
AN ARTIFICIAL INTELLIGENCE APPROACH
TO JOB-SHOP SCHEDULING

by

GEORGE L. CLEMMER, II

B.S. Electrical Engineering (1973),
M.S. Naval Architecture & Marine Eng. (1978),

Massachusetts Institute of Technology

Submitted to the Sloan School of Management
in Partial Fulfillment of

the Requirements of the Degree of
Master of Science in Management

at the

Massachusetts Institute of Technology

September 1984

O George L. Clemmer, II 1984

The author hereby grants M.I.T. permission to regroduce and to

distribute copies of this thes rcumenp n w/ae or in part.

Signature of the author . .;,ement
;0000/ Sloan Scho6l of Management

June 18, 1984

Certified by
Stephen C. Graves
Thesis SupervisorAccepted by .--.- L
Jeffrey A. Barks

Director of the Master's Program

c S'S 6HUSTT' ' i is TUT T
OF TECHNOLOGY

NOV 0 7 1984

LIBRARIE

Page 1

ARuPl\ro

AN ARTIFICIAL INTELLIGENCE APPROACH
TO JOB-SHOP SCHEDULING

by

GEORGE L. CLEMMER, II

Submitted to the Sloan School of Management
on June 18, 1984

in partial fulfillment of the requirements
for the Degree of

Master of Science in Management

ABSTRACT

A classic operations research problem, the job-shop Scheduling
problem, is examined from the perspective of artificial intelligence
(AI). The operations research literature is reviewed, and recast in the
terminology of AI. The job-shop problem is recast as a state-space
search problem. A problem representation is developed which employs
Gantt charts to represent states, and search operators which preserve
schedule feasibility to transit from state to state. This state-space
problem formulation is investigated at two levels: First, a LISP
program is developed which aids a human scheduler in handling the
bookkeeping details of constructing schedules. Second, a heuristic
search method is developed which directs the search for good schedules.
The performance of the program under human control, and under the
heuristic search method are contrasted with results from the operations
research literature for 3 benchmark problems. Using the program, the
author was able to solve the most complex problem cited in the
literature in 2 hours. Using a very simple heuristic, the heuristic
search method generates reasonably good schedules. It appears that
there is substantial room for improvement in the power of the heuristic.

Thesis Supervisor: Stephen C. Graves

Title: Associate Professor

Page 2

TABLE OF CONTENTS

ACKNOWLEDGEMENTS 4

CHAPTER 1 - INTRODUCTION 5

A SAMPLE PROBLEM . 5

GANTT CHART PROBLEM REPRESENTATION 6

PRIOR RESEARCH - OPERATIONS RESEARCH FOCUS 9

PRIOR RESEARCH - ARTIFICIAL INTELLIGENCE FOCUS 17

MOTIVATION FOR THE PRESENT APPROACH 20

CHAPTER 2 - SCHEDULER'S AID 25

PROBLEM REPRESENTATION & DATA STRUCTURE 25

COMMANDS 30

DISPLAYS 32

RESULTS 34

CHAPTER 3 - A SIMPLE HEURISTIC SEARCH APPROACH 36

SEARCH OPERATOR . 36

SEARCH CONTROL STRATEGY 41

RESULTS 41

CHAPTER 4 - SUMMARY 49

A BRIEF REVIEW . 49

THE JOB-SHOP PROBLEM AS A PUZZLE 50

THE REPRESENTATION AS AN INTERPFACE 51

REFERENCES 52

Page 3

ACKNOWLEDGEMENTS

I would like to thank Professor Tom Malone for his early

encouragement of my efforts with this topic, and for making

computational resources available.

I would like to thank Professor Stephen C. Graves for his

open-mindedness in taking on this thesis topic, and for his helpful

criticism of the thesis document.

Page 4

CHAPTER 1 - INTRODUCTION

A SAMPLE PROBLEM

A simplistic job-shop scheduling problem is shown in Figure 1. There

are 2 jobs, each consisting of 3 tasks, which pass across three machines

in a given sequence. The addition of a scheduling criterion, such as

the objective of constructing a schedule of minimum length (makespan),

completes the problem statement. (The criterion of minimum length is

assumed throughout this paper.)

Using the terminology of Graves (1981), this problem is a

deterministic, static job-shop scheduling problem. By deterministic we

mean that the processing time, and sequence of each task are known

exactly. By static, we mean that all jobs to be scheduled are known at

the start of the time period in question, and that no jobs will arrive

(or be deleted) from the schedule once it is formulated.

Page 5

GANTT CHART PROBLEM REPRESENTATION

The sample problem can also be represented by a job Gantt chart, as

shown in Figure 2(A). Each column in the chart represents one time unit

or slot. A row is printed for each job. Tasks are differentiated within

the row by printing a machine identifier (usually a letter) in column(s)

representing the number of units of processing time required.

The job Gantt chart in Figure 2(A) is a description of job process

routings, but does not represent a feasible schedule (e.g. both jobs

compete for the first time slot on machine A). This is indicated by the

notation "NOT LOADED" on each job.

Also associated with the problem is a machine Gantt chart showing a

row for each machine. This chart is initially empty and is the space

within which a schedule for the problem will be constructed.

A feasible (but not necessarily optimum) schedule for the problem can

be constructed by sequentially "loading" jobs into the machine Gantt

chart. A jobs is "loaded" by reserving spaces in the machine Gantt

chart as early as possible, subject to job task ordering (as specified

by the job Gant chart) and machine availability (as indicated by the

machine Gantt chart).

Page 6

Figure 1: A Sample Job Shop Scheduling Problem
Described in Tabular Format.

