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ABSTRACT

Symbolic dimensioning permits the modification of part
geometry by means of altering the numeric value of the
explicit dimensional constraints.

A symbolic dimensioning CAD system was developed which
utilized an iterative numerical procedure for determining
part geometry from the values of the dimensional constraints.
The part geometry was limited to 2-D lines, arcs and circles.
The allowable dimensional constraints included horizontal,
vertical, linear, angular and radial dimensions. In addition,
geometric constraints such as area were incorporated. The
dimensional constraints were treated as mathematical equations
relating the points in the part. The solution to the system
of equations was the part geometry.

An important feature of this system was the capability of
sketch input of the part geometry. The dimensional constraints
are interactively specified and the geometry modified by
alteration of the numeric values of the explicit dimensions.

The mathematical procedures permit the detection of over-
and under-dimensioning as well as which dimensions are
redundant and which pieces of geometry are unconstrained.

An algorithm was developed which selects the minimum set
of equations and unknowns required for solution given a
change in dimensions. This reduces the number of equations
to which the numerical methods must be applied.

Thesis Supervisor: David C. Gossard
Title: Associate Professor
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1.0 INTRODUCTION

Systems for computer-aided mechanical design utilize a

shape model to represent a mechanical component. The shape

model is the computer's representation of the physical geom-

etry of a part. This model is created and manipulated for

such purposes as drafting, structural analysis and tool path

generation for numerically controlled machines.

Because the design process is iterative in nature, the

designer must modify the topology, the specific geometry, or

the dimensioning scheme of the shape model many times during

the design cycle. The effectiveness of a CAD system depends

directly upon the degree to which the shape model represents

the corresponding component and the ease with which the shape

model can be created and modified.

The objective of this research effort was to develop

more flexible methods for the definition and modification of

shape models. The method investigated is called "symbolic

dimensioning". Symbolic dimensioning is an interactive,

graphic procedure which utilizes the dimensioning scheme, in

conjunction with the numeric values of the explicit dimen-

sions, to define the geometry of a shape model.
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The system incorporates two major functional properties

which would facilitate the design process. It allows the

user to specify the initial geometry in an approximate fashion.

A sketch-like input procedure is used to define the topology

of the geometric shape without concern for the exact place-

ment or orientation of the graphic entities. Secondly, after

the shape is sketched, dimensional constraints are specified

interactively. The desired numeric values of the explicit

dimensions are supplied, and the corresponding change in geom-

etry is computed using an iterative numerical method.

The features of sketch-like input and interactive shape

modification were developed using a 2-D prototype CAD system

(hereafter referred to as the "DIMENSION" system). The appli-

cation of symbolic dimensioning in the areas of tolerance

analysis, tolerance synthesis, dimensional associativity and

3-D design were also explored.
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2.0 RELATED WORK

The concept of using explicit dimensions as symbolic

variables which, when assigned a value, define the geometry

of the shape model, was described by A. G. Requicha 112] and

A. M. Gopin [2]. In these separate works, the relationship

between dimensions was described by a dimensional tree and

the shape models restricted the class of graphic entities to

rectilinear line segments in 2-D or orthogonal planes in 3-D.

Dimensional trees consisted of nodes and branches where the

nodes represented line segments (or planes in 3-D) and the

branches represented the dimensional symbol. A separate tree

was constructed for each orthogonal direction. Using this

procedure, the dimensioned part in Figure la would be repre-

sented by the tree in Figure lb (only the horizontal dimen-

sions and tree are shown). The negative sign on the branch

from L4 to L3 signifies that L3 is measured to the left of

L4.

Over- or under-dimensioning could be determined by

detecting cycles in the dimensional tree. Thus, if a dimen-

sion D is added from L2 to L4, as in Figure 2a, the graph of

Figure 2b results. The complete cycle from L1 to L2 to L4

and back to L1 indicates a redundancy in dimensions.

3
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Dimensional trees are a useful notation for symbolic

dimensioning and detection of redundancies. However, this

theory is now limited to shape models consisting of recti-

linear segments. The extension to oblique segments, arcs

and circles has not been investigated.

In Computervision Corporation's PEP [1] (Parametric

Element Processor), and COMVAR, of University of Berlin, the

idea of using the dimensional constraints to define the geom-

etry of a shape was realized by requiring the user to write

an APT-like program which constructs the shape model using

the values of a set of input parameters. These systems

incorporate some of the concepts of symbolic dimensioning,

in that: the input parameters control the resultant geometry.

A major shortcoming of these approaches is that they do not

permit general interactive procedures for graphic input and

geometric modification.

The work of R. C. Hillyard and I. C. Braid [6] and [7]

laid an important foundation for this work. These papers

developed a theory by which variations in the locations of

individual points of a shape can be related to variations in

dimensional constraints. For example, consider two points

P1 and P2 in two-space which are to be constrained by a linear

dimension. The location of each point is varied by a small

5



amount represented by vectors d1 and d2 as in Figure 3. If

dimension A is considered a vector quantity A from P1 to P2

then the variation dA of dimension A can be approximated by

equation 1.

(d2-dl)-R
dA= I (1)

2

f 1P1

Figure 3, Variation of two points.

Variations of other dimensional constraints can be simi-

larly defined. When the variations are small, the relation-

ships between the variations in dimensions to the variations

in point positions are linear. These linear equations can

be solved to determine the variations in geometry which

correspond to a given variation in dimension. This relation-

ship can be described by equation 2;

6



-1
dx = r dA (2)

where the vector, dx represents the variation in geometry,

the matrix r is termed the "Rigidity" matrix and the vector

dA represents the variation in dimensions. An iterative

procedure can be implemented to modify the geometry such

that the geometry is compatible with the dimensions.

In the author's Bachelor's Thesis [9], a prototype

symbolic dimensioning procedure was developed. This algorithm

assumes that each dimensional constraint could be described

as a mathematical equation involving the coordinates of the

points in the shape. The geometry of the shape model is the

solution to all the dimensional "equations".

These equations are generally non-linear and must be

solved by a numerical method such as the Newton-Raphson

method. The Rigidity matrix, r and the variation in dimen-

sions, dA in equation 2 are identical to the Jacobian matrix

and the residual vector in the Newton-Raphson method. The

approach taken by Hillyard and Braid is basically a special

case of the more general development in this work. The

present approach can be more easily extended to include

general geometric constraints such as area, mass, or inertia,

and higher order graphic entities such as arcs, circles and

3-D surfaces.

7



3.0 GENERALIZED DIMENSIONAL CONSTRAINTS

The concept of generalized dimensional constraints follows

directly from conventional engineering practice for dimen-

sioning mechanical drawings. Dimensions in a mechanical

drawing may be thought of as constraints on the permissible

locations of the portions of geometry to which they refer.

A correctly dimensioned mechanical drawing is described as a

drawing, were the position of each piece of geometry (points,

lines, arcs, circles, etc.) may be determined from the dimen-

sional information contained in the drawing.

3.1 Types of Constraints

The term "dimensional information" used above, includes

three types of constraints. The first type is the conven-

tional explicit dimension. It constrains, for example, two

points to be a specified distance apart. The second type of

information contained in a drawing can be termed "implicit

constraints". Implicit constraints include the specification

that lines are horizontal, vertical, parallel or perpendicular.

8
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Figure 4, Implicit dimensions; (a) original drawing;
(b) drawing with implicit dimensions shown.

The part shape in Figure 4a would be considered fully

dimensioned. The implicit constraints, added in Figure 4b,

are generally inferred by the person viewing the part shape.

Implicit dimensions are as important as the explicit dimen-

sions in determining the position of each entity of the part

shape. Thus, explicit and implicit dimensions are simply

subsets of the larger class of generalized dimensional con-

straints.

In addition to these two classes of constraints, there

exists a third class of "geometric constraints". These are

constraints on such geometrical properties as mass, surface

9
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area, inertia and center of mass. As with implicit and

explicit dimensional constraints, geometric constraints

determine a spatial relationship of one geometric entity to

a set of other entities.

3.2 Over-dimensioning and Under-dimensioning

With this description of generalized dimensional con-

straints, a qualitative discussion of the problem of over-

or under-dimensioning can be presented. As discussed above,

a properly dimensioned mechanical drawing is defined as one

where the positions of all the graphic entities can be deter-

mined from the complete set of general dimensional constraints.

The case of an over-dimensioned drawing can be detected when

the position of a graphic entity is specified by more than

one set of constraints. For example, in Figure 5, the hori-

zontal position of line 3 can be determined from the dimen-

sional sets AC and BCD.

The case of under-dimensioning can be detected when there

is no complete set of constraints which will determine the

position of a graphic entity. In the case of 2-D rectilinear

shapes, Requicha [12] detected the case of over-dimensioning

by looking for a node (which represents the position of an

10
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-Figure 5, Condition of over-dimensioning.

Figure 5, Condition of over-dimensioning.

entity) in a graph that was accessible from two different

paths. The under-dimensioned case was detected by looking

for a node which was not accessible from any path.

The approach used in this work for detecting over- and

under-dimensioning is discussed in section 5.2.

11
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4.0 THE SHAPE MODEL

A model for the geometrical shape is required to delin-

eate the entities that the generalized dimensions are to con-

strain. In this paper, only geometries of two dimensions

were considered. The primitive geometrical entity constrained

was the two-dimensional point. All higher order geometric

entities such as arcs or circles were defined with respect

to their defining points (verticies, points of tangency, center

points, etc.).

The shape model, therefore, consists of a collection of

points in two-space. The geometry of the shape is defined

by specifying the position of the points in the part shape.

The generalized dimensional constraints described in the pre-

vious section are mathematical equations which state some

relationship between the x,y coordinates of the part shape.

The total set of dimensional information must be sufficient

to define the coordinate values of every point in the part.

12



5.0 MATHEMATICAL DESCRIPTION OF GENERALIZED DIMENSIONS

The preceeding discussion has delineated two assumptions.

First, the only geometric entity in the shape model is the

two-dimensional point. Secondly, the generalized dimensional

constraints define the position of each point in two-space.

The objective of this section is to provide a mathematical

framework for a more quantitative discussion of dimensions

and their relationship to geometry.

The basic theory was discussed in the author's Bachelor's

thesis [9] but is included, here, for completeness. In order

to illustrate the approach taken here, an example will be

used.

A triangle, as in Figure 6 is defined by the coordin-

ates of its three points, which can be written as a six com-

ponent vector, X.

X = {X 1,Y1,X 2,Y 2 X3 Y 3 (3)

These points are constrained by three dimensions: a linear

dimension, A, from P1 to P2; a linear dimension, C, from P1

to P3; and a vertical dimension, B, from P2 to P3.

13



If line P1P3 is constrained to remain horizontal, all

the points in the shape are defined relative to each other

and the shape is constrained from solid body rotation. To

constrain the shape from solid body translation, it is neces-

sary to fix the position of one point. Therefore, if P1 is

positioned at the origin (0,0), each point is uniquely posi-

tioned in the X-Y plane and the shape is sufficiently dimen-

sioned..

R .P2

Figure 6, Example shape.

The constraints represented by dimensions A, B, and C can be

described by the following equations;

(X1-X2 )2 + (Y1-Y2)2 = A2 (4)

Y3-Y2 = B (5)

(X1 -X3 )2 + (Y1 -Y 3)2 = C2 (6)1 3 1 3~~~~~~~~6

14



To constrain the shape from solid body translation;

X 1 = 0 (7)

1 = 0 (8)

To constrain line segment P1 -P2 to remain horizontal;

Y2-Y1 = 0 (9)

We have six equations (4-9) and six unknowns (X1 ,Y1 ,X2,

Y2,X3,Y3). If there were more equations than twice the

number of points, the shape would be over-dimensioned. If

there were fewer equations than twice the number of points,

the shape would be under-dimensioned.

The purpose of the symbolic dimensioning algorithm is

to determine the positions of the three points given the

values of the dimensions A, B, and C. The coordinates of

the points can be seen to satisfy the following set of equa-

tions;

f = (X1-X2 )2 + (Y1-Y2 ) - A2 = (10)

f2 = Y2 B = 0 (11)

f3 = + (YX1-X 3 ) 2 = (12)

f4= X1 (13)

f5 = Y (14)

f6= Y2 Y= (15)

15



The determination of the points' location requires that

the above set of simultaneous non-linear equations be solved.

