
A Formal Model of Non-determinate Dataflow Computation

by

Jarvis Dean Brock

A. B., Duke University

1974

S. M., E. E., Massachusetts Institute of Technology
1979

Submitted to the Department of
Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

August, 1983

@ Massachusetts Institute of Technology, 1983

Signature of Author
Department of Electrical EWeering and Computer Science

August 23, 1983

Certified by
j- -rJack B. Dennis

Thesis Supervisor

Accepted by .
· Ad J ~Arthur G. Smit

Chairman. Departmental Graduate CommitteeArchives

PL..SSACHUSETTS INSTfiUt
OCF T4CH.LOGy

OCT 41983

-2-

A Formal Model of Non-determinate Dataflow Computation

by

Jarvis Dean Brock

Submitted to the Department of Electrical Engineering and Computer Science

on August 23, 1983 in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Abstract

Almost ten years ago, Gilles Kahn used the fixed point theory of Dana Scott to define a
formal and elegant model of computation for determinate dataflow graphs, networks of
determinate processes communicating asynchronously through unbounded channels. Kahn
viewed each process as a function mapping each tuple of streams, or sequences of values,
received through its input channels to the tuple of streams produced at its output channels.
Determinacy was defined as the requirement that the mapping be functional - that for each input
stream tuple there be only one possible output stream tuple. Although most useful computation
can be accomplished with only determinate processes, there re many important, inherently
non-determinate application areas to which Kahn's theory cannot be applied.

In this thesis, a formal model of computation for non-determinate networks is presented in
which each possible computation of a network is represented by a scenario. A scenario is a pair
consisting of an input stream tuple and an output stream tuple, together with a causality order
relating each element of the input and output streams to those elements which played a role in its
creation. A non-determinate network is represented by a set of scenarios, just as a determinate
network is represented by a set of pairs of input and output stream tuples. Scenario sets contain
but a little more information than the most straightforward extension of Kahn's theory, the
representation of graphs as relations on tuples of streams. We justify the addition of this causality
information by demonstrating that the relational representation is inadequately detailed for
describing non-determinate computation.

A formal algebra for deriving the scenario set of a graph from the scenario sets of its
components is also presented. Our scenario set composition rules are very simple. Only an
elementary knowledge of partial orders is required in order to understand them. We prove the
correctness of our model by showing its consistency with the standard operational model of
dataflow computation.

Thesis Supervisor: Jack B. Dennis
Title: Professor of Computer Science and Engineering

Keywords: Programming language semantics, concurrent computation, non-determinate
computation, data flow.

-3-

Acknowledgments

I'd like to thank my thesis supervisor, Jack Dennis, for encouraging my efforts in both

dataflow computation and forma! semantics. I have learned much during my long association

with him.

My second thesis reader, Arvind, has been generous with his time and interest in my work.

We have had many long discussions covering all aspects of dataflow and applicative languages.

For me, it was very fortunate that Joe Stoy came from Oxford to spend the summer at MIT.

In spite of the little warning, he agreed to be the third thesis reader. In addition to battling the

then (and perhaps now) abominable grammar, he provided many thought-provoking comments

about the relation of this work to similar ones.

At least three other people contributed directly to this thesis. Bill Ackerman posed the initial
challenge that lead to this research and worked with me in the development of many of its

concepts. Gordon Plotkin suggested the simplification of the scenario composition rules

presented in Chapter 5. Joan Curry carefully read drafts of this thesis and corrected numerous

errors.

I've enjoyed the company of the many friends I have made among the graduate students in

Jack Dennis' Computation Structures Group and Arvind's Functional Languages and

Architectures Group. Two have been especially helpful throughout the last few weeks of this

effort. Andy Boughton is a CSG old-timer who has never failed to provide help to a friend.

Keshav Pingali is an FLA old-timer with whom I have spent many hours evolving solutions to the,

problems of dataflow computation and to the crosswords of the New York Times.

And finally, I would like to thank Ruth Brock for sharing the adventure, and I wish her luck as

she now pursues her own education at the Technical College of Alamance.

This research was supported by the National Science Foundation under grant number

MCS-7915255.

-4-

Table of Contents

Acknowledgments .. 3

1. Introduction ... 5

2. Dataflow Graphs and Languages ... 11

2.1 Dataflow Streams .. 13
2.2 A Non-determinate Dataflow Operator .. 16
2.3 Operational Semantics .. 17

3. Scenarios: A Model of Non-determinate Computation 19

3.1 Fixed Point Semantics for Determinate Networks 21
3.2 Fixed Point Semantics for Non-determinate Computation 24
3.3 The Incompleteness of History Relations .. 33
3.4 Scenarios: An Informal Introduction .. 41

4. The Dataflow Graph Algebra ... 49

5. The Scenario Set Algebra ... 54

5.1 Operators of the Scenario Set Algebra ... 56
5.2 Generators of the Scenario Set Algebra ... 62
5.3 Operational Consistency ... 64

6. Conclusion ... 69

Refe rences ... 75

Biographic Note .. 79

-5-

1. introduction

Dataflow is a model of concurrent computation whose program schema is a graph, or

network, of concurrent operators. Although the dataflow graph is most often envisioned

microscopically as the representation of a dataflow machine language program, the macroscopic

view of the graph as a collection of communicating agents distributed over several machines is

equally valid. Viewed thus, dataflow graphs may represent the "large" problems, such as

transaction systems, that generate so much interest at a time when computation has moved from

the computer room to the teller's desk.

However, as the locus of computation moves in this direction, many of its characteristics

change. Formerly most computation was determinate; that is, for any given set of input data, only

one possible output result was possible (or, at least, desired). But now the nature of the input

data has changed: input was once a deck of cards and, perhaps, a few disk files, but today it often

consists of characters typed from widely-dispersed terminals and records transmitted from

remote computers, and the ultimate output may depend on the relative timing of these input

activities. One consequence of the dependence of output on relationships of time is

non-determinacy: performing a computation on a set of input data may result in any of many

possible sets of output data.

Presently, non-determinate computation is undoubtedly the most significant area of

research in programming language semantics, the study and development of formal models to

describe the behavior of programs. Although Scott's [39] fixed point semantics provided a basis

from which all aspects of determinate computation could be described, the proposed extensions

of this work to non-determinate computation have generally suffered from one of the four

following flaws: (1), they are unable to cope with the most important type of non-determinism, that

resulting from "races" of independent concurrent processes; (2), they are so operational, or

-6-

permeated with the particulars of implementation, that the representation of a program is almost

as detailed as its syntax; (3), they are too abstract and fail to distinguish some computations with

observably different behaviors; or (4), they can be understood only by mastering very difficult

mathematical constructions, such as the derivation of co-limits within categories.

The thesis presents a new model of non-determinate computation which attempts to avoid

the four faults enumerated in the preceding paragraph. The model is specialized to dataflow, a

scheme for highly concurrent execution. The model is both abstract and simple. The purest

input-output characterization of a parallel program or system with input and output channels

would be a relation on the histories (sequences) of values produced and received through those

channels. Unfortunately, such history relations do not contain sufficient information to be used as

the basis for a theory of non-determinate computation. The "merge anomaly," our demonstration

of this inadequacy, is accomplished by constructing two systems which have the same history

relation but which cannot replace each other within a larger system without altering that system's

history relation.

In our semantic model systems are represented by scenario sets.1 A scenario is an easy

extension of an input history-output history pair made by placing a partial order on the individual

elements of the sequences of communicated values. This partial order embodies causality by

relating each communicated value to the other values which contributed to its existence or,

equivalently, which must precede it in time. The behavior of a system is the collection of all its

possible scenarios.

The scenario set of a system may be derived from those of its components. In comparison

to the complexity of many other non-determinate semantic models [10, 25], the scenario set

1. Scenarios were first described in a paper by this author and Ackerman [8].

-

-7-

composition rules are very simple, requiring only an elementary understanding of properties of

partial orders as prerequisite mathematical knowledge. One other advantage of our model over

these others is its ability to represent fair computation. The natural and straightforward relation of

the scenario model to implementation-level models of dataflow computation allows us formally to

prove, by induction over the structure of dataflow programs, that scenarios are a correct model of

parallel computation.

The underlying programming language of our theory is the dataflow graph. The graph is a

collection of concurrently executing operators, or processes. Each of the processes has a fixed,

finite set of input and output ports. The links of the graph connect the ports of the processes.

Each link is one-way and one-to-one: one output port is joined to one input port. Within the

graph, the only means of inter-process communication is the transmission of values through

these connections. We assume the connections to be FIFO queues with unbounded buffering

capacity so that no two values are ever transposed and no value is ever lost in transit through the

link.

It may appear that, in adopting these interconnection rules, we have prohibited three of the.

most popular forms of interprocess communication: the memory of conventional

multi-programming languages in which processes deposit and examine shared data; the

synchronized transmission of Hoare's [19] Communicating Sequential Processes in which the

sending and receiving processes of a value must act simultaneously; and the connection

networks of distributed programming languages such as Argus [27] in which values, addressed to

the intended recipient, are deposited and arrive arbitrarily interleaved with other "mail."

Ultimately, the universality of our model's programming language, the dataflow graph, depends

on either the ease with which programs incorporating these three forms of communication can be

translated into dataflow or the ease with which "interesting" non-determinate applications can be

programmed in dataflow. The translation route to universality is not difficult: a shared memory

-8-

and a distributed connection network can be modeled by either processes or dataflow graphs,

and the synchronized transmission of a value can be simulated with a pair of dataflow links.

Although the programming of large applications in dataflow graphs would certainly be a tedious

and unpleasant task, Arvind, Gostelow, and Plouffe[6], Dennis[13], and Jayaraman and

Keller [21] have developed high-level programming languages which are trivially mapped into

dataflow graphs and have used them to write programs for the most difficult of non-determinate

applications, resource control. The abilities to model many forms of non-determinate

communication and to program many kinds of non-determinate applications combine to make

dataflow a very general model of non-determinate computation.

Between the introductory and concluding chapters of this thesis, we make two passes over

the problem of formalizing non-determinacy and our solution to it. Each pass will consist of two

chapters - the first will discuss the programming language, dataflow graphs, and the second will

discuss the semantic model, scenario sets.

The first pass will be informal and somewhat tutorial. The next chapter, Chapter 2, is a

thorough introduction to dataflow, with particular emphasis on presenting the operational

semantics of dataflow and introducing a few dataflow operators useful in the specification of

non-determinate computation. Token-pushing, the process of moving tokens, or values, through

a dataflow graph by the firing of operators, forms the operational semantics of dataflow. This

mechanism plays an important role in the thesis by providing a "target" for the more abstract

semantics of scenarios. Token-pushing is "controlled" by individual operator firing rules

specifying when each operator accepts values from its input ports and produces values at its

output ports. Most dataflow operators (especially those corresponding to elementary arithmetic

and logical operations) have simple firing rules: they fire when values are present at each input

port and produce values at each output port. However, special stream operators with non-trivial

firing rules are needed to specify inter-process communication. We will use only one

-9-

non-determinate stream operator, the merge which interleaves two input streams into one output

stream, in our examples. In Chapter 2, we briefly explain how these stream operators may be

used to solve resource control problems.

Chapter3 is a survey of previous semantic models for dataflow computation and an

liiaroduction to scenarios. Kahn [22] has shown that a determinate operator can be characterized

as a function mapping the sequences received at its input ports to the sequences produced at its

output ports and that the computation of a network of determinate operators can be derived as

the least fixed point of a set of functional equations inferred from its operators. We will examine

the shortcomings often encountered in applying fixed point semantics to non-determinacy and

will show that the natural extension of Kahn's representation to non-determinate computation,

the characterization of operators as relations, is insufficiently detailed for the development of a

semantic theory consistent with the dataflow firing rules. By augmenting this relation with a

causality order, scenarios are obtained. The scenario model of computation is the rule for

constructing the scenarios of a network from the scenarios of its components.

The second pass will be decidedly more formal: in it our methodology and notation will be

algebraic. In Chapter 4, we develop an algebra for dataflow graphs. The algebra is very simple.

Stripped of its algebraic terminology, it is nothing more than a syntax for describing dataflow

graphs. The dataflow graph algebra has three operators: the first joins two independent graphs

into one, the second relabels a graph port, and the third connects a graph output port to a graph

input port. Many of the ideas of this chapter were inspired by the flowgraph algebra of Milne and

Milner [30].

Chapter 5 presents an algebra for scenarios. First, a formal definition of scenarios is given

with emphasis placed on stating the restrictions on the causality order. The scenario algebra has

three composition operators similar to those of the dataflow graph algebra. By showing that the

scenario set model of computation is consistent with the operational model of Chapter 2, we

-10-

prove that scenario sets are an abstract representation of non-determinate dataflow networks.

in the conclusion of this thesis, we discuss Pratt's [37] recent generalization of the scenario

model and also enter the ongoing fairness "controversy" by observing the apparent immunity of

the scenario composition rules to the "problem" of the fair merge. Finally, some open problems

for future research are stated.

-11 -

2. Dataflow Graphs and Languages

Dataflow graphs were developed as an instruction set for dataflow machines. The goal of

this machine language was to provide a highly concurrent representation of computation in which

the needless constraints on concurrent instruction execution implied by sequential machine

languages are eliminated and only those constraints implied by the dependence of one

instruction on the data produced by another are retained.