MACHINE

A
B

C

A
C
B

PROCESSING TIME

2

1

1

1

1

1

Figure 2: Gantt Chart Representations of the Sample Problem

(A) Problem Statment:

Job Gantt Chart:
: --- + ----

J-1:AABC :NOT LOADED
J-2:ACB :NOT LOADED

: ----+ ---- 1
time-->

Machine Gantt Chart:

A:

B:

C:

(B) Partial schedule generated by loading J-1:

Job Gantt Chart:
:---- + ---- 1

J-1:AABC
J-2:ACB :NOT LOADED

time-->time-->

Machine Gantt Chart:
: ----+ ---- 1

A:11
B: 1

C: 1

: ----+ ----

(C) Complete, feasible schedule generated by loading J-2
to (B) above. Length (makespan) = 6

Job Gantt Chart:
: ---- + ---- 1

J-1:AABC
J-2:--A-CB

: ----+ ---- 1
time-->

Machine Gantt Chart:
: ----+ ---- 1

A:112
B: 1 2

C: 12

: ----+ ---- 1

Page 7

JOB TASK

J-1-1
J-1-2
J-1-3

J-2 J-2-1
J-2-2
J-2-3

---- --- ---- -------------III------------ --- --

Figure 2(B) shows the "partial" schedule generated by loading Job 1.

Figure 2(C) shows the completed, feasible schedule generated by loading

Job 2 after loading Job 1. When a job is loaded, the job Gantt chart is

updated to reflect the actual time slots in which processing takes

place, and a dash is inserted in any time slot in which the job is

waiting to be processed. (Note: The Gantt chart scales printed at top

and bottom of the charts show time slot number in tens: e.g. 1 indicates

time slot 10, etc.)

Page 8

PRIOR RESEARCH - OPERATIONS RESEARCH FOCUS

Job shop scheduling problems have received the attention of

researchers for at least 30 years (see the reference list of Rinnooy Kan

(1976)). However, progress with these problems has been disappointing,

leading the writers of one reference to assert that "many proficient

people have considered this problem, and all have come away essentially

empty-handed. Since this frustration is not reported in the literature,

the problem continues to attract investigators who just cannot believe

that a problem so simply structured can be so difficult until they have

tried it." Conway et al. (1967).

In fact, job shop problems have been shown to be "NP-complete" when

the number of machines, or the maximum number of tasks in any given job

exceeds 3, Lenstra et al. (1977). This puts job shop problems in the

same class with such notorious ones as the general 0-1 programming

problem and the traveling salesman problem.

A number of approaches to the job shop problem have been suggested in

the literature. Broadly these fall into two categories: Optimization

and Heuristic. In the following two sections these are reviewed, and

recast in the Artificial Intelligence (AI) terminology of search (see

Nilsson (1980)).

Page 9

Optimization Approaches

In this category we have the work of researchers who are determined

to find the optimum solution to the problem.

Giffler and Thompson (1960) were the first to give an algorithm which

would generate an exhaustive enumeration of all possible schedules,

perhaps because it seemed a good way to burn up computer time! (Both men

were then with IBM.) This algorithm starts with a null schedule, and

beginning at time zero marches along tentatively assigning tasks to

machines. If a conflict arises, (e.g. two or more tasks overlap on a

single machine) it is resolved in every possible way, generating as many

new branches in the enumeration space as there are ways of resolving the

conflict.

Figure 3 shows the Schedule Enumeration Tree that Giffler and

Thompson's approach generates for our sample problem. Each parent node

in the tree is associated with a partial schedule containing a conflict

situation. (A conflict is indicated with an asterisk (*).) Each tip

node in the tree is associated with a feasible, active schedule for the

problem. (Active schedules are schedules in which all tasks are shifted

left as far as possible given their precedence relationships and queue

positions.) The primary appeals of the algorithm are:

1) It generates each schedule only once (non-redundancy), and
2) It generates every possible active schedule (completeness).

Page 10

Figure 3: A Schedule Enumeration Tree
for the sample problem.

+----------+

A:*

B:

C:

+- ---------+

A:112 A:211
B: 1 B: 21

C: * C: 2 1

Length=5

I I+________+ +______- +
A:112 IA:112
B: 1 2 B: 1 2

C: 12 C: 21
+-----++ ++----------

Length=6 Length=5

NOTE: * indicates a conflict on the machine.

Page 11

In AI terminology, we would characterize the exhaustive enumeration

approach as a generate and test approach. The generator has the

required characteristics of non-redundancy and completeness. Giffler

and Thompson proposed a depth-first exploration of the tree, presumably

because of the constraints imposed by the hardware (they were using an

IBM 704), and because it would generate some schedules even if cut off

before the enumeration was complete.

The problem with this approach is that this tree is very bushy! As

an example, Giffler et al. (1963) show that a simple problem consisting

of 6 jobs on 6 machines, with each job consisting of 5 tasks, has 84,802

active, feasible schedules, or tip nodes.

More recent work with enumeration has used branch-and-bound.

(Branch-and-bound algorithms are similar to the A* search algorithms of

the AI literature.) The objective here is to prune the enumeration tree

in order to reduce the number of schedules generated. At each node in

the tree, a lower bound on the objective (e.g. length) is calculated

(typically by relaxing the machine capacity constraints on all but one

machine). If the lower bound associated with a given parent node is

greater than the completion time of the best schedule found so far, the

node is pruned from the tree, since the lengths of all tip nodes

associated with the parent will be, at best, equal to the lower bound.

Lageweg, et al. (1977) refer to their work with branch-and-bound as

"implicit enumeration", and use a disjunctive graph representation of

the problem. Figure 4(A) shows a disjunctive graph representation for

Page 12

the sample problem. Each job is represented by a set of "conjunctive"

arcs indicating the precedence relationships of tasks within the job.

Each machine is represented by a set of "disjunctive" arcs indicating

the possible processing orders on the machine.

Associated with every feasible schedule is a directed graph,

constructed by selecting one arc from each disjunctive pair, with the

further restriction that the graph must be acyclic. Figure 4(B) shows a

directed graph for the feasible schedule of Figure 2(C).

Page 13

Figure 4: Disjunctive and Directed Graphs
for the sample problem.

(A) Disjunctive Graph for the Sample Problem.

(B) Directed Graph for the Feasible Schedule
of Figure 2(C).

Page 14

The primary appeal of this representation is that it allows an

enumeration tree (or perhaps graph) to be generated starting somewhere

other than at time zero. The expectation was that this would allow some

search strategy to "settle essential conflicts" early, and substantially

reduce the number of schedules enumerated. However, the generation of

directed graphs from the parent disjunctive graph has proven

problematic.