The solution procedure used in this application was the

Newton-Raphson method. (See Appendix A.2 for a discussion

of the Newton-Raphson method.) The Jacobian matrix (or

Rigidit:y matrix as termed by Hillyard [5]) and residual vector

for the equations above are shown in the following matrix

equation;

2(Y1-Y 2) -2(X1 -X2) -2(Y1-Y 2 )

o 0 -1

2(Y 1 -Y 3 ) 0 0

0 0 0

1 0 0

-1 0 1

O 0

0 1

-2(X1-X3) -2(Y1-Y3)

O 0

O 0

O 0

where X1,Y 1,X2,Y2,X3,Y3, represent the current estimate of

the point coordinates.

Let the current estimate be represented by Xn;

Xn = {XlYlX 2 $Y2 ,X3 $Y3}n (16)

16

2(X1-X 2)

0

2(X1-X3)

1

0

0

dx

dy1

dx2

dY2

dx3

dy3

-fi

-f2

-f3

-f4

-f5

-f6



The values of the residuals fl,f2,f3,f4,f5, and f6, as

defined by equations (10-15) are evaluated using the current

estimate, X . The Jacobian matrix is also evaluated using

the current estimate.

When the numeric value of a dimension is altered, the

residuals are no longer zero. The solution to the vector

equation 17 produces the vector dx which is the displacements

of all the points in the shape.

-1
dx = J R (17)

where J is the Jacobian, and R is the vector of negative

residuals. Thus, a new shape estimate is provided by summing

the current estimate with the coordinate displacements;

X = X + dx (18)-n+l -n

Equation 17 may then be evaluated at the new estimate, Xn+l.

This iteration continues until the residuals are sufficiently

small, at which time the geometry is consistant with the

dimensions.

5.1 Non-uniqueness of Solution

An important property is that there are many mathemat-

ically valid solutions to a set of non-linear equations.

For example, all the shapes shown in Figure 7 would satisfy

17



the system of equations (10-15) and therefore are valid

representations of the same set of dimensional constraints -

A, B, and C.

Figure 7, Different solutions.

If the initial estimate, Xi, is sufficiently close to

the desired final solution of the system of equations, the

iteration will converge to the desired shape. (i.e.-the

Newton-Raphson method will converge to a shape with the same

general topology as that of the initial estimate.) This is

the case with the application of the Newton-Raphson method

in the symbolic dimensioning algorithm: Originally, the

points are positioned so that the topology of the part is

given. The residuals may not be zero, but the current shape

results in a good initial estimate which approximates the

desired geometry.

18



5.2 Detection of Redundant Dimensioning

The requirement that there be a number of equations equal

to twice the number of points is a necessary but not a suffi-

cient condition for a valid dimensioning scheme. Referring

to the example of the triangle;

P3

P2

v-

Figure 8, Redundant dimensioning scheme.

Upon counting the number of equations (there are three

implied dimensions as in the previous example) we find that

the number of equations equals twice the number of points in

the shape. Therefore, the triangle has the correct number of

dimensions. When the Newton-Raphson method is implemented

with this example, it would be determined that the Jacobian

was singular. This condition indicates that at least two of

19
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the constraints are not independent and that at least one of

the dimensions is redundant. Note that in Figure 8, point 3

is over-constrained and point 2 is under-constrained.

From linear algebra it is known that for an nxm matrix, A;

Rank(A) < min(n,m) (19)

Therefore, if nm the matrix A is always singular. In the

Newton-Raphson method, if the number of equations does not

equal the number of unknowns, the Jacobian is not square and

is necessarily singular. Therefore, the condition that the

Jacobian be non-singular is a necessary and sufficient condi-

tion for a valid dimensioning scheme.

5.3 Elementary Dimensional Constraints

Up to this point, a limited number of dimensional con-

straints and their corresponding equations have been identi-

fied. The purpose for this section is to present a more com-

plete set of elementary constraints on geometry and their

respective constraint equations. The term "elementary" denotes

that each constraint may be defined by a single equation.

"Compound" dimensional constraints require two or more equa-

tions. Their relationship to higher order entities will be

discussed in section 5.5.

20



5.3.1 Horizontal dimension

P1

X2- X1 D= 0

5.3.2 Vertical Dimension

D

.1

Y2 Y - D = 0

21
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5.3.3 Linear dimension

2

P1

(Xl-X2 )2 + (Y1 -Y2 )2

5.3.4 Distance from a point to a

(22)

line

To constrain the distance from a point to a line, two

vectors must be defined: the unit vector U from P2 to P3

and the vector V from P2 to P1. The distance, D, is then

the cross product of U with V.

22
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P 1 .P3

Figure 9, Cross product.

First, define the unit vector U from P2 to P3;

(X3-X2) ^ (Y3-Y2) 

_ 2( 3 2 3P2P3 1 i P2P31 

The vector V from P2 to P1 can be written as;
1

(23)

V = (X2 -Xl1)i + (Y2-Yl)j (24)

The equation for the distance from a point to a line becomes;

f = U x V - D = 0 (25)

Or;

f = Ux(Y2-Y 1) - Uy(X2-X 1 ) D = (26)

where U and U are defined as in equation 27.
x y

X3-X 2
Ux = IP2P31

Y3-Y2
Uy P2P3'

23
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5.3.5 Angular dimension

P

The constraint equation for an angular dimension between

vector P1P3 and vector P3P4 depends upon the value of the

actual angle between the vectors. These equations are derived

by evaluating the cross product or the dot product between

the two vectors.

For <R< and 4<R<

(X2-Xl)(Y4-Y3) - (Y2-YI)(X4-X3) -IN(R)0 (28)

((X2i-X1)2+(Y2-Y1)2 ((X 4-X 3) 2+( 4-Y3 )2 )

For <A< ;

(X2-XI)(X4-X3) + ( 2-YY 4-3) -CO (R) (29)

( (X2-X a- - Y4 -C O S (A =-0 (29Y.x )2+(y y )2''3 ((x -x 2,;~2JI
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The two different equations are necessary due to the

difference in accuracy between the sine and the cosine func-

tions in the corresponding ranges.

A variational approach for constraining an angle was

first presented by Hillyard [5] and was incorporated as a

part of the prototype program developed as part of the author's

Bachelor's thesis [9]. As a result of considerations such

as stability, convergence, and uniformity of approach, it

was concluded that the present formulation described by equa-

tions 28 and 29, was more effective than the variational

approach.

5.3.6 Equal linear distances

This constraint specifies that the distance between a

pair of points is equal to the distance between a second pair

of points.

P4
t P_

P3

P1

Figure 10, Equal linear distance constraint.
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This constraint does not assign a value to the distances

but merely constrains the two distances to be equal. This

constraint will be important in defining radial measure.

(X2-X1)2 + (Y2-Y1) - (X4-X3) - (Y4-Y3) = 0 (30)

Using an analogous formulation, the same type of constraint

may be defined from any of the elementary constraints pre-

viously defined. For example, equal vertical displacement

between P1-P2 and P3 -P4 may be constrained by equation 31.

Y4 -Y 3-(Y 2-Y 1) = (31)

5.4 Compound Dimensional Constraints

Compound dimensional constraints are simply combinations

of two or more elementary constraints. Therefore, a compound

constraint is represented by two or more equations relating

the x,y, coordinates of the points to be constrained. For

example, if a constraint is to be defined for a distance, D,

between two (parallel) lines, two elementary equations must

be used. The first constraint could be an angular dimension

between P1P2 and P3P4, whose value is zero. The second con-

straint is the distance from point, P3, to the line P1P2.

The value of this dimension would be the distance, D, between

the two parallel lines.
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Figure 11, Distance between two lines.

An alternative scheme would be to constrain the distance

from P3 to line P1P2. In order to constrain P3P4 and P1P2

to be parallel, a constraint could be used which constrains

the distance from P3 to line P1P2 to be "equal" to the distance

from P4 to line P1P2. The constraint equation can be formed

by using the notation of equation 27 and the method described

in section 5.3.6. The result is given below.

Ux(Y3-Y1) - Uy(X3-X1) - [Ux(Y4-Y1) U (X4-X1)] = 0 (32)

27

P-
I d



Or;

Ux(Y3-Y4) Uy(X3-X4) = (33)

Note that this constraint (equation 33) is equivalent

to the vanishing of the cross product between P1P2 and P3P4.

This is the form of the angle constraint where the angle

vanishes. Therefore, this method of constraint is equivalent

to the method discussed above. The second method is actually

used in the DIMENSION system due to the reduced amount of

computation.

5.5 Extensions to Higher Order Graphic Entites

The mathematical procedures presented in the previous

section operate on a shape model which includes simple points

as the basic entities to be constrained. A point may be con-

sidered a center of a circle, a vertex between two lines, or

a point of tangency.

In order to extend the basic approach to include arcs,

circles or any other entity, a set of points must be identi-

fied which define the position, orientation and size of the

entity. These points must then be constrained in a manner

which is compatible with current dimensioning practices. It

is important to realize that the shape model is not being
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altered in order to include arcs and circles. Points are

still the only entity in the shape model. We are simply

defining arcs and circles in terms of their defining points.

P,

F

Figure 12, Defining points of a circular arc.

The three points in Figure 12 define an arc sufficiently.

In order to constrain the points in the radial direction,

the distance between P1 and P2 is constrained to be equal to

the distance from P1 and P3. If the radius is to be specified,

the linear distance between either P1 and P2 or between P1

and P3 is constrained.
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Figure 13, Tangency between line and arc.

If the arc is to be tangent to a line, as in Figure 13,

an angular constraint is used between P3P4 and P3P1. The

value of this angle is set to 90°.

This procedure constrains the three points according to

the users requirements. For display purposes, the three

points are simply marked as belonging to an arc. When the

plotting program draws the shape contour, an arc is generated

between P2 and P3 about P1.

The arc can be positioned in two-space by constraining

any of its defining points. The dimensioning scheme of

Figure 14 cannot be accomplished with only P1, P2, and P3

defined. The horizontal dimension to the extremum of the

arc does not constrain a defining point.
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Figure 14, Dimensioning to the extremum of an arc.

In order to dimension to an extremum of an arc, an addi-

tional point must be used. This point will be constrained

to be at the extremum of the arc relative to the desired

dimension.
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Figure 15, Dimensioning to an arc.

Since two unknowns have been added (the x,y, coordin-

ates of P4 ), two additional constraints must be supplied.

The first is that the distance between P1 and P4 be equal to

the distance between P1 and P3 (or P1 and P2). If a horizon-

tal dimension to the arc is desired, the second constraint

is that the "line" between P1 and P4 be horizontal (i.e.-

Y4-Y1 = 0). If a vertical dimension to an arc is needed,

this second constraint between P4 and P1 must be X4 -X1 = 0

or a vertical "line" constraint.
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If a linear dimension, as in Figure 16, between a point

P5 and an extremum point, P4 is desired, the second constraint

must be a parallel constraint between P1P4 and P1P5 (i.e.-

angle between P1P4 and P1P5 is zero). This would constrain

P5,P1 and P4 to be colinear.

Figure 16, Linear dimension from a point to an arc.

A circle may be incorporated by simply positioning the

center of the circle and specifying the radius. The radius

is used only to draw the actual circle around the center point.

If a dimension is desired to a point on the circle, a method

analogous to that just'described for the arc could be used.
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5.6 Geometric Constraints

General geometric constraints, such as area, may also

be defined. The area of the shade triangle in Figure 17,

can be evaluated from the cross product of two vectors as in

Equation 34.

A = (X1Y2-Y1X2)/2 (34)

/,Y2

x, VYi

Figure 17, Area between two vectors.
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For any N-sided polygon (Figure 18), the area is defined

by equation 35. The inner summation is positive if one moves

around the contour in the counter-clockwise direction. If

one moves in a clockwise direction, the summation is negative.

Therefore, the area of a part shape containing a number of

polygons, with some polygons as "holes", as in Figure 18,

can also be determined by equation 35 by traversing any poly-

gon in the direction which keeps the inside of the bounded

region to the left.

Y

Figure 18, General polygon with "holes".

Equation 35 represents a constraint on the area of the

part shape. In a similar manner, the equation for the iner-

tia tensor and center of mass may be defined by equations 36-42.
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(35)
R = (7 (X +l-Y IXl+l))

(36)
M Z (Z (X1Y 14 -Y1 X141) (Y+Y 1 *Y, 1 ) (

(37)

Ms = (& (X Y+-YLXl) ( +Xl+ l) )

I '1;-( (38)l~l-YlX~ (y2+y +) 3
Ix, =( (XLYLI-YX,+l) (X,,+(X,++X,+l)+ X+, (39)

Xc = Mx/R (41)

Yc = M/ R (42)

where j =,o number of looPs

1=, 0oonumber of Points
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The use of Equation 35, in the Newton-Raphson method is

analogous to the specification of any other mathematical con-

straint on the part geometry. A single row in the Jacobian

is defined by the partial derivative of the area equation

with respect to each coordinate of the shape. The residual

is the difference between the desired area and the present

area of the shape. Since the area is not defined when any

two polygons interfere, checks must be made within each iter-

ation to insure the integrety of the part shape.