The nodes of a dataflow graph are called operators. The simplest operators perform

elementary arithmetic and logical operations and correspond one-to-one with dataflow machine

language instructions. When an operator is fired, i. e. executed, it removes tokens, i. e. values,

from its input ports and produces tokens at its output ports. Each operator has a set of firing rules

(conditions on the presence of input tokens) specifying when it is enabled for firing.

The links of the dataflow graph connect operator output ports to operator input ports.

During the execution of a dataflow program values flow through these links from one operator to

another. Not all operator ports of the graph should be connected: the unconnected operator

ports become the ports of the graph itself. By considering graphs themselves to be operators,

large graphs can be built in a modular fashion from smaller ones.

In Figure 2.1, a dataflow graph for computing the distance:

sqrt((xo-x1)2 + (yo-Y1)2)

between two points (xo, yo) and (x1, y) is illustrated. When this graph is executed, concurrency

is obtained by the simultaneous execution of the difference and product operators. Dataflow

researchers believe that in very large computations hundreds and thousands of operations may

be performed in parallel and have proposed machines capable of exploiting such massive

parallelism. Furthermore, note that the distance dataflow graph need not compute only one

distance at a time. Additional concurrency may be obtained by pipelining several computations

-12-

Figure 2.1. An example dataflow graph

xo X1 Yo

sqrt((x - x1)2 + (yo-Y1)2)

through the graph.

Many high-level, algorithmic languages [2, 5, 12, 29] have been designed for the specific

task of programming dataflow computers. These languages are quite conventional in appearance

and would not frighten the average programmer. Perhaps the most "radical" action of dataflow

language designers has been the banishment of side effects, an action increasingly appreciated

for its role in simplifying programming language semantics [42]. Readers interested in learning

Y1

-13-

more about dataflow languages should read Ackerman's [1] tutorial on the subject.

2.1 Dataflow Streams

Weng [44] introduced the stream data type into a side effect-free dataflow language to allow

the programming of history-sensitive computation. At the graph level, a stream is the sequence,

or history, of values passing through a graph link during the course of a dataflow computation. At

the language level, a stream is a data type with operations similar to those of LISP lists. In this

thesis we will write a stream by the juxtaposition of its components: for example, 5 6 will denote

the two-element stream whose first value is 5 and second value is 6. The zero-element empty

stream will be denoted A. 1

We will use only three determinate stream operators in our discussion:

(1), fi rst, when applied to a stream yields the first value of the stream;

(2), rest, when applied to a stream yields the stream with its first value removed;

(3), cons, when applied to a simple value and a stream yields the stream formed

by concatenating the value onto the beginning of the stream.

Thus, for a value x and a stream S:

x = first(cons(x, S))
S = rest(cons(x, S))

Stream operators have special firing rules that ensure that they do not wait for entire streams to

appear on their input links before firing. Instead, as soon as an individual value of an input stream

arrives, it is routed to the appropriate output. For example, as soon as a value appears on its

leftmost port, the cons operator fires, absorbing that input value and producing it as output. Its

firing rule then changes to pass all the rightmost inputs through the output port.

1. Our empty stream is different from Weng's. In his implementation all finite streams are
terminated with a special end-of-stream value, and, consequently, one can test for the emptiness

of a stream. It should be noted that it is not difficult to implement Weng's streams with ours.

-14-

Dataflow graphs exhibiting history-sensitive behavior may be constructed by joining stream

operators together with feedback, that is, in cycles. In Figure 2.2, a graph which receives an input

stream and produces an output stream whose n'th value is the sum of the first n input values is

drawn. Interconnections with feedback can be adapted to a wide range of history-sensitive

computations, including those as complicated as the interaction of a computer system with

terminal input and output streams.

Although we have only discussed how streams are used in dataflow languages,

conventional programs with input/output primitives causing side effects can also be considered

to generate streams. The first use of streams for parallel computation was Kahn's [22] "simple

language for parallel programming." In this language, processes were written in an Algol-like

language with two primitives, get and put, for reading input from and writing output to process

channels. The cons stream operator may be written in language very similar to Kahn's as:

Figure 2.2. A history-sensitive dataflow graph

-15-

process cons in (IN1, IN2) out (OUT)

put get(IN1) on OUT

while (true) do

put get(IN2) on OUT

end

end cons

Kahn also developed a notation for connecting processes together to form networks. Because

the interconnection syntax only mentions processes externally, i. e. at the level at which they may

be considered stream receivers and producers, it is equally adaptable to the task of constructing

dataflow graphs from operators or subgraphs. For example, the cyclic graph of Figure 2.2 could

be specified as:

network Sum in (IN) out (OUT) internal (X)

X - cons(0, OUT)

OUT 4- plus(IN, X)

end Sum

Kahn carefully defined his language so that all processes and networks written in it would be

determinate, i. e. always produce the same tuple of output streams in response to a given input

stream tuple. Determinacy was guaranteed by disallowing two kinds of potential races: (1),

tokens from different channels racing to be the first read - avoided by allowing only one output

channel to be connected to an input channel and by allowing the get primitive to wait on only one

input channel; and (2), tokens on a channel overtaking or overwriting each other - avoided by

requiring all channels to be implemented as FIFO queues of unbounded length.

Kahn's language predated and, in many ways, inspired dataflow streams. However, our

primary motivation for presenting his language here is not to provide a historical perspective on

streams, but rather to indicate that dataflow graphs and, consequently, our semantic theories are

relevant to many styles of expressing parallel computation. Readers uncomfortable (or

unimpressed) with the doctrines of dataflow are encouraged to interpret our results consistent

with a more conventional creed of concurrency.

-16-

2.2 A Non-determinate Dataflow Operator

There are many good reasons for making a language determinate. In addition to the

considerable "semantic profit" examined in Chapter3, there is a benefit which would be

appreciated by anyone who has ever tried to debug a parallel program: a determinate

computation has no time-dependent behavior and is consequently always repeatable. However,

there are some applications in which the time-independent reproducibility of determinate

computation would be disastrous, and for this reason we must introduce non-determinate

operators into our dataflow language.

Consider a determinate computer system with one printer, but several terminals. The users

of such a system may be considered as competing for the use of the printer. If user Alice requests

the printing of a file one week before user Zane, we expect Alice's request to be honored first.

However, since the computer system is completely determinate, the time difference between the

two requests must not affect the order in which the requests are serviced: Alice must always go

first. Had Zane actually entered his request first, he must wait indefinitely, perhaps eternally, for

Alice to make her request so that it could be honored before his own.

The behavior we really want of our system is non-determinate. We do want the system to

service the requests of both users, but we do not want the order of service to be determined

a priori. Our language can be extended to include non-determinate behavior by the addition of a

single operator, the merge. The merge receives two input streams and non-deterministically

interleaves them into a single output stream. In its intended implementation, the merge fires as

soon as a value appears on either of its input ports and produces that value at its output port.

There are three possible output stream responses when merge is applied to the input streams 5 6

and 7:

merge(56,7) = 567 or 576 or 756

-17-

Thus, although merge has a very simple firing rule, its behavior is obviously not a simple function

of its input data.

By merging the requests of users competing for a resource into a single stream and then

"passing" that stream to a resource controller, a large class of resource allocation problems can

be programmed with non-determinate dataflow languages. Furthermore, if each request is

tagged to indicate its originator, the resource controller can direct its responses to the proper

recipients. Arvind, Gostelow, and Plouffe [6] have developed dataflow managers which

incorporate the merge operator implicitly and have solved a large number of the "popular"

readers-and-writers problems in their dataflow language, Id. In a survey of non-determinate

dataflow programming (recommended for readers interesting in language aspects of this issue),

Arvind and this author [3] present a shared printer manager which gives priority to short print

requests.

2.3 Operational Semantics

The dataflow graphs described in this chapter will be the programming language on which

our model of non-determinate computation is based. The operational semantics of dataflow

graph execution may be inferred from the firing rules of dataflow operators. The operational

model of execution is called token-pushing: the performance of a series of state transitions

corresponding to the firings of graph operators. The state of a graph is the product of the states

of its component operators and the states, i. e. contents, of its links. Each transition of the graph

is the firing of a dataflow operator. In firing, an operator can remove tokens (values) from its input

ports and add tokens to its output ports. Because an operator may represent something as

complex as a subgraph or a process, the firing rules and the states of operators may be arbitrarily

intricate. It should also be noted that many firings taken by these "large" operators will be

internal and will not affect the contents of any of the graph links.

-18-

The operational semantics of dataflow graphs is a global state model of computation.

Because operators may be widely distributed physically and because firings may occur

concurrently, it will in general be impossible actually to observe an executing graph performing a

discrete state transition or even to determine the state of a graph. However, although firings may

be concurrent, they may never conflict (because operator input links are disjoint), and for that

reason token-pushing is a faithful representation of dataflow execution.

In the succeeding chapters of this thesis, we will use token-pushing as a standard to

measure other, more abstract, models of non-determinate computation. We will only invoke

token-pushing informally - to derive the result of executing a dataflow graph so that the actual

result may be compared with those predicted by other models. Although formal properties of

token-pushing will never be used, nonetheless an intuitive understanding of an operational

semantics of parallel computation is essential for the appreciation of the more abstract ones.

-19-

3. Scenarios: A Model of Non-determinate Computation

The first goal of any semantic theory is to give computational meaning to programs. Other

goals may depend upon the intended audience of the formal specification. In operational

semantic specifications, programs are translated into the code of an abstract state machine. In

theory, an operational semantic definition should be of use to the implementor of a programming

language; in practice, this usefulness may be greatly limited by the distance from the abstract

machine to existing computing machinery. In denotational semantic specifications, the syntactic

elements of a program (expressions, statements, etc.) are mapped directly into mathematical

entities denoting their meanings. Thus a program can be understood directly in terms of its

syntactic structure without reference to its compilation to either an abstract or a real machine.

Another very important goal of a denotational semantic theory should be to provide a usable

methodology for analyzing programs. The test of this methodology is greatest when applied to

large programs.

We are primarily interested in giving a denotational semantics for dataflow graphs. We will

assign a meaning to each dataflow graph without reference to how it will be executed.

Nevertheless, we are very interested in implementation-level operational1 models of dataflow

computation because we must take great care to ensure that our denotational semantics is

consistent with real-world dataflow graph execution.

The earliest attempts to characterize the semantics of parallelism were formalizations of a

global state model of computation [23] very similar to token-pushing, our operational model of

dataflow computation. As we saw in the preceding chapter, in these models the state of a parallel

computation is the states of its constituent operators (or processes) plus the values in transit

1. Our use of the word "operational" here is somewhat incorrect. See Stoy's [41] book, for a
more precise presentation of the different flavors of semantic theory.

-20 -

between these operators, and the state transitions of the computation are the state transitions of

its operators. The sequence of state transitions performed by the system during a computation is

called an execution sequence.

In the global state model, most pairs of state transitions are independent, i. e., they occur at

different operators and have no real causal relationship. Consequently, their positions within the

execution sequence may be interchanged without affecting the result (produced output values) of

the computation. In general, as the size of the parallel program increases, not only the number of

execution sequences, but also the number corresponding to the "same" computation, increases

exponentially. Furthermore, there is an increase in the detail of the execution sequence, because

each of its transitions corresponds to the action of an operator playing a very small role within a

very large computation. For these reasons, the analysis of large systems with the global state

model is a torment for both semanticist and programmer.

The global execution sequences of a parallel program do reveal the meaning of the

program. They do give programs a meaning other than their own syntax. However, when a

program is itself used as a component of another, larger program, there is very little advantage to

viewing the component program as a collection of execution sequences as opposed to a

collection of interconnected processes. The useful semantic quality which the global execution

model lacks is abstraction, the removal of externally uninteresting details of program syntax from

the input-output behavioral specification of a program.

In this chapter we will discuss several previously proposed models of parallel computation

and will present one model of our own. In each of these models we will look for three important

qualities: faithfulness, abstractness, and simplicity.

-21 -

3.1 Fixed Point Semantics for Determinate Networks

History functions are an adequate computational model for a very important class of

dataflow graphs, those composed of determinate operators. During a graph computation, each

irput port receives and each output port transmits a history (sequence) of values. Consequently,

every graph and operator has a history relation associating vectors of input histories, one history

for each input port, with vectors of output histories, one history for each output port.

A graph, or operator, is determinate if there is only one possible output history vector for

each input history vector. Note that this concept of determinacy, by virtue of being defined

without reference to timing, is time-independent. Neither absolute differences in the arrival times

of input values at a single port nor relative differences in the arrival times of input values at

different ports can influence the output of a determinate system. A system producing an integer

value equal to the spacing in micro-seconds between its first two input values is not determinate.

Neither is a system producing as its only output the first input value to arrive at either of two input

ports.

The time-independent property of determinate systems has one very important practical

significance: determinate computations are easily repeatable. This means that determinate

dataflow graphs may be executed with great concurrency without the dangers of

non-reproducibility that may occur in parallel shared-memory computer architectures. One of

the important early achievements of dataflow research [12] was the development of a set of

determinate dataflow operators which could be used to generate graphs implementing all

programs of a general-purpose (though applicative) programming language.

Patil [35] proved that determinate systems are closed under interconnection. Therefore, a

dataflow graph is determinate if its constituent operators are. In Chapter 2 we introduced

Kahn's [22] "simple language for parallel programming." Any process written using Kahn's get

-22 -

and put operators is determinate, and consequently any network of such processes is also

determinate. Kahn [22] used the fixed point methods of Scott [39, 41,42] to define semantically

the results of executing the networks generated with his programming language.

