function due to

the imperfection of the analysis technique. It is analogous to the

ever-present error in the measurement of an individual's intelligence

quotient (I.Q.) because the tests used are never culture-free. Unre-

lated to such measurement errors, however, is the presence of variabil-

ity in the theoretical true measures across the population of presumed

normals. Just as there is a range of I.Q.s among normal individuals, so

too is there a range in autonomic transfer characteristics that comprise

the norm. If any single empirical determination of a transfer function

were intended to represent an estimate of the theoretical group average

transfer function, the estimator variance would include two components.

First, the empirical measure would deviate from the individual's true

transfer function due to the measurement error, and second, the

individual's transfer characteristics would deviate from the group mean

due to the population variance.
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In deriving a group-average transfer function estimate, the vari-

ance present in the individual estimates must be taken into account. At

any given frequency, some of the individual transfer function estimates

may have less variance, and are thus more reliable, than others due to a

better level of input-output coherence. The group-mean should therefore

be a weighted sum of the individual estimates, where more reliable terms

are weighted more heavily. The maximum likelihood formulation [181

weights each estimate by the reciprocal of its variance. Thus,

K

i-l [i i ]
<HR(q)> = (4.52a)

[1 r1 / iz(q)]
i=! L

I K

i=l2.aI ai
2
()]

where <HR(q) and <HI(q)> are the real and imaginary part of the group-

mean transfer function estimate, HR (q) and HI (q) are the real and ima-
i i

ginary parts of the ith individual estimate, ci'(q) is the total (meas-

urement plus population) variance in HR (q) and HI (q), and K is the
i i

number of measurements contributing to the average.

The key to this approach for pooling transfer function data is the

evaluation of the individual estimator variances ai2(q). Note that this

variance is assumed identical for the real and imaginary parts of the

individual transfer estimate, as shown pictorially in Figure 4.10. In
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Eigure 4.10. Confidence zone around the ith individual transfer func-
tion measurement in estimating the group average. The inner ring of ra-
dius i represents the measurement error and the middle circle of radius

a0 denotes deviation among the population, so that the square of the
outer ring radius ai' is the total estimator variance.
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other words, iso-confidence zones around the transfer function estimate

are assumed circular. The 68% confidence zone drawn in Figure 4.10

includes an inner circle that represents measurement error n(q) and a

second ring whose radius ca(q) signifies the standard deviation in

IH(q)I among the population. Note that since these sources of error are

assumed independent, the associated variances add, so that

ai(q) = o0
2(q) + ni2(q). (4.53)

The derivation of the measurement variance ni2(q) from the coher-

ence function estimate was discussed above. The population variance

, 0
2(q) may be estimated as

K

a02(q) = N1l [lHi(q), - <IH(q)i>]2 (4.54)
ii

where 'fi(q) I is the magnitude of the ith transfer function estimate,

and <IH(q)l> is the group average transfer magnitude. In fact, equation

(4.54) overestimates ao
2 (q) somewhat since the Hi(q)l's contain meas-

urement errors in addition to population differences. The group average

transfer function's error bars ultimately computed will thus be conser-

vatively wide.

Equation (4.54) presents us with a bit of a quandary, however. The

population variance estimate ao0 (q) is required to determine the indivi-

dual estimator variances i'(q), which in turn are used in deriving the

group average transfer function, according to equations (4.52a) and

(4.52b). But the group average transfer magnitude <(IH(q)I> is required

to find Co2(q), according to equation (4.54). Rather than invoke an

iterative approach to resolve this dilemma, we temporarily estimate
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K

<IH(q)l> = k IH(q)l (4.55)
i=1

just for the purposes of equation (4.54). Making use of this substitu-

tion and some algebra, equation (4.54) may be rewritten,

a 2° (q) = l i ](q)I (q) I (4.56)

Then the group average complex transfer function can be computed using

equations (4.52a) and (4.52b), and decomposed into group average magni-

tude <H(q)l> and phase <H0(q)> components just as the individual esti-

mates were in equations (4.47a) and (4.47b).

The standard error cmag(q) of the group mean transfer magnitude

estimate <lH(q) > is

(q) = -1---- (4.57a)magK 1/2

L1 1/ vi (q))

and the standard error aphase(q) of the group mean transfer phase

<He(q)) is related to amag(q) trigonometrically as

1 amag~g(~(s)q(4 57b)
0phase(q) = sin- (4.57b)

<IH(q)I>J

The steps involved in deriving the group average transfer magnitude

and phase functions and their standard errors are summarized in Figure

4.11. First, all the individual transfer function arrays HR (q) and

HI (q) are read into core and the quantities IHi(q)l and IHi(q)I2 are

computed, enabling the evaluation of the array c,'(q) using equation
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Figure 4.11. Flow chart outlining algorithm for determination of
group-average transfer function magnitude and phase estimates and their
corresponding expected errors.
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(4.56). Next, the individual coherence functions 2xy i(q) are read into

core, and the transfer function estimator variances due to measurement

error ni (q) are computed using equation (4.51). The arrays ao2(q) and

ni2(q) taken together yield ai2(q) according to equation (4.53), which

allows for the determination of the quantities 4[HR (q) / i2(q)]

Hi (q) / i2(q)], and [1 / i2(q)]. These quantities are used in the

numerators and denominators of equations (4.52a), (4.52b), and (4.57a)

to find <HR(q)>, <HI(q)>, and amag(q). Gphase(q) is then found using

equation (4.57b), and the group average transfer magnitude and phase

components, <H(q)l> and <He(q)>, are derived from <HR(q)> and <HI(q)>

using equations (4.47a) and (4.47b). In chapters 5, 6, and 7, when

group average transfer magnitude and phase estimates are plotted with

error bars, the errors represent the quantities mag(q) and phase(q).
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Chapter 5: Study f the Response of the Sino-atrial Node

5.1 Introduction

In this chapter, we consider the transfer characteristics of one

particular functional block within the cardiovascular regulatory system

- the sino-atrial (SA) node. Referring to the model presented in

Chapter 2, we recall that the SA node serves as the clock, or pacemaker,

of the heart. Since the instantaneous cardiac output is the product of

heart rate and stroke volume, changes in heart rate strongly influence

the hemodynamic variables, arterial pressure and flow. As shown in Fig-

ure 2.5, the SA node is innervated by both sympathetic and vagal fibers.

While each of these two neural systems antagonizes the other's influence

on nodal function [117], their effects are not simply additive or

independent of each other. Samaan [1191 showed that with sufficient

vagal activity, sympathetic influences on heart rate can be abrogated

regardless of the level of sympathetic tone. Levy and cowork-

ers [51,82,90,92] have proposed mechanisms on the cellular level to

account for these observations.

The instantaneous level of sympathetic or vagal activity relates to

the rate at which these nerve fibers release vesicles of their respec-

tive neurotransmitter into the synapses with nodal cells. This, in

turn, depends on the frequency of action potentials that are conducted

along the nerve axons. Sympathetic and vagal "tone" thus refers to the

Much of the material in this chapter was presented at the 1986 confer-

ence on Computers in Cardiology and published in the conference proceed-
ings[17].
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instantaneous neural spike rate in these fibers. Warner and Cox 136]

presented a 2-part mathematical model to describe the relations between

each, vagal and sympathetic tone, and the heart rate. Warner and

Russell [137] took this work a step further by integrating the two

halves of the model to account for sympathetic-parasympathetic interac-

tions. These workers tested their model by comparing its predictions of

heart rate changes with data from experiments on dogs in which the vagus

and cardiac sympathetic nerves were stimulated with various fixed-rate

pulse trains.

We, on the other hand, became interested in characterizing the SA

nodal rate response to fluctuations in sympathetic and parasympathetic

tone. Although Warner and Russell did not specifically investigate the

predictions of their model with regard to broad-band fluctuations in

autonomic tone, the data presented in this chapter provide an experimen-

tal basis for testing this aspect of their model. Previous attempts at

characterizing the frequency response of the SA node are limited to the

work by Penaz [105] and by Chess and Calaresu[24]. These investigators

determined describing functions relating the magnitude and phase of

heart rate changes to the rate at which stimulatory pulses, applied to

the vagus nerve in either rabbits or cats, were sinusoidally frequency-

modulated. By contrast, we compute transfer function estimates of the

canine SA nodal rate response by applying to the vagus and sympathetic

nerves pulse trains whose frequency is modulated by broad-band noise.

As discussed in Chapter 3, this efficient approach enables us to charac-

terize the system around multiple operating points (i.e., mean stimula-

tory rates) in a single experimental preparation.



- 122 -

5.2 Methods

Two sets of experiments were performed each using eight healthy

adult mongrel dogs anesthetized with sodium pentobarbital (30 mg/kg).

The apparatus employed in these experiments and the relevant anatomy is

schematized in Figure 5.1. In the first group of experiments, we exam-

ined the heart rate response to fluctuations imposed in vagal tone. So

as not to confound the measurement of the SA nodal response to exo-

genously applied neural stimulation, all endogenous neural influences on

heart rate were interrupted. Endogenous sympathetic activity was elim-

inated by injecting the animal with reserpine (0.3 mg/kg IM) 24 hours

prior to the experiment to deplete stores of catecholamines including

norepinephrine. Conduction of endogenous parasympathetic activity was

blocked in the left vagus by sectioning the nerve, and in the right

vagus by infiltrating the nerve with lidocaine HC1 at the level of the

base of the skull. Since the stimulatory pulse train was applied to the

right vagus, we avoided sectioning this nerve so as to preserve blood

vessels that pervade the bundle and maintain its viability. The elec-

trode pair was thus applied across the nerve several centimeters caudal

to the level of lidocaine blockade. To prevent the vagus nerve from

drying out, the nerve bundle and electrodes were immersed in a pool of

mineral oil poured between a skin flap and the trachea on the right side

of the neck.

The second series of experiments was designed to study the SA nodal

response to fluctuations in sympathetic activity using a similar proto-

col. In these experiments, vagal activity was blocked with atropine

(,lmg/kg) and endogenous sympathetic activity was interrupted by
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Stimulating

_gure .. Apparatus used In vagal and sYmapthetic stimulation experi-
ments. Also shown is the relevant canine anatomy, including the right
vagus nerve and stellate ganglion.
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severing all nerve fibers entering the two stellate ganglia from the

spinal cord. Stimulating electrodes were then applied to either the

decentralized right stellate ganglion or the cardiac stellate nerve.

In order to excite the system under study with a broad-band input

signal, the waveform applied to the stimulatory electrodes in both sets

of experiments was a train of 2 msec wide supramaximal current pulses

whose frequency varied about some mean rate in proportion to a Gaussian

white noise (GWN) signal. The timing of these pulses was controlled by

a Digital Equipment Corp. PDP-11/23 based computer, programmed as fol-

lows. Samples of a Gaussian white noise process were generated by sum-

ming 12 independent uniformly-distributed random numbers. To confine

the GWN signal energy to the spectral band of interest, this sequence of

numbers was digitally processed with a 101-point low-pass filter whose

band edge was typically set to 0.7 Hz, such that the resulting values

represented a 5 Hz sampling of filtered Gaussian noise. Linear interpo-

lation between these points provided samples, at a rate of 500 Hz, of a

band-limited GWN signal f(n) signifying the instantaneous pulse rate.

This signal was then used as the input to an integral-pulse-frequency-

modulation (IPFM) model in that at each tick of the 500 Hz clock, the

reciprocol of f(n) (representing the instantaneous inter-pulse interval)

was compared to the time t since the last output pulse. Whenever t

exceeded 1/f(n), the computer output a pulse on its digital-to-analog

(D/A) converter and reset t to zero. The resulting output waveform was

thus a Gaussian white noise frequency-modulated (GWNFM) pulse train.