The area constraint, equation 35, is not applicable to

a part shape which contains circular arcs. Even though an

arc may be approximated by a polygon, the points in an arc

(the verticies of the approximating polygon) do not explicitly

appear as unknowns in the numerical procedures.

Given a part shape, as in Figure 19, the area of a polygon

with verticies at points 1, 2, 3, and 4 can be constrained

by equation 35. This area is represented by the shaded region

in Figure 20.
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Figure 19, Part shape with an arc.

P1

Pd

Figure 20, Area constrained by equation 35.
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An additional term must be added to equation 35 to repre-

sent the area contained between the circular segment and line

segment P2-P3. This area is determined by equation 43.

Aseg 2R)

where; a = angle of arc,
R = radius of arc,
C = chord length of arc.

The area contained in all the arc segments can be written;

A = ik S R2R j = 1,...,all arcs (44)

The variable, S, has a value of +1 or -1 depending on whether

the area is positive or negative.

S = +1 if the center of the arc
is inside the part contour,

S = -1 if the center is outside
the part contour.

Thus, the complete equation which constrains the area

of a part shape can be written;

T=2 I i R j (j 2RJ

where; j 1,...,a a = number of arcs,
i = 1,...,p p = number of points,
n = 1,...,N N = number of contours.
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As before, a single row in the Jacobian is computed by

differentiating equation 45 with respect to each of the coor-

dinates. The residual is simply the difference between the

present area and the desired area.
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6.0 NUMERICAL METHODS

The method used to solve the system of non-linear equa-

tions is the Newton-Raphson iteration. This procedure is

outlined in Appendix A. The purpose of this section is to

discuss some of the modifications made to the basic Newton-

Raphson method. These modifications were necessary in order

to accomplish three major objectives:

The first was to permit the numerical procedures to par-

tially solve a system of dependent equations, that is, a sys-

tem for which the Jacobian is singular.

The second objective was to implement techniques for

modifying the rate of convergence of Newton's method. This

entails adjusting the amount by which the geometry is altered

on each iteration.

The third goal was to reduce the number of constraint

equations to which the numerical procedures must be applied.

When one or more dimensions are altered, there exists a mini-

mum number of equations which must be solved in order to com-

pute the new geometry. In order to accomplish this, a seg-

mentation algorithm was developed which determines a subset

of equations and unknowns which must be included in the iter-

ation given:any dimensional change.
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6.1 Stability of Numerical Procedures

In the application of an iterative numerical method,

the question of numerical stability is of concern. It is

often difficult to determine if a solution can be found to a

set of non-linear algebraic equations. The rate and success

of convergence depends not only on the set of equations but

also on the "initial guess" and the final solution.

A major cause of instability is an "ill-conditioned"

dimensioning scheme. A dimensioning scheme is considered

ill-conditioned when a small variation in the numeric value

of a dimension causes a large variation in the geometry. An

example of this type of dimensioning scheme is shown in

Figure 21.

With this dimensioning scheme, the X-coordinate of point 3

will change by a large amount with a small change in angle, A.

The problem of ill-conditioned shapes is compounded by

the fact that a shape may be "well behaved" for one set of

numeric values for its dimensional constraints but "ill-

conditioned" for another set. If the shape in Figure 21 is

used with the same dimensioning scheme yet with a different

set of numeric values for the angle, A, and dimension D, as

in Figure 22, the shape becomes well behaved.
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A P-

Figure 21, An "ill-conditioned" dimensioning scheme.

P.1

Figure 22, A stable dimensioning scheme.
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When the angle, A, approaches zero and the dimension D

approaches the value of dimension B, the Y-coordinate of

point 3 becomes over-constrained and its X-coordinate becomes

under-constrained. In Newton's method, as this condition

occurs, the determinant of the Jacobian vanishes.

It is useful to look at this problem in more abstract

geometrical terms. The solution to a set of N equations is

a single point in multi-dimensional space. The number of

dimensions in this space is N+1 where the added dimension

can be thought of as the magnitude of the residual vector.

An equation represents a hyper-surface in this multi-

dimensional space where the magnitude of the residual vector

varies over the surface.

The intersection of the N surfaces is essentially an

N+l dimensional curve. The purpose of any numerical method

is to find the point along this curve where the residuals

vanish. In terms of constraining the geometry of a shape

with N points, we have 2N equations in 2N'1 dimensions. The

geometry which conforms to a set of explicit dimensions

corresponds to the solution point in 2N+l space;

(X1'Y 1 9 X2 Y2'X3'Y 39 . XnYn'O)
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The last coordinate is the magnitude of the residual vector

which is zero at the solution point.

Newton's method computes the gradient vector along this

multi-dimensional curve. Problems arise when the gradient

vector vanishes. This would correspond, in the two-dimensional

case, to the first derivative vanishing at a maximum or mini-

mum (extremum).

6.2 Direct Matrix Techniques

An extremum may be encountered due to either a redun-

dantly dimensioned shape for which the Jacobian will always

be singular, or where, for any reason, the Jacobian becomes

singular or near-singular somewhere in the iteration.

From section 5.0, the increment, dx, in the "guess" was

determined by equation 46.

J dx = R (46)

When the Jacobian, J, becomes singular at an extremum, there

exists an infinity of vectors, dx, which will satisfy equa-

tion 46 when the redundant equations are ignored. In this

section, a technique will be described by which equation 46,

with a singular Jacobian, can be solved for some solution,

dx by ignoring the redundant equations. The details of this

method are described in Appendix B.
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The technique is a variation of the Doolittle method

which in turn is a variation on the Crout reduction [11].

Doolittle's method states that given a system of equations;

Ax = b (47)

where A is non-singular, the matrix A can be written;

A = L U (48)

where L is lower triangular with unity on the diagonal and

zero above the diagonal. Matrix U is upper triangular with

zeros below the diagonal and non-zero elements on the diag-

onal. The matrices L and U can be chosen in such a way

that;

L y = b (49)

Ux =y (50)

Equation 49 can be solved for the vector, y. Then equation 50

is solved for the solution vector, x.

The modified Doolittle's method produces an L and a U

which will satisfy equations 48-50 when the matrix A is

non-singular. When A is singular, the structure of matrix U

is different.
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Instead of non-zero elements on the diagonal, zero

rows appear for every linearly dependent equation and zero

columns for every unconstrained variable. Equation 48 is no

longer true if matrix A is singular, but equations 49 and

50 remain valid.

When equation 49 is solved, a unique vector y will be

determined. When equation 50 is solved an n-parameter family

of solutions is generated. The n-parameters are the

n-unconstrained variables. If these unconstrained variables

are set to zero, a solution to equation 47 will be determined.

Since the solution vector, x, is simply the increment to

the solution of the non-linear equations, the unconstrained

coordinates will not vary but the remaining points will be

positioned correctly with respect to the independent (non-

redundant) constraints. This effectively causes the redun-

dant equation to be ignored and the unconstrained coordinate

is simply constrained to remain at its original value.

This procedure has many important properties. First,

Doolittle's method is one of the most accurate numerical

methods for solving a system of linear equations. With

finite precision arithmetic, Doolittle's method tends to

minimize the round-off error.
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An important feature of Doolittle's method is that not

only can the numerical methods determine which variable is

unconstrained but also which equations are redundant. This

cannot be accomplished with the standard Gaussian elimina-

tion. This allows the DIMENSION system to indicate to the

user which dimension is redundant and which points are under-

constrained. This can be of value when the user is creating

a dimensioning scheme.

The greatest advantage of the modified Doolittle's method

is that a solution can be found which satisfies equation 46

even when the Jacobian is singular. Thus, if a shape was

created with N points, normally 2N constraints would be needed

to solve for the geometry. With this method, less than 2N

constraints could be specified. Only the portions of the

shape that are sufficiently constrained would be affected.

6.3 Iteration Modifications

The previous section dealt with methods which focused

on the matrix solution to equation 46. In this section, a

more global modification of the iterative technique is used.

The basis of the Newton-Raphson method is the calculation of

an increment, dx, to the current shape estimate which will

bring the geometry closer to the actual solution. The

discussion here is quite separate from that of the previous
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section. It will not assume that the solution to Equation 46

can be found when the Jacobian is singular. It is assumed

that a valid dimensioning scheme is used.

If the dimensioning scheme is truely valid (not redun-

dantly dimensioned) there are methods by which the part geom-

etry can be made to converge from its present dimensional

values to the desired dimensional values. These methods fall

into the classes of stepping, relaxation, and curve-crawling.

6.3.1 Stepping techniques

Stepping techniques simply cause the numeric values of

the explicit dimensions to be incremented in steps from the

present values to the desired values. With each increment,

a new initial guess is determined which is very close to the

solution of the next increment. This is different from the

successive guesses made in each iteration of the Newton-

Raphson method.

For example, a dimensional value is changed from 10.0

to 15.0 in five steps. This equivalent to altering the dimen-

sion from 10.0 to 11.0, 11.0 to 12.0, 12.0 to 13.0 and so

on. At each step, Newton's method is executed and the itera-

tion is allowed to converge. In order to reduce the amount
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of computation, the solutions in the intermediate steps do

not need to be as accurate as the final step.

6.3.2 Relaxation techniques

Relaxation techniques are used in Newton's method to

stabilize the convergence process. In the conventional

Newton-Raphson iteration the increment vector, dx, is derived

from the Jacobian and the residual as shown in Equation 51.

dx = J R (51)

Relaxation simply involves incrementing the coordinate

values by scalar multiple, F, of the increment vector dx as

in equation 52.

x+ = X + F · dx (52)

The value of F, the relaxation factor, is usually;

0 < F < 1.0

to make the convergence slower, and hopefully more stable.

If F > 1.0 then the convergence will be faster yet less stable.
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6.3.3 Curve-crawling techniques

The method of curve-crawling is similar to that of the

relaxation factor. In this method the multiplicative factor

is not a scalar but a function of the magnitude of the in-

crement, dx. The choice of the function determines the

convergence properties. A useful function of dx would be

one where the value F approaches 1.0 as the magnitude, ldxl

approaches zero. Equation 53 was used in the DIMENSION sys-

tem and resulted in acceptable performance.

F = 1 - e -0.l/fdxl
4

Curve-crawling slows the convergence considerably as

shown graphically in Figure 23. In this figure, equation 53

is used to modify the convergence for the solution to a

single function. In Figure 24, the same function is used

but with no relaxation techniques.

on

Figure 23, Convergence using curve-crawling techniques.
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verges
- -

Figure 24, Convergence using standard iteration.

One problem with the use of curve-crawling is that if

an extremum exists along the curve, it is likely that the

curve-crawling iteration will find it. If the iteration

encounters an extremum in which the displacement vector, dx,

cannot be calculated it is worthwhile to simply guess a new

initial guess in hopes that it will put the iteration past

the extremum point. A procedure which was used in an earlier

version of the DIMENSION system was to use the previously

computed displacements to compute a new initial guess if an

extremum is found (ie.-when the Jacobian is singular). This

usually pushes the iteration past the extremum
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to where a new increment vector, dx, can be computed in the

normal fashion.

The current method is to use the solution generated by

the modified Doolittle's method discussed in the previous

section. When this solution is used it is possible to push

the iteration past the extremum.

6.4 Segmenting the Jacobian

One of the potential problems associated with symbolic

dimensioning is that the size of the Jacobian increases by

the square of the number of points involved. For example,

if a two-dimensional shape contained N points, 2N equations

would be needed to constrain the geometry and the Jacobian

would contain 4N2 elements. In three dimensions, 3N equa-

tions would be required and the Jacobian would have 9N2 ele-

ments. In order to solve the system of constraint equations

for the geometry, all the equations needed to be included in

the iteration. The purpose of this discussion is to describe,

somewhat pragmatically, an algorithm by which a minimal set

of equations and unknowns may be selected to be included in

the iteration.

To facilitate the discussion, an example will be used.

Given the part shape in Figure 25, a set of constraint equa-

tions can be defined (equations 54-65).
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Figure 25, Example shape.