Any determinate process (operator, network, or even graph) P may be modeled by its

history function 'I[P]. When X is the tuple of histories presented on the input ports of P, J[IP](X)

will be the tuple of histories produced at the output ports of P.

In Chapter 2, we presented a network Sum whose n'th output was the sum of its first n

inputs. In Kahn's language Sum was defined as:

network Sum in (IN) out (OUT) internal (X)

X *- cons(O, OUT)

OUT *- plus(IN, X)

end Sum

The two component processes of Sum have the following very simple history functions:

5f[cons](A, Y) = A

lIconsD(x X, Y) = x Y

5F[plus](A, Y) = A

5ISplus]](X, A) = A

¶E[plusJ(x X, y Y) = x+y YSplus](X, Y)

A is the empty history

x, y are single values

X, Y are arbitrary (possibly empty) sequences of values

By replacing each process name within a network definition with its history function, a set of

simultaneous equations is constructed:

X = l[fconsj(O, OUT)

OUT = Fiplus](IN, X)

When the value of the input history IN is fixed, the least fixed point (solution) of the set of

equations gives, as the value of OUT, the output history generated by executing Sum with input

history IN. Thus may the history function of Sum be determined.

-23 -

This method of finding the result of executing a network computation may be applied to any

determinate dataflow graph. The existence of the least fixed point solution depends on three

conditions:

(1), The range and domain of any history function are complete partial orders,

each with a least element. The prefix order C is used to satisfy this condition.

Given histories X and Y, X E Y if and only if XZ = Y for some sequence Z.

History vectors are ordered by the natural extension of E. In a complete partial

order, every increasing chain Xo E X1 E ... has a least upper bound U Xn . is

used to determine the least fixed point.

(2), For any determinate system S, FIS]] is monotonic; i.e. X Y implies

-sit] (X) C sJS] (Y).

(3), For any determinate system S, S]l is continuous; i. e. given an increasing

chain Xo X E ... , 51S](U Xn) = U S-FSD(Xn).

Monotonicity and continuity are two common-sense axioms of computation behavior. The

physical implication of monotonicity is that the more input a system receives the more output it

may produce. The physical implication of continuity is that a system's response to an infinite

input is the "limit" of its response to finite prefixes of that input. Formally, the continuity of I[JSJJ

implies the monotonicity of sI[S].

History functions are a well-suited semantic model for determinate dataflow computation.

They are "maximally" abstract, containing no more information than the system input-output

behavior. They are also simple to use in the derivation of the semantic characterization of large

systems. Furthermore, Faustini [16] has shown history functions to be faithful to the underlying

global-state operational model of dataflow computation by formally proving the equivalence of

the two models.

-24-

3.2 Fixed Point Semantics for Non-determinate Computation

Not all useful dataflow computation is determinate. In Chapter 2, we discussed the need for

non-determinate, time-dependent computation and introduced a single "universal"

non-determinate operator, merge. The merge receives two input streams and indeterminately

interleaves them, roughly in order of time of arrival, into a single output stream.

Fixed point semantics "work" for determinate computation because the dataflow operators

are monotonic and continuous over the domain of history vectors under the prefix ordering.

However, non-determinate dataflow computations are not functions over this domain. At the

least, a non-determinate computation is a function mapping each tuple of input histories into a

set of possible output histories or, equivalently, is a history relation associating tuples of input

histories with tuples of output histories. In order easily to apply Scott's [39] fixed point theory to

non-determinate computation represented by history relations, an ordering (a complete partial

ordering) must be defined on the domain of history relations, the powerset of history tuples, so

that all determinate and non-determinate dataflow operators and all graphs constructed from

them are both monotonic and continuous.

However, no such ordering exists for history relations. This can be easily seen by

considering two data systems constructed using the merge operator. The first system we call

EitherStream. Applied to two input streams, EitherStream indeterminately chooses one of them to

become its output stream. As a history relation, EitherStream may be specified as:

EitherStream(X, Y) = {X, Y)

Using the stream operators of Weng [44] introduced in Chapter 2 along with the merge operator,

EitherStream may be programmed as:

EitherStream(X, Y) =

if first(merge(t rue, false)) then X else Y endif

Applied to the input history vector <A, 5> consisting of the empty stream and the stream

-25-

consisting of the single value five, EitherStream yields either the empty stream or the single-value

stream. Applied to yet more input, in particular the input history tuple (5, 5>, EitherStream yields

the stream consisting of the single value five. Consequently, if monotonicity holds for all history

relations, {A, 5 must be less than {5}.

The second dataflow system we call FirstFiveOnTwo. This system internally merges its two

input streams ard passes the merged inputs to an internal process FirstFiveOnOne which will

produce a single output value five if its first input value is five and will otherwise produce no

output. In Kahn's [22] language, the process FirstFiveOnOne may be programmed as:

process FirstFiveOnOne in (IN) out (OUT)

if get(IN) = 5 then

put 5 on OUT

end

end FirstFiveOnOne

and FirstFiveOnTwo may be considered the "functional" composition FirstFiveOnOne o merge.

When FirstFiveOnTwo is applied to the input history tuple (A, 5>, FirstFiveOnOne will receive a

single input value five and transmit it as its output. Therefore:

FirstFiveOnTwo(<A, 5>) = {5)

However, when FirstFiveOnTwo is applied to more input, in particular <6, 5>, FirstFiveOnOne may

be applied to either 6 5 or 5 6 and, consequently, its output stream will either be empty or consist

of the single value five. Therefore:

FirstFiveOnTwo(<6, 5>) = {A, 5)

Now we have a dilemma for fixed point theory: with FirstFiveOnTwo monotonicity forces us

to consider {5) to be less than {A, 5), but with EitherStream monotonicity forces {A, 5 to be

less than {5). This contradiction implies that we cannot use a straightforward extension of

Kahn's [22] fixed point theory on non-determinate dataflow computations represented as history

-26 -

relations.l

In the remainder of this section, we will look at some proposed fixed point theories for

non-determinate computation. Most of these theories have been designed for models of

computation other than dataflow. Of these, the dataflow-oriented ones are based on underlying

mathematical domains much more complicated than history relations.

Most orderings for non-determinate computation are based on the Egli-Milner[14, 31]

order. This order is defined on the powerset of program values. For sets X and Y of values:

XCMY VxEX 3yEY such that xy and VyEy 3xEX such that xy.

Hence, X Y implies that for every element of the lesser set there is a corresponding greater

element in the greater set and vice versa. This ordering is best suited for use with languages

where non-determinacy results from a choice operator or. The expression "exp 0 or exp1 " is

evaluated by first choosing one of exp0 and exp1 to evaluate and then returning the result of that

evaluation. The intuitive meaning of the Egli-Milner ordering is that as a computation progresses,

every possible non-determinate branch is increased.

While the or operator is monotonic and continuous under the Egli-Milner order, a simple

"enhancement" of it, McCarthy's [28] ambiguity operator amb is not. The expression

"exp0 amb exp1" is evaluated by evaluating exp0 and exp1 simultaneously and returning the

earlier to terminate. This operator is rather like the composition first o merge. Letting I denote

the result of the non-terminating computation, the least element of our underlying domain of

values, am b may be defined as:

1. In fact, it will be shown later in this chapter that in no semantic theory for non-determinate
dataflow computation may dataflow graphs be adequately modeled by history relations.

- 27 -

.. amb y = {y}

x amb I = {x}

xamby = {x,y),if x .Land y ..

Because 5 amb I, or 5}, is not less than 5 amb 6, or {5, 6, under the Egli-Milner order,

amb is not monotonic. Consequently, this ordering cannot be used to define semantically

languages containing the amb operator or, in fact, any operator which "races" concurrent

computations to produce its result.

Another problem arises when the Egli-Milner order is applied to the value domain of streams

ordered by prefix inclusion. In this case, we find that both {A, 5 6 EM {A, 5, 5 6} and

{A, 5, 5 6) EM {A, 5 6. The Egli-Milner order is a true partial order only when applied to value

domains that are flat or discrete, that is, where x E y implies x =. y or x = 1. Plotkin [36]

resolved this problem by considering EM to be an ordering of the powerdomain of equivalence

classes defined by:

X _ Y X CM Y A YMX

Under this equivalence a set X of streams is equivalent to the set Con (CI(X)). The set CI(X) is the

closure of X. It contains the limit points of all sequences that can be constructed from elements of

X; that is, if there exist elements x, x, ... in X such that xo C x1 12 ... then U xn E CI(X).

Con(CI(X)) is the set which makes CI(X) concave; that is, if x, z E CI(X) and x y z then

y E Con(CI(X)). Thus the set of all streams consisting totally of an even number of fives would be

considered equivalent to the set of all streams, even the infinite one, consisting of only fives. Two

systems producing these two different sets of possible output streams cannot be distinguished

with i. is fixed point theory.

The semantic constructions of Lehmann [26] and Smyth [40] avoid equivalence classes of

powersets by considering the powerdomain to be a category of multisets (sets in which elements

may occur several times) instead of a partially ordered set of sets. This powerdomain

construction is particularly obscure; however, it generalizes to one half of the Egli-Milner

-28-

ordering:

XEY + VyEY 3xEX such that xty.

This order provides a means by which branches of a non-determinate computation may fail as the

computation progresses. However, many useful non-determinate operators such as the

previously discussed amb remain non-monotonic (more precisely, are not functors) under this

weaker ordering, and for this reason it cannot be used to describe non-determinate dataflow

computation.

Park [33] has developed a fixed point theory for a somewhat restricted class of

non-determinate dataflow computation. He uses two fixed points, the least and the greatest, to

define the result of the non-determinate operator called the fairmerge. The fairmerge agrees

with our merge only on infinite input histories. It may "deadlock" when one of its input histories

is finite and ignore values of the other input history.

In a later paper [34] Park defines the semantics of unrestricted non-determinate dataflow

computation by considering streams to contain hiatons, non-existent values that cannot be

manipulated by programs but merely serve as semantic place holders. Hiatons may be

considered as the tokens produced by a system whenever it needs to mark time. All the fixed

point equations of this theory have unique solutions, thus avoiding much of the complexity of

Park's earlier work. However, this uniqueness results from requiring all functions to be

> - functions, i. e. functions which produce output histories longer than their input histories. Any

function may be easily made into a > - function by the introduction of hiatons into its output. This

explicit introduction of time into the representation of computation does lead to some loss of

abstraction, even for determinate graphs. For example, a single dataflow identity operator and

two concatenated identity operators will not share the same hiatonized semantic characterization.

Recently, Broy [10] has proposed an elaborate fixed point theory for dataflow computation.

The derivation of a dataflow graph execution following his techniques is quite diffic!lt, involving

-29-

the solution of three fixed point equations (one obtained by the replacement of some graph

operators) under three different orderings of the set of streams. Furthermore, this theory is

incapable of modeling the merge used in this thesis. Our merge is fair1 in that it will eventually

accept any of its input tokens. The fair merge is necessary for any resource management

application [3] in which a response is to be guaranteed for any allocation request. Broy's theory

can only be used with the unfair merge which admits the possibility of one input "hogging" the

operator's output.

Kosinski [25] has defined a denotational semantics in which values are "tagged" with the

sequence of non-determinate merge "decisions" which caused their generation. Networks are

then defined as functions mapping tagged input history tuples into sets of tagged output history

tuples. The derivation of a network's semantic characterization from those of its components is

the solution of a fixed point equation which includes the matching of value tags to determine

consistent input histories for processes with multiple input ports.

Clinger [11] has pointed out a significant technical shortcoming in Kosinski's ordering of

sets of tagged histories. Even if this problem were overcome, Kosinski's formal characterization

of dataflow graphs would still contain many details of internal operator communication together

with the information concerning externally observable behavior contained in history relations. For

large graphs these internal details, most of them irrelevant, could easily overwhelm the useful

information.

Not all research in the semantics of non-determinate computation occurs within the context

of dataflow. Perhaps the most active research in non-determinacy is concerned with formalizing

1. Again, this is not the fairmerge operator of Park's earlier paper [33] which interleaves all its
input tokens only if both input streams are infinite. The word "fair," at least in the context of
dataflow, is yet another example of a British-American difference in word usage.

-30-

the execution of concurrent processes which communicate by simultaneous and co-operative

action. Most of the programming languages utilizing this type of communication are akin to

Hoare's'[19] CSP (Communicating Sequential Processes) or Milner's[32] CCS (Calculus of

Communicating Systems). In these languages when two processes wish to communicate both

must do so synchronously: one process will receive a value while the other simultaneously sends

it. Although the communication itself will only involve two processes, a process may offer to

interact with several processes even if it will eventually succeed in communicating with at most

one. The non-determinacy of synchronized communication results from the competition of these

potential communicators.

Viewed externally, the processes of these languages appear to be performing a series of

message transmissions and receptions. Consequently, it is only natural that their semantic

models should have a similar structure. Two well-known semantic models for this form of

computation are the synchronization trees of Milner [32] and the failure sets of Hoare, Brookes,

and Roscoe [9, 20].

In Milner's synchronization tree model a process is represented by a tree whose nodes

correspond to possible states of the process. The links of the tree correspond to state changes

accomplished through communication. However, not all links represent interaction with external

processes. A process may itself be composed of several subprocesses which engage in internal

communication. A synchronization tree may have links corresponding to silent transitions

resulting from these internal transactions. Obviously, many of these silent transitions represent

an internal detail of process computation that could never be uncovered by external manipulation

of the process. Milner prevents the potential loss of abstraction that could result from the

incorporation of silent transitions in synchronization trees by defining a notion of observation

equivalence in which two processes are considered equivalent if their behavior is

indistinguishable in every context, that is, if they can be substituted for each other as

-31 -

subprocesses of any system without noticeably changing that system's externally observable

behavior. Milner adopts as his model of non-determinate computation the quotient set of

synchronization trees under observation equivalence.