By "supramaximal" I mean of sufficient magnitude to depolarize all ex-
citable nerve fibers within the bundle (generally about 2 ma).
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Stylized representations of the band-limited GWN signal, its theoretical

power spectrum and probability distribution, and the corresponding GWNFM

pulse train are shown in Figure 5.2.

Importantly, the mean fmean and variance of of the GWN modulator

signal was specified for each experimental run. In the vagal stimula-

tion studies, test runs were performed with f set to 1, 2, 4, and 6
mean

Hz. By contrast, the mean sympathetic stimulation rates employed were

.5, .75, 1.0, 1.25, and 1.5 Hz, as little additional cardiac accelera-

tion is realized beyond sympathetic rates of 1.5 Hz. af was generally

set to roughly fmean/4. (Note that when fmean was set below 1 Hz, as in

many of the sympathetic stimulation runs, the band-pass edge for the GWN

digital filter was, of necessity, reduced from .7 Hz to fmean - f.)

Epicardial electrodes were installed on the right atrium so that an

atrial electrogram could be obtained. Atrial activations were assumed

linked to events of SA nodal firing, with negligible delay. This elec-

trogram, as well as the pulse train produced by the computer, were

recorded for off-line analysis. The output of the computer could not,

however, be connected directly to the stimulatory electrodes since the

D/A converter produces voltage spikes whose current level is small and

uncontrolled. We therefore designed and built a voltage-dependent

current source to provide current spikes electrically isolated from the

computer and recording equipment. A schematic of this circuit is shown

in Figure 5.3. The voltage signal from the computer, after attenuation,

appears at the input to an Analog Devices model 289 isolation amplifier.

The output of this device is then applied to the non-inverting input of

a TL062 op-amp coupled to a high-voltage MOSFET (IVN6000). The feedback
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configuration between the op-amp and MOSFET is designed such that the

MOSFET draws ust enough current from drain to source to maintain the

voltage across the source-to-ground resistance the same as that applied

to the op-amp. The resistance between the MOSFET source and isolated

ground is chosen by the user as 50, 500, or 5k Ohms, allowing for three

decades of range in MOSFET drain current. The regulated current signal

applied to the stimulatory electrodes is thus taken from the circuit's

24 volt power supply and returned to the drain terminal of the MOSFET.

Data from these experiments was analyzed as outlined in Chapter 4.

The input signal x(n) was taken to be the instantaneous rate of neural

stimulation, and the output y(n) was the instantaneous SA nodal firirng

rate. These signals were derived from the recorded pulse train and

atrial electrc_ m signals respectively, using the tachometer algorithm

presented in Section 4.3. In the vagal stimulation studies, sampling of

the recorded signals at 360 Hz was adequate to resolve changes in the

nodal firing rate. In the sympathetic stimulation experiments, however,

the induced fluctuations in nodal rate were so small that a sampling

frequency of 720 Hz was required. (See Section 4.2.) Six-minute records

consisting of 1024 samples of the instantaneous rate signals were used

to compute transfer function estimates and corresponding coherence func-

tions for each of the mean stimulatory frequencies employed. Results

from within each of the two sets of experiments were pooled to provide

group average transfer magnitude and phase estimates and confidence

intervals, as described in Section 4.5.
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5.3 Results

5.3.1 _Vagal Stimulation

Figure 5.4 is a plot of mean SA nodal rate as a function of mean

vagal stimulation frequency from one representative experiment. This

shows the D.C. response of the SA node to vagal drive, but communicates

no information regarding nodal response to fluctuations in vagal tone.

These results are similar to those presented by Rosenblueth and Sime-

one [117], and demonstrate the strong cardiac decelerating effect of

vagal drive that does not start to plateau until the heart rate falls

below half its ·tsting level.

Data derived from one 6-minute experimental run are displayed in

Figures 5.5 and 5.6. Figures 5.Sa and b show time series of the instan-

taneous neural stimulatory rate and SA nodal rate, respectively, when a

GWNFM pulse train with fmean = 4 Hz was applied to the vagus nerve.

Note that the neural spike rate fluctuates noisily around its mean

(240/min), and that this induces wide swings in nodal rate. Autospec-

tral density estimates for these two signals are shown in Figures 5.Sc

and d. While the vagal rate signal possesses substantial power density

out to 0.7 Hz (the GWN generator filter edge), the resulting SA nodal

rate fluctuations are clearly less spectrally broad.

Estimates of the transfer function magnitude and phase, the coher-

ence function, and the impulse response for this experimental test of

the SA node are shown in Figures 5.6a, b, c, and d. These estimates

were computed from the time series of Figure 5.5, using the techniques

described in Section 4.5. Figure 5.6c indicates that fluctuations in
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the SA nodal rate are indeed quite coherently related to those in vagal

tone between D.C. and 0.7 Hz. This frequency range of coherent

response, again, relates to the spectral band of input excitation. Of

course, even if the spectral content of the GWN neural rate modulator

signal extended beyond 0.7 Hz, fluctuations in nodal rate within this

spectral region would be meaningless, since the mean SA nodal rate

itself is not much higher than this frequency. Within the coherent

regime, the transfer magnitude plot shows a slow decline with frequency,

reflecting the low-pass filter nature of the SA nodal response to vagal

perturbations. The phase plot displays increasing phase delay with fre-

quency, also consistent with low-pass filter behavior. Note that the

phase attains a value near 180 degrees at D.C., which reflects the fact

that increasing vagal excitation is accompanied by a decrease in SA

nodal rate. The impulse response confirms the inverse relation between

vagal stimulation rate and heart rate, in that it lies almost entirely

below zero. It also reflects the lack of delay in SA nodal response to

vagal excitation. In fact, the impulse response curve shown here

attains a significantly nonzero value even for the first negative lag

point, suggesting a lack of causality. This is an artifact that relates

to truncation of the complex transfer function performed before taking

its inverse Fourier transform to avoid inclusion of the non-coherent

high frequency region of the response. The effect of such truncation is

to smear the impulse response curve slightly.

The group-average transfer function magnitude and phase estimates

for the vagal stimulation experiments are shown in Figures 5.7 and 5.8

respectively. These pooled estimates characterize the SA nodal fre-
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quency response at each of the four different mean vagal rates tested.

Note that all four transfer magnitude curves in Figure 5.7a fall with

increasing modulation frequency, but that the precise shape of these

curves differs from one mean level of vagal tone to another. Error

bars, included in Figure 5.7b, represent the standard error of the mean

estimate, as discussed in Section 4.5.3. Although the four magnitude

plot error zones overlap for frequencies beyond 0.1 Hz, they clearly

become quite distinct at very low modulation rates. Using the Student's

t-test [110], one finds that at any point where the standard error of

the means for two different magnitude plots ust touch (given that each

curve represents the group average of eight terms, and assuming the

error bars for the two curves are roughly equally wide), there is an 82%

certainty that the curves are indeed different. When comparing two

non-neighboring transfer magnitude curves, the statistical significance

of their differences is obviously even greater. For instance, when the

curves are separated by four times their standard error (e.g., the

fmean = 2 Hz and fmean = 6 Hz curves at D.C.), the certainty is 99%.

The phase plots shown in Figure 5.8a similarly display a dependence

on the operating point at which they were obtained. Phase error zones

for mean vagal rates of 2 Hz, 4 Hz, and 6 Hz are displayed in Figure

5.8b, and for 1 Hz and 4 Hz in Figure 5.8c. While the error bars in the

fmean = 1 Hz phase plot are fairly wide, significant differences between

the four average phase curves are nonetheless discernible over modula-

tion frequencies out to 0.3 Hz.

The data from the magnitude plots presented in Figure 5.7 can be

rearranged so as to demonstrate certain nonlinearities in the SA nodal
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response to fluctuations in vagal tone. In particular, Figure 5.9 shows

how the gain of the system is operating point dependent, rather than

constant as in a linear system. In this figure, the transfer function

magnitude is plotted against vagal stimulation rate for three different

modulation frequencies: D.C., 0.05 Hz, and 0.1 Hz. The value of the

ordinate at each plotted point is simply the transfer magnitude at that

operating point and modulation frequency. If the system were linear,

each curve would maintain a constant gain and thus appear as a horizon-

tal line. Since the four transfer magnitude plots essentially overlie

each other at a modulation frequency of 0.1 Hz, the gain curve for that

frequency is essentially horizontal. By contrast, at D.C. the magnitude

plots are maximally disparate, so the corresponding gain curve is far

from a contant line. Note that if the latter curve were integrated,

turned upside-down, and shifted vertically so that the ordinate

represented absolute heart rate instead of system gain, then a plot

similar to Figure 5.4 would be obtained.

!.3.2 Smpthet SmuItl2oD

The D.C. characteristics from one representative experiment, relat-

ing SA nodal rate to mean frequency of sympathetic stimulation, are

shown in Figure 5.10. This plot shows the relatively low level of sym-

pathetic tone at which the system response saturates, as mentioned

above. Time series of the instantaneous stimulation rate and SA nodal

rate from an experimental run where fmean 1.0 Hz, along with their

corresponding autospectral estimates, are shown in Figure 5.11. The

digital filter band-edge for the GWN modulator was set to 0.5 Hz for
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this run. Comparison between Figures 5.5 and 5.11 reveals the relative

lack of high frequency fluctuations in SA nodal rate that are inducible

through modulation of sympathetic tone.

The corresponding transfer magnitude and phase curves, coherence

function, and impulse response for this experimental run are shown in

Figures 5.12a, b, c, and d. The transfer magnitide curve confirms the

lack of high frequency response of the SA node to sympathetic fluctua-

tions, although the coherence plot shows that the response is coherent

out to at least 0.25 Hz, even if of low amplitude. The phase function

falls with modulation frequency, suggesting the presence of a delay in

the SA nodal response to sympathetic fluctuations. The impulse response

curve also reveals a delay of 2 to 3 seconds, and it maintains a signi-

ficantly nonzero level much longer than that shown for vagal stimula-

tion. Note that the impulse response curve here is entirely causal,

which serves as a check that the transfer function estimate is con-

sistent with a physically realizable system.

Group average transfer function magnitude and phase plots, pooled

from the eight sympathetic stimulation experiments, are shown in Figures

5.13a and c. Confidence zones representing the standard error of the

mean transfer magnitude estimates for f = 1 Hz and fan = .S Hz aremean mean

displayed in Figure S.13b. (As these error bars are substantially wider

than those in the vagal stimulation transfer plots, a complete graph

showing error bars for all five mean levels of sympathetic drive has

been omitted since the overlap among the error zones becomes intractably

confusing.) Note that the abscissa here extends to only 0.25 Hz

(instead of 0.5 Hz, as n Figures 5.7 and 5.8), to enable better
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visualization of the graphs in the frequency band below 0.05 Hz.

The transfer magnitude plot for all five mean stimulation rates

displays low-pass filter behavior, as in the vagal stimulation experi-

ments. Compared with the nodal response to fluctuations in vagal tone,

however, the band-pass edge here is lower and the roll-off steeper, such

that the magnitude of the response to sympathetic fluctuations becomes

negligible beyond 0.1 Hz. At the very lowest modulation frequencies,

the SA nodal response to sympathetic perturbations, like the response to

changes in vagal tone, depends on the operating point, with the greatest

transfer magnitude occurring at the lowest mean rate of sympathetic

stimulation tested.

