
S Afr Optom 2011 70(4) 156-167

The South African Optometrist          ISSN 0378-9411
156

Optical transferences and their application to 
ray tracing through the human cornea*                                            
SD Mathebula† and A Rubin†† 

†Department of Optometry, University of Limpopo, Private Bag x1106, Sovenga, 0727 South Africa
††Department of Optometry, University of Johannesburg, PO Box 524, Auckland Park, 2006 South Africa

Received 21 April 2011; revised version accepted 24 October 2011

Abstract

The purpose of this paper is two fold, firstly to 
describe aspects of the quantitative analysis of the 
linear optical character of the corneas of ten young 
and healthy subjects using the exp-mean-log-trans-
ference and secondly to illustrate how mean trans-
ference and ray vector fields or diagrams can be 
used to explain and understand the optical proper-
ties of corneas as thick optical systems.

An Oculus Pentacam was used to obtain 43 suc-
cessive measurements of the radii of curvature of 
the anterior and posterior corneal surfaces and the 
central corneal thicknesses of the right eyes of ten 
subjects. From these measurements 4×4 ray trans-
ferences were calculated. Mean transferences were 
obtained via multi-dimensional Hamiltonian space 
and these mean transferences were used to produce 
stereo-pairs of ray vector fields. The mean trans-

ferences are also important in understanding the 
behaviour of light through each of the corneas 
concerned. 

This paper provides the first order optical char-
acters of corneas from the positions and inclina-
tions of rays entering and leaving such systems. 
As anticipated, light rays through the cornea are 
deflected inwards when the refractive index of the 
cornea is greater than the index of the surround-
ing medium. The exp-mean-log transference for 
a specific cornea exists and is the optical trans-
ference of the averaged cornea of the sample of 
measurements for that cornea. Within the limita-
tions of linear or paraxial optics, the corneas of 
the different eyes in this sample and their aver-
ages were found to be close to that of thin optical 
systems; but they were not truly thin and instead 
should be considered as being thick optical sys-
tems. (S Afr Optom 2011 70(4) 156-167)

*This paper is based on research for the DPhil degree of the first author with the supervision of Professors A 
Rubin and WF Harris

Introduction

The complete first order characterization of an 
optical system, including an eye or part of an eye, 
requires knowledge of what the system does to any 
ray traversing it. In linear optics the optical character 
of the system about a longitudinal axis is fully rep-
resented by the ray transference T of the system1-4. 
Keating5-7 called it the system matrix. The eye or any 
optical system (the cornea in this paper) operates on 
the ray according to the general equation4, 8-10

Tγo = γ.             
 (1)

The cornea changes the state of the ray (vector) 
from γoγo at incidence on the front surface of the cor-
nea to ray vector γo at the back surface of the cornea. 
The emergent ray state is described using a 4×1 vec-
tor with the form

γ =
y
α

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

                                                                             
(2)

where y and α  (both 2×1) are the position and re-
duced inclination at emergence of the ray relative to 
a longitudinal axis, and similarly for the incident ray 
state, γoγo . The reduced inclinations are related to the =
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(unreduced) inclinations a00 and a with local indices 
of refraction n0  and n by α0 = n0a0a00 and α = naa. Gen-
erally the ray transference T of an optical system is 
a 5×5 matrix8 but where tilts and decentration of the 
optical system are ignored the transference becomes 
a 4×4 matrix8-12, that is,

T = A B
C D

⎛

⎝
⎜

⎞

⎠
⎟

                  
.
                             

(3)

Here the 2×2 sub-matrices A (dilation), B (disju-
gacy), C (divergence) and  D (divarication) are the 
fundamental first order optical properties of a centred 
optical system. There are relationships among these 
four fundamental properties and other first order opti-
cal properties of the system can be derived from these 
four properties. One of the derived properties is the 
dioptric power matrix F of the system defined by1, 9

F = −C .                                    (4)
Another derived property is the corneal plane refrac-
tive compensation for an eye given by1, 9 
FO = B

−1A .                                                                                                      (5)
The transference is symplectic, that is, it has a unit 

determinant. The 16 components of the 4×4 transference 
are not independent and they are related by a set of six 
equations called the symplectic relations8, 13. T is a 4×4 
symplectic matrix1, 13, that is, it obeys  TTET = E  
where

E = O I
−I O

⎛

⎝
⎜

⎞

⎠
⎟

                                                      
(6)

and O and I are the 2×2 null and identity matrices.
To determine the transference of the cornea one 

needs measurements of three elements of the cornea, 
namely, the central powers of the anterior and posteri-
or corneal surfaces and also the central corneal thick-
ness. In this study the refractive indices of the cornea 
and the aqueous were taken as 1.376 and 1.336, re-
spectively. The cornea has an anterior surface of pow-
er Fa , reduced thickness τ  and a posterior surface of 
power Fp  . Then the transference of the cornea Tc   is 
the product, in reverse order, of the three correspond-
ing transferences8, 14. Ta  is given by 

Ta =
I O
−Fa I

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ .

              
(7)

Tp  is given by equation 7 with subscript “a” replaced 

by “p”. is given by 

,

              
(8)

where τ is the reduced thickness of the cornea. Then 
the transference of the cornea Tc  is the product, in 
reverse order, of the three corresponding transfer-
ences8,14

Tc = TpTτTa                (9)

where Ta  is the transference of the anterior corneal 
surface, Ta is the transference of the body of the cor-
nea (reduced thickness) and Tp  that of the posterior 
corneal surface. Multiplication finally results in

 

Tc =
I− τFa τI

−(Fa +Fp −FpτFa ) I− τFp

⎛
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⎟
⎟

,

         
(10)

which is the transference of the cornea as a part of an 
eye. In equation 10  Fa +Fp −FpτFa  is the power of 
the cornea, usually called the equivalent power of the 
system9, 14-17.

Given a set of ray transferences  T1 , T2 , ...,Tn , the 
arithmetic mean

T = 1
N

Tn
n=1

N

∑
                                                             

(11)

may not be a ray transference because of the symplec-
tic condition1, 13, 14, 18. 

Transferences themselves are not closed under ad-
dition and multiplication by a scalar and, hence, are 
not amenable to standard quantitative analysis such as 
calculation of an arithmetic mean. Transferences must 
first be transformed into log-transferences1, 2, 14, 15, 19-22.  
Once transformed they constitute a linear or vector 
space and quantitative analyses such as calculation of 
means and variance-covariances can be performed in 
the transformed transference space. For each transfer-
ence, T, the transformed transference is defined by
T̂ = logT                                                                 (12)

and the transformed transference ( T̂ ) can be written 
in terms of sub-matrices as for equation 3

 

T̂ = Â B̂
Ĉ D̂
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The transformed transference, T̂ , is a Hamiltonian 

=
⎛

⎝
⎜

⎞

⎠
⎟T = A B

C D
⎛

⎝
⎜

⎞

⎠
⎟=

⎛

⎝
⎜

⎞

⎠
⎟

0

τ

Tc = TpTτTa

=
−

− − −+



The South African Optometrist          ISSN 0378-9411
158

S Afr Optom 2011 70(4) 156-167                                                              SD Mathebula and A Rubin - Optical transferences and ray tracing ... human cornea

matrix that satisfies T̂TE = ETT̂  where ET  is the 
transpose of  E. Because of the Hamiltonian nature of 
T̂ , the Hamiltonian space in which the calculations 
are performed is 10-dimensional14, 15, 22. An alterna-
tive form of equation 13 can be obtained by expand-
ing T̂  as21, 22   

T̂ = ÂII+ ÂJJ+ ÂKK+ ÂLL+ B̂II+ B̂JJ+ B̂KK+ ĈII+ ĈJJ+ ĈKK 
T̂ = ÂII+ ÂJJ+ ÂKK+ ÂLL+ B̂II+ B̂JJ+ B̂KK+ ĈII+ ĈJJ+ ĈKK                                                                                                 

where I is the 2x2 identity matrix and
 
J = 1 0

0 −1

⎛

⎝
⎜

⎞

⎠
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K = 0 1
1 0
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L = 0 1
−1 0
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  (15)

  
ÂI , ÂJ , ÂK , ÂL, B̂I , B̂J , B̂K , ĈI , ĈJ and ĈK are 10 co-

efficients (scalars)22 and 
D̂ = −ÂT .                   (16)
The 4x4 Hamiltonian matrices define a 10-dimen-
sional vector space. Matrices B̂  and Ĉ  are both sym-
metric, each represent a loss of a degree of freedom. 
Equation 16 represents a loss of four degrees of free-
dom. In total there is a loss of six degrees of freedom 
from 16 to 10. There are thus four coefficients of Â
(see above) and with the three each for B̂  and Ĉ  to-
gether they make up the 10-component coordinate 
vector22

v̂ = (ÂI ÂJ ÂK ÂL B̂I B̂J B̂K ĈI ĈJ ĈK )
T

                (17)

From a set of N values of coordinate vectors v̂1 ,
v̂2  , …, v̂n    one can calculate a mean coordinate vec-
tor v̂  given by22

v̂ = 1
N

v̂n
n=1

N

∑
                                                        

 (18)

and a variance-covariance matrix22

Ŝ = 1
N −1

(v̂n − v̂n )(v̂n − v̂n )
n=1

N

∑
T

.
  