Constraint
Number Type Constraint Equation

Horz. Dist.

Lin. Dist.

Horz. Dist.

Horz. Dist.

Lin. Dist.

Horz. Dist.

Horz. Dist.

Vert. Dist.

Horz. Line

Horz. Line

Origin

Origin

X - X A 0
2 1

(X-X1) + (Y-Y1) -2

X3 X1 +- = 03 1

X - X - D- 05 4

2 2 2
(X6-X4) + (Y6-Y4 ) -E 

6 4

4 1

4 1 G 

Y4 Y1 - H 0

Y2 Y1 

Y - Y -0
5 4

X 0

54
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9
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(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

W - - .
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If dimension G is altered, the only coordinates that

will be affected will be X4, X5 and X6. In order to solve

for these coordinates, constraints D, F and G must be satis-

fied. A general approach to the selection of this set of

equations and unknowns is desired.

The first step in this process is to determine which

coordinates are sensitive to a given constraint. This can

be accomplished by simply solving equation 66 for the vector,

S..-1

J S R (66)

where; R = 0 for ji

R. = 1 for j=i

Any non-zero element of Si is sensitive to a variation

th
in the i equation. If this procedure is used for all the

equations, the "coordinate sensitivity" matrix, Sc, can be

generated.

Sc = (S,2' S n (67)

where the S are the columns of Sc.-1
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The coordinate sensitivity matrix indicates which vari-

ables are sensitive to any given constraint equation. If

th
the element Sc.. = 1 then the i coordinate is sensitive to

the jth equation. Since the only information needed is

whether or not the coordinate is sensitive to a certain

equation, the elements in the coordinate sensitivity matrix

need only be zero or non-zero.

If all non-zero elements are set to unity, the coordin-

ate sensitivity matrix can be computed for the example in

Figure 25.

Sc

00000000001000000000000110000000001000000000100100100 0000010
0110 00000001
00000010001000000 00100 01
000100100010000000010001000001100010000 011010001
_m

(68)
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A second matrix which needs to be generated is the

"dimensional sensitivity" matrix, SD. This matrix indicates

which dimensions are sensitive to which coordinates. If the

element SDi j = 1, then the jth dimension is sensitive to the

ith coordinate. The dimensional sensitivity matrix is anal-

ogous to the coordinate sensitivity matrix. Two conditions

must be satisfied in order for the jth generalized dimension

to be sensitive to the ith coordinate. First, the ith

coordinate must be sensitive to the jth equation as indicated

by the coordinate sensitivity matrix (ie.-Sc.i = 1). Secondly,

the ith coordinate must appear explicitly in the jth constraint

equation.

The dimensional sensitivity matrix, SDcan be generated

directly from the coordinate sensitivity matrix, Sc, by setting

all elements Sc.. = 0 when the ith coordinate does not

appear explicitly in the jth equation. The dimensional sensi-

tivity matrix for the example shape is;

SD =

oooooooooo000000000001100000000000
o0000000l000001000000000010000000000000000100000000000010000000100000000000000000100000001000000000010000000

O O O OO OO O 0 

(69)
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The algorithm by which the set of equations and unknowns

can be determined is as follows;

1) Given that the jth dimensional constraint
is altered, choose as unknowns, any vari-
ables, i, where Sc.. = 1.

1J

2) Choose as equations any dimension, j,
where SD. = 1, for all unknowns, i,
which wer determined in step 1.
If number of equations equals number
of unknowns, then stop.

3) Scan down the column, j, of all
equations chosen in step 2. If
SD = 1 for any row, i, which is
no*included in the set of unknowns,
then include the unknown and repeat
step 2.

This procedure will determine a subset of the total

number of equations and unknowns, which need to be solved to

compute the new geometry.

Returning to the example, dimension G, the 7 th constraint,

will be altered. Column 7 of the coordinate sensitivity

matrix, equation 68, must be scanned for non-zero elements.

Rows 7, 9, and 11 are chosen. This corresponds to coordinates

X4, X5 and X6. In order to determine the set of equations,

the dimensional sensitivity matrix, equation 69, is analyzed

as in step 2. Rows 7, 9, and 11 are scanned for non-zero

elements. In this case the columns 4,6, and 7 have non-zero

elements in rows 7, 9, or 11. Since the number of unknowns

equals the number of equations, the procedure is complete.
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The only discrepancy which can occur is that the number of

unknowns is less than the number of equations. If this occurs,

additional unknowns must be found by executing step 3 and

then reprocessing step 2.

The use of this procedure greatly reduces the number of

calculations required to solve the matrix equation 46 due to

the fact that there are fewer equations. This will result

in a reduction in the round-off errors associated with those

calculations. The coordinate sensitivity matrix requires

approximately 4/3 N3 operations for an NXN matrix. This is

four times the number of calculations associated with a

single iteration of the Newton-Raphson method. The reduction

lies in the fact that usually, the sensitivity matricies

SDand Sc need to be computed once for each set of constraint

equations since the zero/non-zero nature of and Sc tends

to be invariant with a change in geometry.

It is possible that this procedure would not choose the

correct set of dimensions and unknowns. The shape in Figure 26

illustrates this problem.

59



P4 1 P3
'1

D
B

P11 

Figure 26, A cube.

Dimensions A and B are horizontal and vertical

dimensions. Dimensions C and D are linear dimensions. Line

P1P2 is constrained to be horizontal and line P2P3 is

constrained to be vertical. As before, X1=0 and Y1=0.

The sensitivity matricies would show that Y4 is not sensi-

tive to dimension C, and that X3 is not sensitive to dimen-

sion D. From Figure 26, it can be seen that for a small vari-

ation in dimension C, the vertical position of point 3

will not change.

Therefore, if dimension C was altered, steps 1-3 above

would select only equation C along with coordiate X3 to be
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solved in the iteration. After solving equation C for the

new value for X3, it would be determined that the residual

in equation D is no longer zero. This would indicate that

the correct equations and unknowns were not chosen. At this

point, the sensitivity matricies must be recomputed and the

total process repeats.

Because of this potential hazard, two more steps must

be added to the process;

4) Perform the Newton-Raphson iteration
using the equations and unknowns found
in steps 1-3.

5) If the residuals for all the equations
are not small after the iteration
completes, recompute Sc and S and go
to Step 1. Note- the dimensional con-
straint(s) being altered in step 1 is
now the equation(s) whose residual is
non-zero.

The author must admit that no underlying mathematical

theory has been found which proves that this algorithm works

in all cases, nor that it produces the minimal set of equa-

tions and unknowns. All that can be stated is that the pro-

cedure has been incorporated in the DIMENSION system and the

results look very promising.
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7.0 IMPLEMENTATION

The previous section outlines the basic extentions of

Newton's method which improve the convergence properties and

capabilities of the numerical methods. In addition, a pro-

cedure was described which allowed for the definition of

higher order graphic entities and general geometric constraints.

In section 1.0, a qualitative description was made of the

"design process" in order to lay a foundation for the conceptual

development of the DIMENSION system. In this section, the

realization of a CAD system utilizing these mathematical and

conceptual techniques will be discussed. A user's manual

for the DIMENSION system is incorporated as Appendix D and

is intended to be a self-contained document. Although some

information appears both in Appendix D and in this section,

a more detailed treatment of the important topics is presented

here.
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7.1 Graphic Input Procedures

The purpose for the graphic input routine is to provide

a description of the basic topology of the shape. This in-

cludes the approximate position and orientation of the

lines, arcs and circles which comprise the shape contours.

The position of each point is used as the initial guess to

the Newton-Raphson iteration. Since this initial guess

need not be accurate, the graphic input may take the form of

a free-hand sketch.

The data which is derived from the graphic input routine

is of two types;

1) X,Y coordinates of all points that will
be used in the Newton-Raphson method.

2) Indicies of points which are defining the
specific graphic entities;

- endpoints of lines
- center and endpoints of arcs
- center of circles

The sketch-like graphic input is facilitated by the

use of a data tablet, digitizing pen and a tracking cross on

a dynamic refresh display. The input of any shape topology

is divided into "Loops". A loop is any string of succes-

sively connected graphic entities (lines and arcs) which at

some point closes on itself and connects to the initial

point entered. In Figure 27, the first loop is about to be
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completed. A loop is started by pressing and releasing the

pen. This enters a point into the data base. A "rubber-

band" is then connected to the point just entered and the

tracking cross. When the pen is pressed and released a

second time, another point is entered and the existance of a

line between the last point entered and the present point is

indicated in the data base.

Figure 27, Completion of the first loop.
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If an arc or circle is to be entered, the pen is pressed

as the arc is sketched. In Figure 28, an inner loop is being

specified, the arc is being drawn with the pen in the depressed

position. The added "X" on the tracking cross indicates

that the pen is pressed.

Figure 28, Sketching of an arc.
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In Figure 29, two arcs have been entered and the second

loop is is about to be completed. After any loop is com-

pleted, the operator can do one of three operations;

1) Start another loop.
2) Insert a single point.
3) Insert a circle.

A second loop is entered in the same manner as described

above. A "single point" is entered by pressing and releas-

ing the pen twice at the same location. A circle is entered

by simultaneously pressing the pen and drawing the contour.

Since a circle is defined by its center, the circle must

always be drawn around a previously entered "single point".

Figure 29, Completion of an inner loop.
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In order to maintain a clearly defined topology in the

data base, there are many validity checks made as the con-

tours are being input. If the topology is not acceptable,

the offending entity is automatically erased at time of

input. This gives the operator immediate notification of a

data input error. For example, the operator in Figure 30,

tried to enter a circle which did not encircle a single

point.

Figure 30, Incorrectly specified circle.
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When the pen is lifted, signalling the end of the circle

input, the circle is erased automatically, resulting in

Figure 31.

Figure 31, Notification of input error by disappearance
of the graphic entity.
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7.2 Definition of the Dimensioning Scheme

After the topology has been entered, control is passed

to a program which allows the user to define the general-

ized geometric constraints. These constraints fall into

three classes:

1) Explicit dimensions
2) Implicit constraints
3) Geometric constraints

As described in section 3.1, the first catagory, explicit

dimensions, are the standard drafting dimensions such

as angular measure, linear, horizontal or vertical displace-

ment, or distance from a point to a line. Implicit constraints

are those constraints like horizontal and vertical lines,

perpendicular lines, or tangency.

The third catagory encompasses the general geometric

constraints which cannot be defined as "dimensions". These

include constraints on the surface area, moment of inertia,

or center of mass, etc.

In all cases, the operator is allowed to specify the

constraints with an interactive, semi-automatic dimensioning

protocol. This protocol is described in detail in Appendix D.

In Figure 32, the part shape has been fully constrained.
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Note, the double lines indicate horizontal and vertical

implicit constraints and the boxes indicate points of tangency.

The user is always notified as to the number of constraints

which remain to be defined. In Figure 32, the message in

the upper right corner indicates that no more constraints

are needed. This informs the user that the part has the

correct number of dimensions but it does not determine

if the part is redundantly dimensioned. This will occur when

the user executes the Newton-Raphson method in the next

routine.

* CONSTRAINTS REMAINING: 0

D A LS HDS VDS RAD TD S DEL D NEW D
ILIN VLIN RAid P0f19 ANGL LOIS NIS VOIS PLII RADI ARE TS DEL DOSE SEW DAs

A R

Figure 32, A dimensioning scheme.
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7.3 Changing the Values of the Dimensions

After the shape has been sketched and the geometric

constraints defined, control is passed to another procedure

where the user may execute the Newton-Raphson iteration (by

pressing "GO"). The sketched input geometry is used as an

initial guess and the dimensioning scheme is used to compute

the Jacobian and the residuals. The part shape is essen-

tially "straightened up" by this operation as in Figure 33.

The values of the dimensions result from simply measuring

the sketched geometry.

GO STfP EV AVE 00 Vt IqELX DSPL EXI .LTR COPY LOW MOP C~ l

Figure 33, Geometry which has been "straightened".
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The user may then change the values of the dimensions

by simply indicating, with the tracking cross, the dimension

to be changed as shown in Figure 34. The desired numeric

value, 15.0, is then entered. The inputting of alphanumer-

ics is accomplished with the use of the interactive keypad

in the upper left corner. Upon executing the Newton-Raphson

method, the part geometry is updated to conform to the change

in the explicit dimension. The resultant shape is shown in

Figure 35.

As a result of many such dimensional changes, the part

geometry can be modified to the designer's needs. The part

shape in Figure 36 is the same part with a different set of

dimensional values.