The transfer phase curves for these experiments, in contrast with

the magnitude plots, display remarkable similarity from one operating

point to another. Note that the phase curves for all five mean rates of

sympathetic stimulation fall almost linearly with increasing modulation

frequency at a rate of roughly 1200 degrees/Hz. This attribute of the

transfer plots suggests the presence of a greater than 3 second delay in

the SA nodal response to sympathetic fluctuations.

Finally, gain curves demonstrating the operating point-dependence

of the transfer function de are plotted in Figure 5.14 for three

frequencies of sympathetic modulation: D.C., 0.0and 0.05 Hz.

These curves were derived from the transfer magnitude plots of Figure

5.13a, as was done in Figure 5.9 for the vagal stimulation experiments.

The wide departure of these curves from constant gain, especially for

the D.C. case, reveals the presence of system nonlinearities in the SA
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nodal response to fluctuations in sympathetic tone, ust as were found

in the nodal response to changes in vagal activity.

5.4 Discussion

S.4.1 Experimental Besponse Chrac__er__itcs

Several points may be made regarding the results presented above.

First and perhaps most important, these data demonstrate the utility of

broad-band stimulation and transfer function analysis in studying car-

diovascular regulatory dynamics. Not only were we able to characterize

the SA nodal response to fluctuations in vagal and sympathetic tone over

the entire band of physiologically important modulation frequencies, but

we obtained these frequency response curves at multiple mean rates of

neural stimulation. Through pooling of this data, we could examine the

system response as a function either of frequency of autonomic fluctua-

tions or of operating point.

In considering the frequency response of the SA node to modulation

of either sympathetic or vagal tone, we found that at any given operat-

ing point, the system behaves as a low-pass filter. This is consistent

with the observations by Chess and Calaresu [241 and Penaz [1051, whose

describing function characterizations of the SA nodal response to

sinusoidally modulated vagal tone also demonstrated the low-pass filter

behavior of the system. Furthermore, our finding that the nodal

response to sympathetic fluctuations consists of a very narrow low-

frequency band-pass region coupled with a pure delay is in concert with

the data presented by Warner and Cox 136]. Their tracings from animal



- 147 -

experiments show that upon initiation of sympathetic stimulation, the

heart rate climbs slowly and only after a several second delay, and then

upon cessation of the neural excitation, the heart rate falls as a dying

exponential. Similarly, through the implementation of selective auto-

nomic blockade, Akselrod et al [41 found that spontaneous fluctuations

in heart rate at frequencies above 0.2 Hz are almost completely vagally

mediated. Of course, it remains entirely possible that this paucity of

high-frequency content in sympathetically-mediated spontaneous heart

rate fluctuations stems from low-pass filter behavior in the central

production of sympathetic outflow, as well as in the operation of the SA

node. We are interested in trying to relate our findings to the kinet-

ics of neurotransmitter release and receptor binding in the SA node. In

the following section, we compare our results with predictions of Warner

and Cox's 25-year-old model of neurotransmitter kinetics [136]. Unfor-

tunately, relatively little new information on these kinetics is avail-

able, despite active research in this area [681.

Note that the data we display in the form of transfer function mag-

nitude and phase curves could also be used to determine the best-fit

locations of poles and zeroes in a Nyquist plot [38]. This sort of

decomposition is best performed through a multi-variate autoregressive

analysis, as discussed in Chapter 3. However, reiterating the point

made in Section 3.4, implementation of autoregressive analyses imposes

various assumptions about the system at hand, regarding not only the

linearity of operation, but the complexity of the system as well. Since

we have pursued an approach specifically designed to avoid making the

assumptions required by a parametric model, no attempt is made here to
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fit the observed transfer functions to a set of poles and zeroes.

The finding of greatest interest suggested by our data is a depen-

dence of the transfer function shape on the operating point, particu-

larly when considering the transfer between modulation of vagal tone and

SA nodal rate. The existence of such a dependence is not entirely

surprising given the nonlinear shape of the curve relating heart rate to

fixed frequency of vagal stimulation (i.e., Figure 5.4). However, our

approach has enabled us to characterize the extent of this operating

point dependence over the full range of physiologically important modu-

lation frequencies, instead of solely at fixed rates of stimulation. In

fact, as Figure 5.9 shows, around some operating points the system

appears quite linear, or at least displays much less operating point

dependence than in the quasistatic case (D.C. curve).

The presence of operating point dependence in system behavior is

seemingly in contradiction with the assumption of linearity required for

appropriate application of transfer function analysis. We suggest, how-

ever, that the SA nodal response may be considered piece-wise linear.

In other words, its response within a narrow range around a particular

operating point is quite linear, as evidenced by the generally good

coherence between input excitation and output signal, but the precise

character of the transfer function changes somewhat from one operating

point to another. This understanding of SA nodal function sheds new

light on the interpretation of changes in spectral content of spontane-

ous heart rate fluctuations between different physiologic states. For

example, our data show that a diminution in low-frequency power in the

heart rate variability may result from an increase in mean vagal or
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sympathetic tone even without any change in the amplitude of vagal or

sympathetic fluctuations. Furthermore, the gain curves shown in Figures

5.9 and 5.14 suggest the system nonlinearities become exaggerated at low

modulation frequencies, but are less apparent at frequencies beyond 0.1

Hz. Thus, the assertion made by some investigators that specific peaks

in the power spectra of spontaneous heart rate fluctuations correlate

well with changes in vagal or sympathetic tone [42,47,77,103] may have

questionable validity at very low modulation frequencies.

5.4.2 Warner and Cog Mdel f the Si-atrEal Node

The Warner and Cox model of SA node regulation was mentioned

briefly in Section 5.1. At this point, we consider the model's predic-

tions regarding the heart rate response to broad-band fluctuations in

vagal and sympathetic tone. These predictions can then be compared to

the observed transfer relations presented above. The set of coupled

equations that Warner and Cox devised to describe vagal influence on SA

node function [136] are shown in Figure .15a. Note that the resulting

heart rate HRv varies inversely with the instantaneous synaptic acetyl

choline concentration C. C., in turn, is incorporated in the coupled

pair of differential equations.

The model for sympathetic modulation of nodal function is depicted

in Figure 5.15b, along with the corresponding set of state relations.

Note that this half of the Warner and Cox model is more complicated than

the part that describes vagal effects, since here a second messenger AB

is taken into account. The resulting differential equations are thus of

higher order than those for vagal activation.
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Figure .15. Warner and Cox model of neural regulation of heart rate.
a. Schematic of synapse between vagal fiber and nodal cells, with asso-
ciated differential equations describing release, binding, and degrada-
tion of neurotransmitter molecules. f is the vagal stimulation rate, N
is the number of acetylcholine vescicles at each nerve terminal, N is
the maximum number of vescicles, C is the concentration of acetylcho-
line in the vescicles. C is the concentration in the synaptic fluid
outside the vescicles, V is the volume into which the acetylcholine is
diluted, n is the number of fibers responding to the stimulus, P is the
period of the heart cycle, and ,. K,. K,. and K1 0 are constants.

b. Diagram of synapse with sympathetic nerve fiber. Equations
describing dynamics of norepinephrine effect on nodal cells include ex-
tra complexity to account for reaction with second messanger. f, is the
sympathetic stimulation rate, A is the norepinephrine concentration at
the nerve ending, A, is the concentration in blood, A is the concentra-
tion at the active site on the SA node, B is a substance which must
react with norepinephrine to give rise to the second messenger AB, V1
and V are apparent volumes of dilution for A and As respectively, n is
the number of fibers responding to the stimulus, and K through K are
constants. These schematics and equations are reproduced from Warner
and Russell, 1969.
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We implemented the two halves of the model on a digital computer,

using difference equations in place of the differential relations and

updating the state variables at an effective clock rate of 2.8125 Hz.

Since this was the frequency at which instantaneous rate signals were

derived in the dog experiments, we could drive the computer-implemented

model with the measured vagal or sympathetic rate signal from an experi-

mental run and compare the model's resulting SA nodal rate to that found

empirically. Of course, both halves of the Warner and Cox model include

several free parameters for which appropriate numerical values had to be

chosen. This was done through a fairly painstaking trial-and-error

search so as to match the model's D.C. characteristics to the experimen-

tal curves shown in Figures 5.4 and 5.10. In addition, the rate con-

stants of the model were adjusted to match the model's dynamics to that

observed experimentally when either the vagus was stimulated with a

GWNFM pulse train with fmean = 4 Hz or the sympathetic chain was stimu-

lated at a mean rate of 1 Hz. Once these best-fit model parameters were

chosen, they were left unchanged as other experimental neural rate sig-

nals were then applied as the driving sequence.

Figure 5.16 shows magnitude and phase plots for the Warner and Cox

model when the vagus nerve is driven with pulse trains of mean rate 2,

4, and 6 Hz. While the transfer magnitude plot for the 4 Hz mean rate

signal closely resembles the corresponding experimental curve in Figure

5.7a, the curves for mean rates of 2 Hz and 6 Hz differ from their

experimental counterparts in that they do not merge until the modulation

frequency exceeds the input signal band-edge (0.7 Hz), where the

transfer plots become too noisy to interpret. In fact, the model
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transfer magnitude curves appear identical to each other to within a

scale factor, unlike the experimental plots where the roll-off is

increasingly rapid at progressively lower mean rates of excitation. The

model phase plots essentially overlie each other, further supporting the

assertion that the model filter characteristics change with the operat-

ing point only by a scale factor.

The model transfer magnitude and phase plots for sympathetic modu-

lation are shown in Figure 5.17. Again, these curves essentially lack

operating point dependence. However, since the experimental magnitude

plots, shown in Figure 5.13a, depend somewhat unclearly on the operating

point, and the experimental phase plots (Figure 5.13c) do in fact over-

lie each other, it is difficult to assess to what extent the model

transfer relations for sympathetic stimulation do or do not reconcile

with the experiments. It is quite clear, however, that in order for

operating point dependence in the model transfer functions to appear,

the model parameters must change as a function of mean vagal or sym-

pathetic stimulation. To the extent that Warner and Cox did not con-

sider this possibility, their model appears incomplete.

_.5 Comments

While the data presented in this chapter provides new insights into

SA nodal function, a couple of remarks are in order regarding the limi-

tations of this work. An important assumption that underlies our

approach is that neural stimulation with supramaximal current spikes

emulates endogenous neural activity and has the same influence on nodal

function. In reality, fibers within either the vagus nerve or the
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stellate ganglion are not, in general, all recruited simultaneously in

moment-to-moment autonomic regulation, as occurs in supramaximal activa-

tion. Furthermore, among the nerve fibers that do participate in the

conduction of endogenous neural impulses, their activations occur asyn-

chronously. Thus, efferent electrical activity measured in a mutifiber

unit of the vagus or sympathetic nerve might contain pulses whose mean

frequency is an order of magnitude higher than those employed in

supramaximal stimulation, and yet elicit the same response in terms of

changes in heart rate. This is because each recorded spike of

endogenous activity represents conduction in only a small number of neu-

rons so that many such spikes will be seen when neurotransmitter is

released at a rate comparable to that accompanying synchronous activa-

tion. Of great interest would be a study where vagal and sympathetic

tone are modulated reflexogenically (e.g., with manipulations of blood

pressure) and the resulting endogenous neural activity is measured.

Then transfer relations between the true instantaneous neural tone and

SA nodal rate could be obtained.