Lageweg, et al (1977) have used branch-and-bound with Giffler and

Thompson's active schedule enumeration tree and a "settle essential

conflicts" tree, and report that the latter scheme is "clearly worse".

Both schemes fail to complete the implicit enumeration of the tree on a

10-job, 10-machine problem in 5 minutes of running time on a Control

Data Cyber 73-28.

Heuristic Approaches

Two distinct heuristic approaches have been employed, Monte Carlo and

priority dispatching rules. The objective of both approaches is to

generate good schedules with a reasonable amount of effort.

Giffler and Thompson (1960) were the first to suggest the Monte Carlo

approach. Instead of an exhaustive, depth first search of the

enumeration tree, conflicts are resolved by a random choice at each

Page 15

parent node, until a tip node is encountered. They demonstrate that if

this process is repeated enough times, a reasonably good schedule will

be generated.

Priority dispatching rules have received attention for two reasons:

First, they have the appeal of only requiring local information (e.g. a

machine can examine the characteristics of jobs waiting in its queue and

make a selection with no knowledge of the status of other jobs or other

machines). Secondly, theoretical results for single-machine problems

show that local sequencing rules are optimum for certain objective

functions, and in the absence of a better solution, their application to

complex multi-machine job-shops seems a suitable expedient. Priority

dispatching rules eliminate search in the enumeration tree: The

application of a given dispatch rule yields a single path in the tree!

Page 16

PRIOR RESEARCH - ARTIFICIAL INTELLIGENCE FOCUS

The author is aware of only one reference describing AI research

directed at the job-shop scheduling problem. Fox (1983) describes a

job-shop scheduling system which employs AI concepts. The scheduling

domain is represented using a frame based programming language (SRL).

Each frame is a collection of slots and values, and may inherit slots

and values from other frames. By using slots and values to establish

relationships between various frames, a richer problem representation

can be achieved, particularly with respect to the many constraints

imposed on the problem in the real world (and assumed away in our simple

problem statement above).

Constraint frames specify the variable to be constrained, the

constraint value, alternate values (relaxations) that the constraint may

have, and a utility function which is used to choose between alternative

relaxations. (From an OR perspective, this representation is a sort of

cross-breed between a constraint and an objective.)

Fox's system develops a schedule using a hierarchical search

procedure as summarized below:

LEVEL 1: ORDER SELECTION. All jobs which are known but not
scheduled are kept in a queue at this level. An order is
selected for scheduling based on its priority class and due
date.

LEVEL 2: CAPACITY BASED SCHEDULING. Given the context of
resources currently available in the shop, a critical path
approach is used to establish constraints on start and stop
times for sub-tasks in the job.

Page 17

LEVEL 3: BEAM SEARCH FOR A FEASIBLE JOB SCHEDULE. At this level a
three stage analysis is performed. First, the search
direction (e.g.forward from start date or back from due date)
and search operators (e.g.alternative operations or
alternative machines) are selected.

Second, a beam search is used to generate alternative
schedules for the job. Each node in the search tree is rated
based on the "quality" of the partial job schedule leading
from the start (or finish) to the node. The rating is
determined by first identifying all constraints which are
applicable to the partial schedule, and then calculating a
utility based on the "acceptability" of the present value of
the constrained variables. The search is pushed forward. (or
backward) until all process steps in the job have been
completed.

Third, a post-search analysis evaluates the alternative that
have been generated. If the best alternative is acceptable
(as determined by a lower bound on the "quality" of the
schedule), it is passed to LEVEL 4. If no satisfactory
schedule has been found, the schedules are examined to
determine an error to pass back to the first stage.
Alternative search operators are then selected or the
constraints which were passed down from level 2 are modified,
and the search repeated.

LEVEL 4: SHOP RESERVATIONS. At this level the job schedule
is added to the existing shop schedule by making reservations
for the resources required by the job. After LEVEL 4
processing, control returns to LEVEL 1.

Fundamentally, this system works with a partial, feasible shop

schedule to which it attempts to add the "most important" job not yet

scheduled. Given this top-down orientation, there is little opportunity

to discover that jobs should be scheduled in a different order. The job

order imposed on the search space at LEVEL 1 may not be optimum, but

there is no mechanism to discover this.

Page 18

The primary features of the system are its ability to capture a more

complete set of the real-world constraints (e.g.due dates, tool

requirements), and its ability to consider alternative machine routings

for each job. (In this paper, and in the OR literature in general,

routings are assumed to be fixed).

Page 19

MOTIVATION FOR THE PRESENT APPROACH

We see that most researchers have adopted the active schedule

enumeration tree as the appropriate problem search space. Most of the

research effort has then focused on reducing the portion of the tree

which must be enumerated to find a solution. Unfortunately, while the

enumeration tree is a nice generator for the generate and test approach,

it is a representation into which we have little heuristic insight.

Thus the heuristics which have been used have been rather weak. For

instance, complete enumeration and Monte Carlo make use only of the

length of the best schedule known.thus far, throwing away all of the

other schedules and any information contained in them. Branch-and-bound

makes use of the partial schedule known at a given node and a heuristic

choce of lower bound formulation, but apparently the lower bounds

devised to date are rather weak. No useful way has been found to use

information contained in previously generated schedules to guide the

branching and bounding. Finally, dispatching rules are the height of

arrogance, assuming away the presence of the tree entirely!

It seems reasonable to assume that some guidance in choosing a new

schedule could be gained by examining known, feasible schedules for the

problem at hand. This suggests the use of a state-space representation

of the problem, where each node represents a feasible schedule, and arcs

represent the application of an operator which transforms one feasible

schedule into another.

Page 20

Figure 5 illustrates a state-space representation for the sample

problem, where the arcs respresent a specific requeuing operator. This

representation gives up the neat tree structure of the enumeration space

in exchange for being able to associate a specific schedule with each

node. Perhaps by examining the schedule at a given node we can gain

some insight about what operators we might like to apply in order to

improve the schedule.