In the failure set model of Hoare, Brookes and Roscoe [9, 20], a process is represented as a

set of pairs of the form <s, X> where s is a trace (sequence of communications) which the process

may perform, immediately after which it cannot perform any communication within the refusal set

X. Although the refusal set, being a statement of what the process cannot do, may seem

unnatural, its role in the failure set model is similar to that of silent transitions in the

synchronization tree model. Refusal sets may be used to distinguish those instances in which

internal transitions which immediately follow the performance of a trace affect the ability of a

process to participate in future external communication.

A very lucid and concise summary and comparison of these two semantic models has been

given by Brookes [9]. Rather than elaborate any further on the differences between the two

theories, we will restrict out attention to their most apparent commonality, the representation

(more or less) of a concurrent process as a set of totally ordered sequences of external.

communications, and examine the consequences of applying this representation to dataflow, a

computational model admittedly outside the intended application area of both semantic

formalisms.

The relevance of synchronized communication models to dataflow computation is not at all

obvious. Dataflow communication is not only asynchronous but is even queued through

unbounded buffers. However, it is not hard to transform a dataflow graph into a synchronized

process: all that is required is the placement of synchronized unbounded-buffer processes on all

its ports. Each buffer process must always be ready to receive values at its input port, and, as

long as the buffer is non-empty, it must be ready to transmit values at its output port.

-32-

This transformation once performed allows the use of synchronization trees and failure sets

in the analysis of dataflow graphs. However, these models when applied to dataflow will retain the

underlying sequentiality of synchronous communication. In particular, dataflow graphs will

appear to communicate in totally ordered sequences although at the implementation level values

may be received and produced concurrently on different ports. In both the CCS and CSP models,

concurrent communication must be represented as a collection of all the alternative interleavings

of the communication. Milner[31] admits that synchronization trees do not represent "true

concurrency" but argues for his sequential approach on the grounds that it is simple and

observable (after all, only one event can be seen at a time). Furthermore, Milner demonstrates

that he can analyze with little difficulty many truly concurrent systems.

However, the simplicity of a formal model must be measured relative to the programming

constructs to which it is to be applied. Some very important dataflow concepts change when

graphs are viewed as performing sequential synchronous communication. One such concept is

determinacy. Dataflow graphs once considered determinate may now appear to have an ability to

non-determinately "choose" the order in which to produce output values at different ports.

Admittedly, synchronization trees and failure sets could be applied to dataflow, and the

resultant theory would certainly be adequate and even simple when compared to many of the

previously-mentioned theories of non-determinate dataflow computation. However, one goal in

this thesis is to retain, as far as possible, the history-orientation of Kahn [22] and to construct a

semantic theory in the spirit of the asynchrony of dataflow.

-33-

3.3 The Incompleteness of History Relations

By comparison to many of the preceding models of non-determinate dataflow computation,

history relations are quite simple. But unfortunately history relations lack sufficient detail to

describe the behavior of interconnected graphs. In the remainder of this chapter, we will show

this incompleteness and will describe a natural extension of history relations that is adequate for

non-determinate computation. These results have been previously reported in a paper of this

author and Ackerman [8]. The incompleteness of history relations will be demonstrated by

exhibiting two dataflow graphs S, and S 2 which have the same history relation, but which cannot

be substituted for each other as components of a larger network without changing that network's

history relation. Consequently, there can be no "correct" interconnection rules for networks

represented by history relations. Formally interpreted within the algebraic terminology employed

by Milne and Milner [30], the incompleteness result shows that the function mapping each

dataflow graph into its history relation cannot be extended to a morphism of the algebra of

dataflow graphs.

It should be noted that our demonstration of the incompleteness of history relations differs

fundamentally from that of Keller [24]. His demonstration uses a graph similar to that of

Figure 3.1. Beside each graph arc is written all its possible histories with graph input history 5.

When computation begins, the value five passes through the leftmost input port of the me rge and

causes six to appear on the rightmost input port. Eventually, the merge will produce the output

history 5 6. However, Keller, "pursuing the incremental approach" to semantics, assumes that,

in any semantic theory in which non-determinate processes are represented as history relations,

the output of the merge operator could be any element of merge(5, 6), including the clearly

physically impossible 6 5; given that if "these inputs were presented externally, this would

certainly be the case." From this merge anomaly he concludes that history relations must be

extended to include causality relations between individual elements of different histories. We do,

-34-

Figure 3.1. Keller's Example (with slight modification)

{5

{(5

accept Keller's ultimate conclusion; however, we believe that his anomaly

demonstrates at most that history relation interconnection rules which ignore causality fail. It

does not show that the necessary causality relations cannot be inferred from history relations by,

for example, requiring that later output of a merge does not "rewrite" earlier output. 1 Keller

shows there are no easy interconnection rules for networks characterized by history relations.

We show there are no interconnection rules.

1. There are several subalgebras of data flow graphs which exhibit Keller's merge anomaly but
which are amenable to analysis by history relations. A very simple one, consisting of only
two-input two-output graphs, may be constructed using a single non-determinate dataflow
operator computing plus1 o first o merge at both output ports (always the same value on both,
that is, the output values are not separately computed) and a single graph interconnection rule of
composing two graphs by placing them side-by-side and then connecting the rightmost ports of
the left graph to the leftmost ports of the right graph.

of course,

__ ____ _ __

-35-

Let S1 and S2 be the graphs shown in Figure 3.2. Syntactically, S1 and S2 may be written:

Sk(X, Y) = Pk(merge(D(X), D(Y)))

D, P1, and P2 are all determinate processes which produce at most two output values. Process D

produces two copies of its first input value. In Kahn's [22] language, it may be written as:

process D in (IN) out (OUT)

x *- get(IN)

put x on OUT

put x on OUT

end D

Both P and P2 allow their first two input values to pass through themselves as their first two

output values. However, P1 will produce its first output as soon as it receives its first input, while

P2 will not produce any output until it has received two input values. In Kahn's language P1 and

P2 may be written as:

Figure 3.2. Sk fork E {1, 2}

_ __

-36-

process P1 in (IN) out (OUT)

x *- get(IN)

put x on OUT

y *- get(IN)

put yon OUT
end P1

process P2 in (IN) out (OUT)

x *- get(IN)

y - get(IN)
put x on OUT

put y on OUT

end P2

As history functions these three processes may be specified as:

D(A) = A

D(x Z) = x

P(A) = A

Pl(x) = x

Pl(x y Z) = y

P2 (A) = A

P2 (x) = A

P2(x y Z) =x y

A is the empty history

x and y are single values

Z is an arbitrary (possibly empty) sequence of values

Despite the difference between P1 and P2, networks S1 and S2 have the same history

relation representation. Neither network produces any output unless it receives some input.

Suppose Sk receives the input stream x X at its leftmost input port and no input at its rightmost

port. Then the leftmost D process will produce the output history x x, while the rightmost D will

produce nothing. The streams x x and the empty stream will be merged into the stream x x.

Regardless of whether Sk is S 1 or S2, process Pk (PI or P2) will receive x x, two input values, and

-37-

will produce x x as its, and hence Sk's, output. A similar situation occurs if input is received on

the rightmost port only.

If Sk receives input at both input ports, in particular, the stream x X on the rightmost and the

stream y Y on the leftmost, it will internally merge the two input streams x x and y y produced by

the D processes and communicate the merged stream to Pk' Although there are six possible ways

of interleaving x x and y y, we (and the Pk) are only interested in the first two elements of these

interleavings, and of these there are only four possibilities: x x, x y, y x, and y y. The output of

Pk and consequently Sk, may be any of these four sequences.

Because the D processes guarantee the generation of at least two input values for Pk as

long as Sk receives any input, the differences between P1 and P2, and consequently S1 and S2 ,

are avoided, at least at the history relation level of behavioral specification. S1 and S 2 have the

same history relation:

Sk(A, A) = {A})

Sk(x X, A) = {x x}

Sk(A, Y Y) = {y }

Sk(X X, y Y) = {x x, X y, y x, y yJ

A is the empty history

x, y are single values

X, Y are arbitrary (possibly empty) sequences of values

However, there is a subtle difference in the behaviors of the two networks: S2 will not produce its

first output until its second output has been determined. These networks can be placed within a

larger network which uncovers this difference.

Let T1 and T2 be the networks of Figure3.3. Tk is a cyclic network containing the

non-determinate process (subgraph) Sk and the determinate process times5, which multiplies

each of its input values by five. Tk's single input port is the leftmost input port of Sk' The outputs

of Sk are routed to two destinations: to the single output port of Tk and, through the times5

-38-

Figure 3.3. Tk for k E {1,2}

operator, to the rightmost input port of S k. In Kahn's language, this interconnection may be

specified as:

network Tk In (IN) out (OUT) internal (X)

X 4- times5(OUT)

OUT *- Sk(IN, X)

end Tk

If history relations are an adequately detailed model of non-determinate dataflow

computation, then networks T1 and T2 should have the same history relation as all their

corresponding components do. However, this is not the case, as can be seen by simulating the

execution of these two networks on the input history consisting of the single input one. In

Figure 3.4 we have "removed the cover" from Sk and have reproduced Tk with the internal

components of Sk clearly shown. Let us now examine all possible computations of first T and

__

-39-

Figure 3.4. Tk for k E {1, 2) (exploded)

r
i

I

I

I

i

I

- -I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

-j

IT,

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I -

-40-

then T2 with input history 1.1

Suppose T1 receives the single input value one. The value one passes through the leftmost

D process which then produces the output stream 1 1. At this point the merge has no "choice"

as to its next action. It must remove the first value from its leftmost input port and produce it at its

first output. That value, a one, then passes through P1 to become the first output of T1. The value

is multiplied by five by the times5 operator, causing the value five to appear at the rightmost

input port of S1. The value five is duplicated by the rightmost D process producing the output

stream 5 5. Now the merge does have a choice: it may either accept its second leftmost input,

the value one, or its first rightmost input, the value five, to become its second output. The merge

may have already taken the one before the five arrives, but nevertheless a possibility for choice

does exist. P will pass its second input, whichever of one or five was chosen, through as the

second output value of T1. There may be further firings of the merge and times5 operators, but

these cannot affect the output of T1. Therefore, applied to the input stream 1, T1 has two possible

output streams, 1 1 and 1 5.

T 1(1) = 1 1, 1 5)

Now suppose T2 receives the input sequence 1. The value one enters the leftmost D

process which produces the output stream 1 1. As in the T1 case, the merge has no choice but

to remove the first one and produce it as its own first output and as the first input of P2. But here,

we encounter a difference between the two systems. P2 will not produce any output until its has

received two input values, while P, could produce output upon immediate receipt of input.

Eventually, the merge must remove the second value, another one, from its leftmost input port

1. Readers interested in a more meaningful investment in this simulation are advised to dig deep
into their pockets to obtain thirteen cents, three pennies and two nickels, to use as data values
before proceeding.

-41 -

and make it the second input to P2 ' P2 will now produce output, in particular 1 1, which will

become the eventual output of T2. Again, computation may proceed internally within T2, but no

further output will be produced. Unlike T1 , T2 has but one possible output sequence, 1 1.

Therefore:

T2(1) =11)

By taking two networks with the same history relation and showing that they are not

substitutable as components of a larger network, we have demonstrated that history relations

incompletely specify the behavior of non-determinate networks. Although we have derived the

history relations of our example networks using the somewhat informal operational semantics of

token-pushing discussed in Chapter 2, more formal derivations could be made.

3.4 Scenarios: An Informal Introduction

In this section we introduce scenario sets, our own model of non-determinate dataflow

computation, to overcome the shortcomings of history relations. A history relation is a set of pairs

of input and output history tuples. Each pair represents one possible, potentially eternal,

computation of a modeled process. A single scenario is one of these pairs augmented with a

partial ordering on the individual data items of the history tuples showing causality. As such the

scenario has three components: an input history vector, an output history vector, and a causality

relation on the individual tokens of the input and output histories. Two tokens are causally related

if the event of producing one must precede the event of producing the other. Consequently, the

tokens of one input (or one output) history are totally ordered under the causality relation, since

early tokens of a stream must be produced before later ones. If an input token contributes,

through a series of indivisible primitive actions, to the production of an output token, it is causally

related to that output token. Note that, when a system is viewed as a "black box" with

unconnected input and output ports, no input token can cause an input token on another port, no

-42 -

output token can cause an output token on another port, and no output token can cause an input

token. Consequently, the only possible causality relations that can exist are those between

elements of a single history and those from an input token to an output token. In some ways the

ordering of the scenario resembles the "combined order" of Hewitt and Baker [18]. A system,

itself, is represented by the scenario set of all its possible behaviors.'

A scenario can be drawn graphically with each input or output history shown as a column of

values and with arrows drawn between causally related values. Because every history is totally

ordered causally, arrows must be drawn the length of all columns. The only other arrows will be

from input values to the output values they cause. The requirement that the causality order be

partial may be restated as the requirement that arrows do not form directed cycles; that is, that no

value "causes" itself. There are three possible behaviors of the merge operator when receiving

the input history tuple (5 6, 7. The corresponding three scenarios are illustrated in Figure 3.5.