 (19)

This variance-covariance matrix is a 10×10 symmet-
ric matrix of 10 variances and 45 covariances14, 15, 22. 
The variance-covariance matrix is a compact way to 
represent data for the variables. Variance is a measure 
of the variability or spread in a set of data. Covariance 
indicates how two sets of ordered data vary together. 
Also, for a set of N systems a mean transformed trans-
ference T̂ can be obtained from22

T̂ = 1
N

T̂n
n=1

N

∑
 
.
       

(20)

Where desired, transformed transferences can be con-
verted back to ray transferences by means of the matrix 
exponential14, 15, 19-22

T = expT̂ .            (21)

T  is the exponential-mean-logarithm-transference 
defined by Harris1, 19 and others2, 14, 15, 20-22. The arith-
metic average or mean of the transformed transfer-
ence leads to a transference which can be regarded as 
the transference of the average eye or cornea for the 
set, which is given by20

T = exp( 1
N

logTn
n=1

N

∑ )
                                            

(22)

where exp represents the matrix exponential and log 
the principal matrix logarithm (a matrix B is a loga-
rithm of a given matrix A if the matrix exponential of  
B is A , that is, eB =A ). This average works for eyes 
because T̂ = logT  is a 4×4 Hamiltonian matrix, that 
obeys the relation T̂TE = ETT̂ .

The primary purpose of this study was to deter-
mine mean transferences for several corneas and then 
use these means to produce ray diagrams to study the 
behaviour of light rays through those corneas. 

Methods

Ten healthy volunteers were recruited for this 
study. Subjects with a history of eye trauma, wear-
ing contact lenses, those who had corneal or retinal 
disease or previous ocular surgery, for example, re-
fractive surgery, were excluded. Data was collected 
from only the right eyes of subjects. The study was 
conducted in accordance with the Declaration of Hel-
sinki and ethical and other approval for the study was 
obtained from the relevant committees of the Univer-
sity of Johannesburg. The full nature of the study was 
explained to participants and informed consent was 
obtained before proceeding with the measurements. 
All examinations were performed by the same exam-
iner (SDM). All the measurements were obtained in 
photopic conditions and an attempt was made to keep 
the ambient luminance similar for all subjects.

With both eyes open, each subject looked at the 
fixation target in the Oculus Pentacam (OP) and the 

(14)
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operator manually brought the image of the subject’s 
eye into focus within the relevant circle on the instru-
ment screen. The instrument’s automatic release mode 
was used where the instrument automatically deter-
mined when correct focus and alignment with the cor-
neal apex was achieved. The measurement was done 
in less than two seconds. During such measurements 
of an eye, the Scheimpflug camera in the OP rotates 
over 180 degrees and 25 cross-sectional or slit images 
of the anterior segment of the eye are obtained. Each 
of these 25 cross-sectional images contains 500 meas-
urement points for the front and back corneal surfaces. 
After every measurement the subject removed their 
head from the instrument which was realigned and 
refocused for the next scan, thereby reducing interde-
pendence of the readings. Subjects were also asked to 
blink before each measurement to distribute a smooth 
tear film over the cornea and 43 successive measure-
ments of the cornea of the right eye of each subject 
were obtained in about 50-60 minutes per subject. A 
total of 43 measurements per eye was done so that 
possible outliers could be removed where necessary 
but that, at least, 40 measurements per eye would be 
available for further analysis. All measurements for 
the ten subjects were taken between 9.00 and 16.00 
over a period of about eight months.

Statistical analysis
Radii of curvatures for the anterior and posterior 

corneal surfaces, and the central corneal thickness 
were obtained from the OP topography maps. The 43 
simulated keratometry measurements were used to 
calculate the dioptric power matrices for the anterior 
and posterior surfaces of the cornea and transferences 
were calculated using equations 7 to 10. This gave 43 
transferences,  T1, T2, ..., T43  for the cornea of each 
subject. From the 43 transferences, 43 transformed 
transferences, T̂ 1, T̂ 2, ..., T̂ 43 were then calculated us-
ing equation 12. The transformed transferences (N=43) 
were expressed as coordinate vectors v̂11, v̂1 2 , ..., v̂143 and 
a mean coordinate vector v̂   (equation 18) and variance-
covariance Ŝ  (equation 19) were calculated for each 
eye. Using equations 20 to 22, the mean transformed 
or log-transference T̂  and mean transference T  were 
determined for each eye. (Given a set of ray transfer-
ences and as already mentioned, the simple arithme-
tic mean T  may not be a ray transference because 

of the symplectic condition13 but the exp-mean-log-
transference T  gives an average that is, in fact, a ray 
transference.) With the use of T  as determined for 
each cornea, ray vector fields were generated but for 
brevity here only the ray vector fields for the first five 
subjects are included (see Figures 6 to 10).