The problem of under- or redundant dimensioning is handled

in this program in two modes. The first mode is simply to

notify the user which constraints are redundant and which

coordinates are under-constrained. This occurs when the user

presses "GO" and the Newton-Raphson iteration begins. In

Figure 37, a shape which is redundantly dimensioned illustrates

the ability of the system to notify the user of errors in

the dimensioning scheme. The under-constrained points are

circled and the coordinates which are under-constrained are

indicated by the letter X or Y by the point. The redundant

dimensions are indicated by blinking.
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The second mode is through the use of the "LOW" button.

This LOW gear solution technique implements the curve crawl-

ing algorithm in conjunction with the modified Doolittle's

solution for the singular Jacobian in equation 46. This per-

mits the user to create a geometry and then specify a

subset of the total dimensioning scheme. The user may then

control the position, via the dimensional values, of only

those points which are correctly constrained.

ABCDEFGH 1_23
J KLIMINOPI0QR 41516

ENTER VALUE

DLSTEP IDEL VE ZOOM VIEW R EL DSP I EXIT DNSP ALTR COPY LOW PRO CSICO STEP ~EdSAVE Ator VIEW DEo OSAXT IN ATR COPY LOW PRO CSIR

lo

Figure 34, Dimensional value about to be changed.
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Figure 35, Result of a dimensional change.

Figure 36, Result of many dimensional changes.
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Blinking dimensions -%,

X

-constrained
ordinates

BLINKING DIMENSIONS ARE REDUNDANT +* CIRCLED POINTS ARE UNDER-CONSTRAINED

Figure 37, Notification of a redundant dimensioning scheme.
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7.4 Software/Hardware Configuration

The DIMENSION system was developed at the Joint Compu-

ter Facility of MIT on a VAX 11/780. The software is writ-

ten entirely in Fortran and is structured as in Figure 38.

Figure 38, Basic software structure.

Although the program can be run on a single computer with a

storage tube CRT, in order to use the real-time dynamic

plotting capabilities of a MEGATEK 5000 driven by a PDP11/34

(see Figure 39), the software was divided into two sections.

The main set of routines which perform the basic numerical

calculations, were implemented on the VAX. A smaller set of

programs were implemented on the PDP11.
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VRX

11/780

5000

Figure 39, Hardware configuration.

With this configuration, the programs which reside on

the P)P11 communicate with the programs running on the VAX

via a data network (DECNET). The program which is on the

PDP11 acts like an "intellegent terminal" to the VAX program.

For example, if any of the DIMENSION routines, running on

the VAX, require the user to indicate a point on the

screen, it sends a code to the "terminal" program running on

the PDPll1. The terminal program then conducts the real-time

task of tracking the pen with the data tablet. When the

user depresses the pen, the "terminal" sends back the coor-

dinates of the penpress. The DIMENSION programs must then

decide what to do depending on the coordinates it receives

from the "terminal".
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In the same manner, all the interactive I/O is trans-

mitted through DECNET. For example, if the VAX program

needs alphanumeric input, the terminal program displays a

graphic keypad on the MEGATEK with a prompt from the VAX

(see Figure 40). The terminal program then controls the

inputting of the alphanumerics with the use of the pen and

data tablet.

Figure 40, Interactive graphic keypad for data entry.

With this configuration, the different program modules

were structured as in Figure 41. The mainline of the DIMENSION

routines is program SYMDIM. Its purpose is to call the sub-

routines which allow the user to define and interact with

the part shape. Its primary task is to execute the Newton-

Raphson method. A flow chart of the Newton-Raphson

method, as implemented in SYMDIM is presented in Figure 42.
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Figure 41, Configuration of program modules.
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The module, CHGDIM, is used to permit the user to change

the numeric values of the explicit dimensions. The user is

allowed to simply point, with the tracking cross, to the num-

ber that is to be changed and then enter the desired value

using the graphic graphic keypad. In addition, the user may

input the values of the relaxation factor, number of steps

in the iteration, and alter the viewing scale.

When a user wishes to enter a new shape or edit the di-

mensioning scheme of an existing shape, control moves to the

DRAFT subroutines. If the user wishes to start from

scratch, the GTSHAP (get shape) routine is called and a

message is sent to the terminal program on the PDP11. Here

the sketch input routine, EDTLIN, is called. EDTLIN analyzes

the user input and sends back the data needed to define a

"shape" as described in section 7.1. Control is then passed

to the EDTDIM routine (on the VAX) which allows the user to

interactively specify the dimensioning scheme.

Both EDTDIM and CHGDIM use a set of programs which draw

the different types of dimensions. The important concept in

these plotting routines is that the numeric text associated

with each dimension must occupy a unique region on the

screen, independent of character size and shape geometry.

This is to insure that the operator can always point to a
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single dimension on the CRT. The "ALTR" command in CHGDIM

allows the user to alter the different parameters which are

used in the search techniques for positioning the dimen-

sions.
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8.0 RESULTS

The utility of a general symbolic dimensioning system

has been demonstrated through the use of the DIMENSION system.

An example session using the DIMENSION system is included as

Appendix C. This system allows the user to sketch the contour

of the shape with no concern for the actual dimensions of

the part. With the present system, the shape contour may

consist of two-dimensional points, lines, arcs and circles.

The user then specifies the dimensional constraints and

the values of the dimensions in order to modify the geometry

as desired.

A method for including higher order graphic entities,

such as arcs and circles, in the shape model has been imple-

mented. It allows the user to specify common dimensions in

order to constrain the arc or circle. General geometric con-

straints such as area were incorporated into the DIMENSION

system.

The problem of numerical stability in large, complex

geometries has been reduced through the use of the tech-

niques developed in this work. The use of the modified

Doolitt:le's method allows a singular Jacobian to be par-

tially solved by ignoring redundant equations and unconstrained

variables. The actual number of calculations can be reduced
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through the use of the segmentation algorithm. Given a change

in dimensions, the segmentation algorithm selects a minimum

number of equations and unknowns to be solved by the Newton

iteration. As a result of the reduction in calculations,

numerical error and computation time are also reduced.

These techniques, in conjunction with the use of the

relaxation, stepping and curve-crawling techniques described

in section 6.2, result in a very stable numerical iteration.

For the varied set of shapes and dimensioning schemes imple-

mented on the DIMENSION system, the mathematical techniques

discussed in this paper were quite adequate.

Any interactive design system must address the problem

of the human interface - the ease of use. Because the

DIMENSION system emulates very natural shape construction

and specification techniques, users have found the system

easy to use and to understand. The fact that the system

informs the user of any problem in the dimensioning scheme

is a major advantage of this approach. It eliminates the

problem of producing designs which are over-, under- or redun-

dantly dimensioned. More importantly, the use of symbolic

dimensioning gives the designer a better "feel" for the effect

of a dimension on the part geometry by producing visual feed-

back for any change in dimensions.
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9.0 RECOMENDATIONS AND CONCLUSIONS

The DIMENSION system has demonstrated some of the fea-

tures of using symbolic dimensioning in a CAD system. This

system emulates the design process by allowing the user to

sketch the initial shape. More importantly, it facilitates

the process of design modification by variation of the dimen-

sional constraints. In addition, design synthesis can be

accomplished through the use of the geometric constraints.

This permits the designer to omit dimensional constraints

and specify constraints such as mass, inertia or center of

mass in order to obtain the desired geometry.

The application of the numerical techniques developed

in this research effort can be applied to the case of a 3-D

shape model. The dimensional equations must be defined be-

tween points in three-space and implied constraints must be

identified. The problem of graphic input in three-space must

also be studied in the context of eventually specifying 3-D

constraints and geometry in an interactive manner.

The ability to alter the geometry of a part by varying

the numeric values of the dimensional constraints, permits

direct analysis of a tolerancing scheme. The effect of a

single tolerance, or the complete set of tolerances, on the

total shape can be directly evaluated. This would be valuable
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in the analysis of assemblies. By using the same mathemati-

cal techniques, one could specify the nominal dimension

and the clearances between mating parts, the system could

then compute the maximum variation in dimensions (toler-

ances) that would maintain the specified clearances. This

would give the designer a quantitative basis for specify-

ing tolerances.

An important application of the techniques developed in

this paper would be to the process of converting a design

which is. in the form of a drawing to a computer data base.

These techniques would produce a very efficient procedure

for converting a very large "paper" data base to a computer

data base. In practice, much of the sketching and dimension

specification could be done automatically through the use of

feature recognition.

The application of the DIMENSION system to the problem

of associativity of dimensions in assemblies should also be

studied. In this application, the value of one or more dimen-

sions in one part of an assembly is related in some way to

the dimensions in other assemblies. When a dimension is

altered in any part, the associativity is carried through

the entire assembly. The Newton-Raphson method could be used

to find the set of dimensional values which is a solution to

a set of constraining equations representing the associativity
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between the dimensions. For example, assume that the value

of a dimension in part A is a function of a dimension in

part B and also of the mass (area) of part C. The dimension

in B and the area in C could in turn be related to some other

property or dimension of other parts in the assembly. If

the designer altered any dimension that changed the area

in C or the dimension in B, the set of constraints for the

values of the dimensions would be solved to produce a new

set of dimensional values and in turn, a new part geometry.

This would represent a form of design optimization based on

a set of equations which may be kinematical, thermodynamical

or mechanical in nature.

One drawback to the present system is that memory require-

ments increase by the square of the number of points in the

shape. The reason is that the Jacobian is a 2N x 2N matrix

(N = number of 2-D points). In this application, the Jacobian

has two important features. First, it is a sparse matrix.

In the present system, even if the matrix is 2N x 2N, in most

cases, the matrix is 90% zeros. Secondly, the position of

all the non-zero elements are known. The core requirements

for the system could be reduced by not requiring the storage

of all the zero locations in the Jacobian. In addition,

the computation time would be reduced by not requiring

the multiplications by zero.
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In summary, the use of the procedures developed in this

research effort has resulted in a new class of CAD system.

The DIMENSION system eliminates the need for precise geomet-

ric input and provides a means for checking the validity of

a dimensioning scheme. In addition, it enables the computer

to assume more of the role in geometric analysis in the

areas of dimensioning, tolerancing and shape representation.

It offers a natural, efficient mechanism for shape defini-

tion and modification with potential development in the

areas of 3-D representation, design synthesis, tolerance

analysis and associativity in assemblies.

It is the author's firm belief that the mathematical

and procedural techniques demonstrated in the DIMENSION

system will advance the state of the art in the areas of

geometric input, dimensioning, tolerancing and design modi-

fication and result in a major advancement in the field of

computer-aided design.
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APPENDIX A - The Newton-Raphson Method

A.1 Newton's Method

Consider a function f(x) which is continuous in the

interval of interest. The objective is to determine the

zero of the function, X, where f(Xo)=0.

~=f (x)

Figure A.1, Graph of f(x).

The steps of Newton's method are described below;

(1) Guess a value X which is "near" the zero, X
(how "near" depends on how eradic the function is
in the region of interest).

(2) Determine the slope of the function, f(X 1), at X1.

(3) Determine X from the equation below which corresponds
to the grapiical argument in Figure A.2.

Xn+l = Xn - f(Xn)/f'(Xn)
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~=f (x)

initial guess

Figure A.2, Graphical description of Newton's method.

(4) X2 is now the initial guess, go to step (1) and

iterate until f(Xn)=O.

(5) If f(Xn)=O then exit.

A.2 The Newton-Raphson Method

The Newton-Raphson method is an extention to the

basic Newton's method presented above. It is used to deter-

mine the zeros of a set of simultaneous non-linear equations.

First, we will investigate the case of two equations in two

unknowns.