Page 21

Figure 5: A State-space Graph for the Sample Problem

Load 2

I

- +

A:2
B: 2

C: 2

Load 1

I

+--------+
IA:211
B: 21 4 -- …- - - -
C: 2 1 1

l

'paueue Aj

|A:11i2
Load , Load 2-- B: 1 21 Requeue A

IC: 12

Recuue C

A:1i2
B: 1 2 ---------------

C: 21 1

NOTES:
To Requeue: Unload all tasks in the machine queue, and
any tasks subsequent to those n their respective jobs,
then reload these partial os in the desired aueue order.

Page 22

I

I

II
I
I

This is probably the representation a human scheduler uses, and it

appears that humans are reasonably successful at dealing with the

complexity of scheduling problems: Fischer & Thompson (1963) report

that when their now classic 6-job, 6-machine problem was "given as a

problem to a production class, a schedule that completes in time 55 was

devised, and required about two man-hours to complete." This same 6x6

problem is the most complex problem solved to date by implicit

enumeration, Lageweg, et al. (1977).

The fact that humans perform well relative to the implicit

enumeration suggests that either humans are very good at this type of

problem or that the use of the enumeration tree as the search space is

inappropriate. Perhaps the truth lies somewhere between. At any rate,

these observations suggest the following directions for exploration:

1) The development of computer based tools which aid the human

scheduler with the bookkeeping details might increase the speed

with which humans can solve these problems, and enhance the

range of problems they can be solved.

2) By modeling the human approach to scheduling, it might be

possible to deliver quite acceptable problem solving

performance with problems which are too complex for present

enumeration approaches.

This thesis reports on preliminary investigations in both of these

directions. A computer program is developed which automates the

Page 23

bookkeeping functions associated with the construction of job-shop

schedules. This program, Scheduler's Aid, is described in Chapter 2.

Based on experience using the program, a simple heuristic search method

is developed to guides search in a state space problem representation.

This method is described in Chapter 3 along with results for sample

problems. Chapter 4 presents a summary comments.

Page 24

CHAPTER 2 - SCHEDULER'S AID

Scheduler's Aid is a program which automates the bookkeeping chores

associated with the construction of job-shop schedules. It provides

facilities for defining jobs, adding jobs and tasks to the schedule,

removing jobs and tasks from the schedule, and displaying the schedule.

The program is written in MACLISP, and runs on the OZ PDP-10 system

at MIT's Artificial Intelligence Lab. LISP was chosen because the

language lends itself well to system prototyping, because its data

structure is very flexible, and because it is the language of choice for

AI applications.

PROBLEM REPRESENTATION & DATA STRUCTURE

Each job is represented by a collection of atoms. (An atom in LISP

is analogous to a variable name in other languages.) Information about

the job is carried in the form of property-value pairs associated with

these atoms.

Each job has one atom of type JOB which carries information

pertaining to the job-at-large, such as starting task, processing time,

flow time, etc. For example, in Figure 6, J-1 is a job which starts

Page 25

with task J-1-1, has total processing time of 9 time units, and a flow

time of 12 time units in the present schedule.

Each job is made up of a number of tasks, each of which is

represented by an atom of type TASK. These atoms carry information

pertaining to the specific task. For example (referring again to figure

6), the second task in job J-1 is task J-1-2. J-1-2 is processed on

MACHINE B in 3 units of time (PTIME). The PREVIOUS task in the job is

J-1-1, and the NEXT task in the job is J-1-3. J-1-2 is currently

LOADED, starting processing in machine slot B-5. Since the previous

task is finished processing at the end of time slot 4, J-1-2 spends no

time queued (QTIME), and its QUEUED property is NIL. (NIL is LISP's

equivalent of the null set.) Task J-1-1 is the first task in the job,

thus its PREVIOUS property has a value of START. Task J-1-3 is the last

task in the job, thus its NEXT property has a value of FINISH. J-1-3

also spends 3 time units queued (QTIME) at machine C, with the first

machine slot in which it is QUEUED being C-11.

Page 26

Figure 6: JOB Representation

JOB J-1:

A
MACHINE B

C

ATOM

:1111
: 111
: ---11

TIME-->TIME-->

PROPERTY

<--TASK J-1-1
<--TASK J-1-2
<--TASK J-1-3

VALUE

TYPE
START-TASK
PTIME
FTIME

TYPE
MACHINE
PTIME
PREVIOUS
NEXT
LOADED
QUEUED
QTIME

TYPE
MACHINE
PTIME
PREVIOUS
NEXT
LOADED
QUEUED
QTIME

TYPE
MACHINE
PTIME
PREVIOUS
NEXT
LOADED
QUEUED
QTIME

Page 27

J-1

J-l-1

J-1-2

J-1-3

JOB
J-1-1

9

12

TASK
A
4
START
J-1-2
A-1
NIL
0

TASK
B
3

J-l-1
J-1-3
B-5
NIL
0

TASK
C
3

J-1-2
FINISH
C-ll
C-8
3

Machines are represented as shown in figure 7. Time is quantized

into slots, and each slot is represented by an atom. An atom of type

MSLOT is defined for every time slot in which a given machine is loaded

with a task, or has a job waiting in its queue. (It is possible for a

machine to have a queue when no job is loaded if the job in the queue is

being held until after a subsequently available task is processed).

Only one task can be loaded into a given machine slot, and the property

LOADED carries a value equal to this task. Multiple tasks can be queued

at a given MSLOT; a list of these tasks (enclosed in parenthesis) is

carried in the QUEUED property of the MSLOT.

Page 28

Figure 7: MACHINE Representation

JOB J-1 :AABB
JOB J-2 :B-A

MACHINE A :1122

MACHINE B :2 1

TIME-->TIME-->

ATOM PROPERTY VALUE

A-1 TYPE MSLOT
LOADED J-l-1
QUEUED NIL

A-2

A-3

A-4

TYPE
LOADED
QUEUED

TYPE
LOADED
QUEUED

TYPE
LOADED
QUEUED

TYPE
LOADED
QUEUED

TYPE
LOADED
QUEUED

B-1

B-3

MSLOT
J-1-1
(J-2-2)

MSLOT
J-2-2
NIL

MSLOT
J-2-2
NIL

MSLOT
J-2-1
NIL

MSLOT
J-1-2
NIL

Page 29

COMMANDS

A number of commands are understood by the program. A list and brief

description of each is given in Figure 8. These commands are

interpreted at LISP's top level, and are actually LISP function calls,

which must be enclosed in parenthesis.