The other issue left unaddressed in this chapter is interactions

between vagal and sympathetic activity. In Section 5.1, we mentioned

the work of Levy et al [51,82,90,92], who investigated these interac-

tions, but in our experimental protocol we never stimulated both limbs

of the autonomic efferent system simultaneously. The reason for this is

largely due to equipment limitations. In particular, we built only a

single-channel voltage-to-current converter, preventing us from deliver-

ing independent pulse trains to the vagus and sympathetic nerves. In

future work with additional equipment, we hope to more fully explore the
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effects of sympathetic/parasympathetic interactions on the transfer pro-

perties of the SA node.
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Chapter 6: S-tmy Qf AutsmQrC B§s§QnDe t2 Bpiratagry AtYJ&tY

6.1 ItroductiO

In Chapter 2, the effects of respiration on the cardiovascular sys-

tem were briefly introduced. While these effects may include phasic

changes in contractility and peripheral resistance as well as in heart

rate, it is the latter that is considered in this chapter. The rhythmic

variation in heart rate linked to the respiratory cycle, termed the

respiratory sinus arrhythmia (RSA), has been shown to result largely

from modulation of vagal efferent activity 42,46,77,78]. While some

studies have also implicated sympathetic efferent activity in the media-

tion of the RSA 46,91], vagal influences are generally recognized as

the predominant factor. Several investigators, in fact, have suggested

that quantification of the RSA could provide a measure of mean vagal

tone 42,47,77]. Furthermore, Eckberg [43] has suggested that measure-

ment of the RSA can provide a window on autonomic function in the clini-

cal setting, since the magnitude of the RSA depends on a multiplicity of

physiologic factors. As vagal activity in general, and the RSA in par-

ticular, is influenced by higher cortical function, diminution of the

RSA has been shown to correlate with mental loading [62] and with

psychiatric illness [1141. In addition, it has been well established

that the RSA declines with age [56,59,71], and Hrushesky et al [61] sug-

gest this phenomenon reflects progressive deterioration in cardiac

reserve. In this chapter, we discuss the transfer relation between

Much of the material in this chapter was presented at the 1986 confer-

ence on Computers in Cardiology and published in the conference proceed-
ings [23].
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instantaneous lung volume and heart rate, and show how quantitative

characterization of this relation may represent a more sensitive metric

of autonomic integrity than measurement of the heart rate fluctuations

alone.

It is worthwhile to review the various physiologic mechanisms that

have been cited as responsible for the genesis of the RSA. As far back

as 1865, Traube [134] discovered that the RSA persists in experimental

animals even after they have been paralyzed by administration of curare.

Since all the mechanical variations associated with normal respiration

(e.g., lung inflation, chest wall movement, and changes in intrathoracic

pressure) are abrogated by curarization, Traube concluded that the

arrhythmia could not be explained other than by a direct neural link

between respiratory centers within the brainstem and centers controlling

heart rate. The existence of such a central neural connection in the

genesis of the RSA, although of unclear survival value, has been sub-

stantiated by numerous other investigators [7,58,59,72,78,84,91].

In 1915, Bainbridge presented his classic paper [9] describing the

now well-known reflex named for him, in which the heart rate accelerates

in response to increased atrial distention. In a second paper [10],

Bainbridge discussed the role this reflex plays in generating the RSA.

Both Kitney [84] and Melcher [50,98,99] have provided evidence support-

ing the importance of the Bainbridge reflex as a mechanism responsible

for, or at least contributing to, the RSA.

Anrep et al [7,81 showed that stretch receptors in the lungs and

chest wall are stimulated on inspiration, and that neural activity from
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these receptors has an inhibitory influence on vagal outflow, thus eli-

citing an acceleration in heart rate. Angelone and Coulter [6] and

Clynes [26] also considered thoracic stretch receptors the primary

afferent limb giving rise to the RSA. Davies and Neilson 31] suggested

that a fourth mechanism responsible for the RSA may be phasic changes in

arterial baroreceptor activity resulting from the effect of respiration

on blood pressure in the aorta and other thoracic vessels. This

hypothesis has been essentially refuted by more recent investigations

that demonstrated rises in heart rate with respiration that were para-

doxically in sync with the rising phase of arterial pressure [50,711.

However, a number of studies have provided convincing evidence that the

sensitivity of the arterial baroreceptors, or of the brainstem centers

that receive their information, is reduced during the inspiratory phase

of the respiratory cycle [45,55,98,99]. This would obviously lead to

vagal inhibition and an elevation in heart rate during inspiration,

which is what is generally observed.

A final pathway that may contribute to the mediation of the RSA is

an intra-cardiac reflex. In fact, Bainbridge [101 suggested that the

reflex tachycardia with atrial distention he observed may or may not

involve the central nervous system, and could conceivably lie entirely

within the heart. More recently, Hrushesky et al [61] described the

presence of the RSA in a man who had received a transplanted, and thus

denervated, heart. While the anatomy of such an intra-cardiac pathway

remains unknown, its existence has not been convincingly ruled out.

Referring to Figure 2.5, we see that the components of the car-

diovascular control system that mediate the RSA are largely in common
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with those involved in other autonomic reflexes. The vagus and sym-

pathetic efferent nerves and the sino-atrial (SA) node are involved as

described above, and a substantial chunk of the central autonomic ner-

vous system (ANS) participates as well. Our approach toward studying

the RSA was to characterize the network of elements that give rise to

the arrhythmia in much the same way we investigated the behavior of the

SA node in Chapter 5. Hopefully, this information would then shed light

on autonomic control of a variety of cardiovascular responses.

A number of workers have characterized the generation of the RSA by

measuring the amplitude of heart rate fluctuations at a given tidal

volume and fixed rate of respiration. A composite plot of these meas-

urements made at many different respiratory rates then comprises a

describing function characterization of the system

involved [6,59,83,91,141]. The collection of data at enough different

frequencies of respiration to adequately characterize the system at hand

can obviously take an inordinate amount of time. Furthermore, the

results may suffer from artifacts that stem from changes in experimental

conditions between data points. For example, when subjects are asked to

take very few breaths per minute, they may easily become hypercapneic,

which may in turn affect the resulting amplitude of the RSA.

We sought a method for characterizing the RSA-generating system in

humans whereby the system response could be determined at all frequen-

cies of interest simultaneously through the use of broad-band input

waveforms. Since the system input here is the instantaneous lung

volume, we needed to devise a technique to whiten the normally narrow-

band respiratory activity without significantly disrupting the normal
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ventilatory mechanics. The utility of such an approach was recognized

by Womack 141] and Ahmed et al [1], but these investigators claimed it

is impossible or impractical for subjects to breathe in a manner that

would broaden the respiratory signal content. In the following section,

we describe a very simple method for eliciting such broad-band respira-

tory activity.

6.2 Mthods

Eighteen volunteer subjects (10 men and 8 women) aged 21 to 34

years, with no history of cardiopulmonary disease, participated in this

study. The apparatus involved in data collection and digitization is

depicted in Figure 6.1. Instantaneous lung volume was measured with a

two belt chest-abdomen inductance plethysmograph (Ambulatory Monitoring,

Inc.), calibrated with an 800 cc bag. This signal and the surface ECG

(lead II) were recorded on an FM tape machine, as described in Chapter

4. Data was collected in 6-minute segments, with the subject in both

standing and supine positions. After a postural change. the subject was

given five minutes for hemodynamic equilibration before the next data

segment was collected.

The subject was instructed to initiate an inspiratory/expiratory

cycle each time he was cued by an audible tone. The sequence of tones,

or beeps, was generated by a PDP-11/23 based computer (Digital Equipment

Corp.). The computer was programmed to space the beeps evenly in time

at a preset rate XA for the first few minutes so that the subject could

find a comfortable depth of inspiration. The program would then switch

to a mode in which the tones were spaced at irregular intervals, but
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with the same mean occurrence rate X, for six minutes of data collec-

tion. Importantly, although we controlled the timing of the subJect's

breathing pattern, he was allowed to maintain his normal residual lung

volume and to titrate the depth of his inspirations throughout the

experiment, thus preserving essentially normal blood gases and ventila-

tory mechanics.

A rough idea of the spectral content of the resulting instantaneous

lung volume signal x(t) can be derived as follows. x(t) approximates

the result of convolution between a sequence of unevenly spaced delta

functions q(t) and the average single-cycle respiratory waveform r(t).

Thus,

x(t) = q(t) * rt) (6.1)

where "*" is the convolution operator. This leads to the relationship

in the frequency domain:

Sxx (f) =Sqq (f) IR(f) (6.2)

where Sxx(f) is the power spectrum of x(t), Sqq(t) is the power spectrum

of the pulse sequence q(t), and IR(f)'1 is the Fourier transform magni-

tude squared of the waveform r(t). The input signal x(t) is suffi-

ciently broad-band for transfer function analysis if its power spectrum

Sxx(f) is significantly non-zero for all frequencies f of interest.

This requires that both Sqq(f) and R(f)l2 are non-zero over the same

frequency range. IR(f)12 falls to zero beyond some frequency, but is

assumed to remain significantly non-zero to at least 0.5 Hz. In any

case r(t), and thus R(f)13. can not be modified without altering the
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subject's respiratory mechanics. The shape of S xx(f) thus depends

strongly on the nature of Sqq(f) within the frequency band of interest,

which in turn depends on the distribution of intervals used.

A sensible choice for the distribution of intervals is that of a

Poisson process, since the power spectrum of a sequence of Poisson

impulses is a constant over all frequencies. The distribution Pt(t) in

this case is a decaying exponential in t. Thus,

POo-kot (6.3)Pt(t) = oe°

where XA is, again, the mean occurrence rate of the tones. The diffi-

culty with this distribution is that not only can arbitrarily short

intervals occur, but such intervals are in fact favored to occur. In

practice, we found a subject had difficulty initiating a new respiratory

cycle if he was in the midst of an inspiratory/expiratory cycle when he

heard the next tone, even though we instructed him to attempt to do so.

The interval distribution could be modified to avoid this problem by

prohibiting intervals shorter than some minimum duration tin:

-X(t-tmin )
Pt(t) = e l U(t-tmi n) (6.4)

where U(z) equals unity for > 0 and zero otherwise.

We further modified the distribution to restrict the intervals

between both a minimum and a maximum limit:

-XL(t-tmin)
Pt(t) = ke ' U(t-tmin) U(tmax-t) (6.5)

as shown in Figure 6.2. Xi is chosen such that the mean interval
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remains 1/X o, and is found through an iterative technique. The normali-

zation constant k is simply

k = (1 - e (6.6)

The computer was programmed to generate a sequence of intervals ti from

the distribution of equation (6.5) by a transformation of variables,

given a sequence of random numbers xi uniformly distributed between zero

and unity. The transformation may be derived as follows: Given Pt(t)

defined in equation (6.5), and Px(x) which equals unity for 0 x 1

and zero otherwise, we set

oi PX(x)dx = m= Pt(t)dt (6.7)

Thus,

Tt -Xl(t-tmi n )ii= kXe dt

min

= k1 -e-Xl(titmin)) (6.8)

Rearranging, we obtain the relation

ti = tmin - kJl (6.9)

The parameters for the distribution of intervals used in this study were

tmin = 1 sec and tmax = 15 sec, and the mean interval duration was 

sec.

We found that the imposition of such limits on the intervals



- 167 -

greatly improves the ability of the subject to follow the desired breath

generating sequence, while only slightly compromising the broad-band

nature of the impulse train q(t). In fact, given the interval distribu-

tion p(T), the power spectrum of the impulse train Sqq(f) can be com-

puted as follows. Since the mean occurrence rate is defined oX, we know

that

E[q(t)] = o (6.10)

where E represents the expectation value operator. The autocorrelation

function Rqq(r) of the signal q(t) may be expressed as

R (=) = E[q(t)] Prob{impulse exists at t = 

given impulse exists at t = 0)}

= Xpo[6(( ) + ) + (-) + (s)*p(s)+ p (-) *p (- ) + .-.] (6.11)
where "*" is the convolution operator. If we define P(f) as the Fourier

transform of p(s) and take the Fourier transform of equation (6.11), we

get
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Sqq(f) = o [ + P(f) + P (f) + (P(f)) + (P (f)) + ...