Given; F(x,y) = 0

G(x,y) = 0

Geometrically, this corresponds to finding the inter-

sections of two curves; F=0O, and G=O. Let X, Y be an

initial guess for the common zero. The Taylor series expan-

sion about the point (Xo,Yo) of the functions, F(x,y) and

G(x,y) are;
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F(x,y)= O =F(Xo,Y o )+(x-X o )fx (X o'Y o)+(-Y ) fy(Xo'Yo)+ 

G(x,y)=O=G(Xo, Yo )+(x-Xo) gx (' ° X0Y o)+ 

By neglecting the higher order terms, the above equa-

tions may be written;

(x-X )fx + (Y-Yo)fy = -F(X ,Yo)

(x-Xo)gx + (y-Yo)gy = -G(Xo,Yo)

Where fx' fy' gx' and gy are the partials taken at the

guess point, (Xo,Yo). Solving this set of linear equations

for x-Xo and y-Yo results in values for the increments in

the initial guess. This provides a new "guess" which is

closer to the real solution. Therefore, the Newton -

Raphson method, generalized to two equations, takes the

form;

(Xn+l Xn)fx + (+lY n )fy = -F(Xn ,Y n )

(Xn+l-Xn)g x + (Yn+l-Yn)gy = -G(Xn Yn
)

where fx fy' gx' and gy are the partials of F and G taken

at (Xn,Y n ).
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In matrix form, the above equations take the form;

[gx gy] [Yn+l Yn -G
XnYn XnYn

In the general case, there are m-equations (fl,f2 1f3 f4

fm ) in m-unknowns (X1,X 2,X 3 *.. Xm). To simplify the

notation, let;

dx 1 X1 X
n+l n

f12 - mfl/x 2

The generalized Newton-Raphson method takes thje form;

f21 f22 f2m

f . f

fml fm2 * * fmm
m 

_dx
dx;
dx2

10

dxm

-fl

-f2

ai·

Or;

J dx = R

where; J is the Jacobian matrix
ax is the vector of displacements
W- is the vector of residuals.

94

0

II II



APPENDIX B - Modified Doolittle's Method

Doolittle's method for solving a system of linear equa-

tions Ax=b is a variation of the Crout reduction [11].

Basically, if the matrix, A, is non-singular, it can be

written in the form =LU where the matrix L is lower triang-

ular with unity on the diagonal and matrix U is upper

triangular. The solution vector, x, may be found by solving

the equation Ly=b for the vector y, and then the equation

Ux=y for the vector x. The initial discussion will assume

that the matrix, A, is non-singular.

The equation A=LU may be written term by term;

min(jk )

ik = LiUjk (LU)ik (B.1)

The upper limit on the summation, min(i,k) is a result of

the triangularity of the matricies and U. Examining the

summation in its two regions, i<k and i>k;

k k-1

1> ai = L1Uk =iLijUjk+LikUkk (B.2)

i i-k (

i~<k aik = 4LijUjk =LijUjk+L ik (B3)
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From equation B.2 and using the fact that L has unity on the

diagonal (ie.-L. =1), the element of the U matrix may be11

written;
i-1

Uik = aik- LiUUjk ik (B.4)

From equation B.3, the element of the L matrix may be written;

k-1

Lik =(aik- LijUk)/Ukk i>k (B.5)

In solving for Lik, it is desired to divide by the

largest available number, Ukk. If the matrix A is singular,

at some point, the largest Ukk available will be zero. When

this occurs, the column must be pivoted with a new unprocessed

column and reprocessed. The process of row pivoting so that the

largest Ukk is on the diagonal in conjunction with the

column pivoting will result in all the "bad" columns (associ-

ated with unconstrained variables) and all the dependent

rows being placed in the last columns and rows of the L and

U matricies.
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When the matrix, A, is singular, it is no longer true

that A=LU. The equations Ly=b and Ux=y will result in a

parametric solution to the equation Ax=b if the dependent

rows are ignored. The free parameters are simply the uncon-

strained variables. If these parameters are set to zero, a

partial solution may be found to the equation Ax=b.

At: this point, a detailed description of the algorithm

will be presented. This is based directly on equations B.2

and B.3. For simplicity, the matricies L and U will exist

in a single matrix LU. The unity diagonal of L will be

assumed and not stored in LU. The U matrix will include the

diagonal and all upper elements of LU. The L matrix will in-

clude all elements below the diagonal. Assume that the

orignal matrix, A, is NxN. The counter NGOOD is the number

of linearly independent equations and hence the number of

fully constrained unknowns.

The following procedure will create the LU matrix.

1) Initialize NGOOD=N and K=1. K indicates the column
which is being processed.

2) If K>NGOOD then exit.

3) Process every element in column K according to
equation B.4.

m in( ik)

LU k=Uik - (B.4)
L Uik ik ii ik

J=
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4) Find the position of the element in column K with
the max. absolute value - this will be the IMAX row.

5) If maximum is non-zero then go to step 6
otherwise, pivot column K with column NGOOD,
decrement NGOOD then go to step 2 and reprocess
the column.

6) Pivot row K with row IMAX. The maximum element
is now on the diagonal.

7) Divide by LUKK down column K from row K+1 to row NGOOD.

8) Increment K and go to step 2

Al: this point, the L and the U matricies are complete.

If the matrix, A, is non-singular, the equations Ly=b and

then U:=y may be solved by simple row reduction to obtain

the solution vector x. If the matrix, A, is singular, the L

and the U matricies have the form;

non- zero
elements

1

x/

1

1

unconstrained
variables
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The equation Ly=b may be solved for the vector, , by

row reduction. In order to solve the equation Ux=y we must

set xi:O for i=NGOOD+l, ... N and then solve for the ele-

ments xi, i=l,...NGOOD using row reduction. This will

produce a solution, x, for the equation Ax=b when A is

singular by ignoring the dependent equations. The dependent

rows are rows NGOOD+1 ...N, and the unconstrained variables

are xi, i=NGOOD+1,...,N. If the original position of the

rows and columns are noted as the pivoting is carried out,

the indicies of the dependent equations and unconstrained

unknowns would be determined. In practice, only pointers to

the rows and columns are actually pivoted thus maintaining

the identity of the dependent equations and unconstrained

unknowns.
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APPENDIX C - Example Session

In order to illustrate some of the features of the

DIMENSION system, a sample session using the system will be

presented. The initial topology, as shown in Figure C.1, is

entered using the interactive sketch input procedures.

* CONSTRAINTS EMAININE. 5

~[113CCH i n II11 11 ii I ii 1L
.IN VLINRANG PDIS A.DIS HITS VDZS LICN RADI AA TDIS L DOW EW DRMAW

-a 32 

Figure C.1, Initial sketch.

The next step is to apply dimensional constraints to the

geometry. The double lines in Figure C.1 represent implicit

constraints and the boxes represent points of tangency. At

this point, only a few constraints will be specified.
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The part is under-dimensioned at this point. Note that there

are five constraints remaining. Even so, the part may be

straightened, as in Figure C.2, by the Newton-Raphson method.

as

D

. R

Figure C.2, Straightened part.

Note that only those constraints which were defined are used

to modify the part geometry. The user is notified as to

which coordinates remain unconstrained and any redundant

dimens:ions (if there were any). This is useful in deter-

mining the dimensional constraints which remain to be speci-

fied.

The remaining constraints may then be defined. A mis-

take will be made and the part will be redundantly dimen-

sioned. Note that in Figure C.3, the part has the correct

number of constraints but not the correct placement.
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When the Newton-Raphson method is executed (by

pressing "GO"), the display as shown in Figure C.4 results.

The blinking dimensions are redundant and the unconstrained

points are circled and the coordinates (X and/or Y) are in-

dicated.

The user returns to the dimension specification routine

and deletes the redundant dimensions and specifies other

dimensions so as to constrain the coordinates which were

previously unconstrained. The resulting dimensioning scheme

is shown in Figure C.5.

L I

# CONSTRdAINS IAINI&. 0

LI I I I- I 1 I I I I ]
edrs V-X M FDI U LIS IS VMIS LIN ADI A TDIS DWNE DRA

a 92 R

Figure C.3, Full dimensioning scheme.
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30

BLINKING DIMENSIONS ARE REDUNDANT *+ CIRCLED POINTS ARE UNDER-CONSTRAINED

Figure C.4, Notification of redundant dimensions.

Figure C.5, Corrected dimensioning scheme.

The values of the dimensions are then modified. This

results in the desired geometry as shown in Figure C.6.
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7. 00 R

Figure C.6, Desired geometry.

If, for example, the user was not concerned about the

horizontal width of the triangular hole but instead wished

to constrain the area of the part, the dimensioning scheme

of Figure C.7 results. The "PROP" button was pushed to dis-

play the current geometrical properties. The text "AREA =

824.00" at the lower left indicates that the area has been

constrained.
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PERIMETER - 132.0240B
ARFA 823. 99524
1X = 11549. 02227
MY = 1313B. BtB36
iX = 6_981. 03125
IY = 95643 70313
IXY =-3546. 25000
X CENTROID 15. 94526
Y CENTROID= 14. 01G86

O NEW SAVE 0Z(M VIEW ELX L EXIT INS ALTR COY LOW OP CSIZ

aa

AREA - 24. f

Figure C.7, Constraining the area.

The area of the part may now be specified. The text

"AREA = 824.00" is digitized and the desired area, 760.00,

is entered via the graphic keypad. The geometry

be modified to reflect

may then

this change in the area. This

shown in Figure C.8.
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rb-.-r--I I I- ar-1- I I I I --
PERIMETER = 132. 02414
AREA - 759. 99889
MX - 1161. 22266
MY - 19664. 59375
IX - 66709 26563
If - 93696. 2343e
IXY -33291L 99e44
X CFNTROID- 15 61131
Y FNTROTnf 14 Ri424

l I I 11 I 1 II 11C C PHC
CO S SAVE V Y31w RELX OWrL XT FW ALTR COPY LOW CZ

4

R

AREA m T7. I

Figure C.8, Resultant geometry.

This concludes the example session. All of the fea-

tures developed in this paper have been demonstrated to some

extent by the previous session.

An in-depth desciption of the pen strokes needed to per-

form the various functions may be found in Appendix D.
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APPENDIX D - Operator's Manual

This appendix is intended as an

operator's manual for the DIMENSION sys-

tem. The information contained within

is, in some places, repetitive of that

which is in the thesis. It is included

here as a self-contained document for

the purpose of clarifying the use of the

system.
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DIMENSION SYSTEM

OPERATOR'S MANUAL

This document describes the DIMENSION system from an

operator's viewpoint. It is divided into three main sec-

tions:

1) General information
2) Graphic input
3) Specification of constraints
4) Modification of geometry

The first section describes the use of the data tablet

and the initial menu choices in order to shift control to

the different procedures. The second section describes the

protocol used for sketching the initial topology. The third

section describes the different methods of specifying dimen-

sional constraints. The last section describes the method

for changing the numeric values of the dimensions, control

of the numerical iteration, and file handling.
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SECTION I. General information

The DIMENSION system uses a data tablet and digitizing

pen for all data entry. The keyboard is not used but the

VT100 terminal on the PDP 11/34 must be turned on as the

program on the PDPll1 uses the terminal to produce an audi-

ble bell.

The digitizing

as shown in Figure

not in proximity to

useful data is being

3

! I
I I

pen and data tablet interact in three modes

D.1. The first mode is when the pen is

the tablet surface. In this mode, no

sent to the program.

I I
I I

I ine-h I I

MODE I MODE II MODE III

Figure D.1, Different modes of the digitizing pen.

109

J
_ I

I II I

I 1
II I

I II I



In the second mode, the pen is in proximity to the tablet

surface. In mode three, the small button at the tip of the

pen is depressed. The data tablet is sending useful data to

the program in both modes II and III.

The initial menu is displayed at the start of the pro-

gram as shown in Figure D.2. The tracking cross which is also

shown, is used to track the position of the pen on the tab-

let surface.

DRFT OLD EDIT --

Figure D.2, Menu selection and tracking cross.
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When the pen is depressed (mode III) an additional

cross appears as in Figure D.3.

DRFT OLD EDIT

Figure D.3, Picking menu item.

When DRFT is picked (see Figure D.3), the user is permitted

to "draft" a new shape. Program execution is then passed to the

sketch input routines.

The OLD button is used to read in a previously stored

(old) data set. The operator is prompted to enter the data

set name by using the graphic keypad which is displayed on

the screen (see Figure D.4).
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Figure D.4, Graphic keypad entry.

The prompt is written in the graphic keypad area and

flashes until the response is entered. The pen is used to

press the appropriate letters (or numbers). If a mistake is

made, the entry may be cleared by pressing the CLR key. The

enter key, ENT, is the equivalent of a carriage return and

is used to terminate the data entry.

The EDIT key is used when the dimensioning scheme is to

be modified (edited). Control is then passed to the dimen-

sion specification program which permits the modification of

the dimensioning scheme.
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SECTION II. Graphic Input

Wh.en the DRFT button, in Figure D.3, is pressed, control

is passed to the graphic input section. The menu, as in

Figure D.5, permits the user to either clear (CLR) the display

and enter a new shape, exit from the input section (DONE)

and enter the dimension specification section, or make a

hardcopy (COPY) of the display.

CLR DONE COPY

Figure D.5, Menu display in graphic input section.