Results

Figures 1 to 5 are stereo-pair scatter plots of the 
anterior and posterior corneal surface keratometric 
measurements obtained from the first five of the 10 
subjects concerned. Each point in the scatter plot rep-
resents one keratometric measurement. The origin 
of each stereo-pair represents the sample mean for 
the cornea concerned. The 95% surfaces of constant 
probability density are also included. Each stereo-
pair should be viewed by fixating at a point in front 
of the figure or by letting the eyes drift into an exo-
posture until a three-dimensional percept is obtained. 
For all ten subjects (and thus the five included here) 
there was more variation in the power of the anterior, 
as against posterior, corneal surface. Gillan24 found 
similar results for a moderately keratoconic cornea. 
(A model by Harris25, 26 explaining the underlying 
causes of corneal variation in terms of corneal curva-
tures rather than powers, is used in another paper27 for 
the same subjects. This model25, 26 uses measurements 
of the anterior and posterior corneal surface curva-
tures and corneal thicknesses of the various eyes and 
separates out contributions relating to variation of the 
global curvature of the cornea from those involving 
local effects. For curvatures rather than powers, vari-
ation is generally greater for the posterior rather than 
anterior corneal surfaces24-27 and this issue will be 
discussed in greater detail in a later paper27).    

     
a)
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b)

Figure 1: Stereo-pair scatter plots of symmetric dioptric power 
space for the anterior (a) and posterior (b) corneal keratometry 
for Subject 1. The three mutually orthogonal axes labelled I, J 
and K are the stigmatic, ortho-antistigmatic and oblique antistig-
matic axes. The origin for each stereo-pair represents the sample 
mean concerned. The axes have ticks at intervals of 0.25 D and 
the same applies to Figures 2-5. Each dot represents one meas-
urement of the dioptric power of the anterior (a) or posterior 
(b) corneal surface of the eye. The stereoscopic nature of the 
graph is appreciated by letting the eyes drift into an exo-posture 
to form a single 3-dimensional percept.
a)

b)

 
Figure 2: Stereo-pair scatter plot of symmetric dioptric power 
space for the anterior (a) and posterior (b) corneal keratometry 
for Subject 2. The origin for each stereo-pair is the respective 
sample mean. 
a)

 

b)

 
Figure 3: Stereo-pair scatter plots in symmetric dioptric power 
space for the anterior (a) and posterior (b) corneal keratometry 
for Subject 3. 

a)

b)

 
Figure 4: Stereo-pair scatter plots in symmetric dioptric power 
space for the anterior (a) and posterior (b) corneal keratometry 
for Subject 4. 
a)
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b)

Figure 5: Stereo-pair scatter plots in symmetric dioptric power 
space for the anterior (a) and posterior (b) corneal keratometry 
for Subject 5. 

Table 1 shows the averages of transformed T̂  
and recovered, or untransformed, T  transferences 

of the 10 subjects. The logm function (in Matlab) 
transformed the ray transferences into Hamiltonian 
matrices. Once in Hamiltonian space, arithmetic 
means were computed. These means were in turn 
transformed back to ray transferences via the expm 
function. These are the average transferences result-
ing from the application of the exp-mean-log. The 
mean coordinate vectors for the 10 eyes are shown 
in Table 2 while Table 3 shows the 10x10 variance-
covariances Ŝ  of Subject 1 only (the same was done 
for all subjects but to save space only the matrix Ŝ  
for Subject 1 is included here). Since the matrix Ŝ  
is symmetric, there are 10 variances (shown in bold 
along the diagonal) and 45 distinct covariances (for 
example, all entries below the diagonal).

Table 1. Averages of transformed ( T̂ ) in Hamiltonian space and recovered ( T ) mean transferences for the corneas of the 10 sub-
jects are indicated. Subscripts from 1 to 10 are used to indicate the ten different subjects. Units have been omitted to save space but 
for each transference disjugacy B (the top-right four numbers) has the unit metres while the sub-matrix C (bottom-left four entries) 
is in dioptres. All other entries are unitless. The mean transformed transferences are determined in Hamiltonian space and the mean 
transferences are recovered using the matrix exponential. 

