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Abstract— This paper presents a model and analysis of a re-
entrant production line with finite buffers and unreliable machines.
Semiconductor device and liquid crystal display (LCD) fabrication
processes are characterized as a re-entrant process, in which a
similar sequence of processing step is repeated several times. The
purpose of this paper is to present mathematical formulations
and algorithms to analyze the material behavior of the re-entrant
production system using the decomposition method. In developing
equations for the two-machine building blocks for the re-entrant
production line, we modify the existing decomposition model that
has been created for the multiple-part type line.

I. I NTRODUCTION

This paper presents a mathematical model and analysis
of a re-entrant production system that consists of unreliable
machines and finite buffers located between machines.
Typical examples of such a re-entrant production system are
semiconductor device chip and liquid crystal display (LCD)
panel fabrication systems whose processes involves a large
number of steps with significant number of re-entrant flow
paths. In the re-entrant production system, material visits
to particular machines or groups of machines several times
before it leaves the system. This re-entrant flow behavior with
the stochastic nature of the system caused by machine failure
or demand changes makes the system difficult predict and
analyze.

Gershwin[1] introduced a decomposition method that analyzes
the behavior of the manufacturing system with a stochastic
queuing model. This method models a manufacturing
system as a flow line with unreliable machines and
finite buffers. Since then several different variations of
decomposition methods have been introduced. A production
line with Assembly/Disassembly was investigated with the
decomposition method by [2] and a line with loop system
using the decomposition method was introduced by [3]
and [5]. A production system processing Multiple-part type
was introduced by Jang and Gershwin[4]. However, all the
decomposition methods developed until now were based on
the assumption that parts that was processed by a machine
once never re-entered to the machine again. There has been
no model considering the re-entrant flow behavior constructed
so far.

In this paper we develop an analytical model for a production
line with re-entrant flow by applying the decomposition
method. As a first step in modeling the re-entrant line, we
restrict ourselves to the case that parts re-enters to the system
only once. It is found that the material flow behavior of

the re-entrant production line is very similar with that of
the multiple-part type line. Therefore, we apply the model
already developed for the multiple-part type line by Jang and
Gershwin[4] to the decomposition model for the re-entrant
production line. Therefore, instead of developing a model
from scratch, we utilize the equations that we developed in [4]
and modify them to represent the re-entrant flow behavior. In
this regard, the modeling of re-entrant systems is an extension
of the two-part type production system done in [4] and we
follow the notations and assumptions we made in [4].

The next section introduces the notations and assumptions of
the model we develop. Section III presents the decomposition
method for the re-entrant production line. In this section,
we compare the flow behaviors between the two-part type
line and re-entrant flow line and explain how we apply the
decomposition method developed for the two-part type line
to the re-entrant flow line. Section IV discuss the derivations
of equations for the re-entrant flow, which is the critical
equations that makes us possible to utilize the two-part type
line concept for the re-entrant production line. Section V
presents the numerical results and discuss the quantitative
behavior of the system.

II. M ODELING

A. Notations and assumptions

Figure 1 represents a re-entrant production line. The line
consists of two kinds of components: processing machinesMi

denoted by the squares and finite-capacity storage buffersBi,j

for work in process inventory, denoted by the circles. Let us
defineK to be the number of machines. At the beginning and
end of the line, there are supply machines,M0 and demand
machines,MK . Once parts are entered to the line through the
supply machine, they are first processed by the machine from
M1 to MK . During this processing steps, parts are stored in
the bufferBi,2, i ∈ {0...K}. Then they are processed by the
re-entrant machine, MK+1,2. The function of this machine
is sending parts back to the machineM1 so that parts can
go through the same processing steps again. This re-entering
machine can be either an actual processing or an imaginary
machine that logically creates the re-entrant loop. We call
the processing steps before the re-entrant machineStage
1 (S = 1), while the processing steps after the re-entrant
machineStage 2(S = 2). In this paper we strict out model to
S ∈ {1, 2}. During the second stage of the process, parts are
stored inBi,1, i ∈ {1...K}.
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Fig. 1. Re-entrance production line model

Machines,Mi, i ∈ {1...K} are switching between stage
1 and stage 2 processed. We assume that there is no set-up
time incurred when the machines switch processing stage. We
assume that all the machines in the line are unreliable. Let
α denote the state of a machine. Ifα = 1, the machine is
said to beup or working. If α = 0, the machine is said to be
downor failed. The state variable representing the state of the
machine at the end of timet is written αi(t). We make the
assumption that all the machines in the line havehomogeneous
processing times. That is, the lengths of time that parts spend
in machines are fixed, known in advance, and the same for
all the machines. For convenience, the processing times are
assumed to be scaled to unity. Furthermore, we assume that
the yield of all machines is 100%. That is, we do not allow
the scrapping or rework of parts.