The input of any shape contour is separated into

"loops" each loop is a connected sequence of lines and arcs

which finally connect back to the initial point. The first

entity of each loop must be a line.
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To insert the first loop, the tracking cross is placed

at the position of the first point. The pen is depressed

(mode III) and released. A plus "+" sign is drawn and a

"rubberband" is attached to the tracking cross and the first

point as in Figure D.6.

CLR DONE COPY

Figure D.6, "Rubberbanding" of the first line.
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To enter the second point, the tracking cross is posi-

tioned, depressed and released. Now, the rubberband is be-

tween the tracking cross and the second point (see

Figure D.7).

This process continues until the tracking cross is

positioned near the initial point and depressed. Then, the

rubberband is connected to the first point and the loop is

complete (see Figure D.8).

CLR DONE COPY

Figure D.7, Insertion of the second point.
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LiD
CLR DON

Figure D.8, Completion of the first loop.

At this point, the tracking cross is free of rubber-

bands, and the operator may do one of four operations:

1) push a menu button (in Figure D.5)
2) start another loop
3) insert a single point
4) insert a circle

]:t must be emphasized that these options can only be

used when the tracking cross is free of "rubberbands". In

other words, any loop must be completed before the options

above are valid.
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To insert a single point, the tracking cross must be

placed at the position of the point and then depressed and

released two times. Again, the tracking cross is free of

rubberbands ,

A circle is entered by positioning the tracking cross

on the diameter of the desired circle, then depressing the pen

while tracing the contour of the circle.

m r I I
iL
CLR DOP

Figure D.9, Insertion of a circle. Notice that the
pen is depressed as the circle is traced.
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A circle must be entered around a single point and must

be traced a full 360 degrees. If either of these criteria

is violated, the circle automatically disappears and the

user is then free to insert a loop, point or another circle.

Entering Arcs

Arcs may be specified by depressing the pen and simul-

taneously tracing the contour of the arc as in Figure D.10.

r----1 - r----

LL
CLR DOD

Figure D.10, Sketching an arc.
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At the end of the arc, the pen is lifted and a plus sign is

drawn to indicate the endpoint of the arc. A rubberband is

then attached from this point to the tracking cross, as in

Figure D.11.

----- I I 

Ll
CLR DOt

Figure D.11, Completion of an arc.
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The operator must make sure that there is a point near

the center of the sketched arc. This point may be a point

on a loop or a single point. Two arcs may share the same

center. If a point is not found near the center of the

sketched arc when the DONE command is pressed, the operator

is notified by the display in Figure D.12. The crossing of the

arc indicates that the center of that arc was not found.

The operator may then insert the center point and continue.

FI -LI-7

LR DON1
CLR DON

CENTERS NOT FOUND

Figure D.12, Detecting absence of center point.
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SECTION' III. Specification of Constraints

This section describes the use of the interactive "con-

straint definition" feature of the DIMENSION system. This

is where the operator may either define or delete a dimen-

sional constraint. Program control may be shifted into this

section via two paths. The first path is directly from the

sketch input routine. The second path is by pressing the

EDIT key in Figure D.2 when the dimensioning scheme of the

current part shape is to be modified (edited). The initial

discussion will be geared toward the entry path from the

sketch input routine. The modification procedures will be

discussed at the end of Section III.

When control is passed to this routine from the sketch

input section, the operator is presented with the display in

Figure D.13. The previously defined shape is drawn at the

bottom. The graphic keypad is only used to display prompts

to the operator.
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* CONSTRAINTS REMAINING. 23

RA AGL LI AREA TDIS DEL DONE NEW DRAW
KIN fICt~N IS ~ L. KIU DIS D~ II~] AR TDI5 DEL DOE NEW DtAU

Figure D.13, Initial display in constraint
definition routine.

The message in the top right corner indicates the number

of constraints remaining that must eventually be defined.

The number is updated each time a constraint is defined. If

the number is positive, the shape is currently under-

dimensioned. If the number is negative, the shape is cur-

rently over-dimensioned.
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The definition of a dimensional constraint is accom-

plished by pressing one of the first 12 menu buttons and then

specifying the entities to be constrained. The use of each

menu button will be explained. Note-when any explicit dimen-

sion is defined, the number that is associated with the

dimension is always displayed as zero. It is only used as a

"place holder" for the actual value.

The HLIN and VLIN constraints:

The HLIN command allows the operator to constrain a

line to be a "horizontal line", and VLIN to constrain a line

to be a "vertical line". The operator first indicates the

command by depressing and releasing the pen (called "digi-

tizing"), in the menu box above the command. The next digi-

tize can either be on a point or on a line. If it is on a

line, as in Figure D.14, the definition is complete and an

additional line is drawn to show that an implied constraint

has been added.
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HLIN IRANG DIS ANGL LDIS HDIS VDIS IPLIN RADI AREA TDIS DEL DOE EV DRAV

DIG 1

Figure D.14, One method of specifying a
horizontal or vertical line.

If the second digitize is on a point, then a third

digitize must be made on a second point. In the case of a

HLIN command, the Y-coordinates of both these points will be

constrained to be equal. Hence, if there was a line be-

tween these points (there doesn't have to be), the line

would be constrained to be horizontal. In the case of a

VLIN command, the X-coordinate of the two points would be

constrained to be equal. This last mode of digitizing is

shown in Figure D.15.
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HLIN V RANG rDIS ANAL LDIS HDIS VDIS rLIN RAPI AREA TDIS DEL DONE NEW DRAW

DIG 1

DIG 3

DIG 2 -

J

Figure D.15, Second method for constraining a
horizontal or vertical line.
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The RANG constraint:

The RANG command permits the operator to constrain two

adjacent lines to form a "right angle" at their point of.

intersection. It is also used to constrain a line to be

tangent to an arc. The operator must first digitize in the

menu box above the RANG command. The next digitize is at a

point. The point must either be the point of intersection

of the lines which are to be perpendicular, or at the tan-

gency point of a line to an arc. The constraint is dis-

played by the drawing of a box around the digitized point as

shown in Figures D.16 and D.17.

14..N VLTN rA .IS AIL LDIS HDIS VDIS PLIN RADI AREA TDIS DEL DOME EW DRAW

DIG :L

Figure D.16, Constraining a right angle.
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DDLDDDDID ! [ i -
ITLIN VLIN t DIS ANGL LIDS MHIS VDIS ITIN RADI AEA TDIS DEL

DIG 1

DONE NEW DRAW

DIG 2

Figure D.17, Constraining a point of tangency.
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The PDIS constraint:

The PDIS command allows the operator to constrain the

"perpendicular distance" from a point to a line. The opera-

tor first digitizes the menu box above the PDIS command.

The second digitize is the point and the third digitize is

the line, as shown in Figure D.18.

DZ]DD1DD1 DD DDD!LL IJ
HLIN VLIN RANG P'DS ANCL LDIS DIS VDIS PLIN RADI AREA TDIS DEL DONE NEW DRAW

3

Figure D.18, Constraining the distance from
a point to a line.
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The ANGL constraint:

The ANGL command is used to constrain the "angle" be-

tween two lines. The insertion of an ANGL constraint, like

HLIN and VLIN, can be done in two modes. In either case,

the operator must first digitize the menu box above the ANGL

command. If the angle is to be specified by digitizing

lines, the operator digitizes the appropriate lines as shown

in Figure D.19.

HLIN VLN RMANG f'PS AN LDZS DIS VDIS LIN RADI AREA TDIS DEL DONE NEW DRAW

DIG 1DIG2
DIG 2

Figure D.19, Constraining an angle by digitizing the lines.
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The angle is defined between the first line and

second line using a counter - clockwise convention

the first line to the second line. It must be noted

the definition of an angle extends from 0-180 degrees.

the

from

that

An angle can be defined between any two vectors as in

Figure D.20, where the direction of V1 2 is from P1 to P2 and

the direction of V34 is from P3 to P4. Note - there does not

have to be a line between P1 and P2 nor between P3 and P4'

O 
F

P1

Figure D.20, Angle definition between any four points.
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The direction convention for the angle is a counter-

clockwise direction form V1 2 to V34.

The operator must first digitize in the ANGL menu box

and then digitize the four points Pi, P2, P3 and P4. The

angle definition in Figure D.21, was made using the indicated

digitizes.

4BIN VLIN ANDG rOIS ANCH LDIS GIS 1PIS LIN RApI ARE 

DIG 1

6

Figure D.21, Constraining an angle by digitizing four points.
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The LDI.S, HDIS and VDIS constraints:

These commands allow the operator to constrain the lin-

ear displacement (LDIS), the horizontal displacement (HDIS)

or the vertical displacement (VDIS) between any two points.

The operator must first digitize the desired menu button.

Then, if a line is digitized as in Figure D.22, the two points

constrained are the endpoints of the line.

DDL0IJDLIJDLICDDI D 00
HLN VLXN ANG rDIS ANCL L4 DIS VDIS LIN RAID AEA TDIS DEL DONE NEW DRAW

DIG 1

DIG 2

Figure D.22, Inserting an LDIS constraing by
digitizing a line.
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If two points are digitized as in Figure D.23, the constraint

is defined between these two points. Note- the two points

which are digitized do not have to be connected by a line.

LIN VLIN RANG DIS ANCL IIS VIS LIN RADI AREA TDIS DEL DONE NEW DRAW

T)T 1

Figure D.23, Inserting an LDIS constraint by
digitizing any two points.
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The PLIN constraint:

The operator may contrain two lines to be parallel by

using the PLIN constraint. The first digitize must be

within the PLIN menu button. The second digitize is on one

of the line segments and the third digitize is on the other

line segments as shown in Figure D.24.

N VLIN RAG PIS AMNL LDIS IDIS DS WIIN RD AREA TDIS DEL. DOE EV DA

DIG 1

idicates
irallel lines

[G 3

Figure D.24, Constraining parallel lines.

134



The AREA constraint:

The operator is permitted to constrain the surface area

of any shape by using the AREA constraint. The only digi-

tize that is required is in the AREA menu button.

In order to indicate that the area has been constrained

"AREA= 0.00"'' is written in the bottom left corner as shown

in Figure D.25.

SLIM VLN RANG IS LIS IV DIS VDIS PL RADI A TDIS EL DOE E DRAW

DIG 1

AREA - D. ot

Figure D.25, Constraining the surface area.
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The RADI constraint;

This constraint defines a radial measure between the

points on an arc and its center. This will permit the oper-

ator to specify the radius of an arc. Two digitizes are

required as shown in Figure D.26. The first digitize is in

the RADI menu box and the second is on the desired arc.

.LN VLIN RANG DIS ANL LDS HIIS VDIS nIN 7 I ARA TIS DEL DOE EW DRAW

DIG 1

24 R

IG 2

Figure D.26, Specifying a radius.
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The TDIS constraint;

For the lack of a better name, the TDIS constraint is

used to constrain the distance between a point and the ex-

treme point on an arc or between two arcs. This constraint

will permit the dimensioning schemes of Figure D.27 to be used.

(a) (b)

Figure D.27, Dimensioning between: (a) a point and
an arc, and (b) between two arcs.

Three types of TDIS constraints may be defined: hori-

zontal, vertical or linear displacement. In order to speci-

fy the constraint, the operator digitizes the TDIS menu box

and then digitizes either the HDIS, VDIS or LDIS menu boxes.

At this point, the operator digitizes the two entities to be

constrained.. These two entities must either be a point and

137



an arc or two arcs. For example, the dimensioning scheme of

Figure D.27a and D.27b may be specified as shown in Figures

D.28 and D.29 respectively.

DIG 2

DIG 3

,DIG 1

DIG 4

Figure D.28, Specification of a horizontal dimension
between a point and an arc.
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DZIDDDW0DD1DDDLID
HUM VLM RANG MIS ANGL LS IIS VDIS LIN RAI AREA

DIG 2

TD DEL

DIG 1

DONE EV DWAV

DIG 3

4

Figure D.29, Specification of a linear dimension
between two arcs.
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OTHER MENU COMMANDS

The DEL command:

This command is used to delete any constraint from the

dimensioning scheme. If the constraint that is to be deleted

has a number associated with it, all that is required is that

the operator digitize within the DEL menu box and then digi-

tize at the position of the number associated with the

desired constraint (see Figure D.30).

If the constraint that is to be deleted is an implied

constraint such as HLIN, VLIN, RANG, or PLIN, the first

digitize must be within the DEL menu box, the second digi-

tize within the menu box of the desired type of constraint

and then the third digitize must be at one of the pints

involuved with the constraint (see Figure D.31). If a mistake

is made at any one of these digitizes, the deletion sequence

must be restarted.