The entire specification of the merge by scenarios consists of an infinite set of scenarios with

many, perhaps infinitely many, scenarios for each input history tuple.

Before describing how scenario sets of networks can be derived from those of their

components, let use use our intuition concerning causality to construct scenario sets for systems

S1 and S2 (Figure 3.2). Because at most one value from either input port can contribute to the

Figure 3.5. Scenarios for merge(5 6, 7)

(56, 7) 567 (56, 7) - 576 (56, 7) - 756

_ . -7
1
6 6 6 7 6 5

1 \ < I
7 6 - 6

-43 -

output of Sk, we will only consider input histories of length zero or one. In Figure 3.6, the five easy

cases are illustrated. The scenarios for these cases are common to both S1 and S2 . The most

trivial case is that in which no input is received, and, consequently, no output is produced. In this

case, the causality relation is, of necessity, empty. The remaining four trivial cases (shown as

scenario "schemas") occur when only one input value contributes to, i. e. causes, both output

values of Sk. In each of these cases, a D module accepts this input value and transmits two

copies of it to the merge which in turn trn she copies to Pk (as its first two input values)

which in turn transmits them to be- tput port of Sk. Any other input value to Sk could cause, at

best, the third 'vput of the merge and cariequently can play no role in the generation of Sk's

output.

The non-trivial cases are the interesting ones, for it is in these cases that scenarios reveal

the difference between S1 and S2 . Suppose both input values contribute to the output value of Sk.

We have drawn the scenario schemas for this case in Figure 3.7 for S1 and in Figure 3.8 for S2.

For now assume that the leftmost input of Sk "becomes" its first output. (This is the leftmost

scenario in both figures.) The symmetric case may be analyzed similarly. Whether in S1 or in S2 ,

Figure 3.6. Scenarios in Both S1 and S2

(A, A) A (x, A) - xx (A, y) y y

A A A A y -y

x y

(x, y) -, x x (x, y) -,y y

x y x y -y

ix y
x y

-44-

Figure 3.7. Scenarios for S1 Only

(x, y)-- xy

y

(x, y) -. yx

x y B-y

x

Figure 3.8. Scenarios for S2 Only

(x, y) x y

x y .x

y

(x, y) -- x

x y - y

I
x

the merge will receive a stream x x on its left and a stream y y on its right and will transmit a

stream beginning with x y to Pk' Pk will, of course, produce x y as the output of Sk. However,

only Pl's first input is required to produce the first output. Consequently, only the leftmost input

of S1 causes its first output. But with P2 both input values, including that resulting from the

rightmost input of S2, are required for the production of the first output. Consequently, both input

values of S2 cause its first output value. So, although the history relation specifications of these

computations are identical, their scenarios reveal the subtle difference in behavior that becomes

apparent when the systems are used in the construction of T1 and T2.

Given the scenario sets for the components of a network, we wish to derive scenario sets for

the network. The method for performing this derivation is the scenario composition rule. In the

remainder of this chapter, we will present, somewhat informally, the scenario composition rule for

two component networks and illustrate it by deriving scenarios for networks T1 and T2. In

_ F _ __�_

-45-

Chapter 5, we will develop a more formal algebra of scenario set composition and will "prove" the

faithfulness of the scenario composition rule to the operational semantics of dataflow

computation.

Given the scenario sets of the components of a network of two systems, the scenario set of

the interconnection is obtained by a four-step procedure. First, enumerate the Cartesian product

of the scenario sets of the two systems. The remaining three steps will filter and refine this set of

scenario pairs.

Second, discard all scenario pairs whose data values do not agree on ports that are linked to

each other, and "merge" each pair into one scenario, identifying the columns of linked ports.

Obviously, two scenarios can co-exist as part of the same computation only if they specify the

same histories for connected ports. These scenario pairs we call value-consistent. They

correspond to the fixed points of determinate dataflow computation.

Third, if a directed cycle exists within a merged value-consistent pair, discard the pair. If

there is a directed cycle, we have a "spontaneous" value causing itself and, furthermore, our

causality relation is not a partial order. The remaining scenario pairs we call causality-consistent.

They correspond to the least fixed points of determinate dataflow computation.

Fourth, and finally, from each of the causality-consistent pairs remove the columns of linked

ports. If a chain of arrows is broken by the removal of a column, draw a new "direct" arrow to

replace that chain; that is, extend the partial order across the identified columns. The linked ports

are an internal feature of the interconnection and no reference should be made to them in an

external specification of the network's behavior. However, if an input to the network causes an

output by acting through one of the internally connected ports, this causal relationship must be

shown in the network's scenario by extension of the partial order.

-46-

Although we derived the scenario sets for S1 and S2 through "common-sense" causal

reasoning, the same result could be obtained by use of the scenario composition rule, and the

skeptical reader is invited to verify this claim. We will illustrate the composition rule by applying it

to the systems Ti and T2 with special reference to the input history of the single value one which

resulted in the history relation merge anomaly.

Tk is an interconnection of two systems: Sk and timesS. For both T1 and T2, there are only

two value-consistent scenario pairs for the input history 1. In Figure 3.9, the value-consistent

pairs for T1 are illustrated both with and without the merging of the connected ports. Both of the

merged value-consistent pairs are causality-consistent, and each can be made into a scenario by

the removal of the internal column. Thus the scenario composition rule is consistent with our

earlier observation that T1 could produce either 1 1 or 1 5 in response to the input history 1.

Figu re 3.9. Value-consistent Pairs for T1(1)

T1:1 -- 11
Si:(1,5 5) 1 1
times5: I - 5 5

T1:1 -- 15
Si: (1, 5 25) -1 5
times5:1 5 - 5 25

without port merging

1 ;5
1 - 5

with port merging

1 5-- 1

54 1

1 5 r- 5

25w- 5

1 le 5"14,

5 1

5 --- 5

1 >5
5 25

1~~~~~~
25 5

-47 -

In Figure 3.10, the value-consistent pairs for T2 are illustrated both with and without the

merging of the connected ports. However, note that now only one of the merged value-consistent

pairs is causality-consistent. In the other we see a cycle (between the one in Sk's output and the

five in Sk's rightmost input). The scenario composition rule correctly reflects the fact that 1 1 is

the only response of T2 to the input history 1.

In the beginning of this chapter, we mentioned faithfulness, abstraction, and simplicity as

three goals of a semantic theory. With scenarios, faithfulness to the underlying operational model

results from the manner in which the scenario causality relation reflects the causality implied by

the firing sequences of the operational model. In Chapter 5 we shall make a more formal

assertion of this claim. We have shown that no semantic theory for non-determinate dataflow

computation can be as abstract as history relations, the pure input/output behavioral

specification for this class of computation. However, scenarios are not so far from this

Figure 3.10. Value-consistent Pairs for T2(1)

T2: 1 1 1 T2: 1 - 15
S2 :(1,55) --*1 1 S2: (1,5 25) -*15
times5: 11 -,5 5 times5: 1 5- 5 25

without port merging

I 5 I 11 5 1 .5 5 -- 1 5 -5
I I J I J lr I
5 1 1- 5 25 5 5 - 25

with port merging

1 5 -- 1 1 54- 1

5 c- 1 25 -- 5

-48-

unattainable goal. They are just history relations augmented with a notion of causality. The most

striking advantage of the scenario model when compared to other proposed models of

non-determinate dataflow computation must be the simplicity of its composition rule. Scenario

composition does not require the solution of complicated fixed point equations over complicated

mathematical domains. Scenarios can be composed with no more complicated mathematical

machinery than the knowledge of partial orders.

-49-

4. The Dataflow Graph Algebra

In this brief chapter we define an algebra for dataflow graphs. This algebra may be

considered as the syntax for an "assembly" language for specifying dataflow graphs, but

certainly not as a serious programming language (as will soon be apparent). We present this

language to provide a base language for the more complete and formal definition of the scenario

model of dataflow computation which appears in the next chapter.

Our graph algebra will resemble the initial flowgraph algebra of Milne and Milner [30], but

there are, of course, some important differences. While the ports of flowgraphs are bi-directional,

the ports of dataflow graphs are either input or output ports. Also, while several ports of a

flowgraph may be connected together, the only port connection we allow is of a single output port

to a single input port. For this reason we do not need the "restriction" operator.

We assume as generators or base objects of the algebra a set A of dataflow actors. The

actual members of A will not be crucial to our discussion. However, a "useful" A would contain

the necessary operators to implement a high-level dataflow programming language such as Id [5]

or VAL [2, 29]. The A we will use will be composed of all determinate processes written in

Kahn's [22] language plus the non-determinate merge operator. Associated with each operator

o of A are two disjoint sets, a set Inport(o) of input port labels and a set Outport(o) of output

labels. For convenience, Port(o) denotes Inport(o) U Outport(o). These sets will play an

important role in determining the applicability of the combining operators of the dataflow graph

algebra to particular graphs.

The dataflow graph algebra has only three operators: graph union, port relabeling, and port

connection. These three are sufficient to describe any dataflow graph. The graph union operator

IIG is binlary. Graph union is illustrated in graphic detail in Figure 4.1. Graph union is merely the

association of two disjoint graphs with no implied interconnection of ports. The labels of the

-50-

Figure 4.1. Graph union IIG

1L / L I ' I

.7

I

I

F G

.!_. I . i
N N ~ NU9 N9' N/

constituent graphs are unchanged by graph union. In order to avoid problems of duplicate port

labels, the graph union operator is restricted to graphs G and H with disjoint port labels, i. e.

G IIG H is defined only when Port(G) n Port(H) = 0. Consequently, the input ports,

Inport(G IG H), of the joined graphs are Inport(G) U Inport(H), and the output ports,

Outport(G IIG H), are Outport(G) U Outport(H).

Because graph union is limited to graphs with disjoint labels, it will often be necessary to

relabel ports before graphs are joined. The port relabeling operator [/G] is used for this purpose.

Actually, [6-] represents an operator schema: for each pair (a, f> of port labels, there is a

relabeling operator [a/G] which renames port a to be port ,B. Port relabeling is illustrated in

Figure 4.2. Port relabeling cannot be used to introduce duplicate port labels. For this reason,

G [a4] is defined only when ,f is not a port label of G. For convenience, we also require that a

must be a port label of G. If a is an input port of G, then Inport(G [a/G]) =

(Inport(G) - {a)) U {B), and Outport(G [a/c8]) = Outport(G). Similarly, if a is an output port of

G, then Outport(G [a/@]) = (Outport(G)- {a)) U {,8}, and Inport(G [/G]) = Inport(G).

F IG G

7"
6 - 1

7 /-

L-- tI

l _ ,11 ·

7-

6; _I

N
LJ

/ \

-51 -

Figure 4.2. Port relabeling []

F [ael Ji

a
\r

N8

/

Z7Il _ _F
I-ii! !

Nj

The third, and final, dataflow graph operation is port connection. Port connection ['-G*],

like port relabeling, is a unary operator and is also an operator schema. The port connection

operator [a-GS] can be applied only to graphs G with an output port a and an input port . The

graph G [a-ga], illustrated in Figure 4.3, is formed by connecting output port a to input port 8.

The connected ports become internal1 to the new graph and may never play any role in future

graph interconnections. Thus Inport(G [a -c]) = Inport(G)- {}, and Outport(G [a-8]) =

Outport(G)- {a}. The connection of an output port to two or more input ports is accomplished

by the explicit use of determinate fan-out operators.

Obviously it is quite tedious to build up a graph with these operators. In Figure 4.4 a simple

three-operator dataflow graph for computing the dot product of two two-element vectors, (x0, y)

and (x,, y,), is shown and described in our algebraic notation. We assume that each of the three

1. "Restricted" in the Milne-Milner [30] terminology.

1 ,

i t \ e

- 52 -

Figure 4.3. Port connection ['-G']

N

I

i

L

dataflow operators has input ports labeled In, and In2 and an output port labeled Out, and that

each input port of the assembled graph should be labeled by the appropriate variable name and

the graph output port should be labeled Result. This rather straightforward interconnection

requires no less than thirteen applications of our operators. However, since we are only

concerned with developing a basis for the formalism of the succeeding chapter, the wordiness of

our notation is of little concern.

,r .. Ar La'GPJ
i

a)

i'

F

· III I I · I · I I S

I~~~~~~~ ,

-- -

F 11 L

I · *- l _

u l

-53-

Figure 4.4. Two-Element Dot Product

x0 X1

Result

(times [In, x] [In2 4

times [In, yo] [In2

plus [In, A Op 3In,] [In2

[OPlOUt, "G p3ln1]

x,] [ut, G OpoUt,] IIG

Y,] [Out, 4 Op2Out,] 11G

4 Op31n2] [Outl 4 Result])

[Op2Out, M-G OP31n2]

Yo Y1

_ __ _ __

-54-

5. The Scenario Set Algebra

In this chapter we will construct a formal model for the scenario model of computation

introduced informally in Chapter3. This model consists of two parts: (1), a representation of

scenarios, and hence of scenario sets, and (2), a formal definition of the scenario composition

rules. We will also use this model to assert the faithfulness of the scenario model of computation

to token-pushing, the operational model of dataflow computation presented in Chapter 2.

Like graphs, scenario sets have labeled input and output ports. Given disjoint sets In of

input port labels and Out of output port labels, a scenario is a triple <E, V, C> where:

E is the set of scenario events. Each element of E is an ordered pair consisting

of a port label and an integer greater than zero. If <a, n> is in E, it represents the

event of receiving (or producing) the n'th value at input (or output) port a.

