
 
 

   
 

Abstract — Effective dipole moment method has been 
widely accepted as the de facto technique in predicting the 
dielectrophoretic force due to the non-uniform electric field. 
In this method, a finite-particle is modeled as an equivalent 
point-dipole that would induce a same electric field under the 
external electric field. This approach is only valid when the 
particle size is significantly smaller than the characteristic 
length of interest. This assumption is often violated in a 
microfluidic device, where the thickness or width of the 
microchannel can be as small as the particle. It is shown in 
this numerical study that when the dimensions of the particle 
were in the same order of magnitude as the characteristic 
length of the device, dielectrophoretic force can be induced 
even in a uniform electric field. This force arose due to the 
disturbance of the particle and the bounding wall. 
 

Index Terms — electrostatic force, dipole moment, 
dielectrophoresis 
 

I. INTRODUCTION 
IELECTROPHORESIS has been demonstrated to be able 
to manipulate bio-particles having characteristic 

length in micrometers. For instance, the separation of 
viable and non-viable yeast cells [1], the separation of 
mixtures of Bacillus subtilis, Escherichia coli and 
Micrococcus luteus bacteria [2], the separation of human 

 
Manuscript received November 29, 2005.  
C. H. Kua is with the Singapore-MIT Alliance, Nanyang Technological 

University, Singapore 639798. (e-mail: r030001@ntu.edu.sg). 
C. Yang is with the School of Mechanical and Aerospace Engineering, 

Nanyang Technological University, Singapore 639798. (e-mail: 
mcyang@ntu.edu.sg). 

S. Goh is with the Institute of Material Research and Engineering, 
Singapore. (email: shireen-goh@imre.a-star.edu.sg) 

I. Rodriguez is with the Institute  of Material Research and 
Engineering, Singapore. (email: i-rodriguez@imre.a-star.edu.sg) 

K. Youcef-Toumi is with the Singapore-MIT Alliance. He is also with 
the Department of Mechanical Engineering, Massachusetts Institute of 
Technology, Cambridge, Massachusetts 02139. (email:  Youcef@mit.edu) 

Y. C. Lam is with the Singapore-MIT Alliance. He is also with the 
School of Mechanical and Aerospace Engineering, Nanyang 
Technological University, Singapore 639798. (e-mail: 
myclam@ntu.edu.sg). 

leukemia cells [3] and the separation of human breast 
cancer cells from blood [4].    

Effective dipole moment method [5] has been commonly 
employed to predict the magnitude and direction of the 
dielectrophoretic forces in such devices. According to the 
effective dipole method, the dielectrophoretic force, F, on a 
particle can be approximated as the dot product of the 
equivalent dipole induced on the particle, p, with the 
gradient of the applied electric field, E, [5] 

F = (p⋅∇)E              (1) 
where ∇ is a del operator. For a more rigorous approach, 
multipolar moment method [6] can be used to find the 
dielectrophoretic force induced by the higher order electric 
field terms [7]. 
 There are two major assumptions in using the effective 
moment method. Firstly, it is assumed that the 
characteristic length of interest is significantly larger than 
the particle size. Secondly, it is assumed that the equivalent 
dipole or multipoles induced on the particle under non-
uniform electric field is the same as the dipole or 
multipoles induced under a uniform electric field. In 
microfluidic devices where the microchannel thickness or 
width can be as small as 100 µm, and the nominal cell 
diameter in the range of 1~20 µm, these assumptions are 
often violated. Some attempts [8] have been made in 
proposing Maxwell Stress Tensor analytical approach to 
replace the dipole moment method, which was later found 
to be the same exact solution as the multipolar moment 
method [9]. In addition, there were also numerical 
approaches using the Maxwell Stress Tensor [10,11]. This 
investigation extends the numerical approach to include the 
case of uniform electric field.  

II. BOUNDARY CONDITIONS 
The problem space consists of a dielectric rod with 

radius r, position at a distance a in a vacuum space, as 
shown in Figure 1. The length of the problem space is 
arbitrarily defined as twice the height. A potential with a 
normalized value 1 unit is applied to the left edge, and a 
zero potential is maintained at the right edge. The dielectric 
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rod has a permittivity of ε2 = 7ε1, where ε1 is chosen as the 
permittivity of the free space, for simplicity. The normal 
components of the potential are zero at the top and bottom 
surfaces. The applied potential generated an electric field 
that induces a polarization charge on the dielectric rod 
surface. This surface charge interactes with the electric 
field to give rise to electrical forces acting on the dielectric 
rod. The problem is formulated and solved using a partial 
differential equation solver (FlexPDE). 
 