A plus sign is drawn over the dimensional constraint

that was deleted to indicate that the deletion was success-

ful. In order to update the display with all the deletions

erased, the operator must digitize within the DRAW menu box.

The deleted dimensional constraints will be erased.
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SIN VLIN IRAG POIS AN LD I IS VDIS PL RA DI AIA 1i S DOME NEW DRAW

DIG 1

DIG 2

Figure D.30, Deletion of an explicit dimensional constraint.

DlDDDDDDDiD1 WD,1[
LINVLDI RANG PDIS ANGL LDIS HDIS

DIG 2

VDIS PLIN RADI AREA TIS DEL DONE NEW DRAW

DIG 1

Figure D.31, Deletion of an implied constraint.
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The DONE command;

This command allows the operator to leave the dimension

specification routine and go to the dimensional modification

routine. If the number of constraints remaining is not

zero, the user is notified via the graphic keypad as in

Figure D.32.

Figure D.32, Notification of over/under dimensioning.

If the part is over dimensioned, the user is not allow-

ed to leave this routine. The operator is allowed to leave

the routine if the part is sufficiently or under dimensioned

(ie.- the number of constraints remaining is positive or

zero).
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The NEW command:

This command is used to shift control back to the

sketch input section. A new part can now be drawn. Note-

the current part will be destroyed in the process and cannot

be recovered.

The DRAW command:

This command allows the user to redraw the current dis-

play. Any deletions that have been done since the last DRAW

will be erased. If no deletions have occured, this command

will have no effect on the display.
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SECTION IV. Modification of Dimensional Values.

The purpose of this routine is to permit the operator

to change the numeric values of the explicit dimensions.

Program control is shifted to this section via two paths.

The first path results from digitizing the "OLD" menu button

in Figure D.2, a previously stored data set is read in and

control is passed to this routine. The second path is di-

rectly from the constraint definition routine described in

Section III.

When control is passed to the routine, the current

shape, dimensions, command menu, and graphic keypad are dis-

played as in Figure D.33. If the shape was just sketched, the

part shape is still "rough". In other words, the tangencies

are not actually tangent, the horizontal lines are not hori-

zontal, etc. (even though they were constrained to be

tangent, horizontal, etc.). In order to "straighten up"

the part shape, the operator must execute the numerical pro-

cedures (the Newton-Raphson method). This is accomplished

by digitizing the "GO" menu button. The part should then be

"straightened up" as in Figure D.34.
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Figure D.33, Initial display.
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GO STEP NEW SAVE ZOOM VIEW RELX DSPL EXIT INSP ALTR COPY LOW PROP CSIZ

3. 52 R

. 46 D

Figure D.34, Part shape after being "straightened".
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Changing the numeric values of a dimension:

This is the default function in this routine. If the

system expects no other digitized input, the operator is

able to change the numeric value of any dimension (including

the area if it was constrained) by simply digitizing at the

location of the number associated with the desired dimension

(see Figure D.35).

L" I I311Dl 1 EEEEXE
CO ST NE W I SVE RO VlEW RELX DSPL EXIT P NLTR COPY LOW OP Cad

/-3. 52 R

-4.4 D

Figure D.35, Indicating which dimension is
to be modified.
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This indicates which dimension is to be modified. A prompt

appears in the graphic keypad area (see Figure D.36) and the

operator, using the pen, digitizes the graphic "keys" to

specify the desired value for the dimension. The enter key,

ENT, is digitized to terminate the data entry. The CLR key,

is used to clear and re-input the number.

ABCDEFGHI 123
JK L MN O P R 4 5 
S T U V W X Y ECR 7 
WI I I _ 0 .

ENTER VALUE
it .

Figure D.36, Graphic keypad data entry.

The GO command;

When the "GO" menu button is digitized the Newton -

Raphson method is executed to cause the current geometry to

change in such a way that the geometry is compatible with

the dimensional values. Therefore, with the previously made

change in dimensions, when the GO menu button is digitized,

the shape in Figure D.37 is produced. Note that the effect of

the dimensional change was the correct alteration in geometry.
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Figure D.37, Result of a dimensional change.

The use of the STEP, RELX and LOW commands:

Unfortunately, the Newton - Raphson iteration does not

always "work" the same for all shapes, dimensioning schemes

and dimensional values. The numerical method used is an

iterative method which causes the convergence of a set of

equations to produce a new geometry based on the dimensional

values. By the word "work", it is meant that for some

shapes and dimensioning schemes, and depending on the size
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of the dimensional change, some modifications must be made

to the iterative procedures. Only a qualitative description

of the use of these techniques will be presented in this

document. For an indepth treatment, the reader is advised

to consult the author's Masters thesis.

The STEP command:

This is probably the most widely used of the three com-

mands. It allows the user to specify how many increments

will be made in the dimensional values to get from the cur-

rent set of values to the final set of values. Therefore,

the equivalent of changing a dimensional value from 10 units

to 15 units in 5 steps and then digitizing the GO button, is

to change the dimension from 10 to 11 (then press GO), then

from 11 to 12 (then press GO) and so on, until the desired

final dimension of 15 units is reached.

Thus it is desirable, if a lot of dimensions are being

changed at once or if the desired dimensional value is very

much different from the current dimensional value, to use a

value for the number of steps between 5 and 10. Experience

is neccessary to get a feel for the number of steps needed

for any dimensional change.
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In order to specify the number of steps, the user first

digitizes the STEP menu button. Then a prompt is written in

the graphic keypad area. The number of steps is then input

using the graphic keypad and digitizing pen.

The

set

Figure D.38, Specifying the number of steps.

default value for the number of steps is 1.0 and is re-

after every pressing of the "GO" button.
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The RELX command:

This command allows the operator to specify a "relaxa-

tion" factor to be used in the next execution of the Newton

- Raphson method. If for some reason, the part shape and

dimensioning scheme, tends to be unstable, a relaxation

factor less than 1.0 in value may be specified (a good value

might be around 0.7). The operator specifies the relaxation

factor in the same way as the STEP factor. The RELX menu

button is digitized and the relaxation factor is entered

using the graphic keypad and digitizing pen. The default

value of the relaxation factor is 1.0 and is reset each time

the GO menu button is digitized.

The LOW command:

If the STEPS and RELX commands fail to cause the shape

to converge, the operator may select a "low gear" method of

solution which is much slower than the Newton - Raphson

method but also much more stable. To indicate that the "low

gear" numerical procedures are to be used, the operator

simply digitizes the LOW menu button. A message is dis-

played in the graphic keypad area to indicate that the "low

gear" option has been selected. The next time the GO button

is digitized, the method of solution will use the "low gear"
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numerical method. The STEP and RELX parameters can also be

set but it is advisable to set them both to 1.0 .

At the end of the iteration (when LOW is chosen), it is

possible that the message "DID NOT CONVERGE - DO YOU WANT TO

KEEP THIS SHAPE? (Y/N)" will be displayed in the graphic

keypad area. If the shape looks as if it has converged,

enter YES. This is due to a lack of accuracy at the end of

the iteration. Then use the normal numerical method to get

the solution to converge to the exact final shape.

Redundant and under dimensioned parts;

As explained in section II, it is not possible to enter

this routine with an over dimensioned part. It is possible,

however, to have a redundant or under dimensioned part. A

redundant dimensioning scheme results when a section of the

part is over - constrained while some other section is under-

constrained. An under-dimensioned part simply lacks the

correct number of dimensions.
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The part shape in Figure D.39, is both under-dimensioned

and redundantly dimensioned. When the "GO" button is digit-

ized, the part shape will be straightened as much as possi-

ble. The redundant dimensions will blink and the under -

constrained coordinates (X and/or Y) are indicated as in

Figure D.40.

AB C D E F G H I 123
JK L. MINOPOR 4 5 6
STL IV WXYZ 7 89

* CONSTRAINTS REMAZINN. 1

ID IDI AREA TDS DEL D DRA
.LZh VI MNO RANG FVZS ML I 1VZ Ou FUN RADI AREA tOIS EL DO AeV DmAV

iM

-I-

52 R

Figure D.39, An under- and redundantly dimensioned part.
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Figure D.40, Notification of redundancies
and under-constrained points.
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The NEW command:

When the operator digitizes the NEW menu area, Figure D.41

is displayed. The choice can then be made between modifying

the current dimensioning scheme (EDIT), reading in a previ-

ously stored data set (OLD) or sketching in a new shape

(DRFT). See section I for a detailed description of each of

these commands.

DRFT OLD EDIT

Figure D.41, Menu selection.
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The SAVE command:

This allows the user to store the current data 
set on

the disk. When the SAVE menu button is digitized, the 
user

is prompted to enter the file name that the data 
set is to be

stored under. The name is entered using the graphic keypad

and the digitizing pen as shown in Figure D.42.

G

P
Y

3
6

0
ENTER DATA SET NAME

BRACKET. DAT

Figure D.42, Specifying a file name for a SAVE 
command.
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The ZOOM command:

The picture may be enlarged by digitzing the ZOOM menu
button and then digitizing the opposite corners of a

"window". If the digitizes shown in Figure D.43 are made, the
area in the dotted box will be enlarged to fill the screen.

COIY LO W PQ C

I

I

I

I

I

I

I

I

I

S2 R

. 0D

Figure D.43, Performing a ZOOM.
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The VIEW command:

If this command is used, the scale of the drawing is

changed so that all coordinates and dimension values are

displayed. Since the positioning of the dimensions is relat-

ed to the drawing scale, it is possible, that after the first

VIEW command, not all the dimensions values will be visable.

In this case, digitize the VIEW command again and this prob-

lem will be remedied.

The DSPL command:

This command simply "displays" the picture at the cur-

rent scale with the current values of the dimensions. The

geometry is not updated by using the DSPL command. This

command is useful if, after many dimensional changes, the

user wishes to see the potential dimensional values with-

out using "'GO".

The EXIT command:

This is used to exit the program. If by chance the

user forgot to save the current part, the prompt "DO YOU

WANT TO SAVE THE PART? (Y/N)" is displayed. If the user

answers "YES", control is returned to the program and the
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user may execute any command. If "NO" is entered, the pro-

gram terminates.

The INSP command:

This command is used to "inspect" the current value of

any dimension. The operator simply digitizes the menu but-

ton and then digitizes the position of the number to be

inspected. The value of the dimension is then displayed in

the graphic keypad area to five decimal places.

The ALTR command:

This command is used to alter the placement of the di-

mensions. The dimensions are placed by starting at a cer-

tain location and searching in a certain direction until the

dimension can be drawn such that no two dimensional values

occupy the same place on the screen. For most dimension

types, both the starting location and the search direction

can be specified with the ALTR command.

The initial digitize is in the ALTR menu button, the

next digitize is at the location of the value of the desired

dimension. The next action depends on the type of the di-

mension selected.
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1) For the PDIS constraint, the first digitize
is the starting location and the second
digitize specifies the search direction from
the first digitize.

2) For LDIS constraints, no furthur digitizing is
needed. The search simply starts from the
opposite side of the line between the two con-
strained points.

3) For the HDIS and VDIS constraints, the operator
is first asked which direction the search is to
be made. This is via a graphic keypad entry.
Then, the user must digitize the starting loca-
tion of the search.

4) Angular dimensions may not be altered

5) For dimensions on the radius of an arc or the
diameter of a circle, the only digitize needed
will indicate the direction of the leader line
from the center of the arc or circle.

The COPY command:

This command is used to make a hardcopy of the entire

MEGATEK screen. The program creates a plot file named

VARIAN.PLT in the user's directory on the VAX. This plot

file can be plotted on any plotter at the JCF after exiting

the program.
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The PROP command:

This is used to compute and display the following

information about the two dimensional part shape:

Perimeter;
Area;
Mx;
My;
Ix;
Iy;
Ixy;
X centroid;
Y centroid;

The origin of

point defined in

by a plus sign.

Exterior perimeter of part.
Surface area of part.
Moment of inertia about x-axis.
Moment of inertia about y-axis.
Second moment about x-axis.
Second moment about y-axis.
Cross product of inertia.
X coordinate of center of mass.
Y coordinate of center of mass.

the coordinate system is at the first

the sketch input routine and is indicated

The CSIZ command:

This command is used to alter the current character

size. The operator is prompted to enter a number from 1 to

7. The value 1 results in the smallest character and the

value 7 results in the largest character. The graphic key-

pad and digitizing pen are used for this data entry.
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