= 0~ + (p(f))i + > (p( f))i
i= 1 i=

= (p(f)) + (P*(f)) -

o~[j1_(_) + 1- (f) (6.12)

where P*(f) is the complex conjugate of P(f). Figure 6.3 is a plot of

Sqq(f), computed from the distribution p(t) shown in Figure 6.2, using

the Fast Fourier Transform (FFT) to derive P(f) in equation (6.12).

Again, this is the theoretical power spectrum of the impulse train used.

The spectrum of the actual respiratory signal is limited by the

bandwidth of the average single-breath waveform. Furthermore, since the

signals used are realizations of only 6-minutes duration, the actual

respiratory power spectrum (computed as described in Chapter 4) for a

particular experimental run will differ somewhat from theory and from

that in any other run.

Transfer function analysis was performed on data collected from

each subject in both supine and standing postures, using the techniques

described in Chapter 4. The system input was taken to be the respira-

tory (instantaneous lung volume) signal, and the output was the instan-

taneous heart rate derived from the recorded ECG. Group average

transfer functions and associated error bars were then computed for each

posture by pooling data from the 18 subjects.
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Representative respiratory and heart rate signals from an experi-

mental run in which the subject was supine are shown along with their

corresponding power spectra in Figure 6.4. The respiratory spectrum

(Figure 6.4c) shows that the instantaneous lung volume signal does

indeed possess power over a broad range of frequencies (D.C. to 0.4 Hz)

during random interval breathing. Note that the hills and valleys of

the heart rate spectrum roughly follow those of the respiratory spec-

trum. The transfer function magnitude and phase estimates and the

coherence function computed from these particular data records are shown

in Figure 6.5. The coherence plot (Figure 6.Sc) indicates that the

transfer function estimate is quite reliable over the range from 0.05 Hz

to 0.4 Hz.

The group average transfer magnitude and phase plots, with confi-

dence zones representing the standard error of the mean, are shown in

Figure 6.6 for both the supine and standing position. These plots were

computed using data pooled from all 18 subjects. Although we considered

the possibility that systematic sex-related differences could exist in

the transfer properties of the ANS, when we computed the group average

transfer plots for the 10 male subjects and the 8 females separately, no

significant differences could in fact be discerned.

The prominent dip in transfer magnitude for both postures below 0.1

Hz, seen in Figure 6.6a, must be interpreted carefully. The drop in

coherence at very low frequencies evident in Figure 6.5c was quite

reproducible from subject to subject, although the exact location of the
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coherence minima varied between nearly D.C. and 0.1 Hz. As a result of

this poor coherence, not only were the error bars for the transfer func-

tion estimate widened at low frequencies, but the group average estimate

itself was biased low. The latter effect stems from the way in which

the group average is computed. As described in Section 4.5.3, the group

average represents the mean vector when the individual transfer function

estimates are plotted in the complex plane. When the coherence falls,

however, the transfer phase randomizes from one subject to another, even

if the transfer magnitude at that frequency were exactly identical for

all subjects. The magnitude of the resultant mean vector for a set of

vectors with identical magnitude but random phase is likely to be quite

small. Hence, the group average transfer magnitude estimate is expected

to be artifactually low in regions of reproducibly poor coherence.

Beyond 0.1 Hz, the group average magnitude plots for both postures

fall gradually with frequency, although the curve for the standing posi-

tion drops off sooner and then stays below that for the supine position.

From 0.15 Hz to 0.4 Hz, these postural differences in autonomic response

characteristics are statistically significant, as evidenced by the lack

of overlap of the error bars for the two curves. Furthermore, the

differences between the two curves can not be passed off as an artifact

related to use of absolute lung volume and heart rate instead of percent

changes in these variables as the input and output signals. When stand-

ing, the subject's mean heart rate generally rose from the supine level,

making the percent change in heart rate smaller for the standing posi-

tion than for supine, given identical amplitudes of fluctuations in

absolute heart rate. Thus, were the transfer function estimates com-
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puted using percent change in heart rate as the output variable, the

postural differences in the transfer magnitude plots would appear even

more significant than those seen here.

The group average phase characteristics for the two postures are

shown in Figure 6.6b. Statistically significant differences between

these two curves are absent except at frequencies below 0.05 Hz.

Throughout most of the frequency band of interest, the phase lag for

both postures is roughly zero, demonstrating synchrony between a rising

heart rate and the inspiratory phase of respiration. Of note, however,

many of the individual phase plots display progressively increasing lags

as the frequency approaches zero, as in Figure 6.5b, suggesting the rise

in heart rate may not always be synchronous with inspiration at very low

rates of lung inflation.

6.4 Discussion

Despite the assertion by Womack 141] and Ahmed [1] that broad-band

respiratory drive of the autonomic nervous system is unrealizable, the

experiments described in this chapter demonstrate that the respiratory

input signal can be easily modified to broaden its spectral content.

These studies further show that the use of such maneuvers offers a means

of efficiently and noninvasively assessing autonomic function. While

the emphasis in the results presented above was on elucidation of phy-

siologic mechanisms through averaging of data derived from a group of

normals, we hope to refine the approach to allow reliable quantification

of an individual's autonomic response characteristics from a single seg-

ment of random-interval breathing.
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The most identifiable feature of the group average transfer func-

tion plots is the low-pass filter nature of the magnitude response

curves for both supine and standing postures. This is not at all

surprising, as a number of investigators have documented this phenomenon

through describing function analysis [6,59,91]. However, to reiterate,

the approach employed in those studies entailed making many test runs in

which the subject breathed at one fixed frequency at a time. In fact,

it was the greater efficiency of our technique that made it feasible for

us to study postural differences in a subject in as little as a half-

hour of recording, while describing function analysis may necessitate

several hours of data acquisition to determine a single response curve.

The finding of accentuated transfer magnitude in the frequency band

from 0.15 Hz to 0.4 Hz when supine as compared with standing is also not

unexpected. Pomeranz et al [108] have shown that there is a relative

shift in autonomic balance from sympathetic to vagal predominance in

moving from the supine position to standing. Akselrod et al [3,4]

showed that the vagus is capable of mediating heart rate fluctuations

over a much broader frequency range than the sympathetic nervous system

can, and the data presented in Chapter of this thesis suggests that

this phenomenon relates to the differential response of the SA node to

fluctuations in tone along these two branches of the ANS. We therefore

believe that the elevated transfer magnitude in the supine position for

frequencies above 0.15 Hz reflects the greater participation by the

fast-responding vagal system in mediating the heart rate response in

this position compared with standing. It is of course possible that

changes in thorax mechanics associated with shifts in posture exert some
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direct influence on the transfer from lung volume to heart rate,

masquerading as a shift in autonomic balance. Pharmacologic studies

entailing selective -sympathetic and parasympathetic blockade are

required to test our hypothesis, as discussed in the following section.

Unfortunately, we were less successful in demonstrating posture-

related differences in the group average transfer phase plots. In a few

individual cases, we found that in the standing position the phase grew

progressively negative with frequency, suggesting the presence of a

delay in the system response. This finding is again in concert with the

notion that the slow-responding sympathetic nervous system becomes dom-

inant when the individual stands. The group average phase plots, on the

other hand, displayed little deviation from zero for both postures,

except for erratic variations below 0.1 Hz. At these low frequencies,

however, the plotted curves are less reliable because of the con-

sistently poor coherence found between respiration and heart rate.

Nonetheless, these curves do suggest that the phase lag at very low fre-

quencies of respiration may differ from the value of zero observed at

frequencies above 0.1 Hz (particularly evident for the supine case).

The implication here is that the common dogma that heart rate rises with

inspiration may not always be correct. Several other investiga-

tors [6,31,42,83,91] have also found that the phase relationship of the

respiratory sinus arrhythmia generally observed at normal respiratory

frequencies (0.2 Hz - 0.3 Hz) changes as the respiratory rate falls,

such that the rise in heart rate actually precedes inspiration.

While the poor coherence found at low frequencies on the one hand

makes interpretation of the transfer magnitude and phase plots difficult
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in that band, on the other hand the consistency of this finding is

itself intriguing. It suggests either that the system includes a non-

linear element that quite selectively affects a narrow band of frequency

components, or that some influence uncorrelated with respiration

overwhelms the respiratory effects on heart rate in that band. Certain

nonlinearities in the effect of respiration on heart rate have been

demonstrated by Kitney and coworkers [127,128]. However, we speculate

that the poor coherence reflects the strong influence of low-frequency

fluctuations in hemodynamic variables, such as arterial blood pressure,

on heart rate control. In the following section, we describe follow-up

studies, currently in progress, designed to address this and other

issues.

6.S FEollow-u Studies

In the study conducted by Pomeranz et al [108], the effects of pos-

tural changes on the spectral pattern of spontaneous heart rate fluctua-

tions were explained as due to shifts in autonomic activity, since

high-frequency fluctuations normally present in the supine position

could be abolished by parasympathetic blockade. Likewise, selective -

sympathetic blockade was found to reduce the power of low-frequency

heart rate fluctuations when the subjects were standing, suggesting a

relatively greater role of the sympathetics in cardiovascular regulation

in this position.

We have initiated a study to explore the effects of selective phar-

macologic blockade on the transfer function estimates obtained by

broad-band respiration, using the same drug regimens that Pomeranz et al
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used. Furthermore, in order to investigate the importance of blood

pressure fluctuations on heart rate control, we measure arterial pres-

sure via a radial artery catheter and record this signal along with

respiration and ECG for off-line analysis. In this way, we can compute

transfer function estimates between arterial pressure and heart rate, as

well as between respiration and heart rate.

This study is being performed on paid volunteers, free of known

cardiopulmonary disease, and has been approved by the M.I.T. Committee

on Human Studies. The entire protocol takes less than two hours. After

placement of surface ECG leads, plethysmographic belts, and the radial

artery catheter, but before administration of drugs, random-interval

breathing data is collected while the subject is first supine, then

standing. The subject is randomized to either of two groups, denoted A

and B. If he is in Group A, he first receives the parasympathetic

blocking agent atropine (.03 mg/kg), after which he repeats the random-

interval breathing routine in both postures. Next, he receives the -

sympathetic blocker propranolol (.2 mg/kg), and then breathes to the

random-interval sequence in both postures for a third and final time.

If he is in Group B, the protocol is identical except that the drugs are

administered in reverse order. In this way, we observe all subjects in

the baseline and double-blockade states, half in selective -sympathetic

blockade, and the other half in selective parasympathetic blockade.

The data from these studies has not yet been analyzed. We are

obviously interested in examining the effects of selective autonomic

blockade on the transfer magnitude and phase plots and comparing these

effects to those of postural changes. Of greatest interest, however,
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will be the level of the coherence function in the 0.05 Hz region

between respiration and heart rate, as compared with that between blood

pressure and heart rate. This analysis will hopefully help elucidate

the relative influences of respiration and arterial pressure on heart

rate control.