Obviously, commands which alter the schedule must properly update the

values of various properties in job and machine atoms. For example a

call to LOADTASK must find a sufficiently large block of free slots on

the target machine. It then loads the task onto the machine, by setting

the LOADED property of each machine slot equal to the task name. The

LOADED property of the TASK atom is set equal to the name of the first

slot that the task is loaded into. Finally, the TASK is added to the

list stored at the QUEUED property of each machine slot during which the

TASK is waiting to be loaded, and the QUEUED and QTIME property values

of the TASK are suitably updated.

Page 30'
.. ..

,% .

Figure 8: Command Summary

DESCRIPTION

(JOBDEF <job id> <tlist>)
(LOADJOB <job>)
(UNLOADJOB <job>)
(LOADTASK <task>)
(UNLOADTASK <task>)
(SHUFFLE <task>)

(JGANT <job>)
(JGANTS)
(MGANT <machine>)
(MGANTS)

(GANTS)
(FTIMES)

NOTES:
<jobid>
<tlist>

<job>
<task>
<machine>
Left-Shift

Define a job
Load a job into the schedule
Unload a job from the schedule
Load a task into the schedule
Unload a task from the schedule
Left-shift task, and all subsequent
tasks in the job
Display a job gantt chart
Display job gantt charts for all jobs
Display a machine gantt chart
Display machine gantt charts
for all machines
Equivalent to (JGANTS),(MGANTS)
Display the flow times of all jobs

a single-character job id, e.g. 1
a list of machine, processing time
pairs, eg. '(A 5 B 3 C 6)

a job name, e.g. 'J-1
a task name, e.g. 'j-1-1
a single-character machine, id, e.g. 'A

Move the task left on the machine Gantt chart
into open slots, subject to the constraint that
it must not be loaded before the previous task
has completed processing

Page 31

COMMAND

DISPLAYS

The program displays the current state of the schedule using Gantt

charts. A typical display is shown in Figure 9. A column is printed

for each time slot occupied by the schedule. Two general types of Gantt

chart are produced: Job and Machine.

Job Gantt charts show the sequence of tasks in a job. Tasks are

differentiated within job Gantt charts by printing a machine identifier

(usually a letter) in the column(s) representing time slots in which the

task is loaded. A dash in a column indicates that the task is waiting

in a queue. Tasks which are not currently loaded into the schedule are

displayed in reverse video (indicated by a box in the example).

Machine Gantt charts show the sequence of tasks loaded into a

machine. Tasks are differentiated by printing a job identifier (usually

a number) in the machine slots in which the task is loaded. A dash

indicates that no job is loaded, but that jobs are waiting in the queue.

Page 32

Figure 9: Sample Program Displays

JOB GANTT CHARTS:

JOB 1:AAAAAACCCCCCCCCDDDDD
2:BBBBBBB--------CCCCCCDDDDD
3: -------BBB AAA ADD CCC
: .. + .1 .+---2---+--- --- 3 -- +----

MACHINE GANTT CHARTS:

MACHINE A:111+ 1 333333
B:2222222333
C: 1111.11111222222 3333
I: 11111 22222
: .. + .1 ---- + ---- 2 --- + ---- 3----+

NOTE: A box indicates a task presently not loaded

Page 33

D

"w" - I

11

RESULTS

Using the program, the author was able to solve several benchmark

problems from the literature. Figure 10 shows solutions to these

problems. (These are assumed to be the solutions since they have length

equal to the optimums cited in the literature. Actual schedules are not

presented in the literature, presumably because the optimum schedule is

typically not unique.) After entering the problem data (typically

requiring 5 minutes), the problems were solved in the following times:

A) A 4x4 problem (from Rinnooy Kan (1976) page 164) required about
4 minutes.

B) A 5x4 problem (also from Rinnooy Kan) required about 7 minutes.

C) A 6x6 problem (from Fisher and Thompson (1963) page 236)
required about 2 hours.

The author may have had an unfair advantage since he was aware of he

minimum lengths of the problems, and thus knew when to keep working on

the problem, and when to stop and have a beer.

The 6x6 problem is the largest problem solved to date by Lageweg et

al. (1977). As noted earlier, it has been solved manually before,

however it required the efforts of a production class. We might

tentatively conclude that Scheduler's Aid provides some improvement in a

human scheduler's performance.

Page 34

!. ,_, - , .

Figure 10: Solutions to three benchmark problems:

A) 4-job, 4-machine problem:

1:----------AAAAA----CCCCCCCCC-DDDDD
2:---BBBBBBBCCCCCCDDDDDDD
3:BBBAAAAAAADDDDDDCCCC
4:----------BBBBBBBBBAAAAAADDDDD

A:---3333333111111 444444
B:3332222222444444444
C: 2222223333111111111
D: 3333332222222 4444411111

B) 5-job, 4-machine problem:

1:--------AABBB
2:AAACCC-BB
3:---ABBBDD
4:----AAAA-DCCC
5:DDDD--CCCC

:---- ---- 1----+

A:2223444411
B: 33322 111
C: 2225555444

D:5555 334

C) 6-job, 6-machine problem:

1:----CAAA -------BBBBBB--------DDDDDDD---FFF------EEEEEE
2:BBBBBBBBCCCCCEEEEEEEEEE---FFFFFFFFFF ---- AAAAAAAAAADDDD
3:CCCCCDDDDFFFFFFFF----AAAAAAAAAB-------EEEEEEE
4: ---------- BBBBBAAAAA-CCCCCDDDEEEEEEEE-----FFFFFFFFF

5: ------------- CCCCCCCCCBBBEEEEE------FFFF---------AAA-D

6:--------BBBDDD---FFFFFFFFF----AAAAAAAAAA----EEEEC

A: 11+ 1 444443333333336666666662222222222555
B:2222222266644444111111555 3

C:333331--2222255555555544444 6

D: 3333 666 -----4441111111 22225
E: 2222222222 555554444444433333336666111111
F: 3333333366666666622222222225555111444444444

: ----+ ---- 1 ----+ ---- 2---- + .3---- + .4 + 5 +

Page 35

CHAPTER 3 - A SIMPLE HEURISTIC SEARCH APPROACH

In this section a simple heuristic search method is developed.