Average Transformed Transferences                        

T̂1 =
−0.0123 −0.0000 0.0005 0.0000
−0.0000 −0.0125 0.0000 0.0005
−41.9877 0.0000 0.0123 0.0000
0.0000 −42.1148 0.0000 0.0125

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T̂2 =
−0.0107 0.0001 0.0004 −0.0000
0.0001 −0.0110 −0.0000 0.0004
−42.4311 −0.0001 0.0107 −0.0001
−0.0001 −42.9482 −0.0001 0.0110

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T̂3 =
−0.0120 0.0000 0.0004 −0.0000
0.0000 −0.0120 −0.0000 0.0004
−41.5744 −0.0000 0.0120 −0.0000
−0.0000 −41.5460 −0.0000 −0.0120

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T̂4 =
−0.0109 0.0000 0.0004 −0.0000
0.0000 −0.0112 −0.0000 0.0004
−40.7042 −0.0000 0.0109 −0.0000
−0.0000 −41.2433 −0.0000 0.0112

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T̂5 =
−0.0117 0.0000 0.0004 −0.0000
0.0000 −0.0118 −0.0000 0.0004
−42.0682 −0.0000 −0.0117 −0.0000
−0.0000 −42.0409 −0.0000 0.0118

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T̂6 =
−0.0106 0.0001 0.0004 −0.0000
0.0001 −0.0104 −0.0000 0.0004
−42.9205 −0.0001 0.0106 −0.0001
−0.0001 −41.8859 −0.0001 0.0104

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 Recovered Mean Transferences

T1 =
0.9782 −0.0000 0.0005 0.0000
−0.0000 0.9779 0.0000 0.0005
−41.8538 0.0000 1.0027 0.0000
0.0000 −41.9801 0.0000 1.0029

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T2 =
0.9810 0.0000 0.0004 −0.0000
0.0000 0.9807 −0.0000 0.0004
−42.3138 −0.0000 1.0024 −0.0001
−0.0000 −42.8280 −0.0001 1.0025

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T3 =
0.9789 0.0000 0.0004 −0.0000
0.0000 0.9788 −0.0000 0.0004
−41.4468 −0.0000 1.0027 −0.0000
−0.0000 −41.4186 −0.0000 1.0028

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T4 =
0.9807 0.0000 0.0004 −0.0000
0.0000 0.9803 −0.0000 0.0004
−40.5900 −0.0000 1.0025 −0.0000
−0.0000 −41.1261 −0.0000 1.0026

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T5 =
0.9793 0.0000 0.0004 −0.0000
0.0000 0.9792 −0.0000 0.0004
−41.9419 −0.0000 1.0027 −0.0000
−0.0000 −41.9147 −0.0000 1.0028

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T6 =
0.9813 0.0001 0.0004 −0.0000
0.0001 0.9817 −0.0000 0.0004
−42.8038 −0.0000 1.0024 −0.0001
−0.0000 −41.7747 −0.0001 1.0024

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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Table 2. Mean coordinate vectors ( v̂ ) from transformed transferences of ten subjects. Subscripts from 1 to 10 are used to indicate 
the ten different subjects. In each vector, the first four entries are unit-less, the second three entries are in metres while the last 
three entries are in dioptres. 

v̂ 1v̂1 = −0.0124 0.0001 − 0.0000 − 0.0000 − 0.0005 − 0.0000 − 0.0000 − 42.0513 0.0636 0.0000( )T

v̂ 2v̂2 = −0.0108 0.0001 0.0001 − 0.0000 0.0004 − 0.0000 − 0.0000 − 42.6897 0.2585 − 0.0001( )T

v̂ 3v̂3 = −0.0120 0.0000 0.0000 − 0.0000 0.0004 0.0000 − 0.0000 − 41.5602 − 0.0142 − 0.0000( )T

v̂ 4v̂4 = −0.0110 0.0001 0.0000 − 0.0000 0.0004 − 0.0000 − 0.0000 − 40.9738 0.2696 − 0.0000( )T

v̂ 5v̂5 = −0.0118 0.0001 0.0000 − 0.0000 0.0004 0.0000 − 0.0000 − 42.0546 − 0.0137 − 0.0000( )T

v̂ 6v̂6 = −0.0105 − 0.0001 0.0001 − 0.0000 0.0004 0.0000 − 0.0000 − 42.4032 − 0.5173 − 0.0001( )T

v̂ 7v̂7 = −0.0098 0.0000 0.0000 − 0.0000 0.0004 0.0000 − 0.0000 − 42.6464 − 0.0792 − 0.0000( )T

v̂ 8v̂8 = −0.0105 0.0002 0.0000 0.0000 0.0004 − 0.0000 − 0.0000 − 42.5893 0.4810 − 0.0000( )T

v̂ 9v̂9 = −0.0099 0.0002 0.0000 0.0000 0.0004 − 0.0000 − 0.0000 − 41.2584 0.5239 − 0.0000( )T

v̂ 10v̂
10

= −0.0105 0.0001 − 0.0000 0.0000 0.0004 − 0.0000 0.0000 − 42.2794 0.0787 0.0000( )T
 

Table 3. The sample variance-covariance matrix Ŝ  for the coordinate vectors (N=43) for the cornea of Subject 1 is indicated. 
Units have been omitted to save space. They are metres for B̂ (see blue block), dioptres for Ĉ (green block) and Â is unit-less (red 
block). The matrix is symmetric so we are interested only in the 10 variances (in bold, top left to bottom right) and the 45 covari-
ances (for example, below the diagonal). Most of the covariances are almost zero. The entries in the red block are the variances 

and covariances of  ŜÂ  while those in the blue and green blocks are for  ŜB̂  and ŜĈ  respectively. Each of the entries of Ŝ  has been 
pre-multiplied by 103 and hence the 10-3 that follows the matrix below.