As a final note, we point out that the shifts in autonomic balance

associated with postural changes are small compared with those seen in

pathological states [44]. The results presented in this chapter, how-

ever, demonstrate that transfer function analysis is sufficiently sensi-

tive to detect these subtle alterations in autonomic function, and could

therefore presumably be at least as useful as a noninvasive tool to

assess autonomic integrity in a variety of disease states. To that end,

we are currently designing additional studies to compare the results of

transfer function analysis using broad-band respiration on patients with

diabetes, sick sinus syndrome, and hypovolemia (post-phlebotomy) with

normals.
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Chapter 7: Animal Model for Analysis of Autonomic Response

7.1 Introduction

In Chapter 5, we discussed the application of broad-band stimula-

tion to the study of one effector organ of the cardiovascular control

system, the sino-atrial node. In Chapter 6, a similar approach was

employed to enable investigation of central neural mechanisms involved

in the mediation of respiratory-induced heart rate fluctuations. While

both of these studies demonstrated the utility of broad-band stimulation

in the analysis of several key components implicated in cardiovascular

regulation, neither addressed specifically the transfer properties of

the system's feedback limb, i.e., the baroreflex.

In this chapter, we present an experimental preparation designed to

allow characterization of the baroreflex in terms of transfer functions

between arterial blood pressure and sinus node rate, and between

arterial pressure and systemic vascular resistance. These experiments

are performed on experimental animals instrumented with epicardial elec-

trodes, aortic flow probe, and arterial cannulae. Although the data

presented here was derived from a pilot study performed on an acutely

anesthetized dog, these experiments may eventually be performed on fully

conscious chronic animals previously instrumented using aseptic tech-

nique.

The anatomic elements involved in the baroreflex include the

arterial baroreceptors, located in the aortic arch and carotid bifurca-

tions, the autonomic nuclei of the brainstem, and the cardiovascular

effector organs, particularly the SA node and the systemic arterial
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resistance vessels. This network is schematized in Figure 2.5 and was

discussed in detail in Chapter 2. In order to investigate the frequency

response of the baroreflex using the transfer function analysis tech-

niques introduced in Chapter 4, broad-band fluctuations must be imposed

on the subsystem's input signal, namely the arterial blood pressure.

In previous attempts to characterize the dynamic response of the

baroreflex, investigators have employed servo-mechanisms to impose

sinusoidal oscillations on the arterial pres-

sure 49,89,93,118,122,123,125,1291. Although these studies led to the

computation of describing functions, the technique could be modified to

enable estimation of transfer functions if broad-band fluctuations were

applied instead of sinusoids. It is somewhat difficult to generate an

arbitrary waveform using a mechanical servo-system, however, due to the

inherent low-pass filter characteristics of such systems.

Our approach toward generating broad-band fluctuations in arterial

pressure is through modulation of the ventricular activation rate.

Although changes in ventricular rate only indirectly elicit blood pres-

sure fluctuations, this approach offers two advantages over the mechani-

cal methods discussed above. First, the experimental apparatus required

is much simpler. All that are needed to control the ventricular rate

are two ventricular epicardial pacing electrodes and the pulse train

generator described in Chapter for vagal and sympathetic nerve stimu-

lation. The other bnefit of ventricular rate modulation is that it

allows for characterization of the feedforward limb of the cardioregula-

tory system as well as the feedback path. That is, not only may we

observe the effects of blood pressure fluctuations on SA nodal rate and
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peripheral resistance, but we can measure the transfer function between

ventricular rate and arterial pressure, as well.

Regulating ventricular activations while trying to measure reflexo-

genic changes in SA nodal rate poses an interesting difficulty, however.

If the atrial activations were to conduct through the atrioventricular

junction (AVJ), then we would lose control over the timing of ventricu-

lar activations, since conducted beats may either interpolate between

paced beats or render the ventricular myocardium refractory to exogenous

pacing. Furthermore, waves of myocardial depolarization elicited by the

pacing spikes may conduct retrograde through the AVJ, thereby activating

the atria and confounding our measurement of SA nodal rate. Both of

these problems can be avoided by ablation of the AVJ. A variety of

techniques exist to achieve atrioventricular blockade [14,69,132,138],

and the method we employ is described in the Methods section. Once the

AVJ is blocked, then the baroreflex heart rate control loop is opened

and transfer functions characterizing the feedforward and feedback limbs

of the system may be determined independently.

The analysis of baroreflex-mediated changes in peripheral resis-

tance is somewhat more complicated, however. The system's input signal,

arterial pressure, depends critically on the output, instantaneous sys-

temic vascular resistance, and it is impossible to decouple the two

without surgically rerouting the cardiac output through an extracorpo-

real circuit. If we make appropriate assurmptions, however, we can

deduce the transfer properties of the feedback limb specifically (i.e.,

from blood pressure to vascular resistance), even though our measure-

ments are derived from a necessarily closed-loop system.
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Figure 7.1 shows a block diagram of vascular resistance regulation

mediated by the baroreflex. This model represents a portion of the more

complete system depicted in Figure 2.5. The neural components that

comprise the feedback limb are represented as a "black box" whose

transfer function H(f) we wish to estimate. In order to compute H(f),

we need to know both the input and output signals, x(t) and y(t) respec-

tively. x(t) is the arterial pressure, which we measure directly. y(t)

represents instantaneous systemic vascular resistance, which Figure 7.1

depicts as the quotient between pressure x(t) and the aortic flow w(t).

This relationship represents a simplification, in which we consider

fluctuations in arterial resistance to occur over a time scale that is

long compared to the duration of the impulse response of the arterial

tree (i.e., at frequencies below roughly 0.1 Hz). The derivation of

this relationship is as follows.

If we assume a Windkessel model of the arterial tree, then the vas-

culature may be modeled as a complex impedance load that includes a

resistor and a capacitor, as shown in Figure 2.2. Rewriting equation

(2.2) in terms of the pressure x(t), flow w(t), vascular resistance

y(t), and vascular capacitance C (assumed constant), we obtain the rela-

tion,

gdxtl + x(t = - wt). (7.1)
dt Cy(t) C

Rearranging terms and averaging over a time period from t to t, we get

Jt x(t) dt = t1 ft y(t)w(t) dt T Jt, Cy(t) dx(t), (7.2)

where T = t 2 - t. If during the period of integration t _< t < t the
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Flow · w(t)

SVR · y(t) ABP x(t)

H(f)

Figure 2.1. Block diagram model of baroreflex control over systemic
vascular resistance (SVR). Note that the feedforward relationship
between resistance and arterial blood pressure (ABP) is depicted as mul-
tiplicative, while the feedback behavior is mediated by the autonomic
nervous system (ANS).
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resistance y(t) remains virtually constant, then equation (7.2) may be

approximated

1 ftz x(t) dt f Yt t w(t) dt - Ctl) ft, dx(t)
1 T 1 - T t

(t It w(t) dt - TC) [x(t) - x(ti)] . (7.3)

Now, if Cy(t)/T << 1 or if we choose the time limits of integration, t.

and t,. such that x(tz) " x(tl), then we have

Jts x(t) dt

Jtz w(t) dt

To recapitulate, the instantaneous vascular resistance y(t) can be

derived as the quotient of the time-averaged arterial pressure x(t) and

aortic flow w(t) signals, given that the following assumptions are

valid:

(1) The vascular capicitance C is a constant.

(2) The instantaneous vascular resistance y(t) is virtually con-

stant for the period of integration t t t.

(3) Either Cy(t)/T << 1 or the instantaneous arterial pressure

at the beginning of the period of integration is essentially

the same as at the end, i.e., x(t,) x(t).

We choose the period of integration to span from one R-wave of the

surface ECG to the next. The value of y(t) then found using equation

(7.4) is taken to represent the instantaneous vascular resistance for

the duration of that RR interval. We may now consider whether or not

each of the above assumptions is reasonable. The first assumption is
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the most tenable. Vascular capacitance is known to remain essentially

constant from minute to minute, even from day to day, and decreases only

very slowly with age [100].

Changes in resistance, mediated through modulation of a-adrenergic

tone, are also known to take place slowly compared to the typical RR

interval [100], so that the second condition above also appears satis-

fied. On the other hand, any fluctuations we might find in the derived

signal y(t) at frequencies within an order of magnitude of the mean

heart rate (e.g., beyond roughly 0.1 Hz) must be interpreted cautiously,

since they would obviously be inconsistent with the assumption of a

slowly varying vascular resistance.

The validity of the third assumption is the least certain. The

right-most term in equation (7.3) will become significant if the differ-

ence in arterial pressure between the limits of integration is compar-

able to the induced beat-to-beat fluctuations in pressure and if the

mechanical time constant Cy(t) is comparable to the length of integra-

tion T. Since the latter is true, especially at high ventricular rates,

the importance of this term depends critically on the change in instan-

taneous pressure from one R-wave to the next. Methods to avoid this

difficulty are considered in the Discussion section.

Note that the reliabilty of equation (7.4) depends not only on the

validity of the three assumptions mentioned above, but also on how well

the Windkessel model represents the mechanical properties of the

arterial tree. For instance, in order to account for any inductive

effects of the vasculature or for the effects of a distributed capaci-
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tance, higher-order terms would have to be added to equation (7.1),

which would obviously complicate the derivation of equation (7.4).

Once the instantaneous resistance signal y(t) has been derived,

H(f) is found using the statistical techniques described in Chapter 4.

Note that the feedback relation that enables us to compute H(f) from the

cross-sepctrum Sxy(f) and input autospectrum S(f)

Sxy (f)

H(f) = ------ , (7.5)
Sxx(f)

is neither redundant nor inconsistent with equation (7.4), which defines

only the feedforward relation between y(t) and x(t) in Figure 7.1.

7.2 Methods

A 15 kg adult mongrel dog, anesthetized with sodium pentobarbital

(30 mg/kg), was instrumented using non-sterile technique. The thoracic

cavity was exposed through an incision in the fourth right intercostal

space, while ventilation was maintained at 15 breaths/min and 5 cm of

positive end-expiratory pressure (PEEP) using a Harvard Apparatus model

607 respirator. A .04 inch inner diameter Tygon catheter was inserted

in the descending aorta using the Herd-Barger technique [57] and con-

nected to a Statham model P23ID transducer to enable measurement of

arterial pressure. Fat and connective tissue surrounding the ascending

aorta were excised without trauma to the vessel wall, and a 16 mm ultra-

sonic flow probe (Transonics, Inc.) was implanted around the ves3el. A

pair of Medtronic model 4951 epicardial electrodes was placed on the

right atrial appendage, and a second pair was placed on the left ven-
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tricular free wall, with care to avoid traumatizing the coronary

vessels. These allowed for measurement of an atrial electrogram while

either monitoring a ventricular electrogram or pacing the ventricles

exogenously. To decouple atrial and ventricular electrical activity

from each other, as discussed above, 10% formalin was injected through a

23-gauge needle inserted in the AVJ, using the technique described by

Steiner and Kovalik [132]. After injection of .3 cc formalin, complete

atrioventricular block was achieved, as determined by simultaneous

observation of the atrial and ventricular electrograms. Aligator clip

electrodes were also placed on the skin on either side of the chest to

allow measurement of the surface ECG. All signals were amplified and

displayed on a Honeywell model VR-16 multichannel monitor and recorded

on a Hewlett Packard model 3968A FM tape machine to enable off-line

analysis.

A Gaussian white noise frequency modulated (GWNFM) train of pulses

was used as the ventricular pacing waveform in order to produce broad-

band hemodynamic fluctuations. The computer-implemented algorithm used

to generate this pulse train was described in Chapter 5. The computer's

digital-to-analog (D/A) output was fed into a voltage-to-current con-

verter, the schematic of which was shown in Figure 5.3. The output of

the latter device was then connected to the ventricular epicardial elec-

trodes. Six-minute segments of GWNFM ventricular pacing were recorded

at mean pacing rates of 1.5 Hz and 3.0 Hz (90 bpm and 180 bpm, respec-

tively). The Gaussian white noise modulator waveform included energy

between D.C. and 0.7 Hz.