V is the scenario valuation function mapping the events of E into the set of

elementary dataflow token values. Consequently, V(<a, n)) is the value of the

n'th token received (or produced) at port a.

C is the scenario causality relation on events. If (a, m> C (<, n> then the event

of receiving (or producing) the m'th element at port a contributes to the event of

recei:ing (or producing) the n'th element at port ,B.

Furthermore, the three components of a scenario must obey the same scenario restrictions stated

somewhat informally in Chapter 3. In particular:

If (a, n> is an element of E and m is an integer greater than zero and less than n,

then <a, m> is also an element of E. This restriction prevents port histories from

having "holes."

If <a, m> and <a, n> are elements of E and m is less than or equal to n, then

<a, m> C <a, n>. That is, early elements of a history must precede later ones.

If a and P are distinct port labels and <a, m> C <8, n> then a is an input port

label and B8 is an output port label. Therefore, the only inter-port causalities are

from input events to output events.

C is a partial order: two events do not cause each other.

-55 -

In Figure 5.1, the scenario for the merge with input history tuple 5 6, 7> leading to the

production of the output sequence 5 7 6 is illustrated. Assuming that the merge has input port

labels InI and In2 and output port label Out1 , the scenario of Figure 5.1 is represented by the triple

<E, V, C> where:

E = {<In,, 1>, <In, 2>, <In2, 1>, (Out 1 , 1>, <Out,, 2>, (Out,, 3>)

V(<ln, 1>) = 5 V((ln , 1>) =7 V(<Out, 1>) = 5

V((ln,, 2>) = 6 V(<Out, 2>) = 7

V(<Out,, 3>) = 6

C is represented in Figure 5.2 as a Hasse diagram, the usual pictorial

representation of a partial order. When this relation is enumerated as a subset

of E X E, it contains sixteen ordered pairs.

Figure 5.1. One Scenario for merge(5 6, 7)

6 7

6

Figure 5.2. Hasse Diagram for a merge Causality Relation

< In 1 7 (Out,, 1>

<In1, 2> Out1 , 2>

<Out, 3>

-56-

5.1 Operators of the Scenario Set Algebra

For consistency with our dataflow graph algebra, Inport(S) denotes the set of input port

labels and Outport(S) denotes the set of output port labels of a scenario set S. Like the dataflow

graph algebra, the scenario algebra has three operations, Ils, [], and ['s']. Applications of

the scenario operators must satisfy the same constraints on input and output port labels that the

corresponding applications of dataflow graph operators must satisfy.

Scenario set union is little more than taking the Cartesian product of two scenario sets. Like

iiG, if S and S' are scenario sets, then S I S' is defined only if S and S' have disjoint port labels.

For each scenario (E, V, C> of S and <E, V', C'> of S', <E U E, V U V', C U C'> is a scenario of

S Ils S'. The set unions used to define this scenario reflect the underlying independence of two

paired, but unconnected, systems. The events of the new scenario are the events of either of the

two component scenarios. It may seem unusual to take unions of functions and relations, but

because the underlying event domains are disjoint it really works. The union of the valuation

functions and the causality relations may be expressed more conventionally as:

(V U V')(<a, n>) = V(<a, n>), if <a, n> E E

= V'(<a, n>), if <a, n> E E'

<a, n> (C U C') <, m> = <a, n> C <, mn>, if <a, n>, <, ,m> E E
= a, n> C' <,, m>, if <a, n>, <, m> E'

= false, otherwise

It is pretty easy to see that C U C' satisfies the restrictions on causality relations stated at the

beginning of this chapter and thus to conclude that <E U E, V U V', C U C') is indeed a scenario.

Scenario set port relabeling is an even simpler operation. If S is a scenario set with port

label a and without port label .8, then S [as8] is defined. For every scenario <E, V, C> of S there is

a scenario <E, V' C'> of S [as6] formed from <E, V, C> by replacing all occurrences of a with ,8.

By "replace all occurrences" we mean:

-57-

E' = {<y, m>l <y, m>) E and y a) U {<, m> I <a, m>) E}

V'((y, m>) = V(<y, m>), if <y, m> E E and y 0 a

V'(<., m>) = V(<a, m>), if <a, m)> E E

(y, m) C'< 8, n) = <y, m> C <8, n, if y a and 8 a
<y, m>C'< (, n) = (y, m> C <a, n, if yf a
(, m> C'< 8, n= (a, m>C <8, n, if 8 a
<, m> C'<I, n> = <a, m> C (a, n>

Once again it is easy to show that C' satisfies the requirements of a causality relation.

The final scenario set operator is port connection, and it is by far the most difficult to

formalize. Let S be a scenario set with output port a and input port 8. We derive the scenario set

S [a-*s,8] by the same filtering process described informally in Chapter 3.

Definition: A scenario <E, V, C> is a-,8 value-consistent if and only if:

(1), <a, m> E E if and only if <,8, m)> E E, and

(2), V(<a, m>) = V(<P(, m>) for all <a, m> E E.

Value-consistency characterizes those scenarios in which the histories at output port a and input

port B are identical.

Definition: A scenario <E, V, C) is a-f causality-consistent if and only if:

(1), <E, V, C> is a-9 value-consistent, and

(2), for all <,, m>) E E, it is not the case that <,8, m> C <a, m>.

Satisfaction of causality-consistency ensures that, when output port a is connected to input port

P8, no value passing through the connection causes itself. Consequently, all a-.8

causality-consistent scenarios represent feasible computations for systems in which the a-.8

connection has been made. This port connection, once made, will, of course, introduce extra

causality relationships.

Definition: For an a-, causality-consistent scenario <E, V, C, the a-8

connection relation on E is the relation C* such that <y, m> C* <8, n> if and only

if:

(1), <y, m> C <8, n, or

(2), there exists <(a, p> in E such that <y, m)> C <(a, p> and <, p> C <(, n>.

-58-

The suitability of the a-#f connection relation for constructing scenarios is established by

the following lemma:

Lemma: The a-fi connection relation of an a-fl causality-consistent scenario

is a partial order.

Proof: Let C* be the a-fl connection relation of an a-,f causality-consistent

scenario <E, V, C). For C* to be a partial order, it must be reflexive,

antisymmetric, and transitive.

C* is trivially reflexive as it is an extension of the reflexive relation C.

We prove antisymmetry by contradiction. Suppose (y, m) and <(, n are

distinct elements of E such that <(, m> C* (8, n> and (8, n> C (<y, m. From

the definition of C*, we know there are four cases which must be considered.

The four cases are the product of the following two: (1), either <y, m) C (8, n>

or there is an element <a, p> in E such that (y, m)> C (a, p> and </f, p> C (8, n>;

and (2), either (8, n> C (y, m> or there is an element (a, q> in E such that

(8, n> C <a, q> and (/<, q> C <y, m>.

The first case is trivial. Because C itself is antisymmetric, it cannot be that

<y, m> C (8, n> and (8, n> C (y, m).

In only two of the remaining three cases is either of <y, m> or (<, n> directly

related through C. Both cases may be argued similarly. Suppose

<y, m> C <6(8, n> and there is an (a, q> in E such that <(, n> C <a, q> and

<,(, q> C <(, m>. This situation is illustrated in Figure 5.3. As <,(, q> C (y, m>,

<(, m) C (8, n), and (8, n> C <a, q>, using the transitivity of C we may conclude

that <,(, q> C (a, q>, a contradiction of the second condition of the definition of

a-/f causality-consistency.

In the remaining case there exist <a, p> and <a, q> in E such that

(<, m)> C (a, p> and (<,, p> C <8, n>, and (8, n> C <(a, q> and <(f, q> C <(, m>.

Assume q is at least as large as p, as illustrated in Figure 5.4. Consequently, as

C is a causality relation, <,(, p> C (<,, q. Therefore, as <P(, p> C ,, q>,

(<, q> C <y, m>, and <(y, m> C (a, p> it follows from the transitivity of C that

<(f, p> C <a, p>, a contradiction. The case in which p is at least as large as q

leads to a similar contradiction.

As all four cases have resulted in contradiction, we may conclude that C* is an

antisymmetric relation.

-59 -

Figure 5.3. Antisymmetry: Cases 2 and 3

<y, m> -

<, q>

>- <8, n>

<(a, q)

Figure 5.4. Antisymmetry: Case 4

(y, m) <8, n>

Now only the proof of transitivity remains to establish that C* is a partial order.

Suppose (y, n>, <6, n>, and (e, o> are elements of E such that (y, m> C* (8, n>

and <6, n> C* <e, o>. Once again, from the definition of C*, we have four cases,

the product of the following two: (1), either <y, m> C <(, n> or there is an

element a, p> in E such that <y, m)> C a, p> and (8<, p> C <8, n>; and (2),

either (8, n> C <e, o) or there is an element (a, q> in E such that (8, n> C <a, q)

and (<,, q> C (e, o).

If (<y, m> C (8, n) and (8, n> C , o) then (y, m> C (e, ao, and thus

<y, m> C* <e, o>, by the transitivity of C.

_ _

__

-60-

Once more, we shall look at only one of the two remaining cases in which the

events of one pair are directly related through C. Suppose (y, m> C (8, n> and

there is an (a, q> in E such that (8, n> C (a, q> and <,B, q> C <e, o>. This case

is illustrated in Figure 5.5. As <y, m> C (8, n> and (8, n> C (<a, q> then, by

transitivity, (y, m> C (a, q> and, from the definition of C*, (<, m> C* (e, o>.

Although not required for our proof, it's worth noting that the restrictions on

inter-port causality relations imposed by scenarios imply that 8 must be either y

or a.

For the last case of the last property of a partial order, assume that there exist

events <a, p> and <a, q> such that <y, m> C (a, p> and <(, p> C (8, n), and

(8, n> C (a, q> and (<, q> C (e, o>. Furthermore, without loss of generality,

assume that q is at least as great as p and, consequently, that (a, p) C <(a, q> as

shown in Figure 5.6. Then from (y, m> C <a, p>, it follows that (y, m> C (a, q>

and, in turn, that <y, m> C* (e, o>. Again, it's worth noting that the inter-port

causality relation restrictions force 6 to be either a or,8.

Having proven that C* is a reflexive, antisymmetric, and transitive relation, we

have established that C* is a partial order.

Figure 5.5. Transitivity: Cases 2 and 3

<(y, m)

<8, n>

<8, q> <a, q>

<e, o>

-61 -

Figure 5.6. Transitivity: Case 4

(y, m>

(0, > <a, D>

<8, n>

<0, > (a, >

<e, o>

The a-t connection relation is not only a partial order but also the smallest partial order

which extends C and relates events at output port a to corresponding events at input port B. This

fact is important to note as it makes our formal definition of scenario composition consistent with

the informal one of Chapter 3.

Given an a-B connection relation C* of a scenario set S, it is straightforward to construct a

corresponding scenario for S [a-s] by "removing" the histories for a and ,8. The following

theorem, an easy consequence of the preceding lemma, states more precisely how this is

accomplished.

P

-62-

Theorem: If S is a scenario set with output port label a and input port label ,8,

then for every a-f, causality-consistent scenario <E, V, C) with a-,8 connection

relation C*, the triple <E, V', C'> defined by:

E' = {<y, m>l <y, m> E and y a and y /3

V'(<y, m>) = V(<y, m>), for all <y, m> E E'

c' = c* n (E'X E')

is a scenario.

Proof: By the preceding lemma, C* is a partial order. Once this is established, it

is trivial to show that <E, V, C'> satisfies the other scenario restrictions stated at

the beginning of this chapter. Clearly, C' is a total order on each component

history and C' is a partial order on E'. The only remaining problem is asserting

that C' contains no inter-port causality relations other than from input events to

output events. However, it is easy to see that C* contains no such relations

except those involving a and /3, the two ports removed from C* to form C'.

The set S [a-psa] contains a scenario, generated according to the above theorem, for each a-fB

causality relation of S.

5.2 Generators of the Scenario Set Algebra

Now that we have defined the three scenario set composition rules, we direct our attention

to the task of defining scenario sets for the elementary dataflow operators. In Chapter 3, the

"common-sense" derivation of operator scenarios was effected by following the principle of

considering an output event to be causally preceded by the input events required for its

generation.

In Chapter 2, Kahn [22] processes were introduced. These are sequential programs that

read input values with get operations and write output values with put operations. We have

chosen as the generators of our dataflow graph algebra these determinate Kahn processes plus

the non-determinate merge operator.

-63-

Operationally, the computation of a Kahn process may be considered to be a sequence

(total ordering) of firings corresponding to the execution of either a get or put operation. For

every such firing sequence there is a scenario formed by removing all inter-port precedences

except those from input ports to output ports. Thus, an input event corresponding to a get on

port a is causally preceded only by the previous get's on a, while an output event corresponding

to a put on port ,8 is causally preceded by the previous put's on f, plus all the previous get's on

any input channel. Because several firing sequences may yield the same scenario, scenario sets

are an abstraction of the firing sequence characterization of processes.

During a dataflow computation, the merge repeatedly performs a series of two firings. On

the first firing an input is accepted, and on the second an output of the same value is produced.

The scenario corresponding to a merge firing sequence is obtained by removing from the total

ordering implied by the sequence all dependencies between events occurring at different input

ports.

Given any two input streams X and Y, the set of all possible merge scenarios may be more

formally described by use of an oracle [33] function d. Letting IXI denote the length of X (which

may be infinite), d is a function mapping the integers from one to IXI + IYI to the two-element set

{1, 2}. If d(n) is one, then the n'th element of the output is chosen from input stream X.