T̂7 =
−0.0097 0.0000 0.0004 −0.0000
0.0000 −0.0098 −0.0000 0.0004
−42.7257 −0.0000 0.0097 −0.0000
−0.0000 −42.5672 −0.0000 0.0098

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T̂8 =
−0.0104 0.0000 0.0004 −0.0000
0.0000 −0.0107 −0.0000 0.0004
−42.1083 −0.0000 0.0104 −0.0000
−0.0000 −43.0703 −0.0000 0.0107

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T̂9 =
−0.0098 0.0000 0.0004 −0.0000
0.0000 −0.0101 −0.0000 0.0004
−40.7345 −0.0000 0.0098 −0.0000
−0.0000 −41.7823 −0.0000 0.00101

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T̂10 =
−0.0104 −0.0000 0.0006 0.0000
−0.0000 −0.0106 0.0000 0.0004
−42.2007 0.0000 0.0104 0.0000
0.0000 −42.3581 0.0000 0.0106

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T7 =
0.9827 0.0000 0.0004 −0.0000
0.0000 0.9827 −0.0000 0.0004
−42.6183 −0.0000 1.0022 −0.0000
−0.0000 −42.4606 −0.0000 1.0023

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T8 =
0.9816 0.0000 0.0004 −0.0000
0.0000 0.9811 −0.0000 0.0004
−41.9956 −0.0000 1.0023 −0.0000
−0.0000 −42.9525 −0.0000 1.0025

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T9 =
0.9827 0.0000 0.0004 −0.0000
0.0000 0.9822 −0.0000 0.0004
−40.6317 −0.0001 1.0022 −0.0000
−0.0001 −41.6741 −0.0000 1.0023

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

T10 =
0.9815 −0.0000 0.0004 0.0000
−0.0000 0.9814 0.0000 0.0004
−42.0870 0.0000 1.0023 0.0000
0.0000 −42.2436 0.0000 1.0024

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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Figures 6 to 10 show the ray vector fields or diagrams 
for the first five of 10 subjects. Each of the figures 
represents the cornea as an optical system. In Figure 
6a light is considered to be travelling into the page 
and the optical axis is perpendicular to the page and 
is marked with a small cross (+). In the entrance and 
exit planes, a pattern of 25 coloured dots represents 
the incident positions of 25 rays from a distant object 
arranged in a regular grid. Twenty-five small coloured 
circles with bars (in the exit plane) represent emer-
gent positions and reduced inclinations of the 25 rays. 
(Note the bars indicate ray position and direction but 
not magnitude.) The entrance and exit planes are also 
superimposed in Figure 6a to demonstrate for each 
ray the manner by which its incident state is trans-
formed to its emergent state. In Figure 6b, the 25 rays 
of Figure 6a are shown in a stereo-pair to more easily 
visualize in three dimensions the ray behaviour and 
the changes from incident to emergent states.    

In Figure 6a the matrix T  is the linear map that 
assigns to each incident ray vector γo an emergent ray 

vector γo. This mean transference, T   operates on, or 
modifies, the incident rays to give the emergent rays. 
The matrix F0 is the corneal plane refractive power 
and the magnitude of these corneal plane powers are 
very large (> 2000 D for Subject 1 in Figure 6) relat-
ing to the central thickness of the cornea being only 
about 0.5 mm. F0 is essentially the power of a thin 
lens immediately in front of the cornea which com-
pensates for the system ametropia; assuming we re-
gard the optical system as that of the cornea in isola-
tion, that is, the emergent plane is located just before 
the posterior surface of the cornea. (Matrix F0 does 
not depend directly on the power of the cornea.) The 
light rays bend or converge very dramatically to reach 
the posterior corneal surface or exit plane given that 
the cornea (considered as optical system in isolation 
is only about 0.5 mm thick). Also indicated in the fig-
ure is the matrix F (the dioptric power of the cornea) 
and at about 42 D is not atypical of what might be 
found for corneas of young subjects. 