 
Fig. 1. Two-dimensional model simulating the electric field and 
dielectrophoretic force. The potential is applied on the left and right edges 
to generate an uniform electric field. 
 

III. ELECTROSTATIC  FORCE 

A. Electric field 
The calculation of the electric field often starts with the 

Gauss’ law, which relates the electric field intensity to its 
source. In the differential form, the Gauss’ law is [12]  

∇ ⋅ε0E = ρ                (2) 

where ε0 is the absolute permittivity of free space, and ρ is 
the total free charge in space. Equation (2) is readily valid 
for material having relative permittivity, κ, by taking the 
multiplication of κ on ε0. For convenient, the product is 
usually denoted as ε. In micrometer length scale, the total 
free charge can be assumed to be zero. In addition, the 
Faraday’s law relates the circulation of E to the time rate of 
change of the magnetic flux, H, which in differential form 
is [12] 

∇ × E = ∂
∂t

µ0H              (3) 

where µ0 is the permeability of free space. In a microfluidic 
device, the characteristic length of the particle is much 
smaller than the electric field length, such that the right-
hand side term is approximately zero. Thus, the vector 
electric field can be redefined as the gradient of a scalar Φ,  

E = −∇Φ               (4) 
The governing equation is obtained by combining 

equation (4) into equation (2), taking into account the 

simplification for micrometer length scale,  
∇ ⋅ε(−∇Φ) = 0             (5) 

which is readily reduced to the Laplace equation for a 
homogenous material. In this study, the electric field on the 
problem space is obtained by solving the Laplace equation. 
 

B. Dielectrophoretic force 
The electric field exerted a force on the surface charge. 

Employing the Maxwell Stress Tensor method, the total 
force acting on the rod surface, Fmst, is found by 
integrating the tangential and normal component of the 
electric field, Et2 and En2, respectively, over the dielectric 
rod surface, s, [10,13] 

Fmst = 1
2

(ε2 −ε1) (
S
∫ E t2

2 + ε2

ε1

En 2
2 ) n ds     (6) 

where index 1 refers to the surrounding material, and index 
2 refers to the object. 
 

IV. NUMERICAL RESULT 
The electric field and electrostatic force acting on the 

dielectric rod are obtained by solving Equation (5) and (6) 
subjected to the boundary conditions in Figure 1. For the 
purpose of comparison, a simulation without the dielectric 
rod is also performed. The result in Figure 2 shows the 
electric field distribution when the dielectric rod is omitted. 
This condition corresponds to the dipole moment approach, 
where the dielectrophoretic force is obtained by taking the 
product of the equivalent dipole with the gradient of the 
electric field as depicted in equation (1). Using this 
approach, the dielectrophoretic force is predicted to be zero 
throughout the problem space, since the gradient of a 
uniform electric field is zero. 

 
Fig. 2. Electric field distribution without considering the dielectric rod. 

 
The electric field distribution when the dielectric rod is 

included in the calculation of the electric field is shown in 
Figure 3. Due to the existence of the dielectric rod, a non-
uniform electric field is generated. The non-uniform 
electric field give rise to the dielectrophoretic force acting 
on the dielectric rod surface.  

The normalized dielectrophoretic force for different 
value of dielectric rod radius and position is shown in 
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Figure 4. The result predicts that the force on the dielectric 
rod increases significantly when the rod is near to the wall. 
The force is small when the particle size is an order of 
magnitude smaller than the channel thickness, and zero 
when the dielectric rod is at the center of the channel. 

 
Fig. 3. Electric field distribution taking into account of the dielectric rod. 
All variables have been normalized. 
 

Fig. 4. The dependence of electrostatic force on the particle diameter to 
microchannel height, a/h, and the particle radius, r. All variables have 
been normalized. 
 

V. DISCUSSIONS AND CONCLUSION 
This simulation shows that the particle has a significant 

effect on the electric field distribution when the particle 
diameter is in the same order of magnitude as the 
microchannel thickness. More specifically, the result 
highlighted the shortfall of the current effective dipole 
method in determining the dielectrophoretic force when the 
size of the particle cannot be ignored. The dielectrophoretic 
force can be generated even under an initially uniform 
electric field. 

Hitherto, the biggest hindrance in using the numerical 
approach is that it is not able to account for the case of a 
lossy material. The simulation is only readily available for 
a perfect conductor or perfect insulator. Without this 
capability, the dependence of dielectrophoretic force on the 
applied voltage frequency cannot be included in the 
simulation. 
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