Otherwise, it is chosen from Y. The set of integers which d maps to one must equal X in size, and

similarly the set it maps to two must equal Y in size.

For any oracle d satisfying these constraints, there is a scenario corresponding to a possible

execution of merge with input streams X and Y in which d "controls" the choices of the merge.

The set E of events of this scenario is defined by the following union:

E {(In,, n> 1 n < IXl} U +(n, n> 1 n IYI}
U <Out,, < I n <xl + IY}

-64-

With d we associate a function p such that:

p(n) = {i I 1 < i < n and d(i) = d(n)j I

That is, p(n) is the position of the n'th output token within its original input history. Using p the

valuation function V may be specified as:

V((<ln, n>) = X n

V((In, n>) = Yn

V(<Out,, n>) = X), if d(n) = 1

= Yp(n), if d(n) = 2

and the causality relation C, as:

C = { (<In,, n>, <In,, m>) I n < m}
U ((In n>, n<In 2 m>) In m}
U {(<Out,, n>, <Out,, m>) In < m}
U { ((In, n>, <Out,, m>) I 3 o such that p(o) = n, d(o) 1, and o < m)
U { (In 2 n>, <Out,, m>) 1 3 o such that p(o) = n, d(o) = 2, and o < m}

5.3 Operational Consistency

With scenario sets defined for elementary dataflow operators and scenario set composition :

rules defined for the dataflow graph-building operators, it is now possible to generate scenario

sets for all dataflow graphs. To convince the reader of the usefulness of the scenario model of

computation, we wish to conclude this chapter by arguing, perhaps somewhat informally, that

scenario sets are a faithful representation of dataflow computation.

In Chapter2, we introduced token-pushing, the obvious operational model of dataflow

computation in which a graph changes state through the firings of its constituent operators. The

state of the graph is both the state of its operators and the state of its arcs, that is, the queues of

tokens "stored" on its arcs. In token-pushing a graph may be characterized as a set of

sequences of operator firings. Each firing changes the internal state of a single operator and

changes a single graph link by either removing (reading) or adding (writing) a value. For the

determinate operators, all Kahn processes, a firing is the execution of either a get or put

-65-

operation. Although the merge cannot be written in Kahn's language, its firings resemble

executions of get or put operations (although under non-determinate control) and will be

considered as such throughout the remainder of this section.

The proof of operational faithfulness will be a demonstration that for any given dataflow

graph the possible computations represented by its scenarios are precisely the same as those

represented by its firing sequences. We must show that scenario sets predict all possible

computations, that is, for every firing sequence a corresponding scenario must be found; and we

must show that scenario sets do not predict any impossible computations, that is, for every

scenario a corresponding firing sequence must be found. Stated formally, except for the details

of the meaning of firing sequence-scenario correspondence which we shall discuss in the proof,

our theorem of the operational faithfulness of the scenario model of non-determinate dataflow

computation is:

Theorem: If G is a dataflow graph constructed from the set of operators

consisting of the determinate Kahn processes plus the non-determinate merge

operator by use of the graph-building operators II, [4.], and [-.-G'] and S is

the corresponding scenario set constructed from the scenario sets of these

determinate processes and the merge operator by use of the scenario set

operators Is, [4], and [-s], then for every firing sequence of G there is a

corresponding scenario of S and for every scenario of S there is a

corresponding firing sequence of G.

The essence of this theorem is: whether one constructs the scenario set of a system directly

from the firing sequences of its dataflow graph or by use of the scenario set composition rules,

the result is the same. Our first task in proving this theorem is to define the "correspondence"

between firing sequences and scenarios. Given a dataflow graph G and one of its firing

sequences ff 2 ..., the input and output histories generated by f1 f2 ... are simply the values read by

-66 -

get's on graph input ports and written by put's on graph output ports.1

In the preceding section, we obtained scenarios from firing sequences of elementary

dataflow operators by dropping all inter-port causalities implied by the firing sequences except

those from input to output ports. A similar tactic will be used here to find scenarios

corresponding to graph firing sequences. For each operator of the graph, there is within ff 2 ... a

subsequence of that operator's own firings. From each of these subsequences, the scenario

followed by that operator during the graph computation prescribed by f1f2 ... may be uncovered.

By combining the causality relationships of all these operators, a scenario can be generated for

the entire graph executing the firing sequence ff2 In this scenario, a graph output will be

causally related to all those input values which contributed to its existence by a direct chain of

operator firings.

Operational faithfulness may be proven by induction on the set of dataflow graphs as

generated from the set of elementary dataflow operators by use of the graph-building operators.

The correspondence of firing sequences and scenarios for elementary operators follows from the

definitions of the previous section. It is also easy to see that the correspondence is preserved by

the two "trivial" graph operators: graph union 1iG and port relabeling [/G]. Consequently, we

shall direct our attention to port connection [-G'], the remaining graph operation.

Let G be a dataflow graph with output port a and input port 8,, and let S be the scenario set

characterization of G. Our first case will be that of finding a scenario of S [a-s8] for each firing

sequence of G [a-8l]. Suppose f1f2 ... is a firing sequence of G [a-G%] which causes the history

X to pass through the a-,8 connection. Then ff2 ... will also be a firing sequence for a

1. During some computations an operator will fail to read all its input. Such cases are easily
handled by augmenting the firing sequence execution model with sequences of untouched input
values.

-67 -

computation of G in which history X is both received at input port a and produced at output

port P.

By our inductive hypothesis, there will exist a scenario of S corresponding to this firing

sequence of G. This scenario will also be a-fl causality-consistent, as it ultimately originates

from a firing sequence of G [a-+G,], and consequently it may be used to construct a scenario of

S [a-*s,]. Thus, there is a scenario in S [a-s] for every firing sequence in G [a-8].

The remaining case is the only difficult one for it is here that we must run counter to the

abstraction from firing sequences to scenarios. Suppose (E, V, C> is a scenario of S [a-bs].

Then there is an a-, causality-consistent scenario <E' V, C') of S from which <E, V, C> is

derived. By our induction hypothesis, there is a firing sequence ff 2 ... of G that corresponds to

this a-,8 causality-consistent scenario. Unfortunately, ff 2 ... need not be a firing sequence of

G [a- jG]. As long as the a-,8 connection remains open, output values at a may be "delayed"

arbitrarily long without contradicting the scenario's causality relation. (Remember, scenarios

have no output-to-input causalities.) The firing sequence ff2 ... must be some linearization of the

a-,8 causality-consistent scenario <E, V:, C') and, although it is never the case that

<(, m> C' <a, m> or the m'th value read at ,B causes the m'th value written at a, it is possible, at

some point in this particular linearization, that the receiving of the m'th value at ,8 does precede

the producing of the m'th value on a. Of course, if this were so, ff2 ... could not, without

rearrangement, be made into a firing sequence of G [a-cAG]. However, ff2... is but one

linearization of <E', V C'), and there are alternate linearizations, and consequently legitimate

firing sequences, in which firing <a, m> does precede <,8, m).

Such a firing sequence can be constructed by placing in it first all those firings needed to

produce <a, 1 > and then all those needed to produce <a, 2> and so on. Because it is never the

case that (<,B, m> causally precedes <a, m>, firing (<,, mn> will never be placed before <a, m>.

This new firing sequence, a rearrangement of the original, will be a possible computation of

-68-

G [a-lg8]. Thus there are firing sequences in G [a--*GP for every scenario in S [a s]. With

both cases satisfied, the operational faithfulness of scenario sets is established.

The operational faithfulness of scenarios rests in their ability to incorporate physical

causality in system representation. Firing sequences also represent this causality, but in doing so

they include inter-port causalities other than those from input to output ports even though such

causalities cannot be detected when dataflow graphs are connected through unbounded,

time-independent communication channels. By omitting these unobservable causalities, we are

able to develop an abstract, but nonetheless faithful, model of non-determinate dataflow

computation.

-69 -

6. Conclusion

In Chapter 3 we discussed three characteristics of a useful semantic theory, abstractness,

mathematical tractability, and operational faithfulness. In this thesis we have developed a

semantic theory for non-determinate computation in which dataflow graphs are represented by

sets of scenarios, each corresponding to a particular computation which that graph may perform.

The purest input-output specification, and hence the most abstract useful semantic

representation, of dataflow computation would be a relation from the histories of values received

at graph input ports to the possible histories of values produced at graph output ports. However,

we have conclusively demonstrated that such history relations are inadequately detailed to

capture all nuances of computational behavior which may become manifest when graphs are

interconnected.

Scenario sets are a straightforward extension of history relations which do contain sufficient

information to determine the result of graph interconnection. The scenario, the constituent of the

scenario set, is nothing more that an input history-output history pair, the constituent of history

relations, augmented by a causality relation placed on the individual elements of the histories.

Although scenario sets are not a pure input-output semantic specification of non-determinate

dataflow computation, they are not very far from that most desirable, though unobtainable, level

of abstraction.

Along with scenario sets we have presented composition rules for deriving the scenario set

representation of a dataflow graph from those of its components. Compared to many proposed

semantic theories, be they based on global-state models [23] or on fixed point theory [10, 25], our

composition rules are strikingly simple. The most sophisticated mathematical technique required

to understand and utilize the scenario model of computation is the extension of a partial order.

On account of its mathematical tractability, this theory shouid serve as a useful basis from which

-70-

other results, such as the certification of verification methodologies, may be derived.

The remaining goal of a useful semantic theory was operational faithfulness. We have

formally proven this property for scenario sets by demonstrating their consistency with

token-pushing, the standard global-state operational model of dataflow computation.

Furthermore, unlike most proposed fixed point theories [10, 25] of dataflow computation, scenario

sets are able to model the fair merge, the merge described in detail in Chapter5 which

interleaves all its input tokens into one output stream even if one input stream is infinite. The

continuity requirements of fixed point theories seem to restrict their application to the unfair

merge in spite of its very limited usefulness in important application areas such as resource

control and management[3]. Most of the semantic theories (with the notable exception of

Park's [34]) that are capable of representing fair computation abstract very little from program

execution models. For example, Clinger's[11] theory represents computation by "event

diagrams" incorporating all internal, as well as external, elements of program execution.

There are several ways in which the research of this thesis could be extended. One is the

extension of the semantic model to other application areas. Pratt [37] has already defined a

"repackaging" of scenario set theory called the process model. The programs of the process

model are nets. Like dataflow graphs, nets consist of processes connected by fixed channels of

unbounded capacity. However, these channels are not FIFO queues: nets are dataflow graphs in

which values may overtake others in transit between processes. The semantic representation of a

net is a set of traces. Traces are a generalization of scenarios in which all the elements of the

same port are no longer required to be totally ordered. The semantics of process composition

using traces is similar to that of process composition using scenarios: consistent net traces are

generated for all constituent processes and then the partial order implied by all process traces is

restricted to the net ports. Besides having obvious application in distributed computing where

inter-process communication is generally considered unordered [27], the process model (or

-71 -

perhaps even a simplification of it) could be applied to the U-interpreter for dataflow computation

developed by Arvind and Gostelow [4] in which streams may contain "holes," a condition

implemented by "tagging" otherwise unordered values with their stream positions.

The extension of scenarios to even more generalized versions of streams, in particular those

containing other streams as "elementary" values, seems quite feasible. Streams of streams are

already supported by the previously-mentioned U-interpreter [4] and can be used quite

advantageously in many programming situations. A similar data structure currently receiving

much attention is the sequence of Backus' [7] FP. Though FP is presently a purely determinate

language and thus too "simple" for scenario theory, an extension of the language to important

inherently non-determinate application areas would be well suited for some scenario-like

semantic theory.

In this thesis we have constructed a semantic theory for static dataflow graphs, that is,

graphs which cannot change in structure during a computation. However, dynamic dataflow

graphs are a more appropriate implementation-level model of languages with functions and

procedures because they allow function calls to extend graphs. Dynamic graphs can also.

support some very important non-determinate systems such as resource allocators for varying

numbers of users. The development of a new scenario composition rule for recursively generated

dynamic graphs seems a natural point in which to incorporate some aspects of fixed point theory

into the scenario model. Thus far we have developed our theory without reference to

monotonicity or continuity even though related properties must hold for the scenario sets of any

realizable system. For example, it is obvious that the scenario for a large input sequence must be

an extension of some scenarios of its input prefixes and that the scenario for an infinite input

sequence must be the limit of some scenarios of its finite input prefixes. The statement of

monotonicity and continuity requirements for scenarios seems a natural first step toward the

development of a fixed point theory based on scenario sets.

-72 -

Although we have consistently presented scenarios as partial orders, it is possible to

assume a functional viewpoint that should be more palatable to fixed point theorists. The

causality information of every scenario may be represented by a function from input histories to

output histories in which each input history prefix is mapped into the output values it generates

without the aid of those input values which follow it. Such associations will only produce partial

functions; however, the partial functions associated with classes of scenarios following the same

computational "route" may be combined to form total functions. Thus it is possible to move from

characterization of dataflow graphs by scenario sets to characterization by sets of functions.

Such a transition should allow the more fruitful application of the tools and techniques of fixed

point theory to scenarios.