Off-line analysis started with sampling of all recorded signals at
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360 Hz. The times of atrial activations were then determined from the

atrial electrogram and of ventricular activations from the surface ECG,

using a peak detection algorithm. Instantaneous vascular resistance was

computed, as described above, from the undecimated arterial pressure and

flow signals, using the times of ventricular activations as the limits

of successive periods of integration in equation (7.4). Instantaneous

atrial and ventricular activation rates were derived using the algorithm

described in Section 4.3. These rate signals, as well as the instan-

taneous vascular resistance signal, were computed at time intervals of

0.3556 sec, or at a presentation rate of 2.8125 Hz. Decimated versions

of the arterial pressure and aortic flow signals were obtained at the

same presentation rate, as well.

Power spectra of the instantaneous ventricular and atrial rate sig-

nals, the arterial pressure and flow, and the instantaneous vascular

resistance were computed using the estimation techniques outlined in

Section 4.4. Using the approach described in Section 4.5, transfer and

coherence functions were then computed for each six-minute experimental

run for the following pairs of signals:

(1) ventricular rate to arterial pressure,

(2) arterial pressure to atrial rate, and

(3) arterial pressure to systemic vascular resistance.

7.3 Results of Pilot Study

A. 10-second strip reproduced from the multichannel monitor, showing

the atrial electrogram, surface ECG, aortic flow, and arterial blood

pressure during GWNFM ventricular pacing, is displayed in Figure 7.2.
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Figure .2. 10-second strip reproduced from multichannel recording made

during GWNFM ventricular pacing. The tracings depict (from top to bot-

tom) the atrial electrogram, the surface ECG, aortic flow, and arterial

pressure.
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We see in the surface ECG that each ventricular activation occurs

shortly after a tiny pacing artifact, and that these activations are

entirely decoupled from the atrial activity seen in the top trace. This

establishes the presence of atrioventricular blockade. Furthermore, it

is clear that pacing the ventricles in this fashion does indeed elicit

erratic fluctuations in arterial pressure, but that the diastolic level

of the pressure waveform is quite similar from one R-wave of the ECG to

the next.

Figure 7.3 shows a 6-minute record of the derived ventricular and

atrial rate signals, the filtered and decimated arterial pressure and

flow signals, and the derived peripheral vascular resistance signal dur-

ing GWNFM ventricular pacing at a mean rate of 90 bpm. Again, these

time series are obtained at a presentation rate of 2.8125 Hz, so the

364-second record includes 1024 points of each signal. The effects of

GWNFM pacing are evident in the instantaneous ventricular rate signal.

The resulting fluctuations seen in the arterial pressure and flow traces

should be interpreted carefully. Since these signals are digitally

low-pass-filtered with a cutoff frequency of 1.4 Hz and then decimated

to a sampling rate of 2.8125 Hz, most (but not all) of the phasic varia-

tions associated with ventricular contractions have been removed. Con-

sequently, only the mean and lower frequency fluctuations remain in

these time series. One can see that the mean arterial pressure is about

80 mm Hg, and the mean aortic flow is roughly 2 L/min. Consistent with

these values, the instantaneous vascular resistance hovers around

40 mmHg min / L. Although the atrial rate shows some variability, much

of the baroreflex-mediated response has been blunted by the vagolytic
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effect of the pentobarbital anesthesia. This will be discussed further

below.

The corresponding power spectral density functions for these five

signals are shown in Figure 7.4. The ventricular rate spectrum shows

that the modulator signal used in controlling the pacing rate contains

energy between D.C. and 0.7 Hz. The arterial pressure and vascular

resistance spectra demonstrate the presence of energy within the same

band in these signals. The aortic flow spectrum reveals the wide-band

nature of fluctuations in flow associated with ventricular contractions

that remain even after low-pass filtering. The spectrum of atrial rate

fluctuations, on the other hand, is essentially limited to the region

below 0.1 Hz.

The transfer magnitude and phase plots and the coherence function

characterizing the effect of ventricular rate changes on the arterial

pressure are shown in Figure 7.5. These plots were derived from the

time series of Figure 7.3. We see that blood pressure fluctuations are

indeed linked to those in ventricular rate, as the coherence function

maintains a level greater than 0.5 for most of the band from 0 to 0.7

Hz. The transfer magnitude plot demonstrates the broad band-pass qual-

ity of the mechanical system that couples ventricular activity to

arterial pressure. Interestingly, the phase falls almost linearly with

increasing modulation frequency at a rate of roughly 150 degrees/Hz,

consistent with a 0.42 second delay. Note that the phase approaches

zero at D.C., suggesting that in the quasistatic case, arterial pressure

moves in the same direction as ventricular rate.
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VENTRICULAR RATE TO BLOOD PRESSURE
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Figure .. Transfer magnitude, phase, and coherence function between
instantaneous ventricular rate and arterial pressure derived from sig-
nals in Figure 7.3. Note good coherence, nearly linear phase, and broad
pass-band.
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Transfer magnitude, transfer phase, and coherence plots for the

same input and output variables as in Figure 7.5, but derived from a

record where the mean pacing rate was 180 bpm, are shown in Figure 7.6.

The coherence and transfer magnitude plots here are similar to those in

Figure 7.5. Furthermore, the phase function shows a linear decline with

frequency, as in Figure 7.5. However, as the modulation frequency nears

D.C., the phase here approaches 180 degrees, in sharp contrast with the

situation in Figure 7.5. Indeed, when this experimental run was per-

formed, we noted that the arterial pressure fell as the ventricular rate

rose, and vice versa. This phenomenon reflects a decline in ventricular

filling due to shortening of the diastolic phase that accompanies such

high heart rates.

We return now to the analysis of signals from the first 6-minute

record. Transfer and coherence function plots between arterial pressure

and SA nodal rate are shown in Figure 7.7. The coherence here is poor,

the phase difficult to interpret, and the transfer magnitude falls

almost to zero by 0.1 Hz. All of these attributes stem from the failure

of the autonomic nervous system to elicit a rapid or significant change

in SA nodal rate, due to the inhibitory effect of pentobarbital on the

production of vagal tone. In fact, our inability to observe the normal

SA nodal response to blood pressure fluctuations constitutes the

greatest limitation of the anesthetized animal preparation. Alternative

approaches that avoid this difficulty are considered in the Discussion

section.

Finally, transfer function and coherence plots for the vascular

resistance control limb of the baroreflex are shown in Figure 7.8. The
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Figure 7.6. Transfer and coherence functions between ventricular rate

and arterial pressure, as in Figure 7.5, but derived from a record where
the mean pacing rate was 180 bpm. Note similarities with Figure 7.5,
except for 180 degree difference in phase characteristic.
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BLOOD PRESSURE TO ATRIAL RATE

TRANSFER MAGNITUDE
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0 0.1 0.2 0 .3 0.4 0.5 0.6 0.7 0.8 0.9 1

FREQUENCY (HZ)

Eigure 7.7. Transfer magnitude, phase, and coherence plots between ar-
terial pressure and instantaneous atrial rate, derived from signals in
Figure 7.3. Reasons for the poor coherence and difficulty in estimating
the transfer function are discussed in the text.
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coherence between arterial pressure and the derived resistance signal is

remarkably good in the band of significant input excitation (D.C. to 0.7

Hz), except for a narrow dip at frequencies below 0.05 Hz. While the

phase function hovers around -90 degrees with little dependence on modu-

lation frequency, the transfer magnitude appears to wax gradually

between D.C. and 0.4 Hz and then taper off slowly. However, as was

pointed out in the introductory section, fluctuations in the derived

peripheral resistance signal at frequencies beyond roughly 0.1 Hz are

probably artifactual, so that the transfer function between arterial

pressure and vascular resistance can not be interpreted at higher fre-

quencies. In fact, the coherence function must also be interpreted

carefully, since the instantaneous resistance signal is derived from the

arterial pressure trace. Spurious fluctuations in pressure that are

unrelated to changes in the true vascular resistance may corrupt the

computed resistance signal, and lead to factitious elevation of the

coherence function.

Transfer and coherence plots for arterial pressure to atrial rate

and for arterial pressure to vascular resistance have been omitted for

the record where the mean pacing rate was 180 bpm. The coherence

between blood pressure and atrial rate was no better for this record

than for the one shown, so the corresponding transfer function plots

reveal little. Furthermore, because of the high pacing rates in this

experimental run, the ventricular activations often occurred in mid-

systole. As a result, the arterial pressure was often quite different

from one R-wave to the next, thereby rendering the vascular resistance

signal artifactually noisy. Transfer function analysis of this record,
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using instantaneous vascular resistance as the output variable, was thus

unrewarding.

7.4 Discussion and Proposal for Conscious Animal Model

Although the data we present in this chapter is derived from just a

single pilot study, the experimental approach demonstrates the usefull-

ness of broad-band excitation in studying the behavior of the autonomic

nervous system. The presence of significant energy in the arterial

pressure waveform over the entire band of physiologically important fre-

quencies (D.C. to 0.7 Hz) facilitated characterization of the barore-

flex. Previous efforts to evaluate the transfer properties of this sys-

tem by Kenet [80], Kalli et al [73,74], and Pagani et al [11,12,103]

were hampered by the lack of broad-band signal content in the spontane-

ous hemodynamic fluctuations these investigators used as the basis of

their analyses.

Our approach represents an extension of the techniques described by

Taylor [133] and Ringo et al [112]. These workers introduced frequency

modulated cardiac pacing as a means to broaden the spectral content of

hemodynamic signals. They, however, employed atrial pacing in their

experiments and were thus unable to study the effects of their interven-

tions on the regulation of SA nodal rate. Instead, they focused

entirely on the mechanical properties of the arterial tree. Similarly,

Rosenbaum and Race [116] investigated the response characteristics of

arterial resistance vessels using frequency-modulated pulse trains

applied to muscle sympathetic nerve fibers, but ignored the influence of

autonomic regulation on the vasculature. Our use of ventricular pacing
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and introduction of complete AV block has enabled us to examine both the

feedforward and the feedback limbs of the heart rate control system in

an open-loop preparation. Furthermore, although we could not develop an

analogous open-loop preparation to study the control of vascular resis-

tance, we were able to derive the transfer properties of this branch of

the baroreflex through signal processing techniques.

The transfer characteristics of the mechanical system that couples

ventricular activity to arterial blood pressure (Figures 7.5 and 7.6)

reveal an important attribute of the cardiovascular system. Fluctua-

tions in ventricular rate were found to elicit similar changes in

arterial pressure with almost no dependence on their frequency, with a

fixed delay of roughly 420 msec, and with only the direction of the

response dependent on the mean pacing rate. These features make GWNFM

ventricular pacing a particularly attractive approach toward imposing

broad-band fluctuations in blood pressure. By comparison to previous

efforts in our laboratory to impose pressure fluctuations by variable

inflation of an aortic cuff, GWNFM ventricular pacing is much simpler to

implement and provides at least as good control over the arterial pres-

sure waveform.