We assume that all buffers have finite size. The size of
buffer Bi,j is denotedNi,j , wherei indicates the production
sequence, andj = 1 or 2, represents the production stage. We
denote the current level ofBi,j at the end of timet by ni,j(t).
Therefore,0 ≤ ni,j(t) ≤ Ni,j , for all (i, j), and for allt ≥ 0.
We make the assumptions that the supply machine is never
starved and the demand machines is never blocked.

B. Part Priority Policy

Since each machine in the production line must choose
which stage of part to work on when it has a choice, we are
required to state a policy by which that choice is made. Our
assumption is that each machine will work on stage 2 parts
whenever the machine is up, the upstream buffer for stage 2
parts is not empty, and the downstream buffer for stage 2 parts
is not full. Each machine will only work on stage 1 parts if it
is up, and either blocked or starved for stage 2 parts, and not
starved or blocked for stage 1 parts. Under this priority rule,
we can possibly achieve a low inventory level by pushing out
the parts spent longer time in the system.

C. Machine Parameters and Dynamics

As mentioned earlier, all machines in the line are assumed
to be unreliable. We further assume that machines cannot fail
if they are idle. This is calledoperation dependent failures.
It means that a machine cannot fail if it is either starved or
blocked for parts.

All machines are assumed to have geometrically distributed
up and down times. We assume that the probability thatMi

fails is the same, regardless of the stage of parts the processing
machine is working on. We letri represent the probability that
Mi is up in timet+1, given it was down in timet. Likewise,
pi represents the probability thatMi is down in timet + 1,
given it was up and not blocked or starved in timet. For Mi,
the machine parameters can be written as:

ri = Pr [αi(t + 1) = 1|αi(t) = 0]

pi = Pr [αi,1(t + 1) = 0| (1)

{αi,1(t) = 1 ∩ ni−1,1(t) > 0 ∩ ni,1(t) < Ni,1} ∪
{αi,1(t) = 1 ∩ (ni−1,1(t) = 0 ∪ ni,1(t) = Ni,1)

∩ni−1,2(t) > 0 ∩ ni,2(t) < Ni,2}]
for i = 1, . . . , K

Likewise, for the supply, demand, and re-entrant machines, the
machine parameters are defined as:

r0 = Pr [α0(t + 1) = 1|α0(t) = 0]

p0 = Pr [α0(t + 1) = 0|α0(t) = 1 ∩ n0,2(t) < N0,2]

rK+1,1 = Pr [αK+1,1(t + 1) = 1|αK+1,1(t) = 0] (2)

pK+1,1 = Pr [αK+1,1(t + 1) = 0|
αK+1,1(t) = 1 ∩ nK,1(t) > 0]

rK+1,2 = Pr [αK+1,2(t + 1) = 1|αK+1.2(t) = 0]

pK+1,2 = Pr [αK+1,2(t + 1) = 0|
αK+1.2(t) = 1 ∩ nK,2(t) > 0 ∩ n0,1 < N0,1]

D. Performance measures

We consider two performance measures in analyzing the re-
entrant production line: production rate (throughput rate) and
average buffer level.

III. D ECOMPOSITIONMETHOD

A. General idea of the decomposition

We use the decomposition method to analyze the behavior
of the re-entrant production line. The decomposition method
breaks down the larger system into analytically tractable
two-machine one-buffer lines calledtwo-machine building
blocksor simplybuilding blocksand capture the local behavior
of the original line, as seen by an observer in a buffer, by
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Fig. 2. The decomposition of a line into two-machine lines

choosing appropriate parameters of the two-machine building
blocks. Note that each of the two-machine building blocks is
constructed with a buffer that is the same size as that of one
of the buffers in the original line. The equations that relates
the flow behaviors between the original line and two-machine
building blocks are calleddecomposition equations.