In Figures 7-10 only stereo-pairs are used to indi-
cate ray behaviour through the corneas of subjects2-5.

a)
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b)

Figure 6. Interpretation of light rays traversing the cornea of 
Subject 1. (a) The 25 coloured dots represent the incident rays 
in the entrance plane and the corresponding emergent rays are 
represented with the same colours but by circles with bars. The 
optical axis is marked with a cross. The optical axis itself rep-
resents any ray through the system that is not deviated. So, any 
ray can serve as an optical axis. The last row and last column of 
T  indicate that the system is centred. F0  is the corneal plane 

refraction and is very large indicating that rays converge mark-
edly when passing through the entrance plane or anterior corneal 
surface.. The power of the cornea is represented by F. All light 
rays converge toward the optical axis as shown with coloured 
open circles and bars in the exit plane. (b) Stereo-pair scatter 
plot of the ray vectors in three-dimensions. The z-axis represents 
the optical axis and the separation between the entrance and exit 
planes is exaggerated for ease of inspection. 

Figure 7. Stereo-pair scatter plot of the ray vectors traversing 
the cornea of Subject 2 in three-dimensions. Again the z-axis 
represents the optical axis and the separation between the en-
trance and exit planes is exaggerated for ease of inspection.

  

Figure 8. Stereo-pair scatter plot of the ray vectors traversing 
the cornea of Subject 3 in three-dimensions. 

 

Figure 9. Stereo-pair scatter plot of the ray vectors traversing 
the cornea of Subject 4. 

 

Figure 10. Stereo-pair scatter plot of the ray vectors traversing 
the cornea of Subject 5. 

Discussion

The general and unique definition of power, and 
understanding the behaviour of light rays in relation 
to an optical system, are both found in terms of the 
ray transference T which is a symplectic matrix1,9. 
Symplecticity implies particular relationships among 
the fundamental linear optical properties of an opti-
cal system18. The product of symplectic matrices is 
symplectic, that is, symplectic matrices are closed un-
der multiplication but they are not closed under sca-
lar multiplication. Also, symplectic matrices are not 
closed in general under addition and thus addition of 
two symplectic matrices will usually return a matrix 
that is itself not symplectic. For this reason, an arith-
metic average of symplectic matrices is not symplec-
tic and this creates problems determining, for exam-
ple, a mean cornea for one or more eyes such as are 
provided in this paper. But the principal matrix loga-
rithm of a symplectic matrix is a Hamiltonian matrix 
and the matrix exponential of a Hamiltonian matrix is 
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symplectic20 and such matrices can thus be used to de-
termine means. The method is implemented in Matlab 
where the logarithm function transforms ray transferenc-
es into Hamiltonian matrices and allows the mean, vari-
ances and covariances of such transferences to be calcu-
lated. Thereafter the exponential function transforms the 
mean log transference in Hamiltonian space back into 
the sample mean ray transference. In other words, for a 
sample of ray transferences (here T1 to T43) the mean 
ray transference ( T ) recovered from the mean Hamil-
tonian matrix ( T̂ ) is the average cornea of the eye con-
cerned. In Table 1 the mean transferences are indicated 
for the corneas of the ten right eyes that were studied 
for this paper.  

For a Hamiltonian matrix (see equation 13) the off-
diagonal sub-matrices B̂  and Ĉ  are symmetric and one 
diagonal sub-matrix ( Â ) is the negative of the transpose 
of the other ( −D̂T )22. A 4x4 Hamiltonian matrix repre-
sents a loss of a degree of freedom (df) each from the 
off-diagonal sub-matrices and a loss of four degrees of 
freedom from one of the diagonal sub-matrix. There is 
a loss of six degrees of freedom from 16 to 10. The 4x4 
symplectic matrix for a centered optical system, such 
as those described in this paper, has only 10 degrees 
of freedom instead of 16. So the 4x4 Hamiltonian ma-
trices define a 10-dimensional vector space. But effec-
tive graphical representation of a 10-dimensional vector 
space is impossible without resorting to various simpli-
fications that do not allow for an entirely satisfactory 
representation of the 10-dimensional space15. However, 
one can work in the 10-dimensional space mathemati-
cally and calculate arithmetic means ( T̂ ) and 10x10 var-
iance-covariance matrices ( Ŝ ) in Hamiltonian space and 
thereby determine a mean transference ( T ) that suitably 
describes the sample or transferences or optical systems 
concerned15, 22. 