It is somewhat difficult to evaluate the significance of our find-

ings regarding the autonomic regulation of the arterial vasculature. As

we indicated in the Results section, only at frequencies below roughly

0.1 Hz does the transfer function between arterial pressure and the

derived vascular resistance signal have any meaning. Since the coher-

ence function in Figure 7.8 was best between 0.1 Hz and 0.7 Hz, however,

we believe the instantaneous resistance signal shown in Figure 7.3 was
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largely contaminated with artifacts resulting from small but significant

differences in arterial pressure from one R-wave to the next. In future

work, we will attempt to improve the estimation of instantaneous resis-

tance by modifying the algorithm presented in the introductory section.

Instead of defining the limits of integration in equation (7.4) to be

successive R-waves of the surface ECG, we will program the computer to

search for temporal locations such that the arterial pressure trace is

exactly the same at the beginning and end of the integration period.

This will guarantee that the third term in equation (7.3) will be zero,

thereby removing the largest source of error in equation (7.4). Of

course, once again, the success of this approach will depend critically

on the validity of the Windkessel model in portraying the mechanical

properties of the arterial tree. Alternatively, a more general solution

would involve extending the period of integration to a length of time

that is large compared to the mechanical time constant of the system, or

eqivalently applying any suitable low-pass-filter to the instantaneous

pressure and flow signals that has a cutoff frequency below 0.1 Hz.

This would again make the third term in equation (7.3) small, but

represents an essentially "brute force" method of removing spurious high

frequency components from the derived resistance signal.

In Chapter 2, the phenomenon of low frequency (0.05 to 0.1 Hz)

oscillations in arterial pressure, called Mayer waves, was discussed.

These oscillations are known to appear spontaneously, particularly under

conditions of hypovolemia such as after a significant hemor-

rhage [60,95], although their etiology remains mysterious. Two compet-

ing theories that have been offered to explain the origin of Mayer waves
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are (1) the presence of a resonance or instability in the resistance

control system and (2) the emergence of a central neural oscillator

within the system 106,109]. It would be interesting, therefore, to

follow the shape of the arterial pressure to vascular resistance

transfer function while withdrawing blood from the experimental animal.

If a peak were to develop in the transfer magnitude plot in the 0.05 Hz

to 0.1 Hz region while the coherence remained high in that frequency

band, then a system resonance might indeed be implicated in the genesis

of Mayer waves. If, on the other hand, Mayer waves were to appear with

hemorrhage while the transfer magnitude changed little and the coherence

became poor near the frequency at which the oscillations occur, then the

central neural oscillator theory would become a more tenable explanation

for this phenomenon.

Note that the transfer function between arterial pressure and vas-

cular resistance is a different characterization of the system than that

used by Taylor [133] and Ringo et al [112]. These investigators instead

computed the impedance modulus Z(f) of the arterial tree using the rela-

tion,

Swx(f)

Z(f) = , (7.6)

Sww(f)

where S (f) is the cross-spectrum between aortic flow and arterial

pressure, and S (f) is the autospectrum of the flow signal. The
ww

impedance modulus characterizes the mechanical properties of the

arterial vessels, but provides only indirect information regarding the

behavior of the resistance control limb of the baroreflex. Taylor, for

instance, found that the impedance modulus falls sharply for frequencies
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below 0.03 Hz, which he attributed to "the action of the baroreceptor

reflex." He could not, however, unravel the specific contributions of

the feedforward and feedback limbs of the blood pressure control system

that give rise to the exact shape of the impedance modulus function.

The transfer function analysis we employ, by contrast, enables us to

characterize the baroreflex feedback limb as if it were isolated from

the rest of the control loop.

We were obviously somewhat disappointed with our inability to exam-

ine normal autonomic regulation of SA nodal rate, due to the inhibitory

effect of pentobarbital anesthesia on vagal tone. This was particularly

frustrating in light of our success in developing an animal preparation

specifically designed to allow for investigation of heart rate control,

were it not for the confounding influence of the anesthesia. In partic-

ular, the use of AVJ blockade not only averts retrograde conduction of

the ventricular pacing spikes, but also prevents fluctuations in SA

nodal rate from influencing the ventricular rate. If antegrade conduc-

tion through the AVJ were left unblocked, then the ANS could work to

counteract the very fluctuations in arterial pressure that we impose

exogenously. This was precisely the difficulty encountered by Scher and

coworkers [122,125], who attempted to impose sinusoidal fluctuations in

pressure by cyclically inflating and deflating an aortic cuff, but left

the AVJ intact.

In order to study heart rate regulation using the experimental

approach outlined in this chapter, but avoiding the obstacles presented

by the use of anesthesia, we intend to employ a conscious animal model.

Note that the surgical preparation described in the Methods section
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could just as well be performed using aseptic technique with all wires

and catheters exteriorized through small skin incisions. Once having

recuperated from the surgery, the dog could then be used for experimen-

tation while fully conscious, since we have found that dogs are not at

all disturbed by GWNFM ventricular pacing even in the awake state. The

only added wrinkle in using chronic animals for these experiments is

that exogenous ventricular pacing is required at all times, since com-

plete heart block is only marginally compatible with life. A simple

fixed-rate pacing device could easily be connected to the ventricular

epicardial electrodes and placed in a pocket of the animal's jacket to

support the circulation between experiments.

A conscious animal model will not only enable us to study the nor-

mal mechanisms involved in baroreflex-mediated heart rate control, but

will also permit us to explore the physiologic effects of various inter-

ventions in terms of their effects on the transfer functions we compute.

A chronically instrumented dog can be studied over and over again,

thereby making comparisons from one experiment to another more meaning-

ful than if a different dog were used each time. For example, we plan

to investigate the effects of hemorrhage on the transfer function

between arterial pressure and vascular resistance, as mentioned above.

The transfer function will be computed with the dog first in his base-

line state, and then after various levels of hemorrhage. After the

removal of each bolus of blood, GWNFM ventricular pacing will be per-

formed at several different mean rates to allow for a more complete sys-

tem characterization. These studies will then be repeated under condi-

tions of first vagal, then -sympathetic, and finally a-sympathetic
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blockade so that we may decipher the relative contributions of each of

these components in the observed response curves. Obviously, it would

not be possible to conduct all of these studies on a single dog in one

day, but they can easily be performed on a chronically instrumented

animal over the course of several sessions. In addition, repeated

experimentation on a few chronically instrumented dogs, instead of one-

time usage of many acute dogs, will clearly reduce the number of animals

sacrificed for this investigatory effort.
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Chapter 8: Conclusion

In this thesis, I have presented an approach toward investigation

of autonomic control of the cardiovascular system. The approach incor-

porates broad-band excitation of the system with powerful signal pro-

cessing and statistical analysis techniques. In particular, robust

algorithms were developed for the estimation of system transfer func-

tions and for the determination of confidence limits of these estimates.

Three different experimental preparations were described, each one cal-

ling for the development of a new strategy for the imposition of broad-

band fluctuations.

An analysis of the transfer properties of the sino-atrial node was

presented in Chapter 5. Broad-band input excitation here consisted of

Gaussian-white-noise-frequency-modulated (GWNFM) pulse trains used to

stimulate either the vagus or cardiac stellate nerve. The results

presented help clarify the basic physiology that underlies sympathetic

and parasympathetic influences on heart rate control. The understanding

of SA nodal behavior gained here will be of great value in our efforts

to interpret power spectra of spontaneous heart rate fluctuations.

Furthermore, the transfer function data obtained will serve as a quanti-

tative representation of SA nodal function in a computer model of the

cardiovascular system that we are currently developing in our labora-

tory.

Additional work in the analysis of SA nodal behavior that we plan

to pursue was outlined at the end of Chapter 5. We intend to perform

follow-up studies in which independent GWNFM pulse trains will be used
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to stimulate the vagus and sympathetic nerves simultaneously. This will

enable us to assess whether or not the transfer functions found for

single-nerve stimulation still apply when both efferent divisions of the

ANS are active. The coherence functions between each of the neural rate

signals and the resulting instantaneous SA nodal rate will also help to

elucidate the significance of nonlinear interactions between the cardiac

vagal and sympathetic neural systems. Another important aspect of

neural regulation we wish to study is the extent to which normal asyn-

chronous firing of individual neurons within the vagal or sympathetic

bundles differs in its effect on the SA node from the synchronous stimu-

lation used in our experiments. An animal preparation in which broad-

band fluctuations in autonomic tone can be elicited reflexogenically,

such as that described in Chapter 7, would enable us to compute transfer

functions between some measure of nascent vagal or sympathetic activity

and the SA nodal rate. These results could then be compared with the

transfer functions found in Chapter 5.

In Chapter 6, we examined the frequency-dependent behavior of auto-

nomic nuclei that participate in the mediation of the respiratory sinus

arrhythmia (RSA). Since these studies were performed on human volunteer

subjects, a noninvasive method for the introduction of broad-band system

perturbations had to be devised. This was achieved by cueing subjects

when to breathe with a sequence of beeps with random intervals. The

results clearly demonstrated changes in the transfer function between

instantaneous lung volume and heart rate associated with shifts in pos-

ture. However, our data raised as many new questions as it answered.

In particular, we found consistently poor coherence between respiratory
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activity and heart rate at frequencies below 0.1 Hz, and wonder if fluc-

tuations in other hemodynamic variables, such as arterial pressure, eli-

cit reflexogenic changes in heart rate that overwhelm the respiratory

influence at these low frequencies. Furthermore, although the postural

changes we employed served to shift the subject's autonomic balance, we

nonetheless have yet to unravel the specific contributions of the sym-

pathetic and vagal systems in giving rise to the observed transfer func-

tion shapes.

We are currently studying a second group of volunteer subjects in

whom radial artery catheters are placed to permit measurement of

arterial pressure, and pharmacologic agents are administered

intravenously to allow for selective autonomic blockade. With the

implementation of these features in conjunction with the random-interval

breathing protocol, we intend to (1) establish the relative importance

of respiratory activity versus arterial pressure fluctuations on heart

rate control as a function of frequency, and (2) quantify the roles of

sympathetic and parasympathetic activity in mediating the RSA. Ulti-

mately, we plan to explore the value of the respiration-to-heart-rate

transfer function as a clinical tool to assess autonomic integrity.

Finally, in Chapter 7, we presented results of a pilot study per-

formed to demonstrate the feasibility of transfer function analysis of

the baroreflex using GWNFM ventricular pacing. This pacing scheme

enabled us to impose broad-band fluctuations on the instantaneous ven-

tricular rate, and indirectly, on the arterial blood pressure. We were

then able to characterize the feedforward limb of the blood pressure

control system (ventricular rate to arterial pressure), as well as the
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two feedback limbs (arterial pressure to SA nodal rate and to systemic

vascular resistance) which are mediated by the ANS. Crucial to our

analysis of SA nodal rate regulation, we blocked conduction through the

atrioventricular junction to decouple atrial and ventricular activity

from each other. Furthermore, our analysis of vascular resistance regu-

lation required the development of signal processing techniques to

derive an instantaneous resistance signal from the measured arterial

pressure and flow traces.

Although the significance of the results obtained in the pilot

study was limited by the confounding effects of anesthesia, we are

excited by the prospects of performing similar experiments on conscious

animals chronically instrumented using the same techniques. These stu-

dies will enable us to study with minimal invasion (after instrumenta-

tion) the effects of many important interventions on the transfer pro-

perties of both the feedforward and feedback limbs of the cardiovascular

control system.

Our hope is that with the understanding of autonomic regulation

afforded by the techniques presented in this thesis, we can better

appreciate the subtleties of normal cardiovascular physiology and

improve the vantage point from which pathologic processes are viewed.

We further believe that with additional research, the concepts discussed

here can lead to the development of noninvasive clinical tools that will

aid in the diagnosis of cardiovascular disease in both research and pri-

mary care settings.
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