Results are presented for two sample problems.

SEARCH OPERATOR

The objective is to develop a search (or successor) operator which,

when given a schedule, will generate one or more successor schedules.

Ideally, the operator would generate only schedules which are

improvements on the given schedule. More reallisticly, the operator

should generate only a limited number of new schedules, each of which is

reasonably likely to be better than the given schedule.

In general, it is not possible to tell when an optimum schedule has

been encountered; thus when presented with an optimum schedule, the

operator can only be expected to generate schedules which are similar,

or worse than the given schedule.

The simple operator presented here is derived from observing the

first order behavior of human schedulers solving schedules with the

objective of minimizing length. It is clearly simplistic, but serves to

illustrate the approach.

Page 36

Given a schedule, we select the job with the longest flow time. (In

the event that more than one job has this flow time, a job is chosen

from this set at random.) If any tasks in this job are waiting in

queues, then one or more load options are generated. (If no tasks are

waiting in queues then the optimum schedule has been found, an unlikely

situation.) A load option consists of a target task, which will be one

of the queued tasks in the job, and a target slot determined as

described below:

For each queued (target) task, target slots (machine slots in which

the task might be loaded) are determined by examining the machine slots

in which the task is queued. A target slot is identified as follows:

1) The first slot in which the task is queued.
2) Any slot in which the task loaded is different than the task

loaded in the previous slot.
3) Any machine slot which is empty, and which follows a loaded

slot.

Figure 11 shows the load options for a given schedule.

Associated with each of the load options are (possibly) other tasks

which are "in the way". These are tasks from other jobs which will

overlap the target task if it is loaded at the target machine slot.

These are also illustrated in Figure 11.

Page 37

Figure 11: Load Options and Tasks In-the-way
for a Sample Schedule.

SAMPLE SCHEDULE:

1:AAAAAACCCCCCCCCDDDDD
2:BBBBBBB--------CCCCCCDDDDDDD
3: ------- BBBAAAAAAA----D-------DDDDDCCCC

4:----------BBBBBBBBBAAAAAA---------DDDDD

A:11111 3333333 444444
B:2222222333444444444
C: 111111111222222 3333
D: 11111-222222233333344444

: . .+ . 1 -- + . ---- 2 . + ---- 3---- .+ 4 . +

------LOAD OPTION--------
Target Task Target Slot TASKS IN-THE-WAY

J-2-1, J-3-1
J-3-1
J-2-3, J-3-3
J-3-3

J-4-1
J-4-1
J-4-3
J-4-3

B-i
B-8
D-26
D-29

Page 38

--

.,-

.i

Each time the search operator is invoked on a given schedule (parent

node), it generates successor schedules (successor nodes) for all of the

load options. The generation of a successor schedule from a given load

option proceeds as follows:

1) Determine what tasks are in the way.
2) For each in the way task, UNLOAD that task, and all NEXT tasks

in its job.
3) SHUFFLE the target task into the target slot
4) LOAD each task that was in the way, and all NEXT tasks in its

job.

5) Examine the machine Gantt chart to see if there are any machine
slots which are QUEUED but not LOADED. If so, attempt to
left-shift any of the QUEUED tasks into these empty slots.

Figure 12 illustrates the generation of a successor schedule for a given

parent schedule and load option.

Page 39

Figure 12: The Generation of a Successor schedule from
The Parent Schedule shown in Figure 11.

LOAD OPTION: (J-4-1 B-l)
TASKS IN-THE-WAY: J-2-1, j-3-1

UNLOAD EACH IN-THE-WAY TASK, AND NEXT TASKS:

1:AAAAAACCCCCCCCCDDDDD
2 :.BBBBBBCCCCCCDDDDDD
3: BBAAAAAAADDDDDDCCC
4:----------BBBBBBBBBAAAAAA---------DDDDD

A:111111 444444
B:----------444444444
C: 111111111
D: 11111 --------------44444

SHUFFLE J-4-1:

1:AAAAAACCCCCCCCCDDDDD
2 BBBBBCCCCCCDDDDDD

3BBBAAAAAAADDDDDDCCC
4:BBBBBBBBBAAAAAA----DDDDD

A:111111 444444
B:444444444
C: 111111111

D: 1111144444

LOAD EACH IN-THE-WAY TASK, AND NEXT TASKS:

1:AAAAAACCCCCCCCCDDDDD
2:---------BBBBBBBCCCCCC---DDDDDDD
3:----------------BBBAAAAAAA------DDDDDDCCCC
4:BBBBBBBBBAAAAAA -----DDDDD

A:111111 444444 3333333
B:4444444442222222333
C: 111111111 222222 3333
D: 11111444442222222333333

: ..+ ..1 .. + . 2---- .+ .3---- + --4 --

Page 40

SEARCH CONTROL STRATEGY

The search control strategy employed is hill-climbing with

backtracking. Each time the search operator is applied to a schedule

(node), all successor nodes are generated, forming an "expansion" of the

given node. If any node in this expansion has been encountered before,

it is ignored. Nodes in the expansion are evaluated by observing the

length of the associated schedule. The best node in the expansion

(with minimum length) is selected and the search operator is applied to

this node. In the event that the search operator fails to generate any

unique nodes, the search backtracks to next best node in the prior

expansion. The depth of search is controlled by specifying the number

of nodes to be expanded.

RESULTS

This heuristic search method has been applied to the 4x4 and 6x6

benchmark problems of Chapter 2. Figure 13 shows the search tree

generated by the method for the 4x4 problem. The search was started at

a schedule generated by loading the jobs in'the order 1-2-3-4. Figure

14 shows the starting-schedule, and the best schedule found in each

·i'·' i · ·,expansion. Since the performance of the method is likely to be a

function of the starting schedule, it was applied to several starting

Page 41

X ,v . .. - .. _ ,_iI - ,

schedules for each problem. Figure 15 shows the results of applying the

method to four starting schedules for the 4x4 problem. For each

starting schedule the following are shown- the order in which the jobs

were loaded to generate the starting schedule, the length of the

starting schedule, and the length of the schedules in each expansion.