Clearly one of the main hopes for any formal semantics is that its machinery for describing

programming language features and concepts will aid programmers in the development of

correctly functioning software. There are many ways in which scenarios may be used to

accomplish this goal. Most obviously, using scenario theory it is possible both to specify the

desired result of a system as a scenario set and to prove the equivalence of that specification to a

dataflow program or graph by deriving its own scenario set. However, even if such proofs are

possible, in general they would be neither trivial nor enjoyable and often they would not even be

feasible. Both the specification and the verification end of this process may be improved. First,

there are undoubtedly many kinds of specification more appropriate for proving program

correctness than scenarios. Scenario sets were developed to reveal all properties of behavior

which must be known in order to determine the result of arbitrary interconnections of operators

and graphs. This level of detail is very rarely required in the formal specification of a desired

system: generally, the end-users of the system will be interested only in its input-output behavior

or history relation and usually in only a few relevant input cases of that. Their needs will be meet

with these more abstract specifications, even if two programs satisfying their requirements exhibit

-73 -

subtle differences in behavior when made to interact with other programs. If a problem were

specified as a history relation or even as some abstraction thereof, any program whose scenario

set was consistent with that specification could be considered to implement it.

Nevertheless, as long as the verification of consistency is performed by proof of semantic

identity using scenario sets, formally proving programs correct will often be difficult. Easier

proofs could result from the development an axiomatic theory of program correctness, perhaps

by attaching assertions to the links of dataflow graphs rather like Floyd [17] attaches assertions to

the links of flowcharts. By use of the techniques of Ellis [15] or Wadge [43], graphs may be shown

to satisfy many useful properties, e. g. absence of deadlock, that are often an important part of

system specification.

Although axiomatic theories might permit the direct verification of programs without

reference to scenario theory, scenario theory would play a very important role in the development

of these verification methodologies because it would allow the certification of the formalisms of

the methodologies. Since we have already demonstrated the consistency of our semantic theory

with a detailed operational one, the correctness of a verification methodology for

non-determinate dataflow computation may be demonstrated by proving its consistency with the

scenario model of computation. This proof should be much easier than one showing direct

consistency with the significantly less abstract operational model.

One final way, perhaps the most important, in which formal semantics should aid the

programmer's task is by influencing the design of programming languages. It is well known [42]

that difficult-to-control programming language features, such as side effects and goto's, lead to

complicated programming language semantics and proof rules. Thus far, research in semantics

appears to have reinforced our judgments of programming language features rather than to have

guided our design of them. Perhaps this has happened because most of our popular

programming constructs were developed before our formal methodologies were. With

-74-

non-determinate computation the situation is quite different: high-level constructs for the

problems of this area have only recently begun to appear. Non-determinate dataflow languages

seem to offer some advantages relative to non-determinate languages with a more conventional

shared--memory multi-processing orientation; for example, with streams it is possible to write

programs which exhibit state without side effects. However, through the merge anomaly we have

already shown that the unconstrained interconnection of processes can result in unexpected

semantic complexity even in the seemingly simple dataflow approach to inter-process

communication. Maybe this particular complexity is unavoidable; maybe it is not. A semantic

theory may not reveal how to avoid complexity, but at least it will reveal complexity.

-75 -

References

[1] Ackerman, W. B., "Data Flow Languages", Computer 15, 2(February 1982), 15-25.

[2] Ackerman, W. B., and J. B. Dennis, VAL - A Value-Oriented Algorithmic Language:
Preliminary Reference Manual, Laboratory for Computer Science (TR-218), MIT,
Cambridge, Massachusetts, June 1979.

[3] Arvind, and J. D. Brock, "Streams and Managers", Operating Systems Engineering:
Proceedings of the Fourteenth IBM Computer Science Symposium
(M. Maekawa, L. A. Belady, Eds.), Lecture Notes in Computer Science 143, October 1980,
452-465.

[4] Arvind, and K. P. Gostelow, "The U-Interpreter", Computer 15, 2(February 1982), 42-49.

[5] Arvind, K. P. Gostelow, and W. Plouffe, An Asynchronous Programming Language and
Computing Machine, Department of Information and Computer Science (TR 114a),
University of California - Irvine, Irvine, California, September 1978.

[6] Arvind, K. P. Gostelow, and W. Plouffe, "Indeterminacy, Monitors and Dataflow",
Proceedings of the Sixth ACM Symposium on Operating Systems Principles, Operating
Systems Review 11, 5(November 1977), 159-169.

[7] Backus, J., "Can Programming Be Liberated from the von Neumann Style? A Functional
Style and Its Algebra of Programs", Communications of the ACM 21, 8(August 1978),
613-641.

[8] Brock, J. D., and W. B. Ackerman, "Scenarios: A Model of Non-determinate Computation",
International Colloquium on Formalization of Programming Concepts
(J. Diaz, i. Ramos, Eds.), Lecture Notes n Computer Science 107, April 1981,252-259.

[9] Brookes, S. D., "On the Relationship of CCS and CSP", Automata, Languages and
Programming: Tenth Colloquium (J. Diaz, Ed.), Lecture Notes in Computer Science 154,
July 1983, 83-96.

[10] Broy, M., "Fixed Point Theory for Communication and Concurrency", Proceedings of the
IFIP Working Conference on Formal Description of Programming Concepts - II (D. Bjdrner,
Ed.), June 1982, 125-147.

[11] Clinger, W., Foundations of Actor Semantics, Artificial Intelligence Laboratory (TR-633),
Massachusetts Institute of Technology, Cambridge, Massachusetts, May 1981.

[12] Dennis, J. B., "First Version of a Data Flow Procedure Language", Programming
Symposium: Proceedings, Colloque sur la Programmation (B. Robinet, Ed.), Lecture Notes
in Computer Science 19, April 1974, 362-376.

-76 -

[13] Dennis, J. B., "A Language Design for Structured Concurrency", Design and
Implementation of Programming Languages: Proceedings of a DoD Sponsored Workshop
(J. H. Williams, D. A. Fisher, Eds.), Lecture Notes in Computer Science 54, October 1976,
231-242.

[14] Egli, H., "A Mathematical Model for Nondeterministic Computations", Forschungsinstitut fir
Mathematik, Technological University, Zurich, Switzerland, 1975.

[15] Ellis, D. J., Formal Specifications for Packet Communication Systems, Laboratory for
Computer Science (TR-189), MIT, Cambridge, Massachusetts, November 1977.

[16] Faustini, A. A., "An Operational Semantics of Pure Dataflow", Automata, Languages, and
Programming: Ninth Colloquium (M. Nielsen, E. M. Schmidt, Eds.), Lecture Notes in
Computer Science 140, July 1982, 212-224.

[17] Floyd, R. W., "Assigning Meaning to Programs", Mathematical Aspects of Computer
Science (J. T. Schwartz, Ed.), Proceedings of Symposia in Applied Mathematics 19,
April 1977,19-32.

[18] Hewitt, C. E., and H. Baker, "Actors and Continuous Functionals", Proceedings of the IFIP
Working Conference on Formal Description of Programming Concepts (E. J. Neuhold, Ed.),
August 1977,367-390.

[19] Hoare, C. A. R., "Communicating Sequential Processes", Communications of the ACM 21,
8(August 1978), 666-677.

[20] Hoare, C. A. R., S. D. Brookes, and A. W. Roscoe, "A Theory of Communicating Sequential
Processes", Programming Research Group (PRG-16), Oxford University, Oxford, England,
1981.

[21] Jayaraman, B., and R. M. Keller, "Resource Control in a Demand-driven Data-flow Model",
Proceedings of the 1980 International Conference on Parallel Processing, August 1980,
118-127.

[22] Kahn, G., "The Semantics of a Simple Language for Parallel Programming", Information
Processing 74: Proceedings of IFIP Congress 74 (J. L. Rosenfeld, Ed.), August 1974,
471-475.

[23] Karp, R. M., and R. E./Miller, "Parallel Program Schemata", Journal of Computer and
System Sciences 3, 2(1969), 147-195.

[24] Keller, R. M., "Denotational Models for Parallel Programs with Indeterminate Operators",
Proceedings of the IFIP Working Conference on Formal Description of Programming
Concepts (E. J. Neuhold, Ed.), August 1977, 337-366.

-77 -

[25] Kosinski, P. R., "A Straightforward Denotational Semantics for Non-Determinate Data Flow
Programs", Conference Record of the Fifth ACM Symposium on Principles of Programming
Languages, January 1978, 214-221.

[26] Lehmann, D. J., "Categories for Fixpoint Semantics", Seventeenth Annual Symposium on
Foundations of Computer Science, October 1976, 122-126.

[27] Liskov, B., and R. Scheifler, "Guardians and Actions: Linguistic Support for Robust,
Distributed Programs", ACM Transactions on Programming Languages and Systems 5,
3(July 1983), 381-404.

[28] McCarthy, J., "A Basis for a Mathematical Theory of Computation", Computer Programs and
Formal Systems (P. Braffort and D. Hirschberg, Eds.), North-Holland, Amsterdam, 1963,
33-70.

[29] McGraw, J.R., "The VAL Language: Description and Analysis", ACM Transactions on
Programming Languages and Systems 4, 1 (January 1982), 44-82.

[30] Milne, G., and R. Milner, "Concurrent Processes and Their Syntax", Journal of the ACM 26,
2(April 1979), 302-321.

[31] Milner, R., "Processes: A Mathematical Model of Computing Agents", Logic Colloquium '73
(H. E. Rose and J. C. Shepherdson, Eds.), North-Holland, Amsterdam, 1975, 157-174.

[32] Milner, R., A Calculus of Communicating Systems, Lecture Notes in Computer Science 92,
1980.

[33] Park, D., "On the Semantics of Fair Parallelism", Abstract Software Specifications: 1979
Copenhagen Winter School Proceedings (D. Bjdrner, Ed.), Lecture Notes in Computer
Science 86, February 1979, 504-526.

[34] Park, D., "The 'Fairness' Problem and Nondeterministic Computing Networks", Proceedings
of the Fourth Advanced Course on Theoretical Computer Science, Mathematisch Centrum,
Amsterdam, The Netherlands, 1982.

[35] Patil, S. S., "Closure Properties of Interconnections of Determinate Systems", Record of the
Project MAC Conference on Concurrent Systems and Parallel Computation, June 1970,
107-116.

[36] Plotkin, G. D., "A Powerdomain Construction", SIAM Journal of Computing 5,
3(September 1976), 452-487.

[37] Pratt, V. R., "On the Composition of Processes", Conference Record of the Ninth Annual
ACM Symposium on Principles of Programming Languages, January 1982, 213-223.

-78-

[38] Rounds, W. C. and S. D. Brookes, "Possible
Communicating Processes", Proceedings of
Foundations of Computer Science, October 1981,

Futures, Acceptances, Refusals, and
the Twenty-second Symposium on

140-149.

[39] Scott, D. S., "Data Types as Lattices", SIAM Journal of Computing 5, 3(September 1976),
522-587.

[40] Smyth, M. B., "Power Domains", Journal of Computer and System Sciences 16,
1 (February 1978), 23-36.

[41] Stoy, J. E., Denotational Semantics: The Scott-Strachey Approach to
Language Theory, MIT Press, Cambridge, Massachusetts, 1977.

[42] Tennent, R. D., "The Denotational Semantics of Programming
Communications of the ACM 19, 8(August 1976), 437-453.

Programming

Languages",

[43] Wadge, W. W., "An Extensional Treatment of Dataflow Deadlock", Theoretical Computer
Science 13, 1 (January 1981), 3-15.

[44] Weng, K.-S., Stream-Oriented Computation in Recursive Data Flow Schemas, Laboratory
for Computer Science (TM-68), MIT, Cambridge, Massachusetts, October 1975.

- 79 -

Biographic Note

Dean Brock was born on April 30,1952 in Waynesville, North Carolina, and grew up in

Durham, Little River (Transylvania County), and Statesville, North Carolina. In 1972, he married
Ruth Miller Wilson of Easley, South Carolina.

In 1970, Dean Brock graduated from Easley High School in Easley, South Carolina. He

received his A. B. degree summa cum laude in mathematics from Duke University in 1974. From
1974 to 1982, Dean Brock was a graduate student at the Massachusetts Institute of Technology.
There he was associated with the Computation Structures Group of the MIT Laboratory for
Computer Science. During this time he received financial support from a National Science
Foundation Graduate Fellowship and from research and teaching assistantship appointments. In
1979, he received the S. M. and E. E. degrees.

In August 1982, Dean Brock returned to the South. He is presently an assitant professor in

the Department of Computer Science at the University of North Carolina at Chapel Hill.

Publications

Arvind, and J. D. Brock, "Streams and Managers", Operating Systems Engineering: Proceedings
of the Fourteenth IBM Computer Science Symposium (M. Maekawa, L. A. Belady, Eds.), Lecture
Notes in Computer Science 143, October 1980, 452-465.

Brock, J. D., Operational Semantics of a Data Flow Language, Laboratory for Computer Science
(TM-1 20), MIT, Cambridge, Massachusetts, December 1978.

Brock, J. D., "Consistent Semantics for a Data Flow Language", Mathematical Foundations of

Computer Science 1980: Proceedings of the Ninth Symposium (P. Dembrifski, Ed.), Lecture
Notes in Computer Science 88, September 1980, 168-180.

Brock, J. D., and W. B. Ackerman, "Scenarios: A Model of Non-determinate Computation",

International Colloquium on Formalization of Programming Concepts (J. Diaz, I. Ramos, Eds.),

Lecture Notes in Computer Science 107, April 1981, 252-259.

Brock, J. D., and L. B. Montz, "Translation and Optimization of Data Flow Programs",

Proceedings of the 1979 International Conference on Parallel Processing (O. N. Garcia, Ed.),
August 1979, 46-54.

, .~~~~~~~~~~