The mean ray transference ( T ) can be regarded as 
an operator that transforms or operates on the incident 
positions and directions of rays (y0 and α0 ) to give the 
emergent and positions and directions of rays ( y and α
). Thus when a ray traverses an optical system the state 
of the ray is changed from its incident state to its emer-
gent state. This quantitative change is represented by 
the ray transference of the system and dioptric power, 
for example, is explained in terms of what the optical 
system does to rays passing through the system9-12. 
Figures 6 to 10 use the mean transferences ( T ) of 
the different corneas, or optical systems, of ten eyes 

to show the effects of such systems on the emergent 
positions and directions of defined rays from a distant 
point image incident on the systems concerned. These 
figures represent what are known as vector ray fields 
and explain how the rays are affected by the optical 
systems concerned.

The dioptric power of the system can be defined 
as the negative of divergence (F = −C ) of the mean 
transference for the system (see Figure 6a where F 
is indicated) for Subject 1. The dioptric power of the 
system is the negative of the effect of the incident po-
sition of a ray on its emergent reduced inclination. Be-
cause the system has power F there is a contribution 
−Fy0  associated with incident position y0 to an emer-
gent reduced inclination α . When the entrance and 
exit planes are superimposed, such as in the bottom-
left section of Figure 6a, then coloured points or dots 
represent incident positions while circles and short 
lines represent emergent ray positions and directions. 
In the stereo-pair of Figures 6b, and also for those of 
Figures 7 to 10 for the different eyes in this sample, 
both incident and emergent positions and their inci-
dent and emergent directions are represented graphi-
cally in the incident and exit planes which are located 
at the anterior corneal surfaces and just in front of 
the posterior corneal surfaces respectively of the eyes 
involved. So, for each subject here the optical system 
consists only of the cornea in isolation of the rest of 
the eye concerned.  

Table 3 shows the variation (of coordinate vec-
tors from the transformed transferences of Subject 
1) via a 10×10 variance-covariance matrix Ŝ  in log-
transference or Hamiltonian space. (The mean co-
ordinate vector for this eye is provided in Table 2 - 
but for each of the 43 transformed transferences of 
this eye there would be a corresponding coordinate 
vector, and since these vectors are somewhat differ-
ent to one another that variation is described in the 
variance-covariance matrix Ŝ  for the eye.) The Ham-
iltonian space has three sub-spaces (but in general it 
has five subspaces21, 22). The fact that most entries in 
the variance-covariance of Table 3 are close to zero 
is a consequence of the cornea being a system that is 
“almost” thin. If the cornea was a thin system then 
all entries would be zero except the lower-right 3×3 
block representing the variation of Ĉ .
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Conclusion 

In summary, the interpretation presented in this 
study describes transferences in terms of what the 
cornea does to rays traversing it within the limita-
tions of paraxial optics. The cornea operates on rays 
according to equation 1. From the 43 measurements 
of corneal powers and central thicknesses for each 
subject, there are thus 43 equations in the unknown 
matrix T. The optical system, namely the subject’s 
cornea, varies and there are 43 transferences for 
which we require the determination of a mean ray 
transference that adequately represents the average or 
mean optical system (or cornea) for the subject con-
cerned. To this end average transferences T  as well 
as ray vector fields (Figures 6-10) were determined 
and represented graphically for Subect 1 and others 
thus permitting us to better understand the behaviour 
of paraxial light rays through the optical systems as 
defined.

Light rays near the optical axis enter the cornea 
at the entrance plane and leave the system at the exit 
plane. When the rays traverse the system (or cornea 
here) the state of the ray is changed from its incident 
to its emergent state by the system ray transference. 
We are thus only interested in rays near the optical 
axis of the system. The optical axis itself represents 
any ray that goes through the cornea undeviated28. 
Dealing with rays further from the optical axis be-
comes much more difficult and complicated. Figures 
6 to 10 of ray vector fields for several eyes aid our 
interpretation of a defined set of rays reaching the 
incident plane from a distant object point and such 
diagrams clearly show what happens when such light 
rays enter the involved cornea. Although this paper 
concentrates on the cornea alone as the optical system 
it would be possible to trace rays through the whole 
eye but this would require the measurement of other 
variables such as the axial thickness and surface pow-
ers of the crystalline lens, and also the axial length of 
the vitreous chamber. The methods used here how-
ever allow for a better understanding of paraxial ray 
tracing and the nature of the interaction of the system 
(of the whole eye) with light and so future research 
should perhaps be applied to measuring such param-
eters directly for a few eyes and then applying the 
analytical and graphical methods as used in this paper 

to said measurements.  
Many of the ideas and methods as described and 

used in this paper may seem difficult at first glance 
but they are essential if we want to properly under-
stand the interaction of the eye and light in its envi-
ronment. The optics of the cornea and eye (both of 
which are effectively thick, as against thin, optical 
systems) are in many ways more complicated than 
one might anticipate and this is particularly so due to 
the existence of astigmatism. Nevertheless, methods 
that involve ray transferences are available to begin 
to better understand these intriguing aspects of vision, 
light and the eye.    
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