Since no backtracking occurs, the shortest schedule in each expansion is

the parent of the following expansion. With each of 4 starting

schedules, the method found at least one schedule of length 36. As

already cited, the optimum for this problem is 35.

Page 42

Figure 13: The Search Tree generated by the method for
the 4x4 benchmark problem.

(Load 1-2-3-4)

I
2:39

…------------ ----&--------… ---- - -…-- -- - -- -- -

(J-4-1 B-l)

I
3:42

(J-4-1 B-8)

4:43

(J-4-3 D-26)

I
5:47

(J-4-3 D-29)

I
6:43

(J-3-1 B-l)

I
7:39

+------

(J-2-1 B-l)

10:38

(J-3-1 B-10)

I
8:38

(J-2-1 B-10)

I
*10:38

(J-3-3 D-27)

9:39

I
(J-2-3 D-26)

11:42

3 D-22) (J-2-3 D-27) (J-2-2 C-8)

:42 12:38 13:36

+---------------+---------------+

(J-1-3 D-23)

14:38

(J-1-3 D-27)

I
15:36

(J-1-2 C-7)

I
*15:36

Notation: 2:39
(J-4-1 B-l)

*10:38

indicates schedule number 2: length 39.
indicates a load option with target
task J-4-1, target slot B-1.
indicates that the schedule has been
encountered earlier in the search.

Page 43

(J-2-

*11

----------------t-----

____-- _____ - ______________ - - -

Figure 14: The Starting Schedule, and the Best Schedule
Found in Each Expansion of Figure 13

Schedule 2:

1:AAAAAACCCCCCCCCDDDDD
2:BBBBBBB--------CCCCCCDDDDDDD
3: --- BBBAAAAAAA ----------- DDDDDDCCCC
4:----------BBBBBBBBBAAAAAA---------DDDDD

A:111111 3333333 444444
B:2222222333444444444
C: 111111111222222 3333
D: 11111-222222233333344444
: ----+ ---- 1 ----+ ---- 2---- + 3---- + --4 +

Schedule 3:

1:AAAAAACCCCCCCCCDDDDD
2:---------BBBBBBBCCCCCC---DDDDDDD
3:----------------BBBAAAAAAA------DDDDDDCCCC
4:BBBBBBBBBAAAAAA-----DDDDD

A:111111 444444 3333333
B:4444444442222222333
C: 111111111 222222 3333
D: 11111444442222222333333

:+ ...1 .. + .. 2---- .+ .3---- --+ 4--- +

Schedule 8:

1:AAAAAACCCCCCCCCDDDDD
2:------------BBBBBBBCCCCCC------DDDDDDD
3:---------BBB---AAAAAAA---DDDDDDCCC
4:BBBBBBBBBAAAAAA-----DDDDD

A:----------------2--------1111113---- 4444443333333
B:4444444443332222222
C: 111111111 222222 3333
D: 11111444443333332222222

: ----+ ---- 1 ----+ ---- 2---- + .3---- + .4 +

Page 44

Figure 14: (Continued)

Schedule 10:

1:AAAAAACCCCCCCCCDDDDD
2:BBBBBBB--------CCCCCC----------DDDDDDD
3:-------BBBAAAAAAA---DDDDDDCCCC
4:---------- BBBBBBBBBAAAAAA-DDDDD

A:111111 3333333 44444
B:2222222333444444444
C: 111111111222222 3333
D: 11111333333444442222222

Schedule 13:

1:AAAAAA-------CCCCCCCCC---------DDDDD
2:BBBBBBBCCCCCCDDDDDDD
3:-------BBBAAAAAAA---DDDDDDCCCC
4: ---------- BBBBBBBBBAAAAA-DDDDD

A:111111 3333333 444444
B:2222222333444444444
C: -222222111111111 3333
D: 22222223333334444411111

Schedule 15:

1:AAAAAA-------CCCCCCCCC----DDDD
2:BBBBBBBCCCCCCDDDDDDD
3:-------BBBAAAAAAA---DDDDDDCCCC
4:----------BBBBBBBBBAAAAAA------DDDDD

A:111111 3333333 444444
B:2222222333444444444
C: -222222111111111 3333
D: 22222223333331111144444

:---- .+ ---1 ---+ .2---- .+ .3---- .+ .4 .+

Page 45

Figure 15: Results for the 4x4 Problem

---STARTING NODE---
Load Order Length

------------EXPANSION----------
Number Lengths of Successors

1-2-3-4 39 1 42,43,43,47

2 38,39,39

3 38,38,42

4 36,38,42
5 36,38,38

4-3-2-1 40 1 40,40,42
2 38,42,42,42
3 36,38,39

4 36,36,38

5 36,41,41,42

1-4-2-3 42 1 38,39,39
2 38,38,42
3 36,38,39

4 36,36,38
5 41,41,42,42

4-1-2-3 38 1 38,42,42
2 36,38,39
3 36,36,38
4 36,41,41,41,42,43,45

NOTE: The best schedule from an expansion is the
parent of the following expansion.

Page 46

Figure 16 shows the results of applying the method to the 6x6

problem. Five expansions of 2 starting schedules were generated. In

both cases the method found at least one schedule of length 59 in less

than five expansions and less than thirty schedules. It is interesting

to contrast these results with results from the literature: The

implicit enumeration method found an optimum value of 55 after expanding

between 62 and 411 nodes in the enumeration tree, depending on the

choice of enumeration algorithm and lower bound formulation, Lageweg et

al. (1977). A Monte Carlo sampling of 500 active schedules yielded a

minimum length of 60, the LRT (Longest Remaining Time) dispatching rule

yielded 61, and the SIO (Shortest Imminent Operation) rule yielded 67,

Fisher and Thompson (1960). Given the simplicity of the heuristic used

to generate load options, and the arbitrary choice of search control

strategy, the heuristic search method appears to perform reasonably

well.