Figure 2 shows the re-entrant production system decomposed
into several two-machine building blocks. As shown in the
figure, the inflow and outflow behavior of material an observer
in buffer Bi,j could see is modeled by the two-machine
building blovk, L(i, j).

Note that there are two different types of observers in the
figure: stage 2 observers and Stage 1 observers. The Stage 2
observers watch the inflow and outflow of the stage 2 parts
while the stage 1 observers watch those of the stage 1 parts.
Therefore, we have two different types of building blocks.
In the figure, the two-machine building blocks in the top
imitate the flow behavior exclusively for the second stage
production flow, while the bottom building blocks imitate
the flow behavior exclusively for the first stage production
flow. For example, let us consider the case thatMi is up, and
ni−1,2 = 0, ni+1,2 < N , ni−1,1 > 0, and ni,1 < Ni.1 —
second stage part is not available but the first stage part is.
Due to the priority rule, the machine will first try to work
on the second stage part but it will find that there is no part

available in ni−1,2. Therefore it will eventually work on
the next priority part, which is the first stage part. From the
observers’ view points on this situation, the observer inBi,1

will believe that her upstream machine is down since she does
not see any material coming intoBi,2. On the contrary, the
observer inBi,2 will believe that her upstream machine is
up since this observer sees the part coming into the bufferBi,1.

B. Two-part type line vs. re-entrant line decomposition

Before we move onto the detailed modeling of the
decomposition equations let us consider the decomposition
of the two-part type production line studied by[4]. Figure
2 represents a production line processing two different part
types. MachinesM0,1 andMK+1,1 process only Type 1 parts,
while machinesM0,2 andMK+1,2 process only Type 2 parts.
Each machine, other than the supply and demand machines,
process both art types. We assume that there is no set-up time
incurred when the machines switch production from one part
type to another. WhenMi completes work on a part, it sends
the part to a buffer downstream of the machine. Each part
type has a distinct buffer after each machine. Therefore, a
Type 1 part processed atMi would be sent toBi,1. A Type 2
part processed at the same machine would be sent toBi,2.

In the two-part type line, since each machine in the
production line must choose which part to work on when



it has a choice, we are required to state a policy by which
that choice is made. Our assumption is that each machine
will work on Type 1 parts whenever the machine is up,
the upstream buffer for Type 1 parts is not empty, and the
downstream buffer for Type 1 parts is not full. Each machine
will only work on Type 2 parts if it is up, and either blocked
or starved for Type 2 parts, and not starved or blocked for
Type 2 parts. Since there are two independent part types in
the line, we need to evaluate the production rate for Type 1
and Type 2, that isE1 andE2, respectively.

If we examine the flow behavior of the two-part type
production line, we can find that there are a lot of similarities
between two production lines. First, both lines consist of
unreliable machines and finite buffers and also they operate
under strict priority rules. Only difference is the presence of
the re-entrant line and number of supply and demand machines.

Then, we may ask the following question:is there any way
we can take advantage of this similarity in deriving equations
for the re-entrant line instead of constructing equations from
scratch?Here is one approach we propose. Suppose that in the
two-part type production line, the parameters for the demand
machine for Type 2,Mk+1,2, are given such that the machine
imitates the flow behavior of Type 1 part in the line. Also, at
the same time, the parameters for the supply machine for Type
1, M0,1, are assigned such that the machine imitates the flow
behavior of Type 2 part in the line. In this case, Type 1 and
Type 2 flow will imitate the flow behavior for Stage 1 part and
Stage 2 part, respectively. Since the Stage 1 and Stage 2 parts
are a physically single product type, the following equality is
made due to the conservations of the flow:

E1 = E2 (3)

If we apply the above approach to the decomposition method
for the re-entrant line, all the decomposition equations are the
same as those constructed in two-part type line except the
decomposition equations forL(k, 2) andL(0, 1). In the two-
part type line, the downstream machine parameters forL(k, 2)
are the same as the demand machine for Type 2. Likewise,
the upstream machine parameters forL(0, 1) are those of
the supply machine for Type 1. Notice that the parameters
for the actual machines in the line, including supply and
demand machines, are independent variables to the system,
and therefore, we do not need equations for the downstream
machine of L(k, 2) and the upstream machine ofL(0, 1).
However, for the re-entrant production line, the parameters
for these machines are not independent variables anymore.
Therefore, we need to construct a set of equations to match
the flow behavior between these two part types. From now on,
Type 1 part refers to the Stage 2 part, while Type 2 part refers
to the Stage 1 part.

IV. D ECOMPOSITIONEQUATIONS FORRE-ENTRANT FLOW

As mentioned in the previous section, the model we con-
struct for re-entrant system is an extension of the two-part type

system model we introduced in [4]. We only need to derive
the equations forL(0, 1) and L(k, 2). We follow the same
notations described in [4] for two-machine building blocks.
The following list summarizes the building block notations:

• Mu(i, j): Upstream machine in(i, j)

• Md(i, j): Downstream machine inL(i, j)

1) Interruption of flow: For the interruption of flow for
Mu(0, 1), we use the balance equation:

3∑
i=1

Psi(K, 2)ru
i (K, 2) = W d(K − 1, 2)pd

∗ (4)

,wherepd
∗ is the probability thatMK+1,2 becomes starved due

to any machine failure upstream ofBK,2. Then

pu
1 (0, 1) = pd

∗ + pK+1,2 (5)

=
1

W d(1, 2)

3∑
i=1

Psi(K, 2)ru
i (K, 2) + pK+1,2

Similarly, for Md(2, 2)

3∑
i=1

Pbi(0, 1)rd
i (0, 1) = W u(1, 1)pu

∗ (6)

pd
1(K, 2) = pu

∗ + pK+1,2 (7)

=
1

W u(1, 1)

3∑
i=1

Pbi(0, 1)rd
i (0, 1) + pK+1,2

2) Resumption of flow:Flow rate idle time is used for the
derivations of the resumption of flow equations.

E = eK+1,2

(
1− P̃ s(K, 2)− P̃ b(0, 1)

)
(8)

whereeK+1,2 =
rK+1,2

rK+1,2+pK+1,2
, P̃ s =

∑3

i=1
Psi and P̃ b =∑3

i=1
Pbi. Also we know that

Eu(0, 1) = eu(0, 1)

(
1− P̃ b(0, 1)

)

Ed(K, 2) = ed(K, 2)

(
1− P̃ s(K, 2)

)

These can be written

P̃ s(K, 2) = 1− Ed(K, 2)

ed(K, 2)

P̃ b(0, 1) = 1− Eu(0, 1)

eu(0, 1)

Then (8) becomes

E = eK+1,2

(
Ed(K, 2)

ed(K, 2)
+

Eu(0, 1)

eu(0, 1)
− 1

)



or sinceE = Ed(K, 2) = Eu(1, 1),

1 = eK+1,2

(
1

ed(K, 2)
+

1

eu(0, 1)
− 1

E

)
(9)

We know that

1

eu(0, 1)
=

pu(0, 1) + ru(0, 1)

ru(0, 1)

1

ed(K, 2)
=

pd(K, 2) + rd(K, 2)

rd(K, 2)

Then (9) becomes

1 = eK+1,2

(
pu(0, 1) + ru(0, 1)

ru(0, 1)
+

pd(K, 2) + rd(K, 2)

rd(K, 2)
− 1

E

)

1 = eK+1,2

(
pu(0, 1)

ru(0, 1)
+

pd(K, 2)

rd(K, 2)
− 1

E
+ 2

)

That is,

1

eK+1,2
+

1

E
− 2 =

pu(0, 1)

ru(0, 1)
+

pd(K, 2)

rd(K, 2)
(10)

Two equation are introduced

Iu(0, 1) =
pu(0, 1)

ru(0, 1)
and Id(K, 2) =

pd(K, 2)

rd(K, 2)
(11)

Then we can rewrite (10) such that,

Iu(0, 1) =
1

Ed(K, 2)
+

1

eK+1,2
− Id(K, 2)− 2

Id(K, 2) =
1

Eu(0, 1)
+

1

eK+1,2
− Iu(0, 1)− 2

A. Algorithm

The algorithm is based on DDX algorithm which is first
introduced by [1]. In the re-entrant production line case, we
first sweep the high priority line, calculating the upstream two-
machine parameter forMu(1, 1), using the parameters of the
previous low priority line, and then sweep the low priority line
to calculate the downstream two-machine line,Md(K − 1, 2)
parameters. We then repeat the process for each successive part
type.

V. NUMERICAL RESULTS

In order to verify the analytic equation derived in the
previous section, we compare the numerical results of a small
system with four machines and four buffers with simulations.
The small system is shown in Figure 3.

Two separate cases are presented. For the both cases, the
machine parameter ofM4 varies, while the rest of machine
parameters remains constant. We examine the response of the
production rate of the system to the varying parameter and
compare the results with simulations.
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Fig. 3. Simple re-entrance production line model

A. Case1: Varyingp4 and r4 (e4 constant)

The system parameter is shown in the Table V-A. For
this case, we increase the failure rate ofM4 from 0.3 to
0.52. Also, we vary the repair rate ofM4 to satisfy the
isolated production rate ofM4 remains0.48. The rest of the
parameters are unchanged. The result of this case is shown
in Figure 4. In the figure, the straight line represents the
the production rate of the analytical result and the star and
circle marks represent the upper and lower bounds of 95%
confidence intervals evaluated from simulation runs. As shown
in the figure, the production rate of the system is little bit blow
of 0.45. This result matches with our expectation, because
although the parameters ofM4 are changed, the isolated
production rate of the machine remained the same. Also the
bottleneck machine of the system isM2 and therefore the
parameter change of the non-bottleneck machineM4 has little
influence the production rate of the system.

From the figure, we can see that the analytical results are
within the upper and lower bounds of the 95% confidence
intervals. We calculated the percent error of the production rate
from the simulated production rate in the following manner.

%Error = 100× Eanalytical − Esim

Esim

The result is shown in Figure 5. As shown in the figure, the
most of errors are within 1.5% and the maximum error is about
% 2.5.

B. Case2: Varyingp4 with changinge4

The system parameter of the second case is shown in Table
V-A. In this case, we varyp4 from 0.1 to 0.8. However,
unlike the first case, we fix the valuer4, therefore, the isolated
production rate forM4 decreases asp4 increases. The result
is of the case is shown in Figure 6. The production rate



Case1 Case2
Machine Parameter Value Iso. Prod. Rate Value Iso. Prod. Rate

M1 r1 0.48 0.48 0.48 0.48
p1 0.52 0.52

M2 r2 0.1 0.9091/2 0.1 0.9091/2
p2 0.11 = 0.4545 0.11 =0.4545

M3 r3 0.48 0.48 0.48 0.48
p3 0.52 0.52

M4 r3 varying 0.48 0.48 varying
p3 0.3∼0.52 0.1∼0.8

TABLE I
CASE1 AND CASE2 PARAMETERS. (N1 = N2 = N3 = N4 = 20)
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Fig. 4. Production rate vs.p4 (e4 fixed)

of the system is unchanged untilp4 reaches around0.58.
However the production rate begins to decrease whenp4

is bigger than0.58. This is becausep4 less than0.58, the
bottleneck machine isM2 and any parameter changes of
the non-bottleneck machine does not influence the system
production rate. However, if thep4 is bigger than0.58 the
bottleneck machine becomesM4 and the production rate
decreases as the bottleneck machine deceases its capacity.
Again, the analytical results are also the within the range of
the confidence intervals evaluated from the simulation runs.

Figure 7 shows the percent of error of the production rate of
the case 2. As shown in the figure all the errors remain within
3%. Notice that the analytical result tends to over estimate the
production rate whenM2 is bottleneck, while it under estimate
when M4 is bottleneck. This behavior should be investigated
in the future.

VI. CONCLUSION

In this paper, we introduced the analytical modeling and
analysis of the re-entrant production line with two processing
stages. We applied the existing decomposition equations for
the multiple-part type production line and modified the de-
composition equations to construct the re-entrant system. For
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verifications, the results from the analytical model is compared
with the results from simulations runs. From the verification,
we found that the analytical results were well matched with our
intuitions and results from the simulation runs. In this paper the
verifications were limited to the small re-entrant system with
four machines and four buffers. For the next research step, we
will extend the system to longer line with multiple re-entrant
stages.
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