The heuristic search method can most likely be improved. It is the

author's experience in solving these problems that a point is usually

reached where examination of the longest job fails to give useful ideas

as to load options. At this point attention usually shifts to the

machine Gantt chart to determine which machines are bottlenecks. Often

a different loading order on other machines can get the bottleneck

machine started earlier resulting in a shorter schedule. Presumably the

heuristic could be expanded to take account of machine loading patterns,

and its performance improved.

Page 47

Figure 16: Results for the 6x6 Problem

---STARTING NODE--- ------------EXPANSION ----------
Load Order Length Number Lengths of Successors
__

1-2-3-4-5-6

6-5-4-3-2-1

71 1
2

3

4

5

86 1

2

3

4

5

70,71,73
61,62,62,67,71,71,91,91
59,60,64,64,82,90
59,59,59,68,70
64,69,70,70

67,69,71,71,73,86,86
64,64,67,80,89
62,63,63,70,93
59,60,62,62,85,93
64,69,69,70

NOTE: The best schedule from an expansion is the
parent of the following expansion.

:,, Page 48

CHAPTER 4 - SUMMARY

A BRIEF REVIEW

This thesis has taken a look at an old problem from a new

perspective. While the idea of taking a heuristic approach to the

job-shop scheduling problem is not new, we have seen that previous

heuristics have accepted the scheduling enumeration tree as the

appropriate search space. This tree is appealing because of its

non-redundancy and completeness, but it is hopelessly bushy for problems

of interesting complexity.

It has been the thesis of this research that an alternative

representation and search space might yield more powerful heuristics at

the cost of the ability to state an algorithm which guarantees an

optimum solution. We have shown that the use of Gantt charts in

conjunction with an appropriate choice of operators yields a state-space

problem representation. With this choice of representation, the focus

of research shifts logically to the development of heuristic search

methods of sufficient power to give good schedules. We have shown that

even a rather crude heuristic search method gives surprisingly good

schedules. Certainly there is room for improvement in the heuristic

described in this paper.

Page 49

THE JOB-SHOP PROBLEM AS A PUZZLE

The Gantt chart problem representation essentially transforms the

job-shop scheduling problem into a puzzle. The entries in the job and

machine Gantt charts can be thought of as the pieces of the puzzle. The

object of the puzzle is to arrange the pieces on the two Gantt charts in

such a way that the precedence relationships of the tasks in each job

are observed, no more than one piece occupies any one time slot, and the

Gantt charts are of minimum length.

Various examples of puzzles are found in the Al literature; popular

ones include the 8-Puzzle and the Tower of Hanoi. The job-shop puzzle

is similar to these in that we can visualize the doing of the puzzle as

the moving of pieces, and the objective of our heuristic should be to

tell us which pieces to move next. The AI puzzles that the author is

aware of involve a goal state which is clearly defined, typically in

terms of a specific arrangement of the pieces. However, in the case of

the job-shop puzzle the goal state is not known at the outset: We can't

state the desired positions of the pieces, in fact we can't even state

the length of the schedule we are seeking!

On the other hand, the job-shop puzzle has a well defined objective

function, a characteristic of classic optimization problems. This is in

contrast with AI puzzles, where the formulation of an evaluation

function is often problematic. Thus the job-shop problem is a sort of

Page 50

hybrid; it has an interesting mix of the features of both puzzles and

optimization problems.

THE REPRESENTATION AS AN INTERPFACE

Finally, we note that a major advantage of the Gantt chart problem

representation is its convenience as a debugging tool and a user

interface. It seems reasonable to assume that no matter how advanced

scheduling systems become, users will need to interact with them, (e.g.

to account for some constraint that isn't in the model but which

suddenly becomes important). A system build around a Gantt chart

representation lends itself easily to the construction of the user

interface. As Graves (1981) has pointed out, "a frequent comment heard

in many scheduling shops is that there is no scheduling problem but

rather a rescheduling problem." This suggests the need for a friendly

user interface since scheduling in practice will likely be a highly

interactive activity; given the dynamics of.real environments and the

fact that models of the environment are seldom perfect.

-Page 51
i . :: ·, . ,

REFERENCES

Conway, R.W., W.L. Maxwell, L.W. Miller (1967)
Theory of Scheduling.
Addison-Wesley, Reading, MA,
as cited by Lageweg et al.

Fisher, H., G.L. Thompson (1963)
Probabilistic Learning Combinations of Local Job-Schop Scheduling
Rules.
in Industrial Scheduling, edited by J.F. Muth and G.L. Thompson,
Prentice-Hall, Inc, Englewood Clifts, NJ, pp 225-251

Fox, M.S. (1983)
Constraint-Directed Search: A Case Stude of Job-Shop Scheduling.
PhD. Thesis, Computer Science Department, Carnegie-Mellon
University, Pittsburg, PA

Giffler, B., G.L. Thompson (1960)
Algorithms for Solving Production-Scheduling Problems.
in Operations Research, Vol 8, p 487-503

Giffler, B., G.L. Thompson, V. Van Ness (1963)
Numerical Experience with the Linear and Monte Carlo Algorithms for
Solving Production Scheduling Problems.
in Industrial Scheduling, edited by J.F. Muth and G.L. Thompson,
Prentice-Hall, Inc, Englewood Clifts, NJ, pp 21-38

Graves, S.C. (1981)
A Review of Production Scheduling.
in Operations Research, Vol 29, No 4, July-August 1981

Lageweg, B.J., J.K. Lenstra; A.H.G. Rinnooy Kan (1977)
Job-shop Scheduling by Implicit Enumeration.
in Management Science, Vol 24 Num 4, December, pp 441-450

Lenstra, J.K., A.H.G. Rinnooy Kan, P. Brucker (1977)
Complexity of Machine Scheduling Problems.
in Ann. Discrete Math., Vol 7, pp 343-362,
as cited by Lageweg et al.

Nilsson, N.J. (1980)
Principles of Artificial Intelligence.
Tioga Publishing Co., Palo Alto, CA

Rinnooy Kan, A.H.G (1976)
Machine Scheduling Problems.
Martinus Nijhoff, The Hague

Page 52
,:

